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Abstract. Generative models such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) play an increasingly
important role in medical image analysis. The latent spaces of these
models often show semantically meaningful directions corresponding to
human-interpretable image transformations. However, until now, their
exploration for medical images has been limited due to the requirement
of supervised data. Several methods for unsupervised discovery of inter-
pretable directions in GAN latent spaces have shown interesting results
on natural images. This work explores the potential of applying these
techniques on medical images by training a GAN and a VAFE on thoracic
CT scans and using an unsupervised method to discover interpretable
directions in the resulting latent space. We find several directions corre-
sponding to non-trivial image transformations, such as rotation or breast
size. Furthermore, the directions show that the generative models cap-
ture 3D structure despite being presented only with 2D data. The results
show that unsupervised methods to discover interpretable directions in
GANSs generalize to VAEs and can be applied to medical images. This
opens a wide array of future work using these methods in medical image
analysis. The code and animations of the discovered directions are avail-
able online at https://github.com/julschoen/Latent- Space- Exploration-
CT.
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1 Introduction

The combination of deep learning and medical images has emerged as a promising
tool for diagnostics and treatment. One of the main limitations is the often
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small dataset sizes available for deep learning. Generative models can be used
to mitigate this by synthesizing and augmenting medical images [12].

Generative Adversarial Networks (GANs) [6] have emerged as the prominent
generative model for image synthesis. Consequently, research focusing on the
interpretability of GANs has unfolded. At their inception, Radford et al. [20]
showed meaningful vector arithmetic in the latent space of Deep Convolutional
Generative Adversarial Networks (DCGANS). For several years, the methods
used for discovering interpretable directions in latent spaces have been super-
vised [4,11,19] or based on simple vector arithmetic [20]. Especially in medical
image analysis, supervision is expensive as it typically involves radiologists or
other experts’ time. Recently, several unsupervised methods for discovering inter-
pretable directions in GAN latent spaces were proposed [7,23,25]. Due to being
unsupervised, they seem more promising for the medical domain. However, it
is still unclear if they work with the often more homogeneous images and the
smaller dataset sizes encountered in this field.

Next to GANSs, the interpretability of Variational Autoencoders (VAEs) [15]
has also been studied extensively. However, the investigation has mainly focused
on obtaining disentangled latent space representations [10,13]. While this shows
promising results, it might not be possible without introducing inductive biases
[17]. Applying the approaches for the unsupervised discovery of interpretable
directions in latent spaces developed for GANs to VAEs might yield an alter-
native route for the investigation of interpretability in VAEs. Thus, if the same
methods that have shown promising results on GANs are effective on VAEs,
then VAEs can be trained without restrictions on the latent space, therefore not
incorporating inductive biases while still having the benefit of interpretability
and explicit data approximation.

Contributions: We employ a technique for the unsupervised discovery of inter-
pretable directions in the latent spaces of DCGANs and VAESs trained on Com-
puted Tomography (CT) scans. We show that these methods used to inter-
pret the latent spaces of GANs generalize to VAEs. Further, our results pro-
vide insights into the applicability of these methods for medical image analysis.
We evaluate the directions obtained and show that non-trivial and semantically
meaningful directions are encoded in the latent space of the generative models
under consideration. These directions include both transformations specific to
our dataset choice and ones that likely generalize to other data. In particular,
this allows for future work considering semantic editing of medical images in
latent spaces of generative models.

2 Background

2.1 Generative Latent Models

As the backbone of this work we use generative latent models. We employ two of
the most popular model types in GANs [6] for implicit and VAEs [15] for explicit
approximation of the data distribution [5].
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Given the discriminator D, the generator G, the latent distribution p,, the
data distribution pgq¢q, and binary cross-entropy as the loss the GAN optimiza-
tion is given by:

min mgz V(D, G) = Eynpy,,, 08 D(@)] + Eany. log(1 = DG (1)

We optimize the VAE using the Evidence Lower Bound (ELBO) with addi-
tional scaling factor § [10] given by:

Ly ap = —Eq,[log py(2(2)] + 8Dk L[g0(z]2)||p(2)] (2)

where the first term is referred to as the reconstruction loss, with py giving the
likelihood parameterised by ¢, and the second term as the regularization loss
given by the Kullback-Leibler Divergence (KLD), with gy giving the approxi-
mate posterior parameterised by 6 and p(z) is the prior given by p(z) ~ N (0, 1).

2.2 Discovery of Interpretable Directions in Latent Spaces

Several unsupervised methods to find interpretable directions in GAN latent
spaces have been proposed [7,23,25]. In Harkonen et al.; Shen et al. [7,23] the
directions are orthogonal. This constraint is relaxed in Voynov and Babenko
[25]. As interpretable directions do not have to be orthogonal, we employ the
method suggested by Voynov and Babenko [25]. The proposed method can be
applied to any pretrained latent generative model G. The objective is to learn
distinct directions in the latent space of G' by learning a matrix A containing
directions and a reconstructor R to distinguish between them. Since A and R
are learned jointly, the directions of A are likely to be interpretable, semantically
meaningful, and affect all images equally. Otherwise, distinguishing between the
directions would be hard, and consequently, the accuracy of R would suffer.

a zZ
0 a ~U[-A A] Z~N'(0,1) .—' %

[
[ | | z+ Aaey) ¢ = —a
] e [ b,

0

Fig. 1. Schematic overview of the learning protocol suggested by Voynov and Babenko.
The upper path corresponds to the original latent code z ~ A(0, I) and the lower path
corresponds to the shifted code z + A(aer) (Adapted from [25]).

Formally, the method learns a matrix A € R¥* X where d is the dimension-
ality of the latent space of G, and K is the number of directions that will be
discovered. Thus, the columns of A correspond to discovered directions and are
optimized during the training process to be easily distinguishable. Further, let
z ~ N(0,I) be a latent code, e, an axis-aligned unit vector with &k € [1, ..., K|
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and « a scalar. Then, we can define the image pair (G(z), G(z + A(aey))) where
G(z) is the original image generated by latent code z and G(z + A(aey)) is a
shifted image from the original latent code z shifted along the kth discovered
direction by amount «. Thus, « is a ’knob’ controlling the magnitude of the shift.
Given such an image pair, the method optimizes the reconstructor R presented
with that pair to predict the shift direction k£ and amount «. Figure 1 illustrates
the architecture. The optimization objective is given by:

TE’L}’I%'L Ez,k,a[Lcl<k7 ]AC) + ’VLS(O" d)] (3)

where k and « are the direction and amount respectively, and k and & are the
predictions. The classification term L.; is given by cross-entropy. Further, we
can use the classification term to get the Reconstructor Classification Accuracy
(RCA), i.e., the accuracy of predicting the direction. Finally, the shift term L,
is given by the mean absolute error, and the regularization factor ~.

3 Material and Methods

3.1 Data

We use Lung Image Database Consortium image collection (LIDC-IDRI) [2] pro-
vided by The Cancer Imaging Archive (TCIA). It consists of clinical thoracic CT
scans of 1010 patients collected from diagnostic and lung cancer screenings and
is assembled by seven academic centers and eight medical imaging companies.
We consider each axial slice as an individual image. Thus, our dataset consists
of 246,016 CT slices. We resize the images to 128 x 128 pixels to limit compu-
tational demands and limited the data to a range of [—1000,2000]Hu to reduce
the amount of outlier values and normalized using min-max scaling.

3.2 Models and Training

Since this study focuses on the potential of unsupervised exploration of latent
spaces for medical images, we use simple generative models. We use a DCGAN
based on Radford et al. [20], improving training stability by introducing one-
sided label smoothing [22], replacing the fixed targets 1 of the real labels with
smoothed values randomly chosen from the interval [0.9, 1]. Additionally, we add
0-mean and 0.1 standard deviation Gaussian noise to the discriminator input
[1], incrementally reducing the standard deviation and finally removing it at
the midpoint of training. The encoder and decoder of the VAE are based on
ResNet [8], and we use = 0.01 to improve reconstruction quality. For both
generative models, we use a latent space size of d = 32 as it showed the best
trade-off between image quality and compactness of the latent space. We refer
to the provided GitHub repository for implementation details. We train the
GAN and the VAE for 50 epochs selecting the best weights out of the last 5 by
considering the models Fréchet Inception Distance (FID) [9] on test data. We
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use binary cross-entropy as loss for the GAN and log mean squared error [28]
as reconstruction loss for the VAE. We use Adam [14] with a learning rate of
0.0002 and 0.0001 to optimize the GAN and VAE, respectively. The best model
weights yield a FID of 33.4 for the GAN and 93.9 for the VAE on the test data.

To find interpretable latent directions, we use two different reconstructor
architectures, based on LeNet [16] and ResNet18. We experiment with A hav-
ing unit length or orthonormal columns as suggested by Voynov and Babenko
[25]. We set the number of directions K equal to the size of the latent space,
ie., K = 32, and experiment with increasing it to K = 100. We observe sig-
nificantly faster convergence when using the ResNet reconstructor. Thus, when
using K = 32, we train the model for 25,000 iterations using LeNet and 3,000
iterations using the ResNet reconstructor. When K = 100, we train the VAE for
75,000 and 4,000 iterations with the LeNet and ResNet reconstructors respec-
tively. For the GAN we observe slower convergence. Thus, we train for 250, 000
and 10,000 iterations with the LeNet and ResNet reconstructors, respectively.
Since we cannot have K > d for orthonormal directions, we only use A with
columns of unit length for K = 100. We evaluate direction models using the
RCA and the shift loss Ly from Eq. 3. Further, we follow the ablation provided
by Voynov and Babenko [25] and use a regularization factor v = 0.25. To evalu-
ate the directions, preliminary labeling was done by the first author with eight
animations, each showing different latent vectors per direction. Next, each direc-
tion and preliminary label was considered on eight static images. The evaluator
does not have formal training in medical image interpretation, and it is pos-
sible that more experienced evaluators could have discovered more interesting
directions.

4 Experiments and Results

We perform several experiments to investigate the unsupervised exploration of
latent spaces of deep generative models. First, we train using orthonormal direc-
tions and directions of unit length. We also experiment with increasing the num-
ber of directions. Finally, we perform all experiments both with a DCGAN and a
VAE as generative models. All results are obtained without supervision, except
the labeling of the selected directions. The RCA and Ls of the different exper-
iments are presented in Table 1. We observe that the VAE always outperforms

Table 1. Reconstructor Classification Accuracy (RCA) and L for all model configu-
rations for ResNet and LeNet as reconstructor.

Orthogonal Unit length 100 directions
RCA | L; RCA | Lg RCA | L,

GAN ResNet | 0.9236 | 0.2538 | 0.9383 | 0.1949 | 0.9522 | 0.1560
GAN LeNet |0.8559|0.3317|0.9062 | 0.2439 | 0.9305 | 0.1406
VAE ResNet | 0.9939 | 0.1040 | 0.9947 | 0.1086 | 0.9861 | 0.1117
VAE LeNet |0.9800 | 0.1421|0.9895 | 0.1090 | 0.9791 | 0.0962
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the GAN with respect to both RCA and L. Further, using directions of unit
length achieves higher RCA than orthonormal directions and lower Ly in all
but one case. We also observe higher RCA when using ResNet over LeNet as a
reconstructor. In contrast, LeNet achieves a lower L, when K is set to 100.

Voynov and Babenko [25] mention that a larger K does not harm inter-
pretability but alleviates entanglement and may lead to more duplicate direc-
tions. We observe the same behavior with K = 100 as opposed to K = 32.

Our results show eight consistent directions: width, height, size, rotation,
y-position, thickness, breast size, and z-Position. All model configurations find
all eight directions with varying degrees of entanglement. In this work, we omit
directions entangled to such a degree that there is no clear interpretation domi-
nating the image transformation. Thus, all configurations find at least a subset of
the directions above in a sufficiently disentangled manner. We present animations
of all discovered directions in the provided GitHub repository. Figure 2 shows all
eight directions for the VAE and GAN. The directions presented are obtained
using LeNet as reconstructor and K = 100. Directions obtained using different
model configurations are presented in the supplementary material. OQur results
show that enforcing orthonormal directions increases entanglement. Finally, we

- Width + - Width +
- Height + - Height +

Rotation Rotation

- y-Position + y Position +

- Thickness + Thlckness +

- Breast + - Breast +

4——— - z-Position + > - z-Position +

GAN VAE

Fig. 2. Interpretable directions using A3?*1% with unit length columns, LeNet as

reconstructor, and the GAN and VAE as generative models. The central images corre-
spond to the original latent vector. The left/right images correspond to shifts.
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observe that when using a LeNet reconstructor, more of the obtained directions
are easily interpretable compared to using a ResNet reconstructor.

5 Discussion

In this work, we explored the latent spaces of deep generative models to discover
semantically meaningful directions. We next elaborate on some of the findings
of our experiments.

Influence of K: We observe less entanglement when increasing K. Thus, we
hypothesize that lower K likely makes the reconstructor classification task eas-
ier, as there are less classes, lessening the need for disentanglement. If so, when
increasing K, the increasing classification difficulty forces the model to disen-
tangle the directions more.

Orthonormal Directions: While constraining the directions to be orthonor-
mal still leads to the same subset of interpretable directions being discovered,
their quality suffers. This aligns with the observations of Voynov and Babenko
[25]. However, their results show that some datasets benefit from orthonormal
directions, leading to more interesting directions. We do not observe this on
our data, and the lack of disentanglement is also clear from the lower RCA of
the methods using orthonormal directions. Thus, it seems likely that directions
offering semantic meaning are not necessarily orthonormal, strengthening our
reasoning for choosing this method over Harkonen et al.; Shen et al. [7,23].

Choice of Reconstructor: When K = 32 both reconstructors show similar
qualitative results, more entangled directions, Ls is larger, and ResNet quan-
titatively outperforms LeNet. For K = 100, LeNet produces better qualitative
results than ResNet. This is also evident in the quantitative results with LeNet
and K = 100 achieving the lowest L,. While ResNet has a higher RCA, RCA
gives a measure of duplicate directions and only partially describes interpretabil-
ity. Since LeNet performed best when using K = 100 and the increased number
of directions benefited disentanglement, we prefer LeNet as reconstructor.

Consistent Discovery of Interpretable Directions: The same subset of
human interpretable directions appears for all models with varying degrees of
entanglement. Recent work has shown non-linear directions to be less entangled
[24] which could be studied further. The directions are validated by showing that
the same set is discovered in the latent space of both the generative models. The
resulting directions we discover show non-trivial image transformations. In par-
ticular, the directions changing the z-Position of the latent vector demonstrates
that the models learn the 3D structure of the data despite being trained on 2D
images. While the focus of discovering directions in latent spaces has mainly
been on GANSs in recent years, we see that the same methods apply to VAEs.
Since VAEs allow for explicit data approximation, they have a practical benefit
over GANs when considering the usefulness of these methods.



Interpreting Latent Spaces of Generative Models 31

Impact and Applications: Improving interpretability of GANs and VAEs is
important and addressed in this work by finding and visualizing meaningful
latent space directions and providing novel insights into the learned represen-
tations. The method is shown to generalize to VAEs, indicating that the latent
spaces of VAEs and GANs can be interpreted in similar ways. However, shorter
convergence times on the VAE when learning the directions indicate that VAEs
latent spaces could be inherently easier to interpret. Unsupervised exploration
further benefits the medical image domain due to the lack of well-supervised
datasets, and more importantly, it could lead to surprising results outside of
what we are explicitly supervising methods to find.

Our work can further be used for context-aware image augmentation and
editing. Image augmentation using synthetic data improves downstream machine
learning tasks on medical images [3] and can alleviate both the small dataset
sizes and imbalance inherent to medical imaging [12,27]. Our results could be
used to explore more diverse augmentations, e.g., adjusting for sex and weight
imbalances. Additionally, our work might offer an alternate unsupervised app-
roach to disease-aware image editing [21].

We see further applications needing more investigation, such as exploring
the potential in consistency regularization and multi-modal datasets. For exam-
ple, finding directions corresponding to adding or removing contrast in scans.
Further, the approach we use has been shown to be effective in unsupervised
saliency detection and segmentation on natural images [18,25,26].

Limitations: The main limitations we observe in our work are based on the
methodology for unsupervised exploration. First, while the RCA and shift loss
give some insights into convergence, the implications of overfitting need to be
investigated. In particular, deciding how many training iterations to use is dif-
ficult as model performance can not be assessed on independent data. Further,
the lack of evaluation metrics makes the choice of reconstructor difficult. We
tried to mitigate this by using RCA and L, for quantitative and human inter-
pretation for qualitative analysis. Nevertheless, further investigation is needed
to find good evaluation metrics. Second, the large amount of resulting directions
makes evaluation difficult and time-consuming. This is particularly challenging
in medical image analysis as evaluation may involve trained evaluators such as
radiologists. Further automation or introducing a hierarchy of interpretability
could be a focus of future work. Next to the methodological limitations, we see
further potential for expanding our work to 3D generative models and more
datasets in the future.

6 Conclusion

In this work, we have demonstrated for the first time that techniques for unsu-
pervised discovery of interpretable directions in the latent space of generative
models yield good results on medical images. While the interpretability of latent
spaces is arguably an abstract concept depending on those interpreting, our
results show that generative models learn non-trivial, semantically meaningful
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directions when trained on CT images of the thorax. We encounter directions
with the same semantic meaning regardless of the generator or direction dis-
covery model, indicating a general structure of the latent spaces. Further, our
results show that the generative models’ latent spaces capture the 3D struc-
ture of the CT scans despite only being trained on 2D slices. The work opens
up the possibility of exploring these techniques for unsupervised medical image
segmentation, interpolation, augmentation, and more.
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