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Abstract. Electroencephalography produces high-dimensional, stocha-
stic data from which it might be challenging to extract high-level knowl-
edge about the phenomena of interest. We address this challenge by
applying the framework of variational auto-encoders to 1) classify mul-
tiple pathologies and 2) recover the neurological mechanisms of those
pathologies in a data-driven manner. Our framework learns genera-
tive factors of data related to pathologies. We provide an algorithm to
decode those factors further and discover how different pathologies affect
observed data. We illustrate the applicability of the proposed approach
to identifying schizophrenia, either followed or not by auditory verbal
hallucinations. We further demonstrate the ability of the framework to
learn disease-related mechanisms consistent with current domain knowl-
edge. We also compare the proposed framework with several benchmark
approaches and indicate its classification performance and interpretabil-
ity advantages.
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1 Introduction

Analysis of neurological processes in the human brain is a challenging pro-
cess addressed by neuroimaging. Here, one typically obtains high-dimensional
stochastic data, which encourages the usage of machine learning algorithms. In
recent years, deep learning discriminative models have been actively applied to
neuroimaging issues (see [1] for a review). They yielded state-of-the-art results in
classification problems on a variety of benchmark datasets [2–4]. One downside
of deep learning-based classifiers is that they operate as black boxes [5] meaning
that interpreting their predictions is often severely complicated.
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[1] suggested that hybrid generative-discriminative models might help resolve
the issue. Such models can learn low-dimensional representations of data where
each dimension corresponds to an independent generative factor (i.e. a disentan-
gled representation, see [6] for a review). The discriminative part of the model
then forces those factors to capture label information from data [7]. Interpretabil-
ity is thus achieved via decoding the meaning of generative factors related to
particular labels [8]. It is especially relevant in neuroimaging as one can observe
how underlying pathologies govern the process of data generation.

The paper follows the intuition regarding hybrid generative-discriminative
models for neuroimaging data, with particular application to EEG data. Our
main contributions are as follows:

1. We demonstrate how one can apply characteristic capturing variational auto-
encoders (CCVAEs) [7] to the interpretable classification of EEG data;

2. We compare the model to two generative models previously used for EEG
data: conditional VAEs and VAEs with downstream classification;

3. We propose an algorithm for decoding generative factors learned by CCVAEs;
4. We demonstrated that learned generative mechanisms associated with

pathologies are consistent with evidence from neurobiological studies.

2 Background

In this section, we introduce the relevant materials on variational auto-encoders,
disentangled factorization and the role of supervision.

Variational Auto-Encoders. Variational auto-encoders (VAEs) [9] learn a
model distribution pθ(x, z) that describes the ground-truth data generation pro-
cess p(x, z) as first sampling random variables z from a prior distribution p(z).
Then, an observation x is inferred based on generative factors pθ(x|z) yielding

pθ(x, z) = pθ(x|z)p(z) (1)

Here, the conditional distribution is parameterized with neural networks
whose learned parameters are denoted with θ. Defining latent variables as jointly
independent yields disentangled factorization [10] that separates the generative
process into human-interpretable [8] generative mechanisms.

Supervised Learning. A label variable y ∼ p(y) can be interpreted as the
context that partially governs the generation of an observed variable x. In VAEs,
it is reflected by generative factors p(x|z,y) of a model. It leads to the joint
distribution factorized as follows:

pθ1,θ2(x, z,y) = pθ1(x|z,y)pθ2(z|y)p(y) (2)

where θ1, θ2 are parameters of corresponding model distributions. The equality
holds due to the chain rule. Incorporating label information into the model allows
learning generative factors corresponding to those labels via pθ2(z|y).
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Fig. 1. Scheme of the proposed approach (A). We receive EEG data as input and learn
a stochastic mapping to the latent space with CCVAEs (B) [7]. We further manipulate
learned generative factors of data to gain insights regarding neurological mechanisms
related to the attribute of interest, e.g. a symptom.

3 Methods

The proposed framework consists of 2 steps (see Fig. 1). First, EEG data is
mapped stochastically to the latent space via CCVAEs. The latent space is con-
structed such that each label is related to a single independent generative factor.
Second, we perform an intervention analysis to decode the meaning of label-
related generative factors. This way, we get an intuition regarding mechanisms
through which labels govern data generation. In our case, we are interested how
different pathologies manifest themselves in functional connectivity matrices.

Characteristic Capturing VAEs. We aim at learning a model of a joint
distribution over observed EEG data x, labels (e.g. pathology indicators) y and
latent variables z partially conditioned to y. Let us assume that x and y are
conditionally independent given z. Then, the generative model (see Eq. 2) can
be rewritten as follows:

pθ1,θ2(x,y, z) = pθ1(x|z) pθ2(z|y) p(y)

We further partition the latent space z such that one partition zc encapsulates
label associated characteristics, and the second partition z\c accounts for shared
features of data (as in the vanilla VAEs):

pθ2(z|y) = pθ2(zc|y) · p(z\c)

The characteristic partition zc is further partitioned so that each label can
access only a single latent variable. It guarantees the disentanglement of label
information in latent representations. The intractable distribution p(z|x,y) is
conditioned to both observation and label variables. It is approximated with the
following inference model:

qφ1,φ2(z|x,y) =
qφ1(y|zc) qφ2(z|x)

qφ1,φ2(y|x)
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where φ1, φ2 are parameters of model distributions. The conditional distribution

qφ1,φ2(y|x) =
∫

qφ1(y|zc) qφ2(z|x) dz

reflects that observation variables x and label variables y are connected via the
characteristic partition zc. Label-related information is captured in an obser-
vation x by the inference model qφ2(z|x). At the same time, classifier qφ(y|zc)
forces the label-related latent variables zc to capture characteristics of those
labels.

As for the vanilla VAEs, the model is optimized by maximizing the evidence
lower bound [9]. In the case of CCVAEs, it is equivalent to maximizing the
following objective (see Appendix B.1 of [7] for derivation):

L(x,y) = Eqφ2 (z|x)

[
qφ1(y|zc)

qφ1,φ2(y|x)
log

pθ1(x|z) pθ2(z|y)
qφ1(y|zc) qφ2(z|x)

]
+ log qφ1,φ2(y|x) (3)

The classification term log qφ1,φ2(y|x) is essentially a learnable mapping from
input data x to labels y that goes through the characteristic partition of the
latent space zc. It applies pressure onto the partition to learn label-related char-
acteristics from data and simultaneously performs data classification.

Intervention Analysis. The learned generative model forms the bridge
between observations x and their labels y via latent variables zc. It allows one
to analyze generative factors pθ1,θ2(x|z,y) of data related to those labels. One
can explore the relation via intervention analysis. The algorithm for a single
binary label of interest yi is as follows. First, one fixes every dimension of the
latent space z except the one zi

c that corresponds to the label yi. Next, the
value of zi

c is sampled from pθ2(z
i
c|yi) for each value of yi ∈ {0, 1}. As a result,

one receives two latent representations z0, z1 that vary only in a single dimen-
sion zi

c. Those representations are then reconstructed to the observation space
x0 ∼ pθ1(x|z = z0), x1 ∼ pθ1(x|z = z1). The procedure is repeated for N times.
As a result, one gets multiple pairs of reconstructions (x0,x1) that are differ-
ent only to the varied generative factor zi

c. One further calculates the average
difference 1

N

∑N
k=1(x

k
1 − xk

0) for each pair, and thus observes how the label yi

manifests itself in data.

4 Related Works

The fusion of generative and discriminative models with application to neu-
roimaging data is an active area of research. [11] demonstrate that using learned
representations leads to more robust classification performance compared to
feed-forward neural networks. [12] introduce VAEs into feature extraction from
multichannel EEG data yielding better accuracy than traditional unsupervised
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approaches. [13] use stacked VAEs for semi-supervised learning on EEG data.
However, the label information is usually encapsulated by multiple latent vari-
ables simultaneously. In this case, label characteristics are smeared across the
latent space, thus complicating the analysis of label-related generative factors.
It, in turn, limits both the interpretability and explainability of these models.
One has to decode and interpret each latent variable and then infer the relation
with label variables which is not a trivial task.

Two flavours of VAEs that are commonly applied to EEG data are conditional
VAEs [13]1 and VAEs with downstream classification [12]. In both approaches,
the latent space is not partitioned with respect to label variables. Hence, com-
pared to CCVAEs, their general disadvantage is reduced interpretability of clas-
sification as it is difficult to build a bridge between labels and generative factors.

Conditional VAEs. Conditional VAEs have a graphical model similar to the
one of CCVAEs. The only difference is that the latent space is not partitioned
to labels, i.e. z = zc. Learnable parameters are optimized via maximizing the
objective Eq. (3). The framework allows conditional sampling, so one can use
intervention analysis to decode the meaning of learned generative factors. Nev-
ertheless, the interpretation is complicated as a single label variable is connected
to each dimension of the latent space.

VAEs + Downstream Classification. The model approximates the joint
distribution of observed data and latent variables that is factorized as Eq. (1).
The relation between latent variables and labels is built via classifying a latent
representation. The model is trained via optimizing the following objective [11]:

L(x,y) = Eqφ(z|x)

[
log pθ(x|z) − DKL(qφ(z|x)||p(z)) − BCE(fξ(z), y)

]
(4)

where fξ : Z → Y is a learnable classifier with parameters ξ, BCE is binary
cross-entropy function. Here, the information about label variables is incorpo-
rated into the latent space via pressure applied by a downstream classification
task. The model can be seen as a feed-forward deep neural network with addi-
tional regularization imposed by the decoder part of VAEs.

5 Experimental Details

Experimental Study. The study comprised 29 patients suffering from
schizophrenia and 52 healthy controls. 14 subjects out of those 29 indicated
the emergence of auditory verbal hallucinations (AVH), i.e. hearing voices with
no external stimuli presented. Every participant was right-handed. Six different

1 Technically, [13] use stacked VAEs that have two connected latent spaces. One of
the spaces is connected to label variables. However, the framework can be seen as
an instance of conditional VAEs with a non-trivial structure of the latent space.
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syllables were spoken to each participant (/ba/, /da/, /ka/, /ga/, /pa/, /ta/) for
500 ms simultaneously to each ear after 200 ms silence period. Meanwhile, the
EEG recording was conducted with 64 electrodes where 4 EOG channels were
used to monitor eye movements. For each subject, we repeated the procedure
multiple times (number of trials for AVH: 68.23 ± 19.43; SZ: 68.76 ± 14.79 and
HC: 71.19 ± 12.93). At the preprocessing step, the data was filtered from 20
120 Hz according to a protocol described in [14]. Therefore, only gamma-band
frequencies are preserved. Afterwards, all channels were re-referenced to the com-
mon average. At last, muscle and visual artefacts were identified and removed.
For our experiments, we utilized two parts of a recording: the resting one (first
200 ms with no syllable given) and the listening one (initial 200 ms when syl-
lables were presented). The study of [14] contains detailed data acquisition and
preprocessing information.

Experimental Data. For each EEG recording [ζ1, ζ2, ..., ζ61], we assessed func-
tional connectivity by calculating a correlation matrix:

xij =
cov(ζi, ζj)√

var(ζi) · var(ζj)

As a result, functional connectivity matrices play the role of observed data x. We
introduce 3 binary labels such that y = [listening, schizophrenia, hallucinations].
To create a dataset for training models, we use the intra-patient paradigm, i.e.
data from the same subject can appear simultaneously in training and test
datasets. Thus, data of all the subjects are randomly sampled to form those
datasets yielding 9000 training samples and 2000 test samples.

Implementation Details. One can find details regarding the parametrization
of distributions in the supplementary material (Section S.1). We release the
implementation at GitHub. For each framework, the parameters θi, φj (and ξ
for VAEs) are trained via optimizing the corresponding objective. We use Adam
optimizer with a learning rate of 10−3. The training was performed in mini-
batches of size 32 for 100 epochs. All models are trained on an NVIDIA Tesla
V100 GPU from the Hemera HPC system of HZDR.

6 Results and Discussion

We found that high-dimensional latent spaces (dim > 32) hinder the repro-
ducibility of generative factors learned by CCVAEs. For that reason, we keep
the latent space of all models low-dimensional: z ∈ R

5 (zc ∈ R
3, z\c ∈ R

2 for
CCVAEs).

https://github.com/maxxxzdn/eegVAE
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Table 1. Comparison of CCVAEs to base-
line models in terms of accuracy and disentan-
glement scores on the test dataset. For each
framework, 10 experiments were conducted.

Framework Accuracy SAP score [16] MIG score [15]
CCVAEs 0.84 ± 0.01 0.34 ± 0.02 0.04 ± 0.01
Conditional VAEs 0.69 ± 0.10 0.07 ± 0.07 0.01 ± 0.01
VAEs + classification 0.74 ± 0.03 0.06 ± 0.04 0.01 ± 0.01

Results. As shown in Table 1,
CCVAEs outperform baseline mod-
els in both classification perfor-
mance and disentanglement (see
supplementary material S.2 for
details). The framework consis-
tently classifies observed data based
on its low-dimensional representa-
tion, yielding a low standard deviation of accuracy. Besides, it demonstrates a
high level of disentanglement, meaning that each label variable is captured only
by a single latent dimension. For CCVAEs, generative factors are disentangled
in the latent space by design, leading to the highest score. It is not as high as
expected due to the correlation between pathology labels.

Fig. 2. Confusion matrices for different
methods. The size of the circle indicates
the value of the corresponding element.
Rows correspond to label variables (L -
listening, S - schizophrenia, H - hallucina-
tions) while columns represent latent gen-
erative factors.

Fig. 3. Latent space generated by sam-
pling from the inference model qφ(z|x)
of different methods. For CCVAEs, the
axes corresponding to pathology vari-
ables are shown. For baseline methods, 2
randomly selected dimensions are visu-
alized.

Disentangled Latent Space. To demonstrate how hard-wired disentangle-
ment affects the latent space learned by CCVAEs, we construct confusion matri-
ces in the following way. We compute latent representation for each data point
in the test dataset and intervene (i.e. randomly change its value) upon a single
dimension. We further observe how log-probabilities assigned by a pre-trained
classifier change due to the intervention for each label. We calculate the difference
for each label-latent pair yielding a confusion matrix (see Fig. 2). The optimal
result would be one non-zero element per row (i.e. label), which means that each
label corresponds to only a single generative factor. This is the case of CCVAEs,
where one can observe one-to-one dependence between label variables and cor-
responding generative factors. This leads to latent representations being robust
to variations in data generative factors, as those are independent by design. At
the same time, the characteristics of labels are entangled within latent spaces of
baseline frameworks. Hence, it is difficult to disentangle the influence of a label
from other generative factors, which severely hinders interpretability.
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Posterior Distribution. We further compare latent spaces learned by each
framework. To visualize the latent space, we sample z ∼ qφ(z|x) for multiple
x from the test dataset for each model. The result is shown in Fig. 3. In the
case of CCVAEs, the distribution has three modes corresponding to subject
cohorts in data (healthy, schizophrenia, schizophrenia followed by AVH). The
separation is caused by the influence of the conditional prior and the classifier,
aiming to separate representations encoding different label combinations. In the
case of baseline frameworks, there is no strict regularisation that preserves label
information within a partition of the latent space. As a result, features of data
encoded by their latents are shared between cohorts of subjects (thus one or two
modes). We discovered that both baseline methods often fail to jointly learn a
low-dimensional representation and classify labels when the pressure on the KL
divergence term in the loss objective is high. The problem is partially solved by
introducing a scaling factor β for the term [8]. However, reducing the pressure
might lead to untrustable reconstruction if prior p(z) is not sufficiently close to
the inference model q(z|x). This is not the case for CCVAEs that do not require
any manual fine-tuning and operate stably with low-dimensional latent spaces.

yi = schizophrenia yi = hallucinations

Fig. 4. Average difference in reconstruc-
tions of functional connectivity matri-
ces when intervening on a single label:
schizophrenia (Left) and hallucinations
(Right). Connections that are stronger
when a disorder is presented are shown in
red; otherwise, blue. For clarity, we visu-
alize only 40 connections with the highest
absolute value.

Analyzing Pathological Mecha-
nisms. We further investigate what
connections are affected when inter-
vening upon a single label dimension
via intervention analysis (Fig. 4, see
supplementary material S.3 for com-
putation details). The model asso-
ciates the emergence of AVH with
alterations in frontotemporal brain
areas (the highest positive difference),
which have been repeatedly observed
in prior studies [17,18]. The salient
connections are mainly located in the
right hemisphere, which is supported
by the fMRI study of [19]. The model
also points toward reduced connectiv-
ity between hemispheres. It is coher-
ent with the current hypothesis (see
[14] for review) that connects the emergence of auditory verbal hallucinations
with the interhemispheric miscommunication during auditory processing. Over-
all, the model can at least partially reconstruct the neurological mechanism of the
symptom for functional connectivity. To explain the emergence of schizophrenia,
the model focuses mainly on the left hemisphere. It is not surprising since the
auditory function is left-lateralized for right-handed people [20,21]. It would be
an interesting direction for further studies to apply CCVAEs to learn the mech-
anisms of particular symptoms of the composite disorder (e.g. hallucinations,
delusions, etc.).
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7 Conclusion

We demonstrated how to apply the framework of characteristic capturing vari-
ational auto-encoders to EEG data analysis. The method encapsulates and dis-
entangles the characteristics associated with different pathologies in the latent
space. As generative factors are independent by design, one can decode their
meaning and discover how those pathologies alter observed data. It leads to
improved interpretability coupled with the high classification performance of
neural networks. The framework is not limited to functional connectivity analy-
sis or EEG data and can be easily adapted to different neuroimaging modalities.
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