
Mathematical
Research for
Blockchain
Economy

Panos Pardalos · Ilias Kotsireas ·
Yike Guo · William Knottenbelt Editors

3rd International Conference MARBLE
2022, Vilamoura, Portugal

Lecture Notes in Operations Research

Lecture Notes in Operations Research

Editorial Board

Ana Paula Barbosa-Povoa, University of Lisbon, LISBOA, Portugal

Adiel Teixeira de Almeida , Federal University of Pernambuco, Recife, Brazil

Noah Gans, The Wharton School, University of Pennsylvania, Philadelphia, USA

Jatinder N. D. Gupta, University of Alabama in Huntsville, Huntsville, USA

Gregory R. Heim, Mays Business School, Texas A&M University, College Station,
USA

Guowei Hua, Beijing Jiaotong University, Beijing, China

Alf Kimms, University of Duisburg-Essen, Duisburg, Germany

Xiang Li, Beijing University of Chemical Technology, Beijing, China

Hatem Masri, University of Bahrain, Sakhir, Bahrain

Stefan Nickel, Karlsruhe Institute of Technology, Karlsruhe, Germany

Robin Qiu, Pennsylvania State University, Malvern, USA

Ravi Shankar, Indian Institute of Technology, New Delhi, India

Roman Slowiński, Poznań University of Technology, Poznan, Poland

Christopher S. Tang, Anderson School, University of California Los Angeles,
Los Angeles, USA

Yuzhe Wu, Zhejiang University, Hangzhou, China

Joe Zhu, Foisie Business School, Worcester Polytechnic Institute, Worcester, USA

Constantin Zopounidis, Technical University of Crete, Chania, Greece

https://orcid.org/0000-0002-2757-1968

Lecture Notes in Operations Research is an interdisciplinary book series which
provides a platform for the cutting-edge research and developments in both opera-
tions research and operations management field. The purview of this series is global,
encompassing all nations and areas of the world.

It comprises for instance, mathematical optimization, mathematical modeling,
statistical analysis, queueing theory and other stochastic-process models, Markov
decision processes, econometric methods, data envelopment analysis, decision anal-
ysis, supply chain management, transportation logistics, process design, operations
strategy, facilities planning, production planning and inventory control.

LNORpublishes edited conference proceedings, contributed volumes that present
firsthand information on the latest research results and pioneering innovations as
well as new perspectives on classical fields. The target audience of LNOR consists
of students, researchers as well as industry professionals.

Panos Pardalos · Ilias Kotsireas · Yike Guo ·
William Knottenbelt
Editors

Mathematical Research
for Blockchain Economy
3rd International Conference MARBLE 2022,
Vilamoura, Portugal

Editors
Panos Pardalos
Department of Industrial
and Systems Engineering
University of Florida
Gainesville, FL, USA

Yike Guo
Data Science Institute
Imperial College London
London, UK

Ilias Kotsireas
CARGO Lab
Wilfrid Laurier University
Waterloo, ON, Canada

William Knottenbelt
Department of Computing
Imperial College London
London, UK

ISSN 2731-040X ISSN 2731-0418 (electronic)
Lecture Notes in Operations Research
ISBN 978-3-031-18678-3 ISBN 978-3-031-18679-0 (eBook)
https://doi.org/10.1007/978-3-031-18679-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9623-8053
https://orcid.org/0000-0002-3075-2161
https://orcid.org/0000-0003-2126-8383
https://orcid.org/0000-0002-8490-1011
https://doi.org/10.1007/978-3-031-18679-0

Preface

This volume presents the proceedings of the 3rd International Conference on Math-
ematical Research for Blockchain Economy (MARBLE 2022) that was held in
Vilamoura, Portugal, from July 12 to 14, 2022.

Thankfully, the gradual global recovery from the COVID-19 pandemic allowed
us to return to a physical format after 2 years and to put together an exciting
programme of research papers, keynote talks and a tutorial, in line with MARBLE’s
goal to provide a high-profile, cutting-edge platform for mathematicians, computer
scientists and economists to present the latest advances and innovations related to
the quantitative and economic aspects of blockchain technology. In this context,
the Technical Programme Committee has accepted 14 research papers for publi-
cation and presentation on themes including mining incentives, game theory,
decentralised finance, central government digital coins and stablecoins, automated
market makers, blockchain infrastructure and security. The technical programme
also features keynotes by the following distinguished speakers: Michael Zargham
(BlockScience and Metagovernance Project), Ioana Surpateanu (Multichain Asset
Managers Association), Cathy Mulligan (Instituto Superior Técnico), Rob Hygate
(eWATER Services), Arda Akartuna (Elliptic and University College London),
Raphaël Mazet (SimpleFi) and Stefania Barbaglio (Cassiopeia Services) as well
as a tutorial on Decentralised Finance presented by Lewis Gudgeon, Daniel Perez,
Sam Werner and Dragos Ilie (Imperial College London).

We thank all authors who submitted their innovative work to MARBLE 2020.
In addition, we thank all members of the Technical Programme Committee and
other reviewers, everyone who submitted a paper for consideration; the General
Chairs, Prof. William Knottenbelt, Prof. Yike Guo and Prof. Panos Pardalos; the
Organisation Chair, Jas Gill; the Web Chair, Kai Sun; the Publication Chair, Ilias
Kotsireas; the Finance Chair, Diana O’Malley; the Publicity Chair, SamWerner; and
othermembers of the Centre for CryptocurrencyResearch and Engineeringwho have

v

vi Preface

contributed in many different ways to the organisation effort, particularly Katerina
Koutsouri. Finally, we are grateful to our primary sponsor, the BrevanHoward Centre
for Financial Analysis, for their generous and ongoing support.

Vilamoura, Portugal
July 2022

Panos Pardalos
Ilias Kotsireas

Yike Guo
William Knottenbelt

Contents

Towards Equity in Proof-of-Work Mining Rewards 1
Rami A. Khalil and Naranker Dulay

Market Equilibria and Risk Diversification in Blockchain Mining
Economies . 23
Yun Kuen Cheung, Stefanos Leonardos, Shyam Sridhar,
and Georgios Piliouras

On the Impact of Vote Delegation . 47
Hans Gersbach, Akaki Mamageishvili, and Manvir Schneider

Decentralized Governance of Stablecoins with Closed Form
Valuation . 59
Lucy Huo, Ariah Klages-Mundt, Andreea Minca,
Frederik Christian Münter, and Mads Rude Wind

Griefing Factors and Evolutionary In-Stabilities in Blockchain
Mining Games . 75
Stefanos Leonardos, Shyam Sridhar, Yun Kuen Cheung,
and Georgios Piliouras

Data-Driven Analysis of Central Bank Digital Currency (CBDC)
Projects Drivers . 95
Toshiko Matsui and Daniel Perez

Dissimilar Redundancy in DeFi . 109
Daniel Perez and Lewis Gudgeon

DeFi Survival Analysis: Insights into Risks and User Behaviors 127
Aaron Green, Christopher Cammilleri, John S. Erickson,
Oshani Seneviratne, and Kristin P. Bennett

vii

viii Contents

Gas Gauge: A Security Analysis Tool for Smart Contract
Out-of-Gas Vulnerabilities . 143
Behkish Nassirzadeh, Huaiying Sun, Sebastian Banescu,
and Vijay Ganesh

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable
Hash Functions . 169
David Chaum, Mario Larangeira, and Mario Yaksetig

Interhead Hydra: Two Heads are Better than One . 187
Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka

PredictionMarkets, AutomatedMarketMakers, andDecentralized
Finance (DeFi) . 213
Yongge Wang

Wombat—An Efficient Stableswap Algorithm . 233
Jen Houng Lie, Tony W. H. Wong, and Alex Yin-ting Lee

Multi-Tier Reputation for Data Cooperatives . 253
Abiola Salau, Ram Dantu, Kirill Morozov, Kritagya Upadhyay,
and Syed Badruddoja

Towards Equity in Proof-of-Work
Mining Rewards

Rami A. Khalil and Naranker Dulay

Abstract This work targets unfairness in Nakamoto, Bitcoin’s distinguished per-
missionless consensus protocol, towards miners with relatively small computational
powers, and miners which participate during relatively unrewarding mining periods.
We propose a set of computationally-grounded metrics for measuring miner expen-
ditures, miner compensation, and coin value. Using our metrics, we quantitatively
bring to light the sources of inequity in Nakamoto using Bitcoin as a real-world
example. Furthermore, we propose a set of reward issuance constraints for mining
incentive mechanisms to achieve equitable rewards, and argue for the efficacy of
applying our constraints.

Keywords Proof-of-Work · Cryptocurrency · Rewards

1 Introduction

The most prominent Proof-of-Work (PoW) mining cryptocurrency, Bitcoin [6], does
not treat all of its miners fairly. Specifically, miners with relatively small computa-
tional powers, and miners which participate in the protocol during relatively unre-
warding late periods, are forced to expend more time and resources than others to
create the same amount of coins. This lack of fairness is inherent to Bitcoin’s protocol
design.

One of the primary tenants of Bitcoin is to remain permissionless, allowing any-
one to attain a copy of the entire ledger, and insert transactions into it while remaining
in agreement with all other miners on its exact contents. This permissionless agree-
ment between all Bitcoin ledger replicas is enabled by the Nakamoto consensus

R. A. Khalil (B) · N. Dulay
Imperial College London, London, United Kingdom
e-mail: rami.khalil@imperial.ac.uk

N. Dulay
e-mail: n.dulay@imperial.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_1&domain=pdf
mailto:rami.khalil@imperial.ac.uk
mailto:n.dulay@imperial.ac.uk
https://doi.org/10.1007/978-3-031-18679-0_1

2 R. A. Khalil and N. Dulay

protocol, the first such protocol to enable consensus between a peer-to-peer network
of mutually distrusting components.

PoW mining in Nakamoto is used to drive a periodic leader-election process,
where the probability of a miner winning in each election period is equal to that
miner’s relative share of the combined mining power of all participating miners.
The elected leader in each round gets to decide the next batch of coin transfers,
commonly referred to as a Block of transactions, to be executed in the ledger by all
replicas. Unfortunately, Nakamoto equates successful leader election with reward
acquisition, awarding only leaders with new coins and transaction fees, and leaving
all other unelected miners without compensation. Consequently, Nakamoto grants a
miner access to rewards only in the form of an opportunity that is equal in success
rate to the miner’s relative share of the entire network’s mining power, which all but
completely eliminates all hope and incentive for very small miners to earn any coins.

Furthermore, Nakamoto provisions only a fixed number of newly issued coins
per block. This number of newly issued coins is additionally periodically reduced.
In Bitcoin, 50 coins were initially set as a block reward, and this reward was set to
be split in half every 210, 000 blocks, and sitting currently at 6.25 coins per block.
Unjustifiably, this rate of periodically equal reward issuance does not respond in
any form to the amount of computational power miners invest into the network,
and is only implemented to promote an artificial form of coin supply scarcity. Most
alarmingly, this has allowed early miners to garner a very significant number of
coins in exchange for an insignificant amount of mining compared to today’s mining
requirements.

In retrospect, Nakamoto provides no means for miners with relatively small com-
putational capabilities to attain the same level of reward stability as larger miners.
Moreover, even without periodic exponential reward reduction, miners which par-
ticipate during periods of relatively high PoW difficulty in the protocol’s lifetime are
forced to settle for rewards of relatively smaller value than those received by miners
who participated during relatively lower PoW difficulty periods.

Scope. We only discuss specific notions of inequity in mining. Namely, inequities
due to real-world conditions, such as laws, regulations, or resource costs, are not
considered. Instead, the types of inequity focused on in this paper are those due
to protocol specific rules that force miners which participate in the protocol to pay
a higher cost per coin than others due to, for example, participating with a rela-
tively smaller amount of computational power, or at a relatively earlier or later point
in time, than other miners. Notably, how miners are rewarded, what hashing func-
tion is used, or how block creation conditions are set, is out of the scope of this paper.

Contributions. In this work, we identify, explain, and describe a solution for the
sources of inequity inPoWmining against relatively small, and relatively late,miners.
Primarily, we argue that the scarcity-enforcement method by which state-of-the-art
PoW mining reward schemes prevent any sudden substantial growth in their coin
supplies is the unnecessary reason miners are disadvantaged. More precisely, we
make the following contributions:

Towards Equity in Proof-of-Work Mining Rewards 3

• We introduce a computationally-grounded framework for measuringminer reward
value.

• We model mining rewards in Bitcoin using our computationally-grounded frame-
work, quantitatively demonstrating the points of inequity.

• We propose a set of reward constraints based on our computationally-grounded
framework that regulate coin supply growth while preventing miner reward
inequity, and argue for their effectiveness.

Structure. The remainder of this paper proceeds as follows. In Sect. 2, we review
related work and literature on PoW mining rewards. Subsequently, in Sect. 3 we
introduce a computationally-grounded framework for establishing a valuation metric
for coins. Then, in Sect. 4 we present current sources of inequity in state-of-the-art
PoW mining reward schemes, and quantify their effects on mining in Bitcoin. We
then introduce in Sect. 5 a set of constraints for achieving equitable rewards, and
argue for their efficacy. Lastly, we conclude this paper in Sect. 6 with a summary of
our work and future work.

2 Background & Related Work

The design and analysis of protocols for permissionless distributed ledgers has gar-
nered a torrent of attention since the recognition of Bitcoin, leading researchers and
practitioners to produce a plethora of scientific work and literature. In this section we
review works which, to the best of our knowledge, most relate to the understanding,
design, and analysis of Nakamoto and our reward constraints. In Sect. 2.1, we focus
on how mining protocols incentivize miners, assuming they are rational agents that
aim to maximize their own gains, to remain compliant with protocol specifications.
Subsequently, we review several analyses of mining rewards in Sect. 2.2.

2.1 Reward Protocols

Primarily, the main reward offered by all reviewed protocols comes in the form of
coins within the distributed ledger in favor of miners. These rewards are intended as
compensation for the miners’ use of computational resources to extend the canonical
chain and maintain stable consensus on the ledger contents. Inversely, miners which
create divergent branches are not meant to receive rewards because they impede the
stability of the consensus process.

However, identifying with certainty which divergences were intentional or not
is not always practically possible, and therefore protocols cannot decisively con-
sider every branching as non-compliant. Consequently, many state-of-the-art proto-
cols take coarse approaches to issuing rewards and punishments. In this section, we

4 R. A. Khalil and N. Dulay

review only the state-of-the-art in granting coins to compliant components, leaving
punishments out of scope.

The fundamental reward scheme introduced inNakamoto is to issue ablock reward
to the miner which successfully finds a block. This reward creates new coins and
credits them to the miner within the block that it created. Additionally, a secondary
reward, in the form of transaction fees, is granted to miners that create blocks. These
fees are specified and paid by the issuers of the transactions which are included in
each block. All fees paid by a block’s transactions are credited to the miners that
created the block, after being deducted from the balances of the transaction issuers.
Notably, both rewards are only valid within the chain that contains the block that
issues the rewards.

Lenient Protocols. However, as stale blocks are inevitable, such a stringent policy
does not compensate compliant miners that inadvertently create stale blocks. Amore
lenient strategy is to issue uncle rewards to miners which have created blocks that
recently went stale [9]. These rewards are issued in the canonical chain when it is
extended by a block that proves the existence of one or more such recent stale blocks.
Uncle rewards are split amongst the miner which extends the canonical chain with
a block that references new stale blocks as uncles, and the miners which originally
produced those stale blocks.

Inclusive Protocols. Another, more general, strategy is to reward more than one
miner for the creation of a block, leading to a more inclusive scheme with a smaller
gap in reward stability between smaller and larger miners. The rationale behind this
is that the reward distribution per block should be more representative of the block
creation resource expenditure exhibited by miners throughout the search for a new
block, and the rewards should not just be solely distributed to the miner which found
the block’s nonce in a “winner-takes-all” fashion. Several notableworks have pursued
this direction.

• In FruitChains [8], Pass and Shi quantify reward distribution fairness and use weak
mining targets, named Fruits, to reward miners with coins if the fruits are included
in a block on time. Their work reduces the discrepancy between the variability of
rewards of miners with large resources and of those with smaller resources.

• Szalachowski et al. propose StrongChain [10], which uses weak mining targets
to increase the weight of a chain and distribute block rewards amongst more
miners by permitting the inclusion of headers of “weak” blocks in “strong” blocks.
This approach also reduces the per-block reward variance of miners with smaller
resources.

• Bissias and Levine generalize the mining target to be the average of the targets
met by several miners in Bobtail [1], lowering the variance of inter-block arrival
times and per-block rewards for miners utilizing resource amounts of all sizes.

While effective in many ways, the aforementioned works still distribute rewards in
a lottery-like fashion, where only a limited number of miners may win a fixed-size
pool of rewards per block. Such approaches only enable a competitive process for

Towards Equity in Proof-of-Work Mining Rewards 5

miners to earn coins, and does not adjust the amounts of the coin rewards based on
the amount of block creation resources invested into the process by the miners.

Decoupling Protocols. Other designs take an alternative approach, where creating
new coins is a separate operation performed as a transaction in the blockchain.

• Dong and Boutaba propose publishing a challenge on a decentralized ledger and
subsequently computing aProof-of-Sequential-Work [7] (PoSeq) on that challenge
to mint a new coin within a limited time-span in Elasticoin [3]. This design does
permit coin rewards to increase in proportion to the amount of computational
resources used by miners to create PoSeqs, but only to a limited extent. This is
because the Elasticoin design assumes that the decentralized ledger has sufficient
bandwidth to confirm all PoSeqs within the allotted time before they expire.

• In Melmint [4], Dong and Boutaba utilize Elasticoin minting to peg a cryptocur-
rency to the value of “one day of sequential computation on an up-to-date pro-
cessor” and adjust its circulating supply depending on demand for it. To stabilize
the currency’s value, a limited-time auction is operated on a decentralized ledger,
which still may not be have sufficient bandwidth to enable full network participa-
tion in a timely manner.

Responsive Protocols. On the other hand the Ergon protocol [11] issues per-block
coin rewards that responsively increase in proportion to the block’s mining difficulty.
However, Ergon attempts to peg the cost of production of its currency to the amount
of energyminers consume, and consequently implements a periodic reward reduction
mechanism similar to Bitcoin’s halving schedule [12] that is designed to make the
same amount of rewards more difficult to attain over time. While this reward scheme
introduces a form of proportionality between mining power and rewards, it still
suffers from the drawbacks of winner-takes-all dynamics, and artificial scarcity.

To date, all state-of-the-art reward mechanisms do not scale up the potentially
redeemable rewards in direct proportion to the total amount of resources utilized
by miners, and instead encourage miners to compete for an increasingly scarce of
constant amount of reward coins per block.

2.2 Reward Analyses

In this section we review analyses which focus on the abstract reward distribution
policies employed in blockchains. With no grounded implementation in mind, the
following works explore the theoretical limits of blockchain reward schemes, pro-
viding provide insights into the individual miner behaviors that different rewards
incentivize, and the resulting network structures such incentives sustain.

Chen et al. [2] analyse block reward allocation schemes and propose a set of
axioms which evaluate how the schemes perform. First, they consider a block reward
scheme as symmetric if it does not vary rewards based on the identity or ordering of
a miner. Second, they consider a scheme to achieve budget-balance, if the sum of all

6 R. A. Khalil and N. Dulay

expected rewards per miner per block does not exceed 1. Third, a scheme achieves
Sybil-proofness if splitting hashing power across different identities does not yield
more rewards than dedicating that power to one identity. Lastly, a scheme achieves
collusion-proofness if forming coalitions of miners does not yield more rewards for
the coalition than the sum of rewards of the independent miners.Weaker and stronger
variations of the aforementioned axioms are also presented in [2], but they are omitted
from this paper for brevity. They demonstrate that Bitcoin’s proportional allocation
scheme satisfies these criteria. However, this analysis is based on long-term behavior
of Bitcoin rewards, i.e. everything is well defined and balanced only on-the-long-run.

Kwon et al. [5] quantify the decentralization of PoW, PoS and DPoS consensus
protocols. In their work, they quantify the decentralization of a network using the dif-
ference in combined resources between the most powerful miners, and the remaining
miners which represent a certain percentile of a known number of miners. With this
measure in mind, they introduce a set of constraints for reward schemes to be able to,
with high probability, reach a state of full decentralization, such that the aforemen-
tioned difference in mining resources is negligible. They argue that systems without
Sybil costs fail to promote decentralization, regardless of whether their consensus
protocol is based on computational work or stake. Their results imply that current
reward schemes are not inherently designed to encourage decentralization, since the
cost of mining using fragmented mining power across multiple identities is not less
than that of mining using a single identity. However, their analysis is based on a
competitive coin-creation process, where miners compete for the next set of newly
issued coins, and the miners which reinvest more of their earnings into attaining
more mining power are destined to control a majority of network resources. Whether
such a dilemma exists in a less competitive coin creation process, such as those of
the decoupling and responsive protocols from Sect. 2.1, is unclear.

Thus far, mining reward scheme analyses have provided valuable insights into
many aspects of existing reward mechanisms. However, a gap in knowledge exists
on how coin value is truly distributed betweenminers under different reward schemes.

3 Computational Coinage Framework

In this section we present our computationally-grounded framework for establishing
a valuation of a PoW cryptocurrency’s coin supply based solely on the amount of
hashing power dedicated to mining it. The first goal of this framework is to establish
the criteria under which we measure coin production costs. The second goal is to
introduce metrics for quantifying the value of the new coins awarded in exchange
for mining expenditures, without consideration for auxiliary sources of compensa-
tion, such as transaction fees. To achieve our two goals, we introduce metrics of our
computationally-grounded framework according to the following criteria.

Expenditures. The primary expenditure we consider in this computationally-
grounded framework is the hash-function calculation used to find valid PoWs,

Towards Equity in Proof-of-Work Mining Rewards 7

which abstracts away the finer details of real-world resource requirements of this
search, and accounts only for the number of hash calculations that the usage of
resources results in, and the time required to finish the calculations. This purely
hash-based approach was taken to establish a computationally-grounded framework
for analysis, in the sense that no external variables which affect the real-world
resources required to compute a hash are considered. To elaborate, we do not
account for market variables such as electricity prices, hardware cost, maintenance
fees, or any similar expenses.

Compensation. We consider only newly minted coins as the primary form of
compensation in exchange for hashing expenditures. Similar to the abstraction of
real-world costs using hash-function calculations, coins also abstract away any
valuation metrics external to a blockchain, such as the coin’s exchange rate or
purchasing power. Expressing the amount of compensation which a reward scheme
issues is our second requirement for establishing a computationally-grounded coin
value.

Value. By combining the expenditure and compensation metrics, we establish a
purely hash-based valuation unit for coins suitable for our computationally-grounded
framework. This approach aims to base the measurement of the value of coins purely
on the number of hashing computations dedicated to creating them, enabling the
quantification of the hash-based value that can be earned through mining some num-
ber of coins.

3.1 Miner Metrics

In this section, beginning from a single miner’s local perspective, we first define
what a local miner represents in our computationally-grounded framework, and then
present the relevant metrics for a miner.

Definition 1 (Minermμ)Aminer, denoted bymμ, whereμ is some unique identifier,
is characterizedby (i) its absoluteminingpower, denotedbypower(mμ), in hashes per
second, and (ii) its reward issuance difficulty, denoted by difficulty(mμ), in expected
number of hashes.

We consider a single miner in our computationally-grounded framework as a compo-
nent with a certain hashing throughput, and an expected number of hashes to perform
before being rewarded, as per Definition 1.

For example, let m4050 be a miner with power(m4050) = 240 hashes per second
that meets the reward issuance difficulty once every difficulty(m4050) = 250 hash
computations on average. This simple definition of a miner mμ is the basis on which
we build the remainder of the metrics in this section.

Given a minermμ, the expected length of the period of time between each reward
issuance to the miner, denoted by period(mμ), can be derived using Eq. 1.

8 R. A. Khalil and N. Dulay

period(mμ) = difficulty(mμ)

power(mμ)
(1)

For example, m4050 is expected to be issued a reward every 250 ÷ 240 = 1024s on
average.

Definition 2 (Average Hash-Time-to-Issuance hti(mμ)) The average hash-time-to-
issuance metric, denoted by hti(mμ), represents the average amount of time before
a miner’s hash computation is rewarded.

In addition to the reward period, we establish in our framework a measurement of the
time between completing each hash calculation, and receiving a reward as compensa-
tion for it. For every miner mμ the average hash-time-to-issuance hti(mμ) quantifies
the average amount of waiting time for mμ that is associated with every hash com-
putation before the reward issuance difficulty is met, as per Definition 2. This is
slightly different from the average amount of timemμ has to wait before meeting the
issuance difficulty, because the average waiting time in hti(mμ) is accounted for per
hash rather than per difficulty(mμ) hashes.

Assuming that the miner’s hashing throughput is uniformly sustained, which will
always be assumed to be the case in the remainder of this paper, hti(mμ) is calculated
using Eq. 2.

hti(mμ) = difficulty(mμ) − 1

2 × power(mμ)
(2)

As an example, consider the miner m13, where power(m13) = 1 hash per second,
and difficulty(m13) = 3 hashes on average. Using Eq. 2, hti(m13) = 1. This can be
derived by examining the waiting time expected to be incurred after performing each
hash computation as follows:

1. After the first hash computation, m13 has to spend two more seconds computing
two more hashes on average before meeting the issuance difficulty, and so the
waiting time incurred after computing the first hash is 2 s.

2. After the second computation, m13 spends 1 more second computing one more
hash on average.

3. Lastly, m13 is expected to have met its issuance difficulty right after the third
computation without any additional waiting time.

The total waiting times divided by the number of hashes is equal to 2+1+0
3 = 1 =

hti(m13), meaning that the average time the miner waited between computing each
hash and receiving a reward is 1 s, which is different from the expected waiting time
of 3 s for each reward issuance. However, for much larger numbers, the metric can
be approximated as hti(mμ) ≈ period(mμ)

2 with negligible error.
As previously stated, the reasoning behind introducing hti(mμ) is to quantify the

average delay between miners’ hash expenditures, and the reception of rewards. This
metric will prove useful later on in this paper when describing the opportunity cost
aspect associated with the costs of creating coins.

Towards Equity in Proof-of-Work Mining Rewards 9

Definition 3 (Reward reward(mμ)) The reward, denoted by reward(mμ), is the
expected number of coins received by a miner mμ that finds a PoW that meets its
reward issuance difficulty.

For a single miner mμ, we denote in our framework the reward received by mμ as
reward(mμ) to express a miner’s compensation in coins, as per Definition 3. For
example, for all Bitcoin miners, reward(mμ) = 625, 000, 000 coins1 (satoshis).

Definition 4 (Difficulty-to-Reward Ratio drr(mμ)) TheDifficulty-to-RewardRatio,
denoted by drr(mμ), is the average number of hashes computed per reward coin for
a miner.

Furthermore, for a miner mμ, we establish the Difficulty-to-Reward Ratio as a valu-
ation metric for the average cost of a coin in hashes, as per Definition 4. Equation 3
defines the formula for drr(mμ).

drr(mμ) = difficulty(mμ)

reward(mμ)
(3)

As an example, consider miner m4050 from before, with reward(m4050) = 230 coins.
Using Eq. 3, the hash-based cost per coin for m4050 is equal to drr(m4050) = 250 ÷
230 = 1, 048, 576 hashes per coin on average.

3.2 Blockchain Metrics

In this section we introduce metrics for a chain of PoW-based blocks, rather than a
single miner as in the previous section. Similarly, we first present the definition of a
blockchain, followed by its associated metrics.

Definition 5 (Blockchain Bβ) Ablockchain, denoted by Bβ , whereβ is some unique
identifier, is the product of a network of miners participating in a PoW protocol.

Our computationally-grounded framework’s concept of a blockchain is devoid of
implementation details, and is only constructed to enable the expression of a select
few metrics of interest, as per Definition 5.

Definition 6 (Chain Hashcap hashcap(Bβ)) The hashcap of a chain of blocks,
denoted by hashcap(Bβ), is an estimate of the expected total number of hash function
calculations performed by miners to create the chain.

From a blockchain viewpoint, the aggregated number of hash function calculations
performed by miners to create a blockchain is referred to as the chain’s hashcap,2 as

1 This reward is scheduled to be halved to 312, 500, 000 after the current batch of 210, 000 blocks
is mined.
2 The naming of the term hashcap is derived from the wordMarket Capitalization, or Marketcap for
short, which is used in cryptocurrency markets to represent the total theoretical value of an entire
supply of coins based on the coin’s market price in another currency.

10 R. A. Khalil and N. Dulay

per Definition 6. As the hashcap value provides an indication of the miners’ expen-
ditures towards creating a blockchain, we use it in this paper as the computationally-
grounded valuation metric of the hash-based cost of production of a blockchain.

The hashcap metric value can be estimated for existing state-of-the-art PoW
blockchains, such as Bitcoin, by summing the difficulty parameter for each block in
a chain. However, while some hash functions can be implemented very efficiently in
hardware as ASICs, some are designed to operate efficiently only on general purpose
hardware such as commercially available CPUs. Consequently, the hashcaps of two
blockchains which use two different hashing functions are not directly comparable.

Definition 7 (Coinage coinage(Bβ)) The coinage of a chain of blocks, denoted by
coinage(Bβ), is the total number of coins rewarded to miners in the chain.

We refer to the total supply of coins issued as rewards in a blockchain Bβ in this
framework as the chain’s coinage, as per Definition 7. This term is also known as the
circulating coin supply, or coin supply for short, in cryptocurrency markets.

Definition 8 (Hashcap-to-Coinage Ratio hcr(Bβ)) The Hashcap-to-Coinage Ratio
for a blockchain, denoted by hcr(Bβ), is the average number of hashes computed per
coin issued in the chain.

The Hashcap-to-Coinage Ratio is a metric that is similar to the Difficulty-to-Reward
Ratio, but defined for a chain of blocks rather than for a miner, as per Definition 8.
Using the previously defined terms for hashcap and coinage, we formulate hcr(Bβ)

in Eq. 4.

hcr(b) = hashcap(b)

coinage(b)
(4)

This ratio is a key metric, as it enables the estimation of the value of a single cryp-
tocurrency coin, as we will present in Sect. 3.3.

3.3 Coin Metrics

Insofar, in the previous two sections, we have presented basic metrics of interest
related to mining throughput, difficulty, and rewards. In this section, we will utilize
these metrics to construct valuation metrics which can be used to quantify the hash-
based value gained, or lost, from mining coins.

Definition 9 (Fungibility Dilution Factor fdf(mμ, Bβ)) The Fungibility Dilution
Factor for a miner in a blockchain, denoted by fdf(mμ, Bβ), is the amount by which
the hash-based cost of a miner’s reward will be amplified in the blockchain.

We quantify how much gain, or loss, in hash-based value is made by a miner due
to fungibility using the Fungibility Dilution Factor, presented in Definition 9. Using
our previously defined metrics, dividing the miner’s difficulty-to-reward ratio by the

Towards Equity in Proof-of-Work Mining Rewards 11

blockchain’s hashcap-to-coinage ratio results in the fungibility dilution factor, as per
Eq. 5.

fdf(mμ, Bβ) = drr(mμ)

hcr(Bβ)
(5)

Coin fungibility dictates that all coins in a chain’s coinage are perfectly interchange-
able with one another. Because of this, once a new set of coins are created by a miner
mμ in a blockchain Bβ , we treat them in our computationally-grounded framework
as having a hash-based value equal to the chain’s hashcap-to-coinage ratio, even if
the difficulty-to-reward ratio that was exhibited by the miner in creating these coins
was different (i.e. hcr(Bβ) �= drr(mμ)).

For a given miner and blockchain, when fdf(mμ, Bβ) > 1, then the miner will
receive a set of coins which represent a larger number of hashes than the miner
performed to receive them (i.e. hcr(Bβ) > drr(mμ)). On the other hand, when
fdf(mμ, Bβ) < 1, then the miner will receive a set of coins which represent a smaller
number of hashes than performed (i.e. hcr(Bβ) < drr(mμ)). When fdf(mμ, Bβ) = 1,
mμ is issued in Bβ a set of coins worth asmany hash computations as were performed
to receive them.

Consequently, we consider miners to have made a hash-based gain in our
computationally-grounded framework if hcr(Bβ) > drr(mμ). In other words, if a
miner is rewarded with a set of coins at a hash-based cost that is less than the chain’s
hashcap-to-coinage ratio, it was received a set of coins at a discount. This, of course,
does not necessarily mean that the miner can make a profit selling its coins in a
real-world market, where prices may not necessarily be dictated by hash-based valu-
ation metrics. Similarly, a loss is said to have been incurred in our computationally-
grounded framework, if hcr(Bβ) < drr(mμ).

Definition 10 (Hash-Restitution Time hrt(mμ, Bβ)) The Hash-Restitution Time of
a miner in a blockchain, denoted by hrt(mμ, Bβ), is the amount of time (in blocks)
betweenmμ first receiving a reward(mμ), and the first block duringwhich hcr(Bβ) ≥
drr(mμ) holds true.

For the case when fdf(mμ, Bβ) < 1, we introduce the Hash-Restitution Time in Def-
inition 10, which is a means to analyse the amount of time a miner had to wait for
the hashcap-to-coinage ratio to first meet the difficulty-to-reward ratio at which it
created coins, i.e. the amount of time mμ has to wait to be paid back in hash-based
value.

Unlike previous metrics, hrt(mμ, Bβ) may not be immediately measurable for a
miner that receives a reward while fdf(mμ, Bβ) < 1. This is because it may not be
easily determinable when exactly in the future hcr(Bβ) is expected to rise, due to
instability in mining power or reward-scheme intrinsic reasons. In fact, for some
PoW schemes, miners may never even be fully paid back if hcr(Bβ) never follows a
sufficiently long upwards trend.

However, once this value is known, it serves as an indicator in our framework for
mμ to quantify the opportunity cost it had to pay before its rewarded coins attained

12 R. A. Khalil and N. Dulay

a hash-based value that is equal to the hash-based cost mμ paid for them. In some
cases, mμ may never wait long enough, and transfer its coins.

Again, this metric is agnostic about both the specifics of the PoW blockchain
it is used on, and the coin-spending behavior of miners. Its sole purpose in our
computationally-grounded framework is to provide a measurement point that can be
used to gain insight about how a reward-scheme delays fully compensating miners
in hash-based value.

4 Inequity in Bitcoin

In this section, we apply our computationally-grounded framework introduced in
Sect. 3 to Bitcoin, the most prominent realization of Nakamoto, practically analysing
and quantifying the state of hash-based coin valuation in its network. Our analysis
focuses on identifying and highlighting sources of inequity inNakamoto, and demon-
strating how these sources have affected Bitcoin’s miners and coinage in practice.
To aid the reader in this section, we summarize our definitions fromSect. 3 in Table 1.

Table 1 Computationally-grounded framework definition and notation summary

Definition Notation Summary

1. Miner mμ Uniquely identified by μ, has
hashing throughput power(mμ), and
rewarded after difficulty(mμ) hashes

2. Hash-Time-to-Issuance hti(mμ) Average amount of time before a
hash computation is compensated

3. Reward reward(mμ) Expected number of coins received
by mμ as a reward for difficulty(mμ)

hashes on average

4. Difficulty-to-Reward Ratio drr(mμ) Average cost of a single coin in
hashes for a miner mμ

5. Blockchain Bβ Uniquely identified by β

6. Hashcap hashcap(Bβ) Expected number of hashes required
to create Bβ

7. Coinage coinage(Bβ) Total number of reward coins issued
in Bβ

8. Hashcap-to-Coinage Ratio hcr(Bβ) Average hash cost of coins in Bβ

9. Fungibility Dilution Factor fdf(mμ, Bβ) The ratio between the hash cost of a
coin for mμ, and the hash cost of
coins in Bβ

10. Hash-Restitution Time hrt(mμ, Bβ) The amount of time before
fdf(mμ, Bβ) ≥ 1 holds true

Towards Equity in Proof-of-Work Mining Rewards 13

Bitcoin Adaptation. To model Bitcoin using our computationally-grounded frame-
work, we integrate the Bitcoin-specific policies on difficulty and reward using the
three following rules:

1. Only a single blockchain Bβ is assumed to be mined on without forks.
2. For any miner mμ, difficulty(mμ) is equal to the current block mining difficulty

for the Bitcoin blockchain Bβ .
3. For any miner mμ, reward(mμ) is equal to the current Bitcoin block reward per

its reward halving schedule.

The first rule applied to our framework is a simplifying assumption to focus the
analysis on the best case scenario where consensus is working as intended. While
this prevents the examination of the state of affairs during forks, it will highlight how
even ideal conditions fail to establish equity amongst miners.

The second rule enables our framework’s definition of difficulty to follow that
of Nakamoto, whereby mining a block is the only directly rewardable action in
the protocol. We define difficulty(mμ) to abstract away the out of scope details of
Bitcoin’s difficulty adjustment algorithm, since they hold no repercussions for our
analysis.

Similarly, the third rule applies Bitcoin’s reward schedule, which begins with
5, 000, 000, 000 coins (satoshis) and halves the reward every 210, 000 blocks.

4.1 Inequitable Hash-Time-to-Issuance

The fact that a miner has to wait for the chance to be a block’s creator in Nakamoto
creates different hash-time-to-issuance costs for miners of relatively different sizes.
This difference is presented in Fig. 1, which shows the linear relationship between
a miner’s mμ relative size and its expected hti(mμ) value in Nakamoto. While other
literature [10] analyzes this difference using the coefficients of variation of rewards
received per block for a miner, the hti(mμ) metric presented here gives a more
concrete sense of the differences in time-related opportunity costs for miners of
different relative sizes. These results extend directly to Bitcoin.

The cost implications of the aforementioned relationship in Nakamoto can be
further elaborated by comparing two data points from the above plot. For example,
consider two miners, one with 1% of the total network hashing power, and one with
0.01%. The first miner would have to experience an average delay of 200 blocks
before receiving compensation for each hash it computes, while the second miner’s
delay is 20, 000 blocks per hash. Under Bitcoin’s 10-minute average block interval,

14 R. A. Khalil and N. Dulay

10−6 10−5 10−4 10−3 10−2 10−1 100

Fraction of Total Mining Power

10−1

100

101

102

103

104

105

106

H
as
h-
T
im

e-
to
-I
ss
ua
nc
e
(B

lo
ck
s)

NC

Fig. 1 Hash-Time-to-Issuance versus relative mining power in Bitcoin

the relatively larger miner can spend its mining rewards approximately every 1.39
days on average, while the smaller miner can only do so every 4.64 months approx-
imately. This severely disproportional difference in reward delay between miners is
not directly apparent from analyses which utilize the coefficients of variation.

4.2 An Increasing Hashcap-to-Coinage Ratio

Because Bitcoin’s reward scheme does not adjust the number of coins issued in
response to the difficulty of mining, and mining difficulty has increased significantly
since Bitcoin’s deployment, the Hashcap-to-Coinage Ratio has increased exponen-
tially several times. Even with a stable mining difficulty, the reward-halving schedule
causes the Hashcap-to-Coinage Ratio to increase. In Fig. 2, both the Hashcap-to-
Coinage Ratio (Fig. 2a), and the distribution of the hashcap (Fig. 2b) over coins are

0 100000 200000 300000 400000 500000 600000 700000
Block number

100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013

H
as
h-
to
-C
oi
n
R
at
io

(a) Hash-to-Coin Ratio versus block number
in Bitcoin.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Hashcap

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of

C
oi
ns

R
ew

ar
de
d

(b) Cumulative Hashcap distribution over
coin supply in Bitcoin.

Fig. 2 Hashcap-to-Coinage Ratio (HCR) plots

Towards Equity in Proof-of-Work Mining Rewards 15

presented. The data presented in Fig. 2 was estimated using Bitcoin’s block difficulty
parameter.

From a hash-based cost perspective, these increases have caused the running
average hash-based cost of production for a single coin to increase dramatically over
time in Bitcoin. The insight Fig. 2a offers is that almost all of Bitcoin’s hash-based
value was computed since after 400, 000 blocks were created.

Because of Bitcoin’s reward scheme, which is adapted to this computationally-
grounded framework using rules #2 and #3, the difficulty-to-reward ratio of allminers
has onlyworsened over time asmining power has increased. To further understand the
advantage earlier miners had, one can see how much hashing power was exchanged
for different portions of the coin supply in Fig. 2b. Remarkably, the coin supply of
Bitcoin has an incredibly skewed distribution, where more than 80% of the total coin
supply was rewarded in exchange for less than 1% of the total number of hashes
calculated to maintain the system.

4.3 Subsidy Through the Fungibility Dilution Factor

The inequity between miners which participate at different times is not just restricted
to coin creation costs, but also extends to the hash-based value of received rewards.
Because coins are perfectly interchangeable in the ledger, they are are valued equally,
even if some have higher hash-based costs than others. To quantify the extent towhich
this affects the hash-based valuation of mining rewards in Bitcoin, we present the
Fungibility Dilution Factor of coins at the time of issuance in Fig. 3a, and across the
coin supply in Fig. 3b.

If the FDF lies around a value of 1 ± ε, where ε is some negligible value, then
the hash-based value of the mining rewards can be considered to correspond to the
number of hash computations performed to attain them. Instead, in Fig. 3a, it can
be seen that Bitcoin’s FDF, after running at an almost constant value of 1 for a few

0 100000 200000 300000 400000 500000 600000 700000

Block number

0

20

40

60

80

100

Fu
ng
ib
ili
ty

D
ilu

tio
n
Fa
ct
or

(a) FDF versus block number in Bitcoin.

10−13 10−11 10−9 10−7 10−5 10−3 10−1 101

Fungibility Dilution Factor

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of

C
oi
na
ge

D
ilu

te
d

(b) Cumulative FDF Distribution over
Coinage.

Fig. 3 Fungibility-Dilution Factor (FDF) plots

16 R. A. Khalil and N. Dulay

0 100000 200000 300000 400000 500000 600000 700000
Block Number

100

101

102

103

104

105

106

107

R
es
tit
ut
io
n
T
im

e
(B

lo
ck
s)

Fig. 4 Hashcap-Restitution time, in blocks, for each block reward in Bitcoin

thousand blocks, oscillates dramatically over time, leading the issuedmining rewards
to have a hash-based value3 that is tens of times less than their hash-based cost.

However, due to the fluctuations of the FDF, the fungibility dilution factor of coins
changes after their issuance. Namely, Fig. 3b presents the cumulative distribution
of the FDF over the coin supply so far. Remarkably, while the dilution factor has
remained below 100 so far for Bitcoin, it has caused over 70% of the coinage to have
its hashcap amplified by over 100-fold in value, with nearly 50% even growing by
at least 1-million fold.

4.4 An Increasing Hash-Restitution Time

Given that Bitcoin’s fungibility dilution factor has remained well above 1 for most
of its lifetime, the Hash-Restitution Time can be used to quantify how long an issued
mining reward will take to reach a hash-based value that is at least equal to its
hash-based cost.

In Fig. 4 we estimate the Hash-Restitution Time in blocks for the rewards of
the first 500, 000 Bitcoin blocks. As for the remaining blocks, since they have not
yet reached an equitable hash-based value, their values are projected based on the
assumption that the mining power remains the same as that of the last block used in
the analysis.

Relatively shortly after the genesis block, Fig. 4 shows that miners had to wait
for a number on the order of 10, 000 blocks, or approximately 2-months, for the
hash-based value of their rewards to reach their hash based costs. Starting from

3 At the time of reward issuance.

Towards Equity in Proof-of-Work Mining Rewards 17

block 300, 000, the Hash-Restitution Time goes up to the order of 100, 000 blocks,
or approximately 2 years.

Whether this is done by design to achieve a kind of lock-in effect, or simply
an unintended consequence, the Hash-Restitution Time in Bitcoin seems to be
uncontrolled, and trending towards impracticality for miners which participate
relatively later in the protocol’s lifetime.

Beyond Bitcoin While the analysis presented in this section only pertains to Bit-
coin, the same methods and reasoning are applicable to other designs with minor
adjustments. For example, to apply this approach to Ethereum, one would have to
account for uncle blocks, factoring in their reward and mining difficulty into the
chain’s coinage and hashcap respectively.

5 Equitable Reward Constraints

Having defined our computationally-grounded framework, which we use to express
equity in this paper, and demonstrated the current state of inequity in Bitcoin,
we establish in this section a set of constraints for achieving equitable rewards
in Proof-of-Work Mining. The main focus of the constraints in this section is to
prevent miners with relatively small hashing powers, and miners which participate
at relatively late, or early, stages of a blockchain’s lifetime, frombeing disadvantaged.

Basic Approach. The main requirements that we use to establish the design con-
straints of this section are proportionality, and timeliness, of rewards, such that:

• The reward scheme issues coin rewards that have a hash-based value that is pro-
portional to their miner’s hash-based cost of attaining them.

• The reward scheme issues coin rewards in an amount of time bounded by the
network’s block creation interval.

The reasoning behind these requirements is to prevent any underpayment or devalua-
tion in terms of hash-based value, allowing miners to receive coins with a hash-based
value equal to their contribution to the system, without unjustifiable delays in com-
pensation.

In Sects. 5.1 and 5.2, we motivate and present the design constraints in terms
of the computationally-grounded framework from Sect. 3, such that each constraint
is expressed as a set of restrictions that the protocol must place on the relevant
framework metrics.

However, to achieve the notions of equity that we aim for, we propose a unique
coin issuance approach. Namely, it can no longer be the case that a constant number
of coins are issued per block in a winner-takes-all fashion, while having blockmining
difficulty be a variable. Instead, in our approach, we propose that mining rewards
become uncapped. In Sect. 5.3, we examine the effects of adopting our unrestricted

18 R. A. Khalil and N. Dulay

reward scheme on coin-supply growth, and outline the conditions for relative coin
supply stability.

5.1 Undiluted Reward Constraints

The first constraint, expressed in Eq. 6, aims to maintain a fixed correspondence
between the number of hashes performed by miners, and the number of coins they
receive in return.

hcr(Bβ) ≈ drr(mμ) (6)

Such a constraint means that, unlike Bitcoin, for any miner to receive a coin, it must
perform approximately hcr(Bβ) hash calculations. Essentially, this correspondence
aims to stabilize the Difficulty-to-Reward Ratio of miners using the Hashcap-to-
Coinage Ratio of the entire blockchain, such that miner rewards are not diluted.

Stabilizing this correspondence is an endeavor that is in stark contrast to existing
blockchain reward schemes, which employ mechanisms that directly destabilize this
relationship. For example, Bitcoin’s so-called halving schedule fundamentally causes
spikes inBitcoin’sHCR. These spikes are further exacerbated by changes inBitcoin’s
block mining difficulty, which does not affect how many coins are rewarded per
block. Whether Bitcoin’s HCR instability is by design, or beneficial, our approach
is to keep the Hashcap-to-Coinage ratio relatively stable, and avoid directly granting
any advantages to miners which participate during periods of lower block mining
difficulty.

Remarkably, when the HCR is unstable, the fungibility of coins distorts the hash-
based cost of production for the entire coin supply. In Bitcoin, this leads to a situation
where a majority of its coin supply is produced at a marginal cost compared to the
remainder, yet the entire coinage is treated as having equal face-value. Under our
approach on the other hand, the goal is to not dilute miner rewards, and stabilize the
Fungibility Dilution Factor for all miners of the chain as expressed in Eq. 7.

fdf(mμ, Bβ) ≈ 1 (7)

Of course, these constraints do not cover caseswhereminerswillingly forfeit rewards,
or receive a penalty for misbehavior in consensus. In such circumstances, the hashes
computed by such miners will go unrewarded, theoretically increasing the HCR of
the blockchain.

5.2 Prompt Restitution Constraints

Our second reward constraint is the prompt, and direct, distribution of coins tominers
in exchange for their hash calculations. This is in contrast to distributing rewards

Towards Equity in Proof-of-Work Mining Rewards 19

indirectly on the long run using lotteries, or any other mechanisms similar to the
round based winner-takes-all Bitcoin dynamic.

More concretely, eachminer is rewardedon average at least once per block for each
of its search attempts for a PoW, instead of having to wait for some expected number
of blocks to be created before being credited, following the constraint described by
Eq. 8.

hti(mμ) ≈ blocktime(Bβ) (8)

For example, a Bitcoin miner with one third of the total network mining power
would have to wait two blocks on average before receiving its block reward. On the
other hand, an equitably treated miner with the same hashing power would expect to
receive a third of the total coins rewarded to the network every block.

This constraint, in conjunction with that of Sect. 5.1, lead towards establishing a
short and stable Hash-Restitution Time for all miners, as presented in Eq. 9.

hrt(mμ, Bβ) ≈ 1 (9)

In stark contrast, as demonstrated in Sect. 4, Bitcoin miners have no guarantees on
howmany blocks theywould have to wait before the hash-based value of their reward
coins makes up for the hashing power they expended to create them.

5.3 Equitable Coin Supply Growth

Achieving equitable rewards in this fashion means that miners accumulate rewards
that are proportional to their mining power, leaving the number of new coins that
can be created at any given moment virtually uncapped. Practically, however, the
total amount of computational power invested by miners in the network restricts
the growth of the supply of coins, preventing the relative growth rate of the coin
supply from spiraling out of control. More precisely, over time, the relative growth
rate of the coin supply tends towards the relative growth rate of mining power over
time. Consequently, as long as the amount of computational power invested inmining
remains stable, the relative growth rate of coin supply slowly converges to zero.Under
such constant mining power, the coin supply grows only by a constant number of
coins per block similar to Bitcoin’s, converging towards a relative growth rate of 0.
Linearly growing mining power leads to the same convergence, but at a slower rate.

In Fig. 5 we illustrate coin supply growth under different mining power growth
rates. To plot this figure, we simulated a simple proportional reward issuance scenario
under three different mining difficulty settings. In the first setting, the amount of
mining power stays constant, while in the second, the mining power grows by one
unit every time period. In the third setting, the mining power is multiplied by 1.025
each time period, denoting a 2.5% increase per period. As we start from a coin supply
of zero, the initial relative growth in all scenarios is substantial. However, as time
passes, the relative rates of increase in coin supply and mining power converge.

20 R. A. Khalil and N. Dulay

0 50 100 150 200 250 300 350
Time Period

0

2

4

6

8

10

12

R
el
at
iv
e
Su

pp
ly

G
ro
w
th

%

Constant Mining Power
Linearly Increasing Mining Power (+1)
Exponentially Increasing Mining Power (+2.5%)
Relative Supply Growth

Fig. 5 Plot of Time versus Relative Coin Supply Growth (in Percentage) under three different
mining power growth scenarios. Under constant mining power over all time periods (•) the relative
supply growth per time period of coins goes to zero over time. Similarly, under linear growth of
mining power (+), where 1 more unit of power is added per time period, the relative supply growth
per time period also goes to zero over time. However, under exponential mining power growth
(×), where 2.5% more power is added per time period, the relative supply growth converges to the
relative mining power growth over time

6 Conclusion

In this work, we introduced a computationally-grounded framework for quantifying
the relationship between miner expenditures and compensation. In this framework,
we used hashing power as an objective cost basis for coin creation, and used newly
minted coins as an objective measure of compensation, while intentionally avoiding
external variables, such as hardware costs or currency exchange rates. Furthermore,
we used the aforementioned computationally-grounded framework to demonstrate
the inequity in state-of-the-art PoWmining reward schemes usingBitcoin as an exam-
ple. We empirically demonstrated the effects of winner-takes-all lottery dynamics on
Bitcoin, showing them to have caused a large discrepancy between miner rewards
for relatively small and late miners. Small miners were shown to have to wait much
longer on average than larger miners to receive any compensation, while miners who
participate during late periods of relatively more expensive coin creation costs were
shown to be at several disadvantages. Lastly, we introduced constraints for achiev-
ing equitable rewards, arguing that stability of the hashcap-to-coinage ratio is akin
to equity of rewards issued to miners who participate at different times, and that
the stability of the hash-time-to-issuance metric, which requires a more continuous
reward issuance schedule for miners of all sizes, enforces equity in compensation
delays. Furthermore, we have shown that when adhering to such constraints, coin
supply growth dynamics exhibit reasonably similar behaviors to those of constant
rewards over time, such that relative coin supply growth becomes proportional over
time to relative mining power growth.

Towards Equity in Proof-of-Work Mining Rewards 21

Future Work. By applying our framework to cryptocurrencies other than Bitcoin,
we will analyze and compare the mining reward equity of different coins. To further
simplify this comparison, we will introduce new scoring metrics based on our com-
putationally grounded framework to enable the direct numeric comparison of mining
reward equity between different blockchains.

Acknowledgements We’d like to thank our anonymous reviewers for their valuable feedback on
this paper. This work was made possible with the generous funding and support of the Imperial
College London President’s PhD Scholarship program.

References

1. Bissias, G., Levine, B. N. (2020). Bobtail: Improved blockchain security with low-variance
mining. In ISOC Network and Distributed System Security Symposium

2. Chen, X., Papadimitriou, C., & Roughgarden, T. (2019). An axiomatic approach to block
rewards. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies
(pp. 124–131).

3. Dong, Y., & Boutaba, R. (2019). Elasticoin: Low-volatility cryptocurrency with proofs of
sequential work. In 2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC) (pp. 205–209). IEEE.

4. Dong, Y., & Boutaba, R. (2020). Melmint: Trustless stable cryptocurrency. Cryptoeconomic
Systems.

5. Kwon, Y., Liu, J., Kim, M., Song, D., & Kim, Y. (2019). Impossibility of full decentralization
in permissionless blockchains. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies (pp. 110–123).

6. Nakamoto, S., et al. (2008). Bitcoin: A peer-to-peer electronic cash system.
7. Orlicki, J. I. (2020). Sequential proof-of-work for fair staking and distributed randomness

beacons. arXiv preprint arXiv:2008.10189.
8. Pass, R., & Shi, E. (2017). Fruitchains: A fair blockchain. In Proceedings of the ACM Sympo-

sium on Principles of Distributed Computing (pp. 315–324).
9. Sompolinsky, Y., & Zohar, A. (2015). Secure high-rate transaction processing in bitcoin.

In International Conference on Financial Cryptography and Data Security (pp. 507–527).
Springer.

10. Szalachowski, P., Reijsbergen, D., Homoliak, I., & Sun, S. (2019). Strongchain: Transparent
and collaborative proof-of-work consensus. In 28th USENIX Security Symposium (USENIX
Security 19) (pp. 819–836).

11. Trzeszczkowski, K. Ergon–stable peer to peer electronic cash system, https://ergon.moe/
12. Trzeszczkowski, K. (2021). Proportional block reward as a price stabilization mechanism for

peer-to-peer electronic cash system.

http://arxiv.org/abs/2008.10189
https://ergon.moe/

Market Equilibria and Risk
Diversification in Blockchain Mining
Economies

Yun Kuen Cheung, Stefanos Leonardos, Shyam Sridhar,
and Georgios Piliouras

Abstract The success of blockchain-based applications, most notably cryptocur-
rencies, has brought the allocation of mining resources at the epicenter of academic
and entrepreneurial attention. Critical for the stability of these markets is the ques-
tion of how miners should adjust their allocations over time in response to changes
in their environment and in other miners’ strategies. In this paper, we present a
proportional response (PR) protocol that makes these adjustments for any risk pro-
file of a miner. The protocol has low informational requirements and is particularly
suitable for such distributed settings. When the environment is static, we formally
show that the PR protocol attains stability by converging to the market equilibrium.
For dynamic environments, we carry out an empirical study with actual data from
four popular cryptocurrencies. We find that running the PR protocol with higher risk
diversification is beneficial both to the market by curbing volatile re-allocations (and,
thus, increasing market stability), and to individual miners by improving their profits
after accounting for factor mobility (switching) costs.

Keywords Blockchain mining · Market equilibria · Proportional response
dynamics · Risk diversification · Factor mobility · Cryptocurrencies

Y. K. Cheung
Royal Holloway, University of London, Egham, United Kingdom
e-mail: yunkuen.cheung@rhul.ac.uk

S. Leonardos (B)
King’s College London, London, United Kingdom
e-mail: stefanos.leonardos@kcl.ac.uk

S. Sridhar · G. Piliouras
Singapore University of Technology and Design, Somapah, Singapore
e-mail: shyam.sridhar@ethereum.org

G. Piliouras
e-mail: georgios@sutd.edu.sg

S. Sridhar
Ethereum Foundation, Bern, Switzerland

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_2&domain=pdf
mailto:yunkuen.cheung@rhul.ac.uk
mailto:stefanos.leonardos@kcl.ac.uk
mailto:shyam.sridhar@ethereum.org
mailto:georgios@sutd.edu.sg
https://doi.org/10.1007/978-3-031-18679-0_2

24 Y. K. Cheung et al.

1 Introduction

The massive growth of permissionless blockchains has led to the development of
numerous disruptive technologies, including decentralized applications (DApps) and
finance (DeFi) protocols [70, 74], smart contracts [13] and most notably, cryptocur-
rencies [63]. Critical actors in the evolution of the blockchain ecosystem are the
miners who provide costly resources, e.g., computational power in Proof of Work
(PoW) [45, 58] or monetary tokens of the native cryptocurrency in Proof of Stake
(PoS) protocols [18, 47, 57], to secure the reliability of the supported applications.
For their service, miners receive monetary rewards in the form of transaction fees
and newly minted coins, typically in proportion to their allocated resources [14, 20].
Yet, miners act in self-interested ways, and may enter, leave, or switch mining net-
works at any given time. If their incentives are not aligned with the common interest,
this behavior can cause unexpected (and undesirable) fluctuations in mining sup-
plies, which in turn, can critically undermine the ecosystem’s goals for growth and
security [30, 46]. This has brought miners’ behavior under the spotlight of academic
and managerial research [3, 12, 43, 72]. However, due to their inherent complex-
ity, mining networks pose novel challenges that cannot be adequately addressed by
conventional game-theoretic and economic models. The reasons are manifold.

First, as networks continue to grow in both size and numbers, individual miners
forfeit market power, i.e., influence on aggregate outcomes (e.g., cryptocurrency
prices as in an oligopoly [2]), and early stage, small-scale, game-theoretic interac-
tions give place to large market, multi-agent systems in which network metrics (e.g.,
aggregate resources and prices) are perceived as exogenous signals [32, 44]. Sec-
ond, miners’ decisions need to account for the constantly changing environment and
other miners’ actions and are, thus, highly dynamic in nature. Thus, if not coupled
with proper algorithmic approaches, static game-theoretic or market models offer
only limited views on miner’s incentives. Even worse, popular online optimization
dynamics with good on average but unpredictable day-to-day performance (e.g.,
Multiplicative Weights Updates [4, 26–29, 65]) become essentially useless in this
setting.

Additional issues in the study of miners’ incentives involve factor mobility costs
and miners’ inhomogeneous risk profiles. The former concern all costs incurred by
re-allocations of mining resources. The increasing popularity of virtual mining [5],
secondary (resale or rental) markets of mining gear [7] and proxy schemes (e.g.,
delegated PoS [76]) to enter or leave mining enable such re-allocations between
blockchains using not only compatible (e.g., fork networks like Bitcoin and Bitcoin
Cash), but also incompatible technologies [49]. The latter concern miners’ differ-
ent risk diversification profiles, ranging from risk aversion to risk seeking, and the
different strategies that this profiles dictate to hedge against the extreme swings in
cryptocurrency valuations.

Model and Contributions. Motivated by the above, we set out to model mining net-
works and reason about miners’ behavior. We assume that miners perceive market

Market Equilibria and Risk Diversification in Blockchain Mining Economies 25

metrics (aggregate resources, mining revenues and cryptocurrency prices) as exoge-
nous, independent signals. Each miner is endowed with a finite capacity of resources
and maintains their own mining cost (for each available blockchain) and individual
risk preferences. In mathematical terms, the resulting blockchain mining economy
mirrors a Fisher market with quasi Constant Elasticity of Substitution (quasi-CES)
utilities and substitution parameters, ρ, in (0, 1] (the less the ρ, the more risk averse a
miner is). Our research goals involve the search of a dynamic allocation rule to learn
miners’ equilibrium allocations under arbitrary market conditions, and the empirical
analysis of miners’ equilibrium behavior. Our contributions are the following.

Concerning our first goal, we derive a proportional response (PR) protocol which
converges globally, i.e., for any combination of miners’ risk profiles, and positive
initial allocations and any mining revenues, to the unique market equilibrium of the
described blockchainmining economy.ThePRdynamics have been shown to achieve
remarkable stability in different multi-agent settings [6, 9, 23–25, 44, 75, 77] and
express the following natural idea: in each round, the miner allocates their resources
in proportion to the utilities that they obtained from the various mining etworks in the
previous round. To address the challenges described above, we consider the newly
proposed economy of Fisher markets with quasi-CES utilities, and derive a novel
version of the PR protocol. The PR protocol requires as inputs only miner-dependent
information (mining costs, risk profile, and budget) and network-dependent infor-
mation (allocated resources and generated revenues) that can be easily observed or
estimated. Thus, it provides an individual miner’s perspective against real data which
is useful to both individual miners for updating their day-to-day allocations and to
researchers studying miners’ behavior.

In the context of our second goal, we then turn to study miners’ allocations using
the PR protocol in an empirical setting with daily data from four popular cryptocur-
rencies (coins): Bitcoin, Bitcoin Cash, Ethereum and Litecoin. Our results provide
insights on the effects ofminers’ risk profiles and factormobility costs on equilibrium
allocations. Unless miners are fully risk averse (in which case, they uniformly dis-
tribute their resources on the available coins), a latent driver of their decisions is the
normalized efficiency ratio (aggregate revenues over estimated expenses) of the con-
sidered cryptocurrencies. As risk diversification decreases, miners deviate from the
uniform distribution to distributions that trace the efficiency ratio. At ρ = 1 (lowest
risk diversification), miners allocate all their resources to the coin with the high-
est efficiency ratio. This results in frequent and dramatic re-allocations of resources
between different coins and undermines system stability.

While, in the naive approach, individual profits are maximized under minimal risk
diversification, the figures tell a different story when we account for factor mobility
costs. Even if such costs are relatively low, they dramatically reduce the effectiveness
of risk seeking strategies (that dictate frequent re-allocations to the best performing
coins) and profit maximization obtains for parameter values in the interior of the
(0, 1) interval, i.e., for risk profiles strictly between the extremes of risk aversion
and risk seeking. Thus, by contributing to both miner’s individual profitability and to
the stability of the mining networks, this provides the first formal evidence that risk
diversification, along with market size, and restrictions in factor mobility (as e.g.,

26 Y. K. Cheung et al.

enforced by the technological polyglossia of blockchain networks) can be instru-
mental in aligning miner’s incentives with the ecosystem’s long-term goals.

Other Related Works. Our paper contributes to the growing literature on blockchain
economies. Academic research [8, 38, 72] and investors’ sentiment [60, 73], both
provide ample evidence that miners’ behavior is an understudied area, still at its
infancy [1]. However, interest on miners’ incentives comes from many different
directions, including environmental concerns [33, 34, 71], decentralization of min-
ing networks [2, 53, 54], in-protocol adversarial behavior [40, 50, 69], protocol
instabilities and design [11, 15, 19, 36] and economic analyses [64] among oth-
ers. Existing studies mostly shed light on allocations in single blockchains [42, 48]
or small-scale interactions, e.g., between two mining pools [1], and raise questions
regarding miners’ incentives in larger settings. Our paper makes a step forward pre-
cisely in this direction and shows (among others) that many small-world phenomena
(e.g., concentration of power [2] or instabilities of common learning rules [25]) tend
to fade as mining networks grow in size and diversity. In this direction, most closely
related is the work of [72]. Technically, our setting mirrors the abstract model of a
Fisher market with quasi-CES utilities and extends recent developments in the set-
ting of distributed production economies [10, 25]. Our new version of PR protocol
might be of independent interest in market dynamics [9, 21, 22, 37].

2 Model: Mining Economies

We consider a setting with N = {1, 2, . . . , n} miners and M = {1, 2, . . . ,m} mine-
able cryptocurrencies (or coins).1 For k ∈ M , let vk denote the aggregate revenue,
e.g., newly minted coins and transaction fees, generated by cryptocurrency k and
assume that vk is distributed to miners proportionally to their allocated resources. For
i ∈ N and k ∈ M , let cik be miner i’s cost to allocate one unit of resource to the min-
ing of cryptocurrency k. Using standard conventions, we will write Xk := ∑

j∈N x jk

for the aggregate resources x = (xi, x−i) for the vector of allocated resources in cryp-
tocurrency k ∈ M , where xi = (xik)k∈M , and x−i = (x−ik)k∈M are the allocations of
miner i and of all miners other than i , respectively.

Quasi-CES Utilities Based on the above, the utility of a miner i ∈ N from mining a
single cryptocurrency k takes the form vk · xik/Xk − cik xik . When considering mul-
tiple cryptocurrencies, rather than using physical resources, it will be convenient to
express all allocations in commonmonetary units (e.g.,USdollars). Thus, henceforth,
we will assume that each miner i ∈ N is endowed with a finite monetary capacity,
Ki > 0, of resources and we will write bik := cik xik to denote the spending of miner
i at mining cryptocurrency k ∈ M . Thus, a strategy of miner i will be described by
a non-negative vector bi = (bik)k∈M which satisfies

∑
k∈M bik ≤ Ki .

1 Here,mining refers to any formof expense or investment of scarce resources such as computational
power in PoW or native tokens in PoS.

Market Equilibria and Risk Diversification in Blockchain Mining Economies 27

As above, we will write b = (bi,b−i) to denote the spending profile of miner i
and all miners other than i , respectively, and bk = ∑

j∈N b jk to denote the aggre-
gate spending in mining cryptocurrency k ∈ M . Using this notation, the utility of
a miner i ∈ N from mining cryptocurrency k is expressed as vikbik − bik , where
vik := vk/(cik Xk) denotes the estimated efficiency ratio of cryptocurrency k as cal-
culated by miner i , i.e., revenues over expenses where the expenses are estimated
using miner i’s cost. For the interpretation of our empirical results, it will also be
useful to define the normalized efficiency ratio or simply efficiency ratio, eik , of
cryptocurrency k as estimated by miner i

eik := vik/
∑

l∈M vil , for all k ∈ M. (1)

A naive generalization of the above utility to multiple cryptocurrencies results in the
following expression

ui (bi ,b−i) =
∑m

k=1
(vikbik − bik) (2)

However, this aggregation ignores the risk diversification profile of the miner and the
degree of factor (resource) mobility between various cryptocurrencies. To address
these considerations, we introduce diminishing marginal utility of mining revenues
which is modeled via concave utility functions of the form ui (x) = xρi , with 0 <

ρi ≤ 1, for eachminer i ∈ N .When aggregated over all cryptocurrencies k ∈ M , they
amount to a quasi Constant Elasticity of Substitution (quasi-CES) utility function

ui (bi ,b−i) =
(∑m

k=1
(vikbik)

ρi

)1/ρi −
∑m

k=1
bik . (3)

For ρi = 1, Eq. (3) reduces to the quasi-linear utility function of Eq. (2). Summing
up, we will denote a blockchain mining economy defined by the utilities in Eq. (3)
withΓ = (

N , M, (ui , vik, ρi , Ki)i∈N
)
.Whenever relevant, wewill add the argument

t > 0 to denote time-dependence in the above quantities.

Large Market Assumption. Observe that vik depends on Xk , which in turns depend
on xik . This implies that miner i has market power. Specifically, when xik appears in
the aggregate market resources, Xk , then, miner i takes into account the influence of
their individual allocations on aggregatemarketmetrics (total allocated resources and
hence, cryptocurrency prices, total generated mining revenue etc.) in their strategic
decisionmaking.However, asmining networks grow larger, individualminers reckon
cryptocurrency revenues as exogenously given (and not as variables that depend on
their own actions). To formalize this notion, we make a large market assumption and
assume that a vector of aggregate spending b̃ = (b̃k)k∈M , i.e., the total spending at
each cryptocurrency, is exogenously given. This implies that the Xk’s and, hence,
the vik’s do not depend on the allocation of miner i . Thus, given b̃ each miner
i ∈ N selects anoptimal budget allocationb∗

i in argmaxbi ui (bi | ∀k ∈ M, Xk = b̃k)
which maximizes their utility subject to the constraint

∑
k bik ≤ Ki .

28 Y. K. Cheung et al.

Solution Concept.Together with the static environment assumption of vk being fixed,
and the cost-homogeneity assumption that for each k ∈ M , cik’s are the same for all
i ∈ N ,2 the game-theoretic model of the blockchain mining economy, Γ , becomes
mathematically equivalent to a Fisher market model with quasi-CES utilities. This
approach is in line with [25, 31] who introduce this method to model and analyze
large distributed production economies. The corresponding solution concept is the
market equilibrium (ME).

Definition 1 (Market Equilibrium (ME)) Consider a blockchain mining economy,
Γ . Then, a vector of aggregate allocation b̃ = (b̃k)k∈M is a market equilibrium (ME)
if there exists an optimal budget allocation b∗

j = (b∗
jk)k∈M for each miner j ∈ N ,

so that
∑

j∈N b∗
jk = b̃k for each cryptocurrency k ∈ M . The vector b∗ = (b∗

j) j∈N is
called a market equilibrium allocation (or spending).

3 Proportional Response Dynamics

The Fisher market abstraction provides a handy way to determine the (unique) ME
of Γ algorithmically, i.e., through a distributed Proportional Response protocol that
converges to the ME of Γ for all possible combinations of miners’ risk profiles
and for any positive initial allocations (globally). To formulate the protocol, we
first introduce some minimal additional notation. We write rik (t) := (vikbik (t))ρi

and ri (t) := ∑m
k=1 rik (t) to denote miner i’s revenue (raised to the power of i’s

parameter ρi) from cryptocurrency k and all cryptocurrencies, respectively, and
wi (t) := Ki − ∑m

k=1 bik (t) to denote miner i’s unspent budget at time t ≥ 0. We
also define K̃i (t) := Ki · (Ki − wi (t))

ρi−1 for each i ∈ N .

Definition 2 (Proportional Response Protocol (PR-QCES)) Let Γ denote a
blockchain economywith quasi-CES utilities. Then, theProportional Response (PR-
QCES) protocol is defined by

bik (t + 1) := rik (t) · Ki

max {ri (t) , K̃i (t)}
, for t ≥ 0, (PR-QCES)

for any miner i ∈ N . An implementation of the (PR-QCES) protocol in pseudocode
is provided in Algorithm 1.

Intuitively, the (PR-QCES)update rule suggests that if the revenueofminer i ishigh
enoughatroundt , i.e.,ifri ≥ K̃i , thenmineriwillre-allocatealltheirresourcesinround
t + 1 inproportion to thegenerated revenues,rik/ri , in round t .Bycontrast, ifri < K̃i ,

2 Since PoW mining resembles an oligopoly, conventional oligopolistic competition suggests that
cost asymmetries cannot be very large among active miners [2, 55]. Similarly, in PoS, all miners
(or validators) experience the same opportunity cost when committing their stake.

Market Equilibria and Risk Diversification in Blockchain Mining Economies 29

Algorithm 1 PR-QCES Protocol

Network input: network hashrate, Xk , and revenue, vk , of each cryptocurrency k ∈ M .
Local input: miner i’s unit cost, cik , budget capacity, Ki , and risk parameter, ρi .
Output: equilibrium allocations, bik , k ∈ M , for each miner i ∈ N .
1: Initialize: spending (allocation) bik > 0 for all k ∈ M .
2: loop over t ≥ 0 till stopping condition
3: for each miner i ∈ N do

4: procedure Auxiliary((Xk , vk , cik)k∈M , Ki , ρi)
5: vik ← vk/Xkcik
6: wi ← Ki − ∑

k∈M bik (�) unspent budget
7: K̃i ← Ki (Ki − wi)

ρi−1

8: rik ← (vikbik)ρi and ri ← ∑
k∈M rik

9: procedure PR- Dynamics((rik)k∈M , ri , Ki , K̃i)
10: if ri > K̃i then
11: bik ← rik Ki/ri
12: else bik ← rik Ki/K̃i

thenminer i will behave cautiously andallocate only a fractionof their resources in the
next round. This fraction is precisely equal to the generated revenue at round t , i.e.,
ri (t), again in proportion to the revenue generated by each cryptocurrency k ∈ M .

For practical purposes, it is important that the (PR-QCES) protocol has low infor-
mational requirements. As can be seen fromAlgorithm1, it uses as inputs onlyminer-
specific (local) information (individual capacity and mining cost) and network-level
information (aggregate revenue and hashrate) that can be either observed (revenue) or
relatively accurately estimated (hashrate).

Convergence to ME The intuition behind the (PR-QCES) protocol is natural, except
maybe for the particular choice of K̃i . This choice is derived to ensure an important
property: under the static environment and the cost-homogeneity assumptions if all
miners use (PR-QCES), then it converges to theME allocations ofΓ for any selection
of the ρi ∈ (0, 1] and any strictly positive initial allocation, bik(0) > 0 for all i ∈
N , k ∈ M . This is formally stated in Theorem 1, our main theoretical result.

Theorem 1 (Equilibrium Mining Allocations) Consider a blockchain economy Γ .
Then, for any positive initial allocation (spending) vector, b0 > 0, the (PR-QCES)
dynamics converge to the unique market equilibrium allocation, b∗, of Γ .

The proof of Theorem 1 is deferred to Appendix A.

4 Experiments

Having established convergence to ME allocations of the (PR-QCES) protocol, we
now turn to study miners’ behavior using empirical data. As argued above, the

30 Y. K. Cheung et al.

(PR-QCES) protocol allows us to adopt an individual miner’s perspective against
exogenously given network metrics and obviates the need to generate synthetic data
concerning (hypothetic) profiles of other miners. Importantly, implementing Algo-
rithm 1 does not require knowledge of other miners’ costs nor the assumption of
cost-homogeneity.

4.1 Data Set and Experimental Setup

Our network-level data (“Network input” in Algorithm 1) has been sourced from
coinmetrics.io and consists of daily observations of the (estimated) aggregate
network hashrate, Xk , in Terahashes per day (TH/day) and aggregate miners’
revenue, vk , in USD (coinbase transactions and fees) for four PoW cryptocurrencies:
Bitcoin (BTC), Bitcoin Cash (BCH), Ethereum (ETH) and Litecoin (LTC), in the
period between January 01, 2018 and September 19, 2021 (T = 1358 days).3 The
network-level data is visualized in Figs. 1 and 2. For our miner-level data (“Local
input" in Algorithm 1), we only need to derive estimates for cik , i.e., for the cost of a
miner to produce one unit of resource (one TH/s for a whole day) in each of the four
cryptocurrency networks. Miner i’s risk profile, ρi ∈ (0, 1] will be a target parame-
ter that will vary through the experiments and miner i’s budget, Ki , will be assumed
to be constant throughout the study period and normalized to 1 monetary unit (USD).

MiningCosts.Toderive an estimate of aminer’s cost, cik , tomine each cryptocurrency
k = 1, 2, 3, 4, we collect data regarding electricity prices and prices of state-of-
the-art mining equipment in each calendar year of the considered time period. The
corresponding data is presented in Tables 1 and 2. The electricity cost estimates are
based on the currently increasing trends (for 2021) and on the findings of [33, 34] for
the 2018–2020 period, who suggest that kWh prices follow seasonal variations (due
to weather dependent fluctuations in mining hotspots, e.g., China) and a constant to
slightly decreasing overall trend between 2018 and 2020. Using the above, the cost,
c, of a miner to produce one TH/s throughout a day to mine a given cryptocurrency
is

c = P

365 · Ls · Hs
+ (W/1000) · cW · 24

Hs
, (4)

where, as in Table 1, P denotes the mining equipment’ acquisition price in USD, Ls

its useful lifespan (assumed to be 2 years for all models), Hs its effective hashrate
(in TH/s), W its power consumption (in Watt), and cW the average cost per kWh in
USD.

3 This period is before the implementation of the EIP-1559 update in the Etheurem transaction fee
market [41, 56, 62, 66].

https://coinmetrics.io/community-network-data/#comm-files

Market Equilibria and Risk Diversification in Blockchain Mining Economies 31

Fig. 1 Daily estimated hashrate, Xk , in TeraHashes per day for the four cryptocurrencies: Bitcoin
(BTC), Bitcoin Cash (BCH), Ethereum (ETH) and Litecoin (LTC)

Fig. 2 Daily aggregate revenue, vk , for the four cryptocurrencies: BTC, BCH, ETH and LTC.
Source coinmetrics.io

Remark 1 (Data Reliability) Given the ambiguity concerning electricity prices
faced by various miners and the variability of mining equipment prices among differ-
ent sellers and time periods, in our complete set of simulations (not presented here),
we have tested a wide range of values for the above parameters. While the equilib-

https://coinmetrics.io/community-network-data/#comm-files

32 Y. K. Cheung et al.

Table 1 Data used to estimate mining costs in Eq. (4). The lifespan, Ls , of all models is assumed
to be 2 years

Coin Year Mining model Price Hashrate Power (W)

BTC/BCH 2018 Antminer s9 $1,900 14 TH/s 1372

2019 Ebang Ebit
E11+

$1,400 37 TH/s 2035

2020 Antminer
s17+

$2,080 73 TH/s 2920

2021 Antminer s19
Pro

$2,407 110 TH/s 3250

ETH 2018 PandaMiner
B3 Pro

$2,196 230 MH/s 1250

2019 PandaMiner
B3 Pro

$2,034 230 MH/s 1250

2020 PandaMiner
B9

$3,280 330 MH/s 1050

2021 PandaMiner
B7 Pro

$2,684 360 MH/s 1650

LTC 2018 Antminer L3+ $260 504 MH/s 800

2019 Antminer
L3++

$320 596 MH/s 1050

2020 Antminer
L3++

$430 596 MH/s 1050

2021 Antminer L3+ $237 504 MH/s 800

Sources asicminervalue.com and cryptocompare.com

Table 2 Average prices per kWh (on a global estimate). The figures are updated every six months
(January-June and July-December)

Electricity costs (cW)

2018 2019 2020 2021

$0.070 $0.080 $0.065 $0.075 $0.065 $0.060 $0.065 $0.070

Main sources [33, 34]

rium allocations may change, the qualitative findings remain throughout robust and
equivalent to the ones presented here.

4.2 Empirical Results

Equilibrium Allocations Our first set of results concerns the effects of a miner’s risk
profile, ρi ∈ (0, 1], on their equilibrium allocations. The results for four values of
ρi are shown in the lower tiles of Fig. 3. The most important finding is that miners’
allocations are driven by the efficiency ratio, eik , i.e., the normalized ratio between
revenue and estimated (by miner i) expenses of each cryptocurrency k (cf. Eq. (1)).

https://www.asicminervalue.com/miners
https://www.cryptocompare.com/mining/equipment

Market Equilibria and Risk Diversification in Blockchain Mining Economies 33

Fig. 3 Efficiency ratio (upper tiles) and equilibrium allocations for four different risk profiles ρ

(lower tiles) in the mining economy of the case study. When ρ is close to zero (risk aversion), the
miner uniformly distributes their resources among the available coins.Asρ increases, the allocations
are driven by ek : for ρ = 0.5, they exactly match ek whereas for ρ = 1, they match the coin with
the highest ek

The values of ek across the whole sampling period are shown in the upper tiles of
Fig. 3. An interesting observation is the similarity in ek between BTC and BCH that
use the same mining technology (cf. Theorem 3.10 of [72]).

34 Y. K. Cheung et al.

When ρ is close to zero, the miner maximizes their risk diversification (the miner
essentially ignores any other input data) and splits their budget equally among the
four coins. However, for larger values of ρ, the miner’s decisions are driven by ek .
For ρ = 0.5, the miner’s allocations precisely coincide with ek and as ρ increases
above 0.5, and ultimately reaches 1, the miner allocates all their resources to the
cryptocurrency with the highest ek .

The allocations in Fig. 3 suggest that risk diversification can have a dramatic
impact not only on miner’s individual allocations but also on the mining supply of
each network as a whole. While lower values of ρ (higher risk diversification) result
in stable allocations or allocations that follow less volatile patterns, higher values of
ρ (lower risk diversification) lead to violent re-allocations in a day-to-day basis. At
the upper extreme, i.e., when ρ = 1, a slight change in eik , i.e., in the efficiency of
mining coin k from the perspective of miner i , may lead to a massive re-allocation of
their resources. Such fluctuations pose an immediate threat to system stability and
naturally raise the question of how such behavior can be curbed in practice.4 This
brings us to the next set of our empirical analysis which concerns miner’s utility
maximization and the effects of factor mobility in miner’s behavior.

Utility Maximization and Factor Mobility Costs As we saw in Fig. 3, implementing
the optimal allocations for high values of ρ (low risk diversification) entails full
mobility of resources between different cryptocurrencies in a daily basis. However,
such movements typically entail additional switching costs involving transaction
costs (e.g., exchanging tokens in staking) or liquidatioand new acquisitions ofmining
equipment. In this part, we model such costs and argue about their effects on miner’s
utility.

Figure 4 reports metrics on a miner’s equilibrium profits for a budget of 1 USD.
The first tile shows that the average daily profits (over the whole period of T = 1358
days) increase in a sigmoid shape as ρ reaches 1. However, the same holds for the
standard deviation of the profits (second tile). Asmentioned above,while this strategy
(at ρ = 1) maximizes the utility of the miner (revenue minus expenses, cf. Eq. (3)),
it does so without accounting for restrictions or costs in factor mobility.

To address this issue, we plot in the third tile the aggregate factor mobility cost
F of miner i ,

F :=
∑T−1

t=1

[
|wi (t + 1) − wi (t)| +

∑

k∈M |bi,k(t + 1) − bi,k(t)|
]
, (5)

i.e., the sumof the differences between allocations over all coins (and unspent budget)
between consecutive days during the sample period.5 The rightmost (4th) tile shows
the aggregate profits over the whole period after accounting for the factor mobility
cost, i.e.,

4 In particular, fluctuations in mining resources, e.g., hashrate in PoW, cause volatility in cryptocur-
rency prices [51, 52] which in turn may destabilize blockchain-based applications.
5 Different ways to calculate the factor mobility cost led to the same conclusion. Here, we follow
one that is standard in portfolio optimization, see e.g., [59].

Market Equilibria and Risk Diversification in Blockchain Mining Economies 35

Fig. 4 Miner’s utility metrics for all ρ ∈ (0, 1] (horizontal axis): average and standard deviation
of daily profits, factor mobility costs and mobility adjusted total profits for three different per unit
switching costs, α = 1, 2, 5. Factor mobility costs (cf. Eq. (5)) increase sharply as ρ approaches 1
and mobility adjusted profits (cf. Eq. (6)) are maximized for inner values of ρ

uF
i (bi ,b−i) := ui (bi ,b−i) − αF, (6)

where ui (bi ,b−i) is given by Eq. (3). We plot uF
i for three different values,

α = 1, 2, 5, of the switching cost per unit of resource (in USD). The two right-
most (3rd and 4th) tiles paint a very different picture about the inefficiencies
that materialize as ρ approaches 1 and their effects on utility maximization.
The optimal strategy dictates re-allocation of all (for ρ = 1) or almost all (for ρ

close to 1) of a miner i’s resources to the coin with the highest eik . Unless this
transition is frictionless (in which case, factor mobility costs can be neglected),
then the miner’s utility is maximized for an inner value of ρ ∈ (0, 1). Along
with the previous findings, this suggests that risk diversification is beneficial not
only for overall network stability but also for individualminers’ utilitymaximization.

Mining Technologies To further elaborate on the effects of factor mobility costs, we
consider a naturally motivated variation of the previous setting. In our data set, BTC
andBCHusecompatibleminingtechnologyandhence, re-allocationsbetweenthe two
coins canbe considered costless. Figure 5 shows the factormobility costs (cf. (5)) after
bundlingallocationsonBTCandBCH.The shapeof themobility costs in the left tile is
due to the frequent re-allocations betweenBTCandBCHafter January 2019 and up to
July 2020 after which they cease completely (for ρ = 1) as ETH starts to consistently
dominate the ek metric (cf. Fig. 3).Aswas the casewith the profits before adjusting for
factor mobility costs (first tile of Fig. 4), a miner’s utility maximization stands now at
oddswithnetworkstability.Evenforhighervaluesofperunitswitchingcosts(α = 10),
theminer’s profits are maximized at ρ = 1 (right tile).

36 Y. K. Cheung et al.

Fig. 5 Same metrics as in the 3rd and 4th tiles of Fig. 4 with higher α’s and no mobility costs
between BTC and BCH

Fig. 6 Average unspent budget (left) and iterations till convergence (right) of the (PR-QCES)
protocol in the sample of T = 1358 days for all values of ρ ∈ (0, 1]

Unspent Budget The left tile of Fig. 6 reports the average unspent budget (red line)
over the sample period for all ρ ∈ (0, 1]. Daily unspent budget (not shown in the
graph) is either 0 or very close to 1. For higher risk diversification (ρ < 0.65), miners
always allocate their entire budget. However, miners with higher risk tolerance (ρ
closer to 1), tend to mine in less than full capacity more often. This informs the
debate on whether miners exhaust their capacities or not [72] and provides new
evidence that the answer depends on miners’ risk profiles.

Convergence Rates We conclude with metrics concerning the convergence rates of
the (PR-QCES) protocol. For each value of ρ ∈ (0, 1] (horizontal axis), the plot in
Fig. 6 shows the iterations (blue dots) and their average (red line) that the algorithm
required in each day to converge. The vertical axis is truncated at 1500 iterations (for
ρ close to 1 several runs required more than 10k to reach our convergence (stopping)
condition which entails five consecutive updates with change less than 10−10: other
stopping rules produced very similar outcomes.) The results, exponentially declining
convergence rates for lower values of ρ provide an empirical verification (also in the
case of quasi-CES) utilities of existing theoretical results regarding convergence rates
of the PR dynamics in the case of Fisher markets with CES utilities [23].

Market Equilibria and Risk Diversification in Blockchain Mining Economies 37

5 Conclusions

The above findings offered a novel market perspective on the dynamic nature and
growing size of the blockchain mining networks, the increasing degrees of inhomo-
geneity across the mining population and the effects of risk diversification and factor
mobility costs on miners’ strategic decisions. The proportional response dynamic
produced a naturally motivated, practically relevant and, importantly, globally con-
vergent (to market equilibrium) learning protocol that can be useful both to miners
(to optimally allocate their resources in a day-to-day (or less frequent) basis) and to
researchers studying miners’ incentives. Our results provided evidence that increas-
ing network size and risk diversification among blockchains have beneficial effects
in curbing violent resource re-allocations and in aligningminers’ incentives for profit
maximization with the ecosystem’s long-term goals of stability and security.

While useful to miners, blockchain stakeholders and protocol designers, our find-
ings also give rise to interesting questions from a research perspective. Apart from
informing technological and managerial decisions, our results provide the starting
point and proper framework to address several open questions including the effects
of taxation or other kinds of regulation on the blockchain ecosystem [61], the impli-
cations of stablecoins in the future of cryptocurrencies [16] and the effects on min-
ers’ welfare and network stability of newly designed transaction fee markets (e.g.,
Ethereum’s celebrated EIP-1559 [41, 56, 67]) among others.

A Technical Materials: Proof of Theorem 1

Before we proceed with our empirical results in Sect. 4, we provide the technical
details of the proof of Theorem 1. Our proof of Theorem 1 consists of two steps.
The first involves the formulation of a convex program in the spending (budget)
domain that captures the market equilibrium (ME) of the underlying blockchain
mining economy with quasi-CES utilities. The second involves the derivation of a
general Mirror Descent (MD) protocol which converges to the optimal solution of
the convex program from the previous step. The proof concludes by showing that
the (PR-QCES) protocol is an instantiation of this MD protocol.

Part I:ConvexProgramFramework.This part utilizes the convex optimization frame-
work in the study of Fisher markets with linear or quasi-linear utilities, see e.g., [6,
23, 25]. As with quasi-linear utilities, the main challenge in this case is to guess a
convex program that correctly captures the market equilibria also for general quasi-
CES utilities [31, 35]. The convex optimization framework that we use to capture
the ME spending in quasi-CES Fisher markets is summarized in Fig. 7. Our starting
point is a Shmyrev-type convex program proposed by [23] which captures the ME
spending in the case of quasi-linear utilities. Our first task is to appropriately modify

38 Y. K. Cheung et al.

(EG) (D)

(SH-QCES) (TD)

convex duality

qj :=ln pj

convex duality

Fig. 7 Convex optimization framework in Theorem 1. The Eisenberg-Gale (EG) [39], its dual (D)
and transformed dual (TD) and the Shmyrev-type convex program (SH-QCES) which captures the
market equilibrium spending [68]

it so that it captures the ME spending of a quasi-CES Fisher market. The resulting
convex program is

min F(b,w) s.t.
∑n

i=1
bik = pk, ∀k ∈ M,

∑m

k=1
bik + wi = Ki , ∀i ∈ N , (SH-QCES)

bik, wi ≥ 0, ∀i ∈ N , k ∈ M,

where F(b,w) is the following function:

F(b,w) := −
∑n

i=1

1

ρi

∑m

k=1
bi j ln[(vk)ρi (bi j)

ρi−1] +
∑m

k=1
pk ln pk

+
∑n

i=1

[

wi + ρi − 1

ρi
· (Ki − wi) ln(Ki − wi)

]

.

Here, we used the notation w = (wi)i∈N and for more clarity, we also wrote p =
(pk)k∈M to denote the exogenously given aggregate spending vector (cf. b̃ in the
formulation of Theorem 1). While the first and second constraints in (SH-QCES)
fully determine the values of pk and wi in terms of bi j , it will be more instructive
to retain them as separate variables in this part. Our main task is to show that the
solutions of (SH-QCES) are solutions to our initial problem, i.e., that they correspond
to the ME spending of Γ .

Lemma 1 The unique minimum point of (SH-QCES) corresponds to the unique
market equilibrium spending of Γ .

Proof We verify that the optimality condition of the convex program (SH-QCES) is
the same as the market equilibrium condition. The claim is immediate for ρi = 1, so
we restrict attention to ρi < 1. To determine the optimality condition of (SH-QCES),
we take the partial derivatives of F with respect to bi j and wi

Market Equilibria and Risk Diversification in Blockchain Mining Economies 39

∂

∂bi j
F(b,w) = 1

ρi
(1 − ρi ln vk) + 1 − ρi

ρi
· ln bi j + ln pk

∂

∂wi
F(b,w) = 1

ρi
[1 − (ρi − 1) ln(Ki − wi)] .

Since (1 − ρi)/ρi > 0, limbi j↘0
1−ρi

ρi
· ln bi j = −∞. Hence, at each minimum point,

bi j must be strictly positive. In turn, since bi j is in the relative interior of the domain at
each minimum point, and we have the constraint

∑m
k=1 bi j ≤ Ki , it must hold that all

∂
∂bi j

F(b,w) are identical for all k ∈ M . Equivalently, (vk)
ρi (bi j)ρi−1

(pk)ρi
are identical for all

k. Thus, depending onwhetherwi > 0 orwi = 0, we have the following two cases. If

Ki > wi > 0, then ∂
∂bi j

F(b,w) = ∂
∂wi

F(b,w), which implies (vk)
ρi (bi j)ρi−1

(pk)ρi
= (Ki −

wi)
ρi−1 for all k ∈ M . If wi = 0, then ∂

∂bi j
F(b,w) ≤ ∂

∂wi
F(b,w), which implies

(vk)
ρi (bi j)ρi−1

(pk)ρi
≥ (Ki − wi)

ρi−1 for all k.

To determine the ME condition, we need to find the rate of change in a miner’s
utility w.r.t. changes in spending on mining cryptocurrency k. Due to the cost-
homogeneity assumption, in (3), vi j = vk/pk . Since aggregate expenditures p are
considered as independent signals in the market, the rate is

∂

∂bik
ui (b | p) =

(∑m

k=1

(vk)
ρi (bik)ρi

(pk)ρi

)1/ρi−1

· (vk)
ρi (bik)ρi−1

(pk)ρi
− 1.

Since ρi − 1 < 0 and, hence, limbik↘0(bik)ρi−1 = +∞, at the market equilibrium,
bik must be strictly positive. Thus, at the ME, each bi j is in the relative interior of
the domain. Together with the constraint

∑
k bi j ≤ Ki , this implies that ∂

∂bik
ui (b | p)

are identical for all k ∈ M , which in turn implies that (vk)
ρi (bi j)ρi−1

(pk)ρi
must be identical

for all k ∈ M . We denote this (common) value by zi . Then

∂

∂bik
ui (b;p) =

(∑m

k=1
zibik

)1/ρi−1 · zi − 1

= (zi)
1/ρi

(∑m

k=1
bi j

)1/ρi−1 − 1

= (zi)
1/ρi (Ki − wi)

1/ρi−1 − 1.

Again, there are two cases. If Ki > wi > 0, i.e., if wi is in the relative interior of its
domain, then the above derivative must be zero, i.e., zi = (Ki − wi)

ρi−1 for all i . If
wi = 0, then the above derivative at ME is positive or zero, i.e., zi ≥ (Ki − wi)

ρi−1

for all i . �

Part II: From Mirror Descent to Proportional Response. As mentioned above, a
useful observation in (SH-QCES) is that the first and second constraints determine
the values of pk, wi in terms of the bi j ’s. Thus, we may rewrite F as a function

40 Y. K. Cheung et al.

of b only. Then, the convex program (SH-QCES) has only the variables b, and the
only constraints on b are bi j ≥ 0 and

∑m
k=1 bi j ≤ Ki . Using this formulation, we

can conveniently compute a ME spending by using standard optimization methods
like Mirror Descent (MD). Our task in this part, will be to show that the objective
function, F(b), of (SH-QCES) is 1-Bregman convex which implies convergence of
theMDprotocol and hence, of the (PR-QCES) protocol. To begin, we introduce some
minimal additional notation and recap a general result about MD [6, 17] below.

Let C be a compact and convex set. The Bregman divergence, dh , generated by a
convex regularizer function h is defined as

dh(b, a) := h(b) − [h(a) + 〈∇h(a),b − a〉] . (7)

for anyb ∈ C, a ∈ rint(C)where rint(C) is the relative interior ofC .Due to convexity
of the function h, dh(b, a) is convex in b, and its value is always non-negative.
The Kullback-Leibler divergence (KL-divergence) between b and a is KL(b‖a) :=∑

k bk · ln bk
ak

− ∑
k bk + ∑

k ak , which is same as the Bregman divergence dh with
regularizer h (b) := ∑

k(bk · ln bk − bk). A function f is L-Bregman convex w.r.t.
Bregman divergence dh if for any b ∈ C and a ∈ rint(C),

f (a) + 〈∇ f (a),b − a〉 ≤ f (b) ≤ f (a) + 〈∇ f (a),b − a〉 + L · dh(b, a).

For the problem of minimizing a convex function f (b) subject to b ∈ C , the Mirror
Descent (MD) method w.r.t. Bregman divergence dh is given by the update rule
in Algorithm 2. In the MD update rule, 1/ξ > 0 is the step-size, which may vary
with t (and typically diminishes with t). However, in the current application of
distributed dynamics, time-varying step-size and thus, update rule is undesirable or
even impracticable since this will require from the agents/firms to keep track with a
global clock.

Algorithm 2MD w.r.t. Bregman-divergence dh
1: procedure MirrorDescent(f,C, ξ, dh)
2: Initialize: b(0) ∈ C
3: while t > 0,b(t),b ∈ C do
4: g (b,b(t)) ← 〈∇ f (b(t)),b − b(t)〉 + dh(b,b(t))/ξ
5: b(t + 1) ← argminb∈C {g (b,b(t))}

Theorem 2 ([6]) Suppose that f is an L-Bregman convex function w.r.t. dh and let
b(T) be the point reached after T applications of the MD update rule in Algorithm
2 with parameter ξ = 1/L. Then

f (b(T)) − f (b∗) ≤ L · dh(b∗,b(0))/T .

Market Equilibria and Risk Diversification in Blockchain Mining Economies 41

Using the above, we are now ready to show that the objective function of the
(SH-QCES) is a 1-Bregman convex function w.r.t. the KL-divergence. This is the
statement of Lemma 2. Its proof closely mirrors an analogous statement in [23] and
is, thus, omitted.

Lemma 2 The objective function F of (SH-QCES) is a 1-Bregman convex function
w.r.t. the divergence

∑n
i=1

1
ρi

· KL(x ′
i ||xi).

We now turn to the derivation of the (PR-QCES) protocol from the MD algo-
rithm for a suitable choice of ξ . For the convex program (SH-QCES), the MD rule
(Algorithm 2) is

(b(t + 1),w(t + 1)) = argmin(b,w)∈C

{∑n

i=1

1

ρi
· KL(bi‖bi (t))+

+
∑n

i=1

∑m

k=1

(bi j − bi j (t))

ρi
·
(

1 − ln
(vk)

ρi bi j (t)ρi−1

pk(t)ρi

)

+
∑n

i=1

1

ρi
[1 − (ρi − 1) · ln(Ki − wi (t))] · (wi − wi (t))

}

.

Since
∑m

k=1 bi j + wi is constant in the domain C , we may ignore any term that
does not depend on b and w, and any positive constant in the objective function and
simplify the above update rule to

(b(t + 1),w(t + 1)) = argmin(b,w)∈C

{ ∑n

i=1
(1 − ρi) ln(Ki − wi (t)) · wi

−
∑n

i=1

∑m

k=1

(

ln
(vk)

ρi bi j (t)ρi−1

pk(t)ρi
· bi j − bi j ln

bi j
bi j (t)

+ bi j

)}

� argmin(b,w)∈C F(b,w).

Concerning the partial derivatives of F , we have

∂

∂bi j
F(b,w) = ln bi j − ln

(vk)
ρi bi j (t)ρi

pk(t)ρi

∂

∂wi
F(b,w) = (1 − ρi) ln(Ki − wi (t)).

As before, for each fixed i , the values of ln bi j − ln (vk)
ρi bi j (t)ρi

pk (t)ρi
for all k ∈ M are iden-

tical. In other words, there exists ci > 0 such that bi j = ci · (vk)
ρi bi j (t)ρi /pk(t)ρi .

As before, there are two cases which depend on

Si �
∑

k∈M(vk)
ρi bi j (t)

ρi /pk(t)
ρi =

∑

k∈M(vikbik)
ρi .

42 Y. K. Cheung et al.

If Si ≥ Ki · (Ki − wi (t))ρi−1, then we set bi j (t + 1) = Ki · (vikbik)/Si , for each k ∈
M , and wi (t + 1) = 0. At this point, we have

∂

∂bi j
F(b,w) = ln

Ki

Si
≤ ∂

∂wi
F(b,w),

so the optimality condition is satisfied. If Si < Ki · (Ki − wi (t))ρi−1, then, we
set bi j (t + 1) = (Ki − wi (t))1−ρi · (vikbik)ρi , for each k, and wi (t + 1) = Ki −∑m

k=1 bi j (t + 1) > 0. At this point, we have ∂
∂bi j

F(b,w) = ∂
∂wi

F(b,w), so the opti-
mality condition is satisfied.

Theorem 2 now guarantees that the updates of (PR-QCES) converge to an optimal
solution of (SH-QCES). This shows that the (PR-QCES) dynamics converge to the
ME of a Fisher market with quasi-CES utilities for any 0 < ρi ≤ 1 and concludes the
proof of Theorem 1. Note that the previous proof cannot be extended in a straight-
forward way to values of ρi < 0, since in that case, a direct calculation shows that F
is neither convex nor concave function which implies that the above argument does
not apply.

References

1. Alkalay-Houlihan, C., & Shah, N. (2019). The pure price of anarchy of pool block withholding
attacks in bitcoin mining. AAAI Conference on Artificial Intelligence, AAAI-19 33(1), 1724–
1731. https://doi.org/10.1609/aaai.v33i01.33011724.

2. Arnosti, N., & Weinberg, S. M. (2018). Bitcoin: A natural oligopoly. In A. Blum (ed.), 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International
Proceedings in Informatics (LIPIcs) (vol. 124, pp. 5:1–5:1). Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl. https://doi.org/10.4230/LIPIcs.ITCS.2019.5.

3. Auer, R. (2019). Beyond the doomsday economics of proof-of-work in cryptocurrencies. Dis-
cussionPaperDP13506.London:Centre forEconomicPolicyResearch. https://cepr.org/active/
publications/discussion_papers/dp.php?dpno=13506

4. Bailey, J. P., & Piliouras, G. (2018). Multiplicative weights update in zero-sum games. In Pro-
ceedings of the 2018ACMConference onEconomics andComputation (p. 321–338)NewYork,
NY, USA: EC ’18, Association for Computing Machinery. https://doi.org/10.1145/3219166.
3219235.

5. Bentov, I., Gabizon, A., & Mizrahi, A. (2016). Cryptocurrencies without proof of work. In
J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, & K. Rohloff (Eds.), Finan-
cial Cryptography and Data Security (pp. 142–157). Berlin Heidelberg, Berlin, Heidelberg:
Springer.

6. Birnbaum, B., Devanur, N.R., & Xiao, L. (2011). Distributed algorithms via gradient descent
for fisher markets. In Proceedings of the 12th ACM Conference on Electronic Commerce (p.
127–136). New York, NY, USA: EC ’11, Association for Computing Machinery. https://doi.
org/10.1145/1993574.1993594.

7. Bonneau, J. (2016). Why buy when you can rent? In J. Clark, S. Meiklejohn, P. Y. Ryan, D.
Wallach, M. Brenner, & K. Rohloff (Eds.), Financial Cryptography and Data Security (pp.
19–26). Berlin Heidelberg, Berlin, Heidelberg: Springer.

8. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015) Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies. In Proceedings of the

https://doi.org/10.1609/aaai.v33i01.33011724
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=13506
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=13506
https://doi.org/10.1145/3219166.3219235
https://doi.org/10.1145/3219166.3219235
https://doi.org/10.1145/1993574.1993594
https://doi.org/10.1145/1993574.1993594

Market Equilibria and Risk Diversification in Blockchain Mining Economies 43

2015 IEEE Symposium on Security and Privacy (p. 104–121). USA: SP ’15, IEEE Computer
Society. https://doi.org/10.1109/SP.2015.14

9. Brânzei, S., Devanur, N., & Rabani, Y. (2021). Proportional dynamics in exchange economies.
In Proceedings of the 22nd ACM Conference on Economics and Computation (p. 180–201).
EC ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/
10.1145/3465456.3467644.

10. Branzei, S., Mehta, R., & Nisan, N. (2018). Universal growth in production
economies. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
R. Garnett (eds.), Advances in Neural Information Processing Systems vol. 31.
New York, USA: Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
692f93be8c7a41525c0baf2076aecfb4-Paper.pdf

11. Brown-Cohen, J., Narayanan, A., Psomas, A., & Weinberg, S.M. (2019). Formal barriers to
longest-chain proof-of-stake protocols. In Proceedings of the 2019 ACM Conference on Eco-
nomics and Computation (p. 459–473). New York, NY, USA: EC’19, ACM. https://doi.org/
10.1145/3328526.3329567.

12. Budish, E. (2018). The economic limits of bitcoin and the blockchain. Working Paper 24717,
National Bureau of Economic Research. https://doi.org/10.3386/w24717.

13. Buterin, V. (2013). A next-generation smart contract and decentralized application platform.
https://ethereum.org/en/whitepaper/.

14. Buterin, V., Reijsbergen, D., Leonardos, S., & Piliouras, G. (2019). Incentives in ethereum’s
hybrid casper protocol. In 2019 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC) (pp. 236–244). USA: IEEE. https://doi.org/10.1109/BLOC.2019.8751241.

15. Carlsten, M., Kalodner, H., Weinberg, S. M., & Narayanan, A. (2016). On the instability
of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (p. 154–167). Vienna, Austria: CCS ’16, ACM.
https://doi.org/10.1145/2976749.2978408.

16. Catalini, C., & Massari, J. (2020). Stablecoins and the future of money. Harvard Business
Review (online). https://hbr.org/2021/08/stablecoins-and-the-future-of-money.

17. Chen, G., & Teboulle, M. (1993). Convergence analysis of a proximal-like minimization
algorithm using bregman functions. SIAM J. Optim., 3(3), 538–543. https://doi.org/10.1137/
0803026

18. Chen, J., & Micali, S. (2019). Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777, 155–183. https://doi.org/10.1016/j.tcs.2019.02.001

19. Chen, L., Xu, L., Gao, Z., Sunny, A.I., Kasichainula, K., & Shi, W. (2021). A game theoretical
analysis of non-linear blockchain system. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems (p. 323–331). Richland, SC: AAMAS ’21,
International Foundation for Autonomous Agents and Multiagent Systems.

20. Chen, X., Papadimitriou, C., & Roughgarden, T. (2019). An axiomatic approach to block
rewards. InProceedings of the 1st ACMConference onAdvances in Financial Technologies (pp.
124–131). New York, NY, USA: AFT ’19, ACM. https://doi.org/10.1145/3318041.3355470.

21. Cheung, Y. K., Cole, R., & Devanur, N. R. (2020). Tatonnement beyond gross substitutes?
Gradient descent to the rescue. Games and Economic Behavior, 123, 295–326. https://doi.org/
10.1016/j.geb.2019.03.014

22. Cheung, Y.K., Cole, R., & Rastogi, A. (2012). Tatonnement in ongoing markets of comple-
mentary goods. In Proceedings of the 13th ACM Conference on Electronic Commerce (pp.
337–354). New York, NY, USA: EC ’12, Association for Computing Machinery. https://doi.
org/10.1145/2229012.2229039.

23. Cheung,Y.K., Cole, R.,&Tao,Y. (2018). Dynamics of distributed updating in fishermarkets. In
(pp. 351–368). NewYork, NY,USA: EC’18, ACM. https://doi.org/10.1145/3219166.3219189.

24. Cheung, Y.K., Hoefer, M., & Nakhe, P. (2019). Tracing equilibrium in dynamic markets via
distributed adaptation. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems (pp. 1225–1233). Richland, SC: AAMAS ’19, International
Foundation for Autonomous Agents and Multiagent Systems.

https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1145/3465456.3467644
https://doi.org/10.1145/3465456.3467644
https://proceedings.neurips.cc/paper/2018/file/692f93be8c7a41525c0baf2076aecfb4-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/692f93be8c7a41525c0baf2076aecfb4-Paper.pdf
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.3386/w24717
https://ethereum.org/en/whitepaper/
https://doi.org/10.1109/BLOC.2019.8751241
https://doi.org/10.1145/2976749.2978408
https://hbr.org/2021/08/stablecoins-and-the-future-of-money
https://doi.org/10.1137/0803026
https://doi.org/10.1137/0803026
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1145/3318041.3355470
https://doi.org/10.1016/j.geb.2019.03.014
https://doi.org/10.1016/j.geb.2019.03.014
https://doi.org/10.1145/2229012.2229039
https://doi.org/10.1145/2229012.2229039
https://doi.org/10.1145/3219166.3219189

44 Y. K. Cheung et al.

25. Cheung, Y.K., Leonardos, S., & Piliouras, G. (2021). Learning inmarkets: Greed leads to chaos
but following the price is right. In Z. H. Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21 (pp. 111–117). International Joint Con-
ferences on Artificial Intelligence Organization, virtual. https://doi.org/10.24963/ijcai.2021/
16.

26. Cheung, Y.K., & Piliouras, G. (2019). Vortices instead of equilibria in minmax optimization:
Chaos and butterfly effects of online learning in zero-sum games. In Conference on Learning
Theory, COLT 2019 (pp. 25–28, 807–834). Phoenix, AZ, USA. http://proceedings.mlr.press/
v99/cheung19a.html

27. Cheung, Y.K., & Piliouras, G. (2020). Chaos, extremism and optimism: Volume analysis of
learning in games. CoRR abs/2005.13996. https://arxiv.org/abs/2005.13996

28. Cheung, Y.K., & Tao, Y. (2021). Chaos of learning beyond zero-sum and coordination via game
Decompositions. In ICLR.

29. Cheung, Y.K. (2018). Multiplicative weights updates with constant step-size in graphical
constant-sum games. In (pp. 3532–3542). NeurIPS.

30. Chiu, J., & Koeppl, T.V. (2018). Incentive compatibility on the blockchain. Bank of Canada
Staff Working Paper 2018–34. Ottawa: Bank of Canada.

31. Cole, R., Devanur, N., Gkatzelis, V., Jain, K., Mai, T., Vazirani, V. V., & Yazdanbod, S. (2017).
Convex program duality, fisher markets, and nash social welfare. In Proceedings of the 2017
ACM Conference on Economics and Computation (pp. 459–460). New York, NY, USA: EC
’17, Association for Computing Machinery. https://doi.org/10.1145/3033274.3085109.

32. Cole, R., & Tao, Y. (2016). Large market games with near optimal efficiency. In (pp. 791–808).
New York, NY, USA: EC’16. ACM. https://doi.org/10.1145/2940716.2940720.

33. De Vries, A. (2018). Bitcoin’s growing energy problem. Joule, 2(5), 801–805. https://doi.org/
10.1016/j.joule.2018.04.016

34. De Vries, A. (2020). Bitcoin’s energy consumption is underestimated: A market dynamics
approach. Energy Research & Social Science, 70, 101721. https://doi.org/10.1016/j.erss.2020.
101721

35. Devanur, N. R. (2009). Fisher markets and convex programs. Published online. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.177.351&rep=rep1&type=pdf.

36. Dimitri, N. (2017). Bitcoin mining as a contest. Ledger, 2, 31–37. https://doi.org/10.5195/
ledger.2017.96

37. Dvijotham, K., Rabani, Y., & Schulman, L. J. (2020). Convergence of incentive-driven dynam-
ics in Fisher markets.Games and Economic Behavior in press, corrected proof, online. https://
doi.org/10.1016/j.geb.2020.11.005

38. Easley, D., O’Hara, M., & Basu, S. (2019). From mining to markets: The evolution of bitcoin
transaction fees. Journal of Financial Economics, 134(1), 91–109. https://doi.org/10.1016/j.
jfineco.2019.03.004

39. Eisenberg, E., & Gale, D. (1959). Consensus of subjective probabilities: The pari-mutuel
method. Ann. Math. Statist., 30(1), 165–168.

40. Eyal, I., & Sirer, E. G. (2018). Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM, 61(7), 95–102. https://doi.org/10.1145/3212998

41. Ferreira, M. V. X., Moroz, D. J., Parkes, D. C., & Stern, M. (2021). Dynamic posted-price
mechanisms for the blockchain transaction-fee market. In Proceedings of the 3rd ACM Con-
ference on Advances in Financial Technologies (pp. 86–99). New York, NY, USA: AFT ’21,
Association for Computing Machinery. https://doi.org/10.1145/3479722.3480991.

42. Fiat, A., Karlin, A., Koutsoupias, E., & Papadimitriou, C. (2019). Energy equilibria in proof-of-
work mining. In (pp. 489–502). New York, NY, USA: EC’19, ACM. https://doi.org/10.1145/
3328526.3329630.

43. Gandal, N., & Gans, J. (2019). More (or less) economic limits of the blockchain. Discus-
sion Paper DP14154, London, Centre for Economic Policy Research. https://cepr.org/active/
publications/discussion_papers/dp.php?dpno=14154.

https://doi.org/10.24963/ijcai.2021/16
https://doi.org/10.24963/ijcai.2021/16
http://proceedings.mlr.press/v99/cheung19a.html
http://proceedings.mlr.press/v99/cheung19a.html
https://arxiv.org/abs/2005.13996
https://doi.org/10.1145/3033274.3085109
https://doi.org/10.1145/2940716.2940720
https://doi.org/10.1016/j.joule.2018.04.016
https://doi.org/10.1016/j.joule.2018.04.016
https://doi.org/10.1016/j.erss.2020.101721
https://doi.org/10.1016/j.erss.2020.101721
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.351&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.351&rep=rep1&type=pdf
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.1016/j.geb.2020.11.005
https://doi.org/10.1016/j.geb.2020.11.005
https://doi.org/10.1016/j.jfineco.2019.03.004
https://doi.org/10.1016/j.jfineco.2019.03.004
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3479722.3480991
https://doi.org/10.1145/3328526.3329630
https://doi.org/10.1145/3328526.3329630
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=14154
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=14154

Market Equilibria and Risk Diversification in Blockchain Mining Economies 45

44. Gao, Y., & Kroer, C. (2020). First-order methods for large-scale market equilibrium computa-
tion. In H. Larochelle,M. Ranzato, R. Hadsell, M. F. Balcan, &H. Lin (Eds.),Advances in Neu-
ral InformationProcessing Systems (vol. 33, pp. 21738–21750). CurranAssociates, Inc. https://
proceedings.neurips.cc/paper/2020/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf.

45. Garay, J., Kiayias, A., & Leonardos, N. (2015). The bitcoin backbone protocol: Analysis and
applications. In E. Oswald, & M. Fischlin (Eds.), Advances in Cryptology–EUROCRYPT (pp.
281–310). Berlin: Springer. https://doi.org/10.1007/978-3-662-46803-6_10.

46. Gersbach, H., Mamageishvili, A., & Schneider, M. (2020). Vote delegation and malicious
parties. In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)
(pp. 1–2). https://doi.org/10.1109/ICBC48266.2020.9169391.

47. Gersbach, H., Mamageishvili, A., & Schneider, M. (2022). Staking pools on blockchains.
https://doi.org/10.48550/ARXIV.2203.05838.

48. Goren, G., & Spiegelman, A. (2019). Mind the mining. In Proceedings of the 2019 ACM
Conference on Economics and Computation (pp. 475–487). New York, NY: EC ’19, ACM.
https://doi.org/10.1145/3328526.3329566.

49. Huberman, G., Leshno, J. D., & Moallemi, C. (2021). Monopoly without a monopolist: An
economic analysis of the Bitcoin payment system. The Review of Economic Studies, 1–30,.
https://doi.org/10.1093/restud/rdab014,rdab014

50. Kiayias, A., Koutsoupias, E., Kyropoulou, M., & Tselekounis, Y. (2016). Blockchain mining
games. In Proceedings of the 2016 ACM Conference on Economics and Computation (pp.
365–382). New York, NY: EC ’16, ACM. https://doi.org/10.1145/2940716.2940773.

51. Koki, C., Leonardos, S., & Piliouras, G. (2020). Do cryptocurrency prices camouflage latent
economic effects? A bayesian hidden markov approach. Future Internet, 28(1), 5. https://doi.
org/10.3390/fi12030059

52. Koki, C., Leonardos, S.,&Piliouras,G. (2022). Exploring the predictability of cryptocurrencies
via Bayesian hidden Markov models. Research in International Business and Finance, 59,
101554. https://doi.org/10.1016/j.ribaf.2021.101554

53. Kwon, Y., Liu, J., Kim, M., Song, D., & Kim, Y. (2019). Impossibility of full decentralization
in permissionless blockchains. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies (pp. 110–123). New York, NY: AFT ’19, Association for Computing
Machinery. https://doi.org/10.1145/3318041.3355463.

54. Leonardos, N., Leonardos, S., & Piliouras, G. (2020). Oceanic games: Centralization risks and
incentives in blockchain mining. In P. Pardalos, I. Kotsireas, Y. Guo, &W. Knottenbelt (Eds.),
Mathematical Research for Blockchain Economy (pp. 183–199). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-37110-4_13.

55. Leonardos, S., & Melolidakis, C. (2020). Endogenizing the cost parameter in cournot
oligopoly. International Game Theory Review, 22(02), 2040004. https://doi.org/10.1142/
S0219198920400046

56. Leonardos, S., Monnot, B., Reijsbergen, D., Skoulakis, S., & Piliouras, G. (2021). Dynamical
analysis of the EIP-1559 Ethereum Fee Market. In Proceedings of the 3rd ACM conference
on Advances in Financial Technologies (p. online). New York, NY: AFT ’21, Association for
Computing Machinery.

57. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2019). Weighted voting on the blockchain:
Improving consensus in proof of stake protocols. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC) (pp. 376–384). https://doi.org/10.1109/BLOC.2019.
8751290.

58. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2020). PREStO: A systematic framework
for blockchain consensus protocols. IEEE Transactions on Engineering Management, 67(4),
1028–1044. https://doi.org/10.1109/TEM.2020.2981286

59. Liu,W. (2019). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29,
200–205. https://doi.org/10.1016/j.frl.2018.07.010

60. M. Shen. (2020). Crypto investors have ignored three straight 51% attacks on ETC. Accessed
February 11, 2021, from www.coindesk.com.

https://proceedings.neurips.cc/paper/2020/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1109/ICBC48266.2020.9169391
https://doi.org/10.48550/ARXIV.2203.05838
https://doi.org/10.1145/3328526.3329566
https://doi.org/10.1093/restud/rdab014,rdab014
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.3390/fi12030059
https://doi.org/10.3390/fi12030059
https://doi.org/10.1016/j.ribaf.2021.101554
https://doi.org/10.1145/3318041.3355463
https://doi.org/10.1007/978-3-030-37110-4_13
https://doi.org/10.1142/S0219198920400046
https://doi.org/10.1142/S0219198920400046
https://doi.org/10.1109/BLOC.2019.8751290
https://doi.org/10.1109/BLOC.2019.8751290
https://doi.org/10.1109/TEM.2020.2981286
https://doi.org/10.1016/j.frl.2018.07.010
www.coindesk.com

46 Y. K. Cheung et al.

61. Marple, T. (2021). Bigger than Bitcoin: A theoretical typology and research agenda for digital
currencies. Business and Politics, online, 1–17,. https://doi.org/10.1017/bap.2021.12

62. Monnot, B., Hum, Q., Koh, C. M., & Piliouras, G. (2020). Ethereum’s transaction fee market
reform in eip 1559. WINE 20, Workshop on Game Theory in Blockchain. www.workshop.
com.

63. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. published online. https://
bitcoin.org/bitcoin.pdf

64. Noda, S., Okumura, K., &Hashimoto, Y. (2020). An economic analysis of difficulty adjustment
algorithms in proof-of-work blockchain systems. In Proceedings of the 21st ACM Conference
on Economics and Computation (p. 611). New York, NY: EC ’20, Association for Computing
Machinery. https://doi.org/10.1145/3391403.3399475.

65. Palaiopanos, G., Panageas, I., & Piliouras, G. (2017). Multiplicative weights update with con-
stant step-size in congestion games: Convergence, limit cycles and chaos. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances
in Neural Information Processing Systems vol. 30. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2017/file/e93028bdc1aacdfb3687181f2031765d-Paper.pdf.

66. Reijsbergen, D., Sridhar, S., Monnot, B., Leonardos, S., Skoulakis, S., & Piliouras, G. (2021).
Transaction fees on a honeymoon: Ethereum’s eip-1559 one month later. In 2021 IEEE
International Conference on Blockchain (Blockchain) (pp. 196–204). https://doi.org/10.1109/
Blockchain53845.2021.00034.

67. Roughgarden, T. (2021). Transaction fee mechanism design. SIGecom Exch., 19(1), 52–55.
https://doi.org/10.1145/3476436.3476445

68. Shmyrev, V. I. (2009). An algorithm for finding equilibrium in the linear exchange model with
fixed budgets. Journal of Applied and Industrial Mathematics, 3(4), 505. https://doi.org/10.
1134/S1990478909040097

69. Singh, R., Dwivedi, A. D., Srivastava, G., Wiszniewska-Matyszkiel, A., & Cheng, X. (2020).
A game theoretic analysis of resource mining in blockchain. Cluster Computing, 23(3), 2035–
2046. https://doi.org/10.1007/s10586-020-03046-w

70. State of the Dapps. (2021). Explore decentralized applications. Accessed February 11, 2021,
from www.stateofthedapps.com.

71. Stoll, C., Klaßen, L., & Gallersdörfer, U. (2019). The carbon footprint of bitcoin. Joule, 3(7),
1647–1661. https://doi.org/10.1016/j.joule.2019.05.012

72. Sun, J., Tang, P., & Zeng, Y. (2020). Games of miners. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (pp. 1323–1331). AAMAS
’20, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC.
https://doi.org/10.5555/3398761.3398914.

73. WaveFinancial LLC. (2021). Ethereum2.0 staking, aworthwhile investment?.AccessedFebru-
ary 11, 2021, from www.cityam.com.

74. Werner, S. M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., & Knottenbelt, W. J.
(2021). SoK: Decentralized Finance (DeFi).

75. Wu, F., & Zhang, L. (2007). Proportional response dynamics leads to market equilibrium.
In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing (pp.
354–363). New York, NY: STOC ’07, ACM. https://doi.org/10.1145/1250790.1250844.

76. Xiao, Y., Zhang, N., Lou, W., & Hou, Y. T. (2020). A survey of distributed consensus protocols
for blockchain networks. IEEE Communications Surveys Tutorials, 22(2), 1432–1465. https://
doi.org/10.1109/COMST.2020.2969706

77. Zhang, L. (2009). Proportional response dynamics in the Fisher market. Theoretical Computer
Science, 412(24), 2691–2698. https://doi.org/10.1016/j.tcs.2010.06.021, Selected Papers from
36th International Colloquium on Automata, Languages and Programming (ICALP 2009).

https://doi.org/10.1017/bap.2021.12
www.workshop.com
www.workshop.com
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3391403.3399475
https://proceedings.neurips.cc/paper/2017/file/e93028bdc1aacdfb3687181f2031765d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e93028bdc1aacdfb3687181f2031765d-Paper.pdf
https://doi.org/10.1109/Blockchain53845.2021.00034
https://doi.org/10.1109/Blockchain53845.2021.00034
https://doi.org/10.1145/3476436.3476445
https://doi.org/10.1134/S1990478909040097
https://doi.org/10.1134/S1990478909040097
https://doi.org/10.1007/s10586-020-03046-w
www.stateofthedapps.com
https://doi.org/10.1016/j.joule.2019.05.012
https://doi.org/10.5555/3398761.3398914
www.cityam.com
https://doi.org/10.1145/1250790.1250844
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1016/j.tcs.2010.06.021

On the Impact of Vote Delegation

Hans Gersbach, Akaki Mamageishvili, and Manvir Schneider

Abstract We examine vote delegation on blockchains where preferences of agents
are private information. One group of agents (delegators) does not want to participate
in voting and either abstains under conventional voting or can delegate its votes to
a second group (voters) who decides between two alternatives. We show that free
delegation favors minorities, that is, alternatives that have a lower chance of winning
ex-ante. The same occurs if the number of voting rights that actual voters can exert
is capped. When the number of delegators increases, the probability that the ex-
ante minority wins under free and capped delegation converges to the one under
conventional voting—albeit non-monotonically.

Keywords Voting · Delegation · Abstention · Democracy · Blockchain ·
Governance

This researchwas partially supported by the Zurich Information Security and PrivacyCenter (ZISC).
We thank Roger Wattenhofer, Huseyin Yildirim, Marcus Pivato, Florian Brandl and participants of
the Astute Modeling Seminar at ETH Zurich for their valuable feedback.

H. Gersbach · A. Mamageishvili · M. Schneider (B)
CER-ETH, ETH Zürich, Zürichbergstrasse 18, 8092 Zürich, Switzerland
e-mail: manvirschneider@ethz.ch

H. Gersbach
e-mail: hgersbach@ethz.ch

A. Mamageishvili
e-mail: amamageishvili@ethz.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_3&domain=pdf
mailto:manvirschneider@ethz.ch
mailto:hgersbach@ethz.ch
mailto:amamageishvili@ethz.ch
https://doi.org/10.1007/978-3-031-18679-0_3

48 H. Gersbach et al.

1 Introduction

Many blockchains have already implemented staking or will implement it in the near
future. Examples include Cardano,1 Solana [15], Polkadot [14] and Tezos [7]. These
blockchains allow agents to delegate their stakes to other agents for validation pur-
poses or to govern the blockchain. Typically, delegators do not know the preferences
of agents to whom they delegate, as every participant is merely embodied by an
address in the form of a number or a pseudonym.

In this paper, we examine how voting outcomes are affected when vote delegation
is allowed, but delegators do not know the preferences of the proxy to whom they
delegate. In particular, we study the following problem. A polity—say a jurisdiction
or a blockchain community—decides between two alternatives A and B. A fraction
of individuals does not want to participate in the voting. Henceforth, these individuals
are called “delegators”. They would abstain in traditional voting and delegate their
vote in liquid democracy. There are many reasons why individuals do not want to
participate in voting. For example, they might want to avoid the costs of informing
themselves or do not want to incur the costs of voting.

Our central assumption is that delegators do not know the preferences of the
individuals who will vote, that is, whether these individuals favor A or B. This
is obvious in the context of blockchains in which delegators do not know whether
voters are honest (interested in the validation of transactions) or dishonest (interested
in creating invalid transactions or in disrupting the system as a whole). For standard
democracies, our assumption represents a polar case.

We call individualswilling to vote “voters”, individuals favoring A (B) “A-voters”
(“B-voters”), andwe call the group of the A-voters (B-voters) “A-party” (“B-party”).
From the perspective of delegators, of voters themselves, and of any outsider who
might want to design vote delegation, the probability that a voter favors A is some
number p (0 < p < 1). If p < 1

2 , the chances of alternative A to win under standard
voting is positive but below 1

2 . We call the A-party the “ex-ante minority” in such
cases.

We compare three voting schemes. First, under standard voting, delegation is not
allowed and thus delegators abstain. Second, with free vote delegation, arbitrary
delegation is allowed. Since delegators do not know the preferences of voters and all
voters are thus alike for them, every voter has the same chance to obtain a vote from
delegators. We thus model free delegation as a random process in which delegated
voting rights are randomly and uniformly assigned to voters. This can be achieved
in one step where delegators know the pool of voters, or by transitive delegation, in
which each individual can delegate his/her voting right to some other individual, who,
in turn, can delegate the accumulated voting rights to a next individual. This process
stops when an individual decides to use the received votes and exert all voting rights
received. Third, we introduce capped vote delegation. With capped vote delegation,
the number of votes an individual can receive is limited. Essentially, if a voter has

1 https://www.cardano.org (retrieved January 20, 2022). See also [9].

https://www.cardano.org

On the Impact of Vote Delegation 49

reached the cap of voting rights through delegation, s/he cannot receive any more
delegated votes. Thus, only voters who have not reached the cap yet will be able to
receive further voting rights.

In our analysis, we model the total number of voters by a random variable with
distribution F , whereas F can be any discrete distribution.

We establish threemain results: First, compared to standard voting, free delegation
favors the minority. This result, which requires an elaborate proof, shows that vote
delegation cannot only reverse voting outcomes but also increases the probability
that the minority wins.

An essential assumption for this result is that the types of voters (and thus their
preferences) are stochastically independent. By a counterexample, we show that
delegation can favor themajority if this assumption is notmade. However, delegation
favors the minority in the class of distributions where agents receive stochastically
independent signals of their type, such as, for instance, for a Poisson distribution.

Second, the same occurs with a capped delegation. That is, the capped delegation
also increases the minority’s probability to win. Numerical examples show that the
increase is smaller than under free delegation. Third, when the fraction of delegators
increases compared to voters, the probability that minorities win under free or capped
delegation converges to the same probability as under standard voting. However, we
see in the case of a Poisson distribution that the convergence is not monotonic. The
results show that outcomes with delegation may significantly differ from standard
election outcomes and probabilistically violate the majority principle, i.e. a majority
of citizens who is willing to cast a vote for a particular alternative may lose. Hence,
implementing vote delegation might raise the risk that dishonest agents become a
majority—which is a major concern for blockchains.

This paper is organized as follows. In Sect. 2, we discuss the related literature.
Section 3 introduces our model. In Sect. 4, we show our results for free and capped
delegation and study their asymptotic behavior. Section 5 concludes.2

2 Related Literature on Vote Delegation

Some recent papers examine how vote delegation impacts outcomes. Important stud-
ies analyzing vote delegation from an algorithmic and AI perspective have developed
several delegation rules that allow to examine how many votes a representative can
and should obtain for voting in collective decisions3 and whether the delegation of
votes to neighbours in a network may deliver more desirable outcomes than conven-
tional voting.4 Kahng et al. [8] show that even with a delegation from a less informed

2 All proofs can be provided upon request.
3 See Gölz et al. [6] and Kotsialou and Riley [10].
4 See Kahng et al. [8]. Gersbach et al. [5] show that delegation delivers a positive outcome with
higher probability than conventional voting in costly voting environments and in the presence of
malicious voters.

50 H. Gersbach et al.

to a better informed voter, the probability of implementing the right alternative is
decreasing in a generic network with information acquisition. Our model and results
are complementary to Kahng et al. [8]. We show that when preferences are private
information, delegation favorsminorities. Caragiannis andMicha [3] extend thework
of Kahng et al. [8] and show that liquid democracy can yield less desirable outcomes
than conventional voting or a dictatorship.

Delegation games on networks were studied by Bloembergen et al. [2] and
Escoffier et al. [4]. Bloembergen et al. [2] identify conditions for the existence of
Nash equilibria of such games, while Escoffier et al. [4] show that in more general
setups, no Nash equilibrium may exist, and it may even be N P-complete to decide
whether one exists at all. We adopt a collective decision framework and study how
free delegation and capped delegation impact outcomeswhen delegators do not know
the preferences of the individuals to whom they delegate.

There is recent work on representative democracy, e.g. Pivato and Soh [12] and
Abramowitz and Mattei [1]. The first paper studies a model in which legislators are
chosen by voters, and votes are counted according to weight, which is the number of
votes a representative possesses. Pivato and Soh [12] show that the voting outcome is
the same in a large election as for conventional voting. Soh [13] extends this model
by using other forms of voting, such as Weighted Approval Voting. Furthermore,
there is research on Flexible Representative Democracy, see e.g. Abramowitz and
Mattei [1]. In their model, experts are elected first and then voters either allocate their
vote among the representatives or vote themselves. In our model, delegators delegate
their votes uniformly at random to any voter in the society. In Flexible Representative
Democracy, random uniform delegation can be achieved by uniformly allocating
votes among the representatives.

3 Model

We consider a large polity (a society or a blockchain community) that faces a binary
choice with alternatives A and B. There is a group of m ∈ N+ individuals (called
“delegators”) who do not want to vote and either abstain under conventional vot-
ing or delegate their voting rights under vote delegation. The remaining population
(“voters”) votes. Voters have private information about their preference for A or B.
Hence, when a delegator delegates his/her voting right to a voter, it is equivalent
to uniformly and randomly delegating a voting right to one voter. A voter prefers
alternative A (B) with probability p (1 − p), where 0 < p < 1. Without loss of gen-
erality, we assume p > 1

2 . Voters favoring A (B) are called “A-voters” (“B-voters”)
and the respective group is called “A-party” (“B-party”).

We assume that the number of voters is given by a random variable with distri-
bution F , that is, the probability that there are i voters is equal to F(i). We compare
three voting processes:

• Conventional voting: Each voter casts one vote.

On the Impact of Vote Delegation 51

• Free delegation: m delegators randomly delegate their voting rights. All voters
exert all voting rights they have.

• Capped delegation: m delegators delegate their voting rights randomly to voters.
If a voter has reached the cap, all further delegated voting rights are distributed
among the remaining voters, up to each voter’s cap. If all voters have reached their
cap, superfluous voting rights are destroyed.

We start with conventional voting and denote by P(p) the probability that Awins.
It is calculated by the following formula:

P(p) =
∞∑

i=0

F(i)
i∑

k=0

(
i

k

)
pk(1 − p)i−kg(k, i − k), (1)

where g(k, l) is the probability that A-voters are in themajority if there are k A-voters
and l B-voters. We calculate g(k, l) as follows:

g(k, l) :=

⎧
⎪⎨

⎪⎩

1, if k > l,
1
2 , if k = l,

0, if k < l.

The first sum in Eq. (1) corresponds to sampling the number of voters i . The second
sum corresponds to sampling the number of A-voters k out of total i voters.

In the case of free delegation, the probability that A wins, denoted by P(p,m),
is equal to:

P(p,m) =
∞∑

i=0

F(i)
i∑

k=0

(
i

k

)
pk(1 − p)i−kG(k, i − k,m), (2)

where G(k, l,m) denotes the probability that A-voters win if there are k A-voters, l
B-voters and m voters delegate their votes. The value is calculated in the following
way:

G(k, l,m) =
{

1
2 if k = l = 0,
∑m

h=0

(m
h

) (
k

k+l

)h (
l

k+l

)m−h
g(k + h, l + m − h) else.

For k > 0 or l > 0, G(k, l,m) is calculated by sampling the number of votes h
out of m votes that are delegated to k A-voters and m − h votes are delegated to l
B-voters.

We now consider the capped delegation procedure, where delegated votes are
distributed randomly among the other voters, with the restriction that no voter can
have more than c votes. If a voter already has c votes, s/he is not allowed to receive
more. With cap c, the probability that A-voters have a majority, denoted as Pc(p,m),
is equal to

52 H. Gersbach et al.

Pc(p,m) =
∞∑

i=0

F(i)
i∑

k=0

(
i

k

)
pk(1 − p)i−kGc(k, i − k,m), (3)

where Gc(k, l,m) denotes the probability that A-voters win if there are k A-voters,
l B-voters and m delegators who delegate their votes uniformly, with an individual
voter being allowed to have c votes at most. If one party has an excess of delegated
votes then the excess votes go to the other party. For example, if h out of m votes are
delegated to k A-voters and k + h > ck then B-voters receive additional k + h − ck
votes, given that l + m − h < cl. If both parties reach the cap, all further excess
votes are destroyed. We distinguish between four cases when h votes are delegated
to k A-voters and m − h votes are delegated to l B-voters:

• Case a: k + h > ck;
• Case a′: k + h ≤ ck;
• Case b: i − k + m − h > c(i − k);
• Case b′: i − k + m − h ≤ c(i − k).

We have to consider the four cases: ab, a′b′, ab′ and a′b.
We define Gc(k, l,m) in the following way:

Gc(k, l,m) =
{

1
2 if k = l = 0,
∑m

h=0

(m
h

) (
k

k+l

)h (
l

k+l

)m−h
r(k, l, h) else.

where

r(k, l, h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(ck, cl) in Case ab,

g(k + h, l + m − h) in Case a′b′,
g(k + l + m − cl, cl) in Case a′b,
g(ck, l + m + k − ck) in Case ab′.

For notational convenience, we denote a binomial random variable with parame-
ters n and p by Bin(n, p), for any n ∈ N and p ∈ [0, 1].

4 Results

To gain an intuition for the formal results, we start with numerical examples. For
this, we model the number of voters as a Poisson random variable, with average n.
That is, F(i) = ni

eni ! . To indicate that we are considering a specific distribution with
a parameter, we include the parameter in the function P(·). Thus, if we consider
a Poisson distribution with parameter n, we write P(n, p) instead of P(p) and
P(n, p,m) instead of P(p,m).

This assumption is a standard tool rendering the analysis of voting outcomes
analytically tractable. Namely, by the decomposition property, the number of A-

On the Impact of Vote Delegation 53

voters is a Poisson random variable with average n · p and the number of B-voters
is a Poisson random variable with average n · (1 − p). Moreover, these two random
variables are independent.5

Table 1 reveals that the likelihood of A winning is smaller with free delegation
than under conventional voting. The same occurs with capped delegation but in a
slightly less pronounced way than with free delegation. We also observe that whenm
increases, both thewinning probabilities for free delegation and for capped delegation
first decline and then start to converge to the same probability as under conventional
voting. The pattern in Table 1 repeats for different values of n and p. In the following,
we provide formal results.

4.1 Free Delegation

We start with free delegation and show the following:

Theorem 1 P(p,m) < P(p) for any m ≥ 1 and p > 0.5.

In other words, Theorem 1 says that free delegation probabilistically favors the
ex-ante minority, since the probability that the minority wins under vote delegation
is 1 − P(p,m), while the probability that the minority wins in conventional voting
is equal to 1 − P(p). A trivial observation is that if m = 0, then both P(p,m) and
P(p) coincide, since there is no vote to delegate.

We note that our result rests on the assumption that types (preferences) of voters
are stochastically independent. By a counterexample, we illustrate that delegation
may favor the majority in alternative uncertainty models. Suppose, for instance, that
there exists a joint distribution J over the pair of natural numbers (a, b), where a
denotes the number of voters for alternative A and b denotes the number of voters
for alternative B. Suppose the probability that there are more A-voters than B-voters
is strictly larger than 1

2 . We next construct a distribution J such that the probability
that alternative A is winning increases under delegation.

Table 1 Probabilities of Awinning under conventional voting P(n, p), free delegation P(n, p,m)

and capped delegation Pc(n, p,m) for cap c = 2

n p m P(n, p) P(n, p,m) P2(n, p,m)

20 0.6 1 0.81413 0.808443 0.808443

20 0.6 2 0.81413 0.804256 0.804256

20 0.6 5 0.81413 0.796578 0.796616

20 0.6 10 0.81413 0.791246 0.792627

20 0.6 300 0.81413 0.808516 0.81413

5 Poisson games were introduced by Myerson [11].

54 H. Gersbach et al.

Example 1 We assume that the joint distribution J is the product of two distribution
functions f and g, i.e. J (a, b) = f (a) · g(b). Suppose that f (4) = 0.6, f (1) = 0.4
and g(2) = 1. Then J (4, 1) = 0.6 and J (1, 2) = 0.4 and m = 1. The probability
that alternative A wins under conventional voting when the delegator abstains is 0.6.
The probability that alternative A wins under delegation is6

0.6 + f (1) · 1
2

· 1
3
> 0.6.

4.2 Capped Delegation

We establish the following results in the case of capped delegation:

Theorem 2 Pc(p,m) < P(p) for any m ≥ 1, c > 1 and p > 0.5.

Theorem2 shows that capped delegation probabilistically favors the ex-anteminority.
We note that if c = 1 or m = 0, Pc(p,m) and P(p) coincide, since every voter can
have at most one vote or no vote is delegated.

Conjecture 1 P(p,m) ≤ Pc(p,m) for any m ≥ 1, c ≥ 1 and p > 0.5.

Conjecture 1 shows that capped delegation is better for the ex-ante majority than free
delegation. Together with Theorem 2, it implies that capped delegation is in-between
standard voting (no delegation) and free delegation with respect to the probability
that the majority wins. Note that if c ≥ m + 1, then P(p,m) and Pc(p,m) coincide,
since the cap is higher than the total amount of delegated votes. For c = 1, we have
strict inequality following from Theorem 1 because P1(p,m) = P(p). Finally, for
m = 1 and c > 1, again, P(p,m) and Pc(p,m) coincide. Numerical calculations
support the statement of the conjecture for the remaining cases of c and m, see e.g.,
Table 1.

4.3 Asymptotic Behavior of Delegation

In this section, we consider three cases of asymptotic behavior of delegation. In
the first, the probability that a voter belongs to the majority is large. In the second,
the average total number of voters is large. Both cases describe typical assumptions
in real-world situations. In the first, one assumes there are very few voters in the
minority, such as, for example, is the casewithmalicious voters in blockchains. In the
second,we look at a large electorate,withfixed shares ofmajority andminority voters.
In the third case, we show the convergence of free delegation towards conventional
voting as the number of delegators goes to infinity.

6 One can construct examples in which the increase of the likelihood that the majority wins is as
high as 0.25 in the limit.

On the Impact of Vote Delegation 55

First, we obtain a rather straightforward proposition:

Proposition 1 For any fixed natural number m ≥ 1, we have lim p→1 P(p,m) = 1.

Proposition 1 shows that for any number of delegators, the probability that alternative
A wins is 1 when the probability that a voter is an A-voter goes to 1. Next, we show
that the probability that A wins with free delegation converges to the probability that
A wins with conventional voting if m goes to infinity.

Proposition 2 limm→∞ P(p,m) = P(p) for any p ∈ (0, 1).

Another direct corollary of Proposition 2 and Conjecture 1 for capped delegation is
that limm→∞ Pc(p,m) = P(p) for any c ∈ N and p ∈ (0, 1).

At the end of this section, we consider a large electorate. Large elections are
modeled using a Poisson random variable with parameter n. It is straightforward
that with a constant number of delegators, the probability that the majority wins
converges to one as the total population size converges to infinity. We show that the
same holds even if there are arbitrarily many delegators. In particular, the result holds
if the number of delegators is a function of n. The latter is the “bottleneck” of the
following proposition:

Proposition 3 limn→∞ P(n, p,m) = 1 for any fixed p > 0.5 and any m, where m
can even depend on n.

This result can be generalized to other distributions F , by suitably defining the
corresponding value of n. A direct corollary of Proposition 3 and Conjecture 1 with
capped delegation is that limn→∞ Pc(n, p,m) = 1 for any fixed p > 0.5, any c ∈ N

and any m, where m can even depend on n.

5 Discussion and Conclusion

We showed that the introduction of vote delegation leads to lower probabilities of
winning for the ex-ante majority. Numerical simulations show that free delegation
leads to even lower winning probabilities than capped delegation. Both delegation
processes lead to lower probabilities that the majority wins than conventional voting.
These results are particularly important in blockchain governance if one wants to
prevent dishonest agents from increasing their probability of winning. Although the
setting we analyze in the paper is as simple as possible, we already obtain non-trivial
observations.

Our results are interesting in the context of delegation as a strategic decision. For
the delegators, whether or not they belong to the ex-ante majority, choosing between
delegating and abstaining becomes a strategic decision.

First, note that a setting in which no one delegates cannot be an equilibrium
state, because minority voters prefer to delegate. Once some of them delegate, the
probability that the majority of voters is winning is smaller than in conventional

56 H. Gersbach et al.

voting. We conjecture that with a large number of delegators, a setting in which all
majority voters delegate is sustainable in the equilibrium if the winning probability
is increasing, starting at some threshold. We leave this challenging issue to future
research.

References

1. Abramowitz, B., &Mattei, N. (2019). Flexible representative democracy: An introduction with
binary issues. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, International Joint Conferences onArtificial IntelligenceOrganization (pp. 3–10).
Macao, China: IJCAI-19. https://doi.org/10.24963/ijcai.2019/1.

2. Bloembergen, D., Grossi, D., & Lackner, M. (2019). On rational delegations in liquid democ-
racy. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (pp. 1796–
1803). Honolulu, Hawaii, USA: AAAI Press. https://doi.org/10.1609/aaai.v33i01.33011796.

3. Caragiannis, I., & Micha, E. (2019). A contribution to the critique of liquid democracy. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
International Joint Conferences on Artificial Intelligence Organization (pp. 116–122). Macao,
China: IJCAI-19. https://doi.org/10.24963/ijcai.2019/17.

4. Escoffier, B., Gilbert, H., & Pass-Lanneau, A. (2019). The convergence of iterative delegations
in liquid democracy in a social network. In D. Fotakis & E.Markakis (Eds.), Algorithmic Game
Theory (pp. 284–297). Cham: Springer.

5. Gersbach, H., Mamageishvili, A., & Schneider, M. (2021). Vote delegation andmisbehavior. In
I. Caragiannis, & K. A. Hansen (Eds.), Algorithmic Game Theory–14th International Sympo-
sium (pp. 21–24). Aarhus, Denmark: SAGT, Proceedings. Lecture Notes in Computer Science,
vol. 12885, p. 411. Springer (2021).

6. Gölz, P., Kahng, A., Mackenzie, S., & Procaccia, A. D. (2018). The fluid mechanics of liquid
democracy. In G. Christodoulou, & T. Harks (Eds.), Web and Internet Economics–14th Inter-
national Conference, WINE, Proceedings (pp. 188–202). Oxford, United Kingdom. Lecture
Notes in Computer Science, vol. 11316. Springer. https://doi.org/10.1007/978-3-030-04612-
5_13.

7. Goodman, L. (2014). Tezos–A self-amending crypto-ledger. White Paper. https://tezos.com/
whitepaper.pdf.

8. Kahng, A.,Mackenzie, S., & Procaccia, A. (2018). Liquid democracy: An algorithmic perspec-
tive. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 1095–1102. New
Orleans, Louisiana, USA. https://ojs.aaai.org/index.php/AAAI/article/view/11468

9. Karakostas, D., Kiayias, A., & Larangeira, M. (2020). Account management in proof of stake
ledgers. In C. Galdi & V. Kolesnikov (Eds.), Security and Cryptography for Networks (pp.
3–23). Cham: Springer.

10. Kotsialou, G., & Riley, L. (2020). Incentivising participation in liquid democracy with breadth-
first delegation. In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems (pp. 638—644). Auckland, New Zealand: AAMAS ’20, International
Foundation for Autonomous Agents and Multiagent Systems.

11. Myerson, R. (1998). Population uncertainty and Poisson games. International Journal of Game
Theory, 27, 375–392.

12. Pivato, M., & Soh, A. (2020). Weighted representative democracy. Journal of Mathematical
Economics, 88, 52–63. https://doi.org/10.1016/j.jmateco.2020.03.001

13. Soh, A. (2020). Approval voting & majority judgment in weighted representative democracy.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3731754.

https://doi.org/10.24963/ijcai.2019/1
https://doi.org/10.1609/aaai.v33i01.33011796
https://doi.org/10.24963/ijcai.2019/17
https://doi.org/10.1007/978-3-030-04612-5_13
https://doi.org/10.1007/978-3-030-04612-5_13
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11468
https://doi.org/10.1016/j.jmateco.2020.03.001
https://doi.org/10.2139/ssrn.3731754

On the Impact of Vote Delegation 57

14. Wood, G. (2016). Polkadot: Vision for a heterogeneous multi-chain framework. https://
polkadot.network/PolkaDotPaper.pdf.

15. Yakovenko, A. (2017). Solana: A new architecture for a high performance blockchain v0.8.13.
https://solana.com/solana-whitepaper.pdf

https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://solana.com/solana-whitepaper.pdf

Decentralized Governance of Stablecoins
with Closed Form Valuation

Lucy Huo, Ariah Klages-Mundt, Andreea Minca, Frederik Christian Münter,
and Mads Rude Wind

Abstract We model incentive security in non-custodial stablecoins and derive con-
ditions for participation in a stablecoin system across risk absorbers (vaults/CDPs)
and holders of governance tokens. We apply option pricing theory to derive closed
form solutions to the stakeholders’ problems, and to value their positions within the
capital structure of the stablecoin.We derive the optimal interest rate that is incentive
compatible, as well as conditions for the existence of equilibria without governance
attacks, and discuss implications for designing secure protocols.

Keywords Stablecoins · DeFi · Governance · Capital structure · Closed form
valuation

1 Introduction

Decentralized finance (DeFi) protocols are often described as either utopian systems
of aligned incentives or dystopian systems that incentivize hacks and exploits. These
incentives, however, are thus far sparsely studied formally, especially around the
governance of DeFi applications, which determine how they evolve over time. Unlike
in traditional companies, governance in DeFi is meant to be transparent and openly
auditable through smart contracts on a blockchain. The aim is often to incentivize
good governance without relying on legal recourse, setting it apart from corporate
finance.While some DeFi applications are immutable, with change impossible, most
have some flexibility to parameters (such as fees and price feeds, or “oracles”), and
often the entire functionality can be upgraded. Control is often placed in the hands of
a cooperative of governance token holders who govern the system. This cooperative,

L. Huo · A. Klages-Mundt · A. Minca (B)
Cornell University, New York, United States
e-mail: acm299@cornell.edu

F. C. Münter · M. R. Wind
Copenhagen University, Copenhagen, Denmark

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.), Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_4&domain=pdf
mailto:acm299@cornell.edu
https://doi.org/10.1007/978-3-031-18679-0_4

60 L. Huo et al.

however, is known to face perverse incentives, both theoretically (e.g., [7, 8, 22])
and often in practice (e.g., [6, 19]) to steal (or otherwise extract) value.

Related work. These incentives to deviate from the best interest of the protocol
and its users are termed governance extractable value (GEV) [13, 21]. While there
is a body of work on blockchain governance (e.g. [1, 12, 18]), DeFi governance
is sparsely studied. [9] proposed a framework for modeling DeFi governance that
extends capital structure models from corporate finance (see [5, 17]). Equilibria in
these models are not yet formally studied. In this paper, we incorporate closed form
valuation into the framework proposed in [9] and characterize the equilibria around
interest rate policies (and how closely these lead to stability) and governance attacks
in non-custodial stablecoins.

Non-custodial stablecoins. Non-custodial stablecoins are implemented as smart
contracts using on-chain collateral, which are not controlled by a responsible party
[3]. We briefly introduce the core components of these stablecoins and refer to [3,
9] for further details.

We focus on exogenous collateral, whose price is independent of the stablecoin
system and which has proven able to maintain the peg in the long run, see e.g.
[3]. Stablecoin issuance is initiated by a user creating a collateralized debt position
(CDP) using a “vault”. The user transfers collateral, e.g., ETH, to the vault, which
can mint an amount of stablecoins up to the minimum collateralization level. This
leveraged position can be used in multiple ways, e.g. to spend the stablecoin or invest
in other assets. The vault owner can redeem the collateral by reimbursing the vault
with the issued stablecoins (with interest) and is tasked with maintaining the required
collateralization.

If the vault becomes undercollateralized, for instance if the price of ETH drops,
then an involuntary redemption (liquidation) is performed to deleverage the position.
This deleveraging is performed through buy-backs of stablecoins to close the vault.
Vaults are over-collateralized to help ensure that the position can be closed. However,
should the liquidation proceeds be insufficient, additional mechanisms may kick in
to cover the shortfall—either by tapping into a reserve fund or by selling governance
tokens as a form of sponsored support (or backstop). Notably, this occurred in Dai
on Black Thursday, when the Maker system found itself in a deleveraging spiral [10,
11, 14].

Incentive compatibility. Drawing from [21], we consider a cryptoeconomic pro-
tocol to be incentive compatible if “agents are incentivized to execute the game
as intended by the protocol designer.” [9] reduces this to a key question of incen-
tive security: Is equilibium participation in the stablecoin sustainable? This requires
that incentives among all participants (stablecoin holders, vault owners, governance
agents) lead to amutually profitable equilibrium of participating in the stablecoin. As
non-custodial stablecoins contain self-governing aspects outside of most rule of law,
participant incentives are also influenced by the possibility of profitable governance
attacks.

This paper. We study governance incentive problems in non-custodial stable-
coins similar to Maker. We formalize a game theoretic model (an adaptation of that
in [9]) of governance incentives in Sect. 2. We derive closed form solutions to

Decentralized Governance of Stablecoins with Closed Form Valuation 61

stakeholders’ problems in Sect. 3 using financial engineering methods, culminat-
ing in conditions for a unique equilibrium in Theorem 1. We then modify the model
to include governance attacks in Sect. 4 and derive conditions for equilibria without
attacks.

2 Model

We build upon the framework presented in [9], which seeks to describe incentives
between governance token holders (GOV), vaults/risk absorbers and stablecoin hold-
ers. We define the model parameters in Table 1.

We first introduce the basic frameworkwith no attack vectors. The setup considers
an interaction between governors and vaults, who both seek to maximize expected
profits. The governance choice problem is simply to maximize expected fee revenue.
The vault choice problem is to maximize expected revenue from maintaining a long
position inCOL,while pursuing a new (leveraged) opportunity, and paying an interest
fee to governance. Randomness is introduced in themodel by assuming that the return
on COL eR follows a log-normal distribution:

R ∼ N (0, σ 2),

where the standard deviationσ represents theCOLvolatility.We consider continuous
compounding returns. The time horizon is set to 1. In this case F(eδ − 1) represents
the total interest paid by vault for the stablecoin issuance, while F B(eb − 1) repre-
sents the net revenue from investing the proceeds of the stablecoin issuance in the
outside opportunity.

Further, vaults are subject to three constraints: Eq. (2), the collateral constraint,
which restricts maximum stablecoin issuance to a fraction of posted collateral;
Eq. (3), the stablecoin price, which is pegged at one whenever collateral does
not fall short; and Eq. (4), the participation constraint, which simply states that

Table 1 Model components

Variable Definition

N Dollar value of vault collateral (COL position)

eR Return on COL

F Total stablecoin issuance (debt face value)

b Return rate on the outside opportunity

β Collateral factor

δ Interest rate paid by vault to issue STBL

u Vault’s utility from an outside COL opportunity

B STBL market price

62 L. Huo et al.

participation must yield higher utility compared to abandoning the system. Formally,
the governance choice problem is written as:

max
δ

E[(eδ − 1) · F]
s.t. Vault’s choice of F .

(1)

The vault choice problem can be written as:

max
F≥0

E

⎡
⎢⎣ NeR︸︷︷︸

COL long position

+ F
(
B(eb − 1) − (eδ − 1)

)
︸ ︷︷ ︸
Net revenue from leveraged position

⎤
⎥⎦

s.t. GOV’s choice of δ

F ≤ βN (2)

B = E

[
min

(
1,

NeR

F
− (eδ − 1)

)]
(3)

u ≤ E
[
NeR + F

(
B(eb − 1) − (eδ − 1)

)]
. (4)

We consider a Stackelberg equilibrium in which first the governance chooses an
interest rate and then the vault chooses the stablecoin issuance. Note that the reverse
order would yield a trivial solution in which the vault does not participate. The gov-
ernance as a second player would simply set the interest rate δ −→ ∞. In anticipation,
vault would set F = 0 as a consequence of the vaults’ participation constraint. In
contrast, the problem inwhich the governancemoves first is non-trivial. Indeed, using
financial engineering methods we will give closed form solutions to the objective
functions of the two agents. This will allow us to analyze the convexity of their pay-
offs. Under reasonable conditions on parameters, the vaults’ participation constraint
imposes an upper bound on the interest rate but the optimal interest rate does not
saturate this constraint.

Expected collateral shortfall. Our approach follows classical ideas for the valuation
of corporate liabilities, present since the seminal works of Black and Scholes [2] and
Merton [15, 16]. “Since almost all corporate liabilities can be viewed as combinations
of options”, i.e., their payoffs can be replicated using an options portfolio, their
valuations can be characterized using Black and Scholes formulas, see e.g., [20].

In analogy to the corporate debt holders, the stablecoin holders have an asset
essentially equal to 1 (the face value) minus the following quantity that captures the
collateral shortfall:

P(F, δ) = E
[
Feδ − NeR

]
+ = FeδΦ(−d2) − NΦ(−d1)

d1 = log(N
Feδ) + σ 2

2

σ
, d2 = d1 − σ.

(5)

Decentralized Governance of Stablecoins with Closed Form Valuation 63

Hence, the representative stablecoin holder mimicks the role of the debt holder in
classical capital structure models. The quantity Φ(−d1) represents the probability
that there is a collateral shortfall (which is analogous to a corporate default in the
classical corporate debt valuation theory): Feδ > NeR . Φ(−d2) is also the proba-
bility that there is a shortfall, but adjusted for the severity of this shortfall.1

Vaults’ Perspective In a similar manner, vaults take into account the expected collat-
eral shortfall in their objective through the stablecoin price constraint,

max
F

Ne
σ2

2 + F(eb − eδ) − P(F, δ)(eb − 1)

s.t. F ≤ β · N

u ≤ Ne
σ2

2 + F(eb − eδ) − P(δ, F)(eb − 1)

GOV’s choice of δ.

(6)

GOV’s Perspective Governance simply maximizes fee revenue

max
δ

F(eδ − 1)

s.t. Vault’s choice of F.
(7)

We later consider an altered form of the model in Sect. 4 that incorporates a
governance attack vector into our analysis.

3 Stackelberg Equilibrium Analysis

Governors know that the vaults will only choose to participate if the outside utility
of an alternative COL usage is less than (or equal to) the benefit from issuing stable-
coins. We first consider the optimum stablecoin issuance without the outside option
constraint, and only with the leverage constraint. By evaluating vault objective sen-
sitivities (see Appendix A), we can obtain vaults’ objective maximizer if we include
the leverage constraint (which imposes a cap on the amount of stablecoins issued)
but ignore the participation constraint. All proofs are provided in Appendix B.

Proposition 1 Vaults’ unconstrained objective is maximized at

ϕ(δ) = N · exp
[
σ · Φ−1

(
eb−δ − 1

eb − 1

)
− δ − σ 2

2

]
, (8)

1 Note that for the purposes of debt valuation the no-arbitrage theory of option pricing is not relevant.
Only the Black and Scholes formulas are needed, i.e. the closed form solution for the expectation
in (5) when the random return is log-normal. Moreover, while the valuation of corporate debt can
be achieved in a dynamic model, the same formulas govern our one period case where the end of
the period can be seen as the bond maturity.

64 L. Huo et al.

which implicitly requires that δ ∈ [0, b]. Moreover, if we include the leverage con-
straint, vaults’ objective is maximized at

F∗(δ) = min(ϕ(δ), βN). (9)

By accounting for vaults’ optimal issuance, GOV’s objective transforms into

G = F∗(δ)
(
eδ − 1

)
. (10)

3.1 F∗(δ) w/o Participation Constraint

Wefirst derive results disregarding vaults’ participation constraint. By comparing the
unconstrained optimum stablecoin issuance ϕ(δ) to βN we pin down a lower bound
δβ for the interest rate, arising from the leverage constraint, such that ∀δ ∈ (δβ, b],
ϕ(δ) < βN . This result is due to vaults’ preference for a larger stablecoin issuance
when the interest rate is low, while being unable to exceed the leverage constraint
set by governance. Along with the monotonicity of GOV’s objective function, we
obtain following proposition.

Proposition 2 (Governance choice) There exists a δβ ∈ [0, b] such that ϕ(δβ) =
βN. GOV’s optimal interest rate, δ∗, satisfies δ∗ ≥ δβ .

Hence, in equilibrium governance will either exhaust the leverage constraint with
the highest compatible interest rate or set the interest rate higher than δβ imply-
ing excess overcollateralization. This is not in itself surprising, yet leads us to the
following technical lemma.

Lemma 1 (Concavity threshold for δ) There exists a δth such that for δ > δth, GOV’s
objective is concave.

The following Assumption 1 ensures that the volatility of the collateral’s rate of
return is not too large. With this, we further have that GOV’s objective is locally
increasing at δ = δth. This assumption is currently verified e.g. for ETH.

Assumption 1 σ < 2φ(0) (See Appendix for how this condition is derived).

By recalling that dG
dδ

is non-increasing with δ for δ > δth (from Lemma 1), we then
obtain the following proposition.

Proposition 3 (Governance unconstrained optimal choice) Under Assumption 1
there exists a δ∗, at which level GOV’s objective is maximized. Consequently, if
there exists δth < δβ < δ∗ ≤ b, then GOV would take δ∗.

Then δ = δ∗ achieves the unconstrained maximum for the GOV objective. For
δth < δβ to hold, we need the following assumption.

Decentralized Governance of Stablecoins with Closed Form Valuation 65

Assumption 2 β < eb+1
2 · exp(−b − σ 2

2).

This is because ϕ(δβ) = βN and dϕ

dδ
< 0, when we ask for δth < δβ , we therefore

need to have ϕ(δth) > ϕ(δβ) = βN . Intuitively, governance will achieve a lower
payoff at the interest rate pinned down by the leverage constraint, δβ , relative to a
lower interest rate, δth, which would, in turn, allow vaults to issue a larger amount of
stablecoins resulting in larger interest revenue for governance ceteris paribus. Note
that the RHS at Assumption 2 obtains its maximum value of exp(− σ 2

2) < 1 when
b = 0, implying overcollateralization.

3.2 F∗(δ) w/ Participation Constraint

We now give conditions on the parameters for which the optimal interest rate set by
governors satisfies the vaults’ participation constraint given outside utility on COL
usage. First, we make the following additional assumption.

Assumption 3 u ≤ Ne
σ2

2 + NΦ(−d1(δ∗))(eb − 1).

Here we ensure that the vault is able to achieve a payoff equal to or above their
utility from an outside COL opportunity. This assumption ensures that GOV is aware
that their optimum interest rate must be sufficiently attractive in order for vaults to
participate, i.e., governancemust take into account the vaults’ idiosyncratic tradeoffs.
Armed with this assumption, we characterize a unique equilibrium in the following
theorem.

Theorem 1 If hyper-parameters are selected such that Assumption 1, 2, and 3 all
are satisfied, and there exist δβ and δ∗ that satisfy (24) and (28) respectively, then
there is a unique equilibrium with δ = δ∗ and F = ϕ(δ∗).

4 Governance Attack Vector

We now introduce a governance attack vector, as per [7]. A rational adversary only
engages in an attack if its profits exceed costs. They could exploit the governance
system to change the contract code and access a sufficiently large GOV token stake
to approve the update. For instance, the adversarial change could transfer all COL to
the adversary’s address. More nuanced versions can also extract collateral indirectly
by manipulating price feeds as in [8]. This may not require 50% of GOV tokens as
governance participation is commonly low. Neither does it require a single wealthy
adversary, since many attackers can collude via a crowdfunding strategy (e.g., [4]),
or a single attacker could borrow the required tokens via a flash loan (as in [7, 22]).
Note that timelocks make it harder to pursue flash loan governance attacks.

Formally, we consider an adversarial agent with a ζ fraction of GOV tokens, who
is able to steal a γ fraction of collateral in the system. Typically, we might have

66 L. Huo et al.

γ = 1, although not always. A rational attack will take place when profits exceed

costs, i.e., when ζ F eδ−1
1−r + α < γE[NeR] = γ Ne

σ2

2 , where α is an outside cost to

attack, and ζ F eδ−1
1−r is the opportunity cost of an attack, i.e. the profits resulting from

a non-attack decision, represented as a geometric series of future fee revenue with
discount factor r . In idealized DeFi, we might have α = 0 or very close to 0 (through
pseudonymity), while, in traditional finance, α is assumed to be so high such that an
attack would always be unprofitable, e.g. due to legal repercussions.

We could extend the vault choice problem to include the amount of collateral, N ,
locked in the stablecoin system as a share of total endowed collateral available to the
vault, N̄ . Only locked in collateral is subject to seizure during a governance attack.
We assume for simplicity that N̄ = N and we leave the decision on howmuch collat-

eral to lock in as an open problem. If there is no attack, i.e., α + ζ F eδ−1
1−r ≥ γ Ne

σ2

2 ,
the governance choice problem writes as before in (1) and if there is an attack, i.e.,

α + ζ F eδ−1
1−r < γ Ne

σ2

2 , then the governance’s payoff (ex-adversary) is equal to zero.

In the Stackelberg equilibrium with vaults as a second player, the vault choice
problem is only relevant conditional on the governance attack being unsuccessful, in
which case it writes as before. If the attack is successful, then there is no participation
fromvaults and the stablecoin system is abandoned.We are thus interested in the non-
attack scenario with participation from the vault, since only then is there mutually
profitable continued participation for both parties and we have incentive security.

The optimal interest rate set by governance that ensures a non-attack decision
(and so incentive security) then satisfies the following condition:

α + ζ F(δ∗)
eδ∗ − 1

1 − r︸ ︷︷ ︸
G∗

≥ γ Ne
σ2

2 equivalently, G∗ ≥ γ N
σ2

2 − α

ζ
, (11)

where G∗ is the optimal governance objective value (and δ∗ is the unique optimizing
interest rate) under the assumptions of Theorem 1.

Since δ∗ represents a Stackelberg equilibrium with vault participation, condition
(11) is both necessary and sufficient for the existence of an interest rate that satisfies
both the non-attack condition and the participation constraint. Note that an inter-
est rate that satisfies condition (11) may not be feasible in general. The practical
implication of the condition is that participants in the system can use it to verify
the incentives of decentralized governors and whether given conditions lead to an
equilibrium with incentive security or whether governors may have perverse incen-
tives. The condition applies given rational behaviour, since agents know ex-ante if
an attack will take place based on parameter values.

Decentralized Governance of Stablecoins with Closed Form Valuation 67

5 Conclusion

We have characterized the unique equilibrium arising in non-custodial stablecoins
with decentralized governance. The payoff structure is based on closed form val-
uations of the positions of two stakeholders in the capital structure that underlies
the stablecoin. We obtain the equilibrium interest rate and level of participation in
settings without governance attacks (Theorem 1) and with a possible governance
attack (Eq. 11). Using these closed form solutions, protocol designers can more eas-
ily account for the effects their design choices will have on economic equilibrium
and incentive security in the system. Our results allow us to quantify how loose the
participation constraint can be in order to allow governors to earn a sufficiently high
profit in the stablecoin system such that it offsets the proceeds from attacking the
system. The implication is that GOV tokens should be expensive enough (e.g., from
fundamental value of ‘honest’ cash flows) so that it is unprofitable for outsiders to
buy them with the sole purpose of attacking the system.

By comparing the precise value of the GOV tokens to the return of the collateral
at stake, adjusted for the attack cost, we can evaluate the security and sustainability
of decentralized governance systems. As the adjusted attack cost increases with α,
one possible mitigation to strengthen these governance systems is the traditional
one: increase α to deter attack through centralized means. One way to do this to
make governors resemble legal fiduciaries with known identities, which often goes
against the idealized tenets of DeFi. Another possibility, recently proposed in [13]
as “optimistic approval”, alters the problem in a different way by incorporating a
veto mechanism invokable by other parties in the system (e.g., vaults and stablecoin
holders) in the case of malicious governance proposals. This would introduce a
new term in our model that lowers the success probability of an attack based on
the probability that the veto mechanism is invoked. If governors anticipate that the
veto mechanism will be invoked, then their expectations of attack profit plummet,
expanding the mutual participation region.

Acknowledgements The authors thank the Center for Blockchains and Electronic Markets at
University of Copenhagen for support.

A Derivative Analysis

A.1 Sensitivity of the Expected Collateral Shortfall

Note the following relationship,

Feδφ(d2) = Nφ(d1) (12)

With this, we have the following derivatives,

68 L. Huo et al.

∂ P

∂ F
= eδΦ(−d2) + Feδ · φ(−d2) ·

(
−dd2

d F

)
− N · φ(−d1) ·

(
−dd1

d F

)

= eδΦ(−d2) (13)

∂ P

∂δ
= FeδΦ(−d2) + Feδ · φ(−d2) ·

(
−dd2

dδ

)
− N · φ(−d1) ·

(
−dd1

dδ

)

= FeδΦ(−d2) (14)

A.2 Vault Objective Sensitivities

Denote
V := Ne

σ2

2 + F(eb − eδ) − P(δ, F)(eb − 1) (15)

Note the following derivatives,

∂V

∂ F
= (

eb − eδ
) − (

eb − 1
)

eδΦ(−d2) (16)

∂V

∂δ
= −Feδ − (eb − 1)

∂ P

∂δ

= −Feδ − (eb − 1)FeδΦ(−d2)

= −Feδ(1 + (eb − 1)δΦ(−d2)) < 0 always (17)

A.3 GOV Objective Sensitivities

Denote
G := F

(
eδ − 1

)
(18)

Note the following derivatives,

∂G

∂δ
= Feδ > 0 always (19)

∂G

∂ F
= eδ − 1 (20)

Decentralized Governance of Stablecoins with Closed Form Valuation 69

B Proofs

Proposition 1

Proof Since V is concave in F , we set (16) equal to zero to obtain a maximum for
V :

Φ(−d2) = eb − eδ

eδ
(
eb − 1

)

log
(

F
N

) + δ + σ 2

2

σ
= Φ−1

(
eb−δ − 1

eb − 1

)

F∗ = ϕ(δ) = N · exp
[
σ · Φ−1

(
eb−δ − 1

eb − 1

)
− δ − σ 2

2

]
, (21)

with (8) implicitly requiring that δ ∈ [0, b].
Together with the leverage constraint, this implies

F∗(δ) = min(ϕ(δ), βN) (22)

since the leverage constraint imposes a cap on amount of stablecoins issued. Substi-
tute (9) into (18) and obtain

G = F∗(δ)
(
eδ − 1

)
, (23)

thus transforming GOV’s optimization into finding the optimum for (23).

Proposition 2

Proof We begin by establishing a lower bound for δ: There exists a δβ ∈ [0, b] such
that ϕ(δβ) = βN , i.e.

F∗

N
= exp

[
σ · Φ−1

(
eb−δβ − 1

eb − 1

)
− δβ − σ 2

2

]
= β. (24)

The quantity δβ is the interest rate for which vaults’ leverage constraint is hit, i.e. for
δ < δβ the optimal stablecoin issuance is given by βN .

Indeed, by comparing ϕ(δ) to βN we obtain

dϕ

dδ
= −ϕ(δ) ·

⎡
⎣1 + σ · 1

φ
(
Φ−1

(
eb−δ−1
eb−1

)) · eb−δ

eb − 1

⎤
⎦ < 0 always (25)

Thus ∃δβ ∈ [0, b] such that ϕ(δβ) = βN , i.e.

70 L. Huo et al.

F∗

N
= exp

[
σ · Φ−1

(
eb−δβ − 1

eb − 1

)
− δβ − σ 2

2

]
= β, (26)

which effectively is setting a lower bound to δ, such that ∀δ ∈ (δβ, b], ϕ(δ) < βN .
We can no conclude the proof of Proposition 2. Suppose ϕ(δ) ≥ βN , i.e. δ ∈

[0, δβ]

G = βN · (
eδ − 1

)
dG

dδ
= βNeδ > 0 always.

Thus, GOV will choose δ∗ = δβ .

Lemma 1

Proof Suppose ϕ(δ) < βN , i.e. δ ∈ (δβ, b]

G = ϕ(δ) · (eδ − 1
)

dG

dδ
= ϕ(δ) · eδ + ∂ϕ

∂δ
· (eδ − 1)

= ϕ(δ) · eδ − ϕ(δ) ·
⎡
⎣1 + σ · 1

φ
(
Φ−1

(
eb−δ−1
eb−1

)) · eb−δ

eb − 1

⎤
⎦ · (eδ − 1)

= ϕ(δ)

⎡
⎣1 − σ · 1

φ
(
Φ−1

(
eb−δ−1
eb−1

)) · eb − eb−δ

eb − 1

⎤
⎦

from which the lemma follows. Consider threshold value δth such that

eb−δth − 1

eb − 1
= 0.5 ⇒ δth = b − log

(
eb + 1

2

)
.

When δ > δth, we have as δ increases

• Φ−1
(

eb−δ−1
eb−1

)
decreases from 0 to −∞

• φ
(
Φ−1

(
eb−δ−1
eb−1

))
hence decreases from φ(0) to 0

• 1

φ
(
Φ−1

(
eb−δ−1

eb−1

)) increases from 1
φ(0) to ∞

• eb−eb−δ

eb−1 increases from 0.5 to eb

eb−1

• Overall, σ · 1

φ
(
Φ−1

(
eb−δ−1

eb−1

)) · eb−eb−δ

eb−1 is increasing.

Decentralized Governance of Stablecoins with Closed Form Valuation 71

Assumption 1

Proof

1 − σ · 1

φ
(
Φ−1

(
eb−δth−1

eb−1

)) · eb − eb−δth

eb − 1
> 0

⇔ 1 − σ

2φ(0)
> 0

⇔ σ < 2φ(0) (27)

Proposition 3

Proof Under Assumption 1, we have that G is locally increasing at δ = δth and we
have that dG

dδ
is non-increasing with δ for δ > δth .

Therefore, when setting dG
dδ

= 0, i.e. 1 − σ · 1

φ
(
Φ−1

(
eb−δ−1

eb−1

)) · eb−eb−δ

eb−1 = 0, we

implicitly obtain a δ∗, at which level G is maximized.

Theorem 1

Proof At δ∗, we have

σ · 1

φ
(
Φ−1

(
eb−δ∗ −1

eb−1

)) · eb − eb−δ∗

eb − 1
= 1 (28)

Substitute (28) into (15),

V (δ∗) = Ne
σ2

2 + ϕ(δ∗)(eb − eδ∗
)

− P(δ∗, ϕ(δ∗))(eb − 1)

P(δ∗, ϕ(δ∗)) = ϕ(δ∗)eδ∗
Φ(−d2) − NΦ(−d1) (29)

d1(δ
∗) = 1

δ
·
(
log(

N

ϕ(δ∗)eδ
) + σ 2

2

)

= −Φ−1

(
eb−δ∗ − 1

eb − 1

)
+ σ

d2(δ
∗) = d1 − σ = −Φ−1

(
eb−δ∗ − 1

eb − 1

)
(30)

We obtain

P(δ∗, ϕ(δ∗)) = ϕ(δ∗)
eb − eδ∗

eb − 1
− NΦ(−d1)

72 L. Huo et al.

and

V (δ∗) = Ne
σ2

2 + NΦ(−d1)(e
b − 1)

such that we must assume

u ≤ Ne
σ2

2 + NΦ(−d1(δ
∗))(eb − 1), (31)

in order for vault participation to hold.

References

1. Beck, R., Müller-Bloch, C., & King, J. L. (2018). Governance in the blockchain economy: A
framework and research agenda. Journal of the Association for Information Systems, 19(10),
1.

2. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3), 637–654.

3. Bullmann, D., Klemm, J., & Pinna, A. (2019). In search for stability in crypto-assets: are
stablecoins the solution? ECB Occasional Paper, 230.

4. Daian, P., Kell, T., Miers, I., & Juels, A. (2018). On-chain vote buying and the rise of dark
DAOs. https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/.

5. Dybvig, P. H., & Zender, J. F. (1991). Capital structure and dividend irrelevance with asym-
metric information. The Review of Financial Studies, 4(1), 201–219.

6. Foxley, W. (2020). $10.8m stolen, developers implicated in alleged smart con-
tract ‘rug pull’. CoinDesk. https://www.coindesk.com/compounder-developers-implicated-
alleged-smart-contract-rug-pull.

7. Gudgeon, L., Perez, D., Harz, D., Livshits, B.,&Gervais, A. (2020). The decentralized financial
crisis. arXiv preprint arXiv:2002.08099.

8. Klages-Mundt, A. (2019). Vulnerabilities in maker: oracle-governance attacks, attack daos,
and (de)centralization. https://link.medium.com/VZG64fhmr6.

9. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., & Minca, A. (2020). Stablecoins 2.0:
Economic foundations and risk-based models. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies (pp. 59–79).

10. Klages-Mundt, A., & Minca, A. (2019). (in) stability for the blockchain: Deleveraging spirals
and stablecoin attacks. arXiv preprint arXiv:1906.02152.

11. Klages-Mundt, A., &Minca, A. (2020).While stability lasts: A stochasticmodel of stablecoins.
arXiv preprint arXiv:2004.01304.

12. Lee, B. E., Moroz, D. J., & Parkes, D. C. (2020). The political economy of blockchain gover-
nance. Available at SSRN 3537314.

13. Lee, L., & Klages-Mundt, A. (2021). Governance extractable value. https://ournetwork.
substack.com/p/our-network-deep-dive-2.

14. MakerDAO (2020). Black thursday response thread. https://forum.makerdao.com/t/black-
thursday-response-thread/1433.

15. Merton, R. C. (1970). A dynamic general equilibrium model of the asset market and its appli-
cation to the pricing of the capital structure of the firm.

16. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The
Journal of finance, 29(2), 449–470.

17. Myers, S. C., &Majluf, N. S. (1984). Corporate financing and investment decisions when firms
have information that investors do not have. Journal of financial economics, 13(2), 187–221.

https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://www.coindesk.com/compounder-developers-implicated-alleged-smart-contract-rug-pull
https://www.coindesk.com/compounder-developers-implicated-alleged-smart-contract-rug-pull
http://arxiv.org/abs/2002.08099
https://link.medium.com/VZG64fhmr6
http://arxiv.org/abs/1906.02152
http://arxiv.org/abs/2004.01304
https://ournetwork.substack.com/p/our-network-deep-dive-2
https://ournetwork.substack.com/p/our-network-deep-dive-2
https://forum.makerdao.com/t/black-thursday-response-thread/1433
https://forum.makerdao.com/t/black-thursday-response-thread/1433

Decentralized Governance of Stablecoins with Closed Form Valuation 73

18. Reijers, W., O’Brolcháin, F., & Haynes, P. (2016). Governance in blockchain technologies &
social contract theories. Ledger, 1, 134–151.

19. Rekt. (2021). Paid network–rekt. https://rekt.eth.link/paid-rekt/.
20. Shreve, S. E., et al. (2004). Stochastic calculus for finance II: Continuous-time models, vol. 11.

Springer.
21. Werner, S. M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., & Knottenbelt, W. J.

(2021). Sok: Decentralized finance (defi). arXiv preprint arXiv:2101.08778.
22. Zoltu, M. (2019). How to turn $20m into $340m in 15 seconds. https://link.medium.com/

k8QTaHzmr6.

https://rekt.eth.link/paid-rekt/
http://arxiv.org/abs/2101.08778
https://link.medium.com/k8QTaHzmr6
https://link.medium.com/k8QTaHzmr6

Griefing Factors and Evolutionary
In-Stabilities in Blockchain Mining
Games

Stefanos Leonardos, Shyam Sridhar, Yun Kuen Cheung,
and Georgios Piliouras

Abstract We revisit the standard game-theoretic model of blockchain mining and
identify two sources of instabilities for its unique Nash equilibrium. In our first
result, we show that griefing, a practice according to which participants of peer-to-
peer networks harm other participants at some lesser cost to themselves, is a plausible
threat that may lead cost-efficient miners to allocate more resources than predicted.
The proof relies on the evaluation of griefing factors, ratios that measure network
losses relative to an attacker’s own losses and leads to a generalization of the notion of
evolutionary stability to non-homogeneous populationswhichmay be of independent
game-theoretic interest. From a practical perspective, this finding provides explains
the over-dissipation of mining resources, consolidation of power and high entry
barriers that are currently observed in many mining networks. We, then, turn to the
natural question of whether dynamic adjustments of mining allocations may, in fact,
lead to the Nash equilibrium prediction. By studying two common learning rules,
gradient ascent and best response dynamics, we provide evidence for the contrary.
Thus, along with earlier results regarding in-protocol attacks, these findings paint
a more complete picture about the various inherent instabilities of permissionless
mining networks.

Keywords Blockchain mining · Evolutionary game theory · Griefing factors

S. Leonardos (B)
King’s College London, London, UK
e-mail: stefanos.leonardos@kcl.ac.uk

S. Sridhar · G. Piliouras
Singapore University of Technology and Design, Somapah Rd, Singapore
e-mail: shyam.sridhar@ethereum.org

G. Piliouras
e-mail: georgios@sutd.edu.sg

S. Sridhar
Ethereum Foundation, Bern, Switzerland

Y. K. Cheung
Royal Holloway, University of London, London, UK
e-mail: yunkuen.cheung@rhul.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_5&domain=pdf
mailto:stefanos.leonardos@kcl.ac.uk
mailto:shyam.sridhar@ethereum.org
mailto:georgios@sutd.edu.sg
mailto:yunkuen.cheung@rhul.ac.uk
https://doi.org/10.1007/978-3-031-18679-0_5

76 S. Leonardos et al.

1 Introduction

A persisting barrier in the wider public adoption of permissionless blockchains is the
uncertainty regarding their stability and long-term sustainability [4, 6]. The critical
actors for the stability of the permissionless blockchains are the miners who pro-
vide their costly resources (e.g., computational power in Proof of Work (PoW) [17]
or tokens of the native cryptocurrency in Proof of Stake (PoS) protocols) to secure
consensus on the growth of the blockchain [5, 19, 30]. Miners act in self-interested,
decentralized ways and may enter or leave these networks at any time. For their
service, miners receive monetary rewards in return, typically in the form of transac-
tion fees and newly minted coins of the native cryptocurrency in proportion to their
individual resources in the network [8, 9]. The total amount of these resources, their
distribution among miners, and the consistency over time in which they are provided
are fundamental factors for the reliability of all blockchain supported applications
[16, 31].

Theoretical models that study miners’ incentives, typically use the Nash equilib-
rium prediction to argue about miner’s behavior in an abstract way [3, 15]. How-
ever, empirical evidence suggests that miners’ incentives are more intricate and this
abstraction may lead to discrepancies between theoretical predictions and actual
behavior observed in practice [13, 18]. For instance, miners may be willing to pay
incur some (short-term) cost to harm (in some sense) their network competitors or,
equivalently, to behave sub-optimally in the short run to gain an advantage in the
long-run. Existing studies [40] and online resources that reflect investors’ sentiment
[33, 41], all suggest that the allocation of mining resources in blockchain networks
remains poorly understood despite its critical role in the long-term success of the
revolutionizing blockchain technology.

Model and contributionMotivated by the above, we study a standard game-theoretic
model of blockchain mining [3]. According to this model, there exists a unique Nash
Equilibrium (NE) allocation under the proportional reward scheme that is currently
used by most Proof of Work (PoW) and Proof of Stake (Pos) protocols (Theorem 1).
Having this as our starting point, we pose questions related to the stability properties
of this NE from different perspectives that involve adversarial behavior at equilib-
rium and dynamic adjustment of resources over time. To answer these questions, we
develop new tools to analyze miners’ incentives and draw connections to existing
concepts from game theory. Our results can be summarized as follows.

In our first set of results, we start with the observation that at the predicted NE
levels, active miners are incentivised to deviate, by increasing their resources, in
order to achieve higher relative payoffs. The loss that a deviating miner incurs to
themselves is overcompensated by a larger market share and a higher loss that is
incurred to each other individual miner and hence, to the rest of the network as a
whole (Theorem 2, Corollary 1). While standing generally at odds with the metric
of absolute payoffs, relative payoffs are particularly relevant in blockchain mining
both due to the fixed supply of most cryptocurrencies (which incentivises miners to

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 77

maximize the amount of their tokens that they receive rather than their short-term
profit) and due to adversarial behavior that is commonly observed in practice.

This practice, in which participants of a network cause harm to other participants,
even at some cost to themselves, is known as griefing.1 Our main technical insight
is that griefing is closely related to the game-theoretic notion of evolutionary sta-
bility. Specifically, we quantify the effect of a miner’s deviation via the (individual)
Griefing Factors (GF), defined as the ratios of network (or individual) losses over
the deviator’s own losses (Definition 2), and show that an allocation is evolution-
ary stable if and only if all its individual GFs are less than 1 (Lemma 1).2 We call
such allocations (individually) non-griefable (Definition 3). This equivalence holds
for homogeneous populations (i.e., for miners having equal mining costs) for which
evolutionary stability is defined. However, as GFs are defined for arbitrary popula-
tions (not necessarily homogeneous), they provide a way to generalize evolutionary
stable allocations as individually non-griefable allocations. Rephrased in this frame-
work, our result states that the NE allocation is always individually griefable by
miners who unilaterally increase their resources (Theorem 2).

In our second set of results, we, then, turn to the natural question of whether
dynamic adjustments of mining allocations may, in fact, lead to the Nash equilib-
rium prediction. We show that learning (adjustment) rules that are commonly used
to describe rational behavior in practice, such as Gradient Ascent (GA) and Best
Response (BR) dynamics, exhibit chaotic or highly irregular behavior when applied
in this game-theoretic model of blockchain mining (Sect. 5). This is true even for
large number of miners and, in the case of GA, even for relatively small step-size (as
long asminers are assumed to have influence via non-binding capacities on collective
outcomes). Interestingly, these findings establish another source of instability of the
equilibria of the game-theoretic model that is different in nature from the previous
ones (algorithmic versus incentive driven).

OtherRelatedWorksOur paper contributes to the growing literature onminers’ incen-
tives in blockchain networks. By describing two previously unidentified sources
of concern, griefing attacks and fluctuation of allocations when miners use stan-
dard adjustment rules, our findings complement existing results concerning inherent
instabilities of mining protocols [11], manipulation of the difficulty adjustment in
PoW protocols [15] or adversarial behavior [1, 22, 38]. Moreover, our results sup-
port the accumulating evidence that decentralization is threatened in permissionless
blockchains [3, 26, 27] and offer an alternative rationale for the increased dissipa-
tion of resources (above optimal levels) that is observed in the main PoW mining
networks [39]. A distinctive feature of this over-mining behavior in comparison to
in-protocol adversarial behavior, is that it does not directly compromise the function-
ality of the blockchain. When a single miner increases their resources, the safety of

1 The term griefing originated in multi-player games [42] and was recently introduced in blockchain
related settings by [7].
2 An allocation has a griefing factor of k if a miner can reduce others’ payoffs by $k at a cost of $1
to themselves by deviating to some other allocation.

78 S. Leonardos et al.

the blockchain also increases. However, this practice has multiple negative effects as
it generates a trend towards market concentration, dissipation of resources and high
entry barriers. Finally, an important byproduct of our analysis is the formalization
of the notion of griefing factors which is of independent interest in the context of
the game-theoretic study of non-homogeneous populations in decentralized markets
[12, 21, 32].

Outline Section 2 presents the strategic model (in a single blockchain) and studies
the notions of griefing and evolutionary stability and Sect. 6 concludes the paper
with a summary of our findings and some open questions.

2 Preliminaries

2.1 Model and Nash Equilibrium Allocations

We consider a network of N = {1, 2, . . . , n} miners who allocate their resources,
xi ≥ 0, tomine a blockchain-based cryptocurrency. Eachminer i ∈ N has an individ-
ual per unit cost ci > 0. For instance, in Proof ofWork (PoW)mining, xi corresponds
to TeraHashes per second (TH/s) and ci to the associated costs (energy, amortized
cost of hardware etc.) of producing a TH/s. We will write x = (xi)i∈N to denote the
vector of allocated resources of all miners, and X = ∑n

i=1 xi to denote their sum.
We will also write v to denote the total miners’ revenue (coinbase transaction reward
plus transaction fees) in a fixed time period (typically an epoch or a day in the current
paper). The market share of each miner is proportional to their allocated resources
(as is the case in most popular cryptocurrencies, see e.g., [7, 35]). Thus, the utility
of each miner is equal to

ui (xi , x−i) = xi
xi + X−i

v − ci xi , for all i ∈ N , (1)

where, following standard conventions, wewrite x−i = (
x j

)
j �=i and X−i := ∑

j �=i x j

to denote the vector and the sum, respectively, of the allocated resources of all miners
other than i . In Eq. (1), wemay normalize v to 1without loss of generality (by scaling
eachminer’s utility by v).Wewill refer to the game,Γ = (N , (ui , ci)i∈N), defined by
the set of miners N , the utility functions ui , i ∈ N and the cost parameters ci , i ∈ N
as the mining game Γ . As usual, a Nash equilibrium is a vector x∗ of allocations
x∗
i , i ∈ N , such that

ui
(
x∗) ≥ ui

(
xi , x∗

−i

)
, for all xi �= x∗

i , for all miners i ∈ N . (2)

In terms of its Nash equilibrium, this game has been analyzed by [3]. To formulate
the equilibrium result, let

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 79

c∗ := 1

n − 1

n∑

i=1

ci , (3)

and assume for simplicity that c∗ > ci for all i ∈ N . This is a participation constraint
and implies that we consider only miners that are active in equilibrium. The unique
Nash equilibrium of Γ is given in Theorem 1.

Theorem 1 ([3]) At the unique pure strategy Nash equilibrium of the mining game
Γ , miner i ∈ N allocates resources x∗

i = (1 − ci/c∗) /c∗. In particular, the total
mining resources, X∗, allocated at equilibrium are equal to X∗ = 1/c∗.

Theorem 1 is our starting point. Our first task is to test the robustness of this Nash
equilibrium in the context of decentralized and potentially adversarial networks.
For instance, while the Nash equilibrium outcome is well-known to be incentive
compatible, an adversary may decide to harm others by incurring a low(er) cost to
himself. In decentralized networks, the (adversarial) practice of harming others at
some lesser own loss is termed griefing [7]. As we show next, griefing is indeed
possible in this case: a miner who increases their allocated resources above the Nash
equilibrium prediction forgoes some of their own profits but incurs a (considerably)
larger loss to the rest of the network. Our proof exploits a link between griefing and
the fact that theNash equilibrium is not evolutionary stable. Tomake these statements
explicit, we first provide the relevant framework.

3 Evolutionary Stable Allocations and Griefing Factors

For this part, we restrict attention to homogeneous populations of miners, for which
the notion of evolutionary stability is defined. Specifically, we consider a mining
game Γ = (N , (ui , ci)i∈N) such that all miners have equal costs, i.e., ci = c for
some c > 0, for all i ∈ N . We will call such a game an equal-cost mining game
and we will write Γ = (N , c, u) for simplicity. A strategy profile x = (xi)i∈N is
called symmetric, if there exists x ≥ 0 such that xi = x for all i ∈ N . The following
definition of evolutionary stability due to [20, 37] requires that ui (x) = u j (x) for any
symmetric allocation x = (x)i∈N . This condition is trivially satisfied for equal-cost
mining games, cf. Eq. (1).

Definition 1 (Evolutionary Stable Allocation (ESA), [20, 37]) Let Γ =
(N , (ui , ci)i∈N) be a mining game such that ui ≡ u j for all i, j ∈ N for all sym-
metric allocation profiles x ≥ 0. Then, a symmetric allocation xESA = (

xESA
)
i∈N is

an evolutionary stable allocation (ESA) if

ui
(
xi , xESA−i

)
< u j

(
xi , xESA−i

)
, for all j �= i ∈ N , xi �= xESA. (4)

Definition 1 implies that an ESA, xESA, maximizes the relative payoff function,
ui (xi , xESA−i) − u j (xi , xESA−i)with j ∈ N , j �= i , of any miner i ∈ N . Intuitively, if all

80 S. Leonardos et al.

miners select an ESA, then there is no other allocation that could give an individually
deviating miner a higher relative payoff. In other words, if a symmetric allocation
xi = x, i ∈ N , is not ESA, then there exists a x ′ �= x , so that a single miner who
deviates to x ′ has a strictly higher payoff (against x of the other n − 1 miners) than
every other miner who allocates x (against n − 2 other miners who allocate x and
the deviator who allocates x ′) [20].

As mentioned above, evolutionary stability is defined for homogeneous popu-
lations and may be, thus, of limited applicability for practical purposes. To study
non-homogeneous populations, we will need a proper generalization of evolutionary
stability. To achieve this, we introduce the notion of griefing factors which, as we
show, can be used to formulate evolutionary stability and which is readily general-
izable to arbitrary settings. This is done next.

Definition 2 (Griefing Factors (GF)) Let Γ = (N , (ui , ci)i∈N) be a mining game
(not necessarily of equal-costs) in which all miners are using the allocations x∗

i , i ∈
N , and suppose that a miner i deviates to an allocation xi �= x∗

i . Then, the griefing
factor, (GF), of strategy xi with respect to strategy x∗ is defined by

GFi
((
xi , x∗

−i

) ; x∗) := loss incurred to the network

deviator’s own loss

=
∑n

j �=i

[
u j (x∗) − u j

(
xi , x∗

−i

)]

ui (x∗) − ui
(
xi , x∗

−i

) , (5)

for all i ∈ N , where loss is the same as utility loss. The GF with respect to an
allocation x∗ can be then defined as the supremum over all possible deviations, i.e.,

GF
(
x∗) = sup

i∈N ,xi≥0

{
GFi

((
xi , x∗

−i

) ; x∗)} .

We can also define the individual griefing factor of strategy xi with respect to strategy
x∗ against a specific miner j , as follows

GFi j
((
xi , x∗

−i

) ; x∗) := loss incurred to miner j

deviator’s own loss

= u j (x∗) − u j
(
xi , x∗

−i

)

ui (x∗) − ui
(
xi , x∗

−i

) (6)

for all j �= i ∈ N , where, as in Eq. (5), loss is a shorthand for utility loss. It holds
that GFi

((
xi , x∗

−i

) ; x∗) = ∑
j �=i GFi j

((
xi , x∗

−i

) ; x∗).

As mentioned in Definition 2, the numerator of GF corresponds to the loss of all min-
ers other than i incurred by i’s deviation to xi , whereas the denominator corresponds
to miner i’s own loss (cf. Eq. (5)). In decentralized mechanisms (e.g., blockchains),
thismetric captures an important incentive compatibility condition: namely, amecha-
nism is safe against manipulation if the costs of an attack exceed its potential benefits

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 81

to the attacker. This motivates to define an allocation as griefable if its GF is larger
than 1.

Definition 3 (Griefable and Individually Griefable Allocations)An allocation x∗ =(
x∗
i

)
i∈N is griefable ifGF(x∗) > 1.An allocation x∗ = (

x∗
i

)
i∈N is individually griefa-

ble if there exist i, j ∈ N and xi �= x∗
i ≥ 0, such that the individual griefing factor

GFi j
((
xi , x∗

−i

) ; x∗) is larger than 1.

An important observation is that the condition of evolutionary stability can be
expressed in terms of the individual griefing factors. In particular, an allocation xESA

is evolutionary stable if and only if all individual griefing factors are less than 1, i.e.,
if and only if xESA is not individually griefable. This is formalized in Lemma 1.

Lemma 1 Let Γ = (N , c, u) be an equal-cost mining game. Then, an allocation
xESA = (

xESA
)
i∈N is evolutionary stable if and only if xESA is not griefable, i.e., iff

GFi j
((
xi , xESA−i

) ; xESA) < 1, for all j �= i ∈ N , xi �= xESA. (7)

Proof Since ui ≡ u j for all symmetric x and all i, j ∈ N by assumption, we may
write Eq. (4) as

ui
(
x ′, xESA−i

) − ui
(
xESA

)
< u j

(
x ′, xESA−i

) − u j
(
xESA

)
,

for all j �= i ∈ N and for all x ′ �= xESA. Since ui
(
x ′, xESA−i

)
< ui

(
xESA

)
for all x �=

xESA and for any miner i ∈ N , we may rewrite the previous equation as

1 >
u j

(
x ′, xESA−i

) − u j
(
xESA

)

ui
(
x ′, xESA−i

) − ui
(
xESA

) = GFi j
((
x ′, xESA−i

) ; xESA)
,

for all j �= i ∈ N and for all x ′ �= xESA. This proves the claim. �

Thus, Lemma 1 suggests that an allocation is evolutionary stable if and only
if it is individually non-griefable. According to Definition 3, this is weaker than
an allocation being non-griefable, which is satisfied if for all i ∈ N , the sum over
j �= i ∈ N of all individual griefing factors Gi j is less than 1.

4 Griefing in Blockchain Mining

Lemma 1 suggests a way to extend the notion of evolutionary stability beyond homo-
geneous populations. In particular, for general, non-homogeneous populations, we
may impose the stability requirement that an allocation should be individually non-
griefable or, as mentioned above, the stronger requirement that an allocation should
be non-griefable. This brings us to the main result of this section, which suggests that
the Nash equilibrium of Theorem 1 is griefable for both homogeneous (symmetric)

82 S. Leonardos et al.

and non-homogeneous (asymmetric) populations of miners. In particular, assuming
that the network has stabilized at the x∗ equilibrium allocation, a strategic miner may
attack other miners simply by increasing their own mining resources. Specifically, if
a miner i deviates to a resource allocation x∗

i + Δ for someΔ > 0, then this creates a
GF equal toO (n/Δ). Such a deviation reduces the attacking miner’s own payoff but,
as we will see, it decreases the payoff of all other miners by a larger margin. This
improves the attacking miner’s relative payoff and hence their long-term survival
chances in the blockchain mining network. This is formalized in Theorem 2.

Theorem 2 Let Γ = (N , (ui , ci)i∈N) be a mining game and let x∗ = (
x∗
i

)
i∈N be its

unique pure strategy Nash equilibrium.

(i) In a homogeneous population, i.e., when all miners have the same cost, ci =
c > 0 for all i ∈ N, the unique Nash equilibrium allocation x∗ = n−1

n2c is not
evolutionary stable. In particular, there exists x ′ �= x∗, so that an individually
deviating miner i increases their relative payoff ui

(
x ′, x∗

−i

) − u j
(
x ′, x∗

−i

)
.

(ii) In a general, non-homogeneous population, the pure Nash equilibrium x∗ is
griefable. In particular, assuming that all miners j ∈ N are using their equi-
librium allocations x∗

j , j ∈ N, the deviation x∗
i + Δ, for someΔ > 0, of miner

i ∈ N, has a griefing factor

GFi
((
x∗
i + Δ, x∗

−i

) ; x∗) = n − 1

Δ · ∑n
j=1 c j

= O (n/Δ) .

In particular, at the Nash equilibrium allocation, x∗, any single miner may
increase their mining resources and improve their utility in relative terms.

(iii) In both the homogeneous and non-homogeneous populations, the unique indi-
vidually non-griefable allocation, y = (yi)i∈N , satisfies yi = n

n−1 x
∗
i , where x

∗
i

is the Nash equilibrium allocation of miner i ∈ N.

Proof See Appendix A. �

Remark 1 Part (ii) of Theorem2 reveals one shortcoming of the current definition of
GF. Specifically, the GF may grow arbitrarily large as Δ → 0. However, as Δ → 0,
the absolute total harm to the network is negligible (even if the relative loss is
very large as expressed by the GF). One possibility to circumvent this problem is
to consider discrete increments for Δ, i.e., Δ ∈ {1, 2, . . . , 100, . . . } as in e.g., [9].
Alternatively, one may combine GF with the absolute loss of the network to obtain a
more reliable measure. We do not go deeper into this question at the current moment
since it seems to be better suited for a standalone discussion. We leave this analysis
as an intriguing direction for future work.

Remark 2 Part (iii) of Theorem 2 allows us to reason about the overall expenditure
at the unique individually non-griefable allocation y = (yi)i∈N . In the general case,
that of a non-homogeneous population, the total expenditure at an individually non-
griefable allocation y = (yi)i∈N is

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 83

E (y) =
∑

i∈N
ci yi = n − 1

n

∑

i∈N
ci x

∗
i = n

[

1 − (n − 1)

∑
i c

2
i

(∑
i ci

)2

]

,

where we used that x∗
i = (1 − ci/c∗)/c∗ and yi = n

n−1 x
∗ by Theorem 1 and part

(iii) of Theorem 2, respectively. Cauchy-Schwarz inequality implies that
(∑

i ci
)2 ≤

n
∑

i c
2
i which yields that E(y) ≤ 1 with equality if and only if ci = c for all i ∈ N .

Thus, the expenditure in the individually non-griefable allocation is always less
than or equal to the aggregate revenue generated by mining, with equality only if
the population is homogeneous. In that case, i.e., if all miners have the same cost
ci = c for all i ∈ N , then the unique individually non-griefable allocation is also
evolutionary stable (cf. Lemma 1), i.e., y = xESA with xESA = 1

nc for all i ∈ N (by
part (iii) and symmetry). In all cases, the total expenditure E (x∗), at the unique
Nash equilibrium x∗ must be equal to E (x∗) = n−1

n E (y) and hence it less than the
expenditure at the unique individually non-griefable allocation and strictly less than
the generated revenue (which is equal to 1). Finally, note that in practice, griefing
may occur for via several other ways (e.g., direct sabotage, censoring etc. , so non-
griefable here should be interpreted only in the specific context of allocating more
(or less) resources.

In the proof of Theorem 2, we have actually shown something slightly stronger.
Namely, miner i’s individual loss due to its own deviation to x∗

i + Δ is less than
the loss of each other miner j provided that Δ is not too large. In other words, the
individual griefing factors with respect to the Nash equilibrium allocation are all
larger than 1 and hence, the Nash equilibrium is also individually griefable. This is
formalized next.

Corollary 1 For every miner j ∈ N such that Δ < x∗
j , it holds that

GFi j
((
x∗
i + Δ, x∗

−i

) ; x∗) > 1,

i.e., the loss of miner j is larger than the individual loss of miner i .

Proof of Corollary 1 By Eqs. (8) and (9), the inequality

u j
(
x∗) − u j

(
x∗
i + Δ, x∗

−i

)
> ui

(
x∗) − ui

(
x∗
i + Δ, x∗

−i

)

is equivalent to

Δ
(
c∗ − c j

)

1 + c∗Δ
>

Δ2ci c∗

1 + c∗Δ
⇐⇒ c∗ − c j > Δci c

∗

⇐⇒ Δ <
1

ci

(
1 − c j

c∗
)

.

Since ci < c∗ by assumption, and x∗
j = 1

c∗
(
1 − c j

c∗
)
by Theorem 1, the right hand

side of the last inequality satisfies

84 S. Leonardos et al.

1

ci

(
1 − c j

c∗
)

>
1

c∗
(
1 − c j

c∗
)

= x∗
j .

This implies thatΔ < x∗
j is sufficient for the initial inequality to holdwhich concludes

the proof. �

Theorem 2 and Corollary 1 imply that miners are incentivised to exert higher
efforts than the Nash equilibrium predictions. The effect of this strategy is twofold:
it increases their own relative market share (hence, their long-term payoffs) and
harms other miners. The notable feature of this over-mining attack (or deviation
from equilibrium) is that it does not undermine the protocol functionality directly.
Asminers increase their constructive effort to, security of the blockchain network also
increases. This differentiates the blockchain paradigm from conventional contests in
which griefing occurs via exclusively destructive effort or deliberate sabotage against
others [2, 25].

However, the over-mining strategy has implicit undesirable effects. As we show
next, it leads to consolidation of power by rendering mining unprofitable for miners
who would otherwise remain active at the Nash equilibrium and by raising entry
barriers for prospective miners. This undermines the (intended) decentralized nature
of the blockchain networks and creates long-term risks for its sustainability as a
distributed economy. Again, this is a distinctive feature of decentralized, blockchain-
based economies: for the security of the blockchain to increase, it is desirable that
the (honest) aggregate resources and their distribution among miners both increase
(which is not the case in the over-mining scenario).

Proposition 1 Let Γ = (N , (ui , ci)i∈N) be a mining game with unique Nash equi-
librium allocation x∗ = (

x∗
i

)
i∈N . Assume that all miners j �= i ∈ N are allocating

their equilibrium resources x∗
j , and that miner i allocates x

∗
i + Δ resources for some

Δ > 0. Then

(i) the maximum increase Δi of miner i before miner i’s payoff becomes zero is
Δi = 1

ci
− 1

c∗ .
(ii) the absolute losses of all other miners j �= i are maximized when Δ = Δi and

are equal to ci x∗
i .

Proposition 1 quantifies (i) the maximum possible increase, Δi , in the mining
resources of a single miner before their profits hit the break-even point (i.e., become
zero), and (ii) the absolute losses of all other miners when miner i increases their
resources by some Δ up to Δi . As intuitively expected, more efficient miners can
cause more harm to the network (part (i)) and in absolute terms, this loss can be up
to the equilibrium spending ci x∗

i of miner i , assuming that miner i does not mine
at a loss (part (ii)). While not surprising these findings provide a formal argument
that cost asymmetries can be severely punished by more efficient miners and that
efficient miners can grow in size leading ultimately to a centralized mining network.

Remark 3 In the current setting, the assumption of symmetric miners (miners with
equal or at least almost equal cost) is less restrictive than it seems. The participation

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 85

constraint ci < c∗ = 1
n−1

∑n
j=1 c j implies that the costs, ci ’s, of the active miners in

equilibrium cannot be too different. This is formalized in Observation 1.

Observation 1 Let cmax := maxi∈N {ci } denote the maximum mining cost among
all active miners and let c̄ = 1

n

∑n
i=1 ci denote the average mining cost. Then, the

variance σ 2
c := ∑n

i=1 (ci − c̄) of the per unit mining costs of all active miners in
equilibrium satisfies

σ 2
c < cmax

(
n

n − 1
− cmax

)

.

To gain some intuition about the order of magnitude of the bound derived in Obser-
vation 1 in real applications, we consider the BTC network. Currently, the cost to
produce 1 TH/s consistently for a whole day is approximately equal to $0.08. On
the other hand, the total miners’ revenue per day is in the order of magnitude of
$10million. Thus, in normalized units (as the ones that we work here), ci would be
equal to ci = 0.08/10m = $8e − 09.

5 Dynamic Adjustments of Mining Allocations

In the previous section, we saw that at the unique evolutionary stable equilibrium,
griefing is not possible, however, at that equilibrium,miners fully dissipate the reward
and cause further consolidation of power that raises entry barriers to prospective
entrants. Thus, the system enters a positive feedback loop towards market concentra-
tion. Given these results, a question that naturally arises is whether typical learning
dynamics converge to the equilibrium of the game-theoretic model.3 This would pro-
vide an argument in favor of the Nash equilibrium allocations and restore the metric
of absolute payoffs as a driver of miners’ behavior. However, by examining two
of the most commonly-used adjustment rules that model rational human behavior,
Gradient Ascent and Best Response dynamics [10], we provide a negative answer to
this question.

Specifically, recall that the utility of miner i in the strategic (single blockchain)
model is given by

ui (xi , X−i) = xi
x1 + X−i

− ci xi , for all xi ≥ 0

and i = 1, 2, . . . , n, where X−i = ∑
j �=i x j (cf. Eq. (1)). Thus, the Gradient Ascent

(GA) update rule is given by

3 Apart from the allocation of mining resources over time, dynamic update rules have recently
attracted widespread attention in blockchain economies due to the implementation of posted price
mechanisms in the transaction fee market [14, 29, 34, 36].

86 S. Leonardos et al.

Fig. 1 Bifurcation diagrams for the Gradient Ascent dynamics with n = 2, 5, 10 miners with
respect to the learning parameter θ . As the number of miners grows, the dynamics become chaotic
for even lower step-sizes

xt+1
i = xti + θi

∂

∂xti
ui

(
xti

) = xti + θi

[
Xt

−i
(
xt1 + Xt

−i

)2 − ci

]

, (GA)

for all i = 1, 2, . . . , n, where θi is the learning rate of miner i = 1, 2. The bifurcation
diagrams in Fig. 1 show the attractor of the dynamics for different values of the step-
size (assumed here to be equal for all miners for expositional purposes) and for
different numbers of active miners, n = 2, 5 and 10, with ci = 1 for all i . The blue
dots show the aggregate allocated resources for 400 iterations after a burn-in period
of 50 iterations (to ensure that the dynamics have reached the attractor).

All three plots indicate that the GA dynamics transition from convergence to
chaos for relatively small values of the step-size. Interestingly, as the number of
miners increases, the instabilities emerge for increasingly smaller step-size. This is
in sharp contrast to the (PR) dynamics and their convergence to equilibrium under
the large market assumption. The reason that a growing number of miners does
not convey stability to the system is precisely because the miners are not assumed to
have binding capacities. As miners act greedily, their joint actions drive the system to
extreme fluctuations and the larger their number, the easier it is for these fluctuations
to emerge. Finally, while convergence is theoretically established for small step-
sizes in all cases, such step-sizes correspond to very slow adaption and are of lesser
practical relevance.

We obtain a qualitatively similar result for the best response dynamics. The Best
Response (BR) update rule is given by

xt+1
i =

√
Xt

−i/ci − Xt
−i , for all i = 1, 2, . . . , n. (BR)

As above, the bifurcation diagrams in Fig. 2 show the aggregate allocated mining
resources for n = 2, 5 and 10miners. The horizontal axis (i.e., the bifurcation param-
eter) is now the cost asymmetry between the representativeminer and all otherminers
which are assumed to have the same cost (again only for expositional purposes).4 The

4 SincePoWmining resembles anoligopoly [3], traditional economics suggest that cost asymmetries
cannot be very large among active miners [28].

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 87

Fig. 2 Bifurcation diagrams for the Best Response dynamics with n = 2, 5, 10 miners with respect
to the miners cost asymmetry. The dynamics become chaotic typically for intermediate values of
cost asymmetry

plots suggest that the stability of the dynamics critically depend on the parameters
of the system with chaos emerging for various configurations.

As showcased by the GA and BR dynamics, if miners’ decisions affect the deci-
sions of otherminers and ifminers can adjust (increase or decrease) their capacities to
optimize their profits, then common learning dynamics can exhibit arbitrary behav-
ior. Instead of converging to the Nash equilibrium (or to some other stable outcome),
the aggregate allocations may oscillate between extreme values or exhibit chaotic
trajectories, with adverse effects on the reliability of the supported applications and
the value of the blockchain-based cryptocurrency.5 Along with our earlier findings
about griefing, these results paint a more complete picture about the various reasons
that can destabilize permissionless blockchain networks when there is concentration
of mining power.

6 Conclusions and Open Questions

In this paper, we studied resource allocation in blockchain mining. We identified two
very different reasons for instabilities in mining networks: griefing, which involves
the practice of harming others, even at some own cost and instability of dynamic
allocation rules. Concerning the former, we showed that miners have incentives to
increase their resources above the Nash equilibrium prediction, which explains the
consolidation of power and increased entry barriers that are currently observed in
practice. To do so, we measured the impact of griefing on miner’s payoffs via the
griefing factors, i.e., ratios of network (or individual miner’s) losses relative to the
attacker’s own losses [7], and showed that non-griefable states are precisely states
that are evolutionary stable. As a byproduct, this provides a way to generalize the
notion of evolutionary stability to non-homogeneous populations which may be of
independent interest in game-theoretic models of decentralized settings. Concerning

5 The effects of blockchain related metrics, such as estimated hashrate, on cryptocurrency prices
have been widely documented, see e.g., [23, 24] and the many references cited therein.

88 S. Leonardos et al.

the latter, we provided evidence that rational learning rules such as Gradient Ascent
and Best Response lead to chaotic allocations, or to the very least, allocations that
changes significantly in response to small changes in the system parameters. Along
with existing in-protocol attacks, such as selfish mining or manipulation of the diffi-
culty adjustment in Proof of Work blockchains, these results paint a more complete
picture of the inherent instabilities of permissionless mining networks.

Open questions A critical assumption of the game-theoretic model in which we
derived the current results is that miners have large capacities of resources which,
if used strategically, affect the welfare of other miners. As we saw, this generates
adversarial incentives that lead to griefing and destabilize the Nash equilibrium out-
come. However, as mining networks continue to grow a question that naturally arises
is whether we can reason about miners’ incentives when their individual influence
becomes negligible on aggregate network levels. This requires a market-theoretic
rather than game-theoretic perspective that will also consider mining in the pres-
ence of multiple blockchains. Further interesting questions involve the evaluation
of griefing incentives under various practical scenarios (e.g., are larger miners more
easy/difficult to grief or how much grief can a miner cause who is willing to incur
a relative loss x% etc) or the design of alternative metrics that overcome the short-
comings of the griefing factors that were outlined in Remark 3.

A Omitted Proofs

Proof of Theorem 2 Part (i). For Δ < x∗, Corollary 1 implies that

u j
(
x∗) − u j

(
x∗ + Δ, x∗

−i

)
> ui

(
x∗) − ui

(
x∗
i + Δ, x∗

−i

)
.

Since ui (x∗) = u j (x∗) for all i, j ∈ N by the symmetry assumption, ci = c > 0 for
all i ∈ N , it follows that ui

(
x∗
i + Δ, x∗

−i

) − u j
(
x∗ + Δ, x∗

−i

)
> 0 as claimed.

Part (ii). The own loss of miner i by deviating to allocation x∗
i + Δ when all other

miners use their equilibrium allocations x∗
−i is equal to

ui
(
x∗) − ui

(
x∗
i + Δ, x∗

−i

) = xi∗
X∗ − ci x

∗
i −

[
x∗
i + Δ

X∗ + Δ
− ci

(
x∗
i + Δ

)
]

= Δ

[

ci − X∗
−i

X∗ (X∗ + Δ)

]

.

By Theorem 1, X∗ = 1/c∗, and x∗
i = (1 − ci/c∗) /c∗, which implies that X∗

−i =
X∗ − x∗

i = ci/ (c∗)2. Substituting in the right hand side of the above equality yields

ui
(
x∗) − ui

(
x∗
i + Δ, x∗

−i

) = Δ

[

ci − ci/ (c∗)2

(1/c∗ + Δ) /c∗

]

= Δ2ci c∗

1 + c∗Δ
. (8)

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 89

Similarly, the loss incurred to any miner j �= i by miner i’s deviation is equal to

u j
(
x∗) − u j

(
x∗
i + Δ, x∗

−i

) = x∗
j

X∗ − c j x
∗
j −

[
x∗
j

X∗ + Δ
− c j x

∗
j

]

= x∗
jΔ

X∗ (X∗ + Δ)

= 1

c∗
(
1 − c j

c∗
)

· Δ

(1/c∗ + Δ) /c∗

= Δ
(
c∗ − c j

)

1 + c∗Δ
. (9)

Since c j < c∗ for all miners j ∈ N , the last expression is always positive (i.e., all
miners incur a strictly positive loss). Summing over all j ∈ N with j �= i , Eq. (9)
yields

n∑

j �=i

[
u j

(
x∗) − u j

(
x∗
i + Δ, x∗

−i

)] = Δ

1 + c∗Δ

⎡

⎣(n − 1) c∗ −
∑

j �=i

c j

⎤

⎦

= Δ

1 + c∗Δ

⎡

⎣(n − 1) c∗ −
n∑

j=1

c j + ci

⎤

⎦

= Δci
1 + c∗Δ

, (10)

where the last equality holds by definition of c∗, cf. (3). Combining Eqs. (8) and
(10), we obtain

GF
(
x∗; (

x∗
i + Δ, x∗

−i

)) =
(

Δci
1 + c∗Δ

) / (
Δ2ci c∗

1 + c∗Δ

)

= 1

c∗Δ
,

which concludes the proof of part (ii).
Part (iii). For an allocation y = (yi)i∈N to be individually non-griefable it must hold
that

u j (y) − u j (yi + Δ, y−i) < ui (y) − ui (yi + Δ, y−i) ,

for all i, j ∈ N with i �= j and for all Δ > 0. This yields the inequality (cf. Eq. (9)
in the proof of part (ii))

y jΔ

Y (Y + Δ)
< Δ

[

ci − Y − yi
Y (Y + Δ)

]

, for each i, j ∈ N ,Δ > 0,

which after some trivial algebra can be equivalently written as

90 S. Leonardos et al.

ci (Y + Δ) Y > Y + y j − yi , for each i, j ∈ N ,Δ > 0.

Since the left hand side is increasing in Δ and since the above must hold for each
Δ > 0, it suffices to prove the inequality for Δ = 0 in which case it must hold with
equality. This gives the condition

ciY
2 = Y + y j − yi , for each i, j ∈ N ,

which can be now solved for the individually non-griefable allocation y = (yi)i∈N .
Summing over j �= i ∈ N yields

(n − 1)ciY
2 = (n − 1)Y + Y − yi − (n − 1)yi , for each i ∈ N ,

or equivalently

yi = Y

[

1 − n − 1

n
ciY

]

, for each i ∈ N . (11)

Summing Eq. (11) over all i yields

Y = Y

[

n − n − 1

n
Y

∑

i∈N
ci

]

which we can solve for Y to obtain that Y = n∑
i∈N ci

. Using the notation of Eq. (3),
this can be written as

Y = n

n − 1
· n − 1
∑

i∈N ci
= n

n − 1
· 1

c∗ .

Substituting back in Eq. (11) yields the unique allocations yi

yi = n

(n − 1)c∗

[

1 − (n − 1)ci
n

n

(n − 1)c∗

]

= n

n − 1

(
1 − ci/c

∗) /c∗ = n

n − 1
x∗
i ,

where x∗
i = (1 − ci/c∗) /c∗ is the Nash equilibrium allocation for each i ∈ N (cf.

Theorem 1). This concludes the proof of part (iii). �

Proof of Proposition 1 Part (i). Let Δi > 0 be such that u j
(
x∗
i + Δ1, x∗

−i

) = 0.
Then

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 91

u j
(
x∗
i + Δ1, x∗

−i

) = 0 =⇒ x∗
j

X∗ + Δ1
− c j x

∗
j = 0

=⇒ 1

X∗ + Δ1
= c j

=⇒ Δ1 = v

c j
− X∗

Since X∗ = 1
c∗ by Theorem 1, it follows that

Δi = (c∗ − ci)

(ci c∗)
= 1

ci
− 1

c∗ . (12)

The previous equation implies in particular that Δi < Δ j if and only if ci > c j for
any i �= j ∈ N .
Part (ii). From Eq. (10) in the proof of Theorem 2, we know that the absolute losses,
L (Δ), of the network when miner i deviates to x∗

i + Δ are equal to

L (Δ) =
n∑

j �=i

u j
(
x∗) − u j

(
x∗
i + Δ, x∗

−i

) = Δci
1 + c∗Δ

.

Taking the derivative of the right hand side expression with respect toΔ, we find that

∂

∂Δ
L (Δ) = ∂

∂Δ

Δci
1 + c∗Δ

= ci
(1 + c∗Δ)2

> 0.

This implies that the absolute losses of the network are increasing in Δ. Thus, for
Δ ∈ (0,Δi], they are maximized at Δ = Δi where they are equal to

L (Δi) =
(

1
ci

− 1
c∗

)
ci

1 + c∗
(

1
ci

− 1
c∗

) = ci · (
1 − ci/c

∗) /c∗ = ci x
∗
i ,

where the last equality follows from Theorem 1. �

Proof of Observation 1 Sinceci < 1forall i ∈ N (recall that thisequivalent toci < v

prior to normalization which is naturally satisfied), it holds that
∑n

i=1 c
2
i <

∑n
i=1 ci .

Alongwith the definition of c∗, cf. (3), this yields

σ 2
c = 1

n − 1

n∑

i=1

(ci − c̄)2 = 1

n − 1

n∑

i=1

c2i − 1

n (n − 1)

(
n∑

i=1

ci

)2

≤ 1

n − 1

n∑

i=1

ci − n − 1

n

(
1

n − 1

n∑

i=1

ci

)2

= c∗
(

1 − n − 1

n
c∗

)

.

92 S. Leonardos et al.

The participation constraint, ci < c∗ for all i ∈ N , implies, in particular, that cmax <

c∗. Moreover, c∗ = 1
n−1

∑n
i=1 ci < n

n−1cmax. Substituting these in the last expression
of the above inequality, we obtain that

σ 2
c < c∗

(

1 − n − 1

n
c∗

)

<
n

n − 1
cmax

(

1 − n − 1

n
cmax

)

= cmax

(
n

n − 1
− cmax

)

. �

References

1. Alkalay-Houlihan, C., & Shah, N. (2019). The pure price of anarchy of pool block withholding
attacks in bitcoin mining. AAAI Conference on Artificial Intelligence, AAAI-19, 33(1). https://
doi.org/10.1609/aaai.v33i01.33011724.

2. Amegashie, J. (2012). Productive versus destructive efforts in contests. European Journal of
Political Economy, 28(4), 461–468. https://doi.org/10.1016/j.ejpoleco.2012.05.005

3. Arnosti, N., & Weinberg, S.M. (2019). Bitcoin: A natural oligopoly. In A. Blum (ed.), 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019), 124(5), 1–5. https://
doi.org/10.4230/LIPIcs.ITCS.2019.5.

4. Auer, R. (2019). Beyond the doomsday economics of proof-of-work in cryptocurrencies. Dis-
cussionPaperDP13506,London:Centre forEconomicPolicyResearch. https://cepr.org/active/
publications/discussion_papers/dp.php?dpno=13506.

5. Bentov, I., Gabizon, A., & Mizrahi, A. (2016). Cryptocurrencies without proof of work. In
J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, & K. Rohloff (Eds.), Finan-
cial Cryptography and Data Security (pp. 142–157). Berlin Heidelberg, Berlin, Heidelberg:
Springer.

6. Budish, E. (2018). The economic limits of bitcoin and the blockchain. Working Paper 24717,
National Bureau of Economic Research. https://doi.org/10.3386/w24717.

7. Buterin, V. (2018). A griefing factor analysis model. https://ethresear.ch/t/a-griefing-factor-
analysis-model/2338ethresear.ch. Accessed February 11, 2021.

8. Buterin, V., Reijsbergen, D., Leonardos, S., & Piliouras, G. (2019). Incentives in ethereum’s
hybrid casper protocol. In 2019 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC) (pp. 236–244). USA: IEEE . https://doi.org/10.1109/BLOC.2019.8751241.

9. Chen, X., Papadimitriou, C., & Roughgarden, T. (2019). An axiomatic approach to block
rewards. InProceedings of the 1st ACMConference onAdvances in Financial Technologies (pp.
124–131). New York, NY, USA: AFT ’19, ACM. https://doi.org/10.1145/3318041.3355470.

10. Cheung, Y. K., Leonardos, S., & Piliouras, G. (2021). Learning inmarkets: Greed leads to chaos
but following the price is right. In Z. H. Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence (pp. 111–117). IJCAI-21. International Joint Con-
ferences on Artificial Intelligence Organization, virtual. https://doi.org/10.24963/ijcai.2021/
16.

11. Dimitri, N. (2017). Bitcoin mining as a contest. Ledger, 2, 31–37. https://doi.org/10.5195/
ledger.2017.96

12. DiPalantino, D., &Vojnovic,M. (2009). Crowdsourcing and all-pay auctions. In (pp. 119–128).
EC ’09. https://doi.org/10.1145/1566374.1566392.

13. Eyal, I., & Sirer, E. G. (2018). Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM, 61(7), 95–102. https://doi.org/10.1145/3212998

https://doi.org/10.1609/aaai.v33i01.33011724
https://doi.org/10.1609/aaai.v33i01.33011724
https://doi.org/10.1016/j.ejpoleco.2012.05.005
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=13506
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=13506
https://doi.org/10.3386/w24717
https://ethresear.ch/t/a-griefing-factor-analysis-model/2338ethresear.ch
https://ethresear.ch/t/a-griefing-factor-analysis-model/2338ethresear.ch
https://doi.org/10.1109/BLOC.2019.8751241
https://doi.org/10.1145/3318041.3355470
https://doi.org/10.24963/ijcai.2021/16
https://doi.org/10.24963/ijcai.2021/16
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.1145/1566374.1566392
https://doi.org/10.1145/3212998

Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games 93

14. Ferreira, M. V. X., Moroz, D.J., Parkes, D. C., & Stern, M. (2021). Dynamic posted-price
mechanisms for the blockchain transaction-fee market. In Proceedings of the 3rd ACM Con-
ference on Advances in Financial Technologies (pp. 86–99). New York, NY, USA: AFT ’21.
Association for Computing Machinery. https://doi.org/10.1145/3479722.3480991.

15. Fiat, A., Karlin, A., Koutsoupias, E., & Papadimitriou, C. (2019). Energy equilibria in proof-of-
work mining. In (pp. 489–502). New York, NY, USA: EC’19. ACM. https://doi.org/10.1145/
3328526.3329630.

16. Gandal, N., & Gans, J. (2019). More (or less) economic limits of the blockchain. Discus-
sion Paper DP14154. London: Centre for Economic Policy Research. https://cepr.org/active/
publications/discussion_papers/dp.php?dpno=14154.

17. Garay, J., Kiayias, A., & Leonardos, N. (2015). The bitcoin backbone protocol: Analysis and
applications. In E. Oswald, &M. Fischlin (Eds.), Advances in Cryptology - EUROCRYPT (pp.
281–310). Berlin: Springer https://doi.org/10.1007/978-3-662-46803-6_10.

18. Gersbach, H., Mamageishvili, A., & Schneider, M. (2020). Vote delegation and malicious
parties. In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)
(pp. 1–2). https://doi.org/10.1109/ICBC48266.2020.9169391

19. Gersbach, H., Mamageishvili, A., & Schneider, M. (2022). Staking pools on blockchains.
https://doi.org/10.48550/ARXIV.2203.05838.

20. Hehenkamp, B., Leininger, W., & Possajennikov, A. (2004). Evolutionary equilibrium in Tul-
lock contests: spite and overdissipation. European Journal of Political Economy, 20(4), 1045–
1057. https://doi.org/10.1016/j.ejpoleco.2003.09.002

21. Horton, J. J., & Chilton, L. B. (2010). The labor economics of paid crowdsourcing. In Proceed-
ings of the 11th ACM Conference on Electronic Commerce (pp. 209–218). EC ’10. https://doi.
org/10.1145/1807342.1807376

22. Kiayias, A., Koutsoupias, E., Kyropoulou, M., & Tselekounis, Y. (2016). Blockchain mining
games. In Proceedings of the 2016 ACM Conference on Economics and Computation (pp.
365–382). New York, NY, USA: EC ’16, ACM. https://doi.org/10.1145/2940716.2940773.

23. Koki, C., Leonardos, S., & Piliouras, G. (2020). Do cryptocurrency prices camouflage latent
economic effects? A bayesian hidden markov approach. Future Internet, 28(1), 5. https://doi.
org/10.3390/fi12030059

24. Koki, C., Leonardos, S.,&Piliouras,G. (2022). Exploring the predictability of cryptocurrencies
via Bayesian hidden Markov models. Research in International Business and Finance, 59,
101554. https://doi.org/10.1016/j.ribaf.2021.101554

25. Konrad, K. A. (2000). Sabotage in rent-seeking contests. Journal of Law, Economics, & Orga-
nization, 16(1), 155–165. https://doi.org/10.2307/3555012

26. Kwon, Y., Liu, J., Kim,M., Song, D., &Kim, Y. (2019). Impossibility of full decentralization in
permissionless blockchains. In Proceedings of the 1st ACM Conference on Advances in Finan-
cial Technologies (pp. 110–123). New York, NY, USA: AFT ’19, Association for Computing
Machinery. https://doi.org/10.1145/3318041.3355463.

27. Leonardos, N., Leonardos, S., & Piliouras, G. (2020). Oceanic games: Centralization risks and
incentives in blockchain mining. In P. Pardalos, I. Kotsireas, Y. Guo, &W. Knottenbelt (Eds.),
Mathematical Research for Blockchain Economy (pp. 183–199). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-37110-4_13.

28. Leonardos, S., & Melolidakis, C. (2020). Endogenizing the cost parameter in cournot
oligopoly. International Game Theory Review, 22(02), 2040004. https://doi.org/10.1142/
S0219198920400046

29. Leonardos, S., Monnot, B., Reijsbergen, D., Skoulakis, S., & Piliouras, G. (2021). Dynamical
analysis of the EIP-1559 ethereum fee market. In Proceedings of the 3rd ACM conference on
Advances in Financial Technologies. New York, NY, USA: AFT ’21, Association for Comput-
ing Machinery.

30. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2019). Weighted voting on the blockchain:
Improving consensus in proof of stake protocols. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC) (pp. 376–384). https://doi.org/10.1109/BLOC.2019.
8751290.

https://doi.org/10.1145/3479722.3480991
https://doi.org/10.1145/3328526.3329630
https://doi.org/10.1145/3328526.3329630
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=14154
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=14154
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1109/ICBC48266.2020.9169391
https://doi.org/10.48550/ARXIV.2203.05838
https://doi.org/10.1016/j.ejpoleco.2003.09.002
https://doi.org/10.1145/1807342.1807376
https://doi.org/10.1145/1807342.1807376
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.3390/fi12030059
https://doi.org/10.3390/fi12030059
https://doi.org/10.1016/j.ribaf.2021.101554
https://doi.org/10.2307/3555012
https://doi.org/10.1145/3318041.3355463
https://doi.org/10.1007/978-3-030-37110-4_13
https://doi.org/10.1142/S0219198920400046
https://doi.org/10.1142/S0219198920400046
https://doi.org/10.1109/BLOC.2019.8751290
https://doi.org/10.1109/BLOC.2019.8751290

94 S. Leonardos et al.

31. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2020). PREStO: A systematic framework
for blockchain consensus protocols. IEEE Transactions on Engineering Management, 67(4),
1028–1044. https://doi.org/10.1109/TEM.2020.2981286

32. Levin, D., LaCurts, K., Spring, N., & Bhattacharjee, B. (2008). Bittorrent is an auction: Ana-
lyzing and improving bittorrent’s incentives. SIGCOMM Computer Communication Review,
38(4), 243–254. https://doi.org/10.1145/1402946.1402987

33. Shen, M. (2020). Crypto investors have ignored three straight 51% attacks on ETC. https://
www.coindesk.com/crypto-51-attacks-etc-coindesk.com. Accessed February 11, 2021.

34. Monnot, B., Hum, Q., Koh, C. M., & Piliouras, G. (2020). Ethereum’s transaction fee market
reform in eip 1559. WINE 20, Workshop on Game Theory in Blockchain. https://econcs.pku.
edu.cn/wine2020/wine2020/Workshop/GTiB20_paper_7.pdf.

35. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf. Accessed August 31, 2020.

36. Reijsbergen, D., Sridhar, S., Monnot, B., Leonardos, S., Skoulakis, S., & Piliouras, G. (2021).
Transaction fees on a honeymoon: Ethereum’s eip-1559 one month later. In 2021 IEEE
International Conference on Blockchain (Blockchain) (pp. 196–204). https://doi.org/10.1109/
Blockchain53845.2021.00034.

37. Schaffer, M. E. (1988). Evolutionarily stable strategies for a finite population and a variable
contest size. Journal of Theoretical Biology, 132(4), 469–478. https://doi.org/10.1016/S0022-
5193(88)80085-7

38. Singh, R., Dwivedi, A. D., Srivastava, G., Wiszniewska-Matyszkiel, A., & Cheng, X. (2020).
A game theoretic analysis of resource mining in blockchain. Cluster Computing, 23(3), 2035–
2046. https://doi.org/10.1007/s10586-020-03046-w

39. Stoll, C., Klaaßen, L., & Gallersdörfer, U. (2019). The carbon footprint of bitcoin. Joule, 3(7),
1647–1661. https://doi.org/10.1016/j.joule.2019.05.012

40. Sun, J., Tang, P., & Zeng, Y. (2020). Games of miners. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (pp. 1323–1331). Richland,
SC: AAMAS ’20, International Foundation for Autonomous Agents and Multiagent Systems.
https://doi.org/10.5555/3398761.3398914.

41. Wave Financial LLC. (2021). Ethereum 2.0 staking, a worthwhile investment? https://www.
cityam.com/ethereum-2-0-staking-a-worthwhile-investment/cityam.com. Accessed February
11, 2021.

42. Wikipedia Contributors. (2021). Griefer—wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Griefer&oldid=1006081077. Accessed February 11, 2021.

https://doi.org/10.1109/TEM.2020.2981286
https://doi.org/10.1145/1402946.1402987
https://www.coindesk.com/crypto-51-attacks-etc-coindesk.com
https://www.coindesk.com/crypto-51-attacks-etc-coindesk.com
https://econcs.pku.edu.cn/wine2020/wine2020/Workshop/GTiB20_paper_7.pdf
https://econcs.pku.edu.cn/wine2020/wine2020/Workshop/GTiB20_paper_7.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/Blockchain53845.2021.00034
https://doi.org/10.1109/Blockchain53845.2021.00034
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1016/S0022-5193(88)80085-7
https://doi.org/10.1007/s10586-020-03046-w
https://doi.org/10.1016/j.joule.2019.05.012
https://doi.org/10.5555/3398761.3398914
https://www.cityam.com/ethereum-2-0-staking-a-worthwhile-investment/cityam.com
https://www.cityam.com/ethereum-2-0-staking-a-worthwhile-investment/cityam.com
https://en.wikipedia.org/w/index.php?title=Griefer&oldid=1006081077
https://en.wikipedia.org/w/index.php?title=Griefer&oldid=1006081077

Data-Driven Analysis of Central Bank
Digital Currency (CBDC) Projects
Drivers

Toshiko Matsui and Daniel Perez

Abstract In this paper, we use a variety of machine learningmethods to quantify the
extent to which economic and technological factors are predictive of the progression
of Central BankDigital Currencies (CBDC)within a country, using as ourmeasure of
this progression the CBDC project index (CBDCPI). By extracting and aggregating
cross country data provided by several international organisations, we find that the
financial development index is the most important feature for our model, followed by
the GDP per capita and an index of the voice and accountability of the country’s pop-
ulation. Our results are consistent with previous qualitative research which finds that
countries with a high degree of financial development or digital infrastructure have
more developed CBDC projects. Further, we obtain robust results when predicting
the CBDCPI at different points in time.

Keywords Central bank digital currency (CBDC) · Digital currency · CBDC
project index ·Machine learning ·Multilayer perceptron · Random forest

1 Introduction

Recent advances in financial technology and distributed ledgers [17, 21] have paved
the way to the extensive use of digital currencies. Although the advancement of
these currencies came from private initiatives such as Bitcoin [20], Ethereum [28],
and Libra [11, 13], researchers and policymakers are contemplating whether central
banks can also issue their own digital currencies, usually referred to as central bank
digital currency (CBDC).

There has been a great deal of discussion about the implications of introducing
CBDCs. Although the concept of a CBDC has existed for quite a long time [27], the

T. Matsui (B) · D. Perez
Department of Computing, Imperial College London, London, United Kingdom
e-mail: t.matsui19@imperial.ac.uk

D. Perez
e-mail: daniel.perez@imperial.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_6&domain=pdf
mailto:t.matsui19@imperial.ac.uk
mailto:daniel.perez@imperial.ac.uk
https://doi.org/10.1007/978-3-031-18679-0_6

96 T. Matsui and D. Perez

stance toward whether central banks should introduce them has changed drastically
over the past year. Initially the focus of central banks was on systemic implications
[7] but several factors deriving from the benefits of the digital money have recently
motivated central banks to issue CBDCs. This trend has further been fueled by the
declining use of cash due to the growth of cashless payments, the possible introduc-
tion of global stablecoins [16] and the Covid-19 pandemic [3].

In fact, a great number of central banks are undertaking extensive work on CBDC
[9], several of which have issued research or statements on the related motivations,
architectures, risks, and benefits. For instance, Boar et al. [9] refer to the observed
shift to intensive practical development from conceptual research found in emerging
markets, driven by stronger motivations than those of advanced economy central
banks. In practice, several central banks issued their CBDCs between August and
December 2020 (see Sect. 2.2). Further, a few central banks are aiming to issue their
CBDCs in the next fewyears,which is attracting a lot of attention [4]; for example, the
beginning of 2021 saw the closing of the ECB digital euro consultation with record
level of public feedback [14]. This move is consistent with the observation that the
introduction of CBDCs can present significant innovations in money and banking
history [15]. Central banks are continuously pondering whether to issue their own
digital currencies to the public – in this context, recent papers [2, 24] further examine
the countries at the frontier of issuing CBDCs in order to share insights, lessons, and
remaining issues, to help the many countries following in their footsteps.

However, despite the great amount of analysis conducted regarding the important
questions surrounding CBDCs, relatively little quantitative analysis has been under-
taken especially on the drivers of the CBDC projects. The previous research include
the potential risk and benefits of introducing CBDC, and quantitatively, the welfare
gains of bringing CBDC into the economy [12]. Of the relevant research that exists
in this vein, [4] suggests, by taking an ordered probit approach [19] with a compre-
hensive cross country database, that the majority of the CBDC projects are found in
digitised economies with a high capacity for innovation. They conclude that some of
the potential drivers of CBDC development are related to factors affecting a coun-
try’s digital infrastructure, innovation capacity, institutional quality, development
and financial inclusion, public interest in CBDCs, and cross-border transactions.

This study examines the economic and institutional drivers of CBDC projects by
applying machine learning techniques to the related variables obtained from official
sources that are available for a wide cross section of countries. Our primary objective
is to improve the understanding of the dominant drivers for CBDCs and the factors
that increase the possibly of a country to accelerate this effort. We use the CBDC
project index (CBDCPI) [4] as our objective variable and factors affecting a country’s
digital or technological capability and government effectiveness as independent vari-
ables, in order to reduce the problem to identifying the independent variables with the
most predictive power. To accomplish this, we utilise machine learning techniques
to predict the CBDCPI and pick the most important variables for our model.

We compare two types of classifiers that are able to learn non-linear functions: a
multilayer perceptron (MLP) [22, 23] and a random forest [10]. In the experiment,
we find random forest performs better than MLP, and that the financial development

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 97

index [25] is the most important feature for our model, followed by the GDP per
capita and the voice and accountability, when explaining the CBDCPI drivers for
August 2020. This concurs with [4], which concluded that more developed CBDC
projects can be found in countries with higher financial development index, digital
infrastructure, GDP, and institutional characteristics. As a robustness check, we have
performed the same analysis with full and aggregated data and with December 2020
CBDCPI. Results are broadly consistent, although there were some minor changes
in the ranks of important features.

This paper is structured as follows. Section 2 describes the preliminaries including
the overview of CBDCs and the CBDC project index (CBDCPI). We subsequently
present the empirical models and data in Sect. 3, then results in Sect. 4. We conclude
in Sect. 5.

2 Preliminaries

In this section, we provide an overview of the key concepts from central bank digital
currency (CBDC) relevant to this paper.

2.1 Central Bank Digital Currency (CBDC)

A central bank digital currency (CBDC) is the digital form of the fiat currency of
a particular nation (or region). It differs from virtual currency and cryptocurrency,
as CBDC is issued by the state and possesses the legal tender status declared by
the government [18]. Examples include the Digital Currency/Electronic Payments
(DC/EP) by China’s central bank and e-krona by the central bank of Sweden.

The introduction of CBDCs is receivingmore attention than ever before. Although
the concept of aCBDCwas alreadyproposed decades ago [27], recent ITprogress and
its application to the financial industry have motivated central banks and academics
to study the risks and benefits of making CBDC accessible to the general public [6,
8], as presented in Table 1 [1].

Table 1 Benefits and challenges of CBDCs

Advantages Disadvantages

Low cost of cash Higher run risk

Enhances financial inclusion Commercial bank disintermediation

Stabilises the payment system Enhances currency substitution

Faster monetary policy transmission Risk and cost for central banks

98 T. Matsui and D. Perez

Fig. 1 Google Trends over time

Further, attitudes towards whether CBDCs should be issued by central banks have
changed drastically over the past year. This derived from the diminishing use of cash
due to the rise of cashless payments, the possible entry of global stablecoins [16] and
the Covid-19 pandemic. Specifically, social distancingmeasures and public concerns
that cash may transmit the Covid-19 virus and novel government-to-person payment
schemes have further fueled the shift toward digital payments, andmay act as a driver
of CBDC projects [3].

In fact, CBDCs have gained global attention, not only within central bank com-
munities but also by the public. Figure 1 charts the Google search interest over time.1

This shows that the current interest in CBDC is increasing, reaching a level almost
as high as Bitcoin’s during its price spike of 2017.

However, amajority ofCBDCs are still in research or pilot stage, although a survey
in early 2020 showedmore than 80% of central banks were studying the subject [26].
Further, the drivers of the CBDC projects are yet to be thoroughly investigated [4].

2.2 CBDC Project Index (CBDCPI)

TheCBDCproject index (CBDCPI)was firstly proposed byAuer et al. [4] tomeasure
the central bank’s progress toward the development of a retail or wholesale CBDC.

1 We took 12-week moving average of Google Trends search results.

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 99

CBDCPI represents publicly announced work by central banks on CBDC related
projects. The index takes a value between 0 and 4 defined as follows:

0 - No announced project
1 - Public research studies
2 - Ongoing or completed pilot
3 - Live CBDC

There are two sub-indices, one for retail and one for wholesale CBDC projects.
Wholesale CBDC is devised as a new instrument for settlement between financial
organisations,whereas retail CBDCaims to replace cashwith the properties of central
bank liability. The overall index for a country is the maximum of these two sub-
indices.

According to the dataset provided by the online annex of [4], there was no country
with index 3 (live CBDC) as of August 2020 but by the end of 2020, seven countries
and jurisdictions, including Bahamas, Canada, Switzerland, France, have shifted to
3.2 This clearly reflects the recent trend and discussion that have brought the analysis
about digital money and CBDC to the fore [5].

3 Data and Methodology

Our main goal is to understand better the main drivers for CBDCs and the factors
that makes a country more or less likely to push this effort. Using the CBDC project
index (CBDCPI) as our objective variable and factors affecting a country’s digital or
technological capability and government effectiveness as explanatory variables, we
can reduce this to finding the explanatory variables with the most predictive power.
To achieve this, we leverage machine learning techniques to predict the CBDCPI and
extract the most important variables for our model. We use the rest of this section to
describe our data and provide details about ourmachine-learning basedmethodology.

3.1 Data

We extract our dataset from theWorld Bank, the InternationalMonetary Fund (IMF),
and the data source of a BIS working paper [4]. After having processed and cleaned
the data, it ended up containing 16 variables, including data from 2000 to 2019, with
more than 170 countries and jurisdictions. The Table 2 lists the observed variables
included in our analysis.

Our variables can be divided into the following categories: (i) digital infras-
tructure, (ii) development and financial inclusion, (iii) institutional characteristics,

2 The updated CBDC projects status is available in an online annex of [4] (See https://www.bis.
org/publ/work880.htm). The information is said to have been collected through desk research and
with the help of contacts at several individual central banks.

https://www.bis.org/publ/work880.htm
https://www.bis.org/publ/work880.htm

100 T. Matsui and D. Perez

Table 2 Table of observed variables

Variable Description Source

Digital infrastructure

Mobile subscriptions Subscriptions to a mobile
telephone service (per 100
ppl.)

WB

Secure Internet The number of secure Internet
servers (per 1 million ppl.)

WB

Broadband subscription Fixed broadband subscriptions
(per 100 ppl.)

WB

indiv. Internet use Individuals using the Internet
(% of population)

WB

Development and financial inclusion

Account ownership Account ownership at a
financial institution or with a
mobile-money-service
provider (% of population
aged 15+)

WB

FD index Indices that summarise the
degree of developments of
financial institutions and
financial markets

IMF

GDP per capita GDP divided by midyear
population (USD)

WB

Institutional characteristics

Government effectiveness Quality of public services,
policy implementation etc.

WB

Regulatory quality Ability to formulate and
implement sound policies etc.

WB

Voice and accountability Extent of citizens’
participation and freedom
expression

WB

Innovation environment

Access to electricity Access to electricity (% of
population)

WB

Demographic characteristics

% of people over 65 Total population 65 years of
age or older

WB

Cross-border transactions

Trade (% of GDP) Sum of exports and imports (%
of GDP)

WB

Source World Bank (DataBank), IMF (working paper [25])
Dependent variable, CBDCPI, was obtained from BIS (online annex of [4])

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 101

Table 3 Countries with a CBDCPI of 3 as of December 2020

Country Overall Overall Retail Wholesale

(Dec 20) (Aug 20) (Dec 20) (Dec 20)

Bahamas 3 2 3 0

Canada 3 2 1 2

Switzerland 3 1 1 2

Euro area (ECB) 3 2 1 2

France 3 2 1 2

Japan 3 2 1 2

South Africa 3 1 1 2

Source Online annex of [4]

(iv) innovation environment, (v) demographic characteristics, and (vi) cross-border
transactions. Each variable contains several years of data ranging from 2000 to 2019.
Although our dataset on financial development index holds data about several finan-
cial development sub-indices in terms of their depth, access, and efficiency, we only
include the top-level index.3 We perform our analysis both using the full data and an
aggregated version of our data. For the aggregated data, we average each variable
over the period 2014-2019, subject to data availability.

The CBDCPI has 176 observations, one per country, each taking the value of 0,
1, 2, or 3, as described in Sect. 2.2. We obtain the CDCPI for December 2020, in
addition to its August 2020 value from previous research [4]. The major difference
between these two variables is that, as of August 2020, there were no countries with a
live CBDC (i.e. no index with value 3) while there were 7 of them with a live CBDC
by December 2020. We show the countries with a CDCPI of 3 as of December 2020
in Table 3.

3.2 Methodology

Instead of the ordered probit approach [19] applied in [4], we model the problem as
a classification task where the goal is to predict the CBDCPI given the set of input
variables described above. Given that the CBDCPI is a value between 0 and 3, it is
easy to model as a categorical variable.

We settle on a random forest as our primarymodel, as it is known to be able to learn
complex non-linear functions while being interpretable enough to extract the most
important input variables [10]. To obtain a point of comparison for the predictions
of our random forest, we also train a multilayer perceptron [22, 23] on the same
task. However, given that multilayer perceptrons are not interpretable enough to
understand the most important features, we only use these results for comparison.

3 See Financial Development Index Database by IMF for more information. (https://data.imf.org/?
sk=f8032e80-b36c-43b1-ac26-493c5b1cd33b).

https://data.imf.org/?sk=f8032e80-b36c-43b1-ac26-493c5b1cd33b
https://data.imf.org/?sk=f8032e80-b36c-43b1-ac26-493c5b1cd33b

102 T. Matsui and D. Perez

We utilise this methodology with the full version and the aggregated version of
the data to predict the CBDCPI both in August and December 2020.

4 Results

This section presents the results we obtained by training the models described above
on our dataset.

Before starting our training process, we preprocess the data to filter out lacking
data. We first remove all the countries for which the CBDCPI is not available, as well
as the countries for which one or more of the observed variables is not available (e.g.
do not have a single year of data). When a country is missing a year for a particular
variable, we use the previous year to fill for it (e.g. if the GDP per capita is available
for 2018 but not 2019, we set it to the value of 2019). After this filtering process, we
obtain a final list of 145 countries with only 6 countries having a CBDCPI of 3 as of
December 2020; unfortunately, the Euro Area was not included in the final dataset
as we did not have the financial development index data for it. Further, we obtain a
total of 13 variables for our aggregated data and 135 variables for the full data.

Then, we randomly split our dataset in two equal splits for training and testing.
We then tune the hyper-parameters of our two models. We note that given the small
size of our dataset, we use the full data instead of having a separate cross-validation
set. We find that our random forest works best with a total of 100 estimators. For
our multilayer perceptron, we use two layers, the first one with a number of neurons
equal to the number of features and the second one a fixed size of 10 neurons. Finally,
we train the two models on our training data and evaluate them on our test data. We
present the accuracy of the twomodels in Table 4. Overall, our model performs better
with the full data rather than its aggregated version.

Next, we use the features extracted by our random forest to understand better
what the potential drivers of CBDC are. We use the aggregated August 2020 data
to compare with [4] and see if the random forest achieves similar results as to the
drivers for CBDCs. We find that the financial development index [25] is by far the

Table 4 Accuracy of different classifiers on full and aggregated data

Full data Aggregated data

Classifier Train Test Train Test

Aug MLP 1.0 0.79 0.99 0.74

Random
Forest

1.0 0.78 1.0 0.77

Dec MLP 1.0 0.67 1.0 0.62

Random
Forest

1.0 0.78 1.0 0.68

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 103

Table 5 Most important features for the random forest (Aug 2020, aggregated)

Feature Importance

Financial development index 0.165

GDP per capita 0.098

Voice and accountability 0.095

Broadband subscriptions (per 100 people) 0.093

Government effectiveness 0.087

Table 6 Most important features for the random forest (Dec 2020, aggregated)

Feature Importance

% of people over 65 0.134

Financial development index 0.109

Mobile cellular subscriptions (per 100 people) 0.101

GDP per capita 0.090

Voice and accountability 0.089

most important feature for our model, followed by the GDP per capita and the voice
and accountability, when explaining the CBDCPI drivers for August 2020. This is
consistent with [4], stating that the CBDC projects to be more developed where there
is higher financial development index, GDP, digital infrastructure, and institutional
characteristics such as govenment effectiveness and voice and accountability. We
summarize the top 5 features and their importance for random forest in Table 5.

For robustness check,we conduct the sameanalysiswithDecember 2020CBDCPI
data as an objective variable. The results are almost consistent with the August
CBDCPI data, aside from the fact that the aging rate additionally accounts for the
December 2020 data – random forest performing much better and allows to extract
the most important features used for classification. The most significant features are:
mean65+, financial development index,mobile cellular subscription,GDPper capita,
and voice and accountability, showing that the main features predicted as important
are proved to be important with December 2020 CBDCPI data, as suggested in
Table 6.

5 Conclusion

In this paper, by applying a variety of machine learning methods used to learn com-
plex non-linear functions for comprehensive cross country data, we investigated the
importance of each economic and technological factors in predicting the progression
of Central Bank Digital Currencies (CBDC) project within a country, using as our
measure of this advancement the CBDC project index (CBDCPI). We found that a

104 T. Matsui and D. Perez

financial development index is the most important feature for our model, followed
by the GDP per capita and an index of the voice and accountability of the country’s
population. Additionally, we confirmed that our results are in accordance with pre-
vious qualitative research which finds that countries with a high degree of financial
development or digital infrastructure havemore advancedCBDCprojects.Moreover,
we achieved robust results when examining the CBDCPI at different points in time.

A Appendix

This annex gives additional tables, regression results and figures to complement the
paper. See main text for further discussion.

A.1 CBDC Projects Status

Below shows the part of the updated project score of global CBDC development
efforts, relating to [4] (as of December 2020).4 Note that only the countries with
index of 3 (live CBDC) and 2 (pilot) as of December 2020 are listed here.

Country Overall* Overall (Aug 20) Retail* Wholesale*

Bahamas 3 2 3 0
Canada 3 2 1 2
Switzerland 3 1 1 2
Euro area (ECB) 3 2 1 2
France 3 2 1 2
Japan 3 2 1 2
South Africa 3 1 1 2
United Arab Emirates 2 2 0 2
Australia 2 1 1 1
China 2 2 2 0
Ecuador 2 2 2 0
Eastern Caribbean 2 2 2 0
United Kingdom 2 2 1 1
Hong Kong 2 2 0 2
Indonesia 2 1 1 1
India 2 0 1 1
South Korea 2 2 2 0
Saudi Arabia 2 2 0 2
Sweden 2 2 2 0
Singapore 2 2 0 2
Swaziland 2 1 1 1
Thailand 2 2 0 2
Ukraine 2 2 2 0
Uruguay 2 2 2 0
*As of December 2020.

4 The dataset includes all projects announced as of 1 December 2020. For more information, see
https://www.bis.org/publ/work880.htm.

https://www.bis.org/publ/work880.htm

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 105

Table 7 Most important features for the random forest classifier (Aug 2020)

Feature Importance

Financial Development Index 0.165

GDP per capita 0.098

Voice and accountability 0.095

Broadband subscriptions (per 100 people) 0.093

Government effectiveness 0.087

% of people over 65 0.082

Individuals using the Internet (% of population) 0.080

Trade (% of GDP) 0.078

Secure Internet servers (per 1 million people) 0.072

Regulatory quality 0.068

A.2 Top 10 Features for the Random Forest Classifier with
Aggregated Data

Tables 7 and 8 give the 10most important independent variables for the random forest
classifierwith aggregated data (data averaged over the period 2014–19, subject to data
availability), with August 2020 and December 2020 CBDCPI data as an objective
variable, respectively.

Table 8 Most important features for the random forest classifier (Dec 2020)

Feature Importance

% of people over 65 0.134

Financial Development Index 0.109

Mobile cellular subscriptions (per 100 people) 0.101

GDP per capita 0.090

Voice and accountability 0.089

Secure Internet servers (per 1 million people) 0.086

Individuals using the Internet (% of population) 0.080

Government effectiveness 0.080

Broadband subscriptions (per 100 people) 0.076

Trade (% of GDP) 0.067

106 T. Matsui and D. Perez

Table 9 Most important features for the random forest classifier (Aug 2020)

Feature Importance

Financial Development Index 0.052

Government effectiveness [YR2019] 0.033

Government effectiveness [YR2018] 0.020

Broadband subscriptions (per 100 people)
[YR2017]

0.020

Individuals using the Internet (% of population)
[YR2012]

0.020

Individuals using the Internet (% of population)
[YR2015]

0.020

GDP per capita [YR2016] 0.018

Government effectiveness [YR2015] 0.016

Mobile cellular subscriptions (per 100 people)
[YR2016]

0.015

% of people over 65 [YR1990] 0.014

A.3 Top 10 Features for the Random Forest Classifier with
Full Data

Tables 9 and 10 show the 10 most important index for the random forest classifier
with full data, with August 2020 and December 2020 CBDCPI data as an objective
variable, respectively.

Table 10 Most important features for the random forest classifier (Dec 2020)

Feature Importance

Financial Development Index 0.037

% of people over 65 [YR1990] 0.035

Mobile cellular subscriptions (per 100 people)
[YR2019]

0.025

% of people over 65 [YR2018] 0.023

% of people over 65 [YR2017] 0.021

% of people over 65 [YR2000] 0.020

Government effectiveness [YR2017] 0.020

% of people over 65 [YR2015] 0.020

% of people over 65 [YR2013] 0.019

Mobile cellular subscriptions (per 100 people)
[YR2015]

0.018

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers 107

References

1. Adrian, T., & Mancini-Griffoli, T. (2019). Central bank digital currencies: 4 questions and
answers, IMF Blog.

2. Agur, I., Anil, A., &Dell’Ariccia, G. (2022). Designing central bank digital currencies. Journal
of Monetary Economics, forthcoming.

3. Auer, R., Cornelli, G., & Frost, J. (2020). Covid-19, cash and the future of payments. BIS
Bulletin, 3.

4. Auer, R., Cornelli, G., & Frost, J. (2020). Rise of the central bank digital currencies: drivers,
approaches and technologies. BIS working paper, No. 880.

5. Bank for International Settlement. (2020). Central bank group to assess potential cases for
central bank digital currencies. BIS press release, 21 Jan 2020. https://www.bis.org/press/
p200121.htm.

6. Bank for International Settlement. (2018). Central bank digital currencies (p. 174). Markets
committee papers, No: CPMI.

7. Barontini, C., & Holden, H. (2019). Proceeding with caution-a survey on central bank digital
currency (p. 101). No: BIS papers.

8. Bindseil, U. (2020). Tiered CBDC and the financial system. Working paper series 2351, Euro-
pean Central Bank. https://ideas.repec.org/p/ecb/ecbwps/20202351.html.

9. Boar, C., Holden, H., & Wadsworth, A. (2020). Impending arrival-a sequel to the survey on
central bank digital currency (p. 107). No: BIS papers.

10. Breiman, L. (2001). Random forests. Machine Learning. 45(1), 5–32. https://link.springer.
com/article/10.1023/A:1010933404324.

11. Brühl, V. (2019). Libra–a differentiated view on facebook’s virtual currency project. CFS
working paper series 633, Frankfurt a.M. http://hdl.handle.net/10419/206412

12. Davoodalhosseini, S. M. R. (2018). Central bank digital currency and monetary policy. Staff
working papers, Bank of Canada. https://EconPapers.repec.org/RePEc:bca:bocawp:18-36.

13. Diem Association. (2020). Diem white paper. https://www.diem.com/en-us/white-paper.
14. European Central Bank. (2021). ECB digital euro consultation ends with record level of pub-

lic feedback. ECB press release, 13 Jan 2021. https://www.ecb.europa.eu/press/pr/date/2021/
html/ecb.pr210113~ec9929f446.en.html.

15. Fernández-Villaverde, J., Sanches, D., Schilling, L., & Uhlig, H. (2020). Central bank digital
currency: Central banking for all? Review of Economic Dynamics. http://www.sciencedirect.
com/science/article/pii/S1094202520301150.

16. Financial Stability Board. (2020). Regulation, supervision and oversight of “global stablecoin”
arrangements. Financial Stability Board.

17. von zur Gathen, J. (2015). CryptoSchool. Berlin: Springer-Verlag. https://link.springer.com/
book/10.1007/978-3-662-48425-8.

18. Grym, A., Heikkinen, P., Kauko, K., & Takala, K. (2017). Central bank digital currency.
Banque de France: Tech. rep.

19. McKelvey, R.D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level
dependent variables. The Journal of Mathematical Sociology, 4(1), 103–120. https://www.
tandfonline.com/doi/abs/10.1080/0022250X.1975.9989847.

20. Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/
bitcoin.pdf.

21. Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryp-
tocurrency technologies: A comprehensive introduction. USA: Princeton University Press.

22. Rosenblatt, F. (1961). Principles of neurodynamics: Perceptions and the theory of brain mech-
anism. Spartan Books.

23. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by
error propagation, pp. 318–362. Cambridge, MA: MIT Press.

24. Soderberg, G., et al. (2022). Behind the scenes of central bank digital currency emerging
trends, insights, and policy lessons. FinTech Notes No. 2022/004, IMF. https://www.imf.
org/en/Publications/fintech-notes/Issues/2022/02/07/Behind-the-Scenes-of-Central-Bank-
Digital-Currency-512174.

https://www.bis.org/press/p200121.htm
https://www.bis.org/press/p200121.htm
https://ideas.repec.org/p/ecb/ecbwps/20202351.html
https://springerlink.bibliotecabuap.elogim.com/article/10.1023/A:1010933404324
https://springerlink.bibliotecabuap.elogim.com/article/10.1023/A:1010933404324
http://hdl.handle.net/10419/206412
https://EconPapers.repec.org/RePEc:bca:bocawp:18-36
https://www.diem.com/en-us/white-paper
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210113~ec9929f446.en.html
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210113~ec9929f446.en.html
http://www.sciencedirect.com/science/article/pii/S1094202520301150
http://www.sciencedirect.com/science/article/pii/S1094202520301150
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-662-48425-8
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-662-48425-8
https://www.tandfonline.com/doi/abs/10.1080/0022250X.1975.9989847
https://www.tandfonline.com/doi/abs/10.1080/0022250X.1975.9989847
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/02/07/Behind-the-Scenes-of-Central-Bank-Digital-Currency-512174
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/02/07/Behind-the-Scenes-of-Central-Bank-Digital-Currency-512174
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/02/07/Behind-the-Scenes-of-Central-Bank-Digital-Currency-512174

108 T. Matsui and D. Perez

25. Svirydzenka, K. (2016). Introducing a new broad-based index of financial development. IMF
working papers, No. 15.

26. Economist, The. (2020). Will central-bank digital currencies break the banking system? (pp.
0013–0613). ISSN: Tech. rep. Dec.

27. Tobin, J. (1987) The case for preserving regulatory distinctions. Proceedings of the Economic
Policy Symposium, 167–83.

28. Wood, G., et al. (2014). Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014), 1–32.

Dissimilar Redundancy in DeFi

Daniel Perez and Lewis Gudgeon

Abstract The meteoric rise of Decentralized Finance (DeFi) has been accompanied
by a number of financially devastating attacks on its protocols. There have been over
70 exploits of DeFi protocols, with the total of lost funds amounting to approximately
1.5bn USD. In this paper, we introduce a new approach to minimizing the frequency
and severity of such attacks: dissimilar redundancy for smart contracts. In a nutshell,
the idea is to implement a program logic more than once, ideally using different
programming languages. Then, for each implementation, the results should match
before allowing the state of the blockchain to change. This is inspired by and has
clear parallels to the field of avionics, where on account of the safety-critical environ-
ment, flight control systems typically feature multiple redundant implementations.
We argue that the high financial stakes in DeFi protocols merit a conceptually similar
approach, and we provide a novel algorithm for implementing dissimilar redundancy
for smart contracts.

1 Introduction

Decentralized Finance (DeFi) Protocol hacks are frequent–with more than 70 to date
totalling losses of more than 1.5bn USD [8]. For a financial infrastructure that is
purportedly going to replace traditional finance, this is worrisome. The severity of
the issue of hacks is exacerbated by the non-custodial nature of DeFi systems. Unlike
in traditional financial systems, where in the event of financial disaster, there are often
safety-nets such as the state or insurers, in the DeFi setting there are no such safety
provisions at scale. Moreover, while there is a nascent insurance market for DeFi
insurance, e.g. [15], such solutions provide only a (necessary) second-best solution:
providing coverage in the event of a DeFi system failure. A first-best solution is to
prevent the failure in the first place.

D. Perez (B) · L. Gudgeon
Imperial College London, London, UK
e-mail: daniel.perez@imperial.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_7

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_7&domain=pdf
mailto:daniel.perez@imperial.ac.uk
https://doi.org/10.1007/978-3-031-18679-0_7

110 D. Perez and L. Gudgeon

Preventing such failures is challenging. Leaving aside the security of the underly-
ing blockchain layer, the two main pillars of DeFi protocol security are (i) extensive
smart contract testing and (ii) code audits. Both of these have drawbacks. Ensuring
adequate test coverage is very challenging, not least when the objective is to ensure
all edge-cases are covered in the tests. While testing is an essential part of smart
contract development, we suggest that it is not realistic to expect even best practice
testing with a very high degree of coverage to be sufficient to prevent all bugs. Code
audits are often performed by external teams under time pressure, with audits typi-
cally lasting 2–3 weeks from start to finish, even for teams with no prior familiarity
with the code base. Even for the most experienced software engineer, native to DeFi,
it is wishful thinking to believe that they will always be able to catch every bug.
The problem is compounded by smart contract composability–where DeFi protocols
are snapped together like DeFi lego–which serves to increase the challenge as tests
and auditors now have to anticipate bugs that could arise with as yet unseen smart
contracts.

This paper presents a new approach to preventing failures at the smart contract
level: dissimilar redundancy. In aviation, the safety-critical nature has led to the
emergence of a practice of implementing multiple separate and redundant flight
control systems. For example, the Boeing 777 [24] featured a Fly-By-Wire flight
control system that had to meet extremely high levels of functional integrity and
reliability. To do this, it had three separate primary flight computers, with each
computer containing three dissimilar internal computational lanes. The lanes differed
in terms of compilers, power supply units and microprocessors, with, for example,
lane 1 using the AMD 29050, lane 2 the Motorola 68040 and lane 3 the Intel 80486.
Within each of the three flight computers, two of the lanes acted as monitors while
the third lane was in command. In this way, the flight computer features a form of
redundancy that is dissimilar, with the multiple lanes being resistant to bugs induced
by microprocessors or compilers.

We apply the core of this idea to smart contracts. We implement and detail a sys-
tem based on a proxy pattern which relies on dissimilar implementations of a DeFi
protocol, and cross-checks one against the other before effecting any on-chain state
change. On Ethereum, this approach has already been taken for client implementa-
tions, with the community maintaining multiple open-source clients, developed by
different teams and using different programming languages [10]. The purpose of
this approach is to strengthen the network and make it more diverse, with a view to
avoiding a single client dominating the network in order to remove single points of
failure. We extend this concept to the smart contract layer itself.

Our contributions are as follows.

• We introduce the notion of dissimilar redundancy for DeFi protocols
• We provide the first implementation of a protocol for dissimilar redundancy for a
DeFi protocol1

• We evaluate the protocol on a smart contract auction system implemented in
both Solidity and Vyper, verify that a fuzzing approach would be able to detect

1 https://github.com/danhper/smart-contract-dissimilar-redundancy.

https://github.com/danhper/smart-contract-dissimilar-redundancy

Dissimilar Redundancy in DeFi 111

purposefully introduced bugs, and provide the costs in USD of using a protocol
for dissimilar redundancy

Outline

We set out the necessary background in Sect. 2, provide our methodology in Sect. 3,
evaluate it in Sect. 4, consider related work in Sect. 6 and conclude in Sect. 7.

2 Background

In this section, we provide the necessary background regarding smart contracts, their
potential vulnerabilities, as well as the cost of their execution.

2.1 Smart Contracts

Smart contracts are program objects that are native to blockchains. In the con-
text of Ethereum, such smart contracts require that the underlying blockchain is
a transaction-based state-machine. State changes occur on a blockchain through
transactions, which are atomic: they either succeed, where the state is updated, or
fail, where the state of the blockchain remains unchanged. For the approach we
take below, atomicity is a crucial property of smart contracts as it provides that the
blockchain cannot be left in an invalid or inconsistent state. Communication between
two smart contracts occurs via message calls within the same execution context.

2.2 Scaling Solutions

Given the high cost of using Ethereum, many scaling solutions have emerged trying
to solve this issue. At the heart of these approaches is taking computation off the
layer-one blockchain, and instead performing this on a separate layer while using
the layer-one blockchain as an anchor of trust. Such protocols are typically denoted
layer two protocols, the name for a family of solutions that seek to allow applications
to scale by processing transactions off the main blockchain.

In the context of Ethereum, one approach is to use rollups [11]. Rollups perform
transaction execution away from the layer-one blockchain but store transaction data
on-chain. In doing so, the security properties of layer-one are leveraged as an anchor
of trust by the rollup approach, which is then able to perform transaction execution
off-chain.

For a full summary of these approaches, see [13].

112 D. Perez and L. Gudgeon

2.3 Smart Contract Vulnerabilities

Over the years, there have been many smart contract exploits often leading to signifi-
cant losses of money [1, 17]. There are many different ways in which smart contracts
can be exploited but on a very high level, attacks can be classified as “technical”,
which means that an attacker can steal funds by exploiting a technical issue, such as
a bug, in the contract, or “economical”, which means that the attacker can exploit
a contract through incentives that might not be properly aligned [22]. For the pur-
pose of this paper, we will focus on technical security of smart contracts. Within
technical security itself, there is also a myriad of different potential issues, such as
contract vulnerable to re-entrancy [19] or flash loan attacks [18]. However, another
very common way in which contracts fail is simply logical bugs. Such logical bugs
have cost millions to many smart contract projects. For example, Compound was
recently victim of such an incident [3], that cost the protocol over 90 million USD.
The error was as simple as a greater than symbol that should have been greater or
equal. This is the class of bugs where dissimilar redundancy is the most promising.

3 Methodology

3.1 Overview

We now turn to how we use the approach of dissimilar redundancy in the context of
Ethereum. At the centre of our approach is the use of a proxy architecture pattern.
With a proxy pattern, all message calls to a contract C first go through a proxy contract
P that serves to direct the message calls to contract C. With this pattern, contract C
contains the actual implementation logic while contract P provides a storage layer.
At present, a common use of this pattern is to provide contract upgradeability [2,
16]: while contracts cannot be directly upgraded once deployed, upgradeability can
be mimicked by changing where contract P delegates calls to from contract C to
contract C1.

We expand on this pattern: in our pursuit of dissimilar redundancy, we allow P
to delegate to multiple implementations at once. This is in contrast to the standard
pattern which only permits delegation to a single implementation at a time. In a
nutshell, our proxy contract P sequentially calls two different implementations–
supposedly identical in logic–C1 and C2 and ensures that the data returned by function
calls to each implementation as well as return values from an arbitrary number
of checks provided by the contract developer match. In this context, a check is a
call to a contract’s function of which the return value is deemed relevant to the
function called. For example, in the context of an ERC-20 token [21], the developer
might want to add balanceOf(from) and balanceOf(to) as a check for
transferFrom(from, to, amount). The proxywill then call balanceOf

Dissimilar Redundancy in DeFi 113

Fig. 1 Overview of our dissimilar redundancy framework

twice after each call to transferFrom and ensure that the results are consistent
among the implementations.

Although the overall idea is straightforward, the actual implementation requires
several technical difficulties to be overcome.We show an overview of the framework
in Fig. 1.

114 D. Perez and L. Gudgeon

3.2 The Technical Challenges

Calling implementations with the same state The first difficulty is that our approach
requires both implementations to be called with the same initial state, sequential
contract calls would typically modify this state. To overcome this, all state changes
made by a call to an implementation need to be rolled back before we call the next
implementation. We leverage the atomic nature of Ethereum’s calls to achieve this:
if a transaction raises an error, the state reverts to the initial state.

In our approach, instead of the proxy directly delegating to an implementation, it
first delegates to itself, passing in the call data as an argument along with the imple-
mentation to call and the checks to perform. In this delegated call, the proxy then
delegates to the implementation, executes all the checks and combines their result in
a single hash value. It then reverts the execution to rollback the changes made by the
implementation and returns the checks hash as the revert data. The only exception to
this is the call to the last implementation, where it returns the checks hash normally
instead of reverting, to persist the changes. We provide a high-level overview of the
delegation logic in Algorithm 1. Low-level implementation details can be found in
our open-source implementation.

Check encoding The second difficulty concerns how the checks to be performed
after each execution should be encoded. A check is a call to a contract that needs
to be consistent after each execution. To make the proxy retain the interface of
a proxied implementation, we must pre-register the checks with the proxy, rather
than specifying the checks with each call. A naive implementation would permit the
developer to register a function with pre-encoded arguments to be called after any
call. However, such an implementation would have severe limitations. Pre-encoding
arguments makes calls such as the one described above for balanceOf impossible,
as these depend on call data and transaction information—this information is only
available at runtime. Since these calls need to be well targeted for them to be effective
and find potential discrepancies among implementations, such an approach would
not be viable.

Instead, we implement an approach which achieves the following objectives:

1. the registration of per-function checks, without pre-encoded arguments. For
example: transferFrom and approve could have a different set of checks
registered.

2. call data and transaction information should be accessible during the checks

The first objective is easily achieved by storing amapping from function signature
to checks and retrieving the relevant checks depending on the function signature
called by the current call to the proxy. The second objective is more challenging, as
the developer must be able to register checks upfront that rely on information only
available when the function is executed. To allow for this, rather than registering
checks by passing in the arguments themselves, we design a simple byte encoding
for the arguments that allows abstract arguments, registered with the checks, to be

Dissimilar Redundancy in DeFi 115

Algorithm 1 Dissimilar redundancy framework call delegation
function CallDelegate(impl, data, checks, isLast)

(ok, retData) ← DelegateTo(impl, data)
checkResults ← RunChecks(checks)
checksHash ← HashChecks(checkResults)
if isLast then

return (ok, retData, checksHash)
else

revert (ok, retData, checksHash)
end if

end function

function RedundantCall(implementations, data)
n ← Length(implementations)
signature ← GetSig(data)
checks ← GetChecks(signature)

for i ← 0, n − 1 do
impl ← implementations[i]
last ← i == n − 1

callData ← Encode(CallDelegate, impl, data, checks, last)
(_, delegateRet) ← DelegateTo(this, callData)
(ok, retData, checksHash) ← Decode(delegateRet)

if IsDefined(previousOk) then
Assert(previousOk == ok)
Assert(previousRetData == retData)
Assert(previousChecksHash == checksHash)

else
previousOk ← ok
previousRetData ← retData
previousChecksHash ← checksHash

end if
end for

return (ok, retData)
end function

mapped to the concrete arguments that are computed when executing the checks. For
example, an abstract argument could be “the first argument of the current call” or
“the sender of the current transaction”. When executing the checks, the proxy will
map these to the actual value of the first argument or the sender of the transaction,
and encode these when calling the check function.

In Fig. 2, we show how we encode abstract arguments to register the checks. The
first four bytes are, as for regular calls, the signature of the function to be called.
The next byte is the number of arguments to pass to the function. Each argument can
then be one of three types: a static argument, a call data argument or an environment

116 D. Perez and L. Gudgeon

Fig. 2 Encoding for registering checks.C is the number of arguments. The three types of arguments
are shown. Type 0 represents a static argument and N is the length of the static content. Type 1
represents call data argument whereO andL are the offset and length to retrieve from call data. Type
2 represents environment argument and T is the type of environment variable (e.g. msg.sender)
to use

argument. These types determine how the concrete argument will be computed when
the contract is called:

• A static argument: simply passed through to the function as a concrete argument
• A call data argument: the given bytes from the transaction call data are extracted
and passed as an argument

• An environment argument: looks up the concrete argument in the current trans-
action. The argument to be looked up in the environment, e.g., the sender of the
transaction or the current block timestamp is specified by a single byte in the
abstract argument.

Once all the abstract arguments are converted into their concrete counterpart, they
are encoded along with the function signature and the check can be performed.

This encoding provides enough flexibility to perform a wide variety of different
checks.

Toy example We show an example of such checks in Fig. 3, where we register three
different checks for the transferFrom function of an ERC-20 token. The two
first checks are for the balance of the first argument (the address sending tokens)
and the second argument (the address receiving tokens) of the transferFrom. In
both cases, we extract these arguments from the call data. The third check is for the
allowance and also uses the first argument but also the sender of the transaction, as
their allowance is expected to decrease after a successful call to transferFrom.

Now that we have established the methodology behind this approach to imple-
menting dissimilar redundancy, we turn to an evaluation.

Dissimilar Redundancy in DeFi 117

Fig. 3 Example checks
registration for an ERC-20
token transferFrom
function

4 Evaluation

To evaluate our solution, we use a smart contract implementing a simple auction
system. The rules of the auction system are as follows:

1. A seller starts an auction with an NFT of their choice and sets an end time
2. The NFT is transferred to the auction contract
3. Any user can bid in the auction and the bid must be strictly greater than the

previous highest until the auction ends
4. After the auction ends, anyone can “finalize” the auction, which will either

transfer the NFT to the winner of the auction or transfer it back to the owner if
there were no bids

We implement the auction contract with the same behavior in both Solidity and
Vyper but purposefully introduce a couple of implementation bugs in one of the
two contracts. We then check whether these bugs would be detected by fuzzing the
contract and causing the proxy to fail due to inconsistencies in the evaluation results.

In particular, we introduce two bugs to the Vyper version of the contract. First,
rather than checking that the bid is strictly greater than the previous one, we check
that the bid is greater or equal. This means that in this particular case, the Solidity

118 D. Perez and L. Gudgeon

Fig. 4 Testing code using dissimilar redundancy

version will revert the transaction while the Vyper one will successfully execute.
Second, we omit the case where there were no bidders. As a result, both versions
will successfully execute but for the Vyper implementation, the ownership of the
NFT will still be the auction contract in the case there were no bidders.

4.1 Development-Time Testing

We first test our code locally to show how our approach can make bug-detection at
development time significantly easier.

To test our code, we use Python in combination with the Brownie framework2

for testing and the Hypothesis library [14] to generate test cases. We show the most
important part of the code we use to our auction contract in Fig. 4. We note that the
ensure_consistent context manager is implemented as part of our tooling and
will only fail if a call reverts because implementations did not behave similarly.

In the tests, we first register a check for finalize that will look up the owner of the
NFT that was on sale. For testing both bid and finalize, we generate random
bids, where a bid is an account and value (price to pay for the auction) pair. For bid,

2 https://eth-brownie.readthedocs.io/.

https://eth-brownie.readthedocs.io/

Dissimilar Redundancy in DeFi 119

Fig. 5 Failing testswhen fuzzing the auction contractwith a correct and an incorrect implementation

we only execute all the bids while for finalize, we also ensure that the auction is
ended and execute finalize.

Using this approach, trying to fuzz the contract requires performing differential
fuzzing on the different implementations of the contract logic registered by the proxy.
This makes it possible to easily identify the cases where the two implementations do
not behave in the same way.

In Fig. 5, we show the results of these tests. Note that we fix the first failing test
before proceeding to the second one.

For the bid function, the test framework correctly outputs a failure when two bids
are placed with the same value in a row. The failure scenario is clear from the test
output, as the two bids of the input both have a value of 1. The errormessagementions
that all implementations should return the same “success”, which means that one of
the implementations successfully executed (the bug-ridden version), while the other
failed to executed.

The test for the finalize function also correctly fails with an example contain-
ing no bids. This is consistent with the bug in the Vyper version of the Solidity which
does not transfer back the token properly to its original owner. The failing test also
mentions that all implementations must return the same checks which means that all
implementations had the same success status (they all succeeded in this particular
case) but the checks did not return the same value. Indeed, a check was registered to
look up the NFT owner.

120 D. Perez and L. Gudgeon

Overall, with this example, we have seen that with only a few lines of code, it was
possible to have extensive coverage of the tested function that is able to automatically
find discrepancies among implementations and indicate to the developer the test cases
that would yield different results.

4.2 Real-World Deployment

An important strength of our approach is that it is possible to utilize the two imple-
mentations not only at development and testing time but also after the contract is
deployed, ensuring that all the transactions executed will always be consistent across
the different implementations provided. To demonstrate how this would perform on
a real-world blockchain, we deploy our auction and its two implementations on the
Polygon main network, ensure that the calls that would trigger revert correctly, and
measure the cost overhead of our approach. We provide a list of all the deployed
contracts in Table 1.

To be able to give comparable results, we deploy our proxy using the Solidity
and Vyper implementations, as well as a standalone version of each implementation.
During our interactions with the contracts, we maintain a fixed gas price of 30 Gwei,
which at the time ofwritingwas enough for near instantaneous inclusion in a Polygon
block.

We summarize the cost nominated in US dollars of all the interactions with our
auction contracts in Table 2. We split the costs of the first and the subsequent bids,

Table 1 Contracts deployed on Polygon mainnet. “Sol” are Solidity contracts. “Vy” are Vyper
contracts. “Proxied” are contracts used by the proxy. “Standalone” are contracts interacted with
directly

Name Address

Auction proxy 0xAd837BDD116C14aA82311Db7D1879C7cDDCfd283

Auction (Sol, proxied) 0xdb85f3DB2aA6E5e294485972ABE921be188b6A37

Auction (Vy, proxied) 0x9FD31161360B5E772f2b9C469D4A35E679273Dbf

Auction (Sol, standalone) 0xE575CCb0213393eBFc9258013af1c43e9E416544

Auction (Vy, standalone) 0xEe164319fE07127Efc8fdf8b3e99ea736F8c955E

Table 2 USDcost (Weuse theDecember 12th 2021 price of 2.15USDperMATIC token, Polygon’s
native token used to pay for gas fees) of calling different functions of the auction contract with and
without dissimilar redundancy proxy. The gas price is fixed to 30 Gwei

Start First bid Subsequent bid Finalize

Proxied 0.0229 0.0092 0.006 0.0144

Solidity 0.0094 0.0045 0.0029 0.0052

Vyper 0.0108 0.0045 0.0029 0.0071

https://polygonscan.com/address/0xAd837BDD116C14aA82311Db7D1879C7cDDCfd283
https://polygonscan.com/address/0xdb85f3DB2aA6E5e294485972ABE921be188b6A37
https://polygonscan.com/address/0x9FD31161360B5E772f2b9C469D4A35E679273Dbf
https://polygonscan.com/address/0xE575CCb0213393eBFc9258013af1c43e9E416544
https://polygonscan.com/address/0xEe164319fE07127Efc8fdf8b3e99ea736F8c955E

Dissimilar Redundancy in DeFi 121

since the first bid allocates storage, using more gas than subsequent ones. Since the
proxy is using both the Solidity and the Vyper implementation, a lower bound for
the cost is the sum of the cost of each individual implementation. The difference
between the sum of these costs and the cost of calling the proxy is the overhead of
the proxy itself, including the cost of calling checks after each call and checking
consistency among results. In our example, only finalize has a check registered,
to check for the owner of the NFT after execution. For the calls to start and bid,
respectively about 1.2% and 2.2% of the total cost is part of the proxy overhead, the
rest of the cost being used by the actual underlying functions. For finalize, the
overhead is understandably higher as a check is registered. Indeed, about 14.5% of
the cost is used by the proxy itself.

We also check that a transaction that would cause our correct and our buggy
implementation to divergewould correctly revert. Todo so,webidusing subsequently
twice the same amount, which fails for the proxied version (tx 0x5f840a...6dc334c)
by returning the same error as the one we saw during the tests. As a sanity check, we
try the same sequence of bids on the standalone implementations and the Solidity
version reverts correctly (tx 0x406ad7...7759673) while the Vyper one succeeds (tx
0x888189...7df41e8).

5 Limitations

While our approach comes with strong benefits in terms of reliability, it has some
limitations. In this section, we will go over these limitations and provide details on
how some of them could be tackled.

5.1 Transaction Fees

As we have seen in the previous section, this approach will always at least double
the cost of transactions and potentially increase it further if many calls need to be
performed. There is not any direct way to prevent this issue or improve it significantly
at the implementation level. This means that using such an approach on an expensive
network, such as Ethereum, is almost infeasible, as the price increase for transactions
would likely be unacceptable for many users. However, more and more layer two
solutions are being developed, with transaction fees orders of magnitude lower than
what can be seen on Ethereum mainnet. This is for example the case of Polygon
mainnet, which we used for the evaluation earlier. As we can see in Table 2, although
the costs have been doubled, this represents an increase in the order of a cent in the
worst case. As Ethereum is moving towards a layer 2 future [5] and transaction fees
become negligible, the fee overhead of our approach might become less and less of
a concern.

https://polygonscan.com/tx/0x5f840ae129200b9d908714081e59697bc03c6cc2a34460b1d9b9002616dc334c
https://polygonscan.com/tx/0x406ad7356e54cd539b7e1820b479df9346e56bd7534373dd809c52f127759673
https://polygonscan.com/tx/0x888189e5681f34ce776244bcf6eedb911760b0e1420c6df6053c96c387df41e8

122 D. Perez and L. Gudgeon

5.2 Development Cost

Another obvious limitation is the development cost of another implementation of the
same contract. However, there are several arguments why this might not be a critical
issue.

First, such an approach has been seen with Ethereum clients, which are vastly
larger in terms of complexity and code base than most protocols built on top of smart
contracts. In a similar way that the Ethereum Foundation distributes funds to help
external teams maintain clients, a well established protocol could potentially operate
similarly to have alternative implementation maintained.

Second, given the often enormous amount of money at stake, a significant part of
the smart contract development goes into testing rather than simply implementing
the contract. For example, Uniswap V3 [20] has almost twice more test code than
actual implementation. Our approach being highly complementary to regular testing,
it could be integrated as part of the development process as yet another way to reduce
the number of potential bugs or vulnerabilities in the contract.

5.3 Storage Layout

Another limitation of our approach is that all the implementations must use exactly
the same storage layout. The proxy contract will be storing all the states of the
contract, so all implementations must read at the same location in storage to be able
to retrieve the information they are looking for. One of the main drawbacks is that
it imposes some rigidity on alternative implementations, which might make it less
likely to try implementing the logic in a different way and potentially replicate bugs
in multiple implementations. Another issue is that this makes it hard to combine
implementations written in Solidity and Vyper. The two languages use mostly the
samemapping from state variable to Ethereum storage slot but formappings, they use
a very slightly different way to compute the storage slot which makes it impossible
to use this approach for any contract using mappings. However, this issue is trivial
to fix, as it would only require a very minor, albeit backward incompatible, change
in the Vyper compiler.

6 Related work

We first present how a similar approach has been helpful for Ethereum clients and
then present some related research discussing differential fuzzing.

Dissimilar Redundancy in DeFi 123

6.1 Ethereum Clients

From early on, the Ethereum network has been running using different client imple-
mentations. The goal of having multiple clients has always been to make the network
more robust and ensure that it does not fail in case there would be a bug, a vulner-
ability, or an avenue for a potential denial-of-service (DoS) attack in one of the
implementations. In the case of Ethereum, this allows for several failure modes. If
one of the implementations had a bug that would make it crash on certain transac-
tions, the network would continue to operate with other implementations that do not
contain this bug. This would be similar in the case of a DoS attack only effective on
one type of implementation. On the other hand, if a bug or exploit would result in a
different state transition after executing a transaction, it would create a network split
where the victim implementation would only manage to reach consensus with nodes
using the same implementation. This is riskier than the previous case but remains
safe as long as exchanges and other entities bridging on-chain activity to off-chain
assets ensure all implementations are in a consistent state before accepting to process
a transaction. Overall, this diversity of clients has been very beneficial to Ethereum,
despite the high maintenance cost, and has allowed it to operate smoothly for over 6
years.

6.2 Differential Fuzzing

Having two implementations that should behave in the same way allows to perform
differential fuzzing: fuzzing both implementations trying to look for caseswhere they
would behave differently. This technique has already been used in multiple domains
such as cryptography [4], programming languages [6], and blockchain consensus [9,
12]. A recent work leveraging differential fuzzing to find bug in Ethereum clients [23]
has managed to find not only most known consensus bugs but also two new ones,
including a bug that led to a fork in the consensus due to only part of the full nodes in
the network having upgraded to the latest version [7]. Overall, this shows the potential
of differential fuzzing and how it can be useful for finding bugs and zero-day exploits.

7 Conclusion

Wehave argued that the high financial stakes in the context of DeFimerit an approach
to program redundancy inspired by avionics: the utilization of dissimilar redundancy.
Through implementing the same program logicmore than once, ideallywith different
programming languages and even by different engineering teams, and then using an
on-chain execution logic that ensures that the dissimilar implementations must agree
before the on-chain state can update, redundancy is brought into the smart contract

124 D. Perez and L. Gudgeon

ecosystem. Such redundancy should serve to make smart contracts, and DeFi as a
whole, less vulnerable to exploits from implementation bugs.

We hope that this paper can offer one step on the path to a more robust and secure
DeFi. As in avionics, in DeFi, the stakes are high, and the risks real.

Acknowledgements The authors would like to thank the Ethereum Foundation for their financial
support.

References

1. Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on ethereum smart contracts
(sok). In International Conference on Principles of Security and Trust (pp. 164–186) Springer.

2. Barros, G., & Gallagher, P. (2019). Eip-1822: Universal upgradeable proxy standard (uups).
https://eips.ethereum.org/EIPS/eip-1822.

3. Bloomberg. (2021). Defi platformmistakenly sends $89 million; ceo begs return. https://www.
bloomberg.com/news/articles/2021-10-01/defi-platform-mistakenly-sends-89-million-ceo-
begs-its-return.

4. Brubaker, C., Jana, S., Ray, B., Khurshid, S., & Shmatikov, V. (2014). Using frankencerts for
automated adversarial testing of certificate validation in ssl/tls implementations. In 2014 IEEE
Symposium on Security and Privacy (pp. 114–129) IEEE.

5. Buterin, V. (2021). Endgame. https://vitalik.ca/general/2021/12/06/endgame.html.
6. Chen, Y., Su, T., Sun, C., Su, Z., & Zhao, J. (2016). Coverage-directed differential testing of

jvm implementations. In Proceedings of the 37th ACM SIGPLANConference on Programming
Language Design and Implementation (pp. 85–99).

7. Copeland, T. (2021). Bug impacting over 50% of ethereum clients leads to fork. https://www.
theblockcrypto.com/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork.

8. CryptoSec. (2021). Comprehensive list of defi hacks and exploits. https://cryptosec.info/defi-
hacks/.

9. Ethereum. (2019). Evm lab utilities. https://github.com/ethereum/evmlab.
10. Ethereum. (2021). Ethereum nodes and clients–client diversity. https://ethereum.org/en/

developers/docs/nodes-and-clients/client-diversity/.
11. Ethereum. (2021). Layer 2 rollups. https://ethereum.org/en/developers/docs/scaling/layer-2-

rollups/.
12. Fu, Y., Ren, M., Ma, F., Shi, H., Yang, X., Jiang, Y., Li, H., & Shi, X. (2019). Evmfuzzer: detect

evm vulnerabilities via fuzz testing. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (pp. 1110–1114).

13. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., & Gervais, A. (2019). Sok: Off the
chain transactions. IACR Cryptol. ePrint Arch., 2019, 360.

14. MacIver, D. R., Hatfield-Dodds, Z., et al. (2019). Hypothesis: A new approach to property-
based testing. Journal of Open Source Software, 4(43), 1891.

15. Mutual, N. (2021). A decentralized alternative to insurance. https://nexusmutual.io/.
16. Palladino, S. (2019). Eip-1967: Standard proxy storage slots. https://eips.ethereum.org/EIPS/

eip-1967.
17. Perez, D., & Livshits, B. (2021). Smart contract vulnerabilities: Vulnerable does not

imply exploited. In 30th USENIX Security Symposium (USENIX Security 21) (pp.
1325–1341). USENIX Association. https://www.usenix.org/conference/usenixsecurity21/
presentation/perez.

18. Qin, K., Zhou, L., Livshits, B., & Gervais, A. (2021). Attacking the defi ecosystem with flash
loans for fun and profit. In International Conference on Financial Cryptography and Data
Security (pp. 3–32). Springer.

https://eips.ethereum.org/EIPS/eip-1822
https://www.bloomberg.com/news/articles/2021-10-01/defi-platform-mistakenly-sends-89-million-ceo-begs-its-return
https://www.bloomberg.com/news/articles/2021-10-01/defi-platform-mistakenly-sends-89-million-ceo-begs-its-return
https://www.bloomberg.com/news/articles/2021-10-01/defi-platform-mistakenly-sends-89-million-ceo-begs-its-return
https://vitalik.ca/general/2021/12/06/endgame.html
https://www.theblockcrypto.com/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork
https://www.theblockcrypto.com/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork
https://cryptosec.info/defi-hacks/
https://cryptosec.info/defi-hacks/
https://github.com/ethereum/evmlab
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://nexusmutual.io/
https://eips.ethereum.org/EIPS/eip-1967
https://eips.ethereum.org/EIPS/eip-1967
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez

Dissimilar Redundancy in DeFi 125

19. Rodler, M., Li, W., Karame, G. O., & Davi, L. (2019). Sereum: Protecting existing smart
contracts against re-entrancy attacks. In Proceedings of 26th Annual Network & Distributed
System Security Symposium (NDSS). http://tubiblio.ulb.tu-darmstadt.de/111410/.

20. Uniswap. (2020). Uniswap. https://app.uniswap.org/#/swap
21. Vogelsteller, F., & Buterin, V. (2015). Eip-20: Erc-20 token standard. https://eips.ethereum.

org/EIPS/eip-20.
22. Werner, S. M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., & Knottenbelt, W. J.

(2021). Sok: Decentralized finance (defi). CoRR, abs/2101.08778. https://arxiv.org/abs/2101.
08778.

23. Yang, Y., Kim, T., & Chun, B. G. (2021). Finding consensus bugs in ethereum via multi-
transaction differential fuzzing. In 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21) (pp. 349–365). USENIX Association. https://www.usenix.org/
conference/osdi21/presentation/yang.

24. Yeh, Y. (1996). Triple-triple redundant 777 primary flight computer. In 1996 IEEE Aerospace
Applications Conference. Proceedings, 1, 293–307. https://doi.org/10.1109/AERO.1996.
495891.

http://tubiblio.ulb.tu-darmstadt.de/111410/
https://app.uniswap.org/#/swap
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/osdi21/presentation/yang
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1109/AERO.1996.495891

DeFi Survival Analysis: Insights into
Risks and User Behaviors

Aaron Green, Christopher Cammilleri, John S. Erickson, Oshani Seneviratne,
and Kristin P. Bennett

Abstract We propose a decentralized finance (DeFi) survival analysis approach
for discovering and characterizing user behavior and risks in lending protocols. We
demonstrate how to gather and prepare DeFi transaction data for survival analy-
sis. We demonstrate our approach using transactions in AAVE, one of the largest
lending protocols. We develop a DeFi survival analysis pipeline which first prepares
transaction data for survival analysis through the selection of different index events
(or transactions) and associated outcome events. Then we apply survival analysis
statistical and visualization methods such as median survival times, Kaplan–Meier
survival curves, and Cox hazard regression to gain insights into usage patterns and
risks within the protocol. We show how by varying the index and outcome events,
we can utilize DeFi survival analysis to answer three different questions. What do
users do after a deposit? How long until borrows are first repaid or liquidated? How
does coin type influence liquidation risk? The proposed DeFi survival analysis can
easily be generalized to other DeFi lending protocols. By defining appropriate index
and outcome events, DeFi survival analysis can be applied to any cryptocurrency
protocol with transactions.

A. Green (B) · C. Cammilleri · J. S. Erickson · O. Seneviratne · K. P. Bennett
The Rensselaer Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute,
New York, US
e-mail: greena12@rpi.edu
URL: http://idea.rpi.edu

C. Cammilleri
e-mail: cammic@rpi.edu

J. S. Erickson
e-mail: erickj4@rpi.edu

O. Seneviratne
e-mail: senevo@rpi.edu

K. P. Bennett
e-mail: bennek@rpi.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_8

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_8&domain=pdf
mailto:greena12@rpi.edu
http://idea.rpi.edu
mailto:cammic@rpi.edu
mailto:erickj4@rpi.edu
mailto:senevo@rpi.edu
mailto:bennek@rpi.edu
https://doi.org/10.1007/978-3-031-18679-0_8

128 A. Green et al.

1 Introduction

The rapid growth in popularity of blockchain-based products like cryptocurrencies
has brought with it a growth in the complexity of the blockchain ecosystem. Myriad
new products are being developed and deployed on the numerous blockchains that
now exist. Following the invention and adoption of these products by an increasing
number of users, a new financial ecosystem has emerged: Decentralized Finance
(DeFi). The world of DeFi, though young, is already comprised of hundreds, if not
thousands, of products and services. One such product is known as a lending protocol.
DeFi lending protocols offer a similar set of services as banks offer to consumers in
the world of traditional finance. Users utilize the protocols to conduct transactions.
For instance, a user of a DeFi lending protocol can take some cryptocurrency they
own and deposit it into the protocol, then accruing interest on their account balance.
These users can also take out loans through the protocol, much like a person can take
out a loan from a bank.

Since these lending protocols are growing in size along with the cryptocurrency
market as a whole, an obvious first question might be, “how and why are people
using DeFi lending protocols?” There are multiple popular lending protocols, and
their data streams are varied. But these data streams share a common structure;
entities are conducting different types of transactions through time, each involving
varying amounts and types of cryptocurrency. The fact that these entities (we will
call them users, but they may be smart contracts) conduct transactions at irregular
intervals and themany types of transactions makes DeFi lending streams challenging
to understand. However, this complexity also exists in domains such as healthcare
and commerce, so there are myriad tools available to analyze temporal data streams.
In this paper, we demonstrate how to use one such tool, “survival analysis,” to gain
insight into DeFi transactions.

Survival analysis models time-to-event data. Survival analysis is widely used in
healthcare to understand the risk of death (or other events of interest) after treatment,
but can be used more generally to analyze the time between any two events [5]. For
example, it can be used to analyze the time between a user’s borrow transaction and a
transaction to repay that coin. As in healthcare, the data is frequently right-censored:
users are likely to have an outstanding loan at any given timewhenwe stop observing
the data stream. In this analysis, we demonstrate how to gather and prepare DeFi
transaction data for survival analysis and apply survival analysis statistical methods
such asKaplan–Meier survival curves andCoxHazard regression tounderstandusage
patterns within a protocol. Survival analysis has been previously used to understand
loan defaults in Centralized Finance (CeFi) [2, 6, 10], but applying this analysis
directly to DeFi is not straightforward since DeFi varies significantly from CeFi.

In order to interpret the results of this first use of survival analysis in DeFi, we
focus our analysis on looking solely at one lending protocol, developing generic
survival analysis tools for transaction analysis, and examining the results of these
tools for that protocol. These same tools can eventually be applied to other lending

DeFi Survival Analysis: Insights into Risks and User Behaviors 129

protocols. The protocol chosen was AAVE.1 At the time of this writing (March
14, 2022), AAVE is the second-largest DeFi lending protocol, with approximately
$8.42 billion worth of crypto-assets locked in the protocol according to DeFi Pulse.2

We note, however, that survival analysis tools for DeFi transactions can be used to
analyze and gain insight into any DeFi protocol that consists of transactions through
time, including other lending protocols and exchanges.

This paper is organized as follows: in the methods section, we describe the AAVE
data and the survival analysis methods used to study it. In the results section, we
demonstrate the use provided by survival analysis to answer three different questions.
We conclude with a discussion of the contributions of this work and promising
directions for future work.

2 Methods

2.1 Data

Thedata used in this analysis comes primarily fromTheGraph,3 a service that indexes
data from blockchains and allows for the querying of the indexed data. For the work
presented here, we sought to combine data from the primary seven transaction types
that AAVE records in order to give a comprehensive view of all transactions that
have taken place in AAVEv2 [1] since its deployment on November 30, 2020. The
data used in this analysis starts with the first transactions of the AAVEv2 protocol on
November 30, 2020, and ends on January 6, 2022. The seven transaction types we’ve
pulled from The Graph include deposits, redeems, borrows, repays, liquidations,
interest-rate swaps, and reserve collateral usage toggling.

Combining these seven transaction types, we get a table that includes one trans-
action per row, totaling 847,798 transactions. Table 1 summarizes the number of
transactions of each type and their mean and median values. There are some com-
mon features for each transaction, such as the user involved and the time the transac-
tion was made. Aside from liquidations, the transactions also have one specific coin
involved. Liquidations have two coins: a principal coin and a collateral coin. AAVE
transactions in our dataset have used 54 different coins. We divide these coins into
two types: stablecoin and non-stablecoin. A stablecoin is from a class of cryptocur-
rencies that attempt to offer price stability (typically in terms of USD), and that is
backed by a reserve asset. The other types of coins in the dataset are non-stablecoins.

Deposits and redeems in AAVE function as one might expect deposits and with-
drawals to function at a bank. A user can deposit a currency into the AAVE protocol,
accruing interest on their deposit through time. Upon depositing a currency, AAVE

1 https://aave.com.
2 https://defipulse.com.
3 https://www.thegraph.com.

https://aave.com
https://defipulse.com
https://www.thegraph.com

130 A. Green et al.

Table 1 Summary of transaction types in AAVEv2 data collected from November 30, 2020 to
January 06, 2022

Transaction type Occurrences Mean value (USD) Median value (USD)

Borrow 124,899 $337,019.10 $14,983.18

Collateral 220,046 NA NA

Deposit 239,836 $482,453.00 $4783.75

Redeem 170,516 $843,124.80 $26,633.09

Repay 81,650 $448,525.00 $25,314.20

Swap 2937 NA NA

Transaction type Occurrences Mean principal (USD) Mean collateral (USD)

Liquidation 7,914 $74,798.06 $79,682.95

mints the user some corresponding interest-bearingaTokens, which represents how
much of a reserve they’ve deposited into the lending pool. These aTokens can be
redeemed through the protocol to functionally withdraw their previously-deposited
currency from the lending pool.

Borrows and repays function as their names would suggest. It is important to
understand that borrowing a currency in AAVE is governed by smart contracts. Any-
one can borrow any amount of currency from the AAVE lending pool as long as they
follow the criteria specified by the appropriate smart contracts. Users who borrow in
AAVE use the currency they have deposited into the protocol as collateral. Not all
currencies that can be deposited in AAVE are allowable as collateral. Additionally,
users can choose which of their deposited assets they want to allow for usage as col-
lateral. In order to qualify to borrow some asset, a user must have enough deposited
assets in the system that are usable as collateral so that the loan would be over-
collateralized. The extent of over-collateralization required depends on the specific
currencies being used as collateral. More specific details about the requirements for
borrowing in AAVE can be read about in the AAVE whitepaper [1].

Liquidations, the most complicated of the transactions in our data, have a lot of
unique information in each transaction. When a user performs a liquidation, they
are always liquidating the account of another user. This means there are two users
recorded for each liquidation transaction: the user being liquidated (the liquidatee),
and the user performing the liquidation (the liquidator). Additionally, whereas other
transaction types only interact with a single currency at a time, liquidations involve
two currencies. There is the principal currency that the liquidator is paying off and
the collateral currency that the liquidator is buying.

Collateral and swap transactions are the simplest transactions. Each one is func-
tionally just the toggling of a setting in a user’s account. Collateral transactions are
made when a user wants to toggle whether a deposited currency can be used as
collateral for loans they’ve made or plan to make. Swap transactions allow users to
switch loans between stable interest rates and variable interest rates for an individual
currency.

DeFi Survival Analysis: Insights into Risks and User Behaviors 131

2.2 Survival Analysis for DeFi

Survival analysis is a collection of statistical procedures for data analysis inwhich the
outcome variable of interest is the time from an index event until the outcome event
[5]. To apply survival analysis to AAVE, we must pick two events: the index transac-
tion and the outcome transaction. The survival time is the elapsed time between the
index and outcome transactions. If, for example, we want to understand how soon
users borrow money after making a deposit, then the index transaction is the user’s
deposit, and the outcome transaction is the first borrow the user makes thereafter.
The data is right-censored since we can only analyze data until the final date in our
data. If a deposit transaction has no matching borrow, it could be because the user
never borrowed or because the user borrow had not occurred during the period of
analysis. Survival analysis correctly analyzes right-censored data.

The power of DeFi results from the fact that it can be performed on the time
duration between any desired pair of transactions analyzed by any of the widely
used statistical survival analysis techniques. In Sect. 3, we demonstrate how we
can address many different questions by changing the definition of the index and
outcome transactions. For each analysis below, we define precisely the index and
outcome transactions. Survival analysis estimates the survival function for each of
these pairs of transactions. The survival function captures the probability of the out-
come transaction not occurring through time. We utilize the ggsurvplot function
from the survminer package in R to produce Kaplan–Meier curves, the most pop-
ular way to both estimate and visualize survival functions. For example, Fig. 1 shows

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50
Time (days)

Pr
ob

ab
ilit

y
of

 N
o

Su
bs

eq
ue

nt
 T

ra
ns

ac
tio

ns

Next Transaction Type
Borrow (10.74%)
Collateral (32.62%)
Deposit (27.11%)
Liquidation (0.22%)
Redeem (25.69%)
Repay (2.68%)
Swap (0.13%)

Fig. 1 Kaplan–Meier survival curves from a user’s deposits to their next transaction shows notice-
able differences between which transactions users tend to make after a deposit

132 A. Green et al.

survival curves for each transactions type. They represent the time from the deposit
to the first transaction of that type. If we are interested in how variables affect time
to the outcome event, we utilize Cox regression (or proportional hazards regression).
In Sect. 3.2, we utilize Cox regression to see if the coin type of borrows (stable or
non-stable) is associated with faster liquidation rates.

3 Results

We use survival analysis to dissect the relationships between certain pairs of trans-
action types. In doing so, we demonstrate the effectiveness of survival analysis in
visualizing and quantifying user behavior in AAVE.We explain how to transform the
raw transaction data into forms suitable for survival analysis. Then we show different
ways to use this data and survival analysis tools to uncover patterns of user behav-
ior through the selection of different index events, the narrowing down of outcome
events, and the separation of the data by other relevant features.

3.1 What do Users do After a Deposit?

We show that a Kaplan–Meier survival curve can provide a useful picture of how
users behave after they deposit money into their accounts. Deposits are the natural
first transaction for a user to make in a lending protocol, since before depositing
any currency into an account, there aren’t really other possible actions one can take.
Thus, looking at how users behave after making deposits seems a natural place to
begin our analysis.

To convert transaction data into survival data, we treat each deposit present in
our data as an index event. This means we have 239,836 index events in the survival
analysis. The outcome of each event occurs when the user makes their next transac-
tion. The time difference between the deposit and the next transaction serves as the
“survival” time for this analysis, and so if a user just makes a deposit and performs
no subsequent transactions, that would manifest in our data as a deposit that has
“survived” so far, and would be censored by time. For each deposit that is eventually
followed by a subsequent transaction, we also record the type of transaction that
follows. This gives data in the form given in Table 2.

Starting with the simplest survival analysis method, we used the R function
surv_median to calculate the median time to the first transaction after a deposit.
We computed the median time to any transaction and for each transaction type. We
show these values in Table 3 ordered by median survival time. The percentage of
the time this transaction type followed a borrow is provided as well. The median
time between any two transactions is .017hr. That means 50% of the time, a deposit
by a user is followed by a transaction by that same user in less than 1.02m. Note

DeFi Survival Analysis: Insights into Risks and User Behaviors 133

Table 2 Survival Data from Deposits to Next Transaction

Time from index event (in
hours)

Censored? Next transaction type

0.0295 False Deposit

16.373 False Deposit

0.2765 False Borrow

2.58 True NA
.
.
.

.

.

.
.
.
.

Table 3 Median time from deposit to next transaction in hours with percentage occurring for each
transaction type

Next transaction type Median survival time in hours Percentage

Any 0.017 100

Collateral 0.000 (<1s) 32.62

Redeem 0.000 (<1s) 25.69

Deposit 0.103 27.11

Borrow 0.231 10.74

Swap 15.108 0.13

Repay 25.488 2.68

Liquidation 61.053 0.22

that for this specific analysis, we do not consider the type of coin used in the second
transaction (outcome event.)

From the median times to each transaction type following deposits, we can more
clearly compare the magnitudes of elapsed time for different outcome transaction
types. The speed at which users tend to engage in redeem and collateral transactions
after a deposit is less than a second. The median survival to the next deposit and
borrows is on the order of minutes. In contrast, many users take more than two days
to repay or be liquidated after a borrow.

We can gain further analysis by plotting survival curves for this data split by the
type of subsequent transaction to gain a more nuanced understanding of how quickly
users make each type of transaction following a deposit. When we separate the
survival curve by the next transaction type, the usage of survival analysis deviates
slightly from its original intent. This is because when we separate the curve by
subsequent transaction type, we are effectively separating the curve by a variable
that only exists because the index event has “not survived,” i.e., the existence of a
“next transaction type” means the outcome event has occurred, and thus we’ve cut
out the censored transactions. However, we believe the value of the visualization
remains intact.

134 A. Green et al.

Figure 1 shows seven different survival curves. As is the case for any survival
curves, each curve begins at time 0 and has a probability of survival of 1. Then, as
each curve progresses through time, the probability of “survival” drops in proportion
to howmany of the cases represented by each curve have reached their corresponding
outcome event. If a curve drops quickly to a low survival probability, that means users
tend to make that transaction type quickly after making a deposit.

Looking at Fig. 1, it is apparent that themost common transaction usersmake after
a deposit is the collateral transaction. This makes sense, as one of the requirements
in AAVE for a user to take out a loan is that the loan is over-collateralized; according
to the requirements of the protocol, the user cannot take out a loan without having
any currency in their account that is marked as collateral. Still, the “survival” of a
deposit until a collateral transaction is brief. The survival curve for collateral dips
straight down and hits zero almost immediately, indicating that users don’t wait long
before making collateral transactions.

3.2 How Long Until Borrows are Repaid or Liquidated?

Since survival analysis allows for flexible choices of index and outcome events, we
turn our focus now to using borrows as the index events and the relevant transactions
of repays and liquidations as the outcome events. Using only transaction-level data to
analyze borrows makes it difficult to track a loan in its entirety. There is no end date
to the loan. The user can make several borrows of a coin and then maintain the loan
that accrues interest until they repay it in one or more repay transactions for that coin
or until part or all of the loan is liquidated. When converting the transaction data into
a form usable for survival analysis with borrows as the index events, we had to decide
what was an appropriate outcome event. To avoid making assumptions about when
a loan is totally repaid (either through liquidations or repay transactions), we define
the outcome events as just the first repayment that a user makes or the first liquidation
that is made for the borrowed currency. Thus, to be clear, the following analysis in
Fig. 2 does not show how long it takes for loans to be totally repaid through repays or
liquidations, but just how long it takes for them to start being repaid through either
means.

Wealso choose to split the two curves bywhether the borrowed coin is a stablecoin.
The use cases for borrowing stablecoins versus non-stablecoins are quite different,
so we hoped to see a drastic difference in the repayment schedules and liquidation
tendencies for these different coin types, and indeed this is what we see in Fig. 2.

Clearly, from these survival curves, users tend to repay loans of stablecoins much
more often than non-stablecoin loans. Almost all loans of stablecoins end up being
repaid at least in part by the 402-day cutoff, which is as much data as we have. This
is in stark contrast with the non-stablecoin borrows, for which only about 50% of all
loans have seen even a single repayment. We see similarly contrasting behavior for
the frequency that loans of each coin type are liquidated. Loans of stablecoins are
liquidated significantly more often than loans of non-stablecoins. Unsurprisingly,

DeFi Survival Analysis: Insights into Risks and User Behaviors 135

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Time (days)

Pr
ob

ab
ilit

y
of

 N
o

R
ep

ay
s Coin Type

Non−Stable (15.40%)
Stable (84.60%)

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Time (days)

Pr
ob

ab
ilit

y
of

 N
o

Li
qu

id
at

io
n

Coin Type
Non−Stable (15.40%)
Stable (84.60%)

(a) Borrow to First Repay (b) Borrow to First Liquidation

Fig. 2 Borrow to first repay and first liquidation analysis shows significant differences between
stablecoins (red) and non-stablecoins (blue). Note that the time ranges for repay is smaller than that
of liquidation

0.00

0.05

0.10

0.15

0 10 20 30
Time Elapsed Before Loan Repayment (in Days)

Pr
op

or
tio

n
of

 U
se

rs

Coin Type
Non−Stable
Stable

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200
Time Elapsed Before Loan Liquidation (in Days)

Pr
op

or
tio

n
of

 U
se

rs

Coin Type
Non−Stable
Stable

(a) Borrow to First Repay (b) Borrow to First Liquidation

Fig. 3 Borrow to first repay and first liquidation analysis both show differences between stable and
non-stablecoins

liquidations as a whole occur far less frequently than repayments, so the survival
probability of loans relative to liquidations is much higher than loans to repayments,
but the same patterns are present with respect to the type of coin being borrowed.

We can also use the survival data to create density plots for the median time to
repayment or liquidation for each coin type, which provides additional clarity on
exactly how long it takes for repayments or liquidations to occur. These median
repayment and liquidation times can be seen in Fig. 3. From these, we can see that,
despite fewer repayments and liquidations of non-stablecoins, the median times to
these events are quicker than they tend to be for stablecoins. Most people make
their first repayment of a borrowed non-stablecoin in five days or less, whereas for
borrowed stablecoins, themedian time until the first repayment is about ten days. The
timelines for liquidations to occur are longer,with the highest proportion of liquidated
borrows of non-stablecoins occurring between 20 and 30 days following the borrow,

136 A. Green et al.

and between 25 and 75 days for borrows of stablecoins. Still, the contrasting behavior
between stablecoin and non-stablecoin borrows are similar for the time taken to
repays and time taken to liquidations.

3.3 How Does Coin Type Influence Liquidations?

In the previous section, we saw the dramatic impact of coin-type of the principal on
time to the first liquidation of a borrow. We hypothesize that the combination of the
principal and the collateral may lead to further insight into the risk of borrows. Thus
we further separate the borrow-to-liquidation data by factoring in what collateral was
purchased and what principal types were specifically paid off by the liquidator. We
perform the same index and outcome events as the prior liquidation analysis; only
now do we analyze borrows associated with liquidation. This gives the curves seen
in Fig. 4. Since we are splitting the curves by what principal and collateral were paid
off and purchased at the time of the liquidation, all the curves do end up with a 0%
probability of survival, similar to the curves in Fig. 1. Again though, we can still
use the curves to gain insight into the relative riskiness of the principal:collateral
combinations that people can have in their accounts. According to the log-rank test,
the differences in the curves are statistically significant.

The definition of the outcome event in this analysis is quite different. To gain
a more accurate picture of the liquidated user’s account, we aggregated liquidation
events to gain more information as to which coins the users have as collateral in their
account. Even though each liquidation transaction only records one principal type
and one collateral type, sometimes a user will be the subject of multiple liquidations
in quick succession. It would be inaccurate to consider these liquidations as separate
events; they really are all part of one bigger liquidation event. Thus, in our transaction
data, if a user is liquidated multiple times in quick succession with no intermittent
non-liquidation transactions, we aggregate them into one bigger liquidation trans-
action. The outcome event is the combined liquidation transaction, with the time
being the first liquidation transaction. This lets us see whether there were multiple
types of collateral and principal coins involved in the event. Thus, if a user has both
stablecoins and non-stablecoins in their account as collateral, or if they’ve taken out
loans of both stablecoins and non-stablecoins, we mark the collateral or principal,
respectively, as “Mixed.”

Table 4 shows an example ofwherewe can use aCox proportional hazardmodel to
more effectively quantify the differences between survival probabilities of each type
of principal:collateral combination leading to liquidations. For the Cox proportional
hazard model, we need to choose one of the combinations of principal:collateral to
which to compare the others, which tells us proportionally how risky the other types
of principal:collateral combinations are relative to the benchmark combination. If
we select the stable:stable combination as the benchmark, we get the quantification
of risk via the coxph function from the survminer package as seen in Table 4.

DeFi Survival Analysis: Insights into Risks and User Behaviors 137

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Time (Days)

Pr
ob

ab
ilit

y
of

 N
o

Li
qu

id
at

io
n

Principal:Collateral
Non−Stable: Non−Stable (9.43%)
Non−Stable: Mixed (0.24%)
Non−Stable: Stable (1.62%)
Stable: Non−Stable (86.64%)
Stable: Mixed (0.83%)
Stable: Stable (1.22%)

Fig. 4 Survival curves for different combinations of principal and collateral coin types

Table 4 Cox proportional hazards coefficients quantifying risk of liquidation. Bolded principal-
collateral combinations have significant differences in risk of liquidation relative to stable:stable.
Percentage of liquidation events indicates number of events of each type. Stable:stable constitutes
1.22% of liquidations

Principal: Collateral
combination

Coefficient p-value Percentage

Stable:Non-Stable 0.24499 0.02903 86.64

Non-Stable:Stable −0.08756 0.55238 1.62

Non-Stable:Non-
Stable

−0.17044 0.14967 9.43

Stable:Mixed −0.32461 0.06328 0.83

Non-Stable:Mixed −0.74976 0.00617 0.24

The “Coefficient” column of this table indicates the relative riskiness of the loan
types as compared to the benchmark type of stable principal and stable collateral.
Negative coefficients are indicative of lesser risk, meaning that any of the prin-
cipal:collateral combinations that have a negative coefficient are less likely to be
liquidated than the stable:stable combination. The p-value tells the statistical signif-
icance of these coefficients, with lower p-values indicating that the corresponding
coefficients were less likely to be generated by chance. The results show that the com-

138 A. Green et al.

binations of stablecoin principal with non-stablecoin collateral tend to be liquidated
significantly sooner than stablecoin principal with stablecoin collateral loans. Bor-
rows with stablecoin principal with non-stablecoin collateral are much riskier since
the price of the cryptocurrency in dollars is highly volatile. We see that liquidations
for borrows with mixed collaterals reduce the risk for both types of principals. There
were no significant differences in time to liquidation compared with stable:stable
combinations for the non-stable:stable and non-stable:non-stable combinations.

4 Related Work

With an over-collateralized loan, a borrower must post collateral, i.e., provide some-
thing of value as security to cover the value of the debt, where the value of the
collateral posted exceeds the value of the debt. This way, collateralization simul-
taneously ensures that the lender (likely a smart contract) can recover their loaned
value and provides the borrower with an incentive to repay the loan. The “health
factor” (HF) is a custom threshold in lending systems. If the debt collateral falls
below the HF (typically below 1), the debt position may be opened for liquidation.
Then the liquidators can purchase the locked collateral at a discount and close the
borrower’s debt position. Thus, leveraged positions are subject to liquidation when
the debt becomes unhealthy, and a liquidator can repay the debt and benefit from a
liquidation spread.

Given this novel form of automatic lending, a growing body of literature has
studied liquidations on borrowing and lending platforms in DeFi. Qin et al. [9] have
analyzed risk management provided by liquidators, acting on the protocol’s user
accounts. They have measured various risks that liquidation participants are exposed
to on four major Ethereum lending pools (i.e., MakerDAO, AAVE, Compound, and
dYdX) and quantified the instabilities of existing lending protocols. They have illus-
trated that the commonly used incentive mechanisms tend to favor liquidators over
borrowers, causing the problem of so-called over-liquidation, leading to unneces-
sary high losses for borrowers. The only recourse the borrowers have to avoid such
liquidations is to monitor their loan-to-value ratio when the market changes quickly
because even a random drop in market prices can result in a cascade of liquidations.
If there are any drops in the market, it can lead to self-accelerating pressure to sell,
which further causes more problems for a blockchain-based DeFi, such as network
congestion that leads to steep gas costs. We witnessed such an event in the ETH
market collapse of March 13, 20204 that left some borrowers unable to react, despite
imminent liquidations. It can be particularly bad for borrowers who get liquidated if
market prices recover after a dip again, leaving them deprived of subsequent upward
price participation. In general, regardless of market conditions, liquidations in DeFi
are widely practiced, and related works such as Qin et al. [9] have quantified that

4 https://coinmarketcap.com/historical/20200313.

https://coinmarketcap.com/historical/20200313

DeFi Survival Analysis: Insights into Risks and User Behaviors 139

over the years 2020 and 2021, liquidators realized a financial profit of over 800M
USD while performing liquidations.

Stablecoins play a significant role in liquidations, as they have several character-
istics that are directly tied to liquidation mechanics. For example, a user may not
want to sell the token collateral, which is usually in the form of a stablecoin, but
instead hold it indefinitely as a means of passive income, which might exceed the
cost of borrowing, making the transaction profitable. Early empirical evidence on
the stability of crypto-backed loans with stablecoins has been studied by Kozhan and
Viswanath-Natraj [7]. They specifically focused on the price volatility in the Maker-
Dao protocol, which introduced the world’s first decentralized stablecoin called Dai
that is soft-pegged to the US Dollar, i.e., it uses a collateralized debt position mecha-
nism to keep the price stable with respect to the US Dollar. They have analyzed how
collateral stability increases peg stability and found a positive relationship between
collateral risk and the price volatility of the stablecoin Dai.

The efficiency of lending pool liquidations has been studied by Perez et al. [8],
in which they introduced a lending pool state model that is instantiated with his-
torical user transactions observable in the Compound5 implementation deployed
on Ethereum. Their model abstraction facilitates the observation of state effects
of each interaction and investigates the latency of user liquidations following the
under-collateralization of borrowing accounts. Similarly, Bartoletti et al. [3] provide
an abstract formal state transition model of lending pools and prove fundamental
behavioral properties, which had previously only been presented informally in the
literature. Additionally, the authors examine attack vectors and risks, such as utiliza-
tion attacks and interest-bearing derivative token risk.

As the demand for loans in crypto-assets grows, the borrowing interest rate goes
up. In a bullish crypto market, speculators may be keen to borrow funds even if
there is a high interest rate, in expectation of an appreciation in the assets of their
leveraged long position as demonstrated by Xu et al. [13]. Such an environment is
advantageous for lenders, resulting in higher yields to them. Compound and AAVE,
two major DeFi lending protocols, have witnessed the borrow APY of the stablecoin
USDC increasing from a low of 2–3% in May 2020 to as high as 10% in April 2021
(as of this paper writing in March 2022, the APY is hovering at 2% in Compound
and AAVE, but other protocols such as Celcius, BlockFi and Nexo offer upwards
of 8% APY).6 In a bullish market, the yield generated is incorporated in interest-
bearing tokens, such as aTokens from AAVE analyzed in this paper. However, as
was already noted, thewild fluctuations in themarket result in unexpected liquidation
events, as evidenced from this paper’s results.

5 https://compound.finance.
6 https://defirate.com/usdc/?amount=100&symbol=USDC&term=365&rate_type=lend.

https://compound.finance
https://defirate.com/usdc/?amount=100&symbol=USDC&term=365&rate_type=lend

140 A. Green et al.

Most of the related works approach the issue of liquidation at a conceptual level or
rely on aggregate flow data. In contrast, our paper uses transaction-level blockchain
data to provide amoremicroscopic view on the issue combinedwith survival analysis
techniques.

5 Discussion and Future Work

This work defines a pipeline for survival analysis of DeFi lending protocols which
includes data aggregation, cleaning, converting to a data abstraction model, and
performing powerful survival statistical analyses and visualizations to gain insights.
Using AAVE lending data in three different scenarios, we demonstrate how to gain
insights into user behaviors and loan risks by defining appropriate index and outcome
events and then applying survival analysis.

Each scenario is characterized by distinct definitions of the index and outcome
transactions in the survival analysis. We characterize user behaviors using survival
analysis of AAVE users’ next transaction. Our analysis of borrowed coin types shows
the value of survival analysis for discovering factors contributing to events. Our
survival analysis of borrows to repays and liquidations showed that borrows of sta-
blecoins versus non-stablecoins exhibit very different characteristics. Users hold
non-stable loans longer before the first repayment. But if they do repay, they tend to
repay more quickly. We could get a deeper understanding of AAVE user behavior
by taking a more refined look at the types of coins and transaction volumes, incor-
porating external factors such as coin prices in the survival analysis, and defining
alternative index and outcome events. Using machine learning to create clusters that
capture different behaviors (e.g., retail versus institutional investors), and then doing
survival analysis could also be very illuminating. We leave these to future work.

This work represents just the first step in the use of survival analysis in DeFi.
We note that these DeFi survival analysis techniques could be generalized to other
DeFi lending protocols. DeFi survival analysis can be applied to any cryptocurrency
protocol with transactions. Hazard analysis and other types of survival analysis and
visualization methods could be used. As future work, we will prepare a toolkit for
DeFi survival analysis with associated dashboards and demonstrate it on other DeFi
Protocols.

One limitation of this research is that it does not address the rich DeFi ecosystem,
which has many interacting protocols and coin prices. We are already exploring
the use of more advanced Artificial Intelligence (AI) methods for the analysis of
transaction data developed for commerce and health [4, 12] that could incorporate
more aspects of the DeFi ecosystem. These could be used for segmenting users and
predicting behaviors and prices. Early results analyzing AAVE transactions using
NeuralTemporal Point Processes are very promising [11].DeFi represents an exciting
new domain for AI research in transaction modeling since DeFi is a compelling use
case, and all the datasets are public by definition.

DeFi Survival Analysis: Insights into Risks and User Behaviors 141

The code used to generate the figures in this paper is available in a public GitHub
repository.7

Acknowledgements This work was supported by the Center for Research towards Advancing
Financial Technologies (CRAFT), the National Science Foundation (NSF), and the Rensselaer
Institute for Data Exploration and Applications (IDEA).Wewould like to thank RomanVakhrushev
for his contributions to the liquidation analysis, Soumya Mishra, and Jaimin Vyas for contributions
to early versions of the survival analysis.

References

1. AAVE Developers. (2020). AAVE protocol whitepaper V2.0. Tech. Rep.
2. Allen, L. N., & Rose, L. C. (2006). Financial survival analysis of defaulted debtors. Journal of

the Operational Research society, 57(6), 630–636.
3. Bartoletti, M., Chiang, J. H. y., & Lafuente, A. L. (2021). Sok: lending pools in decentralized

finance. In International Conference on Financial Cryptography and Data Security (pp. 553–
578). Springer.

4. Bennett, K. P. (2019). Artificial intelligence for public health. In 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1–2). https://doi.org/10.1109/
BIBM47256.2019.8983112.

5. Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part i:
basic concepts and first analyses. British journal of cancer, 89(2), 232–238.

6. Dirick, L., Claeskens, G., & Baesens, B. (2017). Time to default in credit scoring using survival
analysis: a benchmark study. Journal of the Operational Research Society, 68(6), 652–665.

7. Kozhan, R., &Viswanath-Natraj, G. (2021). Decentralized stablecoins and collateral risk.WBS
Finance Group Research Paper Forthcoming.

8. Perez, D., Werner, S. M., Xu, J., & Livshits, B. (2021). Liquidations: Defi on a knife-edge.
In International Conference on Financial Cryptography and Data Security (pp. 457–476).
Springer.

9. Qin, K., Zhou, L., Gamito, P., Jovanovic, P., & Gervais, A. (2021). An empirical study of
defi liquidations: Incentives, risks, and instabilities. In Proceedings of the 21st ACM Internet
Measurement Conference (pp. 336–350).

10. Roszkowska, P., & Prorokowski, Ł. (2013). Model of financial crisis contagion: A survey-
based simulation by means of the modified kaplan-meier survival plots. Folia Oeconomica
Stetinensia, 13(1), 22–55.

11. Shou, X., Gao, T., Subramanian, D., & Bennett, K. P. (2022). Multi-label event prediction in
continuous time. Under review.

12. Shou, X., Mavroudeas, G., New, A., Arhin, K., Kuruzovich, J. N., Magdon-Ismail, M., & Ben-
nett, K. P. (2019). Supervisedmixturemodels for population health. In 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1057–1064). https://doi.org/10.
1109/BIBM47256.2019.8983339.

13. Xu, J., & Vadgama, N. (2022). From banks to defi: the evolution of the lending market. In
Enabling the Internet of Value (pp. 53–66). Springer.

7 https://github.com/aaronmicahgreen/DeFi-Survival-Analysis-Insights-into-Risks-and-User-
Behaviors.

https://doi.org/10.1109/BIBM47256.2019.8983112
https://doi.org/10.1109/BIBM47256.2019.8983112
https://doi.org/10.1109/BIBM47256.2019.8983339
https://doi.org/10.1109/BIBM47256.2019.8983339
https://github.com/aaronmicahgreen/DeFi-Survival-Analysis-Insights-into-Risks-and-User-Behaviors
https://github.com/aaronmicahgreen/DeFi-Survival-Analysis-Insights-into-Risks-and-User-Behaviors

Gas Gauge: A Security Analysis Tool for
Smart Contract Out-of-Gas
Vulnerabilities

Behkish Nassirzadeh , Huaiying Sun , Sebastian Banescu ,
and Vijay Ganesh

Abstract In recent years, we have witnessed a dramatic increase in the adoption
and application of smart contracts in a variety of contexts. However, security vulner-
abilities pose a significant challenge to the continued adoption of smart contracts.
An important and pervasive class of security vulnerabilities that afflicts Ethereum
smart contracts is the gas limit DoS on a contract via unbounded operations. These
vulnerabilities result in a failed transaction with an “out-of-gas” error and are often
present in contracts containing loops whose bounds are affected by end-user input.
To address this issue, we present Gas Gauge, a tool aimed at detecting Out-of-Gas
DoS vulnerabilities in Ethereum smart contracts. TheGasGauge tool has threemajor
components: The Detection Phase, Identification Phase, and Correction Phase. The
Detection Phase component consists of an accurate static analysis approach that finds
and summarizes all the loops in a smart contract. The Identification Phase compo-
nent uses a white-box fuzzing approach to generate a set of inputs that causes the
contract to run out of gas. Lastly, the Correction Phase component uses static anal-
ysis and run-time verification to predict the maximum loop bounds consistent with
allowable gas usage and suggest appropriate repairs to the tool’s users. Each part of
Gas Gauge can be used separately or all together to detect, identify and help repair
contracts vulnerable to Out-of-Gas DoS vulnerabilities. Gas Gauge was tested on
1,000 real-world solidity smart contracts. When compared to seven state-of-the-art
tools, we show that Gas Gauge is the most effective (i.e., has no false positives and
false negatives) while being competitive in terms of efficiency.

B. Nassirzadeh (B) · V. Ganesh
University of Waterloo, Waterloo, Canada
e-mail: bnassirz@uwaterloo.ca

V. Ganesh
e-mail: vijay.ganesh@uwaterloo.ca

H. Sun
East China University of Science and Technology, Shanghai, China
e-mail: ecustshy@foxmail.com

S. Banescu
Quantstamp, Munich, Germany
e-mail: sebi@quantstamp.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_9

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_9&domain=pdf
http://orcid.org/0000-0002-3227-1409
http://orcid.org/0000-0003-3693-6743
http://orcid.org/0000-0003-0771-4826
http://orcid.org/0000-0002-6029-2047
mailto:bnassirz@uwaterloo.ca
mailto:vijay.ganesh@uwaterloo.ca
mailto:ecustshy@foxmail.com
mailto:sebi@quantstamp.com
https://doi.org/10.1007/978-3-031-18679-0_9

144 B. Nassirzadeh et al.

Keywords Smart contract security · Blockchain · Ethereum · Static analysis ·
Dynamic analysis

1 Introduction

Smart contracts are one of the main applications of leading blockchains such as
Ethereum [28]. Smart contracts are executable programs that allow building a pro-
grammable value exchange or a contract between various parties without the need
for a trusted third-party. While smart contracts bring many benefits to the blockchain
ecosystem, they suffer from various security vulnerabilities. Certain vulnerabilities
can be exploited by attackers to steal funds from a smart contract, while others can
cause funds to be locked indefinitely. One security issue plaguing Ethereum smart
contracts is Out-of-Gas Denial of Service (DoS) vulnerabilities. Every operation in
an Ethereum smart contract costs a certain amount of gas, a measurement unit for
the amount of computational effort required to execute said operation or transaction,
paid by the transaction initiation party. Each block comes equipped with an upper
bound on the amount of gas that can be spent to compute all the transactions within
that block. This is called the Block Gas Limit. Since a transaction cannot exceed one
block, the transaction gas limit is also bound by the block gas limit [17]. One of the
kinds of gas-related vulnerabilities is DoS with Unbounded Operations, also known
as Unbounded Mass operations [13]. In this case, the execution of the transaction
requires more gas than the block gas limit. As a result, The execution of one or more
functions in a smart contract vulnerable to Out-of-Gas can be blocked indefinitely if
Out-of-Gas conditions are not appropriately handled. This is the type of vulnerability
that we focus on in this paper.

Many Ethereum wallets, such as Metamask [6], have a built-in mechanism to
estimate the cost of a transaction statically, right before it is executed. However,
there are certain cases when the gas estimation is incorrect or impossible to estimate.
For example, if multiple operations are performed inside a loop traversing a dynamic
array or mapping [1]. The Metamask Support website acknowledges this issue [4]
and indicates that users should manually adjust the transaction gas limit according to
one of the latest passing transactions for the smart contract function they are trying
to call.

In order to address the above-mentioned problem, we present a tool, Gas Gauge,
that automatically detects and suggests remediation for Out-of-Gas vulnerabilities in
Ethereum smart contracts.Weweremotivated by two factors in designingGasGauge.
First, to-date, the most widely used method for detecting and repairing Out-of-Gas
vulnerabilities is manual security audits which cannot continue to scale with the ever-
growing size, complexity, and the number of smart contracts. Second, as we show in
this paper, existing automatedmethods based on static, symbolic, or run-time analysis
are plagued by either high false negative rates or scalability issues. Our insight is that
the best way to address this problem is to use an appropriate combination of static
and dynamic analysis methods. Hybrid methods can outperform all other approaches

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 145

because, in order to detect these vulnerabilities, one needs to determine the loops
or functions that can lead to an Out-of-Gas DoS (best done via static analysis), and
then perform gas analysis to determine the exact point, e.g., loop iteration, when
Out-of-Gas occurs (best done using appropriate dynamic analysis).

1.1 Contributions

The contributions we make in this paper are as follows:

i. Design and implementation of a static analysis and run-time verification tool,
Gas Gauge,1 aimed at automatically detectingOut-of-GasDoS vulnerabilities in
Ethereum smart contracts. We implemented three techniques in Gas Gauge that
are critical for identifying Out-of-Gas DoS vulnerabilities. The first technique is
a static analysis method that identifies and summarizes loops in smart contracts.
The second is a white-box fuzzing technique that triggers Out-of-Gas errors
in smart contracts that contain publicly accessible functions with loops whose
bounds are influenced by inputs (To the best of our knowledge, this feature is
unique to Gas Gauge). The third is a method for identifying a threshold, as a
function of input and state variables, at which Out-of-Gas errors can be triggered
in a contract-under-analysis (To the best of our knowledge, this feature is also
unique to Gas Gauge).

ii. An extensive evaluation of the Gas Gauge against seven state-of-the-art tools:
GASTAP/Gasol [2, 3],Madmax [13],MPro [27],Mythril [7], Securify 2.0 [25],
Slither [11], and SmartCheck [23] on a benchmark of 1,000 real-world smart
contracts. Our evaluation found that Gas Gauge outperforms these state-of-the-
art tools. That is, Gas Gauge has zero false negative and false positive rates,
while at the same time has a similar efficiency profile to the fastest tool in the
set, SmartCheck. Further, none of these tools provide any support for repair, a
feature that is essential for the industry.

iii. A case study on a real-world application, Airswap, a peer-to-peer trading net-
work for Ethereum used for trading of over $20 million/week with current ETH
value.We consulted with the engineers whomanually audited Airswap andwere
informed that constructing the repair for the Out-of-Gas DoS vulnerability in
Airswap took them several man-hours of work, while our Gas Gauge tool man-
aged to automatically accomplish the same task on this real-world smart contract
in under 10m.

Our experimental evaluation reveals that Gas Gauge is useful, accurate, and out-
performs other state-of-the-art tools that can be used to detect Out-of-Gas vulnera-
bilities. We tested our tool on 1,000 real-world smart contracts extracted from Ether-
scan,2 one of the most popular Ethereum blockchain explorers. All these contracts

1 https://gasgauge.github.io/.
2 https://etherscan.io/.

https://gasgauge.github.io/
https://etherscan.io/

146 B. Nassirzadeh et al.

were manually checked to ensure that they contain at least one loop since user-
controlled loops are one of the main causes of DoS with Unbounded Operations
[13]. Our tool uses run-time analysis to ensure no false positives, and our static anal-
ysis method ensures a zero false negative rate on the evaluated benchmark. Also, we
performed a case study that showed that Gas Gauge could be utilized in real-world
projects written in Solidity to save hours of manual work and millions of USD.

2 Background

Background on Smart Contracts: Ethereum is one of the leading blockchain plat-
forms. It is a decentralized and open-source blockchain that contains millions of
accounts and billions of USD in capitalization. Hence, it is one of the most prevalent
underlying technologies for smart contracts [27]. Smart contracts handle transac-
tions in a cryptocurrency called Ether. They are commonly written in the Solidity
language, which is a Turing-complete programming language [10]. It then gets com-
piled to Ethereum Virtual Machine (EVM) bytecode instructions to be deployed on
the blockchain. Unlike traditional software programs, a smart contract is publicly
accessible, transparent, and immutable. Therefore, once a smart contract is deployed
on the blockchain, it cannot be altered. Thus, if errors or vulnerabilities are found
in a smart contract post-deployment, they cannot be fixed a posteriori by develop-
ers unless CREATE2 is used [19]. Several smart contract vulnerabilities have been
discovered in recent years, of which Out-of-Gas DoS are among the common ones.
A list of the most known smart contract vulnerabilities can be found on the SWC
Registry website.3

Helper Tools: Developing an automatic gas analysis tool from Solidity source code
requires a considerable implementation effort. Fortunately, many existing open-
source tools make this task easier than otherwise. For example, we used the Slither
[11] and Truffle Suite [9] as part of the Gas Gauge. Slither provides many useful
APIs to collect information about a smart contract, such as data dependencies and
function signatures. This is used to summarize the contract and extract the needed
information for the other parts of Gas Gauge implementation. Also, the Control Flow
Graph (CFG) generated by Slither is used to find the loops in the contract and their
orders. Further, Truffle Suite is used to compile and deploy Solidity smart contracts
to a test Ethereum network. This allows us to use different sets of inputs in the Iden-
tification Phase of the tool and use different threshold values in the Correction Phase
while retrieving useful gas-related information such as gas used and gas left.

3 https://swcregistry.io/.

https://swcregistry.io/

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 147

Whitebox Fuzzing: Nowadays, security vulnerabilities in software products can
be found by two fundamental methods: Code inspection of binaries and black-
box fuzzing. Blackbox fuzzing is a class of blackbox random testing that randomly
mutates well-formed inputs to the program and then tests the program on the result-
ing data in order to trigger a bug [12]. Blackbox fuzzing is an effective method to
test a program; however, it can have limitations. Low code coverage is one of the
leading limitations of blackbox fuzzing resulting in missing security bugs [12]. An
alternative approach to blackbox fuzzing is whitebox fuzzing. It is a type of auto-
matic dynamic test generation, based on symbolic execution and constraint solving,
intended for large applications’ security testing [12].

2.1 Out-of-Gas Denial of Service Vulnerabilities

The gas fee has to be paid by the transaction initiation party before the execution
starts. Since estimating the exact gas needed can be challenging, as described in
Sect. 1, the transaction initiators can specify the maximum amount of gas they are
willing to pay for their transaction to be included in a block. This is known as the
transactiongas limit. If the gas usage associatedwith a transaction surpasses this limit,
the EVM raises an Out-of-Gas exception and aborts the associated transaction [22].
Each block has an upper bound on the amount of gas that is determined by the
network and the miners. This limit is called the Block Gas Limit. A transaction
cannot exceed one block, so the transaction gas limit is also bound by the block gas
limit [17]. Therefore, if a transaction requires more gas than Block Gas Limit, it will
revert due to Out-of-Gas, which causes the initiation party to waste gas, and no state
changes occur. As a result, The execution of one or more functions in a smart contract
vulnerable to Out-of-Gas can be blocked indefinitely if Out-of-Gas conditions are
not appropriately handled. As a result, DoS attacks can target contracts with gas-
related vulnerabilities. One of the principal kinds of gas-based vulnerabilities isDoS
with Block Gas Limit vulnerability. This vulnerability has a few different types. The
most common form that mainly occurs in contracts with user-controlled loops isDoS
with Unbounded Operations. This can happen when the cost of executing a function
exceeds the block gas limit [22]. This can be problematic even without any malicious
intent. Generally, loops that user input determines their behavior could iterate too
many times, exceeding the Block Gas Limit [13].

148 B. Nassirzadeh et al.

Fig. 1 Ethereum smart contract Vulnerable to DoS with Block Gas Limit

Figure 1 demonstrates an example of a contract vulnerable toDoSwithUnbounded
Operations. In this example, the number of iterations in the loop in addInterest
is determined by the length of the variable users, which is controlled by the user
input through addUsers. addInterest performs some expensive arithmetic
calculations to compute the interest per user (not shown in the snippet) and then
sends each user the interest amount. If the length of users is large, the computation
required in the loopmight reach the block gas limit, which causes the execution of the
transaction to reach out of gas and revert. Thus, as the number of users grows, the
gas needed to execute addInterest will increase. Ultimately, the function may
become impossible to execute without raising an Out-of-Gas exception, at which
point no user can claim their interest, and the SmallBank contract will suffer
reputation damage and lose users.

3 Description of Gas Gauge

Gas Gauge is designed to address gas-based vulnerabilities of smart contracts. Since
loops are the main cause of many gas-related vulnerabilities, the focus of Gas Gauge
is on identifying and summarizing loops and then ascertaining whether they are
vulnerable. Gas Gauge contains threemajor parts: the Detection Phase, Identification
Phase, and Correction Phase. The Identification Phase and Correction Phase require
the information generated by the Detection Phase; however, Identification Phase and
Correction Phase are independent of one another. The inputs to all methods are the
Solidity source code4 and the contract’s gas limit (optional if only the Detection
Phase is used). Overall, Gas Gauge can detect all the loops and provide a repair to

4 The contracts should be self-contained. Thus, contracts with external calls are not supported.

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 149

Fig. 2 The architecture of Gas Gauge

contracts vulnerable to gas-related vulnerabilities. The architecture of Gas Gauge is
shown in Fig. 2.

3.1 Detection Phase

The Detection Phase uses a static analysis approach to efficiently and accurately
detect all the loops in a smart contract.

Initial ContractGenerator The first and simplest component of theDetection Phase
is the Initial Contract Generator. In this step, a copy of the original contract is made.
If the Correction Phase is needed, the copied version is formatted to make it easier
for the other parts. For example, it removes all the comments and adds brackets
and spaces if needed. Then, the new contract is fed to Slither. This part formats the
contract in a way that does not affect the behavior but makes it easier for the static
analysis section.

Target BlockDetector and Its Inputs In this stage, inputs to the Identification Phase
and Correction Phase are generated. The input to the Identification Phase is the target
functions, and the input to the Correction Phase is the target loops. First, Slither is
used to extract the contract’s Control FlowGraph (CFG) and other useful information
like function signatures and data dependencies. The Loop Finder uses the contract’s
CFG to find all the loops. Also, the information provided by Slither is used in the
Function Summary Generator to summarize the contract. If only the Detection Phase

150 B. Nassirzadeh et al.

is needed, the program halts here and outputs the functions containing loops along
with the number of loops in each function. If the Identification Phase or Correction
Phase is also needed, the types of variables affecting the loop bounds are obtained.
This process utilizes a static analysis approach and uses the reports available in Slither
to gather the loop conditions, the variables affecting the loops, variable dependencies,
and function summaries. The variables affecting the loop bounds are classified into
four groups: State, Local, Fixed, and Input variables. State variables are the contract
variables whose values are persistently stored in contract storage and can be accessed
by all the contract functions. Fixed variables are the ones that only carry a fixed
value and are defined within the target function (in the loop bound). Input variables
carry their usual meaning: the inputs of the target function. Finally, Local variables
are declared and initialized inside the target function, and their context is within
a function and cannot be accessed outside. If a Local variable is detected as the
loop bound, the Target Block Detector performs induction to find a list of all State,
Input, and Fixed variables affecting that local variable. For the white-box fuzzer, the
Target Block Detector finds public functions that contain loops with bounds affected
by input variables and passes them to the Identification Phase. After identifying
the target functions, the function signatures, name, and type of the input variables
affecting the target loops are passed to the fuzzer. For the Correction Phase, the
function signatures for all the functions containing loops, and a summary of each
loop is generated. This summary includes the scope of each loop, the order of the
loops if the function contains nested loops, and information about the variables
affecting the loop bounds and their types. Therefore, even if a function is not passed
to the Identification Phase because it does not satisfy the criteria of this phase, it
is still passed to the Correction Phase, and this phase finds the correct threshold
values. In the Correction Phase, the contract is slightly modified, so that it can find
the thresholds for any loop in any type of function.

3.2 Identification Phase

In the Identification Phase, a white-box fuzzing approach is utilized to generate a set
of inputs for each user-controlled loop in a public function in aSolidity smart contract.
The bounds of these loopsmust be affected by at least one of the input variables of the
function containing the loop; otherwise, directly fuzzing the target function cannot
be effective. This component takes the information from the Detection Phase and the
block gas limit as inputs and outputs the set of values that make the transaction go
out of gas. Here, public functions mean functions that can be called from outside the
contract. Thus, private functions cannot be fuzzed directly without modifying the
contract. These functions are supported and checked by the Correction Phase.

In this part, all the input variables in the target function get set to their initial
values (i.e., integers are set to zero, and arrays are set to an empty array). The input
values reported by the Target Block Detector get encoded in their binary representa-
tions. Then the tool picks a bit at random and flips it. Then, the binary encoding gets

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 151

converted back to the original form. The only exception is arrays. In this case, the
array size can generally affect the bound of a loop, so arrays are represented by 256
bits since arrays in Solidity can have up to 2256 elements [5]. Then, the binary rep-
resentation gets converted to an integer, and the array size gets set to that. If multiple
input variables affect the loop bound, the binary representations get concatenated, the
bit is flipped, and the concatenated value gets converted back to the original forms.
Next, all the necessary files are generated automatically. Truffle Suite [9] is used to
deploy the contract to a test Ethereum network. A test file is generated in Solidity to
call the target function with generated input values. Then, the contract is deployed,
and the target function is fuzzed (tested with different input values). Suppose the
test case halts and returns the remaining gas in the contract, the process repeats, and
the fuzzer flips another bit. The process continues until a set of inputs is found that
makes the test case abort due to an Out-of-Gas exception. At this point, the used set
of inputs is reported as the output of the phase.

3.3 Correction Phase

The Identification Phase is convenient to scan the contracts before deployment and
check if the contract is at risk of DoS with Block Gas Limit. Since it also provides an
instance, it further helps them examine the problem. However, one of the first steps to
fixing the code is to find the exact point where the Out-of-Gas condition starts to get
triggered, and any arbitrary set of inputs is not enough. Therefore, The Correction
Phase is designed to find the upper bound limit of the loops in a smart contract. The
output is a formula based on the maximum number of allowed iterations for loops
before the transaction runs out of gas. We refer to this number as the threshold of the
loop.

Modifier The Modifier makes two copies of the contract generated in the Initial
Contract Generator. The first copy is to measure the gas used for each loop’s first and
second iteration identified by the Target Block Detector. Based on our observation,
the first iteration of each loop consumes more gas than the other iterations. This
is perhaps due to the gas consumption of the loop initialization, where the counter
gets initialized to a starting value. The second iteration’s gas usage is typically the
average gas usage of all the other loop iterations. The first copy is the input to the
Estimator, and the second copy is to change the loop bound to the desired value. It
allows us to run each loop with a specified number of iterations and capture the gas
left after that many iterations. The Threshold Calculator uses this to test different
values. The modifications only have an insignificant effect on the behavior/gas usage
of the contract. A public function is added as a wrapper for both modified copies to
call the target function.

Threshold Estimator The Threshold Estimator receives the first modified contract
and automatically creates a Solidity test file and all the other necessary files for Truffle
Suite [9]. Also, to get an actual gas usage for each iteration, the new contract and

152 B. Nassirzadeh et al.

Fig. 3 The algorithms used in the Correction Phase

test file are deployed to a test Ethereum network using Truffle Suite. The modified
contract runs each loop twice and captures the gas used in each iteration. One can
call the function gasleft() returns (uint256) that exists in the global
namespace and returns to get the remaining gas at any instance [28]. We can utilize
this function to measure the gas usage of the target block of code. Next, based on
the gas usage amount reported by the Truffle Suite and the gas limit, the maximum
number of iterations that the loop can performwithout running out of gas is estimated.
Algorithm 1 in Fig. 3 shows the used method. As shown, the maximum iteration is
estimated to be the amount of the initial gas before entering the loop minus the gas
consumption of the first iteration divided by the average gas consumption of all the
other iterations. An extra iteration is added to account for the first iteration.

Threshold Calculator We first use the run-time/static analyzer to estimate the loop
bound threshold. Thus, any value over this threshold may trigger the Out-of-Gas
condition. Then, we used a run-time verification approach to find a more accurate
value. We further use a binary search approach to cut down the action space rapidly.
The action space is all the integers that can be the loop bound. The estimated threshold
helps the binary search model have a proper starting point. The second set of the
modified files and the Estimator’s result is fed to the Threshold Calculator. The
purpose is to run each loop with a specified number of iterations and capture the
gas left after that many iterations. The threshold calculator uses this to test different
values. Appendix A shows how a contract is modified. At this stage, by inputting
different values to the target function, we can calculate different gas usages. The goal
here is to find two consecutive numbers, where only the larger number makes the
transaction run out of gas. Each loop is isolated to ensure the value is only affecting
the target loop. The contract is deployed and run for each value, and the gas left is
obtained. There is a lower bound and an upper bound limit for the search space in

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 153

the Binary Search model. They are initially set to 0 and 5,000, respectively. Once the
execution of a contract passes Truffle’s time limit, it throws a time-out exception and
stops running. Therefore, if a loop runs for too many iterations, it might trigger the
time-out exception. From our experiments, if themaximumnumber of loop iterations
is less than 5,000, the test does not trigger the time-out condition. Also, if a loop
threshold is over 5,000, there is a lower chance of running out of gas asmost contracts
do not require that many iterations in one loop. The algorithm for this part is shown
as Algorithm 2 in Fig. 3.

Optimizer The last part is the Optimizer. It has two primary purposes. First, if the
lower bound reaches 5,000 or the value reported by the Estimator is over 5,000, it
estimates the loop’s threshold based on the original gas, gas consumed by the first
iteration, gas consumed by 5,000 iterations, and the remaining gas. Secondly, to test a
value in the Threshold Calculator, the system needs to run the contract with the target
value,wait for the result, and then run the contractwith either value + 1orvalue
–1. Since each execution takes a few seconds, running the contract twice each time
may take a while. Therefore, the Optimizer makes two extra copies of the generated
files and simultaneously runs the three contracts with three consecutive numbers
(value, value + 1, value–1). Then, based on the feedback fit receives, it
decides to use the correct extra feedback. This way, the run-time gets reduced by
almost 50%.

Threshold of the Nested Loops The process for nested loops is slightly different.
These loops and their order are identified by the Target Block Detector. Then the
Correction Phasefinds the threshold for the most inner loop and works its way back
to the most outer loop. In order to find the threshold for the inner loops, the loop
bounds for the outer loops are set to one, and the threshold for the target loops is
found using the method mentioned before. The loop bound for the inner loop is set
to zero, and the outer loop threshold is found. The output report contains a formula
based on the threshold values of the outer and inner loops. Appendix B demonstrates
the mentioned process with a code example.

Output of the Correction Phase The output includes the signature of the functions
containing loops and a summary of the loops and the variables affecting the loop
bounds. It also provides the value of the threshold found by the tool for the provided
gas limit along with the gas consumption of the first iteration and the average gas
consumption for the other iterations. Appendix C demonstrates an example of the
output of the Correction Phase. Finally, the threshold formula is generated. This
formula can be used in a require statement to prevent Out-of-Gas exceptions for
that loop. The statement has to be placed in the source code right before the loop. The
user has to find the loop bound and place it in the require statement. An example
of the require statement is given below.
require(loopBound < (gasleft()- gas_1) / (gas_
2), “Over the limit”)
gasleft() is the value returned by the function gasleft() placed right

before the loop in the source code,gas_1 is the gas consumption of the first iteration

154 B. Nassirzadeh et al.

of the loop, and gas_2 is the average gas consumption of the other iterations.Adding
appropriate require statements can be a simple fix to many contracts containing
user-controlled loops.However, thismight not be the casewhen the contract uses poor
implementation patterns. These require statements help the callers save some gas
(by hitting the require statement rather than the block gas limit). Unfortunately,
if the contract relies upon some user-controlled loops to function properly, other
correction approaches are needed, or the funds are still likely to be locked. However,
the information provided by our tool can be useful for the developers to come up
with other solutions.

4 Experimental Evaluation

Real-world Smart Contract Benchmark:We gathered a benchmark of 1,000 real-
world Solidity smart contracts containing over 60,000 functions from Etherscan.5

All contacts are gathered starting from the latest block at the time (Block Height:
11661369) and going backward in the chain. Each contract has 413 lines of code,
63 functions, 4 functions with loops, and 5 loops on average. These contracts were
manually checked to ensure that each contained at least one loop. Also, information
such as the number of functions, loops, and lines of code was manually collected.
Hence, these values are used as the ground truth. Gas Gauge and the benchmark
are available at https://gasgauge.github.io/. The name of each contract file in the
benchmark represents the contract address. The experimental setup can be found in
Appendix D.

Competing Tools: The following seven tools were chosen to compare against Gas
Gauge: GASTAP [3]/Gasol [2], Madmax [13], MPro [27], Mythril [7], Securify
2.0 [25], Slither [11], and SmartCheck [23]. MPro, Mythril, Securify 2.0, Slither,
and SmartCheck were installed using the instruction provided on their official doc-
umentation. A combination of GASTAP and Gasol, which is available on a web
interface6 was used. This interface was called using a script to scan our benchmark.
MadMax is built into Contract Library.7 Therefore, we searched for our benchmark
in Contract Library and collected the reports generated by MadMax. Thus, in our
analysis, MadMax and GASTAP/Gasol do not have a run-time value associated with
their effectiveness results.

5 https://etherscan.io.
6 https://costa.fdi.ucm.es/gastap.
7 https://contract-library.com.

https://gasgauge.github.io/
https://etherscan.io
https://costa.fdi.ucm.es/gastap
https://contract-library.com

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 155

Table 1 Detection Phase comparison on 1,000 smart contracts with loops

Tool name Method Number of
contracts
Successfully
scanned

False negative
Rate(%)

Average
Run-time (s)

Gas Gauge Static + Dynamic
Analysis

997 0 10

GASTAP/Gasol Static analysis 120 36 –

Madmax Static analysis 921 79 –

MPro Static analysis +
Symbolic
execution

851 100 242

Mythril Symbolic
execution

870 100 3109

Securify 2.0 Static analysis 548 47 176

Slither Static analysis 997 85 2.6

SmartCheck Static analysis 1000 47 2

4.1 Evaluation of the Detection Phase

This experiment aims to determine how accurate and efficient the Gas Gauge and the
above-mentioned seven competing tools are at detecting potential loops for Out-of-
Gas DoS vulnerabilities. All results are summarized in Table 1. The time-out limit
for this experiment was set to 3hr per contract for each tool. As can be seen, Gas
Gauge was able to detect all the vulnerable loops in the contracts that it was able
to scan. There were three contracts that Slither could not scan, and since the report
generated by Slither is an essential part of our methods, our tool was not successful in
checking them as well. Typically, a tool may not scan a contract for various reasons,
like reaching the time-out and lacking support for the Pragma version. The false
negative rate is calculated as the number of loops detected by the tool divided by the
total number of loops in the contracts that the tool could scan. As mentioned before,
the number of loops in each contract was manually collected and hence used as the
ground truth. Also, we tested all tools on a benchmark of 1,000 contracts without
loops, and they all had zero false positive rates. Hence, it is not listed in the table.

One can only obtain the reports ofMadMax if a contract exists in Contract Library.
Thus, “Number of Contracts Successfully Scanned” shows the number of contracts
available onContractLibrary.Thus, if a contract does not exist there, it is not necessar-
ily a shortcoming of the tool. However, Madmax was not able to find Out-of-GasDoS
vulnerabilities in the Majority of the contracts, although it is one of the industry-
standard tools for gas-related vulnerabilities. Also, although GASTAP/Gasol has the
lowest false negative rate amongst the competitors, they have a low scan rate of
around 12%. The reason is that the Solidity compiler used by GASTAP/Gasol does

156 B. Nassirzadeh et al.

not support a majority of the contracts in our benchmark or the generated report did
not contain any meaningful information.

Gas Gauge has 0 false positive and false negative rates for the contracts supported
by the tool and is efficient in scanning contracts (on average, about 10 s per contract).
By contrast, all the other tools had difficulties detecting such vulnerabilities. There-
fore, Gas Gauge is efficient and effective at detecting loops in smart contracts as it
has an average run-time of 10s and false negative and false positive rates of 0%.

4.2 Performance Analysis of the Detection Phase

In this experiment, we tried to find the main factors affecting the run-time of the
Detection Phase.We obtain the summary of each of the 1,000 contracts in our bench-
mark. This summary contains the total number of functions, number of functions
containing loops, number of code lines, and number of loops in each contract. We
also measured the run-time for each of the contracts for the Detection Phase. During
this experiment, we concluded that the factors impacting the run-time of the Detec-
tion Phase in descending (run time) order are the number of lines of code, number of
loops, number of functions containing loops, and total number of functions. This is
also expected because Detection Phase uses a static analysis approach as its primary
method. ConsenSys has a tool called Solidity-metrics [8] that has defined a factor
called “Complexity Score”, which is a custom complexity score derived from code
statements known to introduce code complexity. We obtained this score for each
of the contracts and observed that it has a noticeable correlation with the run-time
and can summarize all the other factors. Appendix E contains graphs that show the
impact of different factors on the run-time of the Detection Phase.

This experiment cannot be done fairly on the other two phases since they contain
run-time analysis. Thus, the time to deploy and run the contracts has a significant
impact on the overall run-time of the tool. Furthermore, for the Identification Phase,
factors like the search space, the ability of the fuzzer to find the right set of inputs, and
the complexity of the target functions. Also, for the Correction Phase, the estimated
value reported by the Threshold Estimator, cyclomatic complexity of the loop, and
the actual threshold values are some of the factors that affect the run-time noticeably
and cannot be measured easily.

4.3 Evaluation of the Identification Phase

In this experiment, we evaluated the results of the Identification Phase. Generally,
finding an Out-of-Gas instance requires a run-time analysis-based technique. To the
best of our knowledge, Gas Gauge is the first tool, and the Identification Phase is
the first method that uses a run-time fuzzing technique to detect gas-related vulner-
abilities and automatically identify Out-of-Gas instances. As a result, we did not

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 157

find a direct competitor to compare the results of the Identification Phase. Therefore,
we manually checked each contract to obtain the number of functions satisfying the
condition of the fuzzer and the input variables affecting the loops. Only 979 func-
tions in 501 contracts met these criteria. Then, we ran our tool on the benchmark and
obtained the results. Lastly, we verified the results manually. The fuzzer detected 968
functions in 499 contracts and identified their variables correctly in 53s per contract
on average. Two of the contracts were not scanned by Slither, so the fuzzer was not
able to identify 11 functions. The fuzzer identified 614 instances of Out-of-Gas in
331 contracts. Although the fuzzer detected the rest, it could not find an Out-of-Gas
instance in them for various reasons, like reaching the maximum number of tries
(it was set to 10, but it is customizable), the function contained structs, or the code
reverted. However, even when the fuzzer could not find an out of the gas instance,
it still provided the function signatures with loops and variables affecting the loop
bounds. Moreover, different approaches that were considered when designing the
fuzzer are described in Appendix F. Overall, the Identification Phase identified all
the satisfying functions that it could scan. It also was able to identify 614 instances
of Out-of-Gas in 331 contracts.

4.4 The Evaluation of the Correction Phase

In this experiment, we evaluated the results of the Correction Phase. Our benchmark
has 4415 loops. Gas Gauge was able to find the thresholds for 932 loops in 467
contracts. 779 of these thresholds were calculated using run-time verification with a
high rate of accuracy, and 153 of these thresholds were estimated with 95% accuracy.
A threshold is estimated if it is greater than 5,000 or for any reason, the run-time
verification is not able to find the correct number. The average run-time for each loop
was about 389s, which is much faster than manual processing. To the best of our
knowledge, Gas Gauge is the first tool ever attempted to find the loop upper bound
limits in a smart contract. The closest tool to our work is GASTAP/Gasol. However,
based on our experiments, the provided web interface does not support most of the
contracts in our benchmark. Meanwhile, manually finding the thresholds is a tedious
process. Therefore, to get an idea of the accuracy, we randomly picked 10 of the
contracts and found the thresholds of their loops manually. Then, we compared the
manual results with the ones generated by Gas Gauge. Based on our results, the
calculated threshold is about 2% lower than the actual threshold. We expect the
calculated thresholds to be within 5% of the actual values and usually lower than the
actual values since our modifications introduce an insignificant extra gas usage.

158 B. Nassirzadeh et al.

4.5 Limitations of Gas Gauge

If the Slither tool is not able to scan a contract or does not identify loops or data
dependencies, then all three phases of Gas Gauge miss important information that
lowers its accuracy. Also, the time limit and compilation problems of Truffle Suite
may cause our tool not to operate properly. Functions containing structs or multi-
dimensional arrays are not supported by the Correction Phase and Identification
PhaseȦ struct is just a custom type that can be definedwithin a contract, and because it
is different in each contract, it can be very challenging to automate the test generation
for such a construct. However, they are supported in the Detection Phase, which is
the phase that competes with other tools. Moreover, the contracts should be self-
contained and written in Solidity to be used by Gas Gauge. Thus, contracts with
external calls to other contracts or written in other languages are not supported.

5 Case Study

We performed a case study to evaluate Gas Gauge in real-world applications.
Quantstamp [21] is a leading verification company that evaluates smart contract
projects for security-related issues and code quality. We collected the Quantstamp
contract security certification of Airswap,8 a peer-to-peer trading network for
Ethereum, to identify gas-related vulnerabilities in this project. Airswap is used for
trading the USD equivalent of about 9200 ETH/week (over 20 million USD/week
with current ETH value). Loop concerns due to gas usage have been reported in
two contracts, Swap.sol, and Index.sol. Gas Gauge was able to identify one
vulnerable function in Swap.sol and two vulnerable functions in Index.sol.
Gas Gauge detected the loop and variables affecting the loop bound in Swap.sol.
Although it did not find the threshold of the loop since the constructor of that contract
takes a struct as an input, it detected the loops and variables affecting the loop bounds
of Index.sol. For the two other functions, it found the threshold of the loop as
well. The threshold of one of these loops was over 5,000, so Gas Gauge estimated
the threshold based on the average gas consumption of a few iterations.

Usually, to find the loop threshold values, one needs to audit the contracts to find
potentially vulnerable code blocks. The next step is to examine these code blocks
to understand what variables affect the loop bounds. Once all the information is
gathered, a gas analysis needs to be performed. The gas analysis consists of making
required files for tools like Truffle Suite to test a contract with different test cases
to find the threshold for each loop.9 This process is tedious and requires many man-
hours (estimated to be around 4hr per contract) of work by the developers. However,
Gas Gauge took about 10m to find the vulnerable functions and loop thresholds.
Also, Gas Gaugeis automatic and requires limited resources and supervision. This

8 Available at https://certificate.quantstamp.com/full/airswap.
9 The process can be found at here and here.

https://certificate.quantstamp.com/full/airswap
https://github.com/airswap/airswap-protocols/issues/296
https://github.com/airswap/airswap-protocols/pull/309/commits/9eb79d6af97f7428fdaa6d14224e57bf9b5d272d

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 159

case study shows that Gas Gaugeis practical and can be used to save hours of manual
work.

6 Related Work

Many smart contract verification tools scan a contract for multiple security vul-
nerabilities. Some of the most well-known tools are Manticore [18], MPro [27],
Mythril [7], Securify [24] (deprecated), Securify 2.0 [25], Slither [11], SmartCheck
[23], Verx [20], and Zeus [16]. Although these tools can detect multiple security vul-
nerabilities, most of them either cannot identify gas-related vulnerabilities or their
results are not reliable due to their high false negative rate (See Table 1). Fuzzing
tools like ContractFuzzer [15], Echidna [14], and Harvey [26] do not discover gas-
related vulnerabilities, to the best of our knowledge. Meanwhile, some research has
focused on gas-related vulnerabilities. GASTAP [3] derives gas upper bounds for
all public functions of smart contracts via inferring size relations, generating gas
equations, and solving these equations. Madmax [13] uses a static program analysis
technique to detect gas-focused vulnerabilities automatically. However,most of these
tools cannot detect gas-related DoS vulnerabilities directly, or they do not provide
any information to fix the problem.

GasGauge canfindall the loops in a contract reliably andquickly.Also, it identifies
the exact functions and variables and provides an Out-of-Gas instance that helps
developers investigate the problem further. Finally, to the best of our knowledge,
Gas Gauge is the only tool that accurately and reliably finds the threshold values and
provides more useful information like each loop’s type and the variables affecting it.
This information is helpful in order to repairing the code and preventing gas-based
attacks like DoS with Block Gas Limit.

7 Conclusions and Future Work

Because smart contracts containmonetary transactions, it is crucial tomake sure they
are risk-free. This paper summarizes the design and implementation ofGasGauge, an
automatic tool that helps developers and contract owners identifyDoSwithBlockGas
Limit vulnerability and repair their code. This tool contains three powerful sections.
These sections use static analysis, run-time verification and white-box fuzzing to
detect all the contract loops, provide an instance of out-of-gas and determine when
the transaction starts to go out of gas. Finally, our experimental evaluation results
on 1,000 real-world Solidity smart contracts show that all the methods are accurate
and efficient. Gas Gauge only supports self-contained contracts, so contracts with
external calls to other contracts are not supported. As a part of future work, the
Mainnet forking will be used to include external contracts without source code.
Also, The current implementation only supports contracts written in Solidity. As an

160 B. Nassirzadeh et al.

improvement, we plan to extend our tool so that it can support more programming
languages like Vyper and Rust. Furthermore, the fuzzer can be improved so it can
identify the private functions containing loops and fuzz the public functions that call
those private ones.

Appendix A Threshold Calculator Code Modification

The code snippets in Figs. 4 and 5 demonstrate how a contract is modified in order to
find the threshold for the first loop. The code snippet in Fig. 4 is the original contract
that contains two loops and the code snippet in Fig. 5 is the modified contract.

As shown, a wrapper function is added, the visibility of the target function is
changed from “external” to “public”, the second loop’s condition is modified, so it
does not get executed, and the condition of the target loop is changed to execute
the loop up to a desired number of iterations. VALUE is the number generated by
the Binary Search Threshold Calculator. Also, if the original loop bound is affected
by an input variable as identified in Target Block Detector, the generated test file
is modified, so the value or size of the input variable in the wrapper function is
set to VALUE where applicable. This ensures the function does not fail if there is a
condition that requires a specific value or size of that variable inside the function.
For example, in the shown code snippet, input1 is set to an array of integer of
size VALUE. Similarly, if a state variable affects the loop bound, the value or size
of the variable is set to VALUE inside the wrapper function before calling the target
function. For example, to test the second loop in the given code snippet, “numbers”
is set to an array of integers of size VALUE before calling addNumbers.

Fig. 4 The original code containing two loops

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 161

Fig. 5 The modified code containing two loops

Fig. 6 The original code containing a nested loop

Appendix B Code Modification for Nested Loops

The code snippets in Figs. 6, 7 and 8 demonstrate how a contract with nested loops
are modified. The first code snippet shows the original function containing a nested
loop. The second and third code snippets show the changes in the code in order to
obtain the threshold for the inner and outer loops respectively.

162 B. Nassirzadeh et al.

Fig. 7 The modified code for the threshold of the inner loop

Fig. 8 The modified code for the threshold of the outer loop

Appendix C Output of the Correction Phase

The threshold formula of the Correction Phase is given in the following format:

(gasle f t ()− gas_1)/(gas_2).

If there are nested loops in the contract, the formula is slightly different. The
formula for the inner loops is similar to the ones above, but it considers the outer
loop has only one iteration, and for the outer loops is similar to the following:

(gasle f t ()− gas_1)/(gas_2+ I nternal).

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 163

Fig. 9 Output of Correction Phase

Where gasleft() is the value returned by the function gasleft() placed
right before the loop in the source code, gas_1 is the gas consumption of the first
iteration of the loop, gas_2 is the average gas consumption of the other iterations,
and Internal is the gas consumption of the internal loops.

An example of the output of the Correction Phase is provided in Fig. 9.
In this example, the size of the input variable “receivers” is the bound of the loop,

the “require” statement looks like this:
require(receivers.length < (gasleft()−−47420)/(5932),
“Loop bound is over the threshold!”);
In this case, if the user inputs an array of size greater than 899, the “require”

statement gets triggered, and the execution stops before entering the loop.

Appendix D Experimental Setup

We ran our experiments on a machine that was equipped with 8GB of RAM, a 4-
core Intel Xeon 2.2 GHz processor with Ubuntu 18.04 running. To test Gas Gauge,
the latest version (on January 2021) of nodejs, Ethereum, truffle, ganache-cli, solc-
select, python3, and Slither were installed. We deployed the target smart contract to
a test chain using Ganache-cli. Since Gas Gauge does not make any modifications to
Truffle and Ganache-cli in its implementation, future versions of these tools are still
compatible with Gas Gauge. In all these experiments, Solc compiler version 0.5.3
was used unless either the tool or the contract required a different version. Also, the
block gas limit was so kept to the default value in Ganache-cli (6,721,975). The Solc
compiler version and the block gas limit can be configured easily in the tool.

164 B. Nassirzadeh et al.

Fig. 10 Effect of the number of functions on the run-time

Fig. 11 Effect of the number of loops and line of code on the run-time

Appendix E Factors Impacting the Run-time of the
Detection Phase

Figures 10 and 11 demonstrate the impact of different factors on the run-time of the
Detection Phase. These factors are the number of lines of code, number of loops,
number of functions containing loops, and total number of functions. These facotes
and some other factors can be summarized in the “Complexity Score”, provided
by ConsenSys. Figure 12 demonstrates the impact of this factor on the run-time of
Detection Phase.

Appendix F Evaluation of the Methods for the
Identification Phase

Three methods were considered when designing the white-box fuzzer. The first
approach was a random bit flip, as described before. The second one was a ran-

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 165

Fig. 12 Effect of the complexity score on the run-time

dom byte flip, which flips every bit in the byte starting from the randomly chosen
bit. Lastly, a random byte shuffle was tested. In this approach, the fuzzer chooses
a random bit to flip, and then all the bits in the byte starting from the chosen bit
get randomly shuffled. Figure 13 shows a chart comparing the three methods on a
benchmark of 28 contracts containing a total of 31 functions with loops. We tested
each method ten times on each function and recorded the average number of tries for
each method until finding a set of inputs that causes the Out-of-Gas exception. The
number of tries means the number of different combinations of inputs before finding
a satisfying set. This number was bounded to fifty in our experiments in order to halt
the process promptly. During this experiment, we obtained the following results:

1. Because our implementation finds the exact functions and variables to fuzz, in
most cases, all three methods can find the desired output within the first two
tries. These are simple cases when one input variable is the loop bound, so the
fuzzer has a high chance of finding the correct value for the value.

2. In some cases, when the bound is more complex, the fuzzer takes about 3 or 4
tries to find a correct set of inputs using any of the approaches. An example of
this is when the difference between the values of two of the inputs is the loop
bound.

3. There are also some cases that the fuzzer needs to trymore numbers. An example
of this is when “input mod 250” is the loop bound, and any number of loop itera-
tions more than 240 triggers the Out-of-Gas condition. These contracts were the
determining factors, and as shown, bit flip outperformed the other two methods.
Hence, the bit flip approach was chosen in our design.

166 B. Nassirzadeh et al.

Fig. 13 A comparison of different methods for the white-box fuzzer

References

1. If metamask gas calculations are nearly perfect why do we still get out of gas error? (2018).
https://ethereum.stackexchange.com/questions/56287.

2. Albert, E., Correas, J., Gordillo, P., Román-Díez, G., & Rubio, A. (2019). Gasol: Gas analysis
and optimization for ethereum smart contracts.

3. Albert, E., Gordillo, P., Rubio, A., & Sergey, I. (2019). Running on fumes–preventing out-of-
gas vulnerabilities in ethereum smart contracts using static resource analysis. https://arxiv.org/
abs/1811.10403.

4. Calderon, F. (2021). Why did my transaction fail with an out of gas error? how can i fix it?.
https://metamask.zendesk.com/hc/en-us/articles/360038849792/.

5. Cañada, A. C. (2019). How not to run out of gas in ethereum. https://hackernoon.com/how-
much-can-i-do-in-a-block-163q3xp2.

6. ConsenSys Software Inc. (2021). Metamask. https://metamask.io/.
7. ConsenSys Software Inc. (2021). Mythril. https://github.com/ConsenSys/mythril.
8. ConsenSys Software Inc. (2021). solidity-metrics. https://github.com/ConsenSys/solidity-

metrics.
9. ConsenSys Software Inc. (2021). Sweet tools for smart contracts. https://www.trufflesuite.

com/.
10. Ethereum. (2021). Solidity. https://docs.soliditylang.org/.
11. Feist, J., Grieco, G., & Groce, A. (2019). Slither: A static analysis framework for smart con-

tracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB). https://doi.org/10.1109/wetseb.2019.00008, https://arxiv.
org/abs/1908.09878.

12. Godefroid, L. M. (2012). Sage: Whitebox fuzzing for security testing. https://queue.acm.org/
detail.cfm?id=2094081.

13. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., & Smaragdakis, Y. (2018). Mad-
max: surviving out-of-gas conditions in ethereum smart contracts. In Proceedings of the ACM
on Programming Languages (vol. 2, pp. 1–27). OOPSLA. https://doi.org/10.1145/3276486,
https://dl.acm.org/doi/10.1145/3276486.

https://ethereum.stackexchange.com/questions/56287
https://arxiv.org/abs/1811.10403
https://arxiv.org/abs/1811.10403
https://metamask.zendesk.com/hc/en-us/articles/360038849792/
https://hackernoon.com/how-much-can-i-do-in-a-block-163q3xp2
https://hackernoon.com/how-much-can-i-do-in-a-block-163q3xp2
https://metamask.io/
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/solidity-metrics
https://github.com/ConsenSys/solidity-metrics
https://www.trufflesuite.com/
https://www.trufflesuite.com/
https://docs.soliditylang.org/
https://doi.org/10.1109/wetseb.2019.00008
https://arxiv.org/abs/1908.09878
https://arxiv.org/abs/1908.09878
https://queue.acm.org/detail.cfm?id=2094081
https://queue.acm.org/detail.cfm?id=2094081
https://doi.org/10.1145/3276486
https://dl.acm.org/doi/10.1145/3276486

Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities 167

14. Grieco, G., Song, W., Cygan, A., Feist, J., & Groce, A. (2020). Echidna: effective, usable,
and fast fuzzing for smart contracts. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. https://doi.org/10.1145/3395363.3404366.

15. Jiang, B., Liu, Y., &Chan,W.K. (2018). Contractfuzzer: fuzzing smart contracts for vulnerabil-
ity detection. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. https://doi.org/10.1145/3238147.3238177, http://dx.doi.org/10.1145/
3238147.3238177.

16. Kalra, S.,Goel, S.,Dhawan,M.,&Sharma,S. (2018).Zeus:Analyzing safety of smart contracts.
In Proceedings 2018 Network and Distributed System Security Symposium. https://doi.org/10.
14722/ndss.2018.23082.

17. minimalsm: Gas and fees. https://ethereum.org/en/developers/docs/gas/.
18. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., Brunson, T.,

& Dinaburg, A. (2019). Manticore: A user-friendly symbolic execution framework for bina-
ries and smart contracts. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 1186–1189). California: IEEE. https://doi.org/10.1109/ASE.
2019.00133.

19. OpenZeppelin: Deploying smart contracts using create2 (2018). https://docs.openzeppelin.
com/cli/2.8/deploying-with-create2.

20. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., & Vechev, M. (2020). Verx:
Safety verification of smart contracts. In 2020 IEEE Symposium on Security and Privacy (SP)
(pp. 1661–1677). California: IEEE. https://doi.org/10.1109/SP40000.2020.00024.

21. Quantstamp Inc. Quantstamp certifications. https://certificate.quantstamp.com.
22. SmartContractSecurity: Swc registry smart contract weakness classification and test cases.

https://swcregistry.io/docs/SWC-128.
23. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., & Alexan-

drov, Y. (2018). Smartcheck: Static analysis of ethereum smart contracts. In 2018 IEEE/ACM
1st InternationalWorkshop on Emerging Trends in Software Engineering for Blockchain (WET-
SEB) (pp. 9–16). Gothenburg: IEEE. https://doi.org/10.1145/3194113.3194115.

24. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., & Vechev, M. (2018). Secu-
rify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. https://doi.org/10.1145/3243734.
3243780, https://dl.acm.org/doi/10.1145/3243734.3243780.

25. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., & Vechev, M. (2021).
Securify v2.0. https://github.com/eth-sri/securify2.

26. Wüstholz, V., & Christakis, M. (2020). Harvey: a greybox fuzzer for smart contracts. In Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. https://doi.org/10.1145/3368089.
3417064.

27. Zhang, W., Banescu, S., Pasos, L., Stewart, S., & Ganesh, V. (2019). Mpro: Combining static
and symbolic analysis for scalable testing of smart contract. In 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE) (pp. 456–462). Berlin: IEEE. https://
doi.org/10.1109/ISSRE.2019.00052.

28. Ziechmann, K. (2021). Introduction to smart contracts. https://ethereum.org/en/developers/
docs/smart-contracts/.

https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3238147.3238177
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.14722/ndss.2018.23082
https://ethereum.org/en/developers/docs/gas/
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://docs.openzeppelin.com/cli/2.8/deploying-with-create2
https://docs.openzeppelin.com/cli/2.8/deploying-with-create2
https://doi.org/10.1109/SP40000.2020.00024
https://certificate.quantstamp.com
https://swcregistry.io/docs/SWC-128
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://dl.acm.org/doi/10.1145/3243734.3243780
https://github.com/eth-sri/securify2
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1109/ISSRE.2019.00052
https://doi.org/10.1109/ISSRE.2019.00052
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/

Tweakable Sleeve: A Novel Sleeve
Construction Based on Tweakable Hash
Functions

David Chaum, Mario Larangeira, and Mario Yaksetig

Abstract Recently, Chaum et al. (ACNS’21) introduced Sleeve, which describes an
extra security layer for signature schemes, i.e., ECDSA. This distinctive feature is a
new key generation mechanism, allowing users to generate a “back up key” securely
nested inside the secret key of a signature scheme. Using this novel construction, the
“back up key”, which is secret, can be used to generate a “proof of ownership”, i.e.,
only the rightful owner of this secret key can generate such a proof. This design offers
a quantum secure fallback, i.e., a brand new quantum resistant signature, ready to be
used, nested in the ECDSA secret key. In this work, we rely on the original Sleeve
definition to generalize the construction to a modular design based on Tweakable
Hash Functions, thus yielding a cleaner design of the primitive. Furthermore, we
provide a thorough security analysis taking into account the security of the ECDSA
signature scheme, which is lacking in the original work. Finally, we provide an
analysis based on formal methods using Verifpal assuring the security guarantees
our construction provides.

Keywords Provable security · Digital wallet · Hash-based signatures

This work was supported by JSPS KAKENHI Grant Number JP21K11882.

D. Chaum
xx Network, Grand Cayman, Cayman Islands
e-mail: david@xx.network

M. Larangeira (B)
Tokyo Institute of Technology, Tokyo, Japan
e-mail: mario@c.titech.ac.jp; mario.larangeira@iohk.io

IOHK, Battery Road, Singapore

M. Yaksetig
University of Porto, Porto, Portugal
e-mail: mario.yaksetig@fe.up.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_10

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_10&domain=pdf
mailto:david@xx.network
mailto:mario@c.titech.ac.jp
mailto:mario.larangeira@iohk.io
mailto:mario.yaksetig@fe.up.pt
https://doi.org/10.1007/978-3-031-18679-0_10

170 D. Chaum et al.

1 Introduction

The ECDSA signature scheme is widely used; however it achieved new levels of
exposure after it found new applications in electronic wallets for cryptocurrencies
such as Bitcoin [22], Ethereum [25] and Cardano/Ouroboros [2, 11, 19]. This inten-
sive exposure drove the research community to channel its efforts to propose new
attacks on the signature scheme/wallets [1, 24].

Recently, Chaum et al. [8] proposed Sleeve, a signature based new cryptographic
primitive in order to mitigate damages during massive leaks of wallet private infor-
mation. In a nutshell, the goal of [8] is to allow the rightful user to prove its (correct)
ownership in the face of the situation that its secret key becomes public. In such a
situation, proving the knowledge of the correct secret key, via zero knowledge pro-
tocols, for example, is of no use as, potentially, anyone could generate such proof.
Furthermore, Sleeve leaves at the disposal of the user a second signature scheme.
More concretely, Sleeve leverages a regular ECDSA scheme to have a nested “back
up key” to generate the proof of ownership, or even be fully discarded for a (post
quantum) signature scheme; a hash based signature scheme. In theory, wallets imple-
menting Sleeve can be easily switched to be quantum resistant, since in addition to
ECDSA, they would also contain a post quantum signature as the fallback feature.

SSS leeve Design Limitations. The novel approach in [8], in particular the construc-
tion the original authors introduced, deals with the aggregation of a W-OTS+ public
key into a single value to be used in the ECDSA as the secret key. Their solution
was to adapt the L-Tree data structure [10] in order to execute the integration. This
approach works for their purpose; however its design seems fairly limited and ad
hoc, i.e. left and right branches of the L-Tree requires pair of values which needs
to be added to the key pairs. More modern approaches exist and seem more suit-
able to such integration between ECDSA and hash based signatures, such as relying
on Tweakable Hash Functions [3]. The security analysis of [8] introduces two new
properties: proof of ownership and fallback; however it does not detail the impacts
in the signature scheme. Namely, the introduction of a back up key nested into the
ECDSA signature scheme is not shown to have any side effects on its security. In fact,
the ECDSA security in [8] is not assured by a computational problem. Transactions
generated by wallets rely on signatures, therefore this state of uncertainty is not ideal
for the security of regular users. Moreover, a closer look on the ECDSA security
literature shows that it is more involved than a naive reader would previously expect
[6, 7, 13, 14].

History of the ECDSA Security. Brown [6, 7] has shown that the ECDSA is strong
unforgeable (when the adversary receives only one signature permessage) in a chosen
message attack considering a proof technique based on the Random Oracle Model
(ROM) and Generic GroupModel (GGM). Fersch et al. [13] pointed out, that indeed
ECDSA is strong unforgeable in these models; however in the real world, when no
assumption is assumed in the group (thus not in the GGM), that is not the case. The

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 171

reason for the discrepancy is the modelling of the group in the conversion function
of the scheme, i.e., mapping the group elements to the field Zq for a large prime q.

The works [13, 14] sidestep the briefly mentioned limitations of the proof tech-
nique by dropping the GGM, while still relying on the ROM. Both works show that
ECDSA is indeed secure; however when the adversary is given only one signature
per message employing a proof method relying on a “Generic ElGamal Framework”,
which subsumes several variants of DSA, including the ECDSA. Perhaps, surpris-
ingly, the proven security is based in theSemiLogarithmProblem (SLP) [6] instead of
themore standardDiscrete LogarithmProblem (DLP) as onewould expect. Attempts
to show the security of Sleeve must take into account these developments, and that
is what we do within this work.

Our Contributions. Succinctly, the main contributions of this work are

• Section 3 (and Appendix A) introduces a clean and modular construction to
quantum-secure fallback and proof of ownership of ECDSA under the Sleeve
definition and based on Tweakable Hash Functions;

• Section 4 presents a proof of security with respect to the original Sleeve definition,
for proof of ownership and fallback, regarding the signatures generated by Sleeve
with respect to the unforgeability security of the ECDSA scheme, and based on the
computational problem SLP (dependence of a computational problem is crucial
in provable security standard);

• Section 5 introduces benchmarks of an open-source, fully audited, and deployed
implementation currently in use on existing blockchain platform;

• Section 6 shows the security of the construction using Verifpal, a formal methods
analysis tool, and provides the first ever analysis of a hash-based signature scheme
using formal methods analysis tools, highlighting the existing challenges in this
type of modelling.

The most remarkable differences between the work from [8] and ours is (1) the
use of Tweakable Hash functions, which [8] does not use. Therefore, as in [8], our
construction works with basic wallet scripts, e.g., multisig. Their construction relies
heavily on L-Tree as used in [16], therefore our construction takes the more modern
approach, (2) the security guarantees and analysis we introduce.

2 Background

As preparation, let n be the security parameter, and PPT denote probabilistic
polynomial-time. We rely on the standard notion of negligible function. That is
negl(n) is said to be negligible if and only if for all c ∈ N, there is a n0 such that for
all n ≥ n0, negl(n) < n−c.

Now we can review the Sleeve and Tweakable Hash Function definitions.

172 D. Chaum et al.

Fig. 1 Overview of theSleeve construction, where the user generates a post-quantum (PQ) key pair
(PQsk,PQpk) along with a hash keyX from the local randomness seed, which is used as an input
when hashing the fallback public key. The result of the hashing operation is used as an elliptic curve
secret key, ECCsk, then used as elliptic curve cryptography (ECC) trapdoor and obtain the elliptic
curve public key ECCpk. Diamond arrows represent a trapdoor, and normal arrows showcase the
values acting either as input or output

Overview of the SSS leeve construction. The principle behind the construction is that
users first generate a public-private key pair that is quantum resistant along with a
secret key value, hash the quantum-resistant public key along with the secret key
value, and use this output as a secret key to be used as an elliptic curve secret key.
Upon obtaining the elliptic curve secret key, users can trivially generate the cor-
responding public key. To finalize, users may have to perform additional steps to
obtain a wallet address associated with an elliptic curve public key. For example, on
blockchain platforms like Bitcoin [22], Ethereum [25] and Cardano/Ouroboros [2,
11, 19], users hash their ECDSA public key to obtain their wallet address. The con-
struction is designed to be modular such that users can easily use the best suitable
cryptographic assumptions for each of the modules. Figure 1 illustrates an overview
diagram of the construction.

SSS leeve Desired Properties. The design [8] is due to the need to integrate a quantum-
secure fallback into the ECDSA scheme. Namely, the question it addresses is: If
an adversary breaks the Elliptic Curve based DLP (ECDLP), compromising the
security of a cryptocurrency, can users redeem (or rollover) their assets in a safe
manner without the risk of theft from this adversary?

Before addressing the required properties for our design, we highlight similar
research in this area, such as [18] and [17], that provide a different alternative solution
to this question. These approaches rely on a user Alice publishing one hash commit
of both the elliptic curve public key and the fallback public key. At a later point in
time, Alice signs a reveal transaction using the fallback secret key which reveals both
the elliptic curve public key and the fallback key. This transaction then proves that
Alice is the true owner of a specific wallet address.

The scheme in [8] requires some different properties, which are now enumerated.
First, and intuitively, users should have the ability to integrate a (quantum-secure)
fallback for traditional cryptocurrency wallets, which typically rely on the ECDSA
scheme. Ideally, this solution should not incur in any type of additional communica-
tion costs and should not assume an interactive protocol if it is not strictly necessary.
This segregation and lack of interactivity with any other parties is particularly rele-

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 173

vant as it allows a user to, upon completion of the key generation, quickly and simply
store the fallback key in a cold wallet without requiring any signature until a quantum
threat appears. Second, the users should have the ability to leak the fallback public
key in a manner that does not expose the ECDSA secret key. For example, Alice
should be able to disclose that she owns a wallet address WA, and a fallback public
key to inform all in the system that she may need to provide a signature that can be
verified under such fallback key. The reveal of the fallback public key should not
translate to a compromise of the ECDSA secret key as then any entity in the system
could produce signatures and attempt to perform transactions on behalf of Alice.

Third, the design should be modular, easy to use, and compatible with currently
used cryptocurrency wallets. Therefore, the design should have the possibility of
supporting any elliptic curve based wallet, any post-quantum secure fallback, and
should support the use of mnemonics and other features that improve usability for the
end user. Ideally, the security proofs for each of the components should be modular
such that changing the used schemes in the different parts of the design does not
affect other parts of the construction.

Lastly, one of the main properties of this construction is fork voiding in a
blockchain system. Upon redeeming the digital assets into the fallback public key,
users should fully expose the ECDSA secret key such that the value of the assets
stored on the original chain naturally converges towards zero, thus it incentives users
to abandon the initial chain towards the new and safer fork.

SSS leeve and its Security Properties. The Sleeve primitive is composed by the tuple
(Genπ ,Sign, Verify, Proof,Verify-Proof). The generation algorithm outputs the
pairs of keys, vk and sk, and the backup key bk. The first pair is the regular
verification key, used for verifying a signature, and the secret-key used for issuing a
signature. While the last key is used to issue the Proof of Ownership π , with respect
to vk as follows

Definition 1 (Sleeve [8])Afallback schemeSleeve = (Genπ ,Sign,Verify,Proof,
Verify-Proof) is a set of PPT algorithms:

• Genπ (1n) on input of a security parameter n outputs a private signing key sk, a
public verification key vk and the back up key bk;

• Sign (sk,m) outputs a signature σ undersk for amessagem using the designated
main signature scheme, in our example this is an ECDSA signature;

• Verify (vk, σ,m) outputs 1 iff σ is a valid signature on m under vk;
• Proof(bk, c) on input of the backup information bk and the challenge c, it outputs
the ownership proofπ . In our example, this is aW-OTS+ signature on the challenge
c using the fallback key bk;

• Verify-Proof(vk,sk, π, c) is a deterministic algorithm that on input of a public-
key vk, secret-key sk, an ownership proof π and a challenge c, it outputs either
0, for an invalid proof, or 1 for a valid one.

The twomain security properties ofSleeve are (1) the capability of issuing a proof
to confirm the ownership of the secret key, even in the face of amassive leakage, when

174 D. Chaum et al.

the secret key becomes public, and (2) the capability to smoothly switch to another
signature scheme, namely a quantum resistant one. Briefly, we formally review both
properties.

Definition 2 (Proof of Ownership [8]) For any PPT algorithmA and security param-
eter n, it holds

Pr[(vk,sk,bk) ← Genπ (1n) : (c∗, π∗) ← A(sk,vk)

∧Verify-Proof(vk,sk, π∗, c∗) = 1] < negl

for all the probabilities are computed over the random coins of the generation and
proof verification algorithms and the adversary.

Definition 3 (Fallback [8]) We say that the scheme (Genπ ,Sign, Verify), with
secret and verification key respectively sk and vk such that Genπ (1n) →
(vk,sk,bk), has fallback if there are sign and verification algorithms Signπ and
Verifyπ such that sk and bk can be used as verification and secret keys respectively,
along with Signπ and Verifyπ as fully independent signature scheme.

Tweakable Hash Functions. Introduced to allow better abstraction of hash-based
signature scheme. By decoupling the computations of hash chains, hash trees, and
nodes, protocol designers can separate the analysis of the high-level construction
from exactly how the computation is done. Therefore abstracting the computation
away in hash-based schemes only requires analyzing the hashing construction. The
standard definition is as follows.

Definition 4 (Tweakable Hash Function [3]) Let P the public parameters space, T
the tweak space, and n, α ∈ N. A Tweakable Hash Function is an efficient function
mapping an α-bit message M to an n-bit hash valueMD using a function key called
public parameter P ∈ P and a tweak T ∈ T . Therefore, we have Th : P × T ×
{0, 1}α → {0, 1}n, MD ← Th(P, T, M).

A tweakable hash function takes public parameters P and context information in
the form of a tweak T in addition to the message. The public parameters might be
thought as a function key or index. The tweak might be interpreted as a nonce. We
use the term public parameter for the function key to emphasize it is intended to be
public. Thus we explicitly assume an extra property for Th.

Definition 5 (Indistinguishability) For the security parameter n, and the tweakable
hash function Th, we say that Th has the Computational Indistinguishability from
Uniformly Random Distribution Property, if for every PPT distinguisher D, and
arbitrary choices of the parameters P , T and M , the following holds |Pr [x ←
Th(P, T, M),D(x) = 1] − Pr [x ← U ,D(x) = 1]| ≤ negl(n), for the uniformdis-
tribution U .

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 175

3 The Tweakable Sleeve
We now describe our Sleeve construction, with W-OTS+ as the fallback, and a
tweakable hash function for the public key integration, i.e. Tweakable Sleeve.

Definition 6 (Family of Functions) Given the security and the Winternitz param-
eters, respectively, n ∈ N and w ∈ N, w > 1, let a family of functions Hn be
{hk : {0, 1}n → {0, 1}n|k ∈ Kn} with key space Kn .

Definition 7 (Chaining Function) Given a family of functions Hn , x ∈ {0, 1}n , an
iteration counter i ∈ N, a key k ∈ Kn , for jn−bit strings r = (r1, . . . , r j) ∈ {0, 1}n× j

with j ≥ i , then we have the chaining function as follows

cik(x, r) =
{
hk(c

i−1
k (x, r) ⊕ ri), 1 ≤ i ≤ j;

x, i = 0.

Additionally, we review the notation for the subset of randomness vector r =
(r1, . . . , r�). We denote by ra,b the subset of (ra, . . . , rb), and for our construction
to be presented next, we rely on a Key-Derivation Function KDF which follows the
recently announced set of recommendations [9].

Protocol Description. Sleeve is 5-tuple set of PPT algorithms (Genπ ,Sign,

Verify,Proof,Verify-Proof). We describe the generic version of
(Genπ ,Sign,Verify) in Table 1, based on the formalism of [14] which is convenient
for our security analysis in Sect. 4. The algorithms Proof and Verify-Proof are
given in Tables 2 and 3, respectively.

Table 1 GenSleeve is based on the GenElGamal Framework [6, 14] and it relies on the Th which
is indistinguishable from the uniform distribution as per Definition 5, and Proof and Verify-Proof
are the concrete algorithms

Genkπ (1n) SignH (m,sk) VerifyH (m,vk, σ)

Pick a random public seed P h ← H(m) Parse: (s, t)
p← σ

Pick (� + w − 1) n-bit strings ri r
$← Zp; R ← gr h ← H(m)

Set bki ← ri , for 1 ≤ i ≤ � If R = 1:Return ⊥ If (s, h, t) /∈ D: Return 0

Set r = (r�+1, . . . , r�+w−1) t ← f (R) R̂ ← VE
g,x (s, h, t)

Set vki = cw−1
k (bki , r), 1 ≤ i ≤ � s ← SE

sk(h, t, r) If R̂ = 1: Return 0

Pick a random hash key X If (s, h, t) /∈ D: Return ⊥ t̂ ← f (R̂)

Pick a random tweak T Return σ = (s, t) If t �= t̂ : Return 0

W-OTS+
pk = Th(P, T,vk1, . . . ,vk�) Return 1

sk ← ((r, k),Th(P,X ,W-OTS+
pk))

vk ← gsk1

Return (vk,sk,bk)

176 D. Chaum et al.

Table 2 Proof algorithm, which is the eW-OTS+ Signature Scheme from [8]. The changes intro-
duced by our construction are necessary in order to be used in combination with ECDSA signatures

Proof(c,bk)

Parse bk → (bk0,bk1, . . . ,bk�)

Parse bk0 → (T ,P,X)

Set π0 = bk0
Compute c → (c1, . . . , c�1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C = ∑�1

i=1(w − 1 − ci),

w-base representation (C1, . . . ,C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = c‖C as (b1, . . . , b�1+�2)

Set πi = cbik (bki , r), for 1 ≤ i ≤ �1 + �2

Return π = (π0, π1, . . . , π�1+�2)

Table 3 The verification of the proof π adapts the verification procedure for eW-OTS+ by adding
an extra check on the ECDSA verification key vk

Verify-Proof(vk,sk, c, π)

Parse sk → (sk0,sk1)

Parse sk0 → (r, k)
Parse π → (π0, π1, . . . , π�1+�2), π0 → (T, P,X)

Compute c → (c1, . . . , c�1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C = ∑�1

i=1(w − 1 − ci),

and the base w representation (C1, . . . ,C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = c||C as (b1, . . . , b�1+�2)

Set vki = cw−1−bi
k (πi , rbi+1,w−1) for 1 ≤ i ≤ �1 + �2

Set W-OTS+
pk = Th(P||T ||vk1, . . . ,vk�1+�2)

Return 1, if the following equations hold

sk1 = Th(P||X ||W-OTS+
pk)

vk = gsk1

3.1 The Generic Sleeve: GenSleeve
In order to formulate the definition for GenSleeve, we review more basic definitions
to cast it in more generic terms and bases its security on a computational problem, i.e.
SLP.

Our security analysis relies on the work of [14] which is the state of the art in the
understanding of the security of the ECDSA. Their proof bases the analysis in the
Semi Logarithm Problem (SLP) with respect to the Conversion Function f . Such a

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 177

function was introduced in the GenElGamal Framework which subsumes ECDSA
and other ElGamal based schemes. The proposed framework is parameterized by a
Defining Equation E for a set D which gives the distribution of the values to be used
in the signature generation, consequently, generating the different “flavors” of the
ElGamal/DSA schemes.1 For a better readability and completeness of this work, we
now review these definitions.

Conversion Function. A component of the GenElGamal Framework is the conver-
sion function f .More concretely, the conversation functionmaps the groupmembers
from G to Zq . The SLP is with respect to f and, in its simplest form, can be stated
as given a pair of group members g and X = gx , it is required to output s and t such
that t = f ((g · Xt)

1
s). Its more general form is given by the next definition.

Definition 8 (SLP [6]) Let (G, g, q) be a prime-order group and let f : G∗ → Zq

and ρ0, ρ1 : Z2
q → Zq be functions. We say that an algorithm I(τ, ε)-breaks the SLP

inG with respect to f , ρ0 and ρ1 if it runs in time at most τ and achieves probability
ε = Pr[X ← G; (u, v) ← I(g, X) : v = f (gρ0(u,v) · Xρ1(u,v))].
The Defining Equation. The sign and verification procedures for the ECDSA and
Sleeve variants can be defined in a modular and general fashion. The technique to
make the variants is crucially dependent on the sampling values; Each variant has a
different distribution. The Defining Equation rules the distribution, thus we review
the definition.

Definition 9 (Defining Equation) Let D ⊂ Z
3
q be a set. An equation E =

E(s, h, t, r, x) over D × (Z∗
q)

2 is said to be defining (a signature scheme) if E
has the form E(s, h, t, r, x) = C0(s, h, t) + r · Cr (s, h, t) + x · Cx (s, h, t), where
C0 and Cx are functions D → Zq , and Cr is a function D → Z

∗
q . With other words,

E is defining if it is affine linear in x and r , and E can always be solved for r .

The concrete example of Defining Equation is E(s, h, t, r, x) = h − rs + t x for the
Defining Set D = Z

∗
q × Zq × Z

∗
q as given by [14].

Definition 10 (Sign and Verification Function) Let E be a defining equation. Then
we define the signing function SE (h, t, r,sk) = SE

sk(h, t, r) as follows: if there
exists a unique s such that E(s, h, t, r,sk) is satisfied, SE returns s; otherwise, the
function returns ⊥. Further, we define the verification function VE (g, s, h, t,sk) =
VE
g,sk(s, h, t) with respect to a prime-order group (G, g, q) as follows: if r is the

(unique) solution of E(s, h, t, r,sk) then VE returns gr .

As remarked by [14], the affine linear form of E makes possible to efficiently evaluate
VE given just the tuple (s, h, t, gsk), i.e., without knowing sk explicitly. Now we
are ready to define our generic construction.

Definition 11 (GenSleeve Framework) Given a hash function H , and the S and
V, respectively the Sign and Verification Functions, the Conversion Function f ,

1 For a complete list of the supported schemes, we refer the reader to the full list in [14].

178 D. Chaum et al.

the Defining Equation E and Set D, and the Generic Sleeve scheme is the tuple
(Genπ ,SignH

,VerifyH
,Proof, Verify-Proof), such that k is the parameter of the

family of function, the three first algorithms are given as follows.

4 Security Analysis

This sections introduces the security analysis of the Tweakable Sleeve in three com-
plementary ways. The next sections cover, respectively, the following:

1. Security with respect of generic attacks and fallback security, as these were
introduced in [8];

2. Lemma 1 proposal that shows Tweakable Sleeve has equivalent security as the
ECDSA in terms of unforgeability of signatures, i.e. EUF-CMA;

3. The security of the GenSleeve (introduced in Sect. 3.1), in the same fashion
of [14], i.e. Generic ECDSA, and show GenSleeve to be secure with respect to
the Semi Logarithm Problem (SLP).

4.1 Generic Attack Security and Unforgeability of Fallback
Scheme

The authors of Sleeve describe in [8] the security level of the construction against
generic attacks targeted at the underlying hash function and prove the unforgeability
of the fallback scheme. Additionally, they prove that, for an appropriate choice of
parameters, the best attack against the fallback scheme (i.e., eW-OTS+ the W-OTS+
variant introduced in [8]) is the same attack against the original W-OTS+. We use
these results as a reference as we consider the same fallback scheme and note that,
by replacing the assumptions of the underlying hash function with a tweakable hash
function, the security results remain well-defined.

4.2 Tweakable Sleeve is at Least as Secure as an ECDSA One

The security of the ECDSA scheme is given by [14]. However Sleeve introduces
a new key generation method, which is not considered in the security proof of [8].
Concretely, the generation method relies on the tweakable hash function in order to
generate the ECDSA secret key sk; however it is not clear if such modification on
the ECDSA scheme introduces weaknesses. We address this gap now.

The Unforgeability of SSS leeve. In addition to the listed properties of Sect. 2, Sleeve
is also suitable to similar security definitions as the ones for signature schemes. The

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 179

Table 4 Unforgeability for Sleeve, i.e. three keys are generated. The above game is One-Message
Existential Unforgeability with Chosen Message Attack game, i.e. (EUF-CMA1). For the general
form, i.e. the standard (EUF-CMA), the Sign Procedure does not abort when the message is in the
list L. For the key only (UF-KOA) variant of the game, the adversary does not access the Sign
Procedure

Procedure Init(n) Procedure Sign(m)

L ← ∅ If m ∈ L: Abort
(vk,sk,bk) ← Genπ (1n) σ ← Sign(sk,m)

Return vk If σ = ⊥: Return ⊥
L ← L ∪ {m}

Procedure Fin(m∗, σ ∗) Return σ

If m∗ ∈ L: Abort
If Verify(vk,m∗, σ ∗) = 0: Abort

Return 1

difference is the generation of the keys, which Sleeve introduces an extra one, the
back up key. Table 4 defines the security notion, derived from standard EUF-CMA
security for signature schemes. The difference is only the extra back up key.

The goal of the next lemma is to show that the EUF-CMA security of Sleeve,
constructed with a suitable tweakable hash function, and ECDSA, instantiated with
uniformly random sampling for the secret key, are equivalent.

Lemma 1 AssumeECDSA isEUF-CMA secure and the generation algorithmGenπ

from Table 1 is constructed with a tweakable hash functionTh indistinguishable from
the uniform distribution as per Definition 5 for the security parameter n. ThenSleeve
is EUF-CMA as given by the security game of Table 4.

Proof (sketch) Assume the existence of a Sleeve forger F which wins the game
from Table 4 by outputting a forgery (m∗, σ ∗) with non-negligible probability. Then
we construct a PPT distinguisher algorithm D which breaks the indistinguishability
property of Th with high probability. We construct D as follows:

• D performs the security game given by Definition 5, and receives as input the
string x ;

• D modifies the generation algorithm Genπ from Table 1, by using the received
string x to generate the public, key. In the modified game the public key is vk′ =
gsk

′
for sk′ ← x ;

• D simulates the EUF-CMA security game of Table 4 to F using (vk′, sk ′);
• With high probability F outputs (m∗, σ ∗), then D uses the verification algorithm
Verify to perform the following and stop:

– If Verify(m∗, σ ∗) = 1, then output 1
– Else, output 0;

Now we estimate the success probability of F in the EUF-CMA game of Table 4,
by considering three points:

180 D. Chaum et al.

• From the indistinguishability property of Th, we know |Pr [x ← Th(P, T, M),

D(x) = 1] − Pr [x ← U ,D(x) = 1]| is negligible for arbitrary choices of P , T
and M as given by Definition 5 and initial hypothesis;

• Following from the EUF-CMA security of ECDSA, we have that Pr[x ←
U ,Verify(m∗, σ ∗) = 1] is negligible for the uniform random distribution U ;

• Finally, note that Pr[x ← Th(P, T, v),D(x) = 1] and Pr[x ← Th(P, T, v),

Verify(m∗, σ ∗) = 1] are equal by design of D and success probability of F .

Therefore, |Pr [x ← Th(P, T, M),D(x) = 1] − Pr [x ← U ,D(x) = 1]| ≤
negl(n), and |Pr[x ← Th(P, T, M),Verify(m∗, σ ∗) = 1] − negl(n)| ≤ negl(n).

Hence Pr[x ← Th(P, T, v),Verify(m∗, σ ∗) = 1] must be negligible and Sleeve is
also EUF-CMA, thereby giving the lemma. �
The earlier lemma only relates the security of Sleeve and ECDSA. In order to thor-
oughly prove the hardness of breaking Sleeve it is convenient to consider a compu-
tational problem. That is what we do next.

4.3 The Security of GenSleeve
Fromnowwe take the approach of [14] in order to build a full proof of the unforgeabil-
ity of the generic Sleeve variant based on the assumed hard computational problem.
Namely, show the security of GenSleeve with respect to SLP. What we do now is to
review themain definitions from [14] combinedwith the ones introduced in Sect. 3.1.

Definition 12 (h-decomposable) Let E = E(s, h, t, r, x) be a defining equation
with corresponding set D. We say that E is h-decomposable (with respect to D) if
there exist functions ν0, ν1 : Zq → Zq and ρ0, ρ1 : Z2

q → Zq such that ν0, ν1 �= 0 if
h �= 0 and r = ν0(h) · ρ0(s, t) + x · ν1(h) · ρ1(s, t) for all (s, h, t) ∈ D and r, x ∈ Z

∗
q

satisfying E(s, h, t, r, x).

For completeness, in the next definition we consider the standard notion for
δ statistical distance. That is, for any two ensembles {X (x, k)}x∈{0,1}∗,k∈N and
{Y (x, k)}x∈{0,1}∗,k∈N, for index k and input x , the value |Pr[X (x, k) = 1] −
Pr[Y (x, k) = 1]| is at most δ.

Definition 13 (δ-Simulatability) Let (E,G, H, f,D) be an instantiation of
GenSleeve as in Definition 11. It is said that the instantiation is δ-simulatable if
there exists a function SimE : Z3

q × Z
2
q ∪ {⊥} that is computable in about the same

time as SE such that for all sk ∈ Z
∗
q the statistical distance between the outputs of

the two protocols depicted by Table 5 is at most δ.

The generic security is derived from the work on [14]. Namely, the next two
theorems which are defined according to the number of random oracle and signature
queries, respectively QH and Qs and the big-O notation O. For completeness we
present them altered to GenSleeve. However we refer the reader to the full work for
the proofs of the theorems, which are the same for GenSleeve.

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 181

Table 5 PSim shows that, given a procedure Sim, it is possible to generate a tuple (s, h, t) statis-
tically close without knowing the secret key sk

Preal (sk, g) PSim(vk, g)

r
$← Zp a, b

$← Zp

R ← gr R ← vkagb

If R = 1: Return ⊥ If R = 1: Return ⊥
t ← f (R) t ← f (R)

h
$← Zq (s, h) ← SimE (a, b, t)

s ← SE
sk(h, t, r) If (s, h, t) /∈ D: Return ⊥

If (s, h, t) /∈ D: Return ⊥ Return (s, h, t)

Return (s, h, t)

Theorem 1 [14] Let (E,G, H, f,D) be a δ-simulatable of GenSleeve. Then if H
is modeled as random oracle, for every forger F that (τ,Qs,QH , ε)-breaks the
one-per-message unforgeabillity if this instantiation there also exists a forger F ′
that (τ ′, 0,QH , ε′)-breaks the key-only unforgeability of this instantiation, where
ε′ ≥ ε/(e2(Qs + 1)) − Qsδ and τ ′ = τ + O(QH).

Theorem 2 [14] Let (G, g, q) be a prime-order group, let E be a defining equation
with corresponding set D, and let f : G∗ → Zq and H : {0, 1}∗ → Zq be functions.
If E is h-decomposable with functions ρ0 and ρ1, and H is modelled as a random
oracle, then the SLP in G with respect to f , ρ0, ρ1 is non-tightly equivalent to the
key-only unforgeability of GenSleeve when instantiated with (E,G, H, f,D).

That is, for any adversary I that (τ, ε)-breaks SLP, there exists a forger F that
(τ ′, ε)-breaks the key-only unforgeability of Generic Sleeve, where τ ≈ τ ′.

Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability
of GenSleeve, there exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP, where
τ ≈ τ ′ and QH is the number of random oracle queries posed by F .

Sections 4.1, 4.2 and 4.3 fully cover the security of the Tweakable Sleeve, regard-
ing ECDSA security, and GenSleeve with respect to SLP.

We now focus on the experimental results.

5 Implementation and Performance

This section describes our open-source implementation, the audit results along with
the associated fixes, and details of the Verifpal formal analysis model.

Reference Implementation. We implemented a single-threaded version in Golang.
In our implementation, W-OTS+ uses SHA3 for public key compression and
Blake2b for hash ladder calculations. We use the secp256k1 curve with ECDSA as

182 D. Chaum et al.

the main signature scheme and verified the correctness of our code, which integrates
BIP39 [4], by comparing it with reference BIP39 implementations [5, 15]. Our
implementation differs slightly from the original W-OTS+ specification, which
defines a secret key as � random numbers and, instead, derives the secret key values
from a single seed parameter by using a KDF. The W-OTS+

pk is compressed using a
tweakable hash function using the public seed, and the secret hash key value X .

Audit.We expose the detailed results obtained from the official audit of the reference
implementation and the subsequent fixes.

• Scope: The scope of the audit included the correctness of the cryptography and
associated security, finding eventual timing leaks, usage of unsafe APIs, missing
security checks, risk from dependencies, and poor randomness generation.

• Security Issues:No outstanding security issue appeared in the core cryptographic
modules and the main security remarks are associated with a command line inter-
face (CLI) tool created to improve the usability of the user. The audit results are
openly available in [23].

• Verifpal Implementation: The code associated with the formal analysis tools is
openly available on a Github repository in a special folder dedicated to the formal
verification component [23].

Performance Metrics. We present performance metrics for our single-threaded
implementation running on one Amazon c5.xlarge benchmark machine with an Intel
Xeon Platinum 8124M 3.00GHz CPU and 8GiB RAM. Our code runs a Sleeve key
generation in 1.81 ms, which comprises a W-OTS+ key generation that takes 1.75
ms and an ECDSA key generation that takes 0.059 ms. These early results demon-
strate that the key generation of the (tweakable) Sleeve construction is significantly
slower than presently used key generation mechanism (i.e., ECDSA). These results
are expected as the Sleeve construction introduces a significant amount of additional
steps in the wallet generation process. Potential improvements may include calcu-
lating the W-OTS+ hash-ladders in parallel and the use of different and potentially
faster hash functions implementations.

6 Formal Methods Analysis

This section reports on the mathematical security proof of our construction, and
outlines the Verifpal [20, 21] model we used to analyze the tweakable Sleeve along
with some of the challenges that appeared throughout this process. We start by
giving a brief summary on the Verifpal tool.

Verifpal. Verifpal is a software for verifying the security of cryptographic protocols.
This tool is oriented towards real-world practitioners attempting to integrate formal
verification into their line of work. To achieve this, Verifpal uses a new, intuitive
language for modeling protocols that is considered easier to write and understand
than the languages currently employed by existing tools.

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 183

Challenges toModellingSSS leeve in Verifpal.A commonly found problem in symbolic
model protocol verifiers is that, for complex protocols, the different combinations
of variables that the verifier must assess, quickly becomes too large to terminate
in reasonable time. This is a challenge we faced in our modelling process as we
initially attempted to model a W-OTS+ fallback for ECDSA and the tool constantly
issued memory fault errors when starting to perform the hash ladder iterations,
which resulted in the stopping of the verification process in a faulty manner.
Additionally, we highlight the lack of existence of the XOR logical function in
the tool, which lead to design attemptswith changed variants of the chaining function.

Verifpal Model of SSS leeve. To avoid the memory fault issues derived from iterating
different attack scenarios involving a high number of hash function calls, we model a
simpler Lamport signature scheme as a quantum-secure fallback instead ofW-OTS+.

Attacker model. All the interactions in the model go through an active attacker.
Therefore, we assume the Dolev-Yao model [12] where the adversary is in charge
of delivering the messages.

Results. The tool output that regardless of the compromise of the ECDSA secret key
value, the queried values remain confidential, and only the true owner of the hash-
based fallback key pair is able to produce a safety signature.We assume correctness of
the Verifpal execution results, especially since there reslts match the results obtained
in the security proof of Sleeve.

7 Final Remarks

The Sleeve definition is a promising and novel scheme designed as an extension to
existing wallets since, as quantum computers evolve, the security of most cryptocur-
rency wallets is at risk.

In this work, we improve on the original Sleeve construction by proposing the
Tweakable Sleeve. Thus we introduced a more modular approach that is simpler to
analyze and implement. Moreover, we fill the missing gaps in the security proof of
the original proposal, connecting it to the state-of-the-art of the ECDSA security.
Namely, (1) our construction presents the same capabilities of the original Sleeve,
(2) it is at least as secure as the ECDSA signature scheme given a tweakable hash
function whose output is computationally indistinguishable from the uniformly ran-
dom distribution, and (3) our construction is generically secure, i.e. GenSleeve with
respect to SLP.

Finally, we showcase our security results using the formal method analysis tool
called Verifpal, which produced positive results matching the ones obtained in the
mathematical proof of security. The distinctive extra level of security provided by
Sleeve has the potential to help in the adoption of this new cryptographic primitive
in the context of blockchain applications. Moreover this work illustrates that our
construction is now open-source, audited, and features a more complete security

184 D. Chaum et al.

proof relating the construction with a concrete computational problem: a must in
provable security practice.

Finally, this work illustrates a fruitful combination of theoretical work, from the
protocol specification/construction, to the formal method analysis. Such thorough
work which might raise the expectation of due diligence teams to include formal
analysis when designing and evaluating cryptographic protocols.

A High-level Diagram of the Tweakable Sleeve
Construction

This section exposes a high-level diagram of the sequence of performed steps in the
key generation component of the Sleeve construction (Fig. 2).

Fig. 2 Sleeve high-level diagram of the key generation

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 185

References

1. Aranha, D. F., Novaes, F. R., Takahashi, A., Tibouchi, M., & Yarom, Y. (2020). Ladderleak:
Breaking ecdsa with less than one bit of nonce leakage. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (pp. 225–242). New York,
NY, USA: CCS ’20, Association for Computing Machinery.

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., & Zikas, V. (2018). Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In D. Lie, M. Mannan, M.
Backes, & X. Wang (Eds.), ACM CCS (pp. 913–930). ACM Press. https://doi.org/10.1145/
3243734.3243848.

3. Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., & Schwabe, P. (2019).
The SPHINCS+ signature framework. In L. Cavallaro, J. Kinder, X. Wang, & J. Katz (Eds.),
ACM CCS (pp. 2129–2146). ACM Press. https://doi.org/10.1145/3319535.3363229.

4. Mnemonic code for generating deterministic keys. Accessed September 10, 2021, from https://
github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.

5. Mnemonic code converter. Accessed September 10, 2021, from https://iancoleman.io/bip39/.
6. Brown, D. (2005). On the provable security of ECDSA, pp. 21–40. London Mathematical

Society Lecture Note Series, Cambridge University Press.
7. Brown, D. R. (2005). Generic groups, collision resistance, and ecdsa. vol. 35, pp. 119–152.

Springer.
8. Chaum, D., Larangeira, M., Yaksetig, M., & Carter, W. (2021). Wots+ up my sleeve! a hidden

secure fallback for cryptocurrency wallets. In International Conference on Applied Cryptog-
raphy and Network Security (pp. 195–219). Springer.

9. Chen, L. (2022). Recommendation for key derivation using pseudorandom functions-revision
1. NIST special publication. Accessed February 20, 2022, from https://doi.org/10.6028/NIST.
SP.800-108r1-draft.

10. Dahmen, E., Okeya, K., Takagi, T., & Vuillaume, C. (2008). Digital signatures out of second-
preimage resistant hash functions. In J. Buchmann, & J. Ding (Eds.), Post-quantum Cryp-
tography, Second International Workshop, PQCRYPTO (pp. 109–123). Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-88403-3_8.

11. David, B., Gazi, P., Kiayias, A., & Russell, A. (2018). Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: J. B. Nielsen, & V. Rijmen (Eds.), EURO-
CRYPT, Part II. LNCS (vol. 10821, pp. 66–98). Heidelberg: Springer. https://doi.org/10.1007/
978-3-319-78375-8_3.

12. Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2), 198–208.

13. Fersch,M., Kiltz, E., & Poettering, B. (2016). On the provable security of (ec)dsa signatures. In
Proceedings of the 2016 ACMSIGSACConference onComputer andCommunications Security
(pp. 1651–1662). New York, NY, USA: CCS ’16, Association for Computing Machinery.

14. Fersch, M., Kiltz, E., & Poettering, B. (2017). On the one-per-message unforgeability of
(EC)DSA and its variants. In: Y. Kalai, & L. Reyzin (Eds.), TCC 2017, Part II. LNCS (vol.
10678, pp. 519–534). Heidelberg: Springer https://doi.org/10.1007/978-3-319-70503-3_17.

15. Golang implementation of the bip39 spec. Accessed September 10, 2021, from https://godoc.
org/github.com/tyler-smith/go-bip39.

16. Hülsing, A. (2013). W-OTS+ - shorter signatures for hash-based signature schemes. In A.
Youssef, A. Nitaj, & A. E. Hassanien (Eds.), AFRICACRYPT 13. LNCS (vol. 7918, pp. 173–
188). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-38553-7_10.

17. Ilie, D. I., Karantias, K., & Knottenbelt, W. J. (2020). Bitcoin crypto-bounties for quantum
capable adversaries. Cryptology ePrint Archive, Paper 2020/186. https://eprint.iacr.org/2020/
186.

18. Ilie, D. I., Knottenbelt, W. J., & Stewart, I. (2020). Committing to quantum resistance, better:
A speed-and-risk-configurable defence for bitcoin against a fast quantum computing attack.
Cryptology ePrint Archive, Paper 2020/187. https://eprint.iacr.org/2020/187.

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3319535.3363229
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://iancoleman.io/bip39/
https://doi.org/10.6028/NIST.SP.800-108r1-draft
https://doi.org/10.6028/NIST.SP.800-108r1-draft
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-70503-3_17
https://godoc.org/github.com/tyler-smith/go-bip39
https://godoc.org/github.com/tyler-smith/go-bip39
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/187

186 D. Chaum et al.

19. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: J. Katz, & H. Shacham (Eds.), CRYPTO 2017, Part I.
LNCS (vol. 10401, pp. 357–388). Heidelberg: Springer. https://doi.org/10.1007/978-3-319-
63688-7_12.

20. Kobeissi, N. (2021). Verifpal: Cryptographic Protocol Analysis for Students and Engineers.
Accessed August 5, 2021, from https://verifpal.com.

21. Kobeissi, N., Nicolas, G., & Tiwari, M. (2020). Verifpal: Cryptographic protocol analysis for
the real world. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing
Security Workshop (p. 159). New York, NY, USA: CCSW’20, Association for Computing
Machinery.

22. Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/
bitcoin.pdf.

23. Sleeve. (2022). Accessed February 21, 2022, from https://github.com/xx-labs/sleeve/tree/
main/verifpal_model.

24. Trinity attack incident part 1: Summary and next steps. Accessed September 22, 2020, from
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8.

25. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151, 1–32.

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://verifpal.com
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/xx-labs/sleeve/tree/main/verifpal_model
https://github.com/xx-labs/sleeve/tree/main/verifpal_model
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8

Interhead Hydra: Two Heads are Better
than One

Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka

Abstract Distributed ledger are maintained through consensus protocols which
have inherent limitations to their scalability. Layer-2 protocols operate on chan-
nels and allow parties to interact with another without going through the consensus
protocol albeit relying on its security as fall-back. Channels can be concatenated
into networks using techniques such as Hash Timelock Contracts (HTLC) to execute
payments or virtual state channels as introduced by Dziembowski et al. [CCS’18]
to execute state machines across a path of channels. This is realized by utilizing
intermediaries, which are the parties on the channel path between both endpoints,
who have to pay collateral to ensure security of the constructions. Dziembowski et
al. [Eurocrypt’19] introduced multi-party state channels based on a virtual channel
construction and more recently Hydra heads [FC’21] is a channel construction that
allowsmultiple parties the execution of Constraint EmittingMachines (CEM).While
existing protocols such as HTLCs can be extended such that two parties can interact
with another across channels, there are no dedicated constructions that utilize multi-
party channels and similarly allow more than two parties to interact across a network
of channels. This work addresses this gap by extending Hydra and introducing the
Interhead construction that allows for the iterative creation of virtual Hydra heads.

This work was supported by JST CREST JPMJCR2113 and JSPS KAKENHI 21H04879.

M. Jourenko (B)
Department of Mathematical Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, Tokyo, Japan
e-mail: jourenko.m.ab@m.titech.ac.jp

M. Larangeira · K. Tanaka
Department of Mathematical and Computing Sciences, School of Computing, Tokyo Institute of
Technology, Tokyo, Japan
e-mail: mario@c.titech.ac.jp; mario.larangeira@iohk.io
URL: http://iohk.io

K. Tanaka
e-mail: keisuke@is.titech.ac.jp

M. Larangeira
Input Output Hong Kong, Hong Kong, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_11

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_11&domain=pdf
mailto:jourenko.m.ab@m.titech.ac.jp
mailto:mario@c.titech.ac.jp
mailto:mario.larangeira@iohk.io
http://iohk.io
mailto:keisuke@is.titech.ac.jp
https://doi.org/10.1007/978-3-031-18679-0_11

188 M. Jourenko et al.

Our construction is the first that (1) supports and utilizes multi-party channels and
(2) allows for collateral to be paid by multiple intermediaries.

Keywords Blockchain · State channel · Channel network

1 Introduction

Decentralized ledger were first introduced by Nakamoto [20] with the blockchain
technology. Cryptocurrencies that are based on this design enjoy a steadily increas-
ing popularity since then. However, while a wider adaption of decentralized ledger
shows the relevance of this technology, the existing implementations struggle to be
scalable to the increased demand. Transactions on a decentralized ledger require to
be processed through a consensus mechanism, which are classified as Layer-1 proto-
cols. The transaction throughput that these protocols permit is the limiting factor on
a ledger’s scalability, and increasing it is non-trivial [5]. Issuers of a transaction can
pay fees to increase the priority under which it is processed. This results in the cre-
ation of amarketplace where processing a transaction requires payment of an amount
of fees that correlates with the demand for processing transactions. For instance, on
20th April 2021 the average cost of processing a transaction in Ethereum peaked at
more than 71$.1

Layer-2 protocols are a classification of techniques that aim to reduce the num-
ber of transactions that are issued on a ledger by means of a layer of indirection.
Approaches include sidechains [10, 24], Ethereum’s Plasma [23], payment chan-
nels [6, 21, 22] and more generally state channels [8, 9] notably multi-party state
channels such as Multi-Party Virtual State Channels (MPVSC) [7] and Hydra heads
[4]. Payment channels are setup by two parties using a transaction that locks their
coins into a shared wallet. The channel stores a state which is how the funds that are
locked inside it are distributed between both parties. The parties can then perform
an offchain protocol to change this state. Lastly, the parties issue one transaction to
unlock the coins from the channel corresponding to its latest state. Note that the latter
transaction is created first to avoid that coins are locked in the channel indefinitely
if one of the parties is unresponsive. This way parties can perform O(n), n ∈ N,
payments with each other while only issuing O(1) transactions on the ledger thus
improving the system’s scalability. State channels extend this notion by allowing for
the storage of arbitrary state which, with the conjunction of a sufficiently expressive
scripting mechanism, can allow the two parties to execute state machines offchain.
MPVSC and Hydra generalize the notion of channels further by allowing an arbi-
trary amount of parties to participate in one channel. Offchain protocols like Hash
Timelock Contracts (HTLCs) [22] and virtual channels [9, 12, 13] allow adjacent
channels, i.e. channels with one common party, to be concatenated into channel net-

1 https://ycharts.com/indicators/ethereum_average_transaction_fee.

https://ycharts.com/indicators/ethereum_average_transaction_fee

Interhead Hydra: Two Heads are Better than One 189

works which allow parties to interact with another by reusing the existing channel
infrastructure.

Whereas protocols for performing payments or execution of statemachines across
a channel network exist there is no analogous protocol for multi-party channels such
as Hydra. Although HTLCs can be reused to perform offchain payments across
Hydra heads, there is no way to execute arbitrary smart contracts offchain across
multiple Hydra heads. Additionally, existing approaches to create virtual channels
across multiple underlying channels [9, 12] rely on one intermediarywho can ensure
correctness and therefore can be uniquely blamed in case of a fault, and moreover,
the intermediary commits a collateral which can be used to refund any potential loss
of a honest party. However, it is not trivial to extend these approaches to the case of
multi-party channels.

Layer-2 structures move interactions off-chain thus minimizing expensive on-
chain transactions. In the case of Hydra this is done without compromising on the
expressiveness of transactions due to its isomorphic property: Interactions that are
possible on-chain are permitted within Hydra heads. The aim of this work is to allow
parties across multiple Hydra heads to have that same degree of interaction, while
remaining offchain, i.e. no interaction with the ledger is required except in case of
dispute. Similar to related offchain protocols [8, 9, 12] this improves scalability by
enabling reuse of existing offchain infrastructure.

Related Work. Payment channels are one of the earliest Layer-2 protocols that aim to
improve scalability of a decentralized ledger by moving transactions offchain while
relying on the ledger to resolve disputes. To create a channel two parties collaborate
to lock coins on the ledger such that these coins can only be spent with the consent
of both parties. In advance both parties prepare a Refund transaction that spends the
coins locked within the channel and returns both parties’ coins respectively which
closes the channel. Instead of committing this transaction to the ledger, both parties
can perform payments among another by computing another Refund transaction,
where the channel’s coins are distributed differently, while invalidating all older
Refund transactions. Channel constructions differ in how Refund transactions are
invalidated [6, 21, 22]. While payment channels can be implemented on ledgers
with simple scripting languages such as Bitcoin [20], constructions that make use of
smart contracts allow for the creation of state channels [8, 9] that in addition allow
execution of smart contracts within Layer-2. Channels can be extended into chan-
nel networks for which there are two families of approaches. For one, channels can
be concatennated into channel networks, by allowing for payments across multiple
hops of an underlying channel network [13, 19, 22] where a prominent example is
through the use of HTLCs [22]. Another approach is to create new virtual channels
offchain [8, 9, 12]. Note that these virtual channel constructions have a limited life-
time which is fixed upon setup. While the previous channel constructions are always
between two parties, further work was done to allow creation of channels between
an arbitrary amount of parties as MPVSC [7] and Hydra heads [4]. Notably, Hydra
heads maintain a subset of the ledger’s state such that parties within a Hydra head can
interact with another the same as on the ledger itself. As of yet there are no protocols

190 M. Jourenko et al.

that allow to extend these multi-party channels into channel networks while making
use of the properties of multi-party channels.

Our Contributions. This work extends Hydra [4], which is the computational layer
of the Cardano ledger. We propose a protocol to create a virtual Hydra head on top of
two existing Hydra heads. Our approach consists of two components, an Interhead
State Machine, which is derived from the Hydra state machine, as well as a protocol
that defines the parties’ behaviour. The construction (1) can be executed iteratively
to form a virtual Hydra head across a network of Hydra heads, (2) has no limit on
it’s lifetime, (3) allows for the presence of multiple intermediaries who can share
the burden of committing the required collateral, (4) is a Layer-2 protocol, i.e. if
all parties collaborate no transactions are added to the ledger, (5) is secure in the
presence of a malicious static adversary, (6) does not put honest parties at risk of loss
of their coins. While this work focuses on the creation of a virtual channel for Hydra
heads, we argue that the state machine proposed in this work can be implemented for
other channel constructions such as [7] on blockchains with sufficiently expressive
smart contracts such as Ethereum. As of such we present the, to our knowledge, first
virtual channel construction with properties (1)–(3) from above which we think is of
independent interest.

2 Background

Notation. In this work we make frequent use of tuples to structure data. Let α be an
instance of a tuple of type A of form (α0, . . . , αn), n ∈ N where α0, . . . , αn are the
entries’ labels. Then we address entry i ∈ N, 0 ≤ i ≤ n of α using its name and the
entry’s label, i.e. α.αi . We denote N as the set of natural numbers.

Signature Schemes.We assume the existence of two secure digital signature schemes
which both fulfill notions of completeness and unforgeability, however, we remain
rather informal in the remainder. First, we assume a signature scheme [1] consisting
of algorithms (key_gen, verify, sign) such that key_gen(1λ) = (vk, sk) creates a
pair of secret key sk and verification key vk under security parameter λ, sign(sk, m)
= σ creates a signature such that verify(vk, m, σ ′) evaluates to True if and only if
σ ′ = σ . Second, we assume the existence of a multi-signature scheme [11, 18] of
form (ms_setup,ms_key_gen,ms_agg_vk,ms_sign,ms_agg_sign,ms_verify
) where ms_setup(1λ′

) = Π creates public parameter Π with security parameter
λ′, ms_key_gen(Π) = (vk′, sk′

) creates a key pair consisting of secret key sk and
verification key vk’,ms_agg_vk(Π, V) = avk aggregates a set of verification keys
V into an aggregate verification key avk,ms_sign(Π , sk′,m ′) = σ ′′ creates a signa-
ture σ ′′ of messagem corresponding to secret key sk′ whereasms_agg_sign(Π , V ,
S, m ′) = σagg aggregate a set of signatures S into aggregate signature σagg such that
ms_verify(Π , m ′, avk, σ ′′) evaluates to True if and only if σ ′′ = σagg and evaluates
to False otherwise.

Interhead Hydra: Two Heads are Better than One 191

The EUTxO Model. The Extended Unspent Transaction Outputs (EUTxO) model
was introduced by Chakravarty et al. [2] and it improves on the UTxO paradigm
as used with ledgers such as Bitcoin [20] by allowing for the execution of smart
contracts defined as Constraint Emitting Machines (CEMs), thus improving the sys-
tem’s expressiveness. An EUTxO based Ledger’s state consists of a set of EUTxO
S ⊆ EUTXO where EUTXO is the set of all possible EUTxO. More specifically, it
consists of a set of (outre f , u) where u is a EUTxO representing coins that are in
circulation, and outre f is a unique identifier that can be used to reference u and is
commonly derived from the context it was created in. A transaction t x is a tuple of
form (I, O, r, S) where I is a set of inputs, i.e. entries of form (outre f , u), O is a
list of outputs, i.e. newly defined EUTxO, r is a validity interval, i.e. [r0, r1] where
r0, r1 ∈ N are points in time, and S is a set of signatures. If a transaction is sent to
the ledger within the interval r , the amount of coins in O is at least as large as the
amount of coins referenced in I and all validity scripts evaluate to True, the trans-
action induces a state transition on the ledger by removing all entries in I from its
state and adding the newly defined EUTxO in O to the ledger’s state. A transaction is
processed by the ledger within time Δ ∈ N. Note that a transaction that is applied on
the ledger has to be processed by a consensus protocol which requires payment of a
fee. A EUTxO u itself is a tuple of form (ν, value, δ)where ν ∈ {0, 1}∗ is a validator
script written in a Turing complete language, value ∈ N is an amount of coins, and
δ ∈ {0, 1}∗ is arbitrary data. An EUTxO can be spent making its coins accessible, if
a party can show a redeemer value ρ ∈ {0, 1}∗ such that ν(ρ, δ, σ) = True, where
σ is the validation context that includes information on the transaction that spends
u as well as all EUTxO referenced in its inputs.

Constraint Emitting Machines. Chakravarty et al. [2] showed a weak bi-simulation
between programs running on the EUTxO ledger and Constraint Emitting Machines
(CEMs) derived fromMealymachines [17]. Thus, CEMs can be used to define appli-
cations for an EUTxO ledger. A CEM is a tuple (S, I, step, initial, final) where S is
a possibly infinite set of states, I is a set of input symbols, initial, final are functions
S → B indicating initial and final states respectively and function step : S → I →
Maybe(S, TxConstraints) is a partial function that maps to a new state with con-
straints TxConstraints.

Hydra Heads. Hydra is a scalability solution for EUTxO based ledger. It extends the
idea of channels by (1) being constructed between an arbitrary amount of parties and
(2) being isomorphic, i.e. allowing all transactions that are permitted on the ledger.
Hydra allows an arbitrary set of parties to take a set of EUTxO η0 ⊆ S offchain where
η0 is called a snapshot and S is the ledger’s state as described above. When open,
the parties perform an offchain consensus protocol among another to modify η0 by
applying transactions to it which results in a new snapshot η1. This can be repeated to
create snapshots η2, . . . , ηn , n ∈ N. TheHydra head is closed bymoving ηn back into
the ledger’s state. The simplifiedHydra CEMas shown in Fig. 1 has four states initial,

192 M. Jourenko et al.

closed

initial nal
abort

contest

open

collectCom

fanoutcloseCommit
Transactions

Fig. 1 The simplified Hydra head state machine includes four states initial, open, closed, final.
The transition from the initial to the open state requires parties to commit EUTxOs to the head via
dedicated transactions

open, closed, final. The CEM starts in the initial state representing the intention to
create a Hydra head. If not aborted, all parties can commit a set of EUTxO which are
moved into the Hydra head when transitioning into the open state where the Hydra
head is considered created and the parties can perform the consensus protocol to
modify η0. At any time the head can move to the closed state by providing the latest
version of the snapshot ηi . This can be disputed through the contest transition and
provision of a more recent set η j where i, j ∈ {0, . . . , n}, j > i . Upon conclusion
of the dispute the latest set ηn is committed to the ledger.

3 Overview

This section first introduces the setting and the concepts relevant to this work. Then,
we present the Interhead State Machine. Due to space constraints, we leave details
on the implementation in form of a CEM to Appendix C.

Terminology.We adjust our terminology to be in line with the Hydra protocol. In the
following we refer to a Hydra head Hb, b ∈ {0, 1} and the respectively other head as
H1−b. The Interhead is denoted with H v.

3.1 The General Setting

We assume two multi-party state channels H0 and H1 that are able to execute
state machines. Any party can enforce the state and resume execution of the
state machine on the ledger after duration Tmax at latest. Each of both channels
Hb, b ∈ {0, 1} is executed between parties Hb.Parties := {Pb,0, . . . ,Pb,n}, n ∈
N. The aim of our work is to create a virtual channel H v where parties G i ⊆
(H0.Parties ∩ H1.Parties),Parties

int 	= ∅ are the group of intermediaries, and

Interhead Hydra: Two Heads are Better than One 193

partiesGb ⊆ Hb.Parties,Gb 	= ∅ are the participants of the virtual channel H v orig-
inating from channel Hb respectively. The set of all participants is Gv := G0 ∪ G1.
The virtual channel contains bv = b0 + b1, bv, b0, b1 ∈ N coins, where bb coins are
lockedwithin channel Hb respectively.Moreover, we assume that the head’s enforce-
able state can be partitioned into two parts, e.g. the state is a set of EUTxO which is
the case in Hydra.

The Communication Model and Time. We assume that communication between the
parties happens through authenticated channels and is done within rounds such that
a message sent at any round will be available to the recipients at the beginning of
the following round. We assume there is a relation between a given communication
round and the clock time [14–16] at which it is happening such that we use time and
communication rounds interchangeably in the remainder.

The Adversarial Model. In line with related work, we assume a malicious adversary
who can statically corrupt all but one, i.e. up to n0 + n1 + ni − 1, parties at the
beginning of the protocol. Upon corruption the internal state of a party is leaked
to the adversary and all communication to and from the party goes through the
adversary. The adversary can make any corrupted party deviate from the protocol
arbitrarily. Moreover, the adversary can reorder messages and delay them until the
following communication round.

3.2 The Approach

The construction consists of two parts, an Interhead State Machine and a protocol.
An overview of our approach is depicted in Fig. 2. The state machine is what is
implemented and potentially executed on the ledger, i.e. a smart-contract or a CEM.
Nevertheless, in-line with existing offchain protocols, in the optimistic case where
no party deviates from the protocol the state machine is executed within a head, i.e.
no transactions are committed to the ledger. The aim of our construction is to extend
the original Hydra state machine to be executed across twoHydra heads. However, in
case of a dispute it can be opened on-chain to rely on the ledger’s security properties
as fallback.

Overview.We execute a state machine which is derived from the Hydra CEM in each
head, each is one halve of the full Interhead State Machine. These state machine
halves are similar by having the same structure and are executed synchronously
by the set of intermediaries G i. The intermediaries commit a collateral to the state
machine halves as an incentive to remain honest as well as an insurance to the
Interhead participants G0, G1 that the Interhead can be opened on the ledger even
if all intermediaries are malicious. While the state machine remains offchain if the
parties collaborate, in case any intermediary acts maliciously and deviates from the
protocol the Interhead is opened on the ledger. If at least one Intermediary is honest,

194 M. Jourenko et al.

Hydra Head

open

Ledger

Ledger Hydra head
initial

Interhead Half 0

initial

Interhead Half 1

Executed
synchronously

By
Intermediaries

merged

De-Sync / Dispute
Merge Halves,

Open On-Chain

Hydra Head

Fig. 2 The Interhead State Machine is split into two halves and executed within two Hydra heads.
The halves have similar structure and are executed synchronously by a group of intermediaries,
i.e. parties who participating in both heads. In case any party deviates from the protocol, e.g. by
making both Interhead halves de-sync, the state machines are committed to the ledger, merged into
one state machine and lastly transitioned to a regular head on the ledger

they will commit both Interhead halves to the ledger within time at most Tmax , merge
both halves into one state machine and transition that state machine into the state
space of a regular Hydra head, thus opening the Interhead on the ledger. This releases
the collateral of all intermediaries back to them. However, if all intermediaries are
malicious, any honest party decommits their halve of the Interhead to the ledger and
transitions the half into a Hydra head by claiming the intermediaries’ collateral. Note
that this bounds the amount of collateral that has to be paid by the Intermediaries,
i.e. within a head Hb, the intermediaries have to commit collateral of at least as many
coins as committed by the other head H1−b.

3.3 Desired Properties and Challenges

The construction is designed to fulfill the following properties. Note that as soon as
the Interhead State Machine transitions into the state space of the ledger channel, the
security properties of the Hydra head hold.

Definition 1 (Collateral Liveness) If an intermediary is honest, their collateral is
eventually available to them in an enforceable state.

Definition 2 (EUTxO Liveness) Eventually any honest party’s EUTxO within the
virtual head’s enforceable state is available to them in an enforceable state outside
the virtual head.

Definition 3 (Balance Security) The sum of a honest party’s coins is reduced only
with their consent.

Interhead Hydra: Two Heads are Better than One 195

Security. The construction must be secure for all honest participants. Even if all other
participants of the Interhead construction are behaving maliciously, the honest party
cannot lose any coins. This requires that the Interhead construction fulfills Balance
Security, Collateral Liveness and EUTxO Liveness.

Optimistic Offchain. Our construction must be optimistic offchain, i.e. if all parties
collaborate, a virtual Hydra head can be constructed, used, and closed without com-
mitment of any transactions to the ledger.

Bounded Collateral. The total collateral that is required to be collectively paid by
the intermediaries is equal to the amount of coins bv committed to the Interhead.

Unlimited Execution Time. The lifetime of the Interhead should not be bounded.

Multiple Intermediaries. Our construction allows for multiple intermediaries. While
this does not provide any additional features to the construction itself, it is highly
relevant formaking the construction practical by allowing the required collateral to be
commited by multiple parties. However, doing this securely is in itself a highly non-
trivial challenge. Existing approaches for virtual channels [8, 9, 12] all have only one
intermediary that is in a position to provide security to the construction, but in turn
can be uniquely blamed if they deviate from the protocol. The challenge of multiple
intermediaries is to ensure that the group of intermediaries is able to provide security
to the construction the same way as with one intermediary. Nevertheless, honest
intermediaries should not lose their collateral in case all remaining intermediaries
behave maliciously.

4 The State Machine

Our approach is taking a Hydra state machine [4] and adapting concepts of virtual
channels [8, 12, 13], notably General State Channel Networks [9], to create the Inter-
head State Machine that maintains a virtual Hydra head. Similar to Eltoo [21] we
ensure that the virtual Hydra head can always be opened on the ledger as a regular
head in case of dispute.

Time Phases and Assumptions.Execution of the state machine is structured into three
phases, each operating under different assumptions and within disjunct time frames.
(1) The orderly phase TO = [t0, tC,start) assumes that at least one intermediary is
honest and all parties collaborate. Note that while the Interhead’s lifetime is bound
by TO , we provide facilities to extend it potentially arbitrarily. (2) The conversion
phase TC = [tC,start, tC,end) assumes that at least one intermediary is honest. We
require that this phase’s duration is at least max(Hb.Tmax, H1−b.Tmax) + 2Δ <

tC,end − tC,start. (3) The punish phase starts at tC,end and is indefinite. It assumes that
at least one party is honest which is ensured due to the adversarial model. If any of

196 M. Jourenko et al.

the assumptions during a phase is violated, the CEM escalates to the next phase by
passage of time which prevents that any malicious parties can pause the execution
of the CEM indefinitely.

Setup. Each group G0, G1, Gv, G i setups a multi-signature scheme as in Sect. 2
creating aggregate signature keys Kagg,0, Kagg,1, Kagg , Kagg,i respectively.

4.1 The Interhead State Machine

The Interhead State Machine is structured using six states, namely initial,
sync_open, pending, final, merged and punished. Here intial and final are the
initial and the final states respectively. The sync_open state describes when the
virtual head is open. The merged and punished are used to convert the Interhead
into a regular Hydra head on the ledger, within the conversion phase and the punish
phases. The pending state is used to detect and resolve de-synchronization. The
Interhead State Machine contains the states, input symbols, state transitions, and
final states of the Hydra state machine as it performs a state transition into the open
state of the Hydra state space in case of dispute. For simplicity we abstract away
from this and focus on the unique parts of the Interhead State Machine.

First, the parties in each head setup their half of the Interhead State Machine,
starting in the Initial states respectively. The transitions that can be performed within
a phase are structured according to the purpose of that phase displayed in Figs. 3–5.
Both halves are operated in parallel, i.e. each Initial state spawns one thread of the
overarching state machine. Intermediaries have to ensure that the initial states in
both heads match such that in case of dispute the threads can be merged to be tran-
sitioned into the Hydra statespace. For this reason the Initial states contain data that
(1) ensures the threads can be merged and (2) the threads cannot be merged with a
different Interhead StateMachine (3) the Hydra headmaintains the same enforceable
state as the Interhead. State transitions within the state machine are limited to time
phases, i.e. their validity interval must fall entirely within one of the phases.

Fig. 3 State transitions in
the orderly phase

initial

sync
open

sync-
collect

sync-close

pending

nal

sync-con rm

sync-abort

sync-update-time

Interhead Hydra: Two Heads are Better than One 197

Orderly Phase. Figure 3 illustrates states and transitions within the orderly phase.
During this phase, the intermediaries have sole authority to perform state transi-
tions by requiring a multi-signature corresponding to verification key Kagg,i . One
instance of this partial state machine is executed within each head starting from the
initial state. All transitions within this phase are executed synchronously, i.e. on both
heads or on none denoted with input symbol prefix sync. This is ensured through
a synchronization protocol with one caveat: A corrupted intermediary can attempt
to de-sync both halves by acting in the last moment of the orderly phase and only
providing their signature for one partial state machine. However, this can be detected
by means of the pending state which acts as a buffer where intermediaries have to
verify and confirm that no de-sync attempt occurred before the state machine can be
closed. Detection of a de-sync attempt results in the state machine transitioning to
the conversion phase.

The state machine can reach two states from the initial state: (1) The sync-open
state is reached through the sync-collect input. This step collects a set of EUTxOs
Eb from all participants, as well as a set of EUTxOs Cb from intermediaries that
contain coins as collateral. The total amount of coins contained in Cb has to be at
least as much as the total amount of coins contained in E1−b. Upon reaching the
sync-open state on both halves, the Interhead is opened and parties can modify its
enforceable state. We omit the collection of EUTxO in Fig. 3 for simplicity. (2) The
final state can be reached using the sync-abort command aborting execution and
releasing all previously committed EUTxO.

The pending state can be reached from sync-open through the sync-close input.
The parties Gv negotiate a partition of the Interhead’s state into two sets of EUTxO,
η0, η1 and the tuple (final, ηb) is signed corresponding to the aggregate verification
key Kagg,b. This final snapshot depends on the Hydra head to which it is submitted
and contains the EUTxOs of itsmembers aswell as collateral from the intermediaries.
Note that this step is similar to the concept of the optimistic head closure inHydra [4].
The purpose of the pending state is to detect attempts of corrupted intermediaries to
de-sync the partial statemachines’ executed on each head. Lastly the final state can be
reached through the sync-confirm input from the pending state, releasing EUTxO
according to the negotiated partitions. If the final state is reached within the orderly
phase, the Interhead remains offchain and terminates. In the process, all EUTxOs
previously committed by participants or committed as collateral by intermediaries are
released. Otherwise, if any party stalls execution, does not collaborate or a de-sync
attempt is detected, no further transitions occur in this phase and the state machine
proceeds into the convert phase by passage of time.

Lastly, the duration of the orderly time phase can be extended by a transition from
sync-open to itself while updating the timephase as stored within the state machine.
Note that the conversion phase has a duration of TC = tC,end − tC,start ≥ Tmax and
let tδ = TC − Tmax ≥ 0. Then, we can extend the orderly timeframe by moving start
and end of the conversion phase by tδ , i.e. the new conversion phase will be at time
[tC,start + tδ, tC,end + δ]. This requires signatures from all parties, i.e. two aggregate
signatures corresponding to Kagg and Kagg,i .

198 M. Jourenko et al.

merged

Hydra Head 0

Hydra Head 1
open

Ledger

Hydra CEM

merge
convert

initial pending

sync
open

abort / collect

re-sync

merge

initial pending

sync
open

abort / collect

re-sync

Fig. 4 State transitions in the conversion phase

Conversion Phase.This phase is illustrated in Fig. 4. Similar to the previous phase, all
the intermediaries have sole authority to perform state transitions, however, now state
transitions can be performed by any intermediary alone. In this phase, if there is a
honest intermediary, both Interhead halves are committed to the ledger to be resolved
there. This can be done through an incremental decommit of the state machine–in
the case of Hydra heads–or by closing H0 and H1. This requires time of up to Tmax.
Then at first, if a state machine halve is in the initial state it proceeds to the pending
state. Next, the merged state can be reached in the following two cases: (1) If both
halves are in the sync-open state and (2) if one halve is in the pending state and
the other in the sync-open state, i.e. a de-sync occured. Note that if both halves
are in the pending state, then no further transition occurs during this phase since
this implies that no de-sync happened and we wait for the punish phase to confirm
abort or closure of the Interhead. Lastly, we transition from the merged state to
the open state of the Hydra state machine through the convert input. Note that we
remove any time restriction for the transition from themerged state to theopen state.

Punish Phase. The last phase is illustrated in Fig. 5. It is open-ended and any state
transition can be performed by any party. (1) If the state machine is still in the initial
or pending state, the state machine can be safely aborted and transition into the
final state. (2) Otherwise, the state machine transitions into the open state of the
Hydra state space. From the sync-open state the state machine transitions into the
punished state with the punish input. The punished state is similar to themerged
state with one exception. The intermediaries collateral is not released. Instead, the
collateral is used to provide enough coins to allow opening the channel on the ledger
and funding its enforceable state. Lastly, the state machine can still transition from
the merged state to open the Interhead as a channel on the ledger, in case this has
not happened in the conversion phase.

Interhead Hydra: Two Heads are Better than One 199

punished

Hydra Head b

openconvert

Hydra CEM

initial

sync
open

punish

pending nal

con rm

abort

merged merge

Fig. 5 State transitions in the punish phase

Iterative Construction.An Interheadmaintains the same enforceable state as a Hydra
head but it is setup across two enforceable states instead of one. Due to this an Inter-
head can be setup iteratively across any combination of two enforceable states. This
allows for Interhead constructions across multiple hops of a network of Hydra heads.
In the following, for simplicity we assume that the Interhead is created across two
Hydra heads that were opened on the ledger.

Collateral and Fees. Let bi , i ∈ {0, . . . , ni } be the collateral paid by intermediary
Pi and c j , j ∈ {0, . . . , n0 + n1} the amount of coins committed by participant P j .
Moreover, letC =∑ni

l=0 bl =
∑n0+n1

l=0 cl . First, we assume the lifetime of the Interhead
is fixed. Collateral is locked for at most until the end of the conversion phase which
is after time tdur = tC,end − t0. We extend the transition from initial to open states
to require that each participant pays a fee proportional to the amount of coins they
commit, i.e.P j commits fee f j = f · tdur · c j where f ∈ R

+ is a scalar negotiated by
all parties during setup. Let f� = ∑n0+n1

j=0 f j be the total fees paid. Upon release of
the collateral intermediary Pi receives an additional fee proportional to the amount
of collateral they paid, i.e. bi

C f� . For extending the lifetime of the Interhead via the
sync-update-time transition by time tadd, each party pays an additional fee relative
to tadd, i.e. f j,add = f · tadd · c j .

5 The Protocols

We define the behaviour of honest parties in form of two protocols. Algorithm 1 is
executed among the intermediaries to coordinate state transitions, while Algorithm
2 is executed by all parties to close the Interhead (Figs. 6 and 7).

Setup. At the beginning, the parameter of the initial state are negotiated between all
participants and intermediaries, and the intermediaries need to verify that both initial
statesmatch and can bemergedwithin the conversion phase. The initial state contains
aggregate signatures corresponding to both verification keys Kagg and Kagg,i. Any
party provides their signature for this only in case of a positive verification of the
relevant initial state.

200 M. Jourenko et al.

Fig. 6 Synchronous execution of a transition on both Hydra heads

Fig. 7 Protocol to close the Interhead offchain

Synchronization. Algorithm 1 describes synchronized execution of both partial
CEMs. It is executed by each intermediary on the same input. No intermediary
can execute multiple instances of the function concurrently which can be achieved
by utilization of a mutex. The function’s inputs are the two transactions tr0, tr1
that are to be executed on heads H0, H1 respectively, as well as input symbol i and
auxiliary input aux of the transition that is performed. Then function VERIFY_TX
checks that the transitions are valid except for the required aggregate signature of
the intermediaries, and that they perform the correct state transition. If this is not
the case, the function terminates. Otherwise EXCHANGE_SIGNATURE makes
the intermediaries collaborate to complete the transactions by adding the required
aggregate signature corresponding to their aggregate verification key Kagg,i . First
each intermediary computes signature σ = ms_sign(Π , sk, i ||aux) and broadcasts
it. Once an intermediary received the set S of all signatures they compute the aggre-
gate signature σagg = ms_agg_sign(Π , V , S, i ||aux) and add it to the transitions.
Lastly, COMMIT_VERIFY commits the completed transactions on their respective
heads and only returns after they have been included in the head’s snapshot.

Optimistic Closure.The protocol shown inAlgorithm2 takes two proposed snapshots
η0, η1 and attempts to close the Interhead offchain. Similar to Algorithm 1 only one
instance of the protocol can be executed concurrently enforceable through a mutex.
The protocol is executed by intermediaries and participants. First, IS_PARTITION
checks that η0 and η1 are a partition of ηv except for collateral,HAS_COLLATERAL
checks whether the snapshots together have all of the party’s collateral if applicable

Interhead Hydra: Two Heads are Better than One 201

and CONSENT verifies that the party agrees to close the Interhead with EUTxOs in
η0 and η1 going to heads H0, H1 respectively. If any check fails, the party broadcasts
symbol ⊥ to all parties to indicate that execution failed and terminates. Concurrent
to execution of the protocol, parties listen towards receipt of ⊥ upon which they
terminate the protocol as well. Otherwise, the parties communicate and exchange
consent of the Interhead’s closure. If a consent message from all parties was received,
the parties collaborate to create the required transactions, including the aggregate
signature of final||η0||η1 as auxiliary input. The intermediaries execute closure of
the Interhead through protocol SYNC_TRANSITION as described in Algorithm 1.

6 Analysis

Collateral and Fees. The intermediaries experience a cost of opportunity by locking
up collateral. A metric to estimate this cost [13, 19] is the product of coins locked
b ∈ N and the duration they are locked t ∈ N. The participants pay a fee relative to
this to incentivize and compensate the intermediaries. Remember the mechanism of
payment of fees as described in Sect. 4.1. We denote the total amount of collateral C
which is locked away for time tdur and a scalar f that describes the amount of fees
paid per collateral and time. The total amount of fees paid is chosen to be relative to
the above metric of cost of opportunity o = bt = C · tdur: The total amount of fees
paid is fσ = ∑n0+n1

i=0 fi =
∑n0+n1

i=0 f · tdur · ci = f · tdur ∑n0+n1
i=0 ci = f · tdur · C =

f · o.
Novel to our setting is that there can be multiple intermediaries which can com-

mit different amounts of collateral individually. The fees that are paid out to each
intermediary are relative to their individual collateral respectively. In addition, we
opt to have participants pay a fee relative to the number of coins they commit into the
Interhead. This makes the rate of fees paid per coin committed constant. In compar-
ison, if all parties pay an equal fee the rate of fees paid per committed coin can vary
significantly making it prohibitively expensive for parties that commit a relatively
low number of coins. However, this approach has a drawback, namely updating the
amount of coins hold by each party for sake of computing fees dynamically requires
updating the Interhead’s snapshot including resolving of disputes. Moreover, coins
that are locked in a CEM that is executed within the Interhead might not be uniquely
attributed to any party which requires additional negatiation of fees between the
CEMs participants.

6.1 Security

We provide security statements for the Interhead construction by arguing through
analysis of the possible paths a run through the state machine can take.

202 M. Jourenko et al.

Lemma 1 A honest intermediary can prevent that a run through the Interhead CEM
reaches any punished state.

Proof If all parties collaborate the state machine terminates through optimistic clo-
sure. Such a run does not include the punished state. Otherwise, both halves are
committed to be resolved on the ledger by the honest intermediary and either (1) the
Interhead reaches the conversion phase with both interhead halves in the same state
or (2) a de-sync attempt happened. Case (1) can only occur if both heads are in the
initial state, the pending state or the sync-open state. In the first case, both halves
transition into the pending state as in the second case. From there the state machine
reaches the final state and terminates during the punish phase without reaching the
punished state. In the third case, both state machine halves will be merged by the
honest intermediary without reaching the punished state. Lastly, (2) if a de-sync
attempt occured during a sync-update-time transition both halves are in the sync-
open state but with different conversion phases. However, we require that even if
both conversion phases are not equal, they overlap for at least the minimum duration
of the conversion phase giving the honest intermediary enough time to perform the
merge transition on-chain. Lastly, if one half is in the sync-open state and the other
in the pending state, the intermediary can merge both halves as above. This is even
the case if the pending state is reached through the initial state: Due to the synchro-
nization protocol and design of the Interhead it is required that if the sync-open
state on one half is reached then both halves can move into the sync-open state as
all inputs, i.e. EUTxO and collateral, must be available. Therefore all EUTxO and
collateral is available to transition into the merged state as well. In neither case a
run contains the punished state.

Lemma 2 (Termination) If at least one party is honest and attempts to terminate
the head, the Interhead CEM eventually reaches a final state or transitions into the
Hydra CEM state space.

Proof First, if all parties collaborate and do not behave maliciously, the Interhead
CEM can reach a final state across two paths during the orderly phase, i.e. either
through an abort, or through optimistic head closure. Otherwise, as the honest party
wishes to terminate the head, they will not collaborate to extend the duration of the
orderly phase. Then the state machine will transition into the conversion phase by
passage of time. If the party is an intermediary they can perform a transition into the
merged state, or if they are not they wait for the conversion phase to end to perform
a transition to the punished phase. From both states a transition into the Hydra CEM
state space exist.

Theorem 1 (CollateralLiveness) If at least one intermediary is honest, the Interhead
construction has the collateral liveness property.

Proof We note that there are two states that enforce that any collateral, that was
committed prior, is made available within any enforceable state. These two states are
the final state and themerged state. As shown in Lemma 2, eventually the Interhead

Interhead Hydra: Two Heads are Better than One 203

CEM either reaches a final state or the Hydra CEM state space. There is only one
path through the Interhead CEM a run can take that does not end in a final state or
contains themerged state. This is when the Hydra CEM has a run that contains the
punished state. However, as shown in Lemma 1 any honest intermediary can avoid
a run containing this state.

Theorem 2 (EUTxO Liveness) If at least one party is honest, the Interhead con-
struction has the EUTxO liveness property.

Proof Due to Lemma 2 we have two cases to consider for any honest partyP . Either
the CEM reaches a final state, or it reaches the Hydra CEM state space. In the latter
case, we are finished. In the former case we have two cases. For one, the CEM can
abort which unlocks all previously committed EUTxO in which case we are finished.
Otherwise, the final state is reached through the sync-open and pending states
through an optimistic closure. In that case, the EUTxO that are unlocked depend
on the negotiation during the optimistic closure protocol. P’s collaboration of an
aggregate multisignature is required to perform optimistic closure. If P is member
in Head Hb it verifies that all of the EUTxO it is related with are present in the
snapshot partition ηb or in either partition if it is member of both heads. In either
case, all EUTxO within the partitions are made available within the Hydra heads P
is member of.

Theorem 3 (Balance Security) If at least one party is honest, the Interhead con-
struction has the balance security property.

Proof This follows directly from Theorems 1 and 2.

7 Conclusion

In this work we present the Interhead construction, an approach to create virtual
Hydra heads that goes beyond simple payments but instead allows for the execution
of arbitrary state machines between participants across a network of Hydra heads.
We define security propertiesCollateral Liveness,EUTxO Liveness and Balance
Security and prove them in the presence of a malicious adversary. We present the
first virtual channel construction that supports channels with an arbitrary number of
parties and that collateral is contributed by multiple intermediaries. As future work
we aim to generalize the construction beyond creating a virtual Hydra head as well
as experimental evaluation.

A In-Depth Background

We provide an in-depth description of the Interhead CEM in Appendix C. In the
following we provide additional background relevant to it (Fig. 8).

204 M. Jourenko et al.

Fig. 8 Illustration of State Transition S → S′ on input (i , aux). The box below a state displays
information on the transaction constraints for the transaction that performed the state transition. The
box to the right of the state displays an overview of the value field of the EUTxO that represents
the state. Transaction fields that are empty or implicit from context are grayed out or omitted for
simplification

A.1 EUTxOMA

The EUTxO model is extended by EUTxOMA [3] to add multi-assets support. A
EUTxOMA is defined as a EUTxO but allows the value field to carry non-fungible
tokens in addition to fungible coins. Moreover a transaction in the EUTxOMA model
has two more entries, i.e. it is of form (I , O , forge, fpss, S) where forge is a
token bundle that can define a positive amount of token in case they are minted, or a
negative amount of token in case they are burned. Moreover, fpss is a forging policy
script taking the validation context σ as input and evaluates whether the transaction
including its forge field is admissible. In the remainder we assume EUTxOMA,
however we continue using the term EUTxO for brevity.

A.2 Thread Token

A design pattern that allows to enforce that a given CEM (1) started in a valid
initial state and (2) is unique compared to other instances of similar CEMs is using
thread token. The validator of an initial state requires creation of a thread token with
respective forging policy script. The token will be kept in all EUTxO value fields
through a run of the CEM until it reaches a final state in which it is forced to be
burned.

Interhead Hydra: Two Heads are Better than One 205

B Hydra-Specific Concepts

B.1 General Purpose Token

Hydra heads are limited in that it is not possible to forge and burn arbitrary token.
Special purpose token, such as thread token, can only be forged within a specific
context specified within its forging policy script. A transaction forging such a token
cannot be included in an enforceable state as this would result in the token being
forged within a Hydra CEM state transition which would likely violate its forging
policy script. A possible workaround is as follows: A generalized token is forged
in an arbitrary context and as of such can be forged during any state transition of
a Hydra head. Generalized token can be created either as fungible or non-fungible
token. A CEM that makes use of token to perform functionality does not forge or
burn the token, but instead takes the required amount of token as input when required,
and releases the token in the CEM’s final state at latest.

B.2 The Multi-Threaded CEM

We extend the notion of thread token by allowing CEMs to hold multiple thread
token. A CEM can spawn threads to be executed in parallel by having a transaction
contain multiple EUTxO in its outputs, each representing a separate CEM state and
holding at least one thread token. In turn, multiple threads can bemerged into a single
thread by having a transaction spending multiple EUTxO representing CEM states,
consuming their thread token and defining one EUTxO in its output that contains all
thread token in its value field. We use multithreading in two cases. For one, we use
multiple threads–one thread per identity–to efficiently collect EUTxO that are to be
moved to the virtual head. Note that this is similar to how the Hydra CEM collects
EUTxO [4] to be moved into a head. Second, we initially spawn one thread in each
head, i.e. each instance of a Interhead CEM has exactly two initial states containing
one thread token each. If the Interhead resolves optimistically, the CEM remains
separate and the threads are never merged. However, in case of a dispute or a lack of
collaboration, when the Interhead is converted into a regular Hydra head, the threads
will be merged.

C The CEM Construction

In the following we provide details of the CEM by describing each state as well
as the constraints provided by each verifier. With this implementation we explicitly
assume that the protocol is executed within Hydra heads and moreover maintains a
virtual Hydra head which is opened on the ledger in case of dispute. We illustrate

206 M. Jourenko et al.

key parts of the CEM using Figs. 9 and 11. Moreover, due to space constraints we
do not formally define each verifier’s behaviour but describe it on a high level only.

C.1 Parameters

The parameters under which the Interhead CEM is executed are negotiated among all
participants and intermediaries in the beginning. We structure the data stored within
the CEMs state in data δv that is required for opening the virtual head on the ledger,
data δc that is common to the two partial CEMs in both H0 and H1 as well as data δb
that is only relevant in each individual head Hb.

First, δv is a tuple of form (Kagg, η, hMT, n, T , cid0, cid1) where the first four
parameter are the virtual head’s state and cidb is a non-fungible token ts,b in head
Hb which is used as a unique identifier for the CEM half. These parameter are not
derived during execution of the CEM, but represent a commitment from the Interhead
participants to create a virtual head with the respective parameters and token. For
one, δv is used to ensure that always the same virtual head is created, even if only
data from one partial CEM is available which is the case when the CEM enters the
punish phase. The token ts,b is stored to ensure that the Interhead CEM instance is
unique and that both partial CEMs are tied to another, i.e. no Interhead halve can be
merged with another similar Interhead instance. Note that the EUTxO contained in
η are not allowed to contain non-fungible token.

Second, δc consists of tuple (Kagg,i , hMT,i , ni , To, Tc) which contains data on the
intermediaries, i.e. their aggregate verification key Kagg,i , the head of theMerkle tree
containing all individual verification keys hMT,i and the number of intermediaries ni .
Moreover it contains points in time To, Tc ∈ N specifying the end of the orderly and
conversion time phases respectively. Verifier ensure that a transition happens within
the orderly timezone by ensuring that for the transition’s time frame [rmin, rmax] holds
that rmax ≤ To. Similarly verifier ensure that a transaction is within the conversion
time frame by checking that T0 < rmin < rmax ≤ Tc. Lastly a transition happens in
the punish phase if rmin > Tc.

Lastly, δb consists of tuple (b, Kagg,b, ηb, hMT,b, nb, colb)where b ∈ {0, 1} is a bit
identifying the order of both partial CEMs, Kagg,b is an aggregate verification key,
ηb is a commitment of the EUTxO that the parties will move to the virtual head and
it must hold that η = η0 ∪ η1, hMT,b is the root of the Merkle tree consisting of the
individual verification keys of Gb, nb = |Gb| is the number of participants joining
from Hb, and colb is the collateral required to be paid by the intermediaries. Note
that colb has to be at least as large as the amount of coins contained in the EUTxO
in η1−b. The quantity and type of fungible token submitted in the collateral has to
match the number of token submitted by the participants.

Interhead Hydra: Two Heads are Better than One 207

Fig. 9 Transition from initial to open state limited to the orderly phase

C.2 The Orderly Phase

The Initial State. The initial state is created in both heads Hb with parameter δv ,
δc, δb and is illustrated in Fig. 9. Each participant and intermediary verify that the
parameter are as negotiated and, moreover, the intermediaries ensure that both initial
states match and can be converted during the conversion phase in case of dispute.
The transaction that sets up the initial state is signed using the aggregate verification
keys of the participants in the respective head as well as the intermediaries. A party
does only sign the transaction after positively verifying its correctness. The initial
state requires that a non-fungible token as an ID, as well as a set of participation
tokens [4] are provided. We require one participation token for each participant and
each intermediary. These token ensure that each participant and each intermediary
perform a commitment to the head and that all commitments can happen in parallel.
The transition creates nb + ni separate outputs, each containing one participation
token and can be spent by exactly one participant and intermediary respectively.

Commiting EUTxO. Similar to Hydra heads, all participants and intermediaries com-
mit a set of EUTxO each to the Interhead which is done in parallel. Each participant
and intermediary create one commit transaction that spends a participation token and
several of their EUTxO within its inputs and stores information about them within
its state Ui,b.

The Sync Open State. If all parties created a commit transaction, they can be spent
by the sync-open transaction as shown in Fig. 9. The sync-open state verifies that the
set of EUTxO η = (U1,b, . . . ,Unb,b) committed by the participants, matches their
original commitment, i.e. η = δb.ηb. Moreover, it verifies that the collateral EUTxO
ηc
b = (Uc

1,b, . . . ,U
c
ni ,b

) that are committed by the intermediaries contain a sufficient

208 M. Jourenko et al.

Fig. 10 First step of the optimistic closure during the orderly phase

number of coins and fungible token. We store δ
open
b in the CEMs state which equals

δb but we replace δb.colb with ηc
b.

Aborting.Creation of the Interhead can be aborted by a transition from the initial state
to the final state. The final state makes the EUTxO that were committed available on
the ledger.

The Pending State. The pending state can be reached from the sync-open and is
shown in Fig. 10. The pending state is used to give an opportunity for honest parties
to either confirm head closure or to proceed to the conversion phase instead–in case
a de-sync attempt was detected. The transition requires a final-annotated snapshot
which transforms the EUTxO sets ηb and ηc

b into η′
b. The final snapshot η

′
b contains

two components. For one, it contains a partition of the EUTxO within the whole
Interhead namely the EUTxO that will be made in head Hb upon closure. Moreover,
it contains EUTxO that pay back the intermediaries’ collateral. Note that the amount
of coins that are paid back to the intermediaries within head Hb might be less than
what was paid by the intermediaries upon opening the head, for instance, if partic-
ipants from H1−b performed payments to participants in head Hb. However, as the
coins within the partial CEM is constant, the participants’ coins will be taken from
the coins submitted as collateral. However, in that case, this difference in coins will
be available as additional collateral in H1−b. Each intermediary has to ensure that
the sum of collateral paid back to them in both heads is equal to the collateral they
originally paid into creating the Interhead.

The Final State. In addition to aborting opening the Interhead, the final state can be
reached from the pending state by a confirmation of the intermediaries. Similarly
to the abort case, the UTxO sets are made available within the transaction’s outputs.
However, this time the EUTxO that are made available are taken from the final
snapshot η′

b.

Interhead Hydra: Two Heads are Better than One 209

Fig. 11 Mergingof both partialCEMswithin the sameenforceable state or the ledger. Transition can
be performed from any combination of sync-open and pending states. Intermediaries’ collateral
is unlocked

C.3 The Conversion Phase

The conversion phase can conclude in two ways. For one, any intermediary can con-
vert the Interhead CEM into a regular Hydra CEM. This requires that both partial
CEMs are decommitted into a common enforceable state or the ledger respectively.
This can happen by means of incremental decommits or closure of Hydra heads
within time Tmax. Note that no other state transitions are permitted within the Inter-
head CEM but conversion to a regular Hydra head. All transitions can be performed
by an intermediary only, but now do not require a signature corresponding to the
intermediaries’ aggregate verification key Kagg,i . For another, if the conversion has
not been performed, in case no honest intermediary exists, the CEM transitions into
the punish phase.

Abort. If there are any participants or intermediaries that have not yet committed
EUTxO to the ledger, opening the Interhead can be aborted similarly to the way
it is done during the orderly phase. However, if all participants and intermediaries
committed EUTxO, aborting requires to transition into the pending state instead,
because a de-sync attempt might have happened. Note that if the abort is permissible
but the CEM transitioned into the pending state, it will be performed after during
the punish phase.

The Merged State. Conversion to a regular CEM is by means of the merged state
as shown in Fig. 11. Both partial CEMs can be merged, either from the open-sync
state or the analogous pending state and any combination of both. The merge state
requires that two generalized thread token are present and match δv.cid0 and δv.cid1.
This ensures that only the intended partial CEMs can bemerged as both non-fungible

210 M. Jourenko et al.

thread token are unique. Moreover, it is verified that the EUTxO sets match the initial
commitment, i.e. δv.η = δ0.η0 ∪ δ1.η1. This ensures that, in case all participants of one
head as well as all intermediaries are corrupted, it is not possible for them to commit
less EUTxO than required for the virtual Hydra head. The transaction releases all
generalized token within its outputs, but similarly to the initial state it takes one
thread token as well as δv.n participation token for all participants across both heads
as input. Lastly, the CEM has one output for each set of EUTxO committed by the
intermediaries to release their collateral in the same manner it is released in the
final state. Note that from this point on, only information in δv is required and the
remainder is removed from the state. Any participant can perform a transition into the
open state of a regular Hydra CEM. We do not limit this transition to the conversion
phase s.t. it can be performed indefinitely after start of the conversion phase. The
state is directly derived from the data in δv , i.e. Kagg = δv.Kagg, η = δv.η, hMT =
δv.hMT, n = δv.n, T = δv.T .

C.4 The Punish Phase

The purpose of the last phase is to allow any honest party to open the virtual Hydra
head between all participants, even in the case that all other parties are corrupted.
The Interhead CEM transitions into a Hydra CEM without the need of merging both
partial CEMs. To ensure that this is possible, the coins and fungible token that are
necessary for opening the Hydra head are taken from the collateral of the interme-
diaries who will lose it in the process. All transitions in this phase can be performed
by any participant or intermediary.

The Punished State. If the CEM is in the sync-open state when entering the punish
phase the CEM will transition into a regular Hydra CEM via the punish state. This
conversion can be performed within the same enforceable state in which the partial
CEM is executed and thus requires no incremental decommit and neither closure of
the Hydra head. The transitions from and to the punished state are similar to those
to and from the merged state with the exception that we only verify correctness of
the data from the local Hydra head, i.e. δb.η and δv.cid. We re-use the existing thread
token ts,b for the Hydra CEM. The collateral of the intermediaries is not made avail-
able through the transaction’s outputs but used tofinance conversion to theopen state.

Open Ends. If the Partial CEM is in the initial state it can be aborted with a transition
to the final state. Moreover, if the CEM was in the pending state it can now safely
transition to the final state as no de-sync occured. Lastly, the transition from the
merged state to the open state of a Hydra CEM is open ended and thus can be
performed in the punish phase as well.

Interhead Hydra: Two Heads are Better than One 211

References

1. Canetti, R. (2004). Universally composable signature, certification, and authentication. In Pro-
ceedings. 17th IEEE Computer Security Foundations Workshop (pp. 219–233). IEEE.

2. Chakravarty, M. M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M. P., & Wadler, P.
(2020). The extended utxo model. In 4th Workshop on Trusted Smart Contracts.

3. Chakravarty, M. M., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J., Jones, M. P.,
Vinogradova, P., & Wadler, P. (2020). Native custom tokens in the extended utxo model.
In International Symposium on Leveraging Applications of Formal Methods (pp. 89–111).
Springer.

4. Chakravarty, M. M., Coretti, S., Fitzi, M., Gazi, P., Kant, P., Kiayias, A., & Russell, A. (2021).
Hydra: Fast isomorphic state channels. In International Conference on Financial Cryptography
and Data Security. Springer.

5. Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi,
E., Sirer, E. G., et al. (2016). On scaling decentralized blockchains. In International Conference
on Financial Cryptography and Data Security (pp. 106–125). Springer.

6. Decker, C., &Wattenhofer, R. (2015). A fast and scalable payment network with bitcoin duplex
micropayment channels. In Symposium on Self-Stabilizing Systems (pp. 3–18). Springer.

7. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., & Hostáková, K. (2019). Multi-party vir-
tual state channels. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (pp. 625–656). Springer.

8. Dziembowski, S., Eckey, L., Faust, S., & Malinowski, D. (2017). Perun: Virtual payment hubs
over cryptocurrencies. In Perun: Virtual Payment Hubs over Cryptocurrencies. IEEE.

9. Dziembowski, S., Faust, S., & Hostáková, K. (2018). General state channel networks. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(pp. 949–966). ACM.

10. EthHub. (2021). Sidechains. https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/
sidechains/.

11. Itakura, K., & Nakamura, K. (1983). A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development, 71, 1–8.

12. Jourenko, M., Larangeira, M., & Tanaka, K. (2020). Lightweight virtual payment channels.
Cryptology ePrint Archive, Report 2020/998. https://eprint.iacr.org/2020/998.

13. Jourenko, M., Larangeira, M., & Tanaka, K. (2021). Payment trees: Low collateral payments
for payment channel networks. In International Conference on Financial Cryptography and
Data Security. Springer.

14. Katz, J., Maurer, U., Tackmann, B., & Zikas, V. (2013). Universally composable synchronous
computation. In Theory of Cryptography Conference (pp. 477–498). Springer.

15. Kiayias, A., & Litos, O. S. T. (2019). A composable security treatment of the lightning network.
IACR Cryptology ePrint Archive, 2019, 778.

16. Kiayias, A., Zhou, H. S., & Zikas, V. (2016). Fair and robust multi-party computation using
a global transaction ledger. In M. Fischlin & J. S. Coron (Eds.), Advances in Cryptology-
EUROCRYPT 2016 (pp. 705–734). Berlin Heidelberg, Berlin, Heidelberg: Springer.

17. Mealy, G. H. (1955). A method for synthesizing sequential circuits. The Bell System Technical
Journal, 34(5), 1045–1079.

18. Micali, S., Ohta, K., & Reyzin, L. (2001). Accountable-subgroup multisignatures. In Proceed-
ings of the 8th ACM Conference on Computer and Communications Security (pp. 245–254).

19. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., & McCorry, P. (2019). Sprites and state
channels: Payment networks that go faster than lightning. In I. Goldberg, T. Moore (Eds.), FC
2019. LNCS (vol. 11598, pp. 508–526). Heidelberg: Springer. https://doi.org/10.1007/978-3-
030-32101-7_30.

20. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
21. PDecker, C., Russel, R., & Osuntokun, O. (2017). eltoo: A simple layer2 protocol for bitcoin.

See https://blockstream.com/eltoo.pdf.

https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/
https://eprint.iacr.org/2020/998
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://blockstream.com/eltoo.pdf

212 M. Jourenko et al.

22. Poon, J.,&Dryja, T. (2016). Thebitcoin lightningnetwork: Scalable off-chain instant payments.
See https://lightning.network/lightning-network-paper.pdf.

23. Richards, S., & Wackerow, P. (2021). Plasma. https://ethereum.org/en/developers/docs/
scaling/plasma/.

24. Richards, S., & Wackerow, P. (2021). Sidechains. https://ethereum.org/en/developers/docs/
scaling/sidechains/.

https://lightning.network/lightning-network-paper.pdf
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/

Prediction Markets, Automated Market
Makers, and Decentralized Finance
(DeFi)

Yongge Wang

Abstract This paper compares mathematical models for automated market mak-
ers (AMM) including logarithmic market scoring rule (LMSR), liquidity sensitive
LMSR (LS-LMSR), constant product/mean/sum, and others. It is shown that though
LMSRmay not be a good model for Decentralized Finance (DeFi) applications, LS-
LMSR has several advantages over constant product/mean based AMMs. This paper
proposes and analyzes constant ellipse based cost functions for AMMs. The pro-
posed cost functions are computationally efficient (only requires multiplication and
square root calculation) and have certain advantages over widely deployed constant
product cost functions. For example, the proposed market makers are more robust
against slippage based front running attacks. In addition to the theoretical advantages
of constant ellipse based cost functions, our implementation shows that if the model
is used as a cryptographic property swap tool over Ethereum blockchain, it saves up
to 46.88% gas cost against Uniswap V2 and saves up to 184.29% gas cost against
Uniswap V3 which has been launched in April 2021. The source codes related to
this paper are available at https://github.com/coinswapapp and the prototype of the
proposed AMM is available at http://coinswapapp.io/.

Keywords Decentralized finance · Market scoring rules · Constant ellipse

1 Introduction

Decentralized finance (DeFi or open finance) is implemented through smart contracts
(DApps) which are stored on a public distributed ledger (such as a blockchain) and
can be activated to automate execution of financial instruments and digital assets.
The immutable property of blockchains guarantees that these DApps are also tamper-
proof and the content could be publicly audited.

Y. Wang (B)
UNC Charlotte, Charlotte, NC 28223, USA
e-mail: yonwang@uncc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_12

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_12&domain=pdf
http://orcid.org/0000-0002-1403-2922
https://github.com/coinswapapp
http://coinswapapp.io/
mailto:yonwang@uncc.edu
https://doi.org/10.1007/978-3-031-18679-0_12

214 Y. Wang

DeFi applications range from automated markets (e.g., Uniswap [11] and Curve
Finance), price oracles (e.g., Chainlink), to financial derivatives and many others.
Most DeFi applications (e.g., Bancor [6] and Compound [7]) enable smart token
transaction instantly by using price equilibriummechanisms based on total availabil-
ity supply (or called bonding curves), though still some of DeFi applications do not
carry out instant transaction. In a blockchain system, traders submit their transactions
to the entire blockchain network (e.g., stored in the mempool), a miner in the sys-
tem collects these transactions, validates them, and puts them into a valid block that
is eventually added to an immutable chain of blocks. These submitted transactions
(e.g., the mempool for Ethereum could be viewed at https://etherscan.io/txsPending)
are visible to all nodes. A malicious node (the miner itself could be malicious) may
construct his/her own malicious transactions based on these observed transactions
and insert her malicious transactions before or after the observed transactions by
including appropriate gas costs (see, e.g., [14]). These malicious transactions take
Miner Extractable Value (MEV) profit with minimal cost. With their own experience
of failing to recover some tokens of 12K USD value in a Uniswap V2 pair (these
tokens were recovered by a front running bot), Robinson and Konstantopoulos [10]
describe the Ethereum blockchain as a Dark Forest. The flashbots website (https://
explore.flashbots.net/) shows that the total extracted MEV by front running bots in
the 24 hours of May 18, 2021 is around 8.6M USD. In addition to the front running
attacks, it is also common to mount attacks against DeFi price oracles. In the DeFi
market, a lender (a smart contract) normally queries an oracle to determine the fair
market value (FMV) of the borrower’s collateral.

This paper analyzes existing mathematical models for AMMs and discusses their
applicability to blockchain based DeFi applications. One important consideration
for the discussion is to compare the model resistance to front running attacks. Our
analysis shows that though LS-LMSR is the best among existing models, it may not
fit the blockchain DeFi application due to the following two reasons:

• LS-LMSR involves complicated computation and it is not gas-efficient for DeFi
implementations.

• The cost function curve for LS-LMSR market is concave. In order to reflect the
DeFi market principle of supply and demand, it is expected that the cost function
curve should be convex.

Constant product based Uniswap AMM has been very successful as a DeFi swap-
ping application. However, our analysis shows that Uniswap V2 [11] has a high
slippage (in particular, at the two ends) and may not be a best choice for several
applications. This paper proposes a constant ellipse based AMM model. It achieves
the same model property as LS-LMSR but its cost function curve is convex and
it is significantly gas-efficient for DeFi applications. At the same time, it reduces
the sharp price flunctuation challenges by Uniswap V2. We have implemented and
deployed a prototype CoinSwap based on our constant ellipse AMM during March
2021 (see http://coinswapapp.io/) and released a technical report [13] of this paper
during September 2020. The CoinSwap has a controllable slippage mechanism and
has a mechanisms for Initial Coin Offer (ICO). It should be noted that Uniswap

https://etherscan.io/txsPending
https://explore.flashbots.net/
https://explore.flashbots.net/
http://coinswapapp.io/

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 215

team was aware of their Uniswap V2 disadvantages that we have just mentioned
and, independent of this paper, proposed the Uniswap V3 [12] (released during April
2021). UniswapV3 tried to address this challenge by using a shifted constant product
equation (x + α)(y + β) = K .Though this shifted equation inUniswapV3 resolves
some of the challenges that constant ellipse AMM has addressed and it can imple-
ment some of the funcationalities in CoinSwap (e.g., ICO and reduced slippage), it
still does not have a smooth price flunctuation at two ends. Furthermore, the experi-
mental data from CoinSwap project shows that Uniswap V3 has significant high gas
costs than CoinSwap (to achieve the same functionality).

The structure of the paper is as follows. Section 2 gives an introduction to pre-
diction markets and analyzes various models for automated market makers (AMM).
Section 3 proposes a new constant ellipse market maker model. Section 4 compares
various cost functions from aspects of the principle of supply and demand, coin liq-
uidity, and token price fluctuation. Section 5 compares price amplitude for various
cost functions and Sect. 6 discusses the implementation details.

2 Existing Models for Prediction Market Makers

2.1 Prediction Market and Market Makers

It is commonly believed that combined information/knowledge of all traders are
incorporated into stock prices immediately (Fama [2] includes this as one of his “effi-
cient market hypotheses”). For example, these information may be used by traders to
hedge risks in financial markets such as stock and commodities future markets. With
aggregated information from all sources, speculators who seek to “buy low and sell
high” can take profit by predicting future prices from current prices and aggregated
information. Inspired by these research, the concept of “information market” was
introduced to investigate the common principles in information aggregation. Among
various approaches to information market, a prediction market is an exchange-traded
market for the purpose of eliciting aggregating beliefs over an unknown future out-
come of a given event. As an example, in a horse racewith n horses, onemay purchase
a security of the form “horse A beats horse B”. This security pays off $1 if horse
A beats horse B and $0 otherwise. Alternatively, one may purchase other securities
such as “horse A finishes at a position in S” where S is a subset of {1, . . . , n}. For
the horse race event, the outcome space consists of the n! possible permutations of
the n horses.

For prediction markets with a huge outcome space, the continuous double-sided
auction (where the market maker keeps an order book that tracks bids and asks)
may fall victim of the thin-market problem. Firstly, in order to trade, traders need to
coordinate on what or when they will trade. If there are significantly less participants
than the size of the outcome space, the traders may only expect substantial trading
activities in a small set of assets and many assets could not find trades at all. Thus the

216 Y. Wang

market has a low to poor liquidity. Secondly, if a single participant knows something
about an event while others know nothing about this information, this person may
choose not to release this information at all or only release this information gradually.
This could be justified as follows. If any release of this information (e.g., a trade based
on this information) is a signal to other participants that results in belief revision
discouraging trade, the person may choose not to release the information (e.g., not
to make the trade at all). On the other hand, this person may also choose to leak the
information into the market gradually over time to obtain a greater profit. The second
challenge for the standard information market is due to the irrational participation
problem where a rational participant may choose not to make any speculative trades
with others (thus not to reveal his private information) after hedging his risks derived
from his private information.

2.2 Logarithmic Market Scoring Rules (LMSR)

Market scoring rules are commonly used to overcome the thin market and the irra-
tional participation problems discussed in the preceding section. Market scoring rule
based automated market makers (AMM) implicitly/explicitly maintain prices for all
assets at certain prices and are willing to trade on every assets. In recent years, Han-
son’s logarithmic market scoring rules (LMSR) AMM [4, 5] has become the de facto
AMM mechanisms for prediction markets.

Let X be a random variable with a finite outcome space Ω . Let p be a reported
probability estimate for the random variable X . That is,

∑
ω∈Ω p(ω) = 1. In order to

study rational behavior (decision) with fair fees, Good [3] defined a reward function
with the logarithmic market scoring rule (LMSR) as follows:

{sω(p) = b ln(2 · p(ω))} (1)

where b > 0 is a constant. A participant in the market may choose to change the cur-
rent probability estimate p1 to a new estimate p2. This participant will be rewarded
sω(p2) − sω(p1) if the outcome ω happens. Thus the participant would like to max-
imize his expected value (profit)

S(p1,p2) =
∑

ω∈Ω

p2(ω) (sω(p2) − sω(p1)) = b
∑

ω∈Ω

p2(ω) ln
p2(ω)

p1(ω)
= bD(p2||p1)

(2)
by honestly reporting his believed probability estimate, where D(p2||p1) is the rela-
tive entropy or Kullback Leibler distance between the two probabilities p2 and p1. An
LMSR market can be considered as a sequence of logarithmic scoring rules where
the market maker (that is, the patron) pays the last participant and receives payment
from the first participant.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 217

Equivalently, an LMSR market can be interpreted as a market maker offering
|Ω| securities where each security corresponds to an outcome and pays $1 if the
outcome is realized [4]. In particular, changing the market probability of ω ∈ Ω to
a value p(ω) is equivalent to buying the security for ω until the market price of the
security reaches p(ω). As an example for the decentralized financial (DeFi) AMM
on blockchains, assume that the market maker offers n categories of tokens. Let
q = (q1, . . . , qn)where qi represents the number of outstanding tokens for the token
category i . Themarket maker keeps track of the cost functionC(q) = b ln

∑n
i=1 e

qi /b

and a price function for each token

Pi (q) = ∂C(q)

∂qi
= eqi /b

∑n
j=1 e

q j /b
(3)

It should be noted that the equation (3) is a generalized inverse of the scoring rule
function (1). The cost function captures the amount of total assets wagered in the
market where C(q0) is the market maker’s maximum subsidy to the market. The
price function Pi (q) gives the current cost of buying an infinitely small quantity of
the category i token. If a trader wants to change the number of outstanding shares
from q1 to q2, the trader needs to pay the cost difference C(q2) − C(q1).

Next we use an example to show how to design AMMs using LMSR. Assume
that b = 1 and the patron sets up an automated market marker q0 = (1000, 1000) by
depositing 1000 coins of token A and 1000 coins of token B. The initial market cost
isC(q0) = ln

(
e1000 + e1000

) = 1000.693147. The instantaneous prices for a coin of

tokens are PA(q0) = e1000

e1000+e1000 = 0.5 and PB(q0) = e1000

e1000+e1000 = 0.5. If this AMM is

used as a price oracle, then one coin of token A equals PA(q0)
PB (q0)

= 1 coin of token B.
If a trader uses 0.689772 coins of token B to buy 5 coins of token A from market
q0, then the market moves to a state q1 = (995, 1000.689772) with a total market
cost C(q1) = 1000.693147 = C(q0). The instantaneous prices for a coin of tokens
in q1 are PA(q1) = 0.003368975243 and PB(q1) = 295.8261646. Now a trader can
use 0.0033698 coins of token B to purchase 995 coins of token A from the AMM q1
with a resulting market maker state q2 = (0, 1000.693147) and a total market cost
C(q2) = 1000.693147 = C(q0).

The above example shows that LMSR based AMM works well only when the
outstanding shares of the tokens are evenly distributed (that is, close to 50/50). When
the outstanding shares of the tokens are not evenly distributed, a trader can purchase
all coins of the tokenwith lesser outstanding shares and let the price ratio PA(q)

PB (q)
change

to an arbitrary value with a negligible cost. This observation is further justified by the
LMSRcost function curves inFig. 1.Thefirst plot is for the cost functionC(x, y, z) =
100 with three tokens and the second plot is for the cost functionC(x, y) = 100 with
two tokens. The second plot shows that the price for each token fluctuates smoothly
only in a tiny part (the upper-right corner) of the curve with evenly distributed token
shares. Outside of this part, the tangent line becomes vertical or horizontal. That is,
one can use a tiny amount of one token to purchase all outstanding coins of the other

218 Y. Wang

Fig. 1 LMSR market maker cost function curves for C(x, y, z) = 100 and C(x, y) = 100

token in the market maker. In a conclusion, LMSR based AMMs may not be a good
solution for DeFi applications.

In the traditional prediction market, the three desired properties for a pricing rule
to have include: path independence, translation invariance, and liquidity sensitivity.
Path independencemeans that if themarket moves from one state to another state, the
payment/cost is independent of the paths that it moves. If path independence is not
achieved, the adversary trader may place a series of transactions along a calculated
path and obtain profit without any risk. Thus this is an essential property that needs
to be satisfied. An AMMwith a cost function generally achieves path independence.
Thus all models that we will analyze in this paper (including our proposed constant
ellipse AMM model) achieve path independence. On the other hand, the translation
invariance guarantees that no trader can arbitrage the market maker without risk by
taking on a guaranteed payout for less than the payout. As an example„ a translation
invariant pricing rule preserves the equality between the price of an event and the
probability of that event occurring. Translation invariant rules also guarantee the
“law of one price” which says that if two bets offer the same payouts in all states,
they will have the same price. Liquid sensitivity property requries that a market
maker should adjust the elasticity of their pricing response based on the volume of
activity in the market. For example, as a generally marketing practice, this property
requires that a fixed-size investment moves prices less in thick (liquid) markets than
in thin (illiquid) markets. Though liquid sensitivity is a nice property to be achieved,
a healthy market maker should not be too liquid sensitive (in our later examples, we
show that Uniswap V2 is TOO liquid sentitive).

Definition 1 (see, e.g., Othman et al [9]) For a pricing rule P ,

1. P is path independent if the value of line integral (cost) between any two quantity
vectors depends only on those quantity vectors, and not on the path between them.

2. P is translation invariant if
∑

i Pi (q) = 1 for all valid market state q.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 219

3. P is liquidity insensitive if Pi (q + (α, . . . , α)) = Pi (q) for all valid market state
q and α. P is liquidity sensitive if it is not liquidity insensitive.

Othman et al [9] showed that no market maker can satisfy all three of the desired
properties at the same time. Furthermore, Othman et al [9] showed that LMSR sat-
isfies translation invariance and path independence though not liquidity sensitivity.
In practice, the patron would prefer liquidity sensitity instead of absolute transla-
tion invariance. By relaxing the translation invariance to

∑
i Pi (q) ≥ 1, Othman

et al [9] proposed the Liquidity-Sensitive LMSR market. In particular, LS-LMSR
changes the constant b in the LMSR formulas to b(q) = α

∑
i qi where α is a con-

stant and requiring the cost function to always move forward in obligation space.
Specifically, for q = (q1, . . . , qn), the market maker keeps track of the cost function
C(q) = b(q) ln

∑n
i=1 e

qi /b(q) and a price function for each token

Pi (q) = α ln

⎛

⎝
n∑

j=1

eq j /b(q)

⎞

⎠ + eqi /b(q)
∑n

j=1 q j − ∑n
j=1 q j eq j /b(q)

∑n
j=1 q j

∑n
j=1 e

q j /b(q)
(4)

Furthermore, in order to always move forward in obligation space, we need to revise
the cost that a trader should pay. In the proposed “no selling” approach, assume that
the market is at state q1 and the trader tries to impose an obligation qδ = (q ′

1, . . . , q
′
n)

to the market with q̄δ = mini q ′
i < 0. That is, the trader puts q ′

i coins of token i to
the market if q ′

i ≥ 0 and receives −q ′
i coins of token i from the market if q ′

i < 0. Let
q̄δ = (−q̄δ, . . . ,−q̄δ). Then the trader should pay C(q + qδ + q̄δ) + q̄δ − C(q) and
themarketmoves to the new stateq + qδ + q̄δ . In the proposed “covered short selling
approach”, the market moves in the same way as LMSR market except that if the
resulting market q′ contains a negative component, then the market q′ automatically
adds a constant vector to itself so that all components are non-negative. In either of the
above proposed approach, if q + qδ contains negative components, extra shares are
automatically mined and added to the market to avoid negative outstanding shares.
This should be avoided inDeFi applications. In DeFi applications, one should require
that qδ could be imposed to a market q0 only if there is no negative component
in q + qδ and the resulting market state is q + qδ . LS-LMSR is obviously path
independent since it has a cost function. Othman et al [9] showed that LS-LMSR
has the desired liquidity sensitive property. On the other hand, LS-LMSR satisfies
the relaxed translation invariance

∑
i Pi (q) ≥ 1. This means that if a trader imposes

an obligation and then sells it back to the market maker, the trader may end up with
a net lost (this is similar to the markets we see in the real world). Figure 2 displays
the curve of the cost function C(x, y, z) = 100 for LS-LMSR market maker with
three tokens and the curve of the cost function C(x, y) = 100 for LS-LMSR market
maker with two tokens. It is clear that these two curves are concave.

220 Y. Wang

Fig. 2 LS-LMSR market maker cost function curves for C(x, y, z) = 100 and C(x, y) = 100

Fig. 3 Constant product cost function curves for xyz = 100 and xy = 100

2.3 Constant Product/Sum/Mean AMMs

Constant product market makers have been used in DeFi applications (e.g., Uniswap
[11]) to enable on-chain exchanges of digital assets and on-chain-decentralized price
oracles. In this market, one keeps track of the cost function C(q) = ∏n

i=1 qi as a
constant. For this market, the price function for each token is defined as Pi (q) =
∂C(q)

∂qi
= ∏

j �=i q j . Figure 3 shows the curve of the constant product cost function
xyz = 100 with three tokens and the curve of the constant product cost function
xy = 100 with two tokens.

The cost functionC(q) = ∏n
i=1 q

wi
i has been used to design constantmeanAMMs

[8]wherewi are positive real numbers. In the constantmeanmarket, the price function
for each token is Pi (q) = ∂C(q)

∂qi
= wi q

wi−1
i

∏
j �=i q j . Figure 4 shows the curve of the

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 221

Fig. 4 Constant mean cost function curves for xy2z3 = 100 and x2y3 = 100

constant mean cost function xy2z3 = 100 with three tokens and the curve of the
constant mean cost function x2y3 = 100 with two tokens.

Onemay also use the cost functionC(q) = ∑n
i=1 qi to design constant summarket

makers. In this market, the price for each token is always 1. That is, one coin of a
given token can be used to trade for one coin of another token at any time when
supply lasts.

The curves in Figs. 3 and 4 show that constant product/mean/sum AMMs are
highly liquidity sensitive when the distribution of the tokens are far from balanced
market states (where the price flunctuates sharply). By the fact that there exist cost
functions, constant product/mean/sum AMMs achieve path independence. It is also
straightforward to check that constant product/mean AMMs are liquidity sensitive.
By the fact (see [9]) that nomarketmaker can satisfy all three of the desired properties
at the same time, constant product/mean AMMs are not translation invariant. It is
also straightforward to check that the constant sum AMM is liquidity insensitive.
Since liquidity sensitivity is one of the essential market rules to be satisfied, in the
remaining part of this paper, we will no long discuss constant sum models.

3 Constant Ellipse AMMs

Section 4 compares the advantages and disadvantages of LMSR, LS-LMSR, and
constant product/mean/sum AMMs. The analysis shows that none of them is ideal
for DeFi applications. In this section, we propose AMMs based on constant ellipse
cost functions. That is, the AMM’s cost function is defined by

222 Y. Wang

C(q) =
n∑

i=1

(qi − a)2 + b
∑

i �= j

qiq j (5)

where a, b are constants. The price function for each token is

Pi (q) = ∂C(q)

∂qi
= 2(qi − a) + b

∑

j �=i

q j .

For AMMs, we only use the first quadrant of the coordinate plane. By adjusting the
parameters a, b in the equation (5), one may keep the cost function to be concave
(that is, using the upper-left part of the ellipse) or to be convex (that is, using the
lower-left part of the ellipse). By adjusting the absolute value of a, one may obtain
various price amplitude and price fluctuation rates based on the principle of supply
and demand for tokens. It is observed that constant ellipse AMM price functions
are liquidity sensitive and path independent but not translation invariance. Figure 5
shows the curve of the constant ellipse cost function

(x − 10)2 + (y − 10)2 + (z − 10)2 + 1.5(xy + xz + yz) = 350

with three tokens and the curve of the the constant ellipse cost function

(x − 10)2 + (y − 10)2 + 1.5xy = 121

with two tokens. As mentioned in the preceding paragraphs, one may use convex or
concave part of the ellipse for the cost function. For example, in the second plot of
Fig. 5, one may use the lower-left part in the first quadrant as a convex cost function
or use the upper-right part in the first quadrant as a concave cost function. It is
straightforward to verity that the constant ellipse AMM achieve path independence
and liquidity sensitivity. Though constant ellipse AMM is not translation invariant,
our analysis and examples provide evidence that in a constant ellipse AMM, a trader
have certain risks for arbitraging the market maker on a payout for less than the
payout (this is related to our analysis on the slippage in the later sections).

4 Supply-and-Demand, Liquid Sensitivity, and Price
Fluctuation

Without loss of generality, this section considers AMMs consisting of two tokens: a
USDT token where each USDT coin costs one US dollar and an imagined spade suit
token♠. The current market price of a♠ token coin could have different values such
as half a USDT coin, one USDT coin, two USDT coins, or others. In Decentralized
Finance (DeFi) applications, the patron needs to provide liquidity by depositing coins
of both tokens in the AMM. Without loss of generality, we assume that, at the time
when the AMM is incorporated, the market price for a coin of spade suit token is

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 223

Fig. 5 Constant ellipse cost function curves for three and two tokens

equivalent to oneUSDT coin. For general cases that themarket price for one♠ coin is
not equivalent to one USDT coin at the time when the market maker is incorporated,
we can create virtual shares in the AMMby dividing or merging actual coins. That is,
each share of USDT (respectively ♠) in the AMM consists of a multiple or a portion
of USDT (respectively ♠) coins. One may find some examples in Sect. 5.

To simplify our notations, we will use q = (x, y) instead of q = (q1, q2) to rep-
resent the market state. In this section, we will only study the price fluctuation of
the first token based on the principle of supply and demand and the trend of the
price ratio Px (q)

Py(q)
which is strongly related liquid sensitivity. By symmetry of the cost

functions, the price fluctuation of the second token and the ratio Py(q)

Px (q)
have the same

property. In the following, we analyze the token price fluctuation for various AMM
models with the initial market state q0 = (1000, 1000). That is, the patron creates
the AMM by depositing 1000 USDT coins and 1000 spade suit coins in the market.
The analysis results are summarized in Table 1.

Table 1 Token price comparison

AMM type Market cost Px (q)/Py(q) Tangent ∂y
∂x

LS-LMSR 2386.29436 (0.648, 1.543) (−1.543,−0.648)

Cons. product 1000000 (0,∞) (−∞, 0)

Cons. sum 2000 1 –1

Cons. ellipse 50000000 (0.624, 1.604) (−1.604,−0.624)

224 Y. Wang

4.1 LS-LMSR

For the LS-LMSR based AMM, the market cost is

C(q0) = 2000 · ln (
e1000/2000 + e1000/2000

) = 2386.294362.

At market state q0, the instantaneous prices for a coin of tokens are Px (q0) =
Py(q0) = 1.193147181. A trader may use 817.07452949 spade suit coins to pur-
chase 1000 USDT coins with a resulting market state q1 = (0, 1817.07452949) and
a resulting market cost C(q1) = 2386.294362. At market state q1, the instantaneous
prices for a coin of tokens are Px (q1) = 0.8511445298 and Py(q1) = 1.313261687.
Thus we have Px (q1)/Py(q1) = 0.6481149479. The tangent line slope of the cost
function curve indicates the token price fluctuation stability in the automated mar-
ket. The tangent line slope for the LS-LMSR cost function curve at the market state
q = (x, y) is

∂y

∂x
= −

(x + y)
(
e

x
x+y + e

y
x+y

)
ln

(
e

x
x+y + e

y
x+y

)
+ y

(
e

x
x+y − e

y
x+y

)

(x + y)
(
e

x
x+y + e

y
x+y

)
ln

(
e

x
x+y + e

y
x+y

)
+ x

(
e

y
x+y − e

x
x+y

) .

For the LS-LMSR AMM with an initial state q0 = (1000, 1000), the tangent
line slope (see Fig. 6) changes smoothly and stays between −1.542936177 and
−0.6481149479. Thus the token price fluctuation is quite smooth. By the principle
of supply and demand, it is expected that when the token supply increases, the token
price decreases. That is, the cost function curve should be convex. However, the cost
function curve for LS-LMSR market is concave. This can be considered as a dis-
advantage of LS-LMSR markets for certain DeFi applications. Though LS-LMSR
does not satisfy the translation invariance property, it is shown in [9] that the sum of
prices are bounded by 1 + αn ln n. For the two token market with α = 1, the sum
of prices are bounded by 1 + 2 ln 2 = 2.386294362 and this value is achieved when
x = y.

As an additional example of LS-LMSR AMMs, a trader may spend 10 USDT
coins to purchase 10.020996 coins of spade suit token at market state q0 or spend
500 USDT coins to purchase 559.926783 coins of spade suit from the market state
q0 with a resulting market state (1500, 440.073217). Furthermore, in the market
state (1500, 440.073217), the value of one USDT coin is equivalent to the value of
1.260346709 coins of spade suit token.

4.2 Constant Product and Constant Mean

For the constant product AMM, themarket cost isC(q0) = 1000000 and the constant
product cost function is x · y = 1000000. At market state q0, the instantaneous token

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 225

Fig. 6 Tangent line slopes for LS-LMSR (first) and constant product (second) cost functions

prices are Px (q0) = Py(q0) = 1000. Thus we have Px (q)

Py(q)
= 1. A trader may use one

USDT coin to buy approximately one coin of spade suit token and vice versa at
the market state q0. However, as market state moves on, the prices could change
dramatically based on token supply in the market and the pool of a specific coin will
never run out. Specifically, at market state q0, a trader may spend 10 USDT coins
to purchase 9.900990099 spade suit coins. On the other hand, a user may spend
500 USDT coins to purchase only 333.3333333 coins of spade suit token from the
market state q0 with a resulting market state q1 = (1500, 666.6666667). Note that
in the example of LS-LMSR market example, at market state q0, a trader can spend
500 USDT coins to purchase 559.926783 coins of spade suit. Furthermore, in the
market state q1, one USDT coin could purchase 0.4444444445 coins of spade suit
token. The tangent line slope of the cost function curve at the market state q = (x, y)
is

∂y

∂x
= − Px (q)

Py(q)
= − y

x
.

That is, the tangent line slope for the cost function curve (see Fig. 6) can go from
−∞ to 0 and the token price fluctuation could be very sharp. Specifically, if the total
cost of the initial market q0 is “small” (compared against attacker’s capability), then
a trader/attacker could easily control and manipulate the market price of each coins
in the AMM. In other words, this kind of market maker may not serve as a reliable
price oracle. A good aspect of the constant product cost function is that the curve
is convex. Thus when the token supply increases, the token price decreases. On the
other hand, the sum of prices Px (q) + Py(q) = x + y in constant product market is
unbounded. Thus constant production cost function could not be used in prediction
markets since it leaves a chance for a market maker to derive unlimited profit from
transacting with traders.

For constant mean AMMs, Fig. 4 displays an instantiated constant mean cost
function curve. The curve in Fig. 4 is very similar to the curve in Fig. 3 for the

226 Y. Wang

constant product cost function. Thus constant mean AMM has similar properties as
that for constant product AMM and we will not go into details.

4.3 Constant Ellipse

As we have mentioned in the preceding Sections, one may use the upper-right part
of the curve for a concave cost function or use the lower-left part of the curve
for a convex cost function. In order to conform to the principle of supply and
demand, we analyze the convex cost functions based on constant ellipse. Con-
stant ellipse share many similar properties though they have different character-
istics. By adjusting corresponding parameters, one may obtain different cost func-
tion curves with different properties (e.g., different price fluctuation range, different
tangent line slope range, etc). The approaches for analyzing these cost function
curves are similar. Our following analysis uses the low-left convex part of the circle
(x − 6000)2 + (y − 6000)2 = 2 × 50002 as the constant cost function.

For AMMs based on this cost function C(q) = (x − 6000)2 + (y − 6000)2, the
market cost is C(q0) = 50000000. At market state q0, the instantaneous prices for
a coin of tokens are Px (q0) = Py(q0) = −10000. A trader may use 1258.342613
spade suit coins to purchase 1000 USDT coins with a resulting market state q1 =
(0, 2258.342613) and a resulting market cost C(q1) = C(q0). At market state q1,
the instantaneous prices for a coin of tokens are Px (q1) = 12000 and Py(q1) =
7483.314774. Thus we have Px (q1)

Py(q1)
= 1.603567451. The tangent line slope of the

cost function curve at the market state q = (x, y) is

∂y

∂x
= − Px (q)

Py(q)
= − x − 6000

y − 6000
.

This tangent line slope function (see Fig. 7) changes very smoothly and stays in the
interval [−1.603567451,−0.6236095645]. Thus the token price fluctuation is quite
smooth. Furthermore, this cost function has a convex curve which conforms to the
principle of supply and demand. That is, token price increases when token supply
decreases. For constant ellipse cost function market, the sum of prices are bounded
by Px (q) + Py(q) = 2(x + y) − 4a. Similar bounds hold for constant ellipse cost
function market. Thus, when it is used for prediction market, there is a limit on the
profit that a market maker can derive from transacting with traders.

Figure 8 compares the cost function curves for different AMMs that we have
discussed. These curves show that constant ellipse cost function is among the best
ones for DeFi applications.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 227

Fig. 7 The tangent line slope for constant ellipse automated market maker

Fig. 8 Cost functions (bottom up): (x + y) ln
(
e

x
x+y + e

y
x+y

)
= 2000 · ln (

2e1/2
)
, (x + 6000)2 +

(y + 6000)2 = 2 × 70002, x + y = 2000, (x − 6000)2 + (y − 6000)2 = 2 × 50002, and xy =
1000000

4.4 Front Running Attacks Based on Slippage

Slippage based front-running attacks can always be launched if the tangent line
slope for the cost function curve is not a constant. The more the tangent line slope
fluctuates around the current market state, the more profit the front-runner can make.
The analysis in preceding sections show that tangent line slopes for LS-LMSR and

228 Y. Wang

constant ellipse cost functions fluctuate smoothly and tangent line slopes for constant
product/mean cost functions fluctuate sharply. Thus LS-LMSR and constant ellipse
cost function automated markets are more robust against front running attacks. In
Uniswap V2, when a trader submits a transaction buying coins of token A with coins
of token B (or vice versa), the trader may submit the order at the limit. But the front
runner can always try to profit by letting the trader’s order be executed at the limit
price as shown in the following attacks against Uniswap V2.

Example 1 Most front running attacks leverage off-chain bots and on-chain proxy
smart contracts to carry out attacks (see., e.g, [10]). There are some statistics on these
front running bots at Dune Analytics (see, e.g., [1]). The following two recent proxy
smart contracts take advantage of the large slippage on Uniswap V2.

• 0xd59e5b41482ee6283c22e1a6a20756da512ffa97 received a profit of at least
1,172,436 USD during a 14 days period.

• 0x000000005736775feb0c8568e7dee77222a26880 received a profit of 60 ETH
during one week. The profit was transferred to another address 0x94dD....

We analyze attacking steps by the second bot against Uniswap V2 Pair SPA-
ETH: 0x13444ec1c3ead70ff0cd11a15bfdc385b61b0fc2. The attacking transactions
are included in the block 12355902 finalized on May-02-2021 04:43:18 PM.

1. The attacker saw that 0x006fa275887292cdc07169f1187b7474e376bb3b sub-
mitted an order to swap 4.544 ETH for SPA.

2. The attacker’s smart contract inserts an order to swap 2.6842 ETH for 385,583
SPA before the above observed order in transaction hash 0x4e2636...

3. 0x006fa....’s order is fulfilled at the transaction hash 0x9a17...where the user
received 613,967 SPA for his 4.544 ETH.

4. The attacker’s smart contract inserts an order to swap 385,583 SPA for 2.8778
ETH after the above observed order in transaction hash 0x34787e...

5. The attacker’s smart contract received 0.1936 ETH for free.

5 Price Amplitude

For constant product/mean AMMs, the relative price P1(q)

P2(q)
of the two tokens ranges

from 0 (not inclusive) to ∞. At the time when a tiny portion of one token coin is
equivalent to all coins of the other token in the market maker, no trade is essentially
feasible. Thus the claimed advantage that no one can take out all shares of one token
from the constant product/mean market seems to have limited value. For a given
LS-LMSR (or constant ellipse) automated market with an initial state q0, the relative
price P1(q)/P2(q) can take values only from a fixed interval. If the market changes
and this relative price interval no long reflects the market price of the two tokens,
one may need to add tokens to the market to adjust this price interval. On the other
hand, it may be more efficient to just cancel this automated market maker and create
a new AMM when this situation happens.

https://ethervm.io/decompile/0xd59e5b41482ee6283c22e1a6a20756da512ffa97
https://ethervm.io/decompile/0x000000005736775feb0c8568e7dee77222a26880
https://etherscan.io/address/0x94dDD5e97de3A659A1b10E2845857eDb01883619
https://v2.info.uniswap.org/pair/0x13444ec1c3ead70ff0cd11a15bfdc385b61b0fc2
https://etherscan.io/block/12355902
https://etherscan.io/address/0x006fa275887292cdc07169f1187b7474e376bb3b
https://etherscan.io/tx/0x4e2636bb75566ac73150beb9c92c6cbab1342023e907e91d6e93dc0f01635b06/
https://etherscan.io/address/0x006fa275887292cdc07169f1187b7474e376bb3b
https://etherscan.io/tx/0x9a17e959255ff7b9ae096c5af0a66992bae5bba055e860b11c32f7114f08e977/
https://etherscan.io/tx/0x34787e325022773d3deb20bdea0b737c0e04aa8f46afa89282c83cc519630388/

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 229

In the following example, we show how to add liquidity to an existing LS-LMSR
AMM to adjust the relative price range. Assume that the market price for a coin of
token A is 100 times the price for a coin of token B when the AMM is incorporated.
The patron uses 10 coins of token A and 1000 coins of token B to create anAMMwith
the initial state q0 = (1000, 1000). The total market cost is C(q0) = 2386.294362.
Assume that after some time, the AMMmoves to state q1 = (100, 1750.618429). At
q1, we have P1(q1)/P2(q1) = 0.6809820540 which is close to the lowest possible
value 0.6481149479. In order to adjust the AMM so that it still works when the value
P1/P2 in the real world goes below 0.6481149479, the patron can add some coins of
token A to q1 so that the resultingmarket state is q2 = (1750.618429, 1750.618429).
To guarantee that one coin of token B is equivalent to P2(q1)

100·P1(q1) = 0.01468467479
coins of token A in q2, we need to have the following mapping from outstanding
shares in q2 to actual token coins (note that this mapping is different from that for
q0):

• Each outstanding share of token A corresponds to 0.01468467479 coin of token
A.

• Each outstanding share of token B corresponds to one coin of token B.

Thusthereare1750.618429 × 0.01468467479 = 25.70726231coinsoftoken A inq2.
Since there is only one coin of token A in q1, the patron needs to deposit 24.70726231
coins of token A toq1 tomove theAMMto stateq2. If themarket owner chooses not to
deposit these tokens to themarket, themarketmakerwill still run, but there is a chance
that the outstanding shares of token A goes to zero at certain time.

In the above scenario, one may ask whether it is possible for the market maker
to automatically adjust the market state to q3 = (1750.618429, 1750.618429) by
re-assigning the mapping from shares to coins? If q2 automatically adjusts itself to
q3 without external liquidity input, then a trader may use one share of token A to
get one share of token B in q3. Since we only have one equivalent coin of token
A but 1750.618429 outstanding shares in q3, each outstanding share of token A
in q3 is equivalent to 0.0005712267068 coins of token A. That is, the trader used
0.0005712267068 coins of token A to get one coin of token B (note that each out-
standing share of token B corresponds to one coin of token B in q3). By our analysis
in the preceding paragraphs, at q3, one coin of token B has the same market value of
0.01468467479 coins of token A. In other words, the trader used 0.0005712267068
coins of token A to get equivalent 0.01468467479 coins of token A. Thus it is impos-
sible for the automated market to adjust its relative price range without an external
liquidity input.

6 Implementation and Performance

We have implemented the constant ellipse based AMMs using Solidity smart con-
tracts and have deployed them over the Ethereum blockchain. The smart contract
source codes andWeb User Interface are available at GitHub. As an example, we use

230 Y. Wang

the ellipse (x − c)2 + (y − c)2 = r2 to show how to establish a token pair swapping
market in this section. Specifically, we use c = 109 and r · 1014 = 16000 · 1014 (that
is, r = 16000) for illustration purpose in this section.

Each token pair market maintains constants λ0 and λ1 which are determined
at the birth of the market. Furthermore, each token market also maintains a non-
negative multiplicative scaling variable μ which is the minimal value so that the
equation (μλ0x0 − 109)2 + (

μλ1y0 − 109
)2 ≤ 16000 · 1014 holds where μλ0x0 <

109 and μλ0y0 < 109. This ensures that we use the lower-left section of the ellipse
for the automated market.

6.1 Gas Cost and Comparison

We compare the gas cost against Uniswap V2 and Uniswap V3. During the imple-
mentation, we find out that some of the optimization techniques that we used in
Coinswap may be used to reduce the gas cost in Uniswap V2. Thus we compare the
gas cost for Uniswap V2 (column Uni V2) our optimized version of Uniswap V2
(column Uni V2O), Uniswap V3 (column Uni V3), and our CoinSwap in Table 2.
In a summary, our constant ellipse AMM (CoinSwap) has a gas saving from 0.61%
to 46.99% over Uniswap V2 and has a gas saving from 23.19% to 184.29% over
Uniswap V3. It should be noted that Uniswap V3 tried to reduce the slippage in
certain categories though still do not have the full slippage control as CoinSwap has.
The testing script that we have used will be available on the Github. Some field for
Uniswap V3 in Table 2 is empty since we did not find an easy way to test that in the
Uniswap V3 provided testing scripts.

Table 2 Gas cost Uniswap V2, V3, and CoinSwap with liquidity size (40000000,10000000)

Function UNI V2 UNI V2O UNI V3 CoinSwap Saving over
UNI V2

Saving over
UNI V3

mint() 141106 132410 308610 109722 28.60% 184.29%

swap() 89894 88224 114225 89348 0.61% 27.84%

swap()[1st] 101910 100051 96294 5.83%

add Ω 216512 207368 185442 16.76%

remove Ω 98597 97319 82694 67127 46.88% 23.19%

add ETH 223074 213930 192027 16.14%

full removal 123339 122061 98805 24.83%

partial
removal

180355 137061 144283 25.00%

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 231

7 Conclusion

The analysis in the paper shows that constant ellipse cost functions have certain
advantages for building AMMs in Decentralized Finance (DeFi) applications. One
may argue that constant ellipse cost function based markets have less flexibility after
the market is launched since the price amplitude is fixed. We have mentioned that,
though the token price could range from 0 to ∞ in the constant product cost model,
when the price for one token is close to infinity, any meaningful trade in the market
is infeasible. Thus the old market needs to be stopped and a new market should be
incorporated. Indeed, it is an advantage for an AMM to have a fixed price amplitude
when it is used as a price oracle for other DeFi applications. For the constant product
cost market, if the patron incorporates the AMM by deposing a small amount of
liquidity, an attacker with a small budget can manipulate the token price significantly
in the AMM and take profit from other DeFi applications that use this AMM as a
price oracle. For constant ellipse based AMMs, the patron can use a small amount
of liquidity to set up the automated market and the attacker can only manipulate the
token price within the fixed price amplitude.

References

1. Dune Analytics. (2021). Collected–bot per month. https://duneanalytics.com/queries/14859.
2. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The

journal of Finance, 25(2), 383–417.
3. Good, I. J. (1952). Rational decisions. J. Royal Statistical Society B, 14(1), 107–114.
4. Hanson, R. (2003). Combinatorial information market design. Information Systems Frontiers,

5(1), 107–119.
5. Hanson, R. (2007). Logarithmic markets coring rules for modular combinatorial information

aggregation. The Journal of Prediction Markets, 1(1), 3–15.
6. Hertzog, E., Benartzi, G., & Benartzi, G. (2017). Bancor protocol: continuous liquidity for

cryptographic tokens through their smart contracts. https://storage.googleapis.com/website-
bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf.

7. Leshner, R., & Hayes, G. (2019). Compound: The money market protocol. https://compound.
finance/documents/Compound.Whitepaper.pdf.

8. Martinelli, F., & Mushegian, N. (2019). A non-custodial portfolio manager, liquidity provider,
and price sensor. https://balancer.finance/whitepaper/.

9. Othman, A., Pennock, D. M., Reeves, D. M., & Sandholm, T. (2013). A practical liquidity-
sensitive automated market maker. ACM TEAC, 1(3), 1–25.

10. Robinson, D., & Konstantopoulos, G. (2020). Ethereum is a dark forest. https://medium.com/
@danrobinson/.

11. Uniswap. (2020). Uniswap v2 core. https://uniswap.org/whitepaper.pdf.
12. Uniswap. (2021). V3. https://uniswap.org/whitepaper-v3.pdf.
13. Yongge, W. (2020). Automated market makers for decentralized finance (defi). arXiv preprint

arXiv:2009.01676.
14. Zhou,L.,Qin,K., Torres,C. F., Le,D.V.,&Gervais,A.High-frequency tradingondecentralized

on-chain exchanges.

https://duneanalytics.com/queries/14859
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://balancer.finance/whitepaper/
https://medium.com/@danrobinson/
https://medium.com/@danrobinson/
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
http://arxiv.org/abs/2009.01676

Wombat—An Efficient Stableswap
Algorithm

Jen Houng Lie , Tony W. H. Wong , and Alex Yin-ting Lee

Abstract Curve Finance invented the first stableswap-focused algorithm. However,
its algorithm involves (1) solving complex polynomials and (2) requiring assets in
the pool to have the same size of liquidity. This paper introduces a new stableswap
algorithm–Wombat, to address these issues. Wombat uses a closed-form solution,
so it is more gas efficient and adds the concept of asset-liability management to
enable single-side liquidity provision, which increases capital efficiency. Further-
more, we derive efficient algorithms from calculating withdrawal or deposit fees as
an arbitrage block. Wombat is named after the short-legged, muscular quadrupedal
marsupials native to Australia. As Wombats are adaptable and habitat-tolerant ani-
mals, the invariant created is also adaptable and tolerant to liquidity changes.

Keywords Decentralized finance · Automated market maker · Stableswap · Asset
liability management · Smart contract

1 Introduction

Automated Market Maker (AMM) is essential for Decentralized Finance (DeFi)
traders to swap tokens on-chain. As one of the essential foundations of DeFi, AMM is
integral to the success of any blockchain, whether it be the past, present, or future. An
efficient AMM will have powerful effects on the ecosystem providing decentralized
apps with an efficient platform to build upon and thus, fueling the next evolution of
finance. Efforts from Uniswap, Curve, and Balancer have contributed to developing
a quick, efficient, and effective AMM design. Most of the existing AMM designs
use an invariant curve to create an efficient swap with reasonable slippage directed

J. H. Lie · A. Y. Lee
The University of Hong Kong, Hong Kong SAR, China

T. W. H. Wong
Kutztown University of Pennsylvania, Kutztown, PA, US

T. W. H. Wong (B) · A. Y. Lee
Wombat Exchange, Hong Kong, China
e-mail: wong@kutztown.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_13

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_13&domain=pdf
http://orcid.org/0000-0003-1293-7135
http://orcid.org/0000-0003-2234-3189
http://orcid.org/0000-0002-1646-5780
mailto:wong@kutztown.edu
https://doi.org/10.1007/978-3-031-18679-0_13

234 J. H. Lie et al.

at assets with a range of volatility characteristics. Uniswap, one of the pioneers of
AMM design, designed an AMM that focused on more volatile assets such as ETH
and BTC. The invariant curve was designed to be more parabolic to ensure that price
change follows demand shock [2]. Noting the characteristics of pegged assets, Curve
proposed an invariant curve that was more linear in the interior part of the curve but
more parabolic when x or y tended to infinity [3]. Such a design allows a more
efficient swap between pegged assets such as stablecoins.

As DeFi pushes toward higher efficiency, one of the main issues with the current
designs is their ability to scalewhile simultaneously remaining capital efficient. These
scaling issues are bounded by a protocol’s inherent design and result in complicated
token-pair compositions. It must be noted that computational inefficiencies affect the
end-users in terms of fees forfeited as the cost is proportional to complexity. On top
of the cost, users are forced to deal with complex user interfaces due to the inflexible
algorithm, something that Wombat can both simplify and make cost-effective. The
development of Wombat aims at resolving such deficiencies.

The invariant curve is a relationship between two or more token amounts. Math-
ematically speaking, it is a level set of a function that maps token amounts to a real
number [1]. To simplify the discussion, we focus on the two-token case first. For
example, consider x + y = k for some constant k. That means, whenever a swap of
Δx to Δy happens on this invariant curve, we know that x0 + Δx + y0 + Δy = k,
which implies Δx = −Δy. On the xy-plane, the invariant curve is a linear line. The
invariant function x + y = k is called the Constant Sum Market Maker (CSMM).
Under CSMM, x could be swapped for the same amount of y unless y runs out of
liquidity. Another example of an invariant curve would be xy = k for some con-
stant k, also known as Constant Product Market Maker (CPMM) used by Balancer
and Uniswap [2]. The invariant curve on xy-plane is more hyperbolic compared to
CSMM.

One main problem of many existing AMMs is that they require injecting tokens
in pairs [5]. The ratio of these two tokens would, in turn, represent the price ratio,
and the functional behavior of the CPMM would control the price movement. The
screenshot from Uniswap (see Fig. 2 in Appendix A) illustrates that a user needs to
add ETH and USDC to the pool simultaneously.

In the case of Curve Finance, the equilibrium is achieved when the assets inside
the pool have the same liquidity amount. Otherwise, the invariant curve will become
more parabolic and inherently imply different trading prices for assets within the
pool. The screenshot from Curve (see Fig. 3 in Appendix A) shows that USDT is
trading at a discount compared to USDC and DAI due to the pool imbalance.

In the world of cryptocurrencies, there is a bias towards specific stablecoins. At
the time of writing, the market capitalization for USDT, USDC, and DAI are 80B,
53B, and 6.6B, respectively. With Curve’s setup, the pool size will be constrained
by the asset with the lowest supply, i.e., DAI, since it is uneconomic to deposit
USDT and USDC further when the DAI supply is saturated. For this reason, it will
be beneficial to remove the liquidity constraint to increase the system’s scalability.
Following Wombat’s solution, we can have a more efficient algorithm that is more
capital and gas efficient while removing scalability issues.

Wombat—An Efficient Stableswap Algorithm 235

Lastly, Curve’s stableswap algorithm is computationally inefficient when more
assets are in the pool. The required gas is summarized below in Sect. 2.3.

2 Wombat’s Design

In light of the problems above, Wombat’s design aims to:

1. Make the algorithm more gas efficient;
2. Allow single-sided liquidity provision;
3. Get rid of the same-liquidity constraint for assets in the same pool.

2.1 Wombat’s Invariant Curve

Stableswap concerns the swap of pegged tokens and assets. Denote the set of tokens
with the same peg as

T := {token k : V (token k) = C},

where C is some fixed real number and V (·) is a value function that maps a token to
its value metric, usually in USD.

The main goal of a stableswap invariant is to create a function to mimic CSMM
when xk are close to each other. Revisit the Curve’s stableswap invariant:

Ann
∑

k∈T
xk + D = ADnn + Dn+1

nn
∏

k∈T xk
,

where A > 0 denotes the amplification factor and D is the level preset by the state
of token pools, which is a constant with respect to swap.

Here, Wombat introduces a new algorithm that can achieve a similar result as
Curve’s stableswap invariant, yet much easier to solve:

∑

k∈T

(
xk − A

xk

)
= D. (1)

The intuition is that when xk are close to each other, the reciprocal terms will
be minimized, making the function closely mimic the linear term, i.e., the CSMM.
However, if xk are apart from each other, the reciprocal terms will grow faster and
create a steeper slope for the curve.

ForCurveFinance, solving the invariant constant D involves solving a high-degree
polynomial. As forWombat, solving D is plain simple by calculating the summation.

236 J. H. Lie et al.

Fig. 1 CFMM comparisons

0 50 100 150 200
0

50

100

150

200

x

y

CSMM (x+ y = 100)
CPMM (xy = 2500)

Curve (A = 1, D = 100)
Wombat (A = 300, D = 88)

To perform a swap, Curvewould involve solving a functionwith product terms, while
Wombat can be simply solved with a quadratic equation.

Figure 1 plots the invariant curves of CSMM, CPMM, and those of Curve and
Wombat. As illustrated in the graph above, the invariant curve of Wombat is similar
to that of Curve, meaning that Wombat achieves similar results as Curve with a more
efficient algorithm.

2.2 Enhanced Wombat’s Invariant Curve

While Eq. (1) has presented a better alternative to Curve’s stableswap invariant,
Wombat further adopts the asset-liability management concept proposed by Platypus
Finance [5] to get rid of liquidity constraints. The coverage ratio is used as the input
for the invariant curve, which allows single-sided liquidity injection and arbitrary
exchange across tokens within the preset pool.

To achieve so, we first forgo the ability to represent token price ratios since they
are exogenously set to be 1. The moving parameters of the CFMM need not be the
token’s liquidity in the pool; instead, we change them into the coverage ratios r of
the tokens, that is,

rk = Ak

Lk
,

where rk is the coverage ratio of token k pool, Ak is the asset available for withdrawal
and swap in token k pool, and Lk is the liability in token k pool. We can also
understand the liability Lk as the amount of token k injected in the pool as a deposit,
and they are subject to withdrawal at any given time.

Wombat—An Efficient Stableswap Algorithm 237

Table 1 Comparison of algorithm gas costs

Pool size Wombat Curve finance

2 125,713 115,763

3 120,036

4 125,263

5 131,280

6 136,881

Now, we define our modified CFMM as follows: the invariant curve is given by

∑

k∈T
Lk

(
rk − A

rk

)
= D.

Since the equation is now revolving around coverage ratios of tokens instead of
liquidities, the system can get rid of the liquidity constraint to enable features such
as single-sided deposit and heterogeneous liquidity for equilibrium.

2.3 Gas Comparison

Wombat’s simplicity enables it to bemore gas efficient. A notable feature forWombat
is that its gas is independent of the pool size, while for Curve, the gas increases as
more assets are added into the same pool (see Table 1).

Since Wombat adopts the Asset Liability Management (ALM), additional states
need to be written on the blockchain, which is relatively expensive in gas. Neverthe-
less, Wombat starts to outperform Curve when pool size is larger than 4. It should
also be noted that since Curve’s algorithm involves solving a high-degree polynomial
with brute force, the upper-bound for their gas limit can get very expensive, whereas
the upper gas limit for Wombat is known since the solution has a closed form.

2.4 Swap Mechanism

For simplicity, we will focus on the two-token case, which is going to be the primary
action performed by the traders. However, it is also worth-mentioning that our design
allows a series of swaps simultaneously (i.e., from n tokens to m tokens) as long as
it fits the CFMM.

Consider two tokens, i and j .We look into the casewhen a trader swaps from token
i to token j . Let the initial coverage ratios of the twopools be ri,0 and r j,0, respectively.
With the swap, the coverage ratios of the two pools change from (ri,0, r j,0) to (ri , r j),
where

ri = ri,0 + Δi

Li
and r j = r j,0 + Δ j

L j
. (2)

238 J. H. Lie et al.

Here, Δi > 0 is specified by the trader, while an unknown Δ j is to be determined
by the CFMM. Since the level set specified by the CFMM remains unchanged before
and after the swap, we have

∑

k∈T \{i, j}
Lk

(
rk − A

rk

)
+ Li

(
ri,0 − A

ri,0

)
+ L j

(
r j,0 − A

r j,0

)
= D =

∑

k∈T
Lk

(
rk − A

rk

)
.

If we define the constant Di, j = Li

(
ri,0 − A

ri,0

)
+ L j

(
r j,0 − A

r j,0

)
, then

Li

(
ri − A

ri

)
+ L j

(
r j − A

r j

)
= Di, j (3)

After a series of algebraic operations, we obtain the function

r j = −b + √
b2 + 4A

2
,

where

b = Li

L j

(
ri − A

ri

)
− Di, j

L j
.

Note that we reject the solution that r j < 0. Knowing r j,0 and r j yields us knowl-
edge on Δ j .

Next, we focus on the properties of the invariant curves. Using implicit differen-
tiation on Eq. (3), we can obtain the derivative

dr j
dri

= −
Li

(
1 + A

r2i

)

L j

(
1 + A

r2j

) < 0.

The negative derivative tells us that given the same invariant curve, any swap
action that increases ri would reduce r j . In other words, the more token i is injected
into the system, the more token j the trader receives. Without explicitly calculating
the second-order derivative, we can study the behavior of the first-order derivative

by noticing that an increase in ri leads to a decrease in Li

(
1 + A

r2i

)
, and a decrease

in r j leads to an increase in L j

(
1 + A

r2j

)
. Hence,

dr j
dri

would become less negative

when ri increases. This implies that
d2r j
dr2i

> 0. A convex invariant curve indicates

that continuous injection of token i would yield the trader fewer and fewer token j
in return per unit of token i injected.

Wombat—An Efficient Stableswap Algorithm 239

2.5 Slippage Analysis

In the remainder of this section, we take a closer look at the slippage behavior of the
invariant curve. Recalling that ri and r j relate to Δi and Δ j as described in Eq. (2),
we have

dΔ j

dΔi
= dΔ j

dr j
· dr j
dri

· dri
dΔi

= L j ·
⎛

⎜⎝−
Li

(
1 + A

r2i

)

L j

(
1 + A

r2j

)

⎞

⎟⎠ · 1

Li
= −

1 + A
r2i

1 + A
r2j

. (4)

If ri = r j , then
dΔ j

dΔi

∣∣∣∣
ri=r j

= −1,

which indicates that every token i injected would yield one token j at this particular
state. If ri < r j , then the derivative in Eq. (4) is less than−1, so every token i injected
yieldsmore than one token j . On the other hand, if ri > r j , then every token i injected
yields less than one token j . Notice that swapping token i to token j increases ri
and lowers r j . Hence, when ri < r j , the arbitrage opportunity encourages traders
to swap token i to token j , thus reducing the gap between the two coverage ratios.
Conversely, if ri > r j , swapping token i to token j widens the gap between the two
coverage ratios and is discouraged with a loss for the traders.

Theorem 1 The equilibrium state of the AMM is that for all i, j ∈ T , ri = r j .

Proof Assuming the contrary, there exist i, j ∈ T such that ri < r j . Then one can
find an arbitrage by swapping token i to token j until ri = r j .

3 Desirable Properties of AMMs

There are three desirable properties of AMMs, including path independence, liq-
uidity sensitivity, and no-arbitrage [4]. Wombat AMM is capable to achieve path
independence and is liquidity sensitive by design.

3.1 Path Independence

Path independence is crucial for AMMs because there should always exist a path to
return from any state to the equilibrium in the system. The importance lies in the
reality that if the system cannot regain equilibrium, then the system is out of balance
and there may be arbitrage opportunities that will negatively impact the system’s
stability. Path independence ensures that a trader cannot place a series of trades and

240 J. H. Lie et al.

profits without assuming a potential risk. Furthermore, it helps provide a minimum
representation of the current state in which we are only required to know the quantity
vector. Finally, in a path independent system, traders do not to need to discover a
strategy on how they trade.

Any swap action is performed along the same invariant curve, and the liabilities
of all tokens remain unchanged throughout the process. Hence, after the coverage
ratios change from (ri,0, r j,0) to (ri , r j) as described in Eq. (2), the coverage ratios
can be returned to the status quo by swapping −Δ j token j to token i . Therefore,
the Wombat AMM is path independent.

3.2 Liquidity Sensitivity

Liquidity sensitivity is imperative because it makes the protocol desirable in its
function, where a trade moves prices less in a liquid market than in an illiquid one.
This is important in any trading market, where small trades should not drastically
affect the market where sufficient liquidity is present. With this design, our AMM
is able to mimic and emulate highly liquid traditional markets where prices can be
held stable and more resistant to small trades, enabling a fairer and more transparent
platform.

Recall that r j can be written explicitly as a function of ri , namely

r j = −b + √
b2 + 4A

2
,

where

b = Li

L j

(
ri − A

ri

)
− Di, j

L j

and

Di, j = Liri + L jr j − A

(
Li

ri
+ L j

r j

)
= Liri,0 + L jr j,0 − A

(
Li

ri,0
+ L j

r j,0

)
.

Note that A, ri , ri,0, Li , and r j,0 are independent of L j while r j and Di, j are
dependent of L j . Also, recall from Eq. (2) that Δ j = (r j − r j,0)L j < 0 in the swap
of token i to token j . Now we consider the partial derivative of Δ j with respect to
L j .

Wombat—An Efficient Stableswap Algorithm 241

∂Δ j

∂L j
= ∂r j

∂L j
L j + r j − r j,0

<
1

2

∂b

∂L j

(
b√

b2 + 4A
− 1

)
L j

= 1

2

(
− 1

L2
j

(
Li

(
ri − A

ri

)
− Di, j

)
+ 1

L j

(
r j,0 − A

r j,0

)) (
b√

b2 + 4A
− 1

)
L j

= 1

2

((
r j,0 − r j

) − A

(
1

r j,0
− 1

r j

)) (
b√

b2 + 4A
− 1

)
< 0.

The last inequality holds since r j < r j,0 and
b√

b2 + 4A
< 1. Hence, if we keep

ri , ri,0, Li , and r j,0 unchanged, then Δ j becomes more negative when L j grows,
meaning that the yield of token j increases.

4 Arbitrage Block

Wombat’s design suffers from arbitrage issues when a withdrawal or deposit is made.
The arbitrage issue is partly due to the asset-liability management design, as there are
opportunities for the coverage ratios to be manipulated by rogue traders. A simple
numerical example is illustrated below (assume A = 0.01).

There are two tokens, X and Y, whose assets and liabilities start at 100. The
attacker first swaps 50 units of token X for 49.36 units of token Y, and the coverage
ratio of token Y drops from 1 to 0.51.

The attacker is also a major liquidity provider for token Y. He withdraws 50 unit
of token Y, and the coverage ratio of token Y drops from 0.51 to 0.013.

Finally, the attacker swaps the 49.36 units of token Y he obtained from Step
1 back to token X. Note that the attacker gets a better exchange rate in Step 3
than Step 1 because the coverage ratio is being manipulated. The attacker earns
(49.36 − 50) − (49.36 − 86.92) = $36.92 from the whole operation.

Therefore, the goal for this section is to provide an algorithm to block the arbitrage
and solve it mathematically (Tables 2, 3 and 4).

Table 2 Swap X for Y

Asset Liability

Token X: 100 Token X: 100

Token Y: 100 Token Y: 100

Asset Liability

Token X: 150 Token X: 100

Token Y: 50.64 Token Y: 100

242 J. H. Lie et al.

Table 3 Withdraw Y

Asset Liability

Token X: 150 Token X: 100

Token Y: 50.64 Token Y: 100

Asset Liability

Token X: 150 Token X: 100

Token Y: 0.64 Token Y: 50

Table 4 Swap Y for X

Asset Liability

Token X: 150 Token X: 100

Token Y: 0.64 Token Y: 50

Asset Liability

Token X: 63.08 Token X: 100

4.1 Changes in the Asset and Liability

Recall once again that our modified CFMM is

∑

k∈T
Lk

(
rk − A

rk

)
= D.

If the system returns to the equilibrium state as described by Theorem 1, then the
global equilibrium coverage ratio r∗ satisfies

∑

k∈T
Lk

(
r∗ − A

r∗

)
= D (5)

(
∑

k∈T
Lk

)
(r∗)2 − Dr∗ − A

(
∑

k∈T
Lk

)
= 0

(r∗)2 − D∑
k∈T Lk

r∗ − A = 0.

Solving the quadratic equation, we obtain r∗ = −b + √
b2 + 4A

2
, where b =

− D∑
k∈T Lk

.

In a withdrawal or deposit of token i , let δA
i and δLi denote the change in the asset

and the change in the liability, respectively. Here, δLi ≥ −Li is specified by the trader,

Wombat—An Efficient Stableswap Algorithm 243

where δLi < 0 denotes a withdrawal and δLi > 0 denotes a deposit. The quantity δA
i

is to be solved as a function of δLi to block the arbitrage. The new global equilibrium
coverage ratio r∗′ after the withdrawal or deposit is given by

r∗′ = δLi + (∑
k∈T Lk

)
r∗

δLi + ∑
k∈T Lk

. (6)

In this equation,
(∑

k∈T Lk
)
r∗ denotes the total asset if the system returns to

the equilibrium state. By adding δLi , the numerator expresses the total asset after
withdrawal or deposit if the system first returns to the equilibrium state, while the
denominator denotes that total liability after withdrawal or deposit. From r∗′, we can
solve for the new constant D′ such that

(
δLi +

∑

k∈T
Lk

)(
r∗′ − A

r∗′

)
= D′. (7)

With the new constant D′, we can backward deduce the coverage ratio r ′
i needed

to maintain the equilibrium of the system:

(Li + δLi)

(
r ′
i − A

r ′
i

)
+

∑

k∈T \{i}
Lk

(
rk − A

rk

)
= D′ (8)

(Li + δLi)(r ′
i)
2 +

⎛

⎝
∑

k∈T \{i}
Lk

(
rk − A

rk

)
− D′

⎞

⎠ r ′
i − A(Li + δLi) = 0

(r ′
i)
2 + 1

Li + δLi

⎛

⎝
∑

k∈T \{i}
Lk

(
rk − A

rk

)
− D′

⎞

⎠ r ′
i − A = 0,

so

r ′
i = −b′ + √

(b′)2 + 4A

2
,

where

b′ = 1

Li + δLi

⎛

⎝
∑

k∈T \{i}
Lk

(
rk − A

rk

)
− D′

⎞

⎠

= 1

Li + δLi

(
∑

k∈T
Lk

(
rk − A

rk

)
− Li

(
ri − A

ri

)
− D′

)

= 1

Li + δLi

(
D − Li

(
ri − A

ri

)
− D′

)
. (9)

244 J. H. Lie et al.

Finally, the corresponding change δA
i in the asset of token i is given by

δAi = (Li + δLi)r ′
i − Liri (10)

=
D′ + Li

(
ri − A

ri

)
− D +

√(
D′ + Li

(
ri − A

ri

)
− D

)2 + 4A(Li + Δi)2

2
− Liri .

4.2 Maintain Global Equilibrium with r∗ = 1

The essence of our modified CFMM is that the system is the most stable when all
coverage ratios are 1. Swap, withdrawal, and deposit will change the coverage ratios
of each individual pool, but our design guarantees that we can always maintain the
global equilibrium coverage ratio as r∗ = 1, which is explained as follows.

As seen in Sect. 2.4, the liabilities Lk and the constant D stay unchanged in our
swap mechanism, so the global equilibrium coverage ratio r∗ in

(
∑

k∈T
Lk

)(
r∗ − A

r∗

)
= D

is always preserved. As for withdrawal or deposits, if the initial global equilibrium
coverage ratio is r∗ = 1, then the new global equilibrium coverage ratio r∗′, defined
in Eq. (6), is also 1.

Maintaining the global equilibrium coverage ratio to be 1 has another significant
implication, given by the following theorem. The proof of this theorem is given in
Appendix B.

Theorem 2 Assume that r∗ = 1. If δLi < 0, then δLi ≤ δA
i < 0; if δLi > 0, then 0 <

δA
i ≤ δLi . Furthermore, in both cases, δLi = δA

i if and only if ri = 1.

4.3 Withdrawal Fees and Deposit Gains

Now, we are ready to describe our algorithm to block the arbitrage. When a with-
drawal is made, Δi < 0 is specified by the trader. We define δLi = Δi as the change
in the liability of token i , and δA

i is given by

δAi =
Li

(
ri − A

ri

)
+ δLi (1 − A) +

√(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)2 + 4A(Li + δLi)2

2
− Liri .

(11)

Wombat—An Efficient Stableswap Algorithm 245

As stated in Theorem 2, |δA
i | ≤ |δLi | = |Δi |, so from the trader’s perspective, there

is always a withdrawal fee unless ri = 1. Furthermore, it is apparent from Eq. (2)
that δA

i ≥ −Liri = −Ai , so the final amount of token i that the trader receives is
bounded above by the amount of token i available in the system.

On the other hand, when a deposit is made, Δi > 0 is specified by the trader. We
define δA

i = Δi as the change in the asset of token i , and we solve for δLi in Eq. (11).
Rearranging the terms and letting A′

i = δA
i + Liri be the asset of token i after the

deposit, we have

2A′
i −

(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)

=
√(

Li

(
ri − A

ri

)
+ δLi (1 − A)

)2

+ 4A(Li + δLi)2.

If we square the equation, cancel the identical terms on both sides, and divide the
equation by 4, we get

(A′
i)
2 − A′

i

(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)
= A(Li + δLi)2.

This is a quadratic equation in δLi , namely

A(δLi)2 + bδLi + c = 0,

where b = A′
i (1 − A) + 2ALi and c = A′

i Li

(
ri − A

ri

)
− (A′

i)
2 + AL2

i . The dis-

criminant of the quadratic equation is given by

b2 − 4Ac = (A′
i)
2(1 − A)2 + 4A′

i (1 − A)ALi + 4A2L2
i

− 4AA′
i Li

(
ri − A

ri

)
+ 4A(A′

i)
2 − 4A2L2

i

= (A′
i)
2(1 + A)2 + 4AA′

i Li

(
1 − A − ri + A

ri

)
,

thus the change in the liability δLi is

δLi =
−(A′

i (1 − A) + 2ALi) +
√

(A′
i)
2(1 + A)2 + 4AA′

i Li

(
1 − A − ri + A

ri

)

2A
. (12)

246 J. H. Lie et al.

The negative branch is rejected since it is less than−Liri . As stated in Theorem 2,
Δi = δA

i ≤ δLi , so from the trader’s perspective, there is always a deposit gain unless
ri = 1.

5 Swap with Haircut Fees

As a profit for the protocol, we charge a certain percentage for each swap as a haircut
fee, denoted as h. Part of this fee will be shared with the liquidity provider and will
enter the token pool as a deposit; the rest is going to be retained by Wombat. Let ρ

denote the LP dividend ratio, which is the ratio of the haircut fee that is shared with
the liquidity provider. The portion retained by Wombat will not be included as part
of the token assets for accounting purpose to maintain r∗ = 1. In the following, we
will describe how swap is performed with haircut fees.

During the first stage, token i is swapped to token j as described in Sect. 2.4.
Here, we provide an explicit expression for Δ j .

Δ j = L jr j − L jr j,0

=
Di, j − Li

(
ri − A

ri

)
+

√(
Di, j − Li

(
ri − A

ri

))2 + 4AL2
j

2
− L jr j,0,

where ri and Di, j are given by Eqs. (2) and (3), respectively. After the swap, the
trader receives (1 − h)|Δ j | token j , with h|Δ j | token j deducted as the haircut fee.
Before the haircut fee is redeposited into the system, the amount of assets in token i
and token j are respectively

Liri,0 + Δi and L jr j,0 + Δ j ,

while the liabilities of token i and token j maintain at Li and L j , respectively.
Next, Δ′

j = hρ|Δ j | token j is deposited into the system since it is shared with
the liquidity provider. Using the token j version of Eq. (12) and setting δA

j = Δ′
j ,

we can compute the corresponding δLj . Therefore, the summary of the final amounts
is given by the following table (Table 5).

Table 5 Final asset and liability of tokens i and j after a swap with haircut fees

Final asset of token i Li ri,0 + Δi

Final asset of token j L j r j,0 + (1 − hρ)Δ j

Final liability of token i Li

Final liability of token j L j + δLj

Wombat—An Efficient Stableswap Algorithm 247

6 Exact Swap, Withdraw, and Deposit when r∗ = 1

The previous sections show that swap, withdraw, and deposit almost always come
with fees or gains. Sometimes, it is desirable to deduce the appropriate amount a
trader needs to initially swap, withdraw, or deposit to attain the exact target amount.

In a swap, if the trader specifies the exact amount |d j | of token j that they would

like to receive with d j < 0, then Δ j = d j

1 − h
, and r j is defined as in Eq. (2). After

solving for ri in Eq. (3), we can deduce that

Δi = Liri − Liri,0

=
Di, j − L j

(
r j − A

r j

)
+

√(
Di, j − L j

(
r j − A

r j

))2 + 4AL2
i

2
− Liri,0,

which is the amount of token i that the trader should swap.
In withdrawal or deposits, as shown in Eqs. (11) and (12), δA

i and δLi can be
expressed as a function of each other. Hence, if the trader wants to receive exactly
|di | token i in a withdrawal with di < 0, then letting δA

i = di and solving for δLi using
Eq. (12), we obtain Δi = δLi as the initial parameter for the withdrawal. Similarly,
if the trader wants to have exactly di token i stored in the system with di > 0, then
letting δLi = di and solving for δA

i using Eq. (11), we obtain Δi = δA
i as the initial

parameter for the deposit.

7 Conclusions

We have introduced an innovative algorithm that resolves many issues of the cur-
rent AMM environment. The existing solutions in the market are computationally
inefficient, and these protocols lack the ability to scale while keeping an intuitive
design both technically and visually. Additional protocols have been built on these
platforms to address some of these problems, but they inevitably add an extra layer
of complexity for end-users. In the world of blockchain smart-contract development,
unnecessary complexity is a burden to the end-users due to high gas fees and disin-
centivizes users from interacting with the protocol.

The design of the Wombat algorithm allows for maximum capital efficiency and
scalability, which helps promote the growth of decentralized finance. Our work is
centered on a CFMM that shows positive homogeneity since the response of relative
price is identical at various levels of liquidity.Wombat’s algorithmprovides a solution

248 J. H. Lie et al.

to the status quo, which results in a price-sensitive and path-independent solution
while being computationally efficient. We have proved that our arbitrage block can
withstand manipulation of the coverage ratio. The arbitrage block can protect the
system from malicious attacks, shielding Wombat from attack vectors that would
hurt the system.

A Screenshots of Uniswap and Curve

See Figs. 2 and 3.

Fig. 2 Uniswap screenshot

Wombat—An Efficient Stableswap Algorithm 249

Fig. 3 Curve screenshot

B Proof of Theorem 2

Proof If r∗ = 1, then D = (∑
k∈T Lk

)
(1 − A) by Eq. (5), r∗′ = 1 by Eq. (6), and

D′ = (
δLi + ∑

k∈T Lk
)
(1 − A) by Eq. (7). Hence, Eq. (8) becomes

(Li + δLi)

(
Ai + δAi

Li + δLi
− A(Li + δLi)

Ai + δAi

)
+

∑

k∈T \{i}
Lk

(
rk − A

rk

)
=

(
δLi +

∑

k∈T
Lk

)
(1 − A)

Ai + δAi − A(Li + δLi)2

Ai + δAi
+ D − Li

(
ri − A

ri

)
= δLi (1 − A) + D

δAi − A(Li + δLi)2

Ai + δAi
+ AL2

i

Ai
= δLi (1 − A). (13)

If δLi < 0 and δA
i ≥ 0, then the left hand side (LHS) of Eq. (13) is positivewhile the

right hand side (RHS) is negative, a contradiction. Similarly, if δLi > 0 and δA
i ≤ 0,

then the LHS is negative while the RHS is positive, a contradiction again. Hence, δLi
and δA

i always share the same sign.
To compare δLi and δA

i , we first rewrite Eq. (9) as

b′ = 1

Li + δLi

((
∑

k∈T
Lk

)
(1 − A) − Li

(
ri − A

ri

)
−

(
δLi +

∑

k∈T
Lk

)
(1 − A)

)

= − 1

Li + δLi

(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)
.

Therefore, Eq. (10) yields

250 J. H. Lie et al.

δAi − δLi

= −(Li + δLi)b′ +
√(

(Li + δLi)b′)2 + 4A(Li + δLi)2

2
− Liri − δLi

=
−Li

(
ri + A

ri

)
− δLi (1 + A) +

√(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)2 + 4A(Li + δLi)2

2
.

Note that

(
ri − A

ri

)2

+ 4A = r2i − 2A + A2

r2i
+ 4A =

(
ri + A

ri

)2

and

(1 − A)2 + 4A = 1 − 2A + A2 + 4A = (1 + A)2.

Furthermore, by the AM-GM inequality, we have ri + 1

ri
≥ 2, so

(
ri − A

ri

)
(1 − A) + 4A = ri + A2

ri
− A

(
ri + 1

ri

)
+ 4A

≤ ri + A2

ri
− A

(
ri + 1

ri

)
+ 2A

(
ri + 1

ri

)

=
(
ri + A

ri

)
(1 + A),

where the equality holds if and only if ri = 1. As a result,

(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)2

+ 4A(Li + δLi)2

= L2
i

(
ri − A

ri

)2

+ 4AL2
i + 2Li

(
ri − A

ri

)
δLi (1 − A) + 8ALiδ

L
i

+ (δLi)2(1 − A)2 + 4A(δLi)2

= L2
i

(
ri + A

ri

)2

+ 2Liδ
L
i

((
ri − A

ri

)
(1 − A) + 4A

)
+ (δLi)2(1 + A)2.

If δLi < 0, then

Wombat—An Efficient Stableswap Algorithm 251

√(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)2

+ 4A(Li + δLi)2

≥
√

L2
i

(
ri + A

ri

)2

+ 2Liδ
L
i

(
ri + A

ri

)
(1 + A) + (δLi)2(1 + A)2

=
∣∣∣∣Li

(
ri + A

ri

)
+ δLi (1 + A)

∣∣∣∣ ,

so δA
i − δLi ≥ 0, with the equality holds if and only if ri = 1; if δLi > 0, then

√(
Li

(
ri − A

ri

)
+ δLi (1 − A)

)2

+ 4A(Li + δLi)2

≤
√

L2
i

(
ri + A

ri

)2

+ 2Liδ
L
i

(
ri + A

ri

)
(1 + A) + (δLi)2(1 + A)2

=
∣∣∣∣Li

(
ri + A

ri

)
+ δLi (1 + A)

∣∣∣∣ ,

so δA
i − δLi ≤ 0, again with the equality holds if and only if ri = 1.

References

1. Angeris, G., & Chitra, T. (2020). Improved price oracles: Constant function market makers.
SSRN Electronic Journal.

2. Hayden, A. (2019). Uniswap birthday blog–v0.
3. Michael, E. (2019). stableswap–efficient mechanism for stablecoin liquidity.
4. Othman, A., Sandholm, T., Pennock, D. M., & Reeves, D. M. (2013). A practical liquidity-

sensitive automated market maker. ACM Transactions on Economics and Computation (TEAC),
1(3), 1–25.

5. Platypus Team. (2021). Platypus AMM technical specification.

Multi-Tier Reputation for Data
Cooperatives

Abiola Salau, Ram Dantu, Kirill Morozov, Kritagya Upadhyay,
and Syed Badruddoja

Abstract Data cooperatives allow their members—the data owners—to pool their
digital assets together for processing and access management. In this context, rep-
utation is an important measure of trust, which can effectively complement finan-
cial assets in the decentralized scenario, also providing incentives for users’ honest
behavior. We present a decentralized data cooperative system based on the Proof-
of-Reputation and Proof-of-Stake blockchains. In order to provide inclusivity for
low-reputation (newly joined) users, which is required in our community-based sce-
nario, we use the tier-based committee selection introduced by Kleinrock et al. at
Indocrypt 2020. As the underlying Proof-of-Stake system, we use SnowWhite due to
its convenient properties such as flexible committee selection and user participation.

Keywords Blockchain · Data cooperative · Reputation system ·
Proof-of-Reputation (PoR) · Proof-of-Stake (PoS) · Reputation fairness

1 Introduction

Declining trust between data subjects and data operators, e.g., social media network
providers, has been observed in recent years [1]. It was fueled by concerns about
user data privacy and, in particular, the improper use of personal information. In turn,
this motivated intensive research in the area of data economy [2]. Notably, Pentland

A. Salau (B) · R. Dantu · K. Morozov · K. Upadhyay · S. Badruddoja
Department of Computer Science and Engineering, University of North Texas, Denton, TX
76207, USA
e-mail: abiolasalau@my.unt.edu

R. Dantu
e-mail: ram.dantu@unt.edu

K. Morozov
e-mail: kirill.morozov@unt.edu

K. Upadhyay
e-mail: kritagyaupadhyay@my.unt.edu

S. Badruddoja
e-mail: syedbadruddoja@my.unt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_14

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_14&domain=pdf
mailto:abiolasalau@my.unt.edu
mailto:ram.dantu@unt.edu
mailto:kirill.morozov@unt.edu
mailto:kritagyaupadhyay@my.unt.edu
mailto:syedbadruddoja@my.unt.edu
https://doi.org/10.1007/978-3-031-18679-0_14

254 A. Salau et al.

Requests
for Consent

Provides "Safe
Answers"

iv. Consent
Management

v. Algorithms
Management

vi. Incentive
Management

Buyers/Queriers
pay Incentives

to Data
Cooperative

vi. Incentive
Management

ii. Key
Management

Data Cooperatives
pay Incentive back
to Data Providers

Data
Queriers

Research and
Development

Innovations

Predictions
and Decision

Making

Revenue
Generation

Data Subjects

i. Identity &
Access

Management

iv. Consent
Management

iii. Data
Location

Management

Location 'A' Location 'B'

Location 'D'Location 'C'

Data
Aggregation

Models, Algorithms,
and Applications
Data Analytics
Converts users' raw
data to information for
safety and
confidentiality

Data Management

Data Cooperative

Fig. 1 An overview of a data cooperative [8]

[3] discussed a vision of the new economy, which will be driven by data. This work
not only indicated data as the backbone of the new economy but also identified
flaws in the centralized methods of data management, which lack user-centricity.
Further, Pentland [3] proposed the renegotiation of data rights as a mechanism for
the data subjects to be in control of their data.Also, he emphasized privacy-preserving
machine learning algorithms as well as the distribution and decentralization of data
management as key factors to the success of such an economy.

The notion of a data cooperative, which results from this concept of decentralized
data management, demands user-centric data ownership and shared data as the basis
of a new knowledge economy. A data cooperative, as depicted in Fig. 1, can be
described as a legal fiduciary where people come together to pool data for the benefit
of its members [4, 5]. These data then become their shared resources. The protection
of personal data pooled together is one of the fundamental challenges in this setting,
as identified at the 2019 Data Coops Workshop [6]. Zyskind et al. [7] proposed a
decentralized privacy system that adopts the use of blockchain for the protection of
personal data. Their work showed that blockchain technology can contribute to data
protection in this context.

Furthermore, blockchain technology is important as a means to encourage coop-
eration and build trust among participants [9]. A natural measure for such trust may
be the participants’ reputations. The latter may be gauged via a reputation system,
which is maintained on top of a blockchain [10]. The associated reputation score of
a participant may be adjusted depending on their actions in the system. Reputation
can also serve as an asset and/or basis for rewards (such as being selected as a block
proposer or endorser), thereby encouraging honest behavior. Note that the trustwor-
thiness of the pooled data may be a concern. This can, however, be well managed by

Multi-Tier Reputation for Data Cooperatives 255

the blockchain since it is tamper-resistant and any infringement that may affect data
integrity would be detected.

For instance, in a neighborhood watch system such as [11], any member who
shares misinformation can be traced and detected in the future since the records
on the blockchain are immutable. Other applicable security mechanisms include,
e.g., Decentralized Identity (DID) [12]1 and cryptographic mechanisms such as,
e.g., data encryption and zero-knowledge proofs, which can provide privacy for
data cooperative users’ personal data. Moreover, blockchain technology may help
to improve security for participants of multiple online platforms or services through
the use of decentralized federated identities [13].

Nevertheless, in order to successfully run a data cooperative using blockchain
technology, the design of the former has to be properly adapted. In particular, aside
from the data owners who share their digital assets, there should be other types of
participants who will be responsible for maintaining the blockchain. Specifically,
these will be the parties who run a consensus protocol to validate the authenticity
and validity of the shared resources—similarly to the role of nodes in the existing
blockchain systems, such as Bitcoin [14].2 We note that, in principle, the data owners
may also perform the role of nodes.

1.1 Problem Definition and Motivation

For blockchain technology to serve as a backbone for the implementation of data
cooperatives, their design and operational structure must follow the typical archi-
tecture of a blockchain system [7, 15, 16]. Specifically, this means that the data or
resources pooled by the members should be included in the transactions of the under-
lying blockchain system. Then, they will be validated by consensus nodes before
being added to the chain. At the same time, due to the community-based nature
of the data cooperative’s functioning, it is desirable to ensure the inclusivity of all
members. For example, in a neighborhood watch system [11], community members
come together to share news and information about their neighborhood as a way to
improve security and increase awareness of issues happening in their community.
Naturally, the inclusivity principle has to be reflected in the selection of nodes into
the consensus committee such that even a newly joined node—potentially having a
relatively low reputation—has a fair chance of being selected.

1 DID refers to an individual owning personal digital data relating to multiple elements of one’s
identity.
2 We would like to refer an unfamiliar reader to these detailed surveys [15, 19] on blockchain
systems.

256 A. Salau et al.

1.2 Our Contributions

The main contribution of this work is a proposal for a reputation-based blockchain
system architecture suitable for data cooperatives. The key points of our solution are
listed below, and we discuss them in detail in Sect. 3.

• The overall design is based on the reputation-based construction of Kleinrock et
al. [17]. Specifically, we use their reputation-based lottery system for the selection
of nodes into a consensus committee. This allows us to ensure inclusivity using
reputation fairness [17], i.e., proportional representation (in the committee) of
parties from all reputation tiers.

• Unlike [17], we do not use the Proof-of-Stake (PoS) chain as a fallback but rather
rely on it as themain chain. The rationale is that transaction speed is not a bottleneck
in the data cooperative scenario (as opposed to Fintech applications). At the same
time, the majority of stakes assumption is more reasonable in our community-
based environment, as compared to the super-majority3 assumption for the Proof-
of-Reputation chain in [17].

• The above-mentioned simplification entails the following two aspects: First, one
needs to map reputation to the stake, which can be done in several ways depending
on a specific application. For simplicity in this work, we propose a straightforward
mapping to the weighted stake, as described in Sect. 3.5. Second, we are now able
to use an off-the-shelf PoS blockchain system in our architecture, which provides
flexibility to our design.

• Specifically, we propose to use the Snow White PoS system [18] due to its very
convenient modular property: it is secure as long as the honest parties consti-
tute a majority in the committee. Another useful property of this system (for our
community-based environment) is the so-called “sleepy consensus”, which allows
parties to join and leave the consensus protocol as needed. In Sect. 4, we provide
a sketch of a security proof for the proposed system under assumptions that the
underlying reputation system satisfies a certain feasibility [17] property and the
honest parties hold a majority of total reputation in the system.

1.3 Organization of the Paper

The remaining sections of this paper are organized as follows: Section 2 reviews the
related literature and discusses the differences with our work. Section 3 describes the
proposed system architecture and framework in detail. Section 4 presents a sketch of
the security analysis. In Sect. 5, we discuss preliminary simulation results concerning
the committee selection. We conclude the paper in Sect. 6 by summarizing the key
concepts and ideas of this paper.

3 That is an assumption that over a 2/3 fraction of the overall reputation is held by honest parties.

Multi-Tier Reputation for Data Cooperatives 257

2 Literature Review

2.1 Data Cooperatives

Data cooperatives can exist in various forms depending on the nature of data or
resources being gathered by their members. Salau et al. [11] developed a proof-
of-concept blockchain-based data coop as a form of neighborhood watch where
its members can share phishing information in a decentralized and timely manner.
MIDATA4 is an existing data coopwheremembers can contribute tomedical research
by granting controlled access to the use of their personal data for research purposes.
HAT5 is another such platform where individuals have the right to the ownership
of their personal data. Zyskind et al. [20] added privacy to the data cooperative
solution such that different parties can run joint computation while protecting the
data from unauthorized access. Other related works include, e.g., [21, 22] where
media organizations pool their resources for better news coverage or facility sharing.
However, these latter two projects differ from ours in that they are specific to a use
case, centralized, and do not employ blockchain technology.

2.2 Blockchain Systems

The proof-of-stake (PoS) consensus [23] was introduced as an energy-efficient alter-
native to the proof-of-work (PoW) consensus mechanism. After that, other forms
of consensus protocols have been developed, which capitalize on various forms of
assets as a criterion for participating in the blockchain augmentation. For example,
in the PoW-based systems, computational resources serve as an asset that gives the
miner a chance of being selected to add a new block. In the PoS-based systems,
the amount of assets possessed by a stakeholder determines their eligibility for being
selected into a committee, which performs block validation or adds a new block [24].
Such assets can be of different types depending on the blockchain implementation:
e.g., the total amount of coins, coin age, reputation, and others.

Two fundamental design challenges in PoS-based blockchain systems are the
simulation of the leader election in a fair and randomized manner [25, 26] and lack
of “fairness” with respect to less rich participants [27, 28]. The election process has
to be randomized enough that an adversary cannot predict its outcome [29], while
also secure enough to prevent the so-called “grinding” attack where an adversary can
use computational resources to influence the leader selection process.

4 https://www.midata.coop/en/home/.
5 https://www.hubofallthings.com/main/what-is-the-hat.

https://www.midata.coop/en/home/
https://www.hubofallthings.com/main/what-is-the-hat

258 A. Salau et al.

A lot of Proof-of-Reputation (PoR) based blockchain systems follow the basic
concept of PoS. For instance, the constructions [30, 31] replaced coin-based stake
voting with reputation-based voting where a node with the highest reputation is
selected as a leader while the other top 20% of high-reputation nodes are selected as
validators, and the associated incentives are shared among the validators in proportion
to their reputation values. In Repucoin [32], the authors designed a PoR system that
is based on PoWwhere a miner’s power is determined by its reputation, derived from
the work they have put in over the life of the blockchain. Reputation has also been
used as a factor in reward and penalty systems [33–35]. A hybrid of reputation and
another resource has also been used in the existing literature [36, 37]. The work [27]
uses reputation in blockchain-based e-commerce settings for privacy preservation.

Kleinrock et al. in their work [17], which is most closely related to ours, leveraged
reputation to design a systemwhere newly joined nodes in the system are given a fair
chance of participation in the protocol—a notion they refer to as reputation fairness.
Differently from our work, they use the system of two blockchains: the main Proof-
of-Reputation-based chain, and the fallback chain, which is based on Proof-of-Stake.

Distribution of Stakeholders. In blockchain systems, one ormore nodes are selected
to perform some system-specific tasks such as block generation, as in PoW-based
systems or consensus committee selection in PoS-based systems. This selection can
be done based on various factors such as reputation [30, 37], amount of coins [25],
coin age [23], computational power [14], and others. In the blockchain systems
that require a formation of the consensus committee, some form of randomness is
employed to prevent adversaries from predicting the selected nodes [29].

When the committee is finally formed, the statistical distribution of the selected
nodes is either triangular, exponential, exponential power, or some other form of
probability distribution [38]. Specifically, in [38, 39], the authors compared selection
into committees using triangular, exponential, and normal selections. Their results
showed that when an exponential distribution is used, predominantly the nodes with
the highest reputation are selected into the committee, while the triangular selection
distribution gives a better chance to nodeswith a lower reputation. TheReCon system
[40]—another work, which is closely similar to ours—applies an external reputation
ranking as its input for selecting nodes for a committee. This approach is different
from ours in that the reputation system is integrated into our design and our selection
process is tier-based, which grants a better chance to newly joined nodes with low
reputations.

2.3 Reputation Systems: Formalization

In this subsection, we generally follow the presentation by Kleinrock et al. [17]. We
use the same formalization and security definitions for reputation systems as those
from [17] (which in turn relies on [41]).

Multi-Tier Reputation for Data Cooperatives 259

A reputation system Rep for n parties (or peers) from a setP = {P1, . . . , Pn} is a
family of probability distributions (parametrized by n) over binary reputation vectors
of length n, i.e., vectors of the type (h1, . . . , hm) ∈ {0, 1}n . Each hi is an indicator
bit such that hi = 1, if Pi is honest, and hi = 0, otherwise. A reputation system as
described above is called static.

Here, our focus is on such a setting where each hi corresponds to the outcome
of an independent indicator random variable, Hi . This means that whether or not a
party Pi behaves honestly does not depend on what other parties do. In this case, a
static reputation system can be defined as follows: Rep = (R1, . . . , Rn) ∈ [0, 1]n ,
where Ri is the probability that the party Ri will play honestly. We then say that Ri

is the reputation value (or simply reputation) of a party Pi . Such a construction is
called a correlation-free reputation system. In this work, we will focus on this type
of reputation system.

The reputation system dictates the adversary’s corruption capabilities. That is,
a static reputation-bounded adversary for a reputation system Rep for n parties
(Rep-adversary for short), corrupts the set of parties at the beginning of the protocol
according to Rep, and this set remains fixed.

Definition 1 For a (possibly probabilistic) algorithm A for sampling a subset of
parties fromP , and a Rep-adversary A, we say that a reputation system Rep is (ε,A)-
feasible for A ifwith overwhelming probability—taken over the coins associatedwith
the distribution of Rep and the coins of A and A—the algorithm A outputs a set of
parties such that at most a 1/2 − ε fraction of these parties is corrupted by A.

Definition 2 A reputation system is ε-feasible for Rep-adversary A, if there exists a
probabilistic polynomial time sampling algorithm A such that Rep is (ε,A)-feasible
for A.

2.4 Multi-Tier Selection Protocol

We present the multi-tier lottery by Kleinrock et al. [17], which we use for selection
of the consensus committee. In this section, we generally follow the presentation of
[17]. The tiers can be 2, 3, . . . ,m. For example, given a small δ > 0, the first tier
will have reputation values between m−1

m + δ and 1, while the second tier will have
reputation values between m−2

m + δ and m−3
m + δ, and so on. This is done to avoid the

famous “rich getting richer” problem, which is common to stake-based consensus
protocols, and to afford nodes with a fairly good but not top-tier reputation a chance
of being part of the consensus committee.

260 A. Salau et al.

Note that the parameter δ defines the difference in probabilities for each tier to be
selected, i.e., a node in the first tier has δ times a chance of being chosen compared
to a node in the second tier and so on. A vector R represents the reputation values
of the potential stakeholders, and specifically R j represents the reputation values
of the potential stakeholders in partition j . The parameter ε is the committee size
factor, which influences the total number of stakeholders that can be selected into
different tiers. The value T represents the total number of tiers to be partitioned, and
ci represents the ratio between two successive tiers which is initialized to 1.

Let T1, . . . , Tm be a partition of the consensus committee candidate nodes into
m tiers as described above with nodes in partition T1 having the highest reputation
values and, γ i be the total number of stakeholders selected in tier Ti . Let elect_cmt
be the selection protocol that selects li parties from each of the Ti partitions. The
multi-tier lottery protocol, which is shown in Fig. 2, is taken from [17].

Fig. 2 Multi-Tier lottery protocol elect_cmt ([17])

Multi-Tier Reputation for Data Cooperatives 261

3 Description of the Proposed Blockchain System

First, let us state the design requirements for the proposed system.

3.1 Design Requirements for Data Cooperative

Data Cooperative Properties

1. The infrastructure must be decentralized, without the presence of a sole central-
ized authority (as such authority may have its obvious limitations with regard to
scalability, security, fairness, and objectivity).

2. There should be a common and immutable log of activities.
3. How about the following: The infrastructure should support as many participants

as possible, and it should be publicly available.
4. The committee selection protocol must be fair to newly joined nodes, although

high-reputationnodesmust have a clear advantage. (Thiswouldprovide incentives
for productive behavior).

5. The consensus protocol should toleratemalicious behavior by a coalition of parties
having a minority of the total reputation.

6. The blockchain with a transaction ledger satisfies the standard liveness and con-
sistency properties [18] with overwhelming probability in the security parameter
κ , that is the number of blocks after which a transaction is regarded as a permanent
part of the blockchain history.

Reputation System Properties

1. Reputation must be earned. It cannot be purchased, traded, or spent.
2. Reputation of a node is the aggregation of all reputation adjustments to the current

round for that node.
3. Peers should not be responsible for directly computing their respective reputation

values, and neither should they be able to modify these values.
4. Reputation values must be stored on the blockchain and be verifiable by all peers.

3.2 Architecture Overview

In this section, we describe the architecture of our work. As shown in Fig. 3, at the
highest (application) layer, there can be multiple distributed applications (DApps)
deployed on our system.Consider for instance a data sharing scenario of Fig. 4, where
a member of the data cooperative shares a piece of news information on the platform.
Then, on receipt of the news as a transaction, all nodes interested in participating in
the validation process submit a token that confirms their interest.

262 A. Salau et al.

Fake News Detection
DApp News Sharing DApp Emergency Info

DApps

Direct Trust Derived Trust Default/Current
Reputation Value

Eigentrust Algorithm
Node Trust
Evaluation

Formation of Consensus Committee

Consensus CommitteeNot Selected

Consensus ProcessBlock 1 Block 2 Block 'n'

Blockchain

Nodes

Multi-tier
Selection
Protocol

Fig. 3 Proposed system architecture. There can be multiple DApps deployed on the system, which
users can employ to interact with the blockchain. The EigenTrust [42] reputation system computes
the reputation of each nodes participating in validation, while the multi-tier selection protocol then
selects the consensus committee based on the reputation tiers. The committee validates transactions
and adds blocks to the blockchain

Start
Data is

shared by the
user

Reputation Engine
computes Reputation
Scores of interested

nodes

Update
ratings for
each node

Run Tier-Based
Selection
Protocol

SELECTED? (Snow White) -> Leader
Selection Protocol

New reputation values are
stored in the chain at the
completion of the round

End

Play no further part
until next round

NO

YES

Fig. 4 Event flow diagram for the proposed system.When a member of the data cooperative shares
a piece of data on the platform, all nodes interested in participating in the validation process submit a
token that confirms their interest. The reputation system then retrieves the current reputation values
of each of the nodes and partitions the nodes into different tiers based on our selection protocol

The reputation system then retrieves the current reputation values of each of the
nodes and partitions the nodes into different tiers based on their reputation values.
Nodes with a reputation value of zero are ignored (since a node’s reputation can only
drop to zero if it is malicious). The tier-based selection protocol is executed and the
total number of nodes required for the consensus is selected based on the protocol
parameter ε (this parameter was introduced in Sect. 2.4). For nodes not chosen, there

Multi-Tier Reputation for Data Cooperatives 263

is no further part to play until the next epoch, while the selected stakeholders go
on to run a secure multi-party coin-flipping protocol to elect a block proposer and
the input endorsers as described in Snow White [18]. At the end of the epoch, the
reputation value of each of the participating stakeholders is updated and stored on
the chain.

InSnowWhite [18], parties can join freely by creating coins, andmaking/receiving
payments, with stake shifting over time. The protocol execution runs in epochs and
a set of random stakeholders is selected to form a committee that will run a secure
multi-party coin-flipping protocol to determine the set of leaders for the epoch. The
Snow White protocol supports an application-specific selection mechanism. In our
case, we will use protocol elect_cmt(), which is described in detail in Sect. 2.4. This
protocol takes input in the form of parties’ reputation (stored on the blockchain) and
outputs a set of parties, which will form the consensus committee.

Our system uses the SnowWhite protocol and hence it inherits all the features and
security, which this protocol offers, with an exception of formation of the committee
from which the block proposers are chosen. Note, however, that our committee
selection protocol can be used with any system that requires selecting nodes and
requires an honest majority of reputation. In our work, we replace the sampling
weighted by stake with the one weighted by reputation since in our data cooperative
scenario, the reputation of the members is critical for functioning of the system. (See
Sect. 3.5 for details).

3.3 Choice of Blockchain System

Snow White [18] is a PoS-based blockchain system which has a formal security
proof. Compared to other PoS-based systems of this type, such as the Ouroboros
family [25, 43] and Algorand [44], Snow White has a convenient modular feature
that its security proof holds as long as the committee has an honest majority. This
provides a capacity to support a wide range of applications via application-specific
committee selection algorithms. Since our data cooperatives are expected to support a
number of distributed applications (see Sect. 3.2 for discussion on some of them), the
above-mentioned property is very useful in our setting. Moreover, Snow White uses
the sleepy consensus protocol [45], which is an asynchronous protocol that enables
the committee reconfiguration as parties join and leave the protocol execution at will.
This feature makes the protocol robust against unstable network conditions where
disconnections and message delays are possible. SnowWhite promotes participation
fairness, inclusivity, and overall system sustainability, which matches our overall
inclusivity requirements for the design of data cooperatives.

264 A. Salau et al.

3.4 Choice of Reputation System

For this work, we adopted the Eigentrust reputation system [42]. There are a lot of
reputation systems for trust management in P2P systems, such as SuperTrust [46],
Regret [47], Fire [48], Core [49], PeerTrust [50], and Travos [51].We refer the reader
to the work by Vavilis et al. [52] for a survey. In particular, the EigenTrust algorithm
works by identifying and isolatingmalicious peers, therebymitigating their impact on
the performance of a P2P system [53, 54] through computation of global reputation
scores of participating peers. EigenTrust is a popular system, which was studied and
used in a wide variety of works, e.g., [10, 42, 55, 56] to mention a few. As compared
to the above-mentioned reputation systems, EigenTrust ensures protection for new
users from being penalized for their status. Also, the users are not directly responsible
for calculating their own values or for the reputation values of others [52]. These
features match our design goals for data cooperative, in particular, they ensure that
low-reputation newly joining peers have a fair representation in the system decision-
making process. Note that such newly joined nodes are clearly differentiated from
the peers who have a low reputation due to punishments received. This is because
if new peers are treated in the same manner as existing users with a bad reputation,
they may never be selected for system-specific tasks like transaction validation, and
therefore, they cannot improve on their reputation [42].

In EigenTrust, the global trust value (which is the reputation in our context) is
computed by combining a direct trust value between a user and other users it had
direct transactions with, and a recommended trust value, which is based on transitive
trust [59].

The direct trust between users is computed as follows:

ci, j =
{ max(si, j ,0)∑

j max(si, j ,0)
, if

∑
j max(si, j , 0) �= 0;

pi = 1/|P|, otherwise,
(3)

where ci, j denotes the direct trust between users i and j , si, j is the difference in the
satisfactory and unsatisfactory transactions between users i and j , which is computed
as si, j = sati, j − unsati, j (see [42] for details). The value pi represents a case where
peer i may be new and does not trust any other peer, then it will have to choose the
pre-trusted peers, and the set of such peers is denoted as P .

The derived trust is computed as follows:

ci,k =
∑
j

ci, j c j,k, (4)

which is based on the direct trust computed in (3).
We use an alternative version of the global trust computation from [56], incor-

porating an additive increase and a multiplicative decrease penalty component to it
in order to provide better robustness to the reputation system. Specifically, in a dis-
tributed setting, there is a possibility that malicious users collude to assign arbitrarily

Multi-Tier Reputation for Data Cooperatives 265

high trust values to each other and arbitrarily low trust values to honest peers. This
can be addressed by introducing a proliferation parameter a, thereby recalculating
the current reputation of each peer as follows:

ti = (1 − a)(c1,i t1 + c2,i t2 + ... + cn,i tn) + api , (5)

where a is a constant (a ≤ 1).

3.5 Reputation as Weighted-Stake

For the selection of the consensus committee, we use the tier-based lottery of [17].
This protocol is described in Sect. 2.4. Specifically, in the “Formation of Consensus
Committee” phase of Fig. 3, the consensus committee is formed using this lottery
protocol.

Note that the parties are selected into the consensus committee based on their
reputation values, but the underlying blockchain system is based on stake. There-
fore, the reputation values of the stakeholders need to be mapped to a stake on the
blockchain. For this, we use the following straightforward mapping, where si is the
weighted stake of party i derived from its reputation Ri and

∑n
k=1 Rk is the total

reputation of all the parties in the system:

si = Ri∑n
k=1 Rk

. (6)

The reputation values and their use for committee selection are described in Sect.
2.4.

Finally, we note that the above approach for mapping reputation into stake is taken
for the simplicity of our presentation. Different methods such the mapping may be
used depending on specific applications.

4 Security Analysis

Let us present a sketch of the security analysis for the proposed system. First, let us
informally describe the intuition behind our security argument.

As stated above, the security of the proposed system relies on the properties of
the underlying reputation system and PoS-based blockchain engine. Specifically,
we assume that this system adequately reflects the parties’ reputation and that a
majority of reputation always remains with the honest parties, i.e., those who follow
the protocol. With the mapping described in the previous subsection, the majority of
reputation directly translates into the majority of stake, and hence, the PoS engine
works properly.

266 A. Salau et al.

Let us now state our security results more formally. We omit some parameters,
which are not essential in our setting. Denote the EigenTrust reputation system
(described in Sect. 3.4) by Rep for short. In this discussion, we rely on notation
from Sect. 2.3.

Let the protocol elect_cmt (described in Sect. 2.4) be used for selecting the parties
into the committee—it implements the sampling algorithm A from Definitions 1 and
2. We denote the set of parties selected into the committee as Psel .

The following theorem is easily adapted from Theorem 1 of [17].

Theorem 1 ([17]) If the reputation system Rep is ε f -feasible, for some constant
ε f ∈ (0, 1), for a static Rep-bounded adversary A, then A corrupts at most 1/2 − εδ

fraction of the parties in Psel , for some constant εδ ∈ (0, 1), with overwhelming
probability in the security parameter.

The proof of the above theorem directly follows from that of Lemma 4 of [17].
Let the blockchain system parameters be chosen as prescribed by the SnowWhite

protocol [18]. Specifically, Appendices C.5-C.6 and F.1 of [18] described the admis-
sible parameters, including the probabilities for honest and dishonest parties to be
selected to the committee in order for the blockchain system to work properly, i.e.,
to ensure chain growth, chain quality, and consistency, as defined in Appendices
B.1-B.3 of [18]. In particular, these admissible parameters are to ensure that Psel has
a majority of honest parties. It is easy to see that the value εδ can always be chosen
to ensure that the parameters of the Snow White protocol are indeed admissible.

Theorem 2 ([18]) There exists a parameter εδ ∈ (0, 1) such that if the adversary
corrupts at most 1/2 − εδ fraction of the parties in Psel , the Snow White protocol
provides chain growth, chain quality, and consistency properties.

The proof of the above theorem follows immediately from that of Theorem 1 in
[18] by setting the parameter εδ , which satisfies the admissibility conditions formu-
lated in Appendix C.6 of [18].

Then, the next result follows immediately from the above two theorems, taking
into account the mapping of reputation to stake as described in Sect. 3.5.

Corollary 1 If the EigenTrust reputation system described in Sect. 3.4 is ε f -feasible,
with a constant ε f ∈ (0, 1) chosen according to Theorem 1, for a static Rep-bounded
adversary A, then the blockchain system proposed in Sect. 3 provides chain growth,
chain quality, and consistency properties.

As pointed out in Appendix G of [17], the above result directly translates to the
case of dynamic reputation systems under an assumption that reputation vectors in
different epochs are independent. A formal treatment of the dynamic case when the
above assumption is removed is left as an open question for our future work.

Multi-Tier Reputation for Data Cooperatives 267

5 Experimental Results and Discussion

In this section, we present preliminary simulation results concerning our imple-
mentation of the tier-based selection protocol elect_cmt. As concluded in [39, 40],
the triangular selection distribution gives a comparatively higher chance to newly
joined low-reputation parties to be chosen, while the exponential selection distribu-
tion mainly selects high-reputation nodes while giving little chance of selection to
low-reputation nodes.

5.1 Datasets

First, let us discuss the datasets used in our experiments. In order to study the perfor-
mance of the elect_cmt protocol, we used real-life datasets of reviews from Ama-
zon.com [57] and Ebay.com [58]. The Amazon.com dataset [57] (we will call it
Dataset 1 for short) has user star ratings on a scale of 1 to 5 with 5 stars being the
highest. The Ebay.com dataset [58] has two sets of review ratings in it. One set (we
call it Dataset 2a) has the same 5-star rating as in Dataset 1. Another set has ratings
on a scale of (−1, 0, 1) with 1 being the highest (we call it Dataset 2b). In order to
be able to use these datasets for our work, we equate having a 5-star rating with a
reputation value in the interval of (0.8, 1.0], a 4-star rating with (0.6, 0.8], and so on
until a 1-star rating with (0, 0.2], while those with a reputation value of 0 are ignored
in datasets 1 and 2a. Also, for dataset 2b, we equate a rating of 1 with reputation
values of (0.66, 1], a rating of 0 with (0.33, 0.66] and a rating of -1 with (0, 0.33],
again, ignoring peers with a reputation value of 0.

5.2 Experiments and Discussion

The main objective of the experiments we carried out was to confirm an inclusive
nature of the tier-based selection approach when compared to the ranking-based
approach used in [30, 41]. In the latter case, the formation of a consensus committee
is done by ranking the potential stakeholders in order of their reputation and then
choosing the stakeholders with the highest reputation to join the committee until the
required number is reached.

We implemented the protocol elect_cmt, ran 100 instances of the protocol, aver-
aged the result, and observed the distribution of selected users by tiers according to
their reputation versus the ranking-based approach described above.

We chose the number of tiers T as 3 and 5 in order tomatch the respective datasets.
Also, we used different tier ratios c, whichwere set to 2 and 3. This parameter governs
the difference in the number of parties between tiers. Roughly speaking, when c = 2,
we may expect twice as many peers in Tier 1 as compared to Tier 2, and so on. The

268 A. Salau et al.

Fig. 5 Number of peers chosen to the committee from different tiers, according to tier-based versus
ranking-based approach, for dataset 1

parameters used for the experiment are summarized in Table 1. These parameters
were introduced in Sect. 2.4.

In the first experiment, we performed the comparison for dataset 1. The result is
shown in Fig. 5. As we can see, for the ranking-based approach, parties in tiers 3,
4 and 5 were completely ignored, while in the tier-based approach, we had a fair
representation of the peers in the lower tiers. This demonstrates that the inclusivity,
a core requirement in our data cooperative design, as achieved when using the tier-
based approach.

In the second experimentwith the result as shown in Fig. 6,we compared the above
mentioned approaches for dataset 2a. We can see that the distribution of parties into
tiers is close to that from the previous experiment, as expected.

Finally, in the third experiment, we compared the tier-based and rank-based
approaches for the case of 3 tiers using dataset 2b. The result is shown in Fig. 7.
Again, we can observe that both selection mechanisms have the same number of
peers selected from Tier 1 but the tier-based approach also chooses peers in the low-
est third tier, which was ignored by the ranking-based approach. This is because the
total number of peer candidates in Tier 1 (those with a reputation value of (0.66, 1.0],
which is equivalent to a 1-star rating) is 32, and they are normally all selected to fill
the 100 required places in the committee. However, regarding the peers selected from
Tiers 2 and 3, we can see that the tier-based approach “fairly” considered 7 peers
from Tier 3 (which would be the newly joined low-reputation peers in the data coop
setting), while the ranking-based approach completely neglected them. Notice also,
that in the tier-based selection approach, the ratio between the peers selected from
Tier 2 and Tier 3 is far larger than the 2 or 3, which was observed in the previous

Multi-Tier Reputation for Data Cooperatives 269

Fig. 6 Number of peers chosen for the committee from different tiers, according to tier-based
versus ranking-based approach, for dataset 2a

Fig. 7 Number of peers chosen to the committee from different tiers, according to tier-based versus
ranking-based approach, for dataset 2b

experiments. This is because, according to the formula for the selection ratio c j
shown in the last entry of Table 1, the total number of candidates with reputation
values in (0.33, 0.66] (Tier 2) is far greater than the candidates with reputation values
in (0, 0.33] (Tier 3).

270 A. Salau et al.

Table 1 Experiment parameters

Parameter Value

Total number of nodes (N) 1000

Number of tiers (m) {3,5}

Parameter δ 0.01

Committee size factor (ε) 2

Committee size(n) log1+ε(N)

Tier ratio (c ≥ 1) {2,3}

Tiers selection ratio (c j) max{c, c · |Tj |
|Tj+1| }

6 Conclusion

Data cooperatives are an important mechanism for the new data economy and also
for establishing trust between their members, which is crucial for their operation.
Reputation is an important measure of the trustworthiness of entities, which can
effectively complement financial assets in the decentralized scenario. In addition, it
will lead to more democratic governance in the distributed data management sys-
tems, by giving more power to law-abiding and socially active individuals while
also providing an incentive to others to behave as such. The Proof-of-Stake and
Proof-of-Reputation systems seem to be particularly promising examples of the next-
generation blockchain technologies, which will enable the effective functioning of
data cooperatives.

This work is the first step towards the design and implementation of decentralized
data cooperatives basedonProof-of-Reputation blockchains. In our subsequentwork,
we plan to equip the existing system with data encryption and privacy-preserving
mechanisms such as zero-knowledge proofs in order to enable fine-grained control
of digital assets by their owners.

Acknowledgements We thank the National Security Agency for the partial support through
grants H98230-20-1-0329, H98230-20-1-0403, H98230-20-1-0414, and H98230-21-1-0262. We
are grateful to Stefanos Leonardos and the anonymous reviewers for their helpful comments.

References

1. World Economic Forum. (2014). “Rethinking Personal Data: A New Lens for Strengthening
Trust.” http://reports.weforum.org/rethinking-personal-data.

2. Kearney, A. T. (2014). Rethinking personal data: A new lens for strengthening trust. In World
Economic Forum. Retrieved November (Vol. 1).

3. Pentland,A. (2020). Building the new economy:Whatwe need and how to get there. InBuilding
the New Economy.

4. Hardjono, T., & Pentland, A. (2019). Data cooperatives: Towards a foundation for decentralized
personal data management. arXiv preprint arXiv:1905.08819.

http://reports.weforum.org/rethinking-personal-data
http://arxiv.org/abs/1905.08819

Multi-Tier Reputation for Data Cooperatives 271

5. Ada Lovelace Institute. (2021). Data cooperatives. In Chapter two from Exploring legal mech-
anisms for data stewardship–a joint publication with the AI Council. Available at https://www.
adalovelaceinstitute.org/feature/data-cooperatives/.

6. Data Co-OpsWorkshop. (2019). Executive summary of a December 22, 2019 workshop hosted
at the hebrew university of Jerusalem. The Federmann Cyber Security Research Center. Avail-
able at https://csrcl.huji.ac.il/sites/default/files/csrcl/files/data_co-ops_summary.pdf.

7. Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: Using blockchain to
protect personal data. IEEE Security and Privacy Workshops, 2015, 180–184.

8. Salau, A., Dantu, R., Morozov, K., Upadhyay, K., & Badruddoja, S. (2022). Towards a threat
model and security analysis for data cooperatives. In Proceedings of the 19th International
Conference on Security and Cryptography. ISBN 978-989-758-590-6, ISSN 2184-7711, pp.
707–713.

9. Schaub,A., Bazin, R., Hasan, O.,&Brunie, L. (2016). A trustless privacy-preserving reputation
system. In IFIP International Conference on ICT Systems Security and Privacy Protection (pp.
398–411). Springer.

10. Gao, S., Yu, T., Zhu, J., & Cai, W. (2019). T-PBFT: An EigenTrust-based practical Byzantine
fault tolerance consensus algorithm. China Communications, 16, 111–123.

11. Salau, A., Dantu, R., & Upadhyay, K. (2021). Data Cooperatives for Neighborhood Watch.
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2021, 1–9.

12. Gupta, D. (2022). Decentralized identity using blockchain. Available online at https://
venturebeat.com/2022/03/05/decentralized-identity-using-blockchain/.

13. Heister, S., & Yuthas, K. (2021). How blockchain and AI enable personal data privacy and
support cybersecurity. In T. M. Fernández-Caramés & P. Fraga-Lamas (Eds.), Advances in the
Convergence of Blockchain and Artificial Intelligence. IntechOpen.

14. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, 21260.

15. Ferdous, M. S., Chowdhury, M. J. M., Hoque, M. A., & Colman, A. (2020). Blockchain
consensus algorithms: A survey. arXiv preprint arXiv:2001.07091.

16. Magyar, G. (2017). Blockchain: Solving the privacy and research availability tradeoff for EHR
data: A new disruptive technology in health data management. In 2017 IEEE 30th Neumann
Colloquium (NC) (pp. 000135–000140).

17. Kleinrock, L.,Ostrovsky,R.,&Zikas,V. (2020). Proof-of-reputation blockchainwith nakamoto
fallback. In International Conference on Cryptology in India (pp. 16–38). Springer. Full ver-
sion: Cryptology ePrint Archive, Paper 2020/381. https://eprint.iacr.org/2020/381.pdf.

18. Daian, P., Pass, R., & Shi, E. (2019). Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In International Conference on Financial Cryp-
tography and Data Security (pp. 23–41), Springer. Full version: Cryptology ePrint Archive,
Paper 2016/919. https://eprint.iacr.org/2016/919.pdf.

19. Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., & Kim, D. I. (2019). A survey
on consensus mechanisms and mining strategy management in blockchain networks. IEEE
Access, 7, 22328–22370.

20. Zyskind, G., Nathan, O., & Pentland, A. (2015). Enigma: Decentralized computation platform
with guaranteed privacy. ArXiv abs/1506.03471.

21. Banyan Project. (2021). Our product: Trustworthy news and information that Stir civic engage-
ment. Accessed January 30, 2021, from https://banyanproject.coop/.

22. The Associated Press. (2021). Our mission is to inform the world. Accessed January 30, 2021,
from https://www.ap.org/en-us/.

23. King, S., & Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper. 19(1).

24. Leonardos, S., Reijsbergen, D., & Piliouras, G. (2020). Weighted voting on the blockchain:
Improving consensus in proof of stake protocols. International Journal of Network Manage-
ment, 30(5), e2093.

25. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure
proof-of-stake blockchain protocol. In J. Katz, & H. Shacham (Eds.), Advances in Cryptology–
CRYPTO 2017. CRYPTO 2017. Lecture Notes in Computer Science, vol 10401, Springer.

https://www.adalovelaceinstitute.org/feature/data-cooperatives/
https://www.adalovelaceinstitute.org/feature/data-cooperatives/
https://csrcl.huji.ac.il/sites/default/files/csrcl/files/data_co-ops_summary.pdf
https://venturebeat.com/2022/03/05/decentralized-identity-using-blockchain/
https://venturebeat.com/2022/03/05/decentralized-identity-using-blockchain/
http://arxiv.org/abs/2001.07091
https://eprint.iacr.org/2020/381.pdf
https://eprint.iacr.org/2016/919.pdf
https://banyanproject.coop/
https://www.ap.org/en-us/

272 A. Salau et al.

26. Han, X., Yuan, Y., & Wang, F.-Y. (2019). A fair blockchain based on proof of credit. IEEE
Transactions on Computational Social Systems, 6(5), 922–931.

27. Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M. A., & Li, L. (2018). A proof-of-trust consen-
sus protocol for enhancing accountability in crowdsourcing services. IEEE Transactions on
Services Computing, 12(3), 429–445.

28. Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2019). Bitcoin and cryp-
tocurrency technologies. Curso elaborado pela.

29. Wang, Q., Xu, M., Li, X., & Qian, H. (2020). Revisiting the fairness and randomness of
delegated proof of stake consensus algorithm. In 2020 IEEE Intl Conf on Parallel and Dis-
tributed Processingwith Applications, BigData andCloudComputing, SustainableComputing
and Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/Sustain-
Com) (pp. 305–312). https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.
2020.00064.

30. Zhuang, Q., Liu, Y., Chen, L., & Ai, Z. (2019). Proof of reputation: A reputation-based consen-
sus protocol for blockchain based systems. InProceedings of the 2019 International Electronics
Communication Conference (pp. 131–138).

31. Do, T., Nguyen, T., & Pham, H. (2019). Delegated proof of reputation: A novel blockchain
consensus. In Proceedings of the 2019 International Electronics Communication Conference
(pp. 90–98).

32. Yu, J., Kozhaya, D., Decouchant, J., & Esteves-Verissimo, P. (2019). Repucoin: Your reputation
is your power. IEEE Transactions on Computers, 68(8), 1225–1237.

33. Wang, E. K., Liang, Z., Chen, C. M., Kumari, S., & Khan, M. K. (2020). PoRX: A reputation
incentive scheme for blockchain consensus of IIoT.Future Generation Computer Systems, 102,
140–151.

34. Gai, F., Wang, B., Deng, W., & Peng, W. (2018). Proof of reputation: A reputation-based
consensus protocol for peer-to-peer network. In International Conference onDatabase Systems
for Advanced Applications (pp. 666–681). Springer.

35. Bou Abdo, J., El Sibai, R., & Demerjian, J. (2021). Permissionless proof-of-reputation-X: A
hybrid reputation-based consensus algorithm for permissionless blockchains. Transactions on
Emerging Telecommunications Technologies, 32(1), e4148.

36. Zaccagni, Z.,&Dantu, R. (2020). Proof of review (PoR):A new consensus protocol for deriving
trustworthiness of reputation through reviews. IACR Cryptol. ePrint Arch., 2020, 475.

37. Larangeira, M. (2021). Reputation at stake! A trust layer over decentralized ledger for multi-
party computation and reputation-fair lottery. Cryptology ePrint Archive.

38. Bugday, A., Ozsoy, A., Öztaner, S. M., & Sever, H. (2019). Creating consensus group using
online learning based reputation in blockchain networks. Pervasive and Mobile Computing,
59, 101056.

39. Biryukov, A., Feher, D., & Khovratovich, D. (2017). Guru: Universal reputation module for
distributed consensus protocols. University of Luxembourg.

40. Biryukov, A., & Feher, D. (2020). ReCon: Sybil-resistant consensus from reputation. Pervasive
and Mobile Computing, 61, 101109. Princeton University Press.

41. Asharov G., Lindell Y., & Zarosim H. (2013). Fair and efficient secure multiparty computation
with reputation systems. In K. Sako, P. Sarkar (Eds.), Advances in Cryptology–ASIACRYPT
2013. ASIACRYPT 2013. Lecture Notes in Computer Science, vol 8270, Springer.

42. Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The eigentrust algorithm for
reputation management in p2p networks. In Proceedings of the 12th International Conference
on World Wide Web (pp. 640–651).

43. David, B., Gaži, P., Kiayias, A., & Russell, A. (2018). Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (pp. 66–98). Springer.

44. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017). Algorand: Scaling
byzantine agreements for cryptocurrencies. InProceedings of the 26th SymposiumonOperating
Systems Principles (pp. 51–68).

https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00064
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00064

Multi-Tier Reputation for Data Cooperatives 273

45. Pass, R., & Shi, E. (2017). The sleepy model of consensus. In International Conference on the
Theory and Application of Cryptology and Information Security (pp. 380–409). Springer.

46. Dimitriou, T., Karame, G., Christou, I. T. (2008). SuperTrust—a secure and efficient framework
for handling trust in super peer networks. In Distributed Computing and Networking, LNCS
(vol. 4904, pp. 350–362). Springer.

47. Sabater, J., & Sierra, C. (2002). Reputation and social network analysis in multi-agent sys-
tems. In Proceedings of International Joint Conference on Autonomous Agents and Multiagent
Systems (pp. 475–482). ACM.

48. Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2006). An integrated trust and reputation
model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13, 119–
154.

49. Michiardi, P., Molva, R. (2002). Core: A collaborative reputation mechanism to enforce node
cooperation inmobile ad hoc networks. InAdvancedCommunications andMultimedia Security,
IFIP AICT (pp. 107–121). Kluwer Academic Publishers.

50. Xiong, L., & Liu, L. (2004). PeerTrust: supporting reputation-based trust for peer-to-peer
electronic communities, Transactions on Knowledge and Data. Engineering, 16, 843–857.

51. Teacy,W., Patel, J., Jennings, N., & Luck,M. (2006). Travos: trust and reputation in the context
of inaccurate information sources. Autonomous Agents and Multi-agent Systems, 12, 183–198.

52. Vavilis, S., Petković, M., & Zannone, N. (2014). A reference model for reputation systems.
Decision Support Systems, 61, 147–154.

53. Garcia-Retuerta, D., Casado-Vara, R., Valdeolmillos, D., & Corchado, J. M. (2021). A reputa-
tion score proposal for online video platforms. In G. Marreiros, F.S. Melo, N. Lau, H. Lopes
Cardoso, & L. P. Reis (Eds.), Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in
Computer Science, vol. 12981, Springer.

54. Lu, K., Wang, J., Xie, L., Zhen, Q., & Li, M. (2016). An eigentrust-based hybrid trust model
in P2P file sharing networks. Procedia Computer Science, 94, 366–371.

55. Zoë, A., Robert, M., & Serge, P. (2005). A non-manipulable trust system based on EigenTrust.
SIGecom Exch, 5(4), 21–30.

56. Heba, A. K. (2015). HonestPeer. Journal of King Saud University Computer Information Sci-
ence, 27(3), 315–322.

57. McAuley, J., Targett, C., Shi, Q., &VanDenHengel, A. (2015). Image-based recommendations
on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 43–52). Available at https://jmcauley.
ucsd.edu/data/amazon/.

58. eBay Reviews and Guides. (2022). https://www.kaggle.com/datasets/wojtekbonicki/ebay-
reviews, last viewed on May 28, 2022.

59. Audun, J., Elizabeth, G., & Michael, K. (2006). Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems, 4(2), 139–161.

https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/
https://www.kaggle.com/datasets/wojtekbonicki/ebay-reviews
https://www.kaggle.com/datasets/wojtekbonicki/ebay-reviews

	Preface
	Contents
	 Towards Equity in Proof-of-Work Mining Rewards
	1 Introduction
	2 Background & Related Work
	2.1 Reward Protocols
	2.2 Reward Analyses

	3 Computational Coinage Framework
	3.1 Miner Metrics
	3.2 Blockchain Metrics
	3.3 Coin Metrics

	4 Inequity in Bitcoin
	4.1 Inequitable Hash-Time-to-Issuance
	4.2 An Increasing Hashcap-to-Coinage Ratio
	4.3 Subsidy Through the Fungibility Dilution Factor
	4.4 An Increasing Hash-Restitution Time

	5 Equitable Reward Constraints
	5.1 Undiluted Reward Constraints
	5.2 Prompt Restitution Constraints
	5.3 Equitable Coin Supply Growth

	6 Conclusion
	References

	 Market Equilibria and Risk Diversification in Blockchain Mining Economies
	1 Introduction
	2 Model: Mining Economies
	3 Proportional Response Dynamics
	4 Experiments
	4.1 Data Set and Experimental Setup
	4.2 Empirical Results

	5 Conclusions
	A Technical Materials: Proof of Theorem 1
	References

	 On the Impact of Vote Delegation
	1 Introduction
	2 Related Literature on Vote Delegation
	3 Model
	4 Results
	4.1 Free Delegation
	4.2 Capped Delegation
	4.3 Asymptotic Behavior of Delegation

	5 Discussion and Conclusion
	References

	 Decentralized Governance of Stablecoins with Closed Form Valuation
	1 Introduction
	2 Model
	3 Stackelberg Equilibrium Analysis
	3.1 TEXT w/o Participation Constraint
	3.2 TEXT w/ Participation Constraint

	4 Governance Attack Vector
	5 Conclusion
	A Derivative Analysis
	A.1 Sensitivity of the Expected Collateral Shortfall
	A.2 Vault Objective Sensitivities
	A.3 GOV Objective Sensitivities

	B Proofs
	References

	 Griefing Factors and Evolutionary In-Stabilities in Blockchain Mining Games
	1 Introduction
	2 Preliminaries
	2.1 Model and Nash Equilibrium Allocations

	3 Evolutionary Stable Allocations and Griefing Factors
	4 Griefing in Blockchain Mining
	5 Dynamic Adjustments of Mining Allocations
	6 Conclusions and Open Questions
	A Omitted Proofs
	References

	 Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers
	1 Introduction
	2 Preliminaries
	2.1 Central Bank Digital Currency (CBDC)
	2.2 CBDC Project Index (CBDCPI)

	3 Data and Methodology
	3.1 Data
	3.2 Methodology

	4 Results
	5 Conclusion
	A Appendix
	A.1 CBDC Projects Status
	A.2 Top 10 Features for the Random Forest Classifier with Aggregated Data
	A.3 Top 10 Features for the Random Forest Classifier with Full Data

	References

	 Dissimilar Redundancy in DeFi
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Scaling Solutions
	2.3 Smart Contract Vulnerabilities

	3 Methodology
	3.1 Overview
	3.2 The Technical Challenges

	4 Evaluation
	4.1 Development-Time Testing
	4.2 Real-World Deployment

	5 Limitations
	5.1 Transaction Fees
	5.2 Development Cost
	5.3 Storage Layout

	6 Related work
	6.1 Ethereum Clients
	6.2 Differential Fuzzing

	7 Conclusion
	References

	 DeFi Survival Analysis: Insights into Risks and User Behaviors
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Survival Analysis for DeFi

	3 Results
	3.1 What do Users do After a Deposit?
	3.2 How Long Until Borrows are Repaid or Liquidated?
	3.3 How Does Coin Type Influence Liquidations?

	4 Related Work
	5 Discussion and Future Work
	References

	 Gas Gauge: A Security Analysis Tool for Smart Contract Out-of-Gas Vulnerabilities
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Out-of-Gas Denial of Service Vulnerabilities

	3 Description of Gas Gauge
	3.1 Detection Phase
	3.2 Identification Phase
	3.3 Correction Phase

	4 Experimental Evaluation
	4.1 Evaluation of the Detection Phase
	4.2 Performance Analysis of the Detection Phase
	4.3 Evaluation of the Identification Phase
	4.4 The Evaluation of the Correction Phase
	4.5 Limitations of Gas Gauge

	5 Case Study
	6 Related Work
	7 Conclusions and Future Work
	Appendix A Threshold Calculator Code Modification
	Appendix B Code Modification for Nested Loops
	Appendix C Output of the Correction Phase
	Appendix D Experimental Setup
	Appendix E Factors Impacting the Run-time of the Detection Phase
	Appendix F Evaluation of the Methods for the Identification Phase
	References

	 Tweakable mathcalSleeve: A Novel mathcalSleeve Construction Based on Tweakable Hash Functions
	1 Introduction
	2 Background
	3 The Tweakable mathcalSleeve
	3.1 The Generic Sleeve: GenmathcalSleeve

	4 Security Analysis
	4.1 Generic Attack Security and Unforgeability of Fallback Scheme
	4.2 Tweakable mathcalSleeve is at Least as Secure as an ECDSA One
	4.3 The Security of GenmathcalSleeve

	5 Implementation and Performance
	6 Formal Methods Analysis
	7 Final Remarks
	A High-level Diagram of the Tweakable mathcalSleeve Construction
	References

	 Interhead Hydra: Two Heads are Better than One
	1 Introduction
	2 Background
	3 Overview
	3.1 The General Setting
	3.2 The Approach
	3.3 Desired Properties and Challenges

	4 The State Machine
	4.1 The Interhead State Machine

	5 The Protocols
	6 Analysis
	6.1 Security

	7 Conclusion
	A In-Depth Background
	A.1 EUTxOMA
	A.2 Thread Token

	B Hydra-Specific Concepts
	B.1 General Purpose Token
	B.2 The Multi-Threaded CEM

	C The CEM Construction
	C.1 Parameters
	C.2 The Orderly Phase
	C.3 The Conversion Phase
	C.4 The Punish Phase

	References

	 Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi)
	1 Introduction
	2 Existing Models for Prediction Market Makers
	2.1 Prediction Market and Market Makers
	2.2 Logarithmic Market Scoring Rules (LMSR)
	2.3 Constant Product/Sum/Mean AMMs

	3 Constant Ellipse AMMs
	4 Supply-and-Demand, Liquid Sensitivity, and Price Fluctuation
	4.1 LS-LMSR
	4.2 Constant Product and Constant Mean
	4.3 Constant Ellipse
	4.4 Front Running Attacks Based on Slippage

	5 Price Amplitude
	6 Implementation and Performance
	6.1 Gas Cost and Comparison

	7 Conclusion
	References

	 Wombat—An Efficient Stableswap Algorithm
	1 Introduction
	2 Wombat's Design
	2.1 Wombat's Invariant Curve
	2.2 Enhanced Wombat's Invariant Curve
	2.3 Gas Comparison
	2.4 Swap Mechanism
	2.5 Slippage Analysis

	3 Desirable Properties of AMMs
	3.1 Path Independence
	3.2 Liquidity Sensitivity

	4 Arbitrage Block
	4.1 Changes in the Asset and Liability
	4.2 Maintain Global Equilibrium with r*=1
	4.3 Withdrawal Fees and Deposit Gains

	5 Swap with Haircut Fees
	6 Exact Swap, Withdraw, and Deposit when r*=1
	7 Conclusions
	A Screenshots of Uniswap and Curve
	B Proof of Theorem 2
	References

	 Multi-Tier Reputation for Data Cooperatives
	1 Introduction
	1.1 Problem Definition and Motivation
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Literature Review
	2.1 Data Cooperatives
	2.2 Blockchain Systems
	2.3 Reputation Systems: Formalization
	2.4 Multi-Tier Selection Protocol

	3 Description of the Proposed Blockchain System
	3.1 Design Requirements for Data Cooperative
	3.2 Architecture Overview
	3.3 Choice of Blockchain System
	3.4 Choice of Reputation System
	3.5 Reputation as Weighted-Stake

	4 Security Analysis
	5 Experimental Results and Discussion
	5.1 Datasets
	5.2 Experiments and Discussion

	6 Conclusion
	References

