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DGM4MICCAI 2022 Preface

It was our genuine honor and great pleasure to hold the second Workshop on Deep
Generative Models for Medical Image Computing and Computer Assisted Intervention
(DGM4MICCAI 2022), a satellite event at the 25th International Conference onMedical
Image Computing and Computer Assisted Intervention (MICCAI 2022).

DGM4MICCAI 2022 was a single-track, half-day workshop consisting of high-
quality, previously unpublished papers, presented orally (in a hybrid format), intended
to act as a forum for computer scientists, engineers, clinicians, and industrial practi-
tioners to present their recent algorithmic developments, new results, and promising
future directions in deep generative models. Deep generative models, such as genera-
tive adversarial networks (GANs) and variational auto-encoders (VAEs), are currently
receiving widespread attention from not only the computer vision and machine learning
communities but also in theMICCAI community. Thesemodels combine advanced deep
neural networks with classical density estimation (either explicit or implicit) to achieve
state-of-the-art results. As such, DGM4MICCAI 2022 provided an all-round experience
for deep discussion, idea exchange, practical understanding, and community building
around this popular research direction.

This year’s DGM4MICCAI was held on September 22, 2022, in Singapore. There
was a very positive response to the call for papers for DGM4MICCAI 2022.We received
15 submissions for theworkshop.Eachpaperwas reviewedby at least three reviewers and
we ended upwith 12 accepted papers for theworkshop. The accepted papers present fresh
ideas on broad topics ranging frommethodology (causal inference, latent interpretation,
generative factor analysis, etc.) to applications (mammography, vessel imaging, surgical
videos, etc.).

The high quality of the scientific programofDGM4MICCAI 2022was due first to the
authors who submitted excellent contributions and second to the dedicated collaboration
of the international Program Committee and the other researchers who reviewed the
papers. We would like to thank all the authors for submitting their valuable contributions
and for sharing their recent research activities.

We are particularly indebted to the Program Committee members and to all the
external reviewers for their precious evaluations, which permitted us to set up this pro-
ceedings. We were also very pleased to benefit from the keynote lectures of the invited
speakers: Michal Rosen-Zvi, IBM Research, Israel, and Islem Rekin, Istanbul Technical
University, Turkey. We would like to express our sincere gratitude to these renowned
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experts for making the second workshop a successful platform to rally forward the deep
generative models research within the MICCAI context.

August 2022 Anirban Mukhopadhyay
Ilkay Oksuz

Sandy Engelhardt
Dajiang Zhu
Yixuan Yuan
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Flow-Based Visual Quality Enhancer
for Super-Resolution Magnetic Resonance

Spectroscopic Imaging

Siyuan Dong1(B), Gilbert Hangel2, Eric Z. Chen3, Shanhui Sun3,
Wolfgang Bogner2, Georg Widhalm4, Chenyu You1, John A. Onofrey5,

Robin de Graaf5, and James S. Duncan1,5

1 Electrical Engineering, Yale University, New Haven, CT, USA
s.dong@yale.edu

2 Biomedical Imaging and Image-Guided Therapy, Highfield MR Center,
Medical University of Vienna, Vienna, Austria

3 United Imaging Intelligence, Cambridge, MA, USA
4 Neurosurgery, Medical University of Vienna, Vienna, Austria

5 Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA

Abstract. Magnetic Resonance Spectroscopic Imaging (MRSI) is an
essential tool for quantifying metabolites in the body, but the low spa-
tial resolution limits its clinical applications. Deep learning-based super-
resolution methods provided promising results for improving the spatial
resolution of MRSI, but the super-resolved images are often blurry com-
pared to the experimentally-acquired high-resolution images. Attempts
have been made with the generative adversarial networks to improve the
image visual quality. In this work, we consider another type of genera-
tive model, the flow-based model, of which the training is more stable
and interpretable compared to the adversarial networks. Specifically, we
propose a flow-based enhancer network to improve the visual quality of
super-resolution MRSI. Different from previous flow-based models, our
enhancer network incorporates anatomical information from additional
image modalities (MRI) and uses a learnable base distribution. In addi-
tion, we impose a guide loss and a data-consistency loss to encourage
the network to generate images with high visual quality while maintain-
ing high fidelity. Experiments on a 1H-MRSI dataset acquired from 25
high-grade glioma patients indicate that our enhancer network outper-
forms the adversarial networks and the baseline flow-based methods. Our
method also allows visual quality adjustment and uncertainty estimation.
Our code is available at https://github.com/dsy199610/Flow-Enhancer-
SR-MRSI.

Keywords: Super-resolution · Brain MRSI · Normalizing flow

1 Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI) is a technique for measuring
metabolite concentrations within the body [6]. Because the metabolic level is a
crucial indicator of cell activities, MRSI is becoming a valuable tool for studying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Mukhopadhyay et al. (Eds.): DGM4MICCAI 2022, LNCS 13609, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-18576-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18576-2_1&domain=pdf
https://github.com/dsy199610/Flow-Enhancer-SR-MRSI
https://github.com/dsy199610/Flow-Enhancer-SR-MRSI
https://doi.org/10.1007/978-3-031-18576-2_1
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different diseases such as brain tumors [14] and cancers [5]. However, due to
the low concentrations of metabolites, current applications of MRSI are limited
to low spatial resolutions. Hence, developing a post-processing algorithm for
generating higher resolution MRSI will greatly benefit its clinical applications.

Recent advances in deep learning have provided promising results for super-
resolution (SR) MRSI [3,16]. These works trained neural networks to map low-
resolution MRSI metabolic maps to higher-resolution ones with a pixelwise
mean-squared error (MSE) loss function. However, SR is a one-to-many prob-
lem, and training with MSE learns a pixelwise average of all possible solutions
[20,24]. This can result in blurry SR images with suboptimal visual quality and
a lack of high-frequency details [10]. To approach this issue, a few recent works
proposed to add adversarial loss to improve the visual quality [12,13,21], but
it is well-known that the generative adversarial networks suffer from training
instability and mode collapse [1,23]. The normalizing flow (NF) model is a rela-
tively new class of generative models that learns the target distribution via the
maximization of exact log-likelihood, making the training more interpretable
and stable [1,8,19,23]. NF learns an invertible mapping from the target image
distribution to a simple base distribution during training, so the target images
can be generated by sampling from the base distribution during inference. A few
recent works applied NF on SR of natural images [22,23] and reconstructions of
medical images [7,17], and these flow-based methods can generate images with
high visual quality.

In this work, we propose a flow-based enhancer network to recover high-
frequency details and improve the visual quality of the blurry SR MRSI images
given by the SR networks. Borrowing the idea of sharpness enhancement [10],
we regard the visual quality enhancement as a subsequent step of the SR net-
work. Hence, the enhancer network only needs to focus on improving the visual
quality, not the entire SR process. To boost the performance, we make several
modifications to the existing flow-based SR method [23], including incorporating
MRI anatomical information and a learnable base distribution. We also enforce
a data-consistency (DC) loss to encourage the enhanced images not to alter
the original measurements from the scanner, which is very important for med-
ical images. Experimental results show that our enhancer network successfully
improves the visual quality of SR metabolic maps, outperforming the adversarial
networks and the baseline flow-based methods. Our method also allows visual
quality adjustment and uncertainty estimation within the same network.

2 Methods

2.1 Problem Formulation

Given a low-resolution metabolic map L ∈ R
n×n, the SR network S learns a

mapping H = S(L) such that the super-resolved metabolic map H ∈ R
N×N

is close to the ground truth high-resolution map I ∈ R
N×N . However, the SR

network S trained with pixelwise loss [3,16] and structural loss [12] could result
in blurry H. We develop an enhancer network E to improve the visual quality
of H, i.e. Henh = E(H), such that Henh has visual quality comparable to I.
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Fig. 1. Proposed flow-based enhancer network for improving the visual quality of SR
MRSI. We first use a pretrained Multi-encoder UNet (MUNet) [9,12,13] as the SR
Network to obtain a super-resolved image H from the low-resolution image L. The
enhancer network takes {H, T1, FLAIR} as the condition, which is processed with
the Condition blocks before feeding into the flow layers. The flow layers Flow-2 and
Transition follow the design in SRFlow [23]. We add a special type of flow layer, Flow-
1, before any squeeze operation to process the image in its original dimension [25].
During training, the enhancer network transforms the ground truth images I into the
Gaussian vectors z using the NLL loss. During inference, z is drawn from the Gaussian
distribution and inversely passed through the network to obtain Henh. The mean μ
and standard deviation σ of the Gaussian distribution is learned from the condition
{H, T1, FLAIR} using a ResNet [15].

2.2 Preliminary: Conditional Normalizing Flow

NF is a family of generative models that constructs a complex distribution from
a simple distribution using a flow of invertible transformations [27]. The key idea
is to learn a bijective mapping between the target space and a latent space [8].
Given that x is a sample from the target space with distribution px(x), flow-
based models usually use an invertible neural network f to transform x into a
latent variable z with a simple base distribution pz(z), e.g. Gaussian. Once the
transformation is learned, the network f can generate samples from the target
distribution x = f−1(z) by sampling z ∼ pz(z). This idea can also be used to
learn a conditional distribution px|y(x|y) over two random variables x and y,
also known as the conditional NF [23,31]. According to the change of variable
formula, the target distribution px|y(x|y) can be expressed as

px|y(x|y) = pz(f(x; y))
∣
∣
∣
∣
det

(
∂f(x;y)

∂x

)∣
∣
∣
∣

(1)

where ∂f(x;y)
∂x is the Jacobian matrix. This expression allows training the network

f with the negative log-likelihood (NLL) loss for training samples (x,y)
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LNLL = −log px|y(x|y) = −log pz(f(x;y)) − log
∣
∣
∣
∣
det

(
∂f(x; y)

∂x

)∣
∣
∣
∣
. (2)

In this work, we train our enhancer network E with NLL loss to learn the ground
truth space conditioned on the corresponding blurry SR image, i.e. to learn pI|H .

2.3 Network Architecture

Our enhancer network (Fig. 1) adopts a multi-scale architecture [8,19,23]. Each
scale consists of a series of fully invertible conditional flow layers with tractable
Jacobian, so the NLL loss in Eq. 2 can be computed. We use the same flow
layers as in SRFlow [23], specifically, conditional affine coupling, affine injec-
tor, invertible 1 × 1 convolution and activation normalization (Actnorm) [19].
Our enhancer network is different from the SRFlow network in mainly three
aspects: (1) SRFlow is a SR network that super-resolves the low-resolution
images, whereas our method enhances the super-resolved images given by any SR
network that are blurry; (2) SRFlow processes a single image modality, but our
network incorporates information from other modalities (T1 and FLAIR MRI);
(3) SRFlow uses a fixed base distribution, standard Gaussian pz = N (0, I), but
our network adopts a learnable base distribution.

MRI Anatomical Information. Previous works suggested that the multi-
parametric MRI contains useful prior information for SR MRSI [12,13]. There-
fore, we provide T1 and FLAIR MRI as additional conditions to the enhancer
network. Specifically, T1 and FLAIR are re-sampled and concatenated with the
super-resolved image H (we denote this as {H, T1, FLAIR}), which are then
passed into the Condition blocks of the enhancer network (see Fig. 1).

Learnable Base Distribution. Current flow-based SR models [22,23] assume
a 0-mean and unit-norm multivariate Gaussian for the base distribution, whereas
such a predetermined base distribution might limit the learning capability of the
model. We modify it as a multivariate Gaussian with learnable mean and stan-
dard deviation, i.e. pz = N (μ(c),σ(c)), where the mean and standard deviation
vectors are learned from the condition c = {H, T1, FLAIR} using a ResNet [15].
This “conditional base” was included in the original conditional NF work [31]
but was neglected in later applications.

2.4 Loss Function

We apply the NLL loss to learn the conditional distribution of ground truth
images I given the SR images H. Therefore, the NLL loss in Eq. 2 becomes

LNLL(I) = −log pz(E(I;H)) − log
∣
∣
∣
∣
det

(
∂E(I;H)

∂I

)∣
∣
∣
∣

= −1
2
(
∥
∥
∥
∥

z − μ(c)
σ(c)

∥
∥
∥
∥

2

2

+
∥
∥log(2πσ(c)2)

∥
∥
1
) − log

∣
∣
∣
∣
det

(
∂E(I;H)

∂I

)∣
∣
∣
∣
.

(3)
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We define z = E(I;H) as the training direction and Henh = E−1(z;H) as the
inference direction. The second equation holds because pz = N (μ(c),σ(c)). The
log-determinant term can be computed efficiently, because the flow layers are
designed to have tractable Jacobian [19].

We add a guide loss in the inference direction to guide the network to learn
an enhanced image space centered around the fidelity-oriented SR image [22]

Lguide(I,Hτ=0
enh ) = (1 − α)Lpixel(I,Hτ=0

enh ) + αLstructural(I,Hτ=0
enh ) (4)

where the temperature τ is a scale parameter that controls the variance of the
random sample: Hτ=τ0

enh = E−1(z;H) with z ∼ N (μ(c), τ0σ(c)). The pixel loss
Lpixel defines a pixelwise difference between two images using L1-norm, and the
structural loss Lstructural maximizes the Multiscale Structural Similarity (MS-
SSIM) [30] between two images [12,13].

Furthermore, we use a DC loss [4] to encourage that the enhanced image
follows the k-space measurement from the scanner

LDC(L,Hτ=τ̃
enh ) =

∥
∥F(L) − Fu(Hτ=τ̃

enh )
∥
∥
1

(5)

where F is the Fourier transform operator, and Fu denotes down-sampling after
Fourier transform to match the dimension of the low-resolution measurement.
τ̃ is uniformly generated τ̃ ∼ U(0, 1) during training to encourage DC at all
temperature levels. DC loss instructs the enhancer network not to modify the
scanner measurement, which is very important for reliable clinical diagnosis.

Overall, the enhancer network is trained with:

L = LNLL(I) + λ1Lguide(I,Hτ=0
enh ) + λ2LDC(L,Hτ=τ̃

enh ) (6)

3 Experiments

3.1 Data Acquisition and Preprocessing

We acquired 3D 1H-MRSI, T1 and FLAIR from 25 high-grade glioma patients
using a Siemens 7T whole-body-MR imager [14]. IRB approval and informed
consent from all participants were obtained. MRI images were skull-stripped
using FSL v5.0 [28]. The MRSI sequences were acquired using an acquisition
delay of 1.3 ms, repetition time of 450 ms and scan duration of 15 min. The
nominal resolution is 3.4 × 3.4 × 3.4 mm3, and the matrix size is 64 × 64 ×
39. Note that this is a very high resolution for MRSI because of the challenges
in acquiring metabolite signals with acceptable SNR. The MRSI spectra were
quantified using LCModel v6.3-1 [26] to obtain the 3D metabolic maps. The
voxels with insufficient quality (SNR < 2.5 or FWHM > 0.15 ppm) or under
strong distortion around the brain periphery were excluded. We focused on 7
metabolites that are major markers of onco-metabolism [14], namely N-acetyl-
aspartate (NAA), total creatine (tCr), total choline (tCho), glutamate (Glu),
glutamine (Gln), inositol (Ins), and glycine (Gly).
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Table 1. Quantitative results. Results are presented in mean ± standard deviation. A
lower LPIPS score means better results (↓). The best scores are shown in bold.

Type Methods PSNR (↑) SSIM (↑) LPIPS (↓)
Fidelity-oriented MUNet [12] 29.7 ± 2.5 0.933 ± 0.028 0.0897 ± 0.0462

Visual-oriented MUNet-cWGAN [12] 28.3 ± 2.6 0.920 ± 0.028 0.0529 ± 0.0349

SRFlow [23] 27.8 ± 2.5 0.905 ± 0.048 0.0656 ± 0.0516

Flow Enhancer(ours) 29.0 ± 2.4 0.924 ± 0.029 0.0519 ± 0.0340

Fig. 2. Qualitative results. From left to right: k-space zero-filled images, MUNet,
MUNet-cWGAN, SRFlow, our Flow Enhancer, ground truth (GT) and FLAIR images
for anatomical reference. From top to bottom: tCh, NAA and tCr maps from three
different patients p1, p2 and p3, respectively. Zoom in to inspect more details.

3.2 Implementation Details

From every 3D MRSI scan, we obtained 9–18 axial slices, and each includes 7
metabolites, summing to 2275 2D metabolic maps. These are regarded as the
high-resolution ground truth I ∈ R

64×64, which were truncated in k-space to
obtain low-resolution images L ∈ R

16×16. Of the 25 patients, we used 15 for
training, 5 for validation and 5 for testing. This corresponds to 1246 metabolic
maps for training, 483 for validation and 546 for testing. The training dataset
was augmented using random rotation and shifting at every training iteration.

The enhancer network operates in 4 scales, each contains K = 12 flow steps.
The loss weighting parameters are α = 0.84 [33], λ1 = 10 and λ2 = 10. The
experiments were implemented in PyTorch v1.1.0 and performed on NVIDIA
GTX 1080 and V100 GPUs. The networks were trained with the Adam optimizer
[18], initial learning rate of 1 × 10−4, batch size of 8 and 500 epochs.

3.3 Results

We implemented the enhancer network to improve the visual quality of the SR
images given by a Multi-encoder UNet (MUNet) [9,12,13], which was trained
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Table 2. Ablation Studies. � or × represents whether a certain design element is
present or not. Paired t-test was performed between our method (last row) and the
first four rows. Statistically significant differences (p-value < 0.05) are shown with *.

MRI prior Cond. Base Lguide LDC PSNR (↑) SSIM (↑) LPIPS (↓)
× � � � 28.9 ± 2.3* 0.920 ± 0.034* 0.0558 ± 0.0367*

� × � � 29.0 ± 2.4* 0.924 ± 0.029 0.0526 ± 0.0337*

� � × × 28.3 ± 2.3* 0.918 ± 0.029* 0.0579 ± 0.0398*

� � � × 28.8 ± 2.3* 0.922 ± 0.029* 0.0513 ± 0.0339*

� � � � 29.0 ± 2.4 0.924 ± 0.029 0.0519 ± 0.0340

with a pixelwise plus structural loss. The MUNet uses two encoders for pro-
cessing anatomical information in T1 and FLIAR respectively. For comparison,
we implemented two previous visual-oriented SR methods (these methods were
applied to L): (1) MUNet trained with the adversarial loss using conditional
Wasserstein generative adversarial networks (MUNet-cWGAN) [12], and (2) the
baseline flow-based SR model that does not have our new design elements (e.g.
MRI condition, LDC), denoted as SRFlow [23]. We set τ = 0.8 for the flow-
based methods as recommended by previous works [22,23]. As for the evalua-
tion metrics, peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) are the most commonly used metrics for evaluating image SR, but they
are ineffective in measuring image visual quality [10]. Previous literature indi-
cates that these fidelity-oriented metrics are often degraded as the visual quality
improves [2,23,29]. Here we report a visual-oriented metric, Learned Percep-
tual Image Patch Similarity (LPIPS), which measures the high-level similarity
between two images using a pretrained deep network (AlexNet) and correlates
well with human perceptual judgment [10,13,32]. Table 1 shows that although
MUNet achieves high PSNR and SSIM scores, its LPIPS score is relatively poor
compared to the visual-oriented methods. Compared to MUNet-cWGAN and
SRFlow, our method (Flow Enhancer) achieves better visual quality (LPIPS)
while maintaining higher fidelity (PSNR and SSIM). Figure 2 shows the corre-
sponding qualitative comparisons. MUNet provides SR images that are blurry
compared to the ground truth images. MUNet-cWGAN improves the visual qual-
ity but tends to generate more artifacts than our Flow Enhancer. In addition,
as shown in the first row (p1, tCh), Flow Enhancer recovers better contrast at
the tumor than SRFlow and MUNet-cWGAN.

Ablation Studies. To justify our design, we performed ablation studies on
4 design elements: MRI anatomical information (MRI prior), conditional base
distribution (Cond. Base), guide loss Lguide and DC loss LDC . Table 2 indicates
that removing the MRI prior (in this case, c = {H}) harms all three metrics.
Removing Lguide degrades the performance by a large margin. Removing the
Cond. Base does not harm PSNR/SSIM but gives slightly worse LPIPS. LDC

imposes an L1 loss on the low-resolution components in k-space, therefore adding
LDC gives better PSNR/SSIM but slightly sacrifices the LPIPS (visual quality).
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Fig. 3. Visual-fidelity tradeoff. (a) Sampling at different τ gives different levels of visual
quality. τ = 0.8 (bold) gives the closest visual quality as GT. (b) PSNR (↑), SSIM
(↑) and LPIPS (↓) of Flow Enhancer and MUNet-cWGAN at various levels of visual
quality.

Fig. 4. Uncertainty estimation. From left to right: zero-filled low-resolution image L,
blurry SR image H given by the MUNet, high-resolution ground truth I, 5 different
samples Henh1, Henh2, ..., Henh5 given by the enhancer network, mean and standard
deviation (s.t.d.) calculated from 100 samples. The s.t.d. map is shown in ×5 scale.

Controlling Visual-Fidelity Tradeoff via τ . Our enhancer network allows
tuning the tradeoff between visual quality and fidelity within the same network
via τ . A small value of τ gives blurry images with higher PSNR/SSIM. On the
contrary, a large value of τ significantly improves the visual quality while sacrific-
ing PSNR/SSIM. As shown in Fig. 3(a), τ = 0.8 gives the closest visual quality
as the ground truth, consistent with the recommendations in previous works
[22,23]. We also compare our Flow Enhancer with MUNet-cWGAN at various
levels of visual quality. For MUNet-cWGAN, the tradeoff is tuned via the weight
of adversarial loss, i.e. β in LMUNet-cWGAN = Lpixel + Lstructural + βLadversarial

[12]. Note that MUNet-cWGAN requires training a separated network for each
β, whereas our Flow Enhancer only needs to be trained once to obtain different
levels of visual quality. As shown in Fig. 3(b), Flow Enhancer achieves better
visual quality (LPIPS) while maintaining higher image fidelity (PSNR/SSIM)
compared to MUNet-cWGAN at all levels of visual quality.

Uncertainty Estimation. Different from the methods based on adversarial
loss, flow-based models learn a target image manifold instead of a single solu-
tion. Sampling the latent variable z ∼ N (μ(c), τ0σ(c)) generates different sam-
ples from the learned image space, of which the standard deviation can be used
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for uncertainty estimation of the enhanced image Henh [7]. Figure 4 shows an
example of the standard deviation map calculated from 100 samples. The uncer-
tainty is higher around the brain periphery, which means the network observes
higher variances in these regions from the training dataset. This is probably due
to the lower sensitivity and stronger spectra distortion near the skull. Note that
the mean image is a pixelwise average of different samples in the learned image
space, therefore it looks almost identical to the blurry SR image H.

4 Conclusion

We present a flow-based enhancer network to improve the visual quality of SR
MRSI. Based on the SRFlow model, we incorporated MRI prior, learnable base
distribution, guide loss and DC loss to boost the performance. Results show that
our method outperforms the adversarial networks and the baseline flow-based
methods. Our method also allows visual quality adjustment and uncertainty
estimation. The method can be extended in the future to other modalities [11].
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Abstract. Cancers can have highly heterogeneous uptake patterns best
visualised in positron emission tomography. These patterns are essen-
tial to detect, diagnose, stage and predict the evolution of cancer. Due
to this heterogeneity, a general-purpose cancer detection model can be
built using unsupervised learning anomaly detection models; these mod-
els learn a healthy representation of tissue and detect cancer by pre-
dicting deviations from healthy appearances. This task alone requires
models capable of accurately learning long-range interactions between
organs, imaging patterns, and other abstract features with high levels of
expressivity. Such characteristics are suitably satisfied by transformers,
and have been shown to generate state-of-the-art results in unsupervised
anomaly detection by training on healthy data. This work expands upon
such approaches by introducing multi-modal conditioning of the trans-
former via cross-attention, i.e. supplying anatomical reference informa-
tion from paired CT images to aid the PET anomaly detection task.
Using 83 whole-body PET/CT samples containing various cancer types,
we show that our anomaly detection method is robust and capable of
achieving accurate cancer localisation results even in cases where healthy
training data is unavailable. Furthermore, the proposed model uncer-
tainty, in conjunction with a kernel density estimation approach, is shown
to provide a statistically robust alternative to residual-based anomaly
maps. Overall, a superior performance is demonstrated against leading
alternatives, drawing attention to the potential of these approaches.

Keywords: Transformers · Unsupervised anomaly detection ·
Cross-attention · Multi-modal · Vector quantized variational
autoencoder · Whole-body · Kernel density estimation

1 Introduction

Positron Emission Tomography (PET) promises one of the highest detection
rates for cancer amongst imaging modalities [14]). Through enabling the visu-
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alization of metabolic activity, the efficacy of PET is brought down to the high
metabolic rates of cancer cells [1]. By detecting changes on a cellular level, PET
is ideal for detecting new and recurrent cancers [13]. In most clinical applica-
tions, however, PET is coupled with CT or MRI data to allow the incorporation
of structural information with the results presented from PET imaging.

Cancer detection and segmentation present a wide range of clinically rele-
vant tasks from staging, treatment planning, and surgical or therapy interven-
tion planning. Although effective, PET imaging sensitivities can range as much
as 35% depending on the cancer type and radiologist [17]. This can be of fur-
ther issue in the case of metastatic cancer where dissemination can easily be
overlooked in small, superficial lesions [20]. Considering these shortfalls, there is
significant motivation for developing accurate automated detection methods.

Unsupervised methods have become an increasingly prominent field in recent
years for automatic anomaly detection by eliminating the necessity of acquiring
accurately labelled data [2,5]. These methods mainly rely on creating generative
models trained on healthy data. Then during inference, anomalies are defined
as deviations from the defined model of normality. This approach eliminates the
requirement of labelled training data and generalises to unseen pathologies. How-
ever, its efficacy is often limited by the requirement of uncontaminated data with
minimal anomalies present during training. The current state-of-the-art models
for the unsupervised generative approach are held by the variational autoen-
coder (VAE) and its variants. In Baur et al. [2] VAE approach, the healthy
data manifold is obtained by constraining the latent space to conform to that
of a given distribution. The reconstruction error is then used to localise anoma-
lies during inference. This approach, however, has limitations: from low fidelity
reconstructions to the lack of resilience to reconstructing anomalous data.

To overcome some of these issues, an approach for unsupervised anomaly
detection was presented utilising autoregressive models coupled with vector-
quantised variational autoencoder (VQ-VAE) [15,18].

Transformers, who are currently state-of-the-art networks in the language
modelling domain [22,25], use attention mechanisms to learn contextual depen-
dencies regardless of location, allowing the model to learn long-distance relation-
ships to capture the sequential nature of sequences. This general approach can
be generalised to any sequential data, and many breakthroughs have seen the
application of transformers in computer vision tasks [5,6,12,26]. Although hav-
ing showcased state-of-the-art performance in unsupervised anomaly detection
tasks for medical imaging data [21], these methods still rely on healthy data for
model training. To the best of our knowledge, no prior research exists using unsu-
pervised methods to accurately localise abnormalities while using training data
containing anomalies. This task is important as it is often difficult or unethical
to obtain healthy datasets of certain medical imaging modalities as some images
are only acquired with prior suspicion of disease.

To address these problems, we propose a method for unsupervised anomaly
detection and segmentation using multi-modal imaging via transformers with
cross attention. This method is able to detect anomalies even when trained
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on anomalous data by leveraging the heterogeneity of metastatic cancer and
anatomical information from CT. Furthermore utilising the generative aspect
of the transformer model we propose and evaluate a kernel density estimation
approach for generating a more robust alternative to residual based anomaly
maps.

2 Background

The principal components behind the proposed whole-body anomaly detection
model rely on using transformer models and auto-encoders to learn the prob-
ability density function of 3D whole-body PET scans. Although all training
data contain anomalies, the spread of metastatic cancer and spatial distribution
of anomalies across samples will result in such anomalies being unlikely, thus
appearing at the likelihood tail-end of the learnt distribution. In order to use
transformer models, images need to be expressed as a sequence of values, ideally
categorical. As it is not computationally feasible to do this using voxel values,
a compact quantized (discrete) latent space is used as input for the transformer
via a VQ-GAN model [10,18] (a VQ-VAE with an adversarial component).

2.1 VG-GAN

The original VQ-VAE model [18] is an autoencoder that learns discrete latent
representations of images. The model comprises of three principal modules: the
encoder that maps a given sample x ∈ R

H×W×D onto a latent embedding space
ẑ ∈ R

h×w×d×nz where nz is the size of each latent vector. Each latent vector is
quantized using an element-wise quantization of which each code ẑijl ∈ R

nz is
mapped to its nearest vector ek, k ∈ 1, ...K, where K is the vocabulary size of
a codebook learnt jointly with model parameters. The final portion of the net-
work is the decoder, which reconstructs the original observation from the quan-
tized latent space. The discrete latent space representation is thus a sequence
of indexes k for each code from the codebook. As autoencoders often have lim-
ited fidelity reconstructions [9], as proposed in [10], an adversarial component is
added to the VQ-VAE network to form a VQ-GAN. Further formulations and
architecture details can be found in Appendix B.

2.2 Transformer

Once a VQ-GAN model is trained on the entire training set containing anoma-
lous data, the following stage is to learn the probability density function of
the sequence of latent representations in an autoregressive manner. Transformer
models rely on attention mechanisms to capture the relationship between inputs
regardless of the distance or positioning relative to each other. Within each
transformer layer, a self-attention mechanism is used to map intermediate repre-
sentations with three vectors: query, key and value (see Appendix C for detailed
formulation). This process, however, relies on the inner product between elements
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and as such, network sizing scales quadratically with sequence length. Given this
limitation, achieving full attention with large medical data, even after the VQ-
GAN encoding, comes at too high a computational cost. To circumvent this
issue, many efficient transformer approximations have been proposed [7,24]. In
this study, a Performer model is used; the Performer makes use of the FAVOR+
algorithm [7] which proposes a linear generalized attention that offers a scal-
able estimate of the attention mechanism. In using such a model, we can apply
transformer-like models to much longer sequence lengths associated with whole-
body data. In order to learn the probability density function of whole-body data,
the discretised latent space zq must take the form of a 1D sequence s using some
arbitrary ordering. We then train the transformer model to maximise the training
data’s log-likelihood in an autoregressive manner. In doing so, the transformer
learns the distribution of codebook indices for a given position i with respect to
all previous inputs p(si) = p(si | s<i).

3 Method

3.1 Anomaly Detection

To perform the baseline anomaly detection model on unseen data, first, we
obtain the discrete latent representation of a test image using the VQ-GAN
model. Next, the latent representation zq is reshaped using a 3D raster scan
into a 1D sequence s where the trained Performer model is used to obtain like-
lihoods for each latent variable. These likelihoods represent the probability of
each token appearing at a given position in the sequence p(si) = p(si | s<i),
highlighting those of low probability of appearing in healthy data. Then tokens
with likelihoods below an arbitrary threshold are selected to generate a binary
resampling mask to indicate abnormal latent variables p(si) < t (where t is a
threshold determined empirically using a validation dataset; t = 0.01 was found
to be optimal). Using the resampling mask, the latent variables are “healed”
by resampling from the transformer and replacing them in the sequence. This
approach replaces anomalous latent variables with those that are more likely to
belong to a healthy distribution. Using the “healed” latent space, the VQ-GAN
model reconstructs the original image x as a healed reconstruction xr. Finally,
a voxel-wise residual map can be calculated as x − xr with final segmentations
calculated by thresholding the residual values. As areas of interest in PET occur
as elevated uptake, residual maps are filtered to only highlight positive residuals.

3.2 CT Conditioning

There are often times when more information can be useful for inference. This
can be in the imaging domain through multiple resolutions [4], or multiple modal-
ities/spectrums [16]. It is for these tasks where cross-attention can prove ben-
eficial. From a clinical point of view, whole-body PET scans are acquired in
conjunction with MRI or CT data to provide an anatomical reference as struc-
tural information. Additionally, it can be observed that areas of high uptake
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are not always associated with anomalies. For example, areas of high metabolic
activity like the heart, in addition to areas where radiotracer may collect like
the kidney and bladder can show high uptake patterns. Sometimes these areas
are not obvious from PET alone, and as such, the anatomical reference provided
from CT data is beneficial. This leads to the main contribution of the work,
namely anomaly detection incorporating CT data. This process works by gen-
erating a separate VQ-GAN model to reconstruct the PET-registered CT data.
Then, both CT and PET data are encoded and ordered into a 1D sequence using
the same rasterisation process, such that CT and PET latent tokens are spatially
aligned. The transformer network is then adapted to include cross-attention lay-
ers [11] that feed in the embedded CT sequence after each self-attention layer.
At each point in the PET sequence, the network has a full view of the CT data
helping as a structural reference. In doing so, the problem of determining the
codebook index at a given position i becomes p(si) = p(si | s<i, c) where c is
the CT latent sequence (detailed formulation can be found in Appendix C). This
approach, as visualised in Fig. 1 adds robustness to the anomaly detection frame-
work by providing meaningful context in areas of greater variability in uptake
that can be explained by the anatomical information within CT.

Fig. 1. Anomaly detection pipeline - PET image x is encoded along with CT image
xct. Tokens from the encoded PET image are then sampled from the transformer by
obtaining their likelihood with respect to prior tokens in the sequence and all CT
tokens. Tokens below a given threshold are resampled from a multinomial distribution,
derived from likelihood outputs from the transformer for all tokens at a given position
in the sequence, giving a “healed” latent space which is decoded to give xr.

3.3 Kernel Density Estimation

A drawback of the baseline anomaly detection method is that the residual image
uses an arbitrary threshold to generate a segmentation map. The resulting seg-
mentation can often be noisy due to discrepancies between the reconstructed
image and the original, for example, between borders of high-intensity. Addition-
ally, anomalies can occur at different intensities, meaning a blanket threshold is
not appropriate. A possible solution to this is to implement Z-score anomaly
maps as used in similar anomaly detection work [3]. For this work, this can be
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achieved by introducing variability within the model. However, certain uptake
patterns can be related to base metabolic rate, in addition to procedure-related
variations such as injected tracer amount and time since injection. As such, the
optimality of the Z-score’s Gaussian-error assumption should be questioned and
likely relaxed. Empirical evidence obtained by exploring the data and by sam-
pling from the transformer itself highlights that the error is indeed non-Gaussian
even in healthy regions, for example the heart; bi-modal (even multi-modal) error
distributions are observed. To remedy this, we propose to use a non-parametric
approach using kernel density estimation (KDE) [19]. To do this, we introduce
model uncertainty by using a dropout layer in the VQ-GAN decoder. Addition-
ally, we obtain variability through replacing unlikely tokens with ones drawn
from a multinomial distribution, derived from the likelihoods output from the
transformer for each token at a given position in the sequence. By sampling
multiple times, we generate multiple “healed” latent representations for a single
image, which are then decoded multiple times with dropout to generate multiple
“healed” reconstructions of a sample. At which point a KDE is fit at each voxel
position to generate an estimate of the probability density function f . Letting
(x1, . . . , xn) be the intensity for a voxel position across reconstructions, we can
generate an estimation for the shape of the density function f for voxel x as:

f̂h(x) =
1

nh

n∑

i=1

K

(
x − xi

h

)
(1)

where K is a gaussian kernel, and h is a smoothing bandwidth calculated as

h =
(

4σ̂5

3n

)1/5

(2)

with σ̂ representing the standard deviation at a given voxel position across n
reconstructions. We can then score voxels from that estimated density function
at the intensity of the real image, at the voxel level, to generate a log-likelihood
for that intensity, generating the anomaly map. To address areas of low variance
across reconstructions, we implemented a minimum bandwidth of 0.05 (deter-
mined empirically using a validation dataset).

3.4 Clinically Consistent Segmentations for PET

For whole-body PET, the contours of an anomaly can be hard to define. The
clinical standard in the UK defines boundaries of an anomaly as connecting
voxels with intensities above 40% of the maximum intensity of a specific anomaly.
To conform to this standard, we apply a final post-processing step of growing
all initial segmentations to satisfy this criteria.

4 Results

The proposed models were trained on 60 images, with model and anomaly detec-
tion hyperparameter tuning carried out on 11 validation samples using the best
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DICE scores. To assess our method’s performance, we use 12 hold-out paired
whole-body PET/CT images with varying cancers. We measure our models’
performance using the best achievable DICE score, which serves as a theoretical
upper-bound to the models segmentation performance. We obtained the scores
using a greedy search approach for residual/density score thresholds. In addition,
we calculate the area under the precision-recall curve (AUPRC), as a suitable
measure for segmentation performance under class imbalance. We also compare
our results to that of a VAE model proposed in [2]. Finally, we performed an
ablation study of the proposed methods to demonstrate their added contribution
along with paired t-tests to showcase the statistical significance of improvements.

Table 1. Anomaly detection results on whole-body PET data. The performance is
measured with best achievable DICE-score (�DICE�) and AUPRC on the test set.

Method �DICE� AUPRC

VAE (Dense) [2] 0.359 0.282

VQ-GAN + Transformer (3D GAN variant of [21]) 0.424 0.301

VQ-GAN + Transformer + CT conditioning (ours) 0.468 0.344

VQ-GAN + Transformer + CT conditioning + KDE
(ours)

0.505 0.501

VQ-GAN + Transformer + CT conditioning + KDE
+ 40% Thresholding (ours)

0.575 0.458

Ablation Study: We observe a considerable improvement (P = .001) in
anomaly detection performance by implementing CT conditioning in compar-
ison to the 3D GAN variant approach of [21]. This result confirms our initial
thoughts on the use case of anatomical context in the case of whole-body PET.
Given the variability of healthy radiotracer uptake patterns, it is expected that
beyond common areas like the bladder, further context is required to identify
uptake as physiological or pathological. By incorporating model uncertainty to
generate KDE maps, we see a further improvement in the overall DICE score, and
even greater increase in AUPRC from 0.344 to 0.501 against the CT conditioned
model (P < .001). This behaviour can be explained by the increased variability
around heterogeneous areas of healthy uptake, attributing to a decrease in false
positives. The main advantage of this approach, as visualised in Fig. 2 is the
increase in precision. By discarding the assumption of Gaussian uptake distri-
butions, the model can better differentiate patterns of physiological uptake from
pathological whilst still being sensitive to subtle anomalies, as seen in sample C
in Fig. 2.

Comparison to State-of-the-Art
From Table 1, we can see a statistically-significant improvement (P = .001)
presented via the VQ-GAN + transformer approach using only PET data in
relation to the VAE. This result is expected as demonstrated in prior research
[21]. However, this divergence is also attributed to the presence of anomalies
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Fig. 2. Columns from left to right display (1st) the input image; (2nd) the gold stan-
dard truth segmentation; (3rd) the abnormality map as the residual for the VAE, (4th)
Transformer, and (5th) CT conditioned methods; (6th) the abnormality map as a KDE,
(7th) and after thresholding at 40% of each abnormal region maximum value. Results
are provided for four randomly chosen subjects (A, B, C).

during training. It can be observed from sample B in Fig. 2, that the autoen-
coder method attempts to reconstruct large anomalies. Comparing the method
proposed by [21] to our best model comprising of CT conditioning and KDE
anomaly maps, our approach generates an improvement in DICE score from
0.424 to 0.505 (P < .001) with a considerable increase in AUPRC from 0.301
to 0.501 (P < .001). Finally, through clinically accurate segmentations by grow-
ing segmented regions, we see a large increase in the best possible DICE score,
but a reduction in AUPRC brought about by the expansion of false-positive
regions. From the results, there is clear evidence and motivation for the use
of multi-modal conditioning for whole-body PET anomaly detection. In gen-
eral from the qualitative results we can see detection results are high even from
the PET only transformer approach however the incorporation of CT helps to
improve precision through improved knowledge of the anatomical regions in the
scan. Additionally the use of KDE based anomaly maps showcase a significant
improvement on residual based maps. However, there are still areas for improve-
ment beyond the current scope. We see varying cases of false positives across
samples, showing ongoing difficulties differentiating physiological uptake from
pathological. The reasons may be due to patient factors, i.e. general health,
or more procedure-based factors, including radiotracer dosage and time since
injection. Naturally, one solution would be to provide more training data; how-
ever, an alternative is to provide further conditioning related to the patient and
procedure.
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5 Conclusion

Detection and segmentation of anomalous regions, particularly for cancer
patients, is essential for staging, treatment and intervention planning. In this
study, we propose a novel pipeline for a transformer-based anomaly detec-
tion approach using multi-modal conditioning and kernel density estimation
via model uncertainty. The model achieves statistically-significant improvements
in Dice and AUPRC, representing a new state-of-the-art compared to compet-
ing methods. Additionally, we show the impact of this approach when faced
only with training data containing anomalies, showing greater robustness than
autoencoder only approaches. We hope that this work will inspire further investi-
gation into anomaly detection with conditioned transformers using multi-modal
medical imaging, and further exploration into the development of these methods.
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Abstract. Generative models such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) play an increasingly
important role in medical image analysis. The latent spaces of these
models often show semantically meaningful directions corresponding to
human-interpretable image transformations. However, until now, their
exploration for medical images has been limited due to the requirement
of supervised data. Several methods for unsupervised discovery of inter-
pretable directions in GAN latent spaces have shown interesting results
on natural images. This work explores the potential of applying these
techniques on medical images by training a GAN and a VAE on thoracic
CT scans and using an unsupervised method to discover interpretable
directions in the resulting latent space. We find several directions corre-
sponding to non-trivial image transformations, such as rotation or breast
size. Furthermore, the directions show that the generative models cap-
ture 3D structure despite being presented only with 2D data. The results
show that unsupervised methods to discover interpretable directions in
GANs generalize to VAEs and can be applied to medical images. This
opens a wide array of future work using these methods in medical image
analysis. The code and animations of the discovered directions are avail-
able online at https://github.com/julschoen/Latent-Space-Exploration-
CT.

Keywords: Generative models · Unsupervised learning ·
Interpretability · CT

1 Introduction

The combination of deep learning and medical images has emerged as a promising
tool for diagnostics and treatment. One of the main limitations is the often
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small dataset sizes available for deep learning. Generative models can be used
to mitigate this by synthesizing and augmenting medical images [12].

Generative Adversarial Networks (GANs) [6] have emerged as the prominent
generative model for image synthesis. Consequently, research focusing on the
interpretability of GANs has unfolded. At their inception, Radford et al. [20]
showed meaningful vector arithmetic in the latent space of Deep Convolutional
Generative Adversarial Networks (DCGANs). For several years, the methods
used for discovering interpretable directions in latent spaces have been super-
vised [4,11,19] or based on simple vector arithmetic [20]. Especially in medical
image analysis, supervision is expensive as it typically involves radiologists or
other experts’ time. Recently, several unsupervised methods for discovering inter-
pretable directions in GAN latent spaces were proposed [7,23,25]. Due to being
unsupervised, they seem more promising for the medical domain. However, it
is still unclear if they work with the often more homogeneous images and the
smaller dataset sizes encountered in this field.

Next to GANs, the interpretability of Variational Autoencoders (VAEs) [15]
has also been studied extensively. However, the investigation has mainly focused
on obtaining disentangled latent space representations [10,13]. While this shows
promising results, it might not be possible without introducing inductive biases
[17]. Applying the approaches for the unsupervised discovery of interpretable
directions in latent spaces developed for GANs to VAEs might yield an alter-
native route for the investigation of interpretability in VAEs. Thus, if the same
methods that have shown promising results on GANs are effective on VAEs,
then VAEs can be trained without restrictions on the latent space, therefore not
incorporating inductive biases while still having the benefit of interpretability
and explicit data approximation.

Contributions: We employ a technique for the unsupervised discovery of inter-
pretable directions in the latent spaces of DCGANs and VAEs trained on Com-
puted Tomography (CT) scans. We show that these methods used to inter-
pret the latent spaces of GANs generalize to VAEs. Further, our results pro-
vide insights into the applicability of these methods for medical image analysis.
We evaluate the directions obtained and show that non-trivial and semantically
meaningful directions are encoded in the latent space of the generative models
under consideration. These directions include both transformations specific to
our dataset choice and ones that likely generalize to other data. In particular,
this allows for future work considering semantic editing of medical images in
latent spaces of generative models.

2 Background

2.1 Generative Latent Models

As the backbone of this work we use generative latent models. We employ two of
the most popular model types in GANs [6] for implicit and VAEs [15] for explicit
approximation of the data distribution [5].
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Given the discriminator D, the generator G, the latent distribution pz, the
data distribution pdata, and binary cross-entropy as the loss the GAN optimiza-
tion is given by:

min
G

max
D

V (D,G) = Ex∼pdata
[log D(x)] + Ez∼pz

[log(1 − D(G(z)))]. (1)

We optimize the VAE using the Evidence Lower Bound (ELBO) with addi-
tional scaling factor β [10] given by:

LV AE = −Eqθ
[log pφ(x|z)] + βDKL[qθ(z|x)||p(z)] (2)

where the first term is referred to as the reconstruction loss, with pφ giving the
likelihood parameterised by φ, and the second term as the regularization loss
given by the Kullback-Leibler Divergence (KLD), with qθ giving the approxi-
mate posterior parameterised by θ and p(z) is the prior given by p(z) ∼ N (0, I).

2.2 Discovery of Interpretable Directions in Latent Spaces

Several unsupervised methods to find interpretable directions in GAN latent
spaces have been proposed [7,23,25]. In Härkönen et al.; Shen et al. [7,23] the
directions are orthogonal. This constraint is relaxed in Voynov and Babenko
[25]. As interpretable directions do not have to be orthogonal, we employ the
method suggested by Voynov and Babenko [25]. The proposed method can be
applied to any pretrained latent generative model G. The objective is to learn
distinct directions in the latent space of G by learning a matrix A containing
directions and a reconstructor R to distinguish between them. Since A and R
are learned jointly, the directions of A are likely to be interpretable, semantically
meaningful, and affect all images equally. Otherwise, distinguishing between the
directions would be hard, and consequently, the accuracy of R would suffer.

Fig. 1. Schematic overview of the learning protocol suggested by Voynov and Babenko.
The upper path corresponds to the original latent code z ∼ N (0, I) and the lower path
corresponds to the shifted code z + A(αek) (Adapted from [25]).

Formally, the method learns a matrix A ∈ R
d×K , where d is the dimension-

ality of the latent space of G, and K is the number of directions that will be
discovered. Thus, the columns of A correspond to discovered directions and are
optimized during the training process to be easily distinguishable. Further, let
z ∼ N (0, I) be a latent code, ek an axis-aligned unit vector with k ∈ [1, ...,K]
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and α a scalar. Then, we can define the image pair (G(z), G(z +A(αek))) where
G(z) is the original image generated by latent code z and G(z + A(αek)) is a
shifted image from the original latent code z shifted along the kth discovered
direction by amount α. Thus, α is a ’knob’ controlling the magnitude of the shift.
Given such an image pair, the method optimizes the reconstructor R presented
with that pair to predict the shift direction k and amount α. Figure 1 illustrates
the architecture. The optimization objective is given by:

min
A,R

Ez,k,α[Lcl(k, k̂) + γLs(α, α̂)] (3)

where k and α are the direction and amount respectively, and k̂ and α̂ are the
predictions. The classification term Lcl is given by cross-entropy. Further, we
can use the classification term to get the Reconstructor Classification Accuracy
(RCA), i.e., the accuracy of predicting the direction. Finally, the shift term Ls

is given by the mean absolute error, and the regularization factor γ.

3 Material and Methods

3.1 Data

We use Lung Image Database Consortium image collection (LIDC-IDRI) [2] pro-
vided by The Cancer Imaging Archive (TCIA). It consists of clinical thoracic CT
scans of 1010 patients collected from diagnostic and lung cancer screenings and
is assembled by seven academic centers and eight medical imaging companies.
We consider each axial slice as an individual image. Thus, our dataset consists
of 246, 016 CT slices. We resize the images to 128 × 128 pixels to limit compu-
tational demands and limited the data to a range of [−1000, 2000]Hu to reduce
the amount of outlier values and normalized using min-max scaling.

3.2 Models and Training

Since this study focuses on the potential of unsupervised exploration of latent
spaces for medical images, we use simple generative models. We use a DCGAN
based on Radford et al. [20], improving training stability by introducing one-
sided label smoothing [22], replacing the fixed targets 1 of the real labels with
smoothed values randomly chosen from the interval [0.9, 1]. Additionally, we add
0-mean and 0.1 standard deviation Gaussian noise to the discriminator input
[1], incrementally reducing the standard deviation and finally removing it at
the midpoint of training. The encoder and decoder of the VAE are based on
ResNet [8], and we use β = 0.01 to improve reconstruction quality. For both
generative models, we use a latent space size of d = 32 as it showed the best
trade-off between image quality and compactness of the latent space. We refer
to the provided GitHub repository for implementation details. We train the
GAN and the VAE for 50 epochs selecting the best weights out of the last 5 by
considering the models Fréchet Inception Distance (FID) [9] on test data. We
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use binary cross-entropy as loss for the GAN and log mean squared error [28]
as reconstruction loss for the VAE. We use Adam [14] with a learning rate of
0.0002 and 0.0001 to optimize the GAN and VAE, respectively. The best model
weights yield a FID of 33.4 for the GAN and 93.9 for the VAE on the test data.

To find interpretable latent directions, we use two different reconstructor
architectures, based on LeNet [16] and ResNet18. We experiment with A hav-
ing unit length or orthonormal columns as suggested by Voynov and Babenko
[25]. We set the number of directions K equal to the size of the latent space,
i.e., K = 32, and experiment with increasing it to K = 100. We observe sig-
nificantly faster convergence when using the ResNet reconstructor. Thus, when
using K = 32, we train the model for 25, 000 iterations using LeNet and 3, 000
iterations using the ResNet reconstructor. When K = 100, we train the VAE for
75, 000 and 4, 000 iterations with the LeNet and ResNet reconstructors respec-
tively. For the GAN we observe slower convergence. Thus, we train for 250, 000
and 10, 000 iterations with the LeNet and ResNet reconstructors, respectively.
Since we cannot have K > d for orthonormal directions, we only use A with
columns of unit length for K = 100. We evaluate direction models using the
RCA and the shift loss Ls from Eq. 3. Further, we follow the ablation provided
by Voynov and Babenko [25] and use a regularization factor γ = 0.25. To evalu-
ate the directions, preliminary labeling was done by the first author with eight
animations, each showing different latent vectors per direction. Next, each direc-
tion and preliminary label was considered on eight static images. The evaluator
does not have formal training in medical image interpretation, and it is pos-
sible that more experienced evaluators could have discovered more interesting
directions.

4 Experiments and Results

We perform several experiments to investigate the unsupervised exploration of
latent spaces of deep generative models. First, we train using orthonormal direc-
tions and directions of unit length. We also experiment with increasing the num-
ber of directions. Finally, we perform all experiments both with a DCGAN and a
VAE as generative models. All results are obtained without supervision, except
the labeling of the selected directions. The RCA and Ls of the different exper-
iments are presented in Table 1. We observe that the VAE always outperforms

Table 1. Reconstructor Classification Accuracy (RCA) and Ls for all model configu-
rations for ResNet and LeNet as reconstructor.

Orthogonal Unit length 100 directions

RCA Ls RCA Ls RCA Ls

GAN ResNet 0.9236 0.2538 0.9383 0.1949 0.9522 0.1560

GAN LeNet 0.8559 0.3317 0.9062 0.2439 0.9305 0.1406

VAE ResNet 0.9939 0.1040 0.9947 0.1086 0.9861 0.1117

VAE LeNet 0.9800 0.1421 0.9895 0.1090 0.9791 0.0962
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the GAN with respect to both RCA and Ls. Further, using directions of unit
length achieves higher RCA than orthonormal directions and lower Ls in all
but one case. We also observe higher RCA when using ResNet over LeNet as a
reconstructor. In contrast, LeNet achieves a lower Ls when K is set to 100.

Voynov and Babenko [25] mention that a larger K does not harm inter-
pretability but alleviates entanglement and may lead to more duplicate direc-
tions. We observe the same behavior with K = 100 as opposed to K = 32.

Our results show eight consistent directions: width, height, size, rotation,
y-position, thickness, breast size, and z-Position. All model configurations find
all eight directions with varying degrees of entanglement. In this work, we omit
directions entangled to such a degree that there is no clear interpretation domi-
nating the image transformation. Thus, all configurations find at least a subset of
the directions above in a sufficiently disentangled manner. We present animations
of all discovered directions in the provided GitHub repository. Figure 2 shows all
eight directions for the VAE and GAN. The directions presented are obtained
using LeNet as reconstructor and K = 100. Directions obtained using different
model configurations are presented in the supplementary material. Our results
show that enforcing orthonormal directions increases entanglement. Finally, we

Fig. 2. Interpretable directions using A32×100 with unit length columns, LeNet as
reconstructor, and the GAN and VAE as generative models. The central images corre-
spond to the original latent vector. The left/right images correspond to shifts.
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observe that when using a LeNet reconstructor, more of the obtained directions
are easily interpretable compared to using a ResNet reconstructor.

5 Discussion

In this work, we explored the latent spaces of deep generative models to discover
semantically meaningful directions. We next elaborate on some of the findings
of our experiments.

Influence of K: We observe less entanglement when increasing K. Thus, we
hypothesize that lower K likely makes the reconstructor classification task eas-
ier, as there are less classes, lessening the need for disentanglement. If so, when
increasing K, the increasing classification difficulty forces the model to disen-
tangle the directions more.

Orthonormal Directions: While constraining the directions to be orthonor-
mal still leads to the same subset of interpretable directions being discovered,
their quality suffers. This aligns with the observations of Voynov and Babenko
[25]. However, their results show that some datasets benefit from orthonormal
directions, leading to more interesting directions. We do not observe this on
our data, and the lack of disentanglement is also clear from the lower RCA of
the methods using orthonormal directions. Thus, it seems likely that directions
offering semantic meaning are not necessarily orthonormal, strengthening our
reasoning for choosing this method over Härkönen et al.; Shen et al. [7,23].

Choice of Reconstructor: When K = 32 both reconstructors show similar
qualitative results, more entangled directions, Ls is larger, and ResNet quan-
titatively outperforms LeNet. For K = 100, LeNet produces better qualitative
results than ResNet. This is also evident in the quantitative results with LeNet
and K = 100 achieving the lowest Ls. While ResNet has a higher RCA, RCA
gives a measure of duplicate directions and only partially describes interpretabil-
ity. Since LeNet performed best when using K = 100 and the increased number
of directions benefited disentanglement, we prefer LeNet as reconstructor.

Consistent Discovery of Interpretable Directions: The same subset of
human interpretable directions appears for all models with varying degrees of
entanglement. Recent work has shown non-linear directions to be less entangled
[24] which could be studied further. The directions are validated by showing that
the same set is discovered in the latent space of both the generative models. The
resulting directions we discover show non-trivial image transformations. In par-
ticular, the directions changing the z-Position of the latent vector demonstrates
that the models learn the 3D structure of the data despite being trained on 2D
images. While the focus of discovering directions in latent spaces has mainly
been on GANs in recent years, we see that the same methods apply to VAEs.
Since VAEs allow for explicit data approximation, they have a practical benefit
over GANs when considering the usefulness of these methods.
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Impact and Applications: Improving interpretability of GANs and VAEs is
important and addressed in this work by finding and visualizing meaningful
latent space directions and providing novel insights into the learned represen-
tations. The method is shown to generalize to VAEs, indicating that the latent
spaces of VAEs and GANs can be interpreted in similar ways. However, shorter
convergence times on the VAE when learning the directions indicate that VAEs
latent spaces could be inherently easier to interpret. Unsupervised exploration
further benefits the medical image domain due to the lack of well-supervised
datasets, and more importantly, it could lead to surprising results outside of
what we are explicitly supervising methods to find.

Our work can further be used for context-aware image augmentation and
editing. Image augmentation using synthetic data improves downstream machine
learning tasks on medical images [3] and can alleviate both the small dataset
sizes and imbalance inherent to medical imaging [12,27]. Our results could be
used to explore more diverse augmentations, e.g., adjusting for sex and weight
imbalances. Additionally, our work might offer an alternate unsupervised app-
roach to disease-aware image editing [21].

We see further applications needing more investigation, such as exploring
the potential in consistency regularization and multi-modal datasets. For exam-
ple, finding directions corresponding to adding or removing contrast in scans.
Further, the approach we use has been shown to be effective in unsupervised
saliency detection and segmentation on natural images [18,25,26].

Limitations: The main limitations we observe in our work are based on the
methodology for unsupervised exploration. First, while the RCA and shift loss
give some insights into convergence, the implications of overfitting need to be
investigated. In particular, deciding how many training iterations to use is dif-
ficult as model performance can not be assessed on independent data. Further,
the lack of evaluation metrics makes the choice of reconstructor difficult. We
tried to mitigate this by using RCA and Ls for quantitative and human inter-
pretation for qualitative analysis. Nevertheless, further investigation is needed
to find good evaluation metrics. Second, the large amount of resulting directions
makes evaluation difficult and time-consuming. This is particularly challenging
in medical image analysis as evaluation may involve trained evaluators such as
radiologists. Further automation or introducing a hierarchy of interpretability
could be a focus of future work. Next to the methodological limitations, we see
further potential for expanding our work to 3D generative models and more
datasets in the future.

6 Conclusion

In this work, we have demonstrated for the first time that techniques for unsu-
pervised discovery of interpretable directions in the latent space of generative
models yield good results on medical images. While the interpretability of latent
spaces is arguably an abstract concept depending on those interpreting, our
results show that generative models learn non-trivial, semantically meaningful
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directions when trained on CT images of the thorax. We encounter directions
with the same semantic meaning regardless of the generator or direction dis-
covery model, indicating a general structure of the latent spaces. Further, our
results show that the generative models’ latent spaces capture the 3D struc-
ture of the CT scans despite only being trained on 2D slices. The work opens
up the possibility of exploring these techniques for unsupervised medical image
segmentation, interpolation, augmentation, and more.
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Abstract. Reducing the requirement for densely annotated masks in
medical image segmentation is important due to cost constraints. In this
paper, we consider the problem of inferring pixel-level predictions of brain
lesions by only using image-level labels for training. By leveraging recent
advances in generative diffusion probabilistic models (DPM), we synthe-
size counterfactuals of “How would a patient appear if X pathology was
not present?”. The difference image between the observed patient state
and the healthy counterfactual can be used for inferring the location of
pathology. We generate counterfactuals that correspond to the minimal
change of the input such that it is transformed to healthy domain. This
requires training with healthy and unhealthy data in DPMs. We improve
on previous counterfactual DPMs by manipulating the generation pro-
cess with implicit guidance along with attention conditioning instead
of using classifiers (Code is available at https://github.com/vios-s/Diff-
SCM).

Keywords: Generative models · Diffusion probabilistic models ·
Counterfactuals

1 Introduction

Despite being crucial for training supervised machine learning models, pixel-level
annotations of pathologies are costly. Creation of ground truth masks requires
specialist radiologists. In this paper, we explore how to reduce the need for
densely annotated ground truths in favour of a single image-level label: “Is the
patient healthy or not?”.

This problem has been tackled in the anomaly segmentation literature
[7,11,16,20–23] by training deep generative models on healthy data only. They
rely on the assumption that the model will learn “normal” (i.e. healthy) features
whilst failing on out-of-distribution features [2]. In this case, a pixel-wise map
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can be generated by taking the residual between the input image and a pre-
dicted “healthy” image, to highlight the unhealthy areas. However, distinguish-
ing normal (healthy) from abnormal (unhealthy) without being shown examples
of abnormality is not trivial. In a brain lesion segmentation task [1], for instance,
lesions deform adjacent areas of the brain. Arguably, these deformations should
not be captured by the anomaly segmentation algorithm. In fact, it has been
hypothesised that anomaly segmentation models [2] (trained only on healthy
data) simply highlight zones of hyper-intensity in the image, since they may be
surpassed in segmentation performance by simple thresholding techniques [8].
In line with this hypothesis, we show that, despite being more expressive than
previous generative models,1 diffusion probabilistic models (DPM) [3,4] trained
on healthy data only, do not perform well in the segmentation task.

DPMs synthesise images by decomposing the generation process into a
sequential application of denoising neural networks. We show empirically that
efficient localization of brain lesions (abnormalities) with DPMs requires show-
ing the model during training what an unhealthy brain is. Here, we demon-
strate that the areas of interest (brain lesions) will be highlighted by performing
the minimal intervention that can be applied to an image in order to change
domains. This can be done using counterfactual generation [10,15]. In particular,
a recent technique for generation of image counterfactuals [15] leverages a clas-
sifier (trained on image-level information) for manipulating an image between
domains without paired domain data. The image is manipulated by encoding to
latent space followed by conditional decoding. We create heatmaps by taking the
difference between the observed image of a patient and its healthy counterfac-
tual. However, using an extra classifier [15,18] can be cumbersome and hard to
tune due to gradient dynamics during the iterative inference process of DPMs.
In this paper, we improve on previous works by performing counterfactual dif-
fusion without relying on downstream classifiers. We formulate a more efficient
algorithm by using implicit guidance, attention-based conditioning and dynamic
normalisation inspired by text-to-image DPMs [13,14].

Contributions. We explore brain lesion segmentation with generative DPMs
without pixel-level supervision. We: (i) show that training DPMs on healthy
data alone might not be sufficient for segmenting lesions, validating a previous
hypothesis [8] that most anomaly segmentation algorithms only detect hyper-
intensities; (ii) perform counterfactual diffusion without relying on a downstream
classifier, simplifying training and making the algorithm more robust to hyper-
parameter choices; and (iii) conduct extensive experiments, showing superior
accuracy in brain lesion localization.

1 Such as variational autoencoders (VAEs), normalizing flows (NFs) or generative
adversarial networks (GANs).
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Fig. 1. Counterfactual diffusion overview. Encoding is done by iteratively applying
diffusion models to obtain a latent space with an unconditional model (c = ∅). Decod-
ing is performed by reversing the diffusion process from the latent space to reconstruct
an image with healthy condition. As detailed in Sect. 3.2, decoding uses healthy and ∅
for guidance. A heatmap of the lesion can obtained by taking the difference between
the original and the reconstructed healthy.

2 Preliminaries on Diffusion Probabilistic Models
(DPMs)

A diffusion process gradually adds noise to a data distribution over time. Dif-
fusion probabilistic models (DPMs) [4] learn to reverse the noising process,
going from noise towards the data distribution. DPMs can, therefore, be used
as a generative model. The diffusion process gradually adds Gaussian noise,
with a time-dependent variance αt, to a data point x0 ∼ pdata(x) sampled
from the data distribution. Thus, the noisy variable xt, with t ∈ [0, T ], is
learned to correspond to versions of x0 perturbed by Gaussian noise follow-
ing p (xt | x0) = N (

xt;
√

αtx0, (1 − αt) I
)
, where αt :=

∏t
j=0 (1 − βj) and I is

the identity matrix.

2.1 Training

With sufficient data and model capacity, the following training procedure ensures
that the optimal solution to ∇x log pt(x) can be found by training εθ to approx-
imate ∇x log pt(xt | x0) [6]. The diffusion model can be implemented with a
conditional denoising U-Net εθ(xt, c, t) which allows controlling the synthesis
process through inputs c. The training procedure is done learning a θ∗ such that

θ∗ = arg min
θ

Ex0,t,ε

[
‖εθ(xt, c, t) − ε‖22

]
, (1)

where xt =
√

αtx0+
√

1 − αtε, with x0 ∼ pdata being a sample from the (training)
data distribution, t ∼ U (0, T ) and ε ∼ N (0, I) is the noise.
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2.2 Inference

Once the model εθ is learned using Eq. 1, generating samples consists in starting
from xT ∼ N (0, I) and iteratively sampling from the reverse process with the
diffusion model. Here, we will use the sampling procedure from Denoising Dif-
fusion Implicit Models (DDIM, [17]) which formulates a deterministic mapping
between latents to images following

xt−1 =
√

αt−1

(
xt − √

1 − αt · εθ(xt, c, t)√
αt

)

︸ ︷︷ ︸
x̂0

+
√

1 − αt−1 εθ(xt, c, t). (2)

The DDIM formulation has two main advantages: (i) it allows a near-invertible
mapping between xT and x0; and (ii) it allows efficient sampling with fewer iter-
ations even when trained with the same diffusion discretization. This is obtained
by choosing different under-sampling t in the [0, T ] interval.

3 Lesion Localization with Counterfactual Diffusion

We are interested in manipulating the input image from unhealthy2 to healthy
domain at inference time. At the same time, all other aspects of the input image
should remain unchanged. Specifically, we are interested in identifying what is
the main feature that should be modified. The main features should, for instance,
correspond to lesions in a brain tumour dataset. This “minimal” manipulation
is known in the causal literature as counterfactual generation [10,15]. Once
εθ(xt, c, t) is trained on the imaging data with c ∈ [healthy,unhealthy] using
Eq. 1, we can manipulate the input image between domains at inference time
using the counterfactual generation inspired by [15,18].

3.1 Estimating Lesion Heatmap with Counterfactual Diffusion

We encode the input image into a (spatial) latent space by iteratively (L iter-
ations) applying Eq. 2 in reverse order (simply changing t − 1 to t + 1) with an
unconditional model (c = ∅). Then, we generate a counterfactual by decoding
the latent while applying an intervention to the conditioning c to be “healthy”.
Decoding is done by applying Eq. 2 with implicit guidance (using εθ(xt, c, t) as
in Sect. 3.2) with attention conditioning (Sect. 3.3). The difference between the
original image and counterfactual is then averaged along the channel dimension
to obtain a heatmap which is used to recover the lesion (unhealthy features) seg-
mentation. We apply dynamic normalization (Sect. 3.4) throughout the entire
inference process. We illustrate this method on Fig. 1 and detail the algorithm
in Algorithm 1.

2 If the input is healthy, applying an intervention should not modify it.
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3.2 Implicit Guidance

Using a classifier [3] to guide the diffusion process, which requires training an
extra model over noisy images, has been successfully used to generate counter-
factuals [15,18]. Here, we leverage implicit guidance3 [5] in the context of coun-
terfactual generation. In implicit guidance, a single diffusion model is trained on
conditional and unconditional objectives via randomly dropping c during train-
ing (e.g. with 35% probability). The dropped conditioning is represented here
with ∅ such that εθ(xt, c, t) and εθ(xt, ∅, t) are conditional and unconditional εθ-
predictions. Sampling is performed by combining εθ-predictions with a guidance
scale (w), resulting in εθ(xt, c, t) = wεθ(xt, c, t) + (1 − w)εθ(xt, ∅, t).

3.3 Conditioning with Attention Mechanisms

Generating counterfactuals requires conditioning the decoding during inference.
As baseline, we utilise the adaptive group normalization (AdaGroup) which has
already been successfully used in DPMs [3]. For counterfactual generation, mod-
ifying the normalization is not enough. We improve conditioning by augmenting
the underlying U-Net backbone with a conditional attention mechanism inspired
by previous work of text-to-image generation [9,12,13]. To pre-process c, we use
an encoder τφ that projects c to an intermediate representation τφ(c) ∈ R

dτ ×dτ ,
which is separately projected to the dimensionality of each attention layer
throughout the model, and then concatenated to the attention context at each
layer. In particular, we consider a U-Net with an attention layer implementing
softmax

(
QKT

c√
d

)
Vc. Similar to previous DPMs [3,4], the values for Q, K and

V are derived from the previous convolutional layer. However, we concatenate
τφ(c) to K and V before the attention layer forming Kc = concat([K, τφ(c)])
and Vc = concat([V, τφ(c)]) [9].

3.4 Dynamic Normalization

During inference, the iterative process with guidance might change the input
image statistics. This is specially cumbersome to counterfactual estimation
because the latent space pixel values saturate (high absolute values). A saturated
latent generates lower quality reconstructions and less manipulable images. Most
DPM methods [3,9,13] clip the image to the (−1,+1) range at each iteration.
This static normalization ensures that the image can be appropriately processed
by the neural network4 but also results in a saturated latent. We avoid satu-
ration by normalizing (dn), at each sampling step, the intermediate image to a
certain percentile absolute pixel value. We use th = max(1,percentile(|x̂0|, s)),
where s is the desired percentage. Then, x̂0 is clipped to the range (−th, th) and
divided by th. This dynamic normalization pushes saturated pixels (those near
−1 and +1) inwards, thereby actively preventing pixels from saturation at each
step.
3 Also known as classifier-free guidance in text-to-image generation DPMs [12,14].
4 High absolute values of the neural network’s input can result in unstable behaviour.
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4 Experiments

4.1 Experimental Setup

Dataset. We evaluate the lesion localization performance on the surrogate task
of brain tumor segmentation using data from the BraTS 2021 challenge [1].
This data comprises magnetic resonance (MR) imaging from four sequences T1,
post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated
Inversion Recovery (FLAIR) for each patient. The data has already been co-
registered, skull-stripped and interpolated to the same resolution. We use dataset
splits with 938, 62 and 251 patients for training, validation, and testing.

Training. The dataset has pixel-level annotations for the lesions. During train-
ing, we consider axial slices with at least one tumour voxel to be “unhealthy”,
and “healthy” otherwise. For the data input to the models, we concatenate all
four modalities at the channel dimension for each patient. We normalize (rescale)
the pixel values in each modality of each scan by dividing by the 99th percentile
foreground voxel intensity. All slices are downsampled to a resolution of 64 × 64
for training, but all evaluation is done at 128 × 128 (1.62 mm/pixel) for fair
comparison with baselines.

Benchmarks. We compare our model’s performance against five generative
methods, we use (i) a standard VAE [21,22];(ii) f-AnoGAN [16];(iii) VAE with
iterative gradient-based restoration [20];(iv) denoising autoencoder (DAE) with
coarse noise [7];(v) counterfactual diffusion model with classifier guidance [18]5.
Finally, we apply the simple thresholding approach from [8]. We use the hyper-
parameters from the original works for the deep learning methods but tune man-
ually where necessary to improve training stability and performance. We detail
in Table 1 if a benchmark method use only healthy data or the entire dataset
during training.

Baseline. We use the denoising U-net εθ(xt, c, t) from [3] as diffusion model and
perform encoding-decoding inference as described in Sect. 3.1 as baseline entitled
counterfactual DPM (CDPM). Following previous anomaly localization works
[2,7], we also train a model CDPMhealthy on healthy data only and inference
is performed by encoding and decoding with an unconditional model εθ(xt, t).
During the reconstruction process lesions should not be reconstructed because
they are out-of-distribution.

Evaluation. We evaluate the lesion localization performance of the methods
with two metrics (i) area under the precision-recall curve (AUPRC) at the pixel
level computed for the whole test set; (ii) Dice score which measures the segmen-
tation quality using the optimal threshold for binarization found by sweeping
over possible values using the test ground truth. �Dice	 represents the upper
bound for the Dice scores that would be obtainable in a more practical scenario.
5 We train [18] at a different resolution than the original method for fair comparison.

Therefore, we fine-tune their hyperparameters on a validation set for maximum
performance as in Fig. 2.
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4.2 Brain Lesion Localization

We now compare our method to previous benchmarks on brain lesion local-
ization. As shown in Table 1, we surpass previous methods in a quantitative
evaluation. In Fig. 3, we show the qualitative difference between the heatmaps
created by our method when compared to other benchmarks. We also perform
an ablation as shown in Table 2, studying the contribution of each individual
components described in Sect. 3.

Table 1. Tumor detection performance as evaluated by test set wide pixel-level area
under the precision-recall curve (AUPRC) and ideal Dice score (�Dice�). ± indicates
standard deviation across 3 runs.

Method AUPRC �Dice� Trained on

Thresholding [8] 68.4 66.7 Not

f-AnoGAN [16] 19.8 ± 0.6 31.6 ± 0.6 Healthy

VAE (reconstruction) [21,22] 29.9 ± 0.2 39.5 ± 0.2 Healthy

VAE (restoration) [20] 74.0 ± 0.7 68.5 ± 0.5 Healthy

DAE [7] 81.6 ± 0.5 75.8 ± 0.4 Healthy

CDPMhealthy 24.9 ± 0.4 33.1 ± 0.4 Healthy

CDPM + classifier [18] 81.5 ± 0.4 74.5 ± 0.4 Full

Ours 82.8± 0.4 76.2± 0.3 Full

Fig. 2. Sweep through inference hyperpa-
rameters. We vary the guidance scale (both
from classifier and implicit) and L defined
in terms of percentage of training diffusion
steps (1 corresponds to 100 DDIM steps).

Table 2. Contribution of each
the components detailed through-
out the paper to the localization
results.

Improvements Dice

CDPMhealthy 33.1

CDPM + Classifier [18] 74.5

CDPM 20.0

+ implicit guidance 52.0

+ attention conditioning 74.3

+ dynamic normalisation 76.2

4.3 How to Apply the Minimal Intervention?

The brain tumours are the main feature differentiating healthy from unhealthy
images. Therefore, we explore how to ensure that lesions are highlighted and
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nothing else, resulting in higher Dice values. In our algorithm, the strength of
the intervention can be controlled by varying the guidance scale (w) as well
as the number of inference iterations L at inference time. We use a small (256
images) annotated validation set to find the best inference hyperparameters by
measuring Dice while varying other variables as illustrated in Fig. 2. Our method
(“implicit”) is more robust to hyperparameter choice than a counterfactual dif-
fusion using classifiers [18].

Fig. 3. Qualitative comparison of brain lesion segmentation methods. The columns
indicate the input image (we are only illustrating the first channel but we use all four
MRI sequences in our algorithm), the ground truth lesion masks and the heatmaps
generated by each of the methods. Each row is a different slice.

5 Related Works on Generative Models for Lesion
Localization

Variational autoencoders (VAEs) [21,22] constrain the latent bottleneck repre-
sentation to follow a parameterized multivariate Gaussian distribution. [23] fur-
ther add a context-encoding task and combine reconstruction error with density-
based scoring to obtain the anomaly scores, while [20] use an iterative gradient
descent restoration process at test time in restoration-VAE, replacing the recon-
struction error with a restoration error to estimate anomaly scores. [16] train a
generative adversarial network called f-AnoGAN which reuses the generator and
discriminator to train an autoencoder with both reconstruction and adversarial
losses for the anomaly detection task. Recently, [11] combine a vector quan-
tized VAE (VQ-VAE) to encode an image with a DPM model over the latent
variables in order to produce reconstructions with fewer reproduced anomalies.
Other works explored pseudo-healthy pathology synthesis by disentangling rep-
resentations in generative adversarial networks (GANs) [19].
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6 Conclusions

We use conditional diffusion models for synthesizing healthy counterfactuals of
a given input image, enabling lesion segmentation without access to pixel-level
annotations. The difference between the observed image and the counterfactual
produces a heatmap from which the segmentation masks can be obtained. Sur-
prisingly, we show that this can be efficiently without a downstream classifier for
guiding the generation, as in previous work [15,18]. We show how using implicit
guidance and attention conditioning as well as dynamic normalization, counter-
factuals can be synthesized with a single model. Future work involves up-scaling
the model to handle higher resolution images which can be done either by per-
forming diffusion in a lower dimensional latent space [13] or using a cascade of
super-resolution conditional diffusion models [14].

Acknowledgements. This work was supported by the University of Edinburgh, the
Royal Academy of Engineering and Canon Medical Research Europe via PhD stu-
dentships of Pedro Sanchez and Xiao Liu (grant RCSRF1819\825). This work was par-
tially supported by the Alan Turing Institute under the EPSRC grant EP N510129\1.

A Algorithm

Algorithm 1: Segmentation with Implicit Counterfactual Diffusion

Model : trained diffusion model εθ

Hyper-parameters : guidance scale w, number of iterations L
Input : factual image x0 (M channels), condition c
Output : heatmap

Recovering Unconditional Latent Space (Encoding)

for t ← 0 to L do

x̂t+1 = dn
(√

αt+1

(
xt−√

1−αt·εθ(xt,∅,t)√
αt

))
+

√
αt+1εθ(xt, ∅, t)

end

Counterfactual Generation (Decoding)

for t ← L to 0 do
ε = w εθ(xt, c, t) + (1 − w) εθ(xt, ∅, t)

x̂t−1 = dn
(√

αt−1

(
xt−√

1−αt·ε√
αt

))
+

√
αt−1ε

end

heatmap = 1
M

∑M
m |xm

0 − x̂m
0 |



Lesion Localization via Generative Counterfactual Diffusion 43

References

1. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the BraTS
challenge. arXiv preprint arXiv:1811.02629 (2018)

2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for
unsupervised anomaly segmentation in brain MR images: a comparative study.
Med. Image Anal. 69, 101952 (2021)

3. Dhariwal, P., Nichol, A.Q.: Diffusion models beat GANs on image synthesis. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems (2021)

4. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances
on Neural Information Processing Systems (2020)

5. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications (2021)

6. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
J. Mach. Learn. Res. 6, 695–709 (2005)

7. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised
anomaly detection in brain MRI. In: Medical Imaging with Deep Learning (2022)

8. Meissen, F., Kaissis, G., Rueckert, D.: Challenging current semi-supervised
anomaly segmentation methods for brain MRI. In: Crimi, A., Bakas, S. (eds.)
BrainLes 2021. LNCS, vol. 12962, pp. 450–462. Springer, Cham (2021). https://
doi.org/10.1007/978-3-031-08999-2 5

9. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

10. Pawlowski, N., Castro, D.C., Glocker, B.: Deep structural causal models for
tractable counterfactual inference. In: Advances in Neural Information Process-
ing Systems (2020)

11. Pinaya, W.H., et al.: Fast unsupervised brain anomaly detection and segmentation
with diffusion models. arXiv preprint arXiv:2206.03461 (2022)

12. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
(2022)

13. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2022)

14. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language
understanding. arXiv preprint arXiv:2205.11487 (2022)

15. Sanchez, P., Tsaftaris, S.A.: Diffusion causal models for counterfactual estimation.
In: First Conference on Causal Learning and Reasoning (2022)
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Abstract. Electroencephalography produces high-dimensional, stocha-
stic data from which it might be challenging to extract high-level knowl-
edge about the phenomena of interest. We address this challenge by
applying the framework of variational auto-encoders to 1) classify mul-
tiple pathologies and 2) recover the neurological mechanisms of those
pathologies in a data-driven manner. Our framework learns genera-
tive factors of data related to pathologies. We provide an algorithm to
decode those factors further and discover how different pathologies affect
observed data. We illustrate the applicability of the proposed approach
to identifying schizophrenia, either followed or not by auditory verbal
hallucinations. We further demonstrate the ability of the framework to
learn disease-related mechanisms consistent with current domain knowl-
edge. We also compare the proposed framework with several benchmark
approaches and indicate its classification performance and interpretabil-
ity advantages.

Keywords: EEG · VAEs · Functional connectivity

1 Introduction

Analysis of neurological processes in the human brain is a challenging pro-
cess addressed by neuroimaging. Here, one typically obtains high-dimensional
stochastic data, which encourages the usage of machine learning algorithms. In
recent years, deep learning discriminative models have been actively applied to
neuroimaging issues (see [1] for a review). They yielded state-of-the-art results in
classification problems on a variety of benchmark datasets [2–4]. One downside
of deep learning-based classifiers is that they operate as black boxes [5] meaning
that interpreting their predictions is often severely complicated.
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[1] suggested that hybrid generative-discriminative models might help resolve
the issue. Such models can learn low-dimensional representations of data where
each dimension corresponds to an independent generative factor (i.e. a disentan-
gled representation, see [6] for a review). The discriminative part of the model
then forces those factors to capture label information from data [7]. Interpretabil-
ity is thus achieved via decoding the meaning of generative factors related to
particular labels [8]. It is especially relevant in neuroimaging as one can observe
how underlying pathologies govern the process of data generation.

The paper follows the intuition regarding hybrid generative-discriminative
models for neuroimaging data, with particular application to EEG data. Our
main contributions are as follows:

1. We demonstrate how one can apply characteristic capturing variational auto-
encoders (CCVAEs) [7] to the interpretable classification of EEG data;

2. We compare the model to two generative models previously used for EEG
data: conditional VAEs and VAEs with downstream classification;

3. We propose an algorithm for decoding generative factors learned by CCVAEs;
4. We demonstrated that learned generative mechanisms associated with

pathologies are consistent with evidence from neurobiological studies.

2 Background

In this section, we introduce the relevant materials on variational auto-encoders,
disentangled factorization and the role of supervision.

Variational Auto-Encoders. Variational auto-encoders (VAEs) [9] learn a
model distribution pθ(x, z) that describes the ground-truth data generation pro-
cess p(x, z) as first sampling random variables z from a prior distribution p(z).
Then, an observation x is inferred based on generative factors pθ(x|z) yielding

pθ(x, z) = pθ(x|z)p(z) (1)

Here, the conditional distribution is parameterized with neural networks
whose learned parameters are denoted with θ. Defining latent variables as jointly
independent yields disentangled factorization [10] that separates the generative
process into human-interpretable [8] generative mechanisms.

Supervised Learning. A label variable y ∼ p(y) can be interpreted as the
context that partially governs the generation of an observed variable x. In VAEs,
it is reflected by generative factors p(x|z,y) of a model. It leads to the joint
distribution factorized as follows:

pθ1,θ2(x, z,y) = pθ1(x|z,y)pθ2(z|y)p(y) (2)

where θ1, θ2 are parameters of corresponding model distributions. The equality
holds due to the chain rule. Incorporating label information into the model allows
learning generative factors corresponding to those labels via pθ2(z|y).
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Fig. 1. Scheme of the proposed approach (A). We receive EEG data as input and learn
a stochastic mapping to the latent space with CCVAEs (B) [7]. We further manipulate
learned generative factors of data to gain insights regarding neurological mechanisms
related to the attribute of interest, e.g. a symptom.

3 Methods

The proposed framework consists of 2 steps (see Fig. 1). First, EEG data is
mapped stochastically to the latent space via CCVAEs. The latent space is con-
structed such that each label is related to a single independent generative factor.
Second, we perform an intervention analysis to decode the meaning of label-
related generative factors. This way, we get an intuition regarding mechanisms
through which labels govern data generation. In our case, we are interested how
different pathologies manifest themselves in functional connectivity matrices.

Characteristic Capturing VAEs. We aim at learning a model of a joint
distribution over observed EEG data x, labels (e.g. pathology indicators) y and
latent variables z partially conditioned to y. Let us assume that x and y are
conditionally independent given z. Then, the generative model (see Eq. 2) can
be rewritten as follows:

pθ1,θ2(x,y, z) = pθ1(x|z) pθ2(z|y) p(y)

We further partition the latent space z such that one partition zc encapsulates
label associated characteristics, and the second partition z\c accounts for shared
features of data (as in the vanilla VAEs):

pθ2(z|y) = pθ2(zc|y) · p(z\c)

The characteristic partition zc is further partitioned so that each label can
access only a single latent variable. It guarantees the disentanglement of label
information in latent representations. The intractable distribution p(z|x,y) is
conditioned to both observation and label variables. It is approximated with the
following inference model:

qφ1,φ2(z|x,y) =
qφ1(y|zc) qφ2(z|x)

qφ1,φ2(y|x)
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where φ1, φ2 are parameters of model distributions. The conditional distribution

qφ1,φ2(y|x) =
∫

qφ1(y|zc) qφ2(z|x) dz

reflects that observation variables x and label variables y are connected via the
characteristic partition zc. Label-related information is captured in an obser-
vation x by the inference model qφ2(z|x). At the same time, classifier qφ(y|zc)
forces the label-related latent variables zc to capture characteristics of those
labels.

As for the vanilla VAEs, the model is optimized by maximizing the evidence
lower bound [9]. In the case of CCVAEs, it is equivalent to maximizing the
following objective (see Appendix B.1 of [7] for derivation):

L(x,y) = Eqφ2 (z|x)

[
qφ1(y|zc)

qφ1,φ2(y|x)
log

pθ1(x|z) pθ2(z|y)
qφ1(y|zc) qφ2(z|x)

]
+ log qφ1,φ2(y|x) (3)

The classification term log qφ1,φ2(y|x) is essentially a learnable mapping from
input data x to labels y that goes through the characteristic partition of the
latent space zc. It applies pressure onto the partition to learn label-related char-
acteristics from data and simultaneously performs data classification.

Intervention Analysis. The learned generative model forms the bridge
between observations x and their labels y via latent variables zc. It allows one
to analyze generative factors pθ1,θ2(x|z,y) of data related to those labels. One
can explore the relation via intervention analysis. The algorithm for a single
binary label of interest yi is as follows. First, one fixes every dimension of the
latent space z except the one zi

c that corresponds to the label yi. Next, the
value of zi

c is sampled from pθ2(z
i
c|yi) for each value of yi ∈ {0, 1}. As a result,

one receives two latent representations z0, z1 that vary only in a single dimen-
sion zi

c. Those representations are then reconstructed to the observation space
x0 ∼ pθ1(x|z = z0), x1 ∼ pθ1(x|z = z1). The procedure is repeated for N times.
As a result, one gets multiple pairs of reconstructions (x0,x1) that are differ-
ent only to the varied generative factor zi

c. One further calculates the average
difference 1

N

∑N
k=1(x

k
1 − xk

0) for each pair, and thus observes how the label yi

manifests itself in data.

4 Related Works

The fusion of generative and discriminative models with application to neu-
roimaging data is an active area of research. [11] demonstrate that using learned
representations leads to more robust classification performance compared to
feed-forward neural networks. [12] introduce VAEs into feature extraction from
multichannel EEG data yielding better accuracy than traditional unsupervised
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approaches. [13] use stacked VAEs for semi-supervised learning on EEG data.
However, the label information is usually encapsulated by multiple latent vari-
ables simultaneously. In this case, label characteristics are smeared across the
latent space, thus complicating the analysis of label-related generative factors.
It, in turn, limits both the interpretability and explainability of these models.
One has to decode and interpret each latent variable and then infer the relation
with label variables which is not a trivial task.

Two flavours of VAEs that are commonly applied to EEG data are conditional
VAEs [13]1 and VAEs with downstream classification [12]. In both approaches,
the latent space is not partitioned with respect to label variables. Hence, com-
pared to CCVAEs, their general disadvantage is reduced interpretability of clas-
sification as it is difficult to build a bridge between labels and generative factors.

Conditional VAEs. Conditional VAEs have a graphical model similar to the
one of CCVAEs. The only difference is that the latent space is not partitioned
to labels, i.e. z = zc. Learnable parameters are optimized via maximizing the
objective Eq. (3). The framework allows conditional sampling, so one can use
intervention analysis to decode the meaning of learned generative factors. Nev-
ertheless, the interpretation is complicated as a single label variable is connected
to each dimension of the latent space.

VAEs + Downstream Classification. The model approximates the joint
distribution of observed data and latent variables that is factorized as Eq. (1).
The relation between latent variables and labels is built via classifying a latent
representation. The model is trained via optimizing the following objective [11]:

L(x,y) = Eqφ(z|x)

[
log pθ(x|z) − DKL(qφ(z|x)||p(z)) − BCE(fξ(z), y)

]
(4)

where fξ : Z → Y is a learnable classifier with parameters ξ, BCE is binary
cross-entropy function. Here, the information about label variables is incorpo-
rated into the latent space via pressure applied by a downstream classification
task. The model can be seen as a feed-forward deep neural network with addi-
tional regularization imposed by the decoder part of VAEs.

5 Experimental Details

Experimental Study. The study comprised 29 patients suffering from
schizophrenia and 52 healthy controls. 14 subjects out of those 29 indicated
the emergence of auditory verbal hallucinations (AVH), i.e. hearing voices with
no external stimuli presented. Every participant was right-handed. Six different

1 Technically, [13] use stacked VAEs that have two connected latent spaces. One of
the spaces is connected to label variables. However, the framework can be seen as
an instance of conditional VAEs with a non-trivial structure of the latent space.
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syllables were spoken to each participant (/ba/, /da/, /ka/, /ga/, /pa/, /ta/) for
500 ms simultaneously to each ear after 200 ms silence period. Meanwhile, the
EEG recording was conducted with 64 electrodes where 4 EOG channels were
used to monitor eye movements. For each subject, we repeated the procedure
multiple times (number of trials for AVH: 68.23 ± 19.43; SZ: 68.76 ± 14.79 and
HC: 71.19 ± 12.93). At the preprocessing step, the data was filtered from 20
120 Hz according to a protocol described in [14]. Therefore, only gamma-band
frequencies are preserved. Afterwards, all channels were re-referenced to the com-
mon average. At last, muscle and visual artefacts were identified and removed.
For our experiments, we utilized two parts of a recording: the resting one (first
200 ms with no syllable given) and the listening one (initial 200 ms when syl-
lables were presented). The study of [14] contains detailed data acquisition and
preprocessing information.

Experimental Data. For each EEG recording [ζ1, ζ2, ..., ζ61], we assessed func-
tional connectivity by calculating a correlation matrix:

xij =
cov(ζi, ζj)√

var(ζi) · var(ζj)

As a result, functional connectivity matrices play the role of observed data x. We
introduce 3 binary labels such that y = [listening, schizophrenia, hallucinations].
To create a dataset for training models, we use the intra-patient paradigm, i.e.
data from the same subject can appear simultaneously in training and test
datasets. Thus, data of all the subjects are randomly sampled to form those
datasets yielding 9000 training samples and 2000 test samples.

Implementation Details. One can find details regarding the parametrization
of distributions in the supplementary material (Section S.1). We release the
implementation at GitHub. For each framework, the parameters θi, φj (and ξ
for VAEs) are trained via optimizing the corresponding objective. We use Adam
optimizer with a learning rate of 10−3. The training was performed in mini-
batches of size 32 for 100 epochs. All models are trained on an NVIDIA Tesla
V100 GPU from the Hemera HPC system of HZDR.

6 Results and Discussion

We found that high-dimensional latent spaces (dim > 32) hinder the repro-
ducibility of generative factors learned by CCVAEs. For that reason, we keep
the latent space of all models low-dimensional: z ∈ R

5 (zc ∈ R
3, z\c ∈ R

2 for
CCVAEs).

https://github.com/maxxxzdn/eegVAE
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Table 1. Comparison of CCVAEs to base-
line models in terms of accuracy and disentan-
glement scores on the test dataset. For each
framework, 10 experiments were conducted.

Framework Accuracy SAP score [16] MIG score [15]
CCVAEs 0.84 ± 0.01 0.34 ± 0.02 0.04 ± 0.01
Conditional VAEs 0.69 ± 0.10 0.07 ± 0.07 0.01 ± 0.01
VAEs + classification 0.74 ± 0.03 0.06 ± 0.04 0.01 ± 0.01

Results. As shown in Table 1,
CCVAEs outperform baseline mod-
els in both classification perfor-
mance and disentanglement (see
supplementary material S.2 for
details). The framework consis-
tently classifies observed data based
on its low-dimensional representa-
tion, yielding a low standard deviation of accuracy. Besides, it demonstrates a
high level of disentanglement, meaning that each label variable is captured only
by a single latent dimension. For CCVAEs, generative factors are disentangled
in the latent space by design, leading to the highest score. It is not as high as
expected due to the correlation between pathology labels.

Fig. 2. Confusion matrices for different
methods. The size of the circle indicates
the value of the corresponding element.
Rows correspond to label variables (L -
listening, S - schizophrenia, H - hallucina-
tions) while columns represent latent gen-
erative factors.

Fig. 3. Latent space generated by sam-
pling from the inference model qφ(z|x)
of different methods. For CCVAEs, the
axes corresponding to pathology vari-
ables are shown. For baseline methods, 2
randomly selected dimensions are visu-
alized.

Disentangled Latent Space. To demonstrate how hard-wired disentangle-
ment affects the latent space learned by CCVAEs, we construct confusion matri-
ces in the following way. We compute latent representation for each data point
in the test dataset and intervene (i.e. randomly change its value) upon a single
dimension. We further observe how log-probabilities assigned by a pre-trained
classifier change due to the intervention for each label. We calculate the difference
for each label-latent pair yielding a confusion matrix (see Fig. 2). The optimal
result would be one non-zero element per row (i.e. label), which means that each
label corresponds to only a single generative factor. This is the case of CCVAEs,
where one can observe one-to-one dependence between label variables and cor-
responding generative factors. This leads to latent representations being robust
to variations in data generative factors, as those are independent by design. At
the same time, the characteristics of labels are entangled within latent spaces of
baseline frameworks. Hence, it is difficult to disentangle the influence of a label
from other generative factors, which severely hinders interpretability.
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Posterior Distribution. We further compare latent spaces learned by each
framework. To visualize the latent space, we sample z ∼ qφ(z|x) for multiple
x from the test dataset for each model. The result is shown in Fig. 3. In the
case of CCVAEs, the distribution has three modes corresponding to subject
cohorts in data (healthy, schizophrenia, schizophrenia followed by AVH). The
separation is caused by the influence of the conditional prior and the classifier,
aiming to separate representations encoding different label combinations. In the
case of baseline frameworks, there is no strict regularisation that preserves label
information within a partition of the latent space. As a result, features of data
encoded by their latents are shared between cohorts of subjects (thus one or two
modes). We discovered that both baseline methods often fail to jointly learn a
low-dimensional representation and classify labels when the pressure on the KL
divergence term in the loss objective is high. The problem is partially solved by
introducing a scaling factor β for the term [8]. However, reducing the pressure
might lead to untrustable reconstruction if prior p(z) is not sufficiently close to
the inference model q(z|x). This is not the case for CCVAEs that do not require
any manual fine-tuning and operate stably with low-dimensional latent spaces.

yi = schizophrenia yi = hallucinations

Fig. 4. Average difference in reconstruc-
tions of functional connectivity matri-
ces when intervening on a single label:
schizophrenia (Left) and hallucinations
(Right). Connections that are stronger
when a disorder is presented are shown in
red; otherwise, blue. For clarity, we visu-
alize only 40 connections with the highest
absolute value.

Analyzing Pathological Mecha-
nisms. We further investigate what
connections are affected when inter-
vening upon a single label dimension
via intervention analysis (Fig. 4, see
supplementary material S.3 for com-
putation details). The model asso-
ciates the emergence of AVH with
alterations in frontotemporal brain
areas (the highest positive difference),
which have been repeatedly observed
in prior studies [17,18]. The salient
connections are mainly located in the
right hemisphere, which is supported
by the fMRI study of [19]. The model
also points toward reduced connectiv-
ity between hemispheres. It is coher-
ent with the current hypothesis (see
[14] for review) that connects the emergence of auditory verbal hallucinations
with the interhemispheric miscommunication during auditory processing. Over-
all, the model can at least partially reconstruct the neurological mechanism of the
symptom for functional connectivity. To explain the emergence of schizophrenia,
the model focuses mainly on the left hemisphere. It is not surprising since the
auditory function is left-lateralized for right-handed people [20,21]. It would be
an interesting direction for further studies to apply CCVAEs to learn the mech-
anisms of particular symptoms of the composite disorder (e.g. hallucinations,
delusions, etc.).
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7 Conclusion

We demonstrated how to apply the framework of characteristic capturing vari-
ational auto-encoders to EEG data analysis. The method encapsulates and dis-
entangles the characteristics associated with different pathologies in the latent
space. As generative factors are independent by design, one can decode their
meaning and discover how those pathologies alter observed data. It leads to
improved interpretability coupled with the high classification performance of
neural networks. The framework is not limited to functional connectivity analy-
sis or EEG data and can be easily adapted to different neuroimaging modalities.
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Abstract. Longitudinal medical image data are becoming increasingly
important for monitoring patient progression. However, such datasets are
often small, incomplete, or have inconsistencies between observations.
Thus, we propose a generative model that not only produces continu-
ous trajectories of fully synthetic patient images, but also imputes miss-
ing data in existing trajectories, by estimating realistic progression over
time. Our generative model is trained directly on features extracted from
images and maps these into a linear trajectory in a Euclidean space
defined with velocity, delay, and spatial parameters that are learned
directly from the data. We evaluated our method on toy data and face
images, both showing simulated trajectories mimicking progression in
longitudinal data. Furthermore, we applied the proposed model on a
complex neuroimaging database extracted from ADNI. All datasets show
that the model is able to learn overall (disease) progression over time.

Keywords: Longitudinal data · Generative model · Synthetic images

1 Introduction

Longitudinal medical image data are important for e.g. modelling disease pro-
gression [1,27] or monitoring treatment response [3]. However, such datasets
often suffer from incomplete or inconsistent observations, and are often limited in
terms of size, diversity, and balance. Generally, using inadequate data can lead to
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poor performances when being used to train machine learning (ML) models [23]
for medical image analysis tasks such as classification [26] or segmentation [15].

To increase the size and variability of (non-longitudinal) medical imaging
datasets, conventional data augmentation techniques such as rotation, cropping,
or more resourceful augmentations [11] have been widely used [25]. However, the
improved performances of deep generative models have given them the potential
to perform image synthesis. Examples of such models are Generative Adversarial
Networks (GANs) [10], which generate realistic images using a discriminator that
distinguishes between real and synthetic images, and Variational Autoencoders
(VAEs) [14], which constrain image features to follow a given prior distribution
in order to generate synthetic images. These models have shown potential for
synthesizing medical images of various modalities such as magnetic resonance
imaging (MRI) [5,6,24], computed tomography (CT) [8,22], X-ray [18,21], or
positron emission tomography (PET) [2]. In addition, several methods have been
proposed to address data imputation or progression modelling in longitudinal
imaging data of e.g. MRI [13,17] or simulated discrete progressions [20].

Although the topics of inter- and extrapolating longitudinal (medical) imag-
ing data are well studied, to the best of our knowledge there is no model that
addresses both of these aspects at once and is able to continuously generate real-
istic trajectories. In this paper, we propose a new deep generative model that is
capable of: (1) generating realistic progression in images, (2) imputing missing
data in existing patient trajectories, and (3) producing synthetic images with
corresponding trajectories of non-existent patients1.

2 Proposed Method

We propose a new generative model for longitudinal imaging data that consists of
two steps. In the first step, relevant features are extracted from the input images
using a VAE, and the second step maps these features into a linear trajectory to
account for the progression over time. In the following, we refer to an observation,
e.g. an image, as yi,j ∈ Y, with i ∈ [1, N ] the individual’s identifier, tj ∈ R

∗
+,

where j ∈ [0, Pi] the time of the observation. N is the number of individuals and
Pi is the number of observations of i after the first time visit t0.

2.1 Feature Extraction

Medical images are often complex and high-dimensional data. Therefore, instead
of proposing a model directly acting on images, we propose to first extract mean-
ingful features using a VAE (referred to as the VAE in the following). We use an
autoencoder because it constrains comparable images to be encoded into similar
locations such that minor variations in the latent space lead to smooth transfor-
mations in the image space. Since we expect smooth progressions, the VAE is
likely to directly unveil trajectories in the latent space, thereby facilitating the
second step of our method (referred to as the generative model in the following).
In the following xi,j ∈ M refers to the features of observation yi,j .
1 Code and dataset details are available at https://github.com/evihuijben/longVAE.

https://github.com/evihuijben/longVAE
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Fig. 1. Model sketch. First, features are extracted from images using the VAE (step 1),
then, the proposed generative model maps these features to a straight line in Euclidean
space (step 2). Network details are provided in Appendix 2.

2.2 Trajectory Modelling

We propose to learn parametric functions that map the features onto a linear tra-
jectory in a d-dimensional Euclidean space R

d with standard basis {e1, . . . , ed},
accounting for an individual’s progression. We use the framework proposed
in [17], in which an individual’s progression trajectory at time t is modelled
in R

d as

li(t) = exp(ηi)(t − τi) · e1 +
d∑

k=2

λk
i · ek, (1)

where ηi is a velocity parameter, τi is a delay, and λi = (λk
i )2≤k≤d are spatial

parameters. Contrary to [17], we adopt a fully variational approach to make
the model generative in a similar fashion as [14]. Assuming a set of embeddings
x = {(xi,j)1≤i≤N,0≤j≤Pi

} ∈ M, we first assume that given two individuals i and
i′, the features xi,j and xi′,j are independent. Therefore, we propose to maximise
the following likelihood objective p(x) =

∏N
i=1 p(xi), where xi = (xi,0, · · · , xi,Pi

).
We further assume that the latent variables zi = (ηi, τi, λ

2
i , · · · , λd

i ) ∈ R
d+1 in

Eq. (1) are such that the features of individual i at time tj are generated by:

pθ(xi,j |zi) = N
(
μθ(li(tj)), σ · Id

)
, (2)

where li(tj) is the linear trajectory evaluated at tj , and μθ : R
d → M is

parameterised using a multilayer perceptron (MLP) and maps Rd to the feature
space. The variation introduced by the stochastic model is the d-dimensional
unit matrix Id multiplied by a positive constant σ. We further assume that ηi,
τi, and λi are independent and that for a given individual i, the features xi,j

taken conditionally to zi are independent. Furthermore, prior distributions over
the latent variables are: ηi ∼ N (0, ση), τi ∼ N (0, στ ), λi ∼ N (0, Id−1), with the
dataset dependent priors ση and στ . Finally, the likelihood for an individual i is:
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p(xi) =
∫

zi∈Rd+1

pθ(xi|zi)p(zi)dzi =
∫

zi∈Rd+1

Pi∏

j=0

pθ(xi,j |zi)
∏

κi∈{ηi,τi,λi}
p(κi)dκi.

(3)
Since p(zi|xi), the true posterior distribution, is unknown, we rely on varia-
tional inference [12]. Hence, we introduce a variational distribution qϕ(zi|xi) =
qϕ(ηi|xi)qϕ(τi|xi)qϕ(λi|xi) and derive a new estimate of the likelihood p(xi) =

Ezi∼qϕ(zi|xi)

[
p(xi,zi)
qϕ(zi|xi)

]
. We then compute a lower bound on the true objective

using Jensen inequality and importance sampling using the variational distribu-
tion.

log p(xi) ≥ Ezi∼qϕ(zi|xi)

[
log p(xi|zi)

]
−

∑

κi∈{ηi,τi,λi}
KL(qϕ(κi|xi)|p(κi)),

(4)
with KL the Kullback-Leibler divergence. In practice, we use multivariate Gaus-
sians as variational distributions: ηi ∼ N (μηi

ϕ ,Σηi
ϕ ), τi ∼ N (μτi

ϕ ,Στi
ϕ ) and

λi ∼ N (μλi
ϕ ,Σλi

ϕ ). The parameters for progression, ηi and τi, are estimated from
an input sequence using a recurrent neural network (RNN), while the spatial
parameters, (λ2

i , . . . , λ
d
i ), are computed from the features of the image acquired

at time t0, which are estimated by the first MLP. The implementation details of
the RNN and MLP can be found in Appendix 2, and a sketch of the model is
presented in Fig. 1. Taking only the first image’s features for the spatial param-
eters allows to estimate their value even if only one observation is available and
to generate possible future progressions. Finally, we obtain the following loss
function for one individual (removing constant terms):

Li =
Pi∑

j=0

‖xi,j − μθ(li(tj))‖2 +
∑

κi∈{ηi,τi,λi}
KL(qϕ(κi|xi)|p(κi)). (5)

After training, we can either 1) generate fully synthetic trajectories using
the aforementioned prior distributions, 2) produce possible progressions for a
given individual i by estimating its λi and varying ηi and τi, or 3) interpolate
and extrapolate existing trajectories by estimating the latent variables. Image
sequences are then generated by recovering the features corresponding to a linear
trajectory evaluated at a given time using a second MLP and passing them to
the decoder of the VAE. In practice, we sample λi with a mixture of Gaussians
since [9] recently showed that this approach alleviates the low expressiveness of
the prior and allows to generate more convincing samples.

3 Data

We evaluate the proposed model using three longitudinal datasets. The first
dataset is a toy dataset referred to as Starmen2 [7] consisting of 64 × 64 binary
2 Downloaded from https://doi.org/10.5281/zenodo.5081988.

https://doi.org/10.5281/zenodo.5081988
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images of 1,000 individuals that portray synthetic transformations based on the
longitudinal model of [4], captured in 10 observations per individual. The sec-
ond dataset, CelebA (aligned and cropped version downloaded in 2021) [16],
consists of 64 × 64 RGB images of celebrities’ faces. To resemble longitudinal
medical images, we converted these images to grayscale and applied a simulated
progression model by applying a non-linear intensity transform, a growth fac-
tor, a rotation, and adding Gaussian noise. This dataset can be considered very
challenging since the images undergo global and local geometric transformations
and photometric variations. The last dataset was obtained from the Alzheimer’s
Disease Neuroimaging Initiative3. We used a total of 8,318 MRI scans, obtained
from 1,799 subjects, with an average of 4.6 ± 2.3 scans per person. The average
time between the first and the last scan was 2.9±2.4 years. We selected the 100th

axial slice of every preprocessed scan and cropped it to 182 × 182. The subject’s
ages were used to define the observation times for the generative model, which
were normalised between the overall oldest and youngest age. Details of the
datasets (e.g. preprocessing steps, progression model, data splits, and example
image trajectories) can be found in Appendix 1.

4 Experiments

Most experiments in this section are performed using Starmen and CelebA
because these datasets are fully controlled and allow visual evaluation by non-
medical experts. ADNI is used to show that results can be extended to medical
data. In what follows, the models are selected on the validation set and tested
on an hold-out test set. Experimental and implementation details are provided
in Appendix 2.

Feature Extraction and Reconstruction. First, we train the VAE on each
training set, disregarding the longitudinal component, and confirm the hypoth-
esis that the features directly unveil clear trajectories over time, as can be seen
in Fig. 1b in Appendix 1. To justify that mapping those trajectories to linear
ones (step 2 in Fig. 1) is not too constraining, we analyse the reconstruction
results obtained by 1) only encoding and decoding test images using the VAE
(base), and 2) training the generative model to map the extracted feature tra-
jectories to straight lines (Eq. (1)), evaluate l(t) at observation times and pass
the corresponding features to the decoder of the VAE (ours). Figure 2a and 2c
show the mean squared error (MSE) and structural similarity (SSIM), respec-
tively, of the test set reconstructions. Note that the results obtained using the
proposed model is not expected to be better than the one obtained using the

3 Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fig. 2. Mean and standard deviation of MSE/SSIM (a, b/c, d) for various evaluations.
(a/c) Metric between consecutive images in the test sequences (ref.) and reconstruction
metrics using only the VAE (base) or the generative model (ours). (b/d) Metrics for
the next and last image extrapolated based on a varying input sequence length.

VAE (base) because the generative model only acts on the features and we do not
use any image-based reconstruction cost during its training. The metric values
can be put into perspective by considering the mean value between two consec-
utive images in the test set (ref.). The visual reconstructions in the second row
of Fig. 3 show that linear trajectory modelling does not considerably affect the
image reconstruction ability of the model.

Fig. 3. Extrapolation of different test input sequences for Starmen (left) and CelebA
(right). The first two rows represent the ground truth and reconstructions (ours), respec-
tively. Red squares highlight images that were not provided to the model. Deviation
from the true test Starmen image is presented in colour. (Color figure online)

Trajectory Extrapolation. In this section, we investigate whether the pro-
posed model is able to extrapolate realistic trajectories from existing input data.
To do so, we use the same model as before, but only provide the model with an
image sequence of varying length and assess its ability to reconstruct either the
next or the last image in the sequence. Figure 2b and Fig. 2d show the MSE and
SSIM, respectively, of the ground truth and the extrapolated images based on a
varying input sequence length. It can be seen that extrapolations become more
reliable when a longer input sequence is given. This can also be observed from
the visuals in Fig. 3, which show larger deviations from the ground truth when
fewer images are presented. This experiment shows that in each case the model
is able to estimate the progression: the left arm of the Starmen is raising and the
CelebA head rotates, becomes bigger and contrast changes as expected. However,
the model seems to underestimate the trajectory velocity as the input sequence
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becomes shorter. This aspect could potentially be mitigated by training using
sequences of different lengths.

Data Imputation. We validate the ability of the model to impute missing data
using input sequences simulating partial patient follow-ups. We simulate this by
removing 50% of the training, validation, and test data acquired after t0 using
the Starmen and CelebA datasets. The VAE is trained using the 50% available
images, after which the generative model learns to map the features onto a linear
trajectory. In Fig. 4 we show the reconstructed samples at observation times.

Fig. 4. Data imputation in test sequences with 50% missing data after t0. Top rows
show ground truth trajectories, red squares represent imputed images.(Color figure
online)

Trajectory Generation. We also demonstrate that the proposed model can
generate synthetic trajectories. We consider two cases: generating possible tra-
jectories for a single image acquired at t0 and generating a fully synthetic tra-
jectory based on a synthetic image at t0. In the first case, we first recover λi by
encoding the real image using the VAE, estimate its value using the generative
model and then sample η and τ from their priors as described in Sect. 2.2 and
Appendix 2. In the second case, we first generate a synthetic λ and sample η and
τ as aforementioned. To demonstrate the differences in these parameters, Fig. 5
shows trajectories obtained with varying delay τ (a) and velocity η (b), possible
trajectories from an input image (c) and fully synthetic trajectories (d).

Real images are extracted from the test set and highlighted with blue frames.
The results show that the proposed model allows to decorrelate spatial (λ) and
time parameters (η and τ) since all images in a trajectory represent the same
individual that undergoes smooth progressive change.

Neuroimaging Data. Finally, we validate the ability of the model to generate
Alzheimer’s disease progression trajectories. Figure 5e and 5f show trajectories
generated from an existing input image and a synthetic image, respectively. The
generated trajectories appear realistic because the ventricles grow over time,
which is a marker of ageing and Alzheimer’s disease progression [19]. Moreover,
the proposed model seems to preserve the morphology represented at the first
time point for both real and fake subjects. However, the generated disease pro-
gression trajectories still need to be assessed in more detail, for example by
means of visual analysis by a medical expert or by training a deep learning-based
classifier. Beside generating synthetic trajectories, we also investigate the extrap-
olation capability of the proposed model for the ADNI data, which is shown in
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Fig. 5. Synthetic trajectories derived from real images (indicated by blue frames): (a-c,
e) or synthetic images (d, f). (Color figure online)

Fig. 6. Contrary to the Starmen and CelebA experiments, this experiment shows
a better performance for a shorter input sequence length. Generally, the pro-
posed model seems to underestimate the disease progression (as estimated by η
and τ), leading to a worse quantitative result for a later extrapolated sample.

Fig. 6. Mean MSE (left) and SSIM (right) for the extrapolated next image after a given
input sequence of the ADNI test set, with n the number of subjects. For interpretation
of the colour bars, the reader is referred to the online version. (Color figure online)

5 Discussion and Conclusion

In this study we proposed a new continuous generative model capable of syn-
thesising longitudinal imaging data to perform trajectory extrapolation, data
imputation and smooth and probable synthetic trajectory generation. A notable
strength of our model lies in its two-step architecture, which allows substitut-
ing the VAE to make the model suitable for any data type, e.g. using clinical
scores directly as features. We believe that this work is a step towards synthe-
sis and augmentation of longitudinal medical (image) datasets. However, the
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model needs more optimisation for such a high-dimensional complex medical
imaging dataset, and a better trade-off between dimensionality reduction and
efficient training of the generative model should be investigated. Furthermore,
the hypothesis of smooth trajectories could be put into perspective by consid-
ering the disentangled ‘brain age’ instead of the real patient’s age [27]. Future
work should also focus on validating the ability of the model to perform reliable
data augmentation for ML-based classification tasks or assess its relevance to
perform treatment response analysis.
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Abstract. Recording surgery in operating rooms is one of the essen-
tial tasks for education and evaluation of medical treatment. However,
recording the fields which depict the surgery is difficult because the tar-
gets are heavily occluded during surgery by the heads or hands of doctors
or nurses. We use a recording system which multiple cameras embedded
in the surgical lamp, assuming that at least one camera is recording the
target without occlusion. In this paper, we propose Conditional-BARF
(C-BARF) to generate occlusion-free images by synthesizing novel view
images from the camera, aiming to generate videos with smooth cam-
era pose transitions. To the best of our knowledge, this is the first work
to tackle the problem of synthesizing a novel view image from multiple
images for the surgery scene. We conduct experiments using an original
dataset of three different types of surgeries. Our experiments show that
we can successfully synthesize novel views from the images recorded by
the multiple cameras embedded in the surgical lamp.

Keywords: Surgery recording · Generative model · Novel view
synthesis

1 Introduction

Recording surgeries with cameras is indispensable for many reasons, such as
education, sharing surgery technologies and techniques, performing case studies
of diseases, and evaluating medical treatment [4,9,14,17]. Video recording is
one of the simplest ways of recording surgery, and various methods have been
proposed to record surgery.

It is hard to record the field which depicts the surgery without occlusion. The
simplest way to record surgery is to attach the camera to the operating room
environment. It may occur in the surgical field occluded by the doctors, nurses, or
surgical machines, and the camera attached to the operating room environment is
not suitable for recording surgery. The other way to record surgery is to attach
the camera to the head of the doctor and record from the first-person view.
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Fig. 1. An overview of our novel view synthesis framework. From the images given by
the multiple cameras mounted on the surgical lamp, we conduct conditional bundle
adjustment and train the neural radiance field (NeRF). Using the trained NeRF, we
can synthesize novel view images.

This video is often affected by motion blur because of the head movements,
and doctors do not always look at the surgical field. Therefore, a first-person
viewpoint camera is also not suitable for recording surgery (Fig. 1).

Shimizu et al. [17] proposed a novel surgical lamp system with multiple
embedded cameras to record surgeries. A generic surgical lamp has multiple
light bulbs that illuminate the surgical field from multiple directions to reduce
the shadows caused by the heads/hands of doctors or nurses. Using this system,
[4,17] expected that at least one of the multiple light bulbs would always illumi-
nate the surgical field. In the same way, they expected that at least one of the
cameras embedded in the surgical lamp system always record the target without
occlusion and proposed the method to select the best view recorded from these
cameras. However, the problem with these methods is that the low quality of
the video is due to frequent changes in the viewing direction, and it cannot be
used effectively for its purpose, such as education.

Recent advancements in neural rendering such as Neural Radiance Fields
(NeRF) [10] have recently gained a surge of interest within the computer vision
community for their power to synthesize photorealistic novel views of real-world
scenes. Given a set of images paired with a camera pose, NeRF learns the inten-
sities of each pixel for a given camera pose. In addition to that, NeRF can
estimate camera pose. Lin et al. [8] proposed BARF which realized to recover
from imperfect camera poses and learn the NeRF representation simultaneously.

In this paper, we propose Conditional-BARF to synthesize novel view images
of the surgical field. We suppose synthesizing novel views without occlusion
makes it possible to generate a video in which the camera pose is smoothly
shifted to a position where the surgical field is always visible. Since the limited
number of cameras makes it difficult to accurately estimate camera pose using
algorithms such as COLMAP [15,16], we consider recovering camera pose from
imperfect camera poses as in BARF. In BARF, all cameras are optimized without
any relevance. However, there are fixed spatial camera pose relationship for the
cameras embedded in surgical lights. We propose Conditional-BARF (C-BARF)
which makes use of this condition effectively to recover the camera positions.



Novel View Synthesis for Surgical Recording 69

As there is no dataset available to the public containing surgery recordings via
multiple cameras, we record our dataset using the system proposed by Shimizu
et al. [17]. The surgeries are recorded at our university’s school of medicine. We
demonstrate that C-BARF can synthesize even in surgical situations using three
different types of surgery with five cameras attached to the surgical lamp.

In summary, our contributions are as follows;

– We tackled the task of novel view synthesis from multiple images of surgery.
To the best of our knowledge, this is the first work to tackle this problem.

– We propose Conditional-BARF (C-BARF) suitable for synthesizing novel
view images from limited images.

– We create a dataset of three different kinds of surgeries recorded with multiple
cameras. We conduct experiments to show the effectiveness of our C-BARF
for novel view synthesis of the surgical field. Please also refer to our accom-
panying video.

2 Related Work

2.1 Surgical Recording Systems

As doctors have a duty to teach their surgical skills to future generations, they
need to record their surgery and generate videos for trainees. Moreover, it is
widely recognized the usefulness of surgery recording in terms of reviewing. The
surgery, such as laparoscopic surgery, which is performed through the endoscope
camera can be easily recorded. However, the surgery that the doctor directly
sees, such as open surgery, is difficult to record because the head or hands of the
doctors or nurses and medical machines hide the important field of the surgeries.

Many attempts have been made to record surgery in the surgical field. A
camera arm system is presented by Kumar et al. [6] with a camera mounted
on the arm to record the surgery. The camera arm is set to a position that
does not get occluded by the doctor and is often set to a position far from the
surgical field and it is also cumbersome to position the camera according to the
surgical situation and environment. Another system that mounts a camera on
the surgical lamp is presented by Byrd et al. [1]. However, the view is occluded
by the doctor’s head or body and it is difficult to observe the surgical field with
a single camera without any occlusion.

Other attempts also have been made to record surgery with a surgical field
camera placed between the eyes of a doctor. The camera of such recording sys-
tems was not high resolution and did not produce good video quality which can
be used for recording because of their limited hardware system [9,11]. In addi-
tion to that, that system is not comfortable for doctors because they are forced
to perform surgery with interference by the surgical camera itself and its codes.
Nair et al. [12] recorded surgery with a high-resolution camera (GoPro Hero4) on
the doctor’s head. The video is not good for training video because it is hardly
blurred and does not shoot the surgical field at all times.
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Multi Camera Recording. To solve these problems, Shimizu et al. [17] proposed a
novel surgical lamp system with multiple embedded cameras assuming that the
surgical field can be observed by one of the attached cameras because at least
one of the multiple light bulbs always illuminates the surgical field. Shimizu et
al. proposed the method to select the best view recorded from these cameras
using Dijkstra’s algorithm based on the area size of the surgery field. Hachiuma
et al. [4] proposed Deep Selection which selects the camera with the best view
of the surgery using a deep neural network in a fully supervised manner.

2.2 Novel View Synthesis

Novel view synthesis is one of the fundamental functionality and long-standing
problem of computer vision. The first approach is simple light field sample inter-
polation techniques [2,3,7]. The computer vision and graphics communities have
made great strides in predicting conventional geometric and appearance repre-
sentations from observed images.

Neural Radiance Fields. Mildenhall et al. [10] proposed NeRF to synthesize novel
views of static, complex scenes from a set of input images with known camera
poses. The key idea of NeRF is to model the continuous radiance field of a
scene with a multi-layer perceptron (MLP), followed by differentiable volumetric
rendering to synthesize the images and backpropagate the photometric errors. In
addition to that, some works have been made to realize a simultaneous camera
pose tracking algorithm using NeRF [8,18,19]. iNeRF [19] proposed camera pose
estimation algorithm using pre-trained NeRF. NeRF– [18] proposed two-stage
pipeline to estimate unknown camera poses. Lin et al. [8] proposed BARF which
is a simple coarse-to-fine bundle adjustment technique, we can recover from
imperfect camera poses (including unknown poses of video sequences) and learn
the NeRF representation simultaneously.

In our problem setup, we need to estimate the camera positions using cam-
era pose estimation algorithms like COLMAP [15,16] to synthesize novel view
images, but the limited number of cameras makes it difficult to estimate the
exact position of cameras. On the other hand, the spatial camera pose relation-
ship is known in advance from the camera setup settings (In our setting, the
relationship is a regular polygon). We propose Conditional-BARF (C-BARF)
which takes this advantage to perform bundle adjustment and synthesize novel
view images.

3 Approach

3.1 Nural Radiance Fields

NeRF [10] encodes a 3D scene as a continuous 3D representation using MLP GΘ

parameterized by learned weight Θ. The GΘ output the intensity c and volume
density σ given a viewing ray d and a 3D coordinate x. Given pixel coordinates
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u ∈ R
2 and its homogeneous coordinate as ū = (x, y, 1)T , the 3D point xi along

the viewing ray d at depth zi can be expressed as xi = ū + zid. From a 6DoF
camera pose parametrized by P ∈ R

6, we can estimate a 3D point x and viewing
ray d through a 3D rigid transformation. The RGB color Î at pixel location u
is extracted by volume rendering via

Î(u) =
∫ zf

zn

T (u, z)σ(ū + zd)c(ū + zd)dz, (1)

where T (u, z) = exp
(
− ∫ z

zn
σ(ū + z′d)dz′

)
, zn and zf are bounds on the depth

range of interest. In practice, this rendering function is approximated numerically
via quadrature on points in a depth direction.

3.2 Conditional BARF

Our goal is to synthesize the novel view images from a set of pairs of image and
camera pose J = {{I1, P1}, {I2, P2}, · · · , {IN , PN}} where N is the number of
cameras. Since the limited number of cameras makes it difficult to accurately
estimate camera pose using algorithms such as COLMAP [15,16], we need to
recover correct camera poses to synthesize clear novel view images. To achieve
that goal, our problem is to optimize NeRF GΘ and the camera poses {Pi}N

i=1

over the objective

min
P1,··· ,PN ,Θ

N∑
i=1

∑
u

||Î(u;Pi, Θ) − Ii(u)||22. (2)

Since the cameras are arranged in the shape of regular polygons, we can represent
the spatial positional relationship between cameras as follows;

Pk = xc + cos
(

2π

N
k

)
a + sin

(
2π

N
k

)
b, (3)

where xc is the center of the cameras and a · b = 0. We propose to optimize
NeRF along with camera pose by solving Eq. (2) under the condition of camera
setup settings (Eq. (3)). For optimization, we applied coarse-to-fine registration
algorithm proposed in BARF [8].

4 Experiments

4.1 Dataset

As there is no dataset available that contains surgery recordings with multiple
cameras, we use the system proposed by Simizu et al. [17] to create our dataset.
The surgeries are recorded at Keio University School of Medicine. Video record-
ing of the patients is approved by Keio University School of Medicine Ethics
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Fig. 2. Images recorded by the multiple cameras mounted on the surgical lamp. C-
BARF experimented with three very different types of surgery (palatoschisis, polysyn-
dactyly, and cicatrization). As in Shimizu et al. [17] and Hachiuma et al. [4], five
cameras is attached to the surgical lamp. (N = 5). Faces are mosaicked for anonymity.

Committee and written informed consent s obtained from all patients or par-
ents. We record three different types of surgery (cleft lip, polysyndactyly, and
scar revision) with five cameras attached to the surgical lamp in a regular pen-
tagon manner. We extract frames as shown in Fig. 2 from the videos at arbitrary
timing and the initial camera position was estimated using COLMAP structure-
from-motion package [15]. Our experiments are limited to qualitative evaluation
due to the difficulty of generating test data, given the nature of the experiments
using actual surgical scenes.

4.2 Experimental Settings

We optimize a separate neural continuous volume representation network for
each surgery. We follow the same network architectural settings from the original
NeRF [10] with some modifications as proposed in BARF [8]. We resized the
images to 400×400 pixels. We train all models for 200K iterations and randomly
sample 2048 pixel rays at each optimization step. We use the Adam optimizer
[5] for both optimizing network and pose with a learning rate of 1 × 10−3 for
the network decaying to 1 × 10−4, and 3 × 10−3 for the pose P decaying to
1 × 10−5 following the original settings of BARF [8]. We used PyTorch [13] for
implementation.
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Fig. 3. Visual result of novel view images. Our proposed C-BARF successfully syn-
thesizes high-fidelity novel view images. Compared to NeRF and BARF, C-BARF is
better at synthesizing detailed structure and textures.
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Fig. 4. Visualization of optimized camera poses from the Surgery1 scene. For the z-
axis direction, C-BARF (ours) results agree with the actual camera alignment, but the
BARF results do not.

Fig. 5. Visual result along with the camera movement along the x-axis of C-BARF. It
is difficult to render novel view images from unknown camera positions. However, the
result shows C-BARF is able to attempt to render according to the physical conditions.

4.3 Result

We visualize the result in Fig. 3. As Fig. 3 shows, C-BARF successfully synthe-
sizes high-fidelity novel view images compared to NeRF and BARF, our method
is better at synthesizing detailed structure and textures.

The effectiveness of using Eq. (3) is shown in Fig. 4. This is the visualization
of optimized camera poses for both BARF (left) and C-BARF (right) from the
Surgery1 scene. For the z-axis direction, C-BARF results agree with the actual
camera alignment, but the BARF results do not agree with that because their
estimated camera alignment is scattered.

The effectiveness of using the NeRF-based rendering method is shown in
Fig. 5. This is the visual result of the novel view images rendered with the camera
movement along the x-axis of C-BARF. Even though it is difficult to render novel
view images from unknown camera positions, the result shows that C-BARF can
attempt to render according to the spatial information.

5 Conclusions

We tackled, for the first time, the task of novel view synthesis from multiple
images of surgery. We proposed Conditional-BARF (C-BARF), a novel view
synthesis method that is specialized for our novel surgical lamp system with
multiple embedded cameras. The number of cameras is limited and the given
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camera poses are not accurate, but there is geometric prior information on the
relative positions of the cameras. We took advantage of the geometric constraints
for better synthesized novel views. Our experiments on our original datasets
revealed that our method successfully makes use of the advantages and show
better result compared to existing neural-network-based novel view synthesis
methods.
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Abstract. Unsupervised anomaly detection models that are trained
solely by healthy data, have gained importance in recent years, as the
annotation of medical data is a tedious task. Autoencoders and gener-
ative adversarial networks are the standard anomaly detection methods
that are utilized to learn the data distribution. However, they fall short
when it comes to inference and evaluation of the likelihood of test sam-
ples. We propose a novel combination of generative models and a proba-
bilistic graphical model. After encoding image samples by autoencoders,
the distribution of data is modeled by Random and Tensorized Sum-
Product Networks ensuring exact and efficient inference at test time. We
evaluate different autoencoder architectures in combination with Ran-
dom and Tensorized Sum-Product Networks on mammography images
using patch-wise processing and observe superior performance over uti-
lizing the models standalone and state-of-the-art in anomaly detection
for medical data.

Keywords: Anomaly detection · Generative models · Sum-product
networks · Mammography

1 Introduction

Acceleration of the detection and segmentation of anomalous tissue by auto-
mated computer-aided approaches is a key to enhancing cancer screening pro-
grams. It is especially important for mammography screening, as breast cancer
is the most common cancer type and the leading cause of death in women world-
wide [20]. Training an artificial neural network in a supervised way requires a high
amount of pixel-wise annotated data. As data annotation is very costly, meth-
ods that involve as less annotation as possible are in high demand. Anomaly
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detection approaches are good representatives of this type, as they only uti-
lize healthy cases for learning, and anomalous spots are detected as a deviation
from the learned data distribution. The deviation is measured either by straight-
forward metrics such as reconstruction error of input and output samples or by
more sophisticated constructs such as log-likelihood in probabilistic models.

Unsupervised anomaly detection methods have been evaluated on a plethora
of different pathologies and medical imaging modalities. A state-of-the-art
method in this area is f-AnoGAN [15], which leverages Generative Adversar-
ial Networks (GANs) to model an implicit distribution of healthy images and
detect outliers via a custom anomaly score based on reconstruction performance.
f-AnoGAN has been utilized to detect anomalies in Optical Coherence Tomog-
raphy (OCT) scans [15], Chest X-rays [1], and 3D Brain scans [17]. However,
it requires the training of a separate encoder module to obtain latent codes of
images, which are used by the generator for reconstruction. The autoencoder
(AE) architecture, on the other hand, jointly trains an encoder and decoder and
is thus able to directly map an input to its corresponding latent representation.
AE variants have been applied to lesion detection in mammography images [19]
and brain scans [8,21], as well as head [14] and abdomen [8] Computed Tomog-
raphy scans. However, the practical applicability of all those models is limited
by the fact that the respective anomaly scores are not easily interpretable by a
human decision maker. Here, to remedy the situation, it would be desirable for
the model to provide some degree of certainty for its decision. To this end, density
estimation models can be employed. Such models learn an explicit probability
density function from the training data and assume that anomalous samples
are located within low-density regions. Examples are the application of Gaus-
sian Mixture Models [2] for brain lesion detection as well as Bayesian U-Nets
for OCT anomaly detection [16]. Although these approaches are similar to ours,
they are tailored to specific image modalities and can thus not be directly applied
to our domain.

In this work, we introduce a novel and general method for anomaly detec-
tion that combines AEs with probabilistic graphical models called Sum-Product
Networks (SPNs). A recent powerful SPN architecture called Random and Ten-
sorized SPN (RAT-SPN) [12] was chosen, as it is easy to integrate into deep
learning frameworks and is trained by GPU-based optimization. More than that,
standard and variational AEs do not allow to derive exact data likelihoods, they
rather provide approximations that can be used for anomaly detection. SPNs
solve this problem and allow exact and efficient likelihood inference by impos-
ing special structural constraints on the model capturing the data distribution.
We compare the performance of different standalone AEs to that of their com-
bination with RAT-SPNs on unsupervised mass and calcification detection in
public mammography scans and demonstrate improvements.

2 Methods

Our approach learns the healthy data distribution in a patch-wise fashion. First,
the dimensionality of patch data is reduced by an AE, and the likelihood for
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Fig. 1. The encoder of an AE outputs a low-dimensional latent representation zn of
healthy mammography patches. This representation serves then as input to a SPN
that learns the corresponding probability distribution p(E(x)). The likelihood of test
samples is predicted over the same pipeline using trained models.

membership to the data distribution is approximated by a RAT-SPN. During
inference, the learned model is applied to test images patch by patch, where at
every position, the likelihood yields the anomaly score. As the models capture
the distribution of healthy data, this score should be significantly different at
anomalous image positions. We compare the performance of our pipeline to that
of standalone AE models. The different AEs, that we considered, are described in
Sect. 2.1 and RAT-SPNs in Sect. 2.2. It is followed by our proposed combination
of an AE with a RAT-SPN in Sect. 2.3. A system overview is provided in Fig. 1.

2.1 Autoencoders

Convolutional AEs (CAEs) [9] utilize convolutional blocks to map high dimen-
sional image data x ∈ R

H×W into a lower dimensional latent space z ∈ R
M

using an encoder by z = E(x) and reconstruct it utilizing a decoder model by
x̂ = D(E(x)). The compression and reconstruction process is learned by min-
imizing the reconstruction loss LCAE = �2(x, x̂) where �2 signalizes the mean
squared error (MSE). Computation of LCAE for test samples yields the anomaly
score at inference.
Variational Autoencoders (VAEs) [6] are equipped with the same building blocks
as CAEs when applied to images, but additionally, they aim to approximate
the true posterior distribution p(z|x) in the encoder E by a simpler and more
tractable distribution q(z|x). This is achieved by minimizing the KL divergence
DKL(q(z|x) || p(z|x)) between the two distributions. On the other hand, the
decoder D learns the posterior p(x|z) and reconstructs x from a given z by
maximizing the log-likelihood log p(x|z). The overall objective to minimize is
called the evidence lower bound (ELBO), and it can be formulated as follows:
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LV AE = Eq(z|x) [log p(x|z)] − βDKL(q(z|x) || p(z)). (1)

The MSE was utilized as the reconstruction loss for log p(x|z), and β was set to
0.1 following [5], which is a weighting factor between the two terms. Thus, our
models are called βVAEs [5]. LV AE is utilized as the anomaly score for a given
test sample during inference.
Vector Quantised-Variational Autoencoder (VQVAE) [10] is a VAE variant that
differs from the original in a crucial aspect: it uses discrete instead of continuous
variables to represent the latent space. Discretization is realized by mapping
the encoder output E(x) to the index of the closest vector ei in the latent
embedding space e ∈ R

K×B , where K is the number of distinct discrete values
and B is the dimension of each embedding vector ei. The posterior variational
distribution q(z|x) is one-hot-encoded in such a way that q(z = k|x) = 1, with
k = argmini ||E(x)−ei||2. The mapping of E(x) to the nearest embedding vector
ei is defined as Eq(x) = ek with k = argmini ||E(x)−ei||2. The loss formulation
consists of three parts, each aiming to optimize a different aspect of the model:

LVQVAE = log p(x|Eq(x)) + ||sg[E(x)] − e||22 + λ||E(x) − sg[e]||22. (2)

The first term is the reconstruction loss, for which MSE was again chosen. The
remaining terms are concerned with learning an optimal embedding space. The
codebook loss, the second term, attempts to move the embedding vectors closer
to the encoder output, whereas the third term, the commitment loss, attempts
the inverse and forces the encoder output to be closer to the closest embedding
vector e. sg[·] is the stop-gradient operator and prevents its operand from being
updated during back-propagation. λ is a weighting factor for the commitment
loss, which we set to 0.25, following [10]. The anomaly score for a given test
sample is determined by calculating its reconstruction loss.

2.2 Sum-Product Networks

SPNs [13] are tractable probabilistic models of the family of probabilistic cir-
cuits [3] and allow various probabilistic queries to be computed efficiently and
exactly. For consistency with recent works, we will introduce SPNs based on the
formalism in [18]. An SPN on a set of random variables Z = {Zj}Jj=1 is a tuple
(G, ψ) consisting of a computational graph G, which is a directed acyclic graph,
and a scope function ψ mapping from the set of nodes in G to the set of all subsets
of Z including Z. The computational graph of an SPN is typically composed of
sum nodes, product nodes, and leaf nodes. Sum nodes compute a weighted sum of
their children, i.e., (S(z) =

∑
N∈ch(S) θS,N N(z)), product nodes compute a prod-

uct of their children, i.e., (P(z) =
∏

N∈ch(P) N(z)), and leaf nodes are tractable
multivariate or univariate probability distributions or indicator functions. The
scope function assigns each node a scope (subset of Z or Z) and ensures that the
SPN fulfills certain structural properties, guaranteeing that specific probabilistic
queries can be answered tractably. In this work, we will focus on SPNs that are
smooth and decomposable, we refer to [3] for a detailed discussion. Moreover, we
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consider a representation of the SPN in the form of a random and tensorized
region graph called RAT-SPNs [12] and employ the implementation based on
Einstein summation as proposed in [11]. The region graph is parametrized by
the number of root nodes C, input distributions I as well as the graph depth D,
and the number of parallel SPN instances, or recursive splits, R. By choosing
these parameters, RAT-SPNs with arbitrary complexity may be constructed.
From a given region graph, it is possible to obtain the underlying SPN structure
in terms of its computational graph and scope function exactly, for more details
see [12,18]. A simple region graph with C = 1, I = 2, D = 1, and R = 1, and the
underlying SPN is illustrated in Fig. 1. In a generative learning setting like ours,
the optimal network parameters w are found by applying (stochastic) Expec-
tation Maximization (EM) to maximize the log-likelihood LL of the training
samples:

LL(w) =
1
N

N∑

n=1

log S(zn). (3)

2.3 Combining Autoencoders and Sum-Product Networks

We combine each AE type of Sect. 2.1 with a RAT-SPN by passing the learned
latent representation of encoded samples z = E(x) as observed states for the
random variables Z to a RAT-SPN (see Fig. 1). This way, after input images
are mapped to a low-dimensional space, likelihoods can be obtained exactly and
efficiently in an end-to-end fashion at inference. Extra computations, essential
for reconstruction and ELBO-based scores of standalone AEs, are therefore not
necessary. Two RAT-SPN setups are utilized, one with Gaussian input distri-
butions for the continuous latent representations of CAEs and βVAEs, and the
other with categorical inputs for the discrete features of VQVAEs. Training is
done separately, first the AE models are trained followed by RAT-SPNs. The
anomaly score is yielded by the likelihood of a trained AE and RAT-SPN com-
bination for a given test sample.

3 Experimental Setup

3.1 Datasets

We train our models on the Digital Database for Screening Mammography
(DDSM) [4], a collection of 2620 mammography exams, with each exam con-
sisting of multiple images. The images in this dataset are categorized accord-
ing to the type of diagnosis, either into healthy or into a cancer type (i.e.,
malignant, benign). As we want to learn a healthy model, we selected only the
695 healthy exams containing 2798 images for training purposes. From each
image, 120 patches of 64 × 64 pixels (px), the resolution also used by [15], were
extracted; half of these containing internal breast tissue, the other half were
sampled along the breast contour. We evaluated all methods against a selec-
tion of cancerous mammograms from the Curated Breast Imaging Subset of
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DDSM (CBIS-DDSM) [7], which provides improved annotations of masses and
calcifications for images from DDSM. In order to filter out images with large-
scale annotations, we set the restriction that the annotation mask area must
be smaller than 4-times of our patch area for masses, and it should contain the
whole calcifications. 79 scans were selected from the mass and 30 scans from
the calcification test set that fulfilled these criteria. The healthy training images
consisted of equally distributed dense and non-dense tissues, whereas the mass
test cases had a ratio of 14%/86% and the calcification test samples a ratio of
40%/60% (dense/non-dense).

3.2 Training

The 2798 healthy images were split into 90% training and 10% validation images
(with no patient overlap) for training both the AE (CAE, βVAE, VQVAE) and
the RAT-SPN models. Following [9], all of our AE models had an architecture
with 32-64-128 2D convolutional layers with 5 × 5 kernels and a stride of 2 in
the encoder and 2D transposed convolutional layers in the decoder. The VQVAE
model had additional 6 residual blocks with 128 filters, and the dimensionality
of the embedding vector was 64. All models had 64 latent units and were trained
with a batch size of 64. CAEs and βVAEs were trained for 100 epochs with
a learning rate of 1e−5, whereas VQVAEs converged to an optimum after 20
epochs with a learning rate of 1e−4. The best-fit RAT-SPN parameters of C = 1,
I = 45, D = 1, R = 50 were found utilizing the 10% validation images, possible
values were taken from the supplement of [12]. The RAT-SPN setup was the
same for all AE models, and it was trained by the EM algorithm for 50 epochs
with a batch size of 64 and a learning rate of 1e−4.

3.3 Evaluation

We evaluated our methods on the 79 mass and 30 calcification test images.
The anomaly score assignment was performed in a lower dimensional image
space than the original resolution, and thus, patches were sampled around
every 16th pixel per image. Only breast tissue pixels were considered using
pre-segmentations of the breast area in every image. In order to show the
anomaly scores’ discriminative power between healthy and anomalous positions,
we derived the Area Under the ROC Curve (AUC) in two ways, either consider-
ing all pixels from all test images at once (pixel-wise) or doing it for each image
separately and calculating the average over all test samples additionally (image-
wise). In order to measure the capability of the methods for detection of the
anomalous regions, we apply the Hausdorff distance (H) image-wise to assess
the pixel distance between masks generated by our models and the provided
CBIS-DDSM ground-truth. It measures the maximum of the distances from any
annotated point in one mask to the nearest point in the other mask, thus, the
smaller it is, the closer the match between prediction and ground-truth.
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Table 1. Anomaly detection results utilizing different models. Metrics are computed
either over pixels or images. Next to AUC scores average Hausdorff (H) distances
(px) between anomaly segmentations and ground-truth masks were computed. Seg-
mentations are calculated after score thresholding by 99th-percentile. Statistically sig-
nificantly better performance (based on image-wise AUCs) between standalone and
RAT-SPN extended models are depicted in bold (p < 0.01).

Test data Model Pixel-wise Image-wise
AUC AUC H

Masses CAE 0.53 0.58± 0.25 30.80± 12.57
CAE-RATSPN 0.88 0.88±0.10 30.10±14.50
βVAE 0.80 0.83± 0.14 30.78± 12.79
βVAE-RATSPN 0.88 0.88± 0.11 29.07± 14.57
VQVAE 0.67 0.67± 0.19 33.37± 12.53
VQVAE-RATSPN 0.82 0.84±0.13 32.21±14.01
f-AnoGAN 0.86 0.85± 0.12 30.41± 11.91

Calcifications CAE 0.65 0.77± 0.21 32.79± 10.82
CAE-RATSPN 0.72 0.78± 0.16 33.03± 13.74
βVAE 0.73 0.80± 0.17 29.73± 12.56
βVAE-RATSPN 0.66 0.73± 0.17 30.72± 13.07
VQVAE 0.69 0.79± 0.17 31.79± 12.66
VQVAE-RATSPN 0.68 0.75± 0.19 33.34± 10.61
f-AnoGAN 0.67 0.74± 0.20 34.95± 6.98

4 Results and Conclusion

We compare the anomaly detection performance of the three AE models in their
standalone configuration as well as with a RAT-SPN extension. Additionally, we
trained and evaluated a state-of-the-art f-AnoGAN model in its default config-
uration. The results are illustrated in Table 1 and Fig. 2.

For the mass test set, the overall best performing model was the βVAE-
RATSPN with 0.88 pixel-wise and average image-wise AUCs, and an average
H-distance of 29.07 px (see Fig. 2). Statistically significant superior image-wise
AUC performances over standalone models were achieved by CAE-RATSPNs
and VQVAE-RATSPNs. Except for VQVAE-RATSPN, all RAT-SPN extended
models performed better than f-AnoGAN in terms of image-wise AUC, although
there were no statistically significant differences (cf. Table 1). It is also visible in
Table 1 that RAT-SPNs applied to continuous features yielded better results than
the discrete version. Furthermore, it is depicted in Fig. 3 a) and b), that attach-
ing RAT-SPN models to AE models facilitate a better discrimination between
healthy and anomalous tissue by increasing the gap between their respective
distributions.
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Fig. 2. Anomaly detection results of a mass sample. The first column shows the mam-
mography scan (top) and anomaly ground-truth (bottom). The remaining columns
depict an anomaly score heatmap (top) and a segmentation mask (bottom) for each
model. Bright yellow pixels represent high and dark red pixels low anomaly scores
in the heatmaps. The respective Hausdorff distance to the ground-truth (px) is dis-
played after each method name in brackets. Segmentations are calculated after score
thresholding by 99th-percentile. (Color figure online)

Moreover, the standalone βVAE was the best performing model for the cal-
cification test set with an 0.73 pixel-wise and 0.80 average image-wise AUC, and
an average H-distance of 29.73 px. It is in general visible that all models reflect
a consistently poorer performance for this data. This is due to the fact that this
set contains a higher proportion of dense breasts than the mass collection (see
Sect. 3.1), and most of the small calcifications were generally hard to detect accu-
rately by all models in images dominated by dense tissue. On the other hand, the
standalone versions performed here better than the ones with RAT-SPN exten-
sion except for the CAE setup, but no statistically significant differences were
discovered based on the image-wise AUC scores (cf. Table 1). This behavior is
well visualized by the score distribution plots of the best-performing standalone
βVAE and βVAE-RATSPN versions in Fig. 3 c) and d). All models except for
βVAE-RATSPN yielded better image-wise AUCs than f-AnoGAN, although no
statistically significant differences were detected (cf. Table 1).

Fig. 3. Distribution of healthy and anomaly scores on the masses (a, b) and calcifica-
tions datasets (c, d) for CAE without (a) and with RAT-SPN extension (b), for βVAE
without (c) and with RAT-SPN extension (d).



Mammography Anomaly Detection by Generative Models and SPNs 85

In summary, we have introduced a novel unsupervised anomaly detection
method that extends various AE architectures with a RAT-SPN module. This
approach is a promising avenue for generating exact likelihoods and incorpo-
rating them into the detection of different anomalies, such as masses and cal-
cifications in mammography scans. Our experiments suggest that our method
clearly outperforms standalone AE models on mass samples. Furthermore, it
exhibits similar results to those of the state-of-the-art f-AnoGAN, however, with
the advantages of a comparatively simpler training setup and exact likelihood
inference. All of the investigated methods have difficulties when applied to calci-
fication samples. We interpret that this is due to the presence of a larger propor-
tion of dense tissue in the latter dataset. In future work, we plan to analyze how
this problem can be eliminated and in particular whether increasing the input
resolution has a positive effect on the performance.
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Abstract. Numerous deep learning based methods have been devel-
oped for nuclei segmentation for H&E images and have achieved close
to human performance. However, direct application of such methods
to another modality of images, such as Immunohistochemistry (IHC)
images, may not achieve satisfactory performance. Thus, we developed a
Generative Adversarial Network (GAN) based approach to translate an
IHC image to an H&E image while preserving nuclei location and mor-
phology and then apply pre-trained nuclei segmentation models to the
virtual H&E image. We demonstrated that the proposed methods work
better than several baseline methods including direct application of state
of the art nuclei segmentation methods such as Cellpose and HoVer-Net,
trained on H&E and a generative method, DeepLIIF, using two public
IHC image datasets.

Keywords: GAN · H&E · IHC · Nuclei · Segmentation

1 Introduction

H&E images are the most common modality of histopathology images since
they can be stained quickly, economically and significance amount of micro-
scopic anatomy is revealed. As a result, many nuclei segmentation methods have
been developed recently leveraging pathologist’s annotations and the advance in
computer vision for H&E images [19]. Besides H&E, there is another popular
type of image, the immunohistochemistry (IHC) image, which is commonly used
to identify specific protein biomarkers and is complementary to H&E images [16].
IHC images play a central role in companion diagnostic tools for development of
precision medicines. Several novel oncology therapies have been approved by reg-
ulatory agencies with a companion diagnostic device based on IHC images. On
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the other hand, the analysis of IHC images has been typically based on manual
semi-quantitative methods, such as the 20X rule, for clinical decision making,
which may suffer from subjectivity and inter and intra-rater variability. Several
case studies suggest that deep learning based digital pathology algorithms may
provide improved patient selection comparing to the current clinical standard [9].
At the core of these deep learning algorithms, there is a nuclei segmentation
method, which relies on human expert annotations. To avoid the labor intensive
manual annotation on IHC images and also to improve upon the performance
of direct application of models trained on H&E images to IHC images, we pro-
posed a two-step label-free approach where an IHC image is first translated into
an H&E image utilizing unsupervised image-to-image translation methods, then
for the second step, we apply existing methods that performed well on H&E
images to virtually generated H&E images to obtain nuclei segmentation masks
(Fig. 1).

Fig. 1. Proposed IHC Segmentation Pipeline.

2 Related Work

Numerous cell morphology operation methods, such as color deconvolution,
Otsu’s thresholding, watershed, have been used either separately or in combina-
tion to segment nuclei in histology images [6]. With the advent of deep learning,
it has been shown that supervised methods can outperform traditional cell mor-
phology based methods [29] and traditional machine learning based methods [13].
However, a drawback of these methods and the supervised learning methods in
general is that labor intensive manual annotation is required by trained human
experts [1]. To avoid manual annotations, unsupervised deep learning methods
have been developed [4,12] for nuclei segmentation, however these general meth-
ods were not tailored for IHC images. To develop nuclei segmentation models
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for IHC images with few annotations, researchers have leveraged the power of
multiplex immunofluorescence (IF) staining to provide a ground truth of nuclei
masks for the IHC nuclei segmentation through co-registration of IF images with
IHC images [7] and then trained a conditional generative adversarial network
(cGAN) [15] to generate nuclei masks.

3 Methodology

3.1 Translation from IHC Images to H&E Images

Image-to-image translation have achieved significant advancements since the
advent of GAN. Application of GAN and its variations created a new field in
digital pathology named virtual staining, where one or more image modalities
can be virtually generated based on input of only one modality of image. Feasi-
bility of virtual staining has been demonstrated across multiple histology image
modalities [2,21,22,28,30] including H&E and IHC. When it comes to trans-
lation between H&E and IHC, almost all literature focused on the translation
from H&E to IHC since H&E images were more commonly available for patients.
However, for our purpose of leveraging well trained nuclei segmentation models
for H&E images, we are interested in the reserve direction of the translation,
that is, from IHC to H&E. Due to the challenges of registering IHC images with
H&E images and high resolution of these types of images, generative methods
that do not require paired images, such as CycleGAN [31] and U-GAT-IT [17],
are methods of interest for the image translation task. These methods work by
training simultaneously two GANs (two generator and two discriminator mod-
els). One generator translates IHC to H&E and other generator translates from
H&E to IHC. In addition, in order to have pixel to pixel correspondence, a cycle
consistency loss is introduced. This loss enforces the idea that when using as
input an IHC image, the first generator will produce a virtual H&E image and
if we use this virtual H&E image as input to the second generator, the pro-
duced image should match the input IHC image. On the other hand, U-GAT-IT
extended the method by adding new normalization layers and by using atten-
tion modules which was claimed to improve the quality of the produced images.
For both of these methods, we used the hyperparameters recommended by their
authors including loss weights and learning rates. For CycleGAN we used a batch
size of 10, whereas for U-GAT-IT we used a batch size of 2. This is due to the
fact that U-GAT-IT uses more memory since it has fully connected layers. We
trained CycleGAN for 30 epochs and U-GAT-IT for 20 epochs. The batch size
was selected to use the full GPU memory available and the number of epochs was
selected empirically by looking qualitatively at the generated virtual H&E tiles.
We used an NVIDIA P100 GPU for training of the image translation models,
which took around 4 h.

3.2 Nuclei Segmentation on Virtual H&E Images

Once virtual H&E images are generated, pretrained models that work well for
H&E images can be applied to the virtual H&E images to obtain the nuclei
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segmentation masks. Since the image translation step kept the location and the
morphology of each nuclei from the IHC images, the virtual H&E images per-
fectly matched with the IHC images at pixel level without the need of image reg-
istration. Thus, the nuclei segmentation masks obtained from the virtual H&E
images can be directly used as the nuclei masks for the original IHC images.
Without loss of generality, popular H&E image nuclei segmentation methods
such as Cellpose [26], StarDist [24], and HoVer-Net [10], were considered for
this step. Cellpose was trained on a diverse set of datasets including image sets
BBBC038v1 and BBBC039v1 [3], image set MoNuSeg [18], and image set ISBI
2009 [5]. The mixed dataset consists of microscopy images, H&E images and
fluorescence images, with about 1139 images for the task of nuclei segmenta-
tion. StarDist was trained on two H&E image datasets, MoNuSeg 2018 training
dataset, which has 30 H&E images and around 22,000 nuclear boundary anno-
tations from a diverse set of patients including breast cancer, kidney cancer,
lung cancer, prostate cancer, bladder cancer, colon cancer and stomach can-
cer patients, and a TNBC dataset [20], which has 50 annotated H&E images
from patients with triple negative breast cancer. Regarding HoVer-Net, it was
trained on 41 H&E stained colorectal adenocarcinoma image tiles, containing
24,319 exhaustively annotated nuclei with associated class labels.

4 Experiments

We systematically evaluated both the image translation component and the
nuclei segmentation component of the proposed approach to examine the impact
of each component in comparison to two different types of baseline methods, the
direct application of the nuclei segmentation models trained on H&E images
to IHC images and an pre-trained nuclei segmentation model tailored for IHC
images, DeepLIIF [7]. For all the experiments we used a P100 Nvidia GPU.

4.1 Datasets

The image translation component was trained based on an in-house IHC/H&E
dataset. The nuclei segmentation component was tested and compared on two
different IHC image datasets, the DeepLIIF testing dataset [7] and the LYON19
dataset [27].

In-house IHC/H&E Dataset. To train the generative model that transforms
IHC images onto virtual H&E images we use an in-house dataset, that consists
of 123 IHC whole slide images and 121 H&E whole slide images. The IHC images
were stained to highlight cells expressing a protein target, which cannot be dis-
closed due to confidentiality reasons, however, it is shown in Fig. 2 that the
generative model trained on this specific type of IHC dataset generalized well
to other protein targets, such as CD3/CD8 and Ki67. For each of these slides,
we randomly sample patches of size 256 × 256 and ended up with 2510 patches
from IHC images and 2793 patches from H&E images.
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DeepLIIF Testing Dataset. A public test set [7], which can be downloaded
from https://zenodo.org/record/5553268, it includes 598 Ki67 IHC images of size
512×512 and 40x magnification from bladder carcinoma and non-small cell lung
carcinoma slides. The expression of Ki67 is strongly associated with tumor cell
proliferation and growth, and is widely used in routine pathological investigation
as a proliferation marker.

LYON19 Dataset. Public testing set of LYON19 [27], which can be down-
loaded from https://zenodo.org/record/3385420, it contains 441 Regions of
Interest (ROIs) from whole slide images (WSIs) of CD3/CD8 stained IHC images
of lymphocytes from breast, colon, and prostate cancer patients’ biopsy speci-
mens. The 441 ROIs were selected from IHC images with 277 regular area ROIs,
59 clustered cell ROIs, and 105 artifact area ROIs. The ground truth of this
dataset was not disclosed by the Grand Challenge competition. However, per-
formance on this testing set can be obtained after submitting the predictions to
the challenge here https://lyon19.grand-challenge.org/Submission/. The objec-
tive of the competition is to detect positive stained cells; in particular, the center
of each positive cell. To accommodate for this, we computed our regular pipeline
and then applied a simple thresholding procedure based on the HSI color space
to classify cells as positively stained. We used the open source implementation
provided by HistomicsTK [11]. Finally, we computed the centroid of each of
those cells.

4.2 Baseline Methods and Evaluation Metrics

We compared the proposed methods with four baseline models: the pre-trained
Cellpose model v2.0.5 [25], the pre-trained 2D versatile he StarDist model
v0.8.2 [23], the pre-trained HoVer-Net model v1.0 [14], and the pre-trained
DeepLIIF model v1.1.2 [8].

The performance of all the methods will be evaluated based on Dice score,
which measures pixel level segmentation performance. We also evaluated cell
instance level performance metrics including accuracy, precision, recall and F1
score, conditional on a given Intersection over Union (IoU) threshold. Since the
concept of true negatives in instance cell level detection is not valid, accuracy is
computed from the number of true positives, TP, false positives, FP and false
negatives, FN, as accuracy= TP/(TP + FP + FN) as it is commonly done in
object detection.

4.3 Results

First, the proposed methods were compared against the baseline methods on the
DeepLIIF testing dataset. CycleGAN plus Cellpose achieved the best results in
terms of Dice score and precision at IoU= 0.5 as shown in Table 1. By trans-
lating IHC to H&E images using GAN based methods, such as CycleGAN and
U-GAT-IT, the performance of Cellpose and HoVer-Net improved at least 0.1 in
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Dice score comparing to directly application of these methods to IHC images.
However, the combination of GAN based methods with StarDist failed to achieve
improvement and even lead to worse performance comparing to StarDist alone.
We also observed that CycleGAN performed better than or similarly to U-
GAT-IT when combined with StarDist, Cellpose or HoVer-Net. By changing
the thresholds for IoU, the accuracy curves in Fig. 3 confirm that the same con-
clusion holds against different thresholds.

Table 1. Performance of proposed methods against baseline methods on DeepLIIF
testing dataset. Cell instance level segmentation accuracy, precision, recall and F1
score were evaluated at IoU = 0.5.

Method Dice score Accuracy Precision Recall F1 score

DeepLIIF 0.66 0.20 0.31 0.37 0.34

StarDist 0.64 0.33 0.54 0.45 0.49

CycleGAN+StarDist 0.59 0.27 0.49 0.38 0.42

U-GAT-IT+StarDist 0.50 0.18 0.34 0.28 0.31

Cellpose 0.57 0.27 0.58 0.33 0.42

CycleGAN+Cellpose 0.72 0.38 0.63 0.49 0.55

U-GAT-IT+Cellpose 0.67 0.28 0.47 0.42 0.44

HoVer-Net 0.42 0.20 0.64 0.23 0.33

CycleGAN+HoVer-Net 0.68 0.34 0.62 0.42 0.44

U-GAT-IT+HoVer-Net 0.68 0.34 0.59 0.44 0.50

Figure 2 visualizes cell nuclei segmentation results of four selected tiles. From
the top to the bottom are the input IHC, the virtually generated H&E based
on CycleGAN, the ground truth, which was only available for the visualized
tiles, and the cell masks of all the methods previously presented. Pixel-wise, the
true positive (TP), false positive (FP) and false negative (FN) are represented
by blue, red and green color respectively. The first row presents a testing Ki67
IHC image from the DeepLIIF testing set whereas the next 3 are the CD3/CD8
IHC images from the LYON19 dataset. For the Ki67 IHC image, the proposed
methods perform similarly to DeepLIIF since DeepLIIF was trained specifically
for this type of staining. However, for the CD3/CD8 IHC images, the proposed
methods outperformed DeepLIIF and the direct application of Cellpose and
HoVer-Net models pretrained on H&E images.

Next, we examined the performance of these methods on the LYON19
dataset. By submitting the model predictions to the Grand Challenge com-
petition website, the F1 score were obtained and were tabulated in Table 2.
Only CycleGAN was used for the image translation step since it has better
performance than U-GAT-IT when tested in the DeepLIIF testing dataset. The
proposed method performed similarly as the baseline methods except the combi-
nation of CycleGAN with HoVer-Net method, which lead to 4% higher F1 score
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Fig. 2. Presentation of the proposed and the baseline methods’ performance in Ki67
IHC images from DeepLIIF testing dataset and CD3/CD8 IHC images from LYON19
dataset.
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in all detections, 9% higher F1 score in clusterd cells and 8% higher F1 score in
artifact areas comparing to the DeepLIIF method. When compared against the
HoVer-Net itself, the improvement in F1 score is much larger with at least 20%
higher F1 scores across all categories.

Fig. 3. Segmentation accuracy curves for proposed methods and baseline methods
when IoU changes from 0.5 to 1 with a step size of 0.05.

Table 2. F1 scores for different types of segmentation tasks of proposed methods
against baseline methods on LYON19 dataset.

Method All detections Regular areas Clustered cells Artifact areas

DeepLIIF 0.53 0.64 0.59 0.17

StarDist 0.54 0.59 0.63 0.22

CycleGAN + StarDist 0.54 0.59 0.63 0.22

Cellpose 0.54 0.53 0.68 0.24

CycleGAN + Cellpose 0.54 0.61 0.67 0.20

HoVer-Net 0.04 0.06 0.01 0.03

CycleGAN+HoVer-Net 0.58 0.63 0.68 0.25

5 Conclusions

We leveraged publicly available pre-trained nuclei segmentation models based
on H&E images to perform nuclei segmentation in IHC images without requir-
ing any manual anotation on them. This was achieved by virtually translating
IHC images into H&E images. To enable such translation, we trained image
translation models, such as CycleGAN and U-GAT-IT models, based on an
in-house dataset of IHC and H&E images. This approach achieved better per-
formance than several of the baseline methods, including direct application of
pre-trained models based on H&E images, such as Cellpose and HoVer-Net, to
IHC images, and a pre-trained model tailored for IHC image nuclei segmentation,
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DeepLIIF, when tested on DeepLIIF testing dataset. Such improvement was less
pronounced in the LYON19 dataset except for CycleGAN combined with HoVer-
Net. An interesting finding is that HoVer-Net alone performed badly on LYON19
dataset however when combined with CycleGAN, it became the best performing
method. These observations together with the findings that the combination of
CycleGAN or U-GAT-IT with the StarDist method failed to achieve improved
performance in both testing datasets suggest that if the pre-trained nuclei seg-
mentation method for H&E images has strong generalizability to IHC images,
translating IHC to H&E images may not lead to improved performance, such as
the case for StarDist, however, on the other hand, if the pre-trained method uti-
lized features specific to H&E images, image translation can lead to substantial
improvement. Thus, adoption of the proposed method depends on the general-
izability of the pre-trained models to the target image modality. Our work has
been based completely on label-free IHC images. An interesting perspective is
to combine our method with a few manual annotations in a semi-supervised
learning setting which we believe can potentially improve the performance even
further.
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Abstract. Synthesis of images has recently seen many works that pro-
duce high-quality real world images. In the domain of medical imaging
the application of deep generative models especially Generative Adver-
sarial Networks (GANs) can be applied to many different tasks. Under
the premise of the generation of high-quality images that match the
distribution of the original data, the synthesized data can be used to
increase the size of small datasets, or in combination with condition-
ing on meta data, to increase the size of underrepresented classes in the
dataset. In this work we propose a model that generates 3D medical
images. The model can easily be conditioned on meta data, for example
available patient information. We evaluate the quality of the generated
images and compare our model against the 3D-StyleGAN model which
is also designed for 3D medical image synthesis.

Keywords: Generative adversarial networks · 3D Image Synthesis ·
Conditional GAN

1 Introduction

In this work we propose a GAN architecture for the generation of 3D volumetric
images. The design decisions of the architecture were inspired by the findings of
DCGAN [16] and FastGAN [14] which were then validated for 3D medical image
synthesis through an ablation study. Additionally we propose to use linear condi-
tioning in the generator and discriminator on available meta data. There is little
work on 3D medical image synthesis, especially with high resolution greater than
643. This can partly be explained with the requirement of Graphical Processing
Unit (GPU) memory imposed by the three dimensions of the data. Often this
lack of GPU memory has to be compensated by reducing the number of feature
maps or the depth of the network which makes the training more challenging.
Some previous works tried to overcome this issue by synthesizing only a slab
of the volume [5] or generating the slices of the volume separately [2]. Previous
work that generate volumes directly by using 3D convolutions is often limited in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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size/resolution. The authors of 3D-StyleGAN build upon the well-known Style-
GAN2 architecture and adapted it for three dimensions by significantly reducing
the number of feature maps and the size of the latent vector, to generate T1
weighted MR images at 2 mm spatial resolution [7]. We investigated previously
known best practices for GANs and evaluated their feasibility for 3D medical
images through an ablation study. As a result this work proposes a GAN that
generates synthetic whole body MR volumes with a size of 160 × 160 × 128.
We achieve this by reducing each training batch to a single data sample which
allows us to increase the number of feature maps. Additionally we show that the
proposed model can easily be conditioned on meta data which further improves
its performance. We compare our model, with and without conditioning, with
the 3D-StyleGAN architecture.

2 Methods

Architecture and Training

We propose an architecture based on findings for effective GAN training and
adapted them to and investigated them for the domain of 3D medical images. The
overall architecture and many parts were introduced by FastGAN [14]. Figure 1
shows a simplified diagram of the architecture. One major motivation behind this
decision is the low demand for training data by the FastGAN in combination
with the low complexity of the network. All design choices were validated through
an ablation study in which we investigated the influence of each part on the
models performance. We used InstanceNorm [17] instead of batch normalization
because the size of the data does not allow for large batch sizes thus rendering
batch normalization less useful. The generator first maps the latent vector to the
first feature maps which determine the size of the output through a transposed
convolution layer. The main building block of the generator is depicted in Fig. 2
on the left. The remaining generator consists of five of these blocks, each of which
doubles the resolution of the intermediate feature maps and a final convolutional
layer which maps the feature maps to the number of output channels, in this
case one channel for grayscale images.

The discriminator mirrors this architecture except that the resolution of the
feature maps is reduced by a factor of two by using strided convolutions and
that the activation function for each convolution is the Leaky ReLU function.
Furthermore, there is no noise injection in the discriminator. The repeating
building blocks of the discriminator are shown in Fig. 2 on the right. At the
end of the discriminator the features are fed into a small convolutional network
consisting of two layers which reduces the size further and serves as a critic whose
output rates the input data as real or fake which then is used for the adversarial
training.

Both, generator and discriminator employ Skip-Layer-Excitation layers,
introduced in [14], which serve as a skip connection between two blocks at dif-
ferent depth of the network and helps to propagate the error to the first layers
of the model. Another important part of the decoder is self-regularization due to
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decoders that decode the volume from the smallest feature map back to a volume
with half the input size. This method was also introduced in [14] but we employ
multiple decoders. We implemented one decoder, that decodes the feature maps
to the whole volume, one that decodes to only one part of the input volume
and one that only decodes the abdomen section to ensure high detail in this
region. The decoder networks use transposed convolutions for the upsampling
and no conditioning on meta data regardless of the conditioning in the generator
and discriminator. The loss for the generator is the output of the critic, while
the loss for the discriminator is the sum of the adversarial hinge loss [13] and
separate reconstruction losses for each decoder, which were the mean absolute
error between the decoded image and the interpolated or cropped part of the
real image. Other methods used during the training process were exponential
moving average of the generator weights [19], early stopping and learning rate
decay.
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Fig. 1. Architecture of the Generator (left) and Discriminator (right) net-
works. Simplified view of the architecture of our proposed GAN. The meta data input
for both models is optional. A detailed view of the generator and discriminator blocks
is provided in Fig. 2. In general the architecture is inspired by the overall architecture
proposed in [14]. Skip Layer Excitation (SLE) blocks are used to propagate the error
to the first layers of the model.

Conditioning on Meta data

Many use cases benefit from the ability to generate data conditioned on given
attributes. The following patient information were used for the conditional 3D
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image synthesis: age, sex, weight and height. For conditioning, we added a
Feature-wise Linear Modulation (FiLM) layer [15] between each convolutional
layer and the noise injection layer. This layer affine transforms the intermediate
feature maps with two learned parameter vectors γ and β, which are provided by
an encoder, which is trained together with the model, that is shared through all
FiLM layers in the model (generator and discriminator each have their own). For
this experiment, we binary-encoded the meta data and concatenated all binary
vectors which then serves as input for the encoder. If the network shall be con-
ditioned on additional input data, a FiLM modulation layer follows between
the convolution layer and the noise injection layer. The linear conditioning with
meta data was shown to be beneficial for image segmentation by [12].
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Fig. 2. Architecture of the Generator (left) and Discriminator (right) blocks.
Each block doubles the size if the incoming feature maps in each dimension through
a transposed convolution, then adds a random sampled noise vector of the same size
as the feature maps which has been proven beneficial for the circumvention of over-
fitting and improving the generalization [4]. The resulting output is normalized by an
Instance Normalization [17] layer and a Gated Linear Unit (GLU) [3] operation serves
as activation function. The same structure is repeated once more with the transposed
convolution replaced by a regular convolution

Data

The used dataset consists of 10828 whole body MR volumes obtained as part
of the MR Imaging Study within the German National Cohort Study (GNC,
2014-2019) [1] from volunteers. The data was acquired on MAGNETOM Skyra
3T (Siemens Healthineers, syngo VD13C) systems with a two-point Dixon volu-
metric interpolated breath-hold examination (VIBE) T1 weighted sequence. We
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used the so-called “opposed phase” contrast (TE = 1.23 ms). The volumes were
acquired by axial acquisition with in-plane matrix 320 × 260 (resolution 1.4 ×
1.4 mm2) and a slice thickness of 3 mm. The volume consists of four acquired
table positions with a total of 316 slices which were then resampled and cropped
to 160 × 160 × 128 which doubles the voxel size but therefore reduces the size of
each volume roughly by half in order to fit the volume on the GPU. All intensity
values were scaled to the range of [–1, 1]. We used half of the dataset for training
and the other half for evaluation.

Evaluation

For the evaluation of the quality of the generated volumes we used the slice-wise
Fréchet Inception Metric proposed in [7]. Since the Fréchet Inception Distance
(FID) [6] is calculated from features extracted from a Inception V3 network
pretrained on the Imagenet dataset, which is a 2D dataset, we calculate the
FID score for the center slice for each orientation. Additionally, the Multi-Scale
Structured Similarity Measure (MS-SSIM) and the Maximum Mean Discrepancy
(MMD) were used for the evaluation. The MMD measures the distance between
two distributions and was calculated batch-wise as proposed in [11,18] and [7].
The MS-SSIM measures the structural similarity between two samples at dif-
ferent scales and can be used to evaluate the diversity of the generated images
[18].

3 Results

The results shown in Table 1 show that our model without conditioning has a
much lower MMD and FID and higher MS-SSIM than the trained 3D-StyleGAN.
A comparison between a sample generated by the 3D-StyleGAN and our uncon-
ditional model is shown in Fig. 3. In comparison our model with conditioning on
meta data results in even slightly better scores across almost all metrics. The
3D-StyleGAN was trained with 1 mm-fd16 configuration which was the only one
that allows to generate volumes at the size of 160 × 160 × 128. The only change
to the configuration was the output size of the base layer which was adapted
from 5 × 6 × 7 to 5 × 5 × 4 to result in the desired output size.

Table 1. Results. The table shows the MMD, the MS-SSIM between whole volumes
of generated and real data. The FID was calculated for the center slice of the volume
in Axial (FID Ax.), Sagittal (FID Sag.) and Coronal (FID Cor.) orientation between
generated and real samples. ↓ means that a lower metric score is better and ↑ shows
that a higher value is better.

MMD ↓ MS-SSIM ↑ FID (Ax.) ↓ FID (Sag.) ↓ FID (Cor.) ↓
3D-StyleGAN 47307 ± 13162 0.162 ± 0.004 362.5 ± 1.6 373.7 ± 15.9 431.6 ± 11

Ours 12086 ± 641 0.409 ± 0.004 71.2 ± 1.0 43.3 ± 5.7 106.4 ± 23.7

Ours Conditional 10589 ± 333 0.439 ± 0.001 76.5 ± 2.5 38.4 ± 10.2 81.6 ± 22.5
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Fig. 3. Comparison between 3D-StyleGAN and ours. This figure shows the
center slice in coronal orientation of two samples, on the left side generated by 3D-
StyleGAN and on the right side by our proposed model. Both samples were generated
unconditionally.

Conditional generation of 3D images

The results of the conditioning process were not evaluated separately. A visual
inspection of the conditionally generated volumes showed that these were con-
sistent with the meta data they were conditioned on which can be seen in Fig. 4.
Depicted are generated volumes from the same latent vector and with different
meta data conditioning. The images show the center slice of male and female
volumes with different weights from 60 to 110 Kg. The other two remaining
attributes stayed fixed.

4 Discussion

We propose a GAN architecture for 3D medical image synthesis that uses best
practices for GAN training known from other domains. In order to leverage the
often limited datasets available for medical imaging we added self regularization
by adding decoders to the discriminator as proposed and justified in [14]. We
assess our models performance with commonly used metrics for the evaluation
of GANs and compare these against the 3D-StyleGAN architecture at the same
resolution. In Table 1 we show that our model outperforms the 3D-StyleGAN in
every metric. A possible explanation of the in general low MS-SSIM score across
all compared models may be partially explained by the fact, that the training
data has not been registered and therefore exhibits variation in size and scale of
the samples. Since the MS-SSIM compares the structural similarity of spatially
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Fig. 4. Conditionally generated volumes. Center slices of volumes generated from
the same latent vector with different conditional inputs. The upper row shows samples
for the attribute sex set to female and the lower row with the attribute set to male.
Both rows show the variation for the weight attribute ranging from 60 to 110 Kg. The
remaining attributes height and age were set to 170 cm and 40 years old respectively.
The stitching artefact that can be seen was caused by movements between the four
acquisitions of which the volume is put together and was also learned by the GAN.

close voxels and the corresponding voxel in two compared samples can be at
spatially different locations due to the patients size, this is a possible explana-
tion for low MS-SSIM scores. [7] argued their model was not able to generate
realistic images at 1 mm isotropic resolution which translates to an image size of
160×192×224. Since the size of our images (160 × 160 × 128) is in between the
size of their successful experiments and their failure case, we can only deduct that
our model results in lower metric scores at the reported size. The conditioning on
patient information has to be investigated further in regard of the independence
of the different attributes and if the conditionally generated 3D images are plau-
sible for the used meta data. Further improvements to the proposed architecture
could stem from the StyleGAN [8–10] models which propose differentiable data
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augmentation or weight modulation. Further experiments with other modalities,
organs and image sizes are needed to show the ability of the model to generalize
beyond the trained data. Very recently HA-GAN was published in which the
authors synthesize chest CT and brain MR images with a size of 2563 and a
comparison is left for future work.
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Abstract. Several chronic lung diseases, like idiopathic pulmonary
fibrosis (IPF) are characterised by abnormal dilatation of the airways.
Quantification of airway features on computed tomography (CT) can
help characterise disease severity and progression. Physics based airway
measurement algorithms that have been developed have met with limited
success, in part due to the sheer diversity of airway morphology seen in
clinical practice. Supervised learning methods are not feasible due to the
high cost of obtaining precise airway annotations. We propose synthesis-
ing airways by style transfer using perceptual losses to train our model:
Airway Transfer Network (ATN). We compare our ATN model with
a state-of-the-art GAN-based network (simGAN) using a) qualitative
assessment; b) assessment of the ability of ATN and simGAN based CT
airway metrics to predict mortality in a population of 113 patients with
IPF. ATN was shown to be quicker and easier to train than simGAN.
ATN-based airway measurements showed consistently stronger associa-
tions with mortality than simGAN-derived airway metrics on IPF CTs.
Airway synthesis by a transformation network that refines synthetic data
using perceptual losses is a realistic alternative to GAN-based methods
for clinical CT analyses of idiopathic pulmonary fibrosis. Our source code
can be found at https://github.com/ashkanpakzad/ATN that is compat-
ible with the existing open-source airway analysis framework, AirQuant.
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1 Introduction

Chronic lung disease is one of the leading causes of morbidity and mortality
across the world. As smoking rates in the developing world increase, the preva-
lence of chronic lung disease is set to rise. Interstitial lung diseases (ILD) are
characterised by inflammation and scarring of the lung and the incidence of ILD
continues to increase [25].

A subset of ILDs are characterised by lung fibrosis, with idiopathic pulmonary
fibrosis (IPF) having the worst prognosis of all the fibrosing ILDs [4]. In IPF
the airways are pulled open by fibrotic contraction of the surrounding connective
tissue. Computed tomography (CT) imaging is used to visualise airway structure.
In IPF the presence of dilated airways in the lung periphery on CT, termed
traction bronchiectasis, is a disease hallmark.

When assessing disease severity in IPF, physiologic measurements are typi-
cally used. However these are associated with a degree of measurement variabil-
ity. It has been postulated that combining imaging measures of airway abnormal-
ity with lung function measurements could help improve estimation of disease
severity in IPF [18]. Importantly, better measures of disease severity would ben-
efit cohort enrichment of subjects into therapeutic trials.

Lung damage in IPF progresses from the distal lung towards the centre of
the lung [15]. As a result, the earliest signs of lung damage are seen in the
smaller airways. Yet these airways are typically the most challenging to quan-
tify. Airway measurement is complicated by partial volume effects that result in
smaller airways having a blurred contour to their walls. Measurement challenges
are compounded by variations in CT image acquisition including different recon-
struction kernels, scan parameters and scanner models as well as the underlying
pathology affecting the lung.

Physics based airway measurement algorithms tend to perform sub optimally
when measuring the lumens of small airways [3,12]. Identifying airway walls
can also be challenging. Airway paths often run in tandem with those of the
pulmonary artery. Consequently, in regions when the pulmonary artery abuts the
airway wall, identification of the contour of the outer airway wall is compromised.

1.1 Related Work

Deep learning frameworks have been applied to the measurement of airways in
the lung in a bid to improve measurement accuracy. However, these machine
learning methods are extremely data hungry and can be biased towards the
training data sample [10]. Synthetic data by way of generative models has been
employed to improve the training of deep learning models. This helps overcome
the data limitations that are ubiquitous to medical imaging studies [24].
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A state of the art method in measuring airway lumen radius and wall thick-
ness on CT imaging, simGAN [16,21], takes labelled simplistic representations
of airway patches (synthetic images) and aims to transforms them in to the
emulations of real airways by generative adversarial training (GAN) [6]. These
are then used for supervised training of a convolutional neural regressor (CNR)
which learns to measure airway radius and wall thickness and ultimately to run
inference on real CT images.

The driving loss for realism in simGAN is cross-entropy loss computed on the
classifications of the discriminator. For successful synthetic refinement by image
transformation, the synthetic and refined images must have good correspondence
in their shared label. To this end, a per-pixel ‖l‖1 regularisation loss is applied
between input and output of the refiner.

GAN training is inherently unstable with mode collapse complicating and
lengthening training times. As an alternative strategy, in this paper we propose
the first use of perceptual losses to generate labelled synthetic airway images.
Perceptual loss functions have been applied to image style transfer and super-
resolution tasks [11]. We explore the clinical benefits of learning from perceptual
loss generated synthetic data in mortality prediction.

2 Methods

In the first part of our study we generate synthetic airway patches that demon-
strate realistic airway characteristics. In tandem, we segment the airways on
clinical CT scans of a cohort of IPF patients. We train our Airway Transfer
Network (ATN) to transform our synthetic images to refined images across our
synthetic and real datasets by optimising for perceptual losses. We then com-
pare the results of ATN with simGAN. A CNR is trained on the resultant refined
datasets for the purpose of inference on real CT airways. We compare the two
refiner models qualitatively. We compare ATN and simGAN against the full
width at half maximum edgecued segmentation limited (FWHMesl) technique
as implemented in [20], originally by [12]. The FWHMesl technique is widely
used in the literature as the reference for comparison of previous airway mea-
surement methods [7,16,26]. In our clinical comparison, we examine which of
the three methods of airway measurement provides the best and most consistent
association with mortality on CT scans of patients with IPF.

Airway segmentation was performed using a 2D dilated U-Net [27] trained on
CT scans in 25 IPF and healthy individuals [17]. We extract orthogonal airway
patches for all segmented airways. We parameterise airway labels as two ellipses
that share centre and rotation, resulting in 7 parameters for each patch: inner
airway wall major and minor axis radii RA and RB ; outer airway wall major
and minor axis radii WA and WB ; centre coordinates Cx and Cy; and rotation
θ. Due to the phase in θ, for the purposes of CNR training the rotation angle is
converted into a double angle representation [13].

Once the refiner model has been trained, its output is used to train a CNR by
supervised learning to regress to target airway labels. The inner and outer airway
wall measures are then derived. All deep learning methods were implemented in
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pytorch [19] and CT image processing was done using the open source airway
analysis framework known as AirQuant [17]. We release our code open source1.

2.1 Airway Synthesis

Details of airway parameters and synthesis pipeline have been previously
described [16]. Airway characteristics are sampled from a set of distribution
parameters informed by [23]. We deviate from these parameters in two ways.
First, we use an airway lumen radius (LR) interval of [0.3, 6] to permit measure-
ment of smaller airways. Second, we use an airway wall thickness [0.1 ·LR +0.2,
0.3 · LR + 0.8] mm to reflect the lack of airway wall thickening in IPF. We add
four further parameters: (i) parameters for the airway centre determined by a
normal distribution X ∼ N(0, 1) mm to account for airway skeletons that are
not perfectly positioned within the centre of the airway lumen. (ii) p = 0.4 that
an adjacent airway of similar diameter is randomly added. This is performed to
accommodate airway patches close to airway bifurcations and to train the CNR
to correctly identify the airway in the centre of the patch. (iii) We model our
airways as ellipsoids, we achieve this by an ellipsoidness characteristic, sampled
from a uniform distribution, X ∼ U(0.9, 1) which determines the ratio in major
and minor radii of the ellipse. (iv) Uniformly random rotation applied to the
airway in the horizontal axis. We include our synthetic airway generator and
configuration parameters in the open-source code repository.

2.2 Perceptual Losses

We implement perceptual losses for computing high level perceptual differences
between synthetic and real images as described by [11]. These losses are com-
puted by comparing the activations in particular layers, j of a pretrained convo-
lutional neural network (CNN), φ between a pair of images. Different activation
layers of a trained CNN learn to represent different image features on the same
sampled patch. In minimising for perceptual losses we are looking to reduce the
differences in the activation of these layers between the refiner output and some
objective image. For each calculation of perceptual losses on a synthetic input
image, x we have a refiner prediction, ŷ. As a modification of the original style
transfer implementation [11], a randomly chosen real image is selected as the
style target, ys. Perceptual losses are then calculated and summed for different
layers φj .

We utilise feature reconstruction loss. This is defined as the mean euclidean
distance between activations of the input and output images of the refiner, where
C, H, and W are the number of channels, height and width of layer j respectively.
We use a VGG-16 [22] network pretrained on the ImageNet dataset [2] in our
calculations of style and feature losses.

lφ,j
feat(ŷ, x) =

1
CjHjWj

‖φj(ŷ) − φj(x)‖1 (1)

1 https://github.com/ashkanpakzad/ATN.

https://github.com/ashkanpakzad/ATN
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We also employ style reconstruction loss, which considers those features that
tend to be activated together between the refiner output and the given style
target image, a random real airway, where Gφ

j is the gram matrix for a given
layer j of φ as described in [5].

lφ,j
style(ŷ, ys) =

1
CjHjWj

‖Gφ
j (ŷ) − Gφ

j (ys)‖1 (2)

2.3 Clinical Data

We examined CT images from 113 IPF patients diagnosed at the University Hos-
pitals Leuven, Belgium. CTs were evaluated by an experienced chest radiologist
(author JJ) for quality i.e. absence of breathing artefacts and infection. The
quality of the automated segmentation was also visually inspected to ensure
contiguous airway segmentations without oversegmentation blowouts. Airway
segmentations were also required to reach the sixth airway generation in the
upper and lower lobes to be selected for analysis. Pulmonary function tests were
considered if they occurred within 90 days of the CT scan: Forced Vital Capac-
ity (FVC, n = 111)); diffusing capacity of the lung for carbon monoxide (DLco,
n=103).

The trachea and first generation bronchi were excluded from analysis. We
define an airway segment as the length of airway that runs between airway
branching points or an airway endpoint. All airway segments were pruned by
1 mm at either end to avoid bifurcating patches. 80 × 80 pixel size orthogonal
airway patches were linearly interpolated with a pixel size of 0.5 × 0.5 mm from
the CT at 0.5 mm intervals along each segment. This resulted in a final set of
546,790 real CT-derived airway patches. A synthetic dataset of 375,000 patches
was generated to train our refiner.

27% of patients were female. 74% of patients had smoked previously. The
median patient age was 71, with 57% of patients having died. All patients had
received antifibrotic drug treatment.

Measures of intertapering, intratapering [14] and absolute airway volume
were derived from the airway measurements for each airway segment. Segmen-
tal intertapering represents the relative difference in diameter of an airway
segment when compared to its parent segment. Segmental intertapering is cal-
culated as the difference in mean diameter, d̄ of an airway segment and its parent
segment, d̄p, divided by the mean diameter of the parent segment. Segmental
intratapering is the gradient of change in diameter of the airway segment rel-
ative to the diameter of the origin of the segment2. Segmental intratapering is
computed by dividing the gradient, m by the zero-intercept, c of a line y = mx+c
fitted to the diameter measurements of an airway segment. Segmental volume
is computed by summing area measurements along an airway segment, and mul-
tiplying this value by the measurement interval, i.e. an integration of area along
the segment’s length.
2 Segments are considered to be oriented from the centre of the lung to the periphery.

Accordingly, measurement of the airway origin beings at the end closest to the
trachea.
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intertapering =
d̄p − d̄

d̄p
(3)

intratapering =
−m

c
(4)

Univariable and multivariable Cox proportional hazards models were used
to examine patient survival. Multivariable models included patient age (years),
gender, smoking status (never vs ever) and either FVC or DLco (as measures
of disease severity) as covariates. The goodness of fit of the model was denoted
by the concordance index [8]. A p-value of <0.05 was considered statistically
significant.

2.4 Implementation Details

We use the same refiner architecture as in [16,21], the refiner is a purely con-
volutional network with four repeating 3× 3, 64 feature ResNet blocks [9]. The
measurement CNR, described in [16], is a convolutional network that feeds into
two fully connected layers to learn the airway ellipse parameters. Instead of the
custom CNR loss described in [16], we implemented a mean square error (MSE)
loss for regressing to the airway ellipse parameters.

Synthetic images were generated to 0.5 × 0.5 mm pixel size making 80 × 80
pixel patches, corresponding to the real patch generation noted in Sect. 2.3. All
images were standardised and augmented on the fly, adding random Gaussian
noise [25, 25] Hounsfield units, random levels of Gaussian blurring with standard
deviation scalled in the interval [0.5, 0.875] and random flipping (p = 0.2). We
apply random scaling on real images only, in the interval [0.75, 1.25] to increase
diversity in airway size. Finally, a centre crop was applied to make a 32 × 32
pixel input patch.

Both simGAN and ATN models were trained for 10000 steps, where the
simGAN refiner had 50 training iterations and the discriminator 1 iteration for
every 1 step. The simGAN discriminator was implemented as described in the
original method, with a memory buffer and local patch discrimination [21]. We
used Weights & Biases for experiment tracking [1].

Figure demonstrates the overall method employed here as well as the ATN
and CNR architecture.

3 Results

We implemented all training on an NVIDIA GeForce RTX 2070 graphical pro-
cessing unit with a batch size of 256, learning rate of 0.001, ‖l‖1 regularisation
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Fig. 1. Schematic demonstrating the data flows and model architectures. Also included
is the architecture of the Airway Transfer Network (ATN) and Convolutional Neural
Regressor (CNR). Where yc, ys and ŷ refer to the notation used for calculating feature,
lfeat and style, lstyle losses from the particular activation layers of the pretrained VGG-
16 model. AirQuant is an opensource airway analysis framework that can extract airway
patches. The CNR model feeds measurements of the real airways back to AirQuant for
final analysis.

factor in range of [0.0001, 0.1]. simGAN and ATN took 14 and 0.6 h respectively
to converge during training. We qualitatively found that both simGAN and ATN
produced refined images of optimal quality with a ‖l‖1 regularisation factor of
0.01.

Style-transfer from paintings to natural images show that larger-scale struc-
ture is transferred from the target image when training on losses of higher layers
[11]. In order to maintain label correspondence between refiner input and output,
we similarly only use the feature loss using the relu3 3 activation layer. Style
loss is computed from the two lower relu1 2, relu2 2 activation layers only3.
Figure 2 demonstrates qualitative results of our airway refinement method.

The CNR was trained with batch size in the interval [256, 2000] and learning
rate of 0.001. Batch size of 2000 was chosen for its speed, and converged at
around 40 epochs within one hour. The CNR achieves comparable results on
ATN and simGAN refined images.

Figure 3 demonstrates qualitative results of our ATN method on real CT
data. Table 1 shows results of the Cox regression survival analyses. The CNR
when regressing to an airway feature demonstrated a strong association with
mortality. This was despite the CNR label not perfectly aligning to the exact
airway boundary.

3 higher activation layers are considered in the supplementary material.
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Fig. 2. Uncurated set of synthetic images x and output ŷ of our airway transforma-
tion network in the same relative position below. Our model was trained to minimise
perceptual losses. Airways are all represented at different scales.

Table 1. Cox proportional hazards results comparing mortality prediction of airway
biomarkers derived by different measurement methods.

Method Univariable (n = 113) DLCo (n = 103) FVC (n = 111)

C index p-value C index p-value C index p-value

Volume

FWHMesl [20] 0.61 0.00190 0.67 0.03031 0.68 0.03965

simGAN [16] 0.65 0.00006 0.68 0.00233 0.70 0.00086

Synthetic (no refinement) 0.61 0.00286 0.67 0.01040 0.69 0.00421

ATN (ours) 0.67 0.00001 0.69 0.00013 0.71 <0.00001

Intertapering

FWHMesl [20] 0.55 0.07009 0.66 0.14999 0.68 0.08744

simGAN [16] 0.60 0.00925 0.67 0.03460 0.69 0.04764

Synthetic (no refinement) 0.60 0.00648 0.68 0.00692 0.69 0.00311

ATN (ours) 0.62 0.00084 0.69 0.00062 0.70 0.00052

Intratapering

FWHMesl [20] 0.55 0.33623 0.66 0.93103 0.69 0.63837

simGAN [16] 0.59 0.09232 0.67 0.35460 0.69 0.48513

Synthetic (no refinement) 0.60 0.00537 0.69 0.00500 0.68 0.00263

ATN (ours) 0.63 0.00026 0.68 0.00208 0.69 0.00192
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Fig. 3. Uncurated inference on real airway patches performed by our airway measure-
ment regressor network. The network was trained on refined synthetic data from our
proposed airway transformation network, which minimises perceptual losses. The inner
red ellipse delineates the inner airway wall and the outer blue ellipse, the outer airway
wall. Airways are all presented at different scales. (Color figure online)

4 Conclusion

We present a learning based airway measurement method trained on a transfor-
mation network that refines synthetic data using perceptual losses. Our model
ATN was compared with a state-of-the-art model simGAN [16] and a physics
based method FWHMesl. When assessing the clinical utility of ATN, we found
that it was the strongest predictor of survival across all three airway biomarkers.
We found that our method trains faster and with minimal complications, unlike
a GAN framework. We expect future work to consider the generalisation of such
a method, for example examining airways in patients with different diseases,
images acquired on different scanner parameters and potentially on higher scale
imaging such as micro-CT studies of the lungs.
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Abstract. Deep neural networks have brought remarkable break-
throughs in medical image analysis. However, due to their data-hungry
nature, the modest dataset sizes in medical imaging projects might
be hindering their full potential. Generating synthetic data provides
a promising alternative, allowing to complement training datasets and
conducting medical image research at a larger scale. Diffusion models
recently have caught the attention of the computer vision community
by producing photorealistic synthetic images. In this study, we explore
using Latent Diffusion Models to generate synthetic images from high-
resolution 3D brain images. We used T1w MRI images from the UK
Biobank dataset (N = 31,740) to train our models to learn about the
probabilistic distribution of brain images, conditioned on covariates, such
as age, sex, and brain structure volumes. We found that our models cre-
ated realistic data, and we could use the conditioning variables to con-
trol the data generation effectively. Besides that, we created a synthetic
dataset with 100,000 brain images and made it openly available to the
scientific community.
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1 Introduction

Deep neural networks fuelled several ground-breaking advancements in areas
such as natural language processing and computer vision, where part of these
improvements was attributed to the large amount of rich data used to train
these networks, with some public datasets reaching millions of images and text
sentences [8,26]. During the same period, medical image analysis also made
remarkable breakthroughs by applying deep neural networks to solve tasks such
as segmentation, structure detection, and computer-aided diagnosis (detailed
review available at [20,27]). However, one current limitation of medical imaging
projects is the lack of availability of large datasets. Medical data are costly and
laborious to collect, and privacy concerns create challenges to data sharing by
restricting publicly available medical datasets to up to a few thousand examples.
This limitation creates a bottleneck on models’ generalizability and hampers the
rate at which cutting-edge methods are deployed in the clinical routine.

Generating synthetic data with privacy guarantees provides a promising
alternative, allowing meaningful research to be carried out at scale [14,15,33].
Together with traditional data augmentation techniques (e.g., geometric trans-
formations), these synthetic data could complement real data to dramatically
increase the training set of machine learning models. Generative models learn
the probability density function underlying the data they are trained on and
can create realistic representations of examples which are different from the
ones present in the training data by sampling from the learned distribution.
However, generating meaningful synthetic data is not easy, especially when con-
sidering complex organs like the brain.

Nowadays, Generative Adversarial Networks (GANs) have been applied in
various fields to create synthetic images, producing realistic and clear images and
achieving impressive performance [7,32]. In the medical field, for example, [17]
combine variational autoencoders with GANs to generate various modalities of
whole brain volumes from a small training set and achieved a better performance
compared to several baselines. However, since their study resized the images to a
small volume before training, with a size of 64 × 64 × 64 voxels, their synthetic
medical images did not replicate many essential finer details. In addition, due to
the prevalence of 3D high-resolution data in the field, researchers tend to have
their models restrained by the amount of GPU memory available. To mitigate
this problem, [31] proposed a 3D GAN with a hierarchical structure which is able
to generate a low-resolution version of the image and anchor the generation of
high-resolution sub-volumes on it. With this approach, the authors were able to
generate impressive realistic 3D thorax CT and brain MRI with resolutions up
to 256 × 256 × 256 voxels. Despite generating great interest, GANs still come
with inherent challenges, such as being notoriously unstable during training and
failing to converge or to capture the variability of the generated data due to
mode collapse issues [16].

Recently, diffusion models caught the attention of the machine learning com-
munity by showing promising results when synthesizing natural images. They
have rivalled GANs in sample quality [9] while building upon a solid theoretical
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LDM (Ours)
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Fig. 1. Real and synthetic samples of head MRI generated using VAE-GAN, LSGAN,
LDM and LDM+DDIM.

foundation. Not only have they reported impressive photorealism unconditioned
images, but they have also been used to create images conditioned in classes and
text sentences (using techniques like classifier-free guidance [13]), with excep-
tional results on models like Latent Diffusion Models [23], DALLE 2 [22], and
Imagen [25].

In this study, we used diffusion models to create synthetic MRI images of
the adult human brain. For that, we used 31,740 training images from the UK
Biobank [30]to train our models. In order to efficiently scale the application of
diffusion models to these high-resolution 3D data, we combined our diffusion
models with compression models following the architecture of Latent Diffusion
Models (LDM) [23]. Furthermore, we conditioned the image generations on age,
gender, ventricular volume, and brain volume relative to the intracranial volume
in order to generate realistic examples of brain scans with specific covariate
values. We compared our synthetic images to state-of-the-art methods based
on GANs, and we made our synthetic dataset comprising 100,000 brain images
publicly available to the scientific community.
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2 Methods

2.1 Datasets and Image Preprocessing

In this study, we used images from the UK Biobank (UKB) [30] to train our
generative models. The UKB is a study that aims to follow the health and
well-being of volunteer participants across the United Kingdom. Here, we used
an early release of the project’s data comprising 31,740 participants with T1w
images. The dataset consists of healthy individuals aged between 44 and 82 years
with average age of 63.6 ± 7.5 years (average ± SD) and 14,942 male subjects
(47%). In our experiments, we also conditioned for the volume of ventricular cere-
brospinal fluid (min-max: 6995.68 - 171375.0 mm3; UKB Data-Field 25004) and
brain volume normalised for head size (min-max: 1144240 - 1793910 mm3; UKB
Data-Field 25009). All variables used for model conditioning were normalised
using min-max normalisation before feeding them to our models.

For the image pre-processing, we used UniRes1 [2,3] to perform a rigid body
registration to a common MNI space. The final images had 1 mm3 as voxel size,
and we cropped the image to obtain a volume of the head measuring 160 × 224
× 160 voxels.

2.2 Generative Models

In our experiments, we used LDMs, which combine the use of autoencoders
to compress the input data into a lower-dimensional latent representation with
the generative modelling properties of diffusion models. The compression model
was an essential step to allow us to scale to high-resolution medical images.
We trained the autoencoder with a combination of L1 loss, perceptual loss [34],
a patch-based adversarial objective [10], and a KL regularization of the latent
space. The encoder maps the brain image to a latent representation with a size of
20 × 28 × 20. After training the compression model, the latent representations of
the training set are used as input to the diffusion model. Diffusion models [12,28]
are generative models that convert Gaussian noise into samples from a learned
data distribution via an iterative denoising process. Given a latent representation
of an example from our training set, the diffusion process gradually destroys the
structure of the data via a fixed Markov chain over 1000 steps by adding Gaussian
noise using a fixed linear variance schedule. The reverse process is also modelled
as a Markov chain which learns to recover the original input from the noisy one.
We conditioned our models according to age, gender, ventricular volume, and
brain volume relative to the intracranial volume. To perform this conditioning,
we used a hybrid approach combining the concatenation of the conditioning
values with the inputted latent representation (i.e., as additional channels) and
the use of cross-attention mechanisms, as proposed in [23]. Training and model
details are available in the supplementary material.

1 https://github.com/brudfors/UniRes.

https://github.com/brudfors/UniRes
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3 Experiments

3.1 Sampling Quality

Figure 1 shows images generated using LDMs compared to real images and the
baselines (i.e., VAE-GAN [18] and LSGAN [21]). Unlike the baselines, we observe
that the LDMs were able to sample high-quality images with sharp details and
realistic textures. Besides that, training the diffusion models at such a high res-
olution was much more stable and easier to achieve convergence when compared
to the GAN-based baselines. The baselines required a meticulous design of the
interaction between discriminator and generator, and they presented problems
of mode collapse, showcasing the problems of GAN-based applied in such high-
resolution 3D images. Therefore, we will refine and expand our comparisons with
other baselines in future works.

We also obtained quantitative metrics about the performance of our models.
We used the Fréchet Inception Distance (FID) [11] to measure how realistic
the synthetic images are. A small FID indicates that the distribution of the
generated images is similar to the distribution of the real images. The FID was
calculated using an approach similar to [31], where features were extracted using
a pre-trained Med3D [5]. We also measured the generation diversity with the
Multi-Scale Structural Similarity Metric (MS-SSIM) and 4-G-R-SSIM [4,19,24],
where a value close to 0 suggests high diversity. Here, we presented the MS-
SSIM for comparison with previous studies, but we also added the 4-G-R-SSIM
as it has been shown to have better image quality assessment. We compute the
average values from 1000 sample pairs. Table 1 shows the quantitative results for
different models used for the image synthesis.

Table 1. Quantitative evaluation of the synthetic images on the UK Biobank. We
used the Fréchet Inception Distance (FID) to verify how realistic are the images, and
we used the multi-scale structural similarity metric (MS-SSIM) and 4-G-R-SSIM to
evaluate the generation diversity. We used 50 timesteps when sampling our models
with DDIM sampler. Real images measures were obtained comparing the training set
with 1000 brain image from a hold-out test set.

FID ↓ MS-SSIM ↓ 4-G-R-SSIM ↓
LSGAN 0.0231 0.9997 0.9969

VAE-GAN 0.1576 0.9671 0.8719

LDM 0.0076 0.6555 0.3883

LDM + DDIM 0.0080 0.6704 0.3957

Real images 0.0005 0.6536 0.3909

Recently, different methods have been proposed to speed up the reverse pro-
cess (e.g., Denoising Diffusion Implicit Models - DDIM), reducing by 10× 50×
the number of necessary reverse steps [29]. Using the DDIM sampler, we reduced
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the number of timesteps from 1000 steps to only 50. This improved our sam-
pling time from an average of 142.3± 1.6 s per sample to 7.6± 0.2 s per sample
@ NVIDIA TITAN RTX with minimum loss in performance (Table 1). Because
of this boost in processing time and a minimal performance loss, we are using
the LDM with the DDIM sampler for all the remaining analyses.

Ventricular Volume

Brain volume nomalize for head size

Fig. 2. Conditioned sampling varying the ventricular volume and the brain volume nor-
malised by the intracranial volume. In both rows, we kept the other variables constant.

3.2 Conditioning Evaluation

Using the hybrid conditioning approach [23], we were able to condition our mod-
els and generate brain images where we can specify the age, sex, ventricular vol-
ume, and brain volume. As we can observe in Fig. 2, our model was able to learn
representations conditioned on regional (i.e., ventricular volume) and global (i.e.,
brain volume) volumes.

In order to quantitatively evaluate the conditioning, we used SynthSeg2 [1] to
measure the volumes of the ventricles of 1000 synthetic brains. In this analysis,
we measured the combination of the left and right lateral ventricles and the left
and right inferior lateral ventricles. We then computed the Pearson correlation
between the obtained volumes and the inputted conditioning values. Using this
approach, we observed a high correlation coefficient of 0.972, which demonstrates
the effectiveness of conditioning on our model (Fig. 3).

2 https://github.com/BBillot/SynthSeg.

https://github.com/BBillot/SynthSeg
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Fig. 3. Conditioning analysis. Left) Correlation between conditioning ventricular vol-
ume vs ventricular measured with SynthSeg. Right) Correlation between conditioning
age vs brain age predicted by 3D convolutional neural network (3D CNN).

Additionally, we verified how well the effectiveness of conditioning brain gen-
eration by age. To this end, we used discriminative models to perform the task
of brain age prediction, where we predict chronological age based on the brain
image. In our study, we used the 3D convolution neural network proposed in [6],
trained on the same training set used in the LDM training. After training the
model, we verify how well the predicted age approximated the inputted age of
the synthetic dataset. As shown in Fig. 3, our model presented a high correlation
between the inputted conditioning and the predicted age (r = 0.692).

Finally, we verified how our model extrapolates the conditioning variables
for values never shown during training. Figure 4 presents samples where we used
a normalised ventricular value higher than 1; in this case, we can see abnor-
mally huge ventricles when using values of 1.5 and 1.9. If we use a negative
value (e.g., −0.5), an image without ventricles is generated. Similarly, if we use
negative values for the brain normalised for head size, the brain exhibits signs
of neurodegeneration, showing smaller volumes of white and grey matter. These
findings suggest that our models learned the concepts behind these conditioning
variables during training.

3.3 Synthetic Dataset

We made a synthetic dataset of 100,000 human brain images generated by our
model openly available to the community. This dataset is available at Academics
Torrents3, FigShare4, and HDRUK Gateway5, together with the conditioning
information.

3 https://academictorrents.com/details/63aeb864bbe2115ded0aa0d7d36334c026f0
660b.

4 https://figshare.com/.
5 https://www.healthdatagateway.org/.

https://academictorrents.com/details/63aeb864bbe2115ded0aa0d7d36334c026f0660b
https://academictorrents.com/details/63aeb864bbe2115ded0aa0d7d36334c026f0660b
https://figshare.com/
https://www.healthdatagateway.org/
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Normalised Brain Volume

-0.1 -0.3 -0.5

1.5

Normalised Ventricular Volume

1.9 -0.5

Fig. 4. Extrapolating values of conditioning variables. During the training of the mod-
els, the inputted values of the conditioning variables were scaled between 0 and 1. In
this experiment, we tried values outside of this range, and we observed that our model
could extrapolate the representation of brain and ventricular volumes, showing that it
learned the concept of these variables.

4 Conclusions

In our study, we were able to train diffusion models to effectively generate syn-
thetic brain images that replicate properties from the training images. As it is the
case with natural image generation, our diffusion models outperform alternative
GANs-based methods in an unconditioned scenario. Additionally, we demon-
strated how our methods could be conditioned on covariates such as age, sex,
and brain structure volumes to produce the expected representation. In future
works, we will develop models that use other scanning modalities as condition-
ing, such as images and radiological reports. By making the synthetic dataset
openly available, this work also addresses one of the biggest limitations in med-
ical machine learning - the challenge of obtaining large imaging datasets - while
not posing threats to privacy infringements. In sum, our results show that LDMs
are promising models to be explored in medical image generation.
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