
Chapter 14
Inelastic Behavior of High-Temperature
Steel Under Cyclic Loading Conditions

Katharina Knape and Holm Altenbach

Abstract The paper at hand focusses on the constitutive equations to describe the
inelastic material behavior of the high-temperature steel X20CrMoV12-1, widely
known to be applied for power plant components. Therefore, the purpose is to model
its response to a cyclic loading profile under which power plants operate the majority
of time.AnArmstrong–Frederick typemodel including a constitutive equation for the
inelastic strain rate and an evolution equation for the backstress tensor is considered
as basis for the application of the two-time-scale approach. The advantage will be a
reduction in computational time while still being able to depict the complete material
behavior. The finite element software ABAQUS is used to simulate the creep test as
well as the cyclic loading regime of a bar at elevated temperatures.

Keywords Cyclic loading · Frederick–Armstrong model · Two-time-scale
approach

14.1 Introduction

Power plants represent one of the most used power generating technologies of today.
Their gas turbines are known to have a high performance density so the main pur-
pose is to quickly close the gap between the power generally needed and the power
provided through renewable resources. Due to this efficient kind of running, highly
frequent start-ups and shut-downs of the system lead to complexmechanical and ther-
mal loading conditions, mechanical loading in the sense of periodic stress and strain
states and thermal loading meaning very high surrounding temperatures. Therefore,
the high-temperature creep, a slow time-dependent deformation, is the main chal-
lenge faced by thematerial alongwith the cyclic loading conditions. The combination
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of both greatly influences the component’s life and may lead to failure earlier than
expected. To prevent unforeseen events and investment costs, an understanding of
the material’s behavior and response to certain loading conditions through a reliable
simulation is mandatory. In addition, it would be possible to predict the remaining
lifetime or adapt the maintenance intervals more precisely.

These computations are very time-consuming. They need time integration proce-
dures with very small time increments in the case of a cycle-by-cycle integration [1].
However, to omit these difficulties, calculation methods including time averaging
approaches have been developed within the past years. They can be implemented
into the finite element code with the aim of reducing computational time. This work
focusses on applying the two-time-scale approach which is already known for the
solution of differential equations of dynamical systems [1]. Now, it is also used to
simulate inelastic material behavior in a numerically efficient way by differentiating
between two time scales, a slow and a fast one, each of them accounting for certain
processes [12]. Another technique has for example been suggested in [8], where a
wavelet transformation-based multi-time scaling method depicts crystal plasticity. In
addition, the cycle jumpingmethod is described in [9] with the intention to model the
material’s response under periodic loading. Here, internal variables are calculated
for as many loading cycles as needed until the integration scheme is stabilized. After
that, the rate of change can be estimated for a determined number of cycles avoiding
a further cycle-by-cycle integration.

The starting point to achieve the above is a constitutive model as used in [1, 4]
which needs to include especially creep, as well as cyclic hardening and softening
processes. It can either be amacroscale ormicroscalemodel, where for amacroscale-
based model, the material parameters are calculated according to experimental data
[4] by fitting the curves. With the intention of modeling the inelastic behavior of a
realistic gas turbine or shaft, using amicroscalemodel had the advantage of depicting
the local deformation better but is numerically much more complex which is why in
this paper, a macroscale-model is applied.

The widely known unified constitutive model was firstly used by [7], including an
equation to describe the inelastic strain rate tensor and also considering an evolution
equation for the backstress tensor. Chaboche picked up the concept and suggested
a superposition of several backstress tensors with separate evolution equations [3].
The approach is limited though, since the number of material parameters and hence
the complexity of the model is increasing and so is the numerical effort.

The mentioned constitutive models have been successfully applied to predict
material behavior under various mechanical and thermal loading conditions, never-
theless, modeling cyclic loading remains challenging [1]. In Sect. 14.2, the equations
according to the Armstrong–Frederick model are derived, followed by the explana-
tion of the two-time-scale approach in the third section. The combination of the two
is then implemented into the finite element software ABAQUS tomodel the response
of the high-temperature steel X20CrMoV12-1 to small number of loading cycles.
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14.2 Two-Time-Scale Technique

The basic idea of the two-time-scale method is the introduction of two different time
scales T0 and T1 [2, 11, 14] with the aim of reducing the computational time when
solving a system of differential equations of the form

dxxx

dt
= XXX [t, xxx(t)], xxx (0) = xxx0 (14.1)

where xxx represents a set of unknown variables.
The first, slow time scale, is often also called ‘natural time’ or ‘physical time’ and

it accounts for quasi-static loading and long-term behavior such as creep, see Eq.
(14.2)

T0 (t) = t. (14.2)

The second, fast or fine time scale, is described using a parameter μ with respect to
the total time tend

T1 (t) = τ (t) = t

μ
(14.3)

μ = T

tend
� 1. (14.4)

The total time derivative then yields

d

dt
= δ

δt
+ 1

μ

δ

δτ
. (14.5)

The result of this operation is a system of partial instead of ordinary differential
equations which can be solved with an asymptotic series expansion [12] of the set
of unknown variables xxx with respect to the factor μ

xxx (t, τ ) = xxx (0) (t, τ ) + μxxx (1) (t, τ ) + μ2xxx (2) (t, τ ) + · · · (14.6)

Also expanding the right-hand-side of the equation and inserting that into the total
time derivative yields a set of differential equations. They can be sorted with respect
to the order of μ

μ(−1) : δxxx (0)

δτ
= 0, (14.7)

μ(0) : δxxx (0)

δt
+ δxxx (1)

δτ
= XXX

(
t, τ, xxx (0)

)
, (14.8)

μ(1) : δxxx (1)

δt
+ δxxx (2)

δτ
= δXXX(t, τ, xxx (0))

δxδxδx
xxx (1). (14.9)
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In Eq. (14.7), it can be seen that the mean solution xxx (0) is only a function of the slow
time scale t .

Now, a time averaging operator has to be applied [1]

〈 f (t, τ )〉 = 1

T

T∫

0

f (t, τ ) dτ (14.10)

resulting in the following system of differential equations to calculate the mean
solution

dxxx (0)

dt
= XXX

(
t, xxx (0)

)
. (14.11)

The solutions of higher orders of μ may also be calculated according to [14]. Never-
theless, this work focusses only on the mean solution, where the stress tensor takes
the following form

σσσ (t, τ ) = σσσ (0) (t) + σσσ (1) (τ ) (14.12)

with the mean part σσσ (0) (t) and the periodic part σσσ (1) (τ ). The stress deviator and
the backstress tensor were also decomposed the same way. The above mentioned
method was tested in [1] and now needs to be applied to the material model described
in Sect. 14.3.

14.3 Material Model

The material model is supposed to depict elastic and also inelastic behavior. There-
fore, the Armstrong–Frederick type constitutive model is applied which includes
a constitutive equation for the inelastic strain rate tensor and a nonlinear kinematic
hardening rule for the backstress tensor. Thematerial parameters required are already
identified in [1, 4] for tempered martensitic steel.

14.3.1 Elastic Behavior

Under the assumption of small strains, the additive decomposition of the strain εεε into
an elastic εεεel and inelastic εεεin part is considered as the basis

εεε = εεεel + εεεin. (14.13)
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In order to define the elastic strain, Hooke’s law is applied including the material
parametersYoung’smodulus E , bulkmodulus K , shearmodulusG, and thePoisson’s
ratio ν as well as the stress tensor σσσ . Here, tr means the trace and III denotes the unit
tensor

σσσ = K tr
(
εεεel

)
III + 2Gεεεel, (14.14)

with

K = E

3(1 − 2ν)
, G = E

2(1 + ν)
. (14.15)

Taking into account the decomposition of the stress tensor into a spheric σσσm and a
deviatoric part σσσ ′ yields

σm = 1

3
tr (σσσ) , (14.16)

σσσ ′ = σσσ − σmIII . (14.17)

Within this paper, all deviators will be marked with a prime. The equation for the
elastic strain can be derived as follows

εεεel = σm

3K
III + σσσ ′

2G
. (14.18)

14.3.2 Inelastic Behavior

Now, the inelastic strain εin needs to be determined. It is known that in the case of
creep behavior the inelastic strain rate has to be a function of the potential depending
on the three invariants J1, J2, and J3 of the stress tensor and can therefore be written
as

ε̇̇ε̇εin = δψ(J1(σσσ ′), J2(σσσ ′), J3(σσσ ′))
δσσσ ′ . (14.19)

Since there is no significant change of volume due to the inelastic deformation, only
the stress deviator is considered. The influence of the first and third invariants may
be neglected, since for a deviator, the first invariant is equal to zero [4]. The third
invariant accounts only for so-called second-order effects in the material belonging
to the tensorial-nonlinear behavior [13]. So in the simplest case, the inelastic strain
is only dependent on the second invariant of the stress deviator

ε̇̇ε̇εin = δψ(J2(σσσ ′))
δσσσ ′ (14.20)

which yields

ε̇εεin = 3

2
ε̇invM

σσσ ′

σvM
(14.21)
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with the von Mises stress σvM

σvM =
√
3

2
σσσ ′:σσσ ′ (14.22)

and the von Mises inelastic strain rate ε̇invM

ε̇invM =
√
2

3
ε̇̇ε̇εin : ε̇̇ε̇εin. (14.23)

Note that ε̇εεin is a deviator.
Power plant components are not only subjected to mechanical but also very high

thermal loading. To account for the temperature dependency of the inelastic strain
rate, a separation ansatz is applied as can be seen in Eq. (14.24). It includes the stress
response function fσ and a temperature response function R(ϑ) depending on the
absolute temperature ϑ

ε̇in = fσ (σ̃vM)R(ϑ). (14.24)

These functions are identified by fitting experimental data of the material under
monotonic loading conditions.

Furthermore, the stress deviator is decomposed into an active σ̃σσ and a backstress
part βββ. The tensor’s active part will now be denoted by ˜(...)

βββ = σσσ ′ − σ̃σσ . (14.25)

To mathematically describe the backstress tensor, an Armstrong–Frederick type
backstress [1] with two material parameters Bi is chosen

β̇ββ = B1ε̇εε
in − B2 ε̇invMβββ. (14.26)

The term containing the von Mises inelastic strain rate is called dynamic recovery
term and is known to improve the numerical results [4]. In order to also be able to
capture cyclic behavior, the superposition of backstresses according to [3] is used
where each of the backstresses has its own evolution equation described inEq. (14.28)

βββ =
nnn∑

iii=1

βββ i , (14.27)

β̇ββ i = B1ε̇εε
in − B2 ε̇invMβββ i . (14.28)

This approach is limited by the ability of identifying the material parameters needed.
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14.3.3 Application of the Two-Time-Scale Approach

The backstress tensor for isothermal loading conditions in particular is shown in [1]

β̇ββ = 2

3
R (ϑ)

[
ε̇in − 3

2
ε̇vM

βββ

h (σvM, ϑ)

]
. (14.29)

Including the before mentioned decomposition (Eq. 14.12) of the variables leads to
the set of constitutive equations given in Eqs. (14.30)–(14.33) with Ch(ϑ) = 8.84
[1]

ε̇εεin(0) = 3

2
R(ϑ)

〈
fσ (̃σvM)

σ̃vM
(σσσ ′(0) − βββ(0) + σσσ ′(1))

〉
(14.30)

β̇ββ
(0) = 2

3
Ch (ϑ)

(

ε̇εεin(0) − 3

2
βββ(0)

〈
ε̇

(0)
vM

h (̃σvM, ϑ)

〉)

(14.31)

and

σ̃vM =
√
3

2
tr

(
σσσ ′(0) − βββ(0) + σσσ ′(1)

)2
(14.32)

ε̇
(0)
vM =

√
2

3
tr

(
ε̇εεin(0)

2
)
. (14.33)

The response functions for high-temperature steel were developed in [10] with the
parameters a0, α, B, and H∗ which should be estimated experimentally

R(ϑ) = a0e
− α

ϑ , f (σ ) = sinhBσ, h(|σ |, ϑ) = H∗|σ |. (14.34)

14.4 Simulation of the Material Behavior

The simulation of the inelastic material behavior is done using the finite element
program ABAQUS. An user-defined subroutine implements the specific material
properties of X20CrMoV12-1 [5, 6]. First investigations are done modeling only
one single element, now a bar, clamped on one side, is considered as shown in
Fig. 14.1.
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Fig. 14.1 Schematic model
of the bar

14.4.1 Cyclic Loading Condition

Referring to the application of high-temperature steels such as X20CrMoV12-1 in
power plants, these components are mostly subjected to cyclic loading. Therefore,
a combined uniaxial load of the form described in Eq. (14.12) is considered. In this
paper, the stress profile is assumed to be of rectangular shape, as can be seen in
Fig. 14.2 with the mean stress σm > 0 and the amplitude 0 < σa < σm . In [10], the
material parameters for a surrounding temperature of ϑ = 835 K can be found

a0 = 4.64 × 1023
1

h
, α = 6.12 × 104

1

K
, Ch = 8.84,

B = 7.74 × 10−2 1

MPa
, H∗ = 0.46.

(14.35)

The loading parameters are chosen as follows

σm = 200 MPa, σa = 10 MPa (14.36)

for a total simulation time of tend = 60 min.

14.4.2 Results of the Finite Element Simulation

The results of the simulation including the material parameters described before can
be seen in Fig. 14.3. The surrounding temperature was set to 873 K which tends to
be the operating temperature of a power plant. Additionally, the initial condition of
the inelastic and elastic strain being zero was chosen. Figure14.4 shows the same
loading profile but with the mean stress measuring 100 MPa, exactly half of the first
simulation. The comparison between both of them can be seen in Fig. 14.5. If the
mean stress is increased further from 100 to 200 MPa by steps of 20 MPa, the curve
is shifted upward as shown in Fig. 14.6.
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Fig. 14.2 Cyclic loading profile

Fig. 14.3 Strain versus time for the given cyclic stress profile
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Fig. 14.4 Strain versus time with a mean stress of σm = 100 MPa

Fig. 14.5 Comparison of the strain versus time curves with the different mean stresses
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Fig. 14.6 Strain versus time for the given cyclic stress profile

14.5 Conclusion

The aim of this paper was to examine the inelastic material response of high-
temperature steel to a cyclic loading profile as it can be found in several real-life
applications such as power plants. The widely known Armstrong–Frederick consti-
tutive model was used to model the material behavior. Applying the two-time-scale
approach to the derived equations results in a reduction of the computational time
needed when the finite element simulation using ABAQUS is carried out.

The appliedmaterialmodel includes the influence of the cyclic loading parameters
such asmean stress and stress amplitude depending on the two time scales. The graph
showing the strain with respect to time shifts as expected when the magnitude of the
load is decreased.

Current and future investigations focus on deriving the constitutive equations and
applying the two-time-scale approach also for the inelastic behavior due to thermal
cyclic loading conditions or a combination of thermo-mechanical loading.
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