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Abstract The evolution to Industry 4.0 is creating the impetus for the manufac-
turing industry to increase productivity through smart management and stabiliza-
tion of resources, capacity and utilisation. Increased plant availability, extended 
service life of resources as well as optimised product and process quality require
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intelligent maintenance strategies. The conventional reactive maintenance (run-to-
failure) causes unexpected production stoppages, and preventive maintenance at 
times leads to waste of working hours and material due to the premature replacement 
of machine components. A smart Predictive Maintenance (PdM) strategy equipped 
with fault detection and prediction based on acquired, processed and analysed data 
can result in an accurate estimation of the Remaining Useful Life (RUL) of machine 
components and thus trigger appropriate maintenance action plans. Data acquisi-
tion, processing, analysis and rule-based decision supporting require the develop-
ment, application and combination of various Industrial Internet of Things (IIoT) 
devices, models and methods in an integrated manner. Through transparent devel-
opment and integrated harmonisation of all models, methods and technologies, fault 
detections and respective RUL estimations of machine components become more 
accurate and reliable. This leads to an increasing acceptance of employees towards 
software-based recommendations, in particular maintenance instructions for opera-
tors and proposals for an optimised development of the next generation of production 
systems and equipment. Within the scope of the EU-funded project Z-BRE4K, this 
paper proposes an IIoT architecture that presents models, methods and technolo-
gies in an integrated manner and highlights the data and information flow between 
them. The architecture including the infrastructure has been applied in three pilot 
cases with the industrial end users PHILIPS, GESTAMP and CDS to demonstrate 
the compatibility of the architecture to different industries with various production 
systems and diverse conditions, requirements and needs. Based on the adaption of 
the generic architecture for the pilot cases, the models, methods and technologies 
were developed efficiently and continuously improved and validated. The proposed
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architecture is intended to be applicable across industries to facilitate the transfor-
mation from reactive or preventive to PdM and thereby improve the competitiveness 
of manufacturing companies. 

Keywords Predictive maintenance · Industrial Internet of Things architecture ·
Fault detection · Remaining Useful Life estimation 

1 Introduction and State of the Art 

In order to advance the competitiveness of manufacturing companies, their produc-
tivity must be increased, for which smart maintenance strategies are required. Predic-
tive Maintenance (PdM) enables an increased availability, service life and perfor-
mance of plant and equipment as well as an optimised product and process quality. 
Through a comprehensive analysis of production systems, the Remaining Useful 
Life (RUL) of machine components can be estimated and thus the appropriate point 
in time for maintenance can be determined [1]. This leads to a higher Overall Equip-
ment Effectiveness and thus to an increased productivity. While reactive maintenance 
only provides for repairs after a breakdown, preventive maintenance aims at replacing 
components at predefined time intervals based on manufacturer specifications and 
empirical values [2]. Condition-based maintenance includes continuous condition 
monitoring and the resolution of maintenance measures based on defined condition 
deviations and events. Currently, most companies rely on reactive or preventive main-
tenance strategies, as costs and complexity of more proactive maintenance strategies 
initially discourage. Especially PdM poses challenges for many companies, which 
is confirmed in a study from 2017 [3]. 

Existing approaches in literature mostly focus on applying models, methods and 
technologies on specific use cases [4, 5] or highlight the most common techniques in 
the context of PdM, e.g. Long Short-Term Memory (LSTM)—according to Wu et al. 
[6] commonly used due to its efficiency in processing time series data—and linear 
regression [7, 8], or mechanisms for feature extraction as an important pre-processing 
step for training the models [9]. Furthermore, multiple literature deals with hybrid 
modelling approaches, e.g. combining various machine learning algorithms [10], 
data-driven and physics-based models [11, 12] or data mining and ontology-based 
semantics [13]. Even though scattered approaches exist regarding PdM strategies 
from an architecture and design to its practical implementation [14], companies still 
cite a lack of a systematic approach—in the sense of a clear procedure based on an 
Industrial Internet of Things (IIoT) architecture to derive implementation steps—as a 
crucial obstacle for establishing a corresponding business model and thus for imple-
menting PdM into their manufacturing and process settings [3], which represents a 
research gap. 

To close this research gap, this paper presents an approach for a generic IIoT 
architecture based on integrated models, methods and technologies with the focus 
on providing a basis for implementing PdM into manufacturing companies from
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different industries with various production systems and diverse conditions, require-
ments and needs. The proposed architecture combines models, methods and tech-
nologies within Industry 4.0 compliant layers such as data acquisition, transfer and 
persistence, analysis and business logic. By implementing PdM at PHILIPS, CDS— 
together with the original equipment manufacturer SACMI—and GESTAMP within 
the scope of the EU-funded project Z-BRE4K, the applicability of the generic archi-
tecture and the included models, methods and technologies is demonstrated. For the 
development of the architecture as well as for the included models, methods and 
technologies, established approaches are used as an orientation, but are continuously 
advanced and combined according to the conditions, requirements and needs of the 
three pilot cases. Particular attention is paid to the transparent development of the 
models, methods and technologies with continuous consultation with the industrial 
end users and their employees in order to increase acceptance towards the appli-
cations. The overall result is a holistic architecture for PdM that, subject to minor 
adjustments, is applicable to a wide range of industries and use cases of manufacturing 
companies. 

The structure of the paper is as follows: First, the proposed generic architec-
ture for PdM, highlighting its layers is presented. In Sect. 3, the application of the 
general architecture for the three pilot cases is described, however it only gives a 
short overview with exemplary excerpts of the three use cases to demonstrate the 
compliance of the generic architecture to different industries with various produc-
tion systems and diverse conditions, requirements and needs. Finally, the paper is 
summed up and an outlook is given. 

2 Approach for a Generic Architecture for Predictive 
Maintenance 

Figure 1 presents an approach for a generic holistic architecture as a basis for the 
implementation of PdM in manufacturing and process settings subject to minor 
customization. Its successive layers of data acquisition, transfer and persistence 
and analysis, as well as the layer in which decisions are made based on generated 
information, the business logic, will be described in more detail in the following 
sections.

2.1 Data Acquisition 

The layer of data acquisition focuses on the shop floor of a manufacturing company 
and includes the entire machinery and the measuring equipment, in particular sensors. 
Furthermore, this layer is source of expert knowledge about the machines and the 
production process, including engineering data, e.g. material specifications or data
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sheets of different components of the production systems. Measuring principles and 
sensor types must be selected or retrofitted depending on the required signals. This 
selection process can be supported using existing toolboxes, e.g. according to Fleis-
cher et al. [15]. Furthermore, the sensors must be installed and mechanically inte-
grated at an appropriate location. The sensor readings are transmitted to gateways 
for pre-processing of the signals using appropriate communication technology, e.g. 
bus systems. 

2.2 Data Transfer and Persistence 

The acquired sensor data is processed via gateways with functionalities such as 
interoperability, aggregation and—if required—local data pre-processing. Interop-
erability simplifies the connection of multiple machines and other devices, using a 
variety of interfaces, protocols and standards for both local installation (edge) and 
remote data transmission (connectivity). An ontology-based semantic framework 
can be applied to foster interoperability, i.e. to maintain consistency across different 
data sources and sinks. It involves semantic modelling of maintenance entities (e.g. 
production systems, work parts, failure modes) and actions, which then serve as a 
reference model that allows linking all data in the respective use case and providing 
standards-based access to all data related to a particular application. By brokering 
data coming from a wide variety of publishing sources, the data is centralized and 
contextualized, which then can be subscribed by data analysing consumers. In order 
to ensure the data security and sovereignty of the transferred and persistent data, 
Industrial Data Space (IDS) aims to formulate an infrastructure for the fast, secure 
and sovereign transmission and use of data. Only certified participants whose iden-
tity has been verified beforehand are allowed to enter the data space. IDS connectors 
based on FIWARE specification use system adapters to receive data from various 
sources, e.g. from a Message Queuing Telemetry Transport (MQTT) broker built on 
top of the gateway, and convert them into a standardized format. Consumers are able 
to subscribe contextualized data from an integrated Orion Context Broker (OCB) in 
a standardized and secure manner via Next Generation Service Interfaces (NGSI), 
which is a protocol developed by Open Mobile Alliance (OMA) to manage context 
information [16, 17]. 

2.3 Data Analysis and Business Logic 

The layer of data analysis aims to detect and predict faults and estimate the RUL of 
critical machine components. Considering a deterioration profile of a machine and 
its components, the RUL is the period from a current health status of the machine to 
a detected fault based on computed condition indicators. Fault detection includes the 
distinguishing between a healthy and a faulty status of a machine. Various reactive
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algorithms can be applied to detect anomalies within the data, tailored to the require-
ments of the respective use case. Some sensor readings do not show a significant 
changing trend between healthy states and faults and therefore do not contribute to 
the selection of useful features for training a model. Consequently, data reduction 
needs to be performed by selecting only sensor signals with the strongest trend and 
combining them to calculate condition indicators by means of feature extraction 
mechanisms. 

There are three common approaches to predict faults and to estimate the RUL, 
depending on the data available [18]. First, if no data is available on the history of the 
running machine, but data about breakdowns as single events, then survival models, 
i.e. probability density functions, can be used. This approach does not involve data 
collection of machine behaviour prior to a failure. The second approach for RUL 
estimation is once complete run-to-failure data (data from healthy state, degradation 
and actual failure) of the machine in operation or similar machines are available, 
then similarity models should be used. For similarity models, a lot of training data 
is needed so that the machine in operation can be aligned with these historically 
most similar degradation profiles. In cases where failures cannot be detected and 
therefore no failure data is available to train a predictive model, (safety) thresholds 
must be defined for condition indicators that should not be crossed. In that case, a fed 
degradation model is useful, as the behaviour of the running machine is monitored 
and by identifying a pattern within the data, a trend can be extrapolated until the 
threshold is reached, e.g. via regression analysis. Another approach in cases where 
failures could not be detected due to missing machine failures is to simulate potential 
failures using physics-based models of the machine and its components. By the 
hybridization of data-driven and physics-based models, simulations can be carried 
out quickly and cost-effectively to expand the amount of data required. In addition, 
using physics-based models, physical causes and effects can be investigated to gain 
additional knowledge, potential failure mechanisms can be identified and faults can 
be localized more easily. 

Regarding the business logic, a decision support system (DSS) evaluates the 
performance of the machines and receives anomalies, predictions and RUL esti-
mations published by the data-driven models, combining them into a single result 
by automatically tuning and promoting the most effective predictions approach. The 
DSS decides on preventive actions by activating recommendations to improve main-
tainability and operational efficiency on the shop floor. A feedback loop by the oper-
ator can be applied, which takes into account their opinions about the recommen-
dations and their quality. The Failure Mode and Effects Analysis (FMEA) identifies 
the potential failure modes, causes and effects associated with a machine component 
and how the performance of the system is affected, addressing each failure mode and 
its respective effects in the system independently. FMECA additionally analyses the 
criticalities of each potential failure mode and effect and calculates the Risk Priority 
Number (RPN) based on the combination of occurrence and severity of a given 
combination of failure mode, cause and effect. Based on that, a heat map provides 
information to the user in an intuitive manner. The user can immediately see whether



266 A. Werner et al.

a particular failure mode causes a high, medium or low risk to the system based on 
the area placed in the heat map. 

3 Application of the Generic Architecture in Pilot Cases 

The general architecture proposed in Sect. 2 is applied in three pilot cases with indus-
trial end users to proof the compatibility of the architecture to different industries 
with various production systems and diverse conditions, requirements and needs. 
One pilot case deals with cold forming for the manufacturing of cutting elements 
for electric shavers at the PHILIPS factory. The second one is about continuous 
compression moulding for the manufacturing of plastic closures at CDS and the 
third one involves cold forming, arc-welding and in-line quality inspection for the 
manufacturing of chassis parts at GESTAMP. 

3.1 Cold Forming for the Manufacturing of Shaver Cutters 

Shaving systems are manufactured at the PHILIPS factory. One of the parts of 
a shaving system is a cutter. These cutters are produced on a production line 
consisting of cold forming, finishing, measuring and assembly. Figure 2 presents 
the implementation of the generic architecture to this pilot case.

Data acquisition. This pilot case focuses on dies of a press that form the cutters 
from a metal strip entering the press. Multiple acoustic emission (AE) sensors are 
installed in crucial positions that can measure signals in terms of changes in the 
hardened steel. 

Data transfer and persistence. The AE data along with quality inspection infor-
mation are collected in real-time by the measuring equipment coupled to the factory 
network. After pre-processing, a gateway sends the data to a database and publishes 
them to a MQTT broker extended with an IDS connector. Via the counterpart of 
the IDS connector provider, the IDS connector consumer, the data contextualized by 
an integrated OCB are transferred to the data-driven models to detect and predict 
faults. The semantic framework is based on an ontology, structuring the entities of 
the IDS connectors. The cold forming dies and all related parts, embedded data 
sources, failure modes, severity indicators and maintenance actions are modelled 
as an enumeration of related entities to represent the pilot case-specific knowledge 
machine-understandably. 

Data analysis and business logic. By subscribing the AE data as well as other data 
sources, e.g. maintenance logs, in JSON format from the OCB using NGSI API, 
various algorithms are applied to detect and predict faults of the cold forming dies. 
To detect faults, i.e. AE waves that do not conform to neighbouring signals, a simple
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rule-based approach monitors specific sensorial inputs to detect rule violations based 
on user-defined thresholds. Since the threshold specification is difficult due to a lot 
of instability to the sensorial input, a distance-based outlier detection approach is 
used, which alleviates the need for rule specifications for each different sensorial 
input. This approach is based on the Micro-cluster Continuous Outlier Detection 
algorithm and can be applied to streaming data. For fault prediction an event-based 
algorithm is utilized, identifying patterns of events that occur before failures, in order 
to train the models for predictions. An approach for discretization of the input signal 
is then used in order to convert the sensorial signal to artificial events that might or 
might not have an actual meaning to the physical world. It should be noted that a 
number of other algorithms (e.g. Autoencoders, matrix profiles, Apriori) are used 
for both fault detection and prediction for validation purposes and thus to increase 
the reliability of calculations. Besides the aforementioned data-driven models, the 
physics-based model of the dies is represented as a Finite Element Method (FEM) 
model, analysing critical parts against high cycle fatigue to derive recommendations 
to strengthen the weakest parts, supporting employees during the design phase of the 
next generation of machine components to optimize the reliability of the machine 
and thereby minimize breakdowns. 

In order to combine multiple fault detections or predictions, a fusion component 
is applied to generate higher-level detection and prediction strategies, e.g. the combi-
nation of monitoring the first and the second die of the press and only if faults are 
detected in both dies, a report is generated. This leads to a reduction of false positive 
reports. Finally, a DSS receives input from both a FMECA, mainly failure modes 
and severity indicators, as well from the fusion component, and uses a rule engine, 
which is able to decide automatically upon specific actions to mitigate the detected 
and predicted faults. The DSS applies business related rules that are created by the 
shop floor managers based on their experiences and knowledge. 

3.2 Continuous Compression Moulding 
for the Manufacturing of Plastic Closures 

Plastic closures for the food and beverage industry are manufactured at CDS. This 
paper particularly addresses the production of plastic closures carried out by means 
of compression moulding techniques. In this regard, CDS produces various formats 
of products with many diverse parameters such as material, dimensions or weight. 
Figure 3 presents the implementation of the generic architecture to this pilot case.

Data acquisition. The focus of this pilot case are five Continuous Compression 
Moulding (CCM) machines—designed and manufactured by SACMI—with three 
auxiliary modules, a hydraulic unit (HU), a plastic extruder (EX) and a thermal 
regulator (TH) equipped with several sensors to measure pressures, temperatures 
and volume flow rates. The TH provides an aqueous fluid to cool the cavities of the 
CCM machines and will be considered in more detail in the following paragraphs.
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Data transfer and persistence. The sensor signals are collected in a gateway. To 
make the data available to the subsequent IIoT infrastructure, additional software is 
installed on the gateway. This allows publishing the data to a MQTT broker, enabling 
a cloud storage as intermediate layer to publish data to an integrated backend, gener-
ating a first data visualization to provide early information to the operator about the 
status of the machine. All data is transformed in Resource Description Framework 
(RDF) triplets and stored in a triple store database. On top of the database, a reasoner 
supports the extraction of knowledge according the consumer’s queries, building a 
knowledge-based system. The cloud storage is extended with an IDS connector to 
ensure data security and sovereignty, following the same policy as in Sect. 3.1. 

Data analysis and business logic. By subscribing the sensor data in JSON format 
from an OCB using NGSI API, various algorithms are applied to detect faults and to 
estimate the RUL. For instance, a regression-based approach is used to detect faults 
of the TH—which are mainly caused by a clogging filter—based on the trend of 
incoming sensor data. The approach uses historical data and detects violations based 
on predefined thresholds that are either linear or exponential to the measured trend. 
By applying an event clustering algorithm, the extrapolated trends of the individual 
sensor values based on the regression analysis are weighted up to the thresholds, so 
that an overall RUL of the filter is calculated. Due to missing machine breakdowns 
and thus a lack of detected faults, a physics-based representation of the TH as an 
object- and signal flow-oriented modelling approach with integrated virtual sensors is 
applied for multi-physics simulations of the TH. The hybridization of the regressive 
event tracker model and the physics-based model is carried out by varying various 
parameters in the physics-based simulation model, automatically integrating virtual 
sensor values into the regressive event tracker model, while at the same time changing 
parameters during operation are integrated into the physics-based model. 

Reports based on a fusion algorithm are triggered when pre-defined combinations 
of outcomes of the models are reached. Besides the rule-based processing of these 
outcomes, the DSS requests information from a FMECA tool, in particular the level 
of criticality for failure modes and checks the combination of the confidence level 
along with the criticality and the timeframe of the predictions to activate maintenance 
actions, e.g. as a notification to a mobile device of the operator. Furthermore, a 
Computerized Maintenance Management System (CMMS) is implemented, so the 
operator can schedule maintenance actions and to interface with other entities such 
as the spare part warehouse inventory for an availability check. 

3.3 Cold Forming and Arc-Welding for the Manufacturing 
of Chassis Parts 

Lightweight chassis parts are manufactured at the GESTAMP facility. The production 
line includes a stamping cell with a servo-driven press for cold forming (bending and 
cutting) of the incoming steel sheets, a robot for arc-welding the formed parts and
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an in-line multi-sensor quality control system to ensure the quality of the finished 
manufactured parts. Figure 4 presents the implementation of the generic architecture 
to this pilot case.

Data acquisition. The stamping press is a closed system equipped with several pre-
installed sensors for measuring torque, temperature, pressure and lubrication and two 
strain gage sensors installed at two connecting rods of the press. These locations are 
selected to provide the most significant strain history. The distribution of the load 
causes inertial forces that generate cyclic axial forces and stress, bending moments 
and stress perpendicular and parallel to the eccentric shaft. The tonnage signature 
provides important information that allows statements about the load, change in 
stock thickness and hardness, part lubrication, tool wear, stuck scrap in the die and 
the quality of the stamped parts. The arc-welding cell consists of two welding robots, 
a welding gun with a contact tip and an infrared (IR) sensor for an in-line quality 
control of the welding process. IR imaging provides information of the melt pool 
and surrounding areas during the welding process, such as geometry and temperature 
distribution. The IR system is comprised by a thermal camera and an embedded 
processing unit to perform the vision tasks in real-time and to ensure interoperability 
with subsequent applications. 

Data transfer and persistence. All raw data acquired from each stroke of the 
stamping press as well as features extracted from the video sequence of the IR system 
together with other process parameters such as voltage and current are transferred 
as a XML or CSV file to a shared server. An IDS connector periodically queries this 
server via a system adapter. Once a new file is detected, the system adapter parses 
the information to NGSI. By sending the data to an integrated OCB, consumers are 
thus able to subscribe to a certain type of information in a standardized, secured and 
sovereign manner. The semantic framework is based on an ontology, following the 
same policy as mentioned in Sect. 3.1. Once the data is contextualized, consumers 
are able to analyse the data. 

Data analysis and business logic. With regard to the stamping process, a percep-
tual metric known from quantifying image quality degradation caused by image 
processing, the Structural Similarity Index Measure, is used. The outliers are iden-
tified and the rate of failure determines the depreciation of the stamping dies. The 
instantaneous stamp force outside tolerance provides a defective part. In this regard, 
the defects rate provides the depreciation of the cold forming dies and therefore the 
RUL can be estimated. Due to only minor differences to the pilot case in Sect. 3.1 
regarding the physics-based representation of the press as a FEM model, this will 
not be explained in more detail at this point. 

Regarding the welding station, a video processing pipeline for condition moni-
toring and quality control combining edge and cloud processing is devised. In the 
edge, a feature extraction module for reducing the dimensionality of the data send to 
the cloud and a quality control classifier are implemented. First, a detection algorithm 
is applied to recognize and crop the region of interest around the contact tip during 
welding. Then, a bivariate classifier is combining convolutional (CNN) and recurrent
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neural networks (LSTM) for a quality assessment to classify parts in defect and non-
defect ones. The CNN serves for the extraction of spatial features, the LSTM-based 
network for the extraction of temporal features and a fully connected layer classifies 
the spatiotemporal features extracted. In the cloud, a single LSTM model driven by 
the extracted spatial features is applied in terms of condition monitoring. Finally, 
a geometric dimensioning and tolerancing (GD&T) analysis is applied to control 
the quality of the finished parts, using a point cloud of scanned parts to evaluate 
deviations by comparing the scan to a theoretical CAD model. The fusing of all data 
analysis outcomes is done in the context of the DSS, which follows the same logic 
(including the interaction with FMECA) as described in the two pilot cases above. 

4 Summary and Outlook 

In terms of the EU-funded project Z-BRE4K, an architecture for PdM based on inte-
grated models, methods and technologies has been developed with the aim of imple-
menting PdM into manufacturing companies. The proposed architecture including 
various models, methods and technologies, which were continuously advanced based 
on existing approaches according to requirements of the use cases, has been effec-
tively applied at three companies due to its holistic nature and modularity. Thus, a 
successful transformation from reactive or preventive to PdM strategies at PHILIPS, 
CDS and GESTAMP has been realised. Due to the transparent development of the 
concepts and solutions, they are applied by employees of the companies in their 
daily work. The applicability of the architecture has been demonstrated and can now 
serve as a reference for companies from different industries with various production 
systems and diverse conditions, requirements and needs for implementing PdM. 

In follow-up activities, measurements of improved key performance indicators and 
a profitability analysis should be carried out, as companies want to achieve a return 
on investment as soon as possible. Furthermore, the integration into higher-level 
systems must be expanded in order to establish PdM in the entire system landscape 
of a company. 
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