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Abstract. Longitudinal medical image data are becoming increasingly
important for monitoring patient progression. However, such datasets are
often small, incomplete, or have inconsistencies between observations.
Thus, we propose a generative model that not only produces continu-
ous trajectories of fully synthetic patient images, but also imputes miss-
ing data in existing trajectories, by estimating realistic progression over
time. Our generative model is trained directly on features extracted from
images and maps these into a linear trajectory in a Euclidean space
defined with velocity, delay, and spatial parameters that are learned
directly from the data. We evaluated our method on toy data and face
images, both showing simulated trajectories mimicking progression in
longitudinal data. Furthermore, we applied the proposed model on a
complex neuroimaging database extracted from ADNI. All datasets show
that the model is able to learn overall (disease) progression over time.
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1 Introduction

Longitudinal medical image data are important for e.g. modelling disease pro-
gression [1,27] or monitoring treatment response [3]. However, such datasets
often suffer from incomplete or inconsistent observations, and are often limited in
terms of size, diversity, and balance. Generally, using inadequate data can lead to
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poor performances when being used to train machine learning (ML) models [23]
for medical image analysis tasks such as classification [26] or segmentation [15].

To increase the size and variability of (non-longitudinal) medical imaging
datasets, conventional data augmentation techniques such as rotation, cropping,
or more resourceful augmentations [11] have been widely used [25]. However, the
improved performances of deep generative models have given them the potential
to perform image synthesis. Examples of such models are Generative Adversarial
Networks (GANs) [10], which generate realistic images using a discriminator that
distinguishes between real and synthetic images, and Variational Autoencoders
(VAEs) [14], which constrain image features to follow a given prior distribution
in order to generate synthetic images. These models have shown potential for
synthesizing medical images of various modalities such as magnetic resonance
imaging (MRI) [5,6,24], computed tomography (CT) [8,22], X-ray [18,21], or
positron emission tomography (PET) [2]. In addition, several methods have been
proposed to address data imputation or progression modelling in longitudinal
imaging data of e.g. MRI [13,17] or simulated discrete progressions [20].

Although the topics of inter- and extrapolating longitudinal (medical) imag-
ing data are well studied, to the best of our knowledge there is no model that
addresses both of these aspects at once and is able to continuously generate real-
istic trajectories. In this paper, we propose a new deep generative model that is
capable of: (1) generating realistic progression in images, (2) imputing missing
data in existing patient trajectories, and (3) producing synthetic images with
corresponding trajectories of non-existent patients1.

2 Proposed Method

We propose a new generative model for longitudinal imaging data that consists of
two steps. In the first step, relevant features are extracted from the input images
using a VAE, and the second step maps these features into a linear trajectory to
account for the progression over time. In the following, we refer to an observation,
e.g. an image, as yi,j ∈ Y, with i ∈ [1, N ] the individual’s identifier, tj ∈ R

∗
+,

where j ∈ [0, Pi] the time of the observation. N is the number of individuals and
Pi is the number of observations of i after the first time visit t0.

2.1 Feature Extraction

Medical images are often complex and high-dimensional data. Therefore, instead
of proposing a model directly acting on images, we propose to first extract mean-
ingful features using a VAE (referred to as the VAE in the following). We use an
autoencoder because it constrains comparable images to be encoded into similar
locations such that minor variations in the latent space lead to smooth transfor-
mations in the image space. Since we expect smooth progressions, the VAE is
likely to directly unveil trajectories in the latent space, thereby facilitating the
second step of our method (referred to as the generative model in the following).
In the following xi,j ∈ M refers to the features of observation yi,j .
1 Code and dataset details are available at https://github.com/evihuijben/longVAE.

https://github.com/evihuijben/longVAE


An Image Feature Mapping Model 57

Fig. 1. Model sketch. First, features are extracted from images using the VAE (step 1),
then, the proposed generative model maps these features to a straight line in Euclidean
space (step 2). Network details are provided in Appendix 2.

2.2 Trajectory Modelling

We propose to learn parametric functions that map the features onto a linear tra-
jectory in a d-dimensional Euclidean space R

d with standard basis {e1, . . . , ed},
accounting for an individual’s progression. We use the framework proposed
in [17], in which an individual’s progression trajectory at time t is modelled
in R

d as

li(t) = exp(ηi)(t − τi) · e1 +
d∑

k=2

λk
i · ek, (1)

where ηi is a velocity parameter, τi is a delay, and λi = (λk
i )2≤k≤d are spatial

parameters. Contrary to [17], we adopt a fully variational approach to make
the model generative in a similar fashion as [14]. Assuming a set of embeddings
x = {(xi,j)1≤i≤N,0≤j≤Pi

} ∈ M, we first assume that given two individuals i and
i′, the features xi,j and xi′,j are independent. Therefore, we propose to maximise
the following likelihood objective p(x) =

∏N
i=1 p(xi), where xi = (xi,0, · · · , xi,Pi

).
We further assume that the latent variables zi = (ηi, τi, λ

2
i , · · · , λd

i ) ∈ R
d+1 in

Eq. (1) are such that the features of individual i at time tj are generated by:

pθ(xi,j |zi) = N
(
μθ(li(tj)), σ · Id

)
, (2)

where li(tj) is the linear trajectory evaluated at tj , and μθ : R
d → M is

parameterised using a multilayer perceptron (MLP) and maps Rd to the feature
space. The variation introduced by the stochastic model is the d-dimensional
unit matrix Id multiplied by a positive constant σ. We further assume that ηi,
τi, and λi are independent and that for a given individual i, the features xi,j

taken conditionally to zi are independent. Furthermore, prior distributions over
the latent variables are: ηi ∼ N (0, ση), τi ∼ N (0, στ ), λi ∼ N (0, Id−1), with the
dataset dependent priors ση and στ . Finally, the likelihood for an individual i is:
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p(xi) =
∫

zi∈Rd+1

pθ(xi|zi)p(zi)dzi =
∫

zi∈Rd+1

Pi∏

j=0

pθ(xi,j |zi)
∏

κi∈{ηi,τi,λi}
p(κi)dκi.

(3)
Since p(zi|xi), the true posterior distribution, is unknown, we rely on varia-
tional inference [12]. Hence, we introduce a variational distribution qϕ(zi|xi) =
qϕ(ηi|xi)qϕ(τi|xi)qϕ(λi|xi) and derive a new estimate of the likelihood p(xi) =

Ezi∼qϕ(zi|xi)

[
p(xi,zi)
qϕ(zi|xi)

]
. We then compute a lower bound on the true objective

using Jensen inequality and importance sampling using the variational distribu-
tion.

log p(xi) ≥ Ezi∼qϕ(zi|xi)

[
log p(xi|zi)

]
−

∑

κi∈{ηi,τi,λi}
KL(qϕ(κi|xi)|p(κi)),

(4)
with KL the Kullback-Leibler divergence. In practice, we use multivariate Gaus-
sians as variational distributions: ηi ∼ N (μηi

ϕ ,Σηi
ϕ ), τi ∼ N (μτi

ϕ ,Στi
ϕ ) and

λi ∼ N (μλi
ϕ ,Σλi

ϕ ). The parameters for progression, ηi and τi, are estimated from
an input sequence using a recurrent neural network (RNN), while the spatial
parameters, (λ2

i , . . . , λ
d
i ), are computed from the features of the image acquired

at time t0, which are estimated by the first MLP. The implementation details of
the RNN and MLP can be found in Appendix 2, and a sketch of the model is
presented in Fig. 1. Taking only the first image’s features for the spatial param-
eters allows to estimate their value even if only one observation is available and
to generate possible future progressions. Finally, we obtain the following loss
function for one individual (removing constant terms):

Li =
Pi∑

j=0

‖xi,j − μθ(li(tj))‖2 +
∑

κi∈{ηi,τi,λi}
KL(qϕ(κi|xi)|p(κi)). (5)

After training, we can either 1) generate fully synthetic trajectories using
the aforementioned prior distributions, 2) produce possible progressions for a
given individual i by estimating its λi and varying ηi and τi, or 3) interpolate
and extrapolate existing trajectories by estimating the latent variables. Image
sequences are then generated by recovering the features corresponding to a linear
trajectory evaluated at a given time using a second MLP and passing them to
the decoder of the VAE. In practice, we sample λi with a mixture of Gaussians
since [9] recently showed that this approach alleviates the low expressiveness of
the prior and allows to generate more convincing samples.

3 Data

We evaluate the proposed model using three longitudinal datasets. The first
dataset is a toy dataset referred to as Starmen2 [7] consisting of 64 × 64 binary
2 Downloaded from https://doi.org/10.5281/zenodo.5081988.

https://doi.org/10.5281/zenodo.5081988
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images of 1,000 individuals that portray synthetic transformations based on the
longitudinal model of [4], captured in 10 observations per individual. The sec-
ond dataset, CelebA (aligned and cropped version downloaded in 2021) [16],
consists of 64 × 64 RGB images of celebrities’ faces. To resemble longitudinal
medical images, we converted these images to grayscale and applied a simulated
progression model by applying a non-linear intensity transform, a growth fac-
tor, a rotation, and adding Gaussian noise. This dataset can be considered very
challenging since the images undergo global and local geometric transformations
and photometric variations. The last dataset was obtained from the Alzheimer’s
Disease Neuroimaging Initiative3. We used a total of 8,318 MRI scans, obtained
from 1,799 subjects, with an average of 4.6 ± 2.3 scans per person. The average
time between the first and the last scan was 2.9±2.4 years. We selected the 100th

axial slice of every preprocessed scan and cropped it to 182 × 182. The subject’s
ages were used to define the observation times for the generative model, which
were normalised between the overall oldest and youngest age. Details of the
datasets (e.g. preprocessing steps, progression model, data splits, and example
image trajectories) can be found in Appendix 1.

4 Experiments

Most experiments in this section are performed using Starmen and CelebA
because these datasets are fully controlled and allow visual evaluation by non-
medical experts. ADNI is used to show that results can be extended to medical
data. In what follows, the models are selected on the validation set and tested
on an hold-out test set. Experimental and implementation details are provided
in Appendix 2.

Feature Extraction and Reconstruction. First, we train the VAE on each
training set, disregarding the longitudinal component, and confirm the hypoth-
esis that the features directly unveil clear trajectories over time, as can be seen
in Fig. 1b in Appendix 1. To justify that mapping those trajectories to linear
ones (step 2 in Fig. 1) is not too constraining, we analyse the reconstruction
results obtained by 1) only encoding and decoding test images using the VAE
(base), and 2) training the generative model to map the extracted feature tra-
jectories to straight lines (Eq. (1)), evaluate l(t) at observation times and pass
the corresponding features to the decoder of the VAE (ours). Figure 2a and 2c
show the mean squared error (MSE) and structural similarity (SSIM), respec-
tively, of the test set reconstructions. Note that the results obtained using the
proposed model is not expected to be better than the one obtained using the

3 Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fig. 2. Mean and standard deviation of MSE/SSIM (a, b/c, d) for various evaluations.
(a/c) Metric between consecutive images in the test sequences (ref.) and reconstruction
metrics using only the VAE (base) or the generative model (ours). (b/d) Metrics for
the next and last image extrapolated based on a varying input sequence length.

VAE (base) because the generative model only acts on the features and we do not
use any image-based reconstruction cost during its training. The metric values
can be put into perspective by considering the mean value between two consec-
utive images in the test set (ref.). The visual reconstructions in the second row
of Fig. 3 show that linear trajectory modelling does not considerably affect the
image reconstruction ability of the model.

Fig. 3. Extrapolation of different test input sequences for Starmen (left) and CelebA
(right). The first two rows represent the ground truth and reconstructions (ours), respec-
tively. Red squares highlight images that were not provided to the model. Deviation
from the true test Starmen image is presented in colour. (Color figure online)

Trajectory Extrapolation. In this section, we investigate whether the pro-
posed model is able to extrapolate realistic trajectories from existing input data.
To do so, we use the same model as before, but only provide the model with an
image sequence of varying length and assess its ability to reconstruct either the
next or the last image in the sequence. Figure 2b and Fig. 2d show the MSE and
SSIM, respectively, of the ground truth and the extrapolated images based on a
varying input sequence length. It can be seen that extrapolations become more
reliable when a longer input sequence is given. This can also be observed from
the visuals in Fig. 3, which show larger deviations from the ground truth when
fewer images are presented. This experiment shows that in each case the model
is able to estimate the progression: the left arm of the Starmen is raising and the
CelebA head rotates, becomes bigger and contrast changes as expected. However,
the model seems to underestimate the trajectory velocity as the input sequence
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becomes shorter. This aspect could potentially be mitigated by training using
sequences of different lengths.

Data Imputation. We validate the ability of the model to impute missing data
using input sequences simulating partial patient follow-ups. We simulate this by
removing 50% of the training, validation, and test data acquired after t0 using
the Starmen and CelebA datasets. The VAE is trained using the 50% available
images, after which the generative model learns to map the features onto a linear
trajectory. In Fig. 4 we show the reconstructed samples at observation times.

Fig. 4. Data imputation in test sequences with 50% missing data after t0. Top rows
show ground truth trajectories, red squares represent imputed images.(Color figure
online)

Trajectory Generation. We also demonstrate that the proposed model can
generate synthetic trajectories. We consider two cases: generating possible tra-
jectories for a single image acquired at t0 and generating a fully synthetic tra-
jectory based on a synthetic image at t0. In the first case, we first recover λi by
encoding the real image using the VAE, estimate its value using the generative
model and then sample η and τ from their priors as described in Sect. 2.2 and
Appendix 2. In the second case, we first generate a synthetic λ and sample η and
τ as aforementioned. To demonstrate the differences in these parameters, Fig. 5
shows trajectories obtained with varying delay τ (a) and velocity η (b), possible
trajectories from an input image (c) and fully synthetic trajectories (d).

Real images are extracted from the test set and highlighted with blue frames.
The results show that the proposed model allows to decorrelate spatial (λ) and
time parameters (η and τ) since all images in a trajectory represent the same
individual that undergoes smooth progressive change.

Neuroimaging Data. Finally, we validate the ability of the model to generate
Alzheimer’s disease progression trajectories. Figure 5e and 5f show trajectories
generated from an existing input image and a synthetic image, respectively. The
generated trajectories appear realistic because the ventricles grow over time,
which is a marker of ageing and Alzheimer’s disease progression [19]. Moreover,
the proposed model seems to preserve the morphology represented at the first
time point for both real and fake subjects. However, the generated disease pro-
gression trajectories still need to be assessed in more detail, for example by
means of visual analysis by a medical expert or by training a deep learning-based
classifier. Beside generating synthetic trajectories, we also investigate the extrap-
olation capability of the proposed model for the ADNI data, which is shown in
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Fig. 5. Synthetic trajectories derived from real images (indicated by blue frames): (a-c,
e) or synthetic images (d, f). (Color figure online)

Fig. 6. Contrary to the Starmen and CelebA experiments, this experiment shows
a better performance for a shorter input sequence length. Generally, the pro-
posed model seems to underestimate the disease progression (as estimated by η
and τ), leading to a worse quantitative result for a later extrapolated sample.

Fig. 6. Mean MSE (left) and SSIM (right) for the extrapolated next image after a given
input sequence of the ADNI test set, with n the number of subjects. For interpretation
of the colour bars, the reader is referred to the online version. (Color figure online)

5 Discussion and Conclusion

In this study we proposed a new continuous generative model capable of syn-
thesising longitudinal imaging data to perform trajectory extrapolation, data
imputation and smooth and probable synthetic trajectory generation. A notable
strength of our model lies in its two-step architecture, which allows substitut-
ing the VAE to make the model suitable for any data type, e.g. using clinical
scores directly as features. We believe that this work is a step towards synthe-
sis and augmentation of longitudinal medical (image) datasets. However, the
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model needs more optimisation for such a high-dimensional complex medical
imaging dataset, and a better trade-off between dimensionality reduction and
efficient training of the generative model should be investigated. Furthermore,
the hypothesis of smooth trajectories could be put into perspective by consid-
ering the disentangled ‘brain age’ instead of the real patient’s age [27]. Future
work should also focus on validating the ability of the model to perform reliable
data augmentation for ML-based classification tasks or assess its relevance to
perform treatment response analysis.
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