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Preface

N. Kh. Harutyunyan (1922–1993)

On November 23, 2022, we are celebrating the 110th anniversary of the birth of
N. Kh. Harutyunyan, who was one of the founders of the Armenian school of
mechanics. He was a prominent and distinguished scientist who has gained wide
international recognition, one of the most energetic and skillful organizer of science
and higher education in Armenia, a prominent political leader, academician of Arme-
nian National Academy of Sciences. His name is connected with the formation and
further progress of a number of scientific directions inmechanics of deformable solid
bodies, among them theory of elasticity, creep, and contact mechanics. He formed
several generations of scientists in both Armenia and other countries.

N. Kh. Harutyunyan was born in 1912 in Yerevan (Russian Empire, now the
capital of the Republic of Armenia). For many years, he lived with his grandfather—
the famous historian Leo, whose huge scientific figure instilled in the young man
respect for science. In 1930, he entered the Moscow Military Engineering Academy
named after V. V. Kuybyshev. After graduating from it in 1936 and being qualified as
engineer-hydroconstructor, he returned toArmenia.He started his professional career
as a leading engineer of the construction company Sevan-Zangustroy. At the same
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time, he taught at the Yerevan Polytechnic Institute. In 1937, N. Kh. Harutyunyan
entered the postgraduate courses of the Leningrad Polytechnic Institute (now Peter
the Great St. Petersburg Polytechnic University). Communication with the greatest
scientists in mechanics like B. G. Galerkin, E. L. Nikolai, and A. I. Lurie played a
decisive role in his future scientific development. N. Kh. Harutyunyan always had
special love and respect toward the Leningrad school of mechanics, and his scientific
contacts with this school have never been broken. After defending his first doctoral
thesis (candidate of sciences) in 1941, he went to the front. His military service
during the World War II was marked with the Orders of Patriotic War of I and II
degree, the Order of the Red Star and medals.

Demobilized from the army in 1945, N. Kh. Harutyunyan returned to Armenia
and started again his scientific and pedagogical activities. In 1949 in Moscow, at the
Institute of Mechanics of the USSR Academy of Sciences, he defended the doctoral
thesis and was awarded the title of doctor of technical sciences. In 1950, he became
the title of professor. In the same year, he was elected a full member of the Academy
of Sciences of Armenia and a member of the Presidium of this academy.

In 1952–55, his scientific activities continued at the Academy of Sciences, where
heworked as theAcademician-Secretary of theDepartment of Engineering Sciences.
In 1955, N. Kh. Harutyunyan was appointed the head of the newly created laboratory
of creep and strength at the Institute of Mathematics and Mechanics. In 1959, he
was elected the vice-president of the Academy of Sciences. In parallel with his
scientific work, he is engaged in pedagogical activities. In 1945–51, he taught at
Yerevan Polytechnic Institute, in 1951, at Yerevan State University where he was
the professor of the Chair of Theoretical Mechanics, and in 1958, he became the
head of newly created Chair of Theory of Elasticity and Plasticity (now Chair of
Continuum Mechanics) and leaded it till 1978. In 1961, N. Kh. Harutyunyan was
appointed the rector of Yerevan State University. Thanks to his efforts, the chair of
Biophysics, Nuclear Physics, Economic Cybernetics, and the Joint Computer Center
of the Academy of Sciences and YSUwere established. In 1962, he was awarded the
honorary title of the Honored Scientist of the Armenian SSR. For many years, he was
a member of the USSR National Committee on Theoretical and Applied Mechanics
and its Presidium. He was appointed the editor-in-chief of the Journal Proceedings
of the Armenian SSR Academy of Sciences, Mechanics and a member of the Editorial
Board of Proceedings of the USSR Academy of Sciences, Mekhanika Tverdogo Tela
(English translation Mechanics of Solids, now published by Springer).
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From the left: S. P. Timoshenko, N. Kh. Harutyunyan, and Ya. G. Panovko at the 11th IUTAM-
Congress in Munich (1964)

N. Kh. Harutyunyan was actively involved in social-political and state activities.
He was many times elected a deputy of the Supreme Soviet of the Republic and the
Supreme Soviet of the USSR; in 1962–1975, he was the chairman of the Presidium
of the Supreme Soviet of the Armenian SSR and deputy chairman of the Presidium
of the Supreme Soviet of the USSR. In the Soviet Union and abroad, he adequately
represented Armenia and its achievements in various fields of public life.

N. Kh. Harutyunyan’s research activities developed mainly in two directions:
the mathematical theory of elasticity and the theory of creep. His first works on
elasticity theory were on torsion and bending of prismatic rods with polygonal cross
section, where he proposed an effective method for solving these problems, based on
reducing them to the solution of infinite systems of algebraic equations. The method
was applied in numerous studies and became classical. It was included inmonographs
and textbooks. Scientific results, obtained in this direction, were generalized. Finally,
they were summarized in the fundamental book: Torsion of Elastic Bodies (authors
N. Kh. Harutyunyan and B. L. Abrahamyan), published in Moscow in 1963. N. Kh.
Harutyunyan had performed extensive scientific-research work in the field of elastic
contact and mixed boundary value problems and obtained exact solutions classes of
these problems together with his students. He also developed the scientific approach
to contact problems concerning the load transfer to elastic solid bodies by means of
thin-walled stringers.

N. Kh. Harutyunyan had made the greatest scientific contribution to the theory
of creep. After analyzing the results of numerous experiments, N. Kh. Harutyunyan
and G. N. Maslov concluded that in problems of strength and durability of engi-
neering structures made, for example, of concrete, plastics, soils, glass-reinforced
plastics, classical approaches did not work. In addition to the usual physical and
mechanical properties of materials, one should also consider the properties due to
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the creep phenomenon, such as aging and heredity. This fundamental idea was a new
mathematical theory of creep of aging bodies, developed by N. Kh. Harutyunyan,
which later entered the science as the Maslov-Arutyunyan creep theory. Considering
this theory, the existing standards for the calculation of strength and longevity of
numerous construction structures and their elements have been changed. The funda-
mental results of N. Kh. Harutyunyan’s theory of creep have been summed up in his
fundamental monograph Some Problems of Creeping Theory, which was published
in Moscow in 1952. It was translated and published in England, France, and China.
Some chapterswere published inGermany, Poland, andRomania. In the formulations
of the linear and nonlinear theories of creep Haroutyunyan constructed contact and
numerous other problems of theoretical and practical importance. In the nonlinear
problems, he formulated the superposition principle of generalized displacements.

In the last two decades of his scientific activity, N. Kh. Harutyunyan considerably
generalized and developed his original theory of creep, having worked out the theory
of creep of inhomogeneously aging bodies and created a new scientific direction: the
mathematical theory of growing deformable bodies. The scientific results are summa-
rized in numerous monographs and scientific papers. In 1975, N. Kh. Harutyunyan
moved to Moscow and started to work at the Institute for Problems in Mechanics
of the USSR Academy of Sciences as the head of the Department of Viscoelastic
Body Mechanics. During the years of his stay in Moscow, his scientific and personal
relations with Armenia did not weaken. He was also the head of the Department of
Theory of Viscoelasticity at the Institute of Mechanics of the Armenian Academy of
Sciences.

N. Kh. Harutyunyan died on January 18, 1993, in Moscow and remained devoted
to science until the end of his life. He left a huge scientific heritage, including seven
fundamental monographs, around two hundred original works, a scientific school,
numerous students, and followers in Armenia and abroad. His scientific ideas and
results will undoubtedly serve as a basis for new ideas and creative achievements of
young scientists and a wide range of researchers.

Magdeburg, Germany
Yerevan, Armenia
Yerevan, Armenia
Yerevan, Armenia
August 2022

Holm Altenbach
Suren Manuk Mkhitaryan

Vahram Hakobyan
Avetik Varazdat Sahakyan
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Chapter 1
On One Non-classical 3D Problem
for a Layered Package of Isotropic Plate
and the Problem of Earthquakes
Prediction

Lenser A. Aghalovyan and Mher L. Aghalovyan

Abstract The 3D problem of elasticity theory for a layered package of isotropic
plates is solved. It is considered that the facial surface of the package is free, and
values of displacements of points of the contact surface between second and third
layers are known as measurement data by inclinometers or strainmeters placed there.
The asymptotic solution of the problem is found, and the potential strain energy
is determined. Based on regularly carried out measurements, the entire process of
accumulation of critical potential energy of deformation is traced, leading to the
global destruction—an earthquake. The estimation of the magnitude of the expected
earthquake is given. Fleeting dynamic processes are studied.

Keywords Laminated plates · 3D problems elasticity · Asymptotic method ·
Earthquake prediction

1.1 Introduction

Modern seismology the occurrence of strong earthquakes associates with the tec-
tonics of Lithospheric plates of the planet Earth. It has been established that the
planet Earth (RE = 6378 km) is heterogeneous and layered. It consists of Earth’s
Crust, Upper and Lower Mantle, Outer and Inner Cores. The distinctive feature of
these layers, in particular, is significantly different velocities of propagation VP , VS

of longitudinal (primary) P and transverse (secondary, shear) S waves in them. For
example, these waves propagate in the rod with velocities
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VP =
√

E

ρ
, VS =

√
G

ρ
, G = E

2(1 + ν)
(1.1)

and in the plate

VP =
√

E

ρ

1 − ν

(1 + ν)(1 − 2ν)
, VS =

√
G

ρ
(1.2)

where E is the Young’s modulus, G is the shear modulus, ν is the Poisson’s ratio
and ρ is the density.

The thickness of the Earth’s Crust in the land is 20–70km, and under the oceans—
5–15km. Earth’s Crust is also layered with basic layers:

• sedimentary (VP = 2, 0 ÷ 5, 0 km/s; h1 = 10 ÷ 25 km),
• granite (VP = 5, 5 ÷ 6, 0 km/s; h2 = 30 ÷ 40 km) and
• basaltic (VP = 6, 5 ÷ 7, 4 km/s; h3 = 15 ÷ 20 km).

Within the Upper Mantle, at a depth of 100 ÷ 250 km, there is a layer (Astheno-
sphere), where the speed of VS shear waves decreases significantly, but the speed VP

doesn’t increase with depth (VP ≈ const, VS ≈ 0), i.e., there is a liquid-like incom-
pressible layer. The incompressibility of the layer makes it possible to withstand very
high pressures. Part of Upper Mantle to the border with the Asthenosphere, together
with Earth’s Crust, makes up Lithosphere. By the network of deep faults, Lithosphere
is divided into several large blocks which are called plates. The great Lithospheric
plates of the Earth are: Euroasian, Pacific Ocean, Indo-Australian, South-American,
North-American, African, Anatolian, Arabian, etc.

It has been established that earthquake sources are located in narrow zones of
Earth’s Crust (seismic zones), which are zones of tectonic interaction between adja-
cent Lithospheric plates (95% of earthquakes) [3, 5–7].

Theprocess of earthquakes preparation includes twomain stages of tectonicmove-
ments: slow (age-old) and fast (jump-like). Age-old movements may last decades;
therefore, they are quasistatic. Over the years, in Lithospheric plates and individual
blocks of Earth’s Crust, deformations accumulate, which when having reached the
critical value of the order 10−4, and according to the data of Rikitake [7]—the order
4, 7 × 10−5, leading to the global destruction (an earthquake). The main part of the
accumulated huge potential energy of deformation is released in the form of volu-
metric elastic longitudinal P and shear S waves, as well as Rayleigh’s and Love’s
surface waves. Always VP speed is greater than VS speed.

By fixing the time of arrival of these waves at the given point (seismic station):
tP = L/VP , tS = L/VS , where L—distance from the source of the earthquake to the
seismic station, we find the distance L:

L = VPVS

VP − VS
�t, �t = tS − tP (1.3)

In Eq. (1.3), �t is the time of delay of the arrival of the wave S in relation to
the arrival time of the wave P , in seconds. Often approximately considered that
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VPVS/(VP − VS) ≈ 10 km/s. For the territory of Armenia VPVS/(VP − VS) ≈ 7, 1
km/s, and according to M. Okomoto data, for Japan VPVS/(VP − VS) ≈ 8 km/s.
The data of three seismic stations allow the establishment of the location of the
earthquake source, as the area (point) of intersection of three spheres with radii
L1, L2, L3 and centers at these stations. This is what most of seismic stations are
engaged, fixing an event that has already occurred. Fast movements are dynamic and
arise as a result of Foreshock, Earthquake itself, and Aftershock. Thus, earthquakes
are the result of accumulation over the years critical deformations, leading to the
global destruction—an earthquake. This means, that for earthquakes prediction, it
is necessary to determine the stress-strain states (SSS) of Lithospheric plates and
blocks of Earth’s Crust and follow to their changing during the time.

In the middle of twentieth century, seismologists discovered that before an earth-
quake, in the place of expected earthquake, noticeable deformations (displacements
of points) of Earth’s surface are occurred [5, 7]. At the same time, the natural problem
(Rikitake’s problem) arose—by knowing the structure of the terrain and its physical
and mechanical parameters (layering, Young’s and shear’s modulus, density, etc.) to
determine the SSS of the Lithospheric plate or the corresponding block of Earth’s
Crust and according to data of regularly carried out new measurements, monitor
its changing over time. It has been proved by us, that the Rikitake’s problem has
the unique solution [1], which can be found by the asymptotic method of solving
singularly perturbed differentiated equations [2].

In order to reduce the influence of changes of external anomalous, in particular,
atmospheric factors, on data caused by the truly proceeding processes inside the
layered package (Lithospheric plate, block of Earth’s Crust), seismologists began
to place measuring instruments—inclinometers, strainmeters, inside the package at
some depth from the facial surface. In this paper, the asymptotic solution of 3D
quasistatic problem has been found, when measuring instruments are placed on the
surface of contact between the second and third layers. The found solution allows to
carry out the wide range of special studies.

1.2 Solution of 3D Quasistatic Problems

Let Lithospheric plates and blocks of Earth’s Crust consist of N isotropic layers with
thickness h j and occupied the domain

Z =
{
(x, y, z) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ h,

h =
N∑
j=1

h j , min(a, b) = l, h � l

}
.

As it stated above, the process of the first stage of earthquake preparation is
slow; therefore, it is quasistatic (age-old). For determining the stress-strain state of
the layered package, it is necessary to determine in the domain Z the solution to
equilibrium equations of elasticity theory:
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• equilibrium relations for the isotropic body

∂σ j x

∂x
+ ∂σ j y

∂y
+ ∂σ j z

∂z
+ Fj (x, y, z) = 0, j = x, y, z (1.4)

• strain-displacement relations

εxx = ∂u

∂x
= β11σxx − β12(σyy + σzz) + α11θ(x, y, z)

εyy = ∂v

∂y
= β11σyy − β12(σxx + σzz) + α22θ(x, y, z)

εzz = ∂w

∂z
= β11σzz − β12(σxx + σyy) + α33θ(x, y, z)

εxy = ∂u

∂y
+ ∂v

∂x
= 1

G
σxy

εxz = ∂u

∂z
+ ∂w

∂x
= 1

G
σxz

εyz = ∂v

∂z
+ ∂w

∂y
= 1

G
σyz

(1.5)

where ε jk is the components of strain tensor, u, v, w are the displacements, θ =
T (x, y, z) − T0(x, y, z) is the temperature changes. In addition,

β11 = 1

E
, β12 = ν

E
, G = E

2(1 + ν)
(1.6)

For a layered package to all quantities are assigned an index n (number of a layer:
n = 1, 2, . . . , N ). It is assumed that

• the facial surface of the package is free

σ (1)
xz (z = 0) = 0, σ (1)

yz (z = 0) = 0, σ (1)
zz (z = 0) = 0 (1.7)

• the values of the displacements of points of the surface of contact between second
and third layers are known, as data of the measuring instruments at t = t∗

u(2)(z = H2, t∗) = u(3)(z = H2, t∗) = u+(x, y), H2 = h1 + h2; (u, v, w)

(1.8)
• the conditions of full contact between all adjacent layers must also be satisfied

σ (n)
xz (z = Hn) = σ (n+1)

xz (z = Hn), (x, y, z), Hn = h1 + h2 + · · · + hn
u(n)(z = Hn) = u(n+1)(z = Hn), (u, v, w), n = 1, 2, · · · (N − 1)

(1.9)

For solving the set boundary value problem of the elasticity theory—seismology,
let us move in Eqs. (1.4) and elasticity relations (1.5) to dimensionless coordinates
and displacements:



1 On One Non-classical 3D Problem for a Layered Package of Isotropic Plate … 5

x = lξ, y = lη, z = hζ, U = u/ l, V = v/ l, W = w/ l (1.10)

where

h =
N∑
j=1

h j .

As a result, we will obtain the system that is singularly perturbed related to a small
parameter ε = h/ l. The solution to this system consists of solutions of the external
problem (I out) and the boundary layer (Ib). The solution to the external problem is
sought in the form:

σ
out(n)
j z = ε−1+sσ

(n,s)
j z , (x, y, z); s = 0, N

U out(n) = εsU (n,s), (U, V,W )
(1.11)

where s = 0, N means, summation by umbral (repeating) index s over all integer
values from zero to number of approximations S.

By substituting (1.11) into mentioned above transformed system and by equaling
in each equation the corresponding coefficients at ε, for determining σ

(n,s)
j z ,U (n,s),

V (n,s),W (n,s) we will obtain system of differential equations:

∂σ (n,s−1)
xx

∂ξ
+ ∂σ (n,s−1)

xy

∂η
+ ∂σ (n,s)

xz

∂ζ
+ F (n)

x = 0

F (n,0)
x = hεF (n)

x , F (n,s)
x = 0, s �= 0, (x, y, z)

∂σ (n,s−1)
xy

∂ξ
+ ∂σ (n,s−1)

yy

∂η
+ ∂σ (n,s)

yz

∂ζ
+ F (n)

y = 0

∂σ (n,s−1)
xz

∂ξ
+ ∂σ (n,s−1)

yz

∂η
+ ∂σ (n,s)

zz

∂ζ
+ F (n)

z = 0

∂W (n,s−1)

∂ξ
+ ∂U (n,s)

∂ζ
= 1

G(n)
σ (n,s)
xz ,

∂W (n,s−1)

∂η
+ ∂V (n,s)

∂ζ
= 1

G(n)
σ (n,s)
yz

σ (n,s)
xy = G(n)(

∂V (n,s−1)

∂ξ
+ ∂U (n,s−1)

∂η
)

∂U (n,s−1)

∂ξ
= β

(n)
11 σ (n,s)

xx − β
(n)
12 σ (n,s)

yy − β
(n)
12 σ (n,s)

zz + α
(n)
11 θ(n,s)

∂V (n,s−1)

∂η
= β

(n)
11 σ (n,s)

yy − β
(n)
12 σ (n,s)

xx − β
(n)
12 σ (n,s)

zz + α
(n)
22 θ(n,s)

∂W (n,s)

∂ζ
= β

(n)
11 σ (n,s)

zz − β
(n)
12 σ (n,s)

xx − β
(n)
12 σ (n,s)

yy + α
(n)
33 θ(n,s)

θ (n,0) = εθ(n), θ (n,s) = 0, s �= 0

(1.12)

In (1.12) any value of type Q(n,m) when m < 0. From system (1.12), it follows:
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σ (n,s)
xz = G(n) ∂U

(n,s)

∂ζ
+ G(n) ∂W

(n,s−1)

∂ξ

σ (n,s)
yz = G(n) ∂V

(n,s)

∂ζ
+ G(n) ∂W

(n,s−1)

∂η

σ (n,s)
xx = 1

�(n)

[
b(n,s)
1 (β

(n)
11 − β

(n)
12 ) + b(n,s)

2 β
(n)
12 − α

(n)
33 β

(n)
12 θ(n,s)

]
+ β

(n)
12

�(n)

∂W (n,s)

∂ζ

�(n) =
(
β

(n)
11 + β

(n)
12

) (
β

(n)
11 − 2β(n)

12

)
σ (n,s)
yy = 1

�(n)

[
b(n,s)
1 β

(n)
12 + b(n,s)

2 (β
(n)
11 − β

(n)
12 ) − α

(n)
33 β

(n)
12 θ(n,s)

]
+ β

(n)
12

�(n)

∂W (n,s)

∂ζ

σ (n,s)
zz = b(n,s)

3 + β
(n)
11 − β

(n)
12

�(n)

∂W (n,s)

∂ζ

b(n,s)
1 = ∂U (n,s−1)

∂ξ
− α

(n)
11 θ(n,s)

b(n,s)
2 = ∂V (n,s−1)

∂η
− α

(n)
22 θ(n,s)

b(n,s)
3 = 1

�(n)

[
β

(n)
12 (b(n,s)

1 + b(n,s)
2 ) − (β

(n)
11 − β

(n)
12 )α

(n)
33 θ(n,s)

]
(1.13)

By substituting the values of σ (n,s)
xz , σ (n,s)

yz , σ (n,s)
zz into the first three equations of

system (1.12), we will obtain equations for determining U (n,s), V (n,s), W (n,s):

G(n) ∂
2U (n,s)

∂ζ 2
= R(n,s)

u

R(n,s)
u = −F (n,s)

x − G(n) ∂
2 W (n,s−1)

∂ξ∂ζ
− ∂σ (n,s−1)

xx

∂ξ
− ∂σ (n,s−1)

xy

∂η

(1.14)

G(n) ∂
2 V (n,s)

∂ζ 2
= R(n,s)

v

R(n,s)
v = −F (n,s)

y − G(n) ∂
2 W (n,s−1)

∂η∂ζ
− ∂σ (n,s−1)

xy

∂ξ
− ∂σ (n,s−1)

yy

∂η

(1.15)

�
(n)
1

∂2 W (n,s)

∂ζ 2
= R(n,s)

w , �
(n)
1 = β

(n)
11 − β

(n)
12

�(n)

R(n,s)
w = −F (n,s)

z − ∂b(n,s)
3

∂ζ
− ∂σ (n,s−1)

xz

∂ξ
− ∂σ (n,s−1)

yz

∂η

(1.16)

According to (1.14)
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∂U (n,s)

∂ζ
= 1

G(n)

ζ∫
ζn−1

R(n,s)
u dζ + C (n,s)

1 (ξ, η)

U (n,s) = 1

G(n)

ζ∫
ζn−1

dζ

ζ∫
ζn−1

R(n,s)
u dζ + C (n,s)

1 ζ + C (n,s)
2 (ξ, η)

(1.17)

by using (1.13)

σ (n,s)
xz =

ζ∫
ζn−1

R(n,s)
u dζ + G(n)C (n,s)

1 + G(n) ∂W
(n,s−1)

∂ξ
(1.18)

By satisfying the first condition (1.7), assuming ζ0 = 0, we will obtain

C (1,s)
1 = −

(
∂W (1,s−1)

∂ξ

)
ζ=0

,⇒ C (1,0)
1 = 0 (1.19)

Using (1.18), (1.19) by satisfying the first condition of contact (1.9), we will con-
secutively determined C (n+1,s)

1

C (n+1,s)
1 = 1

G(n+1)

[
σ (n,s)
xz (ζ = ζn) − G(n+1)

(
∂W (n+1,s−1)

∂ξ

)
ζ=ζn

]
(1.20)

where

ζn = Hn/h, n = 1, 2, . . . , N − 1, Hn =
n∑
j=1

h j

Similarly, according to (1.15), (1.9)

∂V (n,s)

∂ζ
= 1

G(n)

ζ∫
ζn−1

R(n,s)
v dζ + C (n,s)

3 (ξ, η)

V (n,s) = 1

G(n)

ζ∫
ζn−1

dζ

ζ∫
ζn−1

R(n,s)
v dζ + C (n,s)

3 ζ + C (n,s)
4 (ξ, η)

(1.21)

C (1,s)
3 = −

(
∂W (1,s−1)

∂η

)
ζ=0

⇒ C (1,0)
3 = 0

C (n+1,s)
3 = 1

G(n+1)

[
σ (n,s)
yz (ζ = ζn) − G(n+1)

(
∂W (n+1,s−1)

∂η

)
ζ=ζn

]

n = 1, 2, . . . , N − 1

(1.22)
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According to (1.16)

∂W (n,s)

∂ζ
= 1

�
(n)
1

ζ∫
ζn−1

R(n,s)
w dζ + C (n,s)

5 (ξ, η)

W (n,s) = 1

�
(n)
1

ζ∫
ζn−1

dζ

ζ∫
ζn−1

R(n,s)
w dζ + C (n,s)

5 ζ + C (n,s)
6 (ξ, η)

�
(n)
1 = β

(n)
11 − β

(n)
12(

β
(n)
11 + β

(n)
12

) (
β

(n)
11 − 2β(n)

12

)

σ (n,s)
zz = b(n,s)

3 + �
(n)
1

∂W (n,s)

∂ζ
= b(n,s)

3 +
ζ∫

ζn−1

R(n,s)
w dζ + C (n,s)

5 (ξ, η)�
(n)
1

(1.23)

By satisfying the last condition (1.7), we will obtain

C (1,s)
5 = − 1

�
(n)
1

(
b(1,s)
3 (ζ = 0)

)
(1.24)

According to (1.9)

C (n+1,s)
5 = 1

�
(n+1)
1

(
σ (n,s)
zz − b(n+1,s)

3 (ζ = ζn)
)

, n = 1, 2, . . . N − 1 (1.25)

Thus, all C (n,s)
1 ,C (n,s)

3 ,C (n,s)
5 are determined. From conditions (1.8), (1.9), are deter-

mined C (n,s)
2 ,C (n,s)

4 ,C (n,s)
6 .

According to (1.8), (1.17)

U (2,s)(ζ = ζ2) = 1

G(2)

ζ2∫
ζ1

dζ

ζ∫
ζ1

R(2,s)
u dζ + C (2,s)

1 ζ2 + C (2,s)
2 = u+(s) (1.26)

with

u+(0) = u+

l
, u+(s) = 0, s �= 0

and

C (2,s)
2 = u+(s) − C (2,s)

1 ζ2 − 1

G(2)

ζ2∫
ζ1

dζ

ζ∫
ζ1

R(2,s)
u dζ
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By satisfying the condition

U (1,s)(ζ = ζ1) = U (2,s)(ζ = ζ1)

we will find C (1,s)
2

C (1,s)
2 = (C (2,s)

1 − C (1,s)
1 )ζ1 + C (2,s)

2 − 1

G(1)

ζ1∫
0

dζ

ζ∫
0

R(1,s)
u dζ (1.27)

From the condition U (3,s)(ζ = ζ2) = u+(s), we will determine

C (3,s)
2 = u+(s) − C (3,s)

1 ζ2 (1.28)

From conditionsU (n,s)(ζ = ζn) = U (n+1,s)(ζ = ζn) determined the other C (n,s)
2 . We

will have
C (n+1,s)
2 = U (n,s)(ζ = ζn) − C (n+1,s)

1 ζn (1.29)

All C (n,s)
3 ,C (n,s)

4 are determined similarly. Formulas for them can be obtained from
the above mentioned by cyclic permutation (C1,C2,U ;C3,C4, V ). Satisfying con-
ditions (1.8), (1.9) relatively to W , we will obtain

C (2,s)
6 = w+(s) − C (2,s)

5 ζ2 − 1

�
(2)
1

ζ2∫
ζ1

dζ

ζ∫
ζ1

R(2,s)
w dζ

C (3,s)
6 = w+(s) − C (3,s)

5 ζ2, w+(0) = w+/ l, w+(s) = 0, s �= 0

C (1,s)
6 = C (2,s)

6 + (C (2,s)
5 − C (1,s)

5 )ζ1 − 1

�
(1)
1

ζ1∫
0

dζ

ζ∫
0

R(1,s)
w dζ

C (n+1,s)
6 = W (n,s)(ζ = ζn) − C (n+1,s)

5 ζn

(1.30)

The abovementioned formulasmake it possible to calculate the SSSof an arbitrary
layer of the package and monitor its change over time based on the regularly carried
out new measurements of displacements of points of the surface of contact between
second and third layers.

If functions u+, v+, w+, included in conditions (1.8), and also θ are algebraic
polynomials, the iterative process of determining unknowns breaks at a certain
approximation. As a result, we obtain a mathematically exact solution in the external
problem.

On the base of found solution, it is possible to calculate the accumulated potential
energy of deformation (W ) according to the well-known formula of elasticity theory
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W = 1

2

∫
V

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σxzεxz + σyzεyz)dV (1.31)

and trace its change over time. When this energy reaches the critical value, global
destruction—an earthquake—will occur. There is the formula that relates the poten-
tial energy of deformation and the magnitude (M) of the expected earthquake [4, 5].

lgW = 11.8 + 1.5M (1.32)

The critical deformation energy is Wcr = 1011,8 J and corresponds to M = 0.
When W > Wcr , the process becomes dynamic and fast (Foreshocks, Earthquakes,
Aftershocks) and having value of W by formula (1.32), it is possible to predict the
magnitude of the expected earthquake.

1.3 Investigation of Fast Dynamic Processes

For investigating associated with an earthquake fast processes, it is necessary to solve
in the domain Z equations of the motion of the elasticity theory:

∂σ (n)
xx

∂x
+ ∂σ (n)

xy

∂y
+ ∂σ (n)

xz

∂z
= ρn

∂2u(n)
x

∂t2
, (x, y, z), n = 1, 2, . . . , N (1.33)

at elasticity relations (1.5) (usually without taking into account the temperature) and
full contact conditions (1.9) between adjacent layers.We consider, that measurement
data is again have taken from the contact surface between second and third layers.
The case when data have taken from the contact surface between arbitrarily chosen
adjacent layers is considering in a similar way and does not cause any difficulties.
Boundary conditions of the problem are

• at the facial surface z = 0 of the package from plates is free

σ
(1)
j z (x, y, 0, t) = 0, j = x, y, z (1.34)

• values of displacements of points of the contact surface between second and third
layers are known

u(2)
x (x, y, ζ2, t) = u(3)

x (x, y, ζ2, t) = u+(x, y) exp(i�t), (x, y, z) (1.35)

� is the vibration frequency of the contact surface of these adjacent layers.
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The solution of the formulated problem will be sought in the form

σ
(n)
αβ (x, y, ζ, t) = σ

(n)
i j (x, y, ζ ) exp(i�t), α, β = x, y, z; i, j = 1, 2, 3, . . .

u(n)
x (x, y, z, t) = u(n)

x (x, y, z) exp(i�t), (x, y, z)
(1.36)

In the equations of motion and elasticity relations, we again pass to dimensionless
coordinates ξ, η, ζ and displacements

U (n) = u(n)
x

l
, V (n) = u(n)

y

l
,W (n) = u(n)

z

l
(1.37)

As a result, wewill obtain a new systemof singularly perturbed differential equations.
The solution to the external problem (I out) is sought in the form

U (n)out = εsU (n,s), (U, V,W ), σ
(n)out
i j = ε−1+sσ

(n,s)
i j , s = 0, S (1.38)

By substituting (1.38) into the transformed equations ofmotion and elasticity rela-
tions, we will obtain the following system to determine σ

(n,s)
i j ,U (n,s), V (n,s),W (n,s):

∂σ
(n,s−1)
11

∂ξ
+ ∂σ

(n,s−1)
12

∂η
+ ∂σ

(n,s)
13

∂ζ
+ �2

∗ρnU
(n,s) = 0

∂σ
(n,s−1)
12

∂ξ
+ ∂σ

(n,s−1)
22

∂η
+ ∂σ

(n,s)
23

∂ζ
+ �2

∗ρnV
(n,s) = 0

∂σ
(n,s−1)
13

∂ξ
+ ∂σ

(n,s−1)
23

∂η
+ ∂σ

(n,s)
33

∂ζ
+ �2

∗ρnW
(n,s) = 0

∂U (n,s−1)

∂ξ
= β

(n)
11 σ

(n,s)
11 − β

(n)
12 σ

(n,s)
22 − β

(n)
12 σ

(n,s)
33

∂V (n,s−1)

∂η
= −β

(n)
12 σ

(n,s)
11 + β

(n)
11 σ

(n,s)
22 − β

(n)
12 σ

(n,s)
33

∂W (n,s)

∂ζ
= −β

(n)
12 σ

(n,s)
11 − β

(n)
12 σ

(n,s)
22 + β

(n)
11 σ

(n,s)
33

∂W (n,s−1)

∂ξ
+ ∂U (n,s)

∂ζ
= 1

G(n)
σ

(n,s)
13

∂W (n,s−1)

∂η
+ ∂V (n,s)

∂ζ
= 1

G(n)
σ

(n,s)
23

∂V (n,s−1)

∂ξ
+ ∂U (n,s−1)

∂η
= 1

G(n)
σ

(n,s)
12

(1.39)

�∗ = h�, Q(n,m) = 0whenm < 0. Fromsystem (1.39), all stresses canbe expressed
in terms of displacements:
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σ
(n,s)
11 = 1

�(n)

[
β

(n)
12

∂W (n,s)

∂ζ
+

(
β

(n)
11 − β

(n)
12

) ∂U (n,s−1)

∂ξ
+ β

(n)
12

∂V (n,s−1)

∂η

]

σ
(n,s)
22 = 1

�(n)

[
β

(n)
12

∂W (n,s)

∂ζ
+ β

(n)
12

∂U (n,s−1)

∂ξ
+

(
β

(n)
11 − β

(n)
12

) ∂V (n,s−1)

∂η

]

σ
(n,s)
33 = 1

�(n)

[(
β

(n)
11 − β

(n)
12

) ∂W (n,s)

∂ζ
+ β

(n)
12

∂U (n,s−1)

∂ξ
+ β

(n)
12

∂V (n,s−1)

∂η

]
�(n) =

(
β

(n)
11 + β

(n)
12

) (
β

(n)
11 − 2β(n)

12

)
σ

(n,s)
13 = G(n)

(
∂U (n,s)

∂ζ
+ ∂W (n,s−1)

∂ξ

)

σ
(n,s)
23 = G(n)

(
∂V (n,s)

∂ζ
+ ∂W (n,s−1)

∂η

)

σ
(n,s)
12 = G(n)

(
∂V (n,s−1)

∂ξ
+ ∂U (n,s−1)

∂η

)

(1.40)

By substituting the values of σ
(n,s)
13 , σ

(n,s)
23 , σ

(n,s)
33 in the first three equations of

(1.39), we will obtain equations for determining the displacements:

G(n) ∂
2U (n,s)

∂ζ 2
+ �2

∗ρnU
(n,s) = R(n,s)

u

R(n,s)
u = −G(n) ∂

2 W (n,s−1)

∂ξ∂ζ
− ∂σ

(n,s−1)
11

∂ξ
− ∂σ

(n,s−1)
12

∂η

(1.41)

G(n) ∂
2 V (n,s)

∂ζ 2
+ �2

∗ρnV
(n,s) = R(n,s)

v

R(n,s)
v = −G(n) ∂

2 W (n,s−1)

∂η∂ζ
− ∂σ

(n,s−1)
12

∂ξ
− ∂σ

(n,s−1)
22

∂η

(1.42)

β
(n)
11 − β

(n)
12

�(n)

∂2 W (n,s)

∂ζ 2
+ �2

∗ρnW
(n,s) = R(n,s)

w

R(n,s)
w = − 1

�(n)
β

(n)
12

[
∂2U (n,s−1)

∂ξ∂ζ
+ ∂2 V (n,s−1)

∂η∂ζ

]
− ∂σ

(n,s−1)
13

∂ξ
− ∂σ

(n,s−1)
23

∂η

(1.43)

The solution to Eq. (1.41) is

U (n,s) = C (n,s)
1u (ξ, η) sin�∗

√
ρn

G(n)
ζ + C (n,s)

2u (ξ, η) cos�∗
√

ρn

G(n)
ζ +U

(n,s)
(1.44)

Solutions of Eqs. (1.42), (1.43) can be obtained from (1.44) by cyclic permutation
(u, v, w;G(n),G(n), �

(n)
1 ), where

�
(n)
1 = β

(n)
11 − β

(n)
12

�(n)
.
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According to (1.40), (1.44) we will have

σ
(n,s)
13 =

√
G(n)ρn(C

(n,s)
1u cos�∗

√
ρn

G(n)
ζ − C (n,s)

2u (ξ, η) sin�∗
√

ρn

G(n)
ζ ) + σ

(n,s)
13∗

σ
(n,s)
13∗ = G(n)(

∂W (n,s−1)

∂ξ
+ ∂U

(n,s)

∂ζ
)

(1.45)
By satisfying condition (1.34) for σ (1)

xz , using (1.36), (1.45), we obtain

C (1,s)
1u = − 1√

G(1)ρ1

σ
(1,s)
13∗ (ξ, η, 0) ⇒ C (1,0)

1u = 0 (1.46)

Satisfaction of conditions of full contact between the first and second layers and
condition (1.35) for the second layer passes to the algebraic system

C (1,s)
2u b1

√
G(1)ρ1 + C (2,s)

1u b4
√
G(2)ρ2 − C (2,s)

2u b3
√
G(2)ρ2 = d(s)

1u

C (1,s)
2u b2 − C (2,s)

1u b3 − C (2,s)
2u b4 = d(s)

2u (1.47)

C (2,s)
1u b5 + C (2,s)

2u b6 = d(s)
3u

where

b1 = sin�∗
√

ρ1

G(1)
ζ1, b2 = cos�∗

√
ρ1

G(1)
ζ1, b3 = sin�∗

√
ρ2

G(2)
ζ1

b4 = cos�∗
√

ρ2

G(2)
ζ1, b5 = sin�∗

√
ρ2

G(2)
ζ2, b6 = cos�∗

√
ρ2

G(2)
ζ2

d(s)
1u = C (1,s)

1u b2
√

ρ1G(1) + σ
(2,s)
13∗ (ξ, η, ζ1)

d(s)
2u = U

(2,s)
(ξ, η, ζ1) − C (1,s)

1u b1 −U
(1,s)

(ξ, η, ζ1)

d(s)
3u = U+(s) −U

(2,s)
(ξ, η, ζ2)

(1.48)

and U+(0) = u+/ l, U+(s) = 0, s �= 0.
From the algebraic system (1.47), by Cramer’s formula, unknowns C (1,s)

2u ,

C (2,s)
1u ,C (2,s)

2u are determined:

C (1,s)
2u = δ

(s)
1

δ
, C (2,s)

1u = δ
(s)
2

δ
, C (2,s)

2u = δ
(s)
3

δ
(1.49)

with

δ =
∣∣∣∣∣∣
b1

√
G(1)ρ1 b4

√
G(2)ρ2 −b3

√
G(2)ρ2

b2 −b3 −b4
0 b5 b6

∣∣∣∣∣∣ , d(s) =

∣∣∣∣∣∣∣∣
d(s)
1u

d(s)
2u

d(s)
3u

∣∣∣∣∣∣∣∣
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δ j is obtained from δ by replacing the j-th column with the column d(s). By this way,
all data for the first and second layers is determined. Satisfaction of the condition
(1.35) for the third layer and condition of contact relatively to stresses σ

(2,s)
13 , σ

(3,s)
13

leads to the system:

C (3,s)
1u b7 + C (3,s)

2u b8 = U+(s) −U
(3,s)

(ξ, η, ζ2) = d(s)
4u

C (3,s)
1u b8 − C (3,s)

2u b7 = 1√
G(3)ρ3

(
σ

(2,s)
13 (ξ, η, ζ2) − σ

(3,s)
13∗ (ξ, η, ζ2)

)
= d(s)

5u

b7 = sin�∗
√

ρ3

G(3)
ζ2

b8 = cos�∗
√

ρ3

G(3)
ζ2

(1.50)

from where the unknowns of the third layer are determined:

C (3,s)
1u = b7d

(s)
4u + b8d

(s)
5u , C (3,s)

2u = b8d
(s)
4u − b7d

(s)
5u (1.51)

For layers with numbers n > 3 from conditions of full contact between adjacent
layers (n + 1) and (n) sequentially, knowing data of layer n, unknowns of layer
(n + 1) are determined:

C (n+1,s)
1u = b1nd

(s)
1un + b2nd

(s)
2un

C (n+1,s)
2u = b2nd

(s)
1un − b1nd

(s)
2un

b1n = sin�∗
√

ρn+1

G(n+1)
ζn

b2n = cos�∗
√

ρn+1

G(n+1)
ζn

d(s)
1un = U (n,s)(ξ, η, ζn) −U

(n+1,s)
(ξ, η, ζn)

d(s)
2un = 1√

G(n+1)ρn+1

[
σ

(n,s)
13 (ξ, η, ζn) − σ

(n+1,s)
13∗ (ξ, η, ζn)

]
n = 3, 4, . . . (N − 1)

(1.52)

In a similar way, remaining conditions (1.34), (1.35) are satisfied. The correspond-
ing data can be obtained from the above mentioned by cyclic permutation

(Ux ,Uy,Uz; u, v, w; G,G,�1; 13, 23, 33)

If functions U+, V+,W+ are algebraic polynomials, mathematically exact solu-
tion of the external problem corresponds them. In all considered problems, the solu-
tion of the boundary layer is localized near the side surface. All quantities decrease
exponentially with removing from the side surface. Taking into account, that tangen-
tial dimensions of the packet are much greater than its thickness, and the boundary
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layer is usually neglected. If necessary, the corresponding solution can be determined
by the method described in [2].

1.4 Conclusions

Earthquakes are the result of the accumulation over the years of enormous potential
energy of deformation, which with reaching the critical value, causes to the global
destruction—an earthquake. Seismologists established that before an earthquake, in
a seismically dangerous zone, there is a significant deformation (displacement of
points) of the Earth’s Crust. The problem arose by data of displacements of points
of this surface to determine the stress-strain state (SSS) of the corresponding block
of the Earth’s Crust (Rikitake problem) and based on regular measurements of dis-
placements to track SSS change over the time. In this work, regarding that structure
of Earth’s Crust block is known (layering, Young’s, Shear, Poisson’s coefficients,
density of layers, etc.), based on the data of measuring instruments (inclinometers,
strainmeters, etc.), which are located at a certain depth from the surface of Earth’s
Crust, based on equations and relations of elasticity theory, is determined the SSS
of the layered package from isotropic layers. The potential energy of deformation is
determined, and the magnitude of the expected earthquake is estimated. Fast-flowing
dynamic processes are studied (Foreshocks, Earthquakes, Aftershocks).

Acknowledgements The work was supported by the Science Committee of RA, in the frames of
the research project No. 21T-2C075.
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Chapter 2
Diffraction of Plane Waves in an Elastic
Half-Plane Enhanced Along Its
Boundary by a Semi-infinite Stringer

Karo L. Aghayan and Rafik A. Baghdasaryan

Abstract A dynamic contact problem is considered on the propagation and diffrac-
tion of plane elastic waves incident from infinity onto the boundary of an elastic half-
plane reinforced by a semi-infinite stringer of small thickness. Questions related to
the dynamic mutual influence of an elastic half-plane with a stringer of semi-infinite
length rigidly welded to its boundary are investigated. Due to the smallness of the
stringer thickness, the model of a one-dimensional elastic continuum is taken as a
physical model for it [1, 2]. Based on the adopted model, with the help of the gener-
alized Fourier transform, the problem is reduced to a Riemann-type boundary value
problem in the theory of analytic functions on the real axis and, further, a closed
solution of the problem is constructed using the Wiener–Hopf method. Analytical
expressions are obtained that represent the distribution of wave components in all
parts of the half-plane.

Keywords Surface wave · Reflection · Diffraction · Contact stresses ·Wave field ·
Stringer

2.1 Introduction

Research in the field of the dynamic theory of elasticity related to the processes of
oscillations, diffraction and propagation of various types of waves in massive bodies
with stress concentrators are among the topical problems of the dynamics of the
contact interaction of elastic bodies. In particular, this also applies to the problems of
propagation and reflection of elastic and surface waves of the Rayleigh, Love, etc.,
type in an elastic plane with stress concentrators of the type stamp, crack, stringer
(overlay, inclusion), strip, beam, etc.
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There are quite a lot of works on the study of plane contact and mixed boundary
value problems (in static and dynamic statement) for a plane, half-plane and strip
reinforced with elastic fasteners in the form of stringers. Let us briefly dwell on some
of them, which are related directly to the problem considered here.

Of the static contact problems for a half-plane or plane, we note only the works
[1–3], in which for the first time the model of a one-dimensional elastic continuum
was adopted and substantiated as a physicalmodel of the stringer. In turn, theseworks
served as a kind of stimulus for the subsequent appearance of many new fundamental
works in the field of contact problems.

Of the dynamic contact problems closest to the problem considered here, we note
the works [4–8] and the works cited in them. In these papers, in the formulation
of a plane deformation, stationary dynamic contact problems are considered for
elastic space, layer and half-space. The elements in contact with massive bodies
here are mainly stamps and thin layers, under various types of loading and boundary
conditions.

The number of dynamic contact problems for an elastic plane or half-plane with
elastic stringers is small. Of these, we point out the works [9–11]. Note that [9] is the
first work in this direction and, as its author notes, it was put forward byAcademician
N. Kh. Harutyunyan.

In [9], two dynamic contact problems are considered on the transfer of a concen-
trated force harmonically varying in time to a semi-infinite elastic half-plane through
an elastic infinite and semi-infinite overlay glued to its boundary. The work was done
at a high mathematical level. A closed solution in the form of Fourier integrals is
obtained.

The problem proposed here is related to the problems from [9]. In [9, 10], the
question of the transfer of a concentrated force from a stringer to the boundary of
a half-plane is considered, where the stringer plays the role of a damper, which
weakens the influence of the concentrated force. In the problem considered here, as
in [11], questions related to the general change in the wave field due to the mutual
influence of the stringer with the boundary of the half-plane are investigated.

2.2 Statement of the Problem

An elastic half-plane with elastic characteristics (λ, μ, ρ) in the Cartesian coordinate
system Oxz occupies the region�−(−∞ < x < ∞, z < 0). The axis Oz is directed
along the outer normal to the boundary of the half-plane. Along its boundary z = 0
the half-plane is reinforced with a semi-infinite stringer with a sufficiently small
constant thickness hS and with elastic parameters ES, νS, ρS . The half-plane and the
stringer are connected along the boundary z = 0 of the half-plane and are in full
contact. With respect to the stringer, it is assumed that due to the smallness of the
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thickness hS , the bending stiffness is negligible. Then, the pressure of the stringer
on the half-plane can be neglected and it can be assumed that only tangential contact
stresses arise under the stringer. This allows, as in [1, 2], to take the model of a
one-dimensional elastic continuum as the physical model of the stringer.

Let us study, the two-dimensional wave motion in the indicated composite half-
plane, when a plane transverse SV wave falls on its boundary from infinity, described
by the potential

ψ∞(x, z, t) = ψ0(x, z)e
−iωt x, z ∈ �− (2.1)

ψ0(x, z) = B0e
i(ξ x+ηz), ξ = k2 cosβ, η = k2 sin β,

whereψ0(x, z) is a amplitude, β(0 < β < π/2) is the angle of falling of shear wave,
k2 = ω/c2 is a wavenumber, c2 = √

μ/ρ is a phase velocity transverse wave, μ and
ρ are shear module and density, ω is a oscillation frequency and t is a time.

Under these assumptions, it is required to determine the distribution of the wave
components of the diffracted field in the half-plane and the contact stresses arising
under the stringer.

2.3 Influence Function

Consider the following auxiliary plane strain problem for the above-mentioned elastic
region �−.

On the boundary of the elastic half-plane acts the following given load

σ ∗
z (x, z, t)

∣
∣
z=0 = 0 (−∞ < x < ∞) (2.2)

τ ∗
xz(x, z, t)

∣
∣
z=0 = τ0(x)e

−iωt , (−∞ < x < ∞) (2.3)

and from infinity, a transverse wave falls on the boundaries of the half-plane, given
by formula (2.1).

Using amplitudes ϕ(x, z) and ψ(x, z) of the wave potentials

ϕ∗(x, z, t) = ϕ(x, z)e−iωt ; ψ∗(x, z, t) = ψ(x, z)e−iωt

the solution to this problem can be formulated in the form of the following system
of boundary value problems [12], with respect to the potentials ϕ(x, z) and ψ(x, z)
(here and below, the harmonic factor eiωt is omitted):

�ϕ(x, z) + k21ϕ(x, z) = 0 (x, z) ∈ �− (2.4)
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��(x, z) + k22�(x, z) = 0 (x, z) ∈ �− (2.5)

σz(x, 0) = 0; τxz(x, 0) = τ0(x), |x | < ∞ (2.6)

�(x, z) = ψ(x, z) − B0e
ι(ξ x+ηz) (2.7)

Here, � = ∂2

∂x2 + ∂2

∂z2 is a Laplace operator, k1 = ω
c1

= ω
√

ρ/(λ + 2μ) is the
wavenumber, c1 is the phase velocity of longitudinal wave,λ, μ are Lame parameters
and ρ is the density.

Applying to (2.4)–(2.7) the Fourier transform, we obtain the following system of
two ordinary differential equations with respect to ϕ(σ, z) and �(σ, z):

d2ϕ(σ s, z)

dx2
− γ1(σ )ϕ(σ, z) = 0 (2.8)

d2�(σ, z)

dz2
− γ2(σ )�(σ, z) = 0 (2.9)

with boundary conditions

(

d2ϕ

dz2
− σ 2 λ

λ + 2μ
ϕ − 2iσ

μ

λ + 2μ

dψ

dz

)∣
∣
∣
∣
∣
z=0

= 0 (|σ | < ∞) (2.10)

(

d2ψ

dz2
+ σ 2ψ + 2iσ

dϕ

dx

)∣
∣
∣
∣
∣
z=0

= − 1

μ
τ 0(σ ) (|σ | < ∞) (2.11)

Here

γ1(σ ) =
√

σ 2 − k21; γ2(σ ) =
√

σ 2 − k22 (2.12)

ψ(σ, z) = �(σ, z) + 2πB0e
−iηzδ(σ + ξ) (2.13)

and δ(x) is the Dirac delta-function.
Note that the boundary conditions (2.10), (2.11) correspond to conditions (2.6),

(2.7) as a consequence of Hooke’s law and the dependences of elastic displacements
Ux (x, z) and Uz(x, z) on the potentials ϕ(x, z) and ψ(x, z)

Ux (x, z) = ∂ϕ

∂x
− ∂ψ

∂z
; Uz(x, z) = ∂ϕ

∂z
+ ∂ψ

∂x
(2.14)

The general solution to (2.8) and (2.9) is represented as



2 Diffraction of Plane Waves in an Elastic Half-Plane Enhanced Along … 21

ϕ(σ, z) = A1(σ )eγ1z + A2(σ )e−γ1z

�(σ, z) = B1(σ )eγ2z + B2(σ )e−γ2z (2.15)

where A1, A2, B1, B2 are unknown constants.
In solution (2.15), γ1(σ ) and γ2(σ ) given by formula (2.12) are multivalued func-

tions. Any linear combination of expressions (2.15) corresponding to different values
of multivalued functions γ1(σ ) and γ2(σ ) will be a solution to system of Eqs. (2.8)
and (2.9).

This ambiguity in the choice of solutions can be eliminated by matching the form
of expressions ϕ(σ, z) and ψ(σ, z) with the corresponding physical requirements
of the stated problem. In other words, the diffracted waves must be exponentially
decreasing along z (nonuniformwaves) or moving away from the boundary (uniform
waves).

The points σ = ±k1 and σ = ±k2 are the branch points of the functions γ1(α)

and γ2(α) in the complex plane α = σ + iτ .
An unambiguous analytical branch of these functions can be chosen if cuts are

made in the complex plane in the form of straight lines connecting points k1, k2 and
−k1,−k2 with a point at infinity, respectively, in the upper and lower half-planes.
In the plane cut in this way, one can choose single-valued analytic branches of the
functions γ1(α) and γ2(α) such that γ1(α), γ2(α) → |α|when σ → ±∞ [13]. Based
on these considerations, in (2.15) one should set A2 = B2 = 0. In addition, to ensure
the above two requirements, it follows that when |σ | > k1 (|σ | > k2) the values of
the function γ1(γ2) must be positive, i.e.

γ1 =
√

σ 2 − k21; γ2 =
√

σ 2 − k22,

and when |σ | < k j ( j = 1, 2)

γ1 = −i
√

k21 − σ 2; γ2 = −i
√

k22 − σ 2 (2.16)

The remaining two constants included in (2.15), taking into account (2.13), are
determined from the boundary conditions (2.10) and (2.11) as follows:

A1(σ ) = 8πB0
ξη

(

ξ 2 − η2
)

R(ξ)
δ(σ + ξ) − i

2σ
√

σ 2 − k22

μR(σ )
τ0(σ ) (2.17)

B1(σ ) = −2πB0

(

ξ 2 − η2
)2 − 4ξ 2η

√

k21 − ξ 2

R(ξ)
δ(σ + ξ) − 2σ 2 − k22

μR(σ )
τ0(σ ) (2.18)

where R(σ ) is the Rayleigh function
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R(σ ) = (

2σ 2 − k22
)2 − 4σ 2

√
(

σ 2 − k21
)(

σ 2 − k22
)

(2.19)

Substituting the values A1, B1 from (2.17), (2.18) into (2.15), taking into account
A2 = B2 = 0, after the inverse transformation, we obtain the final expressions for
the wave potentials ϕ(x, z) and �(x, z) which solve the problem for given B0 and
τ0(x).

Without dwelling on the details here, we note that in (2.17) and (2.18), the first
components are responsible for the reflected waves, and the second for the surface
waves with the wavenumber σR(R(σR) = 0).

We also note that when using formulas (2.17)–(2.19), one should keep in mind
(2.16) and the well-known Snell relation k1 cosβ = k2 cosϑ , where ϑ is the angle
of the reflected longitudinal wave.

Let us define the expression for the Fourier image of the horizontal displacements
of the boundary points of the half-plane Ux (σ, 0). After applying to (2.14) Fourier
transformation we will have

Ux (σ, z) = −iσϕ(σ, z) − dψ(σ, z)

dz
(2.20)

Now, taking into account (2.15), (2.17) and (2.18), from (2.20) we obtain

Ux (σ, 0) = 2π i B0ηH(ξ, η)δ(σ + ξ) −
k22

√

σ 2 − k22

μR(σ )
τ0(σ ), (2.21)

H(ξ, η) =
(

ξ 2 − η2
)(

3ξ 2 + η2
) + 4ξ 2η

√

k21 − ξ 2

R(ξ)
− 1 (2.22)

Note that when τ0(x) = δ(x), the Ux (σ, 0) represents the Green’s function for
the boundary value problem (2.8)–(2.11).

2.4 Solution of the Contact Problem

We will solve the problem by the method of generalized Fourier transform and will
use the following notations [18]

f ±(x) = θ(±x), f
±
(σ ) = ∞∫

−∞
f ±(x)eiσ xdx; f ±(x) = 1

2π

∞∫
−∞

f
±
(σ )e−iσ xdσ

(2.23)

where θ(x) is the Heaviside function.
Then, taking into account (2.23), (2.21) can be represented as
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U
+
x (σ, 0) +U

−
x (σ, 0) = 2π i B0ηH(ξ, η)δ(σ + ξ)

−
k22

√

σ 2 − k22

μR(σ )
τ+
S (σ ), −∞ < σ < ∞ (2.24)

where τ+
S (σ ) is the transformant of the tangential contact stress τ+

S (x) arising under
the semi-infinite stringer.

Now consider the movement of the stringer, separating it from the edge of the
half-plane. Let us denote by τS(x) the amplitude of tangential contact stresses arising
on the line of contact of the stringer with the boundary of the half-plane. Applying
the d’Alembert principle to an infinitely small element of the stringer, taking into
account the above model of a uniaxial stress state for it and Hooke’s law, for the
amplitude of horizontal displacements US(x), we obtain a differential equation [9,
11]

d2US(x)

dx2
+ q2US(x) − ASτS(x) = 0, (0 < x < ∞) (2.25)

q = ω

cS
, c2S = ES

ρS
(

1 − ν2S
) , AS = 1 − ν2S

EShS

Here,q is awavenumber, cS is a phase velocity ofwave in stringer (rod) and ES, νS, ρS

are shear module, Poisson’s ratio and density of the stringer material.
On the other hand, for the second differential of the functionU+

S (x) = θ(x)US(x)
we have

d2U+
S (x)

dx2
= US(0)δ

′(x) + θ(x)
d2US(x)

dx2
= 0, (−∞ < x < ∞). (2.26)

Here, we took into account the well-known relations

δ(x) = θ ′(x), f (x)δ(x) = f (0)δ(x) ( f (0) 	= 0)

and the condition

σ (S)
x (0) = ES

dUS

dx

∣
∣
∣
∣
x=+0

= 0 (2.27)

which represents the absence of the normal stress σ (S)
x (x) in the end x = +0 of the

stringer.
Combining (2.25) with (2.26), we get

d2U+
S (x)

dx2
= US(0)δ

′(x) + θ(x)
[

ASτS(x) − q2US(x)
]

(2.28)
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or after applying the generalized transformation (2.23)

(

σ 2 − q2)U
+
S (σ ) + ASτ

+
S (σ ) − iUS(0)σ = 0 (2.29)

where US(0) is an unknown constant.
The contact condition between stringer and half-plane after Fourier transform has

the following form:

U
+
x (σ, 0) = U

+
S (σ ), (−∞ < σ < ∞) (2.30)

Satisfying condition (2.30) with the help of (2.24) and (2.29), we arrive at the
following functional equation for the unknowns U

−
x (σ, 0) and τ+

S (σ ):

(

σ 2 − q2
)

U
−
S (σ, 0) − χ

√

σ 2 − k22F(σ )τ+
S (σ )

= 2π i B0ηH(ξ, η)
(

σ 2 − q2
)

δ(σ + ξ) − iUS(0)σ (−∞ < σ < ∞) (2.31)

where

F(σ ) = 2
(

k22 − k21
)

R∗(σ )

R(σ )

√

σ 2 − k22

(2.32)

R∗(σ ) = μ∗R(σ ) − (

σ 2 − q2)
√

σ 2 − k22 (2.33)

χ = k22
(

2μ
(

k22 − k21
))−1

, μ∗ = μASk
−2
2 (2.34)

and R(σ ) is given by (2.19).
Thus, the solution of the problemhas been reduced to theRiemann boundary value

problem of the theory of analytic functions on the real axis (2.31) for the unknown
functions U

−
x (σ, 0) and τ+

S (σ ).
Using notation

K (σ ) = σ 2 − σ 2
R

σ 2 − σ 2
R∗
F(σ ) (2.35)

we represent Eq. (2.31) in the form

(σ − q)U
−
x (σ, 0) − χ

√

σ 2 − k22

(

σ 2 − σ 2
R∗

)

(

σ 2 − σ 2
R

)

(σ + q)
K (σ )τ+

S (σ )

= −2π i B0η(ξ + q)H(ξ, η)δ(σ + ξ) − iUS(0)
σ

σ + q
, (−∞ < σ < ∞)

(2.36)
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Here, σR and σR∗ are roots of the equations R(σ ) = 0 i R∗(σ ) = 0, respectively,
where R(σ ) and R∗(σ ) are given by formulas (2.19), (2.33).

Rayleigh function R(σ ) has two real roots [12, 14]: σ = ±σR . It turns out that
R∗(σ ) also has two roots: σ = ±σR∗ . With this [7, 9], if σR > q, then σR∗ ∈ (k2, σR);
if σR < q, then σR∗ ∈ (σR, q) and if σR = q, then obviously, σR∗ = σR .

We construct the solution of the functional Eq. (2.36) by the factorization method
[13] developed in [15, 16]. In this case, when solving (2.36) and factorization K (σ ),
it is assumed that the real axis bypasses the negative roots σ = −σR, σ = −σR∗
of the functions R(σ ), R∗(σ ) and the point σ = −q from above, and positive roots
σ = σR, σ = σR∗ and the point σ = q from below.

Accordingly, for the function γ j (σ ) from (2.9), it is assumed that
√

σ 2 − k2j > 0

for |σ | > k j ,
√

σ 2 − k2j = −i
√

k2j − σ 2, i.e. in (2.26) it is assumed that the real

axis bypasses the branch points σ j = −k j of the function γ j (α) =
√

α2 − k2j from

above, and the points σ j = k j—from below.
We factorize the function K (σ ), presenting it in the form

K (σ ) = K+(σ ) · K−(σ ) (2.37)

where K+(α) is regular and does not have zeros for Imα > 0, K−(α) is regular
and does not have zeros for Imα < 0, α = σ + iτ . With this, K±(α) → 1 when
|α| → ∞ in own regularity regions, and K±(σ ) are defined by formulas

K+(σ ) = exp(L+(σ )), K−(σ ) = exp(L−(σ )) (2.38)

L+(σ ) = 1

2π i

∞∫
−∞

ln K (s)

s − (σ + i0)
ds; L−(σ ) = − 1

2π i

∞∫
−∞

ln K (s)

s − (σ − i0)
ds (2.39)

The function L+(α)
(

L−(α)
)

as an analytic continuation of L+(σ )
(

L−(σ )
)

is
bounded and regular at Imα > 0 (Imα < 0) and has no zeros there.

Bearing in mind the well-known representation [18]

δ(σ ) = 1

2π i

[
1

σ − i0
− 1

σ + i0

]

; 1

σ ± i0
= 1

σ
± iπδ(σ ) (2.40)

L+(σ ) can be calculated by formula

L+(σ ) = 1

2
ln K (σ ) + 1

2π i

∞∫
−∞

ln K (t)
dt

t − σ
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Using (2.37) and (2.40), we can now represent the functional equation in the form

σ − q

P−(σ )
U

−
x (σ, 0) − P+(σ )

σ + q
τ+
S (σ )

= η(ξ + q)H(ξ, η)

[
1

σ + ξ + i0
− 1

σ + ξ − i0

]

− iUS(0)
σ

(σ + q)P−(σ )
(−∞ < σ < ∞) (2.41)

P±(σ ) = √
χ

√

σ ± k2
σ ± σR∗
σ ± σR

K±(σ ); P+(ξ) = i P−(−ξ) (2.42)

Solving, according to the usual procedure [13], Eq. (2.42), for τ+
S (σ ), we obtain

the following representation

τ+
S (σ ) = −B0

iη(ξ + q)H(ξ, η)

P+(ξ)

σ + q

P+(σ )(σ + ξ + i0)
+ qUS(0)

P+(q)P+(σ )
(2.43)

The unknown constantUS(0) is determined from the equilibrium condition of the
semi-infinite stringer

∞∫
0

τ+
S (x)dx = 0 ⇒ τ+

S (0) = 0 (2.44)

As a result, for τ+
S (σ ), finally, we get

τ+
S (σ ) = B0M(ξ, η)

iσ

(σ + ξ + i0)P+(σ )
(2.45)

where

M(ξ, η) = η
(

q2 − ξ 2
)

H(ξ, η)

P+(ξ) · ξ
(2.46)

In (2.17) and (2.18), replacing τ 0(σ ) by τ+
S (σ ) from (2.45), then substituting the

result into (2.15), and applying the inverse transformation, we obtain the following
representations for ϕ(x, z) and ψ(x, z):

ϕ(x, z) = 4B0
ξη

(

ξ 2 − η2
)

R(ξ)
e
i
(

ξ x−
√

k21−ξ 2z
)

+ B0

πμ
M(ξ, η)

∞∫
−∞

σ 2
√

σ 2 − k22e
−iσ x+

√
σ 2−k21 z

(σ + ξ + i0)R(σ )P+(σ )
dσ (2.47)
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ψ(x, z) = B0e
i(ξ x+ηz) − B0

(

ξ 2 − η2
)2 − 4ηξ 2

√

k21 − ξ 2

R(ξ)
ei(ξ x−ηz)

− i B0

2πμ
M(ξ, η)

∞∫
−∞

σ e−iσ x+
√

σ 2−k22 z

(σ + ξ + i0)P+(σ )
dσ (2.48)

2.5 Determination of the Radiated Wave Field

Let us first turn to contact stresses. From relation (2.45), after the inverse transfor-
mation (2.23), for the amplitude of the contact stresses we obtain

τ+
S (x) =

⎧

⎨

⎩

B∗
0

2π

∞∫
−∞

σ(σ+σR)

K+(σ )
√

σ+k2
e−iσ xdσ

(σ+ξ+io)(σ+σR∗)
, x > 0

0, x < 0
. (2.49)

B∗
0 = M(ξ, η)/χ

Here, the real axis bypasses the points −σR,−σR∗ ,−k2,−k1,−ξ from above, and
the points ξ, k1, k2, σR∗ , σR—from below.

To study the integral from (2.49), as usual, we pass into a complex plane α =
σ + iτ, cut in a certain way, a detailed description of which is given in [13, 16].

Since x > 0, we close the integration contour in the lower half-plane. Bearing in
mind the peculiarities of the analytic continuation of the integrand from (2.49) into
the upper and lower half-planes of the cut plane, the amplitude of the contact stress
from (2.49) can be represented as

τ+
S (x) = − i B∗

0

σR∗ − ξ

[

M+(−ξ)eiξ x + M+
(−σR∗

)

eiσR∗ x
] + TS(x) (2.50)

TS(x) = B∗
0

π

k2∫
0
M−(−σ)

e−iσ xdσ

(ξ − σ)
(

σR∗ − σ
) + B∗

0

π

∞∫
0
M−(iτ)

e−τ xdτ s

(ξ − iτ)
(

σR∗ − iτ
)

(2.51)

M+(σ ) = σ(σ + σR)

K+(σ )
√

σ + k2
, M−(σ ) = σ(σ + σR)K−(σ )

√
σ − k2

K (σ )

√

σ 2 − k22

(2.52)

It follows from (2.50) and (2.51) that the contact stress on the contact line consists
of the following components: (a) component with wavenumber ξ = k2 cosβ due to
the incidentwave; (b) diffractedwavewithwavenumberσR∗ due to a localized surface
wave; (c) a diffracted wave with a wavenumber k2, due to the presence of an end
point x = +0 of a semi-infinite stringer.
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For the diffracted part of TS(x) from (2.51), we obtain an asymptotic formula

TS(x) = B∗
0√
πx

(

e−i(k2x+ π
4 ) + O

(

x− 3
2

))

when x → +∞ (2.53)

Bearing in mind that K+(σ ) → 1 when |σ | → ∞; from (2.49), we obtain the
following asymptotics for τ+

S (x) at x → +0 :

τ+
S (x) = B∗

0

2π

∞∫
−∞

1√
σ + i0

[

1 + ξ + k2 + σR

σ
+ O

(|σ |2)
]

e−iσ xdσ

= B∗
0√

πx+

(

1 + O
(

x3/2+
))

(2.54)

From the last expression, we see that the contact stress τ+
S (x) at the end point of

the stringer has a traditional root singularity.
Similarly, from (2.47), (2.48), we obtain the following formulas for the wave

potentials:
in the region �−

−(x < 0, z < 0)

ϕ(x, z) = N (1)
ϕ e

i
(

ξ x−
√

k21−ξ 2z
)

+ N (2)
ϕ e

√
σ 2
R−k21 z−iσR x + I (−)

ϕ (x, z) (2.55)

ψ(x, z) = B0e
i(ξ x+ηz) − N (1)

ψ e
i
(

ξ x−
√

k22−ξ 2z
)

+ N (2)
ψ e

√
σ 2
R−k22 z−iσR x + I (−)

ψ (x, z)
(2.56)

where

N (1)
ϕ = 4B0

ξη
(

ξ 2 − η2
)

R(ξ)
, N (2)

ϕ = 4B0

μ

η
(

q2 − ξ 2
)(

2σ 2
R − k22

)

σ 2
R

ξ P+(ξ)
√

σR + k2K+(σR)

N (1)
ψ = B0

(ξ 2 − η2)2 − 4ξ 2η

√

k21 − ξ 2

R(ξ)
, N (2)

ψ = 2N (2)
ϕ

R′(σR)
(

σR + σR∗
)

(σR + ξ)

(2.57)

in the region �−
+(x > 0, z < 0) :

ϕ(x, z) = N (1)
ϕ e

i
(

ξ x−
√

k21−ξ 2z
)

+ N (3)
ϕ e

i
(

ξ x−
√

k21−ξ 2z+ π
2

)

+ N (4)
ϕ e

√
σ 2
R∗−k21 z+i(σR∗ x+ π

2 ) + I (+)
ϕ (x, z) (2.58)

ψ(x, z) = B0e
i(ξ x+ηz) − N (1)

ψ e
i
(

σ x
R∗−

√
σ 2
R∗ −k22 z

)
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− N (3)
ϕ e

i
(

ξ x−
√

k22−ξ 2z
)

+ I (+)
ψ (x, z) (2.59)

N (3)
ϕ = N (2)

ϕ

ξ 2
√

k22 − ξ 2(σR − ξ)

√
χK+(ξ)

, N (4)
ϕ = N (2)

ϕ

σ 2
R∗

√

σ 2
R∗ − k22

(

σR − σR∗
)

√
χK

(−σR∗
)

R
(

σR∗
)(

ξ − σR∗
)

N (3)
ψ = N (2)

ψ

(

2σ 2
R∗ − k22

)

σR∗
(

σR − σR∗
)

K+
(−σR∗

)√

σR∗ − k2
(2.60)

With the help of formulas (2.55)–(2.60) and (2.14), it is not difficult to obtain
the distributions of the elastic displacement amplitudes Ux (x, z) and Uz(x, z) in the
regions �−

− and �+
−, thereby, to characterize the total wave field in the half-plane.

However, this can also be done based on (2.55)–(2.60).
The functions I (±)

ϕ (x, z) and I (±)
ψ (x, z) included in formulas (2.55)–(2.59), simi-

larly to TS(x) from (2.50), are represented as regular integrals over the edges of
the corresponding cuts [14–16], which makes it possible, when considering the near
field, to calculate the diffracted field directly. When considering the far field, one
should study these integrals in detail and obtain asymptotic formulas corresponding
to the problem posed, representing the distribution of diffracted damped body waves,
which was not carried out here.

The wave field in the region �−
−, as follows from (2.55) and (2.56), consists

of incident and reflected waves, as well as diffracted damped body waves and a
diffracted surface wave localized near the surface (x < 0, z = −0). This surface
wave propagates with a velocity ω/σR in the direction opposite to the axis Ox and

decays at z → −∞ as O
(

e
√

σ 2
R−k21 z

)

. Obviously, the diffracted surface and body

waves are due to the presence of a semi-infinite stringer.
The uniform distribution of the wave field is also obtained in the region �−

+, only
with wave parameters that differ from the case x < 0. Thus, a localized surface wave
propagating with a velocityω/σR∗ in the direction of the axis Ox decays at z → −∞
as O

(

e
√

σ 2
R∗ −k21 z

)

.

2.6 Numerical Analysis

In the problem under consideration, the mutual influence of a half-plane and a semi-
infinite stringer is of particular interest, which is reflected mainly in the features of
surface wave propagation. Let us carry out a numerical analysis of the dependence of
the propagation velocity of a surfacewave on the elastic characteristics of a half-plane
and a semi-infinite stringer. Note that the roots of the wave function R∗(σ ) (2.60), in
contrast to the roots of the Rayleigh function R(σ ) (2.19), depend on the frequency
ω, i.e. the surface wave propagates along the line of contact with the dispersion.

The figures show plots of the dependence of the square of the ratio of the phase
velocity of a surface wave c to the phase velocity c2 of a transverse wave in the
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half-plane, marked by ζ = c2/c22, on the product khS , where k is the wavenumber of
the surface wave. As variable parameters are taken: Poisson’s ratio of the half-plane

ν, the ratio of the velocity of elastic waves in the stringer cS =
√

ES

ρS(1−ν2
S)

to c2,

marked by θS = c2S
c22

and combined parameter A∗ = EShS

μ(1−ν2
S)
, included in Eq. (2.33).

Figure 2.1 shows the curves when ν = 0.3, A∗ = 2, and the parameter θS takes
the values θS = 0.5; 0.65; 0.8; 1.0; 5.0.

Figure 2.2 shows the curves when θS = 0.5, A∗ = 2, and the Poisson’s ratio takes
the values ν = 0.16; 0.25; 0.33; 0.42.

Figure 2.3 shows the curves when ν = 0.3; θS = 0.5, and the combined parameter
A∗ takes the values A∗ = 0.1; 0.5; 1.0; 2.0; 5.0.
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Fig. 2.1 Dependence ζ on khS for various values of parameter θS
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2.7 Conclusion

Questions related to the propagation and diffraction of plane elastic waves incident at
a certain angle from infinity onto the boundary of an elastic half-plane reinforcedwith
a stringer of semi-infinite length are investigated. A closed solution of the problem is
obtained in the form of analytical expressions for the wave field in the half-plane and
contact stresses under the stringer. The presence of a semi-infinite stringer leads to
a significant change in the wave field in the composite half-plane, both qualitatively
and quantitatively. It is shown that in the case of equality of the projection of the
velocity of propagation of the incident wave ξ and the velocity of propagation of the
wave in the stringer q, the contact shear stresses vanish.

In both quarter-planes �−
±, in addition to the incident and reflected waves,

diffracted surface and body waves arise, propagating at different speeds, in different
directions and having different orders of decrease at infinity.

As shown by numerical calculations, depending on the relative position of the
wave numbers σR and q, the wavenumber σR∗ changes at different rates. In this
case, the wave parameters strongly depend on the mechanical characteristics of the
stringer.
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Chapter 3
Analysis of Equivalence Conditions
of Model of an Inhomogeneous Elastic
Half-Space and Model
of an Inhomogeneous Elastic Layer
on the Elastic Foundation

Sergei M. Aizikovich, Polina A. Lapina, and Sergei S. Volkov

Abstract The paper considers contact problems on the shear of the surface of an
elastic inhomogeneous by depth half-space, and on the shear of the surface of an
elastic inhomogeneous by depth layer, rigidly coupled with a more rigid elastic
foundation. The solution of integral equations, to which the contact problems are
reduced, is constructed analytically by asymptotic methods for an inhomogeneous
half-space and by a numerical–analytical method for an inhomogeneous layer on
an elastic foundation. Using the explicit form of the kernel transforms of integral
equations for these problems, the closeness of their solutions is studied. It is shown
that for the laws of inhomogeneity, the kernel transforms of integral equations of
which are close, there is a region of values of geometrical parameters, for which the
distributions of contact stresses are also close.

Keywords Contact problem · Inhomogeneous material · Exponential shear
modulus

3.1 Introduction

Inhomogeneousmaterials of various structure and composition have numerous appli-
cations: building materials [1], soils, semiconductors in microelectronics [2–4],
various coatings, and implants in biomechanics [5, 6]. When calculating the stress–
strain state for inhomogeneous materials, it is necessary to take into account the
change in the properties of such materials by depth of the product [7–11]. Often,
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additional assumptions are made about the changing of the elastic properties of
materials, which in some cases makes it possible to obtain analytical solutions to the
corresponding differential equations. The works [12–19] consider materials which
elastic properties change exponentially. In [20], the hyperbolic law of change in
elastic properties is considered, in [21–23]—a power law, in [24, 25]—a linear law,
and in [26–30]—an arbitrary change in elastic properties material by depth. The
exponential law of inhomogeneity quite well reflects the change in the properties
of some real inhomogeneous materials that may arise because of a technological or
natural process [14].

The choice of an adequate mathematical model in the calculation of the stress–
strain state of inhomogeneous media and the analysis of the efficacy of methods for
constructing solutions is a topical issue of modern mechanics.

The present paper proposes an approach to the analysis of the equivalence of
solutions for various models of inhomogeneous media, which is illustrated by the
example of solving contact problems on the shear of the surface of an elastic inhomo-
geneous by depth half-space and the shear of the surface of an elastic inhomogeneous
by depth layer rigidly linked to a more rigid base.

Using the values of the kernel transforms of the integral equations for the two
proposedmodels of an inhomogeneous by depth half-space, the closeness of the solu-
tions of the corresponding contact problems is investigated. A comparison of solu-
tions to problems constructed approximately analytically using asymptotic methods
is implemented in order to determine the areas of problem parameters for which the
solutions are close to each other.

3.2 Statement of the Contact Problem on the Shear
of the Surface of an Inhomogeneous Half-Space

Let us consider the problem of a shear of the surface of an inhomogeneous half-
space by a strip punch with a flat base without friction. The equation of the theory
of elasticity in stresses in the case of anti-plane deformation has the form

∂σzx

∂x
+ ∂σzy

∂y
= 0, (3.1)

where stresses σzx (x, y), σzy(x, y) are expressed in terms of deformations w(x, y)
in the form

σzx = μ(y)
∂w

∂x
, σzy = μ(y)

∂w

∂y
. (3.2)

where μ(y) is the shear modulus of inhomogeneous by the coordinate y medium.
The mixed boundary conditions of the formulated contact problem of pure shear

of the surface of an inhomogeneous half-space by a strip punch have the form



3 Analysis of Equivalence Conditions of Model of an Inhomogeneous … 35

w(x, 0) = ε |x | ≤ a (3.3)

σyz(x, 0) =
{−ϕ(x) |x | ≤ a
0 a < |x | < ∞ (3.4)

where ε is the value, to which the punch is shifted, a is the half-width of the contact
area, and ϕ(x) is the contact stresses under the punch to be determined.

At infinity at
√
x2 + y2 → ∞ for w(x, y) and ∂w(x,y)

∂x , the following conditions
are required:

lim√
x2+y2→∞

{
w,

∂w

∂x

}
= 0. (3.5)

3.3 Models of an Inhomogeneous Half-Space

In the present paper, we compared solutions for two models of an inhomogeneous
medium. Figure 3.1a, b shows diagrams of two models of an inhomogeneous half-
space. Model (a) was used in [17–19], and model (b) was used in [31].

The model (a) and an analytical approach to the solution were proposed in the
works [17–19], where the contact problem of shear of the half-space surface with
an exponential shear modulus by a strip infinite punch with a flat shape of the base
was considered. The problem of determining the parameters of the exponential shear
modulus from contact stresses and displacements of the free surface was also inves-
tigated there. In the works cited, the shear modulus of inhomogeneous half-space
varied by depth y according to the law

μ1(y) = μ0e
2d y, 0 ≤ y < ∞, (3.6)

where μ0 is the value of the shear modulus on the surface of the half-space, and d is
the parameter characterizing the rate of change of the shear modulus by depth.

(b)(a)

Fig. 3.1 Models of an inhomogeneous half-space
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The construction of a solution for model (b) of an inhomogeneous half-space was
carried out based on a numerical–analytical approach developed in [31–37]. The
proposed method made it possible to construct solutions to contact problems based
on the numerical calculation of the kernel transforms of integral equations and their
subsequent approximations by analytical expressions. In this case, the model of an
inhomogeneous half-space was used, which consisted of an inhomogeneous layer
lying with adhesion on an elastic homogeneous half-space, i.e., the shear modulus
of such a half-space varied according to an arbitrary law up to a certain depth H , and
after that it stabilized and became constant. In the present work, it is assumed that
the shear modulus of the inhomogeneous layer varies according to the exponential
law

μ2(y) =
{

μ0e2d y, 0 ≤ y ≤ H
μ0e2d H , H < y < ∞ (3.7)

where H is the thickness of the surface inhomogeneous layer.

3.4 Integral Equations of Contact Problems and Solution
Methods

To construct a solution of the problem (3.1)–(3.5), the integral Fourier transformation
is used. The solution of the problem is reduced to the solution of an integral equation
of the Fourier convolution type of the first kind with a difference kernel with respect
to the unknown contact stresses ϕ(ξ).

In the case of model (a), we write the integral equation in the form [17–19]

a∫
−a

ϕ(ξ)dξ

∞∫
−∞

K (α)eiα(ξ−x)dα = 2πμ1(0)ε, |x | ≤ a, (3.8)

K (α) =
(
d +

√
d2 + α2

)−1
(3.9)

The kernel of the integral equation has the following asymptotic properties:

K (α) = |α|−1 + O(α−2) at |α| → ∞, (3.10)

K (α) = K (0) + O(α2) at |α| → 0, (3.11)

After the transition in the integral equation Eq. (3.8) to dimensionless coordi-
nates, we denote the dimensionless parameter of the problem λ1 = 1

da . To construct
effective analytical solutions of the integral Eq. (3.8), asymptotic methods are used.
For small values of the dimensionless parameter λ1 ∈ (0, λ0), the solution of the
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integral equation is constructed as the zero term of the Neumann series based on
the Wiener–Hopf method [38] using the simplest kernel approximations of K (α).
When constructing a solution of the integral equation in the case of large values of
the parameter λ1 ∈ (λ0,∞), as in [39], expansions into power series of parameter
λ1 are used and the solution is written as a double functional series in powers of λ1.

In the case of model (b), we write the integral equation according to [31] for
unknown contact stresses in the form

a∫
−a

ϕ(ξ)dξ

∞∫
−∞

1

|α| L(α)eiα(ξ−x)dα = 2πμ2(0)ε, |x | ≤ a (3.12)

Having made the transition in the integral equation Eq. (3.12) to dimensionless
coordinates, we denote the dimensionless geometric parameter of the problem λ2 =
H
a . The kernel transform of the integral equation is constructed analytically [31–37].
The function L(α) from the integral Eq. (3.12) has the following asymptotic

properties:

L(α) = 1 + O(α−2) at |α| → ∞, (3.13)

L(α) = L(0) + O(α2) at |α| → 0, (3.14)

The numerically constructed kernel transform of the integral equation is approx-
imated by the following product

L(α) = LN

(α) ≡

N∏
i=1

α2 + A2
i

α2 + B2
i

; (Bi − Bk)(Ai − Ak) �= 0 where i �= k (3.15)

An approximate analytical solution of the integral equation is constructed, based
on the proposed approximation. This solution is effective over the entire range of
values of the dimensionless geometrical parameter λ2.

3.5 Numerical Analysis

Figures 3.2 and 3.3 show the kernel transforms of integral equations for twomodels of
an inhomogeneous by depth half-space for different values of the parameters d and H .
Formodel (a), the kernel transforms K (α) are constructed analytically, and the graphs
show the functions |α|K (α). Formodel (b), numerically constructed transforms L(α)

are shown. The figures also schematically show the laws of inhomogeneity.
Reduced contact stresses are constructed in the area of problem parameters (d,

H ), at which the relative difference of the kernel transforms |α|K (α) and L(α) of
integral Eqs. (3.8) and (3.12), constructed analytically and numerically–analytically,
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Fig. 3.2 Kernel transforms of integral equations |α|K (α) at d = 0.5 for model a and L(α) at d =
0.5, H = 1 and H = 2 for model b and laws of inhomogeneity

Fig. 3.3 Kernel transforms of integral equations |α|K (α) at d = 1 for model a and L(α) at d = 1,
H = 1 and H = 2 for model b and laws of inhomogeneity

respectively, does not exceed a few percent. Figures 3.4 and 3.5 show the reduced
contact shear stresses calculated for the same parameters d and H, as in Figs. 3.2
and 3.3. In the case of model (a) in the Fig. 3.4, the solution is built in the form
of a double functional series in powers of the dimensionless parameter λ1 = 2,
that corresponds to the case of large values of the parameter λ1 ∈ (λ0,∞). In the
case of model (a) in the Fig. 3.5, the solution is constructed by the Wiener-Hopf
method at λ1 = 1, that corresponds to the case of small values of the dimensionless
parameter λ1 ∈ (0, λ0). In the case of model (b) in the Figs. 3.4 and 3.5, the solution
is constructed by the bilateral asymptotic method [31, 32] at λ2 = 1 and λ2 = 2 and
the simplest approximation of the kernel transform of the form (3.15) at N = 1 is
used.

Numerical results show that the contact stresses constructed on the basis of two
approaches in the domain of the problem parameters, in which the kernel transforms
of the integral equations coincide with an accuracy of 5–7%, also give an error not
exceeding 5–7%.
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Fig. 3.4 Reduced contact
stresses at d = 0.5 for model
(a) and at d = 0.5, H = 1
and H = 2 for model (b)

Fig. 3.5 Reduced contact
stresses at d = 1 for model
(a) and at d = 1, H = 1 and
H = 2 for model (b)

3.6 Conclusion

Using the example of contact problems on the shear of the surface of an elastic
half-space inhomogeneous by depth and the shear of the surface of an elastic layer
inhomogeneous by depth, lyingwith adhesion on an elastic homogeneous half-space,
a comparative analysis of solutions is carried out. The values of the characteristic
parameters of the problems are determined for which the contact stresses for these
two models of inhomogeneous media are close to each other.

Acknowledgements The study was supported by the Russian Science Foundation grant No. 22-
19-00732.



40 S. M. Aizikovich et al.

References

1. Popov, G.Ya.: On the theory of plate bending on an elastic inhomogeneous half-space. Isvestiya
vuzov. Stroitel’stvo i arkhitektura (11–12), 11–19 (1959)

2. Shiraki,Y.,Usami,N. (eds.): Silicon-Germanium (SiGe)Nanostructures: ProductionProperties
and Applications in Electronics. Woodhead Publishing, Cambridge, UK (2011)

3. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds.): Functionally
GradedMaterials: Design, Processing and Applications. Springer, NewYork, NY, USA (1999)

4. Kuprin, A.S., Gilewicz, A., Kuznetsova, T.A., Lapitskaya, V.A., Tolmachova, G.N.,
Warcholinski, B., Aizikovich, S., Sadyrin, E.V.: Structure and properties of ZrON coatings
synthesized by cathodic arc evaporation. Materials 14(6), 1483 (2021)

5. Melnikova, G., Kuznetsova, T., Lapitskaya, V., Petrovskaya, A., Chizhik, S., Zykova, A.,
Safonov, V., Aizikovich, S., Sadyrin, E., Sun, W., Yakovin, S.: Nanomechanical and nanotribo-
logical properties of nanostructured coatings of tantalum and its compounds on steel substrates.
Nanomaterials 11(9), 2407 (2021)

6. Sadyrin, E.V.: Correlating the mechanical properties to the mineral density of brown spot
lesion in dentine using nanoindentation and X-ray micro-tomography. In: Advanced Materials
Modelling forMechanical,Medical and Biological Applications, pp. 389–398. Springer, Cham
(2022)

7. Gibson, R.E.: Some results concerning displacements and stresses in a non-homogeneous
elastic half-space. Geotechnique 17(1), 58–67 (1967)

8. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties:
Part I. Point force. Int. J. Solids Struct. 34, 2357–2428 (1997)

9. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties:
Part II. Axisymmetric indentors. Int. J. Solids Struct. 34(19), 2393–2428 (1997)

10. Katebi, A., Selvadurai, A.P.S.: A frictionless contact problem for a flexible circular plate and
an incompressible non-homogeneous elastic half-space. Int. J. Mech. Sci. 90, 239–245 (2015)

11. Aizikovich, S.M., Vasil’ev, A.S., Volkov, S.S.: The axisymmetric contact problem of the inden-
tation of a conical punch into a half-space with a coating inhomogeneous in depth. J. Appl.
Math. Mech. 79(5), 500–505 (2015)

12. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41,
3865–3889 (2004)

13. Selvadurai, A.P.S., Singh, B.M., Vrbik, J.: A Reissner-Sagoci problem for a non-homogeneous
elastic solid. J. Elast. 16, 383–391 (1986)

14. Selvadurai, A.P.S., Katebi, A.: Mindlin’s problem for an incompressible elastic half-space with
an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9–21 (2013)

15. Tokovyy, Y., Ma, C.-C.: An analytical solution to the three-dimensional problem on elastic
equilibrium of an exponentially-inhomogeneous layer. J. Mech. 31(5), 545–555 (2015)

16. Selvadurai, A.P.S., Katebi, A.: The Boussinesq–Mindlin problem for a non-homogeneous
elastic halfspace. Zeitschrift für angewandte Mathematik und Physik 67, 68 (2016)

17. Zelentsov, V.B., Lapina, P.A., Mitrin, B.I., Kudish, I.I.: An antiplane deformation of a func-
tionally graded half-space. In: Continuum Mechanics and Thermodynamics 34, 909–920
(2022)

18. Zelentsov, V.B., Lapina, P.A.,Mitrin, B.I., Eremeyev, V.A.: Characterization of the functionally
graded shear modulus of a half-space. Mathematics 8(4) (2020). Article no. 640

19. Zelentsov, V.B., Lapina, P.A., Zagrebneva, A.D.: Method for determining the parameters of the
exponential shear modulus of a functional-gradient half-space. In: Altenbach, H., Eremeyev,
V.A., Galybin, A., Vasiliev, A. (eds.) Advanced Materials Modelling for Mechanical, Medical
and Biological Applications. Advanced Structured Materials, vol. 155. Springer, Cham (2022)

20. Awojobi, A.O.: On the hyperbolic variation of elastic modulus in a non-homogeneous stratum.
Int. J. Solids Struct. 12, 739–748 (1976)

21. Kassir, M.K.: The Reissner-Sagoci problem for a non-homogeneous solid. Int. J. Eng. Sci.
8(10), 875–885 (1970)



3 Analysis of Equivalence Conditions of Model of an Inhomogeneous … 41

22. Altenbach,H.,Eremeyev,V.A.:Eigen-vibrations of platesmadeof functionally gradedmaterial.
Comput. Mater. Continua 9(2), 153–177 (2009)

23. Kulchytsky-Zhyhailo, R., Bajkowski, A.: Analytical and numerical methods of solution of
three-dimensional problem of elasticity for functionally graded coated half-space. Int. J. Mech.
Sci. 54, 105–112 (2012)

24. Gibson, R.E., Sills, G.C.: Settlement of a strip load on a non-homogeneous orthotropic
incompressible elastic half-space. Quart. J. Mech. Appl. Math. 28, 233–243 (1975)

25. Chen, P., Chen, S.: Contact behaviors of a rigid punch and a homogeneous half-space coated
with a graded layer. Acta Mechanica 223, 563–577 (2012)

26. Liu, T.-J., Wang, Y.-S., Zhang, C.-Z.: Axisymmetric frictionless contact of functionally graded
materials. Arch. Appl. Mech. 78, 267–282 (2008)

27. Ke, L.-L., Wang, Y.-S.: Two-dimensional sliding frictional contact of functionally graded
materials. Eur. J. Mech. A/Solids 26, 171–188 (2007)
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Chapter 4
Docking of Inhomogeneous Surfaces
of Piezoelectric Layers in a Composite
Waveguide as a Harvesters of Wave
Energy

Ara S. Avetisyan and Andranik A. Kamalyan

Abstract A piezoelectric waveguide, consisting of two layers rigidly connected to
each other along non-smooth surfaces, is modeled as a three-layer sandwich with an
internal periodically inhomogeneous thin layer. Taking into account the periodicity
of the inhomogeneity of the simulated waveguide, in order to study the propagation
of normal waves in it, according to the Lyapunov–Floquet theory, the boundary value
problem of electro elasticity is solved by the width of the formed periodic cell. The
systems of quasi-static equations of electroacoustics are solved in the rectangular-
shaped virtual cuts formed in two main homogeneous piezoelectric layers. In the
newly formed rectangles of the inner inhomogeneous thin layer, hypothetical solu-
tions are constructed, taking into account the hypothetical inhomogeneity of the
material both over the thickness of this layer and its periodicity along the waveguide.
In the case of particular longitudinal inhomogeneities of the inner layer, the propa-
gation of a high-frequency electroacoustic signal of antiplane deformation, when the
length of the short-wavelength signal is comparable to the linear dimensions of the
surface roughness, is studied. The regions of permissible lengths of a propagating
wave in a periodic structure are determined. A dispersion equation is obtained for the
propagation of a normal electroacoustic signal in a composite waveguide. A strong
localization of wave energy near an inhomogeneous junction of piezoelectric layers
is revealed. It is shown that the seam along the surface roughness of the layers can
become a harvester for a wave energy in a composite waveguide.
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4.1 Introduction

An important problem in modern technical problems is the harvesting of energy (or
part of the energy) of a dynamic process. In many ways, the possibility of energy
harvesting is determined by the composition of its carriers and the nature of the
assembly element. An interesting example of wave energy propagation is a relatively
simple dynamic process: the propagation of an electroactive elastic shear wave, type
SH, in a layeredpiezoelectricwaveguide.A two-componentwave transfers the energy
of an elastic wave and the energy of an electric field oscillation that accompanies it.
In the case of propagation of a high-frequency (short-wavelength) wave signal in a
composite waveguide, wave energy can be localized near the interfaces of the layers.

In 1911, Love showed that, in contrast to elastic waves of plane deformation, the
localization of the wave energy of elastic pure shear waves (SH waves) is possible
in the near-surface zone of an elastic half-space at the junction with a layer of softer
material [1] (Fig. 4.1). This showed that the localization of the wave energy of elastic
shear waves of the SH type can be a consequence of discontinuities in the physical
and mechanical characteristics (properties) of the material at the interface between
the media, or a consequence of near-surface inhomogeneities of the material. In 1968
Bleustein [2], and in 1969, Gulyaev [3] confirmed the assumption about the exis-
tence of localization of the wave energy of an electroactive elastic wave (SH type)
near a mechanically free smooth surface of a piezoelectric medium of a certain sym-
metry, under different boundary conditions on the accompanying electric field [4].
However, as shown in [5], the formulation of the electroelastic problem of antiplane
deformation in an anisotropic piezoelectric material is possible only in certain sagit-
tal planes of piezoelectric media. This means that the existence of Gulyaev-Bleustein
waves is not possible in all piezoelectric homogeneous bodies. Electroelastic waves
of SH polarization exist in the corresponding layered Love schemes, with a piezo-
electric substrate [6–10]. Depending on the ratio of the physical and mechanical
characteristics of the materials of the piezoelectric substrate and the thin layer, in
some of these schemes, along with the multimode Love wave, there is a single-mode
Gulyaev–Bluestein wave.

Thermomechanical technological processing of the surface of a solid deformable
element practically does not ensure the ideal smoothness of this surface. To ensure the

Fig. 4.1 Structural diagram
of the Love wave
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required smoothness on the outer surfaces in the composite waveguide, the residual
geometric inhomogeneities of the layers (roughness) are pouredwith a softermaterial
and smoothed out. Smoothness on the internal surfaces of the adhesion of layers in a
composite waveguide is provided by thermal pressing of the layers one into another,
or by ultrasonic welding of non-smooth surfaces.

In both cases, thermal diffusion occurs and inhomogeneous thin layers appear on
the surfaces of themain layers. Depending on the ratio of the physical andmechanical
characteristics of the materials, the emerging layers can become energy collectors of
the high-frequency wave propagating along the composite waveguide.

Without violating the generality of reasoning, we will consider the case of only
the roughness of the inner surfaces at the junction of the piezoelectric layers. The
roughness of the outer surfaces is neglected.

4.2 Modeling of a Two-Layer Piezoelectric Waveguide,
Taking into Account the Roughness of the Surfaces
of the Constituent Layers

Let two homogeneous 6mm class piezoelectric layers of hexagonal symmetry,
with thicknesses, respectively, H1 and H2, and with surface periodic irregulari-
ties h1±(x) = h1±(x + d1) and h2±(x) = h2±(x + d2), respectively, are pressed, pro-
viding perfect adhesion between them. Then, if R1± = max |h1±(x)| and R2± =
max |h2±(x)| are considered, as the maximum deviations of the roughness of
these surface irregularities, then an inhomogeneous thin layer with a thickness of
|h1−(x)| + |h2+(x)| ≤ R1− + R2+ = 2R0 is appear between themain layers (Fig. 4.2).

Considering thermal diffusion, it can be assumed that the material of the newly
formed surface layer will be inhomogeneous. Then, the physical and mechani-

Fig. 4.2 Layered waveguide of two pressed piezoelectric layers with non-smooth surfaces.eps
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cal characteristics of the formed inhomogeneous piezoelectric layer will change
along the thickness of the formed layer γ0(x, y) = γp1(x)

[
γp1(x)/γp2(x)

](y−R0)/2R0 ,
taking on the virtually selected surfaces of the layery = R0 and y = −R0 the val-
ues of the materials of the neighboring main homogeneous piezoelectric layers
γp1 ∈ {c(p1)

44 , ρp1, e
(p1)
15 , ε

(p1)
11 } and γp2 ∈ {c(p2)

44 , ρp2, e
(p2)
15 , ε

(p2)
11 } [11, 12]

c(0)
44 (x, y) = c(p1)

44 (x,R0)[c(p1)
44 (x,R0)/c

(p2)
44 (x,−R0)]

y−R0
2R0 ,

ρ0(x, y) = ρp1(x,R0)[ρp1(x,R0)/ρp2(x,−R0)]
y−R0
2R0

(4.1)

e(0)
15 (x, y) = e(p1)

15 (x,R0)[e(p1)
15 (x,R0)/e

(p2)
15 (x,−R0)]

y−R0
2R0 ,

ε
(0)
11 (x, y) = ε

(p1)
11 (x,R0)[ε(p1)

11 (x,R0)/ε
(p2)
11 (x,−R0)]

y−R0
2R0

(4.2)

The interlayer formed between the main layers will also be periodically inhomo-
geneous along the waveguide. The physical and mechanical characteristics of the
material of the formed interlayer will change along the waveguide. In particular, in
(4.1) and (4.2) for the material characteristics can be represented

c(p1)
44 (x) = c(1)

44 f1(x), ρp1 (x) = ρ1f1 (x) ,

e(p1)
15 (x) = e(1)

15 f1(x), ε
(p1)
11 (x) = ε

(1)
11 f1(x)

(4.3)

in (m − 1)d − d1 < x < (m − 1)d

c(p2)
44 (x) = c(2)

44 f2(x), ρp2 (x) = ρ2 · f2 (x) ,

e(p2)
15 (x) = e(2)

15 f2(x), ε
(p2)
11 (x) = ε

(2)
11 · f2(x) (4.4)

in (m − 1)d < x < md − d1,
where f1(x) = exp[a1(x − (m − 1)d ] and f2(x) = exp[a2(x − (m − 1)d ] are the
functions of the longitudinal inhomogeneity in each given section m ∈ N

+ of the
cell of the formed interlayer [13].

Inhomogeneous both in thickness and length, a piezoelectric layer with transverse
cells (m − 1)d − d1 < x < (m − 1)d} ∪ (m − 1)d < x < md − d1}, is modeled as
a multi-cell three-layer waveguide, with a thin, periodically inhomogeneous piezo-
electric layer {|x| < ∞; |y| < R0; |z| < ∞} between two homogeneous piezoelec-
tric layers

{|x| < ∞; −H2 − R0 ≤ |y| ≤ −R0; |z| < ∞}

and
{|x| < ∞; R0 ≤ |y| ≤ H1 − R0; |z| < ∞}.
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4.3 Formulation of a Mathematical Boundary Value
Problem in a Three-Layer Sandwich with a Thin
Inhomogeneous Filling

In the problem of electroactive antiplane deformation, in the main layers

{|x| < ∞;R0 ≤ |y| ≤ H1 − R0; |z| < ∞}

and
{|x| < ∞; − H2 − R0 ≤ |y| ≤ −R0; |z| < ∞}

of the layered waveguide “piezoelectric-1” and “piezoelectric-2” from piezoelec-
tric materials of class 6mm of hexagonal symmetry, not zero mechanical stresses
σ (n,m)
zx (x, y, t) and σ (n,m)

yz (x, y, t), but also the components of the electric displacement
vector D(n,m)

x (x, y, t) and D(n,m)
y (x, y, t) are written in the known form

σ (n,m)
zx (x, y, t) = c(n)

44 wnm,x(x, y, t) + e(n)
15 ϕnm,x(x, y, t),

σ (n,m)
yz (x, y, t) = c(n)

44 wnm,y(x, y, t) + e(n)
15 ϕnm,y(x, y, t),

(4.5)

D(n,m)
x (x, y, t) = e(n)

15 wnm,x(x, y, t) − ε
(n)
11 ϕnm,x(x, y, t),

D(n,m)
y (x, y, t) = e(n)

15 wnm,y(x, y, t) − ε
(n)
11 ϕnm,y(x, y, t).

(4.6)

In formed rectangles of these homogeneous piezoelectric layers, numbered n =
{1; 2}, respectively, the well-known quasi-static equations of electroactive antiplane
deformation will be solved

wnm,xx(x, y) + wnm,yy(x, y) = −ω2
(
ρnc̃

(n)
44

)
wnm(x, y),

ϕnm,xx(x, y) + ϕnm,yy(x, y) =
(
e(n)
15 /ε

(n)
11

) [
wnm,xx(x, y) + wnm,yy(x, y)

] (4.7)

In the systems of Eq. (4.7), c̃(n)
44 = c(n)

44 (1 + χ2
n ) is the reduced shear stiffness, and

χ2
n = [e(n)

15 ]2/(c(n)
44 ε

(n)
11 ) is the coefficient of electromechanical coupling of a homoge-

neous piezoelectric medium under the number “n”.
In avirtually isolated inhomogeneouspiezoelectric layer {|x| < ∞; |y| < R0; |z| <

∞}, the adhesionof twopiezoelectrics, non-zero components of themechanical stress
tensor and the electric displacement vector in the problem of electroactive antiplane
deformation, are alsowritten in the form (4.5) and (4.6), but with variable coefficients
(4.1) and (4.2)

σ (0m)
zx (x, y, t) = c(0)

44 (x, y)w0m,x(x, y, t) − e(0)
15 (x, y)ϕ0m,x(x, y, t),

σ (0m)
yz (x, y, t) = c(0)

44 (x, y)w0m,y(x, y, t) − e(0)
15 (x, y)ϕ0m,y(x, y, t),

(4.8)
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D(0m)
x (x, y, t) = e(0)

15 (x, y)w0m,x(x, y, t) + ε
(0)
11 (x, y)ϕ0m,x(x, y, t),

D(0m)
y (x, y, t) = e(0)

15 (x, y)w0m,y(x, y, t) + ε
(0)
11 (x, y)ϕ0m,y(x, y, t).

(4.9)

Taking into account the periodic inhomogeneity of the formed interlayer, the
desired values w0(x, y, t) and ϕ0(x, y, t) in this interlayer will be further repre-
sented in the form of Bloch-Floquet waves f0(x + s, y, t) = μ(ω)f0(x, y, t), where
μ(ω) = exp[isk(ω)] the coefficient of periodicity of the Floquet waves is. Then, the
system of equations of electroactive antiplane deformation in the interlayer can be
conveniently written as

−σ (0m)
yz,y (x, y) = c(0)

44 (x, y)w0m,xx(x, y) + e(0)
15 (x, y)ϕ0m,xx(x, y)

+c(0)
44,x(x, y)w0m,x(x, y) + e(0)

15,x(x, y)ϕ0m,x(x, y) + ω2ρ0(x, y)w0(x, y),
−D(0m)

y,y (x, y) = e(0)
15 (x, y)w0m,xx(x, y) − ε

(0)
11 (x, y)ϕ0m,xx(x, y)

+e(0)
15,x(x, y)w0m,x(x, y) − ε

(0)
11,x(x, y)ϕ0m,x(x, y)

(4.10)

The conditions of conjugation of electromechanical fields on virtually drawn
surfaces y = −R0 and y = R0, respectively, will be written in the form

c(2)
44 w2,y(x,−R0) +(2)

15 ϕ2,y(x,−R0)

= c(0)
44 (x,−R0)w0,y(x,−R0) + e(0)

15 (x,−R0)ϕ0,y(x,−R0)

e(2)
15 w2,y(x,−R0) − ε

(2)
11 ϕ2,y(x,−R0)

= e(0)
15 (x,−R0)w0,y(x,−R0) − ε

(0)
11 (x,−R0)ϕ0,y(x,−R0)

(4.11)

w2(x,−R0) = w0(x,−R0); ϕ2(x,−R0) = ϕ0(x,−R0) (4.12)

c(1)
44 w1,y(x,R0) +(1)

15 ϕ1,y(x,R0)

= c(0)
44 (x,R0)w0,y(x,R0) + e(0)

15 (x,R0)ϕ0,y(x,R0)

e(1)
15 w1,y(x,R0) − ε

(1)
11 ϕ1,y(x,R0)

= e(0)
15 (x,R0)w0,y(x,R0) − ε

(0)
11 (x,R0)ϕ0,y(x,R0)

(4.13)

w1(x,R0) = w0(x,R0); ϕ1(x,R0) = ϕ0(x,R0). (4.14)

On the external surfaces y = H1 and y = −H2 of a piezoelectric layered waveguide,
we consider the case of mechanically free and electrically open smooth surfaces in
which the localization of wave energy is not possible [11, 12]. These conditions
correspond to the case of strong dielectric piezoelectrics, for which ε

(p1)
11 � ε0. In

this case, the surface conditions take on a rather simple form

w1,y(x, y)
∣∣
y=H1

= 0; ϕ1,y(x, y)
∣∣
y=H1

= 0. (4.15)
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w2,y(x, y)
∣∣
y=−H2

= 0; ϕ2,y(x, y)
∣∣
y=−H2

= 0. (4.16)

4.4 Solution of the Mathematical Boundary Problem

According to theLyapunov–Floquet theory, the propagation of normalwaves requires
consideration of the electro elasticity equations along the width of the specified cell.
Taking into account the homogeneous surface conditions (4.15) and (4.16) on the
mechanically free and electrically open surfaces of the waveguide, in each interlayer
m ∈ {1; 2} of a periodic cell

{(m − 1)d − d1 < x < (m − 1)d} ∪ {(m − 1)d < x < md − d1},

the short-wavelength solutions of the systems of quasi-static equations (4.7) in the
form of normal waves can be written in the well-known form

w1m(x, y, t) = W1m(R0) exp[−α1mkm(ω)(y − R0)] exp[i(km(ω)x − ωt)],
ϕ1m(x, y, t) = 
1m(R0)

1 − α1m(e(1)
15 /ε

(1)
11 )

·

·1 − α1(e
(1)
15 /ε

(1)
11 ) exp[(α1m − 1)km(ω)(y − R0)]

exp[−α1mkm(ω)(y − R0)] exp[i(km(ω)x − ωt)],
(4.17)

w2m(x, y, t) = W2m(−R0) exp[−α2mkm(ω)(y + R0)] exp[i(k(ω)x − ωt)],
ϕ2m(x, y, t) = 
2m(−R0)

1 − α2m(e(2)
15 /ε

(2)
11 )

·

·1 − α2m(e(2)
15 /ε

(2)
11 ) exp[(1 − α2m)km(ω)(y + R0)]

exp[α2mkm(ω)(y + R0)] exp[i(km(ω)x − ωt)].
(4.18)

Thewave formation parameters α1m(ω, km(ω)) andα2m(ω, km(ω)) in themain piezo-
electric layers of the waveguide are defined as

αnm(ω, km(ω)) =
√
1 − [Cntω/km(ω)]2.

W1m(R0), W2m(−R0), 
1m(R0) and 
2m(−R0) amplitudes of electroacoustic shear
waves on virtually vibrated surfaces of a thin inhomogeneous layer of the waveg-
uide. Based on the surface conditions (4.12) and (4.14), and taking into account the
thinness of the formed internal inhomogeneous layer compared to the thicknesses of
the main layers of the waveguide 2R0 � min{H1;H2}, for elastic shear w0m(x, y, t)
and the electric potential ϕ0m(x, y, t) of high-frequency electroacoustic waves in the
inhomogeneous layer, we can hypothetically represent in the form [11, 12].
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w0m(x, y, t) =
{
sin[α0mkm(ω)(y − R0)]
sin[2α0mR0km(ω)] [w1m(−R0) − w2m(−R0)] + w1m(−R0)

}

· exp [i(km(ω)x − ωt)] ,
(4.19)

ϕ0m(x, y, t) =
{
sin[km(ω)(y − R0)]
sin[2α0mR0km(ω)] [
1m(−R0) − 
2m(−R0)] + 
1m(−R0)

}

· exp [i(km(ω)x − ωt)] .
(4.20)

By choosing the representations of solutions (4.19) and (4.20), the surface conditions
(4.12) and (4.14) are satisfied automatically, and the wave formation functions

sin[α0mkm(ω)(y − R0)]/sin[2α0mR0km(ω)]

and
sin[km(ω)(y − R0)]/sin[2R0km(ω)]

describe the amplitude changes in the sought-for components of the wave field over
the thickness of the virtual inhomogeneous interlayer. Thewave formation coefficient
of an electroactive elastic shear wave in them is defined as

α0m(ω, km(ω)) =
√

η2
0m(ω, km(ω)) − 1,

in which the phase velocity averaged over the thickness in an inhomogeneous layer
will be represented as η0m(ω, km(ω)) = ω/(C̄0tkm(ω)). The averaged over the thick-
ness velocity of a bulk shear wave C̄0t(Cp1,Cp2) = const in an inhomogeneous thin
piezoelectric layer is defined as

C̄2
0t(Cp1,Cp2) = 1

2R0

R0∫

−R0

c(0)
44 (ξ)

ρ0(ξ)

[

1 + [e(0)
15 (ξ)]2

c(0)
44 (ξ)ε

(0)
11 (ξ)

]

dξ

=
∣∣∣∣∣

C2
p1 − C2

p2

lnC2
p1 − lnC2

p2

∣∣∣∣∣
+

∣∣∣∣∣
C̃2
p1 − C̃2

p2

ln C̃2
p1 − ln C̃2

p2

∣∣∣∣∣
.

(4.21)

In the case of propagation of a long-wave electroacoustic wave signal, when
2R0k(ω) � 1, the internal inhomogeneous layer does not affect the propagation of a
normalwave. In the case of propagation of a short-wave (high-frequency) signal of an
electroacoustic wave, when 2R0km(ω) � 1, by substituting solutions (4.17)–(4.20)
into surface conditions (4.11) and (4.13), a defining system of algebraic equations is
obtained.
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c(2)
44 α0mctg[2α0mR0km(ω)]W1m(−R0)

+c(2)
44

[
α2m − α0mctg[2α0mR0km(ω)]]W2m(−R0)

+e(2)
15 ctg[2R0km(ω)]
1m(−R0) −(2)

15 [(1 − α2m)

−ctg[2R0km(ω)]]
2m(−R0) = 0,

e(2)
15 α0mctg[2α0mR0km(ω)]W1m(−R0)

+e(2)
15

[
α2m − α0mctg[2α0mR0km(ω)]]W2m(−R0)

−ε
(2)
11 ctg[2R0km(ω)]
1m(−R0) + ε

(2)
11 [(1 − α2m)

+ctg[2R0km(ω)]]
2m(−R0) = 0,

c(1)
44 [α1m + α0m sec[2α0mR0km(ω)]]W1m(−R0)

−c(1)
44 α0m · sec[2α0mR0km(ω)]W2m(−R0)

+e(1)
15 [sec[2R0km(ω)] − 1]
1m(R0) − e(1)

15 sec[2R0km(ω)]
2m(−R0) = 0,

e(1)
15 [α1m + α0m sec[2α0mR0km(ω)]]W1m(−R0)

−e(1)
15 α0m sec[2α0mR0km(ω)]W2m(−R0)

−ε
(1)
11 [sec[2R0k(ω)] − 1]
1m(R0) + ε

(1)
11 sec[2R0km(ω)]
2m(−R0) = 0.

(4.22)

To determine thewave numbers in the periodic interlayers of a three-layerwaveguide,
the dispersion equations are derived from this [14]

tg[2R0α01(ω)k1(ω)] = c(0)
44 α01(ω)

c(p1)
44 α11(ω) + c(p2)

44 α21(ω)
[
c(p1)
44 α11(ω)c(p2)

44 α21(ω) −
(
c(0)
44 α01(ω)

)2
]

(4.23)

tg[2R0α02(ω)k2(ω)] = c(0)
44 α02(ω)

c(p1)
44 α12(ω) + c(p2)

44 α22(ω)
[
c(p1)
44 α12(ω)c(p2)

44 α22(ω) −
(
c(0)
44 α02(ω)

)2
]

(4.24)
The system of dispersion relations (4.23) and (4.24) itself represents the disper-

sion equation of wave formation through the thickness of composite waveguide.
Their joint solution provides synchronized values of wave numbers k1(ω) and k2(ω)

in components of waveguide. The dispersion curves of localized shear microme-
ter waves λ ∼ 10−6 m at the junction of pairs of piezoelectrics PZT-4 with Cad-
mium Sulfide and PZT-5 with Zinc Oxide, for micrometer height R0 = 10−6 m and
micrometer widths of protrusions and cavities of surface protrusions d1 = 10−6 m
and d2 = 5 × 10−7 m (Fig. 4.3).

High frequency shear Love and Gulyaev–Bleustein types waves for which
min{c1t; c2t} ≤ ω/k(ω) < max{c1t; c2t} already will propagate in the composite
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Fig. 4.3 The dispersion curves of localized shear micrometer waves λ ∼ 10−6 m at the junction of
pairs of piezoelectrics PZT-4 with Cadmium Sulfide and PZT-5 with Zinc Oxide, for micrometer
height R0 = 10−6 m and micrometer widths of protrusions and cavities of surface protrusions
d1 = 10−6 m and d2 = 5 × 10−7 m

waveguide of the same materials outside of frequency bands

0 < ω ≤ (π/R0) · [c1tc2t/(c21t − c22t)]

(see Fig. 4.4). In this case, the forbidden (or allowed) frequency zones of localized
Love and Gulyaev–Bleustein type waves are also determined from the dispersion
equation

cos[LkF(ω)]
= cos[ak1(ω)] cos[bk2(ω)] − G2

2k
2
2 (ω) + G2

1k
2
1 (ω)

2G1k1(ω)G2k2(ω)
sin[ak1(ω)] sin[bk2(ω)]

(4.25)
already taking into account the frequency in the definition area

ω ≥ (π/R0) · [c1tc2t/(c21t − c22t)]

(see Fig. 4.3).
Synchronization of shear wave propagation in general assumes the same allowed

wave number, determined from (4.25)

k(ω) = 1

L
arccos

{
1

4G1k1(ω) · G2k2(ω)
·

·
[
[G2k2(ω) + G1k1(ω)]2 cos[d1k1(ω) + d2k2(ω)]−
−[G2k2(ω) − G1k1(ω)]2 cos[d1k1(ω) − d2k2(ω)]

]} (4.26)
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Fig. 4.4 Forbidden and/or allowed frequency zones for shear localized slow waves (Love type
waves) in composite waveguide piezoelectrics PZT-4 with Cadmium Sulfide and PZT-5 with Zinc
Oxide

Considering the received relations as an area of definition for the allowed lengths of
the wave signal in the periodic structure, from (4.26) we get

λ(ω) = 2π(d1 + d2)arccos
−1

{
[G2k2(ω) + G1k1(ω)]2

4G1k1(ω) · G2k2(ω)
·

·
⎡

⎣
cos[d1k1(ω) + d2k2(ω)]−
− [G2k2(ω) − G1k1(ω)]2

[G2k2(ω) + G1k1(ω)]2
cos[d1k1(ω) − d2k2(ω)]−

⎤

⎦

⎫
⎬

⎭

(4.27)

It follows from more visual graphs of high-frequency propagation (Fig. 4.5), that
forbidden frequency zones do not form in this task, in which wave numbers k(ω) do
not exist. In this case, the dispersion lines have clearly outlined envelopes at top and
bottom. It is also obvious, that the different stiffness of the materials of half-spaces
lead to frequency shear of the dispersion curves between each other.

It is interesting, that in all these cases the nature of changes of phase speeds
are the same in the virtually selected layers (Fig. 4.5), while the phase speed in
the cavity layer d1 ≤ x ≤ d1 + d2 is less than the phase speed in the protrusion
layer 0 ≤ x ≤ d1. Based on the fineness of the isolated inner inhomogeneous layer
{|x| < ∞; |y| ≤ R0; |z| < ∞}, taking into account the boundary conditions (4.11),
(4.13) and the electro elasticity equations (4.10), it can be replaced by the action of
equivalent electromechanical loads on the surfaces y = ∓R0 of the main layers. The
difference in mechanical surface shear stresses on the surfaces y = ∓R0 of the seen
layer can be represented as
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Fig. 4.5 Dispersion curves of localized shear nanometer waves λ(ω) ∼ 10−9 m at the junction of
pairs of piezoelectrics PZT-4 with Zinc Oxide and PZT-5 with Cadmium Sulfide, for micrometer
height R0 = 10−6 m and micrometer widths of protrusions and cavities of surface protrusions
d1 = 10−8 m and d2 = 5 × 10−7 m

− � σ
(0m)
yz (∓R0)

c(p1)44 w1,y(x,R0) +(p1)
15 ϕ1,y(x,R0) − c(p2)44 w2,y(x, −R0) −(p2)

15 ϕ2,y(x, −R0)

2R0 [W2(−R0) − W1 (R0)] k
2∗

= [ω2/k2∗ ] ρp1

[
α0k∗R0ctg (2α0k∗R0) − 2[ρp1/ρp2] α0k∗R0 csc(2α0k∗R0) + ln [ρp1/ρp2]

]

[ρp1/ρp2]
(
4α02k∗2R02 + 2 ln [ρp1/ρp2]

)

− c(p1)44

[
α0k∗R0ctg (2α0k∗R0) − 2[c(p1)44 /c(p2)44 ] α0k∗R0 csc(2α0k∗R0) + ln [c(p1)44 /c(p2)44 ]

]

[c(p1)44 /c(p2)44 ]
(
4α02k∗2R02 + 2 ln [c(p1)44 /c(p2)44 ]

)

− 
2(−R0) − 
1 (R0)

W2(−R0) − W1 (R0)
e(p1)15 · (4.28)

·
[
2k∗R0ctg(2k∗R0) − 2[e(p1)15 /e(p2)15 ] k∗R0 csc(2k∗R0) + ln [e(p1)15 /e(p2)15 ]

]

[e(p1)15 /e(p2)15 ]
(
4k∗2R02 + 2 ln [e(p1)15 /e(p2)15 ]

)

+ W1 (R0)

2R0 [W2(−R0) − W1 (R0)]

⎡

⎣ c(p1)44 − c(p2)44

ln [c(p1)44 /c(p2)44 ]
− ω2 ρp1 − ρp2

ln [ρp1/ρp2]

⎤

⎦

+ 
1 (R0)

2R0 [W2(−R0) − W1 (R0)]

e(p1)15 − e(p2)15

ln[e(p1)15 /e(p2)15 ]
,

The difference of the normal electrical displacement to surfaces y = ∓R0 of the seen
layer can be represented as
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− � D(0m)
y (∓R0)

= e(p1)
15 W1,y(x,R0) − ε

(p1)
11 ϕ1,y(x,R0) − e(p2)

44 W2,y(x,−R0) + ε
(p2)
11 ϕ2,y(x,−R0)

2R0 [W2(−R0) − W1 (R0)] k2∗

= −e(p1)
15

[
α0k∗R0ctg (2α0k∗R0) − 2[e(p1)

15 /e(p2)
15 ]α0k∗R0 csc(2α0k∗R0) + ln [e(p1)

15 /e(p2)
15 ]

]

[c(p1)
44 /c(p2)

44 ]
(
4α0

2k∗2R0
2 + 2 ln [c(p1)

44 /c(p2)
44 ]

)

+ 
2(−R0) − 
1 (R0)

W2(−R0) − W1 (R0)
ε
(p1)
11 · (4.29)

·
[
2k∗R0ctg(2k∗R0) − 2[ε(p1)

11 /ε
(p2)
11 ] k∗R0 csc(2k∗R0) + ln [ε(p1)

11 /ε
(p2)
11 ]

]

[ε(p1)
11 /ε

(p2)
11 ]

(
4k∗2R0

2 + 2 ln [ε(p1)
11 /ε

(p2)
11 ]

) +

+ W1 (R0)

2R0 [W2(−R0) − W1 (R0)]

e(p1)
15 − e(p2)

15

ln [e(p1)
15 /e(p2)

15 ]
+ 
1 (R0)

2R0 [W2(−R0) − W1 (R0)]

ε
(p1)
11 − ε

(p2)
11

ln [ε(p1)
11 /ε

(p2)
11 ]

In both intervals of longitudinal inhomogeneity 0 ≤ x ≤ d1 and d1 ≤ x ≤ d1 + d2,
the wave number of the propagating wave is determined from (4.26).

4.5 Conclusion

As a wave energy harvester, a model of a two-layer piezoelectric waveguide is pro-
posed, taking into account the roughness of the joining surfaces of the layers. The
docking of two different piezoelectric salts leads to the formation of an internal, thin,
inhomogeneous layer both in thickness and along the interlayer. The longitudinal
periodic inhomogeneity of the formed interlayer transforms the electroacoustic sig-
nal into waves of the Floquet type. The inhomogeneity of the formed interlayer in
thickness leads to the appearance of differential mechanical stresses and electrical
displacement on the surfaces of the seen interlayer. Localization of high-frequency
electroacoustic shear waves occurs in the formed inhomogeneous interlayer and
near it. It is shown that if in a layered waveguide with an internal millimeter inhomo-
geneous layer, millimeter electroacoustic waves have a periodic structure (Floquet
type waves) and there are forbidden frequency zones, then in the case of a nanometer
wave signal, there are no forbidden frequency zones. In this case, the wave energy is
strongly localized near the inhomogeneous interlayer for all frequencies of the wave
ultrasonic signal.
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Chapter 5
About One Approach in Prevention
of the Emerging Dangerous Phenomena
Caused by the Existence of Defect
in Continuous Media

Vladimir A. Babeshko, Ilya S. Telyatnikov, Alla V. Pavlova,
and Maksim N. Kolesnikov

Abstract Weconsider the case of the formation for a defect of the vertical crack type,
including a new type, arising in the coating of the deformable material. New models
of pre-landslide phenomena, when the landslide-prone environment is enclosed in
a thin-walled coating, a sarcophagus, which acquires a vertical crack, lead us to
similar problems. Also, such problems arise in the following cases: underground
structures such as mines with a set of parallel tunnels, in bearing pairs in mechanical
engineering, in problems of seismology. One of the approaches consists in a possible,
controlled impact on such structures, preventing large-scale destructive processes,
with significant material damage and human casualties. It consists in vibration action
at certain frequencies, up to high, close to shock ones, as well as the selection of
areas for the application of such action, in relation to the defect. This approach aims
to defuse the emerging dangerous phenomena, preventing the development of the
process to a critical point which can cause tremendous damage. This study aims
to further the development of the theory for cracks of a new type. The research is
based on factorization approaches, the block element method and functional analysis
methods. Depending on the goals set, the possibilities of different study approaches
for the problems under consideration are discussed.
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5.1 Introduction

The problem of studying the behavior of deformable bodies in the presence of
defects such as cracks has been studied by many authors [1–36]. Most of the work
considers the defects in the form of Griffith cracks. Cases of cracks in multilayer
deformable media with crack planes parallel to the boundary of the multilayer media
are described. Analytical, numerical-analytical and fully numerical approaches can
be noted, which turn out to be effective for certain boundary problems. For example,
in problems associated with cracks, boundaries of which go to infinity, and analyt-
ical methods prove themselves more effective than the others. And vice versa, in
problems with flat limited cracks, numerical methods turn out to be more effective.
Problem statements for media with Griffith cracks are quite diverse depending on the
method of applying external influences to crack faces. The conditions of the cracks
destruction and approaches to studying the directions of crack development after
their destruction at the tip also vary widely. Along with cracks in a homogeneous
medium, we also considered cracks at the layer boundaries in a multilayer medium.

Each of the studied problems has its own specifics, aimed primarily at identifying
the conditions for the defects influence on the strength properties of the structure and
finding ways to reduce the vulnerability of the latter during crack propagation, or to
avoid its destruction.

Along with Griffith cracks, we have found cracks of a new type [37], which
complement Griffith cracks. Griffith cracks have a smooth boundary. At the crack tip,
the boundary represents the rounding of an elliptic curve. The destruction of a crack
consists in breaking this boundary. A crack of a new type has a piece-wise-smooth
boundary. They are formed in the coatedmedium, occupying a position perpendicular
to its boundary. At the tip, the crack boundary is described by the cavity boundary in
the form of a half-strip. The mechanism of its destruction consists in the formation
of singular contact stresses with the complete convergence of the crack edges.

Cracks of a new type appear in models of pre-landslide phenomena, when a
landslide structure is enclosed in a thin-walled coating—a sarcophagus [38]. The
destruction of the latter occurs due to the formation of through defects in it, perpen-
dicular to the boundary and representing cracks of a new type. Similar problems for
the cases of non-converged crack edges of this type also arise in the problem of sta-
bility for the underground structures, such as mines with a set of parallel adits. Here,
the problem arises in the assessment of the underground structure mechanical state
and its changes associated with stresses redistribution due to the constant extraction
of ore from adits. In addition, the issues caused by the influence of the slow move-
ment of lithospheric plates, which, after a long time, cause noticeable displacements
in the underground structure, have not been studied [39].

Cracks of a new type can occur in the bearing pairs, important products used
in mechanical engineering. Relevant for these products is the problem of structural
stability and degree of performance in the event of microcracks formation, including
cracks of a new type [40].
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In seismology [41], it was found that when the ends of lithospheric plates moving
along the Konrad boundary approach each other, cracks of a new type, representing
tectonic faults, are also formed. This fact made it possible to reveal a new type of
earthquakes, called “starting,” which occur at the moment of complete convergence
of the lithospheric plate edges before the start of interaction. A comparison between
the theoretical calculated displacements of the Earth’s surface at the epicenters of
starting earthquakes shows a qualitative concurrence with the displacements of real
earthquakes in these areas [41].

The issue of controlling a new type of cracks is poorly studied. One of the
approaches developed in this article is to use the geometric properties of the new type
cracks, namely, their location perpendicular to the boundary. An available means of
influencing the latter is the possibility of the surface waves excitation caused by
sources of various types. These include both vibroseismic and explosive. Both those
sources are ultimately associated with certain frequencies of signal excitation by
surface sources.

In this work, we study the excitation ofwaves caused by a surface harmonic source
in a coating with a defect in the form of a new type crack.

5.2 Formulation of the Problem

A block structure is considered, consisting of two-dimensional horizontally arranged
plates of different types in the form of half-planes, contacting each other along
a rectilinear boundary. The block structure is located on the surface of a three-
dimensional linearly deformable substrate. The considered block structures are under
vertical harmonic external action. The case of static actions was considered in [41],
and it led to the discovery of a new type of earthquakes, called the starting ones.
The present study is based on the method developed in the aforementioned work.
We consider that the coatings are half-planes with parallel boundaries, located on a
linearly deformable foundation at a distance 2θ from each other. Plates are modeled
with Kirchhoff plates. We consider that the space between plates of different types
is free from external influences, and forces directed vertically act on the ends of the
plates. In the local coordinate system x1x2x3 with the origin in the plane x1Ox2,
coinciding with the middle plane of the plate. The axis Ox3 is directed upward along
the normal to the plate, the axis Ox1 is directed tangentially to the fault boundary,
and the axis Ox2—along the normal to its boundary. The area |x1| ≤ ∞, x2 ≤ −θ ,
occupied by the left plate, is denoted by the index λ, and the area |x1| ≤ ∞, x2 ≥ θ ,
occupied by the right plate—by the index r . The area between the plates |x1| ≤ ∞,
−θ < x2 < θ , is denoted by the index θ .

The Kirchhoff equation for the fragments b of the coating, b = λ, r , occupying
areas �b with boundaries ∂�b, relative to the displacements of the middle surface of
the plates ub = {u1b, u2b, u3b} exp (−iωt) under vertical harmonic (with frequency
ω) effects tb = {0, 0, t3b} exp (−iωt) from above and gb = {0, 0, g3b} exp (−iωt)—
from below, after the exclusion of the time parameter, has the form
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Rb (∂x1, ∂x2)ub − Eb (tb − gb) ≡ (∇4 − ε4b
)
u3b + ε5b (t3b − g3b) = 0, (5.1)

where
Eb = diag {−εb5,−εb5, εb5} ,

ε4b = ω2ρb
12

(
1 − ν2

b

)
H 4

Eh2b
, ε5b = 12

(
1 − ν2

b

)
H 4

Ebh3b
,

∇4 = ∂4

∂x41
+ 2

∂4

∂x21∂x
2
2

+ ∂4

∂x42
.

Here, for plates, we use the designations ρb—density, Eb—Young’s modulus,
νb—Poisson’s ratio, hb—plate thickness.

At the same time, at the boundaries of the plates, we can set the bending moments

Mb = −Db1

(
∂2u3b
∂x22

+ νb
∂2u3b
∂x21

)
, Db1 = Db

H 2
, Db2 = Db

H 3
,

where Db = Ebh3b
12(1−ν2

b)
are the rigidities of the plates, H is the dimensional parameter

of the substrate, for example, the layer thickness; cutting forces

Qb = −Db2

(
∂3u3b
∂x32

+ (2 − νb)
∂3u3b

∂x21∂x2

)
= f4b (∂�b) ;

displacements—u3b = f1b (∂�b), rotation angles of the median plane around the
axis x1, in the coordinate system x1Ox2—

1

H

∂u3b
∂x2

= f2b (∂�b) .

By applying the two-dimensional Fourier transform in horizontal coordinates to
system (5.1), we obtain

Rb (−iα1,−iα2)U3b =
[(

α2
1 + α2

2

)2 − ε43b

]
U3b, b = λ, r,

U3b (α1, α2) = F2u3b (x1, x2) , G3b (α1, α2) = F2g3b (x1, x2) ,

T3b (α1, α2) = F2t3b (x1, x2) .

From here on, F2 ≡ F2 (α1, α2) and F1 ≡ F1 (α1) are the two-dimensional and
one-dimensional Fourier transform operators, respectively.
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The relationship between boundary stresses and displacements on the surface of
an elastic medium under the plates has the form

u3 (x1, x2) = ε−1
6

2∑

n=1

∫∫

�n

k (x1 − ξ1, x2 − ξ2) g3n (ξ1, ξ2) dξ1dξ2,

(x1, x2) ∈ �m, m = 1, 3, (5.2)

where

ε−1
6 = (1 − ν) H

μ
.

Here, index 1 corresponds to λ, 2—r , 3—θ , so g31 = g3λ, g32 = g3r ,

�1 ≡ �λ = {(x1, x2) : |x1| ≤ ∞; x2 ≤ −θ} ,

�2 ≡ �r = {(x1, x2) : |x1| ≤ ∞; x2 ≥ θ} ,

�3 ≡ �θ = {(x1, x2) : |x1| ≤ ∞,−θ < x2 < θ} .

Relations (5.2) can be represented as

u3 (x1, x2, 0) = 1

4π2ε6

2∑

n=1

∫

σ1

∫

σ2

K (α1, α2, 0)G3n (α1, α2) exp (−i〈α, x〉)dα1dα,

ε6 = μ

H (1 − ν)
, 〈α, x 〉 = α1x1 + α2x2,

K (α1, α2, 0) = O
(
A−1

)
, A =

√
α2
1 + α2

2 → ∞.

Here, K (α1, α2, x3) is an analytic function of two complex variables αk , k = 1, 2,
in particular, meromorphic; numerous examples are given in [42, 43].

Using of the block element method leads to the introduction of external forms ωb.
By applying the approach of [41] in the variant of the harmonic oscillations presence,
the functional equations of the boundary value problem can be represented in the
form

Rb (−iα1,−iα2)U3b ≡
[(

α2
1 + α2

2

)2 − ε4b

]
U3b

= −
⎡

⎣
∫

∂�b

ωb − ε5bS3b (α1, α2)

⎤

⎦ , (5.3)

S3b (α1, α2) = F2 (α1, α2) (t3b − g3b) , b = λ, r.
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The solution representation for each plate has the form

u3b = −F−1
2 (α1, α2)

1

(α2
1 + α2

2)
2 − ε4b

⎡

⎣
∫

∂�b

ωb − ε5bS3b (α1, α2)

⎤

⎦ .

The external forms participating in representation (5.3) have the form

ωb = ei〈α,x〉
{
−i

[
α2MD−1 − QD−1 − (

α2
2 + νbα

2
1

) ∂u3b
∂x2

+iα2
[
α2
2 + (2 − νb) α2

1

]
u3b

]}
dx1.

Taking into account the adopted notation, we can represent the pseudo-differential
equations for the left plate

F−1
1

(
ξλ
1

)
{
−

∫

∂�λ

[
iα21−D−1

λ1 Mλ − D−1
λ2 Qλ − (

α2
21− + νλα

2
1

) ∂u3λ
∂x2

+ iα21−
(
α2
21− + (2 − νλ) α2

1

)
u3λ

]
exp (iα1x1) dx1 − ε5λS3λ (α1, α21−)

}
= 0,

ξλ
1 ∈ ∂�λ;

F−1
1

(
ξλ
1

) {
−

∫

∂�λ

[
iα22−D−1

λ1 Mλ − D−1
λ2 Qλ − (

α2
22− + νλα

2
1

) ∂u3λ
∂x2

+ iα22−
(
α2
22− + (2 − νλ) α2

1

)
u3λ

]
exp (iα1x1) dx1 − ε5λS3λ (α1, α22−)

}
= 0,

ξλ
1 ∈ ∂�λ.

Similarly for the right plate

F−1
1

(
ξ r
1

) {
−

∫

∂�λ

[
iα21+D−1

r1 Mr − D−1
r2 Qλ − (

α2
21+ + νrα

2
1

) ∂u3r
∂x2

+ iα21+
(
α2
21+ + (2 − νr ) α2

1

)
u3r

]
exp (iα1x1) dx1 − ε5rS3r (α1, α21+)

}
= 0,

ξ r
1 ∈ ∂�r ;
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F−1
1

(
ξ r
1

)
{
−

∫

∂�λ

[
iα22+D−1

r1 Mr − D−1
r2 Qλ − (

α2
22+ + νrα

2
1

) ∂u3r
∂x2

+

+ iα22+
(
α2
22+ + (2 − νr) α2

1

)
u3r

]
exp (iα1x1) dx1 − ε5rS3r (α1, α22+)

}
= 0,

ξ r
1 ∈ ∂�r .

α21− = −i
√

α2
1 − √

ε4λ, α22− = −i
√

α2
1 + √

ε4λ,

α21+ = i
√

α2
1 − √

ε4r, α22+ = i
√

α2
1 + √

ε4r.

The problem posed for θ = 0 is dynamically reduced by the block element method
to the Wiener–Hopf functional Eq. [41], presented in the following form

[
ε5r

(
α2
1+α2

2 − ε4r

)−2 + ε−1
6 K1 (α1, α2)

]
G+ (α1, α2)

= −
[
ε5λ

(
α2
1 + α2

2 − ε4r
)−2 + ε−1

6 K1(α1, α2)
]
G− (α1, α2)

+ (
α2
1 + α2

2 − ε4r
)−2 [

Ark1r + Brk2r + ε5r T
− (α1, α2)

]

+ (
α2
1 + α2

2 − ε4r
)−2 [

Aλk1λ + Bλk2λ + ε5λT
+ (α1, α2)

]
, θ = 0.

This functional equation describes a crack of the new type [37], which, in seis-
mological problems, is a tectonic fault. A detailed study of them made it possible to
reveal the occurrence of starting earthquakes under multidirectional effects on the
crack edges [41].

The block element method makes it possible to analytically reveal important
qualitative properties of solutions to boundary value problems. Another approach,
based on themethod of eigenfunctions, makes it possible to detail the wave processes
arising in a block structurewith the subsequent possibility of their application to affect
the edges of a defect. Below is a short summary of it.

5.3 Eigenfunction Method in the Plane Problem of Vertical
Vibrations for a Plate with a New Type Crack

We consider the boundary value problem described above in a flat formulation for
a block structure with θ = 0. Vertical harmonic influences affect the previously
described block structure. An elastic layer is considered as a deformable substrate.
Omitting the details, we represent the equations of plate vibration (5.1) after sepa-
rating the time factor in the form



64 V. A. Babeshko et al.

R± (∂x2) u± (x2) − ε±,5g± (x2) = b± (x2) , ±x2 > 0, (5.4)

R± (∂x2) = ε±,3
∂4

∂x42
− ε±,4, b± (x2) = −ε±,5t± (x2) .

Concentrated load t+ (x2) = Aδ
(
x2 − x02

)
, x02 > 0 is the point of its application,

intensity A > 0; t− (x2) = 0. The nonzero component of the displacement vector is
u±,3 (x2). Here, the index “+” corresponds to the right plate, generally denoted by
the index r , index “−” corresponds to the left one, denoted in the previous section
by the index λ.

Displacements at the upper boundary of the elastic layer (5.2) are now written in
the form

u (x2) = ε−1
6

∞∫

−∞
k (ξ2 − x2) g (x2) dξ2,

where u (x2) and g (x2) are the displacement and stress amplitudes, respectively,

k (x2) = 1

2π

∫

σ

K (α2) exp (−iα2x2) dα2.

Green’s function K (α2) = K3,3 (α2, 0).
The functional relation for the integral characteristics of displacements and contact

pressures between the foundation and the coating has the form

U (α2) = K (α2)G (α2) , α2 ∈ σ, (5.5)

where
U (α2) = F1u (x2) , G (α2) = F1 (α2) g (x2) .

The ideal connection of slabs and foundation involves: u± (x2) = u (x2), g± (x2) =
g (x2), ±x2 > 0. Taking into account (5.5) in the Fourier transforms, this can be
written

U (α2) = U+ (α2) +U− (α2) , G (α1) = G+ (α2) + G− (α2) , α2 ∈ σ. (5.6)

The papers [44, 45] describe a solutionmethod related to the transformation of the
differential operator for the problem. The eigenfunction method gives the following
representation of general solutions (5.4) that satisfy the boundedness condition in
given planes and correspond to the limiting absorption principle [41].

u± (x2) = A±1 exp (∓q±x2) + A±2 exp (±iq±x2)

+ F−1
1 (x2)

[
R−1

± (α2)
(
ε±,5G± (α2) + B± (α2)

)]
, ±x2 > 0,
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where A± j , j = 1, 2 are arbitrary constants; q± ∈ R, q± > 0 are the roots of the
equations

R± (α2) = 0; R± (α2) = ε±,3 (α2 − q±) (α2 − iq±) (α2 + q±) (α2 + iq±) ;

B+ (α2) = exp
(
iα2x

0
2

) ; B− (α2) = 0.

In the Fourier transforms, these relations take the form

U± (α2) = ±iA±1

α2 ± iq+
+ ±iA±2

α2 ± q±
+

{
R−1± (α2)

[
ε±,5G± (α2) + B± (α2)

]}±
σ

, α2 ∈ σ.

When choosing σ sufficiently close to the real axis, G+ (α2) will be regular in the
area α2 ∈ �σ+, and G− (α2)—in the area α2 ∈ �σ−. The last terms on the right-hand
side can be represented

{
R−1

± (α2)
[
ε±,5G± (α2) + B± (α2)

]}±
σ

= R−1
± (α2)

[
ε±,5G± (α2) + B± (α2)

] − {
R−1

± (α2)
[
ε±,5G± (α2) + B± (α2)

]}∓
σ

.

wherein

{
R−1

± (α2)
[
ε±,5G± (α2) + B± (α2)

]}∓
σ

= ± 1

4q3±ε±,3

[
ε±,5G± (±q±)

α2 ∓ q±
+ iε±,5G± (±iq±)

α2 ∓ iq±
+ B± (±q±)

α2 ∓ q±
+ iB± (±iq±)

α2 ∓ iq±

]
,

where B+ (q+) = exp
(
iq+x02

)
, B+ (iq+) = exp

(−q+x02
)
, B− (−q−) = 0,

B− (−iq−) = 0, values G± (±q±) are subject to determination. Then we can write

U± (α2) = ±iA±1

α2 ± iq±
+ ±iA±2

α2 ± q±
+ R−1

± (α2)
[
ε5,±G± (α2) + B± (α2)

]

∓ 1

4q3±ε±,3

[
ε5,±G± (±q±)

α2 ∓ q±
+ iε5,±G± (±iq±)

α2 ∓ iq±
+ B± (±q±)

α2 ∓ q±
+ iB± (±iq±)

α2 ∓ iq±

]
,

(5.7)

α2 ∈ σ.

From (5.7), it is possible to express the integral characteristics of the contact stresses
between the plates and the foundation

G± (α2) = ε−1
5,±R± (α2)U± (α2) − ε−1

5,±B± (α2)

− A±1
±iR± (α2)

ε5,± (α2 ± iq±)
− A±2

±R± (α2)

iε5,± (α2 ± q±)

± R± (α2)

ε5,±4q3±ε±,3

[
ε5,±G± (±q±)

α2 ∓ q±
+ iε5,±G± (±iq±)

α2 ∓ iq±
+ B± (±q±)

α2 ∓ q±
+ iB± (±iq±)

α2 ∓ iq±

]
.
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From (5.5)–(5.7) by a series of transformations, we obtain a system of func-
tional equations with respect to U± (α2), which is solved using the Wiener–Hopf
method [46]. As a result of the expression for the Fourier transforms U± (α2) of the
desired surface displacements

U± = (
N σ

±
)±1

[{
D+Q0,+

}±
σ

+ {
D−Q0,−

}±
σ

+
2∑

j=1

(
A+ j

{
D+Q j,+

}±
σ

+ A− j
{
D−Q j,−

}±
σ

)

+ G+ (q+)
{
D+Q

q
1,+

}±
σ

+ G+ (iq+)
{
D+Q

q
2,+

}±
σ

+ G− (−q−)
{
D−Q

q
1,−

}±
σ

+ G− (−iq−)
{
D−Q

q
2,−

}±
σ

]
. (5.8)

In (5.8), N σ± (α2) is the result of factorization with respect to the contour σ in the
form of a product N (α2) = N σ+ (α2) N σ− (α2) of the function

N (α2) = N−1
1 (α2) N2 (α2) , N1 (α2) = N̄1 (α2) R+ (α2) ;

N2 (α2) = N̄2 (α2) R− (α2) ; N̄1 (α2) = ε−1
5,+K (α2) − R−1

+ (α2) ;

N̄2 (α2) = ε−1
5,−K (α2) − R−1

− (α2) ; D± = ε5,±
(
N σ

+
)−1

N−1
1 K ;

Q1,± = ±iR±
α2 ± iq±

; Q2,± = ±iR±
α2 ± q±

;

Q0,± = B± ± R±
4q3±ε±,3

[
B± (±q±)

α2 ∓ q±
+ iB± (±iq±)

α2 ∓ iq±

]
;

Qq
1,± = ± R±

4q3±ε±,3

ε5,±
α2 ∓ q±

; Qq
2,± = ± R±

4q3±ε±,3

iε5,±
α2 ∓ iq±

.

The factorization of the function N (α2) is carried out approximately; for this
purpose, an approximating function N A (α2) and N (α2) ≈ N A,σ

+ (α2) N
A,σ
− (α2) is

constructed. In [45], where a method for solving problems concerning an elastic
layer with a composite coating consisting of extended plates, based on the transfor-
mation of the differential operator for a boundary value problem, is presented, the
approximation of functions subject to factorization is described in detail.

Like K (α2) and N̄1 (α2), N̄2 (α2) are even functions with a finite number of
simple real poles and zeros. Their poles are the real poles of the function K (α2) ±
p j , j = 1, Mp, as well as±q+—for the function N̄1 (α2) and±q−—for the function
N̄2 (α2). The number of poles K (α2) and their value determine the number and
speed of propagation for surface waves in an elastic foundation. Let us introduce
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the notation zN̄k , j ∈ R, j = 1, N M̄k
z for positive zeros N̄k (α2), k = 1, 2. Further we

consider functions of the form

N̄k,R (α2) = �−1
N̄k

(α2) N̄k (α2) , k = 1, 2,

�N̄1/2
(α2) =

(
α2
2 + l2

)Mp+1
M

N̄1/2
z∏

j=1

(
α2
2 − z2

N̄1/2, j

)

(
α2
2 + l2

)MN̄1/2
z

(
α2
2 − q2+/−

) Mp∏

j=1

(
α2
2 − p2j

) , l > 0, l ∈ R.

Here, zk, j > 0, j = 1, Mk
z are real zeros of N̄k . The obtained N̄k,R (α2), k = 1, 2 do

not have zeros and poles on the real axis and behave at infinity in the same way as
N̄k (α2), k = 1, 2, N̄k,R (α2) ∼ O

(
α−1
2

)
.

Approximating the functions

√
α2
2 + l20

κM̄k

N̄k,R (α2) , l0 > l, l0 ∈ R, k = 1, 2

with Bernstein polynomials of degree NA [43]

M̄k,R (α2) ≈ M̄ A
k,R (α2) = κM̄k√

α2
2 + l20

NA∏

j=1

(
α2 − zA

M̄k , j

) (
α2 + zA

M̄k , j

)

(
α2
2 + l2

)NA
,

k = 1, 2, α2 ∈ σ,

where κN̄k
= lim

α2→∞ α2 N̄k (α2), we can find

N̄k (α2) ≈ N̄ A
k (α2) = �N̄k

(α2) N̄
A
k,R (α2) ,

N1/2 (α2) ≈ N A
1/2 (α2) = N̄ A

1/2 (α2) R+/− (α2) ,

k = 1, 2, α2 ∈ σ.

Then, the function N A (α2) is approximately constructed and factorized. After fac-
torization, it takes the form

N A (α2) = N A,σ
+ (α2) N

A,σ
− (α2) ,
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N σ
± (α2) ≈ N A,σ

± (α2) =

=
√

κN̄2
ε−,3

κN̄1
ε+,3

(α2 ± il)M
N̄1
z (α2 ± iq−)

M
N̄2
z∏

j=1

(
α2 ± zN̄2, j

) MA∏

j=1

(
α2 ± zA

N̄2, j

)

(α2 ± il)M
N̄2
z (α2 ± iq+)

M
N̄1
z∏

j=1

(
α2 ± zN̄1, j

) MA∏

j=1

(
α2 ± zA

N̄1, j

)
.

Approximation for functions K (α2) and N1 (α2) with given accuracy in the form of
easily factorizable functions K A (α2) and N A

1 (α2) allows us to analytically find the
originals from the Fourier transforms of relations (5.8). Approximate values of the
Fourier transforms for the desired displacements U A± (α2) ≈ U± (α2), α2 ∈ σ ,

U A
± =

(
N A,σ

±
)±1

[
{
DA

+Q0,+
}±

σ
+ {

DA
−Q0,−

}±
σ

+
2∑

j=1

(
A+ j

{
DA

+Q j,+
}±

σ
+ A− j

{
DA

−Q j,−
}±

σ

)

+G+ (q+)
{
DA

+Q
q
1,+

}±
σ

+ G+ (iq+)
{
DA

+Q
q
2,+

}±
σ

+ G− (−q−)
{
DA

−Q
q
1,−

}±
σ

+ G− (−iq−)
{
DA

−Q
q
2,−

}±
σ

]
,

where

DA
± =

(
N A,σ

+
)−1 (

N A
1

)−1
K Aε5,±.

5.4 Numerical Implementation Results

As a result of the numerical implementation of the developed algorithms for various
boundary conditions at the junction of plates, we carried out calculationswith varying
properties of the coating and the elastic substrate.

All the results further are presented in a dimensionless form, where the linear
dimensions are related to the characteristic size, and the density is related to the
density value of the right coating plate. Dimensionless frequency is given by the

formula ω̄ = ωh+
√

ρ+
μ+ , where ω is the dimensional frequency. In the numerical

examples for plates, dimensionless parameters are fixed: ρ+ = ρ− = 1, μ+ = 1,
ν+ = ν− = 0.125. For the elastic material of foundation ρ = 1. The vertical load is
applied at the x0 = 5.
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(a)

(b)

(c)

Fig. 5.1 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (ν = 0.25, μ = 1.58)

If the edges of the plates on the fault move freely, the bending moments−D± ∂2u±
∂x22

and transverse shear forces −D± ∂3u±
∂x32

, D± = E±h2±
12(1−ν2±)

, in this area are equal to zero:

∂2u±
∂x22

∣
∣∣∣
x2=0

= 0,
∂3u±
∂x32

∣
∣∣∣
x2=0

= 0.

Figures 5.1 and 5.2 show graphs of real (linewithmarkers) and imaginary (solid line)
parts of surface displacement amplitudes under the condition of free displacement
of the fault edges at a frequency ω̄ = 2. Figure5.1 corresponds to the values for the
substrate h = 2, ν = 0.25, μ = 1.58. A variant of a softer foundation is illustrated
in Fig. 5.2, here ν = 0.125, μ = 0.67 at the same dimensionless layer thickness.
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(a)

(b)

(c)

Fig. 5.2 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (ν = 0.125, μ = 0.67)

We also considered the condition for “viscous contact” of the plates in the con-
jugation area, while the cutting force on the plate boundary is proportional to the
difference in the velocities for the edges of the plates, and the condition of zero
bending moments is also satisfied

−D±
∂2u±
∂x22

∣∣
∣∣
x2=0

= 0; −D±
∂3u±
∂x32

∣∣
∣∣
x2=0

= −kiω
[
u∓ (x2) − u± (x2)

]
.

Figures 5.3 and 5.4 correspond to these boundary conditions, and Fig. 5.3 shows
the results for a more rigid foundation (ν = 0.25, μ = 1.58), Fig. 5.4—for a softer
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(a)

(b)

(c)

Fig. 5.3 Displacement of the surface of the system for “viscous” contact of the plates at the junction
(ν = 0.25, μ = 1.58)

one (ν = 0.125, μ = 0.67), in both cases k = 0.5. In all Figs. 5.1, 5.2, 5.3 and
5.4, graph (a) corresponds to the case of a more rigid right plate (μ− = 0.2), graph
(b)—to plates with the same properties, graph (c)—to the case of a more rigid left
plate (μ− = 5).

The presented results of model calculations demonstrate the dependence of the
system surface oscillations on the properties of the coating plates and foundation.
For a more rigid foundation, the amplitude of displacements after passing through
the fault is the smaller, the more rigid the left plate is. The wave fields for plates of
different rigidity differ significantly, and the difference between the amplitudes of
the wave fields on the right and left is the greater, the more contrast the properties
of the plates. A softer foundation changes the pattern of displacements, violating the
periodic nature of the graph and the dependence of the amplitudes on the hardness
of the coating. It should also be noted that with a decrease in the vibration frequency,
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(a)

(b)

(c)

Fig. 5.4 Displacement of the surface of the system for “viscous” contact of the plates at the junction
(ν = 0.125, μ = 0.67)

the displacement amplitudes of the left plate decrease in comparison with the right
one, and the effect of the plate properties becomes less pronounced (Fig. 5.5). In
Fig. 5.5, option (a) corresponds to the case of a more rigid right plate (μ− = 0.2),
graph (b) corresponds to the case of a more rigid left plate (μ− = 5)for the frequency
ω = 0.95. The numerical results of the implementation for the method of solving
the scalar problem based on the transformation of its differential operator [44, 45]
match aforementioned results.
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(a)

(b)

Fig. 5.5 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (ω = 0.95)

5.5 Conclusion

We have outlined two approaches that make it possible to study both the qualitative
features of the dynamic behavior of a block structure with a vertical defect in the
form of the new type crack, and quantitative ones, which allows us to assess the
degree of a harmonic source influence on the defect.

We have developed and implemented an analytic-numerical factorization method
for solving boundary value problems of steady vibrations for an elastic medium with
a coating in the form of extended plates, which allows us to investigate the nature of
the harmonic signal propagation in the described structure for plates of different types
as well as for plates of the same type under various contact conditions and substrate
properties. The approach used in the work can be applied to problems of engineering
practice and other important areas where objects with coatings are used. Here, the
method can serve the purpose of evaluating a resource with an emerging defect.
In other tasks, seismology and geophysics, it can serve the purposes of predicting
imminent dangerous natural phenomena.
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Chapter 6
Stress–Strain State of a Magnetoelastic
Ferromagnetic Plane with a Crack Under
the Action of a Magnetic Field

Gevorg Y. Baghdasaryan

Abstract This work is devoted to investigation of the stress–strain state of an elastic
ferromagnetic plane with a crack under the action of an external magnetic field. The
main characteristics of the stress–strain state and the magnetic field induced in the
medium are determined. Their features near the crack are investigated depending on
the medium properties and on the intensity of the external magnetic field. The condi-
tions for the occurrence of concentrations of magnetoelastic stresses and compo-
nents of the induced magnetic field at the ends of the crack are obtained. It is shown
that the occurrence of concentration in ferromagnetic bodies with cracks substan-
tially depends on the sign of the magnetostriction constant. It is established that
in a magnetically soft ferromagnet with a crack, concentrations of magnetoelastic
quantities arise only in those cases when the relative magnetic permeability of the
material is sufficiently large. Formulas that determine the intensity factors for both
magnetoelastic stresses and for the components of the induced magnetic fields are
derived.

Keywords Magnetostriction · Crack · Crack intensity factor · Concentration

6.1 Introduction

The problem of the stress–strain state of an elastic magnetostrictive plane with a
straight crack is considered. The only source that causes elastic deformations and
an induced magnetic field in a medium is an external magnetic field. The study
was carried out based on linear equations and boundary conditions for the magne-
toelasticity of a ferromagnetic body [1], obtained using the main provisions of the
nonlinear theory of magnetoelastic interactions in these mediums [2–5]. The main
characteristics of the stress–strain state and inducedmagnetic field in the medium are
determined. Their features near the crack are studied depending on the orientation
of the external magnetic field, the magnitude of the magnetostrictive constants of
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the medium and the intensity of the given magnetic field. It has been established
that if the external magnetic field is directed obliquely to the plane of the crack,
then in addition to the plane problem of determining the stress–strain state of a
magnetoelastic system with a crack [6–8], there also arises the problem of a longi-
tudinal shear crack (antiplane problem). Note that if the magnetic field is perpen-
dicular to the plane of the crack, then the antiplane problem does not arise [6–8].
The conditions for the appearance of concentrations of magnetoelastic stresses and
components of the induced magnetic field at the ends of a crack are obtained. It is
shown that: (a) the occurrence of concentration in magnetostrictive bodies with a
crack depends significantly on the sign of the magnetostriction constants; (b) if the
material of the medium does not have magnetostrictive properties, then concentra-
tions of magnetoelastic quantities appear in a magnetically soft ferromagnet with
a crack only in cases where the relative magnetic permeability of the material is
sufficiently large; (c) shear stresses of magnetoelastic origin take maximum values
of about forty-five degrees of the magnetic field inclination angle. Formulas are also
obtained that determine the intensity factors both for magnetoelastic stresses and for
the components of induced magnetic fields. Similar problems on the concentrations
of elastic stresses and the induced magnetic field near a crack, when the material
of the body does not have magnetostrictive properties, are considered in [6–8]. The
results revealed in this article have numerous applications in various fields, such
as fracture mechanics, geophysics, optics, acoustics and can become a means of
detecting defects in magnetoactive bodies using magnetic fields.

6.2 Statement of the Problem

It is known that when a ferromagnetic body is placed in a magnetic field, the material
ismagnetized, which leads both to a change in themagnetic field intensity throughout
the space and to the appearance of body and surface forces. Under the action of
these forces, deformations arise in the medium, which excite an additional (induced)
magnetic field. Based on this, the characteristics of the magnetic field are presented
in the form

�H = �H0 + �h, �B = �B0 + �b, �M = �M0 + �m,

where �H0, �B0 and �M0, respectively, are the vectors of intensity, magnetic induction
and magnetization of the magnetic field of an undeformed body and �h, �b and �m
are additions to the indicated quantities due to the deformation of the medium. In
vacuum, the vectors �B and �H are related by the relation �B(e) = μ0 �H (e)

0 , where μ0

is the absolute magnetic constant
(
μ0 = 4π · 10−7N/m

)
and the index e hereinafter

means belonging to the external (surrounding the body)medium, the electromagnetic
properties of which are equivalent to those of vacuum.
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The characteristics of the magnetic field of an undeformed body are determined
from the solution of the following problem of magnetostatics:

rot �H0 = 0, div �B0 = 0, �B0 = μ0μr �H0;
�n ·

( �H0 − �H (e)
0

)
= 0, �n ×

( �H0 − �H (e)
0

)
= 0 for (x1, x2, x3) ∈ S0;

�H (e)
0 → �H (0) for |�r | → ∞; (6.2.1)

where �n is the unit vector of the outer normal to the undeformed surface of the S0
body, �r is the radius vector, xi are the Cartesian coordinates of the considered point,
μr is the relative magnetic permeability of the medium and �H (0) is the intensity of
the given magnetic field at infinity in the absence of a ferromagnetic body.

The stress–strain state of themedium and themagnetic field induced in it are deter-
mined from the equations and boundary conditions of magnetoelasticity of magne-
tostrictive ferromagnetic bodies. Based on the main provisions of the theory of small
perturbations, it is assumed that both the deformations and the magnetic quantities

due to them are small (εi j � 1,
∣
∣∣�h/ �H0

∣
∣∣ � 1,

∣
∣∣�b/ �B0

∣
∣∣ � 1,

∣
∣∣ �m/ �M0

∣
∣∣ � 1, where

εi j are the components of the linear strain tensor). On this basis, the equations and
boundary conditions are linearized. As a result, at

∣∣Mojui, j
∣∣ � |mi |, the following

linear equations and boundary conditions of magnetoelasticity are obtained, given
in [1, 3]:

• System of differential equations of the deformable state

tik,k + μ0
(
M0k H0i,k + Mokhi,k + mkH0i,k

) = 0,

εi jkhk, j = 0, b j, j = 0,
(�b = μ0μr �h

)
, (6.2.2)

where ti j is the tensor of magnetoelastic stresses and μr is the relative magnetic
permeability of the medium;

• Equations of state

ti j = t (0)i j + Ci jkluk,l + 2μ0Bi jkl M0lmk + μ0
(
H0 jmi + Hoim j

)
,mi = χhi ,

(6.2.3)

where

t (0)i j = μ0χ
−1M0i M0 j + 1

2
μ0Bi jkl M0kM0l;

• Boundary conditions at the interfaces of two media

εi jk

{
n j

[
hk − h(e)

k

]
− nm

[
H0k − H (e)

ok

]
um, j

}
= 0,
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n j

[
bi − b(e)

i

]
= nm

[
B0i − B(e)

0i

]
um,i ,

ni
[
ti j − t (e)i j

]
=

[
T (e)
ki − Tki

]
nk . (6.2.4)

In (6.2.2)–(6.2.4), Ci jkl and Bi jkl are the tensors of elastic constants and magne-
tostrictive coefficients, respectively,uk are the components of the displacement vector
of points in the medium, εi jk is the Levy-Civita symbol, the χ = μr − 1 magnetic
susceptibility of the material of the medium and T (e)

ki and Tki the Maxwell stress
tensors in vacuum and in a magnetostrictive medium, respectively. Over repeated
indices, summation is assumed, and the notation f,k means ∂ f/∂xk .

Wenote that in deriving the last three conditions from (6.2.4),weused theMaxwell
stress tensor Ti j

T (e)
ki = μ0

(
H (e)
i H (e)

k + H (e)
i h(e)

k + H (e)
k h(e)

i

)

− μ0δik

(
1

2
H (e)

j H (e)
j + H (e)

j h(e)
j

)
,

Tki = μ0μr (H0i H0k + H0i hk + H0khi )

− μ0δik

(
1

2
H0 j H0 j + H0 j h j

)
. (6.2.5)

In what follows, only isotropic media are considered. For such media, the tensor
Ci jkl has the following well-known representation:

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (6.2.6)

and the tensor Bi jkl according to [3, 9–12] is represented as [13]

Bi jkl = e2δi jδkl + 1

2
(e1 − e2)

(
δikδ jl + δilδ jk

)
, (6.2.7)

Here λ andμ are the Lamé parameters, e1 and e2 are themagnetostriction coefficients
of the material of the medium.

6.3 Solution of the Problem in the Case of a Constant
Transverse Magnetic Field

Based on the above equations and boundary conditions, the formulation of the plane
problem of the concentration of elastic stresses and the induced magnetic field near a
crack caused by an external transverse magnetic field is formulated below. The rect-
angular Cartesian coordinate system is (x1, x2, x3) chosen so that the cross-section
of the crack (the edges of which are free from external mechanical loads) is in
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Fig. 6.1 A crack of finite
dimensions in a
magnetostrictive body

-a             0            a

the plane (x1, 0, x2) and occupies an area [−a, a] on the coordinate axis 0x1. The
medium is placed in a constant magnetic field �B(0)(0, B0, 0) (which is the only
source of external influences) and is under conditions of plane deformation in the
plane (x1, 0, x2) (Fig. 6.1).

Note that for the case under consideration problem (6.2.1) has the following
solution:

�B(e)
0 = B0�i2, �B0 = �B(e)

0 ,

�H (e)
0 = �B(e)

0 μ−1
0 , �H0 = �B0(μ0μr )

−1, (6.3.1)

where �ik are the unit vectors of the coordinate axes. In (6.3.1) and in what follows,
the index e means belonging to the crack region.

By virtue of (6.2.3) and (6.3.1), from (6.2.2) for the problem under consideration,
the following equations of magnetoelasticity of the deformed state are obtained:

�u1 + 1

1 − 2ν

∂

∂x1

(
∂u1
∂x1

+ ∂u2
∂x2

)
+ 2χB0

μrμ
s
∂h1
∂x2

= 0,

�u2 + 1

1 − 2ν

∂

∂x2

(
∂u1
∂x1

+ ∂u2
∂x2

)
+ 2χB0

μrμ
s
∂h2
∂x2

= 0; (6.3.2)

�
 = 0, �
(e) = 0,

hk = ∂


∂xk
, h(e)

k = ∂
(e)

∂xk
, (6.3.3)

where � is the two-dimensional Laplace operator, ν is the Poisson ratio and s is the
coefficient characterizing the properties of the magnetostriction of the material of
the medium

s = 1 + χ
e1 + e2

2
,


 and 
(e) are the potentials of induced magnetic fields.
Similarly, from (6.2.3) and (6.2.4), considering the symmetry of the problem, the

following boundary conditions on the plane are obtained x2 = 0:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(x1, 0) = h(e)
1 (x1, 0) + χB0

μ0μr
u2,1(x1, 0),

μr h2(x1, 0) = h(e)
2 (x1, 0),


(e)(x1, 0) = 0,

t22(x1, 0) = χ2

μr

[
B2
0

2μ0μr
+ B0h2(x1, 0)

]

for |x1| < a (6.3.4)


(x1, 0) = 0, u2(x1, 0) = 0 for |x1| > a (6.3.5)

t12(x1, 0) = 0 for |x1| < ∞ (6.3.6)

In addition to conditions (6.3.4)–(6.3.6), the conditions at infinity must also be
satisfied, according to which limhi = 0(i = 1, 2). Thus, if the magnetic field is
perpendicular to the plane of the crack, then the problem of determining the stress–
strain state of the medium is flat and is represented by Eqs. (6.3.2)–(6.3.4) and
conditions (6.3.4)–(6.3.6).

6.4 Solution of the Problem

Solutions of Eqs. (6.3.4) and (6.3.5) satisfying the conditions at infinity,where x2 > 0
can be represented as

u1 = 2

π

∞∫

0

{[
c1(α) − 3 − 4ν − x2α

α
c2(α)

]
e−αx2

+s · 2(1 − 2ν)χ

μrμ
B0c3(α)e−αx2

}
sin αx1dα,

u2 = 2

π

∞∫

0

[c1(α) + x2c2(α)]e−αx2 cosαx1dα, (6.4.1)


 = 2

π

∞∫

0

c3(α)e−αx2 cosαx1dα,


(e) = 2

π

∞∫

0

c(e)
3 (α)shαx2 cosαx1dα, (6.4.2)

where ci (α)(i = 1, 2, 3) and c(e)
3 (α) are unknown functions, which are determined

by satisfying the boundary conditions (6.3.4)–(6.3.6).
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Substituting (6.4.1) and (6.4.2) into (6.2.3) and (6.2.5), we determine the magne-
toelastic stresses ti j and Maxwell stresses Ti j . In particular, for normal stresses t22
and T22, we obtain the following expressions:

t22 = 4μ

π

∞∫

0

{
−αc1 + (1 − 2ν − αx2)c2 − χB0

μrμ
[1 − 2ν

−νχ(e1 + e2)]αc3}e−αx2 cosαx1dα + χB2
0

2μ0μ2
r

(2 + χe1),

T22 = 2χ + 1

μr
B0

⎡

⎣ B0

2μ0μr
− 2

π

∞∫

0

αc3(α)e−αx2 cosαx1dα

⎤

⎦. (6.4.3)

Let us pass to the definition of unknown functions ci (α)(i = 1, 2, 3) and c(e)
3 (α)

by satisfying the boundary conditions (6.3.4)–(6.3.6). The boundary condition (2.13)
leads to the following relation between the unknown functions:

αc1(α) = 2(1 − ν)c2(α)

− B0χ

2μμr
{3 − 4ν + 2χ [(1 − ν)e1 − νe2]}αc3(α). (6.4.4)

Using (6.4.4), it is easy to show that the representations (6.4.1) satisfy the boundary
conditions (6.3.4) and (6.3.5) (except for the second condition from (2.11)), if the
unknown functions c1(α) and c3(α) are solutions of the following system of dual
integral equations:

∞∫

0
c1(α) cosαx1dα = 0, |x1| > a

∞∫

0

αc1(α) cosαx1dα = π(1 − ν)(2 − χ + χe1)

4μ0μμ2
r

χB2
0

+ χB0 f1(e1, e2)

2μμr

∞∫

0

αc3(α) cosαx1dα;
|x1| < a

(6.4.5)

∞∫

0
c3(α) cosαx1dα = 0, |x1| > a

∞∫

0
α
[
c3(α) − χB0

μ0μr
c1(α)

]
sin αx1dα = 0, |x1| < a

(6.4.6)

where

f1(e1, e2) = 2ν − 1 + 2(1 − ν)χ + 2χ [e1 − ν(e1 − e2)].
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The solution of the system of dual integral Eqs. (6.4.5)–(6.4.6), following [6, 14],
can be represented as

c1(α) =
a∫

0

ϕ(ζ )J0(αζ )dζ ,

c3(α) =
a∫

0

ψ(ζ )J0(αζ )dζ , (6.4.7)

where J0(αζ ) is the Bessel function of the real argument and ϕ(ξ) and ψ(ξ) are the
new unknown functions.

By (6.4.7), the first equation in (6.4.5) and (6.4.6) is identically satisfied for any
integrable functionsϕ(ξ) andψ(ξ), and the second equations from (6.4.5) and (6.4.6)
give the following system of integral equations for ϕ(ξ) and ψ(ξ):

d
dx1

a∫

x1

[
ψ(ξ) − χB0

μ0μr
ϕ(ξ)

]
dξ√
ξ 2−x21

= 0, |x1| < a

d

dx1

x1∫

0

[
χB0 f1
2μμr

ψ(ξ) − ϕ(ξ)

]
dξ

√
x21 − ξ 2

= χB2
0

4μ0μμ2
r

f2, |x1| < a
(6.4.8)

where

f2 = π(1 − ν)(χ − 2 − χe1).

It follows from (6.4.8) that the unknowns ϕ and ψ are solutions of the following
system of linear algebraic equations:

ψ(ξ) − χB0

μ0μr
ϕ(ξ) = 0,

χB0 f1(e1, e2)1
2μμr

ψ(ξ) − ϕ(ξ) = χB2
0

4μ0μμ2
r

f2 · ξ, (6.4.9)

Substituting ϕ(ξ) and ψ(ξ), which are solutions of system (6.4.9) into repre-
sentations (3.7), for the unknowns c1(α) and c3(α), we obtain the following
expressions:

c1(α) = aA1α
−1 J1(aα),

c3(α) = aA3α
−1 J1(aα), (6.4.10)

where
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A1 = − χB2
0

2μ0μ

f2(e1)

�
,

A3 = − B0

2μ0μr

χ2B2
0

μ0μ

f2(e1)

�
,

� = 2μ2
r − χ2B2

0

μ0μ
f1(e1, e2), (6.4.11)

J1(aα) is theBessel functionof a real argument, and formulas (6.4.10) are obtained
under the assumption that the determinant � of system (6.4.9) is nonzero.

On the basis of (6.4.4) and (6.4.10) from (6.4.1) and (6.4.2), we find the displace-
ments ui (i = 1, 2) and the potential of the induced magnetic field 
. Substituting
the found expressions for ui and
 into (6.2.3) and (6.2.5), we determine the magne-
toelastic stresses ti j and the induced magnetic field �h in the medium. In particular,
using (6.4.1), (6.4.3) and (6.4.10), for hi , t22, T22 and u2 for x2 = 0, we obtain the
following expressions:

h1(x1, 0) =
{
0, for |x1| > a
− 2A3

π
x1√
a2−x21

, for |x1| < a

h2(x1, 0) = 2A3

π

⎧
⎨

⎩

a2√
x21−a2

[
x1+

√
x21−a2

] , for |x1| > a

−1, for |x1| < a
(6.4.12)

t22 = χB2
0

2μ0μ2
r

(2 + χe1)

+ 2μA1

π(1 − ν)

{
1 − χ2B2

0

2μ0μμ2
r

[ f1 − 2(1 − ν)χ ]

}
a2

√
x21 − a2

[
x1 +

√
x21 − a2

]

for |x1| > a

T22 = (2χ + 1)B2
0

2μ0μ2
r

+ 2(2χ + 1)B0

πμr

a2A3
√
x21 − a2

[
x1 +

√
x21 − a2

] for |x1| > a (6.4.13)

u2(x1, 0) = 2A1

π

√
a2 − x21 , for |x1| < a (6.4.14)

Formulas (6.4.12) and (6.4.13) show that the presence of cracks in magnetostrictive
ferromagnetic deformable bodies (which are only under the action of an external
stationary magnetic field) leads to the appearance of a concentration of both magne-
toelastic stresses and stresses of the magnetic field induced in the body. These results
were also found in the case of magnetically soft ferromagnetic bodies in [6, 9].
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6.5 Coefficients of Intensity of Magnetoelastic Stresses
and Induced Magnetic Field

Using (6.4.12) and (6.4.13), it is easy tofind the following expressions for the intensity
factors of magnetoelastic stresses and the stress components of the magnetic field
induced in the body:

• For total magnetoelastic stresses tC22 = t22 + T22

K1 = lim
x1→a+0

√
2(x1 − a) tC22

∣∣
x2=0 = [χ(e1 − 1) + 2]

b2c R1μ

2�

√
a, (6.5.1)

where

R1 = 2χ +
(

χbc
μr

)2{
2
(
1 − ν + (5 + 6ν)χ − 2χ2[e1 − ν(e1 − e2)]

)}
,

� = 2μ2
r − (χbc)

2 f1(e1, e2), b2c = B2
0

μ0μ
;

• For the components of the induced magnetic field

K2 = lim
x1→a+

√
2(x1 − a)h2|x2=0

= [χ(e1 − 1) + 2]
B0

μ0μr

(χbc)
2

�
(1 − ν)

√
a. (6.5.2)

Bearing in mind that equal in magnitude and oppositely directed normal forces
act on the crack faces, it is assumed that concentrations of magnetoelastic stresses
and components of the induced magnetic field appear at the ends of the crack, if
u2(x1, 0) > 0 at |x1| < a. Because of this, it follows from (6.4.11) and (6.4.14) that
the normal displacement of the crack edge x2 = 0+ will be positive if

f2(e1) · (�)−1 < 0 . (6.5.3)

Consequently, inequality (6.5.3) is the condition for the occurrence of concentra-
tions of the quantities indicated above at the ends of the crack.

In the case of magnetically soft ferromagnetic materials that do not have
magnetostrictive properties (e1 = e2 = 0), condition (6.5.3) has the form

π(1 − ν)(χ − 2)

2μ2
r − (χbc)

2[2ν − 1 + 2(1 − ν)χ]
< 0. (6.5.4)

Considering that B0 ≤ Bs(where Bs is the saturation induction and Bs ≤ 2T ), it
is easy to check that inequality (6.5.4) in the case of soft magnetic materials will be
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satisfied if μr > 104. Those only for such magnetically soft materials, which have
the indicated relatively high relative magnetic permeability, will concentrations of
magnetoelastic stresses and components of the magnetic field intensity appear at the
ends of the crack.

Let us return to condition (6.5.3), when the materials of the media have a magne-
tostrictive property. Bearing in mind that, according to [11, 13, 15], e2 ≈ −0.5e1
and for the main magnetostrictive materials, we note |e1| > 20 from the expressions
for f1(e1, e2) and f2(e1) that the sign of the quantity f1(e1, e2) coincides with the
sign of the constant e1, while the converse assertion is true for f2(e1). In a similar
way, it is shown that the determinant � at B0 < Bs is positive, regardless of the
signs of the magnetostrictive parameters ei , in contrast to the case of magnetically
soft ferromagnets. Considering the above, we conclude that in the cases of basic
magnetostrictive materials:

(a) If e1 < 0, then condition (6.5.3) is violated and consequently, for such materials
at the ends of the crack, there is no stress concentration (both magnetoelastic
and induced magnetic field).

(b) If e1 > 0, then (6.5.3) holds and consequently, there is a stress concentration at
the end of a crack in a magnetostrictive material with the indicated property.

6.6 Occurrence of Concentrations of Magnetoelastic
Stresses Due to Longitudinal Shear Due
to the Orientation of the External Magnetic Field

Let in an infinite elastic ferromagnetic space be a rectilinear tunneling crack with a
width 2a, the edges ofwhich are free fromexternalmechanical loads. The rectangular
system of Cartesian coordinates is chosen so that the cross-section of the crack is
in the plane x10x2 and occupies an area (−a, a) on the coordinate plane 0x1. The
space, the material of which is isotropic, homogeneous and magnetically soft, is
placed in a constant magnetic field �B0(0, B02, B03) with a magnetic induction vector
�B0(0, B0 cosϕ, B0 sin ϕ), where ϕ the angle between the magnetic field and the axis
0x2, B2

0 = B2
02 + B2

01. The specified magnetic field is the only source of external
influences.

For the considered case, problem (6.2.1) has the following solution:

�B(e)
0 = B02i2 + B03i3, �B0 = B02i2 + μr B03i3,

�H (e)
0 = μ−1

0
�B(e)
0 , �H0 = (μ0μr )

−1 �B0, (6.6.1)

where the index “e” means belonging to the crack area and ik are the unit vectors of
the coordinate axes. Assuming that no required quantities depend on the coordinate
x3. From (6.2.2), by (6.2.3) and (6.4.1) for Bi jkl , we obtain the following equations
for the magnetoelasticity of the deformed state:

• Relatively u1(x1, x2, t) and u2(x1, x2, t)
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�ui + 1

1 − 2ν
θ,i +Fi = 0, (i = 1, 2)

�
 = 0, �
(e) = 0 (6.6.2)

• Relatively u3(x1, x2, t)

�u3 = 0 (6.6.3)

whereas before, 
(e) and 
 are the potentials of the induced magnetic field in the
crack region and in the medium, respectively, � is the two-dimensional Laplace
operator,

θ = u1,1 + u2,2, F1 = 2χB02

μμr
hi,2,

hk = 
,k, h(e)
k = 


(e)
,k , f,k ≡ ∂ f

∂xk
. (6.6.4)

Similarly, from (6.6.2) to (6.6.4), the following boundary conditions are obtained
on the coordinate axis 0x1 in the plane x2 = 0:

�u2 = 0, 
 = 0 for |x1| > a

t12 + 2χB2
02

μ0μr
u2,1 = 0 for |x1| < ∞

t22 = χ2

μr

(
B2
02

2μ0μr
+ B02
,2

)
for |x1| < a


,1 − 

(e)
,1 = B2

02
μ0μr

u2,1 for |x1| < a


(e) = 0, 

(e)
,2 = μr
,2 for |x1| < a

(6.6.5)

and the following conditions regarding u3(x1, x2, t)

{
u3,1 = 0 for |x1| > a

u3,2 = −χB(e)
03

μ

(
B02

μ0μr
+ h2

)
for |x1| < a

(6.6.6)

In addition to conditions (6.6.5) and (6.6.6), the conditions at infinity must also
be satisfied, according to which all the required quantities due to the deformation of
the medium must tend to zero at |�r | → ∞.

From (6.6.2)–(6.6.6), due to (6.2.5), it is seen that:

(a) Problem (6.6.2), (6.6.5) (a plane problem for determining u1 and u2) is separated
from problem (6.6.3)–(6.6.6) (an antiplane problem for determining u3);

(b) To solve the antiplane problem, it is necessary to have a boundary value for the
component h2 of the magnetic field induced in the medium, which arises as a
result of plane deformation;

(c) the existence of an antiplane problem is possible only under the condition B02 ·
B03 �= 0 with respect to the components of the unperturbed magnetic field.
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The plane problem (6.2.2), (6.2.5) was solved in the previous subsection, and
for the quantity of interest to us h2 on the crack faces at Bi jkl = 0 (soft magnetic
material), the following value was obtained:

h2(x1, 0) ≡ h(0)
2 = (1 − ν)(χ − 2)χ2b20

2μ2
r + b20χ [1 − 2ν − 2(1 − ν)χ ]

B02

μ0μr
(6.6.7)

where b20 = B02
μ0μr

, which coincides with the indicated value obtained in [6].
The solution of Eq. (6.2.3), taking into account the condition at infinity, can be

represented as (x2 > 0)

u3(x1x2) =
∞∫

−∞
A(α) exp(−|α|x2) exp(−iαx1)dα (6.6.8)

The unknown function A(α) entering (6.6.8) is determined by satisfying the
boundary conditions (6.2.6). For this purpose, we introduce a new unknown function
ϕ(x1) as follows:

ϕ(x1) = u3,1(x1, 0) for |x1| < a (6.6.9)

Satisfying the boundary conditions (6.2.6) at Bi jkl = 0 (soft magnetic material),
it can be shown [16] that ϕ(x1) is the solution of the following singular integral
equation:

1

π

a∫

−a

ϕ(s)ds

x − s
= λ (6.6.10)

satisfying the condition

1

π

a∫

−a

ϕ(s)ds = 0 (6.6.11)

where

λ = − χ

μμr
B02

B(e)
03

μ0
− B(e)

03

χ

μr
h(0)
2

Integral Eq. (6.6.10) in the class of unbounded functions has the following solution
that satisfies condition (6.4.11) [16]
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ϕ(x1) = −λ
x1√

a2 − x21

(6.6.12)

Based on (6.6.12) from (6.6.9), we determine the displacement u3. Substituting
the found expression for u3 in (6.6.2), we determine the magnetoelastic stresses S23
in the medium. In particular, for S23 at x2 = 0, we obtain the expressions

S23(x, 0)

μ
=

{
S0 for |x | < 1

S0 −
[
λ − 2μr−1

μ
B(e)
03 h

(0)
2

]
x√
x2−1

for |x | > 1
(6.6.13)

where

S0 = 2μr − 1

μμr

B02B
(e)
03

μ0
+ λ + 2μr − 1

μ
B(e)
03 h

(0)
2 , x = x1

a
.

Based on formulas (6.6.13), numerical calculations were made, the results of
which are given in Tables 6.1 and 6.2. Table 6.1 gives the values 103S23/μ at various
points x1 > a at B02 = B03 = 1.

Table 6.1 is for the following ferromagnetic materials:

• Alfer alloy (ν = 0.3; μ = 6.3 · 1010N/m2; μr = 30),
• F-107 ferrite (ν = 0.3; μ = 6.8 · 1010N/m2; μr = 110) and
• Technical iron (ν = 0.28; μ = 1.1 · 1011N/m2; μr = 2.5 · 103).

Table 6.1 Values 103S23/μ
at various points x1 > a at B02
= B03 = 1

103S23/μ Alfer alloy F-107 ferrite Technical iron

1.2 0.2208 0.2061 0.1260

1.3 0.2019 0.1889 0.1154

1.4 0.1913 0.1792 0.1095

1.6 0.1798 0.1688 0.1030

1.7 0.1763 0.1657 0.1011

1.8 0.1737 0.1633 0.9968

Table 6.2 Dependence
105S23/μ on the intensity of
the external magnetic field in
the case of technical iron at
B02 = B03 = B0

105S23/μ B0 = 0.2T B0 = 0.4T B0 = 0.8T

1.2 0.5103 2.038 8.103

1.3 0.4660 1.862 7.414

1.4 0.4413 1.763 7.029

1.6 0.4145 1.657 6.611

1.7 0.4064 1.625 6.485

1.8 0.4003 1.601 6.389
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The dependence 105S23/μ on the intensity of the external magnetic field in the
case of technical iron at B02 = B03 = B0 is given in Table 6.2.

Formulas (6.6.13) and the above calculations show that: (a) the problem of a
longitudinal shear crack arises due to the fact that B02 · B03 �= 0 and (b) there is such
a value of the B0∗ for B02

B2
02

μ0μ
= 2μ2

r

χ

1

μr (χ − 2)(1 − ν) + 2(1 − ν)χ − 1

that at B02 = B0∗, the shear stress intensity factor vanishes, (c) with an increase in
the intensity of the external magnetic field, the stress S23 increases monotonically
and (d) the magnitude of the stresses S23 on the crack faces B2

0 (μ0μ)−1 � 1 can be
replaced with accuracy by the expression

S23 = S0μ ≈ B02B
(e)
03

μ0
= B2

0

2μ0
sin 2ϕ

from which it can be seen that the influence of the magnetic field is strongest near
ϕ = π/4.
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Chapter 7
The Effect of Longitudinal Oscillations
Resonance on Stability and Domains
of Attraction in the Generalized Kapitsa
Problem

Alexander K. Belyaev, Oksana R. Polyakova, and Tatyana P. Tovstik

Abstract We study the effect of stabilization of a pendulum with internal degree
of freedom in the upper inverted equilibrium position subject to vertical vibration
of the support. A small amplitude parameter of support vibration is introduced. The
method of two-scale expansions is used to obtain the averaged motion equation
of the pendulum. Stability conditions for the upper equilibrium position are found
depending on the parameters of the elastic element of the pendulum. Critical values
of the pendulum deflection angle are obtained, which control the boundary of the
stable oscillation zone.

Keywords Kapitsa’s pendulum · Stability · Attraction basin · Two-scale
asymptotic expansion · Solid body with internal degree of freedom · Resonance

7.1 Introduction

Stabilization effect of the upper vertical position of a pendulumwith vibrating support
is studied. Stephenson [1] first described this effect. Later, Kapitsa [2] gave theoret-
ical and experimental evidences for this effect. Chelomei [3] considered a similar
problem, with a weight sliding along a rod. For recent studies on this problem and
various generalizations thereof, see [4–7]. It is also worth mentioning the paper [8]
describing experiments with a working model of a three-link pendulum [8]. The
Kapitsa effect occurs with sufficiently strong vibrations of the support. Another
condition for stabilization of the pendulum in the classical Kapitsa problem is the
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small oscillation amplitude requirement of the support with respect to the length of
the pendulum itself.

The present paper is concerned with the study of the behavior of a compressible
Kapitsa pendulum as a function of the natural frequency of longitudinal vibrations
of the elastic element of the pendulum. Stability analysis of the upper equilibrium
position is carried out, and the domain of attraction of the stable solution is found. An
averaged equation describing the pendulum motion is established, and its solution is
studied. The error of the averaged solution of the nonlinear problem is estimated. A
stability condition for the upper vertical position of a pendulum is obtained with due
account of its compressibility.

7.2 Model of a Compressed Pendulum. Complete
Nonlinear System of Equations

Let us consider the generalized Kapitsa pendulum implemented as follows (Fig. 7.1).
A body of point mass m is attached via a weightless spring of rigidness c to the
pendulumhinged support vibrating in the vertical direction.Both the rod and the point
mass of the pendulum are located in a tube that prevents the spring from bending.
The tube mass is m1 = κm, where the coefficient κ assumes arbitrary values in the
interval κ ∈ (0,∞). The mass is distributed uniformly over the length l of the tube,
and the tube thickness is neglected. The pendulum is subjected to a gravitational
force. Let l0 be the spring length in the unstressed state, and let l be its length in the
upper equilibrium position, l = l0 − mg/c. The string length l will be considered
as a reference value, and the actual length of the string will be denoted by l + s(t),
where s(t) � l. The deformation δ of the string is δ = l + s(t) − l0 = s(t) −mg/c.

Fig. 7.1 Model of a compressible Kapitsa pendulum. a Equilibrium position of a compressed
spring. b Kapitsa pendulum. c Forces acting on the weight. d Forces acting on the tube
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Note that the real length of the tube exceeds l, but we will neglect the mass of the
small part of the tube above the level l.

Assume that the pendulum support vibrates in the vertical direction according to
the law yO(t) = a sin(ωt + β)with constant values of the amplitude, frequency, and
the initial phase a, ω, β, respectively.

Let us write down the motion equations separately for the weight and the tube,
as subject to the external forces shown in Fig. 7.1. Here, X,Y are the forces acting
on the tube from the hinge side, N is the interaction force between the weight and
the tube (this force is orthogonal to the pendulum axis), and F = −cδ is the force
acting along the deformed weightless spring. As the unknown variables, we take
s(t), which is the small (relative to l) defection of the weight along the pendulum
axis, and ϕ(t), which is the angle of rotation of the pendulum from the upper vertical
position, in the counter-clockwise sense—and this quantity is not small in general.
So, we have

⎧
⎪⎪⎨

⎪⎪⎩

m
d2

dt2
((l + s(t)) sin ϕ(t)) = F(t) sin ϕ(t) − N (t) cosϕ(t), F(t) = −cs(t) + mg,

m
d2

dt2
(a sin(ωt + β) + (l + s(t)) cosϕ(t)) = F(t) cosϕ(t) + N (t) sin ϕ(t) − mg,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1
d2

dt2

(
l

2
sin ϕ(t)

)

= X(t) − F(t) sin ϕ(t) + N (t) cosϕ(t),

m1
d2

dt2

(

a sin(ωt + β) + l

2
cosϕ(t)

)

= Y (t) − F(t) cosϕ(t) − N (t) sin ϕ(t) − m1g,

m1l
2

12

d2ϕ(t)

dt2
=

(
l

2
+ s(t)

)

N (t) + l

2
Y (t) sin ϕ(t) − l

2
X(t) cosϕ(t).

Transforming the first two equations, we get

⎧
⎪⎨

⎪⎩

s̈ + c

m
s − (l + s)ϕ̇2 − aω2 sin(ωt + β) cosϕ − g(1 − cosϕ) = 0,

(l + s)ϕ̈ + 2ṡϕ̇ + aω2 sin(ωt + β) sin ϕ + N

m
− g sin ϕ = 0,

(7.1)

and excluding X,Y from the three equations in curly brackets, we obtain

2

3
ϕ̈l + aω2 sin(ωt + β) sin ϕ = g sin ϕ +

(

2 + 2s

l

)
N

m1
. (7.2)

Let us change to the dimensionless variables in length and time

s̃ = s

l
, ε = a

l
, t̃ = ωt, (7.3)

(the tilde will be dropped in what follows). The quantity ε will be considered as the
small parameter of the problem. We set
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ν2 = c

mω2
, ε2q = g

lω2
, (7.4)

where ν is the ratio of the natural vibration frequency of the spring loaded weight
to the given oscillation frequency of the pendulum support, and ε2q is the squared
ratio of the frequency of free vibrations of the mathematical pendulum of length l in
a gravity field to the given oscillation frequency of the support. On the boundary of
the stability region in the classical Kapitsa problem [5], the quantity ε2q = g/ lω2

is of second order of smallness with respect to the small quantity ε = a/ l. In this
problem, the destabilizing term, which is consequent on the gravity force, has the
above order of smallness, as in the classical setting. Note that by making κ → ∞
we transform the problem into the classical problem on oscillation of an inextensible
rod on a vibrating support.

In the dimensionless form, in view of (7.2) system (7.1) assumes the form

⎧
⎪⎨

⎪⎩

s̈ + ν2s − (1 + s)ϕ̇2 − ε sin(t + β) cosϕ + ε2q(1 − cosϕ) = 0,
(

1 + s + κ

3(1 + s)

)

ϕ̈ + 2ṡϕ̇ + ε

(

1 + κ

2(1 + s)

)

sin(t + β) sin ϕ − ε2q

(

1 + κ

2(1 + s)

)

sin ϕ = 0.

(7.5)

Let us specify the initial conditions. Assume that initially, at t = 0, the pendulum
was deflected by an angle ϕ0 without the initial angular velocity and the spring was
in equilibrium:

ϕ(0) = ϕ0, ϕ̇(0) = 0, s(0) = s0 = ε2q

ν2
(1 − cosϕ0), ṡ(0) = 0, (7.6)

Moreover, the initial phase of oscillations of the support is equal to some β.
Assuming that oscillation decay insignificantly, one can pose the problem on

the convergence of the solution ϕ(t) to zero and find sufficient conditions for this
convergence.

7.3 Averaged Motion Equation of the Pendulum

Wewill assume that s is a small quantity of order ε. Introducing the slow time θ = εt ,
we will solve system (7.5) by the method of two-scale expansions [9]. The solution
will be obtained as series with respect to the small parameter:

ϕ(t, θ, ε) =
∞∑

m=0

(Um(θ) + Vm(t, θ)) εm, s(t, θ, ε) =
∞∑

m=1

(rm(θ) + sm(t, θ))εm,

θ = εt,

2k π∫

0

Vm(t, θ)dt = 0,

2k π∫

0

sm(t, θ)dt = 0, m = 1, 2, . . . , (7.7)
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where the integer quantity k is fixed so that, with a sufficient degree of accuracy, an
integer number of oscillations with frequency ν would occur over the time period
2kπ . We will assume that the frequency ν is not equal to the frequency of support
oscillations, i.e., ν �= 1.

Taking into account the equalities

dϕ

dt
= ∂ϕ

∂t
+ ε

∂ϕ

∂θ
,

d2ϕ

dt2
= ∂2ϕ

∂t2
+ 2ε

∂2ϕ

∂t ∂θ
+ ε2

∂2ϕ

∂θ2
,

ds

dt
= ∂s

∂t
+ ε

∂s

∂θ
,

d2s

dt2
= ∂2s

∂t2
+ 2ε

∂2s

∂t ∂θ
+ ε2

∂2s

∂θ2
, (7.8)

Substituting series (7.7) into the system of Eq. (7.5), we equate the terms involving
ε0, ε1, ε2. Our aim is to find the averaged value of the angle in the zero approximation
U0(θ). For the terms multiplying ε0, ε1, we get

V0(t, θ) = 0, V1(t, θ) = sin(t + β) sinU0(θ), (7.9)

and hence, in view of (7.7), (7.8)

ϕ̇(t, θ, ε), ϕ̈(t, θ, ε) = O(ε), (7.10)

r1(θ) = 0,
∂2s1(t, θ)

∂t2
+ ν2s1(t, θ) = sin(t + β) cosU0(θ). (7.11)

The initial conditions for Eq. (7.11) are obtained from (7.6) in view of (7.7):

s1(t, θ) = 0, ṡ1(t, θ) = 0, t = 0. (7.12)

Solving Eq. (7.11) with initial conditions (7.12), we obtain

s1(t, θ) = cosU0(θ)

ν2 − 1

(− cosβ

ν
sin νt − sin β cos νt + sin(t + β)

)

, (7.13)

s(t, θ, ε) = εs1 + O
(
ε2

)

= ε
cosU0(θ)

ν2 − 1

(− cosβ

ν
sin νt − sin β cos νt + sin(t + β)

)

+ O
(
ε2

)
(7.14)

We simplify the second equation in (7.5) in the second approximation by getting
rid of the trigonometric functions in the denominator and using the expansion

1
(1+εs1)

= 1− εs1 + O
(
ε2

)
. Substituting (7.9) and (7.14) into the second equation in

(7.5), and averaging with the help of (7.7), (7.8), we get the following equation with
respect to the unknown function of the averaged deflection angle of the pendulum:
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a1U
′′
0 (θ) + b1 sinU0(θ) cosU0(θ) − c1q sinU0(θ) = 0,

a1 = 1 + κ

3
, b1 = 1

2

ν2

ν2 − 1
+ 3κ2 + 8κ

8κ + 24
, c1 = 1 + κ

2
. (7.15)

We augment this equation with the initial conditions obtained from the given
initial conditions for the function ϕ:

ϕ = U0 + O(ε),
dϕ

dt
= ε

(

U ′
0 + ∂V1

∂t

)

,

ϕ(0) = ϕ0, ϕ̇(0) = 0, ⇒ U0(0) = ϕ0, U ′
0(0) = − cosβ sin ϕ0.

(7.16)

7.4 Stability Conditions for the Upper Equilibrium Position

Problems (7.15)–(7.16) give the zero approximation U0 to the complete nonlinear
system of Eqs. (7.5), (7.6) and can be studied analytically. For small deflection angles
U0, the linearized Eq. (7.15) has the form

a1U
′′
0 (θ) + (b1 − c1q)U0(θ) = 0, (7.17)

which gives conditions for stability of oscillations near U0 = 0:

b1 − c1q = 1

2

ν2

ν2 − 1
+ 3κ2 + 8κ

8κ + 24
−

(
1 + κ

2

)
q > 0. (7.18)

Making κ → ∞ and neglecting the compressibility of the pendulum, condition
(7.18) assumes the form known for the classical Kapitsa pendulum (see [7]):

q = lg

a2ω2
<

3

4
. (7.19)

Let us return back to Eq. (7.15). A necessary condition for stability of oscillation
of U0(θ) near U0 = 0 is the positivity of the coefficient b1.

The dashed region in Fig. 7.2 corresponds to the region of possible values of the
parameters ν = √ c

m
1
ω
, κ = m1

m that give b1 > 0. For these values of the parameters,
the solution on the phase plane will have a stable rest point

(
U0,U ′

0

) = (0, 0).

7.5 Oscillation Stability Zone

The separatrix equation for the solution of problem (7.15)–(7.16) on the phase plane
has the form
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Fig. 7.2 Possible values of the parameters ν, κ

Fig. 7.3 Phase plane
(
U0,U ′

0

)
for κ = 1, q = 0.1 aU−

0 andU+
0 on the phase plane. b Separatrices

for ν = 0.1, . . . , 10.0

(
U ′

0

)2 = 1

a1b1
(b1 cosU0 − c1q)2. (7.20)

The separatrix in the phase plane is shown in Fig. 7.3. The initial conditions
U0(0), as from the range 0 < U0(0) < U−

0 , give a stable solution for all values β

of the initial phase of oscillations of the support. The initial values from the range
U−

0 < U0(0) < U+
0 give a stable solution for some values β of the initial phase.

From Eq. (7.20), we get

U+
0 = arccos

(
c1q

b1

)

. (7.21)

7.6 Conclusion

Anumerical solution of problem (7.5)–(7.6), of the second approximation of problem
(7.5)–(7.6) for small ε, and of the averaged problem (7.15)–(7.16) was given. Critical
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values for the initial conditions ϕ0∗ and U0∗ for various parameters of the problem
and the initial phase of oscillation of the support β were compared. The averaged
method gives a certain error caused mainly by discarding the terms above the second
order of smallness.

In view of the above results, the conclusion can be made that the effect of
compressibility of the rod (per the above model) can either reduce or extend the
pendulum stability region. For small eigenfrequencies of a compressible rod, the
Kapitsa effect can hardly be achieved near resonance in the subresonance region,
and, vice versa, this effect takes place for much broader values of parameters in the
superresonance region.
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Chapter 8
Band Gaps of Metastructure
with Periodically Attached Piezoelectric
Patches and Internal Hinges

Karen Ghazaryan, Samvel Jilavyan, Davit Piliposyan, and David Aznaurov

Abstract In this paper, we investigate the problem of band gaps for flexural waves
in a beam with periodically attached piezoelectric patches and internal hinges for
the purpose of vibration energy harvesting. Based on Euler–Bernoulli beam theory,
general solutions of the finite length periodic beam for two topological systems
(beam with patches, beam with patches and internal hinges) are obtained using the
transfer matrix method. By applying the Floquet theory, the explicit expressions
are derived defining the band gap structure. The corresponding band gap dispersion
curves are plotted. The innovation of this paper is the results concerning widening
of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps
generated by internal hinges, not by patches.

Keywords Piezoelectric · Energy harvesting · Band gaps · Resonance frequency

8.1 Introduction

New developments in wireless and microelectro-mechanical systems have increased
the demand for portable electronics and wireless sensors, making power supply of
these portable devices a crucial issue. Nowadays, the most appropriate solution to
extend the life of various devices is to harvest the ambient energy and generate
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electrical energy, which is called energy harvesting [1–3]. Piezoelectric vibration
energy harvesting can harvest electrical energy frommechanical vibrations based on
the direct piezoelectric effect. Elastic beams and plates are widely used in the most
piezoelectric vibration energy harvesting devices [4–13].

Recently, artificial materials and structures called mechanical metamaterials have
become the centerpiece of many research studies and engineering applications. Due
to structural periodicity, these materials exhibit exotic physical properties includ-
ing negative refraction, frequency stop-bands, cloaking and energy harvesting, all
unachievable in naturally occurringmaterials.Waves inmetamaterials can only prop-
agate within specific frequency bands and are completely blocked within forbidden
band gaps [14–17].

The use of metamaterial structures for generating electric power via energy har-
vesting has beenwidely investigated recently [18–24]. In phononmetamaterial struc-
tures, external stimulations will cause mechanical vibrations that will propagate
through the beam. Due to the presence of local resonators, there will be oscillations
in certain frequency bands which cannot propagate through periodic cells, creating
bandgaps. Energy of these vibrationswill localize in the formof an oscillatorymotion
of the internal structural elements, and the piezoelectric effect can be exploited to
convert the localized vibration energy into electrical energy [18, 20].

The review of the most recent developments in piezoelectric energy harvesting
methods for converting localizedmechanicalwave energy into electrical energy using
artificially designed mechanical structures are given in Lee et al. [25].

8.2 Band Gaps of a Beam with Periodically Attached
Piezoelectric Patches

Weconsider a finite elastic beamof length nd with periodically attached piezoelectric
patches at z = (n − 1/2)/d, n = 1, 2, . . . , N , distanced d from each other and each
patch having a mass μ (Fig. 8.1) The equation of motion of Euler–Bernoulli beam
can be cast as

E I
∂4U0

∂z4
+ ρA

∂2U0

∂t2
= 0, (8.1)

where U0(z, t) is the dynamic deflection of the beam’s neutral axis at the point z,
E is the elastic modulus, I is the area moment of inertia with respect to the axis

Fig. 8.1 Schematic of the beam with patches, basic unit cell
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perpendicular to the beam axis, ρ is the bulk density and A is the cross-sectional area
of the beam.

We assume that U0(z, t) = U (z)eiωt , where U (z) is the amplitude of the free
vibration response of the beam at z and ω is the beam’s vibration frequency. The
amplitude U (z) satisfies to the following equation

d4U

dz4
− Aρω2

E I
U = 0. (8.2)

Introducing a dimensionless coordinate x = z/d, we consider the beam’s motion in
a basic unit cell x ∈ (n − 1, n). The solutions for the amplitude in each unit cell can
be written as

U± = C±1 sin(px) + C±2 sinh(px) + C±3 cos(px) + C±4 cosh(px), (8.3)

where p = √
�, � = ωd2

√
(E I )−1ρA, � is the dimensionless bending frequency,

subscripts (±) denote regions: (−) → x ∈ ((n − 1), n − 1/2), (+) → x ∈ (n −
1/2, n).

Contact conditions at points where the patches of mass μ are attached can be cast
as

E I
∂3U0+
∂z3

− E I
∂3U0−
∂z3

= −μ
∂2U0±
∂t2

, (8.4)

∂2U0+
∂z2

= ∂2U0−
∂z2

, (8.5)

∂U0+
∂z

= ∂U0−
∂z

, U0+ = U0−. (8.6)

For the amplitudes U±, we have the following conditions at x = n − 1/2

d3U+
dx3

− d3U−
dx3

= f p4U±, (8.7)

d2U+
dx2

= d2U−
dx2

, (8.8)

dU+
dx

= dU−
dx

, U+ = U−. (8.9)

Here the dimensionless parameter f = μ/(ρAd) determines the ratio of the patch
mass to the mass of a beam of length d. Since the interface contact conditions

are imposed on the beam deflection U (x), the slope
dU (x)

dx
, the bending moment

E I
d2U (x)

dx2
and the shear force E I

d3U (x)

dx3
, it is convenient to introduce the follow-

ing vectors
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W±(x) =
(
U±(x),

dU±(x)

dx
, E I

d2U±(x)

dx2
, E I

d3U±(x)

dx3

)T

, (8.10)

C±(x) = (C1±,C2±,C3±,C4±)T . (8.11)

Usinq Eq. (8.3) we can write the solutions in the following matrix form

W±(x) = P̂(x)C±(x), (8.12)

where

P̂(x) =

⎛

⎜⎜
⎝

sin(px) sinh(px) cos(px) cosh(px)
p cos(px) p cosh(px) −p sin(px) p sinh(px)

−E I p2 sin(px) E I p2 sinh(px) −E I p2 cos(px) E I p2 cosh(px)
−E I p3 cos(px) E I p3 cosh(px) −E I p3 sin(px) E I p3 sinh(px)

⎞

⎟⎟
⎠ .

(8.13)
A propagator matrix method can be used to link field values of the vectorsW+(n)

andW−(n) in unit a cell. Considering values of field vectorsW+(x) at points x = n
and x = n − 1/2 the following relations can be written

W+(n) = P̂(n)C+, W+(n − 1/2) = P̂(n − 1/2)C+. (8.14)

Eliminating vectorsC+ from (8.14), the following relation linking vector field values
within (+) sub-unit can be found:

W+(n) = M̂W+(n − 1/2), M̂ = P̂(n)P̂−(n − 1/2). (8.15)

Similarly, we can find the relation linking the vector field values within a (−)

sub-unit:
W−(n − 1/2) = M̂W−(n − 1). (8.16)

Herein M̂ is the following unimodular transfer matrix in an each sub-layer

M̂ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

g1
g2
p

g4
E I p2

g3
E I p3

g3 p g1
g2
E I p

g4
E I p2

E Ig4 p2 E Ig3 p g1
g2
p

E Ig2 p3 E Ig4 p2 g3 p g1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (8.17)

where

g1,4 = 1

2

(
± cos

p

2
+ cosh

p

2

)
, g2,3 = 1

2

(
± sin

p

2
+ sinh

p

2

)
. (8.18)
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We can also write contact conditions for the amplitude at x = n − 1/2 in a matrix
form as:

W+(n − 1/2) = ŜW−(n − 1/2), (8.19)

where

Ŝ =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
f p4 0 0 1

⎞

⎟⎟
⎠ . (8.20)

Using (8.20 ), we come finally to the following relation

W+(n) = M̂ ŜW−(n − 1), W+(n) = Q̂ W−(n − 1), Q̂ = M̂ ŜM̂ . (8.21)

Herein Q̂ is a unimodal propagator matrix for the Euler–Bernulli beam, which links
the field vectors at the ends of the n-th cell. Note that the elements of matrix Q̂ do
not depend on cell number n.

Repeating this procedure n times, the propagator unimodal matrix Q̂n can be
found, which connects the vectors at x = 0 and x = n points of the finite beam of
length nd:

W+(n) = Q̂n W−(0), n = 1, 2, . . . , N . (8.22)

By applying theBloch–Floquet periodicity conditionW+(n) = λW−(n − 1) at both
ends of unit cell we come to following matrix eigenvalue problem [16, 17]

(Q̂ − λ Î )W−(n − 1) = 0. (8.23)

To determine the eigenvalues of the periodic structure, the roots of the following
equation should be found:

Det(Q̂ − λ Î ) = 0 ⇒ 2 + gλ + rλ2 + gλ3 + 2λ4 = 0, (8.24)

where Î is a 4 × 4 identity matrix,

g = f p (sin(p) − sinh(p)) − 4(cos(p) + cosh(p)), (8.25)

r = 2p f (cos(p) sinh(p) − sin(p) cosh(p)) + 8 cos(p) cosh(p) + 4. (8.26)

Taking into account that λ = exp(ikd) the dispersion equations (8.24) can be witten
as

r + 2g cos(kd) + 4 cos(2kd) = 0 (8.27)

with solutions

cos(kd) = −1

8
(g ± s), s =

√
32 + g2 − 8r . (8.28)
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A similar type of equation has been obtained and discussed in [26] for a vibrating
piecewise bi-material periodic beam. When there are no patches (μ = 0) then the
solutions are cos(kd) → cos(p), and cos(kd) → cosh(p).

Equations (8.27) and (8.28) determine the two Floquet spectrum of beam frequen-
cies. Since the Euler–Bernoulli beam vibration equation is not hyperbolic, one of the
spectrum is the Floquet pseudo spectrum [26] which corresponds to the case when
cos(kd) → cosh(p).

The elements of matrix Q̂n expressed via elements of matrix Q̂ can be written by
means of Sylvester’s matrix polynomial theorem [27]:

Q̂n =
4∑

m=1

⎛

⎝λn
m

4∏

m �= j

λ j Î − Q̂

λm − λ j

⎞

⎠ , (8.29)

where

λ1,2 = −1

8

(
g + s ±

√
((g + s)2 − 64

)
, λ3,4 = −1

8

(
g − s ±

√
((g − s)2 − 64

)

(8.30)
are the solutions of dispersion equation (8.24).

8.3 Band Gaps of a Beam with Periodically Attached
Piezoelectric Patches and Internal Hinges

We now consider a finite elastic beam of length nd with periodically attached piezo-
electric patches of masses μ and internal hinges. The distances between patches and
hinges are d . Introducing the dimensionless coordinate x = z/d, we consider the
beammotion in a unit cell x ∈ (n − 1, n). Patches are attached at points x = n − 1/2,
internal hinges are located at points x = n and x = n − 1 (Fig. 8.2).

At points where the hinges are attached the following conditions are valid

d2U+
dx2

= 0,
d2U−
dx2

= 0,
dU 3+
dx3

= dU 3−
dx3

, U+ = U−. (8.31)

Fig. 8.2 Schematic of the beam with patches and internal hinges, basic unit cell
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The piezoelectric patches are periodically attached at points x = n − 1/2. Solutions
satisfying the first and second conditions of (8.31) can be written as

U+(x) = C1 sin(p(x − n)) + C2 sinh(p(x − n)) + C0 (cos(p(x − n)) + cosh(p(x − n))) ,

(8.32)

U−(x) = A1 sin(p(x − n + 1)) + A2 sinh(p(x − n + 1))+
A0 (cos(p(x − n + 1)) + cosh(p(x − n + 1))) , (8.33)

Using the contact conditions (8.7)-(9) at points x = n − 1/2, we find the following
relations for the constantsC1,C2, A1 and A2 expressed via two constantsC0 and A0:

ϑC1 = C0 csc
( p

2

) (
f p

(
cos(p) csc

( p

2

)
sinh

( p

2

)
− 1

)

+ csc
( p

2

)
cosh

( p

2

)
(4 cos(p) − f p sin(p))

)

− A0 csc
2
( p

2

) (
f p

(
sin

( p

2

)
+ sinh

( p

2

))
+ 4 cosh

( p

2

))
(8.34)

θC2 = −A0csch
( p

2

) (
f p csc

( p

2

)
+ csch

( p

2

) (
f p − 4 cot

( p

2

)))
− C0csch

( p

2

)
×

(
f p csc

( p

2

)
+ 2 f p cot

( p

2

)
cosh

( p

2

)
+ cosh(p)csch

( p

2

) (
4 cot

( p

2

)
− f p

))

(8.35)

θ A1 = C0 csc
2
( p

2

) (
f p

(
sin

( p

2

)
+ sinh

( p

2

))
+ 4 cosh

( p

2
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−
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( p
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) (
f p

(
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( p
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)
sinh

( p

2

)
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)
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( p

2

)
cosh

( p

2

)
×

(4 cos(p) − f p sin(p))) . (8.36)

θ A2 = A0csch
( p

2

)
×

(
f p csc

( p

2

)
+ 2 f p cot

( p

2

)
cosh

( p

2

)
+ cosh(p)csch
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) (
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. (8.37)

Here
θ = 2 f p cot

( p

2

)
+ coth

( p

2

) (
8 cot

( p

2

)
− 2 f p

)
, (8.38)

ϑ = 2 cosh
( p

2

) (
f p − 4 cot

( p

2

))
− 2 f p cot

( p

2

)
sinh

( p

2

)
. (8.39)
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Introducing column vectors

U±(x) =
⎛

⎝
U±(x)
d3U±
dx3

⎞

⎠ , (8.40)

we can express the values of U+(n) and U−(n − 1) via two constants C0 and A0.
After eliminating these constants, we find the following relation

U+(n) = F̂U−(n − 1). (8.41)

Herein F̂ is a unimodal propagator matrix for the Euler–Bernulli beam’s wave field,
which links the field vectors at the ends of the n-th cell with attached piezoelectric
patches, where the internal hinges are placed.

The elements of this matrix do not depend on the unit cell number and can be cast
as

F11 = f p
(
cos(p) − cosh(p) + 4 sin

( p

2

)
sinh

( p

2

)
+ 2 sin(p) sinh(p)

)

+ 4 sin(p) cosh(p) − 4 cos(p) sinh(p),

F22 = F11,

F12 = 2p−3 ( f p(− sin(p) − sinh(p) + cos(p) sinh(p) + sin(p) cosh(p)) + 4 sin(p) sinh(p)) ,

F21 = f p4
(
sin(p) − 4 cos

( p

2

)
sinh

( p

2

)
− (cos(p) + 1) sinh(p) + 4 sin

( p

2

)
cosh

( p

2

)

+ sin(p) cosh(p)) − 4p3(cos(p) cosh(p) − 1),

	 = 4 sin(p) − 4 sinh(p) − 2 f p
(
sin

( p

2

)
+ sinh

( p

2

))2
.

According to Sylvester’smatrix polynomial theorem for 2× 2matrices, the elements
of the n-th power of a unimodal matrix F̂ can be written as [27]

F̂n =
(
M11 M12

M21 M22

)
, (8.42)

and can be simplified using the following matrix identity

M11 = F11Sn−1(η) − Sn−2(η), M12 = F12Sn−1(η),

M21 = F21Sn−1(η), M22 = F22Sn−1(η) − Sn−2(η),
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where Sn(η) are the Chebyshev polynomials of second kind, namely

Sn(η) = sin((n + 1)φ)

sin(φ)
, cos(φ) = η, η = F11

	
. (8.43)

Matrix F̂n connects the vectors at points x = 0 and x = n of the finite beam of length
nd:

U+(n) = F̂nU0(n), n = 1, 2, . . . , N . (8.44)

By applying the Bloch–Floquet periodicity condition at both ends of a unit cell

U+(n) = λU−(n − 1),

the problem reduces to the following eigenvalue problem

(
F̂ − λ Î

)
Un−1 = 0 ⇒ 1 − 2λ(F11/	) + λ2 = 0,

where Î is a 2 × 2 identity matrix. Taking into account that λ = exp(ikd), the equa-
tion defining the gaps of the beam with external hinges and patches can be found
as

cos(kd) = F11

	
. (8.45)

8.4 Analysis and Conclusions

Note that relations (8.23) and (8.41) that have been obtained for a metastructure of a
finite length can be used for as solutions of problems of free and forced vibration of
metastructures. The dispersion curves defining band gaps are presented in Figs. 8.3,
8.4 and 8.5. The dashed curves correspond to a beam with patches and solid curves
correspond to a beam with internal hinges and patches. The dispersion curves are
given in the first Brillouin zone 0 < kd < π , for different values of dimensionless
parameter f = μ/(ρAD), � is the dimensionless bending frequency of the metas-
tructure.

The dispersion curves are plotted in accordance with the analytical expression
(8.28) for the beam with patches (BP) and (8.45) for the beam with patches and
hinges (BPH). Vibrational energy is localized and converted into kinetic energy
by piezoelectric patches within the frequency band gaps. The maximum bending
deformations occur within the first band gap; therefore, most of the energy harvesting
will occur within the first band gap of the metamaterial structure [18, 19].
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Fig. 8.3 Band structures of a beam with hinges when patches are absent

(a) (b) (c)

Fig. 8.4 Band structures of a beam with hinges and patches for different values of f
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(a) (b) (c)

Fig. 8.5 First low-frequency band gap of a beam with hinges and patches for different values of f

The analysis of the band gaps structures can be summarized as follows:

1. Increasing of parameter f increase the gap bandwidth and shift the center fre-
quency of the vibration band gaps to low-frequency regions

2. Increasing of parameter f slightly changes the gap bandwidth of (BPH) and
significantly changes the gap bandwidth of (BP).

3. The band bandwidth of the BPH is wider than the band bandwidth of the BP.
4. All gaps of the BP are located within the gaps of the BPH.
5. Widening of the resonant bandwidths of a piezoelectric harvester with phononic

band gaps generated by internal hinges is more significant than widening of the
resonant bandwidths due to increase of the patch parameter f .

We can conclude finally that the novelty of this paper is the results concerning the
widening of the resonant bandwidths of a piezoelectric harvester based on phononic
band gaps generated by the internal hinges, not by the patches. The impact of the
patches on the gap formation is insignificant in thismetastructurewith internal hinges.
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Chapter 9
Periodic Contact Problem for a Two-level
System of Punches and a Viscoelastic
Half-space

Irina G. Goryacheva and Anastasiya A. Yakovenko

Abstract The paper presents a solution of the contact problem for a periodic two-
level system of axisymmetric punches and a viscoelastic half-space. The case of a
constant nominal pressure applied to the punch system is considered. The variation
of the real contact area in time and the conditions that provide the contact of the
punches of both levels with the half-space are investigated. The influence of the
geometric parameters of the punch system and the mechanical properties of the
viscoelastic half-space on the contact characteristics are analyzed. Numerical results
are presented for the system of punches located in the nodes of a square lattice and
penetrated into a viscoelastic half-space modeled by a standard linear solid. It is
shown that the real contact area may increase greatly if the second level punches
come into contact with the half-space at some instant of time.

Keywords Periodic contact · Linear viscoelasticity · Multi-level system of
punches · Time dependent contact characteristics

9.1 Introduction

Discrete contact problems are of great theoretical and practical importance. These
problems mainly arise in study of the contact of bodies taking into account their
surface microrelief, which is formed by a surface roughness. Solutions of these
problems differ considerably from the classical solutions of the contact problems for
absolutely smooth bodies. The most significant difference is that the real contact area
consists of the system of contact spots may be several times smaller than the nominal
one. This fact is essential in analysis of many important operational properties of
tribounits.
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The characteristics of the contact interaction are determined not only by the geom-
etry of the contact surfaces of the bodies, but also by their mechanical properties.
Manymaterials are characterized by viscoelastic properties, that is, their stress-strain
state is time-dependent. For example, soft polymers belong to this type of materials.
Polymers are widely used in many industries such as automotive, aerospace, con-
struction, textile, medicine and others [1]. They are applied to produce food wraps,
containers, adhesives, electric- and thermal insulation, lenses, windows, clothing,
etc. Hence, the problems of discrete contact of viscoelastic bodies are of great rel-
evance. An extensive study of the stress state of viscoelastic bodies is presented in
the book of Arutunyan [2].

The roughness of surfaces has often a statistical nature; however, it can also be
regular, for example, in the case when it is produced by artificial methods. Currently,
numericalmethods arewidely used to solve the problemsof contact of rough surfaces.
Such approach makes it possible to consider any contact geometry of bodies and
their mechanical properties. For example, numerical calculations were used in [3]
to analyze the viscoelastic contact of tires with the road. In this study, the authors
proposed to consider the contact at the macrolevel with limited number of asperities.
The conjugate gradient method was used in [4] to solve the problem of the contact of
a rigid smooth spherical indenter with a viscoelastic rough half-space. The problem
of the rough viscoelastic contact is also numerically solved in [5] using both spatial
and time discretization.

Despite a huge variety of problems that can be solved by numerical methods,
analytical approaches to solving the discrete contact problems also do not lose their
relevance. There are a number of analytical methods of solving the contact problems
for viscoelastic bodies with regular and irregular microrelief. In the case of irregular
roughness, the contact model is in general based on the Greenwood–Williamson
approach [6], which respects the height distribution of asperities. The first attempt
to extend the application of this model to the viscoelastic case has been performed
in [7]. To take into account the viscoelasticity of bodies, the authors simply replaced
the Young’s modulus with the time-dependent relaxation function. However, this
procedure is incorrect, as was shown in [8], where the accurate solution was derived.
The solution obtained in [8] allows us to take into account the fact that asperities of
different heights come into contact at various times. In addition to the Greenwood–
Williamson statistical model, fractal geometry is also used to describe the contact of
rough surfaces in the viscoelastic case (see, for example, [9]). Another approach to
solving the contact problems for rough bodies based on the probabilistic method and
the diffusion equation can be found in the Persson’s works. In [10], this approach
was used to solve the contact problem in the viscoelastic case for fixed nominal
pressure. Later, the Persson’s theory was extended to the viscoelastic contact under
an arbitrarily time-varying applied load [11].Despite the fact that the Persson’s theory
for the rough contact gives quite simple results, its justification is not strict enough
that is noted, for example, in [12].

Analytical methods have also been developed to study the contact of bodies
with periodic roughness. In [13], the localization method was suggested to solve
the contact problems for a periodic system of axisymmetric punches and an elastic
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half-space. This method allows us to consider both single-level periodic systems of
punches and systems of punches with different heights. Application of the localiza-
tionmethod to solve the periodic problemwith a viscoelastic half-space is carried out
in [14], where the analytical solution for a single-level system of spherical punches
which is in contact with the viscoelastic base was reduced. However, the surface
roughness is often uneven in height, which is essential for studying the contact of
bodies with rheological properties. In this study, using the localization principle, the
contact of a two-level periodic system of axisymmetric punches with a viscoelastic
half-space is analyzed.

The article is structured as follows. In Sect. 9.2, the formulation of the contact
problem for the two-level periodic system of punches indenting into the viscoelastic
half-space is presented. In Sect. 9.3, the one-level contact of the system of punches
with the half-space is studied and the conditions of the second level punches coming
into contact are analyzed. In Sect. 9.4, the two-level contact is investigated and the
dependence of the real contact area on time is analyzed. Section9.5 provides some
main conclusions.

9.2 Statement of the Contact Problem

The indentation of a two-level periodic system of axisymmetric punches into a vis-
coelastic half-space is considered. The difference in the heights of the punches of
the two levels is given and equal to �h. The shape of the contact surface of the
punches is described by the function f (r) = Crs

/
Rs−1, where s = 1, 2, . . . , R is

the characteristic punch size, C is the dimensionless constant. The axes of symmetry
of the punches are perpendicular to the boundary of the half-space. We connect the
coordinate systemwith some fixed punch of the i th level (i = 1, 2, . . . ) in such away
as to the axis Oz coincides with the axis of rotation of the fixed punch, and the plane
Orθ coincides with the undeformed surface of the half-space. We also assume that
the each contact spot of the i th level is bounded by a circle of radius ai (t) (Fig. 9.1)
that is valid for not very tight contact.

The boundary conditions of the problem are of a mixed type, since normal dis-
placements of the half-space boundary are known at all contact spots, and outside the
contact area, we have the condition of zero normal stresses. It is also assumed that the
shear stresses are zero on the entire boundary of the half-space. In addition, as initial
conditions, we suppose that before the interaction process begins, the viscoelastic
half-space is not stressed and is at rest.

For certainty, we consider a system of punches located at each level in nodes of
a square lattice, that is, at vertices of squares of one size l × l (Fig. 9.1). The punch
system is loaded with a nominal pressure p̄(t) = p̄0H(t) acting within one period.
Here p̄0 is a given constant and H(t) is the Heaviside function. We assume that
the material of the half-space is homogeneous, isotropic, linearly viscoelastic, and
has the constant Poisson’s ratio ν. In this case, one relaxation function is sufficient



118 I. G. Goryacheva and A. A. Yakovenko

Fig. 9.1 Scheme of the
location of punches in a
two-level periodic system

to describe mechanical behavior of the material [15]. For example, we can use the
relaxation function E(t) corresponding to uniaxial tension/compression or the creep
function J (t) related to it.

9.3 Contact Problem Solution for the First Level Punches

If the value of the nominal pressure p̄(t) is not sufficient to immediately provide the
two- level contact, only the first level punches come into contact with the half-space
at the beginning of the contact interaction. In this part, the contact problem analysis
for the one-level system of punches is presented and the condition when the second
level of punches comes into contact is derived.

9.3.1 Derivation of the Main Equations for Calculation
of the First Level Contact Characteristics

The solution of the problem of the indentation of a one-level punch system into a
viscoelastic half-space is obtained in [16]. This solution is constructed using the
extended correspondence principle [17] and the localization method [13]. In [14,
16], the one-level periodic contact problem is solved in the simplest case, when
the real pressure distribution is taken into account only under the fixed punch, and
the action of all the others is replaced by the nominal pressure. In this research, in
order to improve the calculation accuracy, one more series of punches is added to
consideration, and their action is replaced by the load of intensity 4P1(t) distributed
over a circle of radius l. In this case, the solution of the single-level problem takes
the following form
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where �(x) is the gamma function, p1(r, t) is the contact pressure under the first
level punch, P1(t) is the load applied to a single first level punch, and A1 is the radius
of the circle outside of which the nominal pressure is distributed, which replaces the
action of all punches except the fixed one and four nearby punches. The functions
p(k)(r, t) and p(m)(r, t) in Eq. (9.1) are determined by the parity of the exponent s of
the function f (r) and have the following form
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,

where k arem are integers. The functionwith index k corresponds to the odd exponent
s, that is, s = 2k + 1, and the function with indexm corresponds to an even exponent
s, that is, s = 2m. According to the localization principle, the radius A1 of the circle
is determined by the average number N̄1 of contact spots per unit area and the number
M1 of punches located inside this circle, namely

π A2
1 = M1

N̄1
. (9.3)
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During the single-level contact p̄(t) = N̄1P1(t), so Eqs. (9.1) and (9.2) can be
written in terms of the nominal pressure. Provided the constant value of the applied
nominal pressure, we obtain

p1(r, t) =
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)
Rs−1

+ 2

5π
p̄0 J (τ )

·
(

2A2
1

l2 − r2

√
a21(τ ) − r2

l2 − a21(τ )
+ 5 arctan

√
a21(τ ) − r2

A2
1 − a21(τ )

))

dτ,

(9.4)

as+1
1 (t)

10

(
arccos

(
a1(t)
A1

)
+ a1(t)

A1

√
A2
1 − a21(t)

)
− 8

(
arccos

(
a1(t)
l

)
+ a1(t)√

l2−a21 (t)

)

=
(
1 − ν2

)
(s + 1)�(s)Rs−1A2

1 p̄0 J (t)

2s−15s2C�2
(
s
2

) . (9.5)

Equations (9.4) and (9.5) are used to calculate the pressure distribution at the initial
stage of indentation process when only the first level punches come into contact.

9.3.2 Determination of the Instant of Time When the Second
Level of Punches Comes into Contact
with the Half-space

Let us find the time instant t∗ when the second level punches come into the contact
with the viscoelastic half-space. For this purpose, first it needs to investigate the vari-
ation in time of the vertical displacement of the point M of the half-space boundary
(Fig. 9.1). The point M is located at the center of the square and the vertices of which
are centers of the contact spots of the first level punches. For simplicity, the action
of these four punches is replaced by the load of intensity 4P1(t) distributed along
the circumference of radius l2 = l

/√
2, and the action of other first level punches is

replaced by the nominal pressure distributed outside the circle of radius A. Based on
(9.3), the radius A is determined from the condition π A2 = 4

/
N̄1.

The vertical displacement uz(r, t) of the viscoelastic half-space (characterized by
the constant Poisson ratio) due to the action of the axisymmetric normal pressure
p(r, t) applied over a circular area of radius a(t) is determined by the following
expression [18]
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uz(r, t) = 4
(
1 − ν2

)

π

t∫

0−

J (t − τ)
∂

∂τ

⎛

⎝
a(τ )∫

0

p(ρ, τ )K
(
2
√

ρr

ρ + r

)
ρdρ

ρ + r

⎞

⎠ dτ, (9.6)

where K(x) is the complete elliptic integral of the first kind. It is convenient to put
the origin at the point M (Fig. 9.1). Based on the proposed replacement of the action
of punches with the circumferentially distributed load 2P1(t)δ(r − l2)

/
(πr) (δ(x)

is the Dirac delta function) and the nominal pressure p̄(t), we obtain from Eq. (9.6)
the following expression for the half-space boundary displacement for r < l2

uz(r, t) = 8
(
1 − ν2

)

π2l2
K

(
r

l2

) t∫

0−

J (t − τ)
dP1(τ )

dτ
dτ + D∞

−4
(
1 − ν2

)

π
AE

( r

A

) t∫

0−

J (t − τ)
d p̄(τ )

dτ
dτ,

(9.7)

where E(x) is the complete elliptic integral of the second kind and D∞ is the dis-
placement of the half-space boundary loaded everywhere with the nominal pressure.
Hence, the displacement of the point M , i.e., r = 0, provided the constant nominal
pressure p̄0 applied to the system, as follows from (9.7) and the equilibrium condition
π A2

1 p̄(t) = 5P1(t), is

uz(0, t) = 2
(
1 − ν2)

(
2A2

1

5l2
− A

)
p̄0 J (t) + D∞. (9.8)

The vertical displacement of any fixed first level punch is determined by the
magnitude of the indentation depth D(t) of the periodic system of the first level
punches under the given load p̄(t). By analogy with [14], we find the function of the
additional displacement d(t), which is

d(t) = D(t) − D∞ = s�2
(
s
2

)
Cas1(t)

22−s�(s)Rs−1

−2
(
1 − ν2

)
⎛

⎝
√
A2
1 − a21(t) − 2A2

1

5
√
l2 − a21(t)

⎞

⎠ p̄0 J (t).

(9.9)

For further investigation, we introduce a function h(t) equal to the difference
between the displacements of the points O and M (Fig. 9.1). Based on Eqs. (9.8) and
(9.9), this function is calculated by the following expression



122 I. G. Goryacheva and A. A. Yakovenko

h(t) = D(t) − uz(0, t) = s�2
(
s
2

)
Cas1(t)

22−s�(s)Rs−1

−2
(
1 − ν2)

⎛

⎝
√
A2
1 − a21(t) − 2A2

1

5
√
l2 − a21(t)

+ 2A2
1

5l2
− A

⎞

⎠ p̄0 J (t).

(9.10)

Together with Eq. (9.5), which determines the dependence of the radius of a single
contact spot on time, Eq. (9.10) allows us to calculate the value of the function h(t)
at each time. The time instant t∗ when the value of the function h(t) becomes equal
�h, i.e., �h = h(t∗), determines the moment when the second level punches come
into contact with the half-space. It also follows that if h(0) ≥ �h, then the two-level
contact occurs immediately from the beginning of the interaction process.

9.3.3 Analysis of the Indentation of the First Level Punches
into the Half-space

Let us first analyze the dependence h(a1). Based on Eqs. (9.5) and (9.10), we get

h(a1) = s�2
(
s
2

)
Cas1

22−s�(s)Rs−1

(
1

−
20sa1

(√
A2
1 − a21 − 2A2

1

5
√

l2−a21
+ 2A2

1
5l2

− A

)

(s + 1)A2
1

(
10

(
arccos

(
a1
A1

)
+ a1

A1

√
A2
1 − a21

)
− 8

(
arccos

( a1
l

) + a1√
l2−a21

))

⎞

⎟⎟
⎠ .

Figure9.2 illustrates the function h(a1) and its derivative for three values of the
exponent s of the shape function f (r) for the quadratic lattice (in this case, the average
number of the contact spots per unit area is defined by the expression N̄1 = 1

/
l2). As

follows from the results of calculations, the function h(a1) is monotonically increas-
ing (Fig. 9.2b shows that the derivative of the function h(a1) is positive everywhere).
As shown in [14], at a constant nominal pressure, the dependence of the radius of
the contact spot of the single first level punch with the viscoelastic half-space is
described by a monotonically increasing function. Consequently, the difference in
the displacements of the points O (the center of the contact area of the first level
punch with the half-space) and M (the square center where the contact of the second
level punch with the half-space should begin) also increases with time.

Let us analyze the dependence of the difference in the displacements of the points
O and M (Fig. 9.1) on time for certain types of the creep function J (t). We consider
the viscoelastic model of the standard linear solid and the creep function of which
has the following form [19]
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(a) (b)

Fig. 9.2 Dependence of the function h (a) and its derivative (b) on the radius of the single contact
spot a1 for different punch shapes (s = 1 for the red lines, s = 2 for the blue lines, s = 3 for the
green lines), and C = 1, l = 0.5R

J (t) = Tε

E0Tσ

(
1 −

(
1 − Tσ

Tε

)
exp

(
− t

Tε

))
, (9.11)

where E0 is the instantaneous elastic modulus, Tσ is the relaxation time and Tε is
the creep (retardation) time. Substituting Eq. (9.11) into Eq. (9.10), we obtain an
expression that with Eq. (9.5) allows us to determine the moment t∗ when the second
level punches come into contact with the half-space. This moment is determined
from the condition h(t∗) = �h.

Figure9.3 illustrates the dependence h(t) for spherical punches with f (r) =
r2

/
(2R) for different values of the ratio of creep and relaxation times, as well as for

different densities of location of punches in the system (the different pitch l of the
quadratic lattice). As follows from the calculation results, the value h for a fixed
instant of time growswith an increase in the parameter T = Tε/Tσ (for a fixed instan-
taneous elastic modulus E0), that is, in the viscosity of the half-space material, and
with an increase in the pitch l of the quadratic lattice. Therefore, these parameters, as
well as the values of the height difference �h and the applied nominal pressure p̄0,
influence the fact whether the second level punches will come into contact with the
viscoelastic half-space. So, if �h = 0.04R, then with the values of the parameters
under consideration, the two-level contact does not occur at T = 2 or at l = 0.5R.
Note that in the graphs of Fig. 9.3, the dotted lines correspond to the elastic case with
the long-term (equilibrium) elastic modulus E∞ = E0Tσ /Tε.
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(a) (b)

Fig. 9.3 Dependencies of the difference of the displacements of the points O and M on time (a)
for different values of T (T = 2 for the red line, T = 5 for the blue line, T = 10 for the green line)
at l = 0.75R; and (b) for different values of the pitch l (l = 0.5R for the red line, l = 0.75R for
the blue line, l = R for the green line) at T = 10; p̄0 = 0.01E0

/ (
1 − ν2

)

9.4 Two-level Contact of the System of Punches
and the Half-space

If the conditions for the second level punches coming into contact are fulfilled, the
two-level contact occurs. For the asymptotic analysis of the contact characteristics in
the two-level contact, we use the correspondence elastic solution with instantaneous
and long-term elastic modules of the viscoelastic material under consideration.

9.4.1 Asymptotic Analysis of the Contact Characteristics

A general approach to solving the problems of indentation of a multi-level periodic
system of punches into an elastic half-space is presented in [20]. Fixing the punch of
one of the two levels and replacing the action of the nearby four punches of another
level, as well as four punches of the same level with loads distributed over the circles
of radii l2 and l, respectively, and all other punches of both levels with the nominal
pressure, we obtain the following system of equations (i = 1, 2)

p̄ = 1

l2
(P1 + P2) , (9.12)

π A2
i p̄ = 5Pi + 4Pj , (9.13)
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Pi = 2s−1s2�2
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(9.14)
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l22 − a22

− 4P2√
l22 − a21

⎞

⎠

−
⎛

⎝ 4P2√
l2 − a22

− 4P1√
l2 − a21

⎞

⎠ − 2π p̄
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1 − a21 −

√
A2
2 − a22

)⎞

⎠ .

(9.15)

Note that in Eqs. (9.13) and (9.14) i �= j .
Table9.1 gives the values Pi , ai , Ai for spherical punches of each level (i = 1, 2)

calculated by Eqs. (9.12)–(9.15) for the instantaneous and long-term elastic modulus
presented in the table at p̄0 = 0.06E0

/ (
1 − ν2

)
, l = 0.75R,�h = 0.05R. It follows

from the results that the load applied to the single punch of the first level decreases,
and the load applied to the single punch of the second level increases with time. The
contact spot’s radii ai for punches of both levels increase over time. Note that the
growth of the contact radius is limited by the condition a1 + a2 ≤ l2, that is, the sum
of the radii of the contact spots does not exceed a half of the length of the diagonal
of the lattice square.

The radii Ai (i = 1, 2) of the areas (r > Ai ) inwhich, according to the usedmodel,
the nominal pressure acts are practically constant as follows from the calculation
results presented inTable9.1. Therefore, for the correct application of the localization
principle for investigating the two-level contact in the viscoelastic case, we assume
that the radii A1 and A2 do not change in time: A1(t) = A1(t∗) and A2(t) = A2(t∗),
where t∗ ≥ 0.

Table 9.1 Instantaneous and long-term values of the contact characteristics of the two-level contact

E
P1

(
1−ν2

)

R2E0

P2
(
1−ν2

)

R2E0

a1
R

a2
R

A1
R

A2
R

E0 0.0335 0.0003 0.2815 0.0567 0.9454 0.8472

E∞ = 0.8E0 0.0327 0.0011 0.2976 0.0926 0.9432 0.8497

E∞ = 0.5E0 0.0308 0.0029 0.3302 0.1455 0.9379 0.8555

E∞ = 0.4E0 0.03 0.0038 0.3447 0.1662 0.9355 0.8581
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9.4.2 Solution of the Viscoelastic Two-level Periodic Problem

As it was shown in Sect. 9.4.1, if the condition a1 + a2 ≤ l2 is precisely satisfied,
the radii a1 and a2 increase over time. This fact makes it possible to derive the
viscoelastic solution based on the solution of the similar elastic problem using the
extended correspondence principle [15]. According to this principle, by replacing
pi/E with

t∫

0−

J (t − τ) (∂pi/∂τ) dτ

and, consequently, p̄/E and Pi/E with

t∫

0−

J (t − τ) (d p̄/dτ) dτ

and
t∫

0−

J (t − τ) (dPi/dτ) dτ,

respectively, and taking into account Eqs. (9.14)–(9.15) and the assumption that the
radii A1 and A2 do not depend on time, we obtain the following system of equations
for calculation of the contact characteristics in the two-level periodic contact problem
for the viscoelastic half-space

Qi (t) = 2s−1s2�2
( s
2

)
Cas+1

i (t)

(s + 1)�(s)
(
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)
Rs−1

+ 8Q j (t)

π

⎛
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l22 − a2i (t)

− arcsin

(
ai (t)

l2

)
⎞

⎠

+8Qi (t)

π

⎛

⎝ ai (t)√
l2 − a2i (t)

− arcsin

(
ai (t)

l

)
⎞

⎠ + 2 p̄0 J (t)

(
A2
i arcsin

(
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)
−
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√
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)
, (9.16)
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−
√
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)
, (9.17)
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where Qi (t) = ∫ t
0− J (t − τ) (dPi/dτ) dτ (i = 1, 2). It is also necessary to add the

equilibrium condition (9.12) to (9.16)–(9.17). The values of the radii A1 and A2 are
taken as follows

π A2
i (t∗) p̄0 = 5Pi (t∗) + 4Pj (t∗). (9.18)

In particular, if t∗ �= 0, that is, when the value of the nominal pressure is not suffi-
cient for the two-level contact to occur immediately, the values A1(t) = A1(t∗) and
A2(t) = A2(t∗) are calculated from the following expressions

π A2
1(t∗) p̄0 = 5P1(t∗) + 4P2(t∗) = 5l2 p̄0 =⇒ A1 =

√
5

π
l,

π A2
2(t∗) p̄0 = 5P2(t∗) + 4P1(t∗) = 4l2 p̄0 =⇒ A2 = 2l√

π
.

Equation (9.12) for this case takes the following form

t∫

0−

J (t − τ)
d p̄(τ )

dτ
dτ = 1

l2
(Q1(t) + Q2(t)) . (9.19)

The resulting system of Eqs. (9.16)–(9.19) enables to determine the dependencies
on time of the radii of the contact spots of the punches of both levels, as well as the
functions Q1(t) and Q2(t), which are then used to calculate the dependencies on
time of the load distribution between the punches of both levels, that is, the functions
P1(t) and P2(t).

Figure9.4 illustrates the dependencies a1(t) and a2(t) for two values of the nom-
inal pressure p̄0, one of which immediately provides the two-level contact, and the
other provides it after some time. The results are calculated for the system of spher-
ical punches ( f (r) = r2

/
(2R)). As follows from the results, the radii of the contact

spots increase in time, tending to the constant values that correspond to the elas-
tic solutions with the long-term elastic modulus. Note that the radii of the contact
spots of the second level punches (red lines) increase significantly compared with
the punches of the first level. For example, for the parameters used in calculations,
in the case when the two-level contact occurs from the beginning of the indenta-
tion process (Fig. 9.4a), the radius a1 increases about 1.2 times, while the radius a2
increases 2.7 times to the time instant t = 5Tε. Figure9.4b illustrates the case when
the second level punches come into contact with the half-space only some time after
the beginning of the indentation process.
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(a) (b)

Fig. 9.4 Dependencies of the radii ai (i = 1, 2) of the contact spots of each level on time at
l = 0.75R, T = 2.5, �h = 0.05R and p̄0 = 0.06E0

/ (
1 − ν2

)
(a); p̄0 = 0.025E0

/ (
1 − ν2

)
(b)

9.4.3 Analysis of the Dependence of the Real Contact Area
on Time

Let us introduce the following function that characterizes the evolution in time of
the relative contact area for the two-level system of punches located in the nodes of
quadratic lattice (Fig. 9.1)

λ(t) = πa21(t)N̄1 + πa22(t)N̄2 = π

l2
(
a21(t) + a22(t)

)
. (9.20)

Figure9.5 illustrates the dependencies of the relative contact area on time at dif-
ferent values of the pitch l of the quadratic lattice and different values of the height
difference of the spherical punches of the two levels. The results are obtained for the
viscoelastic model of the standard linear solid with T = 2.5. The results indicate that
a decrease in the punch height difference and the distance between them leads to an
increase in the relative contact area. Depending on the distance between the punches
and their height difference, the contact area forms from interaction with the half-
space of the only first level punches or both levels. So, if p̄0 = 0.025E0

/ (
1 − ν2

)
,

the transition from the single-level contact to the two-level contact occurs only for the
square lattice with l = 0.75R as follows from the results presented in Fig. 9.5a (red
line). In the other two cases, the two-level contact is observed from the beginning of
the interaction process. For the higher nominal pressure p̄0 = 0.06E0

/ (
1 − ν2

)
, in

the case of the system with �h = 0.05R, the punches of the second level are in con-
tact with the half-space from the beginning of the interaction process, for the system
with �h = 0.075R the second level of punches comes into contact at t = 1.03Tε
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(a) (b)

Fig. 9.5 Dependencies of the relative contact area on time a at �h = 0.05R and p̄0 =
0.025E0

/ (
1 − ν2

)
(l = 0.75R for the red line, l = R for the blue line, l = 1.25R for the green

line); b at l = 0.75R and p̄0 = 0.06E0
/ (

1 − ν2
)
(�h = 0.05R for the red line, �h = 0.075R for

the blue line, �h = 0.1R for the green line)

(blue line), and in the case of the system with �h = 0.1R, the two-level contact is
not possible (see Fig. 9.5b).

9.5 Conclusions

This study investigates the contact of the two-level periodic system of axisymmetric
punches with the viscoelastic half-space under the action of the constant nominal
pressure. Application of the localization method and the extended correspondence
principle make it possible to analyze the dependence on time of the real contact area
of the punch system with the half-space, and to study the conditions provided the
contact of the punches of both levels with the half-space.

It is shown that the contact of the second level punches with the viscoelastic
half-space is guaranteed not only by the specific geometric parameters of the system
(the pitch of the periodic lattice and the height difference of the punches of the two
levels), but also by the defined values of the viscoelastic properties of the half-space
material. In this connection, there are three possible cases: the two-level contact
occurs immediately, the two-level contact occurs after some time, or the two-level
contact will never occur. The latter is valid only if thematerial of the viscoelastic half-
space has a non-zero long-term elastic modulus, that is, the material is characterized
by the limited creep.

Analysis of the real contact area evolution showed that the radii of contact spots of
the punches of both levels increase in time at least for not tight contact. If the second
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level punches come into contact (note that this condition is realized for the certain
geometric characteristics of the periodic punch system and the certain viscoelastic
properties of the half-space), the relative real contact areamaygrowconsiderably over
time. This fact must be taken into account for analysis of the contact characteristics
of various tribounits.
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Chapter 10
On an Axisymmetric Contact Problem
for a Piecewise-Homogeneous Space
with Disk-Shaped Crack

Vahram N. Hakobyan, Aram H. Grigoryan, and Harutyun A. Amirjanyan

Abstract The article discusses an axisymmetric stress state of a piecewise-
homogeneous space of two dissimilar half-spaces, which on the plane of the junction
of dissimilar half-spaces contains a circular disk-shaped interfacial crack, on one of
the sides of which an absolutely rigid stamp (circular shim) is pressed with adhe-
sion, the radius of which is less than the radius of the crack. The governing equation
of the problem is derived in the form of a single singular integral equation of the
second kind with respect to the complex combination of reduced unknown contact
stresses, the solution of which is constructed by the numerical-analytical method of
mechanical quadratures. A numerical calculation was carried out and the regularities
of the change in the Cherepanov-Rice integral on the boundary circle of the crack
and the rigid displacement of the shim depending on the physical–mechanical and
geometric characteristics of the problem were studied.

Keywords Elasticity · Compound space · Interfacial coin-shaped crack · Stamp ·
Axisymmetric contact problem

10.1 Introduction

The development of contact and mixed boundary value problems of the theory of
elasticity and fracture mechanics is aimed at developing new methods for more
accurate calculations of various constructions and their parts containing various types
of stress concentrators in order to increase their durability. Many fundamental results
in this direction are given in well-known monographs [1–5]. In this area, we note
axisymmetric contact and mixed problems, the solution of which often leads to
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mathematical and computational difficulties. Here it should be noted that the use of
rotation operators in solving axisymmetric contact andmixed problems leads them to
plane problems. However, after solving these problems, when determining the real
stresses or displacements, often mathematical or computational difficulties arise.
Let us point out [6–11], where solutions are constructed for several axisymmetric
contact and mixed problems for homogeneous and piecewise-homogeneous spaces
with disk-like defects. In [8–11], exact solutions of some problems were constructed
for a homogeneous and piecewise-homogeneous space with a disk-shaped crack,
on one of the sides of which a rigid disk-shaped inclusion is pressed, the radius of
which is equal to the radius of the crack, under different contact conditions. Similar
problems when the inclusion radius is less than the crack radius, as we know, for both
homogeneous and piecewise-homogeneous space with a disk-shaped crack have not
been considered. Here we consider the axisymmetric stress state of a piecewise-
homogeneous space with a disk-shaped crack, one of the edges of which is pressed
in by a rigid shim whose radius is less than the crack radius.

10.2 Statement of the Problem and Derivation
of Governing Equations

Let us consider the axisymmetric stress state of a piecewise-homogeneous space
obtained by connecting two heterogeneous half-spaces with Lame´ coefficients
μ1, λ1 andμ2, λ2, respectively, occupying half-spaces z ≥ 0 and z ≤ 0, respectively,
in a cylindrical coordinate systemOrϕz. It is assumed that a piecewise-homogeneous
space on the plane of the junction of dissimilar half-spaces z = 0 contains a circular
disk-shaped interfacial crack with a radius a. On the lower side of the space, using a
concentrated load of magnitude P0 with adhesion, a rigid stamp (circular washer) is
pressed with a flat base of a radius b that is less than the radius of the crack (b < a).
Figure 10.1 shows the axial section of the piecewise-homogeneous space.

The problem can be mathematically represented as the following boundary value
problem:

Fig. 10.1 Axial section of
the piecewise-homogeneous
space
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1(r, 0) = u2(r, 0);
w1(r, 0) = w2(r, 0);
σ (1)
z (r, 0) = σ (2)

z (r, 0);
τ (1)
r z (r, 0) = τ (2)

r z (r, 0);

(a < r < ∞) (10.1a)

⎧
⎨

⎩

σ (1)
z (r, 0) = 0; τ (1)

r z (r, 0) = 0; (0 < r < a)

σ (2)
z (r, 0) = 0; τ (2)

r z (r, 0) = 0; (b < r < a)

w2(r, 0) = −δ; u2(r, 0) = 0. (0 < r < b)
(10.1b)

Here, w j (r, z) and u j (r, z)( j = 1, 2) are the normal and radial displacement
components, respectively, for the upper and lower half-spaces in a cylindrical coordi-
nate system, σ ( j)

z (r, z) and τ
( j)
r z (r, z) are the normal and tangential stress components,

and δ is the rigid displacement of the stamp. It is required to study the behavior of
rigid displacement of the stamp and the Cherepanov-Rice J -integral depending on
the physical–mechanical and geometrical parameters of the problem.

To solve the problem, we will use discontinuous solutions of the equations of the
axisymmetric theory of elasticity for a piecewise-homogeneous space [10]:

u2(r, 0) = −b0
�

L1
1,1[u] − b1

�
L1
1,0[w] + d0

�
L0
1,0[σ ] − d1

�
L0
1,1[τ ];

w2(r, 0) = −b1
�

L1
0,1[u] − b0

�
L1
1,0[w] − d1

�
L0
0,0[σ ] + d0

�
L0
0,1[τ ];

σ (1)
z (r, 0) = b2

�
L2
0,1[u] + b3

�
L2
0,0[w] + b0

�
L1
0,0[σ ] + b1

�
L1
0,1[τ ];

τ (1)
r z (r, 0) = b3

�
L2
1,1[u] + b2

�
L2
1,0[w] + b1

�
L1
1,0[σ ] + b0

�
L1
1,1[τ ];

(10.2)

u1(r, 0) = u2(r, 0) + u(r); w1(r, 0) = w2(r, 0) + w(r);
σ (2)
z (r, 0) = σ (1)

z (r, 0) − σ(r); τ (2)
r z (r, 0) = τ (1)

r z (r, 0) − τ(r).

The notation introduced in [10] is retained here:

Lk
m,n[ϕ] =

a∫

0

Wk
m,n(r, ξ)ϕ(ξ)dξ ; Wk

m,n(r, ξ) =
∞∫

0

t k Jm(tr)Jn(tξ)dt

d0 = θ
(1)
1 − θ

(2)
1

2
; d1 = θ

(2)
2 + θ

(1)
2

2
; b0 = θ

(1)
2

(
θ

(1)
2 + θ

(2)
2

)
− θ

(1)
1

(
θ

(1)
1 − θ

(2)
1

)
;

b1 = θ
(1)
1

(
θ

(1)
2 + θ

(2)
2

)
− θ

(1)
2

(
θ

(1)
1 − θ

(2)
1

)
;

� =
[(

θ
(2)
2 + θ

(1)
2

)2 −
(
θ

(2)
1 − θ

(1)
1

)2
]

;
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θ
( j)
1 = μ2

j

λ j + 3μ j
; θ

( j)
2 = μ j

(
λ j + 2μ j

)

λ j + 3μ j
( j = 1, 2)

b2 = 2
(
θ

(1)
1 b0 + θ

(1)
2 b1 − θ

(1)
1 �

)
; b3 = 2

(
θ

(1)
1 b1 + θ

(1)
2 b0 − θ

(1)
2 �

)

It is not difficult to verify that in this case

σ (1)
z (r, 0) − σ (2)

z (r, 0) = −σ (2)
z (r, 0) = σ(r);

τ (1)
r z (r, 0) − τ (2)

r z (r, 0) = −τ (2)
r z (r, 0) = τ(r); (10.3)

where σ(r) and −τ(r) are, respectively, unknown contact pressure and tangential
contact stresses acting under the stamp.

Using the last two relations (10.2), we satisfy the first two conditions (10.1b).
Further, following the works [8, 10], we apply to the first and second of the
obtained equations, respectively, the known rotation operators I , I1, and introduce
the functions

{w∗(t); σ∗(t)} = 2

π

a∫

t

ξ{w(ξ); σ(ξ)}
√

ξ 2 − t2
dξ ;

{u∗(t); τ∗(t)} = 2t

π

a∫

t

{u(ξ); τ(ξ)}
√

ξ 2 − t2
dξ ; (10.4)

and their complex combinations

χ∗(x) = σ∗(x) − iτ∗(x); V ′
∗(x) = u′

∗(x) + iw′
∗(x);

(w∗(−t) = w∗(t); u∗(−t) = −u∗(t); σ∗(−t) = σ∗(t); τ∗(−t) = −τ∗(t)).
(10.5)

As a result, at the following relation is obtained:

b3V
′
∗(x) + b1χ∗(x) + ib0

π

a∫

−a

χ∗(t)
t − x

dt + ib2
π

a∫

−a

V ′∗(t)
t − x

dt = 2�c∗
π

(−a < x < a),

⎛

⎝c∗ = πb1
2�

σ∗(0) + πb3
2�

u′
∗(0) + b0

2�

a∫

−a

τ∗(t)
t

dt + b2
2�

a∫

−a

w′∗(t)
t

dt

⎞

⎠. (10.6)

Note that in this case, the conditions for the equilibrium of the stamp and the conti-
nuity of displacements at the end points of the crack must be met. These conditions
are written using the functions χ∗(x) and V ′∗(x) as follows [10]
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a∫

−a

χ∗(x)dx = P0
π

;
a∫

−a

V ′
∗(x)dx = 0. (10.7)

We consider relation (10.6) as a singular integral equation with respect to the
function V ′∗(x) and write it in the form:

V ′
∗(x) − q

iπ

a∫

−a

V ′∗(t)dt
t − x

= F(x) (−a < x < a) (10.8)

Here

F(x) = −b1
b3

χ∗(x) − ib0
πb3

a∫

−a

χ∗(t)
t − x

dt + 2�c∗
πb3

; q = b2
b3

.

We solve the singular integral Eq. (10.8) under the second condition (10.7) and
express the function V ′∗(x) in terms of the function χ∗(x). It is not difficult to verify
that the ends of the integration interval ±a are automatic boundedness points and,
therefore, solution (10.8) has the following form [12]:

V ′
∗(x) = 1

1 − q2

⎡

⎣F(x) + qω(x)

π i

a∫

−a

F(s)ds

ω(s)(s − x)

⎤

⎦ (−a < x < a) (10.9)

ω(x) =
(
a + x

a − x

)iβ

; β = 1

2π
lnG; G = 1 + q

1 − q
= μ1 + æ1μ2

μ2 + æ2μ1
> 0;

æ j =λ j + 3μ j

λ j + μ j
.

Substituting in (10.9) the value of the function F(x), using the Poincaré-Bertrand
formula [13],

∫

L

dt

(t − t0)

∫

L

ϕ(t, t1)dt1
t1 − t

= −π2ϕ(t0, t0) +
∫

L

dt1

∫

L

ϕ(t, t1)dt1
(t1 − t)(t − t0)

,

integral value [14]

a∫

−a

ds

ω(s)(s − x)
= π i

sh(πβ)

[

1 − ch(πβ)

ω(x)

]
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and taking into account that in the considered case χ∗(x) = 0 outside the interval
(−b, b), we obtain the following formula for the function V ′∗(x):

V ′
∗(x) =

(
B

1 − q2
− b0

b2

)

χ∗(x)

+ qBω(x)

π i
(
1 − q2

)

b∫

−b

χ∗(s)ds
ω(s)(s − x)

+ f (x) (−a < x < a) (10.10)

(

f (x) = Aqω(x)
(
1 − q2

)
sh(πβ)

; A = 2�c∗
πb3

; B = b0b3 − b1b2
b2b3

;
)

Further, using (10.10), satisfying the second of conditions (10.7), taking into
account the first condition (10.7), we obtain another relation

b∫

−b

χ∗(s)
ω(s)

ds = A∗C∗ − B∗P0, (10.11)

(

A∗ = 2æ1ab2β

ϑ
(2)
2 μ2

1sh(πβ)
; B∗ = 2b0μ2

2

πæ2ϑ
(2)
2 b2

sh(πβ)

)

.

which must be satisfied by the function χ∗(x)—except for the first condition (10.7).
Now let us turn to the last two conditions (10.1b). Using the first two relations

(10.3), we satisfy these conditions. Then, applying the operator I1 to the first of
the equations obtained, the operator I to the second, differentiating the resulting
equations with respect to x and passing to the functions V ′∗(x) and χ∗(x), we obtain
the following integral equation:

V ′
∗(x) + d1

b1
χ∗(x) + ib0

πb1

a∫

−a

V ′∗(s)ds
(s − x)

− id0
πb1

b∫

−b

χ∗(s)ds
(s − x)

= �δ

πb1
(−b < x < b)

Further, with the help of relations (10.6) and (10.10), the function V ′∗(x) is
excluded. As a result, after some calculations, to determine the complex combi-
nation of contact stresses under the stamp, the following singular integral equation
of the second kind is obtained:
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χ∗(x) − q∗
π i

b∫

−b

χ∗(s)ds
(s − x)

+
b∫

−b

K (x, s)χ∗(s)ds = Q(x) (−b < x < b), (10.12)

which must be considered under the first condition (10.7) and condition (10.11).
Here

K (x, s) = −2ϑ(2)
2 μ2

1

π iæ1b2

[
ω(x)

ω(s)
− 1

]
1

s − x
;

Q(x) = −2C∗
π

g(x) + 2μ2
2

πæ2ϑ
(2)
2

δ;

g(x) = ω(x)

sh(πβ)
+ 2b0μ2

2

æ2b2ϑ
(2)
2

; q∗ = ϑ
(2)
1

ϑ
(2)
2

.

10.3 Solution of the Governing Singular Integral Equation

The solution of Eq. (10.12) will be constructed by the method of mechanical quadra-
tures [16].Using a changeof variables s = bξ, x = bη,we formulateEq. (10.12) and
conditions (10.7) and (10.11) on the interval (−1, 1) and introduce the dimensionless
unknown function ϕ(η), the constants δ∗ and C by the formulas

ϕ(ξ) = bχ∗(bξ)

P0
; δ∗ = μ2bδ

P0
; C = 2bC∗

π P0

the following singular integral equation is obtained:

ϕ(ξ) − q∗
π i

1∫

−1

ϕ(ξ)dξ

(ξ − η)
+

1∫

−1

K∗(η, ξ)ϕ(ξ)dξ = −Cg∗(η) + 2μ2

πæ2ϑ
(2)
2

δ∗

(−1 < x < 1) (10.13)

under conditions

1∫

−1

ϕ(ξ)dξ = 1

π
;

1∫

−1

ϕ(ξ)dξ

ω∗(ξ)
= A∗C − B∗ (10.14)

here
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K∗(η, ξ) = −2ϑ(2)
2 μ2

1

π iæ1b2

(
ω∗(η) − ω∗(ξ)

ω∗(ξ)(ξ − η)

)

; ω∗(η) =
(

λ − ξ

λ + ξ

)−iβ

;

g∗(η) = ω∗(η)

sh(πβ)
+ 2b0μ2

2

æ2b2ϑ
(2)
2

;

A∗ = πλæ1b2β

μ2
1ϑ

(2)
2 sh(πβ)

; B∗ = 2b0 μ2
2sh(πβ)

πæ2b2ϑ
(2)
2

; λ = a

b
> 1.

The solution of Eq. (10.13) under conditions (10.14) can be represented as the
sum of two solutions:

ϕ(η) = C ϕ1(η) + δ∗ϕ2(η) ,

where ϕ1(η) is the solution of (10.13) in the case when the right side is − g∗(η), and
ϕ2(η) is the solution of (10.13) in the case when the right side is 2μ2/πæ2ϑ

(2)
2 . Then

from the conditions (10.14) for determining the constants C and δ∗ the following
system of algebraic equations is obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C

1∫

−1

ϕ1(η)dη + δ∗

1∫

−1

ϕ2(η)dη = 1/π

C

⎡

⎣

1∫

−1

ϕ1(η)dη

ω∗(η)
− A∗

⎤

⎦ + δ∗

1∫

−1

ϕ2(η)dη

ω∗(η)
= −B∗

(10.15)

As above, it is easy to check that the end points of the integration interval are
points of automatic boundedness and the solution of Eq. (10.14) can be represented
as:

ϕ j (η) = ϕ∗
j (η)(1 + η)iγ (1 − η)−iγ ( j = 1, 2) (10.16)

here

γ = lnG

2π
= 1

2π
ln æ2 , G = 1 + q∗

1 − q∗
,

and ϕ∗
j (η) ( j = 1, 2)–smooth continuous bounded functions on the interval [− 1,1].

Then, substituting the value of the functions ϕ j (t) ( j = 1, 2) from (10.16) into
(10.14) and (10.15), using the quadrature formulas [16], according to the usual proce-
dure, the systems of algebraic equations with respect to the values of the unknown
functions ϕ∗

j (ηi ) ( j = 1, 2; i = 1 − N ) at the collocation points and constants δ∗
and C .

After solving these systems, using the Lagrange formula, you can restore the func-
tions ϕ∗

j (η) and determine all the necessary mechanical characteristics. In particular,
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for dimensionless crack opening, we can use the formula

w(r) = −1

r

d

dr

a∫

r

sw∗(s)√
s2 − r2

ds = −
a∫

r

w′∗(s)√
s2 − r2

ds = −Im

a∫

r

V ′∗(s)√
s2 − r2

ds,

from which we get

V (x) = w(ax)

a
= −Im

1∫

x

ψ(t)√
t2 − x2

dt

(

ψ(t) = V ′∗(at)
a

)

,

where the function V ′∗(t) is given by formula (10.10) and the function ψ(t) using the
unknown function ϕ(t) can be written as follows:

ψ(t) =
{

æ2ϑ
(2)
1 P0

2abμ2
2

ϕ(λt) + f∗(at)ω(at)
(
0 < t < b

a

)

f∗(at)ω(at)
(
b
a < t < 1

) (10.17)

f∗(at) = æ2ϑ
(2)
2

2λiμ2

⎡

⎣

1∫

−1

ϕ(ξ)dξ

ω∗(ξ)(ξ − λt)
− π iæ1b2C

2ϑ(2)
2 μ2

1sh(πβ)

⎤

⎦P∗
0

(

P∗
0 = P0

πb2μ2

)

.

Let us also write a formula for determining the Cherepanov-Rice J -integral. To
do this, we will use the expressions for the real stresses outside the crack on the plane
of the junction of heterogeneous half-spaces through the images of the functions of
stress jumps and displacements on the crack [10]:

σ (1)
z (r, 0) = b1
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d

dr

b∫

0

tτ∗(t)dt√
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− b3
�r

d

dr

a∫

0
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r2 − t2

; (r > a)
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r z (r, 0) = −b1

�

d

dr

b∫

0

σ∗(t)dt√
r2 − t2

− b3
�

d

dr
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0

u′∗(t)dt√
r2 − t2

.

(10.18)

Obviously, the first terms in both relations (10.18) are bounded functions on the
circle r = a. Further, considering that

d

dr

a∫

0

tw′∗(t)dt√
r2 − t2

= r
d

dr

a∫

0

w′∗(t)dt√
r2 − t2

+
a∫

0

w′∗(t)dt√
r2 − t2

− d

dr

a∫

0

w′∗(t)dt√
r + t

,

relations (10.18) can be represented as:
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here
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bounded function on the circle r = a.
Using the value of function ψ(t) formula (10.19) will take the following form:

σ (1)
z (ax, 0) − iτ (1)

r z (ax, 0) = ib3
�

d

dx

a∫

0

ψ(t)dt√
x2 − t2

+ �(ax) (x > 1) (10.20)

Substituting the valueψ(t) from (10.17) into (10.20), after some transformations,
using the values of the integral [14]

b∫

a

(y − a)α−1(b − y)β−1(cy + d)γ dy

= (b − a)α+β−1

(ac + d)−γ
B(α, β) 2F1

(

α,−γ, α + β,
c(a − b)

ac + d

)

;
(Reα, Reβ > 0, arg(d + cb)/(d + ca) < π)

For case a = 0, b = 1, c = −1, d = x, α → 1 + iβ, β → 1 − iβ, γ = −1/2
and relation for hypergeometric functions 2F1(α, β, γ, z) [15]

2F1(α, β, γ, z) =(1 − z)γ−α−β �(γ )�(α + β − γ )

�(α)�(β)

2F1(γ − α; γ − β; γ − α − β + 1; 1 − z)+
+ �(γ )�(γ − α − β)

�(γ − α)�(γ − β)2
F1(α;β;α + β − γ + 1; 1 − z),

the complex combination of real stresses can be represented in the following form:



10 On an Axisymmetric Contact Problem for a Piecewise-Homogeneous … 143

σ (1)
z (ax, 0) − iτ (1)

r z (ax, 0) = − i
√

πb3�(1 − iβ) f∗(a)(x + 1)i β√
2�ch(πβ)�(1/2 − iβ)(x − 1)1/2+i β

+ �∗(x)

(x > 1)

where �∗(x) is a bounded function on the circle x = 1, the value of which is not
given here because of its cumbersomeness. Then for the complex stress intensity
factor on the circle r = a we obtain the expression:

KI (a) − i K I I (a) = lim
r→a+0

√
2π(x − 1)1/2+iβ

[
σ (1)
z (ax, 0) − iτ (1)

rz (ax, 0)
]

= −π2iβb3�(1 − iβ) f∗(a)

�ch(πβ)�(1/2 − iβ)
. (10.21)

Using the value of the complex stress intensity factor from (10.21) and expressing
f∗(a) through the unknown function ϕ(ξ), for the Cherepanov-Rice J -integral we
obtain the following formula [17]
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(10.22)
(

μ = μ1

μ2
; μ̃ = 1

2

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)

= [μ(1 − ν2) + 1 − ν1]

4μ1

)

.

Thus, after solving the defining equation, the Cherepanov-Rice J -integral can be
determined by formula (10.22).

10.4 Numerical Analysis

Anumerical calculation has been carried out and regularities of changes in the contact
stresses acting under the stamp, crack opening, dimensionless rigid displacement of
the stamp and Cherepanov-Rice J (a)-integrals on a circle r = a depending on the
ratioμ = μ1/μ2 and parameter λ = a/b > 1 in the case of fixed values of Poisson’s
ratios ν1 = 0.25; ν2 = 0.3 have been carried out and studied. At the same time,
it is assumed that P∗

0 = 0.1. The results of numerical calculations are presented in
the form of graphs. In Figs. 10.1 and 10.2, respectively, graphs of crack opening
depending on the parameters μ and λ = a/b > 1.
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Fig. 10.2 Rigid
displacement δ∗ of the stamp
depending on λ

Fig. 10.3 Rigid
displacement δ∗ of the stamp
depending on μ

Figures 10.2 and 10.3 shows, respectively, the graphs of the dimensionless rigid
displacement δ∗ of the stamp depending on the parameters μ and λ.

Figures show that with an increase in the parameter λ, which can be interpreted
as an increase in the crack radius at a constant stamp radius, the rigid displacement
of the stamp increases tending to a certain limit, which is a rigid displacement of the
stamp pressed into the elastic half-space made of the second material (Fig. 10.2).
An increase of the parameter μ, which can be interpreted as an increase μ1 at a
constant μ2, the reduced rigid displacement decreases tending to a certain limit,
which corresponds to the case when the upper half-space is rigid (Fig. 10.3).

Figures 10.4 and 10.5 show, respectively, the graphs of the Cherepanov-Rice
J -integrals on a circle r = a depending on the same parameters.

It is clear from the graphs that J -integral Cherepanov-Rice decreases with
decreasing stamp radius (Fig. 10.4). Figure 10.5 displays that as the parameter μ

increases; J -integral Cherepanov-Rice tends to a certain limit as well.
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Fig. 10.4 Cherepanov-rice
J -integrals depending on λ

Fig. 10.5 Cherepanov-rice
J -integrals depending on μ

10.5 Conclusion

Thus, by combining the methods of singular integral equations and the numerical-
analytical method of mechanical quadratures, the solution of the axisymmetric
contact problem for a piecewise-homogeneous space with a disk-shaped interfacial
crack is constructed. One of the sides of the space is a rigid shim, which pressed with
adhesion, the radius of which is less than the radius of the crack. Using numerical
calculations, the patterns for change of the reduced rigid displacement of the stamp
and the Cherepanov-Rice J -integral depending on the ratio of the elastic characteris-
tics of heterogeneous half-spaces and the radii of the crack and the circular shim are
clarified. It is shown that as the circular shim radius approaches the crack radius, the
Cherepanov-Rice J -integral increases, i.e., increases the likelihood of crack propa-
gation. It has also been found that the more rigid the half-space onto which the stamp
is pressed, the greater the probability of crack propagation.
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Chapter 11
High-Temperature Creep of Cast Irons

Abhijit Joshi, Konstantinos P. Baxevanakis, and Vadim V. Silberschmidt

Abstract Cast irons are a family of ferrous alloys with carbon content ranging
from 2.5 to 5%. They have a wide range of applications in automotive, industrial,
agriculture, and construction industries. Primary classification of cast irons is based
on the graphite morphology, which can be in the form of flakes, vermicular, or
spheroidal. Mechanical properties of cast irons depend on matrix microstructure and
graphitemorphology; different alloying elements can be added to improve their high-
temperaturemechanical performance. Creep is an important deformationmechanism
for high-temperature applications of cast irons. A literature review covering models
and studies of creep in cast irons are presented in this chapter. The review high-
lights limited research on the creep behaviour of cast irons especially for compacted
graphite iron (CGI). Original results from tensile and compression creep tests on
CGI are also presented, which emphasize a significant difference in creep behaviour
under tensile and compressive loading.

Keywords Cast iron ·Microstructure · High-temperature · Creep · Creep models ·
Creep testing

11.1 Introduction to Cast Iron

Iron and steels have an extremely broad range of applications ranging from industrial,
farming, building and infrastructure, domestic appliances to electronic equipment.
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High-temperature applications of steels and cast irons include automotive appli-
cations (cylinder heads, brakes, and exhaust manifolds), power plants (shafts and
casings), pressure vessels, etc. [1].

Steel and cast iron are alloys formed by combination of iron and carbon. Carbon
content in steel is up to 2.06% and in cast iron it ranges from 2.5 to 5%. Steel and
cast iron offer a wide range of material properties with yield strength ranging from
200 to 2000 MPa, high levels of temperature resistance, thermal conductivity and
toughness as well as good damping properties, high wear and corrosion resistance,
good manufacturability, and good weldability. These alloys are also almost 100%
recyclable [2].

Unlike steels and other alloys, cast irons are usually not classified according to
their chemical composition. The microstructure of final product depends strongly
upon foundry practice, the shape and size of the castings, and heat treatments used.
So, several entirely different types of cast iron can be produced starting with the
same nominal composition [2]. Based on graphite morphology, the cast irons can
be classified as grey cast iron or flake graphite iron (FGI), compacted graphite iron
(CGI), and spheroidal graphite iron (SGI). The different graphite morphologies are
shown in Fig. 11.1, and main cast irons briefly introduced below.

Grey cast iron, or flake graphite iron (FGI), contains graphite in the shape of
flakes. Under tensile load, tips of the flakes act as crack-initiation sites while the
flakes themselves provide a path for crack propagation. This failure mechanism
leads to the brittle behaviour of grey cast iron. FGI offers good wear resistance,
castability, thermal conductivity, and damping properties. Typical applications of
FGI include machine bases, brake discs and drums, engine blocks, gears, and
flywheels [2].
Ductile cast iron, or spheroidal graphite iron (SGI), has graphite in nodular or
spheroidal form. Compared to FGI, round graphite particles in SGI neither act as
obvious crack-initiation sites nor provide crack-propagation paths; hence, SGI has
much higher tensile strength. Ductile cast iron also has high levels of modulus of

(a) FGI (b) CGI (c) SGI

Fig. 11.1 Different graphite morphologies observed in deep etched cast irons [3]



11 High-Temperature Creep of Cast Irons 149

elasticity, yield strength, wear resistance, and ductility. It has good machinability
and better fatigue strength; however, the damping capacity and thermal conduc-
tivity are lower than in grey iron. Ductile iron is used in applications such as valve
and pump bodies, crankshafts, in heavy-duty gears or automobile door hinges,
and nowadays also as engine blocks [2].
Compacted graphite iron (CGI), or vermicular iron, contains graphite parti-
cles in ‘worm-shaped’, or vermicular form. Such particles are shorter, thicker
and have rounded edges. They are interconnected, forming complex coral-like
morphology that results in strong adhesion between the graphite and the iron
matrix. Such microstructure inhibits initiation and propagation of cracks, and is
the main reason of superior mechanical properties of CGI compared to FGI [4, 5].
CGI has applications in automobile exhaust manifolds, cylinder heads, cylinder
blocks, pistons, cylinder liners, brake drums, castings in hydraulic components,
and machine tools.

Other variations of cast irons include white cast iron, malleable iron, and high
alloy iron.
White cast iron has of cementite and pearlite in its matrix, formed by fast cooling.
The designation for this form of cast iron is based on white-appearing crystalline
fracture surfaces. It has excellent wear resistance and high compressive strength,
but brittleness is its main disadvantage. Typical applications of white cast iron are
mill liners, shot-blasting nozzles, railway brake shoes, rolling mill rolls, brick-
making equipment, crushers, and pulverizes [2].
Malleable iron contains carbon in the form of irregularly shaped graphite nodules
called temper carbon. Typical applications include heavy-duty bearing surfaces
in automobiles, trucks, railroad rolling stock as well as farm, and construction
machinery [2].
High-alloy irons have of content of alloying elements greater than 4% and
are used in some specific applications. The nickel-alloyed austenitic graphitic
irons are typically used in seawater pumps and valves, oil and gas produc-
tion, chemical processing plants, gas turbine casings, exhaust manifolds, and
turbochargers. High-silicon irons are used for components requiring oxidation
resistance. Si–Mo ductile irons are commonly employed for turbo manifolds,
with high-temperature-fatigue capability being a major criterion [6].

11.2 Microstructure of Cast Iron

The microstructure of cast iron includes graphite particles embedded in the matrix.
The matrix could be primarily ferritic or pearlitic, or a combination of both phases.
The ferritic matrix is a softer material with lower strength compared to the pearlitic
one, which is harder and stronger [7]. The features of cast irons such as ferrite/pearlite
content, graphite morphology, and nodularity play a key role in determining the
physical and mechanical properties. The final microstructure depends on the chem-
ical composition, cooling rates, and subsequent heat treatments (if any). FGI, CGI,
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and SGI are commercially available in different grades based on minimum ultimate
strength of the material.

SEM micrographs of CGI specimens manufactured according to EN-GJV-450
standard (Fig. 11.2a) demonstrate that most of the graphite is of vermicular form
but its other forms (mostly spheroidal) are also present. Etching of specimen reveals
the presence of ferrite, pearlite, and graphite (Fig. 11.2b). In case of CGI, the main
requirement is for a minimum of 80% graphite particles to be primarily in vermicular
(compacted) form with remaining 20% graphite particles in nodular form. Presence
of flake graphite is not permitted in CGI except in the rim zone of castings [8].
There is no standard requirement on the chemical composition or the method of
manufacture, and these are determined by the manufacturer [9, 10].

11.3 Chemical Composition of Cast Iron

Typical chemical compositions of the main types of cast irons are given in Table 11.1
[11–13].

Silicon is one of the main ingredients of cast irons. The percentages of silicon and
carbon can be altered with respect to each other to produce different microstructures
in cast irons. A higher silicon fraction of about 4% is sometimes used to improve the
oxidation resistance of cast irons. However, silicon has strong graphitizing influence,
which leads to a process called graphitization, with pearlite converted into ferrite and
graphite. Pearlite is stable up to about 425 °Cbut gradual graphitization occurs around
530 °C and accelerates significantly around 650 °C [14].

The manganese content is determined by the type of matrix required in the cast
iron. Mn is a strong pearlite promoter, so it can be as low as 0.1% for a ferritic
matrix or can be increased to 1.2% to obtain a pearlitic one [15]. Without manganese
in the iron, undesired iron sulphide (FeS) can form at grain boundaries, potentially
leading to filling defects in the castings [15, 16]. Phosphorus and sulphur are the
minor elements always present in the cast iron composition. S is generally harmful
in grey iron and should be kept to below 0.12% for grey iron and below 0.02%
for high-quality CGI. P increases the fluidity of all cast irons, but this can lead to
difficulties in casting process. For most engineering castings, it should be kept below
0.12%, but up to 1.0% may be allowed to improve the manufacturing of thin-section
castings where high strength is not required [15].

Mg plays a significant role in defining the graphite morphology of cast irons that
can change from flake to compacted and spheroidal as magnesium content varies
(Fig. 11.3). For instance, compacted graphite is formed for Mg in a range of 0.005–
0.015%.The loss of even 0.001%ofmagnesiumat the lower end can lead to formation
of flake-type graphite.

Different alloying elements can be added to improve high-temperaturemechanical
properties of cast irons. Addition of molybdenum in cast irons provides a signifi-
cant improvement in high-temperate tensile, fatigue, and creep strengths [17–19].
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(a) 

(b) 

Fig. 11.2 SEM micrographs of CGI microstructure: a unetched specimen; b etched specimen

Table 11.1 Chemical composition of different cast irons (Fe—balance)

Cast iron Carbon equivalent (%) C (%) Si (%) Mn (%) S (%) P (%)

FGI 3.7–4.5 3.0–3.7 1.8–2.8 0.7–0.8 < 0.15 0.1–0.5

CGI 4.2–4.6 3.5–3.8 2.0–2.6 0.20–0.5 < 0.025 < 0.05

SGI 4.4–4.5 3.4–3.8 2.0–2.8 0.2–1 < 0.02 < 0.05
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Fig. 11.3 Schematic of
stable range of Mg for
different cast irons [16]

This improvement is due to the formation and retention of carbides with chemical
compositions such as Fe4Mo2C or Fe3Mo3C.

Other alloying elements such as Cr, Co, and Al are often used in cast irons for
high-temperature applications. The first two enhance structural stability of cast irons,
i.e. retention of properties at high temperatures. The last stabilizes the ferrite phase
and improves the oxidation resistance by formation of strong oxide (Al2O3) layers.

11.4 Mechanical Properties of Cast Iron

Some key mechanical properties of FGI, CGI, and SGI at room temperature are
presented in Table 11.2. Apparently, SGI has high ductility and the highest tensile
strength but low thermal conductivity. FGI, on the other hand, demonstrates the
lowest strength and high thermal conductivity, while its close to zero elongation
highlights its brittle nature. The properties of CGI are typically between those of
FGI and SGI. Temperature has a strong effect on yield strength, tensile strength, and
elastic modulus of FGI, CGI, and SGI (Table 11.3). It can be noted that unalloyed
SGI has better tensile strength compared to FGI at room temperature, but it degrades
more rapidly with temperature.

Table 11.2 Typical material properties of FGI, CGI, and SGI at room temperature [7, 8]

Property FGI CGI SGI

Tensile strength (MPa) 160–320 300–600 400–700

Elongation (%) ~ 0 3–6 6–25

Elastic modulus (GPa) 96–110 140–160 170–190

Thermal conductivity at 100 °C (W/mK) 45–65 35–45 29–40
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Table 11.3 Effect of temperature on tensile properties of unalloyed FGI, CGI, and SGI with fully
pearlitic matrix [20]

Cast iron Room temperature 540 °C

Yield
strength
(MPa)

Tensile
strength
(MPa)

Elastic
modulus
(GPa)

Yield
strength
(MPa)

Tensile
strength
(MPa)

Elastic
modulus
(GPa)

FGI 212 268 109 159 185 65

CGI 324 405 130 183 220 72

SGI 424 476 158 232 336 122

The variation of tensile strength of FGI, CGI, and SGI with temperature is demon-
strated in Fig. 11.4. The figure highlights a steep increase in rate of strength reduction
between 600–800 K (327–527 °C). Similar variation is reported in the literature [21,
22], with a slow reduction in tensile strength up to 400 °C flowed by a significant
drop around 500 °C. Comparable observation was made by Zou et al. [22] regarding
fatigue strength which that increased up to 400 °C and then decreased significantly
at 500 °C. The increase in fatigue strength around 300–400 °C was attributed to
strain hardening, dynamic strain ageing, and precipitation strengthening effects. The
significant reduction in tensile and fatigue strengths around 500 °C was attributed to
high levels of oxidation, diffusion of vacancies, and grain-boundary softening.

Aunique feature of cast iron is the difference inmaterial strength under tension and
compression, with compressive strength being higher compared to tensile strength.

Fig. 11.4 Influence of
temperature on tensile
strength of FGI, CGI, and
SGI [20]
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Under compression, the graphite particles are held tightly closed, and the bulk mate-
rial acts very much like steel, resulting in superior strength. Under tension, the
graphite particles bear almost no load and act as crack-initiation sites. In case of FGI,
the ratio of compressive strength to tensile strength is typically around 2 [23], but it
could be as high as 5 [24]. The tension–compression asymmetry is less pronounced
in SGI compared to FGI [25], probably because the nodular graphite form does not
provide a direct path for crack initiation under tensile loading.

Comparison of stress–strain curves under tension and compression loading for
CGI vividly demonstrates the asymmetrical tension–compression behaviour of CGI
at room and elevated temperatures (Fig. 11.5). The magnitude of 0.2% proof
strength at room temperature in compression (451 MPa) is 1.31 times that in tension
(344 MPa). This ratio remains similar at 500 °C. The compressive strength to tensile
strength ratio of 1.31 compares well with ratios of about 1.4–1.6 are reported in
literature for CGI [26, 27]. The figures also show that the elastic modulus in tension
and compression are identical at room temperature (135 GPa) and at 500 °C (125
GPa).

11.5 High-Temperature Applications of Cast Irons

The properties of cast irons start degrading at around 425 °C, with creep becoming a
concern above this temperature. Applications of cast iron in the automobile industry
include these levels of temperature, with cylinder blocks and cylinder heads reaching
temperatures around 400 to 450 °C while exhaust manifolds and turbocharger
housings reaching temperatures around 800 °C [14].

The cylinder heads are traditionally manufactured from FGI, but with peak cycle
pressures of about 25 MPa and temperature close to 400 °C, those designs are
approaching its mechanical limit. CGI is seen as a candidate to replace grey iron and
allow higher pressures and temperatures of around 450 °C [14, 28]. Cylinder blocks
and cylinder heads have multiple intake and exhaust ports, coolant passages, and
water jackets. As a result, during operation of these components, significant thermal
gradients occur due to themovement of exhaust gases, coolants, and different rates of
heat dissipation at various locations. The high operating temperature, high-frequency
combustion, and multiple engine start-stop cycles lead to a combination of low-cycle
and high-cycle thermo-mechanical fatigue problems in the cylinder heads. The start-
up and shutdown cycles can lead to tensile and compressive stresses in the valve
bridges as the temperature increases and held for long periods of time, resulting in
creep, stress relaxation and, eventually, initiation, and propagation of cracks [28, 29].

Examples of cast irons mainly used in exhaust manifolds and turbochargers
of heavy-duty diesel and petrol engines are alloyed cast irons such as SiMo51,
SiMo1000, and Ni-Resist D-5S. SiMo51 is ferritic spheroidal cast iron with typically
about 4% of Si and about 1% ofMo. SiMo1000 is also ferritic nodular cast iron, with
typically around 2.5% Si, 1%Mo, and about 3% Al. D-5S is austenitic cast iron with
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Fig. 11.5 Comparison of stress–strain curves under tension and compression loading: a room
temperature; b 500 °C

about 33–35% of Ni. These materials are used in the temperature range from 700 to
900 °C [28, 30–33].
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11.6 Introduction to Creep

Creep is a time-dependent, permanent deformation of material under constant stress
even if the applied stress is below its yield point. The level of creep strain gener-
ated depends on the material, stress, temperature, and time spent at a particular
temperature and stress level.

The idealized shape of a creep curve for a constant uniaxial load at a constant
temperature is shown in Fig. 11.6. When the load is first applied, a small instanta-
neous strain is generated in material. The creep strain is obtained by subtracting the
instantaneous strain from the total strain.

The time-dependent response is a slow increase of strain with a variable rate,
which, according to Andrade [34], can be divided into three stages: primary creep,
secondary creep, and the tertiary creep.Duringprimary creep, the creep rate decreases
rapidly with time. This reduction is due to the strain hardening as the dislocations
encounter obstacles and are immobilized resulting in higher dislocation density [35,
36]. At the end of the primary-creep stage, the creep rate becomes almost constant,
and this region is called secondary creep. At this stage, the strain-hardening mecha-
nism is balanced by the recovery due to thermal softening caused by annihilation of
dislocations [36, 37]. The average creep rate during secondary creep, determined by
the constant slope of the creep curve, is known as minimum creep rate. At the end
of the secondary-creep stage, the creep rate increases rapidly, ultimately leading to
failure. This region of increasing creep rate is called tertiary creep. Temperature and
stress are the two dominant external variables that affect the shape of creep curve.

Fig. 11.6 Constant-temperature curve showing three distinct stages of creep



11 High-Temperature Creep of Cast Irons 157

11.7 Creep Models

Models used to describe the creep behaviour can be broadly classified as empir-
ical models, mechanism-based models, as well as continuum-mechanics, and
micromechanical models [37, 38].

11.7.1 Empirical Models

Empirical creep models provide relationships between the creep rate, stress, temper-
ature, and time. They can be also used to predict life of structures for given levels
of stress and temperature. These relations are mainly based on experimental data
from uniaxial creep tests. The empirical models are useful in early design stages to
arrive at component sizing, choosing the correct materials for the application. These
models do not consider stress redistribution, creep-plasticity interaction, cyclic strain
accumulation, and many other effects [37].

The most general creep equation relating the creep rate ε̇c, stress σ , time t, and
temperature T can be written as

ε̇c = f (σ, t, T ).

This general equation can be simplified by de-coupling into separate functions to
account for effects of each parameter

ε̇c = f1(σ ) f2(t) f3(T ).

Several stress functions, f1(σ ), were used in the literature with the most common
functions [35, 37, 38] as follows:

f1(σ ) = Kσ n (Norton 1929, Bailey 1935)

f1(σ ) = Bexp

(
σ

σo
− 1

)
(Soderberg 1936)

f1(σ ) = A sinh

(
σ

σo

)
(McVetty 1943)

f1(σ ) = A

{
sinh

(
σ

σo

)}m

(Garofalo 1965)

Here, the parameters K, B, A, n, m, and σo are the material constants derived based
on creep experiments.
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The power law attributed to Norton and Bailey is most broadly used primarily
thanks to its simplicity. The power law fits best the experimental data for low stresses,
but the exponential function is more accurate for higher stresses.

An extensive curve-fitting process for experimentally derived creep curves is
required to describe the time dependence of high-temperature creep in complex
alloys. Some of the time functions, f2(t), are [35]

f2(t) = (
1 + bt1/3

)
exp(kt) − 1 (Andrade 1910)

f2(t) = Ftn (Bailey 1935)

f2(t) = G
(
1 − e−qt

) + Ht (McVetty 1943)

f2(t) = θ1
(
1 − e−θ2t

) + ε̇s t (Garofalo 1965)

Here, F, G, H, b, k, n
(
1
3 ≤ n ≤ 1

2

)
, q, θ1, and θ2 are the constants that can vary with

time.
The temperature has a significant impact on creep; this effect is driven by the

changes in the material microstructure with temperature. As the shape of the creep
curve changes with temperature, the material constants used in the stress function
can also change. The temperature function, f3(T ), is usually expressed in terms of
Arrhenius law

f3(T ) = exp

(
− Q

RT

)
,

where Q is the activation energy, R is the universal gas constant (8.37 J/molK), and
T is the absolute temperature.

In real life, the loading is mostly variable so there is a need to account for the
changes in stress and temperature with time. Several theories are available for vari-
able loading including time hardening, strain hardening, total strain theory, combined
strain and time hardening, Marin theory, Graham andWalles method, etc. In absence
of thermal softening and metallurgical changes, test results demonstrate that the
strain-hardening theory is more accurate [35, 39]. The time- and strain-hardening
theories bound all other theories in the predicted response to the variable load.
The both theories are widely used as approximate methods of component analysis
including finite-element studies [35].

In addition to the relationships between the creep rate, stress, time, and tempera-
ture, the empirical models include extrapolation methods to predict time-dependent
deformation and life of structures. Several extrapolation methods are covered in the
literature [35, 39–42]. Two of the most widely used approaches are Larson-Miller
parameter method and Monkman–Grant law.
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Fig. 11.7 Larson–Miller parameter plot for diesel exhaust alloys [43]

The former method relates temperature with time to failure at a constant stress.
The Larson-Miller equation has the following form:

PLM(σ ) = T (log t + C),

where t is the time to failure in hours and C is the material’s constant that can be
experimentally found.

Larson-Miller parameter plots for different materials used in diesel-engine
exhausts including SiMo and Ni-Resist cast irons are shown in Fig. 11.7 [43]. These
plots also known as master curves are built by testing the material to rupture at
different stress and temperature levels. The master curve can be used to obtain the
time to rupture at any temperature and stress combination on the curve. Another
use of Larson-Miller parameter is in comparing and ranking materials as shown in
Fig. 11.7 where higher curves represent more heat resistant material.

Another widely used empirical model is the Monkman–Grant relation [44] which
relates the minimum creep rate, ε̇mcr. , and the time to fracture, t f

ε̇mmcrt f = C,

where m and C are the material constants. The relationship is suitable for a number
of materials including aluminium, copper, titanium, iron, and nickel-based alloys,
with m ranging between 0.77–0.93 [40]. Figure 11.8 shows the Monkman–Grant
graph for three different nodular cast irons reported by Hug et al. [45]. The found
parameters were m = 0.91 ± 0.04 and C = 0.15 ± 0.06.
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Fig. 11.8 Monkman–Grant
graph for three nodular cast
irons [45]

11.7.2 Mechanism-Based Models

The mechanism-based models capture the basic mechanisms that contribute to creep
in metals such as dislocation creep, diffusional creep, and grain-boundary sliding. It
is possible that all the mechanisms may be active at any given time but depending on
the stress and temperature levels, one of the creep mechanisms is dominant at any
given time.

Dislocation creep involves dislocation glide and climb. The dislocation glide
occurs on application of stress, resulting in strain hardening as the density of
dislocations increase. The climb is the recovery process at high temperatures,
with dislocations able to move or climb to a different slip plane, allowing further
dislocation glide. The creep occurs due to sequential glide and climb of dislo-
cations. The dislocation creep is often called power-law creep [46], with the
steady-state strain rate, ε̇ss , given as

ε̇ss = Aσ nexp

(
− Q

RT

)
,

where A is the constant, σ is the stress level, n is the creep exponent, and Q is
the activation energy for creep.
Diffusional creep occurs in materials with fine grain size at lower stresses. The
mechanism involves diffusion of atoms and vacancies under the influence of
stress. Depending on the path of diffusion, diffusional creep can be considered as
Nabarro-Herring creep or Coble creep. In Nabarro-Herring creep, which occurs at
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higher temperatures, diffusion happens through grain interiors, while Coble creep
occurs at relatively lower temperatures through grain boundaries. The steady-state
strain rate, ε̇ss, in Nabarro-Herring and Coble creep [47] are given as.

ε̇ss ≈ 7σDvb3

kT d2 (Nabarro-Herring creep)

ε̇ss ≈ 50σDgbb4

kT d3 (Coble creep)

where d is the grain diameter, Dv is the volume diffusivity through the grain
interior, and Dgb is the volume diffusivity through grain boundary, b is the Burgers
vector. It is noted that increasing the grain size reduces the strain rate in both cases
but more in Coble creep.
Grain-boundary sliding occurs at much higher temperatures and is important in
initiating intergranular fracture, which indicates the onset of tertiary creep. The
grain-boundary sliding does not contribute to the steady-state creep.

Different creep deformation mechanisms can be illustrated with deformation
mechanism maps (Fig. 11.9). Detailed maps for various metals and ceramics are
reported in a book by Frost and Ashby [48].

Fig. 11.9 Schematic of deformation mechanism map
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11.7.3 Continuum-Mechanics and Micromechanical Models

Continuum-mechanics models are useful for investigation of inelastic behaviour
in three-dimensional cases by employing constitutive equations, relating the three-
dimensional deformation and stress states. State variables and corresponding evolu-
tion equations can be used to describe microstructure-related changes such as
hardening, recovery, and damage. These approaches were implemented in numer-
ical schemes, including finite-element analysis, to simulate the time-dependent
structural behaviour such as creep. Naumenko and Altenbach [37, 38], Betten
[49], and Chaboche [50] discussed the continuum-mechanics-based models in
great details. Betten et al. [51–54] developed models of creep of materials with
tension–compression asymmetry such as cast iron.

Micromechanical models include direct introduction of microstructural features
into consideration, often using a representative volume element with geometrically
idealized microstructure. The behaviour of constituents and their interactions are
captured in such models. In case of cast irons, the graphite particles can be modelled
as voids or as inclusions leading to different reposes. Several studies employing
micromechanical models of cast irons are reported in the literature [55–59] but there
are no micromechanical models specifically dealing with their creep.

11.8 Creep in Cast Irons

As discussed, temperatures in the cylinder heads in modern diesel engines reaches
around 400–500 °C, while temperatures in the exhaust manifolds are in the range of
800 °C [45, 60]. So, continuous long-term operation at such elevated temperatures
makes these components susceptible to creep.

In cylinder heads, significant thermal gradients related to complex geometries
including multiple ports, valves, and attaching components can result in high tensile
or compressive stresses at multiple locations. Several investigations of cracking in
cast-iron cylinder heads [61–64] found that it mainly occurred in the valve bridge
areas. Investigation by Smith et al. [61] found that the valve bridge region experi-
enced compressive stresses at high-temperature condition due to restrained thermal
expansion. These stresses can result in permanent deformation due to creep if the
temperatures are held for sufficient duration. Conversely, tensile stresses are gener-
ated in this region upon cooling, leading to initiation of microcracks, which prop-
agate under repeated start-up–shutdown cycles. Such failures can be considered as
thermo-mechanical fatigue (TMF), but they are caused by creep.

Several studies were dedicated to the study of TMF behaviour of cast irons to
develop component-levelmodels for life prediction [25, 65–67].Most studies consid-
ered the effects of low- and high-cycle fatigue, plasticity and, to some extent, creep
damage in SGI, CGI, and FGI. The material models developed were based on exper-
iments performed within a specific range of stresses and temperatures typical for
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real-life conditions. Such analysis is especially useful for understanding of different
failure mechanisms and development of models to reflect in-service performance of
components. Norton’s creep law is widely used in such models to account for creep
damage [25, 67] that is added to damage from other mechanisms.

There are notmany studies looking specifically into creep of cast irons.A report by
Kattus and McPherson [68], focussed on high-temperature mechanical performance
of cast irons, included adetailed investigationof creepbehaviour in grey cast iron.The
study contained microstructural analysis, creep-rupture data, minimum creep rates
for different alloys tested and provided a direction for furthermaterial improvements.
The report also included conclusions about the role of different alloying elements
like Mo, Cr, and Si in improving the creep resistance of cast irons. Based on the
experiments completed, the study found that pearlite graphitization into ferrite and
graphite resulted in lower creep-rupture properties in the pearlitic cast irons compared
to standard ferritic grades.

An investigation into the creep properties of cast iron by Wheatley and Pope [69]
dealt with compressive creep of cast iron between 325 AND 475 °C at different
stress levels. The paper concluded that the materials showed creep behaviour under
compression similar to that in tensile creep tests. Only primary creep was observed
at 325 °C for stresses up to 200 MPa. Secondary creep was found in tests above
400 °C, creep at 475 °C demonstrating significantly higher strain. The study did not
include comparison between tensile and compressive creep.

Creep behaviour of three families of nodular cast irons typically used in exhaust
manifolds was analysed by Hug et al. [45]. Two of them were ferritic SiMo nodular
cast irons, and the third one was an austenitic nodular cast iron of grade D-5S.
The creep test temperature for ferritic irons was between 650 and 800 °C, and
the austenitic iron was tested up to 900 °C. The study found that all three mate-
rials followed the Monkman–Grant law (Fig. 11.8), indicating similar creep-damage
mechanisms. It was found that the austenitic grades were generally more creep-
resistant compared to ferritic ones. At high stresses and temperatures, the creep
fracture was dominated by plastic straining of the matrix and graphite nodules. At
lower stresses and temperatures, it was caused by cavity nucleation and diffusive
growth, leading to microcracks and voids without any signs of deformation in the
matrix. The damage mechanism in the high-temperature creep tests of ferrite was
similar to that reported by Hervas et al. [70] in the tensile tests, with the plastic flow
of ferritic grains mainly driven by significant reduced yield strength of ferrite at high
temperatures. Plastic strains of graphite nodules reported by Hug et al. [45] were not
observed in tensile testing by Hervas et al. [70].

Recent creep studies on ferritic SiMo51 and SiMo1000 and austenitic nodular cast
irons D-5S by Öberg et al. [71, 72] employed novel test methods called sequential
tensile tests (STT), stress relaxation and thermal cycling (SRTC) tests, and traditional
constant-load creep tests. The STT is a monotonic tensile test carried out at different
strain rates,where stress is recorded. It is effectively an inverse of traditional creep test
with a constant load and ameasured strain rate. The STTwas used to evaluate Norton
creep parameters for the studied materials. The SRTC test [30] is a relaxation test
including isothermal holds in thermal cycles with a specimen fixed in grips. The test
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uses compressive stress relaxation at high temperature and tensile stress relaxation
at low temperature. The STT and SRTC tests are fast compared to a conventional
creep test. The studies found that for all the materials tested, the creep rates matched
well both the STT and the SRTC test. A direct comparison of creep rates from
STT and SRTC tests with that from traditional creep tests for SiMo51 demonstrated
that the latter were an order of magnitude lower. The reason for these differences
was not fully identified. The studies provided results for such creep parameters as
activation energy and the stress exponent for the different materials that can be
helpful for numerical simulations and design of exhaust components. Interestingly,
the authors concluded that the creep behaviour was similar in terms of tension and
compression and that the data from monotonic tests can be used for cyclic loading
conditions. This conclusion may be true for SGI, without pronounced difference in
tensile and compressive behaviours, but it is not expected to be the case for FGI or
CGI, demonstrating tension–compression asymmetry.

Wu et al. [73] studied the creep behaviour of CGI at stresses between 40 and
150 MPa and temperatures ranging from 350 to 550 °C (Fig. 11.10). Apparently,
at 150 MPa, there was no significant creep up to 450 °C but the creep rate rose
sharply at 550 °C resulting in specimen’s rupture in some 10 h. The study found
pearlite transformation at temperatures around 550 °C as in other works [14], which
can explain this sharp increase in the creep rate. It was noted that the creep strain-
to-failure of about 3% was at the higher end for CGI and might be a result of a
higher ferrite content. Cracks originating on the surface of the specimen propagated
preferentially through ferrite, the phase weaker than pearlite. The cracks extended
further by debonding between graphite and ferrite, with subsequent rupture of the
specimenwhen crack reached a critical length. Grain-boundary slidingwas identified
as the creep-damage mechanism at 500 °C for 150 MPa. Intragranular deformation
was observed at temperatures around 550 °C.

Jing et al. [74] have recently studied creep in CGI at temperatures from 450
to 550 °C and stresses between 100 and 150 MPa; the reported minimum creep
rates are shown in Fig. 11.11. Creep performance of CGI significantly deteriorated
with an increase in temperature from 450 to 550 °C. Based on a multi-objective
optimisation approach for curve fitting, the study found that different creep-damage
mechanisms such as grain-boundary sliding, dislocation glide, and dislocation climb
were dominant at different combinations of stresses and temperatures.

11.9 Experimental Results for CGI Creep

The literature survey into the creep of cast irons demonstrates that there are a few
studies covering tensile creep in CGI [73, 74] but there is no literature available
regarding compressive creep in it. As discussed previously, tensile and compres-
sive creep can play a critical role in high-temperature applications such as cylinder
heads subjected to multiple start-stop cycles and long operation times. Fundamental
understanding of the similarities and differences in creep behaviour under tension
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Fig. 11.10 Creep curve of CGI at different temperatures for 150 MPa [73]

Fig. 11.11 Effect of stress on minimum creep rate in CGI [74]
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Fig. 11.12 Specimen used in tensile and creep tests

and compression is vital for design of efficient and reliable products. Results from
the ongoing research on the tensile and compressive behaviours of CGI are given in
this section.

A pearlitic CGI material of EN-GJV-450 grade was procured in the form of cylin-
drical rods of about 250 mm length and about 25 mm diameter. These rods were
machined to produce test specimens with dimensions shown in Fig. 11.12. The spec-
imens had a circular cross section with minimum diameter of 6 mm and a gauge
length of 26 mm. The minimum gauge length was 4.33 times the specimen’s diam-
eter, meeting the minimum 4xD gauge length requirement in ASTM E8 standard
[75].

Instron 5982 electromechanical machine with 100 kN force capacity was used
for tensile and compressive creep testing at various level of constant stress. The
Instron machine was used together with a 3119–600 series temperature-controlled
thermal chamber capable of reaching the maximum temperature of 600 °C. The
temperature chamber had temperature stability of ± 2 °C. Epsilon extensometer
7642-0125 M-075 M with a 12.5 mm gauge length was used for testing along with
DT6299 controller.

The creep testswere completed in linewithASTME139-11 standard [76]metallic
materials. The specimen was soaked at high temperature for 8 h to ensure that that
the specimen, thermal chamber, and all the attaching parts were at the settled temper-
atures. The temperature soaking was done under a force-control mechanism with a
tolerance of ± 250 N (equivalent to ± 9 MPa stress). For the creep experiments, the
extensometer filter settingwas set to lownoise tomaximize the resolution of the signal
and to minimize the noise in the data. The load was applied at 0.001 mm/mm/min,
which was the same in the tensile and compression tests. The load was held steady
once the required stress level was achieved. Each test was run for 100 h, which was
a sufficient time to capture the strain-rate levels for secondary creep.

The 0.2% proof stress of CGI under tension and compression is shown in
Fig. 11.13. At 400 °C, this stress in tension was 300 and 370 MPa for compression.
Using this information as a rough guide, the creep tests were conducted at 150 MPa
(to test the creep behaviour in the elastic region) and at 300 MPa (to test the creep
near the plastic region). Creep tests were conducted at different temperatures—400,
500, and 550 °C.
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Fig. 11.13 CGI proof stresses under tensile and compressive loading at different temperatures

The strain–time histories for the tensile and compressive creep tests at 300 MPa
stress at 400 and 500 °C are shown in Fig. 11.14. The figure vividly demonstrates
the significant impact of temperature on tensile and compressive creep behaviours.
In tension at 400 °C, there is a short stage of primary creep followed by secondary
creep with no rupture when test was stopped at 78 h.

At 500 °C, however, the specimen ruptured within 30 min, most likely driven by
the instantaneous plastic strain and the onset of primary creep. The rupture strain
of about 1.1% was in line with the strain at fracture in the tensile tests at 500 °C.
In compression, some primary creep was evident at 400 °C but there was no sign

Fig. 11.14 Strain–time histories for tensile and compressive creep at 300 MPa
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Fig. 11.15 Strain–time histories for tensile and compressive creep at 150 MPa and 550 °C

of secondary creep. However, primary as well as secondary creep were present at
500 °C under compressive load. These results highlighted the level of differences
between the tensile and compressive creep regimes in CGI.

Another comparison between these two regimes at 550 °C and 150 MPa stress is
presented in Fig. 11.15. For the tensile-creep case, a rapid transition from secondary
to tertiary creep and almost instantaneous failure at the onset of tertiary creep were
observed. Under compression, however, a short primary-creep stage can be observed
followed by the secondary-creep region, demonstrating a gradual progress of creep.

SEM micrographs of the tensile-creep specimen tested at 550 °C and 150 MPa
ruptured under tertiary creep demonstrate the presence of voids and grain-boundary
sliding (Fig. 11.16).
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Fig. 11.16 SEM micrograph of fracture surface from the tensile-creep specimen failed under
tertiary creep highlighting void and grain-boundary sliding
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Chapter 12
About the Energy Dissipation Coefficient
of Thin-Walled Glass-Plastic Pipes
with the Initial Reinforcement
Asymmetry with Respect to Axis
Subjected to Pulsating Internal
Hydrostatic Pressure

Koryun A. Karapetyan and Sona Sh. Valesyan

Abstract Results of study of the influence of possible deviation of the symmetric
reinforcement relative to the axis (the disorientation of reinforcement) occurred
during the material technological processing into a product on the deforma-
tion behavior and dissipative properties thin-walled glass-plastic tubular elements
subjected to repeated-static internal hydrostatic pressure are discussed. It is stated
that under the conditions of repeated-static internal pressure (low-cycle pulsating),
in addition to the main cyclic circumferential deformations for symmetrically rein-
forced pipes (ϕ = 0°), accompanying the main cyclic longitudinal deformations is
arising, and for pipes with the initially broken reinforcement symmetry (ϕ = 6–8°),
accompanying cyclic shear deformations is appearing as well. As is shown, after
the stabilization of the deformation process (after 2–3 cycles of loading–unloading),
the value of energy dissipation coefficient ψ for glass-plastic pipes with ϕ = 6–8°
turns out to be 20% (and more) greater than the value of energy dissipation coef-
ficient ψ defined for glass-plastic pipes with ϕ = 0°. The shares of each from the
main and accompanying the main deformations into the total energy loss for the
glass-plastic pipes with the initially broken reinforcement symmetry (ϕ = 6–8°) are
shownup.Defined that during theprocess of low-cycle pulsating internal pressure, the
amount of energy loss due to the occurrence of cyclic shear and longitudinal deforma-
tions accompanying cyclic main circumferential deformations turns out to be 270%
and 12% more than the amount of the energy loss arising from the main deforma-
tions, respectively. Practical recommendations by the optimal design of thin-walled
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tubular structural elements made of reinforced plastics operating under conditions
of low-cycle pulsating internal pressure are stated.

Keywords Thin-walled glass-plastic pipes · Disorientation of reinforcement ·
Intensities of shear stresses and the shear strain · Coefficient of energy dissipation ·
Pulsating internal hydrostatic pressure

12.1 Introduction

The deviation of the reinforcement angle from its intended value (the reinforcement
disorientation is a special case of the violation of the reinforcement symmetry relative
to the direction of some geometric parameter of the elements) is one of the most
commondefects in themacrostructure of reinforced composites, including reinforced
plastics [1, 2]. The probability of the reinforcement disorientation occurrence, which
is mainly a consequence of the imperfection of the material technological processing
into a product, and which is usually of a random nature, is greater in the case of
manufacturing spatial structural elements from reinforced composites [3, 4].

Previously, it was found that for thin-walled glass-plastic pipes with initially
broken symmetry of reinforcement relative to the axis subjected to static uniaxial
force action, in addition to the main deformations (registered in the direction of the
force action), deformations accompanying the main ones also occur. In particular,
when pipes are loaded by axial tension, shear deformations accompanying the main
axial ones arise, and when pipes are loaded by simple torsion, axial deformations
accompanying the main shear ones also occur [4]. In the case of internal hydro-
static pressure, for thin-walled glass-plastic pipes with initially broken reinforcement
symmetry, in addition to the main circumferential deformations, accompanying both
axial and shear deformations arise [5].

As is known, among the main physical and mechanical properties of reinforced
plastics are their dissipative properties, the negative influence of which on the reliable
operation of construction elements from these materials during the time period can
be significant in some cases. The optimal design of such elements subjected to cyclic
loading during operation can be largely facilitated by taking into account in the
calculations the indicator characterizing the dissipative properties of the material,
based on experimentally established reliable data.

According to the results of [6], under the conditions of cyclic loading, in tubular
elementsmade of reinforced plasticswith initially broken symmetry of reinforcement
relative to the axis, in contrast to pipes reinforced symmetrically, in addition to cyclic
main deformations, cyclic deformations also occur that accompany the main ones:
shear—with cyclic axial tension and longitudinal—with cyclic torsion of pipes. In
this work, as a result of identifying the share of each of the deformations in the loss
of the total energy of glass-plastic pipes with an initial reinforcement disorientation,
practical recommendations were formulated aiming at the optimal design of such
pipes subjected to cyclic loading by the indicated force factors during operation.

The purpose of this work is to identify the share of the main and accompanying
main deformations in the loss of the total energy of thin-walled glass-plastic tubular
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elements with initially broken symmetry of the reinforcement relative to the axis,
subjected to repeated static internal hydrostatic pressure.

12.2 Research Methodology

The phenomenon of the reinforcement disorientationwas discovered by us during the
manufacture of experimental tubular test pieces based on glass-plastic in laboratory
conditions in such a way that the direction of the main knitting fibers of the fabric
coincided with the direction of the axis of the pipes (symmetric reinforcement—the
value of the reinforcement angle ϕ = 0°). However, according to the measurements,
for a part of the pipes, which is about 8% of the total, deviations of the reinforcement
angle from its zero value were recorded within 6–8° [4]. Based on this, to implement
the experimental part of the issues considered here, two batches of glass-plastic thin-
walled tubular elements-test pieces with an inner diameter of 38mm, awall thickness
of 2.25 mm, and a length of 285 mm were manufactured, the dimensions of ones
correspond to the requirements of the tested recommendations [7].

The test pieces were made from a glass-plastic prepreg based on a modified epoxy
resin by the winding method according to the technology [8]. For one batch of pipes,
the value of the above-mentioned reinforcement angle was ϕ = 0°, and for the other
batch it was −ϕ = 6–8°.

Plain weave fiberglass fabric with the main overlap [9] brand T-23 (TU 6-II -23–
76) with a density (the number of fibers per 1 cm2 of fabric) 36:20 (warp: weft),
produced by the Sevan plant “Electrical Glass Insulation” (Republic of Armenia)
was used. The value of the fiberglass reinforcement coefficient is μ = 0.45 (μwarp =
0.29, μweft = 0.16).

Part of the manufactured tubular test pieces of both varieties was used to deter-
mine the limit of resistance to destruction in the circumferential direction σ ult

θθ , ,
and the other part was used to test for repeated-static internal hydrostatic pressure.
When conducting cyclic tests with an average rate of change in internal pressure
of 26.7 atm./min. (corresponds to the rate of stress change in the circumferential
direction of the pipes σθθ = 25.8 MPa/min.), the magnitude of the amplitude stress
was applied equal to 0.42 σ ult

θθ , the choice of which was made on the basis of the
preliminary tests. According to these tests, as the internal hydrostatic pressure in the
pipes increases, their initial shortening and further elongation are observed. At the
same time, if the condition σθθ ≤ 0.45 σ ult

θθ is obeyed, the fiberglass pipes with both
ϕ = 0°and ϕ = 6–8° experience only shortening [10].

The basic number of loading–unloading cycles was used equal to 6 due to the
dynamics of changes in the values of amplitude and residual circumferential, shear
and longitudinal deformations of the cycle, measured during testing (Fig. 12.1).

To calculate the values of the coefficient ψ of the relative energy dissipation
per cycle (dissipation energy) of glass-plastic pipes subjected to cyclic loading–
unloading, the following formula was used [4]:
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1

3

2

4

Fig. 12.1 Tubular test piece mounted on a testing machine with meters measuring longitudinal 1
and 2, shear 3, and circumferential 4 deformations
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Equation (12.1) was obtained on the basis of the well-known dependence [11] ψ

= �W/W (where �W is the value of the energy dissipated per cycle, and W is the
value of the strain energy), using the following linear fractional function (2) applied
for analytical description of the experimentally established relationship between the
intensities of shear stresses T and the shear strain G [12, 13] in the sections of the
ascending (→) and descending (←) branches of the hysteresis loop.

−→←−
T = TB−→←−a

·
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In Eqs. (12.1) and (12.2),Gres andGamp are the values of the intensities of residual

and amplitude shear deformations of the cycle, respectively,
−→←−
X = −→←−a /

−→←−
b , where

−→←−a
and

−→←−
b are the approximation parameters of hysteresis loop curves, and Tult is the

limiting value of T, corresponding to the destruction of the test piece.
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Let us note that the experimental part of the studies considered here was carried
out 30 years after the manufacture of glass-plastic pipes. During this period of time,
they were in the laboratory at an ambient temperature of 20 ± 6 °C and a relative
humidity of 60 ± 8%.

12.3 Results and Discussions

Before proceeding to the discussion of the problems considered here, we note that
the results of studies of the effect of the violation of the symmetry of the reinforce-
ment relative to the axis on the fracture resistance and on the deformation behavior
of thin-walled glass-plastic tubular elements subjected to repeated-static internal
hydrostatic pressure were considered in detail in paper [5]. Selected data from this
work required for their analysis from the standpoint of formulating some practical
recommendations on the optimal design of thin-walled structural tubular elements
made of reinforced plastics subjected to repeated-static (low-cycle pulsating) internal
pressure are brought here.

As the test results showed, and this was noted in the above-mentioned work [5],
the difference in the values of resistance to destruction of pipes with initially broken
reinforcement symmetry (ϕ= 6–8°) and symmetrically reinforced (ϕ= 0°) subjected
to internal hydrostatic pressure turns out not to be significant. The average value of
this characteristic for both mentioned types of glass-plastic tubular elements can be
taken equal to 424.9 MPa.

When carrying out studies of deformation behavior in the process of cyclic testing
by internal hydrostatic pressure of the above-mentioned both batches of glass-plastic
pipes for all cycles of loading–unloading, the data taken from the corresponding
indicators (Fig. 12.1) were processed and the approximating curves were constructed
according to Eq. (12.2). These results obtained for I, II, III, and VI test cycles are
shown in Fig. 12.2.

From the data in Fig. 12.2 pointed out in paper [5], in addition to the main cyclic
circumferential deformations, glass-plastic pipes with the reinforcement angle ϕ =
0° subjected to repeated-static internal hydrostatic pressure have experienced cyclic
longitudinal deformations accompanying the main ones also (Fig. 12.2a), and pipes
with ϕ = 6–8° have experienced accompanying cyclic shear deformations as well
(Fig. 12.2b). At the same time, during the entire process of a step-by-step increase
of the internal hydrostatic pressure level in pipes with both mentioned reinforcement
angles or during the process of a step-by-step decrease of the internal hydrostatic
pressure level in pipes with both mentioned reinforcement angles, the branches of
the hysteresis loop retain the direction of convexity or concavity, and the discrepancy
between the ascending and descending branches of the hysteresis loops of the same
deformations is gradually reduced.

Changes of the energy dissipation coefficients ψ depending on the duration of
the repeated-static internal hydrostatic pressure of both types of glass-plastic pipes
mentioned above can be analyzed from the data presented in Fig. 12.3.
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Fig. 12.2 Deformation diagrams of pipes ϕ = 0° (a) and ϕ = 6–8° (b) within the cycle in loading–
unloading mode subjected to internal hydrostatic pressure

1 

2 

Fig. 12.3 Curves describing changes of the coefficient ψ of glass-plastic pipes with reinforcement
angle ϕ = 0° (curve 1) and ϕ = 6–8° (curve 2) depending on the cycle number n of the test for
repeated-static internal hydrostatic pressure

From this figure, the marks show the results calculated according to Eq. (12.1),
using the experimentally established corresponding data in comparison with the
curves approximating these results, we notice that the initial increase in the number of
cycles n to 4th leads to a monotonous decrease with decreasing rate of the coefficient
ψ defined for both pipes batches with reinforcement angle ϕ = 0° and at angle ϕ =
6–8°. With a further increase in the number of cycles n until the end of the cyclic
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tests, the change in the value of the coefficient ψ for both batches of mentioned
fiberglass pipes is practically not observed (Fig. 12.3). At the same time, it is noted
that the ratio of the values of the coefficient ψ determined for I and VI test cycles
practically does not depend on the value of the reinforcement angle ϕ of pipes and
equals 1.4–1.5.

The comparisons of the data in Fig. 12.3 show that after 2–3 cycles of loading–
unloading by internal pressure, the value of the ratio of the coefficients ψ of pipes
with reinforcement angles ϕ = 6–8° and ϕ = 0° defined for the same cycle number
n, practically does not change and is approximately 1.2. That is, for the type of cyclic
loading considered here, after the stabilization of the deformation process (after 2–3
cycles of loading–unloading), the amount of energy dissipation in thin-walled glass-
plastic pipes with initially broken reinforcement symmetry turns out to be 20% (and
more) greater than the value of the same characteristic determined for practically
similar pipes, however, reinforced symmetrically relative to the axis.

As already noted, subjected to cyclic loading by internal hydrostatic pressure,
for thin-walled glass-plastic pipes with initially broken symmetry of reinforcement
relative to the axis (ϕ = 6–8°), in addition to themain cyclic circumferential deforma-
tions (εθθ), cyclic shear deformations (γθz), as well as, longitudinal (εzz) deformations
accompanying the main circumferential ones are arising. Proceeding from this, we
consider to be acceptable the values of the energy dissipation coefficient of the cycle
of these pipes, defined according to (1) for all test cycles, and presented in Fig. 12.3
by marks (in the further presentation at the text, they will conventionally be called
the total energy dissipation coefficients of the cycle observed during repeated static
internal hydrostatic pressure of pipes and will be denoted by ψH.sum) separate into
corresponding summand components and figure in the following form:

ψH.sum = ψH.θθ + ψH.θz + ψH.zz (12.3)

IntoEq. (12.3),ψH.θθ,ψH.θz, andψH.zz are the values of the energy dissipation coef-
ficients per cycle arising, respectively, from the main circumferential deformations,
and from shear and longitudinal deformations accompanying the main deformations.

Approximation curves describing changes of the total energy dissipation coeffi-
cient of the cycle and its summand components determined on the basis of exper-
imental data, respectively, according to Eq. (12.1) and using functions of type (1)
depending on the cycle number n of loading–unloading by the internal pressure of
pipes with ϕ = 6–8° are shown in Fig. 12.4.

From the data of this figure, it can be noticed that the curves describing the changes
in both the total energy dissipation coefficient and the terms of the components of this
coefficient, depending on the cycle number n of testing pipes, are practically similar.
This indicates that the experimentally established regularity noted above, related to
the behavior of the total energy dissipation coefficientψH.sum in the process of cyclic
loading by internal pressure, can be considered acceptable for the cases of behavior
of the terms of its components ψH.θθ, ψH.θz, and ψH.zz.

It should be noted that the phenomenon of similarity of curves describing changes
of the total energy dissipation coefficients and summand coefficients depending on
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Fig. 12.4 Curves describing
the changes of the total
energy dissipation coefficient
of the cycle and its summand
coefficients depending on the
cycle number n of testing the
pipe with ϕ = 6–8°
subjected to repeated-static
internal hydrostatic pressure

ΨH.sum.

ΨH.θz

ΨH.zz

ΨH.θθ

the number of the loading–unloading cycle was also found in cases of testing for
cyclic axial tension and simple torsion of thin-walled glass-plastic pipes with initially
broken symmetry of the reinforcement relative to the axis [6].

From the comparison of the data in Fig. 12.4, it follows that the value of the
ratiosψH.θθ/ψH.sum, ψH.θz/ψH.sum andψH.zz/ψH.sum, determined for the same loading–
unloading cycle number of thin-walled glass-plastic pipes with ϕ = 6–8° subjected
to internal pressure, practically does not depend on the number of test cycle n and
equals approximately to 0.17, 0.63 and 0.19, respectively. That is, in the range of
cyclic loading of these pipes by internal pressure considered here, regardless of
the number of the loading–unloading cycle, the amount of energy loss due to the
occurrence of cyclic shear and longitudinal deformations accompanying cyclic main
circumferential deformations turns out to be approximately 270 and 12% more than
the amount of the energy loss arising from the main deformations, respectively.

12.4 Conclusions

Thus, a possible violation of the symmetry of the reinforcement relative to the axis
occurred during the manufacturing process by winding thin-walled glass-plastic
pipes in such a way that the directions of the warp fibers of the fabric and the axis
of the pipes coincide, can cause very significant cyclic shear and significant axial
deformations that accompany the main cyclic circumferential deformations of the
pipes subjected to repeated-static (low-cycle pulsating) internal hydrostatic pressure.

It can be argued with a higher probability that a phenomenon similar to the
one mentioned above will also be observed at low-cycle pulsating internal pres-
sure of tubular elements made of reinforced plastics with initially broken symmetry
of reinforcement relative to the axis, manufactured by the cross-winding method.
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Under the conditions of low-cycle pulsating internal pressure into thin-walled
pipes made of reinforced plastics with initially broken reinforcement symmetry rela-
tive to the axis, the value of the energy dissipation coefficient arising from shear defor-
mations accompanying the main circumferential deformations significantly exceeds
the values of the energy dissipation coefficients arising from both the main deforma-
tions themselves and from accompanying main circumferential deformations. In this
case, the difference in the values of the mentioned energy dissipation coefficients
practically does not depend on the duration of the internal pressure pulsation in the
pipes.

The foregoing indicates that at the condition of pulsating internal pressure in
pipes made of reinforced composites, the loading of the composite matrix occurred
theweak link of thematerial, is more intense than the loading of the fibers reinforcing
the material. As noted in [14], in most cases, it is the destruction of the matrix or the
interface between the reinforcing component and the matrix, and not the destruction
of the reinforcing fibers, that is the cause of the premature failure of structures made
of reinforced composites.

A constructive method for solving the problem can be one of the ways to prevent
the influence of defects in the macrostructure of reinforced composites, including the
disorientation of reinforcement, on the reliable operation of structural elements made
of such materials [15]. In particular, for composite thin-walled tubular elements, it
is advisable to provide stiffeners oriented in such a way as to create the maximum
obstacle to the deformation of the elements in one direction or another [15].

Given approach mentioned above is quite acceptable for thin-walled composite
tubular structural elements with the lowest dissipative characteristics design, oper-
ating under conditions of pulsating internal pressure. Namely, it is advisable to orient
the direction of the provided stiffeners in such a way as to create maximum resistance
to the formation of shear deformations at the stage of these pipes design.
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Chapter 13
Contact Problem for Coated Viscoelastic
Tube and Rigid Inserts with Complex
Profiles

Kirill E. Kazakov

Abstract The article describes the construction of a solution for the problem of the
interaction of a viscoelastic aging pipewith an internal thin elastic coating and several
different rigid cylindrical inserts, assuming that the profiles of the contacting surfaces
are described by rapidly changing functions. The solution method used makes it
possible to construct a solution that takes into account both the rheological properties
of the pipe and the complex profiles of bodies. Using this method, expressions are
obtained for contact pressures in which the features are highlighted by separate terms
and multipliers, which allows real calculations to be performed with high accuracy
even when holding a small number of members of an infinite series.

Keywords Contact problem · Aging material · Pipe · Coating · Complex
profiles · System of integral equations

13.1 Introduction

Pipelines are used in industry to transport various media, such as gas or liquid. Their
designsmust take into accountmany different factors: internal and external pressures,
temperature effects, possible vibrations, etc. One of the reasons for using multilayer
pipes is that some layers are responsible, for example, for the bearing capacity of
the pipe, while others protect against aggressive environments. Different sections
of pipelines must be connected to each other using various devices. These can be
couplings, inserts, etc. Moreover, such devices may be required in other cases, for
example, rigid inserts can serve as reinforcing elements of the pipe; the presence of
couplings in some areas can reduce vibrations. However, stresses and deformations
occur at the attachment points of these elements, whichmust be calculated, including
taking into account both the rheological properties of bodies and their complex shapes
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and properties that have arisen, for example, due to the peculiarities of obtaining such
bodies (see, for example, [1]).

This article discusses the formulation and construction of an analytical solution
for the problem of the interaction of a pipe with a thin inner coating and several rigid
inserts. The resulting solution takes into account both the rheological properties of
the pipe layers and the complex shapes of the contacting surfaces.

13.2 Problem Formulation and Mathematical Model

Suppose there is a long cylindrical axisymmetric pipe through which a liquid or gas
is pumped under relatively low pressure. In order for the pumped substance not to
destroy the main bearing layer of the pipe, the pipe is covered from the inside with
an additional thin protective layer. Due to the peculiarities of the application of this
layer, it can have a variable thickness. Rigid cylindrical inserts are used to strengthen
the pipe in a number of places. In order to prevent their horizontal movement, they
have a variable diameter. These inserts are placed inside the pipe so that the inserts
are completely adjacent to the inner layer of the pipe, and the contact areas coincide
with the lengths of the inserts. Schematically, such an interaction is shown in the
Fig. 13.1.

It is necessary to determine the levels of contact stresses under the assumption
that these stresses significantly exceed the stresses caused by the internal pressure of
the medium being transported and/or the external environment. It is also necessary
to take into account the possible proximity of the inserts from each other.

First of all, let us formulate the main assumptions:

1. The pipe layers are homogeneous.
2. The pipe layers can be made of viscoelastic aging materials. As a result, stress

levels will change over time.
3. The protective layer of the pipe is softer than the main layer.
4. The thickness of the protective layer is much smaller than all other linear dimen-

sions: radii, thickness of the outer layer, lengths of inserts.

Fig. 13.1 Contact interaction of tube and several rigid inserts
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5. Variable insert diameters and coating thickness are described by a relatively
smooth function (the tangents of the angles of inclination of the surfaces are
much less than 1, see [2]).

6. There is smooth contact between the layers and between the protective layer and
the inserts.

7. It is assumed that plastic deformations do not occur as a result of such interaction.

The results of the studies presented in [3, 4] and generalizations to the case of
a coating of variable thickness show that unknown contact pressures q1(z, t), …,
qn(z, t) in the interaction regions [a1, b1], …, [an, bn] (n is number of inserts) can
be found from the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(z)(1 − ν2
in)

⎡

⎣
q1(z, t)

Ein(t − τin)
−

t∫

τ0

Kin(t − τin, τ − τin)q1(z, τ )

Ein(τ − τin)
dτ

⎤

⎦

+ 2(1 − ν2
out)

π

n∑

j=1

b j∫

a j

kc

(
z − ζ

rin

)[
q j (ζ, t)

Eout(t − τout)

−
t∫

τ0

Kout(t − τout, τ − τout)q j (ζ, τ )

Eout(τ − τout)
dτ

⎤

⎦ dζ

= g1(z) − [rin − h(z)], a1 ≤ z ≤ b1, t ≥ τ0,

. . .

h(z)(1 − ν2
in)

⎡

⎣
qn(z, t)

Ein(t − τin)
−

t∫

τ0

Kin(t − τin, τ − τin)qn(z, τ )

Ein(τ − τin)
dτ

⎤

⎦

+ 2(1 − ν2
out)

π

n∑

j=1

b j∫

a j

kc

(
z − ζ

rin

)[
q j (ζ, t)

Eout(t − τout)

−
t∫

τ0

Kout(t − τout, τ − τout)q j (ζ, τ )

Eout(τ − τout)
dτ

⎤

⎦ dζ

= gn(z) − [rin − h(z)], an ≤ z ≤ bn, t ≥ τ0.

(13.1)

The following designations are introduced in this system: rin is inner radius of main
layer (or outer radius of protecting layer); h(z) is protecting layer thickness; g1(z),
…, gn(z) are outer radii of inserts; a1, …, an are left z-coordinates of inserts; b1, …,
bn are right z-coordinates of inserts; τin and τout are production times of layers; τ0
is the time at which the inserts are placed inside the two-layer pipe (the time of the
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beginning of the interaction); τ0 ≥ τin and τ0 ≥ τout; νin and νout are Poisson’s ratios
of layers (it is assumed that they do not change over time); Ein(t) and Eout(t) are
time-dependent Young’s modules; Kin(t, τ ) and Kout are creep kernels of layers [4,
5]; kc(z) is kernel of cylindrical contact problem [3, 4]

kc(z) =
∞∫

0

L(s)s−1 cos(zs)ds, (13.2)

where

L(s) = S(s)s−1[c−1
r − cr s

2C2(s) + T (cr , s)D
2(s)],

T (r, s) = 2r−1(1 − νout) + s2r, cr = routr
−1
in ,

S(s) = c−1
r T (1, s) + T (cr , s) + cr s

4A2(s) − s2T (cr , s)B
2(s)

− cr s
2T (1, s)C2(s) + T (1, s)T (cr , s)D

2(s),

A(s) = I0(s)K0(cr s) − I0(cr s)K0(s), B(s) = I0(s)K1(cr s) + I1(cr s)K0(s),

C(s) = I0(cr s)K1(s) + I1(s)K0(cr s), D(s) = I1(s)K1(cr s) − I1(cr s)K1(s).

(13.3)

Here rout is outer radius of main layer, I0(s), I1(s), K0(s), K1(s) are modified Bessel
functions of first and second kind.

The system of equations (13.1) can be reduced to the following dimensionless
form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗(t∗)(I − V∗
in)D

1∗(z∗)q1∗(z∗, t∗) + (I − V∗
out)

n∑

j=1

F1 j∗q j∗(z∗, t∗)

= δ1∗(z∗), −1 ≤ z∗ ≤ 1, t∗ ≥ 1,

. . .

c∗(t∗)(I − V∗
in)D

n∗(z∗)qn∗(z∗, t∗) + (I − V∗
out)

n∑

j=1

Fnj∗q j∗(z∗, t∗)

= δn∗(z∗), −1 ≤ z∗ ≤ 1, t∗ ≥ 1,

(13.4)

using the following notation
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z∗ = 2l−1
i (z − mi ), ζ ∗ = 2l−1

i (ζ − m j ), t∗ = tτ−1
0 , τ ∗ = ττ−1

0 ,

τ ∗
in = τinτ

−1
0 , τ ∗

out = τoutτ
−1
0 , δi∗(z∗) = 2l−1

min{gi (z) − [rin − h(z)]},
c∗(t∗) = Eout(t − τout)E

−1
in (t − τin),

qi∗(z∗, t∗) = 2li (1 − ν2
out)qi (z, t)

lminEout(t − τout)
, Di∗(z∗) = 1 − ν2

in

1 − ν2
out

h(z)

li
,

V∗
iny(t

∗) =
t∗∫

1

K ∗
in(t

∗, τ ∗)y(τ ∗)dτ ∗, V∗
out y(t

∗) =
t∗∫

1

K ∗
out(t

∗, τ ∗)y(τ ∗)dτ ∗,

K ∗
in(t

∗, τ ∗) = Ein(t − τin)Eout(τ − τout)

Ein(τ − τin)Eout(t − τout)
Kin(t − τin, τ − τin)τ0,

Kout = Kout(t − τout, τ − τout)τ0,

Fi j∗y(z∗) =
1∫

−1

ki j∗(z∗, ζ ∗)y(ζ ∗)dζ ∗, ki j∗(z∗, ζ ∗) = 1

π
kc

(
z − ζ

rin

)

,

ai ≤ z ≤ bi , a j ≤ ζ ≤ b j , i, j = 1, 2, . . . , n, t ≥ τ0.

(13.5)

In these equations li = bi − ai is length of i-th insert,mi = 1
2 (ai + bi ) is itsmidpoint,

lmin = mini=1,2,...,n li .
If vector-functions, matrix-functions, and matrix operators are introduced into

circulation

q∗(z∗, t∗) =

⎛

⎜
⎜
⎜
⎝

q1∗(z∗, t∗)
q2∗(z∗, t∗)

...

qn∗(z∗, t∗)

⎞

⎟
⎟
⎟
⎠

, δ∗(z∗) =

⎛

⎜
⎜
⎜
⎝

δ1∗(z∗)
δ2∗(z∗)

...

δn∗(z∗)

⎞

⎟
⎟
⎟
⎠

,

D∗(z∗) =

⎛

⎜
⎜
⎜
⎝

D1∗(z∗) 0 · · · 0
0 D2∗(z∗) · · · 0
...

...
. . .

...

0 0 · · · Dn∗(z∗)

⎞

⎟
⎟
⎟
⎠

F∗ =

⎛

⎜
⎜
⎜
⎝

F11∗ F12∗ · · · F1n∗
F21∗ F22∗ · · · F2n∗

...
...

. . .
...

Fn1∗ Fn2∗ · · · Fnn∗.

⎞

⎟
⎟
⎟
⎠

(13.6)

then, system (13.4) can be represented in the following compact form

c∗(t∗)(I − V∗
in)D

∗(z∗)q∗(z∗, t∗) + (I − V∗
out)F

∗q∗(z∗, t∗) = δ∗(z∗),
− 1 ≤ z∗ ≤ 1, t∗ ≥ 1.

(13.7)
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Thus, finding the contact pressure levels reduces to the need to solve the operator
equation (13.7) and then transform the solution using (13.5) and (13.6).

13.3 Getting an Analytical Solution

Consider carefully the operator equation (13.7). It has two essential features.

1. The equation includes integral operators of various types:

a. Volterra operators with variable integration limits, the presence of which is
associated with viscoelasticity and aging of layers;

b. Fredholm operator, which arises when solving a boundary value problem for
a thick circular cylindrical layer, the results of which are used in constructing
a mathematical model of this problem.

2. The equation contains functions describing the profiles of the contacting surfaces.
Such a functions can be rapidly changing, which must be taken into account when
building a solution.

These features do not allow the use of standard known approaches, as they lead
to significant errors when performing real calculations (see [6]), which is due to the
limitations of the mantissa in calculations. If standard methods are applied even for
the case when all radii are constant (there are no rapidly changing functions), then
standard methods lead to the need to solve an infinite system of linear equations, the
fully filled matrix of which contains Volterra operators in all cells. Therefore, in the
problem under consideration, it is necessary to use a special approach that effectively
takes into account “bad” functions, and allows you to build an equation solution with
operators of various types.

First of all, let us consider the structure of equation (13.7). Note that when solving
the problem of the plane contact of the punch system and the layer with a coating in
[7], the system was absolutely the same in appearance [expressions (13.4)]. Despite
the fact that the kernel kpl(x) of the Fredholm operator, of course, was different, its
properties were similar to those of the Fredholm operator kc(z) in the problem under
consideration:

• functions L(s) has similar asymptotics: lims→∞ L(s) = 1, lims→0 L(s) = 0,
lims→0[L(s)s−1] = const;

• Fredholm operators are symmetric and positive definite.

These facts allow us to use the solution obtained in [7] to write out the solution
of our problem. We will first indicate the main features of the method used in con-
structing this solution (and described in [7]), and then, we will write out the solution
itself.

Step 1. It is necessary to introduce new unknown vector-function according to the
formula
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q̃(z∗, t∗) = −c◦(t∗)D−1/2∗(z∗) · δ∗(z∗) + D1/2∗(z∗) · q∗(z∗, t∗), (13.8)

where c◦(t∗) = (I − V∗
in)

−1[c∗(t∗)]−1 and

D−1/2∗(z∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1√
D1∗(z∗)

0 · · · 0

0 1√
D2∗(z∗)

· · · 0

...
...

. . .
...

0 0 · · · 1√
Dn∗(z∗)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

D1/2∗(z∗) =

⎛

⎜
⎜
⎜
⎝

√
D1∗(z∗) 0 · · · 0
0

√
D2∗(z∗) · · · 0

...
...

. . .
...

0 0 · · · √
Dn∗(z∗)

⎞

⎟
⎟
⎟
⎠

.

(13.9)

Such a replacement will transform the operator equation (13.7) to the form

c∗(t∗)(I − V∗
in)q̃(z∗, t∗) + (I − V∗

out)F̃q̃(z∗, t∗)

= −(I − V∗
out)c

◦(t∗)D−1/2∗(z∗) · δ̃(z∗), −1 ≤ z∗ ≤ 1, t∗ ≥ 1.
(13.10)

Here
δ̃(z∗) = F∗(D−1∗(z∗) · δ∗(z∗)),

F̃y(z∗) = D−1/2∗(z∗) · F∗(D−1/2∗(z∗) · y(z∗)),

D−1∗(z∗) =

⎛

⎜
⎜
⎜
⎝

1
D1∗(z∗) 0 · · · 0
0 1

D2∗(z∗) · · · 0
...

...
. . .

...

0 0 · · · 1
Dn∗(z∗)

⎞

⎟
⎟
⎟
⎠

.

(13.11)

Note that the new Fredholm operator F̃ is also symmetric and positive defi-
nite.Now, unlike the original equation (13.7), the right-hand side of equation
(13.11) is “good”, due to the smoothness of the kernels of operator F∗ and
hence the smoothness of vector-functions δ̃(z∗).

Step 2. The form of the resulting operator equation (13.10) and expressions (13.8)
and (13.11)) for the function q̃(z∗) and the operator F̃ suggest to us that
the solution must be constructed in the Hilbert space L2([−1, 1], V ) in the
form of a decomposition according to the basis {pim(z∗)}i=1,2,...,n;m=0,1,2,...

obtained by orthonormalization on [−1, 1] of the following system of lin-
early independent vector-functions
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{D−1/2∗(z∗) · i1, z∗D−1/2∗(z∗) · i1, (z∗)2D−1/2∗(z∗) · i1, . . . ,
D−1/2∗(z∗) · i2, z∗D−1/2∗(z∗) · i2, (z∗)2D−1/2∗(z∗) · i2, . . . . . . ,
D−1/2∗(z∗) · in, z∗D−1/2∗(z∗) · in, (z∗)2D−1/2∗(z∗) · in, . . .}.

(13.12)

Here i1, i2, …, in are identity vectors. Thus, it is necessary to construct a
special basis {pim(z∗)}i=1,2,...,n;m=0,1,2,....

Step 3. It is necessary to construct the eigenfunctions of operator F̃ using obtained
basis. This will make it possible to immediately reduce the resulting system
of equations for the functional expansion coefficients to a diagonal form.
We will give only the final formulas for calculating dimensionless unknown
vector-function q∗(z∗, t∗), since a detailed description of all calculations
can be found in [7]

q∗(z∗, t∗) = D−1∗(z∗)

[

c◦(t∗)δ∗(z∗) +
∞∑

l=0

zl(t
∗)

∞∑

m=0

n∑

i=1

ψ i
lm p

i◦
m (z∗)ii

]

,

zk(t
∗) = −(I + Wk)

(I − V∗
out)c

◦(t∗)
c∗(t∗) + γk

×
n∑

i, j=1

∞∑

m,l=0

ψ i
kmK

i j
ml

1∫

−1

p j◦
l (ζ )δ j∗(ζ )

D j∗(ζ )
dζ,

Wk y(t
∗) =

t∗∫

1

R∗
k (t

∗, τ ∗)y(τ ∗)dτ ∗, dk, j =

∣
∣
∣
∣
∣
∣
∣
∣
∣

J0, j J1, j · · · Jk, j
J1, j J2, j · · · Jk+1, j
...

...
. . .

...

Jk, j Jk+1, j · · · J2k, j

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

p j◦
k (z∗) = 1

√
dk, j dk−1, j

∣
∣
∣
∣
∣
∣
∣
∣
∣

J0, j J1, j · · · Jk, j
J1, j J2, j · · · Jk+1, j
...

...
. . .

...

1 z∗ · · · (z∗)k

∣
∣
∣
∣
∣
∣
∣
∣
∣

, Jk, j =
1∫

−1

ζ k

Di∗(ζ )
dζ,

− 1 ≤ z∗ ≤ 1, t∗ ≥ 1, j = 1, 2, . . . , n, k = 0, 1, 2, . . . ,
(13.13)

in which γk and ψ i
lm are determined from spectral problem

n∑

j=1

∞∑

l=0

K i j
mlψ

j
kl = γkψ

i
km, i = 1, 2, . . . , n k,m = 0, 1, 2, . . . , (13.14)

coefficients K i j
ml are expansion coefficients of kernel ki j∗(z∗, ζ ∗)[Di∗(z∗)

D j∗(ζ ∗)]−1/2 in basis {pim(z∗)}i=1,2,...,n;m=0,1,2,..., and R∗
k (t

∗, τ ∗) are the
resolvents of kernels
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Kk(t
∗, τ ∗) = c∗(t∗)K ∗

in(t
∗, τ ∗) + γk K ∗

out(t
∗, τ ∗)

c∗(t∗) + γk
. (13.15)

Now, using formula (13.13) and change of variables (13.5), it is possible to
obtain expressions for contact pressures in the area of interaction of inserts
and pipes

qi (z, t) = gi (z) − [rin − h(z)]
h(z)

Eout(t − τout)

1 − ν2
in

(I − V∗
in)

−1 Ein(t − τin)

Eout(t − τout)

+
∞∑

l=0

fl(t)
∞∑

m=0

ψ i
lm p

i◦
m

(
2(z − mi )

li

)

, ai ≤ z ≤ bi , t ≥ τ0,

fl(t) = lminEout(t − τout)

2h(z)(1 − ν2
in)

zl

(
t

τ0

)

, i = 1, 2, . . . , n, l = 0, 1, 2, . . .

(13.16)

13.4 Conclusions

The formula for calculating contact pressures in the area of interaction of the pipe
with the inner coating is presented in a form in which the functions associated with
the thickness of the inner coating, and the profiles of inserts are separated by separate
terms and multipliers. This allows calculations to be performed with high accuracy
even when these functions are rapidly changing. To achieve sufficiently high accu-
racy, it is necessary to limit the infinite series to only 20–30 terms, while using other
methods of solving this number should differ by more than an order of magnitude,
which leads to significant errors due to the limited mantissa of real variables.

It should be noted that the obtained solution allows taking into account both the
complex profiles of the contacting surfaces, and the rheological properties of the pipe
layers, and the mutual influence of inserts located in close proximity to each other.
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Chapter 14
Inelastic Behavior of High-Temperature
Steel Under Cyclic Loading Conditions

Katharina Knape and Holm Altenbach

Abstract The paper at hand focusses on the constitutive equations to describe the
inelastic material behavior of the high-temperature steel X20CrMoV12-1, widely
known to be applied for power plant components. Therefore, the purpose is to model
its response to a cyclic loading profile under which power plants operate the majority
of time.AnArmstrong–Frederick typemodel including a constitutive equation for the
inelastic strain rate and an evolution equation for the backstress tensor is considered
as basis for the application of the two-time-scale approach. The advantage will be a
reduction in computational time while still being able to depict the complete material
behavior. The finite element software ABAQUS is used to simulate the creep test as
well as the cyclic loading regime of a bar at elevated temperatures.

Keywords Cyclic loading · Frederick–Armstrong model · Two-time-scale
approach

14.1 Introduction

Power plants represent one of the most used power generating technologies of today.
Their gas turbines are known to have a high performance density so the main pur-
pose is to quickly close the gap between the power generally needed and the power
provided through renewable resources. Due to this efficient kind of running, highly
frequent start-ups and shut-downs of the system lead to complexmechanical and ther-
mal loading conditions, mechanical loading in the sense of periodic stress and strain
states and thermal loading meaning very high surrounding temperatures. Therefore,
the high-temperature creep, a slow time-dependent deformation, is the main chal-
lenge faced by thematerial alongwith the cyclic loading conditions. The combination
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of both greatly influences the component’s life and may lead to failure earlier than
expected. To prevent unforeseen events and investment costs, an understanding of
the material’s behavior and response to certain loading conditions through a reliable
simulation is mandatory. In addition, it would be possible to predict the remaining
lifetime or adapt the maintenance intervals more precisely.

These computations are very time-consuming. They need time integration proce-
dures with very small time increments in the case of a cycle-by-cycle integration [1].
However, to omit these difficulties, calculation methods including time averaging
approaches have been developed within the past years. They can be implemented
into the finite element code with the aim of reducing computational time. This work
focusses on applying the two-time-scale approach which is already known for the
solution of differential equations of dynamical systems [1]. Now, it is also used to
simulate inelastic material behavior in a numerically efficient way by differentiating
between two time scales, a slow and a fast one, each of them accounting for certain
processes [12]. Another technique has for example been suggested in [8], where a
wavelet transformation-based multi-time scaling method depicts crystal plasticity. In
addition, the cycle jumpingmethod is described in [9] with the intention to model the
material’s response under periodic loading. Here, internal variables are calculated
for as many loading cycles as needed until the integration scheme is stabilized. After
that, the rate of change can be estimated for a determined number of cycles avoiding
a further cycle-by-cycle integration.

The starting point to achieve the above is a constitutive model as used in [1, 4]
which needs to include especially creep, as well as cyclic hardening and softening
processes. It can either be amacroscale ormicroscalemodel, where for amacroscale-
based model, the material parameters are calculated according to experimental data
[4] by fitting the curves. With the intention of modeling the inelastic behavior of a
realistic gas turbine or shaft, using amicroscalemodel had the advantage of depicting
the local deformation better but is numerically much more complex which is why in
this paper, a macroscale-model is applied.

The widely known unified constitutive model was firstly used by [7], including an
equation to describe the inelastic strain rate tensor and also considering an evolution
equation for the backstress tensor. Chaboche picked up the concept and suggested
a superposition of several backstress tensors with separate evolution equations [3].
The approach is limited though, since the number of material parameters and hence
the complexity of the model is increasing and so is the numerical effort.

The mentioned constitutive models have been successfully applied to predict
material behavior under various mechanical and thermal loading conditions, never-
theless, modeling cyclic loading remains challenging [1]. In Sect. 14.2, the equations
according to the Armstrong–Frederick model are derived, followed by the explana-
tion of the two-time-scale approach in the third section. The combination of the two
is then implemented into the finite element software ABAQUS tomodel the response
of the high-temperature steel X20CrMoV12-1 to small number of loading cycles.
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14.2 Two-Time-Scale Technique

The basic idea of the two-time-scale method is the introduction of two different time
scales T0 and T1 [2, 11, 14] with the aim of reducing the computational time when
solving a system of differential equations of the form

dxxx

dt
= XXX [t, xxx(t)], xxx (0) = xxx0 (14.1)

where xxx represents a set of unknown variables.
The first, slow time scale, is often also called ‘natural time’ or ‘physical time’ and

it accounts for quasi-static loading and long-term behavior such as creep, see Eq.
(14.2)

T0 (t) = t. (14.2)

The second, fast or fine time scale, is described using a parameter μ with respect to
the total time tend

T1 (t) = τ (t) = t

μ
(14.3)

μ = T

tend
� 1. (14.4)

The total time derivative then yields

d

dt
= δ

δt
+ 1

μ

δ

δτ
. (14.5)

The result of this operation is a system of partial instead of ordinary differential
equations which can be solved with an asymptotic series expansion [12] of the set
of unknown variables xxx with respect to the factor μ

xxx (t, τ ) = xxx (0) (t, τ ) + μxxx (1) (t, τ ) + μ2xxx (2) (t, τ ) + · · · (14.6)

Also expanding the right-hand-side of the equation and inserting that into the total
time derivative yields a set of differential equations. They can be sorted with respect
to the order of μ

μ(−1) : δxxx (0)

δτ
= 0, (14.7)

μ(0) : δxxx (0)

δt
+ δxxx (1)

δτ
= XXX

(
t, τ, xxx (0)

)
, (14.8)

μ(1) : δxxx (1)

δt
+ δxxx (2)

δτ
= δXXX(t, τ, xxx (0))

δxδxδx
xxx (1). (14.9)
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In Eq. (14.7), it can be seen that the mean solution xxx (0) is only a function of the slow
time scale t .

Now, a time averaging operator has to be applied [1]

〈 f (t, τ )〉 = 1

T

T∫

0

f (t, τ ) dτ (14.10)

resulting in the following system of differential equations to calculate the mean
solution

dxxx (0)

dt
= XXX

(
t, xxx (0)

)
. (14.11)

The solutions of higher orders of μ may also be calculated according to [14]. Never-
theless, this work focusses only on the mean solution, where the stress tensor takes
the following form

σσσ (t, τ ) = σσσ (0) (t) + σσσ (1) (τ ) (14.12)

with the mean part σσσ (0) (t) and the periodic part σσσ (1) (τ ). The stress deviator and
the backstress tensor were also decomposed the same way. The above mentioned
method was tested in [1] and now needs to be applied to the material model described
in Sect. 14.3.

14.3 Material Model

The material model is supposed to depict elastic and also inelastic behavior. There-
fore, the Armstrong–Frederick type constitutive model is applied which includes
a constitutive equation for the inelastic strain rate tensor and a nonlinear kinematic
hardening rule for the backstress tensor. Thematerial parameters required are already
identified in [1, 4] for tempered martensitic steel.

14.3.1 Elastic Behavior

Under the assumption of small strains, the additive decomposition of the strain εεε into
an elastic εεεel and inelastic εεεin part is considered as the basis

εεε = εεεel + εεεin. (14.13)
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In order to define the elastic strain, Hooke’s law is applied including the material
parametersYoung’smodulus E , bulkmodulus K , shearmodulusG, and thePoisson’s
ratio ν as well as the stress tensor σσσ . Here, tr means the trace and III denotes the unit
tensor

σσσ = K tr
(
εεεel

)
III + 2Gεεεel, (14.14)

with

K = E

3(1 − 2ν)
, G = E

2(1 + ν)
. (14.15)

Taking into account the decomposition of the stress tensor into a spheric σσσm and a
deviatoric part σσσ ′ yields

σm = 1

3
tr (σσσ) , (14.16)

σσσ ′ = σσσ − σmIII . (14.17)

Within this paper, all deviators will be marked with a prime. The equation for the
elastic strain can be derived as follows

εεεel = σm

3K
III + σσσ ′

2G
. (14.18)

14.3.2 Inelastic Behavior

Now, the inelastic strain εin needs to be determined. It is known that in the case of
creep behavior the inelastic strain rate has to be a function of the potential depending
on the three invariants J1, J2, and J3 of the stress tensor and can therefore be written
as

ε̇̇ε̇εin = δψ(J1(σσσ ′), J2(σσσ ′), J3(σσσ ′))
δσσσ ′ . (14.19)

Since there is no significant change of volume due to the inelastic deformation, only
the stress deviator is considered. The influence of the first and third invariants may
be neglected, since for a deviator, the first invariant is equal to zero [4]. The third
invariant accounts only for so-called second-order effects in the material belonging
to the tensorial-nonlinear behavior [13]. So in the simplest case, the inelastic strain
is only dependent on the second invariant of the stress deviator

ε̇̇ε̇εin = δψ(J2(σσσ ′))
δσσσ ′ (14.20)

which yields

ε̇εεin = 3

2
ε̇invM

σσσ ′

σvM
(14.21)
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with the von Mises stress σvM

σvM =
√
3

2
σσσ ′:σσσ ′ (14.22)

and the von Mises inelastic strain rate ε̇invM

ε̇invM =
√
2

3
ε̇̇ε̇εin : ε̇̇ε̇εin. (14.23)

Note that ε̇εεin is a deviator.
Power plant components are not only subjected to mechanical but also very high

thermal loading. To account for the temperature dependency of the inelastic strain
rate, a separation ansatz is applied as can be seen in Eq. (14.24). It includes the stress
response function fσ and a temperature response function R(ϑ) depending on the
absolute temperature ϑ

ε̇in = fσ (σ̃vM)R(ϑ). (14.24)

These functions are identified by fitting experimental data of the material under
monotonic loading conditions.

Furthermore, the stress deviator is decomposed into an active σ̃σσ and a backstress
part βββ. The tensor’s active part will now be denoted by ˜(...)

βββ = σσσ ′ − σ̃σσ . (14.25)

To mathematically describe the backstress tensor, an Armstrong–Frederick type
backstress [1] with two material parameters Bi is chosen

β̇ββ = B1ε̇εε
in − B2 ε̇invMβββ. (14.26)

The term containing the von Mises inelastic strain rate is called dynamic recovery
term and is known to improve the numerical results [4]. In order to also be able to
capture cyclic behavior, the superposition of backstresses according to [3] is used
where each of the backstresses has its own evolution equation described inEq. (14.28)

βββ =
nnn∑

iii=1

βββ i , (14.27)

β̇ββ i = B1ε̇εε
in − B2 ε̇invMβββ i . (14.28)

This approach is limited by the ability of identifying the material parameters needed.
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14.3.3 Application of the Two-Time-Scale Approach

The backstress tensor for isothermal loading conditions in particular is shown in [1]

β̇ββ = 2

3
R (ϑ)

[
ε̇in − 3

2
ε̇vM

βββ

h (σvM, ϑ)

]
. (14.29)

Including the before mentioned decomposition (Eq. 14.12) of the variables leads to
the set of constitutive equations given in Eqs. (14.30)–(14.33) with Ch(ϑ) = 8.84
[1]

ε̇εεin(0) = 3

2
R(ϑ)

〈
fσ (̃σvM)

σ̃vM
(σσσ ′(0) − βββ(0) + σσσ ′(1))

〉
(14.30)

β̇ββ
(0) = 2

3
Ch (ϑ)

(

ε̇εεin(0) − 3

2
βββ(0)

〈
ε̇

(0)
vM

h (̃σvM, ϑ)

〉)

(14.31)

and

σ̃vM =
√
3

2
tr

(
σσσ ′(0) − βββ(0) + σσσ ′(1)

)2
(14.32)

ε̇
(0)
vM =

√
2

3
tr

(
ε̇εεin(0)

2
)
. (14.33)

The response functions for high-temperature steel were developed in [10] with the
parameters a0, α, B, and H∗ which should be estimated experimentally

R(ϑ) = a0e
− α

ϑ , f (σ ) = sinhBσ, h(|σ |, ϑ) = H∗|σ |. (14.34)

14.4 Simulation of the Material Behavior

The simulation of the inelastic material behavior is done using the finite element
program ABAQUS. An user-defined subroutine implements the specific material
properties of X20CrMoV12-1 [5, 6]. First investigations are done modeling only
one single element, now a bar, clamped on one side, is considered as shown in
Fig. 14.1.
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Fig. 14.1 Schematic model
of the bar

14.4.1 Cyclic Loading Condition

Referring to the application of high-temperature steels such as X20CrMoV12-1 in
power plants, these components are mostly subjected to cyclic loading. Therefore,
a combined uniaxial load of the form described in Eq. (14.12) is considered. In this
paper, the stress profile is assumed to be of rectangular shape, as can be seen in
Fig. 14.2 with the mean stress σm > 0 and the amplitude 0 < σa < σm . In [10], the
material parameters for a surrounding temperature of ϑ = 835 K can be found

a0 = 4.64 × 1023
1

h
, α = 6.12 × 104

1

K
, Ch = 8.84,

B = 7.74 × 10−2 1

MPa
, H∗ = 0.46.

(14.35)

The loading parameters are chosen as follows

σm = 200 MPa, σa = 10 MPa (14.36)

for a total simulation time of tend = 60 min.

14.4.2 Results of the Finite Element Simulation

The results of the simulation including the material parameters described before can
be seen in Fig. 14.3. The surrounding temperature was set to 873 K which tends to
be the operating temperature of a power plant. Additionally, the initial condition of
the inelastic and elastic strain being zero was chosen. Figure14.4 shows the same
loading profile but with the mean stress measuring 100 MPa, exactly half of the first
simulation. The comparison between both of them can be seen in Fig. 14.5. If the
mean stress is increased further from 100 to 200 MPa by steps of 20 MPa, the curve
is shifted upward as shown in Fig. 14.6.
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Fig. 14.2 Cyclic loading profile

Fig. 14.3 Strain versus time for the given cyclic stress profile
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Fig. 14.4 Strain versus time with a mean stress of σm = 100 MPa

Fig. 14.5 Comparison of the strain versus time curves with the different mean stresses
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Fig. 14.6 Strain versus time for the given cyclic stress profile

14.5 Conclusion

The aim of this paper was to examine the inelastic material response of high-
temperature steel to a cyclic loading profile as it can be found in several real-life
applications such as power plants. The widely known Armstrong–Frederick consti-
tutive model was used to model the material behavior. Applying the two-time-scale
approach to the derived equations results in a reduction of the computational time
needed when the finite element simulation using ABAQUS is carried out.

The appliedmaterialmodel includes the influence of the cyclic loading parameters
such asmean stress and stress amplitude depending on the two time scales. The graph
showing the strain with respect to time shifts as expected when the magnitude of the
load is decreased.

Current and future investigations focus on deriving the constitutive equations and
applying the two-time-scale approach also for the inelastic behavior due to thermal
cyclic loading conditions or a combination of thermo-mechanical loading.
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Chapter 15
One Case of a Lubrication Problem
for a Line Contact of Elastic Solids
with Soft Double Coatings

Ilya I. Kudish and Sergei S. Volkov

Abstract The main goal of this paper is to consider formulation and solution of
a lubrication problem based on the expressions for elastic surface displacements
derived asymptotically from an exact solution for a loaded double coated elastic
substrate which are valid within a certain range of the problem input parameters.
Based on that, a new relatively simple numerical model of the behavior of lubrica-
tion parameters in a line lightly loaded contact of double coated elastic cylinders
has been developed. For simplicity materials and coatings of both cylinders are
considered identical. The main part of the elastic displacements of the contact sur-
faces is represented by simple Winkler like contributions. The problem is reduced
to a numerical solution of a system of two transcendent equations performed by
Newton’s method. The formulas for lubrication parameters such as distributions of
contact pressure, gap, actual velocity of surface sliding, lubrication film thickness,
shear stress, coefficient of friction, and contact energy loss were derived and used for
specific calculations. Generally, compared to lubrication parameters in the contact
of rigid solids without coatings the effect of the double coating resulted in reduced
(up to 40% or more) contact pressure, increased contact area and film thickness as
well as some reduction of frictional forces and energy losses. Some specific results
for the obtained solutions are provided.
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15.1 Introduction

Most machine elements havemoving joints. Often, to improve their performance and
durability coatings and lubrication are used. For example, different kind of protective
coatings are used to improve tribological characteristics of joints, to reduce corrosion
and temperature effects in joint contacts. Lubrication usually serves two purposes:
decreasing the energy losses and friction as well as reducing contact surface tem-
peratures. Due to continuously increasing requirements to machine performance,
there is a need for designs of advanced machinery elements which, in turn, requires
development of new advanced mathematical models of machine elements with coat-
ings involved in lubricated contacts. In certain cases, the coatings used may have
a complex structure, i.e., besides being just made of a single homogeneous, func-
tionally graded, or porous materials, they may be multi-layered coatings made of
different materials, etc. Depending on the coating structure, contact geometry, and
applied loads different mathematical models can be used. For example, in [1–13] dry
contacts (without lubricant) with and without coatings made of homogeneous and
functionally graded materials, multi-layered coatings with and without friction were
considered. The surface elasticity approach was used for the analysis of coatings in
both static and dynamic loading in [14, 15]. Also, there exist many studies of the
behavior of double coatings of different structure subjected to different loads. The
interest to double coatings is due to the relative simplicity of their creation (com-
pared to multi-layered and functionally graded coatings) and the fact that they may
occur naturally as oxide films and adsorbed lubricant components. The plane con-
tact problem on indentation of bilayer (double-layered elastic coating glued to the
non-deformable foundation) was studied in frictionless and frictional formulations
in [16, 17], respectively. A problem for an indenter subjected to normal force and
torque contacting an elastic half-space with a double coating made of a functionally
graded material is considered in [18–20]. A thermomechanical analysis of a double
coating made of a functionally graded material is considered in [21]. The wear of
a double-layered coating and coating made of a functionally graded material, tak-
ing into account heating and friction, is considered in [22, 23]. Consideration of the
influence of lubrication on contact mechanical characteristics leads to problemsmore
complex than problems for dry contacts. This is due to the necessity of simultaneous
consideration of the rheology equations describing lubricant behavior and the elas-
ticity equations describing solid deformations, linear speeds of contact surfaces, and
gap between contact surfaces. Generally, solution of elastohydrodynamic lubrication
(EHL) problem is reduced to studying systems of integro-differential equations. The
simplest description of lubricants is provided by the Newtonian rheological model
[24–27]. In particular, heavily loaded line EHL contacts with Newtonian lubricant
rheology [28, 29] with thin adsorbed soft layer are considered in [30] while heavily
loaded point EHL contacts for functionally graded coating materials are considered
in [31]. The case of lubricant with Ree-Eyring non-Newtonian rheology is consid-
ered in [32] for a line contact with a coating. In [33] an EHL model for point contact
was investigated numerically. The results showed that hard coatings increase friction
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while soft coatings decrease it. A similar problem for contact solids with multiple
coatings (including some functionally graded ones) has been considered numerically
in [34]. The current paper is the continuation of the investigation of EHL contacts
with double coated surfaces [35]. The paper uses the classification of different double
coatings and the working regimes they are involved in [36] as well as Newtonian
lubricant rheology to simplify the formulation of the EHL problem for a line contact,
specifically, the expressions for surface displacements, speeds, and gap between the
surfaces. We will consider one classification case from [36] for which the upper
coating is significantly softer than the intermediate coating and substrate while the
substrate material is harder than the material of the intermediate coating. The results
will show how such combination of coatings and work conditions leads to lowering
friction force and energy loss and increases lubrication film thickness.

15.2 Main Simplified Relationships Used in the Problem
Formulation

Let us consider a plane problem for a lubricated contact of an infinite cylinder with a
half-space (see Fig. 15.1). Both the cylinder and the half-space have attached to them
relatively thin elastic double coatings. For simplicitywewill assume that the lubricant

Fig. 15.1 The general view
of a lubricated contact
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is aNewtonian incompressible fluidwith constant viscosityμ. The coordinate system
is introduced in such a way that the x−axis is directed along the lubricant flow and
perpendicular to the cylinder axis, the y−axis is directed along the cylinder axis, and
the z−axis is directed across the lubricant layer. The cylinder is separated from the
surface of the half-space by a continuous lubricant layer. The cylinder steadily rolls
and slides in the direction of the x−axis with speed u2 while the half-space moves
in the same direction with speed u1. The components of the lubricant velocity are
represented by functions u(x, y, z), v(x, y, z), and w(x, y, z), where

v(x, y, z) = ∂v(x, y, z)

∂y
= 0

due to problem geometry. Due to that the problem parameters are independent of
the coordinate y. For a typical line concentrated contact the gap between the contact
surfaces is much smaller than the contact length. Therefore, the simplified equations
of the motion of such a fluid are as follows [37, 38]

− ∂p

∂x
+ ∂τzx

∂z
= 0,

∂p

∂z
= 0, τzx = μ

∂u

∂z
, (15.1)

where p is the contact pressure while τzx is the tangential stress.
For an incompressible fluid the continuity equation has the form

∂u

∂x
+ ∂w

∂z
= 0. (15.2)

the no slip boundary conditions on the fluid speed u and no penetration of the fluid
on w at the solid boundaries are as follows

u(x,−h(x)/2) = u1, u(x, h(x)/2) = u2,

w(x,−h(x)/2) = −1

2
u1

dh(x)

dx
, w(x, h(x)/2) = 1

2
u2

dh(x)

dx
,

(15.3)

where h(x) is the gap between contact surfaces. The boundary conditions imposed
on w are obtained based the fact that in concentrated contacts dh/dx � 1.

An accurate and precise description of surface normal and tangential displace-
ments for a double-layered elastic solid loaded with a normal and tangential surface
loads is provided in [36]. We will assume that the substrate material occupying the
lower subspace has Young’s modulus Es and Poisson’s ratio νs while the materials of
the upper and intermediate coatings have Young’s modulus Ec and Ei and Poisson’s
ratios νc and νi , respectively, while their thicknesses are h1 and h2, respectively.
However, the exact expressions for the surface displacements for such elastic solids
are very complex. An asymptotic analysis of these expressions in a spectrum of var-
ious limiting cases has been conducted in [36] which in some specific limiting cases
resulted in a much simpler relationships compared to the original ones. In this paper
we will consider couple of such cases of a lightly loaded contact characterized by a
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Winkler type relationships for surface displacementsU andW called in [36] as Case
I or Case II, respectively,

E ′(c)
33 � E ′(i)

33 � E ′(s)
33 or E ′(i)

33 � E ′(c)
33 � E ′(s)

33 , (15.4)

E11 = E33 = E

1 − ν2
, E13 = 2E

(1 + ν)(1 − 2ν)
, (15.5)

where superscripts (i), (c), and (s) correspond to thematerials of the intermediate and
upper coatings as well as the substrate, respectively, E and ν are Young’s modulus
and Poisson’s ratio of the corresponding material.

Specifically, for surface displacements we will consider Case U2U8 for the tan-
gential displacement Uk of the solid k has the form

U ′
k(x, 0) = 1

2π

[
B(1)
11,kh1,k + B(2)

11,kh2,k
]
τ ′
zx,k(x) + . . . , (15.6)

which is correct if the following relationships are satisfied

aH � E ′(s)
13

4π

(
B(1)
13 h1,k + B(2)

13 h2,k
)

,
aH
R′ � 2

B(1)
13,kh1,k + B(2)

13,kh2,k

B(1)
11,kh1,k + B(2)

11,kh2,k
, (15.7)

and Case W2W7 for the normal displacement Wk of the solid k as follows

W ′
k(x, 0) = − 1

2π

[
B(1)
33,kh1,k + B(2)

33,kh2,k
]
p′(x) + . . . , (15.8)

is correct if the following relationships are satisfied

aH � E ′(s)
33

(
B(1)
33 h1,k + B(2)

33 h2,k
)

,
aH
R′ � 2

B(1)
33,kh1,k + B(2)

33,kh2,k

B(1)
13,kh1,k + B(2)

13,kh2,k
, (15.9)

where subscript k indicates the solid (1 for lower and 2 for upper solid), h1,k and h2,k
the thickness of the external and intermediate coatings on solid k, R′ is the effective
radius of the contact surfaces, aH is a typical (Hertzian) half-length of a dry contact
of elastic solids without coatings,

aH = 2

√
R′P

πE ′(s)
33

,

P is the load per unit length applied to the cylinder, p(x) and τzx,k(x) are the pressure
and tangential stress applied to the surface of solid k. Some of the constants involved
in the previous formulas are given below [36]
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B(1)
11 = 4π

(1 − νc)E
′(c)
33

, B(2)
11 = 4π

(1 − νi )E
′(i)
33

,

B(1)
13 = 8E ′(c)

33

E ′(c)
13 E ′(s)

33

, B(2)
13 = 4(1 − 2νi )

(1 − νi )E
′(s)
33

,

B(1)
33 = 4π

(1 − νc)E
′(c)
13

, B(2)
33 = 4π

(1 − νi )E
′(i)
13

.

(15.10)

Using (15.7), (15.9), and (15.10) it easy to show that there is a range of problem
parameters (material elastic characteristics, contact geometry, coating thicknesses,
and applied normal load) for which the above asymptotic estimates for U ′

k and W ′
k

[36] are valid.
For simplicity we will assume that the materials of both contact solids are iden-

tical and the coating thicknesses of coatings on both solids are also the same, i.e.,
h1,1 = h1,2 = h1 and h2,1 = h2,2 = h2. Based on the above formulas the actual
surface velocities of the solids are

vk(x) = uk

[
1 + d

dx
Uk

(
x, (−1)k

h(x)

2

)]
, i = 1, 2, (15.11)

where h(x) is the gap between the solids in contact. That, finally, allows us to for-
mulate the lubrication problem as follows (see [37, 38])

d

dx

{
v1(x) + v2(x)

2
h(x) − h3(x)

12μ

dp(x)

dx

}
= 0, p(xi ) = p(xe) = dp(xe)

dx
= 0,

h = he + x2 − x2e
2R′ + 1

π

(
B(1)
33 h1 + B(2)

33 h2
)
p(x),

xe∫

xi

p(x)dx = P,

v1(x) + v2(x)

2
= u1 + u2

2
+ 1

4π

[
B(1)
11 h1 + B(2)

11 h2
] [

u1τ
′
zx,1(x) + u2τ

′
zx,2(x)

]
,

S(x) = v2(x) − v1(x) = u2 − u1 + 1

2π

[
B(1)
11 h1 + B(2)

11 h2
][
u2τ

′
zx,2(x) − u1τ

′
zx,1(x)

]
,

τzx,1 = τzx

(
x, −h

2

)
= μS

h
− h

2

dp

dx
, τzx,2 = τzx

(
x,

h

2

)
= −μS

h
− h

2

dp

dx
,

(15.12)
where xi and xe are the contact inlet and exit point coordinates (xi is considered to be
given while xe needs to be determined from the problem solution), he lubrication film
thickness at the exit point xe which is also determined from the problem solution,
and R′ is the effective curvature radius of the contact solids.
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By introducing the following dimensionless variables typical for lightly loaded
lubricated contacts [37, 38]

{x ′, a, c} = {x, xi , xe} θ

2R′ , h′ = h

he
, p′ = p

πR′

θ P
, μ′ = μ

μa
,

{v′
1, v

′
2, S

′} = 2

u1 + u2
{v1, v2, S}, F ′ = 1

P
F, E ′ = 4

μa(u1 + u2)2
E,

γ = he
θ2

2R′ , S00 = 2
u2 − u1
u1 + u2

, θ2 = P

3πμa(u1 + u2)
,

(15.13)

and omitting in the further considerations primes at the dimensionless variables we
obtain the following problem in dimensionless variables

d

dx

{
v1(x) + v2(x)

2
h − γ 2 h3

μ

dp

dx

}
= 0,

p(a) = p(c) = dp(c)

dx
= d2 p(c)

dx2
= 0,

γ (h − 1) = x2 − c2 + 2σh

πV
p,

c∫

a

p(x)dx = π

2
,

v1 + v2

2
= 1 − S00

σδ

24πγ

d

dx

(
μS

h

)
− σδγ

π

d

dx

(
h
dp

dx

)
,

S = S00 − σδ

6πγ

d

dx

(
μS

h

)
− S00

σδγ

2π

d

dx

(
h
dp

dx

)
, S(x) → S00, x → ∓∞,

V = R′E ′(s)
33

θ2P
, σh = θ

[
h1/R′

(1 − νc)E
′(c)
13 /E ′(s)

33

+ h2/R′

(1 − νi )E
′(i)
13 /E ′(s)

33

]
,

σ = θ

[
h1/R′

(1 − νc)E
′(c)
33 /E ′(s)

33

+ h2/R′

(1 − νi )E
′(i)
33 /E ′(s)

33

]
, δ = P

R′E ′(s)
33

,

(15.14)
where V, S00, θ, σh, σ , and δ are given dimensionless parameters. Here in addition
to the traditional boundary conditions used in lubrication problems we imposed an
additional boundary condition d2 p(c)/dx2 = 0 at the exit point of the lubricated con-
tact. The dimensionless friction force at the upper surface F (coefficient of friction)
and contact energy loss E are expressed by the formulas

F = μ

6πθγ

⎧⎨
⎩

c∫

a

S(x)dx

h(x)
+ 6γ 2

μ

c∫

a

h(x)
dp(x)

dx
dx

⎫⎬
⎭ ,

E = θμ

γ

⎧
⎨
⎩

c∫

a

S2(x)dx

h(x)
+ 12γ 4

μ2

c∫

a

h3(x)

(
dp(x)

dx

)2

dx

⎫
⎬
⎭ .

(15.15)
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Obviously, the Reynolds differential equation can be analytically integrated one
time. After that the problem can be reduced to solution of a system of the equa-
tion obtained after one time integration of the Reynolds equation with the boundary
condition dp(c)/dx = 0 with remaining boundary and integral conditions as well
as the initial-value problem for S(x). This system can be solved iteratively in three
repeated consequent steps. Suppose the initial approximations are taking the fol-
lowing way: S(x) = S00 while p(x), h(x), γ , and c are taken as from the solution
of a lubrication problem for rigid solids and Newtonian fluid [37, 38]. The internal
iteration process involves Step 1: Solving the one time integrated Reynolds equa-
tion with boundary conditions p(a) = d2 p(c)/dx2 = 0. Specifically, we satisfy the
Reynolds equation at semi-integer nodes xi+1/2, i = 0, . . . , N − 2, and imposing
the boundary conditions p0 = 0 and pN − 2pN−1 + pN−2 = 0 while the values of
pressure p(xi ) = pi are determined at the integer nodes xi , i = 0, . . . , N . Here N
is sufficiently large positive integer. This way we get a system of N + 1 nonlinear
algebraic equations with N + 1 unknowns pi , i = 0, . . . , N . Then on Step 2 the
system of two transcendent equations

p(c) = pN = 0 and

c∫

a

p(x)dx =
N−1∑
i=0

pi + pi+1

2
(xi+1 − xi ) = π

2

is used to determine the corrections for parameters γ and c. That is done by applying
Newton’s method. After that, with the corrected values of γ and c Step 1 is repeated.
These calculations are done until the iteration process for p(x), h(x), γ , and c
converges. After that with new p(x), h(x), γ , and c is solved the initial-value
problem for S(x) from x = −∞ to x = ∞ where the equation for S from (15.14)
is also satisfied at semi-integer nodes xk+1/2, k = L , . . . , K − 1 and solved for
Sk, k = L , . . . , K where SL = S00, xL < 0, | xL |�| a |, and xK � c, i.e., xK −
xL � c − a. After that the iteration process goes back to Step 1 and so on until all
the set of the solution parameters pi , hi , Sk , γ and c converges with the desired
precision.

The lubrication problem for solids with coatings made of different materials and
of different thickness can be set up in a similar way. Moreover, the equations for the
case when one of the solids does not have coatings coincides with Eqs. (15.14) in
which the dimensionless parameters σh and σ have to be replaced by σh/2 and σ/2,
respectively. Therefore, the effect of the coatings is diminished.

It is important to realize that usually the coefficient at the last term in the equations
for S and (v1 + v2)/2 in (15.14) is small compared to the other coefficients. That
leads to the presence of a very narrow boundary layer adjacent to the exit point x = c.
However, the boundary layer is very small anddoes not change the general behavior of
the problem solution. Moreover, numerically the solution of the formulated problem
practically coincides with the solution of the problem from (15.14) in which the last
terms in the expressions for S and (v1 + v2)/2 as well as the last boundary condition
on d2 p(c)/dx2 are dropped.
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On the other hand, the problem described by Eq. (15.14) can be solved using
the regular perturbation method for σh ∼ 1, σ ∼ 1, δ ∼ 1 and V � 1 presented in
[37, 38]. Obviously, for large V as V increases the problem solution approaches
the solution of the corresponding lubrication problem for rigid solids [37, 38]. This
trend is clear from the numerical data presented below.

15.3 Some Results for the Lubrication Problem

In this section, our goal is to illustrate the developed approach by a specific numerical
example. For simplicitywewill assume that the geometry andmaterials of the contact
solids are identical. Consider a soft double-layered polymer material lying on an
elastic substratewith the following properties: Ec = 0.1GPa , νc = 0.3, Ei = 1GPa,
νi = 0.3, Es = 200 GPa, νs = 0.48. Also, it is assumed that the effective radius of
contact solids R′ = 0.01 m, the applied force P = 2 · 103 N/m, and the coating
thicknesses are taken as follows h11 = h12 = 10−6 m and h21 = h22 = 10−5 m. For
this set of data all of the conditions (15.7) and (15.9) for the validity of the used
approximations for the surface displacementsU andW are satisfied. The lubrication
regime is lightly loaded and, therefore, the lubricant viscosity μ can be considered
independent of pressure and equal to the ambient viscosity μa = 1 · 10−2 Ns/m2.
The following results are obtained for fixed values of parameters μ = 1, S00 = 2,
σ/θ = 0.675, σh/θ = 0.193, and varying values of parameter θ . Just notice, that for
the case of rigid solids without coatings the dimensionless film thickness γr = 0.157
and dimensionless coordinate of the exit point cr = 0.170 (see [37, 38]). Here and
further the lower index r indicates the corresponding value for the case of rigid solids
without coatings.

The graphs of pressure p(x) versus x for different values of θ−2 are presented
in Fig. 15.2. The graph represented by a solid curve corresponds to the case of rigid
solids without coatings. Obviously, as θ increases (which happens when the applied
load P increases and/or μa(u1 + u2) decreases) the distribution of pressure p(x)
decreases and occupies a wider contact area. The decrease in the values of p(x)
reaches up to 40% compared to the case of rigid solids.

The graphs of relative lubrication film thickness γ /γr and exit coordinate of the
contact c/cr are presented in Figs. 15.3 and 15.4. It is obvious from this graphs that
the presence of soft coatings increases the lubrication film thickness and widens the
contact region compared to the case of rigid solids without coatings. As θ decreases
the contact parameters converge to the ones for the case of rigid solids without
coatings. It is worth to notice that the quantitative and qualitative behavior of the
relative minimum gap γ hmin/(γr − c2r ) versus θ−2 is very close to the corresponding
behavior of γ /γr versus θ−2 (see Fig. 15.3).

For rigid solidswithout coatings thedimensionless friction force and loss of energy
in the contact are Fr = 3.084μ/(6πθγr ) and Er = 6.169θμ/γr , respectively. The
graph of F/Fr (which coincides with the relative friction coefficient) is represented
in Fig. 15.5. As θ−2 increases the value of F/Fr monotonically increases which
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Fig. 15.2 The graphs of the
pressure distributions p(x)
versus x obtained for
different values of θ

p(x)

x

θ

θ=32.5
θ=46
θ=65
θ=84.1
θ=103

 rigid solids

Fig. 15.3 The graph of the
relative exit point film
thickness γ /γr versus θ−2

х10-4

2.5 5.5 74 8.5 10 11.5 13
=3       (u1+u2)/Pμaπ

corresponds to the elastohydrodynamic regime of lubrication on a Stribeck curve.
Obviously, the presence of soft coatings decreases the friction and friction coefficient
compared to the case of rigid solids without coatings. The graphs of E/Er coincides
with the graph of F/Fr from Fig. 15.5. The actual sliding speed S(x) differs from
S00 by less than 1% for any x and everywhere it can be taken equal to S00. Obviously,
the difference of S from S00 practically does not affect the values of F/Fr and E/Er .
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Fig. 15.4 The graph of the
relative exit coordinate c/cr
versus θ−2

=3       (u1+u2)/Pμaπ
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Fig. 15.5 The graph of the
friction force F/Fr versus
θ−2

х10-4

2.5 5.5 74 8.5 10 11.5 131

F
F

=3       (u1+u2)/Pμaπ



218 I. I. Kudish and S. S. Volkov

15.4 Closure

A relatively simple model of a lubricated contact of elastic solids with soft double
coatings was developed. The model is valid within the indicated range of param-
eters described by (15.7) and (15.9). The development of this simple model made
possible by using the obtained by the authors classification [36] based on an asymp-
totic approach which allowed to significantly simplify the expressions for surface
displacements of double coated surfaces. That leaded to a significant simplification
of the Reynolds equation and its solution. The numerical results showed that for low
surface speeds and lubricant viscosity and/or high applied force the presence of soft
double coatings increases the lubrication film thickness, decreases the level of contact
pressure as well as decreases the contact friction and energy losses compared with
the case of rigid solids without coatings. For example, for the above indicated input
parameters the maximum decrease in friction was 6% while in maximum pressure it
was 40%.

Acknowledgements The study was supported by the Russian Science Foundation grant No. 19-
19-00444, https://rscf.ru/project/19-19-00444/.
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Chapter 16
On the Exact Solution of the First
Boundary Value Problem for a Plane
with a Circular Hole in the Formulation
of the Nonlinear Power-Law Theory
of Steady Creep Under Antiplane
Deformation

Suren M. Mkhitaryan

Abstract In the formulation of the nonlinear steady-state creep theory (NSSCT),
when there is a power-law dependence between stresses and deformation rates, the
first boundary value problem for a deforming plane with a circular hole is consid-
ered under antiplane deformation. Using the method of the harmonic function of
pseudostresses, the solution to this problem is reduced to the solution of a nonlinear
singular integral equation (NSIE)with theHilbert kernel. The latter, in turn, is reduced
to a nonlinear Riemann boundary value problem in the theory of analytic functions.
An exact (closed) solution to the Riemann problem is constructed, with the help
of which the main characteristics of the problem posed are represented by explicit
analytical formulas. A particular case is considered.

Keywords Steady-state creep · Power law · Stresses · Deformation rate · Plane
with a circular hole · First boundary value problem · Antiplane deformation

16.1 Introduction

In [1, 2], the formulation of NSSCT with a power-law dependence between stress
intensities and deformation rates or in the formulation of the deformation theory
of plasticity and with power-law hardening of the material, a physically nonlinear,
but geometrically linear, plane contact problem of compression of two bodies was
studied. These works proceed from the exact solution of the generalized Flaman
problem in displacements depending on normal concentrated forces. To determine
the distributed normal force-dependent displacements or deformation rates of the
boundary points of deformable half-planes, which replace compressible bodies,
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according to Hertz’s hypotheses, the principle of superposition of generalized
displacements (PSGD) or deformation rates is used. Some estimates of this prin-
ciple were obtained in [3]. In [4, 5] are devoted also to the estimation of PSGD.
For the nonlinear power-law contact problem of the interaction between a stamp
with a flat base and a half-space under antiplane deformation, a comparative anal-
ysis of the exact solution obtained by the hodograph method and an approximate
solution by the PSGD was carried out in [5]. The hodograph method applied to
crack problems, which leads to a linear differential equation for the potential in the
deformation plane, was proposed in [6]. The hodograph method makes it possible to
obtain unbounded solutions at the ends of the characteristic interval for the consid-
ered mixed power-law nonlinear boundary value problems. Another linearization
approach is based on introducing a biharmonic function of pseudostresses in a plane
power-law problem and was developed in [7]. This method enables to obtain only
solutions to mixed boundary value problems bounded at the ends of the interval. In
[8], a harmonic pseudostress function was introduced in nonlinear power-law prob-
lems under antiplane deformation, with the help of which an exact (closed) solution
of the first boundary value problem of the NSSCT for a half-space under antiplane
deformation was constructed. An exact solution of a mixed power-law boundary
value problem for a half-space under antiplane deformation, when the boundary
conditions on the boundary plane of the half-space are separated by a stripe domain,
is also constructed in [9] using the method of harmonic function of pseudostresses in
the NSSCT formulation. In the same work, a comparative analysis of the exact and
approximate PSGD solutions was carried out. Note that many results of the study of
nonlinear contact and mixed problems are summarized in [10, 11].

We also note that the power law between stresses and deformation rates, known
as Glenn’s law, adequately describes the physical and mechanical behavior of sea
ice and covers, glaciers, frozen soils, and other materials. Numerous studies have
been devoted to the theoretical and experimental justification of Glen’s law. In this
direction, we point to [12–14].

In this paper, in the formulation of the NSSCT with a power-law relationship
between stresses and deformation rates, we consider a boundary value problem for
an infinite space with a circular infinite cylindrical hole, which is under antiplane
deformation conditions, when shear stresses are prescribed on the cylindrical surface
of the hole. This problem is equivalent to the first boundary value problem for a plane
with a circular hole. By the harmonic pseudostress function method, as in [8, 9], the
solving this problem is reduced to solving the NSIE with the Hilbert kernel, solving
of which, in turn, is reduced to the nonlinear Riemann boundary value problem of the
theory of analytic functions. An exact solution of theRiemann problem is constructed
based on which the stresses and velocities of the problem under consideration are
represented by explicit analytical formulas. A particular case of an external load on
the boundary circle of the hole is considered.
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16.2 Representation of Stresses and Strain Rates in Terms
of the Harmonic Function of Pseudostresses

Let the deformable body be referred to the right rectangular coordinate system Oxyz
andbeunder conditions of antiplanar deformation (longitudinal shear) in the direction
of the Oz axis with the reference plane Oxy. Further, let the trace of this body on
the Oxy plane be a two-dimensional domain D with a boundary ∂D in the form of
a smooth closed Jordan curve. In this coordinate system, as applied to the case of
antiplane deformation, we present the basic equations of NSSCT with a power law.
They consist [15, 16] of the equilibrium equation

∂τxz
/

∂x + ∂τyz
/

∂y = 0 ((x, y) ∈ D), (16.2.1)

where τxz, τyz are shear stress components, the equations of continuity of deformation
rates

∂γxz
/

∂y − ∂γyz
/

∂x = 0; γxz = ∂w
/

∂x , γyz = ∂w
/

∂y ((x, y) ∈ D),

(16.2.2)

where γxz, γyz are strain rate components, and w = w(x, y) is the only non-zero
velocity component in the direction of the Oz axis under antiplanar deformation;
from the dependences between stresses and strain rates we have

τxz = T(�)

�
γxz, τyz = T(�)

�
γyz; T = T(�) = K0�

m (K0 > 0; 0 < m ≤ 1);
(16.2.3)

T =
√

τ 2
xz + τ 2

yz, � =
√

γ 2
xz + γ 2

yz . (16.2.4)

Here, T is the stress intensity, Γ is the deformation rate intensity, K0 is the physical
constant of the material, and m is the creep index.

In the equilibrium Eq. (16.2.1), we introduce the stress function � =
�(x, y) ((x, y) ∈ D) by setting

τxz = −∂�

∂y
, τxz = ∂�

∂x
. (16.2.5)

It is assumed that the function �(x, y), together with its partial derivatives up
to the second order, is continuous in the closed domain D. Then, the equilibrium
equation is satisfied identically.

Next, we pass to the complex plane z and set
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z = x + iy, z = x − iy ⇒ x = 1

2
(z + z), y = − i

2
(z − z)

� = �(x, y) = �

(
1

2
(z + z), − i

2
(z − z)

)
= �(z, z).

From (16.2.5) and the first formula in (16.2.4)

τxz = −i

(
∂�

∂z
− ∂�

∂z

)
, τyz = ∂�

∂z
+ ∂�

∂z
; T = 2

(
∂�

∂z

∂�

∂z

)1/ 2
. (16.2.6)

For the strain rate components, from (16.2.3)–(16.2.4) using (16.2.6), we obtain

γxz = �

T(�)
τxz = −i K (m)

(
∂�

∂z
· ∂�

∂z

) 1−m
2m
(

∂�

∂z
− ∂�

∂z

)
,

γyz = �

T(�)
τyz = K (m)

(
∂�

∂z
· ∂�

∂z

) 1−m
2m
(

∂�

∂z
+ ∂�

∂z

)
; K (m) = 1

/
2
(
2
/
K0
)1/ m.

(16.2.7)

Then, using the relations

∂�

∂z
=
(

∂�

∂z

) 1+m
2m
(

∂�

∂z

) 1−m
2m

,
∂�

∂z
=
(

∂�

∂z

) 1−m
2m
(

∂�

∂z

) 1+m
2m

, (16.2.8)

by analogy with [7], we introduce the pseudostress function �(x, y) = �(z, z).
In the linear case m = 1 and then, K (1) = 1

/
K0 = 1

/
G, where G is the shear

modulus. It follows from (16.2.8) that for m = 1, the pseudostress function �(x, y)
coincides with the stress function �(x, y) up to an additive constant.

We now express the stresses, deformation rates, and velocities in terms of the
function �(z, z). Namely from (16.2.7) and (16.2.8), it follows that

γxz = −i K (m)

(
∂�

∂z
− ∂�

∂z

)
, γyz = K (m)

(
∂�

∂z
+ ∂�

∂z

)
. (16.2.9)

Substituting the expressions γxz and γyz from (16.2.9) into the deformation rate
continuity Eq. (16.2.2), we arrive at the Laplace equation for the function �(z, z)

	� = ∂2�

∂x2
+ ∂2�

∂y2
= ∂2�

∂z∂z
= 0 ((x, y) ∈ D). (16.2.10)

To find expressions for stresses and velocities in terms of a function of pseu-
dostresses, we invert relations (16.2.8). To this end, we multiply and divide by each
other the left- and right-hand sides of relations (16.2.8). As a result, we will have
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∂�

∂z

∂�

∂z
=
(

∂�

∂z

∂�

∂z

)m

,
∂�

∂z

/
∂�

∂z
= ∂�

∂z

/
∂�

∂z

and hence

∂�

∂z
=
(

∂�

∂z

) m+1
2
(

∂�

∂z

) m−1
2

,
∂�

∂z
=
(

∂�

∂z

) m−1
2
(

∂�

∂z

) m+1
2

. (16.2.11)

Then, substituting (16.2.11) into (16.2.6), we get.

τxz = −i

(
∂�

∂z

∂�

∂z

) m−1
2
(

∂�

∂z
− ∂�

∂z

)
, τyz =

(
∂�

∂z

∂�

∂z

) m−1
2
(

∂�

∂z
+ ∂�

∂z

)
.

(16.2.12)

Since

∂�

∂z
= 1

2

(
∂�

∂x
− i

∂�

∂y

)
,

∂�

∂z
= 1

2

(
∂�

∂x
+ i

∂�

∂y

)
,

then formulas (16.2.12) can be represented as

τxz = − 1

2m−1

[(
∂�

∂x

)2

+
(

∂�

∂y

)2
] m−1

2
∂�

∂y
,

τyz = 1

2m−1

[(
∂�

∂x

)2

+
(

∂�

∂y

)2
] m−1

2
∂�

∂x
.

(16.2.13)

and formulas (16.2.2) and (16.2.9) in the following form:

γxz = ∂w
/

∂x = −K (m)∂�
/

∂y, γyz = ∂w
/

∂y = K (m)∂�
/

∂y. (16.2.14)

To express the function w(x, y) in terms of �(x, y), we introduce the harmonic
function 
(x, y) (x, y ∈ D) conjugate to �(x, y). Then, we have up to an arbitrary
additive constant

w(x, y) = K (m)
(x, y) ((x, y) ∈ D). (16.2.15)

Thus, the velocity component w(x, y) is proportional to the function, harmonic
in D, conjugate to the pseudostress function �(x, y).

Note that the function 
(x, y) is expressed in terms of the function �(x, y) by
the well-known formula [17]
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(x, y) =
∫

M0M

(
−∂�

∂y
dx + ∂�

∂x
dy

)
+ C, (16.2.16)

whereM0 M is an arbitrary path connecting an arbitrary fixed point M0(x0, y0) with
a variable point M (x, y) and located entirely in the considered area D.

So, the velocity component w(x, y) is expressed through the function of
pseudostresses by means of formulas (16.2.15)–(16.2.16).

For further use, it is necessary to write some of the basic equa-
tions and relations (16.2.1)–(16.2.16) in the polar coordinate system
(r, ϕ) (0 ≤ r < ∞; −π < ϕ ≤ π). Setting

x = r cosϕ, y = r sin ϕ ⇒ r =
√
x2 + y2 , ϕ = arctan ϕ

( y
x

)

and omitting intermediate elementary calculations, we obtain that the equilibrium
Eq. (16.2.1) takes the form

∂τr z

∂r
+ 1

r

∂τϕz

∂ϕ
+ τr z

r
= 0 ((r, ϕ) ∈ D), (16.2.17)

deformation rate continuity equation—the form

∂γϕz

∂r
+ γϕz

r
− 1

r

∂γr z

∂ϕ
= 0 ((r, ϕ) ∈ D), γr z = ∂w

∂r
, γϕz = 1

r

∂w

∂ϕ
; (16.2.18)

relationship between stresses and deformation rates are represented as

τr z = T(�)

�
γr z, τϕz = T(�)

�
γϕz; T = T(�) = K0�

m ( 0 < m ≤ 1);

T =
√

τ 2
r z + τ 2

ϕz, � =
√

γ 2
r z + γ 2

ϕz .

(16.2.19)

Equations (16.2.17)–(16.2.19) include components of stresses and deforma-
tion rates. Their meaning is clear. Now, based on (16.2.17), the stress function is
introduced as follows:

τϕz = ∂�

∂r
, τr z = −1

r

∂�

∂ϕ
((r, ϕ) ∈ D),

while the pseudostress function �(r, ϕ) = �(z, z) is represented again by (16.2.8).
Further, proceeding similarly to the above, we obtain the following expressions for
the stress components:
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τϕz = 1

2m−1

[(
∂�

∂r

)2

+ 1

r2

(
∂�

∂ϕ

)2
] m−1

2
∂�

∂r
, ((r, ϕ) ∈ D);

τr z = − 1

2m−1

[(
∂�

∂r

)2

+ 1

r2

(
∂�

∂ϕ

)2
] m−1

2 1

r

∂�

∂ϕ
;

(16.2.20)

for the velocity components

γϕz = K (m)
∂�

∂r
, γr z = −K (m)

1

r

∂�

∂ϕ
((r, ϕ) ∈ D).

Formulas (16.2.15)–(16.2.16) in the polar coordinate system will take the form

w(r, ϕ) = K (m)
(r, ϕ)

= K (m)

∫

M0M

(
∂�

∂r
rdϕ − 1

r

∂�

∂ϕ
dr

)
, K (m) = 1

2

(
2

K0

)1/m

. (16.2.21)

16.3 Formulation of the Problem and Derivation
of the Basic Equations

Let an infinite space with a circular cylindrical hole (shaft) 
 =
{a ≤ r < ∞, −π < ϕ ≤ π,−∞ < z < ∞} of radius a, referred to a cylindrical
coordinate system r, ϕ, z, along its cylindrical surface r = a, be uniformly loaded
along the axis Oz by tangential forces of intensity f (ϕ), that is

τϕz|r=a = f (ϕ) (−π < ϕ ≤ π), (16.3.1)

and

π∫

−π

f (ϕ)dϕ = 0. (16.3.2)

This condition is satisfied, in particular, when f (ϕ) is an odd function on (−π, π).
. It is assumed that under load (16.3.1) and under condition (16.3.2) an infinite space
with a cylindrical hole 
 is under conditions of antiplanar deformation (longitudinal
shear) in the direction of the Oz axis with a base plane (r, ϕ) and the power law
(16.2.19) is valid for space material. As a result, we arrive at the first boundary
value problem for a plane with a circular hole ω = {a ≤ r < ∞, −π < ϕ ≤ π} in
the NSSCT formulation with a power law of the relationship between stresses and
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deformation rates (16.2.19) andwith antiplane deformation in the direction of the Oz
axis. In this problem, the boundary condition has the form (16.3.1), and condition
(16.3.2) must be satisfied, while the tangential stresses τϕz and τr z vanish at infinity.

Based on the last conditions,we represent the harmonic function of pseudostresses
in ω by the Fourier series

�(r, ϕ) =
∞∑

n=1

r−n[An cos(nϕ) + Bn sin(nϕ)] (a < r < ∞; −π < ϕ < π).

(16.3.3)

with unknown coefficients An and Bn . . In exponential form, series (16.3.3) can be
written as

�(r, ϕ) =
∞∑

n=−∞
n �=0

Cn r
−|n|einϕ (a < r < ∞; −π < ϕ < π)

Cn =

⎧
⎪⎨

⎪⎩

1

2
(An − i Bn) (n = 1, 2, ...);

1

2
(A−n + i B−n) (n = −1,−2, ...); C−n = Cn (n = ±1,±2, ...).

(16.3.4)

Now, using (16.3.4) and formula (16.2.21), we calculate the function w(r, ϕ).
As an integration path M0M choosing a segment (b, r) (b > a) of ray ϕ =
ϕ0(−π < ϕ0 < π), we obtain up to an additive constant

w(r, ϕ) = K (m)
(r, ϕ) = i K (m)

∞∑

n = −∞
n �= 0

sign nCnr
−|n|einϕ(r > a, −π < ϕ < π).

(16.3.5)

Then, from (16.3.4), we get

ω(ϕ) = ∂�

∂r
|r=a = −

∞∑

n=−∞
n �=0

|n|Cna
−|n|−1einϕ (−π < ϕ < π), χ(ϕ) = 1

r

∂�

∂ϕ
|r=a

= i
∞∑

n=−∞
n �=0

nCna
−|n|−1einϕ. (16.3.6)

From the first equality (16.3.6), we determine the Fourier coefficients
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Cn = −a|n|+1

2π |n|
π∫

−π

ω(ϑ)e−inϑdϑ (n = ±1,±2, ...) (16.3.7)

and substitute them into the second equality (16.3.6). After elementary transforma-
tions, we get

χ(ϕ) = 1

π

π∫

−π

[ ∞∑

n=1

sin(n(ϕ − ϑ))

]

ω(ϑ)dϑ,

where the convergence of the series is understood in the sense of the theory of
generalized functions [17] as weak convergence. To calculate the sum of this series,
we use the well-known formula from [18]. We can write

∞∑

n=1

sin(nϕ) = −
(

ln
1

2
∣∣sin ϕ

2

∣∣

)′

ϕ

=
(
ln
∣
∣∣sin

ϕ

2

∣
∣∣
)′

ϕ
= 1

2
Cotan

ϕ

2
.

As a result

χ(ϕ) = 1

2π

π∫

−π

Cotan

(
ϕ − ϑ

2

)
ω(ϑ)dϑ (−π < ϕ < π). (16.3.8)

Thus, the partial derivatives of the harmonic pseudostress function �(r, ϕ) on the
circle r = a are interconnected by an integral relationwith theHilbert kernel (16.3.8).
This statement also follows from Hilbert’s formula on the relationship between the
boundary values of the real and imaginary parts on the boundary unit circle of a
function analytic in the unit circle [19].

Now, using the first formula (16.2.20), we implement the boundary condition
(16.3.1)

τϕz|r=a = 1

2m−1

[(
∂�

∂r

∣∣∣∣
r=a

)2

+
(
1

r

∂�

∂r

∣∣∣∣
r=a

)2
] m−1

2
∂�

∂r

∣∣∣∣
r=a

= f (ϕ) (−π < ϕ < π).

Taking (16.3.6) into account, we have

[
ω2(ϕ) + χ2(ϕ)

] m−1
2 ω(ϕ) = 2m−1 f (ϕ) (−π < ϕ < π) (16.3.9)

Next, using the Hilbert inversion formula [20], from (16.3.8), we find
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ω(ϕ) = − 1

2π

π∫

−π

Cotan

(
ϕ − ϑ

2

)
χ(ϑ)dϑ, (16.3.10)

since by the first formula (16.3.6)

π∫

−π

ω(ϕ)dϕ = 0.

Substituting this expression of ω(ϕ) into (16.3.9), we arrive at the following
governing NSIE of the problem under consideration for χ(ϕ):

⎧
⎪⎨

⎪⎩
χ2(ϕ) +

⎡

⎣ 1

2π

π∫

−π

Cotan

(
ϑ − ϕ

2

)
χ(ϑ)dϑ

⎤

⎦

2
⎫
⎪⎬

⎪⎭

m−1
2

1

2π

π∫

−π

Cotan

(
ϑ − ϕ

2

)
χ(ϑ)dϑ = 2m−1 f (ϕ)

(−π < ϕ < π).

(16.3.11)

After solving the NSIE (16.3.11), the functionω(ϕ) is determined from (16.3.10),
and the Fourier coefficients Cn will be determined from (16.3.7) or from the second
equality in (16.3.6).

16.4 Solving Nonlinear Singular Integral Equation

We reduce solving this NSIE to solving the Riemann boundary value problem of the
theory of analytic functions. To this end, we introduce into consideration a piecewise
holomorphic function—the Cauchy-type integral

�(z) = 1

2π i

∮

C

χ(t)dt

t − z
,

where C is a circle of radius a centered at the origin. From here, according to the
Plemelya-Sokhotsky formulas for the boundary values of the function �(z), we will
have

�+(ζ ) = 1

2
χ(ζ ) + 1

2π i

∮

C

χ(t)dt

t − ζ
,

�−(ζ ) = −1

2
χ(ζ ) + 1

2π i

∮

C

χ(t)dt

t − ζ
(ζ ∈ C).

(16.4.1)

On the circle C , we put
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t = aeiϑ , ζ = aeiϕ; χ(t) = χ
(
aeiϑ

) = χ0(ϑ), �±(ζ ) = �±(aeiϕ
) = �±

0 (ϕ)

(−π < ϑ, ϕ ≤ π)

and transform the expression

dt

t − ζ
= aieiϑdϑ

aeiϑ − aeiϕ
= i

eiϑdϑ

ei
ϑ+ϕ

2

(
ei

ϑ−ϕ

2 − e−i ϑ+ϕ

2

) = 1

2

cos
(

ϑ−ϕ

2

)+ i sin
(

ϑ−ϕ

2

)

sin ϑ−ϕ

2

= 1

2

[
Cotan

(
ϑ − ϕ

2

)
+ i

]
.

Then, relations (16.4.1) can be written in the form

�±
0 (ϕ) = ±1

2
χ0(ϕ) + 1

4π i

π∫

−π

Cotan

(
ϑ − ϕ

2

)
χ0(ϑ)dϑ (−π < ϕ < π),

(16.4.2)

since according to the second formula of (16.3.6)

π∫

−π

χ0(ϑ)dϑ = 0.

Then, from (16.4.2), we find

�+
0 (ϕ)�−

0 (ϕ) = −1

4

⎧
⎨

⎩
χ2
0 (ϕ) +

⎡

⎣ 1

2π

π∫

−π

Cotan

(
ϑ − ϕ

2

)
χ0(ϑ)dϑ

⎤

⎦

2⎫
⎬

⎭

(−π < ϕ < π).

As a result, the NSIE (16.3.11) reduces to the following nonlinear Riemann
boundary value problem

[−4�+
0 (ϕ)�−

0 (ϕ)
] m−1

2
[
�+

0 (ϕ) + �−
0 (ϕ)

] = −i2m−1 f (ϕ) (−π < ϕ < π).

(16.4.3)

However, from (16.4.2), it follows that.

�+
0 (ϕ) = −�−

0 (ϕ) or �−
0 (ϕ) = −�+

0 (ϕ) (−π < ϕ < π). (16.4.4)

Taking into account relations (16.4.4), we can write



232 S. M. Mkhitaryan

1)
[
−�+

0 (ϕ)�
−
0 (ϕ)

]m−1
2 �+

0 (ϕ) =
[
�+
0 (ϕ)�

+
0 (ϕ)

]m−1
2 �+

0 (ϕ) =
∣
∣∣�+

0 (ϕ)

∣
∣∣
m−1

�+
0 (ϕ) = �+(ϕ),

2)
[
−�+

0 (ϕ)�
−
0 (ϕ)

]m−1
2 �−

0 (ϕ) =
[
�−
0 (ϕ)�

−
0 (ϕ)

]m−1
2 �−

0 (ϕ) =
∣∣
∣�−

0 (ϕ)

∣∣
∣
m−1

�−
0 (ϕ) = �−(ϕ).

(16.4.5)

As a result, of these transformations, the nonlinear boundary value problem
(16.4.3) is reduced to the following linear boundary value problem

�+(ζ ) + �−(ζ ) = −i f (ζ )
(
ζ = aeiϕ ∈ C

)
. (16.4.6)

To solve problem (16.4.6), we introduce the Cauchy-type integral


(z) = − 1

2π i

∮

C

i f (t)dt

t − z
(16.4.7)

and put [20]

�(z) =
{


(z)
(
z ∈ S+)

−
(z)
(
z ∈ S−),

(16.4.8)

where S+ is a circle of radius a centered at the origin and with a boundary circle C ,
and S− is a complex plane with a circular hole of radius a. It is easy to see that


+(ζ ) − 
−(ζ ) = −i f (ζ ) ⇒ �+(ζ ) + �−(ζ ) = −i f (ζ ) (ζ ∈ C)

and hence, the piecewise holomorphic function �(z) does give a solution to the
boundary value problem (16.4.6). Now, by multiplying relations (16.4.5), we obtain

[−�+
0 (ϕ)�−

0 (ϕ)
]m = −�+(ϕ)�−(ϕ) (−π < ϕ < π)

and, further, from the same relations, we find

�+
0 (ϕ) = [−�+(ϕ)�−(ϕ)

] 1−m
2m �+(ϕ), �−

0 (ϕ)

= [−�+(ϕ)�−(ϕ)
] 1−m

2m �−(ϕ) (−π < ϕ < π). (16.4.9)

Then, the solution of the originalNSIE (16.3.11) according to (16.4.2) and (16.4.9)
will be expressed by the formula

χ0(ϕ) = [−�+(ϕ)�−(ϕ)
] 1−m

2
[
�+(ϕ) − �−(ϕ)

]
(−π < ϕ < π).

From here, using (16.4.7) and (16.4.8), after simple transformations, taking into
account condition (16.3.2), we finally obtain the solution of the original NSIE
(16.3.11)
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χ0(ϕ) = χ
(
aeiϕ

)
= −2

m−1
m

⎧
⎪⎨

⎪⎩
f 2(ϕ) +

⎡

⎣ 1

2π

π∫

−π

Cotan
(

ϑ − ϕ

2

)
f (ϑ)dϑ

⎤

⎦

2
⎫
⎪⎬

⎪⎭

m−1
2m

1

2π

π∫

−π

Cotan
(

ϑ − ϕ

2

)
f (ϑ)dϑ

(−π < ϕ < π). (16.4.10)

In the linear case m = 1 and we get from (16.4.10)

χ0(ϕ) = − 1

2π

π∫

−π

Cotan

(
ϑ − ϕ

2

)
f (ϑ)dϑ.

In a particular case, we take

f (ϕ) = sin(nϕ) (n = 1, 2, ..., −π < ϕ < π).

Taking into account, the known relations [21]

1

2π

π∫

−π

Cotan

(
ϑ − ϕ

2

)
sin(nϑ)dϑ = cos(nϕ) (−π < ϕ < π, n = 1, 2, ...),

from (16.4.10), we have

χ0(ϕ) = −2
m−1
m cos(nϕ) (−π < ϕ < π). (16.4.11)

We represent it as

χ0(ϕ) ⇒ χ(ϕ) = αm
(
einϕ + e−inϕ

)
, αm = − 1

21/ m

and compare it with the expansion in a Fourier series by the second formula in
(16.3.6). We get

in a−n−1
(
Cne

inϕ − C−ne
−inϕ

) = αm
(
einϕ + e−inϕ

)
(n = 1, 2, ..., −π < ϕ < π).

Taking into account the properties of the coefficients Cn from (16.3.4), we have

Cn = − iαm

n
an+1 (n = 1, 2, ...). (16.4.12)

Now, using (16.4.12) and formulas (16.2.10), (16.3.4)–(16.3.6), we calculate the
corresponding harmonics of stresses τϕz, τr z and functions ω(ϕ),�(r, ϕ), w(r, ϕ).
We obtain
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τϕz = −2|αm |m−1αm

(a
r

)m(n+1)
sin(nϕ); τr z = −2|αm |m−1αm

(a
r

)m(n+1)
cos(nϕ);

ω(ϕ) = 2αm cos(nϕ); �(r, ϕ) = 2a
αm

n

(a
r

)n
sin(nϕ); (ζ ≥ a − π < ϕ ≤ π)

w(r, ϕ) = 2K (m)
αm

n
an+1 cos(nϕ). (n = 1, 2, ...).

16.5 Conclusion

Further, development of the results presented in this article is connected with the
application of the conformal mapping method. Namely, the solution of the first
boundary value problem in the NSSCT formulation under a power law and an
antiplane deformation for a given domain can be obtained from the solution (16.4.10).
The solution constructed here using a conformal mapping of this domain onto a plane
with a circular hole or onto a half-plane, for which the solution of the first boundary
problem is given in [8]. Consideration of these issues is the subject of a separate
study.
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Chapter 17
On the Generalised Boundary Conditions
in Harutyunyan’s Model of Growing
Solids

Evgenii V. Murashkin

Abstract The paper deals with the problem of boundary conditions derivation on
the propagating growing surface for Harutyunyan’s model in case of materials sen-
sitive to mirror reflections and inversions of three-dimensional space. The growing
surface positions are specified as the level surface of the pseudoscalar field. The
notions of fundamental orienting pseudoscalar and pseudoscalar time of weight W
are introduced. The unit normal pseudovector to the propagating growing surface
given by the pseudoscalar field are calculated and discussed. The boundary condi-
tions for stresses on the propagating growing surface proposed by G. I. Bykovtsev
are generalised to the case of pseudoscalar geometry.

Keywords Surface growth · Differential constraint · Pseudotensor · Pseudoscalar
time · Harutyunyan’s model

17.1 Introduction

Conventional methods of manufacturing complex shape products imply a variety of
technological treating processes, both related to the material removal and based on
the synthesis of products by sequentially depositing material to a boundary surface
[1–3]. All these stimulates the development of mechanics of growing solids. Addi-
tive manufacturing technologies are widely used in modern industrial production of
parts with complex shapes and designs. These methods include: laser stereolithogra-
phy, selective laser sintering, electron beam melting, deposition modelling, multi-jet
modelling, lamination, 3D-printing, computer axial lithography, layer-by-layer con-
creting and production of woven composites.

The mentioned above methods are based on well-known natural processes of
surface growth: accretion of space objects, formation of avalanches and glaciers and
crystal growth processes. At the same time, the processes of growth of biological
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tissues and organisms are related to the processes of volumetric growth; nevertheless,
processes of surface growth can also be distinguished among them. For example, the
growth of atherosclerotic plaques [4–6], growth of the root system and the human
bones growth. The growth of an atherosclerotic plaque can be described as the process
of initial infiltration of blood plasma components into a thin subsurface layer of the
innerwall of an artery. The growth of a crystal nucleus occurs by deposition individual
atoms or their groups to its surface.

The main feature of the growing solids is the solids forming simultaneously with
the deformation process. This circumstance, of course, significantly complicates the
mathematical modelling of such deformation processes in comparison with solids of
constant staff. Suffice it tomention the situation that takes place in the dynamics of an
absolutely rigid body of variable mass. Themass variability, on the one hand, leads to
more complexmathematical problems, and on the other hand, generates qualitatively
new effects in the behaviour of bodies. It is natural to expect that generalised model
of solids and the initial-boundary value problems will become more complicated,
and the influence of the growth parameters on the response of the solids will become
more diverse.

The solution of the boundary problem of growing solids is a very laborious prob-
lem. An important feature of boundary value problems in mechanics of growing
solids is the derivation of boundary conditions at the propagating growing surface
between the main solids and the deposited part. We can found the discussions on
boundary conditions problems in studies [7, 8]. The present paper deals with the con-
sideration of Harutyunyan’s model of surface growing solids [7] and several variants
of constitutive relations on the growing surface, akin to the simplest relations (see
the well-known book by G. I. Bykovtsev: [8, pp. 288–292]). Throughout the paper,
the terminology and notations adopted in publications [8–13] will be used.

17.2 Governing Equations of Harutyunyan’s Model
of Surface Growing Solids

The in-depth study of modelling surface growing solids proposed by N.Kh. Haru-
tyunyan can be found in [7]. Let us revisit the governing equation of this model.
The equilibrium equations for Cauchy stress tensor σ rs can be furnished in terms of
velocities by

∇s(∂·σ sr ) = 0, (17.1)

where ∇s is the Hamilton (nabla) operator, ∂· is a time derivative.
Boundary conditions on a non-growing part of the surface (surface of the main

solids) are reads by
ns∂·σ sr = ∂· pr0 (17.2)
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and (or)
vs = ∂·us0. (17.3)

where pr0 is the given traction vector, vs is the velocity vector, us0 is the given dis-
placement vectors, ns is the unit normal covariant vector.

Condition on a growing surface � can be obtained from the solution of contact
problem between 3D solid and 2D surface in form [14]

ns∂·σ sr = −cσ
2d

kh Lhknk, (17.4)

where c is the linear velocity of propagating growing surface in the normal direction
ns , σ

2d

kh is the 2D tensor of the given elastic surface tension, Lhk is the 2D tensor of

the surface curvature.
Constitutive equations for the strain rates εsr and velocities are furnished by

εsr = 1

2
(∇svr + ∇rvs), (17.5)

and the general form of constitutive equations for Cauchy stress rate tensor can be
assumed in form

∂·σ sr = 2F sr (εsr , vs). (17.6)

where F sr is the tensor function defining by experiments.
The equation of the propagating growing surface �(t) in the implicit form reads

by formula
t = τ∗(x

k), (17.7)

Governing Eqs. (17.1)–(17.7) must be supplemented by the recovering rules for
stress tensor and displacements according to

σ sr (xk, t) = σ∗
sr (xk) +

t∫

τ∗(x
k )

∂·σ sr (xk, t ′) dt ′,

us(xk, t) = u∗
s(xk) +

t∫

τ∗(x
k )

vs(xk, t ′) dt ′.

(17.8)

Herein σ∗
sr = σ sr

∣∣
t=τ∗(x

k )
; us∗ (xk) = us

∣∣
t=τ∗(x

k )
. Equation (17.8) are the simple inte-

grating rule of primitives.
It should be noted that the boundary value problem for a growing solid can be

controlled by loads, stresses on the propagating growing surface and velocity of
material deposition.
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17.3 Differential Constraints on Propagating Growing
Surface

Boundary conditions on the propagating growing surface require additional attention
and discussion. An attempt to obtain boundary conditions from the equilibrium equa-
tions was made by G.I. Bykovtsev (see book [8, pp. 288–292]) and later generalised
in [9–13] to the case of micropolar media and predeformed media.

As previously shown (see, for example, [9–13]), the transformation of equations
of equilibrium (17.1) using a formula for the actual components of the force stress
tensor σ i j

σ i j =
t∫

τ∗+0

[∂·σ i j (xs, t ′)]dt ′ + S j i + σ∗
i j (xs), (17.9)

S i j =
τ∗+0∫

τ∗−0

[∂·σ i j (xs, t ′)]dt ′, (17.10)

allows us to derive the equation on the propagating growing surface in the form of
the following differential constraints

c[∇ jσ∗
j i (xs) + ∇ jS

j i + X∗
i (xs)] − n j∂·σ j i (xs, t) = 0 (t = τ∗ + 0), (17.11)

where the unit normal vector ni on the propagating growing surface � directed
towards its propagation is related to the spatial gradient (17.7) by the equation

ni = c ∂iτ∗, c = |∇τ∗|
−1 (t = τ∗). (17.12)

In Eqs. (17.9)–(17.11), we use the notation adopted in [9–11]: S j i is the stress
jump related integral, σ∗

i j (xs) = σ i j (xs, t)|t=τ∗(x
s )−0 are the stress tensor components,

respectively, at the moment t = τ∗(x
s) − 0 right before when the element is included

in the main solid, X∗
i (xs) = Xi (xs, t)

∣∣
t=τ∗(x

s )+0. Moment t = τ∗(x
s) + 0 corresponds

to the moment right after attaching the element to the growing surface.
In the general case, the forces stresses σ∗

i j are to be expressed in terms of the

actual stresses and couples on propagating growing surface by a tensor constitutive
equations as follows

σ∗
i j = Fi j (σ i j , ni , . . .). (17.13)

Constitutive tensor function Fi j can be determinate by experiments. The function
Fi j means possible changes in the parameters of the stress-strain state of the growing
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material in the time interval from the moment of growing element creation to the
moment of its deposition to themain solid, i.e. in the time interval τ∗ − 0 ≤ t ≤ τ∗ + 0.

In particular, constitutive tensor functions Fi j in the woven materials producing will
depend on the selected directions associated with the propagating growing surface
and localisation of composite fibres. An important restriction on constitutive tensor
functions Fi j is the insensitivity of its arguments under rotations of the moving
coordinate system around the unit normal vector n j to the growing surface. In this
case, it is necessary to choose a system of joint invariants of tensors σ i j and vectors
n j , ı j , satisfying the condition of rotational invariance with respect to the vector n j .

17.4 Pseudoscalar Geometry of Propagating Growing
Surface

In some case, it may turn out that the propagating growing surface is the level surface
of the pseudoscalar field. For example, in the case of materials (woven composites,
chiral materials, metamaterials and biological tissues) exhibiting the properties of
sensitivity to mirror reflections and inversions of three-dimensional space. The base
object sensitive to mirror reflections and inversions of three-dimensional space is
the fundamental orienting pseudoscalar of weight +1 defined as a triple product of
covarinat base vectors (ı

1
, ı
2
, ı
3
)

e = �ı
1
, ı
2
, ı
3
� = (ı

1
× ı

2
) · ı

3
. (17.14)

A number of approaches to the development of pseudotensor formalism can be found
out in books on tensor analysis and continuum mechanics [15–20].

Let the propagating surface � in three-dimensional space is defined as the level

surface of the pseudoscalar field
[W ]
f (xi ) of weight W :

[W ]
t = [W ]

f (xi ), (17.15)

where
[W ]
t is pseudoscalar time, and

[W ]
t = eW t. (17.16)

Considering the pseudoscalar time differential
[W ]
t in virtue of (17.16) we can get

d
[W ]
t = d(eW t) = eWdt + tWeW−1de, (17.17)
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or

d
[W ]
t = eW

(
dt + te−1∂sedx

s
)
. (17.18)

Let us note the important in applied problems case [21]. We choose a coordinate
system subject to the condition: √

g = 1, (17.19)

and using following equation,
e2 = g (17.20)

come to restriction
e = sgn e. (17.21)

There are infinitely many such systems in three-dimensional space, for example,
Cartesian left-handed and right-handed coordinate systems.

The constraint
√
g = 1 is often used not only in the theory of relativity [21],

but also in mechanics of solids [22]. On pages 135–142 of the [21] monograph,
the condition

√
g = 1 is used to derive the gravity equation in 4-space-time, which

greatly simplifies the equations of relativity theory.
If, in addition to equation (17.21), we assume that the coordinate system is left-

handed (i.e. e < 0), then the pseudoscalar time differential takes the form

d
[W ]
t =

{
dt, if W is even weight;
−dt, if W is odd weight.

(17.22)

The covariant vector of the unit normal ns to the surface �, can be determined
up to a multiplier according to the formula

Nni = ∂i (e
−W

[W ]
f ). (17.23)

Note that the absolute scalar a satisfies the equation

∇i a = ∂i a. (17.24)

Then the Eqs. (17.12), (17.24) are transformed to the form

Nni = ∂i (e
−W

[W ]
f ) = ∇i (e

−W
[W ]
f ) = e−W∇i

[W ]
f . (17.25)

Introducing into consideration the normal pseudovector according to the formula

[W ]
ni = eWni , (17.26)
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we can get

N
[W ]
ni = ∇i

[W ]
f . (17.27)

According to equation

gi j
[W ]
ni

[W ]
n j = e2W (17.28)

it is easy to conclude that

N 2e2W = gik∇i

[W ]
f ∇k

[W ]
f , (17.29)

hence for the unknown multiplier, N can be calculated by the equation

± N = e−W

√
gik∇i

[W ]
f ∇k

[W ]
f , (17.30)

Finally, the normal pseudovector to the level surface � of the pseudoscalar field
[W ]
f is calculated by the formula

[W ]
ni = eW

∇i

[W ]
f√

gik∇i

[W ]
f ∇k

[W ]
f

(17.31)

The linear velocity of the propagating growing surface in the direction of the

normal pseudovector
[W ]
n s is calculated according to

[−W ]
c =

⎛
⎝

√
gik∇i

[W ]
f ∇k

[W ]
f

⎞
⎠

−1

. (17.32)

The absolute vector of the normal to the level surface � of the pseudoscalar field
[W ]
f can be calculated by the formula

ni = [−W ]
c ∇i

[W ]
f . (17.33)

17.5 Differential Constraints on Propagating Growing
Pseudoscalar Surface

Following the discussions in previous sections, we can obtain the differential con-
straints on propagating growing pseudoscalar surface. In the growth process, the
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maximum intensity of shear stresses can be reached at the contact (growing) surface
between the main solid and the growing part. Let us define the growing surface as a
level surface of a pseudoscalar function, as was indicated in the Sect. 17.3

[W ]
t = [W ]

τ∗ (xi ). (17.34)

The relations (17.11) in the case of propagating growing pseudoscalar surface are
transformed as follows

[−W ]
c [∇ j t∗

j i (xk) + X∗
i (xk)] − n j

[−W ]
∂ · t ji (xk)|[W ]

t =[W ]
τ∗ (xk )

= [−W ]
0 . (17.35)

The recovering equation for the stress tensor components takes the form

t i j =
[W ]
t∫

[W ]
τ∗

[[−W ]
∂ · t i j (xk,

[W ]
t ′)]d [W ]

t ′ + t∗
i j (xk). (17.36)

Equations (17.35) and (17.36) are the generalised boundary conditions on the
growing surfaces which can be used for wide class of materials including woven
composites.

17.6 Conclusions

The paper is devoted to the boundary value problems formulations in the frameworks
of Harutyunyan’s model in case of materials sensitive to mirror reflections and inver-
sions of three-dimensional space. The growing surface positions have been specified
as the level surface of the pseudoscalar field. The notions of fundamental orienting
pseudoscalar and pseudoscalar time of weight W have been introduced. The unit
normal pseudovector to the propagating growing surface given by the pseudoscalar
field have been calculated and discussed. The boundary conditions for stresses on
the propagating growing surface proposed by G. I. Bykovtsev have been generalised
to the case of pseudoscalar geometry.
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Chapter 18
Concerning Identification of Two
Thermomechanical Characteristics
of Functionally Graded Pipe

Rostislav D. Nedin, Sergei A. Nesterov, and Alexander O. Vatulyan

Abstract We consider an inverse problem on the identification of two thermome-
chanical characteristics of a functionally graded pipe based on the additional data
picked on the outer surface of the pipe over a finite time interval. The pipe’s thermo-
mechanical characteristics depend on the radial coordinate. Two direct thermoelas-
ticity problems for different thermal loads on the pipe’s outer surface, after applying
the Laplace transform, are solved with the help of the shootingmethod and transform
inversion based on the expansion of the actual space in terms of shifted Legendre
polynomials. The numerical solution of the inverse problem is built via the iterative
process of solving the system of the Fredholm integral equations of the 1st kind.
Computational experiments are carried out to restore two thermomechanical charac-
teristics with the known others. It is revealed that monotonic functions are restored
with sufficient accuracy; the reconstruction procedure is resistant to 2% input data
noise.

Keywords Functionally graded materials · Pipe · Thermoelasticity ·
Identification · Coefficient inverse problem · Iterative process · Shooting method ·
System of the Fredholm integral equations · Thermal conductivity coefficient ·
Specific heat capacity · Thermal stress coefficient
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18.1 Intro

Cylindrical elements are used to be the parts of many structures subjected to high
thermomechanical loads. Calculations related to finding the stress-strain state of such
structures are usually carried out for homogeneous materials. However, at present,
functionally graded materials (FGM) are increasingly being introduced into various
fields of technology, mainly as two-phase composites synthesized from metal and
ceramics, providing a continuous change in thermomechanical characteristics [1,
2]. Due to the complex and multi-stage FGM manufacturing technology, deviations
from the specified laws may be present in the final product. Therefore, determination
of the actual properties after fabrication is of certain importance. However, due to the
dependence of thermomechanical characteristics on coordinates, the former can be
determined by non-destructive testing methods based on the theoretical foundations
of the apparatus of coefficient inverse problems (CIPs) of thermoelasticity [3]. Ther-
moelasticity CIP is the problem of determining thermomechanical characteristics as
coefficients of thermoelasticity differential equations from some additional data on
the displacement or temperature fields measured on a part of the body’s boundary.
From a mathematical point of view, such problems are essentially ill-posed and non-
linear. Therefore, building time-saving and stable algorithms for their treatment is
an urgent issue.

The most common way of solving CIP is to construct the residual functional
and to minimize it by any of the gradient methods [4]. Based on this approach,
studies on CIP thermal conductivity [4–9] and elasticity theory [10–12] were carried
out. Alternative techniques were also proposed, for example, the quasi-inversion
method [13], the inversion of finite-difference schemes [14], the reduction to the
Fredholm integral equation of the 1st kind [15]. In these research works, only one
material characteristic was restored with the known others. However, in practice,
several thermomechanical characteristics are usually unknown at once. In [16], an
approach was proposed to identify two thermophysical characteristics, the rod’s
thermal conductivity coefficient and specific heat capacity, based on conducing two
thermophysical experiments with different thermal loads applied to the rod ends. The
numerical solution of the inverse problemwas constructed on the basis of the iterative
process, at each stage of which the system of the Fredholm integral equations of the
1st kind was solved.

However, for a number of material classes, it is necessary to take into account the
coupling of elastic and thermal fields and solve inverse thermoelasticity problems;
such problems have been solved mainly for weakly inhomogeneous materials [3].
Previously, the authors of [17] proposed an approach to solving the nonlinear ther-
moelasticity CIP via the iterative process, at each stage of which linear problems
were solved. To do this, starting from the weak statement in the Laplace transforms
space and using the linearization technique, the operator equations that relate the
sought-for and measured within the experiment characteristics were obtained. After
applying the transformation to the actual space, the operator equations were obtained
for solving one-dimensional thermoelasticity CIP over a finite time interval. Based
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on the iterative approach, the identification of thermomechanical characteristics of a
rod [18], a pipe [19, 20] and a finite cylinder [21, 22] was carried out. In these cases,
only one of the thermomechanical characteristics was restored, while the rest were
assumed to be given. At the same time, the thermoelasticity CIP on restoring two
characteristics is still relevant.

The present research is aimed at solving the thermoelasticity CIP on the identi-
fication of two thermomechanical characteristics of the pipe. Two thermoelasticity
problem statements for different types of thermal load on the outer surface of the
pipe are considered. For the first problem, a constant heat flux acts on the outer
surface of the pipe, and for the second one, a temperature does. The additional data
measured on the outer pipe’s surface represents the temperature for the first problem
considered, and the heat flux for the second one. Direct problems for the pipe after
non-dimensionalization and applying the Laplace transform are solved based on the
shooting method and transform inversion by expanding the actual space in terms of
the shifted Legendre polynomials. A system of two coefficients of thermoelasticity
differential operators is restored in two stages. At the first stage, the initial approxi-
mation is determined in the class of positive bounded linear functions based on the
minimization of the residual functional. At the second stage, the corrections to the
reconstructed functions are determined by solving the corresponding system of the
Fredholm integral equations of the 1st kind. Computational experiments were carried
out to reconstruct two pairs of characteristics: (1) thermal conductivity coefficient
and specific heat capacity; (2) thermal conductivity coefficient and thermal stress
coefficient.

18.2 Inverse Thermoelasticity Problem Statement

Let us study the thermoelasticity CIP on the reconstruction of two thermomechanical
characteristics of functionally graded pipe. To do this, we consider two quasi-static
thermoelasticity problems for a radially inhomogeneous pipe with different loads
applied to its surfaces. In both problems, a constant temperature is maintained on the
inner stress-free surface of the pipe r = r1. On the outer surface of the pipe r = r2,
stress-free as well, in the first problem (Problem 1), there is a constant heat flux, and
in the second problem (Problem 2), the temperature changing according to the law
te−t is set. The initial conditions are zero.

The Problem 1 statement has form

∂σrr

∂r
+ σrr − σϕϕ

r
= 0, r1 ≤ r ≤ r2, (18.1)

σrr = (λ + 2μ)
∂u

∂r
+ λ

u

r
− γ θ, σϕϕ = λ

∂u

∂r
+ (λ + 2μ)

u

r
− γ θ, (18.2)
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1

r

∂

∂r

(
k(r)r

∂θ

∂r

)
= cε(r)

∂θ

∂t
+ T0γ (r)

(
∂2u

∂r∂t
+ 1

r

∂u

∂t

)
, r1 ≤ r ≤ r2, t ≥ 0,

(18.3)
σrr (r1, t) = σrr (r2, t) = 0, (18.4)

θ(r1, t) = 0, −k(r2)
∂θ

∂r
(r2, t) = q0, (18.5)

θ(r, 0) = u(r, 0) = ∂u

∂t
(r, 0) = 0. (18.6)

Here, r is the radial coordinate, σrr and σϕϕ are nonzero components of the stress
tensor in the cylindrical coordinate system, u is the component of the displacement
vector in the radial direction, θ is the temperature increment from thenatural statewith
the temperature T0, λ and μ are the Lame coefficients, k is the thermal conductivity
coefficient, cε is the specific volumetric heat capacity at a constant strain tensor, γ
is the radial component of the thermal stress tensor and q0 is the heat flux density.

The statement of the Problem 2 coincides with the Problem 1 statement, except
for the thermal boundary conditions (18.5), which take the form:

θ(r1, t) = 0, θ(r2, t) = θ0te
−t . (18.7)

Let us pass in (18.1)–(18.7) to dimensionless parameters and functions, denoting:

ξ = r
r2
, ξ0 = r1

r2
, U = ur

r2
, W = γ0θ

μ0
, τ = t

t1
, t1 = r2c0

k0
, δ0 = γ 2

0 T0
c0μ0

, �rr = σrr
μ0
, �ϕϕ =

σϕϕ

μ0
, λ̄ = λ

μ0
, μ̄ = μ

μ0
, γ̄ = γ

γ0
, k̄ = k

k0
, c̄ = c

c0
, β1 = q0r2γ0

k0μ0
, β2 = θ0r2c0γ0

k0μ0
. Here λ0, μ0

ρ0, γ0, k0 and c0 are characteristic quantities.
Then the statement of the dimensionless Problem 1 takes the form:

∂�I
rr

∂ξ
+ �I

rr − �I
ϕϕ

ξ
= 0, ξ0 ≤ ξ ≤ 1, (18.8)

�I
rr = (λ̄ + 2μ̄)

∂UI

∂ξ
+ λ̄

UI

ξ
− γ̄WI , �I

ϕϕ = λ̄
∂UI

∂ξ
+ (λ̄ + 2μ̄)

UI

ξ
− γ̄WI ,

(18.9)
1

ξ

∂

∂ξ

(
k̄(ξ)ξ

∂WI

∂ξ

)
= c̄(ξ)

∂WI

∂τ
+ δ0γ̄ (ξ)

(
∂2UI

∂ξ∂τ
+ 1

ξ

∂UI

∂τ

)
, ξ0 ≤ ξ ≤ 1, τ ≥ 0,

(18.10)

�I
rr (ξ0, τ ) = 0, �I

rr (1, τ ) = 0, (18.11)

WI (ξ0, τ ) = 0, −k̄(1)
∂WI

∂ξ
(1, τ ) = β1, τ ≥ 0, (18.12)

WI (ξ, 0) = UI (ξ, 0) = ∂UI

∂τ
(ξ, 0) = 0. (18.13)
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The statement of the dimensionless Problem 2 has the form:

∂�I I
rr

∂ξ
+ �I I

rr − �I I
ϕϕ

ξ
= 0, ξ0 ≤ ξ ≤ 1, (18.14)

�I I
rr = (λ̄ + 2μ̄)

∂UI I

∂ξ
+ λ̄

UI I

ξ
− γ̄WI I , �I I

ϕϕ = λ̄
∂UI I

∂ξ
+ (λ̄ + 2μ̄)

UI I

ξ
− γ̄WI I ,

(18.15)

1

ξ

∂

∂ξ

(
k̄(ξ)ξ

∂WI I

∂ξ

)
= c̄(ξ)

∂WI I

∂τ
+ δ0γ̄ (ξ)

(
∂2UI I

∂ξ∂τ
+ 1

ξ

∂UI I

∂τ

)
, ξ0 ≤ ξ ≤ 1, τ ≥ 0,

(18.16)

�I I
rr (ξ0, τ ) = 0, �I I

rr (1, τ ) = 0, (18.17)

WI I (ξ0, τ ) = 0, WI I (1, τ ) = β2τe
−τ , τ ≥ 0, (18.18)

WI I (ξ, 0) = UI I (ξ, 0) = ∂UI I

∂τ
(ξ, 0) = 0. (18.19)

As the additional data on the pipe’s outer surface we consider:

1. Temperature for the Problem 1

WI (1, τ ) = f I (τ ), τ ∈ [a1, b1], (18.20)

2. Heat flux for the Problem 2

QI I (1, τ ) = f I I (τ ), τ ∈ [a2, b2]. (18.21)

The direct thermoelasticity problem is to find the stress-strain state of the pipe from
(18.8)–(18.13), (18.14)–(18.19) with the known thermomechanical characteristics λ̄,
μ̄, γ̄ , k̄, c̄. In the inverse problem, it is required to restore two thermomechanical
characteristics with the rest known from (18.8)–(18.13) and (18.14)–(18.19) using
the additional data (18.20), (18.21).

18.3 Solution of the Direct Thermoelasticity Problem

Direct thermoelasticity problem for the pipe (18.8)–(18.13) and (18.14)–(18.19) after
applying the Laplace transform in time τ with arbitrary laws of change in thermome-
chanical characteristics can only be solved numerically, for example, by the shooting
method, similarly as in [21, 23]. After applying some standard transformations, we
pass to the canonical system of 4 ordinary differential equations of the 1st order with
variable coefficients:
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dW̃

dξ
= 1

k̄(ξ)
Q̃(ξ, p), (18.22)

d Q̃

dξ
= −1

ξ
Q̃ + p

(
c̄ + δ0

γ̄ 2

λ̄ + 2μ̄

)
W̃ + δ0 p

γ̄

λ̄ + 2μ̄
�̃rr+

+ δ0 p
γ̄

ξ

(
1 − λ̄

λ̄ + 2μ̄

)
Ũ , (18.23)

d�̃rr

dξ
= 1

ξ

(
1 − λ̄

λ̄ + 2μ̄

)
�̃rr − 1

ξ2

(
λ̄ + 2μ̄ − λ̄2

λ̄ + 2μ̄

)
Ũ + γ̄

ξ

(
1 − λ̄

λ̄ + 2μ̄

)
W̃ ,

(18.24)

dŨ

dξ
= 1

λ̄ + 2μ̄
�̃rr − λ̄

(λ̄ + 2μ̄)ξ
Ũ + γ̄

λ̄ + 2μ̄
W̃ . (18.25)

Next, we consider two auxiliary Cauchy problem statements for the canonical
system of differential equations (18.22)–(18.25) and two sets of conditions for:

1. W̃1(ξ0, p) = 0, �̃1(ξ0, p) = 0, Ũ1(ξ0, p) = 1, Q̃1(ξ0, p) = 0;
2. W̃2(ξ0, p) = 0, �̃2(ξ0, p) = 0, Ũ2(ξ0, p) = 0, Q̃2(ξ0, p) = 1.

For any value of the Laplace transform parameter, the Cauchy problems are solved
numerically by the 4th order Runge–Kutta method. Next, two groups of solutions
are composed in the form: ŨI = α1Ũ1 + α2Ũ2, �̃I

rr = α1�̃1 + α2�̃2, W̃I = α1W̃1 +
α2W̃2, Q̃ I = α1 Q̃1 + α2 Q̃2; ŨI I = α3Ũ1 + α4Ũ2, �̃I I

rr = α3�̃1 + α4�̃2, W̃I I = α3

W̃1 + α4W̃2, Q̃ I I = α3 Q̃1 + α4 Q̃2. Theunknownconstantsα1,…,α4 are determined
by satisfying 4 conditions in the transforms for ξ = 1: Q̃ I (1, p) = β1

p , �̃
I
rr (1, p) =

�̃I I
rr (1, p) = 0, W̃I I (1, p) = β2

(p+1)2 .
Since the temperature, displacement and stress transforms are known in the set

of values of the Laplace transform parameter, the inversion of the Laplace transform
can only be performed numerically. We use the numerical inversion of the Laplace
transform based on the technique of expanding the actual space into a series in terms
of shifted Legendre polynomials; the latter (P∗

n ) differ from the common Legendre
polynomials Pn by the fact that their domain of definition is reduced to the segment
[0, 1] instead of common [−1, 1], i.e., P∗

n (x) = Pn(2x − 1).
The shifted Legendre polynomials have the form:

P∗
n (x) = (−1)n

n∑
s=0

(−1)s
(
n
s

)
(n + s)!
n!s! xs . (18.26)

According to [24], the expansion of the function F(τ ) with respect to the shifted
Legendre polynomials takes the form:
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F(τ ) =
∞∑
s=0

(2s + 1)as P
∗
s (e−τ ). (18.27)

In [24], an expression was obtained for the expansion coefficients as through the
known coefficients c(s)

i of the polynomialsP∗
s and the Laplace transform values F̃(p)

at integer points p = 1, 2, ... in the formas = ∑s
i=0 c

(s)
i F̃(i). The accuracy of solving

the direct problems (18.8)–(18.13) and (18.14)–(18.19) was verified by comparing
the approximate solution for a homogeneous cylinder with the finite element method
(FEM) solution obtained in the FlexPDE package.

Table18.1 gives a comparative analysis of the dimensionless temperature values
on the pipe’s outer surface, ξ = 1, calculated by the FEM and the shooting method
when solving the problem (18.8)–(18.13) with the parameters δ0 = 0.05, β1 = 1,
ξ0 = 0.6 and different values of the parameter s in the series (18.27).

Table18.2 gives a comparative analysis of the dimensionless temperature values
for ξ = 0.9, obtained by the FEMand the shootingmethodwhen solving the problem
(18.14)–(18.19) with the parameters δ0 = 0.05, β2 = 1 ξ0 = 0.6 and different values
of the parameter s in the series (18.27).

From the analysis of Tables18.1 and 18.2, it follows that in order for the error in
calculating the temperature for the time τ > 10−3 to not exceed 1%, it is sufficient
to make a restriction to 45 terms in the expansion (18.27).

Table 18.1 Comparison of the results of solving the direct problem (18.8)–(18.13) for ξ = 1

Moment of time FEM Shooting method

s = 20 s = 45

0.001 0.03619 0.04988 0.03628

0.01 0.11814 0.11901 0.11819

0.1 0.38639 0.385446 0.38643

0.2 0.47512 0.47467 0.475165

0.5 0.50997 0.50828 0.50998

Table 18.2 Comparison of the results of solving the direct problem (18.14)–(18.19) for ξ = 0.9

Moment of time FEM Shooting method

s = 20 s = 45

0.001 0.02503 0.03649 0.02532

0.01 0.40389 0.40435 0.40393

0.1 0.63451 0.63534 0.63458

0.2 0.75789 0.76035 0.75792

0.5 0.76749 0.76759 0.76750
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18.4 Iterative Scheme for Solving the Inverse
Thermoelasticity Problem

In this work, we solve the nonlinear thermoelasticity CIP on the identification of two
characteristics of the pipe on the basis of the construction of an iterative process, at
each stage of which a linear problem is to be solved. The scheme for solving the
considered CIP for the pipe is constructed similarly to the scheme for reconstructing
two thermophysical characteristics of a rod [16].

The iterative process of identifying two thermomechanical characteristics of the
pipe consists of two stages. At the first stage, the initial approximation is determined
in the class of positive bounded linear functions k1ξ + b1, k2ξ + b2 based on the
residual functional minimization:

J =
b1∫

a1

( f I (τ ) − W (n−1)
I (1, τ ))2dτ +

b2∫
a2

( f I I (τ ) − Q(n−1)
I I (1, τ ))2dτ. (18.28)

At the second stage, the corrections of the two reconstructed functions are deter-
mined by solving a system of the integral Fredholm equations of the 1st kind, and
the current laws of change in thermomechanical characteristics are then corrected.
In [21], to find corrections for thermomechanical characteristics, the operator equa-
tions were obtained in the Laplace transform space, both for thermal and mechanical
loading applied of the outer surface of the cylinder. Using only thermal loading,
taking into account two types of thermal load on the outer surface of the pipe, we
now obtain a system of the following two operator equations of the 1st kind:

p

1∫
ξ0

δk̄
(n−1)

(
dW̃ (n−1)

I

dξ

)2

ξdξ + p2
1∫

ξ0

δc̄(n−1)(W̃ (n−1)
I )2ξdξ

+δ0 p
2

1∫
ξ0

δγ̄ (n−1)

(
dŨ (n−1)

I

dξ
+ Ũ (n−1)

I

ξ

)
W̃ (n−1)

I ξdξ

= β1( f̃ I (p) − W̃ (n−1)
I (1, p)), p ∈ [0,∞), (18.29)

(p + 1)2
1∫

ξ0

δk̄(n−1)

(
dW̃ (n−1)

I I

dξ

)2

ξdξ + p(p + 1)2
1∫

ξ0

δc̄(n−1)(W̃ (n−1)
I I )2ξdξ
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+δ0 p(p + 1)2
1∫

ξ0

δγ̄ (n−1)

(
dŨ (n−1)

I I

dξ
+ Ũ (n−1)

I I

ξ

)
W̃ (n−1)

I I ξdξ

= β2( f̃ I I (p) − Q̃(n−1)
I I (1, p)), p ∈ [0,∞). (18.30)

The system of two Eqs. (18.29), (18.30) is written out to identify three correc-
tions k̄(ξ), c̄(ξ) and γ̄ (ξ), which is impossible to implement. Therefore, we confine
ourselves to identifying two pairs of thermomechanical characteristics: (1) k̄(ξ) and
c̄(ξ) when γ̄ (ξ) is known; (2) k̄(ξ) and γ̄ (ξ) when c̄(ξ) is known.

1. Assumeγ̄ (ξ)to be known. Required to restorek̄(ξ) and c̄(ξ).
Here, putting δγ̄ (n−1) = 0 in (18.29), (18.30) , we get:

p

1∫
ξ0

δk̄(n−1)

(
dW̃ (n−1)

I

dξ

)2

ξdξ + p2
1∫

ξ0

δc̄(n−1)(W̃ (n−1)
I )2ξdξ

= β1( f̃ I (p) − W̃ (n−1)
I (1, p)), p ∈ [0,∞), (18.31)

(p + 1)2
1∫

ξ0

δk̄(n−1)

(
dW̃ (n−1)

I I

dξ

)2

ξdξ + p(p + 1)2
1∫

ξ0

δc̄(n−1)(W̃ (n−1)
I I )2ξdξ

= β2( f̃ I I (p) − Q̃(n−1)
I I (1, p)). (18.32)

Inverting the Eqs. (18.31), (18.32), we obtain a system of operator equations in
the actual space:

1∫
ξ0

(
δk̄(n−1)R11(ξ, τ ) + δc̄(n−1)R12(ξ, τ )

)
ξdξ = f I (τ ) − WI

(n−1)(1, τ ), τ ∈ [a1, b1],

(18.33)

1∫
ξ0

(
δk̄(n−1)R21(ξ, τ ) + δc̄(n−1)R22(ξ, τ )

)
ξdξ = f I I (τ ) − Q(n−1)

I I (1, τ ),

(18.34)
τ ∈ [a2, b2]. Here, the kernels of (18.33), (18.34) have the form:

R11(ξ, τ ) = 1

β1

τ∫
0

∂2WI
(n−1)(ξ, τ1)

∂ξ∂τ1

∂WI
(n−1)(ξ, τ − τ1)

∂ξ
dτ1,
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R12(ξ, τ ) = 1

β1

τ∫
0

∂WI
(n−1)(ξ, τ1)

∂τ1

∂WI
(n−1)(ξ, τ − τ1)

∂τ1
dτ1,

R21(ξ, τ ) =
1

β2

τ∫
0

(
∂3WI I

(n−1)(ξ, τ1)

∂ξ∂τ 2
1

+ 2
∂2WI I

(n−1)(ξ, τ1)

∂ξ∂τ1
+ ∂WI I

(n−1)(ξ, τ1)

∂ξ

)

×∂WI I
(n−1)(ξ, τ − τ1)

∂ξ
dτ1,

R22(ξ, τ ) =
1

β2

τ∫
0

(
∂2WI I

(n−1)(ξ, τ1)

∂τ 2
1

+ 2
∂WI I

(n−1)(ξ, τ1)

∂τ1
+ WI I

(n−1)(ξ, τ1)

)

×∂WI I
(n−1)(ξ, τ − τ1)

∂τ1
dτ1.

2. Assume c̄(ξ) to be known. Required to restore k̄(ξ) and γ̄ (ξ). this case, putting in
(18.29), (18.30) δ Ā(n−1) = 0, after inversion, we obtain a system of the operator
equations in the actual space allowing to find the system of corrections δk̄(n−1)

and δγ̄ (n−1):

1∫
ξ0

(
δk̄(n−1)M11(ξ, τ ) + δγ̄ (n−1)M12(ξ, τ )

)
ξdξ = f I (τ ) − WI

(n−1)(1, τ ),

(18.35)
τ ∈ [a1, b1],

1∫
ξ0

(
δk̄(n−1)M21(ξ, τ ) + δγ̄ (n−1)M22(ξ, τ )

)
ξdξ = f I I (τ ) − Q(n−1)

I I (1, τ ),

(18.36)
τ ∈ [a2, b2], where the kernels of the Eqs. (18.35), (18.36) have the form:

M11(ξ, τ ) = R11(ξ, τ ), M21(ξ, τ ) = R21(ξ, τ ),

M12(ξ, τ ) = δ0

β1

τ∫
0

(
∂2U (n−1)

I (ξ, τ1)

∂ξ∂τ1
+ 1

ξ

∂U (n−1)
I (ξ, τ1)

∂τ1

)
∂WI

(n−1)(ξ, τ − τ1)

∂τ1
dτ1,

M22(ξ, τ ) = δ0

β2

τ∫
0

A1(ξ, τ1)A2(ξ, τ1)dτ1,

A1(ξ, τ1) =
(

∂2U (n−1)
I I (ξ, τ1)

∂ξ∂τ1
+ 1

ξ

∂U (n−1)
I I (ξ, τ1)

∂τ1

)
,
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A2(ξ, τ1) =
(

∂2WI I
(n−1)(ξ, τ1)

∂τ 2
1

+ 2
∂WI I

(n−1)(ξ, τ1)

∂τ1
+ WI I

(n−1)(ξ, τ1)

)
.

The iterative process is repeated until the stopping condition is fulfilled: reaching
the threshold value of the residual functional (18.28), equal to 10−4, or reaching the
limit number of iterations equal to 20. Since solving systems of the integral Fredholm
equations of the 1st kind (18.33), (18.34) and (18.35), (18.36) represents an ill-posed
problem, the method of A.N. Tikhonov [25] was employed.

18.5 Results of Two Thermomechanical Characteristics
Reconstruction

Computational experiments were carried out to reconstruct two thermophysical char-
acteristics in the classes of power and exponential functions, which are most often
used to model FGM.When carrying out computational experiments, it was accepted:
β1 = β2 = 1, δ0 = 0.05, ξ0 = 0.8.

The influence of the inhomogeneity laws for the variable characteristics on the
simulated input data values gained in the experiment is analyzed. It is found that
the laws of change in the thermal conductivity coefficient and specific heat capacity
proportionally affect the boundary physical fields—temperature and heat flux, while
the influence of the thermal stress coefficient is proportional to the value of the
coupling parameter.

For each inhomogeneity law, the most informative intervals for measuring the
input data are determined in which the boundary temperature and heat flux change
most rapidly.

During the first series of computational experiments, the thermal conductivity
coefficient k̄(ξ) and specific heat capacity c̄(ξ) were restored. The residual func-
tional (18.28) reached the threshold value in no more than 12 iterations. A pair of
dimensionless characteristics was reconstructed with sufficient accuracy: the maxi-
mum error in the reconstruction of two monotonic functions did not exceed 5%.

The figures below reveal the results of recovering the thermophysical charac-
teristics; the solid line shows the exact law of inhomogeneity, the dots show the
reconstructed law. Figure18.1 presents the results of reconstructing the following
decreasing functions: (a) k̄(ξ) = 4e−8(ξ−ξ0); (b) c̄(ξ) = 2e−6(ξ−ξ0).

The additional data was collected at 6 equally spaced points inside the selected
informative segments [a1, b1] = [0.05, 0.35], [a2, b2] = [0.01, 0.18]. It took 7 itera-
tions to reach the threshold value of the functional (18.28), while the maximum error
in the reconstruction of two functions did not exceed 4%.
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Fig. 18.1 Reconstruction of decreasing functions: a k̄(ξ) = 4e−8(ξ−ξ0); b c̄(ξ) = 2e−6(ξ−ξ0)

Fig. 18.2 Reconstruction of increasing functions: a k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
; b c̄(ξ) = 0.6 +

0.3
(

ξ−ξ0
1−ξ0

)2

Figure18.2 shows the results of reconstructing the increasing functions:

(a) k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
;

(b) c̄(ξ) = 0.6 + 0.3
(

ξ−ξ0
1−ξ0

)2
.

The input data was measured at 6 equally spaced points inside the selected infor-
mative segments [a1, b1] = [0.04, 0.28], [a2, b2] = [0.02, 0.14]. This time it took 6
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Table 18.3 Values of residual functional and maximum relative reconstruction error for the func-

tions k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
and c̄(ξ) = 0.6 + 0.3

(
ξ−ξ0
1−ξ0

)2
Iteration # Functional J Relative reconstruction error, %

1 0.007123 15.64

2 0.003612 12.32

3 0.000951 10.71

4 0.000711 9.02

5 0.000294 8.43

6 0.000089 6.78

iterations to reach the threshold value of the functional (18.28), and the maximum
error in the reconstruction of two functions did not exceed 3%.

The convergence of the iterative process was also investigated. Table18.3 gives
the residual values and the maximum relative reconstruction error depending on the
iteration number when restoring functions

k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
and

c̄(ξ) = 0.6 + 0.3

(
ξ − ξ0

1 − ξ0

)2

(18.37)

.
The effect of the input data noise on the reconstruction accuracy was also inves-

tigated; the former was modeled by using the relations:

f sI (τ ) = f I (τ )(1 + sβ), f sI I (τ ) = f I I (τ )(1 + sβ), (18.38)

where s is the noise level and β is random variable with a uniform distribution law
on the interval [−1, 1]. It was found that in the presence of noise, the reconstruction
error increased with the growth of s, but even with 2% noise (s = 0.02) it did not
exceed 11%.

Table18.4 gives the values of the function k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
and its recon-

struction in the absence of input data noise and for 2% noise.
From Table18.4, it follows that the maximum reconstruction error for 2% noise

does not exceed 9%.
In the course of the second series of computational experiments, the thermal

conductivity coefficient k̄(ξ) and thermal stress coefficient γ̄ (ξ) were restored. It
is found out that the accuracy of the reconstruction of this pair increases with an
increase in the value of the coupling parameter δ0. In this way, with δ0 = 0.1 and
in the absence of the input noise, the maximum error in the reconstruction of two
monotonic functions was 16%, and with δ0 = 0.4, it did not exceed 5%.

Figure18.3 presents the reconstruction results for the decreasing functions:
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Table 18.4 Reconstruction of the function k̄(ξ) = 0.8 + 0.5
(

ξ−ξ0
1−ξ0

)2
Radial coordinate ξ Exact value k̄(ξ) Recovered value k̄(ξ) Relative reconstruction error

s = 0 s = 0.02 s = 0 s = 0.02

0.8 0.80 0.792 0.771 1.19 3.63

0.82 0.805 0.801 0.762 0.49 5.34

0.84 0.82 0.822 0.791 0.24 3.54

0.86 0.845 0.841 0.821 0.47 2.84

0.88 0.880 0.861 0.832 2.27 5.46

0.9 0.925 0.927 0.891 0.21 3.68

0.92 0.980 0.994 0.903 1.43 7.86

0.94 1.045 1.051 1.021 0.57 2.30

0.96 1.120 1.098 1.18 1.96 5.36

0.98 1.205 1.192 1.310 1.07 8.71

1 1.30 1.310 1.393 0.77 6.34

Fig. 18.3 Reconstruction of monotonically decreasing functions: a k̄(ξ) = −8ξ2 + 12ξ − 3; b
γ̄ (ξ) = −4ξ2 + 6ξ − 1

(a) k̄(ξ) = −8ξ 2 + 12ξ − 3;
(b) γ̄ (ξ) = −4ξ 2 + 6ξ − 1

for δ0 = 0.4. The input datawas gained at 8 equally spaced points inside the segments
[a1, b1] = [0.01, 0.17], [a2, b2] = [0.02, 0.26]. To reach the threshold value of the
functional (18.28), it took 7 iterations, while themaximum error in the reconstruction
of two functions did not exceed 4%.
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Fig. 18.4 Reconstructionofmonotonically increasing functions:a k̄(ξ) = 0.9 + e12ξ−13;b γ̄ (ξ) =
1.5 − e1−3ξ

In the same way, Fig. 18.4 shows the results of the increasing functions recon-
struction:

(a) k̄(ξ) = 0.9 + e12ξ−13;
(b) γ̄ (ξ) = 1.5 − e1−3ξ

for δ0 = 0.4.
The additional data was collected at 8 equally spaced points inside the selected

informative segments [a1, b1] = [0.03, 0.27], [a2, b2] = [0.05, 0.13]. It took 9 iter-
ations to reach the threshold value of the functional (18.28), and the maximum error
in the reconstruction of two functions did not exceed 4%.

18.6 Conclusion

• The inverse coefficient thermoelasticity problem on the identification of thermo-
mechanical characteristics of a functionally graded pipe has been studied.

• The solution of the nonlinear inverse problem is built on the basis of the iterative
process, at each stage of which the system of the Fredholm integral equations of
the 1st kind is solved.

• Computational experiments on reconstructing two pairs of characteristics (“ther-
mal conductivity coefficient + specific heat capacity”, and “thermal conductivity
coefficient + thermal stress coefficient”) were conducted.

• Successful reconstruction of the pair “thermal conductivity coefficient + thermal
stress coefficient” is possible only with a large coupling parameter. A pair of
dimensionless characteristics “thermal conductivity + specific heat capacity” was
reconstructed with sufficient accuracy for any coupling parameter.

• The computational reconstruction scheme proposed is resistant to 2% input noise.
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Chapter 19
Regularities of Technological Residual
Stress Fields Formation in Cylindrical
Products Manufactured by Additive
Methods

Dmitry A. Parshin

Abstract The regularities of the development of residual stress fields in deformable
solids formed in layers of viscoelastic aging materials are investigated by the exam-
ple of the technological problem on additive manufacturing of a hollow cylindrical
product of arbitrary thickness on a rapidly rotating substrate, with arbitrarily varying
initial circumferential stress in the added material. Quasi-static processes of defor-
mation of such products during and after their manufacture, which are accompanied
by small strains, have been studied. An effective procedure for calculating the dis-
tributions of the mentioned stresses is constructed.

Keywords Additive manufacturing · Technological stresses · Residual stresses ·
Viscoelasticity · Aging · Quasi-static deformation · Prestress · Centrifugal inertia
forces · Hollow cylindrical product · Layered product

19.1 Introduction

In this paper, the process of additive manufacturing of a product is considered from
the standpoint of mechanics of deformable solids. Classical for mechanics are solids
of constant material composition, which have already acquired their final appearance
by the beginning of the deformation process. This appearance is represented in the
configuration of the solid, which is called natural and which the displacements
of the solid points, causing its deformation under the action of applied loads, are
then referred to. The main difference between any classical solid and an additively
manufactured one is that the latter still continues to be replenished with newmaterial
elements during the deformation process and, thus, is basically devoid of a natural
configuration. This feature is the reason for, among other things, the emergence of
residual stress fields in additively manufactured solids after their manufacture is
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completed and the loads accompanying the manufacturing process are removed. The
presented work is devoted to the analysis of these stresses on the example of one
specific technological problem—the problem of additive forming a cylindrical layer
of material with mechanical properties of viscoelasticity and aging on the surface of
an axisymmetric substrate. The need for such an analysis is dictated by the urgency of
solving various engineering problems on contact, wear and destruction of structural
elements and machine parts layered with coatings having complex properties [4,
5, 7, 11]. It is obvious that the results of the corresponding calculations should be
influenced in a decisive way by the stress distributions in the considered products
that have arisen as a result of the technological features of their manufacture.

It is obvious that an adequate mechanical study of additive processes requires
correct consideration of kinematic and power features of the manufactured solid
replenishment with a new material. Such consideration cannot take place within
the scope of classical equations and boundary conditions of solid mechanics, even
when they are formulated for the time variable region of space associated with the
growing solid. This is easy to understand if we pay attention to the fact, native for
growing solids, that while some of material elements are only included in the mate-
rial composition of the solid, others have been already deformed compatibly with it
for some time. This foundational fact is expressed in strain incompatibility (in the
classical sense of the term) inside any growing solid and generates a special class
of problems in solid mechanics—the problems of mechanics of growing solids. The
mathematical approach to the formulation and research of this class of problems is
dynamically developed in the framework of the Russian scientific school founded by
Academician N.Kh. Arutyunyan and his disciple Professor A.V.Manzhirov. Some of
the results of this school can be found, for instance, by Arutyunyan et al. [3], Manzhi-
rov and Chernysh [10], Manzhirov [8], Arutyunyan and Manzhirov [2], Manzhirov
[9], Manzhirov and Mikhin [11], Manzhirov and Parshin [13], Parshin [14], Parshin
[15], Kazakov and Parshin [6].

19.2 Basic Relations for the Problem Under Consideration

In Parshin [14], a mathematical model for the process of manufacturing axisymmet-
ric cylindrical products with an arbitrary wall thickness by additive methods using
viscoelastic aging isotropic materials [1] was formulated. As mechanical factors
causing deformation of the manufactured product, and already in the process of its
manufacture, the model takes into account:

1. centrifugal inertia forces caused by the rapid rotation of the (absolutely) rigid
substrate used around its axis with an arbitrary (variable) angular velocity ω(t);

2. arbitrary initial circumferential stresses σϕ,0(ρ) arising in the (infinitely thin)
material layers sequentially deposited onto the (inner) surface of this substrate.
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Here t , ρ and ϕ indicate respectively the time, radial and circumferential coordinates
in the rotating frame of reference associated with the substrate.

Let us be interested in two, generally speaking, different programs of the substrate
rotation during themanufacture of the product in question:ω1(t) andω2(t). For these
programs, we shall have the following initial boundary value problem [14].

∇ · S1,2 + eρ f1,2(ρ, t) = 0 as a(t) < ρ < a0, t > t0;
S1,2 = 2D1,2 + φ1 I1[D1,2], D1,2 = 1

2
(∇v transp

1,2 + ∇v1,2);
eρ · S1,2 = eρg1,2(t) as ρ = a(t); v1,2 = 0 as ρ = a0;
T1,2 = eϕeϕσϕ,0(ρ) as t = τ0(ρ).

(19.1)

In this problem, we use the notation consistent with the notation adopted in the
paper by Parshin [14], index i = 1, 2 for all the variables corresponds to the i-th
rotation program:

a(t) is the current radius of the inner surface of the manufactured product;
τ0(ρ) function inverse to a(t) in all intervals of strict monotony of the latter,

a(τ0(ρ)) ≡ ρ;
t0 initial moment of the manufacturing process;
a0 initial radius of the inner surface of the manufactured product, a0 = a(t0);
Si tensor of operator stress velocities, Si = dT̃i/dt , where
T̃i tensor of operator stress, T̃i = Qτ0(ρ)Ti , where
Qτ0 viscoelasticity operator,

Qτ0ψ(t) = ψ(t)

G(t)
−

t∫

τ0

ψ(τ)

G(τ )
K (t, τ )dτ,

K (t, τ ) = G(τ )
∂

∂τ

[
1

G(τ )
+ cshear(t, τ )

]
, where

K kernel of creep,
cshear measure of creep,
G(t) elastic modulus of pure shear;
Ti stress tensor;
Di tensor of strain rates;
vi velocity vector;
fi , gi are the known functions determined by the program of replenishment of the

product with additional material and the program of rotation of the substrate
during manufacture, and also by the density of the material used and its
viscoelastic and aging properties,
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fi (ρ, t) = μρ Wτ0(ρ)ω
2
i (t),

Wτ0ψ(t) = ψ(τ0)
∂cshear(t, τ0)

∂t
+ 1

G(t)

dψ(t)

dt
+

t∫

τ0

dψ(τ)

dτ

∂cshear(t, τ )

∂t
dτ,

(19.2)

gi (t) = − 1

G(t)

da(t)

dt

[
σϕ,0(a(t))

a(t)
− μω2

i (t) a(t)

]
, where (19.3)

μ is the material density;
es(ϕ) ort of a coordinate direction,

es = ∂r
∂s

/ ∥∥∥∥∂r
∂s

∥∥∥∥, s = ρ, ϕ, where

r radius-vector of an arbitrary point of the manufactured product referred to
the rotating frame;

1 tensor unit;
φ material constant depending only on the Poisson ratio;
I1[A] linear invariant of the tensor A.

Note that at each point of the additively manufactured solid under consideration,
the stress-strain state begins to develop from the moment this point is included in the
composition of the solid, that is, from the moment of time t = τ0(ρ)

A = A(r, t), A = Si , T̃i ,Ti ,Di , vi = vi (r, t), t � τ0(ρ).

Remark also that problem (19.1) describes themechanical behavior of the product
in question not only during the process (including possible pauses in it), but also
for an arbitrarily long time after the moment t = tfin of final completion of additive
application of the material to the inner surface of this product, unless in those time
intervals when the product is not replenished with new material, its inner surface is
not being loaded [8].

19.3 Calculating Residual Stresses After Stopping Rotation

Suppose now that the first rotation program ω1(t) corresponds to the true change in
angular velocity during the manufacture of the product, i.e., for t � tfin, and then is
arbitrary. In particular, it can be ω1(t) ≡ ω = const for any t ∈ (t0,+∞) (note that
the constancy of ω1 for all t > t0, including for t > tfin, noticeably simplifies the
solution of corresponding problem (19.1)—see formula (19.2)).

Let the second rotation program ω2(t) coincide with the first one at t0 < t < tstop,
where tstop > tfin is some arbitrarily fixed moment in time. Herewith ω2(t) �≡ ω1(t)
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at t � tstop and
ω2(t) → 0 as t → +∞. (19.4)

It is clear that in the above assigned case, the residual technological stresses in
the finished product under consideration, caused by the manufacturing process in
itself and acting indefinitely at the points r of this product after the manufacturing
completion and stopping rotation, will be equal to

Tres(r) = lim
t→+∞T2(r, t). (19.5)

We set the task to calculate these residual stresses under the assumptions that

∃ lim
t→+∞ ω1(t) = ω∞ (19.6)

and we have found the limit values

T∞(r) = lim
t→+∞T1(r, t) (19.7)

of the stresses corresponding to the solution of the problem (19.1)1.
Define the following functions

ΔS = S2 − S1, ΔD = D2 − D1, Δv = v2 − v1,

ΔT̃ = T̃2 − T̃1, ΔT = T2 − T1, Δ f = f2 − f1, Δg = g2 − g1.

Looking at (19.3), we can see that Δg(t) ≡ 0 for all t > t0. Indeed, for t < tstop,
there is the identical match of the both rotation programs, i.e.,

h(t) = ω2
2(t) − ω2

1(t) ≡ 0 as t < tstop, (19.8)

and for any t > tfin, there will be da(t)/dt ≡ 0. By virtue of (19.2) and (19.8) we
can also declare that

Δ f (ρ, t) = μρ Wτ0(ρ)h(t) ≡ 0 as t < tstop. (19.9)

For t � tstop, we have obviously to use the general expression

Wτ0(ρ)h(t) = h(τ0(ρ))
∂cshear(t, τ0(ρ))

∂t

+ 1

G(t)

dh(t)

dt
+

t∫

τ0(ρ)

dh(τ )

dτ

∂cshear(t, τ )

∂t
dτ (19.10)
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where the first term on the right-hand side vanishes by virtue of (19.8) because
τ0(ρ) � tfin < tstop at any point of the considered solid and consequently h(τ0(ρ)) =
0.

For further transformations, let us fix an arbitrary time instant t̂ ∈ (tfin, tstop). Then
we can transform (19.10) into

Wτ0(ρ)h(t) = 1

G(t)

dh(t)

dt
+

t∫

t̂

dh(τ )

dτ

∂cshear(t, τ )

∂t
dτ

inasmuch h(τ ) ≡ 0 as τ ∈ (τ0(ρ), t̂ ]. With use of the rule for differentiating an
integral with respect to a parameter and of partial integration procedure (considering
that h(t̂) = 0) we can write

Wτ0(ρ)h(t) = dh(t)

dt

[
1

G(t)
− cshear(t, t)

]
+ d

dt

t∫

t̂

dh(τ )

dτ
cshear(t, τ )dτ

= dh(t)

dt

[
1

G(t)
− cshear(t, t)

]
+ d

dt

[
h(t) cshear(t, t) −

t∫

t̂

h(τ )
∂cshear(t, τ )

∂τ
dτ

]
.

Here we have cshear(t, t) ≡ 0 since the creeping strain is equal to zero at the time
of load application. And so far as

dh(t)

dt

1

G(t)
= d

dt

h(t)

G(t)
− h(t)

d

dt

1

G(t)
= d

dt

[
h(t)

G(t)
−

t∫

t̂

h(τ )
d

dτ

1

G(τ )
dτ

]

we get thereupon

Wτ0(ρ)h(t) = d

dt

[
h(t)

G(t)
−

t∫

t̂

h(τ )
∂

∂τ

[
1

G(τ )
+ cshear(t, τ )

]
dτ

]
= dQt̂ h(t)

dt

(19.11)
for any t > t̂ (for t ∈ (t̂, tstop) formula (19.11) remains true because of (19.8)).

Subtract (19.1)1 from (19.1)2. For the time interval (t0, tstop), we will have the
problem

∇ · ΔS = 0 as a(t) < ρ < a0, t0 < t < tstop;
ΔS = 2ΔD + φ1 I1[ΔD], ΔD = 1

2
(∇Δv transp + ∇Δv);

eρ · ΔS = 0 as ρ = a(t); Δv = 0 as ρ = a0;
ΔT = 0 as t = τ0(ρ).
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which obviously has the only trivial solution. Hereby

ΔT(r, t) ≡ 0 as t ∈ [τ0(ρ), tstop) (19.12)

including t = t̂ . So we can formulate the following initial boundary value problem
for the Δ-variables in the time interval (t̂,+∞)

∇ · ΔS + eρ Δ f (ρ, t) = 0 as afin < ρ < a0, t > t̂;
ΔS = 2ΔD + φ1 I1[ΔD], ΔD = 1

2
(∇Δv transp + ∇Δv);

eρ · ΔS = 0 as ρ = afin; Δv = 0 as ρ = a0;
ΔT = 0 as t = t̂ .

(19.13)

where afin = a(tfin) and (considering (19.9), (19.11), and (19.8))

Δ f (ρ, t) = μρ
dQt̂ h(t)

dt
, Qt̂ h(t̂) = h(t̂)

G(t̂)
= 0. (19.14)

Taking into account (19.12) we find for t > t̂

ΔT̃(r, t) = Qτ0(ρ) ΔT(r, t) = ΔT(r, t)
G(t)

−
t∫

τ0(ρ)

ΔT(r, τ )

G(τ )
K (t, τ )dτ

= ΔT(r, t)
G(t)

−
t∫

t̂

ΔT(r, τ )

G(τ )
K (t, τ )dτ = Qt̂ ΔT(r, t),

ΔT̃(r, t̂) = ΔT(r, t̂)

G(t̂)
= 0.

Therefore,

ΔT̃(r, t) =
t∫

t̂

ΔS(r, τ )dτ, ΔT(r, t) = Q−1
t̂

t∫

t̂

ΔS(r, τ )dτ.

At the same time, it follows from (19.14) that

μρ Qt̂ h(t) =
t∫

t̂

Δ f (ρ, τ )dτ, μρ h(t) = Q−1
t̂

t∫

t̂

Δ f (ρ, τ )dτ.
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Thus, from the differential equation of problem (19.13), we obtain the equation

∇ · ΔT + eρ μρ h(t) = 0 as afin < ρ < a0, t > t̂ . (19.15)

Let us introduce the following tensor- and vector-function on the entire spatial
domainwhich the finallymanufactured cylindrical product under consideration occu-
pies

Δu(r, t) =
t∫

t̂

Δv(r, τ )dτ, ΔE(r, t) =
t∫

t̂

ΔD(r, τ )dτ.

Then we get the relations

ΔT = Q−1
t̂

(
2ΔE + φ1 I1[ΔE]), ΔE = 1

2
(∇Δu transp + ∇Δu) (19.16)

from the corresponding relations of problem (19.13). Andwe do similarly for bound-
ary conditions in (19.13)

eρ · ΔT = 0 as ρ = afin; Δu = 0 as ρ = a0. (19.17)

Boundary value problem (19.15), (19.16), (19.17) represents a classical problem
(for the fixed composition deformable cylindrical solid of inner radius afin and outer
radius a0) of the viscoelasticity theory for aging solids, with the stress tensor ΔT,
small strain tensor ΔE, and displacement vector Δu, with homogeneous boundary
conditions and with the point- and time-dependent bulk forces. The correspondence
principle is well known [2] according to which the stresses ΔT(r, t) in this problem
coincide with the stresses in the corresponding classical problem of the elasticity
theory for the finally manufactured product

∇ · ΔT + eρ μρ h(t) = 0 as afin < ρ < a0, t > t̂;
ΔT/G(t) = 2ΔEel + φ1 I1[ΔEel], ΔEel = 1

2
(∇Δu transp

el + ∇Δuel);
eρ · ΔT = 0 as ρ = afin; Δuel = 0 as ρ = a0.

(19.18)

The time variable t in boundary value problem (19.18) is considered as a param-
eter.

Subject to the definition of h(t) and to conditions (19.4), (19.6), we can pass in
(19.18) to the limit when the parameter t tends to +∞
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∇ · ΔT∞ = eρ μρω2
∞ as afin < ρ < a0;

ΔT∞/G∞ = 2ΔEel,∞ + φ1 I1[ΔEel,∞],
ΔEel,∞ = 1

2
(∇Δu transp

el,∞ + ∇Δuel,∞);
eρ · ΔT∞ = 0 as ρ = afin; Δuel,∞ = 0 as ρ = a0.

(19.19)

Here ΔT∞(r) = lim t→+∞ ΔT(r, t) and G∞ = lim t→+∞ G(t).
Nowwe are ready to formulate the following result (on the basis of formula (19.5),

(19.7) and the definition of the tensor ΔT) the resulting residual stress field in the
technological problem in question is to be calculated as

Tres(r) = T∞(r) + ΔT∞(r)

where the tensor field T∞(r) can be found by formula (19.7) using the solution of
nonclassical initial boundary value problem of mechanics of growing solids (19.1)1,
and the tensor field ΔT∞(r) is known after solving classical elasticity problem
(19.19).

19.4 Conclusions

In the additive manufacture of products using rapidly rotating substrates, signifi-
cant technological stresses develop in these products. After stopping the rotation
of a fully manufactured product, these stresses cannot disappear. This is due to the
incompatibility of strains in a solid made by additive growth. The resulting tech-
nological stresses in the finished product are re-formed into residual stresses. The
regularities of the stress occurrence and re-formation under specific conditions of the
technological process organization and specific rheological features of the material
mechanical behavior considered in this paper are described by the above formulated
initial boundary value problems. As a result of the conducted research, an effective
procedure has been developed for predicting the distribution of final residual stresses
that will persist indefinitely in the finished cylindrical product made of aging vis-
coelastic material after the termination of rotation, when no external influences are
acting on this product.
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Chapter 20
Two-Point Rotations in Geometry
of Finite Deformations

Yuri N. Radayev

Abstract The paper is devoted to a study of deformed states of continuous medium.
The study is restricted to the case when a deformed state admits a comparison to the
referential state. The latter are considered to be immersed in the three-dimensional
Euclidean space. A derivation of the two-point tensor of finite rotation and its uncon-
ventional orthogonality are discussed. One-point rotation tensors are introduced.
Both of the two one-point rotation tensors are orthogonal in the conventional sense
thus allowing to determine all geometrical characteristics related to a rotation in a
three-dimensional space. Priority in the paper is given to simple algorithmic proce-
dures for obtaining natural components of measures and tensors of finite deforma-
tions, as well as transformations of the fundamental equations of continuummechan-
ics realized by the rotation tensors and corresponding vectors of finite rotations. The
two pseudovectors of finite rotations are defined and are to be employed, along with
the pseudovectors of the “extra” rotations, as the principal kinematic parameters in
mathematical models of micropolar elastic continuum.

Keywords Finite deformation · Distortion · Two-point rotation tensor ·
Conventional orthogonality · Unconventional orthogonality · Finite rotation
pseudovector · Micropolar continuum

20.1 Requisite Notions and Equations

Deformation of continuous media is recognized by the change in the mutual dis-
tances between the spatial positions of the material points, chosen for observation,
measured in the referential and the actual (deformed) states. The spatial positions
of these points are characterized by coordinates (generally speaking, curvilinear):
Xα in the reference position and xs in the actual one. Therefore, the deformation is
a differentiable transformation of variables (the Lagrangian referential to the Eule-
rian spatial):
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Xα −→ xs . (20.1)

Since deformation manifests itself as a change in the metric characteristics of
continuum, in the theory of finite deformations, it is then necessary to compare the
referential �gασ and the convective gασ metrics. The spatial metric is denoted by
gks . We systematically employ Latin indices in order to refer to spatial components
of geometrical objects, whereas Greek indices to point on convective components
(only a few instances can be found in the present study) or referential components
(additionally, root symbol is sometimes supplied by backprime).

In the following, tensors (including two-point tensors, see [1]) will always be
considered with respect to one of two tensor bases (or a suitable combination of
them in the case of a two-point tensor): referential or spatial.

We proceed to the notion of the reciprocal description of finite deformation. It is
now well established that also acceptable to describe the deformation by the inverse
with respect to (20.1) transformation:

Xα ←− xs . (20.2)

In such a case, we talk about the inverse description of finite deformation. Both
descriptions of deformation are absolutely equivalent although the first of them is
given a priority. In order to emphasize the equivalence of the two mathematical
descriptions of finite deformation, we write

Xα ←→ xs . (20.3)

In nonlinear continuum mechanics, the two-point distortion tensor is determined
by partial differentiations of the Eulerian coordinates by the Lagrangian coordinates.
Denoting by ∂α operators of partial differentiations by variables Xα , we define the
components of the distortion tensor according to

∂αx
s (α, s = 1, 2, 3). (20.4)

For the distortion tensor (20.4), we will also employ a more compact notation:

x ·s
α = ∂αx

s (α, s = 1, 2, 3).

In the inverse description of deformation, operating with the inverse distortion
tensor

∂s X
α (α, s = 1, 2, 3). (20.5)

is required. For the inverse distortion tensor, in turn, the notation

X ·α
s = ∂s X

α (α, s = 1, 2, 3).

is introduced.
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The polar Cauchy decomposition of the two-point distortion tensor (20.4) has
two reciprocal forms. This fact is of crucial importance for the entire theory of finite
deformations since it is based on the principle of reciprocity: any tensor field with
referential Lagrangian indices can always be correlatedwith a reciprocal (dual) tensor
field with Eulerian spatial indices. The principle of reciprocity is then applied to the
straightforward classification of strain measures and strain tensors.

At first, let us consider the polar decomposition of distortion in the form

∂αx
s = |x |ασ λsσ , (20.6)

where |x |ασ is the distortion modulus, λsσ is the tensor of finite rotation (or rotation
tensor).

The distortion modulus is a one-point absolute second rank symmetric tensor. It
is positive, i.e., the eigenvalues |x |(α) (α = 1, 2, 3) are positive.

The rotation tensor is a two-point second rank tensor. It can be characterized by
the following equations of “two-point orthogonality”:

λsσ λkσ = δsk, λsαλsσ = δα
σ . (20.7)

The reciprocal to (20.6) variant of polar decomposition reads

∂αx
s = |x |skλkα, (20.8)

wherein |x |sk is the reciprocal distortion modulus.
It is not difficult to notice that the reciprocal distortion modulus is obtained from

the original one by raising the lower Greek indices by means of finite rotation tensors

|x |sk = |x |ασ λsαλkσ . (20.9)

In fact, the rotation tensor λsσ acts in nonlinear continuum mechanics as a simple
mean for transforming Greek indices into Latin ones. A remarkable Eq. (20.9) just
reflects such an opportunity provided by the two-point rotation tensor λsσ .

20.2 Pairs of Reciprocal Deformation and Strain Tensors

The geometry of finite deformations is thoroughly described in a number of classical
monographs (see, for example, [1–5]). Now, we proceed to discussion of the based
on the principle of reciprocity classification of measures and tensors known from
the theory of finite deformations. All tensors related to measurements of finite defor-
mations are one-point, have the second rank, and are determined by their natural
components in tensor bases formed by dyadic products of local vectors of referential
or spatial coordinate trihedra.
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For measures of finite deformation, we have the following three pairs of recip-
rocal tensors (the algebraic powers of a tensor are situated above the root symbol;
conventional symbols and terminology are used):

The 1st pair:

Uαβ = |x |αβ the right Biot stretch tensor
V ik = |x |ik the left Biot stretch tensor

The 2nd pair:

Cαβ = 2
Uαβ = gαβ = x ·i

α x
·k
β gik the right Cauchy–Green deformation tensor

Bik = 2
V ik = x ·i

α x
·k
β

�gαβ the left Cauchy–Green deformation tensor
or the Finger deformation tensor

The 3rd pair:

−1
C αβ = gks X ·α

k X ·β
s the Finger deformation tensor

−1
B ik = cik = �gαβ X ·α

i X ·β
k the Cauchy (Finger, Piola) deformation tensor

The three most widely used pairs of reciprocal finite strain tensors of continuum
mechanics are given below:

The 1st pair:

γαβ = Uαβ − �gαβ the Biot strain tensor
pik = V ik − gik the Almansi–Hamel strain tensor

The 2nd pair:

εαβ = 1

2
(Cαβ − �gαβ) the Green–Lagrange (Green–St-Venant) strain tensor

bik = 1

2
(Bik − gik) no known conventional terminology

The 3rd pair:

Aαβ = 1

2
(�gαβ − −1

C αβ) the Almansi strain tensor

aik = 1

2
(gik − −1

B ik) the Euler–Almansi strain tensor

Note that the components of strain and deformation tensors with Greek indices
are invariant under rotations of local spatial coordinate trihedra (and in this sense
they are objective); in turn, the components of strain tensors with Latin indices are
invariant under rotations of local referential coordinate trihedra. It is clear that the
two-point finite rotation tensor λsσ does not have any of these properties.
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It should be noted that the covariant components of the right Cauchy–Green
deformation tensor are the same that the components of the convective metric tensor.
Simple reasoning allows us to demonstrate that

gαβ = x ·i
α x

·k
β gik = �gγ σ |x |αγ |x |βσ ,

and to come to the reciprocal equation

x ·i
α x

·k
β

�gαβ = gls |x |il |x |ks .

20.3 Unconventional Orthogonality of the Two-point
Rotation Tensor

In view of (20.9) the two-point tensor of the finite rotation λsσ determines the rota-
tion of the principal axes of deformation in the referential state to their new spatial
orientations. In the referential state, the corresponding trihedron consists of mutually
orthogonal eigenvectors of the tensor |x |αβ . The new spatial orientations are deter-
mined bymutually orthogonal eigenvectors of the reciprocal distortionmodulus |x |ik .
Translations of the spatial and referential coordinates do not affect the distortion. The
same is true for the distortion modulus and reciprocal distortion modulus. However,
rotations of the local coordinate frame (referential or spatial) affect the distortion.

We proceed to discussion of the metric properties of the rotation tensor λsσ . As
in the case of transformation (20.9), the rotation tensor λsσ allows us to transform
Latin indices into Greek ones for components of the referential and spatial metrics.
Namely, it is not difficult to see that the following equation is valid

gi jλ
iβλ jγ = �gβγ (20.10)

along with the reciprocal equation

�gβγ λiβλ jγ = gi j . (20.11)

The pair of Eqs. (20.10) and (20.11) establishes that an arbitrary referential vector
� pβ is transformed into the spatial vector pi determined by

pi = λiβ � pβ (20.12)

and having exactly the same length as � pβ , while the lengths of the corresponding
vectors are measured based on the referential and spatial metrics, respectively. The
formulated property leads to the following conclusions: The rotation tensorλsσ can be
called as unconventionally orthogonal; the transformation (20.12) can be interpreted
as a rotation in three-dimensional space.
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In applications of continuum mechanics to micropolar elasticity, the two-point
unconventionally orthogonal tensor of finite rotation λsσ is not convenient since the
rich arsenal of the linear algebra techniques cannot be directly applied to it. Therefore,
there is a need to pass from λsσ to a one-point orthogonal rotation tensor.

Anorthogonal second rank tensorαi j is conventionally definedby the fundamental
relation

∗
αi j = −1

α i j ,

or the equivalent pair of equations

αi jαk j = δik, αi jαik = δ
j
k .

In a three-dimensional space, a proper orthogonal tensor αi j is completely deter-
mined by the spatial axis of rotation (directed along the unit vector ck , cscs = 1) and
the angle of rotation θ . In geometric terms of ck and θ , a proper orthogonal tensor
can be represented as follows:

αi j = cos θgi j + (1 − cos θ)ci c j − sin θei jkck, (20.13)

where ei jk is the discriminant tensor. In (20.13) the first and the second terms give
the symmetric part of αi j , whereas the third term—the skewsymmetric part:

α(i j) = cos θgi j + (1 − cos θ)ci c j , α[i j] = − sin θei jkck .

The unit spatial director ck is the eigenvector of αi j corresponding to the real
eigenvalue +1:

αi j c j = ci .

It can be obtained in the form

ck = − 1

2 sin θ
eki jα

[i j].

The rotation angle θ can be found from the equation

2 cos θ = glsα
(ls),

demonstrating that this angle is determined by the symmetric part of the in general
asymmetric conventional orthogonal tensor αi j .

In micropolar theories of continuum mechanics, it is much more convenient to
operate with the modulated rotation vector

Ck = sin θ ck .
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20.4 Conventionally Orthogonal Finite Rotation Tensors.
Finite Rotation Pseudovectors

Taking into consideration the discussion of Sect. 20.3, we now define two conven-
tionally orthogonal tensors determined by the rotation of the principal axes of defor-
mation.

At this aim, it is convenient to start from the two-point g-symbols introduced as

the scalar products of the local base vectors � ι
σ
(or �σι) and ι

s
(or

s
ι) of the referential

and spatial coordinate frames. As an example, we write down two of them:

g·α
s = ι

s
· �αι, g·k

α = � ι
α
· kι.

The g-symbols have a number of remarkable properties. For example, it is easily
verified that

gksg·α
k = �gασ g·s

σ . (20.14)

In addition, the following reciprocal relations are valid

�gασ = g jsg
· j
α g

·s
σ ,

gil = �gσμg
·σ
i g·μ

l .

The reciprocal one-point rotation tensors can be introduced in continuummechan-
ics by the aid of g-symbols according to

λασ = g·α
k λkσ , λi j = g· j

α λiα. (20.15)

First of them is called as Lagrangian rotation tensor, while the second—Eulerian.
Both of the one-point tensors (20.15) satisfy the conventional orthogonality con-

ditions. Both are characterized by the same rotation angle since their first principal
invariants are the same:

�gαβλαβ = �gαβg
·α
k λkβ = �gαβgks

�gασ g·s
σ = gksg

·s
β λkβ = gksλ

ks .

The spatial modulated rotation vector �l can be obtained from the one-point
rotation tensor λks as

�l = −1

2
elikλ

[ik]. (20.16)

The following two new rotation pseudovectors (of weights−1 and+1 are derived
from the modulated rotation vector (20.16):

[−1]
�l = −1

2
εlikλ

[ik], (20.17)
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[+1]
�l = −1

2
εlikλ[ik], (20.18)

where εlik , εlik are the alternating symbols (the covariant alternating symbol is of
weight −1, the contravariant alternating symbol is of weight +1).

Thus, the absolute vector and the two pseudovectors can be associated with a
finite instantaneous rotation of the deformation principal axes trihedron:

[−1]
�l , �l(or�

l),
[+1]
�l .

We conclude this section by relations among the rotation vector and pseudovec-
tors. The most remarkable relations are as follows:

[−1]
�l = �l

E
,

[+1]
�l = E2glk

[−1]
�k ,

where E is the fundamental orienting pseudoscalar, defined as the triple product of
the covariant base vectors

E = ι
1
· (ι

2
× ι

3
).

20.5 Final Remarks and Conclusions

The vector and pseudovectors of rotation and “extra” rotation can be considered as
themost important kinematic parameters ofmathematical models ofmicropolar elas-
ticity (see [6]). The micropolar continuum theories are still rapidly developing due to
their numerous applications to mechanics of granular media, fibrous materials, and
honeycomb structures. Hemitropic micropolar mechanical properties are inherent in
biomaterials sensitive to mirror reflections of their physical states.

The equations of themicropolar theory of elasticity are known fromnumerous pre-
vious discussions. A derivation of the covariant linear theory of micropolar elasticity,
based on the principle of virtual displacements and virtual microrotations combined
with the Lagrange multipliers rule, is given in the paper [7].

In micropolar continuum, rotation of an elementary volume consists of a rota-
tion of principal axes of deformation and an “extra” rotation, which is determined
by a kinematically “independent” rotation vector. The “extra” rotation reflects the
presence of a microstructure. In simple models of the micropolar elasticity, the
microstructure manifests itself by a characteristic microlength and the three other
physically dimensionless constitutive constants. In pseudotensor formulations of the
micropolar elasticity, the characteristic microlength can be treated as a pseudoscalar
of the negative weight −1.

Introduced in Sect. 20.4 the modulated rotation pseudovectors do not change their
components after reflections of the local coordinate frame. They are associated in
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the simplest way with skewsymmetric parts of conventionally orthogonal absolute
rotation tensor.

The final conclusion we give as the following statement: In developments of
micropolar continuum theories, the absolute microrotation vector is conventionally
used (see [6] as an example); developments ofmicropolar continuummodels sensitive
to mirror reflections of physical states (as for hemitropic elastic continuum) require
operating with modulated microrotation pseudovectors: covariant pseudovector of
weight −1 or contravariant pseudovector of weight +1.
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Higher Educationwithin the framework of theRussian StateAssignment under contractNo.AAAA-
A20-120011690132-4.
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Chapter 21
Quadrature Formulas for Integrals
with a Weak Singularity in the Kernel
and a Weight Function of Jacobi
Polynomials with Complex Exponents

Avetik V. Sahakyan and Harutyun A. Amirjanyan

Abstract Quadrature formulas are presented for integrals with a logarithmic singu-
larity and with a sign function, containing the weight function of Jacobi orthogonal
polynomials, the exponents of which can be complex numbers with a real part greater
than minus one. The latter are remarkable in that they have the same structure as
the quadrature formulas for singular and regular integrals and can be used to solve
singular integral equations that also contain terms with a weak singularity. Formulas
for calculating the integral with a logarithm at an arbitrary point of the complex
plane are also presented, and by numerical analysis, the area around the interval is
outlined, outside of which this integral, with a certain degree of accuracy, can also
be calculated using the quadrature formula for smooth functions.

Keywords Quadrature formula · Weight function · Jacobi polynomials · Complex
exponents · Logarithmic singularity · Signum function

21.1 Introduction

It is known that many problems of mathematical physics and, in particular, of
continuum mechanics are reduced to solving singular integral equations. The most
effective methods for solving such equations are direct integration methods, among
which the mechanical quadrature method occupies a special place, since it takes into
account the behavior of the solution at the ends of the integration interval. There
are a huge number of works devoted to the development of methods for calculating
singular integrals and solving singular integral equations. Among them, we note only
the followingmonographs [1–10].Most of the papers refer to the casewhen the expo-
nents of the weight function are equal to ±0.5. The number of papers in which the
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exponents of the weight function are real numbers different from ±0.5, or they are
complex numbers, is significantly smaller. Among such works, the following works
[11–21] can be noted. Much less attention has been paid to integrals and integral
equations with a weak singularity, for example, a logarithmic one [22–27]. Perhaps
this is a consequence of the fact that in plane problems of elasticity theory, equations
with a logarithmic singularity, as a rule, are reduced to singular integral equations.
However, in axisymmetric problems of the theory of elasticity, there are singular
integral equations that also contain integrals with a logarithm and a signum function.

In this paper, we derive quadrature formulas for integrals containing aweak singu-
larity of the type of a logarithmic function or a signum function together with the
weight function of Jacobi polynomials.

21.2 Quadrature Formula for an Integral
with a Logarithmic Singularity

Let us consider the integral

JL(z) =
1∫

−1

ln
1

x − z
ϕ(x)ω(x)dx (21.1.1)

Here, ϕ(x) is a function that satisfies the Hölder condition along the interval [−1, 1],
and ω(x) is a weight function describing the behavior of the integrand at the ends of
the integration interval and defined by the formula

ω(x) = (1 − x)α(1 + x)β(Reα, Reβ > −1)

Integral JL(z) is a single-valued function in the complex plane cut along the ray
(−1,∞). At the points of the specified ray, the integral is assigned a value equal to
half the sum of the values above and below, i.e., we have:

JL(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∫
−1

ln 1
x−zϕ(x)ω(x)dx z ∈ C, z /∈ (−1,∞)

1∫
−1

ln 1
|x − y|ϕ(x)ω(x)dx = JL (y + 0i)+ JL (y − 0i)

2 y ∈ (−1,∞)

(21.1.2)

We replace the function ϕ(x) by the Lagrange interpolation polynomial whose
nodes are the roots of the Jacobi polynomial P (α,β)

n (x):

ϕn(x) =
n∑
j=1

ϕ
(
ξ j

)
P (α,β)
n (x)(

x − ξ j
)
P ′(α,β)
n

(
ξ j

) , P (α,β)
n

(
ξ j

) = 0 (21.1.3)
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In the case of complex exponents, the polynomial (21.1.3) is not an interpolation
polynomial in the classical sense, since the nodes of the polynomial are not in the
interval (−1, 1). But, obviously, if ϕ(x) will be a polynomial of order m < n, we
will have ϕn(x) ≡ ϕ(x). Note that the complex nodes ξ j

(
j = 1, n

)
are located on

an ellipse-like curve covering the interval (−1, 1) on one side and approach it with
n increasing. Since the departure of the roots from the interval (−1, 1) is due to
the imaginary parts of the exponents α and β, the larger the imaginary part, the
farther the roots are located. A change in the real parts of these exponents leads to a
displacement of the roots along the indicated ellipse-like curve.

In the considered integral (21.1.1) function, ϕ(x) can only be defined on the
segment [−1, 1] and, therefore, the question may arise about the legitimacy of using
the interpolation polynomial (21.1.3). In the case when this integral is a part of an
integral equation with respect to a function ϕ(x), , such a question cannot arise,
since the unknown function is sought in the form of a polynomial with unknown
coefficients. And in the case when it is necessary to calculate the integral (21.1.1)
for a given function ϕ(x), we can at first replace this function with an interpolation
polynomial of the same order with respect to Chebyshev nodes and instead of ϕ

(
ξ j

)
use the values of this polynomial at complex roots ξ j . Alternatively, if ϕ(x) can be
analytically extended to the complex plane, then ϕ

(
ξ j

)
can be the values ϕ(x) in roots

ξ j . However, it should be noted that in this case, the accuracy of the approximation
will essentially depend on the magnitude of the imaginary parts of the exponents α

and β.
The polynomial ϕn(x) in the form (21.1.3) is inconvenient for further actions, so

we present it in a different form. To do this, we use the Christoffel–Darboux formula
for Jacobi polynomials [28] and some results onGauss–Jacobimechanical quadrature
[29]. If in the Christoffel–Darboux formula, one of the variables is replaced by the
roots P (α,β)

n (ξi ) = 0, we will have:

P (α,β)
n (x)P (α,β)

n+1 (ξi )

x − ξi
= −kn+1hn

kn

n−1∑
m=0

1

hm
P (α,β)
m (x)P (α,β)

m (ξi )

where

km = �(2m + α + β + 1)

2m�(m + α + β + 1)�(m + 1)
,

hm = 2α+β+1�(m + α + 1)�(m + β + 1)

(2m + α + β + 1)�(m + 1)�(m + α + β + 1)
.

Substituting this representation into (21.1.3), we obtain

ϕn(x) = −
n∑
j=1

ϕ
(
ξ j

) kn+1hn

kn P
(α,β)

n+1

(
ξ j

)
P ′(α,β)
n

(
ξ j

)
n−1∑
m=0

1

hm
P (α,β)
m (x)P (α,β)

m

(
ξ j

)
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According to the results of [29] for the Cotes–Christoffel coefficients, we have

w j = − kn+1hn

kn P
(α,β)

n+1

(
ξ j

)
P ′(α,β)
n

(
ξ j

) (21.1.4)

Here, w j
(
j = 1, n

)
are the weight coefficients of the well-known Gauss–Jacobi

quadrature formula [29]:

1∫

−1

ϕ(x)(1 − x)α(1 + x)βdx ≈
n∑
j=1

w j ϕ
(
ξ j

)
(21.1.5)

w j = 2α+β+3

1 − ξ2j

�(α + n + 1)�(β + n + 1)

�(n + 1)�(α + β + n + 1)

[
1

(α + β + n + 1)P(α+1,β+1)
n−1

(
ξ j

)
]2

The same weight coefficients are present in quadrature formulas for Cauchy-type
integrals and other integrals [26].

As a result, representation (21.1.3) of the interpolation polynomial can be written
as

ϕn(x) =
n∑
j=1

w jϕ
(
ξ j

) n−1∑
m=0

1

hm
P (α,β)
m

(
ξ j

)
P (α,β)
m (x) (21.1.6)

After substituting (21.1.6) into (21.1.1), we will have

JL(y) ≈
n∑

i=1

wiϕ(ξi )

n−1∑
m=0

1

hm
P (α,β)
m (ξi )

1∫

−1

ln
1

x − y
P (α,β)
m (x)ω(x)dx (21.1.7)

Integrating over ζ the known spectral relation [28]

1∫

−1

P (α,β)
n (x)ω(x)

x − ζ
dx = −

(
2

ζ − 1

)n+1

2α+βB(n + α + 1, n + β + 1)

×F

[
n + 1, n + α + 1; 2n + α + β + 2; 2

1 − ζ

] (21.1.8)

we obtain:
for n = 0
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1∫

−1

ln
1

x − ζ
ω(x)dx = 2απ eiπα sign(Imζ )(1 + ζ )1+β

(1 + β) sin πα
F

[
−α, 1 + β; 2 + β; 1 + ζ

2

]

+2α+β(1 − ζ )B(α, 1 + β)3F2

[
1,−α − β, 1; 1 − α, 2; 1 − ζ

2

]

−2α+β+1B(1 + α, 1 + β)
[
πctgπα + ln 2 + ψ(1 + α) − ψ(2 + α + β)

]
(21.1.9)

for n ≥ 1

1∫

−1

ln
1

x − ζ
P (α,β)
n (x)ω(x)dx =

(
2

ζ − 1

)n 2α+β+1

n

×B(n + α + 1, n + β + 1)F

[
n + α + 1, n; 2n + α + β + 2; 2

1 − ζ

]

(21.1.10)

Special functions are used here: hypergeometric series F and 3F2, beta function
B, and psi function ψ .

After substituting (21.1.9) and (21.1.10) into formula (21.1.7), we will have:

JL(z) ≈
n∑

i=1

wiϕ(ξi )

[
L(α,β)

0 (z) +
n−1∑
m=1

P (α,β)
m (ξi )L

(α,β)
m (z)

]
(21.1.11)

where

L(α,β)
0 (z) = 1 + α + β

α

1 − z

2 3F2

[
1, −α − β, 1; 1 − α, 2; 1 − z

2

]

+ πeiπα sign(Imz)

B(1 + α, 1 + β)(1 + β) sin πα

(
1 + z

2

)1+β

F

[
−α, 1 + β; 2 + β; 1 + z

2

]

− πctgπα − ln 2 − ψ(1 + α) + ψ(2 + α + β) (21.1.12)

L(α,β)
m (z) =

(
2

z − 1

)m 2m + α + β + 1

m

× B(m + 1,m + 1 + α + β)F

[
m + α + 1,m; 2m + α + β + 2; 2

1 − z

]

(21.1.13)

It is easy to see that in the case α = 0, formula (21.1.12) cannot be used.
However, considering the equivalence of the roles of the exponents α and β in

the integral (21.1.1), it is obvious that it is possible to obtain another equivalent
representation for L(α,β)

0 (z) that can be used for α = 0, but will be unacceptable for
the case β = 0.

The relationship between these two representations is as follows:
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L(α,β)
0 (z) = L(β,α)

0 (−z) + iπsign(Imz) (21.1.14)

In the case α = β = 0, we have:

L(0,0)
0 (z) = −1 + z

2
ln(−1 − z) − 1 − z

2
ln(1 − z) + 1 (21.1.15)

The function L(α,β)
m (z) can be calculated for any values of α and β. The quadrature

formula (21.1.11) is more important from the point of view of its use for solving
integral equations containing an integral of type (21.1.1):

IL(y) =
1∫

−1

ln
1

|x − y|ϕ(x)ω(x)dx (−1 < y < 1) (21.1.16)

Since in integral equations the range of variation of parameter z is limited by
the integration interval, expressions of functions L(α,β)

0 (z) and L(α,β)
n (z) can be

simplified.
Indeed, if instead of the spectral relation (21.1.8), we use the equivalent relation

that holds for the points of the interval (−1, 1):

1∫

−1

P (α,β)
n (x)ω(x)

x − ζ
dx = πctgαπ ω(ζ )P (α,β)

n (ζ ) − 2α+βπ

sin απ
P (−α,−β)
n+α+β (ζ ) (|ζ | < 1)

for functions L(α,β)

0 (z) i L(α,β)
n (z), we obtain:

L(α,β)
0 (y) = −B(1 - y)/2(α + 1, β + 1)

B(α + 1, β + 1)
πctgπα + ψ(α + β + 2)

− ψ(α + 1) − ln 2 + (1 − y)(1 + α + β)

2α
3F2

(
1, 1, −α − β; 2, 1 − α; 1 − y

2

)

(21.1.17)

L(α,β)

0 (y) = L(β,α)

0 (−y) (21.1.18)

L(0,0)
0 (y) = −1 + y

2
ln(1 + y) − 1 − y

2
ln(1 − y) + 1 (21.1.19)

L(α �=0,β)
m (y) = − πctgαπ

2mhm
ω(y)

(
1 − y2

)
P (α+1,β+1)
m−1 (y)

− 2α+β+1π

mhm sin απ
P (−1−α,−1−β)

m+α+β+1 (y) (21.1.20)
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L(α,β �=0)
m (y) = (−1)m

πctgπβ

2mhm
ω(y)

(
1 − y2

)
P (α+1,β+1)
m−1 (y)

− 2α+β+1π

mhm sin πβ
P (−1−β,−1−α)

m+α+β+1 (−y) (21.1.21)

L(0,0)
m (y) =

(
2

y − 1

)m 2m + 1

m
B(m + 1,m + 1)

× Re

[
F

(
m + 1,m; 2m + 2; 2

1 − y

)]
(21.1.22)

It should be noted that for arbitrary admissible values of the exponents α and
β, «polynomial» P (−1−α,−1−β)

m+α+β+1 (y) in (21.1.16), like similar “polynomials” in other
formulas, are understood in a generalized sense, i.e., are calculated using the hyper-
geometric series, which, when α + β is equal to an integer, turns into an ordinary
Jacobi polynomial.

Thus, we have obtained quadrature formulas of the type (21.1.11) for calculating
the integral JL(z), (z ∈ C) and replacing the integral IL(y), (−1 < y < 1) in the
integral equation with a quadrature sum. In the first case, the functions L(α,β)

0 (z)
and L(α,β)

n (z) are determined by formulas (21.1.12)–(21.1.15), and in the second
case—by formulas (21.1.17)–(21.1.22).

21.3 Numerical Analysis

The quadrature formula (21.1.11), taking into account (21.1.2), allows one to calcu-
late the integral JL(z) at an arbitrary point of the complex plane. At first glance, it
seems obvious that standard software packages can be used to calculate the integral
JL(z), and there is no need for a quadrature formula. However, standard programs
cannot cope with this task if at least one of the exponents α and β has a value close
to −1 or has a relatively large imaginary part.

Table 21.1 shows the values of the integral

J (z) =
1∫

−1

ln
1

x − z
cos 6x (1 − x)α(1 + x)βdx

at the point z0 = 0.6+ 0.5i for different values of the exponents α and β calculated
by the quadrature formula (21.1.11), and, if possible, by the standard program. For
the sake of compactness, the table does not give the values of the integral J (z0) itself,
but it’s absolute value |J (z0)|.

Thedata in the table clearly indicate that the convergenceof the quadrature formula
to the true value of the integral does not depend on the exponents α and β, while the
standard programs essentially depend on them.
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Table 21.1 The absolute value |J (z0)| for different α and β

z0 = 0.6 + 0.5i n = 6 n = 8 n = 10 Wolf. Math

α = −0.34 + i ; β = −0.81 − 0.3i 4.1019 4.08954 4.08975 4.08976

α = −0.34 + i ; β = −0.81 − 5i 1.37259 1.36349 1.36344 1.34871*)

α = −0.95 ; β = −0.41 12.5901 12.6159 12.6153 12.6097*)

α = −0.999 + i ; β = −0.81 − 5i 1.71926 1.70941 1.70935 17.9344*)

α = −0.999 ; β = −0.999 1789.35 1789.39 1789.39 190.133*)

*) An error message is issued

On the other hand, if the point z does not belong to the interval of integration, then
the logarithmic kernel ceases to have a singularity, and the question arises of how
expedient is it to use a special quadrature formula to calculate the integral JL(z). To
study this issue, a numerical analysis of the integral JL(z)was carried out, calculated
by the quadrature formula for smooth functions:

JL(z) ≈ QL(z) =
M∑
j=1

w j f
(
ξ j

)
ln

1

ξi − z
, P (α,β)

M (ξi ) = 0. (21.2.1)

in the area around the interval (−1, 1). In order to findout the degree of approximation
of the logarithmic kernel, we take f (x) ≡ 1. It is obvious that the quadrature formula
(21.1.11) already for n = 1 gives the exact value of the integral JL(z). To estimate the
rate of convergence of formula (21.2.1), we calculate the relative standard deviation
of the functions JL(z) and QL(z) on the interval [1, 3], calculated on a uniform grid
of 40 points:

δ =

√∣∣∣∣
40∑
i=1

(QL(xi ) − JL(xi ))
2

∣∣∣∣
√∣∣∣∣

40∑
i=1

JL(xi )
2

∣∣∣∣
, xi = 1 + (i − 1)0.05

Figure 21.1 shows graphs of the dependence of quantity δ on the order of
approximation M of formula (21.2.1) for different values of the exponents α and
β.

Figure 21.2 shows the level lines of the modulus of the difference ε(z) =
|JL(z) − QL(z)| between the exact and approximate value of the integral outside
the segment [−1, 1] for two pairs of exponents α and β values. Function QL(z) is
calculated by the formula (21.2.1) for M = 10. Level lines corresponds to values
ε(z) = 2 × 10−2, 1.25 × 10−2, 7.5 × 10−3, solid lines corresponds to exponents
values α = −0.5 + 0.04i, β = −0.7 − 0.03i , and dashed lines corresponds to
values α = −0.2 + 0.1i, β = −0.4 − 0.03i .
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Fig. 21.1 Dependence of a relative standard deviation δ on the order M

Fig. 21.2 Level lines of in a complex plane
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From Fig. 21.2, we notice that the level lines at large values of ε(z) have the shape
of an oval and significantly depend on the values of the exponents α and β, and at
small values they tend to circles with different radii.

Obviously,with increasingof level lineswill cover a smaller area, i.e., approach the
interval (−1, 1). According to the graphs in Fig. 21.1, this approaching is significant
only for M < 30.

21.4 Quadrature Formula for an Integral with a Signum
Function

Let us consider integral

JS(y) =
1∫

−1

sign(x − y)ϕ(x)ω(x)dx (−1 < y < 1) (21.3.1)

where the functions ϕ(x) and ω(x) are the same as in the previous paragraph.
It is easy to see that the calculation of the integral (21.3.1) reduces to the calculation

of an integral with a variable limit of integration. Indeed, by representing the signum
function in the form:

sign(x − y) = 1 − 2H(y − x),
the considered integral can be represented as the sum of two integrals:

JS(y) =
1∫

−1

ϕ(x)ω(x)dx − 2

y∫

−1

ϕ(x)ω(x)dx . (21.3.2)

For the first integral, we have the quadrature formula (21.1.5), but for the second
integral, itmust be constructed.We substitute representation (21.1.6) into this integral
and use the values of the integrals:

y∫

−1

(1 − x)α(1 + x)βdx = 21+α+βB 1+y
2

(1 + β, 1 + α)

y∫

−1

(1 − x)α(1 + x)β P (α,β)
m (x)dx = − 1

2m
P (α+1,β+1)
m−1 (y)(1 − y)α+1(1 + y)β+1

where Bz(a, b) is an incomplete beta function.
As a result, for an integral with a variable upper limit of integration, we will have

the following quadrature formula:
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y∫

−1

ϕ(x)ω(x)dx ≈
n∑

i=1

wiϕ(ξi )

[
B 1+y

2
(β + 1, α + 1)

B(β + 1, α + 1)

− (1 − y)α+1(1 + y)β+1
n−1∑
m=1

P (α,β)
m (ξi )P

(α+1,β+1)
m−1 (y)

2m hm

] (21.3.3)

Combining formulas (21.1.5) and (21.3.2) for the integral with the signum
function, we will have:

JS(y) ≈
n∑

i=1

wiϕ(ξi )

[
S0(y) +

n−1∑
m=1

P (α,β)
m (ξi )Sm(y)

]
(−1 < y < 1) (21.3.4)

where

S0(y) = 1 − 2

B(β + 1, α + 1)
B 1+y

2
(β + 1, α + 1)

Sm(y) = (
1 − y2

)
ω(y)

P (α+1,β+1)
m−1 (y)

m hm

(21.3.5)

Thus, we have obtained the quadrature formula (21.3.4) for the integral with the
signum function, as well as formula (21.3.3), which is no less useful for applications,
for the integral with a variable upper limit.

Note that all obtained quadrature formulas are fulfilled exactly if the function
ϕ(x) is a polynomial of order m < n. Therefore, the accuracy of the calculation of
the integral by the quadrature formula is determined solely by how well the function
ϕ(x) is approximated by the polynomial. When solving integral equations, the rate
of convergence of an approximate solution to an exact one depends essentially on the
regular kernels included in the integral equation. Therefore, when solving a specific
equation, a numerical analysis of convergence should be carried out by comparing
the results of calculations performed at different orders of approximation n.

21.5 Quadrature Formulas for Particular Values
of the Exponents α and β

In contact andmixed boundary value problems of solidmechanics, themost common
cases are when the features of the behavior of the desired functions at the ends of the
integration interval are described by a root function.

Since for such particular values of the exponents α and β the functions L(α,β)

0 (z),
L(α,β)
n (z), S0(z), and Sn(z) are significantly simplified, it is advisable to write out the

quadrature formulas (21.1.11), when the variable y changes within the integration
interval (−1 < y < 1) and (21.3.4) for these cases in explicit form.
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Let α = β = −0.5. Then, the roots of the Chebyshev polynomial of the first kind
Tn(x) will act as nodes xi of the quadrature formulas and the corresponding weights
wi will be:

xi = cos
(2i − 1)π

2n
, wi = π

n

(
i = 1, n

)

Formulas (21.1.11) and (21.3.4) themselves take the form:

1∫

−1

ln
1

|x − y|
ϕ(x)√
1 − x2

dx ≈ π

n

n∑
i=1

ϕ(xi )

[
ln 2 + 2

n−1∑
m=1

Tm(xi )Tm(y)

m

]

(−1 < y < 1)

(21.4.1)

and

1∫

−1

sign(x − y)
ϕ(x)√
1 − x2

dx ≈ 1

n

n∑
i=1

ϕ(xi )

[
− arcsin y +

n−1∑
m=1

Tm(xi )Rm(y)

]

(21.4.2)

where

Rm(y) = 4
√
1 − y2

m
Um−1(y)

Let now α = β = 0.5. The nodes ξi of the quadrature formulas will be the roots
of the Chebyshev polynomial of the second kindUn(x), and the quadrature formulas
(21.1.11) and (21.3.4) will be written as:

1∫

−1

ln
1

|x − y|ϕ(x)
√
1 − x2dx ≈

n∑
i=1

wiϕ(xi )

⎡
⎣L∗

0(y) +
n−1∑
m=1

Um (ξi )L
∗
m (y)

⎤
⎦(−1 < y < 1)

(21.4.3)

1∫

−1

sign(x − y)ϕ(x)
√
1 − x2dx ≈

n∑
i=1

wiϕ(xi )

[
S∗
0 (y) +

n−1∑
m=1

Um(ξi )S
∗
m(y)

]

(21.4.4)

where

wi = π

n + 1

(
1 − ξ 2

i

)
, ξi = cos

iπ

n + 1
(i = 1, ..., n),
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L∗
0(y) = ln 2 + 1

2
− y2 , L∗

m(y) = Tm(y)

m
− Tm+2(y)

m + 2
.

S∗
0 (y) = 1 − π + arccos y − y

√
1 − y2

S∗
m(y) = 2

√
1 − y2

π

[
Um−1(y)

m
− Um+1(y)

m + 2

]

Formulas (21.4.1)–(21.4.4) have a fairly simple form and are convenient for solving
a singular integral equation with kernels with a weak singularity, when its solution
at the ends of the integration interval has a root behavior.

21.6 Conclusion

We have obtained quadrature formulas for integrals with a logarithmic singularity
andwith a sign function, containing theweight function of Jacobi orthogonal polyno-
mials, the exponents of which can be complex numbers with a real part greater than
minus one. Formulas are presented for calculating the integral JL(z) at an arbitrary
point of the complex plane, as well as formulas necessary for solving integral equa-
tions by the method of mechanical quadrature. The latter are remarkable in that they
have the same structure as the quadrature formulas for singular and regular integrals
and can be used to solve singular integral equations that also contain terms of the
type IL(y) and JS(y).
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Chapter 22
Bending and Contact Problem
for a Graphene Sheet Within
the Framework of the Model of Bending
Deformation of Elastic Thin Plates Based
on Cosserat Theory

Samvel H. Sargsyan

Abstract In this paper, basic systemof equations, boundary conditions andLagrange
variational principle of bending deformation of elastic thin plates are presented, con-
structed on the basis of Cosserat theory, as a continual model of graphene sheet bend-
ing. The values of elastic constants of the moment theory of elasticity for graphene
material are presented. Based on this continuum model, the problem of bending of
a rectangular graphene sheet is considered, when all its sides are hinged supported.
Further, a contact problem is studied, when the graphene sheet is bent under the
action of a rigid stamp. The contact pressure between the stamp and the graphene
sheet, the size of the contact zone and the stamp deposit are determined depending
on the magnitude of the applied load.

Keywords Thin plate bending model · Built on the basis of Cosserat theory ·
Continual model of bending of a graphene sheet · Bending problem and contact
problem for a graphene sheet

22.1 Introduction

Methods of mechanics of a deformable solid body are widely used in modeling
of nanostructures. The construction of continuous models of deformations of two-
dimensional nanomaterials, in particular that of a graphene, is one of the topical
problems of applied mechanics of solid deformable bodies. The statement is also
substantiated that when studying the deformations of two-dimensional nanomaterials
according to the continuous theory (graphene, nanotubes, fullerene), it is necessary
to use the three-dimensional moment theory of elasticity with independent fields of
displacements and rotations [1–5].
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It should be noted that there have been obtained significant results based on the
studies of the construction of the discrete (or discrete–continuous) models of two-
dimensional nanomaterials considering non-central force and moment interaction
between their atoms [1–5]. However, it should be also noted that the problem of
development of an approach, that allows to connect discrete (or discrete–continuous)
description of the lattice of a two-dimensional nanomaterial with a continuous theory
of elastic thin shells and plates, constructed on the basis of the moment theory of
elasticity, is still topical.

In paper [6], first, a continuous one-dimensional beam model of a linear atomic
chain is constructed (in the general case of its deformation), when in its discrete
model the interaction between atoms is force non-central and momental. Using the
constructed continuous-moment beam model, replacing the interaction between the
atoms of a two-dimensional nanomaterial with the beam system according to this
model, its discrete–continuousmodel is constructed (in particular, also for graphene).
On the example of a graphene, further, two continuous models of its deformation are
constructed by passing to the limit: (1) a model of a plane stress state of a graphene
sheet and (2) a model of its bending deformation. It has been established that these
models of graphene are identical to the corresponding models of elastic thin plates
[7–9] constructed on the basis of Cosserat theory. Based on a comparison of the
corresponding two similar models, all six elastic constants of the moment theory of
elasticity for the graphene material are determined through the physical parameters
of the atomic structure of this material.

Summarizing the above-mentioned observations, it can be stated that the models
of the plane stress state and bending deformation of elastic thin plates [7–9], built on
the basis of Cosserat theory, with already known elastic constants, can be interpreted
as continuous models for the corresponding deformations of the graphene sheet. It is
clear that this opens up new opportunities for studying various problems of statics,
dynamics and stability of a graphene sheet based on these continuous models.

In this paper, the main system of equations, boundary conditions and Lagrange-
type variational principle for the bending deformations of elastic plates, built on the
basis of Cosserat theory, are introduced, and on the basis of this model, two applied
problems of the bending of a graphene sheet are formulated and studied (it is clear
that these problems relate specifically to the graphene sheet):

1. static bending of a rectangular graphene sheet, when all its sides are hinged, under
the action of a distributed normal load,

2. cylindrical bending of a graphene sheet under the action of a rigid stamp (contact
problem).
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22.2 Basic System of Equations, Boundary Conditions
and Variational Lagrange Principle of Bending
Deformation of an Elastic Plate Based on Cosserat
Theory

If we consider the equations and boundary conditions of elastic shells [8], constructed
on the basis of the Cosserat theory, taken into account, then when passing to the plate,
two models will be obtained: (a) a system of equations and boundary conditions
for the plane stress state of the plate and (b) a system of equations and boundary
conditions for plate bending.

The system of equations and the boundary conditions for the bending of an elastic
plate (Fig. 22.1) are considered, based on Cosserat theory:

• Equilibrium equations

∂N13

∂x
+ ∂N23

∂y
= − (

p+
3 − p−

3

)
,

∂L11

∂x
+ ∂L21

∂y
+ N23 = − (

m+
1 − m−

1

)
, (22.1)

∂L12

∂x
+ ∂L22

∂y
− N13 = − (

m+
2 − m−

2

) ;

• Elasticity relations

N13 = 2G∗h�13, N13 = 2G∗h�23, G∗ = 4μα

μ + α
,

L11 = 2 h(γ + ε)

[
k11 + 1

2
νm (2k11 + k22)

]
,

Fig. 22.1 Bending of the
plate
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L22 = 2 h(γ + ε)

[
k22 + 1

2
νm (2k22 + k11)

]
, (22.2)

L12 = 2 h(γ + ε)

[
k12 + 1

2
νmk21

]
,

L21 = 2 h(γ + ε)

(
k21 + 1

2
νmk12

)
νm = 2

γ − ε

γ + ε
;

• Geometric relations

�13 = ∂w

∂x
+ �2, �23 = ∂w

∂y
− �1,

k11 = ∂�1

∂x
, k22 = ∂�2

∂y
, k12 = ∂�2

∂x
, k21 = ∂�1

∂y
; (22.3)

• Boundary conditions

N13 = N ∗
13, L11 = L∗

11, L12 = L∗
12, when x = const,

or
w = w∗, �1 = �∗

1, �2 = �∗
2, when x = const.

(22.4)

Here w is the displacement (bending); �1,�2—free rotations; �13, �23—shear
deformations; k11, k22, k12, k21—bending-torsions; N13, N23—crosscutting forces;
L11, L22, L12, L21—torques and bending moments (from moment stresses).

• Variational principle of Lagrange type

δU0 = δA0 or δ (U0 − A0) = 0, (22.5)

where

U0 =
∫∫

S

W0dxdy, (22.6)

A0 =
∫∫

(S)

(
q+
3 − q−

3

)
w + [(

m+
1 − m−

1

) − h
(
q+
2 + q−

2

)]
�1+

+ [(
m+

2 − m−
2

) + h
(
q+
1 + q−

1

)]
�2

}
dxdy+

+
∫

�′
1

(
N̄23w + L̄21�1 + L̄22�2

)
dx

−
∫

�′
2

(
N̄13w + L̄11�1 + L̄12�2

)
dy;

(22.7)
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W0 = 1

2

[
2G∗h

(
�2
13 + �2

23

) + 2 h
4γ (β + γ )

β + 2γ

(
k211 + k222

) + 2h
4γβ

β + 2γ
k11k22+

+ 2 h(γ + ε)
(
k212 + k221

) + 4 h(γ − ε)k12k21

]
.

(22.8)
Here W0 is the surface density of the potential energy of the deformation of the
plate;U0—total potential energy of the plate; A0—the work of external forces and
moments; (U0 − A0)—total energy of the system; �′

1 and �′
2—external contours

of the middle plane of the plate, where external forces and moments are given;
region of the median plane of the plate. It is shown in [8] that the total energy of
the system takes on a minimum value.

Paying attention to the geometricmodel (22.3) of the bending of the plate, built on the
basis of Cosserat theory, we note that in the aggregate, the deformations (�13, �23) of
the shear type and the type of bending-torsion (k11, k22, k12, k21, that are associated
with independent rotations�1,�2), from this point of view,we can say that themodel
(22.3) represents the formation in a continuum form of deformation manifestations
of crystalline nanomaterials, which were experimentally detected in [10–12].

22.3 Bending of a Hinged Supported Rectangular Plate
Under the Action of a Distributed Normal Load

Let us reduce the initial equations and relations (22.1)–(22.3) of the bending model
of the elastic thin plates, constructed on the basis of Cosserat theory, to resolving
equations. Substituting (22.3) into (22.2) and then into the equilibrium Eq. (22.1),
a system of differential equations for the functions w(x, y),�1(x, y),�2(x, y) will
be obtained:

�w +
(

∂�2

∂x
− ∂�1

∂y

)
= − p3

D∗
,

��1 + νm
∂

∂x

(
∂�1

∂x
+ ∂�2

∂y

)
+ D∗

D′

(
∂w

∂y
− �1

)
= 0, (22.9)

��2 + νm
∂

∂y

(
∂�1

∂x
+ ∂�2

∂y

)
− D∗

D′

(
∂w

∂x
+ �2

)
= 0,

where

D∗ = 2G∗h, D′ = 2 h(γ + ε), �(·) = ∂2(·)
∂x2

+ ∂2(·)
∂y2

, p3 = p+
3 − p−

3 .

(22.10)
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It should be noted that when obtaining the system of resolving equations for the
bending model of the elastic thin plates, the formula [6, 9] was considered:

β = γ − ε

γ + ε
2γ. (22.11)

It is easy to see that the system of equations for the bending model of the moment–
membrane theory of elastic thin plates is identical with the system of equations for
the bending deformation of elastic thin plates of Timoshenko type [13].

Sometimes, it is convenient to reduce the system of Eq. (22.9) of the bending
model of the elastic thin plates to a system of two equations—to a biharmonic prob-

lem and to the Helmholtz equation. For this purpose, the combination
(

∂�2
∂x − ∂�1

∂y

)

will be eliminated from the last two equations of system (22.9), for which we will
differentiate the second equation from (22.9) by y, and the third by x and subtract
the obtained ones:

(k� − 1)

(
∂�2

∂x
− ∂�1

∂y

)
= �w, (22.12)

where

k = D′

D∗
. (22.13)

Using the first equation from the system (22.9), as well as Eq. (22.12), the fol-
lowing equation will be obtained for the bending w(x, y)

��w = p3
D′ − 1

D∗
�p3. (22.14)

Following [13], functions ψ and ϕ will be introduced with the help of the formulas:

�1 = −∂ϕ

∂y
+ ∂ψ

∂x
, �2 = ∂ϕ

∂x
+ ∂ψ

∂y
, (22.15)

where the function ϕ is expressed by w and p3:

ϕ = −w − D′

D∗
�w − D′

D2∗
p3. (22.16)

The last two equations from (22.9) will be satisfied if the function ψ satisfies the
Helmholtz equation:

�ψ − k̃2ψ = 0, (22.17)

where

k̃2 = D∗
(1 + νm) D′ . (22.18)
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Thus, the system of resolving equations for the model of bending of the elastic
thin plates, in this case, graphene sheet bending from its plane, will have the form:

D′��w = p3 − k�p3, �ψ − k̃2ψ = 0. (22.19)

Forces and moments will be expressed by functions w, ψ , considering (22.2), (22.3)
and (22.15), (22.16). It can be shown that if the plate is hinged supported along the
entire outer contour, then ψ ≡ 0.

22.4 Elastic Constants of the Plane Stress State
and Bending Deformation of Plates for the Graphene
Material

In [6], after determination of the potential energy of a graphene deformation under
a plane stress state and under bending deformation, these expressions are compared
with the corresponding expressions of continuous theory of elastic plates, constructed
on the basis of Cosserat theory. As a result, the elastic constants of continuous theory
of plates, are determined (for the two specified deformations) through the physical
parameters of graphene in its discrete model.

Thus, in the plane stress state of theory of elastic plates, for the elastic constants
of the graphene material we have [6]:

E∗ = 2Eh = 287
N

m
; μ∗ = 2μh = 116

N

m
; α∗ = 2αh = 42

N

m
; v = 0.24;

B∗ = 2Bh = 5.05 · 10−10N · nm. (22.20)

In the case of bending deformation, the elastic constants of the moment–membrane
theory of plates for the graphene material are [6]:

D∗ = 2G∗h = 86
N

m
, D′ = 2 h(γ + ε) = γ ∗ + ε∗ = 4, 15 · 10−10N · nm,

D′′ = 2h(γ − ε) = γ ∗ − ε∗ = −0, 91 · 10−10N · nm, (22.21)

νm = 2
D′′

D′ = −0, 41, ν = 0.
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22.5 An Example of Calculating the Bending
of a Graphene Sheet

An example of bending of a graphene sheet, when the sheet occupies the region of
a rectangle 0 ≤ x ≤ a1, 0 ≤ y ≤ a2 is considered. It is assumed that the contour of
graphene is hinged supported. For the boundary conditions, we have:

x = 0, a1 : w = 0, L12 = 0, �1 = 0

y = 0, a2 : w = 0, L21 = 0, �2 = 0.
(22.22)

Let us consider a graphene under a load of:

p3(x, y) = p0 sin
πx

a1
sin

πy

a2
. (22.23)

The solution of the system of Eq. (22.9) is set as follows:

w(x, y) = w0 sin
πx

a1
· sin πy

a2
,

�1 = �10 sin
πx

a1
· cos πy

a2
, (22.24)

�2 = �20 cos
πx

a1
· sin πy

a2
.

Here, the multipliers w0,�10,�20 are to be determined. It should be noted that with
the help of (22.24) the set boundary conditions (22.22) will be satisfied.

To determine w0,�10 and �20, (22.24) should be substituted into the system of
Eq. (22.9). As a result, to determine the indicated factors, we come to the solution of
an algebraic linear inhomogeneous system. If p0 = 106 N

m2 , a1 = a2 = 20 nm, then
for the maximum bending of a graphene, we obtain:

w0 = p0a21
2π2 D̃′

(
1 + D̃′

D∗

)
= 1, 17 nm.

In this formula D̃′ = D′
a21

· 2π2.

22.6 Cylindrical Bending of a Plate (Graphene Sheet)
with a Rigid Stamp

Papers [14–20] are devoted to the development of contact problems for thin beams,
plates and shells within the framework of the classical theory of elasticity. The
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Fig. 22.2 Cylindrical
bending of a plate by a rigid
stamp

same problems are of direct practical interest for two-dimensional nanomaterials
(in particular, for a graphene), and their results can be used in modern engineering
computational practice, in this case, in nanotechnology.

A hinged supported plate (under conditions of cylindrical bending) of length 2l
is considered when a symmetrical smooth rigid stamp acts on it, pressed down by
a force P (Fig. 22.2). The stamp base is described by the equation y = f (x), the
contact line is assumed equal to 2a. In the contact zone (−a ≤ x ≤ a), the plate
bending w(x) will be expressed by the formula:

w = −[δ − f (x)], (22.25)

where δ is the translational movement of the stamp.
As an initial system of equations for the bending of a hinged supported plate, Eq.

(22.9) for the bending of the plate, constructed on the basis of Cosserat theory, is
considered in case of cylindrical bending. As a result, we will have:

D∗
d2w

dx2
+ D∗

d�2

dx
= −p3, D′ d

2�2

dx2
− D∗

dw

dx
− D∗�2 = 0. (22.26)

Here, p3(x) is the intensity of the external force, normal to the middle plane of
the plate, which will represent the contact force stress q(x) between the stamp and
the plate under the stamp:

p3(x) =
{
q(x), −a ≤ x ≤ a,

0, −l ≤ x ≤ −a, a ≤ x ≤ l.
(22.27)

The boundary conditions for hinged support at the edges x = ±l of the plate will
be expressed as follows:

w = 0, N13 = P

2
, L12 = 0. (22.28)
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From the system of Eq. (22.26), for the case when |x | < a, differential equation
will be obtained to determine the contact pressure

d2q(x)

dx2
− D∗

D′ q(x) = −D∗ · d
4w

dx4
, (22.29)

where w is expressed by formula (22.25).
Further, we will study the case when f I V (x) ≡ 0 (with the help of the way

described below, similar problems can be solved for the case when f I V (x) �= 0
)
. In

that case, to determine the contact stress q(x), we come to the solution of a second-
order homogeneous ordinary differential equation with constant coefficients:

d2q(x)

dx2
− D∗

D′ q(x) = 0. (22.30)

The general solution of this equation can be introduced as follows (we mean that
the problem is symmetric by x):

q(x) = C · ch
√

D∗
D′ x, −a ≤ x ≤ a, (22.31)

where C is the integration constant.
To determine the constant C , the stamp equilibrium condition will be used

a∫

−a

q(x)dx = P. (22.32)

Finally, for the contact pressure the following formula will be obtained:

q(x) = 1

2
P ·

√
D∗
D′ ·

ch
√

D∗
D′ x

sh
√

D∗
D′ a

. (22.33)

Outside the contact area a ≤ x ≤ l (using the symmetry of the problem), we have
p3(x) ≡ 0. Therefore, to determine the displacement w(x), we obtain the following
differential equation from the system of Eq. (22.26)

d4w

dx4
= 0. (22.34)

Its general solution has the form

w = 1

6
c1x

3 + 1

2
c2x

2 + c3x + c4, (22.35)
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where c1, c2, c3, c4 are integration constants.
For the function �2(x), we will obtain the following equation from the same

system of equations (22.26):
d�2

dx
= −d2w

dx2
. (22.36)

If relation (22.35) is used for the function w(x), we will have for �2

�2 = −c1
2
x2 − c2x + c5, (22.37)

where c5 is integration constant.
The total number of unknowns are: c1, c2, c3, c4, c5, a, δ, for which we have seven

conditions: three conditions of hinged support (22.28) at x = l, which can be written
as follows

w I I
∣∣
x=l = 0, D∗

(
dw I I

dx
+ �I I

2

)

x=l

= P

2
,

d�I I
2

dx

∣∣∣∣
x=l

= 0, (22.38)

as well as four conditions for the continuity of quantities, when x = a :

w I
∣∣
x=a = w I I

∣∣
x=a ,

dw I

dx

∣∣∣∣
x=a

= dw I I

dx

∣∣∣∣
x=a

,

�I
2

∣∣
x=a = �I I

2

∣∣
x=a ,

d�I
2

dx

∣∣∣
∣
x=a

= d�I I
2

dx

∣∣∣
∣
x=a

.

(22.39)

It should be noted that with the help of the three conditions of hinged support
(22.38), as well as from the second and third conditions from (22.39), the integration
constants c1, c2, c3, c4, c5 are completely determined. Based on the last condition
from (22.39), we obtain a transcendental equation for determination the contact
zone a; from the first condition of (22.39) we define δ-translational movement of
the stamp. As we have seen, when using the model of bending of a plate (graphene
sheet), built on the basis of Cosserat theory, the contact pressure is expressed as a
continuous function (formula (22.33)).

22.7 Conclusion

A model of bending deformation of a graphene sheet is introduced as a continuous
model of bending deformation of an elastic plate, constructed on the basis of Cosserat
theory. The values of the elastic constants of this model for the graphene material are
given. A specific problem of bending of a graphene sheet is considered on the basis
of the indicated continuous model of bending of an elastic plate, and the numerical
results of this calculation are presented. Further, on the basis of the same theory,
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the problem of cylindrical bending of a plate with a rigid stamp is considered, the
contact pressure between the stamp and the plate, the size of the contact zone and
the translation of the stamp are determined.
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Chapter 23
Non-axisymmetric Vibration of Tuned
Thin Functionally Graded Planar
Structures

Getachew T. Sedebo, Michael Y. Shatalov, and Stephan V. Joubert

Abstract We consider a functionally graded plate (FGP) composed of an arbitrary
number of concentric sections of various radii and thicknesses. This structure is sup-
ported at the centre by a rigid stem. The FGP is described in terms of the Novozhilov-
Goldenveizer theory of thin isotropic linear shells. This system vibrates both in-plane
as well as out-of-plane. Hamilton’s variational principle is used to derive equations
of motion and boundary-continuity conditions. A fixed boundary at the inner edge
and a free boundary on the outer edge of the plate are considered. The in-plane and
out-of-plane vibrations of the plates are studied in the frame of thin plate models and
analytical solutions in terms of Bessel’s functions and modified Bessel’s functions
for the system are determined. To verify our assumptions, we consider an example
consisting of two concentric plates, where the inner component is made of an alu-
minium alloy and the outer component is made of titanium. The eigenvalues and the
associated eigenfunctions of the plate are illustrated graphically. For this FGP, both
in-plane and out-of-plane vibrations are excited with different circumferential wave
numbers, where an elliptical in-plane wave form is considered for in-plane vibrations
and a threefold symmetry wave form is considered for out-of-plane vibrations. In
order to consider an application of the planar structure as a three-dimensional iner-
tial navigation vibratory gyroscope, it is necessary to tune the eigenvalues of both
in-plane and out-of-plane vibrations. The desired tuning between the two modes is
achieved bymeans of a variation of radius and/or thickness of the functionally graded
plate.
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23.1 Introduction

A plate and its vibration properties subject to classical boundaries have been widely
studied and are well-documented. Substantial amounts of information on the nature
of both in-plane and out-of-plane vibrations can be found in literature. Fundamental
methods of solution of elastic problems were developed in [1, 2]. Circular plates
are used and applied in widely different areas, amongst others, in nozzle covers,
pressure vessels, pump diaphragms, turbine discs, submarines, airplanes, railway
wheels, brakes, hard drive discs and as sensors (see [3]). For a thin circular disc with
a free edge, the equations of motion as well as an analytical solution were obtained
in [4]. The bending of circular plates with various boundary conditions is thoroughly
discussedbyTimoshenko andWoinowsky-Krieger [5].Bashmal et al. [3] investigated
and analysed the in-plane free vibration of an annular disc with an elastic support
at a point. An accurate algorithm for numerically determining eigenvalues for the
fundamental and first few overtones in an eigenvalue problem were discussed in [6]
where the Rayleigh-Ritz method was used to determine good initial values. Leissa
[7] and Leissa and Qatu [8] presented analytical solutions for both solid and annular
plates in terms of Bessel functions of the first and second kinds subjected to various
boundary conditions. Furthermore, they provided theoretical as well as experimental
results for frequencies and ratios of radii for nodal circles were calculated.

Analytical solutions for a rotor consisting of multiple flexible circular plates were
obtained in [9]. The authors also investigated the effect of a flexible disc on the cou-
pled longitudinal vibrations that link the disc and shaft. A car brake disc, regarded
as an annular plate, was investigated in [10] and its equation of motion was derived
using the theory of thin plates. The equations of motion were purely of those of
a thin circular plate because the authors intentionally dropped the dynamics of the
in-plane vibrations that involve gyroscopic effects. Burdess and Wren [11] investi-
gated a Piezoelectric disc that was used as a gyroscope. The authors proposed a thin
piezoelectric disc gyroscope that utilises its in-plane vibration properties to detect
the rotation rate. The authors neglected the stresses in the transverse direction of the
disc to derive both constitutive and field equations.

Sedebo et al. in [12] detailed the operation principle, investigated Bryan’s factor
and obtained eigenvalues and eigenfrequencies numerically for a thick-disc and thin-
plate which was used as 3D gyroscope. More detailed work with a similar approach
can be found in [13]. Rourke et al. [14] assumed that the in-plane and out-of-plane
vibrations are independent, and hence, the strain energies of both modes can be
separated. It is worth consulting [15, 16] with regard to the theoretical foundations
of solid-state vibratory gyroscopes.

The present work deals with the development of a mathematical model that
describes the dynamics of a systemwhich consists of arbitrary concentric sections of
a functionally graded plate (FGP). The FGP consists of a central rigid stem and con-
centric plates of various radii and thicknesses which aremade of the same or different
isotropic materials that obey the principles of linear elasticity (see Fig. 23.1).

It is also assumed that all the concentric (coaxial) plates are “thin” and can be
described in terms of Novozhilov-Goldenveizer theory of elastic thin shells. The FGP
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Fig. 23.1 Thick disc and thin plate three-dimensional vibratory plate showing the three orthogonal
axes. For simplicity (so that the sketch does not become cluttered with detail), only the central thin
vertical stem and the j-th disc are shown, j = 1, 2, . . . , J

under consideration is subject to both in-plane and out-of-plane nonaxisymmetric
vibrations. We assumed that the circumferential wave number of in-plane vibrations
(m) is not equal to the circumferential wave number of out-of-plane vibrations (n).
The eigenvalues of both in-plane and out-of-plane vibrations were tuned.We say that
the FGP is tuned if one of the eigenvalues of the in-plane vibrations at circumferential
wave number m is equal to one of the eigenvalues of the out-of-plane vibrations at
circumferential wave number n. For realisation of a 3D rotational rate gyroscope
(sensor) on the planar FGP, it is necessary to ensure that n = m ± 1 see [12]. In
thin-walled plates, eigenvalues of the in-plane vibrations are normally higher than
eigenvalues of the out-of-plane vibrations. Hence, it is reasonable to consider the
situation n = m + 1, for example, m = 2, n = 3.

We present equations of motion for the system in Sect. 23.2 while a derivation
(using Hamiltonian variational principle) is provided in Appendix A. Sections23.3
and 23.5 discuss implicit and explicit boundary-continuity conditions of the system.
In Sect. 23.4, we obtained analytical solutions for the system in terms of Bessel’s
functions by introducing potentials and a change of variables. Numerical results for
the eigenvalues and eigenfunctions of both in-plane and out-of-plane vibrations are
obtained, and these are graphically presented in Sect. 23.6. Tuning between the two
modes was achieved by means of variation of radial and/or axial sizes. Frequency
spectra are shown in Figs. 23.3 and 23.7. Conclusions are drawn in Sect. 23.7.

23.2 Equations of Motion

In order to calculate the strain energy (the potential energy), it is assumed that
the in-plane displacements u and v and their derivatives do not influence the mid-
plane curvatures and torsion. This assumption corresponds to the simplification of



314 G. T. Sedebo et al.

Novozhilov’s theory of thin shells to the Novozhilov-Goldenveizer theory of shallow
shells as can be seen in Leissa [17], Novozhilov [18] and Goldenveizer [19].

Systems of equations describing the dynamics of a thin plate vibrating in both
radial-tangential (in-plane) and out-of-plane direction in the frame of the linear
Novozhilov-Goldenveizer theory are given as follows:

ρ j (1 − η2
j )

E j

∂2u( j)

∂t2
=

⎡
⎢⎢⎣

∂2u( j)

∂r2
+ ∂u( j)

r∂r
+ 1 − η j

2r2
∂2u( j)

∂ϕ2
− u( j)

r2
+

1 + η j

2r

∂2v( j)

∂ϕ∂r
− 3 − η j

2r2
∂v( j)

∂r

⎤
⎥⎥⎦ ; (23.1)

ρ j (1 − η2
j )

E j

∂2v( j)

∂t2
=

⎡
⎢⎢⎣
1 − η j

2

(
∂2v( j)

∂r2
+ ∂v( j)

r∂r
− v( j)

r2

)
+ 1

r2
∂2v( j)

∂ϕ2
+

1 + η j

2r

∂2u( j)

∂ϕ∂r
+ 3 − η j

2r2
∂u( j)

∂ϕ

⎤
⎥⎥⎦ ;

(23.2)

⎡
⎢⎢⎣

12ρ j (1 − η2
j )

E jh2j

∂2w( j)

∂t2
+ ∂4w( j)

∂r4
+ 2∂3w( j)

r∂r3
− ∂2w( j)

r2∂r2
+ 1

r3
∂w( j)

∂r
+

2∂4w( j)

r2∂r2∂ϕ2
− 2∂3w( j)

r3∂ϕ2∂r
+ 4

r4
∂2w( j)

∂ϕ2
+ 1

r4
∂4w( j)

∂ϕ4

⎤
⎥⎥⎦ = 0;

(23.3)
for j = 1, 2, . . . , J and with u( j) = u( j) (r, ϕ, t) , v( j) = v( j) (r, ϕ, t) and w( j) =
w( j) (r, ϕ, t), respectively, being the radial, tangential and out-of-plane (axial) dis-
placements. Here t is time, r is the radius of the plate and ϕ is the polar angle. Further-
more, for the j th component of the plate, ρ j stands for mass density, E j for modulus
of elasticity, η j for Poisson’s ratio and h j for thickness. The radius of the junction
consisting of a thin stem and the first component of the structure is a0. The radius
of junction of the j th and ( j + 1)st components is a j where, j = 1, 2, . . . , J − 1.
The radius of outer rim of the structure is R.

It follows from Eqs. (23.1), (23.2) and (23.3) that there are 2J equations that
describe in-plane dynamics of the plate and J -equations of the out-of-plane motion
of the plate. According to theNovozhilov-Goldenveizer theory of shells, it is possible
to separate in-plane and out-of-plane vibrations. It is further assumed that the inner
rim of the first component is fixed to the stem and the outer rim of the plate is free.
Intermediate neighbouring components are connected in accordance with conditions
of continuity-smoothness, which are derived from the Hamiltonian variational prin-
ciple (see Appendix A).

23.3 Implicit Boundary Conditions

Given the above assumptions in Sect. 23.2, the following boundary-continuity con-
ditions are derived
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For r = a0:

u(1)
∣∣
r=a0

= 0 v(1)
∣∣
r=a0

= 0; (23.4)

w(1)
∣∣
r=a0

= 0,
∂w(1)

∂r

∣∣∣∣
r=a0

= 0. (23.5)

For r = a j :

u( j)
∣∣
r=a j

= u( j+1)
∣∣
r=a j

, v( j)
∣∣
r=a j

= v( j+1)
∣∣
r=a j

; (23.6)

w( j)
∣∣
r=a j

= w( j+1)
∣∣
r=a j

,
∂w( j)

∂r

∣∣∣∣
r=a j

= ∂w( j+1)

∂r

∣∣∣∣
r=a j

. (23.7)

The radial stresses at r = a j :

⎡
⎢⎢⎢⎢⎣

E jh j

1 − η2
j

[
r
∂u( j)

∂r
+ η j

(
u( j) + ∂v( j)

∂ϕ

)]∣∣∣∣∣
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= E j+1h j+1
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∂u( j+1)
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⎥⎥⎥⎥⎦

; (23.8)

and sheer stresses at r = a j :

⎡
⎢⎢⎢⎢⎣

E jh j
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[
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∂v( j+1)

∂r
− v( j+1) + ∂u( j+1)

∂ϕ

]∣∣∣∣∣
r=a j

⎤
⎥⎥⎥⎥⎦

. (23.9)

The boundary-continuity conditions for shear forces of the out-of-plane vibrations
of the plate components at r = a j are as follows

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23.10)
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The boundary-continuity conditions for torques of the out-of-plane vibrations of
the plate components at r = a j are as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E jh3j

12
(
1 − η2

j

)
[
r
∂2w( j)

∂r
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∂r
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r∂ϕ2
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r=a j
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∂r
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r=a j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;

(23.11)
where j = 1, 2, . . . J − 1.

The boundary-continuity conditions for the free outer rim at r = R is obtained as
follows

EJhJ

1 − η2
J

[
r
∂u(J )

∂r
+ ηJ

(
u(J ) + ∂v(J )

∂ϕ

)]∣∣∣∣
r=R

= 0; (23.12)

EJhJ

2 (1 + ηJ )

[
r
∂v(J )

∂r
− v(J ) + ∂u(J )

∂ϕ

]∣∣∣∣
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= 0; (23.13)
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⎞
⎟⎟⎠
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(23.14)

EJh3J
12
(
1 − η2

J

)
[
r
∂2w(J )

∂r
+ ηJ

(
∂w(J )

∂r
+ ∂2w(J )

r∂ϕ2

)]∣∣∣∣∣
r=R

= 0. (23.15)

It can be seen from the boundary-continuity conditions in (23.4)–(23.15) that
there are 8J boundary-continuity conditions that can be separated as 4J for in-plane
vibrations and 4J for out-of-plane vibrations.

23.4 Exact Solutions to the Boundary Value Problems

From the boundary-continuity conditions given in Eqs. (23.4)–(23.15), one can see
that the boundary value problem can be solved in terms of exact solutions by, as is
usual, introducing potential functions �̃ (ω, r, ϕ) and �̃ (ω, r, ϕ) and by making a
change of variables such that
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u( j) (t, ω, r, ϕ) =
[

∂�̃( j) (ω, r, ϕ)

∂r
+ 1

r

∂�̃ (ω, r, ϕ)

∂ϕ

]
eiωt ; (23.16)

v( j) (t, ω, r, ϕ) =
[
1

r

�̃( j) (ω, r, ϕ)

∂ϕ
− ∂�̃ (ω, r, ϕ)

∂r

]
eiωt ; (23.17)

w( j) (t, ω, r, ϕ) = W̃ ( j) (ω, r, ϕ) eiωt , (23.18)

where i2 = −1 and ω is a parameter which has the physical dimensions of angular
frequency. Substitution of Eqs. (23.16), (23.17) and (23.18), respectively, into Eqs.
(23.1),( 23.2) and (23.3), respectively, yields
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r
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+ 1
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(23.21)

where

�̃( j) = �̃( j) (ω, r, ϕ) , �̃( j) = �̃( j) (ω, r, ϕ) , W̃ ( j) = W̃ ( j) (ω, r, ϕ) ,

c1 j = E j

ρ j

(
1 − η2

j

) , c2 j = E j

2ρ j
(
1 + η j

) , β4
j (ω) = 12ρ j (1 − η2

j )ω
2

E jh2j
.

We further investigate particular modes of in-plane and out-of-plane vibrations
of the FGP with integer values of circumferential wave numbers m and n such that

�̃( j,m) (ω, r, ϕ) = �( j,m) (ω, r)

(
cos (mϕ)

sin (mϕ)

)
; (23.22)

�̃( j,m) (ω, r, ϕ) = �( j,m) (ω, r)

(
sin (mϕ)

cos (mϕ)

)
; (23.23)

W̃ ( j,n) (ω, r, ϕ) = W ( j,n) (ω, r, )

(
cos (nϕ)

sin (nϕ)

)
. (23.24)
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Note that (
cos (mϕ)

sin (mϕ)

)
and

(
sin (mϕ)

cos (mϕ)

)

are orthogonal combinations of cos (mϕ) and sin (mϕ) and similarly for

(
cos (nϕ)

sin (nϕ)

)
.

Substituting Eqs. (23.22), (23.23) and (23.24), respectively, into Eqs. (23.19),
(23.20) and (23.21), respectively, (because of the periodicity of ϕ for non-trivial
cases) yields the following ordinary differential equations

d2�( j,m)

dr2
+ 1

r

d�( j,m)

dr
+
(

ω2

c1 j
− m2

r2

)
�( j,m) = 0; (23.25)

d2�( j,m)

dr2
+ 1

r

d�( j,m)

dr
+
(

ω2

c2 j
− m2

r2

)
�( j,m) = 0; (23.26)

⎡
⎢⎢⎣

d4W ( j,n)

dr4
+ 2

r

d3W ( j,n)

dr3
−
(
2n2 + 1

r2

)
d2W ( j,n)

dr2
+

(
2n2 + 1

r3

)
dW ( j,n)

dr
−
[
β4
j (ω) − n4 − 4n2

r4

]
W ( j,n)

⎤
⎥⎥⎦ = 0; (23.27)

where �( j,m) = �( j,m) (ω, r) , �( j,m) = �( j,m) (ω, r) and W (n, j) = W (n, j) (ω, r).
Solving Eqs. (23.25), (23.26) and (23.27), respectively, yields

�( j,m) (ω, r) = C ( j,m)

1 Jm

(
ω

c1 j
r

)
+ C ( j,m)

2 Ym

(
ω

c1 j
r

)
; (23.28)

�( j,m) (ω, r) = C ( j,m)

3 Jm

(
ω

c2 j
r

)
+ C ( j,m)

4 Ym

(
ω

c2 j
r

)
; (23.29)

[
W ( j,n) (r) = C ( j,n)

5 Jn
(
β j (ω) r

)+ C ( j,n)

6 Yn
(
β j (ω) r

)+
C ( j,n)

7 In
(
β j (ω) r

)+ C ( j,n)

8 Kn
(
β j (ω) r

)
]

, (23.30)

where C ( j,m)

1 ,C ( j,m)

2 , ...,C ( j,m)

4 , C ( j,n)

5 ,C ( j,n)

6 , . . . ,C ( j,n)

8 are arbitrary constants that
can be determined from the boundary conditions and which determine the mode
shapes. Here J ( j,m)

m or J ( j,n)
n and Y ( j,m)

m or Y ( j,n)
n are Bessel functions of the first

and second kind, respectively, of order m and n. The functions I ( j,n)
n and K ( j,n)

n are
modified Bessel functions of the first and second kind, respectively, of order n.

Substituting Eqs. (23.28) and (23.29), respectively, into Eqs. (23.16), (23.17),
respectively, yields

u( j) (t, ω, r, ϕ) =

⎡
⎢⎢⎢⎣

C ( j,m)

1 U ( j,m)

1 (ω, r)+
C ( j,m)

2 U ( j,m)

2 (ω, r)+
C ( j,m)

3 U ( j,m)

3 (ω, r)+
C ( j,m)

4 U ( j,m)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (mϕ)

sin (mϕ)

)
eiωt ; (23.31)
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v( j) (t, ω, r, ϕ) =

⎡
⎢⎢⎢⎣

C ( j,m)

1 V ( j,m)

1 (ω, r)+
C ( j,m)

2 V ( j,m)

2 (ω, r)+
C ( j,m)

3 V ( j,m)

3 (ω, r)+
C ( j,m)

4 V ( j,m)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
sin (mϕ)

cos (mϕ)

)
eiωt ; (23.32)

where

U ( j,m)

1 (ω, r) = m

r
Jm

(
ω

c1 j
r

)
− ω

c1 j
Jm+1

(
ω

c1 j
r

)
;

U ( j,m)

2 (ω, r) = m

r
Ym

(
ω

c1 j
r

)
− ω

c1 j
Ym+1

(
ω

c1 j
r

)
;

U ( j,m)

3 (ω, r) = m

r
Jm

(
ω

c2 j
r

)
; U ( j,m)

4 (ω, r) = m

r
Ym

(
ω

c2 j
r

)
;

and

V ( j,m)

1 (ω, r) = −m

r
Jm

(
ω

c1 j
r

)
; V ( j,m)

2 (ω, r) = −m

r
Ym

(
ω

c2 j
r

)
;

V ( j,m)

3 (ω, r) = −m

r
Jm

(
ω

c2 j
r

)
+ ω

c2 j
Jm+1

(
ω

c2 j
r

)
;

V ( j,m)

4 (ω, r) = −m

r
Ym

(
ω

c2 j
r

)
+ ω

c2 j
Ym+1

(
ω

c2 j
r

)
.

Substituting Eqs. (23.30), into Eqs. (23.18), yields

W ( j,n) (t, ω, r, ϕ) =

⎡
⎢⎢⎢⎣

C ( j,n)

5 W ( j,n)

1 (ω, r)+
C ( j,n)

6 W ( j,n)

2 (ω, r)+
C ( j,n)

7 W ( j,n)

3 (ω, r)+
C ( j,n)

8 W ( j,n)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (nϕ)

sin (nϕ)

)
eiωt , (23.33)

where

W ( j,n)

1 (ω, r) = Jn
(
β j (ω) r

) ; W ( j,n)

2

(
β j (ω) r

) = Yn
(
β j (ω) r

) ;
W ( j,n)

3 (ω, r) = In
(
β j (ω) r

) ; W ( j,n)

4 (ω, r) = KnW
( j,n)

3 (ω, r) .

23.5 Explicit Boundary Conditions

For boundary-continuity conditions of the out-of-plane vibrations, we need to dif-
ferentiate the out-of-plane displacement with respect to r . Thus, it follows that
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DW̃ ( j,n) (t, ω, r, ϕ) = dW̃ ( j,n) (t, ω, r, ϕ)

dr
(23.34)

=

⎡
⎢⎢⎢⎣

C ( j,n)

5 DW ( j,n)

1 (ω, r) +
C ( j,n)

6 DW ( j,n)

2 (ω, r) +
C ( j,n)

7 DW ( j,n)

3 (ω, r) +
C ( j,n)

8 W ( j,n)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (nϕ)

sin (nϕ)

)
eiωt ,

where

DW ( j,n)

1 (ω, r) = n

r
Jn
(
β j (ω) r

)− β j (ω) Jn+1
(
β j (ω) r

) ;
DW ( j,n)

2 (ω, r) = n

r
Yn
(
β j (ω) r

)− β j (ω) Yn+1
(
β j (ω) r

) ;
DW ( j,n)

3 (ω, r) = n

r
In
(
β j (ω) r

)+ In+1
(
β j (ω) r

) ;
DW ( j,n)

4 (ω, r) = n

r
Kn
(
β j (ω) r

)− β j (ω) Kn+1
(
β j (ω) r

)
.

For boundary-continuity conditions of in-plane vibrations, radial and shear
stresses are obtained by substituting Eqs. (23.31) and (23.32) into Eqs. (23.8) and
(23.9) after performing the indicated differentiations. Consequently

σ ( j,m)
rr (t, ω, r, ϕ) = E j

1 − η2
j

⎡
⎢⎢⎢⎣

C ( j,m)

1 σ
( j,m)

rr,1 (ω, r)+
C ( j,m)

2 σ
( j,m)

rr,2 (ω, r)+
C ( j,m)

3 σ
( j,m)

rr,3 (ω, r)+
C ( j,m)

4 σ
( j,m)

rr,4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (mϕ)

sin (mϕ)

)
eiωt ; (23.35)

σ ( j,m)
rϕ (t, ω, r, ϕ) = E j

2
(
1 + η j

)

⎡
⎢⎢⎢⎣

C ( j,m)

1 σ
( j,m)

rϕ,1 (ω, r) +
C ( j,m)

2 σ
( j,m)

rϕ,2 (ω, r) +
C ( j,m)

3 σ
( j,m)

rϕ,3 (ω, r) +
C ( j,m)

4 σ
( j,m)

rϕ,4 (ω, r)

⎤
⎥⎥⎥⎦
(
sin (mϕ)

cos (mϕ)

)
eiωt ;

(23.36)

where,

σ
( j,m)

rr,1 (ω, r) =

⎡
⎢⎢⎣

(
ω

c1 j

)2

− m (m − 1)
(
1 − η j

)

r2
Jm

(
ω

c1 j
r

)
−

1 − η j

r

ω

c1 j
Jm+1

(
ω

c1 j
r

)
;

⎤
⎥⎥⎦ ;

σ
( j,m)

rr,2 (ω, r) =

⎡
⎢⎢⎣

(
ω

c1 j

)2

− m (m − 1)
(
1 − η j

)
r2

Ym

(
ω

c1 j
r

)
−

1 − η j

r

ω

c1 j
Ym+1

(
ω

c1 j
r

)
;

⎤
⎥⎥⎦ ;
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σ
( j,m)

rr,3 (ω, r) = (1 − η j
) [−m (m − 1)

r2
Jm

(
ω

c2 j
r

)
+ m

r

ω

c2 j
Jm+1

(
ω

c2 j
r

)]
;

σ
( j,m)

rr,4 (ω, r) = (1 − η j
) [−m (m − 1)

r2
Ym

(
ω

c2 j
r

)
+ m

r

ω

c2 j
Ym+1

(
ω

c2 j
r

)]
;

σ
( j,m)

rϕ,1 (ω, r) =
[
2m (m − 1)

r2
Jm

(
ω

c1 j
r

)
− 2m

r

ω

c1 j
Jm+1

(
ω

c1 j
r

)]
;

σ
( j,m)

rϕ,2 (ω, r) =
[
2m (m − 1)

r2
Ym

(
ω

c1 j
r

)
− 2m

r

ω

c1 j
Ym+1

(
ω

c1 j
r

)]
;

σ
( j,m)

rϕ,3 (ω, r) =

⎡
⎢⎢⎢⎣

(
2m (m − 1)

r2
−
(

ω

c2 j

)2
)
Jm

(
ω

c2 j
r

)
+

2

r

ω

c2 j
Jm+1

(
ω

c2 j
r

)

⎤
⎥⎥⎥⎦ ;

σ
( j,m)

rϕ,3 (ω, r) =

⎡
⎢⎢⎢⎣

(
2m (m − 1)

r2
−
(

ω

c2 j

)2
)
Ym

(
ω

c2 j
r

)
+

2

r

ω

c2 j
Ym+1

(
ω

c2 j
r

)

⎤
⎥⎥⎥⎦ .

For boundary-continuity conditions of the out-of-plane vibrations of the plate,
we need expressions for shear forces and torques. The shear forces and torques are
obtained by substituting Eq. (23.33) into Eqs. (23.10) and (23.11), respectively. After
performing the indicated differentiations one obtains

Q̃( j,n) (t, ω, r, ϕ) = E jh3j

12
(
1 − η2

j

)

⎡
⎢⎢⎢⎣

C ( j,n)

5 Q( j,n)

1 (ω, r) +
C ( j,n)

6 Q( j,n)

2 (ω, r) +
C ( j,n)

7 Q( j,n)

3 (ω, r) +
C ( j,n)

8 Q( j,n)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (nϕ)

sin (nϕ)

)
eiωt ;

(23.37)

M̃ ( j,n) (t, ω, r, ϕ) = E jh3j

12
(
1 − η2

j

)

⎡
⎢⎢⎢⎣

C ( j,n)

5 M ( j,n)

1 (ω, r)+
C ( j,n)

6 M ( j,n)

2 (ω, r)+
C ( j,n)

7 M ( j,n)

3 (ω, r)+
C ( j,n)

8 M ( j,n)

4 (ω, r)

⎤
⎥⎥⎥⎦
(
cos (nϕ)

sin (nϕ)

)
eiωt ;

(23.38)
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where

Q( j,n)

1 (ω, r) =

⎡
⎢⎢⎢⎢⎣

−n

(
β2
j (ω) + n (n − 1)

(
1 − η j

)
r2

)
Jn
(
β j (ω) r

)+

β j (ω)

(
rβ2

j (ω) + n2
(
1 − η j

)
r

)
Jn+1

(
β j (ω) r

)

⎤
⎥⎥⎥⎥⎦

;

Q( j,n)

2 (ω, r) =

⎡
⎢⎢⎢⎢⎣

−n

(
β2
j (ω) + n (n − 1)

(
1 − η j

)
r2

)
Yn
(
β j (ω) r

)+

β j (ω)

(
rβ2

j (ω) + n2
(
1 − η j

)

r

)
Yn+1

(
β j (ω) r

)

⎤
⎥⎥⎥⎥⎦

Q( j,n)

3 (ω, r) =

⎡
⎢⎢⎢⎢⎣

n

(
β2
j (ω) − n (n − 1)

(
1 − η j

)
r2

)
In
(
β j (ω) r

)+

β j (ω)

(
rβ2

j (ω) − n2
(
1 − η j

)
r

)
In+1

(
β j (ω) r

)

⎤
⎥⎥⎥⎥⎦

;

Q( j,n)

4 (ω, r) =

⎡
⎢⎢⎢⎢⎣

n

(
β2
j (ω) − n (n − 1)

(
1 − η j

)

r2

)
Kn
(
β j (ω) r

)+

β j (ω)

(
−rβ2

j (ω) + n2
(
1 − η j

)
r

)
Kn+1

(
β j (ω) r

)

⎤
⎥⎥⎥⎥⎦

;

M ( j,n)

1 (ω, r) =
⎡
⎢⎣

(
rβ2

j (ω) − n (n − 1)
(
1 − η j

)

r

)
Jn
(
β j (ω) r

)−
β j (ω)

(
1 − η j

)
Jn+1

(
β j (ω) r

)

⎤
⎥⎦ ;

M ( j,n)

2 (ω, r) =
⎡
⎢⎣

(
rβ2

j (ω) − n (n − 1)
(
1 − η j

)

r

)
Yn
(
β j (ω) r

)−
β j (ω)

(
1 − η j

)
Yn+1

(
β j (ω) r

)

⎤
⎥⎦ ;

M ( j,n)

3 (ω, r) =
⎡
⎢⎣

(
−rβ2

j (ω) − n (n − 1)
(
1 − η j

)

r

)
In
(
β j (ω) r

)+
β j (ω)

(
1 − η j

)
In+1

(
β j (ω) r

)

⎤
⎥⎦ ;

M ( j,n)

4 (ω, r) =
⎡
⎢⎣

(
−rβ2

j (ω) − n (n − 1)
(
1 − η j

)

r

)
Kn
(
β j (ω) r

)−
β j (ω)

(
1 − η j

)
Kn+1

(
β j (ω) r

)
.

⎤
⎥⎦ .
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Consequently, the boundary-continuity conditions in Eqs. (23.4)–(23.15) can now
be summarised and rewritten as:

U (1,m) (ω, r)
∣∣
r=a0

= 0, V (1,m) (ω, r)
∣∣
r=a0

= 0; (23.39)

W (1,n) (ω, r)
∣∣
r=a0

= 0,
∂W (1,n) (ω, r)

∂r

∣∣∣∣
r=a0

= 0; (23.40)

r
[
U ( j,m) (ω, r) −U ( j+1,m) (ω, r)

]∣∣
r=a j

= 0, (23.41)
[
V ( j,m) (ω, r) − V ( j+1,m) (ω, r)

]∣∣
r=a j

= 0, (23.42)
[
W ( j,n) (ω, r) − W ( j+1,n) (ω, r)

]∣∣
r=a j

= 0, (23.43)
[
∂W ( j,n) (ω, r)

∂r
− ∂W ( j+1,n) (ω, r)

∂r

]∣∣∣∣
r=a j

= 0; (23.44)

h ja j
[
σ ( j,m)
rr (ω, r) − σ ( j+1,m)

rr (ω, r)
]∣∣

r=a j
= 0, (23.45)

h ja j
[
σ ( j,m)
rϕ (ω, r) − σ ( j+1,m)

rϕ (ω, r)
]∣∣

r=a j
= 0, (23.46)

[
Q( j,n) (ω, r) − Q( j+1,n) (ω, r)

]∣∣
r=a j

= 0, (23.47)
[
M ( j,n) (ω, r) − M ( j+1,n) (ω, r)

]∣∣
r=a j

= 0. (23.48)

For r = R, we have

hJ R
[
σ ( j,m)
rr (ω, r)

]∣∣
r=R = 0; (23.49)

hJ R
[
σ ( j,m)
rϕ (ω, r)

]∣∣
r=R

= 0; (23.50)
[
Q( j,n) (ω, r)

]∣∣
r=R = 0; (23.51)[

M ( j,n) (ω, r)
]∣∣

r=R = 0. (23.52)

Observing the in-plane and out-of-plane boundary-continuity conditions, it can
be clearly seen that the spectra of the in-plane and out-of-plane vibrations can be
plotted independently. In the next section, we will show that these spectra can be
tuned, so that particular eigenvalues may be matched.

23.6 Numerical Results

For a numerical simulation, we take two sections of the functionally graded plate
(J = 2, j = 1, 2). The inner thin section is made from an aluminium alloy with
mass density ρ1 = 2.7 × 103kg/m3, modulus of elasticity E1 = 7 × 104MPa and
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Fig. 23.2 Cross sections of the FGP with two components and the stem at the centre

Fig. 23.3 Frequency spectra of in-plane (solid red curve) and out-of-plane (dotted blue curve)
vibrations illustrating tuned first eigenvalues

Poisson’s ratio η1 = 0.33. Here the geometrical dimensions are a0 = 2 × 10−3m,
a1 = 7 × 10−3m, h1 = 1.85 × 10−3m (see Figs. 23.1 and 23.2).

A relatively thicker outer disc made of a titanium alloy has physical parameters
ρ2 = 4.5 × 103kg/m3, E2 = 1.2 × 106MPa and η2 = 0.34.The geometrical dimen-
sions of the outer disc are a2 = R = 3.8 × 10−2m and h2 = 5.55 × 10−3m. With
these values, a tuning between the first mode of in-plane motion at circumferential
wave number m = 2 and the first mode of the out-of-plane vibrations of the disc at
circumferential wave number n = 3 was obtained. This tuning is demonstrated in
Fig. 23.3 where the function Disc(ω) is the natural logarithm applied to the absolute
value of a determinant function (with its roots being the eigenvalues) and similarly
for the plate (see [6] Sect. 8.1).

The corresponding eigenfunctions of the in-plane vibrations are shown in
Figs. 23.4 and 23.5 (for the radial and tangential motions independently).

In Fig. 23.6 the eigenfunctions of the out-of-plane motion which corresponds to
the first eigenvalue is shown.

Numerical simulations show that eigenfrequency of the in-plane vibration for the
firstmode is approximately 45913.67 Hz and that of out-of-plane vibration is approx-
imately 45967.40 Hz,with an approximate frequency split of |45913.67 − 45967.40|
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Fig. 23.4 Eigenfunction of
the radial mode for the first
eigenvalue

Fig. 23.5 Eigenfunction of
the tangential mode for the
first eigenvalue

Fig. 23.6 Eigenfunction of
the axial mode for the first
eigenvalue

≈ 42.73 Hz.Note that the above resultswere obtained in the frameof theNovozhilov-
Goldenveizer theory of shells. In this particular case, the ratio of maximum diameter

of the plate to its thickness is
2R

h2
≈ 6.85 which is not large enough to consider our

plate as a thin shell. Consequently, our example for the first mode is provided here
merely in order to illustrate that it is possible to tune the frequencies using a theory
not necessarily based on the above thin shell theory.
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Fig. 23.7 Frequency spectra of in-plane (solid red curve) and out-of-plane (dotted blue curve)
vibrations at tuned first and second eigenvalues

In our second simulation, we tuned the first eigenvalue of the in-plane vibration
mode at m = 2 and the second eigenvalue of the out-of-plane vibration at n = 3.
Selection of the physical parameters of the functionally graded plate is exactly the
same as before. We also kept the same a0 and a1, but the thicknesses h1 and h2
were varied to achieve tuning of both modes. The new values for h1 and h2 were
respectively, h1 = 4.45 × 10−4m and h2 = 1.335 × 10−3m. Our new selection of

parameters results in the ratio:
2R

h2
≈ 28.46, which indicates our plate is “thin”. The

corresponding frequency spectra are displayed in Fig. 23.7 as sharp negative spikes.
Eigenfrequency of the first mode of the in-plane vibration is approximately

45913.67 Hz and the eigenfrequency of the second mode of out-of-plane vibration
is approximately 45903.35 Hz, with a frequency split of |45913.67 − 45903.35| ≈

10.32 Hz, which shows that it is possible to tune the first eigenvalue of in-plane
vibration with a second eigenvalue of the out-of-plane vibration so that an optimal
sensing capability would be achieved by the sensor (see [12]). We have observed that
the in-plane eigenfunctions in both examples appear to be similar and consequently
we do not repeat the figures here but merely refer the reader to Figs. 23.4 and 23.5.
The eigenfunction of the second mode for the out-of-plane vibration is shown in
Fig. 23.8.

23.7 Conclusions and Discussions

Exact solutions of vibration of the FGP composed of arbitrary number of concentric
sections were derived in the frame of the Novozhilov-Goldenveizer theory of shells.
These solutions were obtained in terms of the Bessel, Neumann and modified Bessel
functions for both in-plane and out-of-plane vibrations of the FGP. For applications
of the considered planar structures as a three-dimensional vibrational gyroscopes
(an inertial navigation angular rate sensor), it is necessary to tune the plate so that
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Fig. 23.8 Eigenfunction of
axial mode for the second
eigenvalue

one of the eigenvalues of the in-plane mode with circumferential wave number m
is approximately equal to one of eigenvalues of the out-of-plane mode with circum-
ferential wave number n = m + 1.Relatively thin plates are normally much stiffer
in the radial direction than in the out-of-plane direction. Consequently, this is true
with respect to their eigenvalues. Hence, it is necessary to take m < n, for instance
n = m + 1. For numerical simulations, we selected m = 2 (an elliptical in-plane
wave form for the in-plane vibrations) and n = 3 (a three fold symmetry wave form
for the out-of-plane vibrations). It can be seen from our numerical experiment that
a decrease in the outer radius of the FGP increases the eigenvalues of the in-plane
vibrations and vice versa, whereas a decrease in thickness of the FGP decreases the
eigenvalues of the out-of-plane vibrations and vice versa.

Initially numerical simulations were performed, and a tuning of the first modes of
in-plane andout-of-plane vibrationswas done. The resultwas obtained for a relatively
thick plate. This reduces the accuracy of calculations because they were done assum-
ing the theory of thin shells. Nevertheless, it is clear from a qualitative viewpoint that
tuning may be achieved in principle. Future work involving a relatively thick plate
will involve a more complicated theory such as the Mindlin-Timoshenko plate the-
ory in ([20]). In order to substantially improve calculations, we observed a relatively
“thin” plate to perform further numerical simulations. These simulations showed that
it is possible to achieve tuning between the first eigenvalue of the in-plane mode and
the second eigenvalue of the out-of-plane mode. Tuning between eigenvalues of dif-
ferent modes of in-plane and out-of-plane vibrations can be achieved by the variation
of the radial and thickness parameters of the materials of the components of the func-
tionally graded plates. The effectiveness of the tuning has to be investigated further
from the viewpoint of the sensitivity of sensors of angular rates and accelerations.
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University of Technology (TUT). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors, and TUT therefore does not accept any liability
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Appendix A

The Lagrangian of the functionally graded plate (see Fig. 23.1) is give by

L =
2π∫

0

⎡
⎢⎣

J∑
j=1

a j∫

a j−1

(
�

( j)
D + �

( j)
P

)
dr

⎤
⎥⎦ dϕ, (23.53)

where, a0 is radius of junction of the j th and ( j + 1)th sections ( j = 1, 2, . . . , J ), and
aJ = R. Furthermore �

( j)
D is the Lagrangian density of the j th thin plate vibrations

which are characterised by the in-plane displacements u( j) and v( j).The Lagrangian
density of the thin plate vibrations that is characterized by the out-of-plane displace-
ments w( j) is designated by �

( j)
P . The Lagrangian density of the in-plane vibrations

�
( j)
D can be written as

�
( j)
D =

⎧⎪⎪⎨
⎪⎪⎩

ρ j h j

2
u̇( j)2 + v̇( j)2−

E jh j

2(1 − η2
j )

[(
ε

( j)
1 + ε

( j)
2

)2 − 2
(
1 − η j

) (
ε

( j)
1 + ε

( j)
2 − ϒ( j)2

4

)]
⎫⎪⎪⎬
⎪⎪⎭
r;

(23.54)

similarly the Lagrangian density of the out-of-plane vibration �
( j)
P is given by

�
( j)
P =

⎧⎪⎪⎨
⎪⎪⎩

ρ j h j

2
ẇ( j)2−

E jh3j
24
(
1 − η2

)
[(

χ
( j)
1 + χ

( j)
2

)2 − 2
(
1 − η j

) (
χ

( j)
1 χ

( j)
2 − τ

( j)2
j

)]

⎫⎪⎪⎬
⎪⎪⎭
r.

(23.55)

Take note of the dot and prime notations used for derivatives elsewhere in this
chapter. Below we use the following notation

u̇( j) = ∂u( j)

∂t
, v̇ = ∂v( j)

∂t
, u( j)′

r = ∂u( j)

∂r
, u( j)′

ϕ = ∂u( j)

∂ϕ
, v

( j)′
r = ∂v( j)

∂r
, v( j)′

ϕ = ∂v( j)

∂ϕ
;

ü( j) = ∂2u( j)

∂t2
, u( j)′′

rr = ∂2u( j)

∂r2
, u( j)′′

ϕϕ = ∂2u( j)

∂ϕ2 , u( j)′′
rϕ = ∂2u( j)

∂rϕ
;

v̈( j) = ∂2v( j)

∂t2
, v

( j)′′
rr = ∂2v( j)

∂r2
, v( j)′′

ϕϕ = ∂2v( j)

∂ϕ2 ; and v
( j)′′
rϕ = ∂2v( j)

∂rϕ
. (23.56)
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Strains are given as follows (see Soedel [21])

ε
( j)
1 = ∂u( j)

∂r
, ε

( j)
2 = 1

r

(
u( j) + ∂v( j)

∂ϕ

)
, ϒ( j) = 1

r

(
∂u( j)

∂ϕ
− v( j)

)
+ ∂v

∂r
;

χ
( j)
1 = −∂2w( j)

∂r2
, χ

( j)
2 = −1

r

(
∂w( j)

∂r
+ 1

r

∂2w( j)

∂ϕ2

)
;

τ ( j) = 1

r

(
1

r

∂w( j)

∂ϕ
− ∂2w( j)

∂r∂ϕ

)
. (23.57)

The implicit form of the governing equations of motion are obtained from Hamil-
ton’s variational principle see Goldstein et al. [22]. It follows that

∂

∂t

∂�
( j)
D

∂ u̇( j)
+ ∂

∂r

∂�
( j)
D

∂u( j)′
r

+ ∂

∂ϕ

∂�
( j)
D

∂u( j)′
ϕ

− ∂�
( j)
D

∂u( j)
= 0; (23.58a)

∂

∂t

∂�
( j)
D

∂v̇( j)
+ ∂

∂r

∂�
( j)
D

∂v
( j)′
r

+ ∂

∂ϕ

∂�
( j)
D

∂v
( j)′
ϕ

− ∂�
( j)
D

∂v( j)
= 0; (23.58b)

⎡
⎢⎢⎢⎢⎣

∂
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(
∂�
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P

∂ẇ( j)

)
+ ∂
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(
∂�

( j)
P

∂w
( j)′
r

)
+ ∂

∂ϕ

(
∂�

( j)
P

∂w
( j)′
ϕ

)
− ∂2

∂r2

(
∂�

( j)
P

∂w
( j)′′
rr

)
−

∂2

∂r∂ϕ

(
∂�

( j)
P

∂w
( j)′′
rϕ

)
− ∂2

∂ϕ2

(
∂�

( j)
P

∂w
( j)′′
ϕϕ

)

⎤
⎥⎥⎥⎥⎦

= 0.

(23.58c)

It follows from Eqs. (23.53)–(23.57) that Eqs. (23.58a) and (23.58b) which charac-
terise in-plane motion are separated from the Eq. (23.58c), which characterises the
out-of-plane motion. Note that systems of explicit equations of motion are given in
Eqs. (23.1), (23.2) and (23.3).

It is possible to derive the boundary-continuity conditions fromHamiltonian Prin-
ciple, which can be given as follows

u(1)
∣∣
r=a0

= 0 or
∂�

(1)
D

∂u(1)′
r

∣∣∣∣∣
r=a0

= 0; (23.59)

v(1)
∣∣
r=a0

= 0, or
∂�

(1)
D

∂v
(1)′
r

∣∣∣∣∣
r=a0

= 0; (23.60)

The conditions on the left hand side of Eqs. (23.59) and (23.60) are used for fixed
inner rim and the derivatives in (23.59) and (23.60) are used for free inner rim. For
j th and ( j + 1) st component of the plate we have,
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u( j)
∣∣
r=a j

− u( j+1)
∣∣
r=a j

= 0,
∂�

( j)
D

∂u( j)′
r

∣∣∣∣∣
r=a j

− ∂�
( j+1)
D

∂u( j)′
r

∣∣∣∣∣
r=a j

= 0; (23.61)

v( j)
∣∣
r=a j

− v( j+1)
∣∣
r=a j

= 0,
∂�

( j)
D

∂v
( j)′
r

∣∣∣∣∣
r=a j

− ∂�
( j+1)
D

∂v
( j)′
r

∣∣∣∣∣
r=a j

= 0. (23.62)

The conditions on the left hand side of Eqs. (23.61) and (23.62) characterise
the continuity of the displacements in the radial and tangential directions, while the
conditions on the right hand side characterise the equality of action-reaction forces in
the radial and tangential directions on junctions of the j th and ( j + 1)st components
of the functionally graded plate ( j = 1, 2, . . . , J − 1) .

For the outer rim of the plate, we have

u(J )
∣∣
r=R = 0 or

∂�(J )

∂u(J )

∣∣∣∣
r=R

= 0; (23.63)

v(J )
∣∣
r=R = 0, or

∂�(J )

∂v(J )

∣∣∣∣
r=R

= 0; (23.64)

the left hand side of Eqs. (23.63) and (23.64) are used for fixed outer rim of the
plate and the right hand side are used for the free outer rim. In our case the inner
rim of the first component of the plate is fixed in the stem and the outer rim is free.
Hence, we used the following boundary-continuity conditions for inner and outer
rims, respectively

u(1)
∣∣
r=a0

= v(1)
∣∣
r=a0

= 0; (23.65)

∂�
(J )
D

∂u(J )′
r

∣∣∣∣∣
r=R

= ∂�
(J )
D

∂v
(J )′
r

∣∣∣∣∣
r=R

= 0. (23.66)

Note that the partial derivatives
∂�

( j)
D

∂u( j)′
r

and
∂�

( j)
D

∂v
( j)′
r

used in the boundary-continuity

conditions are given by

∂�
( j)
D

∂u( j)′
r

= − E jh j

1 − η2
j

[
∂u( j)

∂r
+ η j

r

(
u( j) + ∂v( j)

∂ϕ

)]
; (23.67)

∂�
( j)
D

∂v
( j)′
r

= − E jh j

2
(
1 + η j

)
[
∂v( j)

∂r
+ 1

r

(
∂u( j)

∂ϕ
− v( j)

)]
. (23.68)

The boundary-continuity conditions for out-of-plane vibration of the functionally
graded plate is obtained from Hamilton’s variational Principle as follows

w(1)
∣∣
r=a0

= 0 or Q(1)
∣∣
r=a0

= 0; (23.69)
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w(1)′
r

∣∣
r=a0

= 0, or M (1)
∣∣
r=a0

= 0. (23.70)

The left hand side of Eqs. (23.69) and (23.70) corresponds to the fixed inner rim
of the first component of the plate and the right-hand side corresponds to the free
rim of the plate.

w( j)
∣∣
r=a j

− w( j+1)
∣∣
r=a j

= 0 w( j)′
r

∣∣
r=a j

− w( j+1)′
r

∣∣
r=a j

= 0; (23.71)

Q( j)
∣∣
r=a j

− Q( j+1)
∣∣
r=a j

= 0 M ( j)
∣∣
r=a j

− M ( j+1)
∣∣
r=a j

= 0. (23.72)

Eq. (23.71) corresponds to the continuity of the out-of-plane displacements and
continuity of their first derivatives (angles of slopes) at the junctions of the ( j)th and
( j + 1)st components of the plate. Equation (23.72) shows the equalities between
action-reaction of the shear forces (Q) and torques (M) at junctions of the compo-
nents. Finally at r = R

w(J )
∣∣
r=R = 0 or Q(J )

∣∣
r=R = 0; (23.73)

w(J )′
r

∣∣
r=R

= 0, or M (J )
∣∣
r=R

= 0. (23.74)

As above the left hand side of Eqs. (23.69) and (23.70) correspond to the fixed
outer rim of the plate and the right hand side corresponds to the free conditions of
the outer rim of the plate. Note that the shear forces Q( j) and torques M ( j) are given
by

Q( j) = ∂�
( j)
P

∂w
( j)′
r

− ∂

∂r

(
∂�

( j)
P

∂w
( j)′′
rr

)
+ ∂

∂ϕ

(
∂�

( j)
P
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( j)′′
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)
;

= E jh3j r j

12
(
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j

)

⎛
⎜⎜⎝

∂3w( j)

∂r3
+ ∂2w( j)

r∂r2
− 1

r2
∂w( j)

∂r
+ 2 − η j

r

∂3w( j)

∂ϕ2∂r
−
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r3
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∂ϕ2

⎞
⎟⎟⎠ ;

(23.75)

M ( j) = ∂�
( j)
P

∂w
( j)′′
rr

= E jh3j r j

12
(
1 − η2

j

)
[
∂2w( j)

∂r2
+ η j

r

(
∂w( j)

∂r
+ 1

r

∂2w( j)

∂r2

)]
. (23.76)
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Chapter 24
Adhesive Contact Problems
of the Theory of Viscoelasticity

Nugzar Shavlakadze

Abstract The approximate solutions of singular integro-differential equations
related to the problems of interaction of an elastic thin finite non-homogeneous patch
with a plate are considered, provided that the materials of plate and patch possess the
creep property. Using the method of orthogonal polynomials, the problem reduced
to the infinite system of Volterra integral equations. The asymptotic analysis is also
performed. The quasi-completely regularity of the obtained system is proved.

Keywords Viscoelasticity · Contact problems · Singular integro-differential
equation · Method of orthogonal polynomials

24.1 Introduction

The considerable development of the hereditary theory of Bolzano–Volterra mechan-
ics has been defined by various technical applications in the theory of metals, plastics
and concrete and in the mining engineering. The fundamentals of the theory of vis-
coelasticity, the methods for solving linear and nonlinear problems of the theory of
creep, the problems of mechanics of inhomogeneous aging viscoelastic materials,
some boundary value problems of the theory of growing solids, the contact andmixed
problems of the theory of viscoelasticity for composite inhomogeneous aging and
nonlinearly aging bodies are considered in [1–4].

The full investigation of various possible forms of viscoelastic relations and some
aspects of the general theory of viscoelasticity is studied in [5–8]. Research on the
field of creep materials can be found in [9–12].

Contact and mixed boundary value problems on the transfer of the load from
elastic thin-walled elements (stringers, inclusions, patches) to massive deformable
(including aging viscoelastic) bodies, as well as on the indentation of a rigid stamp
on the surface of a viscoelastic body, represent an urgent problem both in theoretical
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and applied aspect. Problems of this type are often encountered in engineering appli-
cations and lend themselves to rigorous mathematical research due to their applied
significance.

Exact and approximate solutions of static contact problems for different domains
reinforced with non-homogeneous elastic thin inclusions and patches were obtained,
and the behavior of the contact stresses at the ends of the contact line has been
investigated [13–16]. One type of analysis assumes continuous interaction and the
other the adhesive contact of thin-shared elements (stringers or inclusions) with
massive deformable bodies. As is known, stringers, patches and inclusions, such as
rigid punch and cuts, are areas of stress concentration. Therefore, the study of the
problems of stress concentration and the development of various methods for their
reduction is of great importance in engineering practice.

In work [17], we consider integro-differential equations with a variable coefficient
relating to interaction of an elastic thin finite inclusion and plate, when the inclusion
and plate materials possess the creep property. Here, continuous contact between
inclusion and plate is considered. The solutions of the integro-differential equations
of first order are obtained on the basis of investigations of different boundary value
problems of the theory of analytic functions. The asymptotic behavior of unknown
contact stresses is established.

In this paper, contact with a thin layer of glue is studied when the patch, plate and
adhesive materials have the property of creep. A two-dimensional singular integro-
differential equation was obtained. Here, the asymptotic analysis was also carried
out, and the approximate solutions were obtained for various cases.

24.2 Formulation of the Problems and Reduction
to the Integral Equations

Let a finite non-homogeneous patch with modulus of elasticity E1, thickness h1(x)
and Poisson’s coefficient ν1 be attached to the plate (E2, ν2), which occupies the
entire complex plane and is in the condition of a plane deformation. It is assumed
that the patch, as a thin element, is glued to the plate along the real axis, has no
bending rigidity, is in the uniaxial stressed state and is subject only to tension with
the tangential stress q0(x)H (t − t0) (H (t) is the unit Heaviside function). The one-
dimensional contact between the plate and patch is realized by a thin glue layer with
thickness h0 and modulus of shear G0.

It is assumed that the plate, patch and glue layer materials have the creep property
which is characterized by the non-homogeneity of the aging process and has differ-
ent creep measures Ci(t, τ ) = ϕi(τ )[1 − e−γ (t−τ)], where ϕi(τ ) is the functions that
defining the aging process of the plate, patch and glue layer materials; the age of
different materials is τi(x) = τi = const, γ = const > 0, i = 1, 2, 3.

Besides, the plate Poisson’s coefficients for elastic-instant deformation ν2(t) and
creep deformation ν2(t, τ ) are the same and constant: ν2(t) = ν2(t, τ ) = ν2 = const.
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Assuming that every element of the glue layer is under condition of pure shear,
the contact condition has the form [18]

u1(t, x) − u2(t, x, 0) = k0(I − L3)q(t, x), |x| ≤ 1 (24.1)

where u2(t, x, y) is displacement of the plate points along the ox-axis and u1(t, x) is
displacement of the patch points along the ox-axis, I is the unit operator, k0 := h0/G0.

We have to define the law of distribution of tangential contact stresses q(t, x) on
the line of contact and the asymptotic behavior of these stresses at the end of the
patch.

To define the unknown contact stresses, we obtain the following integral equation
(see [1–4])

2(1 − ν2
2 )

πE2
(I − L2)

1∫

−1

q(t, y)dy

y − x

= 1

E(x)
(I − L1)

x∫

−1

[
q(t, y) − q0(y)H (t − t0)

]
dy − k0(I − L3)q

′(t, x), |x| < 1

1∫

−1

[
q(t, y) − q0(y)H (t − t0)

]
dy = 0 (24.2)

where the time operators Li, i = 1, 2, 3 act on an arbitrary function in the following
manner

(I − Li)ψ(t) = ψ(t) −
t∫

τ 0
i

Ki(t + ρi, τ + ρi)ψ(τ)dτ, ρi = τi − τ 0
i i = 1, 2, 3

Ki(t, τ ) = Ei
∂Ci(t, τ )

∂τ
, i = 1, 2 K3(t, τ ) = G0

∂C3(t, τ )

∂τ
,

E(x) = E1h1(x)

1 − ν2
1

,

τ 0
i = t0 is the instant of load application.
Introducing the notation

ϕ(t, x) =
x∫

−1

[
q(t, y) − q0(y)H (t − t0)

]
dy, λ = 2(1 − ν2

2 )

E2
,
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from (24.2), we obtain the following two-dimensional integro-differential equation

λ

π
(I − L2)

1∫

−1

ϕ′(t, y)
y − x

dy

= 1

E(x)
(I − L1)ϕ(t, x) − k0(I − L3)ϕ

′′(t, x) + g(t, x), |x| < 1 (24.3)

g(t, x) = − λ

π

(
1 − E2ϕ2(t)

(
1 − e−γ (t−t0)

))
1∫

−1

q0(y)

y − x
dy − k0q

′
0(x)

(
1 − G0ϕ3(t)

(
1 − e−γ (t−t0)

))
.

with the conditions
ϕ(t, 1) = 0, t ≥ t0. (24.4)

(In the sequel, the dot means a derivative with respect to the first variable t, and the
prime means a derivative with respect to the second variable x).

Thus, the above posed boundary contact problem reduced to the solution of singu-
lar integro-differential equation (SIDE)with the condition (24.4). From the symmetry
of the problem, we assume, that E(x) and q0(x)are even and odd functions, respec-
tively. The solution of problem (24.3) under condition (24.4) with respect variable x
can be sought in the class of even functions. Moreover, we assume that the function
q0(x) is continuous in the Hölder’s sense and is a continuous up to the first-order
derivative on an interval [−1.1], i.e., q0 ∈ C1([−1, 1]).

24.3 The Asymptotic Investigation

Under the assumption that

E(x) = (1 − x2)ωb0(x), (24.5)

ω = const > 0, b0(x) = b0(−x), b0 ∈ C([−1, 1]), b0(x) ≥ c0 = const > 0,

the solution of problem (24.3) and (24.4) will be sought in the class of even functions
whose derivative with respect of variable x can be are represented as follows

ϕ′(t, x) = (1 − x2)αg0(t, x), α > −1, (24.6)

where g0(t, x) = −g0(t,−x), g0 ∈ C1([−1, 1]), g0(t, x) �= 0, x ∈ [−1, 1]. ϕ′(t, x)
represents the unknown tangential contact stress.
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Introducing the notation


0(x, t) =
1∫

−1

(1 − s2)αg0(t, s)

s − x
ds

by virtue of the well-known asymptotic formula [19] we have for −1 < α < 0


0(x, t) = ∓πctgπαg0(t,∓1)2α(1 ± x)α + 
∓(x, t), x → ∓1;

∓(x, t) = 
∗

∓(x, t)(1 ± x)α± , α± = const > α

and for α = 0


0(x, t) = ∓g0(t,∓1) ln(1 ± x) + 
̃∓(x, t), x → ∓1.

The functions 
∗∓(x, t) and 
̃∓(x, t) satisfy (H ) condition in a neighborhood of the
points x = ∓1 respectively.

In case α > 0 the function 
0(x, t) belongs to the (H ) class in a neighborhood of
the points x = ±1.

In addition, we have [20]

x∫

−1

(1 − s2)αg0(t, s)ds = 2α(1 ± x)α+1

α + 1
g0(t,∓1)F(α + 1,−α, 2 + α, (1 ± x)/2)

+ G∓(x, t), x → ∓1,

lim
x→∓1

G∓(x, t)(1 ± x)−(α+1) = 0

where F(a, b, c, x) is a hypergeometric Gaussian function.
The case −1 < α < 0 of interest does not represent, since negative values of the

indicator α contradict the physical meaning of the condition (24.1).
Let 0 ≤ α ≤ 1, then in a neighborhood of the points x = −1 the equation (24.3)

can be written in the following form

(I − L2)�(x, t) + 2α(1 + x)2+ε(I − L1)g0(−1, t)

2ω(α + 1)(1 + x)ωb0(−1)
+ (I − L1)G−(x, t)(1 + x)1+ε−α

−k02
α(1 + x)ε(I − L3)g̃0(−1, t) = g(−1, t)(1 + x)1+ε−α

(24.7)

�(x, t) =
{

λg0(−1, t)(1 + x)1+ε ln(1 + x) − λ
π
(1 + x)1+ε
̃−(x, t), for α = 0,

− λ
π
(1 + x)1+ε−α
0(x, t), for α �= 0
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where ε is an arbitrarily small positive number. When passing to the limit x → −1,
the analysis of the obtained equations leads to the necessity of satisfying inequality
2 + ε > ω, i.e., ω ≤ 2.

In case α > 1 from (24.7), it follows that α = ω − 1.
An analogous result is obtained in the neighborhood of the point x = 1.
The obtained results can be formulated as follows

Theorem 1 Assume that (24.5) holds, if the problem (24.3), (24.4) has the solution
in the form (24.6), then:

• If ω > 2 then α = ω − 1, (α > 1)
• If ω ≤ 2 then 0 ≤ α ≤ 1.

Conclusion. If the patch rigidity varies by the law

E(x) = (1 − x2)
n+ 1

2 b0(x),

where b0(x) > 0 for |x| ≤ 1, b0(x) = b0(−x), n ≥ 0 is integer, then from the above
asymptotic analysis, we obtain:

α = n − 1

2
, for n = 2, 3, . . .

and 0 < α < 1 for n = 0 or n = 1 (the same result is obtained for E(x) = b0(x) > 0
or E(x) = const, |x| ≤ 1).

24.4 An Approximate Solution of SIDE (3)

From the relation

1

π

1∫

−1

(1 − s)α(1 + s)βP(α,β)
m (s)

s − x
ds = ctgπα(1 − x)α(1 + x)βP(α,β)

m (x)

−2α+β�(α)�(β + m + 1)

π�(α + β + m + 1)
F(m + 1,−α − β − m, 1 − α, (1 − x)/2)

obtained by Tricomi [21] for orthogonal Jacobi polynomials P(α,β)
m (x) and from the

well-known equality (see [22])

m!P(α,β)
m (1 − 2x) = �(α + m + 1)

�(1 + α)
F(α + β + m + 1,−m, 1 + α, x)
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we get the following spectral relation for the Hilbert singular operator

1∫

−1

(1 − s2)n−1/2P(n−1/2,n−1/2)
m (s)

s − x
ds = (−1)n22n−1πP(1/2−n,1/2−n)

m+2n−1 (x), (24.8)

where �(z) is the known Gamma function.
1. On the basis of the above asymptotic analysis performed in the cases

n = 0; n = 1; E(x) = b0(x) > 0; E(x) = const, |x| ≤ 1;

a solution of equation (24.3) will be sought in the form

ϕ′(t, x) =
√
1 − x2

∞∑
k=1

Xk(t)P
(1/2,1/2)
k (x), (24.9)

where the function Xk(t) have to be defined, k = 1, 2, . . ..
Using the relation (24.8) and the Rodrigues formula (see.[23]) for (24.9), we

obtain

1∫

−1

√
1 − t2P(1/2,1/2)

k (t)dt

t − x
= −2πP−(1/2,−1/2)

k+1 (x),

ϕ(t, x) = −(1 − x2)3/2
∞∑
k=1

Xk(t)

2k
P(3/2,3/2)
k−1 (x),

ϕ′′(t, x) = −2(1 − x2)−1/2
∞∑
k=1

kXk(t)P
(−1/2,−1/2)
k+1 (x). (24.10)

Substituting relation (24.9), (24.10) into Eq. (24.3), we have

− (1 − x2)3/2

E(x)
(I − L1)

∞∑
r=1

Xk(t)

2k
P(3/2,3/2)
k−1 (x) − 2λ0(I − L2)

∞∑
k=1

Xk(t)P
(−1/2,−1/2)
k+1 (x)

+2k0(1 − x2)−1/2(I − L3)
∞∑
k=1

kXk(t)P
(−1/2,−1/2)
k+1 (x) = g(t, x), |x| ≤ 1.

(24.11)

Multiplying both part of equality (24.11) by P(−1/2,−1/2)
m+1 (x) and integrating on the

interval (−1, 1), we obtain an infinite system of Volterra’s linear integral equations
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k0m
(�(m + 3/2)

�(m + 2)

)2
(I − L3)Xm(t) −

∞∑
k=1

R(2)
mk(I − L2)Xk(t)

−
∞∑
k=1

R(1)
mk

k
(I − L1)Xk(t) = gm(t), m = 1, 2, . . . (24.12)

where

R(1)
mk =1

2

1∫

−1

(1 − x2)3/2

E(x)
P(3/2,3/2)
k−1 (x)P(−1/2,−1/2)

m+1 (x)dx,

R(2)
mk = − 2λ

1∫

−1

P(−1/2,−1/2)
k+1 (x)P(−1/2,−1/2)

m+1 (x)dx,

gm(t) =
1∫

−1

g(t, x)P(−1/2,−1/2)
m+1 (x)dx.

Introducing the notation

Tm(t) = ωm

[
k0Xm(t) −

∞∑
k=1

R(1)
mk

kωk
Xk(t) −

∞∑
k=1

R(2)
mk

ωk
Xk(t)

]
,

where ωm = m
(

�(m+3/2)
�(m+2)

)2 → 1, m → ∞, system (24.12) will take the form

Tm(t) − k0

t∫

t0

K3(t − τ)Xk(τ )dτ +
∞∑
k=1

R(1)
mk

kωk

t∫

t0

K1(t − τ)Xk(τ )dτ

+
∞∑
k=1

R(2)
mk

ωk

t∫

t0

K2(t − τ)Xk(τ )dτ = gm(t) m = 1, 2, . . . . (24.13)

In condition G0ϕ3(t) = E1ϕ1(t) = E2ϕ2(t) system (24.13) reduces to the follow-
ing ordinary differential equation of second order

T̈m(t) + γ (1 + G0ϕ3(t))Ṫm(t) = g̈m(t) + γ ġm(t), (24.14)

with the initial conditions:

Tm(t0) = 0, Ṫm(t0) = ġm(t0).
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The solving of this differential equation gives an infinite system of linear algebraic
equation with respect Xm(t), m = 1, 2, . . ..

k0Xm(t) −
∞∑
k=1

R(1)
mk

kωk
Xk(t) −

∞∑
k=1

R(2)
mk

ωk
Xk(t) = Tm(t)

ωm
(24.15)

where

Tm(t) =ġm(t0)

t∫

t0

dτ

α(τ)
+

t∫

t0

dτ

α(τ)

τ∫

t0

[
g̈m(s) + γ ġm(s)

]
α(s)ds,

α(t) = exp

t∫

t0

γ (1 + G0ϕ3(s))ds.

Let as investigate system (24.15) for regularity in the class of bounded sequences.
Using the known relations for the Chebyshev first order polynomials and for the
Gamma function [20]

P(−1/2,−1/2)
m (x) = �(m + 1/2)√

π�(m + 1)
Tm(x), Tm(cos θ) = cosmθ

lim
m→∞mb−a �(m + a)

�(m + b)
= 1

we have

R(2)
mk = − 2λα(k)β(m)

π
√

(k + 1)(m + 1)

π∫

0

cos(k + 1)θ cos(m + 1)θ sin θdθ = − 2λα(k)β(k)

π
√

(k + 1)(m + 1)

×
⎧⎨
⎩
1 − 1

(2m+3)(2m+1) , k = m,

− (−1)k+m+1
2

[
1

(k+m+3)(k+m+1) + 1
(k−m+1)(k−m−1)

]
, k �= m,

=
{
O(m−1), k = m, m → ∞,

O(m−5/2), O(k−5/2), k �= m, m → ∞, k → ∞,

where α(k), β(m) → 1, when k,m → ∞.
By virtue of the Darboux asymptotic formula (see [23]), we obtain analogous

estimates for

R(1)
mk =

{
O(m−1), k = m, m → ∞
O(m−5/2),O(k−1/2), k �= m, m → ∞, k → ∞

and the right-hand side Tm(t)
ωm

of equation (24.15) satisfies at least the estimate
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Tm(t)

ωm
= O(m−1/2), m → ∞.

2. In case when n = 2, the solution of equation (24.3) will be sought in the form

ϕ′(t, x) = (1 − x2)
3/2

∞∑
k=1

Yk(t)P
(3/2,

3/2)

k (x), (24.16)

where the functions Yk(t) have to be defined, k = 1, 2 . . ..
Using the relation arising from (24.8) and from the Rodrigues formula (see. [23])

for the orthogonal Jacobi polynomials, we get

1

π

1∫

−1

(1 − x2)3/2P(3/2,3/2)
k (t)dt

t − x
= −2πP(−3/2,−3/2)

k+1 (x),

ϕ(t, x) = −(1 − x2)5/2
∞∑
k=1

Yk(t)

2k
P(5/2,5/2)
k−1 (x),

ϕ′′(t, x) = −2(1 − x2)1/2
∞∑
k=1

kYk(t)P
(1/2,1/2)
k+1 (x). (24.17)

Similarly as for system (24.15), we obtain

δmYm(t) −
∞∑
k=1

(
R(3)
mk + R(4)

mk

k

)
Yk(t) = T̃m(t), m = 1, 2, . . . , (24.18)

where

R(3)
mk = −2λ

1∫

−1

P(−3/2,−3/2)
k+1 (x)P(1/2,1/2)

m+1 (x)dx,

R(4)
mk = 1

2

∫ 1

−1

1

b0(x)
P(5/2,5/2)
k−1 (x)P(1/2,1/2)

m+1 (x)dx,

g̃m(t) =
1∫

−1

g(t, x)P(1/2,1/2)
m+1 (x)dx,

δm = 4k0m
(�(m + 5/2)

�(m + 3)

)2 → 1, m → ∞

T̃m(t) = ˙̃gm(t0)

t∫

t0

dτ

α(τ)
+

t∫

t0

dτ

α(τ)

τ∫

t0

[ ¨̃gm(s) + γ ˙̃gm(s)
]
α(s)ds.
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Using again the Darboux formula, and the well-known relation for the Chebyshev
second-order polynomials (see [20, 23])

P(1/2,1/2)
m (x) = �(m + 3/2)√

π�(m + 2)
Um(x), Um(cos θ) = sin(n + 1)θ

sin θ
.

we obtain the following estimates:

R(3)
mk =

{
O(m−1), k = m, m → ∞,

O(m−5/2), O(k−5/2) k �= m, m → ∞, k → ∞,

R(4)
mk =

{
O(m−1), k = m, m → ∞,

O(m−1/2), O(k−1/2) k �= m, m → ∞, k → ∞,

g̃m = O(m−1/2), m → ∞.

Thus, systems (24.15) and (24.18) are quasi-completely regular for any positive
values of parameters k0 and λ in the class of bounded sequences.

On the basis of the Hilbert alternatives [24, 25], if the determinants of the corre-
sponding finite systems of linear algebraic equations are other than zero, then systems
(24.15) and (24.18) will have unique solutions in the class of bounded sequences.
Therefore, by the equivalence of system (24.15), (or (24.18)) and SIDE (24.3) the
latter has a unique solution.

24.5 Discussion and Numerical Results

Asymptotic estimates for the solution of integro-differential equation (24.2) are
obtained. Amethod of reduction for infinite regular systems of linear algebraic equa-
tions is justified. For any law of variations of the stiffness of the patch, tangential
contact stresses have finite values at the ends of patch.

To obtain numerical results, specific values of the aging functions of the plate,
patch and glue materials considered in the form

ϕ1(t) =0.0098ϕ3(t),

ϕ2(t) =0.00123ϕ3(t),

ϕ3(t) =0.09 · 10−10 + 4, 82 · 10−10

t
.
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The numerical values of the remaining parameters of the problem are taken as
follows:

E1 = 120 × 109 MPa, ν1 = 0, 5,E2 = 95 × 109 MPa, ν2 = 0, 3,G(1)
0 = 0.117 × 109 MPa,

(G(2)
0 = 11.7 × 109 MPa),

h0 = 5 × 10−4 M, h1(x) = h1 = 5 × 10−2 M, γ = 0.0261/day,

q(1)
0 (x) = 105

√
1 − x2 H,

(
q(2)
0 (x) = 107

√
1 − x2 H

)
, ρi = 0, (i = 1, 2, 3),

t0 = 45 days, t(1) = 2.5 × 103 days, (t2 = 9 · 103 days).

The shortened finite systems of linear algebraic equations corresponding to the
systems (24.15) and (24.18) consisting of ten and twelve equations have been solved.
The numerical results show that an increase in the number of equations in systems
led to a change only in the seventh decimal place in the solutions.

Increasing of the shear modulus of the glue causes the increase of the sought
contact stresses, and the increase of the time value is corresponded a decrease of the
values of these stresses. For comparison, the following should be noted: in contrast
to a number of works in which a rigid contact between two interacting materials is
considered and where unknown contact stresses have singularities at the ends of the
contact line (i.e., stress concentrations arise); in this work, the contact between two
bodies with viscoelastic (creep) properties is carried out using a thin layer of glue,
and therefore the found contact stresses at the ends of the contact line turned out to
be limited (finite). Obviously, the absence of stress concentration in the deformable
body is extremely important from an engineering point of view.
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Chapter 25
An Efficient Treatment of Sound
Diffraction by Arbitrary Obstacles
with Angles

Mezhlum Sumbatyan and Natalia Musatova

Abstract The problemunder consideration arises in ultrasonic evaluation ofmodern
elasticmaterials, in the casewhen potential defectsmay contain sharp corners on their
boundary.Thepaper is concernedwith a two-dimensional diffractionof a point source
acoustic wave by arbitrary defect containing a finite number of angles. By Boundary
Element Method (BEM), the problem is reduced to the integral equation, over the
boundary of the obstacle. We apply a numerical approach, with a discretization of
the boundary curve. Then the main Boundary Integral Equation (BIE) is converted
to the system of linear algebraic equations (SLAE). Two specific approaches are
used to improve the precision of the solution. The first one is based on two different
meshes—near and outside a small neighbourhood of the corners. The second one is
to take into account the angles, which consists of explicit analytical representation
for those matrix elements connected with the nodes closest to the angles. This idea
based on a small argument asymptotics of the Hankel function, in a combination with
the first advanced method, demonstrates good precision, including small vicinity of
the angles as well. As an example, we test the proposed algorithm in the case of
diffraction by a polygon with straight-line sides.

Keywords Elastic materials · Ultrasonic evaluation · Acoustic waves ·
Diffraction · Boundary integral equation

25.1 Introduction

The evaluation of strength is a key problem in mechanics of modern solid materials,
like composites, solar panels, plastics, fibre-optical materials, and others. One of
efficient methods to evaluate the interior structure of such materials is the ultrasonic
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scanning. The latter is based on diffraction of acoustic waves, generated by some
sensors, and propagating inside the material or over its surface. The diffraction by
defects of regular geometry is a classical problem of wave propagation and scattering
[1]. In the case, when the boundary of a defect contains sharp corners, the numerical
simulation of the diffraction faces difficulties, due to irregular behaviour of the wave
structure around the angles. Themain purpose of the present work is to propose some
methods which can overcome this difficulty.

In the two-dimensional problem, a particular case of defects with corners, is
represented by polygons which may contain both acute and/or obtuse angles. The
scattering of sound by a polygon is a classical problem of the diffraction theory.
Chronologically, first approaches were based on analytical methods allied with the
Geometrical Theory of Diffraction (GTD), see [2, 3]. Being based on the GTD, all
methods are efficient only for high frequencies. In the meantime, the formulated
problem admits a natural treatment by reducing it to a BIE, where the key trouble
is given by a numerical instability of the solution near the corners of the polygon.
For diffraction by infinite wedge with single arbitrary angle there are known some
efficient solutions, both analytical and numerical (a good survey is presented in [4]).
Recently, the present authorswith a colleague applied theBIE technique to diffraction
by an infinite wedge [5]. The main goal of the present work is to extend some results,
obtained in [5], to defects whose boundary line contains a finite number of corners.
Regarding diffraction by polygons, the SLAEs arising with a direct discretization of
the respective BIE, leads to a specific matrix with irregular elements, corresponding
to mesh nodes closest to the corners. This gives, as a rule, a significant error in a
vicinity of the corners. To get over this difficulty, we propose an improved approach
which modifies the basic matrix and provides numerical stability.

25.2 Formulation of the Problem

Let us consider the two-dimensional diffraction problem about a harmonic sound
wave generated by a point source S located near an obstacle with a piecewise-smooth
closed boundary contour with the finite number of angles, see Fig. 25.1. Within the
frames of the BEM, the diffraction problem can be reduced to the Fredholm BIE of
the second kind [6, 7]:

Fig. 25.1 A defect with
angles in a solid material
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p(η) − 2
∫

l

∂G(ξ, η)

∂nξ

p(ξ) dl = 2pinc(η), η ∈ l, (25.1)

where p(ξ) is the total acoustic pressure over the boundary contour l, pinc is the
acoustic pressure in the incident wave, G is the Green’s function, nξ is the unit
normal to the boundary contour l at point ξ directed towards the acoustic medium,
dl is the length of the elementary arc over the boundary curve at point ξ . Both
<<interior>> ξ = (ξ1, ξ2) and <<exterior>> η = (η1, η2) points are some two-
dimensional points on the boundary.

Equation (25.1) is indeed of the Fredholm type since for a piecewise-smooth
boundary the kernel is piecewise-continuous, so the integral operator in the equation
is compact in the space C(l). Therefore, various efficient theoretical and numerical
methods can be applied to this equation. The coefficient in front of p(η) in the BIE
(25.1) is the unity only in the case when point η does not coincide with any corner.
Otherwise this factor depends on the value of respective interior angle β (see [6]):

β

π
p(η) − 2

∫

l

∂G(ξ, η)

∂nξ

p(ξ) dl = 2pinc(η), (η ∈ l) . (25.2)

In [5] an infinite wedge with a sharp angle is considered, and there is approved
that the contribution of the small vicinity of the angle in the BIE is small. Therefore,
there is no need to put a particular mesh node right at the corner with discretization,
to obtain more accurate solution. The same property is also valid for any obstacle
with a finite number of angles. This follows from the so-called Meixner conditon
(see [4]), which claims that the behaviour of solution as r → 0 in any vicinity of the
sharp angle is as follows:

p ∼ D + O(r δ), δ = min

(
π

2(π − α)
, 2

)
, (25.3)

where r is the distance between the current point and the corner, D is a certain
constant, and α = β/2 is the half of the interior angle. As can be seen, there is no
singularity whilst 0 ≤ α < π . For this reason we consider below the basic BIE only
in the form (25.1), implying that both in the continuous and in the discrete form the
location of point η is always outside the corners.

The Green’s function in the two-dimensional case is the Hankel function of the
first kind:

G(ξ, η) = i

4
H (1)

0 (kr), r̄ = ξ − η, r = |r̄ |, (25.4)

where k = ω/c is the wave number, and the dependence on time in the harmonic
regime is taken with the factor exp(−iωt), which is hidden in all formulas. The
derivative of the Green’s function is easily calculated in the following form:
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∂G

∂nξ

= ∂G

∂r
· ∂r

∂nξ

,
∂G

∂r
= − ik

4
H (1)

1 (kr),
∂r

∂nξ

= (r̄ , n̄ξ )

r
. (25.5)

The pressure in the incident field is equal to

pinc(r0) = i

4
H (1)

0 (kr0) , (25.6)

where r0 is a distance between the exterior point η and the source S = (x0, y0). Any
pair of coordinates in the parentheses means the pair of the Cartesian coordinates in
the natural coordinate system (x1, x2), see Fig. 25.1.

With so doing, one can rewrite the main BIE (25.1) in the simpler form:

p(η) + ik

2

∫

l

H (1)
1 (kr)

(r̄ , n̄ξ )

r
p(ξ) dl= i

2
H (1)

0 (kr0), (η ∈ l). (25.7)

25.3 An Example of a Specific Geometry

Generally, the approach described below is applicable to any obstacle of arbitrary
complex geometry, containing a finite number of angles. In particular, this is applied
to arbitrary polygon with curved sides. However, to test numerical efficiency of the
proposedmethod, let us restrict the consideration by the simplest case of the isosceles
triangle. Let us assume that the boundary curve consists of two lateral sides and the
base. A point source S is located somewhere near the right sharp corner of the interior
angle 2θ , see Fig. 25.2. Here L is the length of the lateral sides, H is the length of
the base.

For further discretization we rewrite the main BIE (25.7) as follows:

p(η) +
∫

l

K (ξ, η)p(ξ) dl= 2pinc, K (ξ, η) = ik

2
H (1)

1 (kr)
(r̄ , n̄ξ )

r
, (η ∈ l) ,

(25.8)
where pinc is given byEq. (25.6). Let us divide the lateral sides of the isosceles triangle
to N equal intervals with the step h1 = L/N and the base—to M equal intervals with

Fig. 25.2 Diffraction by the
isosceles triangle
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the step h2 = H/M , and put respective nodes of the mesh at the central points of
all elementary intervals. Then the total number of boundary nodes is K = 2N + M .
Let us operate with the collocation technique, which implies the grids for variables
ξ and η to coincide, i.e. η j = ξ j , ∀ j . The discretization is performed on the basis
of the Simpson quadrature formula. For this aim, let us introduce the three points:
the central point t0 j coinciding with ξ j and η j , the beginning point t1 j which is a
half-step before and the endpoint t2 j which is a half-step after the central point t0 j ,
if passing along the boundary contour anticlockwise.

This implies for the upper lateral side:

ξ j = t0 j = (−( j − 0.5)h1 cos θ; ( j − 0.5)h1 sin θ) , j = 1, . . . , N ,

t1 j = ξ j + (h1 cos θ/2;−h1 sin θ/2) ,

t2 j = ξ j + (−h1 cos θ/2; h1 sin θ/2) .

(25.9)

Analogous expressions are valid for the left basis:

ξ j = (−L cos θ; H/2 − (J − 0.5)h2) , J = j − N , j = N + 1, . . . , N + M,

t1 j = ξ j + (0; h2/2) ,

t2 j = ξ j + (0; −h2/2) ,

(25.10)
and for the lower lateral side:

ξ j = t0 j = − ((J − 0.5)h1 cos θ; (J − 0.5)h1 sin θ) ,

J = K − j, j = N + M + 1, . . . , K ,

t1 j = ξ j + (−h1 cos θ/2;−h1 sin θ/2) ,

t2 j = ξ j + (h1 cos θ/2; h1 sin θ/2) .

(25.11)

The discretization reduces the BIE (25.8) to the SLAE, as follows:

Ap = f, (25.12)

where A is a matrix of dimension K × K ; p, f are vectors of dimension K . The
elements of matrix A = (

amj
)
are of the following form:

amj = δmj + bmj , bmj = h j

6

[
K (t1 j , ηm) + 4K (t0 j , ηm) + K (t2 j , ηm)

]
,

p = (p j ), p j = p(ξ j ) = p(η j ) = p(t0 j ) ,

f = ( fm), fm = i

2
H (1)

0 (kr0) ,

(25.13)
where δmj is Kronecker’s delta, h j is either h1 or h2 for respective side of the triangle.
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25.4 Qualitative Algebraic Properties of the Basic Matrix

From explicit expressions for the kernel (25.4)–(25.7), one can easily deduce the
basic matrix (25.12)–(25.13) to possess some interesting algebraic properties. First
of all, the scalar product of the unit normal to the boundary contour and the radius-
vector r̄ = ξ − η in Eq. (25.8) predetermines bmj = 0 when boundary points ξ j and
ηm both belong to the same side of the triangle. Therefore, the third part of all ele-
ments are simply Kronecker’s deltas, which are regular. Unfortunately, the elements
of the matrix A become less regular when the grid nodes ξ j and ηm approach simul-
taneously any corner, being located over neighbour sides. Since the Hankel function
is asymptotically H (1)

1 (z) ∼ 2/(π i z), z → 0, then with r → 0 the argument of the
Hankel function in (25.8) tends to zero and the kernel K (ξ, η) tends to infinity. This
results in catastrophic increase of respective matrix elements bmj in (25.9)–(25.11).
Obviously, there is the most critical combination in this sense when variable ξ turns
into t11 which coincides with the right corner whilst variable η turns into the last
mesh node ηK closest to the corner, when looking at a vicinity of the right acute
angle. The same combination takes place, say for the isosceles triangle in a vicinity
of two left corners, and obviously—for any obstacle with angles in small vicinities
of every its corner.

If speaking about continuous form of the basic BIE, under the condition that
exterior variableη does not coincidewith any corner, the integral in theBIEconverges
in the classical sense. This automatically implies that all elements bmj of respective
matrix are finite. However being finite, some of them may become too huge, not
guaranteeing stable numerical calculations. In the general theoretical frame, this
property requires a different investigation. However, in many concrete examples
which were performed for some geometries with angles, we did observe that such
specific geometries lead as a rule to irregular behaviour of the solution near the
corners. It is surprisingly that in some particular cases the direct treatment, not taking
into account the irregularity described above, leads to quite acceptable precision. One
of such examples is demonstrated in Fig. 25.3 for the obstacle in the form of regular
triangle, where both real and imaginary parts of the boundary function p(ξ) are
demonstrated over the boundary contour.

It is obvious that in this case θ = π/6 for all three interior angles. One can see
from this diagram that both the lines are very smooth over the boundary line, even
in the neighbourhood of the corners.

Let us vary the acute angles of the isosceles triangle, to see how the pressure
behaves with such a variation. Figures 25.4 and 25.5 demonstrate this property when
the half of the right angle, quantity θ , passes through the values π/9, π/12 and
the sharpest one π/18. Even a general diagram for real part of the solution shows
extremely irregular behaviour in a small vicinity of the first node (recall that the
enumeration of themesh nodes starts from the right acute anglewith an anticlockwise
traversal along the boundary contour). This feature becomes more clear from the
more detailed diagram, see Fig. 25.5, where it is clearly seen that wrong sharp bends
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Fig. 25.3 Functions
Re[p(ξ)] (solid line) and
Im[p(ξ)] (dashed line)
versus distance z along the
boundary contour:
θ = π/6, k = 1, H = L =
10, S = (1, 0), M = N =
1000, K = 3000.eps

Fig. 25.4 Function
Re[p(ξ)] versus node’s
number for different
isosceles triangles: k = 0.5, L
= 10, S = (1,0), N =
M=1000, K = 3000

take place for all three angles of the triangle. And the amplitude of the jumps in the
diagram lines becomes greater with decreasing of the acute angle.

Figure 25.6 shows that simple application of a denser mesh, by increasing its
dimension, does not improve significantly the precision of the solution around the
acute angles. This feature becomes apparent stronger near the sharpest right angle
(Fig. 25.6a). The amplitude of the jump in the diagram exceeds 50%, keeping almost
the same value with the increase of the mesh dimension even up to the value K =
14,000.
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Fig. 25.5 Detailed fragments of Fig. 25.4, near the upper angle (a) and the right angle (b)

Fig. 25.6 Function Re[p(ξ)] versus distance z, near the right angle (a) and the upper angle (b):
θ = π/18, k = 0.5, L = 10, S = (1, 0). Uniform meshes of different dimensions

25.5 Two Methods to Improve the Structure
of the Basic Matrix

It is obvious that the irregularity of the solution, described in the final part of the
previous section, is caused by a specific structure of the basic matrix A. Geomet-
rically, this is connected with presence of the sharp angles. Algebraically, this is
caused by the influence of elements bmj , for which respective nodes ξ j and ηm are
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located on neighbour sides of the boundary contour, being simultaneously closest to
the same sharp angle. For such combinations of nodes kernel K (ξ, η) in Eq. (25.8) is
extremely large, and so are respective elements of the matrix. These large elements
are located outside the principal diagonal, therefore they make worse the qualitative
algebraic properties of the matrix and the convergence of any iterative scheme for
respective SLAE as well.

The first idea, to overcome this difficulty, is to apply a non-uniform mesh which
becomes denser when the nodes approach any corner. Since we apply the Simpson
quadrature formula with discretization of the basic integral operator in the BIE at
hand, this is problematic because the Simpson rule requires equal steps over two
neighbour elementary subintervals. However, this idea in the almost same way can
be realized by choosing small but finite vicinities of every corner where significantly
denser uniform mesh may be used than the mesh over the remaining smooth parts
of the boundary contour. By accepting the abbreviation nbhd for the word neigh-
bourhood, the indicated small intervals near the corners may be taken, say of length
Lnbhd/L = 10−q (good values for q are from 1.0 to 4.0), with a special relatively
small step hnbhd = Lnbhd/Nnbhd , where the dimension Nnbhd may be accepted suf-
ficiently large. With doing so, over the remaining smooth part of the boundary, for
every such a smooth boundary intervals, relatively moderate number of respective
nodes may be taken—say, N ∗ nodes with the step h∗

1 = (L − 2Lnbhd)/N ∗ for the
upper and lower lateral sides (if we speak about the isosceles triangle), and M∗
nodes with the step h∗

2 = (H − 2Lnbhd)/M∗ for the left triangle’s base. Then the
total number of nodes for the full mesh is given as K = 6Nnbhd + 2N ∗ + M∗. The
basic advance of this method is that, by keeping a moderate dimension K of the full
mesh, the mesh-step near the corners becomes extremely small,—so that the critical
elements corresponding to nodes near the corners, being multiplied with discretiza-
tion of the basic integral by small values of these steps, are calculated with a higher
precision, if compared with the standard ungraceful method described above. The
scheme of this mesh is shown in Fig. 25.7.

Figure 25.8 shows that typically this first modified method works well, even not
removing the irregularity completely. Indeed, the modified method with the mesh
dimension K = 670 (red points) demonstrates better precision than the standard

Fig. 25.7 A refined
discretization scheme with a
non-uniform mesh, denser
near the corners



356 M. Sumbatyan and N. Musatova

Fig. 25.8 Function
Re[p(ξ)] versus distance z,
with a dense mesh near the
right corner and a normal
mesh on the smooth part:
θ = π/18, k = 0.5, L =
10, S = (1, 0)

approach with the mesh dimension K = 2100 (blue line). For the first (improved)
method we put here near the angle Lnbhd = 0.5, Nnbhd = 100, hence the step is
hnbhd = 0.5/100 = 0.005. For the standardmethodwe put h ≈ 0.01, uniformly over
the entire boundary contour. It is seen that with the same order of the grids’ steps the
improved method leads to a more regular solution. Nevertheless, as indicated above,
this first improved method does not remove absolutely the irregularity in the vicinity
of the sharp angle. Belowwe can see that a combination of this first improvedmethod
with the second advanced one described below leads to very stable solution, free of
any irregular behaviour.

Let us pass to an alternative improved method which is based on the idea that
instead of constructing a quadrature formula near any corner with a certain dis-
cretization, it is more preferable to calculate the integral over a small vicinity of
the corner analytically. This idea is based on the asymptotic representation of the
Hankel function for small argument (see the first paragraph of the previous section),
and firstly was applied for diffraction by an infinite wedge in [5]. This idea can
directly be extended to any polygon with a finite number of corners. Fortunately,
the arising integral, taken over a small subinterval of length h adjoint with a cor-
ner, can be calculated analytically indeed. Thus, on example of the right corner of
the isosceles triangle, in the case when “exterior” point η turns to the last K -th
mesh node: ηK = {−(h/2) cos θ,−(h/2) sin θ}, and “interior” point ξ passes over
the first subinterval S1 of the grid, one easily derives the following relations: ξ =
{−t cos θ, t sin θ}, t ∈ (0, h), then r̄ = ξ − ηK = {(h/2 − t) cos θ, (h/2 + t) sin θ},
n̄ξ = {sin θ, cos θ}, (r̄ , n̄ξ ) = (h/2) sin 2θ). Therefore, the integral over subinterval
S1 for the kernel in (25.8) can explicitly be calculated for small h, as follows:
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ik

2

∫

S1

H (1)
1 (kr)

(r̄ , n̄ξ )

r
dlξ ∼ 1

π

∫

S1

(r̄ , n̄ξ )

r2
dlξ

= h

2π
sin 2θ

h∫

0

dt

t2−h t cos 2θ+h2/4

= 1

π

(
arctan

2−cos 2θ

sin 2θ
+ arctan

cos 2θ

sin 2θ

)

= 1

π

[
arctan

2−cos 2θ

sin 2θ
+ π

2
− arccot(cot 2θ)

]

= 1

π
arctan

2−cos 2θ

sin 2θ
+ π−4θ

2π

(25.14)

if the interior angle 2θ is acute. For arbitrary angle, respective expression can be
found in [5].

Figure 25.9 demonstrates that a combination of these two proposed methods
results in an amazing improvement of the solution. There are compared three ways
of numerical calculation of acoustic pressure on the boundary contour. The first
one (green line) is based on a simple uniform mesh all over the contour, and this
leads to the roughest result due to a jump of respective diagram line near the right
corner. The blue line is related to the first improved method, with a non-uniform
mesh denser near the corners. Here we can see a slight improvement in precision,
with significantly less mesh dimension. And the red line is based upon a combination
of two advanced methods proposed above: (i) a denser mesh near the corners, and
(ii) explicit analytical expressions for certain matrix elements. One can see from
Fig. 25.9 that red line is the best amongst three ones, and this requires a mesh of a
smaller dimension.

Fig. 25.9 The same as in Fig. 25.8, three different methods: a total diagram along the full boundary;
b a detailed view near the right angle
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It should finally be noted that once the boundary value of the acoustic pressure,
function p(ξ), ξ ∈ l is determined, the scattered wave field at arbitrary point in the
acoustic medium can directly be calculated by the following formula:

psc(R) =
∫

l

∂G(ξ, R)

∂nξ

p(ξ) dl =
∫

l

(r̄R, n̄ξ )

|r̄R| p(ξ) dl . (25.15)

A clear way to convert this continuous expression to an algebraic form, after dis-
cretization, is obvious.

25.6 Conclusions

1. This paper investigates a two-dimensional diffraction problem applied to defect
evaluation in the modern elastic materials by ultrasonic methods, about a point
source acoustic wave by arbitrary obstacle containing a finite number of angles.
As a test example there is chosen an isosceles triangle. The Boundary Element
Method is successfully implemented to this problem. The problem is reduces to
the integral equation over the boundary of the obstacle. Then after discretization,
the main BIE is converted to the SLAE, which is solved by a build-in Matlab
instrument LSQR. The direct approach based on the uniform mesh does not
provide the required precision, due to a certain irregularity of the basic matrix.

2. The authors propose an advanced disretization method, which is based on the
idea of small intervals around every corner, where the uniform mesh is taken
significantly denser, compared to the remaining smooth parts of the boundary
curve. Therefore the mesh structure is such that far from the corners its step
is moderate, whilst inside the small intervals the step may be chosen extremely
small. Some concrete examples show that this first method improves the precision
but does not finally remove the irregularity near the angles.

3. For the reason indicated in the previous paragraph, we propose the secondmethod
which is based upon an asymptotic behaviour of the Hankel function for small
argument. This allows us to write out the most irregular elements of the basic
matrix, associated with small intervals closest to the corners, in an explicit ana-
lytical form, instead of to treat respective integrals over the small vicinity of the
corners by a certain disretization scheme. This idea is taken from the authors’
recent work devoted to diffraction by an infinite wedge [5]. Such an approach
demonstrates good precision and can be used for any geometry containing finite
number of angles.

4. The most impressive results are obtained by a combination of the two proposed
methods in the unique algorithm. This demonstrates regular behaviour of the
solutionwith variation of the interior angle, when passing to the very sharp angles,
more precisely—for test values of the angle: θ = π/6, π/9, π/12, π/18.



25 An Efficient Treatment of Sound Diffraction … 359

Acknowledgements The authors are grateful to the Russian Foundation for Basic Research
(RFBR), for the support by Project No. 19-29-06013. The first author dedicates this work to a
memory of his scientific adviser Prof. Nagush Arutyunyan during the period of three Ph.D. years.

References

1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)
2. Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116–130 (1962)
3. Borovikov, V.A., Kinber, B.Ye.: Geometrical theory of diffraction. IEE Publ, London (1994)
4. Nethercote, M.A., Assier, R.C., Abrahams, I.D.: Analytical methods for perfect wedge diffrac-

tion: a review. Wave Motion 93, 102479 (2020)
5. Sumbatyan, M.A., Martynova, T.S., Musatova, N.K.: Boundary element methods in diffraction

of a point-source acoustic wave by a rigid infinite wedge. Eng. Anal. Boundary Elem. 127,
157–167 (2021)

6. Brebbia, C.A., Telles, J.C.F., Wrobel, L.: Boundary Element Techniques: Theory and Appli-
cations in Engineering. Springer, Berlin (1984)

7. Sumbatyan,M.A., Scalia, A.: Equations ofMathematical Diffraction Theory. CRC Press, Boca
Raton (2005)



Chapter 26
Exact Solution of the Axisymmetric
Problem for Poroelastic Finite Cylinder

Natalya Vaysfeld and Zinaida Zhuravlova

Abstract The novelty of this paper is the application of the mathematical apparatus
of boundary problems’ theory to solve poroelasticity problems. The new analytical
method to solve a three-dimensional boundary problem of poroelasticity for a finite
circular cylinder in terms of Biot’s model was worked out. With the help of this
method, the explicit formulae for displacements, stress, and pore pressure inside the
cylinder were derived. The construction of the solution required the use of matrix
differential calculation apparatus. Derived explicit formulae that describe the cylin-
der’s stress state can be used as etalons while applying various numerical methods
to solve analogous problems of poroelasticity for finite circular cylinder and also for
the clarification of important qualitative characteristics of the cylinder’s stress state
regarding the load type and poroelastic parameters. The proposed analytical solving
method allows to solve the problems in more complex statements in the presence of
defects in the form of rigid inclusions and cracks inside the cylinder.

Keywords Poroelastic cylinder · Integral transform · Matrix differential
calculation · Vector boundary problem · Exact solution

26.1 Introduction

Poroelastic materials are widely used in engineering and medicine, which leads to
the necessity of the investigation of their properties depending on the parameters of
the certain poroelastic medium and different work regimes. For this purpose, various
modeling methods are used. As it is known, there are many such models, which

N. Vaysfeld · Z. Zhuravlova
Faculty of Mathematics, Physics and Information Technologies,
Odessa I.I. Mechnikov National University, str. Dvoryanskaya, 2, Odessa 65082, Ukraine
e-mail: z.zhuravlova@onu.edu.ua

N. Vaysfeld (B)
King’s College, London Strand, London WC2R 2LS, UK
e-mail: vaysfeld@onu.edu.ua; natalya.vaysfeld@kcl.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Altenbach et al. (eds.), Solid Mechanics, Theory of Elasticity and Creep,
Advanced Structured Materials 185, https://doi.org/10.1007/978-3-031-18564-9_26

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18564-9_26&domain=pdf
mailto:z.zhuravlova@onu.edu.ua
mailto:vaysfeld@onu.edu.ua
mailto:natalya.vaysfeld@kcl.ac.uk
https://doi.org/10.1007/978-3-031-18564-9_26


362 N. Vaysfeld and Z. Zhuravlova

were developed in [1–5]. The modeling of poroelastic problems can be based both
on the application of pure numeric solving methods and to solve using analytical
approaches.

Among the papers dedicated to the numeric analysis of poroelasticity problems,
one should indicate different applications of such numerical methods as: finite
element method, stochastic methods, and pseudo-transient numerical method. An
axisymmetric cylindrical model of fully coupled fluid flow was presented in [6], and
elastic deformation solution was derived by a pseudo-transient numerical method.
The development of a mechanobiological concept of reparative regeneration of bone
tissue, controlled by the law of cell differentiation and the action of an external
mechanical load of a periodic nature, was presented in [7]. A mathematical model
had been developed there for bone reconstruction in the volume of a porous implant
(scaffold) with a regular or chaotic internal structure based on the analysis of the
stress–strain state of a poroelastic medium by the finite element method. The dis-
persion equation for cylindrical poroelastic structures was solved numerically in [8]
with the help of an algorithm based on the spectral method which solved the cor-
responding equations as a generalized eigenvalue problem. The stochastic meshless
local Petrov–Galerkin method was employed in [9] for dynamic analysis of cylin-
ders made of fully saturated porous materials while considering uncertainties in the
constitutive mechanical properties.

It would be possible to represent a number more researches here, but this is not
in the interest of this paper. This is due to the fact that with the help of numerical
methods it is impossible to establish important qualitative characteristics of the stress
and pore pressure in body, as, for example, in corner points of the body, and also in
any areas of essential growth and concentration of stress and pore pressure. With this
purpose, the effective analytical methods might be used as will be seen from further
review.

But, it should be emphasized that the quantity of papers dedicated to the applica-
tion of analytical method for solving poroelasticity problems is significantly limited.
Some of the papers propose the application of a combined approach based on the
mutual use of analytical methods with the following application of various numeri-
cal techniques. Among these problems, the problem of a cylinder under plane strain
conditions after sudden application of a constant fluid pressure [10] should be men-
tioned. There the solution was obtained explicitly for the Laplace transform of the
various quantities, and the solution showing the dependence of parameters on time
was then calculated using a numerical inversion technique. The formulation, based
on the Biot model, was approximated by the equivalent elastic solid model in [11],
and the problem of long bone-like or borehole sample specimen probed by low fre-
quency sound was solved. The transient response of a poroelastic cylinder to sudden
fluid injection was studied in [12]. The analytical solution was derived for a partial
case, and numerical solutions were derived for different cases there.

Generalized solutions for the differential equations of three-dimensional con-
solidation were deduced with the aid of Laplace transformations for strains and
stresses in cylindrical bodies in [13]. Acoustic scattering of spherical waves gener-
ated by a monopole point source in a perfect compressible fluid by a fluid-saturated
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porous cylinder of infinite length was studied theoretically in [14]. The phenomena
of mechanical creep and deformation in rock formations, coupled with the hydraulic
effects of fluid flow, was studied in [15]. The theory was based on Biot’s poroe-
lasticity, generalized to encompass viscoelastic effects through the correspondence
principle. Based on the resultant poroviscoelastic theory, stress and deformation
analyses were performed. The axisymmetric non-stationary problem of propagation
surface disturbances from the boundary of a semi-plane filled with elasticity-porous
medium was solved with the help of Hankel and Laplace transforms in [16].

Among thesemethods, for example, themethod proposed in [17] stands out,where
the solution for hollow cylindrical body of arbitrary cross-section with a tunnel crack
under conditions of antiplane deformation was proposed. Two elasticity problems
for cylinders were solved in [18] with the help of Hankel integral transforms and
matrix differential calculations, which allows us to get effective analytical solutions.
The axisymmetric elasticity problem for a cylinder with conditions of the first main
elasticity problem on the cylinder’s surface was solved in [19]. The methods devel-
oped in [20, 21] seem to the authors to be very promising from the point of view of
their application for problems in poroelastic formulation.

It is noticeable that the number of analytical methods developed for solving poroe-
lasticity problems is significantly less than solving with purely numerical approaches
and requires further development. So, the authors of the paper proposed a new ana-
lytical approach [20] resulting in the exact solution of axisymmetric poroelasticity
problem for a circular finite cylinder under the conditions ofBiot’smodel [2].Accord-
ingly, the initial problem is reduced to a one-dimensional problem with the help of
finite Fourier integral transform. The one-dimensional problem is formulated as a
vector boundary problem. Its solution is constructed via matrix differential calcula-
tion apparatus. The derived formulae allow investigation of the cylinder’smechanical
characteristics and pore pressure depending on the poroelasticity parameters and load
types using the explicit formulae for stress, displacements, and pore pressure.

26.2 Statement of the Problem

The poroelastic cylinder, 0 < R < a,−π < ϕ < π, 0 < h (or in dimensionless form
0 < r < 1,−π < ϕ < π, 0 < z < d, d = h/a) is considered in the terms of Biot’s
model [2] (Fig. 26.1).

At the boundary r = 1 the following conditions are fulfilled

σ F
r

∣
∣
r=1 = −l(z), τ F

rz

∣
∣
r=1 = 0, p|r=1 = P(z), (26.1)

where p(r, z) is dimensionless pore pressure, σ F
r (r, z), τ F

rz(r, z) are dimensionless
normal and shear full stress.

p(r, z) = p̃(r, z)

G
, σ F

r (r, z) = σ̃ F
r (r, z)

G
, τ F

rz(r, z) = τ̃ F
rz(r, z)

G
,
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Fig. 26.1 Geometry and
coordinate system of the
poroelastic cylinder

where p̃(r, z) is pore pressure, σ̃ F
r (r, z), τ̃ F

rz(r, z) are normal and shear full stress, G
is shear modulus.

According to the relation between full and effective stress [4], the conditions
(26.1) can be rewritten in the following form

σr |r=1 = −l(z) − αP(z), τr z|r=1 = 0, p|r=1 = P(z), (26.2)

where σr (r, z), τr z(r, z) are dimensionless normal and shear effective stress.
The conditions of ideal contact with undrained conditions are given at the bound-

aries z = 0, z = d

w|z=0 = 0, τr z|z=0 = 0,
∂p

∂z

∣
∣
∣
∣
z=0

= 0,

w|z=d = 0, τr z|z=d = 0,
∂p

∂z

∣
∣
∣
∣
z=d

= 0,
(26.3)

Here, u(r, z) = ur (r,z)
a , w(r, z) = uz(r,z)

a are dimensionless displacements of the solid
skeleton.

The system of equilibrium and storage equations has the following dimensionless
form [4, 22]

1

r

∂

∂r

(

r
∂u

∂r

)

− 1

r2
u + κ − 1

κ + 1

∂2u

∂z2
+ 2

κ + 1

∂2w

∂r∂z
− α

κ − 1

κ + 1

∂p

∂r
= 0,

1

r

∂

∂r

(

r
∂w

∂r

)

+ κ + 1

κ − 1

∂2w

∂z2
+ 2

κ − 1

1

r

∂

∂r

(

r
∂u

∂z

)

− α
∂p

∂z
= 0,

1

r

∂

∂r

(

r
∂p

∂r

)

+ ∂2 p

∂z2
− α

K

[
1

r

∂

∂r
(ru) + ∂w

∂z

]

− SP
K

p = 0,

(26.4)
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Here, κ = 3 − 4μ is Muskhelishvili’s constant; μ is Poisson ratio; α is Biot’s coef-
ficient; Sp is storativity of the pore space; k is permeability. K = a2

Gk , SP = SpG are
dimensionless values. The stress state of the poroelastic cylinder, which satisfy the
correspondences (26.2)–(26.4), should be found.

26.3 Exact Solution of a One-Dimensional Problem
in the Transform Domain and Its Analytical Inversion

Theboundary-valuedproblem (26.2)–(26.4) is reduced to aone-dimensional problem
with the help of finite sin-, cos-Fourier transform applied regarding variable z

⎡

⎣

uβ(r)
wβ(r)
pβ(r)

⎤

⎦ =
d∫

0

⎡

⎣

u(r, z)
w(r, z)
p(r, z)

⎤

⎦

⎡

⎣

cosβz
sin βz
cosβz

⎤

⎦ dz, βn = πn
d , n = 0, 1, 2, . . .

The one-dimensional problem in the transform space is formulated in a vector form
[20]

L2yβ(r) = 0, 0 < r < 1,
Aβy′

β(1) + Bβyβ(1) = gβ
(26.5)

Here, L2 is differential operator of the second order; yβ(r) is the vector containing
displacements and pore pressure transforms; Aβ, Bβ are known matrices, and gβ is
known vector shown in Appendix A.

The solution of the boundary problem (26.5) is constructed with the help of the
matrix differential calculation [23]. According to it, the solution of the corresponding
matrix equation should be found L2Yβ(r) = 0, 0 < r < 1. Here, Yβ(r) is the matrix
3× 3 order. The correspondence L2H(r, ξ) = −H(r, ξ)M(ξ) is used, where [19]

H(r, ξ) =
⎡

⎣

J1(ξr) 0 0
0 J0(ξr) 0
0 0 J0(ξr)

⎤

⎦ ,

J0(ξr), J1(ξr) are Bessel functions,

M(ξ) =
⎡

⎣

ξ 2 + κ−1
κ+1β

2 2β
κ+1ξ −α κ−1

κ+1ξ
2β

κ−1ξ ξ 2 + κ+1
κ−1β

2 −αβ
α
K ξ

αβ

K ξ 2 + β2 + SP
K

⎤

⎦ .

According to [19], the solution of the matrix homogenous equation is constructed
by the formula:

Yβ(r) = 1

2π i

∮

C

H(r, ξ)M−1(ξ)dξ
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where M−1(ξ) is the inverse matrix to the matrix M(ξ). The closed contourC covers
all singularity points of the matrix M−1(ξ).

The determinant of the matrix M(ξ) has 2 multiple poles of the second order
ξ = iβ, ξ = −iβ and 2 simple poles

ξ = i

√

α2(κ−1)
κ+1 + SP

K
+ β2, ξ = −i

√

α2(κ−1)
κ+1 + SP

K
+ β2.

So, with the help of the residual theorem, the system of four fundamental matrix
solutions is derived Yi (r), i = 1, 4.

The solution of the boundary-valued problem (26.5) for the case when β �= 0 has
the following form

yβ(r) = (Y1(r) + Y3(r))

⎛

⎝

c1
c2
c3

⎞

⎠ (26.6)

where constants ci , i = 1, 3 are found from the boundary conditions in (26.5). The
case forβ = 0 is considered separately due to the fact that for this case the dimensions
of the problem’s matrices change and will have a dimension of 2 by 2 (see Appendix
B).

So, the solution of the boundary-valued problem in transform space is found, and
it can be defined by the formulae (26.6) and (26.9). The solutions (26.6), (26.9) are
united, and the following inverse formula is used:

⎡

⎣

u(r, z)
w(r, z)
p(r, z)

⎤

⎦ = 1

d

⎡

⎣

u0(r)
w0(r)
p0(r)

⎤

⎦ + 2

d

∞
∑

n=1

⎡

⎣

uβn (r)
wβn (r)
pβn (r)

⎤

⎦

⎡

⎣

cosβnz
sin βnz
cosβnz

⎤

⎦ , βn = πn

d
(26.7)

Here,w0(r) ≡ 0, u0(r), p0(r) are defined by the formula (26.9), and uβn (r), wβn (r),
pβn (r) are defined by the formula (26.6).

The derived formula (26.7) presents the analytical solution of the boundary-valued
problem for poroelastic cylinder (26.2)–(26.4). It should be taken into consideration
that series in (26.7) are conditionally convergent series. Using an approach based on
the summation of the weakly converging parts of the series [24] and the asymptotic
representation of the Bessel functions for large values of the argument [25], the final
expression is derived for analysis of displacements, stress, and pore pressure.

26.4 Results and Discussion

With the help of exact derived formulae, it is useful to investigate differentmechanical
characteristics depending on the size of the cylinder, poroelasticmaterial, and applied
load. Notice that conditions (26.2) can describe three different load types:
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1. when l(z) �= 0, P(z) = 0 the cylinder is loaded with the mechanical load l(z),
and perfect drainage conditions are fulfilled.

2. when l(z) = 0, P(z) �= 0 the cylinder is loaded by fluid pressure P(z), and con-
ditions of the first elasticity problem are fulfilled.

3. when−l(z) = P(z) �= 0 the cylinder is in contactwith a static fluid under pressure
P(z) [3].

The authors conducted a study for 3 different types of load applied at the cylinder:

1. concentrated mechanical load l(z) = δ(z − d/2) when P(z) = 0;
2. distributed mechanical load l(z) = sin(π z/d) when P(z) = 0;
3. distributed fluid pressure P(z) = sin(π z/d)/G when l(z) = 0.

Three different poroelastic materials [3] were investigated. Characteristics of poroe-
lastic materials are presented in Table26.1, and were used in the dimensionless form
for numerical calculations.

The numerical results corresponded to the case 1 for a concentrated mechanical
load are presented at Figs. 26.2 and 26.3. The stress and pore pressure were inves-
tigated for the different values of d at Fig. 26.2. As it can be seen from the figures,
the maximal absolute values of the normal stress and pore pressure are observed
near the place of the point of load’s application z = d/2, and the highest absolute

Table 26.1 Characteristics of poroelastic materials

Material G, N/m2 μ α k, m4/N Sp , m2/N

Ruhr
sandstone

1.33 × 1010 0.12 0.637 2 × 10−13 2.604 ×
10−11

Boise
sandstone

4.2 × 109 0.15 0.853 8 × 10−13 2.075 ×
10−13

Hard sediment 2.61 × 107 0.25 0.999 1 × 10−10 2.237 ×
10−10

Fig. 26.2 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of d for the concentrated mechanical load
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Fig. 26.3 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of the poroelastic material for the concentrated mechanical load

Fig. 26.4 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of d for the distributed mechanical load

values of the normal stress and pore pressure in this zone are reached when the
radius of the cylinder is less than the cylinder’s length d > 1. When z is close to
the edges 0 or d, the stretching stress is observed. The pore pressure is positive for
all values of d. This is caused by the drainage, which starts at the boundary of the
cylinder r = 1 and which produce a tendency for shrinkage of the cylinder’s bound-
ary. Also, the graphics of normal stress and pore pressure are symmetric regarding
the line z = d/2 where the concentrated load is applied. The numerical investigation
of cylinder’s geometric proportions shown that the stretching stress arises when the
cylinder’s radius is essentially smaller than the cylinder’s length for the case of the
concentrated load. It means that for such ratios of cylinder’s sizes, the applicability
of the proposed method is restricted. The stress and pore pressure were investigated
for the different materials when d = 1 at Fig. 26.3. As it can be seen, the increasing
of Biot’s constant implies the reduction of stress and pore pressure.

Figures26.4 and 26.5 correspond to the case 2 with distributed mechanical load.
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Fig. 26.5 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of the poroelastic material for the distributed mechanical load

The load is symmetric, so the normal stress and pore pressure are also symmetric
regarding the line z = d/2. The maximal absolute values of the normal stress and
pore pressure are reached when the radius of the cylinder is less than the cylinder’s
length d > 1 (Fig. 26.4). The results are similar to the results derived for the case
with the concentrated load, but in this case the stress and pore pressure values are
smaller by their absolute values than in the previous case. The change of stress and
pore pressure regarding the change of materials when d = 1 is shown at Fig. 26.5.
The tendency observed for the concentrated load is preserved here. The stresses and
pore pressure are greater for the material with the least Biot’s constant.

The case 3 with the distributed fluid pressure is shown in Figs. 26.6 and 26.7.
The load is symmetric, so the normal stress and pore pressure are also symmetric
regarding the line z = d/2. Comparing to the case with distributed mechanical load,
the absolute values of the normal stress and pore pressure are significantly larger.
The largest absolute values of the normal stress and pore pressure are observed when
the radius of the cylinder is less than the cylinder’s length (Fig. 26.6). In Fig. 26.7 the
change of stress and pore pressure regarding the change of materials when d = 1 is
shown. Here the highest values of pore pressure are derived for the material with the
least Biot’s constant, and the highest absolute values of the stress are presented for
the material with the highest Biot’s constant.

With the aim to validate the derived results, the calculations for small values of α

were done. The results when α = 0 completely coincide with the classical elasticity
problem under the same mechanical conditions.

1. As it is seen from the numerical investigation the application of concentrated
mechanical load to the poroelastic cylinder in comparison with the distributed
mechanical load cause higher stress and pore pressure. The highest stress and
pore pressure are reached for the distributed fluid pressure case.
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Fig. 26.6 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of d for the distributed fluid pressure

Fig. 26.7 The distributions of dimensionless effective stress σr (1/2, z) and pore pressure p(1/2, z)
during the change of the poroelastic material for the distributed fluid pressure

2. The investigation regarding porous materials characteristics shown that the
increasing of Biot’s coefficient α implies the decreasing of stress and pore pres-
sure.

3. The numerical calculation shown up the restriction of the proposed model under
the ratio of cylinder’s sizes for the case of the concentrated load.

26.5 Conclusions

The new analytical method for solving of axisymmetric poroelasticity problem for
a finite circular cylinder is proposed by authors. The problem is formulated as
three-dimensional boundary problem of poroelasticity in terms of Biot’s model. The
method is based on the application of integral transforms, reducing the problem in
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transform domain, where the exact solution for the vector boundary problem is con-
structed. It allowed derivation of the explicit formulae for the displacements, stress,
and pore pressure for the poroelastic cylinder in the frame of Biot’s model. These
explicit formulae made it possible to comprehensively investigate the dependence of
stress and pressure of the cylinder on its size, the nature of poroelastic material and
load. The proposed approach might be expanded to solve poroelasticity problems
for bodies of canonic shape with defects in the form of cracks and rigid inclusions.

Appendix A: The Form of Matrices and Vectors at Boundary Vector Problem
(5)

The matrices and vectors shown in (26.5) have the following form

L2 =
⎡

⎣

1
r

d
dr

(

r d
dr

) − 1
r2 − κ−1

κ+1β
2 2β

κ+1
d
dr −α κ−1

κ+1
d
dr

− 2β
κ−1

1
r

d
dr (r)

1
r

d
dr

(

r d
dr

) − κ+1
κ−1β

2 αβ

− α
K

1
r

d
dr (r) −αβ

K
1
r

d
dr

(

r d
dr

) − β2 − SP
K

⎤

⎦ ,

yβ(r) =
⎡

⎣

uβ(r)
wβ(r)
pβ(r)

⎤

⎦ , gβ =
⎡

⎣

lβ/2
0
Pβ

⎤

⎦ ,

Aβ =

⎡

⎢
⎢
⎣

κ + 1

2(κ − 1)
0 0

0 1 0
0 0 0

⎤

⎥
⎥
⎦

, Bβ =

⎡

⎢
⎢
⎣

3 − κ

2(κ − 1)

(3 − κ)β

2(κ − 1)
0

−β 0 0
0 0 1

⎤

⎥
⎥
⎦

Appendix B: The Particular Case of the Boundary Vector Problem (5)

In the case when β = 0 the boundary-valued problem (5) transforms to the fol-
lowing form

L̃2y0(r) = 0, 0 < r < 1,
A0y′

0(1) + B0y0(1) = g0
(26.8)

Here

L̃2 =

⎡

⎢
⎢
⎣

1

r

d

dr

(

r
d

dr

)

− 1

r2
−α

κ − 1

κ + 1

d

dr

− α

K

1

r

d

dr
(r)

1

r

d

dr

(

r
d

dr

)

− SP
K

⎤

⎥
⎥
⎦

,

y0(r) =
[

u0(r)
p0(r)

]

, g0 =
[

l0/2
P0

]

, A0 =
⎡

⎣

κ + 1

2(κ − 1)
0

0 0

⎤

⎦ , B0 =
⎡

⎣

3 − κ

2(κ − 1)
0

0 1

⎤

⎦ .

Analogically to the previous the corresponding matrix equation

L̃2Y0(r) = 0, 0 < r < 1
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is considered. The correspondence L̃2H0(r, ξ) = −H0(r, ξ)M0(ξ) is used, where

H0(r, ξ) =
[

J1(ξr) 0
0 J0(ξr)

]

, M0(ξ) =
⎡

⎢
⎣

ξ 2 −α
κ − 1

κ + 1
ξ

α

K
ξ ξ 2 + SP

K

⎤

⎥
⎦ .

The solution of the matrix homogenous equation is constructed by a formula

Y0(r) = 1

2π i

∮

C0

H0(r, ξ)M−1
0 (ξ)dξ

where M−1
0 (ξ) is the inverse matrix to the matrix M0(ξ). The closed contour C0

covers all singularity points of the matrix M−1
0 (ξ).

The determinant of the matrix M0(ξ) has 1 multiple pole of the second order
ξ = 0 and 2 simple poles

ξ = i

√

α2(κ−1)
κ+1 + SP

K
, ξ = −i

√

α2(κ−1)
κ+1 + SP

K
.

So, with the help of the residual theorem, the system of three fundamental matrix
solutions is derived Y0,i (r), i = 1, 3.

The solution of the boundary-valued problem (26.8) which corresponds to the
case when β = 0 has the following form

y0(r) = (

Y0,1(r) + Y0,3(r)
)
(

c0,1
c0,2

)

(26.9)

where constants c0,i , i = 1, 2 are found from the boundary conditions in (26.8).
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