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Abstract. Synthesis of images has recently seen many works that pro-
duce high-quality real world images. In the domain of medical imaging
the application of deep generative models especially Generative Adver-
sarial Networks (GANs) can be applied to many different tasks. Under
the premise of the generation of high-quality images that match the
distribution of the original data, the synthesized data can be used to
increase the size of small datasets, or in combination with condition-
ing on meta data, to increase the size of underrepresented classes in the
dataset. In this work we propose a model that generates 3D medical
images. The model can easily be conditioned on meta data, for example
available patient information. We evaluate the quality of the generated
images and compare our model against the 3D-StyleGAN model which
is also designed for 3D medical image synthesis.
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1 Introduction

In this work we propose a GAN architecture for the generation of 3D volumetric
images. The design decisions of the architecture were inspired by the findings of
DCGAN [16] and FastGAN [14] which were then validated for 3D medical image
synthesis through an ablation study. Additionally we propose to use linear condi-
tioning in the generator and discriminator on available meta data. There is little
work on 3D medical image synthesis, especially with high resolution greater than
643. This can partly be explained with the requirement of Graphical Processing
Unit (GPU) memory imposed by the three dimensions of the data. Often this
lack of GPU memory has to be compensated by reducing the number of feature
maps or the depth of the network which makes the training more challenging.
Some previous works tried to overcome this issue by synthesizing only a slab
of the volume [5] or generating the slices of the volume separately [2]. Previous
work that generate volumes directly by using 3D convolutions is often limited in
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size/resolution. The authors of 3D-StyleGAN build upon the well-known Style-
GAN2 architecture and adapted it for three dimensions by significantly reducing
the number of feature maps and the size of the latent vector, to generate T1
weighted MR images at 2 mm spatial resolution [7]. We investigated previously
known best practices for GANs and evaluated their feasibility for 3D medical
images through an ablation study. As a result this work proposes a GAN that
generates synthetic whole body MR volumes with a size of 160 × 160 × 128.
We achieve this by reducing each training batch to a single data sample which
allows us to increase the number of feature maps. Additionally we show that the
proposed model can easily be conditioned on meta data which further improves
its performance. We compare our model, with and without conditioning, with
the 3D-StyleGAN architecture.

2 Methods

Architecture and Training

We propose an architecture based on findings for effective GAN training and
adapted them to and investigated them for the domain of 3D medical images. The
overall architecture and many parts were introduced by FastGAN [14]. Figure 1
shows a simplified diagram of the architecture. One major motivation behind this
decision is the low demand for training data by the FastGAN in combination
with the low complexity of the network. All design choices were validated through
an ablation study in which we investigated the influence of each part on the
models performance. We used InstanceNorm [17] instead of batch normalization
because the size of the data does not allow for large batch sizes thus rendering
batch normalization less useful. The generator first maps the latent vector to the
first feature maps which determine the size of the output through a transposed
convolution layer. The main building block of the generator is depicted in Fig. 2
on the left. The remaining generator consists of five of these blocks, each of which
doubles the resolution of the intermediate feature maps and a final convolutional
layer which maps the feature maps to the number of output channels, in this
case one channel for grayscale images.

The discriminator mirrors this architecture except that the resolution of the
feature maps is reduced by a factor of two by using strided convolutions and
that the activation function for each convolution is the Leaky ReLU function.
Furthermore, there is no noise injection in the discriminator. The repeating
building blocks of the discriminator are shown in Fig. 2 on the right. At the
end of the discriminator the features are fed into a small convolutional network
consisting of two layers which reduces the size further and serves as a critic whose
output rates the input data as real or fake which then is used for the adversarial
training.

Both, generator and discriminator employ Skip-Layer-Excitation layers,
introduced in [14], which serve as a skip connection between two blocks at dif-
ferent depth of the network and helps to propagate the error to the first layers
of the model. Another important part of the decoder is self-regularization due to
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decoders that decode the volume from the smallest feature map back to a volume
with half the input size. This method was also introduced in [14] but we employ
multiple decoders. We implemented one decoder, that decodes the feature maps
to the whole volume, one that decodes to only one part of the input volume
and one that only decodes the abdomen section to ensure high detail in this
region. The decoder networks use transposed convolutions for the upsampling
and no conditioning on meta data regardless of the conditioning in the generator
and discriminator. The loss for the generator is the output of the critic, while
the loss for the discriminator is the sum of the adversarial hinge loss [13] and
separate reconstruction losses for each decoder, which were the mean absolute
error between the decoded image and the interpolated or cropped part of the
real image. Other methods used during the training process were exponential
moving average of the generator weights [19], early stopping and learning rate
decay.
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Fig. 1. Architecture of the Generator (left) and Discriminator (right) net-
works. Simplified view of the architecture of our proposed GAN. The meta data input
for both models is optional. A detailed view of the generator and discriminator blocks
is provided in Fig. 2. In general the architecture is inspired by the overall architecture
proposed in [14]. Skip Layer Excitation (SLE) blocks are used to propagate the error
to the first layers of the model.

Conditioning on Meta data

Many use cases benefit from the ability to generate data conditioned on given
attributes. The following patient information were used for the conditional 3D
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image synthesis: age, sex, weight and height. For conditioning, we added a
Feature-wise Linear Modulation (FiLM) layer [15] between each convolutional
layer and the noise injection layer. This layer affine transforms the intermediate
feature maps with two learned parameter vectors γ and β, which are provided by
an encoder, which is trained together with the model, that is shared through all
FiLM layers in the model (generator and discriminator each have their own). For
this experiment, we binary-encoded the meta data and concatenated all binary
vectors which then serves as input for the encoder. If the network shall be con-
ditioned on additional input data, a FiLM modulation layer follows between
the convolution layer and the noise injection layer. The linear conditioning with
meta data was shown to be beneficial for image segmentation by [12].
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Fig. 2. Architecture of the Generator (left) and Discriminator (right) blocks.
Each block doubles the size if the incoming feature maps in each dimension through
a transposed convolution, then adds a random sampled noise vector of the same size
as the feature maps which has been proven beneficial for the circumvention of over-
fitting and improving the generalization [4]. The resulting output is normalized by an
Instance Normalization [17] layer and a Gated Linear Unit (GLU) [3] operation serves
as activation function. The same structure is repeated once more with the transposed
convolution replaced by a regular convolution

Data

The used dataset consists of 10828 whole body MR volumes obtained as part
of the MR Imaging Study within the German National Cohort Study (GNC,
2014-2019) [1] from volunteers. The data was acquired on MAGNETOM Skyra
3T (Siemens Healthineers, syngo VD13C) systems with a two-point Dixon volu-
metric interpolated breath-hold examination (VIBE) T1 weighted sequence. We



3D (c)GAN for Whole Body MR Synthesis 101

used the so-called “opposed phase” contrast (TE = 1.23 ms). The volumes were
acquired by axial acquisition with in-plane matrix 320 × 260 (resolution 1.4 ×
1.4 mm2) and a slice thickness of 3 mm. The volume consists of four acquired
table positions with a total of 316 slices which were then resampled and cropped
to 160 × 160 × 128 which doubles the voxel size but therefore reduces the size of
each volume roughly by half in order to fit the volume on the GPU. All intensity
values were scaled to the range of [–1, 1]. We used half of the dataset for training
and the other half for evaluation.

Evaluation

For the evaluation of the quality of the generated volumes we used the slice-wise
Fréchet Inception Metric proposed in [7]. Since the Fréchet Inception Distance
(FID) [6] is calculated from features extracted from a Inception V3 network
pretrained on the Imagenet dataset, which is a 2D dataset, we calculate the
FID score for the center slice for each orientation. Additionally, the Multi-Scale
Structured Similarity Measure (MS-SSIM) and the Maximum Mean Discrepancy
(MMD) were used for the evaluation. The MMD measures the distance between
two distributions and was calculated batch-wise as proposed in [11,18] and [7].
The MS-SSIM measures the structural similarity between two samples at dif-
ferent scales and can be used to evaluate the diversity of the generated images
[18].

3 Results

The results shown in Table 1 show that our model without conditioning has a
much lower MMD and FID and higher MS-SSIM than the trained 3D-StyleGAN.
A comparison between a sample generated by the 3D-StyleGAN and our uncon-
ditional model is shown in Fig. 3. In comparison our model with conditioning on
meta data results in even slightly better scores across almost all metrics. The
3D-StyleGAN was trained with 1 mm-fd16 configuration which was the only one
that allows to generate volumes at the size of 160 × 160 × 128. The only change
to the configuration was the output size of the base layer which was adapted
from 5 × 6 × 7 to 5 × 5 × 4 to result in the desired output size.

Table 1. Results. The table shows the MMD, the MS-SSIM between whole volumes
of generated and real data. The FID was calculated for the center slice of the volume
in Axial (FID Ax.), Sagittal (FID Sag.) and Coronal (FID Cor.) orientation between
generated and real samples. ↓ means that a lower metric score is better and ↑ shows
that a higher value is better.

MMD ↓ MS-SSIM ↑ FID (Ax.) ↓ FID (Sag.) ↓ FID (Cor.) ↓
3D-StyleGAN 47307 ± 13162 0.162 ± 0.004 362.5 ± 1.6 373.7 ± 15.9 431.6 ± 11

Ours 12086 ± 641 0.409 ± 0.004 71.2 ± 1.0 43.3 ± 5.7 106.4 ± 23.7

Ours Conditional 10589 ± 333 0.439 ± 0.001 76.5 ± 2.5 38.4 ± 10.2 81.6 ± 22.5
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Fig. 3. Comparison between 3D-StyleGAN and ours. This figure shows the
center slice in coronal orientation of two samples, on the left side generated by 3D-
StyleGAN and on the right side by our proposed model. Both samples were generated
unconditionally.

Conditional generation of 3D images

The results of the conditioning process were not evaluated separately. A visual
inspection of the conditionally generated volumes showed that these were con-
sistent with the meta data they were conditioned on which can be seen in Fig. 4.
Depicted are generated volumes from the same latent vector and with different
meta data conditioning. The images show the center slice of male and female
volumes with different weights from 60 to 110 Kg. The other two remaining
attributes stayed fixed.

4 Discussion

We propose a GAN architecture for 3D medical image synthesis that uses best
practices for GAN training known from other domains. In order to leverage the
often limited datasets available for medical imaging we added self regularization
by adding decoders to the discriminator as proposed and justified in [14]. We
assess our models performance with commonly used metrics for the evaluation
of GANs and compare these against the 3D-StyleGAN architecture at the same
resolution. In Table 1 we show that our model outperforms the 3D-StyleGAN in
every metric. A possible explanation of the in general low MS-SSIM score across
all compared models may be partially explained by the fact, that the training
data has not been registered and therefore exhibits variation in size and scale of
the samples. Since the MS-SSIM compares the structural similarity of spatially
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Fig. 4. Conditionally generated volumes. Center slices of volumes generated from
the same latent vector with different conditional inputs. The upper row shows samples
for the attribute sex set to female and the lower row with the attribute set to male.
Both rows show the variation for the weight attribute ranging from 60 to 110 Kg. The
remaining attributes height and age were set to 170 cm and 40 years old respectively.
The stitching artefact that can be seen was caused by movements between the four
acquisitions of which the volume is put together and was also learned by the GAN.

close voxels and the corresponding voxel in two compared samples can be at
spatially different locations due to the patients size, this is a possible explana-
tion for low MS-SSIM scores. [7] argued their model was not able to generate
realistic images at 1 mm isotropic resolution which translates to an image size of
160×192×224. Since the size of our images (160 × 160 × 128) is in between the
size of their successful experiments and their failure case, we can only deduct that
our model results in lower metric scores at the reported size. The conditioning on
patient information has to be investigated further in regard of the independence
of the different attributes and if the conditionally generated 3D images are plau-
sible for the used meta data. Further improvements to the proposed architecture
could stem from the StyleGAN [8–10] models which propose differentiable data
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augmentation or weight modulation. Further experiments with other modalities,
organs and image sizes are needed to show the ability of the model to generalize
beyond the trained data. Very recently HA-GAN was published in which the
authors synthesize chest CT and brain MR images with a size of 2563 and a
comparison is left for future work.
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