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Preface

N. Kh. Harutyunyan (1922-1993)

On November 23, 2022, we are celebrating the 110th anniversary of the birth of
N. Kh. Harutyunyan, who was one of the founders of the Armenian school of
mechanics. He was a prominent and distinguished scientist who has gained wide
international recognition, one of the most energetic and skillful organizer of science
and higher education in Armenia, a prominent political leader, academician of Arme-
nian National Academy of Sciences. His name is connected with the formation and
further progress of a number of scientific directions in mechanics of deformable solid
bodies, among them theory of elasticity, creep, and contact mechanics. He formed
several generations of scientists in both Armenia and other countries.

N. Kh. Harutyunyan was born in 1912 in Yerevan (Russian Empire, now the
capital of the Republic of Armenia). For many years, he lived with his grandfather—
the famous historian Leo, whose huge scientific figure instilled in the young man
respect for science. In 1930, he entered the Moscow Military Engineering Academy
named after V. V. Kuybyshev. After graduating from it in 1936 and being qualified as
engineer-hydroconstructor, he returned to Armenia. He started his professional career
as a leading engineer of the construction company Sevan-Zangustroy. At the same
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time, he taught at the Yerevan Polytechnic Institute. In 1937, N. Kh. Harutyunyan
entered the postgraduate courses of the Leningrad Polytechnic Institute (now Peter
the Great St. Petersburg Polytechnic University). Communication with the greatest
scientists in mechanics like B. G. Galerkin, E. L. Nikolai, and A. I. Lurie played a
decisive role in his future scientific development. N. Kh. Harutyunyan always had
special love and respect toward the Leningrad school of mechanics, and his scientific
contacts with this school have never been broken. After defending his first doctoral
thesis (candidate of sciences) in 1941, he went to the front. His military service
during the World War II was marked with the Orders of Patriotic War of I and 11
degree, the Order of the Red Star and medals.

Demobilized from the army in 1945, N. Kh. Harutyunyan returned to Armenia
and started again his scientific and pedagogical activities. In 1949 in Moscow, at the
Institute of Mechanics of the USSR Academy of Sciences, he defended the doctoral
thesis and was awarded the title of doctor of technical sciences. In 1950, he became
the title of professor. In the same year, he was elected a full member of the Academy
of Sciences of Armenia and a member of the Presidium of this academy.

In 1952-55, his scientific activities continued at the Academy of Sciences, where
he worked as the Academician-Secretary of the Department of Engineering Sciences.
In 1955, N. Kh. Harutyunyan was appointed the head of the newly created laboratory
of creep and strength at the Institute of Mathematics and Mechanics. In 1959, he
was elected the vice-president of the Academy of Sciences. In parallel with his
scientific work, he is engaged in pedagogical activities. In 1945-51, he taught at
Yerevan Polytechnic Institute, in 1951, at Yerevan State University where he was
the professor of the Chair of Theoretical Mechanics, and in 1958, he became the
head of newly created Chair of Theory of Elasticity and Plasticity (now Chair of
Continuum Mechanics) and leaded it till 1978. In 1961, N. Kh. Harutyunyan was
appointed the rector of Yerevan State University. Thanks to his efforts, the chair of
Biophysics, Nuclear Physics, Economic Cybernetics, and the Joint Computer Center
of the Academy of Sciences and YSU were established. In 1962, he was awarded the
honorary title of the Honored Scientist of the Armenian SSR. For many years, he was
a member of the USSR National Committee on Theoretical and Applied Mechanics
and its Presidium. He was appointed the editor-in-chief of the Journal Proceedings
of the Armenian SSR Academy of Sciences, Mechanics and a member of the Editorial
Board of Proceedings of the USSR Academy of Sciences, Mekhanika Tverdogo Tela
(English translation Mechanics of Solids, now published by Springer).
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From the left: S. P. Timoshenko, N. Kh. Harutyunyan, and Ya. G. Panovko at the 11th ITUTAM-
Congress in Munich (1964)

N. Kh. Harutyunyan was actively involved in social-political and state activities.
He was many times elected a deputy of the Supreme Soviet of the Republic and the
Supreme Soviet of the USSR; in 1962-1975, he was the chairman of the Presidium
of the Supreme Soviet of the Armenian SSR and deputy chairman of the Presidium
of the Supreme Soviet of the USSR. In the Soviet Union and abroad, he adequately
represented Armenia and its achievements in various fields of public life.

N. Kh. Harutyunyan’s research activities developed mainly in two directions:
the mathematical theory of elasticity and the theory of creep. His first works on
elasticity theory were on torsion and bending of prismatic rods with polygonal cross
section, where he proposed an effective method for solving these problems, based on
reducing them to the solution of infinite systems of algebraic equations. The method
was applied in numerous studies and became classical. It was included in monographs
and textbooks. Scientific results, obtained in this direction, were generalized. Finally,
they were summarized in the fundamental book: Torsion of Elastic Bodies (authors
N. Kh. Harutyunyan and B. L. Abrahamyan), published in Moscow in 1963. N. Kh.
Harutyunyan had performed extensive scientific-research work in the field of elastic
contact and mixed boundary value problems and obtained exact solutions classes of
these problems together with his students. He also developed the scientific approach
to contact problems concerning the load transfer to elastic solid bodies by means of
thin-walled stringers.

N. Kh. Harutyunyan had made the greatest scientific contribution to the theory
of creep. After analyzing the results of numerous experiments, N. Kh. Harutyunyan
and G. N. Maslov concluded that in problems of strength and durability of engi-
neering structures made, for example, of concrete, plastics, soils, glass-reinforced
plastics, classical approaches did not work. In addition to the usual physical and
mechanical properties of materials, one should also consider the properties due to
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the creep phenomenon, such as aging and heredity. This fundamental idea was a new
mathematical theory of creep of aging bodies, developed by N. Kh. Harutyunyan,
which later entered the science as the Maslov-Arutyunyan creep theory. Considering
this theory, the existing standards for the calculation of strength and longevity of
numerous construction structures and their elements have been changed. The funda-
mental results of N. Kh. Harutyunyan’s theory of creep have been summed up in his
fundamental monograph Some Problems of Creeping Theory, which was published
in Moscow in 1952. It was translated and published in England, France, and China.
Some chapters were published in Germany, Poland, and Romania. In the formulations
of the linear and nonlinear theories of creep Haroutyunyan constructed contact and
numerous other problems of theoretical and practical importance. In the nonlinear
problems, he formulated the superposition principle of generalized displacements.

In the last two decades of his scientific activity, N. Kh. Harutyunyan considerably
generalized and developed his original theory of creep, having worked out the theory
of creep of inhomogeneously aging bodies and created a new scientific direction: the
mathematical theory of growing deformable bodies. The scientific results are summa-
rized in numerous monographs and scientific papers. In 1975, N. Kh. Harutyunyan
moved to Moscow and started to work at the Institute for Problems in Mechanics
of the USSR Academy of Sciences as the head of the Department of Viscoelastic
Body Mechanics. During the years of his stay in Moscow, his scientific and personal
relations with Armenia did not weaken. He was also the head of the Department of
Theory of Viscoelasticity at the Institute of Mechanics of the Armenian Academy of
Sciences.

N. Kh. Harutyunyan died on January 18, 1993, in Moscow and remained devoted
to science until the end of his life. He left a huge scientific heritage, including seven
fundamental monographs, around two hundred original works, a scientific school,
numerous students, and followers in Armenia and abroad. His scientific ideas and
results will undoubtedly serve as a basis for new ideas and creative achievements of
young scientists and a wide range of researchers.

Magdeburg, Germany Holm Altenbach
Yerevan, Armenia Suren Manuk Mkhitaryan
Yerevan, Armenia Vahram Hakobyan
Yerevan, Armenia Avetik Varazdat Sahakyan

August 2022
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Chapter 1 ®)
On One Non-classical 3D Problem oo
for a Layered Package of Isotropic Plate

and the Problem of Earthquakes

Prediction

Lenser A. Aghalovyan and Mher L. Aghalovyan

Abstract The 3D problem of elasticity theory for a layered package of isotropic
plates is solved. It is considered that the facial surface of the package is free, and
values of displacements of points of the contact surface between second and third
layers are known as measurement data by inclinometers or strainmeters placed there.
The asymptotic solution of the problem is found, and the potential strain energy
is determined. Based on regularly carried out measurements, the entire process of
accumulation of critical potential energy of deformation is traced, leading to the
global destruction—an earthquake. The estimation of the magnitude of the expected
earthquake is given. Fleeting dynamic processes are studied.

Keywords Laminated plates - 3D problems elasticity - Asymptotic method *
Earthquake prediction

1.1 Introduction

Modern seismology the occurrence of strong earthquakes associates with the tec-
tonics of Lithospheric plates of the planet Earth. It has been established that the
planet Earth (R = 6378 km) is heterogeneous and layered. It consists of Earth’s
Crust, Upper and Lower Mantle, Outer and Inner Cores. The distinctive feature of
these layers, in particular, is significantly different velocities of propagation Vp, Vg
of longitudinal (primary) P and transverse (secondary, shear) S waves in them. For
example, these waves propagate in the rod with velocities

L. A. Aghalovyan (<) - M. L. Aghalovyan

Institute of Mechanics, National Academy of Sciences of Armenia, Baghramyan 24/2 ave.,
Yerevan 0019, Republic of Armenia

e-mail: lagal @sci.am

M. L. Aghalovyan
e-mail: mheraghalovyan@yahoo.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
H. Altenbach et al. (eds.), Solid Mechanics, Theory of Elasticity and Creep,
Advanced Structured Materials 185, https://doi.org/10.1007/978-3-031-18564-9_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18564-9_1&domain=pdf
mailto:lagal@sci.am
mailto:mheraghalovyan@yahoo.com
https://doi.org/10.1007/978-3-031-18564-9_1

2 L. A. Aghalovyan and M. L. Aghalovyan

vo= |E vi= S E (1.1)
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where E is the Young’s modulus, G is the shear modulus, v is the Poisson’s ratio
and p is the density.

The thickness of the Earth’s Crust in the land is 20—70 km, and under the oceans—
5-15km. Earth’s Crust is also layered with basic layers:

e sedimentary (Vp = 2,0 =+ 5, 0 km/s; h; = 10 = 25 km),

e granite (Vp = 5,5+ 6, 0 km/s; i, = 30 = 40 km) and
e basaltic (Vp = 6,5+ 7,4 km/s; h; = 15 = 20 km).

and in the plate

Within the Upper Mantle, at a depth of 100 -~ 250 km, there is a layer (Astheno-
sphere), where the speed of Vg shear waves decreases significantly, but the speed Vp
doesn’t increase with depth (Vp = const, Vs = 0), i.e., there is a liquid-like incom-
pressible layer. The incompressibility of the layer makes it possible to withstand very
high pressures. Part of Upper Mantle to the border with the Asthenosphere, together
with Earth’s Crust, makes up Lithosphere. By the network of deep faults, Lithosphere
is divided into several large blocks which are called plates. The great Lithospheric
plates of the Earth are: Euroasian, Pacific Ocean, Indo-Australian, South-American,
North-American, African, Anatolian, Arabian, etc.

It has been established that earthquake sources are located in narrow zones of
Earth’s Crust (seismic zones), which are zones of tectonic interaction between adja-
cent Lithospheric plates (95% of earthquakes) [3, 5-7].

The process of earthquakes preparation includes two main stages of tectonic move-
ments: slow (age-old) and fast (jump-like). Age-old movements may last decades;
therefore, they are quasistatic. Over the years, in Lithospheric plates and individual
blocks of Earth’s Crust, deformations accumulate, which when having reached the
critical value of the order 10#, and according to the data of Rikitake [7]—the order
4,7 x 107>, leading to the global destruction (an earthquake). The main part of the
accumulated huge potential energy of deformation is released in the form of volu-
metric elastic longitudinal P and shear S waves, as well as Rayleigh’s and Love’s
surface waves. Always Vp speed is greater than Vg speed.

By fixing the time of arrival of these waves at the given point (seismic station):
tp = L/Vp,ts = L/ Vs, where L—distance from the source of the earthquake to the
seismic station, we find the distance L:

VeV
L= _PYs

= —At, At =tg—t 1.3
Vo Vs s—1p (1.3)

In Eq. (1.3), At is the time of delay of the arrival of the wave S in relation to
the arrival time of the wave P, in seconds. Often approximately considered that
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VpVs/(Vp — Vs) = 10 km/s. For the territory of Armenia VpVg/(Vp — Vg) & 7,1
km/s, and according to M. Okomoto data, for Japan VpVs/(Vp — Vg) & 8 km/s.
The data of three seismic stations allow the establishment of the location of the
earthquake source, as the area (point) of intersection of three spheres with radii
L, L,, L3 and centers at these stations. This is what most of seismic stations are
engaged, fixing an event that has already occurred. Fast movements are dynamic and
arise as a result of Foreshock, Earthquake itself, and Aftershock. Thus, earthquakes
are the result of accumulation over the years critical deformations, leading to the
global destruction—an earthquake. This means, that for earthquakes prediction, it
is necessary to determine the stress-strain states (SSS) of Lithospheric plates and
blocks of Earth’s Crust and follow to their changing during the time.

In the middle of twentieth century, seismologists discovered that before an earth-
quake, in the place of expected earthquake, noticeable deformations (displacements
of points) of Earth’s surface are occurred [5, 7]. At the same time, the natural problem
(Rikitake’s problem) arose—by knowing the structure of the terrain and its physical
and mechanical parameters (layering, Young’s and shear’s modulus, density, etc.) to
determine the SSS of the Lithospheric plate or the corresponding block of Earth’s
Crust and according to data of regularly carried out new measurements, monitor
its changing over time. It has been proved by us, that the Rikitake’s problem has
the unique solution [1], which can be found by the asymptotic method of solving
singularly perturbed differentiated equations [2].

In order to reduce the influence of changes of external anomalous, in particular,
atmospheric factors, on data caused by the truly proceeding processes inside the
layered package (Lithospheric plate, block of Earth’s Crust), seismologists began
to place measuring instruments—inclinometers, strainmeters, inside the package at
some depth from the facial surface. In this paper, the asymptotic solution of 3D
quasistatic problem has been found, when measuring instruments are placed on the
surface of contact between the second and third layers. The found solution allows to
carry out the wide range of special studies.

1.2 Solution of 3D Quasistatic Problems

Let Lithospheric plates and blocks of Earth’s Crust consist of N isotropic layers with
thickness / ; and occupied the domain

Z={(x,y,z):0§3C§a, 0<y=<b0=<z<h,
N
h:Zhj,min(a,b)zl,h«l}.
j=1

As it stated above, the process of the first stage of earthquake preparation is
slow; therefore, it is quasistatic (age-old). For determining the stress-strain state of
the layered package, it is necessary to determine in the domain Z the solution to
equilibrium equations of elasticity theory:
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e equilibrium relations for the isotropic body

00, n 90y n 90,

F‘,,,:O, -=77» 1'4
Py 3y 8Z+](xyz) J=x9,2 (1.4

e strain-displacement relations

ou
Exx = g_x = lglloxx - ﬂlZ(Oyy + Uzz) +0[119(x, y, Z)
v
T oy T Bi10yy — Br12(0ux + 02;) + @b (x, ¥, 2)
ow
€z = E = B0y — B12(oax + ny) +a3f(x,y,2)
ou n ov 1 (L.5)
Exy = — — = —O0,
YTy ax G Y
ou n Jw 1
8}6 = — _— = —o'x
9z A G
ov n ow 1
Ey, = — — = —Oy,
9z dy G °

where ¢ is the components of strain tensor, u, v, w are the displacements, 6 =
T(x,y,z) — To(x, y, z) is the temperature changes. In addition,

v E

1
= —, :—,G:—
=g Pa=7% 2(1 +v)

(1.6)

For a layered package to all quantities are assigned an index n (number of a layer:
n=12,...,N).Itis assumed that

e the facial surface of the package is free
oP(z=0)=0, o;.;)(z =0=0, cP(z=0=0 (1.7)

e the values of the displacements of points of the surface of contact between second
and third layers are known, as data of the measuring instruments at ¢ = t,

uP(z=Hyt) =u®(@=H,t)=ut(x,y), Hy=hi+hy U v, w)
(1.8)
e the conditions of full contact between all adjacent layers must also be satisfied

o(z=H,) =0c"Vz=H,), (x,y,2), Hi=h +hy+---+h, (19)
u(z=H,) =u"P(z=H,), W, v,w),n=12,---(N-1) '

For solving the set boundary value problem of the elasticity theory—seismology,
let us move in Eqgs. (1.4) and elasticity relations (1.5) to dimensionless coordinates
and displacements:
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x=1& y=lIn, z=h¢, U=u/l, V=v/l, W=w/l (1.10)

where
N
=:§:h1
j=1

As aresult, we will obtain the system that is singularly perturbed related to a small
parameter € = h/[. The solution to this system consists of solutions of the external
problem (7°") and the boundary layer (I,). The solution to the external problem is
sought in the form:

a‘.’“t(”) e g™ (x,y,2);5=0,N

)z (1.11)

U"“‘(") =y, (U, V., W)

where s = 0, N means, summation by umbral (repeating) index s over all integer

values from zero to number of approximations S.

By substituting (1.11) into mentioned above transformed system and by equaling

in each equation the corresponding coefficients at €, for determining a(” ) s,
V@) W5 we will obtain system of differential equations:

sl ol s L,
- +F" =0
9§ 3¢

an
F'M = heF", FI"™ =0, s #0, (x,,2)
ao,(n,sfl) aa(n,sfl) 30_(}1 s)
Xy Yy

+ +—=——+F"=0
€ o ¢ !
n,s—1 n,s— n,s
Ba)gz ) do Boz(z ) L Fm g
dE an ac :
aWas=h e g
+ = ——o,
?E D 9 ) A
8W ’ + aV ’ _ 1 o‘(vn’s) (1‘12)
an 3{( b Gm iz )
s — gV U

9§ an

aU(n,s 1)
— 1('11) (n,s) 'B(Vl) (n s) l(g)az(;,s)_i_agfll)g(n,s)

8v(11,s—l) ]
. — 1(111) }(g,s)_ f;) (n,s) __ l(;) (n3)+a(n)0(ns)

oW
— Yll)o_(n ) (ﬂ) o9 13(2 )E;z ,5) +(¥§§)9(n’s)

9“£—wwem”=Qs¢o

In (1.12) any value of type Q"™ when m < 0. From system (1.12), it follows:
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. =1
s = gV o dWTD
XZ 85
n.s (n,s—1)
o) = GWBV W
yz 87]
= g
Gy(;,s) — A(n) I:b(n s)IB(n) + b(n s)(ﬁ(n) /3("))
(”) (n)
o (19) — pins) — By aW )
44 3 A(”) 3§'
8u(n,571)
bgn,s) — T _ OIYIL)Q(”’S)
bén’x) — w _ aé’é)g(ﬂ,‘v)
an
1
pms) m [ (n)(b(n ) + b(n s)) (’3(,,)
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(")ﬁf")@(n r)]

(")ﬂ(")e(n s):l +

e ]

AW

(n) n,s
Pio awe
¢

Biy aWY
A

Cle

(1.13)

By substituting the values of o{"*), ¢("*), ¢"%) into the first three equations of
system (1.12), we will obtain equations for determining U "), V9 W 9);

277,
G(n)a v — R
9c2 "
2 s—1 s—1 (n.s—1)
R — F(n 5) G(n)a W=l _ do s . do,y’
! 089d¢ 9 an
2 ,
G(n) 92 v R(n )
ar2 v
_ s—1 s—1
R Fn.s) 82w D _ doy D _ doypV
b Y andg & an
2 S (n) (n)
A(’l)a W) = RS A(ﬂ) _ 7= 1;
1 3;2 - tw o 1 — A(")
(n,s) s—1 (n,s—1)
RS — _ ) _ by _ do b _ doyz”
v Te ac A€ 9
n

According to (1.14)

(1.14)

(1.15)

(1.16)
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¢
oy ™) 1
- (n,s) (n,s)
Cn-1
1 ¢ ¢ 1.17)
vt =G / dg / RU™dg + € e + €8 (&, )
{n—l grr—l
by using (1.13)
¢
aw(n,sfl)
n,s) __ n,s n) ~(n,s) n
o) = / RI"de + G™ ™ + G )—ag (1.18)
Sn—1
By satisfying the first condition (1.7), assuming ¢y = 0, we will obtain
aw(l,s—l)
i =— (—) = =0 (1.19)
& =0

Using (1.18), (1.19) by satisfying the first condition of contact (1.9), we will con-
secutively determined C"*""

1 W tls—1)
(ntls) _ 7 | 08 — D)
C] = G+ |:0xz C=¢-—-G (—8%' >§_§ (1.20)

where

= n/h,n:l,Z,...,N—l,Hn=Zhj
j=1

Similarly, according to (1.15), (1.9)

¢
LA 1
_ (n,s) (n,s)
= Gw /RU dc +C57(E,
Cn—
| L (1.21)
e - / de / RY™d + ¢+ ¢ (5 )
Cn—1 Cn—1
‘ g Ls=D
C;l,s) _ <—> = Cél,O) -0
an =0
8w(n+l,s71) (122)
(n+1,s) n,s n+1
C; = e |:Uy(Z )(5 =) — G th (Tl_{

n=12,...,N—1
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According to (1.16)

¢
Qs 1 )
ERINT f Rz +C3 (&, )
! En—1
¢ ¢
W) — 1 d R(n,s)d —i—C(n’S) —i—C(n’X)(%' )
= 7 | 9 | R+ e+ 6
1
[ (21)71_ . (1.23)
A(n) _ 11 12

- ( <n>+ﬁ<n))( ) 2/3("))

¢

¢ n,s n 8W(nvs) n,s n,s n

o) = b 4 Al )—a; =b" 4+ / R™9d¢ 4+ Vg, Al
Cn—1

By satisfying the last condition (1.7), we will obtain
(Ls) _ 1,5)
c! 5w (b3 (¢ = 0)) (1.24)

According to (1.9)

C(n+l s

=0 ( () _ plrtls) _;n)), =1,2,..N—1 (125

Thus, all Cf"’s), Cg'”), Cé"’s) are determined. From conditions (1.8), (1.9), are deter-
mined C;"’S), Cf‘"’s), Cé"’s) .

According to (1.8), (1.17)

& ¢
1 s s A
U =)= o5 / dz / RV + CP 0 + €8 =u® (1.26)
& &
with
ut
ut©® — T’ ut® = 0,s#0
and
1 & ¢
CY = ut — Vg - G® / a / R

& &
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By satisfying the condition
U =0)=U* ¢ =0)
we will find C{"
& ¢
M = (P = gy + €29 — / d¢ f R{"dg (1.27)
0

GO
0

From the condition U®* (¢ = &) = u™®, we will determine

C£3,s) — u+(x) _ C?’S)CZ (128)

From conditions U™ (¢ = ¢,) = U™ (¢ = ¢,) determined the other C{*. We
will have
C(n-H S {CH S)(f ) — C](n+l's)§n (1.29)

All Cé”’s), Ci”’s) are determined similarly. Formulas for them can be obtained from
the above mentioned by cyclic permutation (Cy, C;, U; C3, Cy4, V). Satisfying con-
ditions (1.8), (1.9) relatively to W, we will obtain

Céz,s) — wt® _ C(z s) . (2) /d{ / R(2 Ddg
&1 4]
(3.5) —_ ) _ ~3s) +©0) _ ,,,+ +(s) _
Cq =w Cs6, w =w"/I, w{I —;0, s #0 (1.30)
K K K s 1 \8
10 0

C(n+1 ,5) W(n y)(é. ) CS(IH—I,X)é_n

The above mentioned formulas make it possible to calculate the SSS of an arbitrary
layer of the package and monitor its change over time based on the regularly carried
out new measurements of displacements of points of the surface of contact between
second and third layers.

If functions u™, v*, wt, included in conditions (1.8), and also 6 are algebraic
polynomials, the iterative process of determining unknowns breaks at a certain
approximation. As a result, we obtain a mathematically exact solution in the external
problem.

On the base of found solution, it is possible to calculate the accumulated potential
energy of deformation (W) according to the well-known formula of elasticity theory
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1
W = 3 /(oxxe” + OyyEyy + 0228 + OxyExy + O 84z + 0y28,)dV (1.31)
v

and trace its change over time. When this energy reaches the critical value, global
destruction—an earthquake—will occur. There is the formula that relates the poten-
tial energy of deformation and the magnitude (M) of the expected earthquake [4, 5].

IgW =11.8+1.5M (1.32)
The critical deformation energy is W, = 10'"® J and corresponds to M = 0.
When W > W,,, the process becomes dynamic and fast (Foreshocks, Earthquakes,

Aftershocks) and having value of W by formula (1.32), it is possible to predict the
magnitude of the expected earthquake.

1.3 Investigation of Fast Dynamic Processes

For investigating associated with an earthquake fast processes, it is necessary to solve
in the domain Z equations of the motion of the elasticity theory:

9o ™ 80(;’,) 80(?) 32
P x Xz _ ., X , .V, 2), :1,2,,,.,1\7 1.33
dx ay * 0z Pn o 6y, (39

at elasticity relations (1.5) (usually without taking into account the temperature) and
full contact conditions (1.9) between adjacent layers. We consider, that measurement
data is again have taken from the contact surface between second and third layers.
The case when data have taken from the contact surface between arbitrarily chosen
adjacent layers is considering in a similar way and does not cause any difficulties.
Boundary conditions of the problem are

e at the facial surface z = 0 of the package from plates is free

o (x.y.0,0)=0, j=xy.2 (1.34)

e values of displacements of points of the contact surface between second and third
layers are known

u@ 3, 0,0 =uP(x,y, 0,0 =ut(x, y)exp(iQ), (x,y,2)  (1.35)

Q is the vibration frequency of the contact surface of these adjacent layers.
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The solution of the formulated problem will be sought in the form

Wy, o) =0 (x,y, O expliQ), e, p=x,y.2i,j=12.3,...
ui'” (5,3.200) = T (x, y.2) expl), (x.3.2)
(1.36)
In the equations of motion and elasticity relations, we again pass to dimensionless
coordinates &, n, ¢ and displacements
ﬁ(n) ﬁ(n)

w_ B y
U™ == v®= W = =
!

) = 1.37
; ; (1.37)

As aresult, we will obtain a new system of singularly perturbed differential equations.
The solution to the external problem (7°") is sought in the form

U(n)out — ESU(n’S), U, vV, w), Gi(jn)out _ 8—1+s l(jn s)’ 5 = O,_S (1.38)

By substituting (1.38) into the transformed equations of motion and elasticity rela-
tions, we will obtain the following system to determine o(" ) gns) yos) e,

L T A Lo

155 o + a + Q2p, U™ =0
L Lo A [ S P
Q2p, VO = 0
oE on T Tar TR

aa(n,sfl) ao_(n,sfl) 9o n,s)
13 23 33 + Qanw(n S) =0

€ an aC
aU(n,sfl)
_ (")a("’s) (n) (n,s) (n)a(n,S)
oE =Piiron 12 922 12 933
oyl (gr015) 4 g0 ) _ gl 1) (1.39)
o =B + B 12 033 :
AW 9 ﬂ(n) (n.s) _ gm s) 4 ﬂ(n) (n.5)
—Bg“ 12 922
aWwis=h ey e
+ =
& a G(”)

aWesThavey 1

+ =
an ac Gw 2
gy ms=1) N U @-s—1 1

dE o Gw’

(n s)

Q, =hQ, Q"™ = 0whenm < 0.Fromsystem (1.39), all stresses can be expressed
in terms of displacements:
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O,(n,s) _ 1 I (n)aw(n-, ( @ ﬂ(ﬂ)) BU(n,sfl) N ﬂ(n) 8‘/("’371)_
11 A(”) 12 a{ 85 12 3)7 |
n,s—1 n,s—1) 7
g _ [ g OW ) mﬂU(_ﬁ+(<m_ m03v<s>
22 A(I‘l) L 12 a§ 12 ag 11 12 877
(n.5) L [/, m @ oW @5 (n)aU(n,sﬂ) av(n s—1) 7
033 " = Ay ( 1 = P2 ) T + b1n T :312 |
A — ( n ﬂ(m) ( 1 _ g0 (140,
(n,s) (n,s—1)
o_(n ,8) G(n) U ow
N cle 0E
(n.5) ) gy .8) oW s—D
o n.s) _ G n i
23 ac o
av(n,s—l) aU(n,s—l)
U(; ,8) G(n) +
1 9§ an

By substituting the values of 05", o2, o4 in the first three equations of

(1.39), we will obtain equations for determining the displacements:

277(n,s)
G(") J U + sznU(" 8) R(n )
s (n,s—1) (n,s—1) (1.41)
Rmm::_cwﬁzw(’l)_aaﬁy 3oy
“ dEdC & an
2 y/(n,s)
G + SV = RO
s (n,s—1) (n,s—1) (1.42)
R®S) — _Gm 92 wins—h) _ oy _ doy
’ dndc d& an

(ﬂ) ﬂ(") 82 (n,s)

2 (n,s) __ p(n,s)
A(n) 3;2 + oW =R, (1.43)
1 ) |:32U(n.s—l) 92 V(n,s—l):| B ao_l(gi,s—l) 9 2(; ,s—1) .

AW seac | onac dE an

R = —

The solution to Eq. (1.41) is

U™ =", p)sin Q,

P n,s Pn —(n,s)
Sl T O E meos @y [ S + T (1.44)

Solutions of Eqgs. (1.42), (1.43) can be obtained from (1.44) by cyclic permutation
(u, v, w; GM, G™, A"), where
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According to (1.40), (1.44) we will have

{) + 1(;1*5)

o1 = /G p,(C" cos Q. | (n); — "M (&, ) sin Q,

o
awers=b g™ 5
(n,s) (n)
=G
O34 ( oE TS )
(1.45)
By satisfying condition (1.34) for o), using (1.36), (1.45), we obtain
1
CY =03V n,0 = Y =0 (1.46)

o
lu G(I),Ol 13x%

Satisfaction of conditions of full contact between the first and second layers and
condition (1.35) for the second layer passes to the algebraic system

Cb1V/ GV + CEbyy/GD py — C2 b3/ GD py = )

C3, by — CVbs — Cby = dyy) (147)
C(2 S)b + C(z S)b — d(S)

where
by =sinQ b Q.2 by =sinQ
| = sin Q, G(l ———&1, by =cos GO C1, b3 = s €2, G(2 —5 41
by = cos Q. /G(z) L1, bs = sin 2, G(2 ——{, bg = cos 2, G(z — 0
dP) = Cby/p GO + 050 1, &) (1.48)
s (2 s) s (1 s)
dy) =T "€ n ) —Cb =T "€ n.&)
s 5 (23)
dy) = Ut — T (E 0, )

and Ut =ut/1, UT® =0, 5 #0.
From the algebraic system (1.47), by Cramer’s formula, unknowns Cé:l’&),

Cﬁ,s) C** are determined:

a8 ew 8 w8
C2u“ = T, Clu’ = T, C2u“ = T (149)
with .
b1v/GDp; by/GD py —b3/GP p, i,
s=| b —by by |, dY =|a))
0 bs be ‘



14 L. A. Aghalovyan and M. L. Aghalovyan

§; is obtained from § by replacing the j-th column with the column d®. By this way,
all data for the first and second layers is determined. Satisfaction of the condition
(1.35) for the third layer and condition of contact relatively to stresses ag o al(g ¥

leads to the system:

. . —@3, X
CO, + b = U — TV (&, . £2) = d)

1
C®pe — CB3p, — ( (2.5) s G . )=d(s)
lu Y8 w Y7 \/GT)m o137 (&, m,8) —op, (6,1, 8) Su

m:mg*g%é (1.50)
bg = cos 2, %Q
from where the unknowns of the third layer are determined:
CiY = bdy) + bsds) . Co® = bydy)) — brds) (1.51)

For layers with numbers n > 3 from conditions of full contact between adjacent
layers (n + 1) and (n) sequentially, knowing data of layer n, unknowns of layer
(n 4+ 1) are determined:

C(VH‘],S) — blnd(x) + bznd(é')

lu lun 2un

Céﬁ-‘r]ﬂ) — bznd(d‘) _ blnd(S)

lun 2un
o Pn+1
b1, = sin 2, GO D Zn
Ont1 (1.52)
boy = cos 2, mfn
() _ y7(n,s) —(n+1,s)
d =U (59 n, ;n)_U (&_9 n, ;-n)

1
— (n,s) __(n+lys)
2un - G(”+1)pn+1 I:(713 (Sv n, é‘n) 0134 (i:s n, é‘n):l
n=34...(N-1

In a similar way, remaining conditions (1.34), (1.35) are satisfied. The correspond-
ing data can be obtained from the above mentioned by cyclic permutation

Uy, Uy, Uz u,v,w; G, G, Ay; 13,23,33)

If functions U™, V™, W are algebraic polynomials, mathematically exact solu-
tion of the external problem corresponds them. In all considered problems, the solu-
tion of the boundary layer is localized near the side surface. All quantities decrease
exponentially with removing from the side surface. Taking into account, that tangen-
tial dimensions of the packet are much greater than its thickness, and the boundary
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layer is usually neglected. If necessary, the corresponding solution can be determined
by the method described in [2].

1.4 Conclusions

Earthquakes are the result of the accumulation over the years of enormous potential
energy of deformation, which with reaching the critical value, causes to the global
destruction—an earthquake. Seismologists established that before an earthquake, in
a seismically dangerous zone, there is a significant deformation (displacement of
points) of the Earth’s Crust. The problem arose by data of displacements of points
of this surface to determine the stress-strain state (SSS) of the corresponding block
of the Earth’s Crust (Rikitake problem) and based on regular measurements of dis-
placements to track SSS change over the time. In this work, regarding that structure
of Earth’s Crust block is known (layering, Young’s, Shear, Poisson’s coefficients,
density of layers, etc.), based on the data of measuring instruments (inclinometers,
strainmeters, etc.), which are located at a certain depth from the surface of Earth’s
Crust, based on equations and relations of elasticity theory, is determined the SSS
of the layered package from isotropic layers. The potential energy of deformation is
determined, and the magnitude of the expected earthquake is estimated. Fast-flowing
dynamic processes are studied (Foreshocks, Earthquakes, Aftershocks).

Acknowledgements The work was supported by the Science Committee of RA, in the frames of
the research project No. 21T-2C075.
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Chapter 2

Diffraction of Plane Waves in an Elastic Guca i
Half-Plane Enhanced Along Its

Boundary by a Semi-infinite Stringer

Karo L. Aghayan and Rafik A. Baghdasaryan

Abstract A dynamic contact problem is considered on the propagation and diffrac-
tion of plane elastic waves incident from infinity onto the boundary of an elastic half-
plane reinforced by a semi-infinite stringer of small thickness. Questions related to
the dynamic mutual influence of an elastic half-plane with a stringer of semi-infinite
length rigidly welded to its boundary are investigated. Due to the smallness of the
stringer thickness, the model of a one-dimensional elastic continuum is taken as a
physical model for it [1, 2]. Based on the adopted model, with the help of the gener-
alized Fourier transform, the problem is reduced to a Riemann-type boundary value
problem in the theory of analytic functions on the real axis and, further, a closed
solution of the problem is constructed using the Wiener—Hopf method. Analytical
expressions are obtained that represent the distribution of wave components in all
parts of the half-plane.

Keywords Surface wave - Reflection - Diffraction - Contact stresses - Wave field -
Stringer

2.1 Introduction

Research in the field of the dynamic theory of elasticity related to the processes of
oscillations, diffraction and propagation of various types of waves in massive bodies
with stress concentrators are among the topical problems of the dynamics of the
contact interaction of elastic bodies. In particular, this also applies to the problems of
propagation and reflection of elastic and surface waves of the Rayleigh, Love, etc.,
type in an elastic plane with stress concentrators of the type stamp, crack, stringer
(overlay, inclusion), strip, beam, etc.
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There are quite a lot of works on the study of plane contact and mixed boundary
value problems (in static and dynamic statement) for a plane, half-plane and strip
reinforced with elastic fasteners in the form of stringers. Let us briefly dwell on some
of them, which are related directly to the problem considered here.

Of the static contact problems for a half-plane or plane, we note only the works
[1-3], in which for the first time the model of a one-dimensional elastic continuum
was adopted and substantiated as a physical model of the stringer. In turn, these works
served as a kind of stimulus for the subsequent appearance of many new fundamental
works in the field of contact problems.

Of the dynamic contact problems closest to the problem considered here, we note
the works [4-8] and the works cited in them. In these papers, in the formulation
of a plane deformation, stationary dynamic contact problems are considered for
elastic space, layer and half-space. The elements in contact with massive bodies
here are mainly stamps and thin layers, under various types of loading and boundary
conditions.

The number of dynamic contact problems for an elastic plane or half-plane with
elastic stringers is small. Of these, we point out the works [9—11]. Note that [9] is the
first work in this direction and, as its author notes, it was put forward by Academician
N. Kh. Harutyunyan.

In [9], two dynamic contact problems are considered on the transfer of a concen-
trated force harmonically varying in time to a semi-infinite elastic half-plane through
an elastic infinite and semi-infinite overlay glued to its boundary. The work was done
at a high mathematical level. A closed solution in the form of Fourier integrals is
obtained.

The problem proposed here is related to the problems from [9]. In [9, 10], the
question of the transfer of a concentrated force from a stringer to the boundary of
a half-plane is considered, where the stringer plays the role of a damper, which
weakens the influence of the concentrated force. In the problem considered here, as
in [11], questions related to the general change in the wave field due to the mutual
influence of the stringer with the boundary of the half-plane are investigated.

2.2 Statement of the Problem

An elastic half-plane with elastic characteristics (1, i, p) in the Cartesian coordinate
system Oxz occupies the region Q7 (—o0 < x < 00, z < 0). The axis Oz is directed
along the outer normal to the boundary of the half-plane. Along its boundary z = 0
the half-plane is reinforced with a semi-infinite stringer with a sufficiently small
constant thickness /¢ and with elastic parameters Eg, vg, ps. The half-plane and the
stringer are connected along the boundary z = 0 of the half-plane and are in full
contact. With respect to the stringer, it is assumed that due to the smallness of the
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thickness %, the bending stiffness is negligible. Then, the pressure of the stringer
on the half-plane can be neglected and it can be assumed that only tangential contact
stresses arise under the stringer. This allows, as in [1, 2], to take the model of a
one-dimensional elastic continuum as the physical model of the stringer.

Let us study, the two-dimensional wave motion in the indicated composite half-
plane, when a plane transverse SV wave falls on its boundary from infinity, described
by the potential

Voo(X, 2, 1) = Yo(x, 2)e ™ x,7€Q” 2.1)

Yolx, z) = Bye'C*t19) | &£ =kycos B, 1 = kysin B,

where ¥ (x, z) is aamplitude, 8(0 < 8 < 7/2) is the angle of falling of shear wave,
ks = w/c, is a wavenumber, ¢; = /it/p is a phase velocity transverse wave, 1 and
p are shear module and density, w is a oscillation frequency and ¢ is a time.

Under these assumptions, it is required to determine the distribution of the wave
components of the diffracted field in the half-plane and the contact stresses arising
under the stringer.

2.3 Influence Function

Consider the following auxiliary plane strain problem for the above-mentioned elastic
region Q7.
On the boundary of the elastic half-plane acts the following given load

ol (x,z, t)|z=0 =0 (o0 <x <o) 2.2)

T.(x, 2, t)|Z:0 = 19(x)e ', (=00 < x < 00) (2.3)

and from infinity, a transverse wave falls on the boundaries of the half-plane, given
by formula (2.1).
Using amplitudes ¢(x, z) and v (x, z) of the wave potentials

Pu(x, 2, 1) = o(x, e Yulx,z,1) = Y(x, e

the solution to this problem can be formulated in the form of the following system
of boundary value problems [12], with respect to the potentials ¢(x, z) and ¥ (x, z)
(here and below, the harmonic factor ¢'®* is omitted):

Ap(x,2) +kip(x,2) =0 (x,2) € Q~ (24
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AW (x,2) + K3V (x,z) =0 (x,2) € 2~ (2.5)
0.(x,0) =0; 7,.(x,0) =10(x), |x|] <00 (2.6)
W(x,z) = Y(x,z) — Bye'®*+m) (2.7

Here, A = ax2 + - 22 is a Laplace operator, ki = £ = w/p/(h+2u) is the
wavenumber, ¢ is the phase velocity of longitudinal wave, \, u are Lame parameters
and p is the density.

Applying to (2.4)—(2.7) the Fourier transform, we obtain the following system of
two ordinary differential equations with respect to g(o, z) and ¥ (o, z):

d*p(os, 2) _
T4 N (0)p(0,2) =0 (2.8)
d* W (o, 7) _
——— —n(0)¥(,2)=0 (2.9)
dz
with boundary conditions
d*p A dy
S 5—2ic—t W =0 (o] < o0) (2.10)
dz? A42u ht2udz )|

= ——fo(G) (lo] < 00) 2.11)

—
(il/zf—i—o W+ 2o — )

Here

y1(0) =/o0% — kf; »(o) =,/0% — k% (2.12)

V(o,z) = U(o, z) + 2nBoe " 8(0 + &) (2.13)

and & (x) is the Dirac delta-function.

Note that the boundary conditions (2.10), (2.11) correspond to conditions (2.6),
(2.7) as a consequence of Hooke’s law and the dependences of elastic displacements
U, (x, z) and U, (x, z) on the potentials ¢(x, z) and ¥ (x, z)

dp oY dg
Ux(xvz):a_x__; UZ(-x9Z) a_+

s (2.14)

i
ox

The general solution to (2.8) and (2.9) is represented as
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9(0,7) = A1(0)e""* + Ay(o)e V'*

W(o, z) = B1(0)e¥?* + By(0)e V¥ (2.15)

where A, Ay, By, B, are unknown constants.

In solution (2.15), y; (o) and y» (o) given by formula (2.12) are multivalued func-
tions. Any linear combination of expressions (2.15) corresponding to different values
of multivalued functions y; (o) and y, (o) will be a solution to system of Eqgs. (2.8)
and (2.9).

This ambiguity in the choice of solutions can be eliminated by matching the form
of expressions @(o, z) and v/ (o, z) with the corresponding physical requirements
of the stated problem. In other words, the diffracted waves must be exponentially
decreasing along z (nonuniform waves) or moving away from the boundary (uniform
waves).

The points 0 = £k and o = +k; are the branch points of the functions y; («)
and y»(«) in the complex plane ¢ = o +it.

An unambiguous analytical branch of these functions can be chosen if cuts are
made in the complex plane in the form of straight lines connecting points k;, k» and
—ky, —k, with a point at infinity, respectively, in the upper and lower half-planes.
In the plane cut in this way, one can choose single-valued analytic branches of the
functions y; (o) and y, («) such that y; (@), Y2 (@) — || wheno — Fo0[13]. Based
on these considerations, in (2.15) one should set A, = B, = 0. In addition, to ensure
the above two requirements, it follows that when |o| > k; (|o| > k») the values of
the function y; () must be positive, i.e.

vi=y/02—kis 2=, /02 —k3,

and when |o| < k; (j =1,2)

y1 = —iJki —0% vy =—i\/Jkj —o? (2.16)

The remaining two constants included in (2.15), taking into account (2.13), are
determined from the boundary conditions (2.10) and (2.11) as follows:

3 En(E* —n?) 20\J0% —k3_
AI(O') —SNBOTE)S(U‘F%_)—an)(O') (217)
202\ g2y k2 — g2 2 g2
Bi(0) = —27 By (5 - v) — 4Pyl - s +8) — 2 —Reio) 218
R(§) uR(0o)

where R (o) is the Rayleigh function
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R(©) = (20° = k)’ — 40°\/ (02 = ) (02 — K3) 2.19)

Substituting the values Ay, By from (2.17), (2.18) into (2.15), taking into account
A, = By = 0, after the inverse transformation, we obtain the final expressions for
the wave potentials ¢(x, z) and W (x, z) which solve the problem for given By and
To(x).

Without dwelling on the details here, we note that in (2.17) and (2.18), the first
components are responsible for the reflected waves, and the second for the surface
waves with the wavenumber oz (R(og) = 0).

We also note that when using formulas (2.17)-(2.19), one should keep in mind
(2.16) and the well-known Snell relation k| cos 8 = k; cos ¥, where ¥ is the angle
of the reflected longitudinal wave.

Let us define the expression for the Fourier image of the horizontal displacements
of the boundary points of the half-plane U, (o, 0). After applying to (2.14) Fourier
transformation we will have

U0, 2) = —iow(o,2) - L2D (2.20)
dz
Now, taking into account (2.15), (2.17) and (2.18), from (2.20) we obtain

. k3o — k3

Ui(0,0) =27iBonH (&, n)é(0 +§) — —————T0(0), (2.21)
uR(o)
52_2 3$2+2+4%—2 /k2_%-2

HE,n) = ( ll 7) v -1 (2.22)

R(&)

Note that when 7o(x) = §(x), the U, (c, 0) represents the Green’s function for
the boundary value problem (2.8)—(2.11).

2.4 Solution of the Contact Problem

We will solve the problem by the method of generalized Fourier transform and will
use the following notations [18]

— 00 . 1 oo _ .
fE) =6(£x), o) = J fEE)e o dx;  fEx) = o J T (0)e " do
(2.23)

where 0 (x) is the Heaviside function.
Then, taking into account (2.23), (2.21) can be represented as
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Ul(0,0)+ U, (6,0) = 2wi BonH (&, 1)8(0 + £)

k3 /ot — k3
———7(0), —00 <0 <00 (2.24)
nR@) °

where ?; (o) is the transformant of the tangential contact stress ‘L';r (x) arising under
the semi-infinite stringer.

Now consider the movement of the stringer, separating it from the edge of the
half-plane. Let us denote by 75(x) the amplitude of tangential contact stresses arising
on the line of contact of the stringer with the boundary of the half-plane. Applying
the d’ Alembert principle to an infinitely small element of the stringer, taking into
account the above model of a uniaxial stress state for it and Hooke’s law, for the
amplitude of horizontal displacements Ug(x), we obtain a differential equation [9,
11]

d’U
djz(x) +q*Us(x) — Astg(x) =0, (0 < x < 00) (2.25)
[ ES 1——v§
q=—,c=——, A5 =
Cs $ ps(l —\)2) Eshs

Here, g is a wavenumber, cg is a phase velocity of wave in stringer (rod) and E, vs, pg
are shear module, Poisson’s ratio and density of the stringer material.

On the other hand, for the second differential of the function U ;’ x) =60(x)Us(x)
we have

d*U{ (x)
dx?

d*Ug(x) _

= Us(0)3'(x) +0(x) 5

0, (—o0 <x < ). (2.26)

Here, we took into account the well-known relations

§(x) =0"(x), f(x)8(x)= f(0)5(x) (f(0)#0)
and the condition

dUs

o9(0) = Eg =0 (2.27)

x=+0

which represents the absence of the normal stress U;S) (x) in the end x = +0 of the
stringer.
Combining (2.25) with (2.26), we get

U (x)

Tz = Us(8'(0) +00)[Asts(x) — ¢ Us(v)] (2.28)
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or after applying the generalized transformation (2.23)
(0% —¢*) Uy (0) + AsTi(0) — iUs(0)0 =0 (2.29)
where Ug(0) is an unknown constant.
The contact condition between stringer and half-plane after Fourier transform has
the following form:

Ul(0,0)=TUi(0), (—00 <0 < o0) (2.30)

Satisfying condition (2.30) with the help of (2.24) and (2.29), we arrive at the
following functional equation for the unknowns U, (o, 0) and T3 (0):

(6 —q*)Us(0,0) — x\/ﬂ——kﬁ(a)f(o)
= 2iBonH (&, n)(0° — ¢%)8(0 + &) —iUs(0)0 (—00 <o <o00) (231)

where

2(k3 — k{)R.(0)

Flo)="2 U202 (2.32)
R(0)\/0% — k3

R.(0) = 1 R(0) — (0 — ¢*)y/o2 — K2 (2.33)

X =K —k))" = pAsky? (2.34)

and R(o) is given by (2.19).

Thus, the solution of the problem has been reduced to the Riemann boundary value
problem of the theory of analytic functions on the real axis (2.31) for the unknown
functions U (0, 0) and 7§ (o).

Using notation

— O,

we represent Eq. (2.31) in the form

. (6>=02) — _
(c —q)U, (0,0) — x\/0? — k3 oo 01%)(; o K (0)T{(0)
= —27i Bon(E + ) H(E. )80 + &) — iUs(0)——, (—00 < 0 < 00)

o +gq
(2.36)
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Here, og and o, are roots of the equations R(0) = 0 u R,(0) = 0, respectively,
where R(o) and R, (o) are given by formulas (2.19), (2.33).

Rayleigh function R (o) has two real roots [12, 14]: ¢ = Z£op. It turns out that
R, (o) also has tworoots: 0 = £op,. With this [7,9],if og > ¢, thenog, € (k2, oR);
if og < g, then ok, € (og, q) and if o = g, then obviously, og, = ok.

We construct the solution of the functional Eq. (2.36) by the factorization method
[13] developed in [15, 16]. In this case, when solving (2.36) and factorization ?(o),
it is assumed that the real axis bypasses the negative roots ¢ = —og, 0 = —0Og,
of the functions R(¢), R, (o) and the point ¢ = —g from above, and positive roots
0 = og, 0 = og, and the point 0 = ¢ from below.

Accordingly, for the function y; (o) from (2.9), it is assumed that , /o> — kf >0

for lo| > kj, /0% — kj2. = —i /ka. — 02, i.e. in (2.26) it is assumed that the real

axis bypasses the branch points o; = —k; of the function y;(a) = ,/a? — k? from

above, and the points o; = k;—from below.
We factorize the function K (o), presenting it in the form

K(@)=K_ (6) -K_(0) (2.37)
where K | (@) is regular and does not have zeros for Ima > 0, K_ () is regular

and does not have zeros for Ima < 0, o« = o + it. With this, K.(a) — 1 when
|| — oo in own regularity regions, and K 1 (o) are defined by formulas

K1 (0) =exp(L;(0)), K_(0) =exp(L_(0)) (238)
— 1 In K (s) e R U In K (s)
L) = L et FO=—n L T e g® 39

The function Z+ () (Z_ (a)) as an analytic continuation of Z+ (o) (Z_ ((7)) is
bounded and regular at Imo > 0 (Ima < 0) and has no zeros there.
Bearing in mind the well-known representation [18]

17 1 1 1 1
5(0) = _ : — ~4ins 2.40
@ 2ni[a—i0 o+i01| e xi0 o T im@ (240)

L. (o) can be calculated by formula

dr

— 1 — 1] oo __
L+(o)=§1nK(a)+% S InK(t)

—00 r —
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Using (2.37) and (2.40), we can now represent the functional equation in the form

_ P+(G)f;(a)

0—q—
——U, (0,0)
P_(0) ot+q
1 1
= ’7(5+‘7)H(§’”)[o—+s+i0 Y —io}
(2.41)

(—o00 <0 < 00)

. o
T
(2.42)

o £ o, — — —
Ki(o); Py(§)=iP_(=§)
OR

Fi(O'):ﬁ\/O’ :Ekza:t

Solving, according to the usual procedure [13], Eq. (2.42), for ?;r (o), we obtain

the fO]lOWlng I‘epresentation

o) — g, METDHE W o+q
s P& Pi(0)o+E+i0)  Pi(q)P.(0)

The unknown constant Ug(0) is determined from the equilibrium condition of the

semi-infinite stringer
{ Ty ()dx =0=7T5H0) =0 (2.44)

As aresult, for T (o), finally, we get

., _ BME. 1o _ 2.45
Ts(0) = BoM(§ ")(a +&+i0)P (o) o
where
2 _ &2
_ (g’ —&)HE 0 (2.46)

HED =T e

In (2.17) and (2.18), replacing Ty (o) by ?'; (o) from (2.45), then substituting the
result into (2.15), and applying the inverse transformation, we obtain the following

representations for ¢(x, z) and ¥ (x, 2):

— 5’7(52 - 772) i(&xj/k%fszz)
o(x,2) = 4BOTe
o2 - k%eﬂ'oxvt4 /gZ,kIZZ
do (2.47)

2
+Bomen T2
e (0 +&+i0)R(0)P(0)

—00
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2 .22 2 12 _ g2
(7 —n?)" —dng: /K Sei@x—m

Y (x,2) = Boe' 9 — By

RE
By § 2TV (2.48)
— s — (0} B
2o Y 6+ E+i0) P (o)

2.5 Determination of the Radiated Wave Field

Let us first turn to contact stresses. From relation (2.45), after the inverse transfor-
mation (2.23), for the amplitude of the contact stresses we obtain

B_S‘ Oﬁ 7U(O'+O'R) e i do x>0
'L';_(X) — )] 2n oo K+(0)Wotk, (o+&+io)(o+or,)’ . (2.49)
0, x<0

By =M(E,n)/x

Here, the real axis bypasses the points —og, —og,, —kz, —k;, —& from above, and
the points &, ki, k2, og,, op—from below.

To study the integral from (2.49), as usual, we pass into a complex plane o =
o 4+ it, cut in a certain way, a detailed description of which is given in [13, 16].

Since x > 0, we close the integration contour in the lower half-plane. Bearing in
mind the peculiarities of the analytic continuation of the integrand from (2.49) into
the upper and lower half-planes of the cut plane, the amplitude of the contact stress
from (2.49) can be represented as

__— o |
T () = ‘g,: = : [M(=§)e + My (—og )™ [+ Ts(x)  (2.50)
_ Bik— e~ dg Bjoe— . e ™drs
s = M- e S er —o) T 7 M e i (on —i0)
(2.51)
Moo)= =20 37 (o) = ZOHWK @OVl ) )
Ki(o)vo +k K(0)yJo? — k3

It follows from (2.50) and (2.51) that the contact stress on the contact line consists
of the following components: (a) component with wavenumber & = k;, cos  due to
the incident wave; (b) diffracted wave with wavenumber o, due to alocalized surface
wave; (c) a diffracted wave with a wavenumber k,, due to the presence of an end
point x = 40 of a semi-infinite stringer.
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For the diffracted part of T5(x) from (2.51), we obtain an asymptotic formula

To(x) = ;f_x(ei("zxﬂ) + o(x*%))when X — +00 (2.53)

Bearing in mind that K_+(o) — 1 when |o| — o0; from (2.49), we obtain the
following asymptotics for r; (x)atx — +0:

+ 8< ° §+ky+og 2 —iox
=9 1 (0] d
T (x) o 7{){) — iO[ + . + O(lo?) |e o
_ B 32
- (1 n o(x+ )) (2.54)

From the last expression, we see that the contact stress ‘L';_ (x) at the end point of
the stringer has a traditional root singularity.

Similarly, from (2.47), (2.48), we obtain the following formulas for the wave
potentials:

in the region Q- (x < 0,z < 0)

(p(x, Z) — N‘/()l)ei(f)(7«/k%7§21) + N(;Z)e"’”l%_klzz_iaﬁ'x + I(;—)(x’ Z) (255)

. Aev_ [12_g2 7. _
Ve, 2) = Boe €419 - N0 (VIR N @i O, o)

(2.56)
where
N 430577(&2 —7’) e _ 4Bon(a® —§7) 20k — K)oi
Y R() Y EPLE)Vor + kK (0R)
2 2\2 _ gg2 2 _ g2 @
o _ g & e e 2N
v R() v R(or)(or +or,)(0r +£)
2.57)
in the region Q (x > 0, z < 0) :
p(x,2) = N(,(;l)ei@k V) 4 Nf)e"(sxf Vi)
+ N(/(}4)e‘/o,%*fklzz+i(01e*x+%) + I(/(}+)(x7 2) (2.58)

_p iEx+nz) _ (D i(0k,~A/0k, K3z
Y (x,z) = Bpe Ny ’e ( )
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- N VIR (2.59)
2 /12 s T3
oyt \//TEZ(UR—E)’ I N i
¢ ¢ VXK (&) ¢ Y JxK(—or,)R(or.)(& —or.)
v _ yo (29 —k)or.(or —or.) (2.60)

v E.;,.(—O’R*)w/O'R*—kz

With the help of formulas (2.55)—(2.60) and (2.14), it is not difficult to obtain
the distributions of the elastic displacement amplitudes U, (x, z) and U, (x, z) in the
regions Q~ and Q7, thereby, to characterize the total wave field in the half-plane.
However, this can also be done based on (2.55)—(2.60).

The functions 1 (x, z) and 1|, (x, z) included in formulas (2.55)~(2.59), simi-
larly to Ts(x) from (2.50), are represented as regular integrals over the edges of
the corresponding cuts [14—16], which makes it possible, when considering the near
field, to calculate the diffracted field directly. When considering the far field, one
should study these integrals in detail and obtain asymptotic formulas corresponding
to the problem posed, representing the distribution of diffracted damped body waves,
which was not carried out here.

The wave field in the region Q2Z, as follows from (2.55) and (2.56), consists
of incident and reflected waves, as well as diffracted damped body waves and a
diffracted surface wave localized near the surface (x < 0, z = —0). This surface
wave propagates with a velocity w/og in the direction opposite to the axis Ox and

decays at z — —oo as O(eV "'%’klzz). Obviously, the diffracted surface and body

waves are due to the presence of a semi-infinite stringer.

The uniform distribution of the wave field is also obtained in the region 7, only
with wave parameters that differ from the case x < 0. Thus, a localized surface wave
propagating with a velocity w/og, in the direction of the axis Ox decays atz — —oo

as O (eV "1%*_"121).

2.6 Numerical Analysis

In the problem under consideration, the mutual influence of a half-plane and a semi-
infinite stringer is of particular interest, which is reflected mainly in the features of
surface wave propagation. Let us carry out a numerical analysis of the dependence of
the propagation velocity of a surface wave on the elastic characteristics of a half-plane
and a semi-infinite stringer. Note that the roots of the wave function R, (o) (2.60), in
contrast to the roots of the Rayleigh function R(o) (2.19), depend on the frequency
w, 1.e. the surface wave propagates along the line of contact with the dispersion.
The figures show plots of the dependence of the square of the ratio of the phase
velocity of a surface wave c to the phase velocity ¢, of a transverse wave in the
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half-plane, marked by ¢ = ¢?/ c%, on the product kh g, where k is the wavenumber of
the surface wave. As variable parameters are taken: Poisson’s ratio of the half-plane

v, the ratio of the velocity of elastic waves in the stringer cg = \/— ps(f—‘_‘vz) to ¢,
N
marked by 05 = é and combined parameter A, = % included in Eq. (2.33).
CZ —Vg

Figure 2.1 shows the curves when v = 0.3, A, = 2, and the parameter 0y takes
the values 65 = 0.5; 0.65; 0.8; 1.0; 5.0.

Figure 2.2 shows the curves when 6s = 0.5, A, = 2, and the Poisson’s ratio takes
the values v = 0.16; 0.25; 0.33; 0.42.

Figure 2.3 shows the curves when v = 0.3; 65 = 0.5, and the combined parameter
A, takes the values A, = 0.1; 0.5; 1.0; 2.0; 5.0.

1.0 C, OS =5.0

0.7F

0.6

0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2.1 Dependence ¢ on khg for various values of parameter 6

0.5 1.0 1.5 2.0 2.5 3.0 khS

Fig. 2.2 Dependence ¢ on khg for various values of Poisson’s ratio v
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G

Cr

0.8}

0.7

0.6}

05 10 15 20 25 3‘,0khs

Fig. 2.3 Dependence ¢ on khg for various values of parameter A,

2.7 Conclusion

Questions related to the propagation and diffraction of plane elastic waves incident at
acertain angle from infinity onto the boundary of an elastic half-plane reinforced with
a stringer of semi-infinite length are investigated. A closed solution of the problem is
obtained in the form of analytical expressions for the wave field in the half-plane and
contact stresses under the stringer. The presence of a semi-infinite stringer leads to
a significant change in the wave field in the composite half-plane, both qualitatively
and quantitatively. It is shown that in the case of equality of the projection of the
velocity of propagation of the incident wave £ and the velocity of propagation of the
wave in the stringer g, the contact shear stresses vanish.

In both quarter-planes €21, in addition to the incident and reflected waves,
diffracted surface and body waves arise, propagating at different speeds, in different
directions and having different orders of decrease at infinity.

As shown by numerical calculations, depending on the relative position of the
wave numbers og and g, the wavenumber o, changes at different rates. In this
case, the wave parameters strongly depend on the mechanical characteristics of the
stringer.
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Chapter 3 ®)
Analysis of Equivalence Conditions e
of Model of an Inhomogeneous Elastic
Half-Space and Model

of an Inhomogeneous Elastic Layer

on the Elastic Foundation

Sergei M. Aizikovich, Polina A. Lapina, and Sergei S. Volkov

Abstract The paper considers contact problems on the shear of the surface of an
elastic inhomogeneous by depth half-space, and on the shear of the surface of an
elastic inhomogeneous by depth layer, rigidly coupled with a more rigid elastic
foundation. The solution of integral equations, to which the contact problems are
reduced, is constructed analytically by asymptotic methods for an inhomogeneous
half-space and by a numerical-analytical method for an inhomogeneous layer on
an elastic foundation. Using the explicit form of the kernel transforms of integral
equations for these problems, the closeness of their solutions is studied. It is shown
that for the laws of inhomogeneity, the kernel transforms of integral equations of
which are close, there is a region of values of geometrical parameters, for which the
distributions of contact stresses are also close.

Keywords Contact problem - Inhomogeneous material + Exponential shear
modulus

3.1 Introduction

Inhomogeneous materials of various structure and composition have numerous appli-
cations: building materials [1], soils, semiconductors in microelectronics [2—4],
various coatings, and implants in biomechanics [5, 6]. When calculating the stress—
strain state for inhomogeneous materials, it is necessary to take into account the
change in the properties of such materials by depth of the product [7-11]. Often,
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additional assumptions are made about the changing of the elastic properties of
materials, which in some cases makes it possible to obtain analytical solutions to the
corresponding differential equations. The works [12-19] consider materials which
elastic properties change exponentially. In [20], the hyperbolic law of change in
elastic properties is considered, in [21-23]—a power law, in [24, 25]—a linear law,
and in [26-30]—an arbitrary change in elastic properties material by depth. The
exponential law of inhomogeneity quite well reflects the change in the properties
of some real inhomogeneous materials that may arise because of a technological or
natural process [14].

The choice of an adequate mathematical model in the calculation of the stress—
strain state of inhomogeneous media and the analysis of the efficacy of methods for
constructing solutions is a topical issue of modern mechanics.

The present paper proposes an approach to the analysis of the equivalence of
solutions for various models of inhomogeneous media, which is illustrated by the
example of solving contact problems on the shear of the surface of an elastic inhomo-
geneous by depth half-space and the shear of the surface of an elastic inhomogeneous
by depth layer rigidly linked to a more rigid base.

Using the values of the kernel transforms of the integral equations for the two
proposed models of an inhomogeneous by depth half-space, the closeness of the solu-
tions of the corresponding contact problems is investigated. A comparison of solu-
tions to problems constructed approximately analytically using asymptotic methods
is implemented in order to determine the areas of problem parameters for which the
solutions are close to each other.

3.2 Statement of the Contact Problem on the Shear
of the Surface of an Inhomogeneous Half-Space

Let us consider the problem of a shear of the surface of an inhomogeneous half-
space by a strip punch with a flat base without friction. The equation of the theory
of elasticity in stresses in the case of anti-plane deformation has the form

0o, 00y
ax dy

—0, 3.1)

where stresses o, (x, y), 0;,(x, y) are expressed in terms of deformations w(x, y)
in the form

Jw Jw
O = u(y)a, Oy = u(y)g- (3.2)

where (£ (y) is the shear modulus of inhomogeneous by the coordinate y medium.
The mixed boundary conditions of the formulated contact problem of pure shear
of the surface of an inhomogeneous half-space by a strip punch have the form
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wx,0)=¢ |x|<a (3.3)
Uyz(x’ 0) — { _(p(x) |~x| =a (34)
0 a< |x| <oo

where ¢ is the value, to which the punch is shifted, a is the half-width of the contact
area, and ¢(x) is the contact stresses under the punch to be determined.

At infinity at \/x2 + y2 — oo for w(x, y) and %, the following conditions
are required:

. ow
lim {w, —} =0. 3.5)
0x

x24y2—o00

3.3 Models of an Inhomogeneous Half-Space

In the present paper, we compared solutions for two models of an inhomogeneous
medium. Figure 3.1a, b shows diagrams of two models of an inhomogeneous half-
space. Model (a) was used in [17-19], and model (b) was used in [31].

The model (a) and an analytical approach to the solution were proposed in the
works [17-19], where the contact problem of shear of the half-space surface with
an exponential shear modulus by a strip infinite punch with a flat shape of the base
was considered. The problem of determining the parameters of the exponential shear
modulus from contact stresses and displacements of the free surface was also inves-
tigated there. In the works cited, the shear modulus of inhomogeneous half-space
varied by depth y according to the law

w1(y) = e, 0 <y < oo, (3.6)

where (1 is the value of the shear modulus on the surface of the half-space, and d is
the parameter characterizing the rate of change of the shear modulus by depth.

v oo "
-a O al X -a O al X
._..-.\\ Ll(\\'):“u(-:m. U("}zunc"“h'
N >0 H X _ a0
i V=11, e2dH
ok . ‘If u(y)=Hee
(a) (b)

Fig. 3.1 Models of an inhomogeneous half-space
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The construction of a solution for model (b) of an inhomogeneous half-space was
carried out based on a numerical-analytical approach developed in [31-37]. The
proposed method made it possible to construct solutions to contact problems based
on the numerical calculation of the kernel transforms of integral equations and their
subsequent approximations by analytical expressions. In this case, the model of an
inhomogeneous half-space was used, which consisted of an inhomogeneous layer
lying with adhesion on an elastic homogeneous half-space, i.e., the shear modulus
of such a half-space varied according to an arbitrary law up to a certain depth H, and
after that it stabilized and became constant. In the present work, it is assumed that
the shear modulus of the inhomogeneous layer varies according to the exponential
law

oy, 0 <y <H

Ha(y) = { 2d H

3.7
noe ", H <y < oo S

where H is the thickness of the surface inhomogeneous layer.

3.4 Integral Equations of Contact Problems and Solution
Methods

To construct a solution of the problem (3.1)—(3.5), the integral Fourier transformation
is used. The solution of the problem is reduced to the solution of an integral equation
of the Fourier convolution type of the first kind with a difference kernel with respect
to the unknown contact stresses ¢ (&).

In the case of model (a), we write the integral equation in the form [17-19]

a

/ p(&)dE / K ()¢ da = 2 pu1(0)e, |x| <a, (3.8)

K@) = (d VT a2>71 (3.9)

The kernel of the integral equation has the following asymptotic properties:

K@) =|ae|™" + 0(@7?) at |a| = o0, (3.10)

K(a) = K(0) + 0@@?) at |a| — 0, (3.11)

After the transition in the integral equation Eq. (3.8) to dimensionless coordi-
nates, we denote the dimensionless parameter of the problem A; = d—la. To construct
effective analytical solutions of the integral Eq. (3.8), asymptotic methods are used.

For small values of the dimensionless parameter A; € (0, A¢), the solution of the
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integral equation is constructed as the zero term of the Neumann series based on
the Wiener—Hopf method [38] using the simplest kernel approximations of K («).
When constructing a solution of the integral equation in the case of large values of
the parameter A; € (Ag, 00), as in [39], expansions into power series of parameter
A1 are used and the solution is written as a double functional series in powers of A;.
In the case of model (b), we write the integral equation according to [31] for
unknown contact stresses in the form

a o0 1
[o@us [ L@ Vda =2me0e Kisa G2

o

—00

—a

Having made the transition in the integral equation Eq. (3.12) to dimensionless
coordinates, we denote the dimensionless geometric parameter of the problem A, =
%. The kernel transform of the integral equation is constructed analytically [31-37].

The function L(x) from the integral Eq. (3.12) has the following asymptotic
properties:

L) =14 0(@™?) at |a| — oo, (3.13)

L(a) = L(0) + O(?) at || — 0, (3.14)

The numerically constructed kernel transform of the integral equation is approx-
imated by the following product

N a? + A? .
Lo (Bi — By)(A; — Ay) #0wherei #k  (3.15)

_ N — .
L(a) = Lp(a) = m,

i=1

An approximate analytical solution of the integral equation is constructed, based
on the proposed approximation. This solution is effective over the entire range of
values of the dimensionless geometrical parameter A;.

3.5 Numerical Analysis

Figures 3.2 and 3.3 show the kernel transforms of integral equations for two models of
aninhomogeneous by depth half-space for different values of the parametersd and H .
For model (a), the kernel transforms K («) are constructed analytically, and the graphs
show the functions |« |K (o). For model (b), numerically constructed transforms L (o)
are shown. The figures also schematically show the laws of inhomogeneity.
Reduced contact stresses are constructed in the area of problem parameters (d,
H), at which the relative difference of the kernel transforms |« |K (o) and L(«) of
integral Egs. (3.8) and (3.12), constructed analytically and numerically—analytically,
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d=0.5 V. d=05 YV d=05
H=1 H=2

Fig. 3.2 Kernel transforms of integral equations |«|K («) at d = 0.5 for model a and L(«) atd =
0.5, H =1 and H = 2 for model b and laws of inhomogeneity
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Fig. 3.3 Kernel transforms of integral equations |«|K («) atd = 1 for model a and L(«) atd =1,
H =1 and H = 2 for model b and laws of inhomogeneity

respectively, does not exceed a few percent. Figures 3.4 and 3.5 show the reduced
contact shear stresses calculated for the same parameters d and H, as in Figs. 3.2
and 3.3. In the case of model (a) in the Fig. 3.4, the solution is built in the form
of a double functional series in powers of the dimensionless parameter A; = 2,
that corresponds to the case of large values of the parameter A; € (A, 00). In the
case of model (a) in the Fig. 3.5, the solution is constructed by the Wiener-Hopf
method at A; = 1, that corresponds to the case of small values of the dimensionless
parameter A; € (0, Ag). In the case of model (b) in the Figs. 3.4 and 3.5, the solution
is constructed by the bilateral asymptotic method [31, 32] at ., = 1 and A, = 2 and
the simplest approximation of the kernel transform of the form (3.15) at N =1 is
used.

Numerical results show that the contact stresses constructed on the basis of two
approaches in the domain of the problem parameters, in which the kernel transforms
of the integral equations coincide with an accuracy of 5-7%, also give an error not
exceeding 5-7%.
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Fig. 3.4 Reduced contact
stresses at d = 0.5 for model
(@) andatd =0.5,H =1
and H = 2 for model (b)

Fig. 3.5 Reduced contact
stresses at d = 1 for model
(a)andatd =1,H =1 and
H = 2 for model (b)

3.6 Conclusion
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Using the example of contact problems on the shear of the surface of an elastic
half-space inhomogeneous by depth and the shear of the surface of an elastic layer
inhomogeneous by depth, lying with adhesion on an elastic homogeneous half-space,
a comparative analysis of solutions is carried out. The values of the characteristic
parameters of the problems are determined for which the contact stresses for these
two models of inhomogeneous media are close to each other.

Acknowledgements The study was supported by the Russian Science Foundation grant No. 22-

19-00732.



40

S. M. Aizikovich et al.

References

10.

11.

14.

15.

16.

17.

18.

19.

20.

21.

. Popov, G.Ya.: On the theory of plate bending on an elastic inhomogeneous half-space. Isvestiya

vuzov. Stroitel’stvo i arkhitektura (11-12), 11-19 (1959)

Shiraki, Y., Usami, N. (eds.): Silicon-Germanium (SiGe) Nanostructures: Production Properties
and Applications in Electronics. Woodhead Publishing, Cambridge, UK (2011)

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds.): Functionally
Graded Materials: Design, Processing and Applications. Springer, New York, NY, USA (1999)
Kuprin, A.S., Gilewicz, A., Kuznetsova, T.A., Lapitskaya, V.A., Tolmachova, G.N.,
Warcholinski, B., Aizikovich, S., Sadyrin, E.V.: Structure and properties of ZrON coatings
synthesized by cathodic arc evaporation. Materials 14(6), 1483 (2021)

Melnikova, G., Kuznetsova, T., Lapitskaya, V., Petrovskaya, A., Chizhik, S., Zykova, A.,
Safonov, V., Aizikovich, S., Sadyrin, E., Sun, W., Yakovin, S.: Nanomechanical and nanotribo-
logical properties of nanostructured coatings of tantalum and its compounds on steel substrates.
Nanomaterials 11(9), 2407 (2021)

Sadyrin, E.V.: Correlating the mechanical properties to the mineral density of brown spot
lesion in dentine using nanoindentation and X-ray micro-tomography. In: Advanced Materials
Modelling for Mechanical, Medical and Biological Applications, pp. 389-398. Springer, Cham
(2022)

Gibson, R.E.: Some results concerning displacements and stresses in a non-homogeneous
elastic half-space. Geotechnique 17(1), 58-67 (1967)

Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties:
Part I. Point force. Int. J. Solids Struct. 34, 2357-2428 (1997)

Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties:
Part II. Axisymmetric indentors. Int. J. Solids Struct. 34(19), 2393-2428 (1997)

Katebi, A., Selvadurai, A.P.S.: A frictionless contact problem for a flexible circular plate and
an incompressible non-homogeneous elastic half-space. Int. J. Mech. Sci. 90, 239-245 (2015)
Aizikovich, S.M., Vasil’ev, A.S., Volkov, S.S.: The axisymmetric contact problem of the inden-
tation of a conical punch into a half-space with a coating inhomogeneous in depth. J. Appl.
Math. Mech. 79(5), 500-505 (2015)

. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41,

3865-3889 (2004)

. Selvadurai, A.P.S., Singh, B.M., Vrbik, J.: A Reissner-Sagoci problem for a non-homogeneous

elastic solid. J. Elast. 16, 383-391 (1986)

Selvadurai, A.P.S., Katebi, A.: Mindlin’s problem for an incompressible elastic half-space with
an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9-21 (2013)
Tokovyy, Y., Ma, C.-C.: An analytical solution to the three-dimensional problem on elastic
equilibrium of an exponentially-inhomogeneous layer. J. Mech. 31(5), 545-555 (2015)
Selvadurai, A.P.S., Katebi, A.: The Boussinesq—Mindlin problem for a non-homogeneous
elastic halfspace. Zeitschrift fiir angewandte Mathematik und Physik 67, 68 (2016)
Zelentsov, V.B., Lapina, P.A., Mitrin, B.I., Kudish, I.I.: An antiplane deformation of a func-
tionally graded half-space. In: Continuum Mechanics and Thermodynamics 34, 909-920
(2022)

Zelentsov, V.B., Lapina, P.A., Mitrin, B.I., Eremeyev, V.A.: Characterization of the functionally
graded shear modulus of a half-space. Mathematics 8(4) (2020). Article no. 640

Zelentsov, V.B., Lapina, P.A., Zagrebneva, A.D.: Method for determining the parameters of the
exponential shear modulus of a functional-gradient half-space. In: Altenbach, H., Eremeyeyv,
V.A., Galybin, A., Vasiliev, A. (eds.) Advanced Materials Modelling for Mechanical, Medical
and Biological Applications. Advanced Structured Materials, vol. 155. Springer, Cham (2022)
Awojobi, A.O.: On the hyperbolic variation of elastic modulus in a non-homogeneous stratum.
Int. J. Solids Struct. 12, 739-748 (1976)

Kassir, M.K.: The Reissner-Sagoci problem for a non-homogeneous solid. Int. J. Eng. Sci.
8(10), 875-885 (1970)



3 Analysis of Equivalence Conditions of Model of an Inhomogeneous ... 41

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Altenbach, H., Eremeyev, V.A.: Eigen-vibrations of plates made of functionally graded material.
Comput. Mater. Continua 9(2), 153-177 (2009)

Kulchytsky-Zhyhailo, R., Bajkowski, A.: Analytical and numerical methods of solution of
three-dimensional problem of elasticity for functionally graded coated half-space. Int. J. Mech.
Sci. 54, 105-112 (2012)

Gibson, R.E., Sills, G.C.: Settlement of a strip load on a non-homogeneous orthotropic
incompressible elastic half-space. Quart. J. Mech. Appl. Math. 28, 233-243 (1975)

Chen, P., Chen, S.: Contact behaviors of a rigid punch and a homogeneous half-space coated
with a graded layer. Acta Mechanica 223, 563-577 (2012)

Liu, T.-J., Wang, Y.-S., Zhang, C.-Z.: Axisymmetric frictionless contact of functionally graded
materials. Arch. Appl. Mech. 78, 267-282 (2008)

Ke, L.-L., Wang, Y.-S.: Two-dimensional sliding frictional contact of functionally graded
materials. Eur. J. Mech. A/Solids 26, 171-188 (2007)

C6mez, I: Contact problem for a functionally graded layer indented by a moving punch. Int. J.
Mech. Sci. 100, 339-344 (2015)

Su, J., Ke, L.-L., Wang, Y.-S.: Axisymmetric frictionless contact of a functionally graded
piezoelectric layered half-space under a conducting punch. Int. J. Solids Struct. 90, 45-59
(2016)

Kudish, LI, Pashkovski, E., Volkov, S.S., Vasiliev, A.S., Aizikovich, S.M.: Heavily loaded line
EHL contacts with thin adsorbed soft layers. Math. Mech. Solids 25(4), 1011-1037 (2020)
Aizikovich, S.M.: Shear by a stamp of an elastic inhomogeneous half-space of a special form.
Izvestiya AN SSSR. MTT. (5), 74-80 (1978)

Aizikovich, S.M.: An asymptotic solution of a class of coupled equations. J. Appl. Math. Mech.
54(5), 719-724 (1990)

Aizikovich, S., Vasiliev, A., Seleznev, N.: Inverse analysis for evaluation of the shear modulus
of inhomogeneous media by torsion experiments. Int. J. Eng. Sci. 48(10), 936-942 (2010)
Aizikovich, S.M., Vasiliev, A.S.: A bilateral asymptotic method of solving the integral equation
of the contact problem of the torsion of an elastic half-space inhomogeneous in depth. J. Appl.
Math. Mech. 77(1), 91-97 (2013)

Volkov, S., Aizikovich, S., Wang, Y.-S., Fedotov, I.: Analytical solution of axisymmetric contact
problem about indentation of a circular indenter into a soft functionally graded elastic layer.
Acta Mechanica Sinica 29(2), 196-201 (2013)

Krenev, L.I., Aizikovich, S.M., Tokovyy, Y.V., Wang, Y.-Ch.: Axisymmetric problem on the
indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space. Int. J. Solids
Struct. 59(1), 18-28 (2015)

Vasiliev, A.S., Volkov, S.S., Sadyrin, E.V., Aizikovich, S.M.: Simplified analytical solution of
the contact problem on indentation of a coated half-space by a conical punch. Mathematics
8(6), 983 (2020)

Noble, B.: Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential
Equations. Pergamon Press, London, UK (1958)

Aleksandrov, V.M., Belokon’, A.V.: Asymptotic solution of a class of integral equations and
its application to contact problems for cylindrical elastic bodies. J. Appl. Math. Mech. 31(4),
718-724 (1967)



Chapter 4 ®)
Docking of Inhomogeneous Surfaces i
of Piezoelectric Layers in a Composite
Waveguide as a Harvesters of Wave

Energy

Ara S. Avetisyan and Andranik A. Kamalyan

Abstract A piezoelectric waveguide, consisting of two layers rigidly connected to
each other along non-smooth surfaces, is modeled as a three-layer sandwich with an
internal periodically inhomogeneous thin layer. Taking into account the periodicity
of the inhomogeneity of the simulated waveguide, in order to study the propagation
of normal waves in it, according to the Lyapunov—Floquet theory, the boundary value
problem of electro elasticity is solved by the width of the formed periodic cell. The
systems of quasi-static equations of electroacoustics are solved in the rectangular-
shaped virtual cuts formed in two main homogeneous piezoelectric layers. In the
newly formed rectangles of the inner inhomogeneous thin layer, hypothetical solu-
tions are constructed, taking into account the hypothetical inhomogeneity of the
material both over the thickness of this layer and its periodicity along the waveguide.
In the case of particular longitudinal inhomogeneities of the inner layer, the propa-
gation of a high-frequency electroacoustic signal of antiplane deformation, when the
length of the short-wavelength signal is comparable to the linear dimensions of the
surface roughness, is studied. The regions of permissible lengths of a propagating
wave in a periodic structure are determined. A dispersion equation is obtained for the
propagation of a normal electroacoustic signal in a composite waveguide. A strong
localization of wave energy near an inhomogeneous junction of piezoelectric layers
is revealed. It is shown that the seam along the surface roughness of the layers can
become a harvester for a wave energy in a composite waveguide.

Keywords Piezoelectric waveguide - Non-smooth surfaces « Periodically
inhomogeneous * Hypothetical solutions - Antiplane deformation - Electroacoustic
signal - Permissible length - Wave energy harvester
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4.1 Introduction

An important problem in modern technical problems is the harvesting of energy (or
part of the energy) of a dynamic process. In many ways, the possibility of energy
harvesting is determined by the composition of its carriers and the nature of the
assembly element. An interesting example of wave energy propagation is a relatively
simple dynamic process: the propagation of an electroactive elastic shear wave, type
SH, inalayered piezoelectric waveguide. A two-component wave transfers the energy
of an elastic wave and the energy of an electric field oscillation that accompanies it.
In the case of propagation of a high-frequency (short-wavelength) wave signal in a
composite waveguide, wave energy can be localized near the interfaces of the layers.

In 1911, Love showed that, in contrast to elastic waves of plane deformation, the
localization of the wave energy of elastic pure shear waves (SH waves) is possible
in the near-surface zone of an elastic half-space at the junction with a layer of softer
material [1] (Fig.4.1). This showed that the localization of the wave energy of elastic
shear waves of the SH type can be a consequence of discontinuities in the physical
and mechanical characteristics (properties) of the material at the interface between
the media, or a consequence of near-surface inhomogeneities of the material. In 1968
Bleustein [2], and in 1969, Gulyaev [3] confirmed the assumption about the exis-
tence of localization of the wave energy of an electroactive elastic wave (SH type)
near a mechanically free smooth surface of a piezoelectric medium of a certain sym-
metry, under different boundary conditions on the accompanying electric field [4].
However, as shown in [5], the formulation of the electroelastic problem of antiplane
deformation in an anisotropic piezoelectric material is possible only in certain sagit-
tal planes of piezoelectric media. This means that the existence of Gulyaev-Bleustein
waves is not possible in all piezoelectric homogeneous bodies. Electroelastic waves
of SH polarization exist in the corresponding layered Love schemes, with a piezo-
electric substrate [6—10]. Depending on the ratio of the physical and mechanical
characteristics of the materials of the piezoelectric substrate and the thin layer, in
some of these schemes, along with the multimode Love wave, there is a single-mode
Gulyaev—Bluestein wave.

Thermomechanical technological processing of the surface of a solid deformable
element practically does not ensure the ideal smoothness of this surface. To ensure the
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required smoothness on the outer surfaces in the composite waveguide, the residual
geometric inhomogeneities of the layers (roughness) are poured with a softer material
and smoothed out. Smoothness on the internal surfaces of the adhesion of layers in a
composite waveguide is provided by thermal pressing of the layers one into another,
or by ultrasonic welding of non-smooth surfaces.

In both cases, thermal diffusion occurs and inhomogeneous thin layers appear on
the surfaces of the main layers. Depending on the ratio of the physical and mechanical
characteristics of the materials, the emerging layers can become energy collectors of
the high-frequency wave propagating along the composite waveguide.

Without violating the generality of reasoning, we will consider the case of only
the roughness of the inner surfaces at the junction of the piezoelectric layers. The
roughness of the outer surfaces is neglected.

4.2 Modeling of a Two-Layer Piezoelectric Waveguide,
Taking into Account the Roughness of the Surfaces
of the Constituent Layers

Let two homogeneous 6 mm class piezoelectric layers of hexagonal symmetry,
with thicknesses, respectively, H; and H,, and with surface periodic irregulari-
ties hy4 (x) = h+(x + dy) and hy1 (x) = hoy (x + db), respectively, are pressed, pro-
viding perfect adhesion between them. Then, if Rj1 = max |h;+(x)| and Ry =
max |hy4 (x)| are considered, as the maximum deviations of the roughness of
these surface irregularities, then an inhomogeneous thin layer with a thickness of
|hi—(x)| + |+ ()| < Ri— + Ry = 2Ry is appear between the main layers (Fig.4.2).

Considering thermal diffusion, it can be assumed that the material of the newly
formed surface layer will be inhomogeneous. Then, the physical and mechani-
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Y
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Fig. 4.2 Layered waveguide of two pressed piezoelectric layers with non-smooth surfaces.eps
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cal characteristics of the formed inhomogeneous piezoelectric layer will change
along the thickness of the formed layer yo(x, ) = y,1 () [1p1 (0) /32 (0] © 2,

taking on the virtually selected surfaces of the layery = Ry and y = —Ry the val-
ues of the materials of the neighboring main homogeneous piezoelectric layers

1 2) (2
Vpl1 € {c44 s Ppls € i’g),e“)}andypg e{cf& ,ppz,eg’;),en)} 11, 12]

e x,y) = P (x, Rl (x, Ro) /e8? (x, —Ro)]
00X, y) = pp1(x, Ro)[op1(x, Ro)/ pp2(x, —Ro)] ED

“.1)

e1;<x y) = el (x, Ro)[e%’;”(x Ro)/e"? (x, —Ry)] o ,

(0) (D (p2) e 42)

e (X, y) = '911 (x, RO)[<9 (x Ro)/ei; " (x, _RO)] 2R°

The interlayer formed between the main layers will also be periodically inhomo-

geneous along the waveguide. The physical and mechanical characteristics of the

material of the formed interlayer will change along the waveguide. In particular, in
(4.1) and (4.2) for the material characteristics can be represented

cly) () = i), pp @) = pifi (). “43)
(1) (1) 1) 1)) :
315 (x) = elsfl(x) 5 (x) = 811f1(x)

in(m—1)d—d <x< m-—1)d

() = (). pp () = P2 (). “44)
e (0 = e2h ), e8P () = & - fr(x)

in(m—1)d <x <md—d,

where fi(x) = expla;(x — (m — 1)d] and f>(x) = explar(x — (m — 1)d] are the
functions of the longitudinal inhomogeneity in each given section m € N* of the
cell of the formed interlayer [13].

Inhomogeneous both in thickness and length, a piezoelectric layer with transverse
cells(m—1)d —d; <x < (m—1)d}U (m—1)d <x <md — d;}, is modeled as
a multi-cell three-layer waveguide, with a thin, periodically inhomogeneous piezo-
electric layer {|x| < co; |y| < Ry; |z| < oo} between two homogeneous piezoelec-
tric layers

{Ix] < 00; —Hy — Ry < |yl < —Ryp; Iz] < oo}

and
{lx] < o00; Ry < |yl < Hi —Ry; |z| <oo}.
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4.3 Formulation of a Mathematical Boundary Value
Problem in a Three-Layer Sandwich with a Thin
Inhomogeneous Filling

In the problem of electroactive antiplane deformation, in the main layers
{Ix] <00 Ry < |yl = Hi — Ry; [z] < o0}

and
{lx| < o00; —Hy — Ry < [y| < —Ro; |z] < o0}

of the layered waveguide “piezoelectric-1” and “piezoelectric-2” from piezoelec-
tric materials of class 6 mm of hexagonal symmetry, not zero mechanical stresses
o™ (x,y, t)and 6" (x, y, 1), but also the components of the electric displacement

vector D™ (x, y, t) and Dﬁ’”") (x,y, t) are written in the known form

0 (0, Y, 1) = W o (6, 9, 1) 4 €12 G o (X, 7, 1),

4.5)
o (2, y, 1) = €3 Wy (£, 3. 1) + €13 Gy (x, 3. 1),
D)((n,m)(x, ) t) = eg?an,x(X, Vs t) - Siq)(pnm,x(xv Vs t)v (4 6)

D;n’m)(xv Y, 1) = e(lrg)an,y(X, Y, ) — €ﬁ)¢nm,y(X, Yy, 1.

In formed rectangles of these homogeneous piezoelectric layers, numbered n =
{1; 2}, respectively, the well-known quasi-static equations of electroactive antiplane
deformation will be solved

an,xx(xv )’) + an,yy(xv y) = -’ (pngiz)) Wi (X, y)’

(m)

) (4.7)
¢nm,xx(-x7 y) + <an,yy(X, y) = (355)/811 ) [an,xx(xs )’) + an,yy(xv Y)]

In the systems of Eq. (4.7), Eﬂ) = cf‘?(l + x2) is the reduced shear stiffness, and

2 . . . .
x2 =[] /(cl)e) is the coefficient of electromechanical coupling of a homoge-

neous piezoelectric medium under the number “n”.

In avirtually isolated inhomogeneous piezoelectric layer {|x| < 0o; |y| < Ro; |z] <
oo}, the adhesion of two piezoelectrics, non-zero components of the mechanical stress
tensor and the electric displacement vector in the problem of electroactive antiplane
deformation, are also written in the form (4.5) and (4.6), but with variable coefficients
(4.1) and (4.2)

0 0
o0 (x,y, 1) = 054) e, YI)Womx (x, ¥, 1) — eﬁs) x, Y)Pomx (x, ¥, 1),

) 0 (4.8)
Cf;gm) ()C, Y, t) = ciz)(x, y)WOm,y(-xs Y, t) - 9(15) (.X, )’)</)0m,y(X, Y, t)v
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D)((Om)(x’ v, 1) = gO (x, y)WOmx(x v, 1) +81(i (x, y)‘pOmx(x v, 1), (4.9)
D;Om)(x’ Vs t) == 615)()6 y)WOm)(x Y, t) +81])(x Y)<P07m(x Vs t)

Taking into account the periodic inhomogeneity of the formed interlayer, the
desired values wy(x, y, ) and @o(x,y,t) in this interlayer will be further repre-
sented in the form of Bloch-Floquet waves fy(x + s, y, 1) = pw(w)fo(x, y, ), where
w(w) = explisk(w)] the coefficient of periodicity of the Floquet waves is. Then, the
system of equations of electroactive antiplane deformation in the interlayer can be
conveniently written as

;9’;” (x ¥) = i (x. ) wom, xx(x ») + €3 (X, ) gom (X, Y)

el (e ) Wom (. ) + €l (x, y)(pOmx(x ¥) 4 @?po(x, y)wo(x, y), 4.10)

=D (x,y) = €3 (x, PWonee(x.) = £17 (%, ) @om,cx (x, ¥) '

+e(lg)x(x’ y)WOm,x(-xv y) - ‘911 X(X y)(pOmx(-x y)

The conditions of conjugation of electromechanical fields on virtually drawn
surfaces y = —R( and y = Ry, respectively, will be written in the form

cBwa (X, —Ro) +2 ¢, (x, —Ro)
= {9 (x, —Ro)wo, (x, —Ro) + €\? (x, —Ro)¢0,, (x, —Rq)

4.11)
efyway(x, Ro) — P2, (x, —Ry) i
= e13 (¥, —Ro)Wo,, (x, —Ro) — &} (x, —Ro)g0,, (x, —Ro)
wa(x, —Ro) = wo(x, —Rp);  @2(x, —Rg) = @o(x, —Rg) 4.12)

Cf&)wl,y% Ro) +§? @1,y(x, Ro) o
" =y (x, RO)W?’S (x, Ro) + €15 (x, Ro)¢o,y (x, Ro) @.13)
ejs wiy(x, Ro) — €1 ¢1,4(x, Ro)
= e}2 (x, Ro)wo,,(x, Ro) — €|} (x, Ro)¢o.y (x, Ro)

wi(x, Ro) = wo(x,Ro);  @1(x, Ro) = ¢o(x, Ro). (4.14)

On the external surfaces y = H| and y = —H, of a piezoelectric layered waveguide,
we consider the case of mechanically free and electrically open smooth surfaces in
which the localization of wave energy is not possible [11, 12]. These conditions
correspond to the case of strong dielectric piezoelectrics, for which a%pll) > go. In
this case, the surface conditions take on a rather simple form

wl,y(x,y)|y=H] =0; golﬁy(x,y)|y=H1 =0. 4.15)
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wa M|, =00 ey, =0 (4.16)

4.4 Solution of the Mathematical Boundary Problem

According to the Lyapunov—Floquet theory, the propagation of normal waves requires
consideration of the electro elasticity equations along the width of the specified cell.
Taking into account the homogeneous surface conditions (4.15) and (4.16) on the
mechanically free and electrically open surfaces of the waveguide, in each interlayer
m € {1; 2} of a periodic cell

{(m—1)d—d; <x < (m—1d}U{m—1)d <x <md —d,},

the short-wavelength solutions of the systems of quasi-static equations (4.7) in the
form of normal waves can be written in the well-known form

Win (%, ¥, 1) = Win(Ro) exXpl—aikn () (v = Ro)l explilhkn(@)x — wi)],
oy = — Dm0
T L — aely /el (4.17)
1 —an(els /e1y)) expl(@im — Dkn(@) (v = Ro)]

exp[—aimkin (@) (y — Ro)]

expli(k,(w)x — wt)],

W2m(-x, Y, t) = W2m(_R0) eXp[_Okam(w)(y + RO)] exp[l(k(w)x o wt)]’

am(x, y, 1) = PR
m (X, Y, 1 azm(e(lzs)/eﬁ)) (4.18)
. 1- O‘Zm(e%)/sizl)) expl(1 — a2m)kin (@) (y + Ro)]

eXp[akam(a)) (y + RO)]

exp[i(km (w)x — wt)].

The wave formation parameters o1, (@, k,(®)) and a0z, (w, k;,, (w)) in the main piezo-
electric layers of the waveguide are defined as

Ay (@, km(w)) = \/1 - [C'rlto’)/km(w)]2

Wim(Ro)s Wam(—Ro), D1n(Rop) and ,,,(—Rp) amplitudes of electroacoustic shear
waves on virtually vibrated surfaces of a thin inhomogeneous layer of the waveg-
uide. Based on the surface conditions (4.12) and (4.14), and taking into account the
thinness of the formed internal inhomogeneous layer compared to the thicknesses of
the main layers of the waveguide 2Ry < min{H;; H,}, for elastic shear wy,,(x, y, t)
and the electric potential ¢y, (x, y, ¢) of high-frequency electroacoustic waves in the
inhomogeneous layer, we can hypothetically represent in the form [11, 12].
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sin[agmkn(w)(y — R,
Won(x,y. 1) = { s[in?z%:’ Rigﬂ (w)f” Wi (—Ro) — wan(—Ro)] + wlm<—Ro)}
-exp [i(ky(0)x — wt)],

(4.19)

sin[k,,(w)(y — Ro)]
Yom(x, y, 1) = { Sin[2a0, Rokn(@)] [D1,(=Ro) — @2 (—Rp)] + P Ro)}
-exp [i(ky(w)x — wt)] .
(4.20)

By choosing the representations of solutions (4.19) and (4.20), the surface conditions
(4.12) and (4.14) are satisfied automatically, and the wave formation functions

Sin[OlOmkm (a)) (y - RO)]/Sin[zaOmROkm (a))]

and
sin[k,,(w)(y — Ro)1/sin[2Rok;, (@) ]

describe the amplitude changes in the sought-for components of the wave field over
the thickness of the virtual inhomogeneous interlayer. The wave formation coefficient
of an electroactive elastic shear wave in them is defined as

o (@, k(@) = /13, (@, k(@) — 1.

in which the phase velocity averaged over the thickness in an inhomogeneous layer
will be represented as 1o, (w, k(@) = v/ (Corkm(@)). The averaged over the thick-
ness velocity of a bulk shear wave éol(Cpl , Cp2) = const in an inhomogeneous thin
piezoelectric layer is defined as

~ 1
CO[(Cph CpZ) = 55

Ro
Q) [1 Q@)1 } ;
C

R 0) (0)
oiR0 ,00(53 ) 44 8)eqy (§) 4.21)
|G- |, | &-g
InCp —InCp|  |InCZ —InC2

In the case of propagation of a long-wave electroacoustic wave signal, when
2Rpk (w) < 1, the internal inhomogeneous layer does not affect the propagation of a
normal wave. In the case of propagation of a short-wave (high-frequency) signal of an
electroacoustic wave, when 2Rk, (@) > 1, by substituting solutions (4.17)—(4.20)
into surface conditions (4.11) and (4.13), a defining system of algebraic equations is
obtained.
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Cﬁ) QomCtgl2a0mRokm () | Wi (—Ro)
+c§2) [etom — ctometg[20t0mRokin (@)1] Wasn(—Ro)
el ctg[2Rok (@)@ 1 (—Ro) =2 [(1 — o)
—ctg[2Rokin (@)]] Pom(—Ro) = 0,
€12 0t0mCte[ 200, Rokyn (@)1 Wim (—Ro)
+ei? [otam — dometg[20t0mRokin (@)1] Wan(—Ro)
—e{7 ctg[2Rokin (@)1 1 (—Ro) + &7 [(1 — o)
+Ctg[2Rokn(@)]] Pom(—Ro) = 0,
¢34 [tim + tom See[2060Rokn (@)1] Wi (—Ro)
— ) oo 5€C[2060Roki ()1 Wam (—Ro)
+eis [sec[2Rok(@)] — 1] 1 (Ro) — ey sec[2Roky ()@ (—Ro) = 0,

6515) [alm + Xom Sec[2a0mR0km(w)]] Wlm(_RO)
—e|5 0tom Sec[ 2000, Rokin ()] Wan (—Ro) 4.22)
—e1)) [sec[2Rok(@)] — 1] D1 (Ro) + &} sec[2Rok (@)D 2 (—Ro) = 0.

To determine the wave numbers in the periodic interlayers of a three-layer waveguide,
the dispersion equations are derived from this [14]

1 2
Cf{i Yoy (@) + Cf;i )

2
[ an @ - (fon@)’|
(4.23)

te[2Ro01 ()ki (@)] = ¢y g1 ()

1 2
Cf{f; Jap(w) + Cf& Jay (@)

2
Cﬂl)au(w)cﬁz)azz(@ - (Cf;(i)aoz(w)> :|
(4.24)
The system of dispersion relations (4.23) and (4.24) itself represents the disper-
sion equation of wave formation through the thickness of composite waveguide.
Their joint solution provides synchronized values of wave numbers k; (w) and &k, (w)
in components of waveguide. The dispersion curves of localized shear microme-
ter waves A ~ 107% m at the junction of pairs of piezoelectrics PZT-4 with Cad-
mium Sulfide and PZT-5 with Zinc Oxide, for micrometer height Ry = 10~ m and
micrometer widths of protrusions and cavities of surface protrusions d; = 107° m
and d, = 5 x 1077 m (Fig.4.3).
High frequency shear Love and Gulyaev-Bleustein types waves for which
min{cy;; ¢y} < w/k(w) < max{cy; ¢y} already will propagate in the composite

t2[2Ro00 (@)ka ()] = € oo (@) [
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Fig. 4.3 The dispersion curves of localized shear micrometer waves A ~ 10~ m at the junction of
pairs of piezoelectrics PZT-4 with Cadmium Sulfide and PZT-5 with Zinc Oxide, for micrometer
height Ry = 107® m and micrometer widths of protrusions and cavities of surface protrusions
di=10°manddy =5 x 107" m

waveguide of the same materials outside of frequency bands
0 <= (/Ro) - [erea/(cl, — ¢3)]

(see Fig.4.4). In this case, the forbidden (or allowed) frequency zones of localized
Love and Gulyaev-Bleustein type waves are also determined from the dispersion
equation

cos[Lkr(w)]
G%kz2 (w) + G%kl2 (w)
2G 1k () Gaky (w)

= cos|ak; (w)] cos[bky (w)] — sin[ak; (w)] sin[bk, (w)]

(4.25)
already taking into account the frequency in the definition area

w > (w/Ry) - [erien/(c}, — ¢3)]

(see Fig.4.3).
Synchronization of shear wave propagation in general assumes the same allowed
wave number, determined from (4.25)

1
4G1ki () - Gak(w) 4.26)
, |:[G2k2(w) + Giki(@)])? cosld ki (@) + daka()]— “ '
~[Goko (@) — Giki(@)]* cosldiki (@) — doka ()]

1
k(w) = 7 arccos {



4 Docking of Inhomogeneous Surfaces of Piezoelectric Layers ... 53
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Fig. 4.4 Forbidden and/or allowed frequency zones for shear localized slow waves (Love type
waves) in composite waveguide piezoelectrics PZT-4 with Cadmium Sulfide and PZT-5 with Zinc
Oxide

Considering the received relations as an area of definition for the allowed lengths of
the wave signal in the periodic structure, from (4.26) we get

| [Gaka(@) + Giki (@)
4G ki (w) - Gorky(w)
cos[d ki () + daks(w)]— (4.27)
_[Gaka(@) — Giki (@)
[Goka (@) + G 1k ()]

Mw) = 27 (d; + dp)arccos™

cos[di ki (w) — doky(w)]—

It follows from more visual graphs of high-frequency propagation (Fig.4.5), that
forbidden frequency zones do not form in this task, in which wave numbers k(@) do
not exist. In this case, the dispersion lines have clearly outlined envelopes at top and
bottom. It is also obvious, that the different stiffness of the materials of half-spaces
lead to frequency shear of the dispersion curves between each other.

It is interesting, that in all these cases the nature of changes of phase speeds
are the same in the virtually selected layers (Fig.4.5), while the phase speed in
the cavity layer d; < x < d; 4+ d, is less than the phase speed in the protrusion
layer 0 < x < d;. Based on the fineness of the isolated inner inhomogeneous layer
{lx| < 00; |y| < Ro; |z| < 0o}, taking into account the boundary conditions (4.11),
(4.13) and the electro elasticity equations (4.10), it can be replaced by the action of
equivalent electromechanical loads on the surfaces y = FR of the main layers. The
difference in mechanical surface shear stresses on the surfaces y = FRy of the seen
layer can be represented as
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Fig. 4.5 Dispersion curves of localized shear nanometer waves A(w) ~ 10~° m at the junction of
pairs of piezoelectrics PZT-4 with Zinc Oxide and PZT-5 with Cadmium Sulfide, for micrometer
height Ry = 10~® m and micrometer widths of protrusions and cavities of surface protrusions
di=10%mandd, =5x 107" m

— 802" (FRy)
2
Wiy (e Rp) + 0 g1y (v Ro) — B wa y (k. —Ro) =27 3 3 (x, —Ro)
2Ry [Wa(—Ro) — Wy (Ro)1 k2
[aoksRoctg Qapk«Ro) — 2[pp1/op2] @oksRo csc(RaoksRo) +In[op1/pp2] |

Lop1/pp2] (402K 2Ro? + 210 pp1 /2] )

= [? /K21 pp1

[aok*Roctg QapkiRo) — 2PV /e PP agkiRo cseagksRo) + In el /P ]
1 2 1 2
(e /821 (de02k R0 + 2 [ /P )

_ 22(=Ro) = @1 Ro) p1),
Wa(—Rp) — Wi (Rp) 13

[Zk*Roctg(Zk*Ro) 2(e%V /622 kyRo csc(2ksRy) + In [ /e8] }

(f20)]
~C4q

(4.28)

[V 72 (4k*2R0 +21n[e®V 76?2 )

) 2)
n W1 (Ro) Cfﬁ - Cfﬁ 2 P = P
2Ry [W2(—Ro) — Wi (Rp)] | 1 [C(P‘)/C(pz) In[pp1/0p2]

(Pl _ (p2)
®1 (Ro) °ls €5

+
2Ry [W2(—Ro) — W1 (Ro)] ln[e?;l)/ellgz)]

The difference of the normal electrical displacement to surfaces y = R, of the seen
layer can be represented as
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— & D (FRo)

1 1 2 2
VW L (x, Ro) — 67001y (x, Ro) — €5 Way (x, —Ro) + 6773, (x, —Ro)
2Ry [W2(—Ro) — Wi (Ro)1 k2

o1 [ 0kRocte CagkiRo) — 21e /es laok.Ro esc(2aok.Ro) + In [eff /e |
=5

[0V /e ](4a02k*2Ro +2In >/c<”2>)
P2(=Ro) — P1 (Ro) 1)

& 4.29
W2(=Ro) — W1 (Ro) ! *29
|2k Rocte@hRo) — 20 /6171 kaRo ese(2k,Ro) + Ineff /671
(e /61 (4k2Ro? + 21n [ef 761
1 2 1 7)
Wi (Ro) e — o2 @1 (Ro) gl g2

+
2Ry [W2(=Ro) = Wi (R)] 1n e /e\7?] * 2Ro [Wa(=Ro) = Wi (Ro)] In [¢ %" /6172

In both intervals of longitudinal inhomogeneity 0 < x < d; and d| < x < d| + d»,
the wave number of the propagating wave is determined from (4.26).

4.5 Conclusion

As a wave energy harvester, a model of a two-layer piezoelectric waveguide is pro-
posed, taking into account the roughness of the joining surfaces of the layers. The
docking of two different piezoelectric salts leads to the formation of an internal, thin,
inhomogeneous layer both in thickness and along the interlayer. The longitudinal
periodic inhomogeneity of the formed interlayer transforms the electroacoustic sig-
nal into waves of the Floquet type. The inhomogeneity of the formed interlayer in
thickness leads to the appearance of differential mechanical stresses and electrical
displacement on the surfaces of the seen interlayer. Localization of high-frequency
electroacoustic shear waves occurs in the formed inhomogeneous interlayer and
near it. It is shown that if in a layered waveguide with an internal millimeter inhomo-
geneous layer, millimeter electroacoustic waves have a periodic structure (Floquet
type waves) and there are forbidden frequency zones, then in the case of a nanometer
wave signal, there are no forbidden frequency zones. In this case, the wave energy is
strongly localized near the inhomogeneous interlayer for all frequencies of the wave
ultrasonic signal.
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Chapter 5 )
About One Approach in Prevention oo
of the Emerging Dangerous Phenomena

Caused by the Existence of Defect

in Continuous Media

Vladimir A. Babeshko, Ilya S. Telyatnikov, Alla V. Pavlova,
and Maksim N. Kolesnikov

Abstract We consider the case of the formation for a defect of the vertical crack type,
including a new type, arising in the coating of the deformable material. New models
of pre-landslide phenomena, when the landslide-prone environment is enclosed in
a thin-walled coating, a sarcophagus, which acquires a vertical crack, lead us to
similar problems. Also, such problems arise in the following cases: underground
structures such as mines with a set of parallel tunnels, in bearing pairs in mechanical
engineering, in problems of seismology. One of the approaches consists in a possible,
controlled impact on such structures, preventing large-scale destructive processes,
with significant material damage and human casualties. It consists in vibration action
at certain frequencies, up to high, close to shock ones, as well as the selection of
areas for the application of such action, in relation to the defect. This approach aims
to defuse the emerging dangerous phenomena, preventing the development of the
process to a critical point which can cause tremendous damage. This study aims
to further the development of the theory for cracks of a new type. The research is
based on factorization approaches, the block element method and functional analysis
methods. Depending on the goals set, the possibilities of different study approaches
for the problems under consideration are discussed.

Keywords Block element method + Kirchhoff plate - Vertical crack -
Eigenfunction method + Factorization
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5.1 Introduction

The problem of studying the behavior of deformable bodies in the presence of
defects such as cracks has been studied by many authors [1-36]. Most of the work
considers the defects in the form of Griffith cracks. Cases of cracks in multilayer
deformable media with crack planes parallel to the boundary of the multilayer media
are described. Analytical, numerical-analytical and fully numerical approaches can
be noted, which turn out to be effective for certain boundary problems. For example,
in problems associated with cracks, boundaries of which go to infinity, and analyt-
ical methods prove themselves more effective than the others. And vice versa, in
problems with flat limited cracks, numerical methods turn out to be more effective.
Problem statements for media with Griffith cracks are quite diverse depending on the
method of applying external influences to crack faces. The conditions of the cracks
destruction and approaches to studying the directions of crack development after
their destruction at the tip also vary widely. Along with cracks in a homogeneous
medium, we also considered cracks at the layer boundaries in a multilayer medium.

Each of the studied problems has its own specifics, aimed primarily at identifying
the conditions for the defects influence on the strength properties of the structure and
finding ways to reduce the vulnerability of the latter during crack propagation, or to
avoid its destruction.

Along with Griffith cracks, we have found cracks of a new type [37], which
complement Griffith cracks. Griffith cracks have a smooth boundary. At the crack tip,
the boundary represents the rounding of an elliptic curve. The destruction of a crack
consists in breaking this boundary. A crack of a new type has a piece-wise-smooth
boundary. They are formed in the coated medium, occupying a position perpendicular
to its boundary. At the tip, the crack boundary is described by the cavity boundary in
the form of a half-strip. The mechanism of its destruction consists in the formation
of singular contact stresses with the complete convergence of the crack edges.

Cracks of a new type appear in models of pre-landslide phenomena, when a
landslide structure is enclosed in a thin-walled coating—a sarcophagus [38]. The
destruction of the latter occurs due to the formation of through defects in it, perpen-
dicular to the boundary and representing cracks of a new type. Similar problems for
the cases of non-converged crack edges of this type also arise in the problem of sta-
bility for the underground structures, such as mines with a set of parallel adits. Here,
the problem arises in the assessment of the underground structure mechanical state
and its changes associated with stresses redistribution due to the constant extraction
of ore from adits. In addition, the issues caused by the influence of the slow move-
ment of lithospheric plates, which, after a long time, cause noticeable displacements
in the underground structure, have not been studied [39].

Cracks of a new type can occur in the bearing pairs, important products used
in mechanical engineering. Relevant for these products is the problem of structural
stability and degree of performance in the event of microcracks formation, including
cracks of a new type [40].
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In seismology [41], it was found that when the ends of lithospheric plates moving
along the Konrad boundary approach each other, cracks of a new type, representing
tectonic faults, are also formed. This fact made it possible to reveal a new type of
earthquakes, called “starting,” which occur at the moment of complete convergence
of the lithospheric plate edges before the start of interaction. A comparison between
the theoretical calculated displacements of the Earth’s surface at the epicenters of
starting earthquakes shows a qualitative concurrence with the displacements of real
earthquakes in these areas [41].

The issue of controlling a new type of cracks is poorly studied. One of the
approaches developed in this article is to use the geometric properties of the new type
cracks, namely, their location perpendicular to the boundary. An available means of
influencing the latter is the possibility of the surface waves excitation caused by
sources of various types. These include both vibroseismic and explosive. Both those
sources are ultimately associated with certain frequencies of signal excitation by
surface sources.

In this work, we study the excitation of waves caused by a surface harmonic source
in a coating with a defect in the form of a new type crack.

5.2 Formulation of the Problem

A block structure is considered, consisting of two-dimensional horizontally arranged
plates of different types in the form of half-planes, contacting each other along
a rectilinear boundary. The block structure is located on the surface of a three-
dimensional linearly deformable substrate. The considered block structures are under
vertical harmonic external action. The case of static actions was considered in [41],
and it led to the discovery of a new type of earthquakes, called the starting ones.
The present study is based on the method developed in the aforementioned work.
We consider that the coatings are half-planes with parallel boundaries, located on a
linearly deformable foundation at a distance 26 from each other. Plates are modeled
with Kirchhoff plates. We consider that the space between plates of different types
is free from external influences, and forces directed vertically act on the ends of the
plates. In the local coordinate system x;x;x3 with the origin in the plane x; Ox,,
coinciding with the middle plane of the plate. The axis Oxj is directed upward along
the normal to the plate, the axis Ox; is directed tangentially to the fault boundary,
and the axis Ox,—along the normal to its boundary. The area |x;| < oo, x; < —6,
occupied by the left plate, is denoted by the index A, and the area |x;| < oo, x, > 0,
occupied by the right plate—by the index r. The area between the plates |x;| < oo,
—0 < x < 6, 1s denoted by the index 6.

The Kirchhoff equation for the fragments b of the coating, b = A, r, occupying
areas €2, with boundaries 9€2;, relative to the displacements of the middle surface of
the plates u, = {uyp, uzp, usp} €xp (—iwt) under vertical harmonic (with frequency
w) effects t, = {0, 0, t3,} exp (—iwt) from above and g, = {0, 0, g3} exp (—iwt)—
from below, after the exclusion of the time parameter, has the form
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R, (3x1, 0x2) up — Epy (t, — g) = (V* — e4) usp + &5 (35 — g35) =0, (5.1)

where
E, = diag{—ep5, —&ps, €bs} »

12 (1—v3) H* 12(1—vp) H*
2 b b
Eap = O pPp————5——, E5p = —————,
4” i Ehj * E,h;
v * a* *

=t ——+—
axt 0x?9x3  0x5

Here, for plates, we use the designations pp—density, E,—Young’s modulus,
vp,—Poisson’s ratio, h,—plate thickness.
At the same time, at the boundaries of the plates, we can set the bending moments

azugb 82143;, Db Dh
M, = —-D, > Vy— | » =—, Dp=—7,
b b1 < ox2 b 5x2 b= g =3
3
where D), = ; zghhi 5 are the rigidities of the plates, H is the dimensional parameter
Vb

of the substrate, for example, the layer thickness; cutting forces

831431, 83M3b )
=-D — + 2 - — | = 02 ;
O b2 ( 93 2 —wp) 9370 Sap (082p)

displacements—us, = f15 (0€25), rotation angles of the median plane around the
axis x, in the coordinate system x; Ox,—

1 3M3b

—_—— = 92p) .
H on Sfon (082)

By applying the two-dimensional Fourier transform in horizontal coordinates to
system (5.1), we obtain

. ) 2
Ry, (—ioy, —iap) Uz, = [(Ol% + Ol%) - 843b] Usyp, b=A,r,
Usp (a1, 2) = Fousp (x1,x2),  Gzp (a1, a2) = Fagap (x1, x2) ,

T3p, (a1, 02) = Fatzy, (x1, x2) .

From here on, F, = F; (a1, ;) and F; = F; («) are the two-dimensional and
one-dimensional Fourier transform operators, respectively.



5 About One Approach in Prevention of the Emerging Dangerous Phenomena ... 61

The relationship between boundary stresses and displacements on the surface of
an elastic medium under the plates has the form

2
RS EE ] | R RS SPCRATES
n=1 Q.

(x1,x2) € Qy, m=1,3, (5.2)
where
-1 (1 —V)H
gg = —.
1%

Here, index 1 corresponds to A, 2—r, 3—0, S0 g31 = g3, 832 = &3r»
Q= Q= {(x1,x2) : |x1| < 00;x < -0},
Q= Q, = {(x1,x2) : |x1] < 00;x2 > 6},

Q3 = Qp = {(x1,x2) : [x1] <00, -0 <x2 <0}.

Relations (5.2) can be represented as

2
1 .
3 1052.0) = 55 3 [ [ K (@1.2,0) Gay a1, 0 exp (i, ) dende
”=101 o
&6 = ﬁ, (o, X) = a1x1 + anxz,

K(aj,00,00=0(A7"), A= /a}+a}— oo

Here, K (a1, oz, x3) is an analytic function of two complex variables o, k = 1, 2,
in particular, meromorphic; numerous examples are given in [42, 43].

Using of the block element method leads to the introduction of external forms wy,.
By applying the approach of [41] in the variant of the harmonic oscillations presence,
the functional equations of the boundary value problem can be represented in the
form

. . 2
Rb (—10{1, —10[2) U3b = [(0612 + 06%) — 84b:| U3b
=-— / wp — &5pS83p (@1, @2) | (5.3)
A2

S3p (a1, a2) = Fo (ap, a2) (13 — g3p), b =A,r.
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The solution representation for each plate has the form

1

(@ +03)? — e

/ wp — 5583 (a1, @)

1978

i
uzyp, = —F; (ar, a2)

The external forms participating in representation (5.3) have the form

. il
wp = el<“’x> {—1 I:Olzl\/[D_1 - QD_l - (0(% + vba%) —au3b
X2

+iop [0[% + 2 —-v) O(%] uy,] }dX].

Taking into account the adopted notation, we can represent the pseudo-differential
equations for the left plate

dusy,
) 8X2

Y,

+ioi- (a3, + 2 —v)af) u3x} exp (io1X1) dx; — €5,.53; (o1, 0121)} =0,

£l € 39

8u3)\

£ () - [ [ DM - D0 - (4 vd) 5

02,

+ian- (@3 + 2 —v)af) U3x:| exp (ior1X1) dx; — €5, 53, (a1, 0522—)} =0,

£l € 9Q;.
Similarly for the right plate

) au3r

k! (sr){— / [iamDﬂer—Dr;Qx—(a%1++vra% T

Q)

+ioniy (@3, + 2 —v)af) M3r:| exp (ia1x1) dx; — €5:53; (a1, 0l21+)} =0,

& €09
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8u3r
8X2

Fi' (&) {_ / |:iOlzz+Dr_11Mr —D;'Qu — (03, + var}) +

082,

+ ooy (Ol§2+ +Q2-v) Ol%) u3r:| exp (i1 x1) dx; — &5:S3; (@1, 0lzz+)} =0,

& €0Q;.
s )2 s )2
01— = —14W/ O] — A/&4n, O = —14/ O] + /€4,

. 2 . 2
Qi =1/ O] — /€4, 0 =L/o] + /€4

The problem posed for # = 0 is dynamically reduced by the block element method
to the Wiener—Hopf functional Eq. [41], presented in the following form

-2
|:€5r (04%-1—0!% - 84r) + 65 Ky (1, az)]G+ (a1, a2)

2 _
=—|:85A (af + o3 — €ar) +861K1(OI1,062)]G (o1, a2)

+ (0512 + Ot% - <94r)72 [Arklr + Brk2r + SSrT7 (0[15 0(2)]
+ (0612 +al — 54r)72 [Akklk + Bikyy, + 52T (a1, 052)] , 6=0.

This functional equation describes a crack of the new type [37], which, in seis-
mological problems, is a tectonic fault. A detailed study of them made it possible to
reveal the occurrence of starting earthquakes under multidirectional effects on the
crack edges [41].

The block element method makes it possible to analytically reveal important
qualitative properties of solutions to boundary value problems. Another approach,
based on the method of eigenfunctions, makes it possible to detail the wave processes
arising in a block structure with the subsequent possibility of their application to affect
the edges of a defect. Below is a short summary of it.

5.3 Eigenfunction Method in the Plane Problem of Vertical
Vibrations for a Plate with a New Type Crack

We consider the boundary value problem described above in a flat formulation for
a block structure with 6 = 0. Vertical harmonic influences affect the previously
described block structure. An elastic layer is considered as a deformable substrate.
Omitting the details, we represent the equations of plate vibration (5.1) after sepa-
rating the time factor in the form
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Ry (0x2) ux (x2) — 6158+ (x2) = b1 (x2), =£x >0, 54

4

Ry (0x2) = €43 —&x4, bi(x2) = —e45t1 (X2).

axy
Concentrated load 7, (x2) = A8 (x; — x9), x§ > 0 is the point of its application,
intensity A > 0; 7_ (xp) = 0. The nonzero component of the displacement vector is
uy 3 (x2). Here, the index “+4” corresponds to the right plate, generally denoted by
the index r, index “—” corresponds to the left one, denoted in the previous section
by the index A.
Displacements at the upper boundary of the elastic layer (5.2) are now written in

the form
o0

u () = o5 / k(& — x2) g (x2) d&s,

—00

where u (x;) and g (x,) are the displacement and stress amplitudes, respectively,

1
k (xp) = o / K (o) exp (—iapx;) dorp.

o

Green’s function K (a2) = K33 (a2, 0).
The functional relation for the integral characteristics of displacements and contact
pressures between the foundation and the coating has the form

U(a) =K ()G (), ap € o, (5.5)

where
U(azx) =Fu(xz), G(az) =Fi(a2)gx2).

The ideal connection of slabs and foundation involves: uy (x2) = u (x2), g+ (x2) =
g (x2), £x, > 0. Taking into account (5.5) in the Fourier transforms, this can be
written

Ul =Usp (@) +U-(a2), G(a) =Gy () +G_ (o), az€0. (50)

The papers [44, 45] describe a solution method related to the transformation of the
differential operator for the problem. The eigenfunction method gives the following
representation of general solutions (5.4) that satisfy the boundedness condition in
given planes and correspond to the limiting absorption principle [41].

Uy (x2) = Axyexp (Fq+x2) + Asr exp (Fig+Xz)
+F7! ()[R (@) (845G 4 (2) + By ()], x>0,
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where Ay;, j = 1,2 are arbitrary constants; g+ € R, g4+ > 0 are the roots of the
equations

Ry (a2) =0; Ry(an) =ex3 (a2 —q) (@2 —igs) (a2 + g+) (a2 +ig+) ;
B, (ap) = exp (iagxg) i B_(ap) =0.
In the Fourier transforms, these relations take the form

+iA4 +iAo 4 +
Us (@) = ——2L 4 +{RZ' @) [e2.5Gx @) + B @)]} . w e
oy +igy  op g+ I

When choosing o sufficiently close to the real axis, G («p) will be regular in the
area ap € 0%, and G_ (op)—in the area o € ©7. The last terms on the right-hand
side can be represented

{R:' (@) [5G+ (@) + Bs (052)]};‘E
= R:' () [5G+ (@) + By ()] — {R%' (@) [5G+ (@) + Bx (Olz)]}j -

wherein

{RE" (o) [4.5G+ (@2) + Bx ()]}
1 I:S:t,SG:l: (£q+) n iex sG+ (ig+) n By (£q+) n iBy (iiQ:t)i|
4qies; ay F g+ oy Figs ay Fq+ ay Figs

where By (q4) =exp (igx)), By (igs) =exp(—q4x3).  B-(—¢-) =0,
B_ (—ig_) = 0, values G+ (£g4) are subject to determination. Then we can write

+iAy +iAg, .
Us () = — + + RI' (@) [5G+ (@) + B (@2)]
aytigy oy Eqgs

1 g5 +G41 (£ ie5 1 G4 (+1 By (£ 1B (%1
|:5,i + ( Qi)+ 5,4G+ ( Cli)_l_ +( Qi)+ + ( Qi)]

4gies s ar F g+ ar Figs a Fq+ oy Figs
(5.7)

Oy € 0.

From (5.7), it is possible to express the integral characteristics of the contact stresses
between the plates and the foundation

Gt () = &5} Rae (@) Uk (o) — 5y B (@)
[ ERe) R @)
&5+ (g £ig+) ies + (a2 £g4)
Ry (@) [55,:|:G:I: (£q+) N ies + G+ (Fig+) N By (£q+) 4 iBy (iiqu)] .
£5.+4q3ex 3 o F g+ oy Fig+ o F g+ oy Fig+
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From (5.5)—(5.7) by a series of transformations, we obtain a system of func-
tional equations with respect to Uy (or2), which is solved using the Wiener—Hopf

method [46]. As a result of the expression for the Fourier transforms U (a) of the
desired surface displacements

ve= ) [10-0 )2 + (00 )

2
+2 (A+j (D04, + A {D- Q,,,}f)
j=1
+Gy (g (D201 )2 + G (iap) (D03, )

+G_(—q) [D_Q!_}: + G_ (~iqu) {D_ Q‘{}j]. (5.8)

In (5.8), N§ () is the result of factorization with respect to the contour o in the
form of a product N (a2) = N (a2) N? () of the function

N (a2) = Ny (@2) N2 (@2), Ny (@2) = Ny (e2) Ry () ;
Ny (@) = Ny () R (@) Ny () = &5 4 K (@) — R} (@)

Ny (@) =e5' K (@2) — RV (@); Ds=es54(NI) ™ NT'K:

0 L +iR,
L= 2.+ = 5
oy £igy ay + g+
R By (£ iB+ (i
Oos = Bat 3:|: [ + ( Qi)+1 :i:(.ICI:t):|;
4giess [ oo Fqx oy Fig+
Ry &5+ Ry ies 4
Q?,i ==+ — g,:ﬁ: == —

4qlerzon Fqs 4gless r Fige

The factorization of the function N («) is carried out approximately; for this
purpose, an approximating function N4 (a) and N (az) ~ N7 (az) N7 () is
constructed. In [45], where a method for solving problems concerning an elastic
layer with a composite coating consisting of extended plates, based on the transfor-
mation of the differential operator for a boundary value problem, is presented, the
approximation of functions subject to factorization is described in detail.

Like K (a2) and N; (), N> () are even functions with a finite number of
simple real poles and zeros. Their poles are the real poles of the function K («;) +
pj,j =1, M, as well as &g —for the function N (at2) and ¢g_—for the function
N (a3). The number of poles K () and their value determine the number and
speed of propagation for surface waves in an elastic foundation. Let us introduce
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the notation 2y, € R,j =1, Nsz for positive zeros ]\_/k (a2), k = 1, 2. Further we
consider functions of the form

Nig (@) = TI5 (@) Ny (@), k=1,2,
Ni

Nija
M,+1 "¢
@+2)" T (3-2, )

M, ’

2 2 Mle/z 2 2 2 2
((xz +1 ) (Olz - 6]4-/_) 1_[1 (Olz - pj)
j:

H,(,]/z (an) = >0, [eR.

Here, z; ; > 0, j = 1, MF are real zeros of Nj. The obtained Ny g (@2), k = 1,2 do
not have zeros and poles on the real axis and behave at infinity in the same way as
Ne (@), k =T1,2, Ny g (@2) ~ O (")

Approximating the functions

Joi+iz _
——Ner(), lo>1, lheR, k=12

My
with Bernstein polynomials of degree N4 [43]

o A A
[1 (“2 - ZMk,.i) (“2 + ZMk,.f)

KMk j=1
N 9
Jod+ 8 (o2 +12)™

k=1,2, a€o,

My g (02) = Mg () =

where «y, = lim s N (a2), we can find
ar—> 00
Ny (e2) ~ N (@) = T, () Ni'g (@2)
Ny (a2) = N{)y (02) = Ni)y (@2) Ry (2)

k=1,2, are€o.

Then, the function N4 (a,) is approximately constructed and factorized. After fac-
torization, it takes the form

N (@) = N7 () N7 (),
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NS (02) & N7 () =

Ny
2 My

Ny . M:
(o £iD" (@ £ig) [ (0% 25,) [1 (22 )
e

KN28_,3 j=

Ky €+3 M

z MA .
jl;ll (Olz - ZNl»j) Hl (Otz + Z;‘_/l,j)

j=

(o £ (0 igy)

Approximation for functions K («) and N; («;) with given accuracy in the form of
easily factorizable functions K4 () and N IA (crp) allows us to analytically find the
originals from the Fourier transforms of relations (5.8). Approximate values of the
Fourier transforms for the desired displacements U f (p) * Ux (2), a3 € 0,

+1
Ut = (np) [{DiQo,Jr}j +{D200 };

2
+Y " (A {DLeis), + A {D20;-};)
j=1
+Gy (g {DLQYL), + Gy (a0 {DL0S LY,

+G_(—q) {D"Q] }7 +G_ (~ig_) (D" 03 )] }

where |
- -1
Di=(N27) (M) K e e

5.4 Numerical Implementation Results

As a result of the numerical implementation of the developed algorithms for various
boundary conditions at the junction of plates, we carried out calculations with varying
properties of the coating and the elastic substrate.

All the results further are presented in a dimensionless form, where the linear
dimensions are related to the characteristic size, and the density is related to the
density value of the right coating plate. Dimensionless frequency is given by the

formula ® = why Z—i, where o is the dimensional frequency. In the numerical
examples for plates, dimensionless parameters are fixed: p. = p_ =1, uy =1,

vy = v_ = 0.125. For the elastic material of foundation p = 1. The vertical load is
applied at the xo = 5.
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(©)

Fig. 5.1 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (v = 0.25, u = 1.58)

. 2

If the edges of the plates on the fault move freely, the bending moments — D4 38;’5

2
3 E h? . .
and transverse shear forces — D4 %, Dy = ﬁ, in this area are equal to zero:
2 Yt
0 2 u+ 0 3 u4
5 =0, 3 =0.
9% |g,—0 93 |y,—0

Figures 5.1 and 5.2 show graphs of real (line with markers) and imaginary (solid line)
parts of surface displacement amplitudes under the condition of free displacement
of the fault edges at a frequency w = 2. Figure 5.1 corresponds to the values for the
substrate h = 2, v = 0.25, © = 1.58. A variant of a softer foundation is illustrated
in Fig.5.2, here v = 0.125, u = 0.67 at the same dimensionless layer thickness.
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Fig. 5.2 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (v = 0.125, © = 0.67)

We also considered the condition for “viscous contact” of the plates in the con-
jugation area, while the cutting force on the plate boundary is proportional to the
difference in the velocities for the edges of the plates, and the condition of zero
bending moments is also satisfied

92 93
U _o. _p, Tt

= —kiw [ux (X2) —us (X2)].
3x% x=0 95 x=0 [:F ]

_D:t

Figures 5.3 and 5.4 correspond to these boundary conditions, and Fig.5.3 shows
the results for a more rigid foundation (v = 0.25, u = 1.58), Fig.5.4—for a softer
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-I’L-L,f'. I'-.' \ "'.'I‘. "5* :'.

©

Fig. 5.3 Displacement of the surface of the system for “viscous” contact of the plates at the junction
(v=0.25pu=1.58)

one (v = 0.125, u = 0.67), in both cases k = 0.5. In all Figs.5.1, 5.2, 5.3 and
5.4, graph (a) corresponds to the case of a more rigid right plate (u_ = 0.2), graph
(b)—to plates with the same properties, graph (c)—to the case of a more rigid left
plate (u_ =5).

The presented results of model calculations demonstrate the dependence of the
system surface oscillations on the properties of the coating plates and foundation.
For a more rigid foundation, the amplitude of displacements after passing through
the fault is the smaller, the more rigid the left plate is. The wave fields for plates of
different rigidity differ significantly, and the difference between the amplitudes of
the wave fields on the right and left is the greater, the more contrast the properties
of the plates. A softer foundation changes the pattern of displacements, violating the
periodic nature of the graph and the dependence of the amplitudes on the hardness
of the coating. It should also be noted that with a decrease in the vibration frequency,
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Fig.5.4 Displacement of the surface of the system for “viscous” contact of the plates at the junction
(v =0.125, up = 0.67)

the displacement amplitudes of the left plate decrease in comparison with the right
one, and the effect of the plate properties becomes less pronounced (Fig.5.5). In
Fig.5.5, option (a) corresponds to the case of a more rigid right plate (u_ = 0.2),
graph (b) corresponds to the case of a more rigid left plate (u_ = 5)for the frequency
o = 0.95. The numerical results of the implementation for the method of solving
the scalar problem based on the transformation of its differential operator [44, 45]
match aforementioned results.
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Fig. 5.5 Displacement of the surface of the system on condition of free displacement of the plates
at the junction (v = 0.95)

5.5 Conclusion

We have outlined two approaches that make it possible to study both the qualitative
features of the dynamic behavior of a block structure with a vertical defect in the
form of the new type crack, and quantitative ones, which allows us to assess the
degree of a harmonic source influence on the defect.

We have developed and implemented an analytic-numerical factorization method
for solving boundary value problems of steady vibrations for an elastic medium with
a coating in the form of extended plates, which allows us to investigate the nature of
the harmonic signal propagation in the described structure for plates of different types
as well as for plates of the same type under various contact conditions and substrate
properties. The approach used in the work can be applied to problems of engineering
practice and other important areas where objects with coatings are used. Here, the
method can serve the purpose of evaluating a resource with an emerging defect.
In other tasks, seismology and geophysics, it can serve the purposes of predicting
imminent dangerous natural phenomena.
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Chapter 6 ®)
Stress—Strain State of a Magnetoelastic oo
Ferromagnetic Plane with a Crack Under

the Action of a Magnetic Field

Gevorg Y. Baghdasaryan

Abstract This work is devoted to investigation of the stress—strain state of an elastic
ferromagnetic plane with a crack under the action of an external magnetic field. The
main characteristics of the stress—strain state and the magnetic field induced in the
medium are determined. Their features near the crack are investigated depending on
the medium properties and on the intensity of the external magnetic field. The condi-
tions for the occurrence of concentrations of magnetoelastic stresses and compo-
nents of the induced magnetic field at the ends of the crack are obtained. It is shown
that the occurrence of concentration in ferromagnetic bodies with cracks substan-
tially depends on the sign of the magnetostriction constant. It is established that
in a magnetically soft ferromagnet with a crack, concentrations of magnetoelastic
quantities arise only in those cases when the relative magnetic permeability of the
material is sufficiently large. Formulas that determine the intensity factors for both
magnetoelastic stresses and for the components of the induced magnetic fields are
derived.

Keywords Magnetostriction + Crack - Crack intensity factor - Concentration

6.1 Introduction

The problem of the stress—strain state of an elastic magnetostrictive plane with a
straight crack is considered. The only source that causes elastic deformations and
an induced magnetic field in a medium is an external magnetic field. The study
was carried out based on linear equations and boundary conditions for the magne-
toelasticity of a ferromagnetic body [1], obtained using the main provisions of the
nonlinear theory of magnetoelastic interactions in these mediums [2-5]. The main
characteristics of the stress—strain state and induced magnetic field in the medium are
determined. Their features near the crack are studied depending on the orientation
of the external magnetic field, the magnitude of the magnetostrictive constants of
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the medium and the intensity of the given magnetic field. It has been established
that if the external magnetic field is directed obliquely to the plane of the crack,
then in addition to the plane problem of determining the stress—strain state of a
magnetoelastic system with a crack [6-8], there also arises the problem of a longi-
tudinal shear crack (antiplane problem). Note that if the magnetic field is perpen-
dicular to the plane of the crack, then the antiplane problem does not arise [6—8].
The conditions for the appearance of concentrations of magnetoelastic stresses and
components of the induced magnetic field at the ends of a crack are obtained. It is
shown that: (a) the occurrence of concentration in magnetostrictive bodies with a
crack depends significantly on the sign of the magnetostriction constants; (b) if the
material of the medium does not have magnetostrictive properties, then concentra-
tions of magnetoelastic quantities appear in a magnetically soft ferromagnet with
a crack only in cases where the relative magnetic permeability of the material is
sufficiently large; (c) shear stresses of magnetoelastic origin take maximum values
of about forty-five degrees of the magnetic field inclination angle. Formulas are also
obtained that determine the intensity factors both for magnetoelastic stresses and for
the components of induced magnetic fields. Similar problems on the concentrations
of elastic stresses and the induced magnetic field near a crack, when the material
of the body does not have magnetostrictive properties, are considered in [6-8]. The
results revealed in this article have numerous applications in various fields, such
as fracture mechanics, geophysics, optics, acoustics and can become a means of
detecting defects in magnetoactive bodies using magnetic fields.

6.2 Statement of the Problem

It is known that when a ferromagnetic body is placed in a magnetic field, the material
is magnetized, which leads both to a change in the magnetic field intensity throughout
the space and to the appearance of body and surface forces. Under the action of
these forces, deformations arise in the medium, which excite an additional (induced)
magnetic field. Based on this, the characteristics of the magnetic field are presented
in the form

ﬁ:ﬁ0+ﬁ, EZEO+B,M=M()+”7£9

where I:Io, Eo and 1\7[0, respectively, are the vectors of intensity, magnetig igduction
and magnetization of the magnetic field of an undeformed body and /4, b and m
are additions to the indicated quantities due to the deformation of the medium. In
vacuum, the vectors B and H are related by the relation B© = wnoHy* 7€) , where g
is the absolute magnetic constant ( po = 4m - 107N/ m) and the 1ndex e herelnafter
means belonging to the external (surrounding the body) medium, the electromagnetic
properties of which are equivalent to those of vacuum.
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The characteristics of the magnetic field of an undeformed body are determined
from the solution of the following problem of magnetostatics:

rot ﬁo =0, diVéo =0, éo = /,Lo,l/LrIjI();
i+ (o — ﬁ(,@) =0, i x (Ho- ﬁO@) =0 for (x1,x2,x3) € So;
H — HO for [F] — oo; 6.2.1)

where 7 is the unit vector of the outer normal to the undeformed surface of the S
body, 7 is the radius vector, x; are the Cartesian coordinates of the considered point,
W, is the relative magnetic permeability of the medium and H© is the intensity of
the given magnetic field at infinity in the absence of a ferromagnetic body.

The stress—strain state of the medium and the magnetic field induced in it are deter-
mined from the equations and boundary conditions of magnetoelasticity of magne-
tostrictive ferromagnetic bodies. Based on the main provisions of the theory of small
perturbations, it is assumed that both the deformations and the magnetic quantities
due to them are small (¢;; < 1, ’E/I:I()’ < 1, I;/éo) < 1, ‘771/1\20‘ < 1, where
&;j are the components of the linear strain tensor). On this basis, the equations and
boundary conditions are linearized. As a result, at |Moju,-, j| &< |m;|, the following

linear equations and boundary conditions of magnetoelasticity are obtained, given
in [1, 3]:

e System of differential equations of the deformable state

ik + wo(MoxHoi k. + Morhi i 4+ miHoi ) =0,
gijkhe,j =0, bj; =0, (5 = uourﬁ), (6.2.2)

where #;; is the tensor of magnetoelastic stresses and f, is the relative magnetic
permeability of the medium;

e Equations of state

tij = fi(]Q) + Cijuattrg + 200 Biju Momy + po(Hojmi + Hyimj), m; = xh;,
(6.2.3)

where

1
0 —
;i(j) = wox 'Mo;Mo; + EM()BijklMOkMOH

e Boundary conditions at the interfaces of two media

Eijk{nj [hk - h]Ee)] — Ny [HOk - Hsz):lum,j} =0,
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n; I:b, — bfe):l =Ny I:B()i — B(()le»):ll/tm,i,

nil:tij — ll.(je)] = I:Tk(ie) — Tk,-:lnk. 6.2.4)

In (6.2.2)-(6.2.4), C;jx; and B;ji; are the tensors of elastic constants and magne-
tostrictive coefficients, respectively, iy are the components of the displacement vector
of points in the medium, ¢, is the Levy-Civita symbol, the x = u, — 1 magnetic
susceptibility of the material of the medium and Tk(f ) and Ti; the Maxwell stress
tensors in vacuum and in a magnetostrictive medium, respectively. Over repeated
indices, summation is assumed, and the notation f; means 9f/0x.

We note that in deriving the last three conditions from (6.2.4), we used the Maxwell
stress tensor T;;

1 = o H + O+ )

1@ © ()
_MOSik<§ j Hj +Hj hj s
Ty = opr(Hoi Hox + Hoihy + Hoih;)

1
— MO(Sik (E ()jHoj + Hojhj>. (625)

In what follows, only isotropic media are considered. For such media, the tensor
Ciji has the following well-known representation:

Cijui = A8 + 1 (8ikju + 818 ), (6.2.6)

and the tensor Bjjy; according to [3, 9-12] is represented as [13]

1
Biju = €28;;01 + 5(61 — e2)(8ikdj1 + 8 k). (6.2.7)

Here A and p are the Lamé parameters, e and e, are the magnetostriction coefficients
of the material of the medium.

6.3 Solution of the Problem in the Case of a Constant
Transverse Magnetic Field

Based on the above equations and boundary conditions, the formulation of the plane
problem of the concentration of elastic stresses and the induced magnetic field near a
crack caused by an external transverse magnetic field is formulated below. The rect-
angular Cartesian coordinate system is (x, X2, x3) chosen so that the cross-section
of the crack (the edges of which are free from external mechanical loads) is in
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Fig. 6.1 A crack of finite
dimensions in a
magnetostrictive body

the plane (x;, 0, x2) and occupies an area [—a, a] on the coordinate axis Ox;. The
medium is placed in a constant magnetic field B (0, By, 0) (which is the only
source of external influences) and is under conditions of plane deformation in the
plane (xi, 0, x,) (Fig. 6.1).

Note that for the case under consideration problem (6.2.1) has the following
solution:

B = By, By = B,
Hy” = B{" ug".  Ho = Bo(popr) ™", (6.3.1)
where ?k are the unit vectors of the coordinate axes. In (6.3.1) and in what follows,
the index e means belonging to the crack region.

By virtue of (6.2.3) and (6.3.1), from (6.2.2) for the problem under consideration,
the following equations of magnetoelasticity of the deformed state are obtained:

1 o0 (0u; Oup 2xBy 0h
Auy + —\— t+— s— =0,
1 —2v0x; \ 9x; x> Wb 0X2
1 o [0 0 2xBg 0h
Ay + O (2 O | 2XPo O, (6.3.2)
1 —2v0xy \ 0x1 0x7 Ut 09Xy
AD =0, AP® =0,
0P ape©@
hy = h' = (6.3.3)

- 8xk ’ k 8xk ’

where A is the two-dimensional Laplace operator, v is the Poisson ratio and s is the
coefficient characterizing the properties of the magnetostriction of the material of
the medium

® and ®© are the potentials of induced magnetic fields.
Similarly, from (6.2.3) and (6.2.4), considering the symmetry of the problem, the
following boundary conditions on the plane are obtained x, = 0:
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B,
Ry (x1.0) = 1 (x1, 0) + 22% 1y 1 (21, 0),
Koy

trha(x1,0) = A (x4, 0),

for |xi| < a
@ (x1,0) =0,

2

2Or

X2
tn(x1,0) = |: + Boha(xy, 0)}

D(x1,0) =0, u(x;,0)=0 for|x;| >a

t12(x1,0) =0 for |x1| < oo

(6.3.4)

(6.3.5)
(6.3.6)

In addition to conditions (6.3.4)—(6.3.6), the conditions at infinity must also be

satisfied, according to which lim,, = 0(i = 1, 2). Thus, if the magnetic field is
perpendicular to the plane of the crack, then the problem of determining the stress—
strain state of the medium is flat and is represented by Eqs. (6.3.2)—(6.3.4) and
conditions (6.3.4)—(6.3.6).

6.4 Solution of the Problem

Solutions of Egs. (6.3.4) and (6.3.5) satisfying the conditions at infinity, where x, > 0
can be represented as

2 T 3—4v—xa
= —/ {[Cl(a) 2(0l)i|
T (07
0

2(1 -2
+S'ﬂ

Bocz(a)e } sin ax;da,
Hr b

2
== / [c1 () + x2c2 () ]e™ %™ cos axda,
T

2
o= —/C3(Ol)€_ax2 cosaxdo,
T

oo

2
®© = ;/cge)(a)shaxz cos axde,
0

(6.4.1)

(6.4.2)

where ¢;(@)(i = 1,2, 3) and c(e) (a) are unknown functions, which are determined
by satisfying the boundary condmons (6.3.4)—(6.3.6).
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Substituting (6.4.1) and (6.4.2) into (6.2.3) and (6.2.5), we determine the magne-
toelastic stresses #;; and Maxwell stresses 7;;. In particular, for normal stresses 75,
and T»,, we obtain the following expressions:

oo
4 B
ty = _M/ {—Otcl + (1 —2v —axp)c; — X 0[1 —2v
T r
0
—ax xBg
—vx(er + ex)]acsle *? cosaxda + 5 2+ xey),
2pom;
2 + 1 By 2 [
Ty = X+ By 0o _ —/‘0103(01)67‘”2 cosaxdo |. (6.4.3)
My 2popy T )

Let us pass to the definition of unknown functions ¢; (@)(i = 1, 2, 3) and cge) (@)
by satisfying the boundary conditions (6.3.4)—(6.3.6). The boundary condition (2.13)
leads to the following relation between the unknown functions:

aci(a) =2(1 —v)ea ()
Box
2y

{3—4v+4+2x[(1 —v)e; —ver]lacs(a). (6.4.4)

Using (6.4.4), it is easy to show that the representations (6.4.1) satisfy the boundary
conditions (6.3.4) and (6.3.5) (except for the second condition from (2.11)), if the
unknown functions ¢ («) and c3(«) are solutions of the following system of dual
integral equations:

o0
[ ci(a) cosaxyda =0, x| > a
i (1- )
7(l—v — X+ xep 2
acy(a) cosaxida = B
[ ecr@eosan doppz 00 (645)
0 00 lx1] < a
B 9
+—X 051(81 e) /a03(a)cosax1da;
My 5
o0
[ e3(a) cosaxida = 0, x| > a
0 (6.4.6)
fOt[Cg,(Oé) — i Cl(a)] sinax;da = 0, |1 < a
; ;
where

filer,e2) =2v =1 +2(1 —v)x +2x[er — v(er —e2)].
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The solution of the system of dual integral Egs. (6.4.5)—(6.4.6), following [6, 14],
can be represented as

a

(@) = /w(zuo(ac)dc,

0

c3(a) = IW(g)Jo(ag)dg, (6.4.7)
0

where Jy(a¢) is the Bessel function of the real argument and ¢(§) and v (§) are the
new unknown functions.

By (6.4.7), the first equation in (6.4.5) and (6.4.6) is identically satisfied for any
integrable functions ¢ (£) and ¥ (£), and the second equations from (6.4.5) and (6.4.6)
give the following system of integral equations for ¢(£) and ¥ (§):

i/ [v©® - 229 TE==0. | <a
d [TxB d B2 (6.4.8)
5/[’; Oflw@)—w@} L= 2B i <a
1 ; My xf g2 4o

where

= —-v)(x —2— xe1).

It follows from (6.4.8) that the unknowns ¢ and ¥ are solutions of the following
system of linear algebraic equations:

X B

YE) — ) =0,
HoMr
B : B
Mlp(g) —(E) = X0 52§, (6.4.9)
P 4eopp;

Substituting ¢(£) and ¥ (£), which are solutions of system (6.4.9) into repre-
sentations (3.7), for the unknowns c;(«) and c3(«), we obtain the following
expressions:

ci(@) = aAja Ji(ae),

c3(@) = aAza” " J(aw), (6.4.10)

where
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__xB falen
T 2uep A
A= — By  x?Bj fo(er)
2uopr pop A
PR . (64.11)
MHoM

Ji(aa) is the Bessel function of a real argument, and formulas (6.4.10) are obtained
under the assumption that the determinant A of system (6.4.9) is nonzero.

On the basis of (6.4.4) and (6.4.10) from (6.4.1) and (6.4.2), we find the displace-
ments u; (i = 1, 2) and the potential of the induced magnetic field ®. Substituting
the found expressions for u; and ® into (6.2.3) and (6.2.5), we determine the magne-
toelastic stresses #;; and the induced magnetic field h in the medium. In particular,
using (6.4.1), (6.4.3) and (6.4.10), for h;, t2, T»; and u, for x, = 0, we obtain the
following expressions:

0, for |xi| > a
h(xr, 0) = —H_ M for x| <a
a 7x1
24, = 2”2 —, for [x| > a
hy(xy, 0) = 22 Vet (6.4.12)
T -1, for |x;| < a
xBj
In = 2+ xen)
2o}
2UA x’>B2 a®
‘ {1— LA =201 =)yl
71 =v) 2Hhopity x? — a2|:x1 + /X% — az]
for |xi| > a
Q2x + 1) B2
Nn=—7"T—"
2o}
22x + 1B ZA
@x+ DBy e for [x1| > a (6.4.13)
T Uy /-xf_azl:xl-’_ /x12_a2]
24, ;
uy(x1,0) = —,/a* —xy, for|x| <a (6.4.14)
T

Formulas (6.4.12) and (6.4.13) show that the presence of cracks in magnetostrictive
ferromagnetic deformable bodies (which are only under the action of an external
stationary magnetic field) leads to the appearance of a concentration of both magne-
toelastic stresses and stresses of the magnetic field induced in the body. These results
were also found in the case of magnetically soft ferromagnetic bodies in [6, 9].
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6.5 Coefficients of Intensity of Magnetoelastic Stresses
and Induced Magnetic Field

Using (6.4.12) and (6.4.13), itis easy to find the following expressions for the intensity
factors of magnetoelastic stresses and the stress components of the magnetic field
induced in the body:

e For total magnetoelastic stresses tzc2 =1ty +T»n

b’R
CZAIM Ja.  (65.1)

K, = lim OthCZLQ:o =[x(e1 —1)+2]

xj—>a+

where
xbe\ i
R =2x+ M_ {2(1 —Vv4+OG+6v)x —2x7[er —v(er — 82)])}’
B2
AZZI’LIZ‘_(Xbc)Zfl(€1,62), bz: _0;
ot

e For the components of the induced magnetic field

K2 = llIIlJr \/thLQZO

xX|—>a

=[x(er — 1) +2]

2
Bo %(1 —V)/a. (6.5.2)

OMr

Bearing in mind that equal in magnitude and oppositely directed normal forces
act on the crack faces, it is assumed that concentrations of magnetoelastic stresses
and components of the induced magnetic field appear at the ends of the crack, if
uy(x1,0) > 0 at |x;| < a. Because of this, it follows from (6.4.11) and (6.4.14) that
the normal displacement of the crack edge x, = 0% will be positive if

Hlen) - (A <0. (6.5.3)

Consequently, inequality (6.5.3) is the condition for the occurrence of concentra-
tions of the quantities indicated above at the ends of the crack.

In the case of magnetically soft ferromagnetic materials that do not have
magnetostrictive properties (e; = e, = 0), condition (6.5.3) has the form

71 =v)(x =2 -
2u% — (xbe)’[2v — 14 2(1 = v)x]

0. (6.5.4)

Considering that By < Bs(where By is the saturation induction and By < 27T), it
is easy to check that inequality (6.5.4) in the case of soft magnetic materials will be
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satisfied if i, > 10*. Those only for such magnetically soft materials, which have
the indicated relatively high relative magnetic permeability, will concentrations of
magnetoelastic stresses and components of the magnetic field intensity appear at the
ends of the crack.

Let us return to condition (6.5.3), when the materials of the media have a magne-
tostrictive property. Bearing in mind that, according to [11, 13, 15], e & —0.5¢;
and for the main magnetostrictive materials, we note |e;| > 20 from the expressions
for fi(e1,ez) and f>(e;) that the sign of the quantity f;(e;, ) coincides with the
sign of the constant e;, while the converse assertion is true for f>(e;). In a similar
way, it is shown that the determinant A at By < B, is positive, regardless of the
signs of the magnetostrictive parameters e;, in contrast to the case of magnetically
soft ferromagnets. Considering the above, we conclude that in the cases of basic
magnetostrictive materials:

(a) Ife; < 0, then condition (6.5.3) is violated and consequently, for such materials
at the ends of the crack, there is no stress concentration (both magnetoelastic
and induced magnetic field).

(b) Ife; > 0, then (6.5.3) holds and consequently, there is a stress concentration at
the end of a crack in a magnetostrictive material with the indicated property.

6.6 Occurrence of Concentrations of Magnetoelastic
Stresses Due to Longitudinal Shear Due
to the Orientation of the External Magnetic Field

Let in an infinite elastic ferromagnetic space be a rectilinear tunneling crack with a
width 2a, the edges of which are free from external mechanical loads. The rectangular
system of Cartesian coordinates is chosen so that the cross-section of the crack is
in the plane x;0x; and occupies an area (—a, a) on the coordinate plane Ox;. The
space, the material of which is isotropic, homogeneous and magnetically soft, is
Elaced in a constant magnetic field By (0, By, Boz) with a magnetic induction vector
By (0, By cos ¢, By sin @), where ¢ the angle between the magnetic field and the axis
Oxy, B = B3, + BZ,. The specified magnetic field is the only source of external
influences.
For the considered case, problem (6.2.1) has the following solution:

B\ = Bupis + Bosis, Bo = Busiz + i, Bosis,
Hy" = 15" By, Ho = (opr) ™' Bo, (6.6.1)

where the index “e” means belonging to the crack area and i; are the unit vectors of
the coordinate axes. Assuming that no required quantities depend on the coordinate
x3. From (6.2.2), by (6.2.3) and (6.4.1) for B;;;;, we obtain the following equations
for the magnetoelasticity of the deformed state:

e Relatively u;(x1, xo, t) and up(xy, x2, t)
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1
Aui + —09i +F'l = Ov (l = 172)
1—-2v

AP =0, ADP® =0 (6.6.2)

e Relatively us(x, x2, 1)
Auz =0 (6.6.3)
whereas before, ®© and @ are the potentials of the induced magnetic field in the

crack region and in the medium, respectively, A is the two-dimensional Laplace
operator,

2xB
0 =uiq+urp, Fi= X ozhi,z,
e
e e of
=@y, b =09, fi=—"1. (6.6.4)
! axk

Similarly, from (6.6.2) to (6.6.4), the following boundary conditions are obtained
on the coordinate axis Ox; in the plane x, = 0:

Au, =0, =0 for |x1| > a
2)(332
tip + . Uyl = 0 for [x1| < 00
2 327
try = fT,(zm?,;, + Bozcb,z) for |xi| < a (6.6.5)
a4 _ B
q).l @1 = Uz 1 for |)C1| <da

Holtr
o© =0, d)f;) =u,d, for x| <a

and the following conditions regarding u3(xy, x2, t)

uz; =0 for |xi| > a
(6.6.6)

B(f)
Uz, = — 0 (—B"z +h2) for |x1| < a

wo \ monr

In addition to conditions (6.6.5) and (6.6.6), the conditions at infinity must also
be satisfied, according to which all the required quantities due to the deformation of
the medium must tend to zero at |F| — oo.

From (6.6.2)—(6.6.6), due to (6.2.5), it is seen that:

(a) Problem (6.6.2),(6.6.5) (aplane problem for determining ©; and u,) is separated
from problem (6.6.3)—(6.6.6) (an antiplane problem for determining u3);

(b) To solve the antiplane problem, it is necessary to have a boundary value for the
component /1, of the magnetic field induced in the medium, which arises as a
result of plane deformation;

(c) the existence of an antiplane problem is possible only under the condition By, -
Bos # 0 with respect to the components of the unperturbed magnetic field.
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The plane problem (6.2.2), (6.2.5) was solved in the previous subsection, and
for the quantity of interest to us s, on the crack faces at B;ji; = O (soft magnetic
material), the following value was obtained:

(1 —v)(x —2)x*b} Bo,
2u? + b3 x[1 —2v = 2(1 — v)x] poitr

hy(x1,0) = hY = (6.6.7)

where b(z) = B2 \which coincides with the indicated value obtained in [6].

The solutforq Of Eq. (6.2.3), taking into account the condition at infinity, can be
represented as (x; > 0)

o0
uz(x1x2) = / A(a) exp(—|olxp) exp(—iax;)do (6.6.8)
—00
The unknown function A(w«) entering (6.6.8) is determined by satisfying the

boundary conditions (6.2.6). For this purpose, we introduce a new unknown function
@ (x1) as follows:

(p(xl) = M3’1(X1, O) fOI' |X]| <a (669)
Satisfying the boundary conditions (6.2.6) at B;jx; = 0 (soft magnetic material),

it can be shown [16] that ¢(x;) is the solution of the following singular integral
equation:

d
- / p(s)ds _ (6.6.10)
xX—s
satisfying the condition
1 a
—/(p(s)ds =0 (6.6.11)
T
—a
where
X o B o X 0
A=———Bp——— Byy —h,
Wity o M

Integral Eq. (6.6.10) in the class of unbounded functions has the following solution
that satisfies condition (6.4.11) [16]
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o)) = —h——t (6.6.12)

az—xl2

Based on (6.6.12) from (6.6.9), we determine the displacement 3. Substituting
the found expression for u3 in (6.6.2), we determine the magnetoelastic stresses S»3
in the medium. In particular, for S»3 at x, = 0, we obtain the expressions

Sy (x,0) So for |x| < 1
— = _ 6.6.13
w So — [x - 2»3;_135?;,;0)] = for x| > 1 ( )
where
214, — 1 BpBY 2, — 1 ¢ x
So= 2070 4 T pOR®, x =2
Witr Mo 0 a

Based on formulas (6.6.13), numerical calculations were made, the results of
which are given in Tables 6.1 and 6.2. Table 6.1 gives the values 10 S,3 /4 at various
points x; > a at By, = By; = 1.

Table 6.1 is for the following ferromagnetic materials:

e Alferalloy (v =0.3; u =6.3-10'"N/m?; u, = 30),

e F-107 ferrite (v = 0.3; w = 6.8 - 10'°N/m?; u, = 110) and
e Technical iron (v =0.28; u=1.1- 10" N/m?; wy =2.5-10%).

3

Table‘ 6.1 Vfilues 107823/ 103 Sx3/ 1L Alfer alloy F-107 ferrite Technical iron
at various points x| > a at By
=By =1 1.2 0.2208 0.2061 0.1260

1.3 0.2019 0.1889 0.1154

1.4 0.1913 0.1792 0.1095

1.6 0.1798 0.1688 0.1030

1.7 0.1763 0.1657 0.1011

1.8 0.1737 0.1633 0.9968

Table 6.2 Dependence 5

1 By =0.2T By =0.4T By = 0.8T
10°S23/44 on the intensity of 0" S2s/m 0 =0 0=0 b =038
the external magnetic fieldin 1.2 0.5103 2.038 8.103
the case of technical iron at 13 0.4660 1.862 7.414
Boz = Bos = Bo 1.4 0.4413 1.763 7.029

1.6 0.4145 1.657 6.611

1.7 0.4064 1.625 6.485

1.8 0.4003 1.601 6.389
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The dependence 107553/ on the intensity of the external magnetic field in the
case of technical iron at By, = By3 = By is given in Table 6.2.

Formulas (6.6.13) and the above calculations show that: (a) the problem of a
longitudinal shear crack arises due to the fact that B, - Byps # 0 and (b) there is such
a value of the By, for By,

By, 2w 1

por X pr(x =2D)A=v)+2(1 —v)x -1

that at By, = Bos, the shear stress intensity factor vanishes, (c) with an increase in
the intensity of the external magnetic field, the stress S,3 increases monotonically
and (d) the magnitude of the stresses S»3 on the crack faces Bé(,uou)_] < 1canbe
replaced with accuracy by the expression

BuBY, B}
523 — SOM ~ M — _OS]nz(p
Mo 2po

from which it can be seen that the influence of the magnetic field is strongest near
¢ =m/4.

References

1. Pao, Y.-H., Yen, C.-S.: A linear theory for soft ferromagnetic elastic solids. Int. J. Eng.
Sci. 11(4), 415-436 (1973)

2. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids, North-Holland Series
in Applied Mathematics and Mechanics, vol. 33 (2013)

3. Baghdasaryan, G.Y.: Vibrations and Stability of Magnetoelastic Systems. YSU Publishing
House, Yerevan (1999).(in Russ.)

4. Baghdasaryan, G., Danoyan, Z.: Magnetoelastic Waves. Springer (2018)

5. Brown, W.E.: Structure and energy of one-dimensional domain walls in ferromagnetic thin
films. J. Appl. Phis. 36(4), 1380 (1965). https://doi.org/10.1063/1.1714314

6. Shindo, Y.: Magnetoelastic interaction of a soft ferromagnetic elastic solid with a penny-shaped
crack in a constant axial magnetic field. ASME J. Appl. Mech. 44, 47-50 (1977). https://doi.
org/10.1115/1.3424290

7. Asanyan, D.D. Aslanyan, A.A. Bagdasaryan, G.E.: On concentrations of elastic stresses and
induced magnetic field near a crack resulting from an external magnetic field. Mech. Proc.
Natl. Acad. Sci. Armenia 41, 15-25 (1988)

8. Baghdasaryan, G.Y., Hasanyan, D.J.: Magnetoelastic interaction between a soft ferromagnetic
elastic half plane with a crack and a constant magnetic field. Int. J. Solids Struct. 37, 5371-5383
(2000). https://doi.org/10.1016/S0020-7683(99)00219-X

9. Sirotin, Yu.I., Shaskolskaya, M.P.: Foundations of Crystal Physics. 2nd ed., revised. M.: Nauka
(1979) (in Russ.)

10. Syrkin, L.N.: Piezomagnetic Ceramics, 2nd ed., revised and supplemented. Energy (1980) (in
Russ)

11. Vlasov, K.B.: Several issues of elastic ferromagnetic (magnetostrictive) environments theory.
Phys. Proc. Acad. Sci. USSR 21(8), 1140-1148 (1957) (in Russ.)

12. Bagdasaryan, G.Y., Danoyan, E.A.: Mathematical modeling of vibrations of two-layered
magnetostrictive plates. MTT 3, 87-94 (1992). (in Russ.)


https://doi.org/10.1063/1.1714314
https://doi.org/10.1115/1.3424290
https://doi.org/10.1016/S0020-7683(99)00219-X

92

13.

14.
15.

16.

G. Y. Baghdasaryan

Bagdasaryan, G.E., Danoyan, Z.N., Danoyan, E.O.: Reports of the National Academy of
Sciences of Armenia, vol. 110(4) (2010) (in Russ.)

Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. Wiley, New York (1966)
Berlincourt, D., Keran, D., Joffe, G.: In: Mezon, W. (ed.) Physical Acoustics, vol. 1. Methods
and Devices for Ultrasonic Research, pp. 204-326. M. Mir (1966) (in Russ.)

Gakhov, V.D.: Boundary Problems. Nauka, Moscow (1977).(in Russ)



Chapter 7 ®)
The Effect of Longitudinal Oscillations oo
Resonance on Stability and Domains

of Attraction in the Generalized Kapitsa
Problem

Alexander K. Belyaev, Oksana R. Polyakova, and Tatyana P. Tovstik

Abstract We study the effect of stabilization of a pendulum with internal degree
of freedom in the upper inverted equilibrium position subject to vertical vibration
of the support. A small amplitude parameter of support vibration is introduced. The
method of two-scale expansions is used to obtain the averaged motion equation
of the pendulum. Stability conditions for the upper equilibrium position are found
depending on the parameters of the elastic element of the pendulum. Critical values
of the pendulum deflection angle are obtained, which control the boundary of the
stable oscillation zone.

Keywords Kapitsa’s pendulum - Stability - Attraction basin + Two-scale
asymptotic expansion - Solid body with internal degree of freedom - Resonance

7.1 Introduction

Stabilization effect of the upper vertical position of a pendulum with vibrating support
is studied. Stephenson [1] first described this effect. Later, Kapitsa [2] gave theoret-
ical and experimental evidences for this effect. Chelomei [3] considered a similar
problem, with a weight sliding along a rod. For recent studies on this problem and
various generalizations thereof, see [4—7]. It is also worth mentioning the paper [8]
describing experiments with a working model of a three-link pendulum [8]. The
Kapitsa effect occurs with sufficiently strong vibrations of the support. Another
condition for stabilization of the pendulum in the classical Kapitsa problem is the
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small oscillation amplitude requirement of the support with respect to the length of
the pendulum itself.

The present paper is concerned with the study of the behavior of a compressible
Kapitsa pendulum as a function of the natural frequency of longitudinal vibrations
of the elastic element of the pendulum. Stability analysis of the upper equilibrium
position is carried out, and the domain of attraction of the stable solution is found. An
averaged equation describing the pendulum motion is established, and its solution is
studied. The error of the averaged solution of the nonlinear problem is estimated. A
stability condition for the upper vertical position of a pendulum is obtained with due
account of its compressibility.

7.2 Model of a Compressed Pendulum. Complete
Nonlinear System of Equations

Let us consider the generalized Kapitsa pendulum implemented as follows (Fig. 7.1).
A body of point mass m is attached via a weightless spring of rigidness c to the
pendulum hinged support vibrating in the vertical direction. Both the rod and the point
mass of the pendulum are located in a tube that prevents the spring from bending.
The tube mass is m| = xkm, where the coefficient x assumes arbitrary values in the
interval ¥ € (0, 00). The mass is distributed uniformly over the length / of the tube,
and the tube thickness is neglected. The pendulum is subjected to a gravitational
force. Let [y be the spring length in the unstressed state, and let [ be its length in the
upper equilibrium position, I = Iy — mg/c. The string length [/ will be considered
as a reference value, and the actual length of the string will be denoted by [ + s(¢),
where s(¢) < [. The deformation § of the stringis § =1+ s(t) —ly = s(t) —mg/c.

(a) ¥ (b) |, 4 (d)
= c ’ 4. N
T L
h |1
C‘
Y h 4 ”?-'g
=k y
Y4
@) of &
asinfwtf) T =-v X F

Fig. 7.1 Model of a compressible Kapitsa pendulum. a Equilibrium position of a compressed
spring. b Kapitsa pendulum. ¢ Forces acting on the weight. d Forces acting on the tube
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Note that the real length of the tube exceeds /, but we will neglect the mass of the
small part of the tube above the level /.

Assume that the pendulum support vibrates in the vertical direction according to
the law yo (f) = a sin(wt + B) with constant values of the amplitude, frequency, and
the initial phase a, w, B8, respectively.

Let us write down the motion equations separately for the weight and the tube,
as subject to the external forces shown in Fig. 7.1. Here, X, Y are the forces acting
on the tube from the hinge side, N is the interaction force between the weight and
the tube (this force is orthogonal to the pendulum axis), and F = —c§ is the force
acting along the deformed weightless spring. As the unknown variables, we take
s(t), which is the small (relative to /) defection of the weight along the pendulum
axis, and ¢(t), which is the angle of rotation of the pendulum from the upper vertical
position, in the counter-clockwise sense—and this quantity is not small in general.
So, we have

2
m(i—z((l +s5(2))sing(t)) = F(t)singp(t) — N(t)cos(t), F ()= —cs(t) +mg,

2
m;?(a sin(wt + B) + (I +5(1)) cos p(r)) = F(t) cos () + N(¢) sinp(t) — mg,
2
m ::7(% sin <P(t)> = X(t) — F(t)sing(t) + N(t) cos p(t),

2
mi s?(a sin(wt + B) + icos (p(t)) =Y(@)— F(t)cosp(t) — N(t)sinp(t) —m1g,

2
m1[2d2¢(t)_ l M lYt o lXt
12 a2 _(Q‘H()) (O + Y @) sing(t) = ZX () cos ¢ ().

Transforming the first two equations, we get

s+ is — (I + 5)¢* — aw’ sin(wt + B)cosp — g(1 — cos ) =0,
m

N (7.1)
(I + $)§ 4+ 25¢ + aw’ sin(wt + B)sing + — — gsing = 0,
m
and excluding X, Y from the three equations in curly brackets, we obtain
2 . 2 . . . 2s N
§<pl+aw sin(wt + B)sing = gsing + | 2+ T ) (7.2)
mi
Let us change to the dimensionless variables in length and time
F= o N (1.3)
s=-, £=—, t=owot, .
l l

(the tilde will be dropped in what follows). The quantity ¢ will be considered as the
small parameter of the problem. We set
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Vi=——, &qg=-— (7.4

where v is the ratio of the natural vibration frequency of the spring loaded weight
to the given oscillation frequency of the pendulum support, and £2¢ is the squared
ratio of the frequency of free vibrations of the mathematical pendulum of length / in
a gravity field to the given oscillation frequency of the support. On the boundary of
the stability region in the classical Kapitsa problem [5], the quantity e2q = g/lw?
is of second order of smallness with respect to the small quantity ¢ = a/!/. In this
problem, the destabilizing term, which is consequent on the gravity force, has the
above order of smallness, as in the classical setting. Note that by making x — 00
we transform the problem into the classical problem on oscillation of an inextensible
rod on a vibrating support.
In the dimensionless form, in view of (7.2) system (7.1) assumes the form

54 v2s — a1+ s)¢:2 —esin(t + B)cosg + szq(l —cos¢) =0,

K . .. K . 2 K L
<1+s+73(14_‘?))904-25(0—&-8(14-72(1+‘Y))sm(l+ﬂ)sm<p e q<1+72(1+s))sm(p_0.
(7.5)

Let us specify the initial conditions. Assume that initially, at = 0, the pendulum
was deflected by an angle ¢ without the initial angular velocity and the spring was
in equilibrium:

2
0(0) = g0, §(0) =0, S(O)=So=8v—2q(1—005<ﬂo), 50)=0,  (7.6)

Moreover, the initial phase of oscillations of the support is equal to some 8.

Assuming that oscillation decay insignificantly, one can pose the problem on
the convergence of the solution ¢(¢) to zero and find sufficient conditions for this
convergence.

7.3 Averaged Motion Equation of the Pendulum

We will assume that s is a small quantity of order ¢. Introducing the slow time 6 = &f,
we will solve system (7.5) by the method of two-scale expansions [9]. The solution
will be obtained as series with respect to the small parameter:

0(t,0,8) =D (Un(0) + Vu(t,0) ", 5(t,0,8) =Y (rn(6) + sm (1, 0))e",

m=0 m=1
2k 2k

0 = et, /Vm(t,e)dzzo, /s,,,(t,@)dt:O, m=1,2,..., (7.7)
0 0
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where the integer quantity k is fixed so that, with a sufficient degree of accuracy, an
integer number of oscillations with frequency v would occur over the time period
2km. We will assume that the frequency v is not equal to the frequency of support
oscillations, i.e., v 7# 1.

Taking into account the equalities

dp 3¢  dp de 0% Pe L%
b ARG AT S AL QU PRk SRS ik 4
ar " or a0 a2 T o T %%r00 T ¢ 902
ds  0s ds d’s 3% 3%s , 9%

- = PN o5 = 5 2 )
o T ar T e T %00 T ae2

(7.8)

Substituting series (7.7) into the system of Eq. (7.5), we equate the terms involving

g%, &', £2. Our aim is to find the averaged value of the angle in the zero approximation

Uy(6). For the terms multiplying °, ¢!, we get
Vot,6) =0, Vi(t,6) = sin(t + B) sin Uy(6), (7.9)

and hence, in view of (7.7), (7.8)

¢(t,0,8),¢(t,0,¢) = 0(¢e), (7.10)
2
ri(@) =0, % +v2s1(1, 0) = sin(r + B) cos Uy(0). (7.11)

The initial conditions for Eq. (7.11) are obtained from (7.6) in view of (7.7):
s1(t,0)=0, s5(t,0)=0, t=0. (7.12)
Solving Eq. (7.11) with initial conditions (7.12), we obtain

cos Uy(0)
v2—1

—cosfB . . .
s1(t,0) = ( 5 sin vt — sin B cos vt + sin(t + /3)), (7.13)

s(t,0,¢) = es; + O(e?)

Up(9) (—
80082 o(1 ) ( €08 B Ginvr — sin B cos vt + sin(r + ,3)) +0(e%) (7.14)
V2 _

We simplify the second equation in (7.5) in the second approximation by getting
rid of the trigonometric functions in the denominator and using the expansion
m =1 —es; + O(&?). Substituting (7.9) and (7.14) into the second equation in
(7.5), and averaging with the help of (7.7), (7.8), we get the following equation with

respect to the unknown function of the averaged deflection angle of the pendulum:
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a1Ug(0) + by sin Up(0) cos Up(0) — c1g sin Uyp(0) = 0,
4 K b 1 2 " 3k + 8k

ar = -, = — ,
: 30 P21 8k 424

K
=1+, (7.15)

We augment this equation with the initial conditions obtained from the given
initial conditions for the function ¢:

—Up+0G6)., (4
¢="5o Codr O 9 )

90 =gy, 90)=0, = Up(0) =gy, Uj0)=—cospsingy.

(7.16)

7.4 Stability Conditions for the Upper Equilibrium Position

Problems (7.15)-(7.16) give the zero approximation Uy to the complete nonlinear
system of Egs. (7.5), (7.6) and can be studied analytically. For small deflection angles
Uy, the linearized Eq. (7.15) has the form

a1Ug (0) + (b1 — c1q)Up(9) = 0, (1.17)

which gives conditions for stability of oscillations near Uy = 0:

b I v 38 (1+K) 0 (7.18)
—c1g == - —)g > 0. i
T =S T T 8kt 24 2 )4

Making k — o0 and neglecting the compressibility of the pendulum, condition
(7.18) assumes the form known for the classical Kapitsa pendulum (see [7]):

lg
2602

< (7.19)

q:
a

W

Let us return back to Eq. (7.15). A necessary condition for stability of oscillation
of Uy(0) near Uy = 0 is the positivity of the coefficient b;.

The dashed region in Fig. 7.2 corresponds to the region of possible values of the
parameters v = \/% i, k = "L that give b; > 0. For these values of the parameters,
the solution on the phase plane will have a stable rest point (Uo, U(g) = (0, 0).

7.5 Oscillation Stability Zone

The separatrix equation for the solution of problem (7.15)—(7.16) on the phase plane
has the form
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A K
6

0.2 0.4 0.6 0.8 1.0 1.1 1.2

Fig. 7.2 Possible values of the parameters v,

@ v=r00 ®)-, LU

Stable

Fig. 7.3 Phase plane (Uo, Ué) fork = 1,9 =0.1aU; and UO+ on the phase plane. b Separatrices
forv=0.1,...,10.0

1
(U))’ = —— (b cos Uy — ¢19)%. (7.20)
a1b1

The separatrix in the phase plane is shown in Fig. 7.3. The initial conditions
Uy(0), as from the range 0 < Up(0) < U, , give a stable solution for all values B
of the initial phase of oscillations of the support. The initial values from the range
U, < Up(0) < U(;’ give a stable solution for some values g of the initial phase.
From Eq. (7.20), we get

U0+ = arccos(CZ;—q) (7.21)
1

7.6 Conclusion

A numerical solution of problem (7.5)—(7.6), of the second approximation of problem
(7.5)—(7.6) for small ¢, and of the averaged problem (7.15)—(7.16) was given. Critical
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values for the initial conditions gp* and Up* for various parameters of the problem
and the initial phase of oscillation of the support 8 were compared. The averaged
method gives a certain error caused mainly by discarding the terms above the second
order of smallness.

In view of the above results, the conclusion can be made that the effect of
compressibility of the rod (per the above model) can either reduce or extend the
pendulum stability region. For small eigenfrequencies of a compressible rod, the
Kapitsa effect can hardly be achieved near resonance in the subresonance region,
and, vice versa, this effect takes place for much broader values of parameters in the
superresonance region.
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Chapter 8 ®)
Band Gaps of Metastructure oo
with Periodically Attached Piezoelectric
Patches and Internal Hinges

Karen Ghazaryan, Samvel Jilavyan, Davit Piliposyan, and David Aznaurov

Abstract In this paper, we investigate the problem of band gaps for flexural waves
in a beam with periodically attached piezoelectric patches and internal hinges for
the purpose of vibration energy harvesting. Based on Euler—Bernoulli beam theory,
general solutions of the finite length periodic beam for two topological systems
(beam with patches, beam with patches and internal hinges) are obtained using the
transfer matrix method. By applying the Floquet theory, the explicit expressions
are derived defining the band gap structure. The corresponding band gap dispersion
curves are plotted. The innovation of this paper is the results concerning widening
of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps
generated by internal hinges, not by patches.

Keywords Piezoelectric + Energy harvesting + Band gaps * Resonance frequency

8.1 Introduction

New developments in wireless and microelectro-mechanical systems have increased
the demand for portable electronics and wireless sensors, making power supply of
these portable devices a crucial issue. Nowadays, the most appropriate solution to
extend the life of various devices is to harvest the ambient energy and generate

K. Ghazaryan (X)) - D. Piliposyan - D. Aznaurov

Institute of Mechanics, National Academy of Sciences, 24 Bagramyan ave., 0019, Yerevan,
Republic of Armenia

e-mail: kghazaryan @mechins.sci.am

D. Piliposyan
e-mail: piliposyan @mechins.sci.am

D. Aznaurov
e-mail: azn.david.08 @ gmail.com

S. Jilavyan

Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian 1, 0025,
Yerevan, Republic of Armenia

e-mail: samjilavyan@ysu.am

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 101
H. Altenbach et al. (eds.), Solid Mechanics, Theory of Elasticity and Creep,
Advanced Structured Materials 185, https://doi.org/10.1007/978-3-031-18564-9_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18564-9_8&domain=pdf
mailto:kghazaryan@mechins.sci.am
mailto:piliposyan@mechins.sci.am
mailto:azn.david.08@gmail.com
mailto:samjilavyan@ysu.am
https://doi.org/10.1007/978-3-031-18564-9_8

102 K. Ghazaryan et al.

electrical energy, which is called energy harvesting [1-3]. Piezoelectric vibration
energy harvesting can harvest electrical energy from mechanical vibrations based on
the direct piezoelectric effect. Elastic beams and plates are widely used in the most
piezoelectric vibration energy harvesting devices [4-13].

Recently, artificial materials and structures called mechanical metamaterials have
become the centerpiece of many research studies and engineering applications. Due
to structural periodicity, these materials exhibit exotic physical properties includ-
ing negative refraction, frequency stop-bands, cloaking and energy harvesting, all
unachievable in naturally occurring materials. Waves in metamaterials can only prop-
agate within specific frequency bands and are completely blocked within forbidden
band gaps [14-17].

The use of metamaterial structures for generating electric power via energy har-
vesting has been widely investigated recently [18—24]. In phonon metamaterial struc-
tures, external stimulations will cause mechanical vibrations that will propagate
through the beam. Due to the presence of local resonators, there will be oscillations
in certain frequency bands which cannot propagate through periodic cells, creating
band gaps. Energy of these vibrations will localize in the form of an oscillatory motion
of the internal structural elements, and the piezoelectric effect can be exploited to
convert the localized vibration energy into electrical energy [18, 20].

The review of the most recent developments in piezoelectric energy harvesting
methods for converting localized mechanical wave energy into electrical energy using
artificially designed mechanical structures are given in Lee et al. [25].

8.2 Band Gaps of a Beam with Periodically Attached
Piezoelectric Patches

We consider a finite elastic beam of length nd with periodically attached piezoelectric
patchesatz = (n — 1/2)/d, n =1,2,..., N, distanced d from each other and each
patch having a mass p (Fig.8.1) The equation of motion of Euler—Bernoulli beam
can be cast as . )
0*U, 07U,

04 A== =0, (8.1)

El
9z4 912

where Uy(z, t) is the dynamic deflection of the beam’s neutral axis at the point z,
E is the elastic modulus, / is the area moment of inertia with respect to the axis

I
I
I
I
I

z=nd-d/f2

z{xd)

]
I
I
I
]
! Patch [
z=fn-1)d z=nd

Fig. 8.1 Schematic of the beam with patches, basic unit cell
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perpendicular to the beam axis, p is the bulk density and A is the cross-sectional area
of the beam.

We assume that Uy(z, 1) = U(z)e'”’, where U (z) is the amplitude of the free
vibration response of the beam at z and w is the beam’s vibration frequency. The
amplitude U (z) satisfies to the following equation

d*U  Apw?
dz* EI

U =0. (8.2)

Introducing a dimensionless coordinate x = z/d, we consider the beam’s motion in
a basic unit cell x € (n — 1, n). The solutions for the amplitude in each unit cell can
be written as

Uy = Cyysin(px) 4+ Cyp sinh(px) + Cyz cos(px) + Ciq cosh(px), (8.3)

where p = v/Q, Q = wd?\/(EI)~1pA, Q is the dimensionless bending frequency,
subscripts (£) denote regions: (—) > x € ((n—1),n—1/2), (+) > x € (n —
1/2,n).

Contact conditions at points where the patches of mass p are attached can be cast
as

33Uy 33Uy_ 02Ups
El—— — EI = — , 8.4
9z’ 973 Ko 84
02U, 02Uy_
= (8.5)
072 972
oU aUy—
— = —=, Uy =Up. (8.6)
0z 0z
For the amplitudes U, we have the following conditions atx = n — 1/2
Uy U 4
— = Uy, 8.7
P a3 friUs (8.7)
d*Uy d*U-
— == (8.8)
dx? dx?
. _dU- gy (8.9)
dx  dx T 7 ’

Here the dimensionless parameter f = u/(pAd) determines the ratio of the patch
mass to the mass of a beam of length d. Since the interface contact conditions

dU (x)
X

are imposed on the beam deflection U (x), the slope

d*Uu d*U
El (zx) and the shear force E [ d—gx), it is convenient to introduce the follow-
X X

ing vectors

, the bending moment
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W.ilx) = (Ui(X), dl;ix(x), Eldzg;(X)’ E1d3dU;(X)>T ) (8.10)
Ci(x) = (Ciz, Cox, Ca, Caz)' (8.11)
Using Eq. (8.3) we can write the solutions in the following matrix form
W) = P)Ca(x), (8.12)
where
sin(px) sinh(px) cos(px) cosh(px)
ﬁ(x) _ p cos(px) p cosh(px) —psin(px) p sinh(px)

—EIp?sin(px) Elp*sinh(px) —EIp®cos(px) EIp®cosh(px)
—EIp3cos(px) Elp?cosh(px) —EIp3sin(px) Elp?sinh(px)
(8.13)
A propagator matrix method can be used to link field values of the vectors W (n)
and W_(n) in unit a cell. Considering values of field vectors W (x) at points x = n
and x = n — 1/2 the following relations can be written

W.(n) = P(n)Cy, Wo(n—1/2)= P —1/2)Cs. (8.14)

Eliminating vectors C. from (8.14), the following relation linking vector field values
within (+) sub-unit can be found:

W.(n) =MW, (n—1/2), M =Pn)P~(n—1)2). (8.15)
Similarly, we can find the relation linking the vector field values within a (—)
sub-unit: .
W_(n—-1/2) = MW_(n—1). (8.16)
Herein M is the following unimodular transfer matrix in an each sub-layer

82 84 83

g 2 20
Elp? Elp’
Y

v=| 7 & E Enr|, (8.17)

8

p
Elgp® Elgip* gp &

Elgip* Elgsp &

where

1 1
81,4 = 3 (:i: cosg + cosh g) , 823 = 5 (:i: sing + sinh g) . (8.18)
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We can also write contact conditions for the amplitude at x = n — 1/2 in a matrix
form as:

W.n—-1/2) = S‘W_(n —1/2), (8.19)
where
1 000
A 0 100
S = 0 010 (8.20)
frtoo1

Using (8.20 ), we come finally to the following relation
W.(n)=MSW_(n—1), Wo(n) = QW_(n—1), 0=MSM. (821)

Herein Q is a unimodal propagator matrix for the Euler—Bernulli beam, which links
the field vectors at the ends of the n-th cell. Note that the elements of matrix Q do
not depend on cell number 7.

Repeating this procedure n times, the propagator unimodal matrix Q” can be
found, which connects the vectors at x = 0 and x = n points of the finite beam of
length nd:

W.(n)=0"W_(0), n=1,2,...,N. (8.22)

By applying the Bloch—Floquet periodicity condition W (n) = A W_(n — 1) atboth
ends of unit cell we come to following matrix eigenvalue problem [16, 17]

(O —ADW_(n—1)=0. (8.23)

To determine the eigenvalues of the periodic structure, the roots of the following
equation should be found:

Det(Q — A1) =0=2+gh+ra>+gi>+20* =0, (8.24)
where [ isa 4 x 4 identity matrix,
g = fp (sin(p) — sinh(p)) — 4(cos(p) + cosh(p)), (8.25)
r = 2pf (cos(p) sinh(p) — sin(p) cosh(p)) + 8cos(p) cosh(p) +4.  (8.26)
Taking into account that A = exp(ikd) the dispersion equations (8.24) can be witten
as

r 4+ 2g cos(kd) + 4 cos(2kd) =0 (8.27)

with solutions

1
cos(kd) = —g(g +5), s=+32+g%-38r. (8.28)
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A similar type of equation has been obtained and discussed in [26] for a vibrating
piecewise bi-material periodic beam. When there are no patches (u = 0) then the
solutions are cos(kd) — cos(p), and cos(kd) — cosh(p).

Equations (8.27) and (8.28) determine the two Floquet spectrum of beam frequen-
cies. Since the Euler—Bernoulli beam vibration equation is not hyperbolic, one of the
spectrum is the Floquet pseudo spectrum [26] which corresponds to the case when
cos(kd) — cosh(p).

The elements of matrix Q" expressed via elements of matrix O can be written by
means of Sylvester’s matrix polynomial theorem [27]:

4 4 A N
A ril— 0
n_ )\’n J .
o= \mll =] (829)
m=1 m#j :
where
A12=—1(g+si¢(<g+s>2—64) )»342—1(8—5i\/((g—5)2—64>
5 8 ’ Iy 8

(8.30)
are the solutions of dispersion equation (8.24).

8.3 Band Gaps of a Beam with Periodically Attached
Piezoelectric Patches and Internal Hinges

We now consider a finite elastic beam of length nd with periodically attached piezo-
electric patches of masses p and internal hinges. The distances between patches and
hinges are d . Introducing the dimensionless coordinate x = z/d, we consider the
beam motioninaunitcellx € (n — 1, n). Patches are attached at pointsx =n — 1/2,
internal hinges are located at points x = n and x = n — 1 (Fig.8.2).

At points where the hinges are attached the following conditions are valid

d*U, d*U_ av?  du?
:0’ :0’ —+=—_, U ZU_. 831
dx? dx? dx? dx? * (8.31)
E z=nd-d/f2 i
[ B o . 19| - 1@ — ol — —
: i z{xd)
E : Hinge O
z:{rlJ—I]a‘ sl Patch 3

Fig. 8.2 Schematic of the beam with patches and internal hinges, basic unit cell
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The piezoelectric patches are periodically attached at points x = n — 1/2. Solutions
satisfying the first and second conditions of (8.31) can be written as

Uy(x) = Cysin(p(x —n)) 4+ Ca sinh(p(x —n)) + Co (cos(p(x — n)) + cosh(p(x —n))),
(8.32)

U_(x) = A;sin(p(x —n+ 1)) + Ay sinh(p(x —n + 1))+
Ag (cos(p(x —n + 1)) + cosh(p(x —n+1))), (8.33)

Using the contact conditions (8.7)-(9) at points x = n — 1/2, we find the following
relations for the constants C;, C, A; and A, expressed via two constants Cy and Ag:

9C; = Cpcesc (2) (fp (cos(p) csc (127) sinh (%) — 1)
p

+ csc (—) cosh (5) (4 cos(p) — fp sin(p))) (8.34)

- 200 () (i in(5) i (2)) 4000 ()
02 = —gesen (2) (rpese () +sen (2 (s — <ot (2))) = coesen (2) x

(fp csc <2> +2fpc0t(12)>cosh <§> +Cosh(p)csch(2) <4c0t( ) fp))
(8.35

a1 o () 1 on (5) o () 400 () -
s () (o ety (5o (5) - ) e (B oo (2)

(4cos(p) — fpsin(p))) . (8.36)

0A, = Apcsch (%) X

(e ()25 (2o (2) st (2) s (2)- 1)
Cocsch (g) (fp cse (2) + Coesch (2) (fp — 4cot (g))) . (8.37)

Here

9—2fpcot(2)+coth< )(8cot(2) 2fp) (8.38)

% = 2cosh (g) (fp —4cot (%)) —2fpcot (%) sinh (g) . (8.39)
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Introducing column vectors

Ui(x)
U.(x)=| dPUug |, (8.40)
dx3

we can express the values of U, (n) and U_(n — 1) via two constants Cp and Ay.
After eliminating these constants, we find the following relation

U.(n) = FU_(n—1). (8.41)

Herein F is a unimodal propagator matrix for the Euler—Bernulli beam’s wave field,
which links the field vectors at the ends of the n-th cell with attached piezoelectric
patches, where the internal hinges are placed.
The elements of this matrix do not depend on the unit cell number and can be cast
as
Fii= . (P .. p . .
n=fp (cos(p) — cosh(p) + 4sin (5) sinh (E) + 2sin(p) s1nh(p))

+ 4 sin(p) cosh(p) — 4 cos(p) sinh(p),
Fy = Fi,

Fia = 2p~3 (fp(—sin(p) — sinh(p) + cos(p) sinh(p) + sin(p) cosh(p)) + 4sin(p) sinh(p)) ,

= fp4 (sin(p) — 4 cos (%) sinh (g) — (cos(p) + 1) sinh(p) + 4sin <§) cosh (£>

2
+ sin(p) cosh(p)) — 4p>(cos(p) cosh(p) — 1),

A = 4sin(p) — 4sinh(p) — 2fp (sin (g) + sinh (g))z .

According to Sylvester’s matrix polynomial theorem for 2 x 2 matrices, the elements
of the n-th power of a unimodal matrix F can be written as [27]

Fn My My
F" = , 8.42
<M21 Mzz) (842)
and can be simplified using the following matrix identity
My = FuuSp—1(n) — Sp—2(n), Mz = Fi28,-1(n),

My = F18,1(n), My = FpnS,_1(n) — Sp—2(n),
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where S, (1) are the Chebyshev polynomials of second kind, namely

_ sin((n + 1)¢) . . ﬂ
Sa(m) = W cos(p) =n, n= A (8.43)

Matrix " connects the vectors at points x = 0 and x = n of the finite beam of length
nd: A
Uy(n)=F"Up(n), n=1,2,...,N. (8.44)

By applying the Bloch—Floquet periodicity condition at both ends of a unit cell
Up(n) = 2U_(n — 1),
the problem reduces to the following eigenvalue problem

(ﬁ —xi) Up 1 =0=1—24(F11/A) + 22 =0,

where [ isa?2 x 2 identity matrix. Taking into account that A = exp(ikd), the equa-
tion defining the gaps of the beam with external hinges and patches can be found

as F
cos(kd) = f. (8.45)

8.4 Analysis and Conclusions

Note that relations (8.23) and (8.41) that have been obtained for a metastructure of a
finite length can be used for as solutions of problems of free and forced vibration of
metastructures. The dispersion curves defining band gaps are presented in Figs. 8.3,
8.4 and 8.5. The dashed curves correspond to a beam with patches and solid curves
correspond to a beam with internal hinges and patches. The dispersion curves are
given in the first Brillouin zone 0 < kd < 7, for different values of dimensionless
parameter f = u/(pAD), Q2 is the dimensionless bending frequency of the metas-
tructure.

The dispersion curves are plotted in accordance with the analytical expression
(8.28) for the beam with patches (BP) and (8.45) for the beam with patches and
hinges (BPH). Vibrational energy is localized and converted into kinetic energy
by piezoelectric patches within the frequency band gaps. The maximum bending
deformations occur within the first band gap; therefore, most of the energy harvesting
will occur within the first band gap of the metamaterial structure [18, 19].
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Fig. 8.4 Band structures of a beam with hinges and patches for different values of f
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Fig. 8.5 First low-frequency band gap of a beam with hinges and patches for different values of f

The analysis of the band gaps structures can be summarized as follows:

1. Increasing of parameter f increase the gap bandwidth and shift the center fre-
quency of the vibration band gaps to low-frequency regions

2. Increasing of parameter f slightly changes the gap bandwidth of (BPH) and

significantly changes the gap bandwidth of (BP).

. The band bandwidth of the BPH is wider than the band bandwidth of the BP.

. All gaps of the BP are located within the gaps of the BPH.

5. Widening of the resonant bandwidths of a piezoelectric harvester with phononic
band gaps generated by internal hinges is more significant than widening of the
resonant bandwidths due to increase of the patch parameter f.

B~ W

We can conclude finally that the novelty of this paper is the results concerning the
widening of the resonant bandwidths of a piezoelectric harvester based on phononic
band gaps generated by the internal hinges, not by the patches. The impact of the
patches on the gap formation is insignificant in this metastructure with internal hinges.

Acknowledgements The work was supported by the Science Committee of RA, in the framework
of the research project 21T-2C299.
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Chapter 9

Periodic Contact Problem for a Two-level | <o
System of Punches and a Viscoelastic
Half-space

Irina G. Goryacheva and Anastasiya A. Yakovenko

Abstract The paper presents a solution of the contact problem for a periodic two-
level system of axisymmetric punches and a viscoelastic half-space. The case of a
constant nominal pressure applied to the punch system is considered. The variation
of the real contact area in time and the conditions that provide the contact of the
punches of both levels with the half-space are investigated. The influence of the
geometric parameters of the punch system and the mechanical properties of the
viscoelastic half-space on the contact characteristics are analyzed. Numerical results
are presented for the system of punches located in the nodes of a square lattice and
penetrated into a viscoelastic half-space modeled by a standard linear solid. It is
shown that the real contact area may increase greatly if the second level punches
come into contact with the half-space at some instant of time.

Keywords Periodic contact - Linear viscoelasticity - Multi-level system of
punches + Time dependent contact characteristics

9.1 Introduction

Discrete contact problems are of great theoretical and practical importance. These
problems mainly arise in study of the contact of bodies taking into account their
surface microrelief, which is formed by a surface roughness. Solutions of these
problems differ considerably from the classical solutions of the contact problems for
absolutely smooth bodies. The most significant difference is that the real contact area
consists of the system of contact spots may be several times smaller than the nominal
one. This fact is essential in analysis of many important operational properties of
tribounits.
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The characteristics of the contact interaction are determined not only by the geom-
etry of the contact surfaces of the bodies, but also by their mechanical properties.
Many materials are characterized by viscoelastic properties, that is, their stress-strain
state is time-dependent. For example, soft polymers belong to this type of materials.
Polymers are widely used in many industries such as automotive, aerospace, con-
struction, textile, medicine and others [1]. They are applied to produce food wraps,
containers, adhesives, electric- and thermal insulation, lenses, windows, clothing,
etc. Hence, the problems of discrete contact of viscoelastic bodies are of great rel-
evance. An extensive study of the stress state of viscoelastic bodies is presented in
the book of Arutunyan [2].

The roughness of surfaces has often a statistical nature; however, it can also be
regular, for example, in the case when it is produced by artificial methods. Currently,
numerical methods are widely used to solve the problems of contact of rough surfaces.
Such approach makes it possible to consider any contact geometry of bodies and
their mechanical properties. For example, numerical calculations were used in [3]
to analyze the viscoelastic contact of tires with the road. In this study, the authors
proposed to consider the contact at the macrolevel with limited number of asperities.
The conjugate gradient method was used in [4] to solve the problem of the contact of
a rigid smooth spherical indenter with a viscoelastic rough half-space. The problem
of the rough viscoelastic contact is also numerically solved in [5] using both spatial
and time discretization.

Despite a huge variety of problems that can be solved by numerical methods,
analytical approaches to solving the discrete contact problems also do not lose their
relevance. There are a number of analytical methods of solving the contact problems
for viscoelastic bodies with regular and irregular microrelief. In the case of irregular
roughness, the contact model is in general based on the Greenwood—Williamson
approach [6], which respects the height distribution of asperities. The first attempt
to extend the application of this model to the viscoelastic case has been performed
in [7]. To take into account the viscoelasticity of bodies, the authors simply replaced
the Young’s modulus with the time-dependent relaxation function. However, this
procedure is incorrect, as was shown in [8], where the accurate solution was derived.
The solution obtained in [8] allows us to take into account the fact that asperities of
different heights come into contact at various times. In addition to the Greenwood—
Williamson statistical model, fractal geometry is also used to describe the contact of
rough surfaces in the viscoelastic case (see, for example, [9]). Another approach to
solving the contact problems for rough bodies based on the probabilistic method and
the diffusion equation can be found in the Persson’s works. In [10], this approach
was used to solve the contact problem in the viscoelastic case for fixed nominal
pressure. Later, the Persson’s theory was extended to the viscoelastic contact under
an arbitrarily time-varying applied load [11]. Despite the fact that the Persson’s theory
for the rough contact gives quite simple results, its justification is not strict enough
that is noted, for example, in [12].

Analytical methods have also been developed to study the contact of bodies
with periodic roughness. In [13], the localization method was suggested to solve
the contact problems for a periodic system of axisymmetric punches and an elastic
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half-space. This method allows us to consider both single-level periodic systems of
punches and systems of punches with different heights. Application of the localiza-
tion method to solve the periodic problem with a viscoelastic half-space is carried out
in [14], where the analytical solution for a single-level system of spherical punches
which is in contact with the viscoelastic base was reduced. However, the surface
roughness is often uneven in height, which is essential for studying the contact of
bodies with rheological properties. In this study, using the localization principle, the
contact of a two-level periodic system of axisymmetric punches with a viscoelastic
half-space is analyzed.

The article is structured as follows. In Sect.9.2, the formulation of the contact
problem for the two-level periodic system of punches indenting into the viscoelastic
half-space is presented. In Sect. 9.3, the one-level contact of the system of punches
with the half-space is studied and the conditions of the second level punches coming
into contact are analyzed. In Sect. 9.4, the two-level contact is investigated and the
dependence of the real contact area on time is analyzed. Section9.5 provides some
main conclusions.

9.2 Statement of the Contact Problem

The indentation of a two-level periodic system of axisymmetric punches into a vis-
coelastic half-space is considered. The difference in the heights of the punches of
the two levels is given and equal to Ah. The shape of the contact surface of the
punches is described by the function f(r) = Crs/RS’l, where s =1,2,..., Ris
the characteristic punch size, C is the dimensionless constant. The axes of symmetry
of the punches are perpendicular to the boundary of the half-space. We connect the
coordinate system with some fixed punch of the ithlevel i = 1, 2, ...)insuchaway
as to the axis Oz coincides with the axis of rotation of the fixed punch, and the plane
Or6 coincides with the undeformed surface of the half-space. We also assume that
the each contact spot of the ith level is bounded by a circle of radius a; (r) (Fig.9.1)
that is valid for not very tight contact.

The boundary conditions of the problem are of a mixed type, since normal dis-
placements of the half-space boundary are known at all contact spots, and outside the
contact area, we have the condition of zero normal stresses. It is also assumed that the
shear stresses are zero on the entire boundary of the half-space. In addition, as initial
conditions, we suppose that before the interaction process begins, the viscoelastic
half-space is not stressed and is at rest.

For certainty, we consider a system of punches located at each level in nodes of
a square lattice, that is, at vertices of squares of one size / x [ (Fig.9.1). The punch
system is loaded with a nominal pressure p(t) = poH (f) acting within one period.
Here pg is a given constant and H (¢) is the Heaviside function. We assume that
the material of the half-space is homogeneous, isotropic, linearly viscoelastic, and
has the constant Poisson’s ratio v. In this case, one relaxation function is sufficient
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Fig. 9.1 Scheme of the
location of punches in a O
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to describe mechanical behavior of the material [15]. For example, we can use the
relaxation function E () corresponding to uniaxial tension/compression or the creep
function J (¢) related to it.

9.3 Contact Problem Solution for the First Level Punches

If the value of the nominal pressure p(¢) is not sufficient to immediately provide the
two- level contact, only the first level punches come into contact with the half-space
at the beginning of the contact interaction. In this part, the contact problem analysis
for the one-level system of punches is presented and the condition when the second
level of punches comes into contact is derived.

9.3.1 Derivation of the Main Equations for Calculation
of the First Level Contact Characteristics

The solution of the problem of the indentation of a one-level punch system into a
viscoelastic half-space is obtained in [16]. This solution is constructed using the
extended correspondence principle [17] and the localization method [13]. In [14,
16], the one-level periodic contact problem is solved in the simplest case, when
the real pressure distribution is taken into account only under the fixed punch, and
the action of all the others is replaced by the nominal pressure. In this research, in
order to improve the calculation accuracy, one more series of punches is added to
consideration, and their action is replaced by the load of intensity 4 P; (¢) distributed
over a circle of radius /. In this case, the solution of the single-level problem takes
the following form
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where I'(x) is the gamma function, p;(r, t) is the contact pressure under the first
level punch, P () is the load applied to a single first level punch, and A is the radius
of the circle outside of which the nominal pressure is distributed, which replaces the
action of all punches except the fixed one and four nearby punches. The functions
Do (r, t) and poy (r, t) in Eq. (9.1) are determined by the parity of the exponent s of
the function f () and have the following form
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where k are m are integers. The function with index k corresponds to the odd exponent
s, thatis, s = 2k + 1, and the function with index m corresponds to an even exponent
s, that is, s = 2m. According to the localization principle, the radius A; of the circle
is determined by the average number N, of contact spots per unit area and the number
M, of punches located inside this circle, namely

pPuy(r. 1) = (

A = M 9.3)
Ny
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During the single-level contact p(t) = N, Py (1), so Egs. (9.1) and (9.2) can be

written in terms of the nominal pressure. Provided the constant value of the applied
nominal pressure, we obtain
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Equations (9.4) and (9.5) are used to calculate the pressure distribution at the initial
stage of indentation process when only the first level punches come into contact.

9.3.2 Determination of the Instant of Time When the Second
Level of Punches Comes into Contact
with the Half-space

Let us find the time instant z, when the second level punches come into the contact
with the viscoelastic half-space. For this purpose, first it needs to investigate the vari-
ation in time of the vertical displacement of the point M of the half-space boundary
(Fig.9.1). The point M is located at the center of the square and the vertices of which
are centers of the contact spots of the first level punches. For simplicity, the action
of these four punches is replaced by the load of intensity 4 P;(¢) distributed along
the circumference of radius [, = [ / «/5, and the action of other first level punches is
replaced by the nominal pressure distributed outside the circle of radius A. Based on
(9.3), the radius A is determined from the condition 7 A> = 4 / Ny.

The vertical displacement u, (7, t) of the viscoelastic half-space (characterized by
the constant Poisson ratio) due to the action of the axisymmetric normal pressure
p(r, t) applied over a circular area of radius a(¢) is determined by the following
expression [18]
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where K(x) is the complete elliptic integral of the first kind. It is convenient to put
the origin at the point M (Fig.9.1). Based on the proposed replacement of the action
of punches with the circumferentially distributed load 2 P; (¢)5(r — [») / (rr) (6(x)
is the Dirac delta function) and the nominal pressure p(¢), we obtain from Eq. (9.6)
the following expression for the half-space boundary displacement for r < I,
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where E(x) is the complete elliptic integral of the second kind and D is the dis-
placement of the half-space boundary loaded everywhere with the nominal pressure.
Hence, the displacement of the point M, i.e., r = 0, provided the constant nominal
pressure pg applied to the system, as follows from (9.7) and the equilibrium condition
TAIp(t) = 5Py (1), is

0 (24
u-(0,1) =2(1 -7 (57 —A) PoJ (1) + De. (9.8)
2

The vertical displacement of any fixed first level punch is determined by the
magnitude of the indentation depth D(¢) of the periodic system of the first level
punches under the given load p(¢). By analogy with [14], we find the function of the
additional displacement d(t), which is

B sI? (%) Caj(t)
- 225 (s)Rs—!

2
—2(1-7) ,/A%—af(t)—$ PoJ (1).
5,12 — (1)

For further investigation, we introduce a function %4 (¢) equal to the difference
between the displacements of the points O and M (Fig.9.1). Based on Egs. (9.8) and
(9.9), this function is calculated by the following expression

d(t) = D(t) — Deo

(9.9)
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Together with Eq. (9.5), which determines the dependence of the radius of a single
contact spot on time, Eq. (9.10) allows us to calculate the value of the function £ (¢)
at each time. The time instant 7, when the value of the function /(#) becomes equal
Ah,ie., Ah = h(t,), determines the moment when the second level punches come
into contact with the half-space. It also follows that if #(0) > Ah, then the two-level
contact occurs immediately from the beginning of the interaction process.

h(t) = D(t) —uz(0,1) =

(9.10)

9.3.3 Analysis of the Indentation of the First Level Punches
into the Half-space

Let us first analyze the dependence /4 (a;). Based on Egs. (9.5) and (9.10), we get

2 (3)Caj
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Figure 9.2 illustrates the function /(a;) and its derivative for three values of the
exponent s of the shape function f (r) for the quadratic lattice (in this case, the average
number of the contact spots per unit area is defined by the expression N = 1 / 1%). As
follows from the results of calculations, the function 4 (a;) is monotonically increas-
ing (Fig.9.2b shows that the derivative of the function % (a;) is positive everywhere).
As shown in [14], at a constant nominal pressure, the dependence of the radius of
the contact spot of the single first level punch with the viscoelastic half-space is
described by a monotonically increasing function. Consequently, the difference in
the displacements of the points O (the center of the contact area of the first level
punch with the half-space) and M (the square center where the contact of the second
level punch with the half-space should begin) also increases with time.

Let us analyze the dependence of the difference in the displacements of the points
O and M (Fig.9.1) on time for certain types of the creep function J(¢). We consider
the viscoelastic model of the standard linear solid and the creep function of which
has the following form [19]
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Fig. 9.2 Dependence of the function % (a) and its derivative (b) on the radius of the single contact
spot a; for different punch shapes (s = 1 for the red lines, s = 2 for the blue lines, s = 3 for the
green lines), and C = 1,/ = 0.5R
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where E is the instantaneous elastic modulus, 7}, is the relaxation time and 7T is
the creep (retardation) time. Substituting Eq. (9.11) into Eq. (9.10), we obtain an
expression that with Eq. (9.5) allows us to determine the moment ¢, when the second
level punches come into contact with the half-space. This moment is determined
from the condition A(t,) = Ah.

Figure 9.3 illustrates the dependence h(¢) for spherical punches with f(r) =
r? / (2R) for different values of the ratio of creep and relaxation times, as well as for
different densities of location of punches in the system (the different pitch / of the
quadratic lattice). As follows from the calculation results, the value 4 for a fixed
instant of time grows with an increase in the parameter T = T,/ T, (for a fixed instan-
taneous elastic modulus Ej), that is, in the viscosity of the half-space material, and
with an increase in the pitch / of the quadratic lattice. Therefore, these parameters, as
well as the values of the height difference A/ and the applied nominal pressure p,
influence the fact whether the second level punches will come into contact with the
viscoelastic half-space. So, if Ah = 0.04R, then with the values of the parameters
under consideration, the two-level contact does not occur at T =2 or at [ = 0.5R.
Note that in the graphs of Fig. 9.3, the dotted lines correspond to the elastic case with
the long-term (equilibrium) elastic modulus Eo, = ET, /T
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Fig. 9.3 Dependencies of the difference of the displacements of the points O and M on time (a)
for different values of T (T = 2 for the red line, T = 5 for the blue line, 7 = 10 for the green line)
at [ = 0.75R; and (b) for different values of the pitch / (/ = 0.5R for the red line, / = 0.75R for
the blue line, I = R for the green line) at T = 10; pp = 0.0lEo/ (1-1?)

9.4 Two-level Contact of the System of Punches
and the Half-space

If the conditions for the second level punches coming into contact are fulfilled, the
two-level contact occurs. For the asymptotic analysis of the contact characteristics in
the two-level contact, we use the correspondence elastic solution with instantaneous
and long-term elastic modules of the viscoelastic material under consideration.

9.4.1 Asymptotic Analysis of the Contact Characteristics

A general approach to solving the problems of indentation of a multi-level periodic
system of punches into an elastic half-space is presented in [20]. Fixing the punch of
one of the two levels and replacing the action of the nearby four punches of another
level, as well as four punches of the same level with loads distributed over the circles
of radii [, and /, respectively, and all other punches of both levels with the nominal
pressure, we obtain the following system of equations (i = 1, 2)

_ 1
P=l—2(P1+P2), (9.12)

TAXp = 5P 4+ 4P;, 9.13)
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Note that in Eqs. (9.13) and (9.14) i # j.

Table 9.1 gives the values P;, a;, A; for spherical punches of each level (i = 1, 2)
calculated by Eqgs. (9.12)—(9.15) for the instantaneous and long-term elastic modulus
presented in the table at pp = 0.06E0/ (1 - vz),l = 0.75R, Ah = 0.05R. It follows
from the results that the load applied to the single punch of the first level decreases,
and the load applied to the single punch of the second level increases with time. The
contact spot’s radii a; for punches of both levels increase over time. Note that the
growth of the contact radius is limited by the condition a; + a, < [, that s, the sum
of the radii of the contact spots does not exceed a half of the length of the diagonal
of the lattice square.

Theradii A; (i = 1, 2)of the areas (r > A;)in which, according to the used model,
the nominal pressure acts are practically constant as follows from the calculation
results presented in Table 9.1. Therefore, for the correct application of the localization
principle for investigating the two-level contact in the viscoelastic case, we assume
that the radii A; and A, do not change in time: A;(t) = A;(f,) and A, (t) = A (t,),
where t, > 0.

9.15)

Table 9.1 Instantaneous and long-term values of the contact characteristics of the two-level contact

. A=) | R0 [a o A 4
RZE, RZE, R 3 R R

Eo 00335 00003 02815 |0.0567 |0.9454 | 0.8472

Eo = 0.8E, 00327 00011 02976  |0.0926 09432 | 0.8497

Eso = 0.5E, 00308 00029 |03302 |0.1455 |09379 | 0.8555

Es = 04E, 0.03 0.0038  |0.3447 | 0.1662 09355 | 0.8581
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9.4.2 Solution of the Viscoelastic Two-level Periodic Problem

As it was shown in Sect.9.4.1, if the condition a; + a, < [ is precisely satisfied,
the radii a; and a, increase over time. This fact makes it possible to derive the
viscoelastic solution based on the solution of the similar elastic problem using the
extended correspondence principle [15]. According to this principle, by replacing
pi/ E with

t

/ J(t —1)(@p;/ot)dr

-
and, consequently, p/E and P;/E with

t

/ J(t —1)(dp/dr)dr
b

and
12

/J(t — 1) (dP;/d7)dr,

0-

respectively, and taking into account Egs. (9.14)—(9.15) and the assumption that the
radii A; and A, do not depend on time, we obtain the following system of equations
for calculation of the contact characteristics in the two-level periodic contact problem
for the viscoelastic half-space
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§ (\/lz_aﬁm N (=) Ao
,m) 9.17)
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where Q;(t) = fot, J(t — 1) (dP;/dr)dr (i = 1,2). It is also necessary to add the
equilibrium condition (9.12) to (9.16)—(9.17). The values of the radii A; and A, are
taken as follows

nAl-z(t*)ﬁo =5P;(t,) +4P;(t,). (9.18)

In particular, if #, #~ 0, that is, when the value of the nominal pressure is not suffi-

cient for the two-level contact to occur immediately, the values A;(r) = A;(#,) and
A, (t) = Ay(t,) are calculated from the following expressions

5
AT (t.)po = SPi(t) +4Py(t) = 5Py = A, = \/;l,

- _ 21
7 A3(t) po = SPa(t,) + 4P (1) = 4P py => Ap = 7
Equation (9.12) for this case takes the following form
t dp(r) 1
p(t
/J(t - f)Tdf =7 (1) + (). 9.19)

0-

The resulting system of Eqgs. (9.16)—(9.19) enables to determine the dependencies
on time of the radii of the contact spots of the punches of both levels, as well as the
functions Q,(f) and Q,(¢), which are then used to calculate the dependencies on
time of the load distribution between the punches of both levels, that is, the functions
Pi(t) and P,(t).

Figure 9.4 illustrates the dependencies a;(¢) and a, (¢) for two values of the nom-
inal pressure pg, one of which immediately provides the two-level contact, and the
other provides it after some time. The results are calculated for the system of spher-
ical punches (f(r) = r? / (2R)). As follows from the results, the radii of the contact
spots increase in time, tending to the constant values that correspond to the elas-
tic solutions with the long-term elastic modulus. Note that the radii of the contact
spots of the second level punches (red lines) increase significantly compared with
the punches of the first level. For example, for the parameters used in calculations,
in the case when the two-level contact occurs from the beginning of the indenta-
tion process (Fig.9.4a), the radius a; increases about 1.2 times, while the radius a,
increases 2.7 times to the time instant t = 57,. Figure 9.4b illustrates the case when
the second level punches come into contact with the half-space only some time after
the beginning of the indentation process.
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Fig. 9.4 Dependencies of the radii a; (i = 1,2) of the contact spots of each level on time at
[=0.75R, T =2.5, Ah =0.05R and pg = O.O6EO/ (1 - vz) (a); po = 0.025E0/ (1 - vz) (b)

9.4.3 Analysis of the Dependence of the Real Contact Area
on Time

Let us introduce the following function that characterizes the evolution in time of
the relative contact area for the two-level system of punches located in the nodes of
quadratic lattice (Fig.9.1)

A(t) = wai(t)Ny +mwai(t)N; = % (af () + a3 (1)). (9.20)

Figure 9.5 illustrates the dependencies of the relative contact area on time at dif-
ferent values of the pitch / of the quadratic lattice and different values of the height
difference of the spherical punches of the two levels. The results are obtained for the
viscoelastic model of the standard linear solid with 7 = 2.5. The results indicate that
a decrease in the punch height difference and the distance between them leads to an
increase in the relative contact area. Depending on the distance between the punches
and their height difference, the contact area forms from interaction with the half-
space of the only first level punches or both levels. So, if pg = 0.025E) / (1 - vz),
the transition from the single-level contact to the two-level contact occurs only for the
square lattice with / = 0.75R as follows from the results presented in Fig.9.5a (red
line). In the other two cases, the two-level contact is observed from the beginning of
the interaction process. For the higher nominal pressure py = 0.06E) / (1 - vz), in
the case of the system with As = 0.05R, the punches of the second level are in con-
tact with the half-space from the beginning of the interaction process, for the system
with Ah = 0.075R the second level of punches comes into contact at t = 1.037,
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Fig. 9.5 Dependencies of the relative contact area on time a at Ah =0.05R and po =
0.025E¢/ (1 — v2) (I = 0.75R for the red line, / = R for the blue line, / = 1.25R for the green
line); bat/ = 0.75R and pp = 0.06Eo/ (1 — v2) (Ah = 0.05R for the red line, Ah = 0.075R for
the blue line, Ah = 0.1R for the green line)

(blue line), and in the case of the system with Ah = 0.1R, the two-level contact is
not possible (see Fig.9.5b).

9.5 Conclusions

This study investigates the contact of the two-level periodic system of axisymmetric
punches with the viscoelastic half-space under the action of the constant nominal
pressure. Application of the localization method and the extended correspondence
principle make it possible to analyze the dependence on time of the real contact area
of the punch system with the half-space, and to study the conditions provided the
contact of the punches of both levels with the half-space.

It is shown that the contact of the second level punches with the viscoelastic
half-space is guaranteed not only by the specific geometric parameters of the system
(the pitch of the periodic lattice and the height difference of the punches of the two
levels), but also by the defined values of the viscoelastic properties of the half-space
material. In this connection, there are three possible cases: the two-level contact
occurs immediately, the two-level contact occurs after some time, or the two-level
contact will never occur. The latter is valid only if the material of the viscoelastic half-
space has a non-zero long-term elastic modulus, that is, the material is characterized
by the limited creep.

Analysis of the real contact area evolution showed that the radii of contact spots of
the punches of both levels increase in time at least for not tight contact. If the second
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level punches come into contact (note that this condition is realized for the certain
geometric characteristics of the periodic punch system and the certain viscoelastic
properties of the half-space), the relative real contact area may grow considerably over
time. This fact must be taken into account for analysis of the contact characteristics
of various tribounits.
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Chapter 10
On an Axisymmetric Contact Problem ez

for a Piecewise-Homogeneous Space
with Disk-Shaped Crack

Vahram N. Hakobyan, Aram H. Grigoryan, and Harutyun A. Amirjanyan

Abstract The article discusses an axisymmetric stress state of a piecewise-
homogeneous space of two dissimilar half-spaces, which on the plane of the junction
of dissimilar half-spaces contains a circular disk-shaped interfacial crack, on one of
the sides of which an absolutely rigid stamp (circular shim) is pressed with adhe-
sion, the radius of which is less than the radius of the crack. The governing equation
of the problem is derived in the form of a single singular integral equation of the
second kind with respect to the complex combination of reduced unknown contact
stresses, the solution of which is constructed by the numerical-analytical method of
mechanical quadratures. A numerical calculation was carried out and the regularities
of the change in the Cherepanov-Rice integral on the boundary circle of the crack
and the rigid displacement of the shim depending on the physical-mechanical and
geometric characteristics of the problem were studied.

Keywords Elasticity + Compound space - Interfacial coin-shaped crack - Stamp *
Axisymmetric contact problem

10.1 Introduction

The development of contact and mixed boundary value problems of the theory of
elasticity and fracture mechanics is aimed at developing new methods for more
accurate calculations of various constructions and their parts containing various types
of stress concentrators in order to increase their durability. Many fundamental results
in this direction are given in well-known monographs [1-5]. In this area, we note
axisymmetric contact and mixed problems, the solution of which often leads to
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mathematical and computational difficulties. Here it should be noted that the use of
rotation operators in solving axisymmetric contact and mixed problems leads them to
plane problems. However, after solving these problems, when determining the real
stresses or displacements, often mathematical or computational difficulties arise.
Let us point out [6—11], where solutions are constructed for several axisymmetric
contact and mixed problems for homogeneous and piecewise-homogeneous spaces
with disk-like defects. In [8—11], exact solutions of some problems were constructed
for a homogeneous and piecewise-homogeneous space with a disk-shaped crack,
on one of the sides of which a rigid disk-shaped inclusion is pressed, the radius of
which is equal to the radius of the crack, under different contact conditions. Similar
problems when the inclusion radius is less than the crack radius, as we know, for both
homogeneous and piecewise-homogeneous space with a disk-shaped crack have not
been considered. Here we consider the axisymmetric stress state of a piecewise-
homogeneous space with a disk-shaped crack, one of the edges of which is pressed
in by a rigid shim whose radius is less than the crack radius.

10.2 Statement of the Problem and Derivation
of Governing Equations

Let us consider the axisymmetric stress state of a piecewise-homogeneous space
obtained by connecting two heterogeneous half-spaces with Lame” coefficients
W1, A1 and wo, Ay, respectively, occupying half-spaces z > 0 and z < 0, respectively,
in acylindrical coordinate system Orgz. It is assumed that a piecewise-homogeneous
space on the plane of the junction of dissimilar half-spaces z = O contains a circular
disk-shaped interfacial crack with a radius a. On the lower side of the space, using a
concentrated load of magnitude Py with adhesion, a rigid stamp (circular washer) is
pressed with a flat base of a radius b that is less than the radius of the crack (b < a).
Figure 10.1 shows the axial section of the piecewise-homogeneous space.

The problem can be mathematically represented as the following boundary value
problem:

Fig. 10.1 Axial section of A
the piecewise-homogeneous
space

\{
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ui(r, 0) = us(r, 0);
wi(r, 0) = wa(r, 0);
Uz(')(r, 0) = crz(z) (r,0);
t(r, 0) = 72 (r, 0);

(a<r <o0) (10.1a)

oM (r,0=0; V(0 =0 (0<r<a)
o@r,0)=0; tPr,0=0; (b<r <a) (10.1b)
wa(r,0) = =8 ux(r,0) =0. O <r <b)

Here, w;(r,z) and u;(r,z)(j = 1,2) are the normal and radial displacement
components, respectively, for the upper and lower half-spaces in a cylindrical coordi-
nate system, ozj ) (r, z) and rr/ ) (r, z) are the normal and tangential stress components,
and § is the rigid displacement of the stamp. It is required to study the behavior of
rigid displacement of the stamp and the Cherepanov-Rice J-integral depending on
the physical-mechanical and geometrical parameters of the problem.

To solve the problem, we will use discontinuous solutions of the equations of the
axisymmetric theory of elasticity for a piecewise-homogeneous space [10]:

unr0) = =20 g = 2 oy % L 01— DL [e)
’ A 1,1 A 10 10 A 1,1 ’
b by d 0 do
wo (7, 0)=—XL0,1[u]—ZL1,0[w] ALOO[GH —L{, [l
(10.2)
o0 by , by bo b
(r,0) = _L01[ u] + ALOO[ w] + L()()[ ]+XL0,1[T]§
0 s by b by
(r,0) = —Lll[u]+ 2p2 Tolwl+ — L olol+ —Lj [zl
A AL
ui(r,0) =us(r,0) +u(r); wi(r,0) = wa(r,0) +w(r);
o0 =c(r,00—a(r); 12,0 =10 — ().
The notation introduced in [10] is retained here:
o0
C ol = / W E)pE)ds: W (&) = / £ 0 (t0) J, (1€
0
9(1) _9(2) 9(2) +9(l)
do =" dr =2 b=l (6" +60) — o (6" —6):

b =6 (05" +68) — o (6" - 67);

2
A= [(92@ +9(”) (o7 - 6) ];
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2
g — M .em_ﬂj(MJrzﬂj)

; = =12
)»j+3pLj 2 )\,j+3,bb] (j )

by =2(6"b0 + 0"y — 6{"A): by =2(6{" 1 +6{" by — 6" 2)
It is not difficult to verify that in this case

ol (r,0) = o2 (,0) = =02 (r,0) = o (r);
10,00 — 7 2(r,0) = -2 (r,0) = T(r); (10.3)

where o (r) and —7(r) are, respectively, unknown contact pressure and tangential
contact stresses acting under the stamp.

Using the last two relations (10.2), we satisfy the first two conditions (10.1b).
Further, following the works [8, 10], we apply to the first and second of the
obtained equations, respectively, the known rotation operators I, I;, and introduce
the functions

[ EwE): o®)
NG

{u(i:') T(6)}
NS

2
{w.(1); 0. (1)} = ; dé;

{us(0); (D} = — dé; (10.4)

1

and their complex combinations

X () = 0 (x) —iT(x); Vi(x) = ul(x) +iw (x);

(W (—1) = Wi (1);  U(—1) = —u.(t); 0.(—1) = 0.(t); Tu(—1) = —T(2)).
(10.5)

As aresult, at the following relation is obtained:

a
£ b V.(t 2Ac,
X()t—i—l—z L)dt= ¢ (—a <x <a),
T

b3V, (x) + b1 x:(x) + %/

r—x e r—x
by nb3 y bo [ T, (1) b, ; w, (1)
= 0.(0 —u_ (0 —=dr+ — | —=dr 10.6
e =200+ 2 (>+2Af + o (10.6)

Note that in this case, the conditions for the equilibrium of the stamp and the conti-
nuity of displacements at the end points of the crack must be met. These conditions
are written using the functions x,(x) and V,(x) as follows [10]
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/X*(x)dx = %; f V/(x)dx = 0. (10.7)

—a —a

We consider relation (10.6) as a singular integral equation with respect to the
function V,(x) and write it in the form:

, g [ Viodt
Vx) —— | —— =Fx) (—a<x<a) (10.8)
i t—x
Here
by lbo [ 2Ac, by
F(x)=——x.(x) — — | —=dt + —; ==
) b3X( %) r—x + by b3

7(1

We solve the singular integral Eq. (10.8) under the second condition (10.7) and
express the function V/(x) in terms of the function x, (x). It is not difficult to verify
that the ends of the integration interval £+a are automatic boundedness points and,
therefore, solution (10.8) has the following form [12]:

F(x)+ qaj)T(ix) / Fs)ds (—a <x <a) (10.9)

V= O~

1—q?

ib 1 1
w(x) = arx ; B=—InG;, G= +61=M1+331,u2>0;
a—x 27 1—¢q Mo + &1

)\j+3//Lj

Ej:)\'. -
jt

Substituting in (10.9) the value of the function F (x), using the Poincaré-Bertrand
formula [13],

de <P(l,l1)dl1 . @(t, t)dr
L/(r—to)L/ n—r gO(IO’IO)JF/dtl/(tl—t)(t—ro)

integral value [14]

a

ds i ) ch(zB)
/ o(s)(s —x) sh(nﬂ)[ o) }
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and taking into account that in the considered case x.(x) = 0 outside the interval
(—b, b), we obtain the following formula for the function V,(x):

, B by
V,(x) = =7 h X (%)

¢Bo(x) /b 1o (5)ds

) + f(x) (—a<x<a) (10.10)

m’(] —qz) A w(s)(s —
_ Aqa)(x) . o 2AC*. _ b()b3 — b]bz'
(f“)—(fjpﬁmnm’ A= BT o ’)

Further, using (10.10), satisfying the second of conditions (10.7), taking into
account the first condition (10.7), we obtain another relation

b
/“®m:mg—&m, (10.11)
w(s)
—b
2a,ab 2bou?
v, ,ulsh(n,B) 7[262192 b2

which must be satisfied by the function y, (x)—except for the first condition (10.7).

Now let us turn to the last two conditions (10.1b). Using the first two relations
(10.3), we satisfy these conditions. Then, applying the operator /; to the first of
the equations obtained, the operator I to the second, differentiating the resulting
equations with respect to x and passing to the functions V,(x) and y.(x), we obtain
the following integral equation:

b

d ibg V*/(s)ds idg X+ (s)ds AS
%4 . — — =— (—b b
(x)—l— X()+ by (s—x) 7mbh (s —x) by (b <x<b)

—a —b

Further, with the help of relations (10.6) and (10.10), the function V/(x) is
excluded. As a result, after some calculations, to determine the complex combi-
nation of contact stresses under the stamp, the following singular integral equation
of the second kind is obtained:
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b
oy — & [ 204

b
- + / K(x,s)x«(s)ds = Q(x) (b <x <b), (10.12)
i (s —x)
—b —b

which must be considered under the first condition (10.7) and condition (10.11).
Here

219(2) 2 1
K(x,s) = 22 Ha]@0) :
wie by | w(s) s —X
2C, 2u?
0W) = ——g(x) + ——58;
T T &y,
w(x) 2bou3 s
g(r) = s 1

) CI = —Q5
Sh(ﬂﬂ) &b, 192(2) i 192(2)

10.3 Solution of the Governing Singular Integral Equation

The solution of Eq. (10.12) will be constructed by the method of mechanical quadra-
tures [16]. Using achange of variables s = b€, x = bn, we formulate Eq. (10.12) and
conditions (10.7) and (10.11) on the interval (—1, 1) and introduce the dimensionless
unknown function (), the constants 8, and C by the formulas

P& = bX*T(fé); 8*=M;f§8; 5=2nb—;;k
the following singular integral equation is obtained:

1 1

o) - & 1 gt + /1 K1, £)p)d = ~Ca.(n) + %&2)8*
(-l<x<1 (10.13)
under conditions
1 1
[co(é*)ds = %; [ if();f =A,C - B, (10.14)

-1 -1

here
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20203 (0. — 0.(6) (r=E\T"
K8 = = by < 0. E)E — 1) ) @ = (m) ’

ws (1) 2bopu;

g«(n) = ;
: sh(zp) EEzbzl?z(z)
- r@b 2by p3sh
A= embl g 2hlgh@h) G _d
w39 sh(B) meaby 0y b

The solution of Eq. (10.13) under conditions (10.14) can be represented as the
sum of two solutions:

() = C o1(n) + 8.02(n)

where ¢ (1) is the solution of (10.13) in the case when the right side is — g.(n), and
©2(n) is the solution of (10.13) in the case when the right side is 2, /w &, 192(2). Then
from the conditions (10.14) for determining the constants C and 8, the following
system of algebraic equations is obtained:

1 1

€/¢l(n)d’7 +5*/<ﬂ2(77)d77 =1/n
-1 -1
1 1

— d d
G /%(n) n Al +8*/¢z(n) n_ _p

w, (1) w4 (1)
—1 -1

(10.15)

As above, it is easy to check that the end points of the integration interval are
points of automatic boundedness and the solution of Eq. (10.14) can be represented
as:

g =i +n)7A -7 (j=12) (10.16)
here
InG 1 1+ q.
= = _l ) G = )
Y 2 2 fe 1 —q.

and (p;f (n) (j =1, 2)—smooth continuous bounded functions on the interval [— 1,1].
Then, substituting the value of the functions ¢;(t) (j = 1,2) from (10.16) into
(10.14) and (10.15), using the quadrature formulas [16], according to the usual proce-
dure, the systems of algebraic equations with respect to the values of the unknown
functions goj(m) (j =1,2; i =1— N) at the collocation points and constants J,

and C.
After solving these systems, using the Lagrange formula, you can restore the func-
tions ¢7 (1) and determine all the necessary mechanical characteristics. In particular,
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for dimensionless crack opening, we can use the formula

. 1d | SW4 () d wl, (s) d Im Vi(s) d
wr) = ——— —_—S = — —_— a5 = — —S,
rdr 2 _ 2 I — /2 _ ;2
from which we get
_w(ax) ¥(t) _ Vi@
vio = 28 = om [ et (v = 52).

where the function V/(¢) is given by formula (10.10) and the function v (¢) using the
unknown function ¢(¢) can be written as follows:

o = | St + fao) (0 <1 <) (10.17)
fi(@ahw(at) (t<t<1)
@ : @ (&)dE wig1h,C P
ran =522 LT P;( ;:T()).
2y 0 (E)E —At) 20 12sh(np) b2,

Let us also write a formula for determining the Cherepanov-Rice J-integral. To
do this, we will use the expressions for the real stresses outside the crack on the plane
of the junction of heterogeneous half-spaces through the images of the functions of
stress jumps and displacements on the crack [10]:

b a
by d 1T (0)dr by d tw’ (1)dr
az(l)(r,O):Jd—r == Ardr ﬁ;(r>a)
0 , 0 (10.18)
bid [ o.dt by d [ ul(n)dr
S Adr NG CAdr e

1@, 0) =

Obviously, the first terms in both relations (10.18) are bounded functions on the
circle r = a. Further, considering that

d [w.d  d [ wod [ wod  d o[ wl@)d

4 [w@d d _ 49 ’

dr r2 — 2 dr Jr2 — 2 NS ) dr Nl
0 0 0 0

relations (10.18) can be represented as:
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oD 0) —ith oy = 2L [ VO o) b2 (1019)
z ’ rz \'» A dr /r2 _ 2 '
0

here

® b
)= | =+

b b
d 1T, (¢)de ib; d/ o, (t)dt
rAdr r2 — 2 A dr

0 0

by | [ wodt  d / Wl (t)de
Ar Jr2 —¢2  dr N
0 0

bounded function on the circle r = a.
Using the value of function ¥ (¢) formula (10.19) will take the following form:

a
ib; d t)dt
o0 (ax, 0) — it (ax, 0) = 2 L [ YOI

ra) Ta P k=D (1020
0

Substituting the value v (¢) from (10.17) into (10.20), after some transformations,
using the values of the integral [14]

b
/ (v = @ (b — /ey + dydy

_(b—a)a+ﬁ—1B . @)\
= et d (@, B)2F1 a,—y,a+ﬁ,m :

(Rea, Rep > 0, arg(d +cb)/(d +ca) < m)

Forcasea =0, b=1,c=—-1,d=x, a > 1+iB, B> 1—-iB, y =—1/2
and relation for hypergeometric functions , Fi («, 8, y, z) [15]

e Fe+p-vy)
C'(@)(B)
2Py —asy =By —a—B+ 11 -2+
Iy —a—p)
Ty —a)l(y — B)?

2F1(0[, ﬂv Vs Z) =(1 -

Filag; Ba+B—y+1,1—-2),

the complex combination of real stresses can be represented in the following form:



10 On an Axisymmetric Contact Problem for a Piecewise-Homogeneous ... 143

iy7bsT (1 —if) ful@)(x + 1)'7
V2Ach(zB)T(1/2 —if)(x — 1)!/?+ P
x>1)

oM (ax, 0) — itV (ax, 0) = — + ®,(x)

where @, (x) is a bounded function on the circle x = 1, the value of which is not
given here because of its cumbersomeness. Then for the complex stress intensity
factor on the circle r = a we obtain the expression:

K;(a) —iK(a) :rﬂfl‘lo V2r(x = D'/#PoD (ax, 0) — it (ax, 0)]

_ m2PhyT(1 - ip) fu(a)
" Ach@xB)I(1/2—if) "

(10.21)

Using the value of the complex stress intensity factor from (10.21) and expressing
f«(a) through the unknown function ¢ (&), for the Cherepanov-Rice J-integral we
obtain the following formula [17]

J(a) =plK (@) —iK;(a)| =

alp(l = vi) + 1= valeady”by ' T —ip)

20 Appach(wB) I'(1/2—ip)
1
/ e&dg _ mimibs .
0 ®E =2 2P iehp) |
(10.22)
( o _l(l—vl2 N l—vg) _ [u(l—v2)+1—v1])
M_Mz’ =3 E, E, ) 4p )

Thus, after solving the defining equation, the Cherepanov-Rice J-integral can be
determined by formula (10.22).

10.4 Numerical Analysis

A numerical calculation has been carried out and regularities of changes in the contact
stresses acting under the stamp, crack opening, dimensionless rigid displacement of
the stamp and Cherepanov-Rice J (a)-integrals on a circle r = a depending on the
ratio u = 1/ and parameter A = a/b > 1 in the case of fixed values of Poisson’s
ratios v; = 0.25; v, = 0.3 have been carried out and studied. At the same time,
it is assumed that Pj = 0.1. The results of numerical calculations are presented in
the form of graphs. In Figs. 10.1 and 10.2, respectively, graphs of crack opening
depending on the parameters p and A = a/b > 1.
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Figures 10.2 and 10.3 shows, respectively, the graphs of the dimensionless rigid
displacement §, of the stamp depending on the parameters p and A.

Figures show that with an increase in the parameter A, which can be interpreted
as an increase in the crack radius at a constant stamp radius, the rigid displacement
of the stamp increases tending to a certain limit, which is a rigid displacement of the
stamp pressed into the elastic half-space made of the second material (Fig. 10.2).
An increase of the parameter u, which can be interpreted as an increase w; at a
constant u,, the reduced rigid displacement decreases tending to a certain limit,
which corresponds to the case when the upper half-space is rigid (Fig. 10.3).

Figures 10.4 and 10.5 show, respectively, the graphs of the Cherepanov-Rice
J-integrals on a circle r = a depending on the same parameters.

It is clear from the graphs that J-integral Cherepanov-Rice decreases with
decreasing stamp radius (Fig. 10.4). Figure 10.5 displays that as the parameter u
increases; J-integral Cherepanov-Rice tends to a certain limit as well.
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Fig. 10.4 Cherepanov-rice J(a)
J-integrals depending on A 04-

0.3
0.2-

0.1-

Fig. 10.5 Cherepanov-rice J(@)
J-integrals depending on p 04

2

/
/ A=3
/

11

¥

0.3 A=1.5
0.2

\"‘——_

0.1

10.5 Conclusion

Thus, by combining the methods of singular integral equations and the numerical-
analytical method of mechanical quadratures, the solution of the axisymmetric
contact problem for a piecewise-homogeneous space with a disk-shaped interfacial
crack is constructed. One of the sides of the space is a rigid shim, which pressed with
adhesion, the radius of which is less than the radius of the crack. Using numerical
calculations, the patterns for change of the reduced rigid displacement of the stamp
and the Cherepanov-Rice J-integral depending on the ratio of the elastic characteris-
tics of heterogeneous half-spaces and the radii of the crack and the circular shim are
clarified. It is shown that as the circular shim radius approaches the crack radius, the
Cherepanov-Rice J-integral increases, i.e., increases the likelihood of crack propa-
gation. It has also been found that the more rigid the half-space onto which the stamp
is pressed, the greater the probability of crack propagation.
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Chapter 11 ®)
High-Temperature Creep of Cast Irons e

Abhijit Joshi, Konstantinos P. Baxevanakis, and Vadim V. Silberschmidt

Abstract Cast irons are a family of ferrous alloys with carbon content ranging
from 2.5 to 5%. They have a wide range of applications in automotive, industrial,
agriculture, and construction industries. Primary classification of cast irons is based
on the graphite morphology, which can be in the form of flakes, vermicular, or
spheroidal. Mechanical properties of cast irons depend on matrix microstructure and
graphite morphology; different alloying elements can be added to improve their high-
temperature mechanical performance. Creep is an important deformation mechanism
for high-temperature applications of cast irons. A literature review covering models
and studies of creep in cast irons are presented in this chapter. The review high-
lights limited research on the creep behaviour of cast irons especially for compacted
graphite iron (CGI). Original results from tensile and compression creep tests on
CGI are also presented, which emphasize a significant difference in creep behaviour
under tensile and compressive loading.

Keywords Cast iron + Microstructure - High-temperature - Creep * Creep models -
Creep testing

11.1 Introduction to Cast Iron

Iron and steels have an extremely broad range of applications ranging from industrial,
farming, building and infrastructure, domestic appliances to electronic equipment.
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High-temperature applications of steels and cast irons include automotive appli-
cations (cylinder heads, brakes, and exhaust manifolds), power plants (shafts and
casings), pressure vessels, etc. [1].

Steel and cast iron are alloys formed by combination of iron and carbon. Carbon
content in steel is up to 2.06% and in cast iron it ranges from 2.5 to 5%. Steel and
cast iron offer a wide range of material properties with yield strength ranging from
200 to 2000 MPa, high levels of temperature resistance, thermal conductivity and
toughness as well as good damping properties, high wear and corrosion resistance,
good manufacturability, and good weldability. These alloys are also almost 100%
recyclable [2].

Unlike steels and other alloys, cast irons are usually not classified according to
their chemical composition. The microstructure of final product depends strongly
upon foundry practice, the shape and size of the castings, and heat treatments used.
So, several entirely different types of cast iron can be produced starting with the
same nominal composition [2]. Based on graphite morphology, the cast irons can
be classified as grey cast iron or flake graphite iron (FGI), compacted graphite iron
(CGI), and spheroidal graphite iron (SGI). The different graphite morphologies are
shown in Fig. 11.1, and main cast irons briefly introduced below.

Grey cast iron, or flake graphite iron (FGI), contains graphite in the shape of
flakes. Under tensile load, tips of the flakes act as crack-initiation sites while the
flakes themselves provide a path for crack propagation. This failure mechanism
leads to the brittle behaviour of grey cast iron. FGI offers good wear resistance,
castability, thermal conductivity, and damping properties. Typical applications of
FGI include machine bases, brake discs and drums, engine blocks, gears, and
flywheels [2].

Ductile cast iron, or spheroidal graphite iron (SGI), has graphite in nodular or
spheroidal form. Compared to FGI, round graphite particles in SGI neither act as
obvious crack-initiation sites nor provide crack-propagation paths; hence, SGI has
much higher tensile strength. Ductile cast iron also has high levels of modulus of

"~ (b) CGI

Fig. 11.1 Different graphite morphologies observed in deep etched cast irons [3]
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elasticity, yield strength, wear resistance, and ductility. It has good machinability
and better fatigue strength; however, the damping capacity and thermal conduc-
tivity are lower than in grey iron. Ductile iron is used in applications such as valve
and pump bodies, crankshafts, in heavy-duty gears or automobile door hinges,
and nowadays also as engine blocks [2].
Compacted graphite iron (CGI), or vermicular iron, contains graphite parti-
cles in ‘worm-shaped’, or vermicular form. Such particles are shorter, thicker
and have rounded edges. They are interconnected, forming complex coral-like
morphology that results in strong adhesion between the graphite and the iron
matrix. Such microstructure inhibits initiation and propagation of cracks, and is
the main reason of superior mechanical properties of CGI compared to FGI [4, 5].
CGI has applications in automobile exhaust manifolds, cylinder heads, cylinder
blocks, pistons, cylinder liners, brake drums, castings in hydraulic components,
and machine tools.

Other variations of cast irons include white cast iron, malleable iron, and high
alloy iron.
White cast iron has of cementite and pearlite in its matrix, formed by fast cooling.
The designation for this form of cast iron is based on white-appearing crystalline
fracture surfaces. It has excellent wear resistance and high compressive strength,
but brittleness is its main disadvantage. Typical applications of white cast iron are
mill liners, shot-blasting nozzles, railway brake shoes, rolling mill rolls, brick-
making equipment, crushers, and pulverizes [2].
Malleable iron contains carbon in the form of irregularly shaped graphite nodules
called temper carbon. Typical applications include heavy-duty bearing surfaces
in automobiles, trucks, railroad rolling stock as well as farm, and construction
machinery [2].
High-alloy irons have of content of alloying elements greater than 4% and
are used in some specific applications. The nickel-alloyed austenitic graphitic
irons are typically used in seawater pumps and valves, oil and gas produc-
tion, chemical processing plants, gas turbine casings, exhaust manifolds, and
turbochargers. High-silicon irons are used for components requiring oxidation
resistance. Si-Mo ductile irons are commonly employed for turbo manifolds,
with high-temperature-fatigue capability being a major criterion [6].

11.2 Microstructure of Cast Iron

The microstructure of cast iron includes graphite particles embedded in the matrix.
The matrix could be primarily ferritic or pearlitic, or a combination of both phases.
The ferritic matrix is a softer material with lower strength compared to the pearlitic
one, which is harder and stronger [7]. The features of cast irons such as ferrite/pearlite
content, graphite morphology, and nodularity play a key role in determining the
physical and mechanical properties. The final microstructure depends on the chem-
ical composition, cooling rates, and subsequent heat treatments (if any). FGI, CGI,
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and SGI are commercially available in different grades based on minimum ultimate
strength of the material.

SEM micrographs of CGI specimens manufactured according to EN-GJV-450
standard (Fig. 11.2a) demonstrate that most of the graphite is of vermicular form
but its other forms (mostly spheroidal) are also present. Etching of specimen reveals
the presence of ferrite, pearlite, and graphite (Fig. 11.2b). In case of CGI, the main
requirement is for a minimum of 80% graphite particles to be primarily in vermicular
(compacted) form with remaining 20% graphite particles in nodular form. Presence
of flake graphite is not permitted in CGI except in the rim zone of castings [8].
There is no standard requirement on the chemical composition or the method of
manufacture, and these are determined by the manufacturer [9, 10].

11.3 Chemical Composition of Cast Iron

Typical chemical compositions of the main types of cast irons are given in Table 11.1
[11-13].

Silicon is one of the main ingredients of cast irons. The percentages of silicon and
carbon can be altered with respect to each other to produce different microstructures
in cast irons. A higher silicon fraction of about 4% is sometimes used to improve the
oxidation resistance of cast irons. However, silicon has strong graphitizing influence,
which leads to a process called graphitization, with pearlite converted into ferrite and
graphite. Pearlite is stable up to about 425 °C but gradual graphitization occurs around
530 °C and accelerates significantly around 650 °C [14].

The manganese content is determined by the type of matrix required in the cast
iron. Mn is a strong pearlite promoter, so it can be as low as 0.1% for a ferritic
matrix or can be increased to 1.2% to obtain a pearlitic one [15]. Without manganese
in the iron, undesired iron sulphide (FeS) can form at grain boundaries, potentially
leading to filling defects in the castings [15, 16]. Phosphorus and sulphur are the
minor elements always present in the cast iron composition. S is generally harmful
in grey iron and should be kept to below 0.12% for grey iron and below 0.02%
for high-quality CGI. P increases the fluidity of all cast irons, but this can lead to
difficulties in casting process. For most engineering castings, it should be kept below
0.12%, but up to 1.0% may be allowed to improve the manufacturing of thin-section
castings where high strength is not required [15].

Mg plays a significant role in defining the graphite morphology of cast irons that
can change from flake to compacted and spheroidal as magnesium content varies
(Fig. 11.3). For instance, compacted graphite is formed for Mg in a range of 0.005—
0.015%. The loss of even 0.001 % of magnesium at the lower end can lead to formation
of flake-type graphite.

Different alloying elements can be added to improve high-temperature mechanical
properties of cast irons. Addition of molybdenum in cast irons provides a signifi-
cant improvement in high-temperate tensile, fatigue, and creep strengths [17-19].
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Fig. 11.2 SEM micrographs of CGI microstructure: a unetched specimen; b etched specimen

Table 11.1 Chemical composition of different cast irons (Fe—balance)

Castiron | Carbon equivalent (%) |C (%) Si (%) Mn (%) S (%) P (%)

FGI 3745 3.0-3.7 |1.8-2.8 |0.7-0.8 <0.15 0.1-0.5
CGI 4.2-4.6 3.5-3.8 |2.0-2.6 |0.20-0.5 <0.025 <0.05
SGI 4445 34-38 [2.0-28 |0.2-1 <0.02 <0.05
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This improvement is due to the formation and retention of carbides with chemical
compositions such as Fe4,Mo,C or Fe;Mo;C.

Other alloying elements such as Cr, Co, and Al are often used in cast irons for
high-temperature applications. The first two enhance structural stability of cast irons,
i.e. retention of properties at high temperatures. The last stabilizes the ferrite phase
and improves the oxidation resistance by formation of strong oxide (Al,O3) layers.

11.4 Mechanical Properties of Cast Iron

Some key mechanical properties of FGI, CGI, and SGI at room temperature are
presented in Table 11.2. Apparently, SGI has high ductility and the highest tensile
strength but low thermal conductivity. FGI, on the other hand, demonstrates the
lowest strength and high thermal conductivity, while its close to zero elongation
highlights its brittle nature. The properties of CGI are typically between those of
FGI and SGI. Temperature has a strong effect on yield strength, tensile strength, and
elastic modulus of FGI, CGI, and SGI (Table 11.3). It can be noted that unalloyed
SGI has better tensile strength compared to FGI at room temperature, but it degrades
more rapidly with temperature.

Table 11.2 Typical material properties of FGI, CGI, and SGI at room temperature [7, 8]

Property FGI CGI SGI
Tensile strength (MPa) 160-320 300-600 400-700
Elongation (%) ~0 3-6 6-25
Elastic modulus (GPa) 96-110 140-160 170-190
Thermal conductivity at 100 °C (W/mK) 45-65 35-45 29-40
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Table 11.3 Effect of temperature on tensile properties of unalloyed FGI, CGI, and SGI with fully
pearlitic matrix [20]

Cast iron Room temperature 540 °C
Yield Tensile Elastic Yield Tensile Elastic
strength strength modulus strength strength modulus
(MPa) (MPa) (GPa) (MPa) (MPa) (GPa)

FGI 212 268 109 159 185 65

CGlI 324 405 130 183 220 72

SGI 424 476 158 232 336 122

The variation of tensile strength of FGI, CGI, and SGI with temperature is demon-
strated in Fig. 11.4. The figure highlights a steep increase in rate of strength reduction
between 600-800 K (327527 °C). Similar variation is reported in the literature [21,
22], with a slow reduction in tensile strength up to 400 °C flowed by a significant
drop around 500 °C. Comparable observation was made by Zou et al. [22] regarding
fatigue strength which that increased up to 400 °C and then decreased significantly
at 500 °C. The increase in fatigue strength around 300-400 °C was attributed to
strain hardening, dynamic strain ageing, and precipitation strengthening effects. The
significant reduction in tensile and fatigue strengths around 500 °C was attributed to
high levels of oxidation, diffusion of vacancies, and grain-boundary softening.

A unique feature of castiron is the difference in material strength under tension and
compression, with compressive strength being higher compared to tensile strength.

Fig. 11.4 Influence of
temperature on tensile
strength of FGI, CGI, and
SGI [20]
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Under compression, the graphite particles are held tightly closed, and the bulk mate-
rial acts very much like steel, resulting in superior strength. Under tension, the
graphite particles bear almost no load and act as crack-initiation sites. In case of FGI,
the ratio of compressive strength to tensile strength is typically around 2 [23], but it
could be as high as 5 [24]. The tension—compression asymmetry is less pronounced
in SGI compared to FGI [25], probably because the nodular graphite form does not
provide a direct path for crack initiation under tensile loading.

Comparison of stress—strain curves under tension and compression loading for
CGI vividly demonstrates the asymmetrical tension—compression behaviour of CGI
at room and elevated temperatures (Fig. 11.5). The magnitude of 0.2% proof
strength at room temperature in compression (451 MPa) is 1.31 times that in tension
(344 MPa). This ratio remains similar at 500 °C. The compressive strength to tensile
strength ratio of 1.31 compares well with ratios of about 1.4-1.6 are reported in
literature for CGI [26, 27]. The figures also show that the elastic modulus in tension
and compression are identical at room temperature (135 GPa) and at 500 °C (125
GPa).

11.5 High-Temperature Applications of Cast Irons

The properties of cast irons start degrading at around 425 °C, with creep becoming a
concern above this temperature. Applications of cast iron in the automobile industry
include these levels of temperature, with cylinder blocks and cylinder heads reaching
temperatures around 400 to 450 °C while exhaust manifolds and turbocharger
housings reaching temperatures around 800 °C [14].

The cylinder heads are traditionally manufactured from FGI, but with peak cycle
pressures of about 25 MPa and temperature close to 400 °C, those designs are
approaching its mechanical limit. CGI is seen as a candidate to replace grey iron and
allow higher pressures and temperatures of around 450 °C [14, 28]. Cylinder blocks
and cylinder heads have multiple intake and exhaust ports, coolant passages, and
water jackets. As a result, during operation of these components, significant thermal
gradients occur due to the movement of exhaust gases, coolants, and different rates of
heat dissipation at various locations. The high operating temperature, high-frequency
combustion, and multiple engine start-stop cycles lead to a combination of low-cycle
and high-cycle thermo-mechanical fatigue problems in the cylinder heads. The start-
up and shutdown cycles can lead to tensile and compressive stresses in the valve
bridges as the temperature increases and held for long periods of time, resulting in
creep, stress relaxation and, eventually, initiation, and propagation of cracks [28, 29].

Examples of cast irons mainly used in exhaust manifolds and turbochargers
of heavy-duty diesel and petrol engines are alloyed cast irons such as SiMo51,
SiMo1000, and Ni-Resist D-5S. SiMo51 is ferritic spheroidal cast iron with typically
about 4% of Si and about 1% of Mo. SiMo1000 is also ferritic nodular cast iron, with
typically around 2.5% Si, 1% Mo, and about 3% Al. D-5S is austenitic cast iron with
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Fig. 11.5 Comparison of stress—strain curves under tension and compression loading: a room
temperature; b 500 °C

about 33-35% of Ni. These materials are used in the temperature range from 700 to
900 °C [28, 30-33].
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11.6 Introduction to Creep

Creep is a time-dependent, permanent deformation of material under constant stress
even if the applied stress is below its yield point. The level of creep strain gener-
ated depends on the material, stress, temperature, and time spent at a particular
temperature and stress level.

The idealized shape of a creep curve for a constant uniaxial load at a constant
temperature is shown in Fig. 11.6. When the load is first applied, a small instanta-
neous strain is generated in material. The creep strain is obtained by subtracting the
instantaneous strain from the total strain.

The time-dependent response is a slow increase of strain with a variable rate,
which, according to Andrade [34], can be divided into three stages: primary creep,
secondary creep, and the tertiary creep. During primary creep, the creep rate decreases
rapidly with time. This reduction is due to the strain hardening as the dislocations
encounter obstacles and are immobilized resulting in higher dislocation density [35,
36]. At the end of the primary-creep stage, the creep rate becomes almost constant,
and this region is called secondary creep. At this stage, the strain-hardening mecha-
nism is balanced by the recovery due to thermal softening caused by annihilation of
dislocations [36, 37]. The average creep rate during secondary creep, determined by
the constant slope of the creep curve, is known as minimum creep rate. At the end
of the secondary-creep stage, the creep rate increases rapidly, ultimately leading to
failure. This region of increasing creep rate is called tertiary creep. Temperature and
stress are the two dominant external variables that affect the shape of creep curve.

Tertiary
Creep

Secondary
Creep

Primary
Creep

Rupture

Strain, €

I Instantaneous Strain

Y

Time, t

Fig. 11.6 Constant-temperature curve showing three distinct stages of creep
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11.7 Creep Models

Models used to describe the creep behaviour can be broadly classified as empir-
ical models, mechanism-based models, as well as continuum-mechanics, and
micromechanical models [37, 38].

11.7.1 Empirical Models

Empirical creep models provide relationships between the creep rate, stress, temper-
ature, and time. They can be also used to predict life of structures for given levels
of stress and temperature. These relations are mainly based on experimental data
from uniaxial creep tests. The empirical models are useful in early design stages to
arrive at component sizing, choosing the correct materials for the application. These
models do not consider stress redistribution, creep-plasticity interaction, cyclic strain
accumulation, and many other effects [37].

The most general creep equation relating the creep rate &, stress o, time ¢, and
temperature 7 can be written as

&= f(o,1,T).

This general equation can be simplified by de-coupling into separate functions to
account for effects of each parameter

& = f1(o) f2(t) f3(T).

Several stress functions, fi (o), were used in the literature with the most common
functions [35, 37, 38] as follows:

fi(o) = Ko" (Norton 1929, Bailey 1935)
filo) = BCXP<;i — 1) (Soderberg 1936)

filo)=A sinh(%) (McVetty 1943)
Silo) = A{ sinh(2> } ' (Garofalo 1965)

Here, the parameters K, B, A, n, m, and o, are the material constants derived based
on creep experiments.
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The power law attributed to Norton and Bailey is most broadly used primarily
thanks to its simplicity. The power law fits best the experimental data for low stresses,
but the exponential function is more accurate for higher stresses.

An extensive curve-fitting process for experimentally derived creep curves is
required to describe the time dependence of high-temperature creep in complex
alloys. Some of the time functions, f>(¢), are [35]

) = (1+bt'?) expkt) — 1 (Andrade 1910)
fo(t) = Ft" (Bailey 1935)

fo(t) = G(1 —e™) + Ht (McVetty 1943)
L) =01(1—e ™)+ &5 (Garofalo 1965)

Here, F, G, H, b, k, n(
time.

The temperature has a significant impact on creep; this effect is driven by the
changes in the material microstructure with temperature. As the shape of the creep
curve changes with temperature, the material constants used in the stress function
can also change. The temperature function, f3(7), is usually expressed in terms of
Arrhenius law

% <n< %) q, 91, and 6, are the constants that can vary with

0
f(T) = eXP( RT)’
where Q is the activation energy, R is the universal gas constant (8.37 J/molK), and
T is the absolute temperature.

In real life, the loading is mostly variable so there is a need to account for the
changes in stress and temperature with time. Several theories are available for vari-
able loading including time hardening, strain hardening, total strain theory, combined
strain and time hardening, Marin theory, Graham and Walles method, etc. In absence
of thermal softening and metallurgical changes, test results demonstrate that the
strain-hardening theory is more accurate [35, 39]. The time- and strain-hardening
theories bound all other theories in the predicted response to the variable load.
The both theories are widely used as approximate methods of component analysis
including finite-element studies [35].

In addition to the relationships between the creep rate, stress, time, and tempera-
ture, the empirical models include extrapolation methods to predict time-dependent
deformation and life of structures. Several extrapolation methods are covered in the
literature [35, 39—42]. Two of the most widely used approaches are Larson-Miller
parameter method and Monkman—Grant law.
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Fig. 11.7 Larson—-Miller parameter plot for diesel exhaust alloys [43]

The former method relates temperature with time to failure at a constant stress.
The Larson-Miller equation has the following form:

Pov(o) = T(lOgt + C),

where ¢ is the time to failure in hours and C is the material’s constant that can be
experimentally found.

Larson-Miller parameter plots for different materials used in diesel-engine
exhausts including SiMo and Ni-Resist cast irons are shown in Fig. 11.7 [43]. These
plots also known as master curves are built by testing the material to rupture at
different stress and temperature levels. The master curve can be used to obtain the
time to rupture at any temperature and stress combination on the curve. Another
use of Larson-Miller parameter is in comparing and ranking materials as shown in
Fig. 11.7 where higher curves represent more heat resistant material.

Another widely used empirical model is the Monkman—Grant relation [44] which
relates the minimum creep rate, &nc. , and the time to fracture, ¢

.m _
Smcrtf - C’

where m and C are the material constants. The relationship is suitable for a number
of materials including aluminium, copper, titanium, iron, and nickel-based alloys,
with m ranging between 0.77-0.93 [40]. Figure 11.8 shows the Monkman—Grant
graph for three different nodular cast irons reported by Hug et al. [45]. The found
parameters were m = 0.91 £ 0.04 and C = 0.15 £ 0.06.
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11.7.2 Mechanism-Based Models

The mechanism-based models capture the basic mechanisms that contribute to creep
in metals such as dislocation creep, diffusional creep, and grain-boundary sliding. It
is possible that all the mechanisms may be active at any given time but depending on
the stress and temperature levels, one of the creep mechanisms is dominant at any
given time.

Dislocation creep involves dislocation glide and climb. The dislocation glide
occurs on application of stress, resulting in strain hardening as the density of
dislocations increase. The climb is the recovery process at high temperatures,
with dislocations able to move or climb to a different slip plane, allowing further
dislocation glide. The creep occurs due to sequential glide and climb of dislo-
cations. The dislocation creep is often called power-law creep [46], with the
steady-state strain rate, &, given as

b = Ao”exp(—R—QT),

where A is the constant, o is the stress level, n is the creep exponent, and Q is
the activation energy for creep.
Diffusional creep occurs in materials with fine grain size at lower stresses. The
mechanism involves diffusion of atoms and vacancies under the influence of
stress. Depending on the path of diffusion, diffusional creep can be considered as
Nabarro-Herring creep or Coble creep. In Nabarro-Herring creep, which occurs at
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higher temperatures, diffusion happens through grain interiors, while Coble creep
occurs at relatively lower temperatures through grain boundaries. The steady-state
strain rate, &, in Nabarro-Herring and Coble creep [47] are given as.

_ToD,b’ ,
Egs N W (Nabarro-Herring creep)
SOangb4
Egs N —————a— (Coble creep)

kTd?

where d is the grain diameter, D, is the volume diffusivity through the grain
interior, and Dgy, is the volume diffusivity through grain boundary, b is the Burgers
vector. It is noted that increasing the grain size reduces the strain rate in both cases
but more in Coble creep.
Grain-boundary sliding occurs at much higher temperatures and is important in
initiating intergranular fracture, which indicates the onset of tertiary creep. The
grain-boundary sliding does not contribute to the steady-state creep.

Different creep deformation mechanisms can be illustrated with deformation
mechanism maps (Fig. 11.9). Detailed maps for various metals and ceramics are
reported in a book by Frost and Ashby [48].
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Fig. 11.9 Schematic of deformation mechanism map
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11.7.3 Continuum-Mechanics and Micromechanical Models

Continuum-mechanics models are useful for investigation of inelastic behaviour
in three-dimensional cases by employing constitutive equations, relating the three-
dimensional deformation and stress states. State variables and corresponding evolu-
tion equations can be used to describe microstructure-related changes such as
hardening, recovery, and damage. These approaches were implemented in numer-
ical schemes, including finite-element analysis, to simulate the time-dependent
structural behaviour such as creep. Naumenko and Altenbach [37, 38], Betten
[49], and Chaboche [50] discussed the continuum-mechanics-based models in
great details. Betten et al. [51-54] developed models of creep of materials with
tension—compression asymmetry such as cast iron.

Micromechanical models include direct introduction of microstructural features
into consideration, often using a representative volume element with geometrically
idealized microstructure. The behaviour of constituents and their interactions are
captured in such models. In case of cast irons, the graphite particles can be modelled
as voids or as inclusions leading to different reposes. Several studies employing
micromechanical models of cast irons are reported in the literature [55-59] but there
are no micromechanical models specifically dealing with their creep.

11.8 Creep in Cast Irons

As discussed, temperatures in the cylinder heads in modern diesel engines reaches
around 400-500 °C, while temperatures in the exhaust manifolds are in the range of
800 °C [45, 60]. So, continuous long-term operation at such elevated temperatures
makes these components susceptible to creep.

In cylinder heads, significant thermal gradients related to complex geometries
including multiple ports, valves, and attaching components can result in high tensile
or compressive stresses at multiple locations. Several investigations of cracking in
cast-iron cylinder heads [61-64] found that it mainly occurred in the valve bridge
areas. Investigation by Smith et al. [61] found that the valve bridge region experi-
enced compressive stresses at high-temperature condition due to restrained thermal
expansion. These stresses can result in permanent deformation due to creep if the
temperatures are held for sufficient duration. Conversely, tensile stresses are gener-
ated in this region upon cooling, leading to initiation of microcracks, which prop-
agate under repeated start-up—shutdown cycles. Such failures can be considered as
thermo-mechanical fatigue (TMF), but they are caused by creep.

Several studies were dedicated to the study of TMF behaviour of cast irons to
develop component-level models for life prediction [25, 65-67]. Most studies consid-
ered the effects of low- and high-cycle fatigue, plasticity and, to some extent, creep
damage in SGI, CGI, and FGI. The material models developed were based on exper-
iments performed within a specific range of stresses and temperatures typical for
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real-life conditions. Such analysis is especially useful for understanding of different
failure mechanisms and development of models to reflect in-service performance of
components. Norton’s creep law is widely used in such models to account for creep
damage [25, 67] that is added to damage from other mechanisms.

There are not many studies looking specifically into creep of castirons. A report by
Kattus and McPherson [68], focussed on high-temperature mechanical performance
of castirons, included a detailed investigation of creep behaviour in grey castiron. The
study contained microstructural analysis, creep-rupture data, minimum creep rates
for different alloys tested and provided a direction for further material improvements.
The report also included conclusions about the role of different alloying elements
like Mo, Cr, and Si in improving the creep resistance of cast irons. Based on the
experiments completed, the study found that pearlite graphitization into ferrite and
graphite resulted in lower creep-rupture properties in the pearlitic cast irons compared
to standard ferritic grades.

An investigation into the creep properties of cast iron by Wheatley and Pope [69]
dealt with compressive creep of cast iron between 325 AND 475 °C at different
stress levels. The paper concluded that the materials showed creep behaviour under
compression similar to that in tensile creep tests. Only primary creep was observed
at 325 °C for stresses up to 200 MPa. Secondary creep was found in tests above
400 °C, creep at 475 °C demonstrating significantly higher strain. The study did not
include comparison between tensile and compressive creep.

Creep behaviour of three families of nodular cast irons typically used in exhaust
manifolds was analysed by Hug et al. [45]. Two of them were ferritic SiMo nodular
cast irons, and the third one was an austenitic nodular cast iron of grade D-5S.
The creep test temperature for ferritic irons was between 650 and 800 °C, and
the austenitic iron was tested up to 900 °C. The study found that all three mate-
rials followed the Monkman—Grant law (Fig. 11.8), indicating similar creep-damage
mechanisms. It was found that the austenitic grades were generally more creep-
resistant compared to ferritic ones. At high stresses and temperatures, the creep
fracture was dominated by plastic straining of the matrix and graphite nodules. At
lower stresses and temperatures, it was caused by cavity nucleation and diffusive
growth, leading to microcracks and voids without any signs of deformation in the
matrix. The damage mechanism in the high-temperature creep tests of ferrite was
similar to that reported by Hervas et al. [70] in the tensile tests, with the plastic flow
of ferritic grains mainly driven by significant reduced yield strength of ferrite at high
temperatures. Plastic strains of graphite nodules reported by Hug et al. [45] were not
observed in tensile testing by Hervas et al. [70].

Recent creep studies on ferritic SiMo51 and SiMo1000 and austenitic nodular cast
irons D-5S by Oberg et al. [71, 72] employed novel test methods called sequential
tensile tests (STT), stress relaxation and thermal cycling (SRTC) tests, and traditional
constant-load creep tests. The STT is a monotonic tensile test carried out at different
strain rates, where stress is recorded. It is effectively an inverse of traditional creep test
with a constant load and a measured strain rate. The STT was used to evaluate Norton
creep parameters for the studied materials. The SRTC test [30] is a relaxation test
including isothermal holds in thermal cycles with a specimen fixed in grips. The test
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uses compressive stress relaxation at high temperature and tensile stress relaxation
at low temperature. The STT and SRTC tests are fast compared to a conventional
creep test. The studies found that for all the materials tested, the creep rates matched
well both the STT and the SRTC test. A direct comparison of creep rates from
STT and SRTC tests with that from traditional creep tests for SiMo51 demonstrated
that the latter were an order of magnitude lower. The reason for these differences
was not fully identified. The studies provided results for such creep parameters as
activation energy and the stress exponent for the different materials that can be
helpful for numerical simulations and design of exhaust components. Interestingly,
the authors concluded that the creep behaviour was similar in terms of tension and
compression and that the data from monotonic tests can be used for cyclic loading
conditions. This conclusion may be true for SGI, without pronounced difference in
tensile and compressive behaviours, but it is not expected to be the case for FGI or
CGI, demonstrating tension—compression asymmetry.

Wu et al. [73] studied the creep behaviour of CGI at stresses between 40 and
150 MPa and temperatures ranging from 350 to 550 °C (Fig. 11.10). Apparently,
at 150 MPa, there was no significant creep up to 450 °C but the creep rate rose
sharply at 550 °C resulting in specimen’s rupture in some 10 h. The study found
pearlite transformation at temperatures around 550 °C as in other works [14], which
can explain this sharp increase in the creep rate. It was noted that the creep strain-
to-failure of about 3% was at the higher end for CGI and might be a result of a
higher ferrite content. Cracks originating on the surface of the specimen propagated
preferentially through ferrite, the phase weaker than pearlite. The cracks extended
further by debonding between graphite and ferrite, with subsequent rupture of the
specimen when crack reached a critical length. Grain-boundary sliding was identified
as the creep-damage mechanism at 500 °C for 150 MPa. Intragranular deformation
was observed at temperatures around 550 °C.

Jing et al. [74] have recently studied creep in CGI at temperatures from 450
to 550 °C and stresses between 100 and 150 MPa; the reported minimum creep
rates are shown in Fig. 11.11. Creep performance of CGI significantly deteriorated
with an increase in temperature from 450 to 550 °C. Based on a multi-objective
optimisation approach for curve fitting, the study found that different creep-damage
mechanisms such as grain-boundary sliding, dislocation glide, and dislocation climb
were dominant at different combinations of stresses and temperatures.

11.9 Experimental Results for CGI Creep

The literature survey into the creep of cast irons demonstrates that there are a few
studies covering tensile creep in CGI [73, 74] but there is no literature available
regarding compressive creep in it. As discussed previously, tensile and compres-
sive creep can play a critical role in high-temperature applications such as cylinder
heads subjected to multiple start-stop cycles and long operation times. Fundamental
understanding of the similarities and differences in creep behaviour under tension
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Fig. 11.12 Specimen used in tensile and creep tests

and compression is vital for design of efficient and reliable products. Results from
the ongoing research on the tensile and compressive behaviours of CGI are given in
this section.

A pearlitic CGI material of EN-GJV-450 grade was procured in the form of cylin-
drical rods of about 250 mm length and about 25 mm diameter. These rods were
machined to produce test specimens with dimensions shown in Fig. 11.12. The spec-
imens had a circular cross section with minimum diameter of 6 mm and a gauge
length of 26 mm. The minimum gauge length was 4.33 times the specimen’s diam-
eter, meeting the minimum 4xD gauge length requirement in ASTM E8 standard
[75].

Instron 5982 electromechanical machine with 100 kN force capacity was used
for tensile and compressive creep testing at various level of constant stress. The
Instron machine was used together with a 3119—600 series temperature-controlled
thermal chamber capable of reaching the maximum temperature of 600 °C. The
temperature chamber had temperature stability of £+ 2 °C. Epsilon extensometer
7642-0125 M-075 M with a 12.5 mm gauge length was used for testing along with
DT6299 controller.

The creep tests were completed in line with ASTM E139-11 standard [76] metallic
materials. The specimen was soaked at high temperature for 8 h to ensure that that
the specimen, thermal chamber, and all the attaching parts were at the settled temper-
atures. The temperature soaking was done under a force-control mechanism with a
tolerance of 4 250 N (equivalent to & 9 MPa stress). For the creep experiments, the
extensometer filter setting was set to low noise to maximize the resolution of the signal
and to minimize the noise in the data. The load was applied at 0.001 mm/mm/min,
which was the same in the tensile and compression tests. The load was held steady
once the required stress level was achieved. Each test was run for 100 h, which was
a sufficient time to capture the strain-rate levels for secondary creep.

The 0.2% proof stress of CGI under tension and compression is shown in
Fig. 11.13. At 400 °C, this stress in tension was 300 and 370 MPa for compression.
Using this information as a rough guide, the creep tests were conducted at 150 MPa
(to test the creep behaviour in the elastic region) and at 300 MPa (to test the creep
near the plastic region). Creep tests were conducted at different temperatures—400,
500, and 550 °C.
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The strain—time histories for the tensile and compressive creep tests at 300 MPa
stress at 400 and 500 °C are shown in Fig. 11.14. The figure vividly demonstrates
the significant impact of temperature on tensile and compressive creep behaviours.
In tension at 400 °C, there is a short stage of primary creep followed by secondary
creep with no rupture when test was stopped at 78 h.

At 500 °C, however, the specimen ruptured within 30 min, most likely driven by
the instantaneous plastic strain and the onset of primary creep. The rupture strain
of about 1.1% was in line with the strain at fracture in the tensile tests at 500 °C.
In compression, some primary creep was evident at 400 °C but there was no sign
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Fig. 11.14 Strain—time histories for tensile and compressive creep at 300 MPa
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Fig. 11.15 Strain—time histories for tensile and compressive creep at 150 MPa and 550 °C

of secondary creep. However, primary as well as secondary creep were present at
500 °C under compressive load. These results highlighted the level of differences
between the tensile and compressive creep regimes in CGI.

Another comparison between these two regimes at 550 °C and 150 MPa stress is
presented in Fig. 11.15. For the tensile-creep case, a rapid transition from secondary
to tertiary creep and almost instantaneous failure at the onset of tertiary creep were
observed. Under compression, however, a short primary-creep stage can be observed
followed by the secondary-creep region, demonstrating a gradual progress of creep.

SEM micrographs of the tensile-creep specimen tested at 550 °C and 150 MPa

ruptured under tertiary creep demonstrate the presence of voids and grain-boundary
sliding (Fig. 11.16).
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Chapter 12 ®)
About the Energy Dissipation Coefficient |
of Thin-Walled Glass-Plastic Pipes

with the Initial Reinforcement

Asymmetry with Respect to Axis

Subjected to Pulsating Internal

Hydrostatic Pressure

Koryun A. Karapetyan and Sona Sh. Valesyan

Abstract Results of study of the influence of possible deviation of the symmetric
reinforcement relative to the axis (the disorientation of reinforcement) occurred
during the material technological processing into a product on the deforma-
tion behavior and dissipative properties thin-walled glass-plastic tubular elements
subjected to repeated-static internal hydrostatic pressure are discussed. It is stated
that under the conditions of repeated-static internal pressure (low-cycle pulsating),
in addition to the main cyclic circumferential deformations for symmetrically rein-
forced pipes (¢ = 0°), accompanying the main cyclic longitudinal deformations is
arising, and for pipes with the initially broken reinforcement symmetry (¢ = 6-8°),
accompanying cyclic shear deformations is appearing as well. As is shown, after
the stabilization of the deformation process (after 23 cycles of loading—unloading),
the value of energy dissipation coefficient \{ for glass-plastic pipes with ¢ = 6-8°
turns out to be 20% (and more) greater than the value of energy dissipation coef-
ficient {r defined for glass-plastic pipes with ¢ = 0°. The shares of each from the
main and accompanying the main deformations into the total energy loss for the
glass-plastic pipes with the initially broken reinforcement symmetry (¢ = 6-8°) are
shown up. Defined that during the process of low-cycle pulsating internal pressure, the
amount of energy loss due to the occurrence of cyclic shear and longitudinal deforma-
tions accompanying cyclic main circumferential deformations turns out to be 270%
and 12% more than the amount of the energy loss arising from the main deforma-
tions, respectively. Practical recommendations by the optimal design of thin-walled
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tubular structural elements made of reinforced plastics operating under conditions
of low-cycle pulsating internal pressure are stated.

Keywords Thin-walled glass-plastic pipes - Disorientation of reinforcement -
Intensities of shear stresses and the shear strain + Coefficient of energy dissipation *
Pulsating internal hydrostatic pressure

12.1 Introduction

The deviation of the reinforcement angle from its intended value (the reinforcement
disorientation is a special case of the violation of the reinforcement symmetry relative
to the direction of some geometric parameter of the elements) is one of the most
common defects in the macrostructure of reinforced composites, including reinforced
plastics [1, 2]. The probability of the reinforcement disorientation occurrence, which
is mainly a consequence of the imperfection of the material technological processing
into a product, and which is usually of a random nature, is greater in the case of
manufacturing spatial structural elements from reinforced composites [3, 4].

Previously, it was found that for thin-walled glass-plastic pipes with initially
broken symmetry of reinforcement relative to the axis subjected to static uniaxial
force action, in addition to the main deformations (registered in the direction of the
force action), deformations accompanying the main ones also occur. In particular,
when pipes are loaded by axial tension, shear deformations accompanying the main
axial ones arise, and when pipes are loaded by simple torsion, axial deformations
accompanying the main shear ones also occur [4]. In the case of internal hydro-
static pressure, for thin-walled glass-plastic pipes with initially broken reinforcement
symmetry, in addition to the main circumferential deformations, accompanying both
axial and shear deformations arise [5].

As is known, among the main physical and mechanical properties of reinforced
plastics are their dissipative properties, the negative influence of which on the reliable
operation of construction elements from these materials during the time period can
be significant in some cases. The optimal design of such elements subjected to cyclic
loading during operation can be largely facilitated by taking into account in the
calculations the indicator characterizing the dissipative properties of the material,
based on experimentally established reliable data.

According to the results of [6], under the conditions of cyclic loading, in tubular
elements made of reinforced plastics with initially broken symmetry of reinforcement
relative to the axis, in contrast to pipes reinforced symmetrically, in addition to cyclic
main deformations, cyclic deformations also occur that accompany the main ones:
shear—with cyclic axial tension and longitudinal—with cyclic torsion of pipes. In
this work, as a result of identifying the share of each of the deformations in the loss
of the total energy of glass-plastic pipes with an initial reinforcement disorientation,
practical recommendations were formulated aiming at the optimal design of such
pipes subjected to cyclic loading by the indicated force factors during operation.

The purpose of this work is to identify the share of the main and accompanying
main deformations in the loss of the total energy of thin-walled glass-plastic tubular
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elements with initially broken symmetry of the reinforcement relative to the axis,
subjected to repeated static internal hydrostatic pressure.

12.2 Research Methodology

The phenomenon of the reinforcement disorientation was discovered by us during the
manufacture of experimental tubular test pieces based on glass-plastic in laboratory
conditions in such a way that the direction of the main knitting fibers of the fabric
coincided with the direction of the axis of the pipes (symmetric reinforcement—the
value of the reinforcement angle ¢ = 0°). However, according to the measurements,
for a part of the pipes, which is about 8% of the total, deviations of the reinforcement
angle from its zero value were recorded within 6-8° [4]. Based on this, to implement
the experimental part of the issues considered here, two batches of glass-plastic thin-
walled tubular elements-test pieces with an inner diameter of 38 mm, a wall thickness
of 2.25 mm, and a length of 285 mm were manufactured, the dimensions of ones
correspond to the requirements of the tested recommendations [7].

The test pieces were made from a glass-plastic prepreg based on a modified epoxy
resin by the winding method according to the technology [8]. For one batch of pipes,
the value of the above-mentioned reinforcement angle was ¢ = 0°, and for the other
batch it was —¢ = 6-8°.

Plain weave fiberglass fabric with the main overlap [9] brand T-23 (TU 6-1I -23—
76) with a density (the number of fibers per 1 cm? of fabric) 36:20 (warp: weft),
produced by the Sevan plant “Electrical Glass Insulation” (Republic of Armenia)
was used. The value of the fiberglass reinforcement coefficient is b = 0.45 (Wyarp =
0.29, pwert = 0.16).

Part of the manufactured tubular test pieces of both varieties was used to deter-
mine the limit of resistance to destruction in the circumferential direction 09”91‘, s
and the other part was used to test for repeated-static internal hydrostatic pressure.
When conducting cyclic tests with an average rate of change in internal pressure
of 26.7 atm./min. (corresponds to the rate of stress change in the circumferential
direction of the pipes og9 = 25.8 MPa/min.), the magnitude of the amplitude stress
was applied equal to 0.42 oe”e“, the choice of which was made on the basis of the
preliminary tests. According to these tests, as the internal hydrostatic pressure in the
pipes increases, their initial shortening and further elongation are observed. At the
same time, if the condition gy < 0.45 o' is obeyed, the fiberglass pipes with both
¢ = 0°and ¢ = 6-8° experience only shortening [10].

The basic number of loading—unloading cycles was used equal to 6 due to the
dynamics of changes in the values of amplitude and residual circumferential, shear
and longitudinal deformations of the cycle, measured during testing (Fig. 12.1).

To calculate the values of the coefficient U of the relative energy dissipation
per cycle (dissipation energy) of glass-plastic pipes subjected to cyclic loading—
unloading, the following formula was used [4]:



178 K. A. Karapetyan and S. Sh. Valesyan

Fig. 12.1 Tubular test piece mounted on a testing machine with meters measuring longitudinal 1
and 2, shear 3, and circumferential 4 deformations

— < 15
b [_(Famp - Fres) — X In|1 - ?(F - 1_‘res)

W=1-— ] (12.1)

= = .
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Equation (12.1) was obtained on the basis of the well-known dependence [11] Vs
= AW/W (where AW is the value of the energy dissipated per cycle, and W is the
value of the strain energy), using the following linear fractional function (2) applied
for analytical description of the experimentally established relationship between the
intensities of shear stresses T and the shear strain I" [12, 13] in the sections of the
ascending (—) and descending (<) branches of the hysteresis loop.
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InEgs. (12.1) and (12.2), I'es and Iy, are the values of the intensities of residual
z =22 2

and amplitude shear deformations of the cycle, respectively, X = a / b, where a
—

~N

(12.2)

and b are the approximation parameters of hysteresis loop curves, and Ty is the
limiting value of T, corresponding to the destruction of the test piece.
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Let us note that the experimental part of the studies considered here was carried
out 30 years after the manufacture of glass-plastic pipes. During this period of time,
they were in the laboratory at an ambient temperature of 20 £ 6 °C and a relative
humidity of 60 £ 8%.

12.3 Results and Discussions

Before proceeding to the discussion of the problems considered here, we note that
the results of studies of the effect of the violation of the symmetry of the reinforce-
ment relative to the axis on the fracture resistance and on the deformation behavior
of thin-walled glass-plastic tubular elements subjected to repeated-static internal
hydrostatic pressure were considered in detail in paper [5]. Selected data from this
work required for their analysis from the standpoint of formulating some practical
recommendations on the optimal design of thin-walled structural tubular elements
made of reinforced plastics subjected to repeated-static (low-cycle pulsating) internal
pressure are brought here.

As the test results showed, and this was noted in the above-mentioned work [5],
the difference in the values of resistance to destruction of pipes with initially broken
reinforcement symmetry (¢ = 6—8°) and symmetrically reinforced (¢ = 0°) subjected
to internal hydrostatic pressure turns out not to be significant. The average value of
this characteristic for both mentioned types of glass-plastic tubular elements can be
taken equal to 424.9 MPa.

When carrying out studies of deformation behavior in the process of cyclic testing
by internal hydrostatic pressure of the above-mentioned both batches of glass-plastic
pipes for all cycles of loading—unloading, the data taken from the corresponding
indicators (Fig. 12.1) were processed and the approximating curves were constructed
according to Eq. (12.2). These results obtained for I, II, III, and VI test cycles are
shown in Fig. 12.2.

From the data in Fig. 12.2 pointed out in paper [5], in addition to the main cyclic
circumferential deformations, glass-plastic pipes with the reinforcement angle ¢ =
0° subjected to repeated-static internal hydrostatic pressure have experienced cyclic
longitudinal deformations accompanying the main ones also (Fig. 12.2a), and pipes
with ¢ = 6-8° have experienced accompanying cyclic shear deformations as well
(Fig. 12.2b). At the same time, during the entire process of a step-by-step increase
of the internal hydrostatic pressure level in pipes with both mentioned reinforcement
angles or during the process of a step-by-step decrease of the internal hydrostatic
pressure level in pipes with both mentioned reinforcement angles, the branches of
the hysteresis loop retain the direction of convexity or concavity, and the discrepancy
between the ascending and descending branches of the hysteresis loops of the same
deformations is gradually reduced.

Changes of the energy dissipation coefficients {r depending on the duration of
the repeated-static internal hydrostatic pressure of both types of glass-plastic pipes
mentioned above can be analyzed from the data presented in Fig. 12.3.
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Fig. 12.2 Deformation diagrams of pipes ¢ = 0° (a) and ¢ = 6-8° (b) within the cycle in loading—
unloading mode subjected to internal hydrostatic pressure
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Fig. 12.3 Curves describing changes of the coefficient s of glass-plastic pipes with reinforcement
angle ¢ = 0° (curve 1) and ¢ = 6-8° (curve 2) depending on the cycle number n of the test for
repeated-static internal hydrostatic pressure

From this figure, the marks show the results calculated according to Eq. (12.1),
using the experimentally established corresponding data in comparison with the
curves approximating these results, we notice that the initial increase in the number of
cycles n to 4th leads to a monotonous decrease with decreasing rate of the coefficient
{r defined for both pipes batches with reinforcement angle ¢ = 0° and at angle ¢ =
6-8°. With a further increase in the number of cycles n until the end of the cyclic
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tests, the change in the value of the coefficient s for both batches of mentioned
fiberglass pipes is practically not observed (Fig. 12.3). At the same time, it is noted
that the ratio of the values of the coefficient | determined for I and VI test cycles
practically does not depend on the value of the reinforcement angle ¢ of pipes and
equals 1.4-1.5.

The comparisons of the data in Fig. 12.3 show that after 2-3 cycles of loading—
unloading by internal pressure, the value of the ratio of the coefficients \{ of pipes
with reinforcement angles ¢ = 6-8° and ¢ = 0° defined for the same cycle number
n, practically does not change and is approximately 1.2. That is, for the type of cyclic
loading considered here, after the stabilization of the deformation process (after 2—3
cycles of loading—unloading), the amount of energy dissipation in thin-walled glass-
plastic pipes with initially broken reinforcement symmetry turns out to be 20% (and
more) greater than the value of the same characteristic determined for practically
similar pipes, however, reinforced symmetrically relative to the axis.

As already noted, subjected to cyclic loading by internal hydrostatic pressure,
for thin-walled glass-plastic pipes with initially broken symmetry of reinforcement
relative to the axis (¢ = 6-8°), in addition to the main cyclic circumferential deforma-
tions (gg9), cyclic shear deformations (yg,), as well as, longitudinal (e,,) deformations
accompanying the main circumferential ones are arising. Proceeding from this, we
consider to be acceptable the values of the energy dissipation coefficient of the cycle
of these pipes, defined according to (1) for all test cycles, and presented in Fig. 12.3
by marks (in the further presentation at the text, they will conventionally be called
the total energy dissipation coefficients of the cycle observed during repeated static
internal hydrostatic pressure of pipes and will be denoted by Vg qum) Separate into
corresponding summand components and figure in the following form:

VHsum = VHoo + UHo, + VH2 (12.3)

Into Eq. (12.3), V.09, U0z, and ¥y 4 are the values of the energy dissipation coef-
ficients per cycle arising, respectively, from the main circumferential deformations,
and from shear and longitudinal deformations accompanying the main deformations.

Approximation curves describing changes of the total energy dissipation coeffi-
cient of the cycle and its summand components determined on the basis of exper-
imental data, respectively, according to Eq. (12.1) and using functions of type (1)
depending on the cycle number n of loading—unloading by the internal pressure of
pipes with ¢ = 6-8° are shown in Fig. 12.4.

From the data of this figure, it can be noticed that the curves describing the changes
in both the total energy dissipation coefficient and the terms of the components of this
coefficient, depending on the cycle number n of testing pipes, are practically similar.
This indicates that the experimentally established regularity noted above, related to
the behavior of the total energy dissipation coefficient Uy g, in the process of cyclic
loading by internal pressure, can be considered acceptable for the cases of behavior
of the terms of its components Vg 09, W0z, and Uy 4.

It should be noted that the phenomenon of similarity of curves describing changes
of the total energy dissipation coefficients and summand coefficients depending on
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the number of the loading—unloading cycle was also found in cases of testing for
cyclic axial tension and simple torsion of thin-walled glass-plastic pipes with initially
broken symmetry of the reinforcement relative to the axis [6].

From the comparison of the data in Fig. 12.4, it follows that the value of the
ratios U.eo/ Uisum, UH.02/VH.sum and Uy 22/ Uy sum, determined for the same loading—
unloading cycle number of thin-walled glass-plastic pipes with ¢ = 6-8° subjected
to internal pressure, practically does not depend on the number of test cycle n and
equals approximately to 0.17, 0.63 and 0.19, respectively. That is, in the range of
cyclic loading of these pipes by internal pressure considered here, regardless of
the number of the loading—unloading cycle, the amount of energy loss due to the
occurrence of cyclic shear and longitudinal deformations accompanying cyclic main
circumferential deformations turns out to be approximately 270 and 12% more than
the amount of the energy loss arising from the main deformations, respectively.

12.4 Conclusions

Thus, a possible violation of the symmetry of the reinforcement relative to the axis
occurred during the manufacturing process by winding thin-walled glass-plastic
pipes in such a way that the directions of the warp fibers of the fabric and the axis
of the pipes coincide, can cause very significant cyclic shear and significant axial
deformations that accompany the main cyclic circumferential deformations of the
pipes subjected to repeated-static (low-cycle pulsating) internal hydrostatic pressure.
It can be argued with a higher probability that a phenomenon similar to the
one mentioned above will also be observed at low-cycle pulsating internal pres-
sure of tubular elements made of reinforced plastics with initially broken symmetry
of reinforcement relative to the axis, manufactured by the cross-winding method.
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Under the conditions of low-cycle pulsating internal pressure into thin-walled
pipes made of reinforced plastics with initially broken reinforcement symmetry rela-
tive to the axis, the value of the energy dissipation coefficient arising from shear defor-
mations accompanying the main circumferential deformations significantly exceeds
the values of the energy dissipation coefficients arising from both the main deforma-
tions themselves and from accompanying main circumferential deformations. In this
case, the difference in the values of the mentioned energy dissipation coefficients
practically does not depend on the duration of the internal pressure pulsation in the
pipes.

The foregoing indicates that at the condition of pulsating internal pressure in
pipes made of reinforced composites, the loading of the composite matrix occurred
the weak link of the material, is more intense than the loading of the fibers reinforcing
the material. As noted in [14], in most cases, it is the destruction of the matrix or the
interface between the reinforcing component and the matrix, and not the destruction
of the reinforcing fibers, that is the cause of the premature failure of structures made
of reinforced composites.

A constructive method for solving the problem can be one of the ways to prevent
the influence of defects in the macrostructure of reinforced composites, including the
disorientation of reinforcement, on the reliable operation of structural elements made
of such materials [15]. In particular, for composite thin-walled tubular elements, it
is advisable to provide stiffeners oriented in such a way as to create the maximum
obstacle to the deformation of the elements in one direction or another [15].

Given approach mentioned above is quite acceptable for thin-walled composite
tubular structural elements with the lowest dissipative characteristics design, oper-
ating under conditions of pulsating internal pressure. Namely, it is advisable to orient
the direction of the provided stiffeners in such a way as to create maximum resistance
to the formation of shear deformations at the stage of these pipes design.
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Chapter 13 )
Contact Problem for Coated Viscoelastic St
Tube and Rigid Inserts with Complex

Profiles

Kirill E. Kazakov

Abstract The article describes the construction of a solution for the problem of the
interaction of a viscoelastic aging pipe with an internal thin elastic coating and several
different rigid cylindrical inserts, assuming that the profiles of the contacting surfaces
are described by rapidly changing functions. The solution method used makes it
possible to construct a solution that takes into account both the rheological properties
of the pipe and the complex profiles of bodies. Using this method, expressions are
obtained for contact pressures in which the features are highlighted by separate terms
and multipliers, which allows real calculations to be performed with high accuracy
even when holding a small number of members of an infinite series.

Keywords Contact problem - Aging material - Pipe - Coating - Complex
profiles + System of integral equations

13.1 Introduction

Pipelines are used in industry to transport various media, such as gas or liquid. Their
designs must take into account many different factors: internal and external pressures,
temperature effects, possible vibrations, etc. One of the reasons for using multilayer
pipes is that some layers are responsible, for example, for the bearing capacity of
the pipe, while others protect against aggressive environments. Different sections
of pipelines must be connected to each other using various devices. These can be
couplings, inserts, etc. Moreover, such devices may be required in other cases, for
example, rigid inserts can serve as reinforcing elements of the pipe; the presence of
couplings in some areas can reduce vibrations. However, stresses and deformations
occur at the attachment points of these elements, which must be calculated, including
taking into account both the rheological properties of bodies and their complex shapes
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and properties that have arisen, for example, due to the peculiarities of obtaining such
bodies (see, for example, [1]).

This article discusses the formulation and construction of an analytical solution
for the problem of the interaction of a pipe with a thin inner coating and several rigid
inserts. The resulting solution takes into account both the rheological properties of
the pipe layers and the complex shapes of the contacting surfaces.

13.2 Problem Formulation and Mathematical Model

Suppose there is a long cylindrical axisymmetric pipe through which a liquid or gas
is pumped under relatively low pressure. In order for the pumped substance not to
destroy the main bearing layer of the pipe, the pipe is covered from the inside with
an additional thin protective layer. Due to the peculiarities of the application of this
layer, it can have a variable thickness. Rigid cylindrical inserts are used to strengthen
the pipe in a number of places. In order to prevent their horizontal movement, they
have a variable diameter. These inserts are placed inside the pipe so that the inserts
are completely adjacent to the inner layer of the pipe, and the contact areas coincide
with the lengths of the inserts. Schematically, such an interaction is shown in the
Fig.13.1.

It is necessary to determine the levels of contact stresses under the assumption
that these stresses significantly exceed the stresses caused by the internal pressure of
the medium being transported and/or the external environment. It is also necessary
to take into account the possible proximity of the inserts from each other.

First of all, let us formulate the main assumptions:

1. The pipe layers are homogeneous.

2. The pipe layers can be made of viscoelastic aging materials. As a result, stress

levels will change over time.

The protective layer of the pipe is softer than the main layer.

4. The thickness of the protective layer is much smaller than all other linear dimen-
sions: radii, thickness of the outer layer, lengths of inserts.

b

L~
X
~
B — C
N F S ! ! —T
N S \ | S
I~ | | y
| & ! l 50 l \ Sy |
= la, 1b, 1% b la b, z
S \ \ ‘ ‘
| | | ]
i j\_,_L — - —

Fig. 13.1 Contact interaction of tube and several rigid inserts
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5. Variable insert diameters and coating thickness are described by a relatively
smooth function (the tangents of the angles of inclination of the surfaces are
much less than 1, see [2]).

6. There is smooth contact between the layers and between the protective layer and
the inserts.

7. Itis assumed that plastic deformations do not occur as a result of such interaction.

The results of the studies presented in [3, 4] and generalizations to the case of
a coating of variable thickness show that unknown contact pressures ¢;(z, f), ...,
qn(z, t) in the interaction regions [ay, b1], ..., [ay, b,] (n is number of inserts) can
be found from the following system of equations

'
q1(z, 1) _/' Kin(t — Tin, T — Tin)q1 (2, T)dr
Ein(t - fin) Ein(t - fin)

To

b,
2(1 = va) ¢ ¢ q;. 1)
+ T 2./]%< Fin >|:Eout(t_fout)
t

_/ Kout(t — Touts T — fout)qj(é‘y r)df

Eou (T — Tou)

h(z)(1 —vd)

d¢
=g1(@)—lrm—h@], a=<z=<b, t=n,
(13.1)
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En(t — tin) Ein(t — i)
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To
:gn(Z)_[rin_h(Z)], ay SZSbnv = 1.

The following designations are introduced in this system: ri, is inner radius of main
layer (or outer radius of protecting layer); h(z) is protecting layer thickness; g;(z),
..., gn(2) are outer radii of inserts; a, ..., a, are left z-coordinates of inserts; b1, ...,
b, are right z-coordinates of inserts; t;, and 7., are production times of layers; 1
is the time at which the inserts are placed inside the two-layer pipe (the time of the
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beginning of the interaction); g > i, and 79 > Toue; Vin and vy are Poisson’s ratios
of layers (it is assumed that they do not change over time); Ej,(f) and Eq(¢) are
time-dependent Young’s modules; K, (¢, ) and K, are creep kernels of layers [4,
51; kc(z) is kernel of cylindrical contact problem [3, 4]

oo

ke(z) = / L(s)s™ " cos(zs)ds, (13.2)
0

where

L(s) = S(s)s '[e; ! — c,82C%(s) + T (c,, s) D*(s)],

T(r,s) =2r (1 — vou) + s%r, Cr = Foutlyy »

S(s) = cr_lT(l, s)+ T (c,s)+ c,s4A2(s) — s2T(c,, s)Bz(s) (13.3)
—¢,5°T(1,8)C*(s) + T(1,5)T (c,, 5)D*(s),

A(s) =Io($)Ko(crs) — Io(ers)Ko(s), B(s) =Io(s)Ki(c,s) + Li(cr5)Ko(s),

C(s) =Toler)Ki(s) + Li(s)Ko(ers), D(s) = Li(s)Ki(ers) — Li(ers)Ki(s).

Here rqy is outer radius of main layer, Iy (s), I; (s), Ko(s), K; (s) are modified Bessel

functions of first and second kind.
The system of equations (13.1) can be reduced to the following dimensionless

form

n
j=1

(13.4)

j=1

=8"@z%, —1<z"<1, ">1,

using the following notation
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s i,j=1,2,...,n, = 1.

Inthese equations/; = b; — qg; islength of i-thinsert, m; = %(ai + b;) isits midpoint,
lmin = mini:l,Z,...,n li-

If vector-functions, matrix-functions, and matrix operators are introduced into
circulation

gz, 1) 8" (2%
q2*(z*’ t*) 52*(2*)
q (1) = : NGRS : :
D]*(Z*) 0 . 0
0 D™z 0
D*(z") = : : : (13.6)
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FZ]* FZZ* .. F2n*
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Fnl* Fn2* .. e
then, system (13.4) can be represented in the following compact form
A= VD (@)q" (", 1) + L — Vi, OF Q" (2", %) = 87 (z"), (13.7)

—1<zf<1, t*>1.
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Thus, finding the contact pressure levels reduces to the need to solve the operator
equation (13.7) and then transform the solution using (13.5) and (13.6).

13.3 Getting an Analytical Solution

Consider carefully the operator equation (13.7). It has two essential features.
1. The equation includes integral operators of various types:

a. Volterra operators with variable integration limits, the presence of which is
associated with viscoelasticity and aging of layers;

b. Fredholm operator, which arises when solving a boundary value problem for
a thick circular cylindrical layer, the results of which are used in constructing
a mathematical model of this problem.

2. The equation contains functions describing the profiles of the contacting surfaces.
Such a functions can be rapidly changing, which must be taken into account when
building a solution.

These features do not allow the use of standard known approaches, as they lead
to significant errors when performing real calculations (see [6]), which is due to the
limitations of the mantissa in calculations. If standard methods are applied even for
the case when all radii are constant (there are no rapidly changing functions), then
standard methods lead to the need to solve an infinite system of linear equations, the
fully filled matrix of which contains Volterra operators in all cells. Therefore, in the
problem under consideration, it is necessary to use a special approach that effectively
takes into account “bad” functions, and allows you to build an equation solution with
operators of various types.

First of all, let us consider the structure of equation (13.7). Note that when solving
the problem of the plane contact of the punch system and the layer with a coating in
[7], the system was absolutely the same in appearance [expressions (13.4)]. Despite
the fact that the kernel kp(x) of the Fredholm operator, of course, was different, its
properties were similar to those of the Fredholm operator k. (z) in the problem under
consideration:

e functions L(s) has similar asymptotics: lims_o L(s) =1, lim,,9 L(s) =0,
lim,_,o[L(s)s~"'] = const;
e Fredholm operators are symmetric and positive definite.

These facts allow us to use the solution obtained in [7] to write out the solution
of our problem. We will first indicate the main features of the method used in con-
structing this solution (and described in [7]), and then, we will write out the solution
itself.

Step 1. It is necessary to introduce new unknown vector-function according to the
formula
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('i(z*’ t*) — _Co(t*)D_l/z*(Z*) . 6*(2*) + Dl/Z*(Z*) . q*(z*’ t*), (138)

where ¢°(t*) = (I — V5) ' [¢*(*)] " and

1
NETE (1) .0
0o —_ ...
Dfl/Z*(Z*) — ~/ D**(z*) ,
0 0 - VD) (13.9)

v D™ (z%) 0 0
0 VD> (z*) - 0

Dl /2% ( Z*) —
0 0 - /D"
Such a replacement will transform the operator equation (13.7) to the form

A = Vi)@(e*, %) + (L= Vi, Fq ", 1)

= —([— Vi) (D> (z%) - 8(z%), —l1<zF<1, r*>1.
(13.10)
Here

8(Z*) = F*(D_l*(z*) -84 (zY)),
Fy(@) =D () - PO V> () - y@)),

1
orey O 0 O (13.11)
D—l*(Z*) — D% (z*) o 0
0 0 s

Note that the new Fredholm operator F is also symmetric and positive defi-
nite. Now, unlike the original equation (13.7), the right-hand side of equation
(13.11) is “good”, due to the smoothness of the kernels of operator F* and
hence the smoothness of vector-functions S(z*).

Step 2. The form of the resulting operator equation (13.10) and expressions (13.8)
and (13.11)) for the function q(z*) and the operator F suggest to us that
the solution must be constructed in the Hilbert space L,([—1, 1], V) in the
form of a decomposition according to the basis {p! (z*)}i=1.2...i:m=0.1.2....
obtained by orthonormalization on [—1, 1] of the following system of lin-
early independent vector-functions
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{D71/2*(Z*) X il, Z*Dfl/Z*(Z*) . il7 (Z*)2D*1/2*(z*) . il’
D2 (z*) 2, 2DV () -1, ()DL . (13.12)
Dfl/z*(z*) ) i", z*Dil/z*(Z*) . in’ (Z*)2D71/2*(Z*) . in’ B }

Here i', i%, ..., i" are identity vectors. Thus, it is necessary to construct a
SpeCial basis {Pﬁn (Z*)}i:I,Z,...,n;m:O,1,2,... .

Step 3. It is necessary to construct the eigenfunctions of operator F using obtained
basis. This will make it possible to immediately reduce the resulting system
of equations for the functional expansion coefficients to a diagonal form.
We will give only the final formulas for calculating dimensionless unknown
vector-function q*(z*, t*), since a detailed description of all calculations
can be found in [7]

q () =D )|:c (t")8"(z* )+Zzl(t )Z Zw,m '°(z*)i":|,

m=0 i=1
) = 1+ Wy Ve

C*(f*)-H/k
Jjo %
(£)87*(¢)
x l)ﬁm m /l—d;-v
¥ 3 v [ 100
i,j m
* JO,j ]1714 ]k,j
* ¥k % * * Jl-j szj "'Jk+1,j
ka(t)Z/Rk(th)Y(f o dey=| .|
f : : .
Jej Jevrj o S
Joj Jijr T ]
Jorwn 1 Jij Joj e Tkt o ¢k .
Pk()—T - . ,  Jkj = D)
k.jOk—1,j .o J Z
1 z¢ ... (Z*)k
—l<z¢<1, F>1, j=12,...,n, k=0,1,2,...,

(13.13)
in which y; and v, are determined from spectral problem

n o0
S KAV = i=1.2....0n kkm=0,1,2,..., (13.14)

j=11=0

coefficients K ,i{l are expansion coefficients of kernel k'/*(z*, £*)[D™*(z*)
D7*(¢*)]71% in basis {p},(z*)}iz12...mm=0.12,.. and R} (t*, *) are the
resolvents of kernels
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H(KEE*, T) + ye KL (1, T%)
(1) + v '

Ki(t%, T%) = (13.15)

Now, using formula (13.13) and change of variables (13.5), it is possible to
obtain expressions for contact pressures in the area of interaction of inserts
and pipes

8i(2) — [rin — h(2)] Eou(t — Tout)

o _ vyt Bl —Tin)
qi (Z9 t) - h(Z) 1 — ( in) Eout(t - ‘COUl)

+Zﬁ(t)2w,mp (2(Z m)), 4 <z<b, 1>

min out(t_fout) t .
fy = minZowld Trow) (TN o 1=0.1.2....
fi@®) @A —2) Zl(_[()) i n

13.4 Conclusions

The formula for calculating contact pressures in the area of interaction of the pipe
with the inner coating is presented in a form in which the functions associated with
the thickness of the inner coating, and the profiles of inserts are separated by separate
terms and multipliers. This allows calculations to be performed with high accuracy
even when these functions are rapidly changing. To achieve sufficiently high accu-
racy, it is necessary to limit the infinite series to only 20-30 terms, while using other
methods of solving this number should differ by more than an order of magnitude,
which leads to significant errors due to the limited mantissa of real variables.

It should be noted that the obtained solution allows taking into account both the
complex profiles of the contacting surfaces, and the rheological properties of the pipe
layers, and the mutual influence of inserts located in close proximity to each other.
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Chapter 14 )
Inelastic Behavior of High-Temperature e
Steel Under Cyclic Loading Conditions

Katharina Knape and Holm Altenbach

Abstract The paper at hand focusses on the constitutive equations to describe the
inelastic material behavior of the high-temperature steel X20CrMoV12-1, widely
known to be applied for power plant components. Therefore, the purpose is to model
its response to a cyclic loading profile under which power plants operate the majority
of time. An Armstrong—Frederick type model including a constitutive equation for the
inelastic strain rate and an evolution equation for the backstress tensor is considered
as basis for the application of the two-time-scale approach. The advantage will be a
reduction in computational time while still being able to depict the complete material
behavior. The finite element software ABAQUS is used to simulate the creep test as
well as the cyclic loading regime of a bar at elevated temperatures.

Keywords Cyclic loading + Frederick—Armstrong model + Two-time-scale
approach

14.1 Introduction

Power plants represent one of the most used power generating technologies of today.
Their gas turbines are known to have a high performance density so the main pur-
pose is to quickly close the gap between the power generally needed and the power
provided through renewable resources. Due to this efficient kind of running, highly
frequent start-ups and shut-downs of the system lead to complex mechanical and ther-
mal loading conditions, mechanical loading in the sense of periodic stress and strain
states and thermal loading meaning very high surrounding temperatures. Therefore,
the high-temperature creep, a slow time-dependent deformation, is the main chal-
lenge faced by the material along with the cyclic loading conditions. The combination
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of both greatly influences the component’s life and may lead to failure earlier than
expected. To prevent unforeseen events and investment costs, an understanding of
the material’s behavior and response to certain loading conditions through a reliable
simulation is mandatory. In addition, it would be possible to predict the remaining
lifetime or adapt the maintenance intervals more precisely.

These computations are very time-consuming. They need time integration proce-
dures with very small time increments in the case of a cycle-by-cycle integration [1].
However, to omit these difficulties, calculation methods including time averaging
approaches have been developed within the past years. They can be implemented
into the finite element code with the aim of reducing computational time. This work
focusses on applying the two-time-scale approach which is already known for the
solution of differential equations of dynamical systems [1]. Now, it is also used to
simulate inelastic material behavior in a numerically efficient way by differentiating
between two time scales, a slow and a fast one, each of them accounting for certain
processes [12]. Another technique has for example been suggested in [8], where a
wavelet transformation-based multi-time scaling method depicts crystal plasticity. In
addition, the cycle jumping method is described in [9] with the intention to model the
material’s response under periodic loading. Here, internal variables are calculated
for as many loading cycles as needed until the integration scheme is stabilized. After
that, the rate of change can be estimated for a determined number of cycles avoiding
a further cycle-by-cycle integration.

The starting point to achieve the above is a constitutive model as used in [1, 4]
which needs to include especially creep, as well as cyclic hardening and softening
processes. It can either be a macroscale or microscale model, where for a macroscale-
based model, the material parameters are calculated according to experimental data
[4] by fitting the curves. With the intention of modeling the inelastic behavior of a
realistic gas turbine or shaft, using a microscale model had the advantage of depicting
the local deformation better but is numerically much more complex which is why in
this paper, a macroscale-model is applied.

The widely known unified constitutive model was firstly used by [7], including an
equation to describe the inelastic strain rate tensor and also considering an evolution
equation for the backstress tensor. Chaboche picked up the concept and suggested
a superposition of several backstress tensors with separate evolution equations [3].
The approach is limited though, since the number of material parameters and hence
the complexity of the model is increasing and so is the numerical effort.

The mentioned constitutive models have been successfully applied to predict
material behavior under various mechanical and thermal loading conditions, never-
theless, modeling cyclic loading remains challenging [1]. In Sect. 14.2, the equations
according to the Armstrong—Frederick model are derived, followed by the explana-
tion of the two-time-scale approach in the third section. The combination of the two
is then implemented into the finite element software ABAQUS to model the response
of the high-temperature steel X20CrMoV12-1 to small number of loading cycles.
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14.2 Two-Time-Scale Technique

The basic idea of the two-time-scale method is the introduction of two different time
scales Ty and T; [2, 11, 14] with the aim of reducing the computational time when
solving a system of differential equations of the form

% =X[t,x(@)], x(0) =x¢ (14.1)
where x represents a set of unknown variables.

The first, slow time scale, is often also called ‘natural time’ or ‘physical time’ and
it accounts for quasi-static loading and long-term behavior such as creep, see Eq.
(14.2)

Ty (2) =1t. (14.2)

The second, fast or fine time scale, is described using a parameter p with respect to

the total time 7.,q
t

L=t =— (14.3)
"
T
W= < 1. (14.4)
Tend

The total time derivative then yields

d—8—+13 (14.5)
dt 8t uét’ ’

The result of this operation is a system of partial instead of ordinary differential
equations which can be solved with an asymptotic series expansion [12] of the set
of unknown variables x with respect to the factor

x(t, 1) =x @0+ puxV . 0) + 2 1)+ (14.6)
Also expanding the right-hand-side of the equation and inserting that into the total

time derivative yields a set of differential equations. They can be sorted with respect
to the order of u

PO
uth 2, (14.7)

6T

sx®  sx®
©) . - X (¢ © 14.8
YRR (t.7.xY), (14.8)

i 2 0
ep sx (D N sx® _ 58X, 7, x¢ ))x(l).

14.9
8t St éx ( )
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In Eq. (14.7), it can be seen that the mean solution x?) is only a function of the slow
time scale 7.
Now, a time averaging operator has to be applied [1]

(f(t, 7)) = /f(t 1) dt (14.10)

resulting in the following system of differential equations to calculate the mean
solution

=X (1.x9). (14.11)

The solutions of higher orders of © may also be calculated according to [14]. Never-
theless, this work focusses only on the mean solution, where the stress tensor takes
the following form

o(t,1)=6Q@®)+0"V (1) (14.12)

with the mean part 6® (¢) and the periodic part oV (7). The stress deviator and
the backstress tensor were also decomposed the same way. The above mentioned
method was tested in [1] and now needs to be applied to the material model described
in Sect. 14.3.

14.3 Material Model

The material model is supposed to depict elastic and also inelastic behavior. There-
fore, the Armstrong—Frederick type constitutive model is applied which includes
a constitutive equation for the inelastic strain rate tensor and a nonlinear kinematic
hardening rule for the backstress tensor. The material parameters required are already
identified in [1, 4] for tempered martensitic steel.

14.3.1 Elastic Behavior

Under the assumption of small strains, the additive decomposition of the strain € into
an elastic £ and inelastic £™ part is considered as the basis

e =g +¢" (14.13)
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In order to define the elastic strain, Hooke’s law is applied including the material
parameters Young’s modulus E, bulk modulus K, shear modulus G, and the Poisson’s
ratio v as well as the stress tensor o . Here, tr means the trace and I denotes the unit

tensor
o =K tr () I +2Ge", (14.14)

with
E E

K=—— G=—" . (14.15)
3(1 —2v) 2(1 +v)

Taking into account the decomposition of the stress tensor into a spheric ¢, and a
deviatoric part o’ yields

1
oy = F1 (). (14.16)

o' =0 —o,l. (14.17)

Within this paper, all deviators will be marked with a prime. The equation for the
elastic strain can be derived as follows

gl = Iy O (14.18)
T 3K 2G’ ’

14.3.2 Inelastic Behavior

Now, the inelastic strain ¢ needs to be determined. It is known that in the case of
creep behavior the inelastic strain rate has to be a function of the potential depending
on the three invariants J;, J>, and J3 of the stress tensor and can therefore be written

as
éin . 81//(‘]] (U,)5 ‘]2(6/)’ J3(0J))
- o’ ’

(14.19)

Since there is no significant change of volume due to the inelastic deformation, only
the stress deviator is considered. The influence of the first and third invariants may
be neglected, since for a deviator, the first invariant is equal to zero [4]. The third
invariant accounts only for so-called second-order effects in the material belonging
to the tensorial-nonlinear behavior [13]. So in the simplest case, the inelastic strain
is only dependent on the second invariant of the stress deviator

i V(@)
& = —

S (14.20)

which yields
g = gin, (14.21)
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with the von Mises stress oym
3
oM = Ea’:a’ (14.22)

and the von Mises inelastic strain rate &)},

. 2.. .
B = &7 8 (14.23)
Note that £ is a deviator.

Power plant components are not only subjected to mechanical but also very high
thermal loading. To account for the temperature dependency of the inelastic strain
rate, a separation ansatz is applied as can be seen in Eq. (14.24). It includes the stress
response function f, and a temperature response function R(¥%) depending on the
absolute temperature ¢

" = f,(GaDR®). (14.24)

These functions are identified by fitting experimental data of the material under
monotonic loading conditions.
Furthermore, the stress deviator is decomposed into an active & and a backstress
part B. The tensor’s active part will now be denoted by (...)
B=0¢ —¢6. (14.25)

To mathematically describe the backstress tensor, an Armstrong—Frederick type
backstress [1] with two material parameters B; is chosen

B = Bié" — B, é%,8. (14.26)
The term containing the von Mises inelastic strain rate is called dynamic recovery
term and is known to improve the numerical results [4]. In order to also be able to

capture cyclic behavior, the superposition of backstresses according to [3] is used
where each of the backstresses has its own evolution equation described in Eq. (14.28)

B=> Bi. (14.27)
i=1

B = Bié™ — B, ¢ B (14.28)

This approach is limited by the ability of identifying the material parameters needed.
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14.3.3 Application of the Two-Time-Scale Approach

The backstress tensor for isothermal loading conditions in particular is shown in [1]

.2 3 B
=-R@®)|&" - eym———|. 14.29
=3k )[8 28Mh<avM,ﬂ)} (1429
Including the before mentioned decomposition (Eq. 14.12) of the variables leads to
the set of constitutive equations given in Eqgs. (14.30)—(14.33) with C;,(¢}) = 8.84
(1]

S0 _ R(z?)<f” (UvM)( "0 _ g +a'<1>)> (14.30)
ovM
ﬂ(m C ) [ — ﬂ(O) L (14.31)
h @, ) '
and

Gomt = \/%tr (0'© — BO 4 57/(1)) (14.32)

2(0) 2 1n(0)2
0 3tr< ) (14.33)

The response functions for high-temperature steel were developed in [10] with the
parameters ag, «, B, and H, which should be estimated experimentally

a

R(®) =ape v, f(o) =sinhBo, h(lo|, ¥) = H|o|. (14.34)

14.4 Simulation of the Material Behavior

The simulation of the inelastic material behavior is done using the finite element
program ABAQUS. An user-defined subroutine implements the specific material
properties of X20CrMoV12-1 [5, 6]. First investigations are done modeling only
one single element, now a bar, clamped on one side, is considered as shown in
Fig.14.1.
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Fig. 14.1 Schematic model /
of the bar
e
Vi L ,o(1)
e
7

14.4.1 Cyclic Loading Condition

Referring to the application of high-temperature steels such as X20CrMoV12-1 in
power plants, these components are mostly subjected to cyclic loading. Therefore,
a combined uniaxial load of the form described in Eq. (14.12) is considered. In this
paper, the stress profile is assumed to be of rectangular shape, as can be seen in
Fig. 14.2 with the mean stress 0, > 0 and the amplitude 0 < o, < 0,,. In [10], the
material parameters for a surrounding temperature of ¢ = 835 K can be found

23 1 4 1
ap = 4.64 x 10 —, & =6.12 x 10* —, C; = 8.84,
h I

| (14.35)
B=774x10" —, H, = 0.46.
MPa
The loading parameters are chosen as follows
o = 200 MPa, o, = 10 MPa (14.36)

for a total simulation time of 7.,y = 60 min.

14.4.2 Results of the Finite Element Simulation

The results of the simulation including the material parameters described before can
be seen in Fig. 14.3. The surrounding temperature was set to 873 K which tends to
be the operating temperature of a power plant. Additionally, the initial condition of
the inelastic and elastic strain being zero was chosen. Figure 14.4 shows the same
loading profile but with the mean stress measuring 100 MPa, exactly half of the first
simulation. The comparison between both of them can be seen in Fig. 14.5. If the
mean stress is increased further from 100 to 200 MPa by steps of 20 MPa, the curve
is shifted upward as shown in Fig. 14.6.
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14.5 Conclusion

The aim of this paper was to examine the inelastic material response of high-
temperature steel to a cyclic loading profile as it can be found in several real-life
applications such as power plants. The widely known Armstrong—Frederick consti-
tutive model was used to model the material behavior. Applying the two-time-scale
approach to the derived equations results in a reduction of the computational time
needed when the finite element simulation using ABAQUS is carried out.

The applied material model includes the influence of the cyclic loading parameters
such as mean stress and stress amplitude depending on the two time scales. The graph
showing the strain with respect to time shifts as expected when the magnitude of the
load is decreased.

Current and future investigations focus on deriving the constitutive equations and
applying the two-time-scale approach also for the inelastic behavior due to thermal
cyclic loading conditions or a combination of thermo-mechanical loading.
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Chapter 15 ®)
One Case of a Lubrication Problem St
for a Line Contact of Elastic Solids

with Soft Double Coatings

Ilya I. Kudish and Sergei S. Volkov

Abstract The main goal of this paper is to consider formulation and solution of
a lubrication problem based on the expressions for elastic surface displacements
derived asymptotically from an exact solution for a loaded double coated elastic
substrate which are valid within a certain range of the problem input parameters.
Based on that, a new relatively simple numerical model of the behavior of lubrica-
tion parameters in a line lightly loaded contact of double coated elastic cylinders
has been developed. For simplicity materials and coatings of both cylinders are
considered identical. The main part of the elastic displacements of the contact sur-
faces is represented by simple Winkler like contributions. The problem is reduced
to a numerical solution of a system of two transcendent equations performed by
Newton’s method. The formulas for lubrication parameters such as distributions of
contact pressure, gap, actual velocity of surface sliding, lubrication film thickness,
shear stress, coefficient of friction, and contact energy loss were derived and used for
specific calculations. Generally, compared to lubrication parameters in the contact
of rigid solids without coatings the effect of the double coating resulted in reduced
(up to 40% or more) contact pressure, increased contact area and film thickness as
well as some reduction of frictional forces and energy losses. Some specific results
for the obtained solutions are provided.
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15.1 Introduction

Most machine elements have moving joints. Often, to improve their performance and
durability coatings and lubrication are used. For example, different kind of protective
coatings are used to improve tribological characteristics of joints, to reduce corrosion
and temperature effects in joint contacts. Lubrication usually serves two purposes:
decreasing the energy losses and friction as well as reducing contact surface tem-
peratures. Due to continuously increasing requirements to machine performance,
there is a need for designs of advanced machinery elements which, in turn, requires
development of new advanced mathematical models of machine elements with coat-
ings involved in lubricated contacts. In certain cases, the coatings used may have
a complex structure, i.e., besides being just made of a single homogeneous, func-
tionally graded, or porous materials, they may be multi-layered coatings made of
different materials, etc. Depending on the coating structure, contact geometry, and
applied loads different mathematical models can be used. For example, in [1-13] dry
contacts (without lubricant) with and without coatings made of homogeneous and
functionally graded materials, multi-layered coatings with and without friction were
considered. The surface elasticity approach was used for the analysis of coatings in
both static and dynamic loading in [14, 15]. Also, there exist many studies of the
behavior of double coatings of different structure subjected to different loads. The
interest to double coatings is due to the relative simplicity of their creation (com-
pared to multi-layered and functionally graded coatings) and the fact that they may
occur naturally as oxide films and adsorbed lubricant components. The plane con-
tact problem on indentation of bilayer (double-layered elastic coating glued to the
non-deformable foundation) was studied in frictionless and frictional formulations
in [16, 17], respectively. A problem for an indenter subjected to normal force and
torque contacting an elastic half-space with a double coating made of a functionally
graded material is considered in [18-20]. A thermomechanical analysis of a double
coating made of a functionally graded material is considered in [21]. The wear of
a double-layered coating and coating made of a functionally graded material, tak-
ing into account heating and friction, is considered in [22, 23]. Consideration of the
influence of lubrication on contact mechanical characteristics leads to problems more
complex than problems for dry contacts. This is due to the necessity of simultaneous
consideration of the rheology equations describing lubricant behavior and the elas-
ticity equations describing solid deformations, linear speeds of contact surfaces, and
gap between contact surfaces. Generally, solution of elastohydrodynamic lubrication
(EHL) problem is reduced to studying systems of integro-differential equations. The
simplest description of lubricants is provided by the Newtonian rheological model
[24-27]. In particular, heavily loaded line EHL contacts with Newtonian lubricant
rheology [28, 29] with thin adsorbed soft layer are considered in [30] while heavily
loaded point EHL contacts for functionally graded coating materials are considered
in [31]. The case of lubricant with Ree-Eyring non-Newtonian rheology is consid-
ered in [32] for a line contact with a coating. In [33] an EHL model for point contact
was investigated numerically. The results showed that hard coatings increase friction
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while soft coatings decrease it. A similar problem for contact solids with multiple
coatings (including some functionally graded ones) has been considered numerically
in [34]. The current paper is the continuation of the investigation of EHL contacts
with double coated surfaces [35]. The paper uses the classification of different double
coatings and the working regimes they are involved in [36] as well as Newtonian
lubricant rheology to simplify the formulation of the EHL problem for a line contact,
specifically, the expressions for surface displacements, speeds, and gap between the
surfaces. We will consider one classification case from [36] for which the upper
coating is significantly softer than the intermediate coating and substrate while the
substrate material is harder than the material of the intermediate coating. The results
will show how such combination of coatings and work conditions leads to lowering
friction force and energy loss and increases lubrication film thickness.

15.2 Main Simplified Relationships Used in the Problem
Formulation

Let us consider a plane problem for a lubricated contact of an infinite cylinder with a
half-space (see Fig. 15.1). Both the cylinder and the half-space have attached to them
relatively thin elastic double coatings. For simplicity we will assume that the lubricant

Fig. 15.1 The general view
of a lubricated contact
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is a Newtonian incompressible fluid with constant viscosity x. The coordinate system
is introduced in such a way that the x —axis is directed along the lubricant flow and
perpendicular to the cylinder axis, the y—axis is directed along the cylinder axis, and
the z—axis is directed across the lubricant layer. The cylinder is separated from the
surface of the half-space by a continuous lubricant layer. The cylinder steadily rolls
and slides in the direction of the x —axis with speed u, while the half-space moves
in the same direction with speed u;. The components of the lubricant velocity are
represented by functions u(x, y, z), v(x,y, z), and w(x, y, z), where

dv(x, y,z)
dy B

v(x,y,z) = 0

due to problem geometry. Due to that the problem parameters are independent of
the coordinate y. For a typical line concentrated contact the gap between the contact
surfaces is much smaller than the contact length. Therefore, the simplified equations
of the motion of such a fluid are as follows [37, 38]

ap = 0Ty ap ou
il =0, — =0, T, = 4—, 15.1
ox " oz 0z == (D
where p is the contact pressure while 7., is the tangential stress.
For an incompressible fluid the continuity equation has the form

0 d
ML o (15.2)
ox 0z

the no slip boundary conditions on the fluid speed u# and no penetration of the fluid
on w at the solid boundaries are as follows

u(x, =h(x)/2) =uy, u(x, h(x)/2) = uy,
1 dh(x) 1 dh(x) (15.3)

w(x, —h(x)/2) = M w(x, h(x)/2) = =g

where h(x) is the gap between contact surfaces. The boundary conditions imposed
on w are obtained based the fact that in concentrated contacts dz/dx < 1.

An accurate and precise description of surface normal and tangential displace-
ments for a double-layered elastic solid loaded with a normal and tangential surface
loads is provided in [36]. We will assume that the substrate material occupying the
lower subspace has Young’s modulus E and Poisson’s ratio vy while the materials of
the upper and intermediate coatings have Young’s modulus E. and E; and Poisson’s
ratios v, and v;, respectively, while their thicknesses are &; and h,, respectively.
However, the exact expressions for the surface displacements for such elastic solids
are very complex. An asymptotic analysis of these expressions in a spectrum of var-
ious limiting cases has been conducted in [36] which in some specific limiting cases
resulted in a much simpler relationships compared to the original ones. In this paper
we will consider couple of such cases of a lightly loaded contact characterized by a
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Winkler type relationships for surface displacements U and W called in [36] as Case
I or Case II, respectively,

EY « EY <« EY o EY <« EY < EY, (15.4)

E 2E

EyW=FE3y=——, Ey=———— |
S TTE R G TS

(15.5)

where superscripts (i), (¢), and (s) correspond to the materials of the intermediate and
upper coatings as well as the substrate, respectively, E and v are Young’s modulus
and Poisson’s ratio of the corresponding material.

Specifically, for surface displacements we will consider Case U2U8 for the tan-
gential displacement Uy, of the solid k has the form

Ul(x,0) = L rpmy, +B® hyil . (x) + (15.6)
A Y e 1Lk 2.k | ax ke T :
which is correct if the following relationships are satisfied

E/(s) a B(l) h +B(2) h
B (B R+ B hoy), G2t R (5)
4r R Bll,khl,k + Bll,khZ,k

ag K

and Case W2W7 for the normal displacement W, of the solid k as follows

1

Wi, 0) =~

[ B e+ BR i | P/ @)+ (15.8)
is correct if the following relationships are satisfied

(D (2)

a B33 bk + Bas hok

an < B (BYhi+ BYhoy), T <20 DL (159)
R By hik + B3 o

where subscript k indicates the solid (1 for lower and 2 for upper solid), /| x and iy
the thickness of the external and intermediate coatings on solid &, R’ is the effective
radius of the contact surfaces, ay is a typical (Hertzian) half-length of a dry contact
of elastic solids without coatings,

5 R'P
aH = —.’
nEgg)

P is the load per unit length applied to the cylinder, p(x) and . x (x) are the pressure
and tangential stress applied to the surface of solid k. Some of the constants involved
in the previous formulas are given below [36]
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- B - —
(1 - FC))E;? (1 —v)EY
8E.Y 4(1 = 2v;
By = =3 @_ -2 (15.10)

EEY (1= v)ES;

a _ 44 @ _ 4l

33 — > P33 i)
(1 —v)E 1 —wEY

Using (15.7), (15.9), and (15.10) it easy to show that there is a range of problem
parameters (material elastic characteristics, contact geometry, coating thicknesses,
and applied normal load) for which the above asymptotic estimates for U, and W}
[36] are valid.

For simplicity we will assume that the materials of both contact solids are iden-
tical and the coating thicknesses of coatings on both solids are also the same, i.e.,
hyy = hip = hyandhy | = hy» = h;. Based on the above formulas the actual
surface velocities of the solids are

g (o))
@) =u |1+ —U | x,(—D'— ||, i=1,2, (15.11)
dx 2
where /(x) is the gap between the solids in contact. That, finally, allows us to for-
mulate the lubrication problem as follows (see [37, 38])

dp(xe) _

0,
dx

dx 2 12 dx

x2

4 {vl(x>+v2(”h(x) W d”(’”} =0, p(xi) = p(xe) =
=0, i) = e) =

Xe

h:l’le“l_

2
- X 1 1 2
s T (Bés)hl + B§3)h2) p(x), /p(x)dx =P,

Xi

vi(x) +v(x)  wuptup 1 1 2
> = +E[ W+ BV | [t () +uatl 0]

Lram @) / ,
S(X) = va(x) — v (X) = uy — uy + E[BH hy + B3 hz][uzrzx’z(x) - u]rzx,l(x)] ,
_ h nS hdp _ h  wuS hdp
Tox, 1 = Tox (x’ _§> = (x’ 5) K 2dx
(15.12)
where x; and x, are the contact inlet and exit point coordinates (x; is considered to be
given while x, needs to be determined from the problem solution), %, lubrication film

thickness at the exit point x, which is also determined from the problem solution,
and R’ is the effective curvature radius of the contact solids.
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By introducing the following dimensionless variables typical for lightly loaded
lubricated contacts [37, 38]

h TR’ "
,7 ) = s Ay e_yh/_ ) — bl ,:_7
{x',a,c} {xxzx}R, hel?lPeP 2 /’2{1
v, vh, S’ = v,0,8Y, F=—F, EE=—_FE, 15.13
e Sh= T e S = PRTTETS R
6
Y =he——, 5'00=2u2 1, 2 —_—,
2R’ U+ us 3mpa(uy + uz)

and omitting in the further considerations primes at the dimensionless variables we
obtain the following problem in dimensionless variables

d [u@+ww,  y?hdp] _
dx 2 ,u,2 dx | 7
dp(c) d°p(o)
= = = = 0,

pla) = plc) = = o
2

yh—1)=x =+ =28, /p(x)dx -
TV

T
2°
a
v + V2 g d [uS ody d dp
=1-So———|—)———(h— ),
2 2dry dx \ h T d dx

X
5 d [uS sy d [ dp
S = Soo— = (“_> — Sp Y (ha>, S(x) = So0, X — TFoo,

67Ty dx \ & 27 dx
yo RES hi/R hy/ R’
-oerp on = - )E/(L)/E/(s) (1—v )E/(z)/E/(s)
i /R ho/R' s_ P
T A EYEY T A wmEDEY | T REY
/=33 33 i 33 33 33

(15.14)
where V, Soo, 0, o, 0, and § are given dimensionless parameters. Here in addition
to the traditional boundary conditions used in lubrication problems we imposed an
additional boundary condition d? p(c)/dx? = 0 at the exit point of the lubricated con-
tact. The dimensionless friction force at the upper surface F (coefficient of friction)
and contact energy loss E are expressed by the formulas

_w ) [ Sdx | 6y dp()
r =i o +u/h() |

a a

c 2
E_ 9_,u / S%(x)dx L1 124 / W )(dp(x))
4 h(x) w? dx

a a

(15.15)
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Obviously, the Reynolds differential equation can be analytically integrated one
time. After that the problem can be reduced to solution of a system of the equa-
tion obtained after one time integration of the Reynolds equation with the boundary
condition dp(c)/dx = 0 with remaining boundary and integral conditions as well
as the initial-value problem for S(x). This system can be solved iteratively in three
repeated consequent steps. Suppose the initial approximations are taking the fol-
lowing way: S(x) = Soo while p(x), h(x), y, and c are taken as from the solution
of a lubrication problem for rigid solids and Newtonian fluid [37, 38]. The internal
iteration process involves Step 1: Solving the one time integrated Reynolds equa-
tion with boundary conditions p(a) = d?p(c)/dx? = 0. Specifically, we satisfy the

Reynolds equation at semi-integer nodes X412, i =0, ..., N — 2, and imposing
the boundary conditions py = 0 and py — 2pn—1 + py—2 = 0 while the values of
pressure p(x;) = p; are determined at the integer nodes x;, i =0, ..., N. Here N

is sufficiently large positive integer. This way we get a system of N + 1 nonlinear
algebraic equations with N + 1 unknowns p;, i =0, ..., N. Then on Step 2 the
system of two transcendent equations

c

N-1

Di + Pit1 b4
P =py=0 and / plods =32 PP - =
is used to determine the corrections for parameters y and c. That is done by applying
Newton’s method. After that, with the corrected values of ¢ and ¢ Step 1 is repeated.
These calculations are done until the iteration process for p(x), h(x), y, and ¢
converges. After that with new p(x), h(x), y, and c is solved the initial-value
problem for S(x) from x = —o0 to x = co where the equation for S from (15.14)
is also satisfied at semi-integer nodes xy412, k=0L,..., K —1 and solved for
Sk, k=L,...,K where S; = Sp0, x1. <0, | xr |>>| a |, and xx > c, i.e., xg —
X1, > ¢ — a. After that the iteration process goes back to Step 1 and so on until all
the set of the solution parameters p;, h;, Sk, ¥ and ¢ converges with the desired
precision.

The lubrication problem for solids with coatings made of different materials and
of different thickness can be set up in a similar way. Moreover, the equations for the
case when one of the solids does not have coatings coincides with Egs. (15.14) in
which the dimensionless parameters o, and o have to be replaced by o3, /2 and o/2,
respectively. Therefore, the effect of the coatings is diminished.

It is important to realize that usually the coefficient at the last term in the equations
for S and (v; + v2)/2 in (15.14) is small compared to the other coefficients. That
leads to the presence of a very narrow boundary layer adjacent to the exit point x = c.
However, the boundary layer is very small and does not change the general behavior of
the problem solution. Moreover, numerically the solution of the formulated problem
practically coincides with the solution of the problem from (15.14) in which the last
terms in the expressions for S and (v + v;)/2 as well as the last boundary condition
on d?p(c)/dx? are dropped.
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On the other hand, the problem described by Eq. (15.14) can be solved using
the regular perturbation method for o, ~ 1,0 ~ 1,8 ~ 1 and V > 1 presented in
[37, 38]. Obviously, for large V as V increases the problem solution approaches
the solution of the corresponding lubrication problem for rigid solids [37, 38]. This
trend is clear from the numerical data presented below.

15.3 Some Results for the Lubrication Problem

In this section, our goal is to illustrate the developed approach by a specific numerical
example. For simplicity we will assume that the geometry and materials of the contact
solids are identical. Consider a soft double-layered polymer material lying on an
elastic substrate with the following properties: E. = 0.1 GPa,v. = 0.3, E; = 1 GPa,
v; = 0.3, E; = 200 GPa, vy = 0.48. Also, it is assumed that the effective radius of
contact solids R’ = 0.01 m, the applied force P =2 - 103 N/m, and the coating
thicknesses are taken as follows hy; = hy» = 107° m and hy; = hy = 10~> m. For
this set of data all of the conditions (15.7) and (15.9) for the validity of the used
approximations for the surface displacements U and W are satisfied. The lubrication
regime is lightly loaded and, therefore, the lubricant viscosity @ can be considered
independent of pressure and equal to the ambient viscosity u, = 1 - 1072 Ns/m?.
The following results are obtained for fixed values of parameters u = 1, Spp = 2,
0/6 = 0.675, 05,/60 = 0.193, and varying values of parameter 6. Just notice, that for
the case of rigid solids without coatings the dimensionless film thickness y, = 0.157
and dimensionless coordinate of the exit point ¢, = 0.170 (see [37, 38]). Here and
further the lower index r indicates the corresponding value for the case of rigid solids
without coatings.

The graphs of pressure p(x) versus x for different values of 6~2 are presented
in Fig. 15.2. The graph represented by a solid curve corresponds to the case of rigid
solids without coatings. Obviously, as 6 increases (which happens when the applied
load P increases and/or p,(u; + uy) decreases) the distribution of pressure p(x)
decreases and occupies a wider contact area. The decrease in the values of p(x)
reaches up to 40% compared to the case of rigid solids.

The graphs of relative lubrication film thickness y /y, and exit coordinate of the
contact ¢/c, are presented in Figs. 15.3 and 15.4. It is obvious from this graphs that
the presence of soft coatings increases the lubrication film thickness and widens the
contact region compared to the case of rigid solids without coatings. As 6 decreases
the contact parameters converge to the ones for the case of rigid solids without
coatings. It is worth to notice that the quantitative and qualitative behavior of the
relative minimum gap y hin/ (¥, — ¢2) versus 02 is very close to the corresponding
behavior of y/y, versus 72 (see Fig. 15.3).

Forrigid solids without coatings the dimensionless friction force and loss of energy
in the contact are F, = 3.084u/(60y,) and E, = 6.16960 11/ y,, respectively. The
graph of F/F, (which coincides with the relative friction coefficient) is represented
in Fig.15.5. As 672 increases the value of F/F, monotonically increases which
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Fig. 15.2 The graphs of the
pressure distributions p(x)
versus x obtained for
different values of 6

Fig. 15.3 The graph of the
relative exit point film
thickness y/y, versus 62
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corresponds to the elastohydrodynamic regime of lubrication on a Stribeck curve.
Obviously, the presence of soft coatings decreases the friction and friction coefficient
compared to the case of rigid solids without coatings. The graphs of E/E, coincides
with the graph of F/F, from Fig. 15.5. The actual sliding speed S(x) differs from
Soo by less than 1% for any x and everywhere it can be taken equal to Spy. Obviously,
the difference of S from Sy practically does not affect the values of F'/F, and E/E,.
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Fig. 15.4 The graph of the 2.2 c
relative exit coordinate c/c, o
versus 2 r
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15.4 Closure

A relatively simple model of a lubricated contact of elastic solids with soft double
coatings was developed. The model is valid within the indicated range of param-
eters described by (15.7) and (15.9). The development of this simple model made
possible by using the obtained by the authors classification [36] based on an asymp-
totic approach which allowed to significantly simplify the expressions for surface
displacements of double coated surfaces. That leaded to a significant simplification
of the Reynolds equation and its solution. The numerical results showed that for low
surface speeds and lubricant viscosity and/or high applied force the presence of soft
double coatings increases the lubrication film thickness, decreases the level of contact
pressure as well as decreases the contact friction and energy losses compared with
the case of rigid solids without coatings. For example, for the above indicated input
parameters the maximum decrease in friction was 6% while in maximum pressure it
was 40%.
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Chapter 16 )
On the Exact Solution of the First ez
Boundary Value Problem for a Plane

with a Circular Hole in the Formulation

of the Nonlinear Power-Law Theory

of Steady Creep Under Antiplane

Deformation

Suren M. Mkhitaryan

Abstract In the formulation of the nonlinear steady-state creep theory (NSSCT),
when there is a power-law dependence between stresses and deformation rates, the
first boundary value problem for a deforming plane with a circular hole is consid-
ered under antiplane deformation. Using the method of the harmonic function of
pseudostresses, the solution to this problem is reduced to the solution of a nonlinear
singular integral equation (NSIE) with the Hilbert kernel. The latter, in turn, is reduced
to a nonlinear Riemann boundary value problem in the theory of analytic functions.
An exact (closed) solution to the Riemann problem is constructed, with the help
of which the main characteristics of the problem posed are represented by explicit
analytical formulas. A particular case is considered.

Keywords Steady-state creep * Power law - Stresses + Deformation rate - Plane
with a circular hole - First boundary value problem - Antiplane deformation

16.1 Introduction

In [1, 2], the formulation of NSSCT with a power-law dependence between stress
intensities and deformation rates or in the formulation of the deformation theory
of plasticity and with power-law hardening of the material, a physically nonlinear,
but geometrically linear, plane contact problem of compression of two bodies was
studied. These works proceed from the exact solution of the generalized Flaman
problem in displacements depending on normal concentrated forces. To determine
the distributed normal force-dependent displacements or deformation rates of the
boundary points of deformable half-planes, which replace compressible bodies,
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according to Hertz’s hypotheses, the principle of superposition of generalized
displacements (PSGD) or deformation rates is used. Some estimates of this prin-
ciple were obtained in [3]. In [4, 5] are devoted also to the estimation of PSGD.
For the nonlinear power-law contact problem of the interaction between a stamp
with a flat base and a half-space under antiplane deformation, a comparative anal-
ysis of the exact solution obtained by the hodograph method and an approximate
solution by the PSGD was carried out in [5]. The hodograph method applied to
crack problems, which leads to a linear differential equation for the potential in the
deformation plane, was proposed in [6]. The hodograph method makes it possible to
obtain unbounded solutions at the ends of the characteristic interval for the consid-
ered mixed power-law nonlinear boundary value problems. Another linearization
approach is based on introducing a biharmonic function of pseudostresses in a plane
power-law problem and was developed in [7]. This method enables to obtain only
solutions to mixed boundary value problems bounded at the ends of the interval. In
[8], a harmonic pseudostress function was introduced in nonlinear power-law prob-
lems under antiplane deformation, with the help of which an exact (closed) solution
of the first boundary value problem of the NSSCT for a half-space under antiplane
deformation was constructed. An exact solution of a mixed power-law boundary
value problem for a half-space under antiplane deformation, when the boundary
conditions on the boundary plane of the half-space are separated by a stripe domain,
is also constructed in [9] using the method of harmonic function of pseudostresses in
the NSSCT formulation. In the same work, a comparative analysis of the exact and
approximate PSGD solutions was carried out. Note that many results of the study of
nonlinear contact and mixed problems are summarized in [10, 11].

We also note that the power law between stresses and deformation rates, known
as Glenn’s law, adequately describes the physical and mechanical behavior of sea
ice and covers, glaciers, frozen soils, and other materials. Numerous studies have
been devoted to the theoretical and experimental justification of Glen’s law. In this
direction, we point to [12—-14].

In this paper, in the formulation of the NSSCT with a power-law relationship
between stresses and deformation rates, we consider a boundary value problem for
an infinite space with a circular infinite cylindrical hole, which is under antiplane
deformation conditions, when shear stresses are prescribed on the cylindrical surface
of the hole. This problem is equivalent to the first boundary value problem for a plane
with a circular hole. By the harmonic pseudostress function method, as in [8, 9], the
solving this problem is reduced to solving the NSIE with the Hilbert kernel, solving
of which, in turn, is reduced to the nonlinear Riemann boundary value problem of the
theory of analytic functions. An exact solution of the Riemann problem is constructed
based on which the stresses and velocities of the problem under consideration are
represented by explicit analytical formulas. A particular case of an external load on
the boundary circle of the hole is considered.
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16.2 Representation of Stresses and Strain Rates in Terms
of the Harmonic Function of Pseudostresses

Let the deformable body be referred to the right rectangular coordinate system Oxyz
and be under conditions of antiplanar deformation (longitudinal shear) in the direction
of the Oz axis with the reference plane Oxy. Further, let the trace of this body on
the Oxy plane be a two-dimensional domain D with a boundary d D in the form of
a smooth closed Jordan curve. In this coordinate system, as applied to the case of
antiplane deformation, we present the basic equations of NSSCT with a power law.
They consist [15, 16] of the equilibrium equation

0Te;/0x + 07y, /0y =0  ((x,y) € D), (16.2.1)

where 1., 7, are shear stress components, the equations of continuity of deformation
rates

ayxz/ay - ayyz/ax =0, Y= aw/ax s Vve = 3w/3y ((x,y) € D),
(16.2.2)

where y,., y,. are strain rate components, and w = w(x, y) is the only non-zero
velocity component in the direction of the Oz axis under antiplanar deformation;
from the dependences between stresses and strain rates we have

T(T) T(T") m
Ty, = Tyxz, Ty, = Tyyz; T=T{) =KI'" (Ko>0;, 0<m<1);
(16.2.3)

T=,/t2+ T,gz’ = /y2+ yyzz. (16.2.4)

Here, T is the stress intensity, I" is the deformation rate intensity, K is the physical
constant of the material, and m is the creep index.

In the equilibrium Eq. (16.2.1), we introduce the stress function & =
®d(x,y) ((x,y) € D) by setting

9o 90

w0 Yxz — . 1625
ay g ox ( )

Tz = —

It is assumed that the function ®(x, y), together with its partial derivatives up
to the second order, is continuous in the closed domain D. Then, the equilibrium
equation is satisfied identically.

Next, we pass to the complex plane z and set
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R . 1 _ i _
z=x+1iy, z=x—ly=>x=§(z+ 2), y=—§(z— )
1 i
Q=P(x,y) = Q(E(z + 2, _E(Z - Z)) = ®(z,2).

From (16.2.5) and the first formula in (16.2.4)

ad b 3P N 0 (8000 12 (162.6)
T =_ —_— e s T = — —_’ = . ohao
e 9z 0z T 9z oz 3z 97

For the strain rate components, from (16.2.3)—(16.2.4) using (16.2.6), we obtain
r K(m) 8d> oD od 9D
o™ 9z 9z 9z 0z )’

. )<8d> 8(1)) i <8<I> . 3<I>) Kom) 1/2 2/ k)"
) 9z oz 9z | 97 "= '
(16.2.7)

sz

Vyz =

Then, using the relations

AN [(AD\ 7 (AD\ T A (9D I

i , — = , (16.2.8)

0z 7 9z 0z 3z az
by analogy with [7], we introduce the pseudostress function A(x, y) = A(z,2).
In the linear case m = 1 and then, K(1) = l/ Ky = l/ G, where G is the shear
modulus. It follows from (16.2.8) that for m = 1, the pseudostress function A(x, y)
coincides with the stress function ®(x, y) up to an additive constant.

We now express the stresses, deformation rates, and velocities in terms of the
function A(z, 7). Namely from (16.2.7) and (16.2.8), it follows that

. oA  OA oA O0A
Vez = —zK(m)<8— — —_) Vy: = K(m)(— + —> (16.2.9)
z 07 07

Substituting the expressions y,, and y,, from (16.2.9) into the deformation rate
continuity Eq. (16.2.2), we arrive at the Laplace equation for the function A(z, 7)

AA—82A+82A—82A—0 ((x, y) € D) (16.2.10)
T o9x2 0 9y? 9797 Y ’ o

To find expressions for stresses and velocities in terms of a function of pseu-
dostresses, we invert relations (16.2.8). To this end, we multiply and divide by each
other the left- and right-hand sides of relations (16.2.8). As a result, we will have
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0P 9P (A IA "D 0d 9A [OA
dz 97 dz 0z 9z 0z 0z 0z

and hence
m+l m—1 m—1 m+1
2 2

) A A\ 2 ) A\ 2 A
9 _ (AN (BAN 90 (OANE AANTE e
0z 0z 0z 07 0z 07

Then, substituting (16.2.11) into (16.2.6), we get.

—1

(OADANT (DA OA AAIANT [OA  OA
Ty = "I\ o= = ) =\ — +t =
dz 07 0z 07 . dz 07 0z 07

(16.2.12)
Since
IA 1/0A 0A IA 1 8A+,8A
— =\ —1l— y o = S\ — 11— k]
dz 2\ ox ay dz 2\ ox ay
then formulas (16.2.12) can be represented as
m—1

1 dA 2+ IAN'| * oA

Ty = — — — —,

¢ 2m=1 [\ fx dy dy
- (16.2.13)

1| /8AN*  [aAa\’]® aA
o= W[(a) “(5) ] o
and formulas (16.2.2) and (16.2.9) in the following form:
Yae = 0w/ dx = —K(m)dA/dy, yy. = 0w/dy = K(m)dA/dy. (16.2.14)
To express the function w(x, y) in terms of A(x, y), we introduce the harmonic

function (x, y) (x,y € D) conjugateto A(x, y). Then, we have up to an arbitrary
additive constant

w(x,y) = Km)Q(x,y) ((x,y) € D). (16.2.15)

Thus, the velocity component w(x, y) is proportional to the function, harmonic
in D, conjugate to the pseudostress function A(x, y).

Note that the function 2(x, y) is expressed in terms of the function A(x, y) by
the well-known formula [17]
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A A
Q(x,y) = / <—§dx + aa,'y> +C, (16.2.16)

MoM

where My M is an arbitrary path connecting an arbitrary fixed point My (xg, yo) with
a variable point M (x, y) and located entirely in the considered area D.

So, the velocity component w(x,y) is expressed through the function of
pseudostresses by means of formulas (16.2.15)-(16.2.16).

For further use, it is necessary to write some of the basic equa-
tions and relations (16.2.1)-(16.2.16) in the polar coordinate system
(r,9) (0 <r <o0; —m < ¢ < m). Setting

X=rcosp, y=rsing =r=+x2+y%, 9= arctanfp(z)
X
and omitting intermediate elementary calculations, we obtain that the equilibrium
Eq. (16.2.1) takes the form

ot,, 107, 7
y 2% LT () e D), (16.2.17)
-

ar r og

deformation rate continuity equation—the form

ad 19y, ow 10w
oy Yoo ST 20 ((ng) e D). o= oo Voo = 55,0 (162.18)

ar r r d¢ ar

relationship between stresses and deformation rates are represented as

T(T) T(T) m
Ty = Tyrzs Tz = Tyrpz; T=T(I) = Kol (0<m<1); (16.2.19)

T= vV rrzz + Tt/%z’ = V yrzz + V(/%z'

Equations (16.2.17)—(16.2.19) include components of stresses and deforma-
tion rates. Their meaning is clear. Now, based on (16.2.17), the stress function is
introduced as follows:

0d 10®
Tz =5 Trz:_;% ((r,) € D),

while the pseudostress function A(r, ¢) = A(z, 7) is represented again by (16.2.8).
Further, proceeding similarly to the above, we obtain the following expressions for
the stress components:
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m—1

1 A 2+1 aA\| * oA (.0) € D)
Tpr = — | | — | — —, ((r, ;
==t | ar ) T2 \ag or ¥

m—1
1 A 2+ 1 /AN > 19A
Ty, = — R — | — -
¢ om=1 or r2\ d¢p r dg

for the velocity components

(16.2.20)

A 10A
quzzK(m)_7 yrz=_K(m)__ ((R(ﬁ) GD)
ar r og

Formulas (16.2.15)—(16.2.16) in the polar coordinate system will take the form

w(r, @) = K(m)S2(r, )

A 10A 1/ 2\
= K(m) / (—rrdw — ;%dr) , K(m) = —<?0> . (16.2.21)

d 2
MM

16.3 Formulation of the Problem and Derivation
of the Basic Equations

Let an infinite space with a circular cylindrical hole (shaft) Q =
fa <r<oo, —m <@ <m —00 <z < oo} of radius a, referred to a cylindrical
coordinate system r, ¢, z, along its cylindrical surface r = a, be uniformly loaded
along the axis Oz by tangential forces of intensity f(¢), that is

T‘ﬂz|r:a = f(‘/’) (—m < Y= ), (16.3.1)
and
/ f(p)de = 0. (16.3.2)

This condition is satisfied, in particular, when f (¢) is an odd function on (—m, 7).
. Itis assumed that under load (16.3.1) and under condition (16.3.2) an infinite space
with a cylindrical hole €2 is under conditions of antiplanar deformation (longitudinal
shear) in the direction of the Oz axis with a base plane (r, ¢) and the power law
(16.2.19) is valid for space material. As a result, we arrive at the first boundary
value problem for a plane with a circular hole w = {a <r <00, — 7 < ¢ <m}in
the NSSCT formulation with a power law of the relationship between stresses and



228 S. M. Mkhitaryan

deformation rates (16.2.19) and with antiplane deformation in the direction of the Oz
axis. In this problem, the boundary condition has the form (16.3.1), and condition
(16.3.2) must be satisfied, while the tangential stresses 7, and 7, vanish at infinity.

Based on the last conditions, we represent the harmonic function of pseudostresses
in w by the Fourier series

o0
A(r, ) = Zr’"[A,, cos(ng) + B, sin(np)] (a<r <oo;, —m <@ <m).

n=1

(16.3.3)

with unknown coefficients A, and B,,. . In exponential form, series (16.3.3) can be
written as

o0
A(r,@) = Z Cor Me™ (a<r <o0; —m <@ <)

n=—0oo
n#0
1 .
E(Al‘l - lBl’l) (n = 17 25 ”');
C, = |
SA+iBL) (1=—1.-2,.0; T =C, (1= £1,£2,.).
(16.3.4)

Now, using (16.3.4) and formula (16.2.21), we calculate the function w(r, ¢).
As an integration path MyM choosing a segment (b,r) (b > a) of ray ¢ =
wo(—m < @y < ), we obtain up to an additive constant

o0
w(r, @) = K(m)Q(r, ¢) = iK(m) Z sign nCpr "™ (r > a, - < ¢ < 7).
n=—00
n#0
(16.3.5)
Then, from (16.3.4), we get
A e et 19A
@) = —=lrea =— Y In|Coa """ (1 <9 <), X(¢) = ~—li=
ar = r og
n#0
o0
=i Z nCua "=1ein%, (16.3.6)
0

From the first equality (16.3.6), we determine the Fourier coefficients
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Inl4+1 A
c,=-2 w®)e " dYy (n=+1,42, ..) (16.3.7)
21 |n|

—JT

and substitute them into the second equality (16.3.6). After elementary transforma-
tions, we get

T

ﬂw=%/[;}mm¢—mﬁwmwa

-7

where the convergence of the series is understood in the sense of the theory of
generalized functions [17] as weak convergence. To calculate the sum of this series,
we use the well-known formula from [18]. We can write

4

o0
Z sin(ng) = —| In ; = <ln‘sin $
o 2|sin £| 2

2

’ 1
) = —Cotang
e 2 2

As aresult

1 0 -0
x(p) = — f Cotan( )a)(ﬁ)dﬁ (—m <@ <m). (16.3.8)
2 2

-7

Thus, the partial derivatives of the harmonic pseudostress function A(r, ¢) on the
circler = a are interconnected by an integral relation with the Hilbert kernel (16.3.8).
This statement also follows from Hilbert’s formula on the relationship between the
boundary values of the real and imaginary parts on the boundary unit circle of a
function analytic in the unit circle [19].

Now, using the first formula (16.2.20), we implement the boundary condition

(16.3.1)
2
1 JA n 10A
T, rma = — —_— -
pLir=a T om—1 ar|,_, r or

m—1

2 2 IA
rea ar

= flp) (-7 <¢p <m).
Taking (16.3.6) into account, we have
[2@) + 2@)] T 0@) = 2" f(@) (—m <9 <) (163.9)

Next, using the Hilbert inversion formula [20], from (16.3.8), we find
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1 o—
(@) = ——/Cotan( )x(ﬂ)dﬁ, (16.3.10)
2 2

since by the first formula (16.3.6)

s

/ w(@)dg = 0,

-7

Substituting this expression of w(p) into (16.3.9), we arrive at the following
governing NSIE of the problem under consideration for y (¢):

T 2 mT_l P
Ixz(w) + {1 / Cman(l9 _(p)x(ﬁ)dﬁ} ] 1 / C0tan<ﬂ _“’)x(mdﬂ =214 (p)
2 2 2 2
-7

-7

(—m <@ <m).

(16.3.11)

After solving the NSIE (16.3.11), the function w(g) is determined from (16.3.10),
and the Fourier coefficients C, will be determined from (16.3.7) or from the second
equality in (16.3.6).

16.4 Solving Nonlinear Singular Integral Equation

We reduce solving this NSIE to solving the Riemann boundary value problem of the
theory of analytic functions. To this end, we introduce into consideration a piecewise
holomorphic function—the Cauchy-type integral

1 Hdt
o) = ¢ XU
2mi c t—z2

where C is a circle of radius a centered at the origin. From here, according to the
Plemelya-Sokhotsky formulas for the boundary values of the function ®(z), we will
have

1 1 d
¢+<c)=5x(§)+%f );(i) a
¢ ¢ (16.4.1)

1 1 d
<I>‘<;)=—5x(;>+—y§ XOdt e 0,

2wi Jo t—¢

On the circle C, we put
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t=ae'”, ¢ =ae'’; x(1) = x(ae”) = (@), () = @ (ae'’) = Py (9)
(—m <V,¢ <m)

and transform the expression

dr aie'’dy ) e’ dy _ lcos(ﬂ%) +i sin(ﬂ%‘/’)

= =1
i i s L9 .9+ . 9=
t—¢ ae? —ae? ol (61’2*" _ 671—2“’) 2 sin 5%

1 O —
= E[Cotan( > 90) +i].

Then, relations (16.4.1) can be written in the form

1 1
5 (p) = ﬂ:EXo(@ tim / Cotan( gD)Xo(ls‘)dl9 (-7 <¢ <m),

(16.4.2)

since according to the second formula of (16.3.6)

T

/mmMﬁ=0

Then, from (16.4.2), we find
x 2

1 1 U —
;5 (9) Py (9) =2 X5 (@) + E/C0t3n< > w)XO(ﬁ)dﬁ

-7

(—m <@ <m).

As a result, the NSIE (16.3.11) reduces to the following nonlinear Riemann
boundary value problem

m—1

[—405 ()25 (9)] T [@5 (9) + Py (@] = =i2" " f(9) (=7 < ¢ < 7).
(16.4.3)

However, from (16.4.2), it follows that.
Dy (p) = =Dy (p) or D (9) = =Py (¢) (=7 < < 7). (16.4.4)

Taking into account relations (16.4.4), we can write
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m=1 m—1 —1
n[-egweg@] T ofw =[egwaeiw] T egw =|egw| ofw =vt,

m—1 m—1

T o — ool 2 @ — - -
o5 @ =[25 0o @] 2 o5 =0 o5 =v(.

(16.4.5)

) [-of ey @]

As a result, of these transformations, the nonlinear boundary value problem
(16.4.3) is reduced to the following linear boundary value problem

VHQ) + V(@) =—if() (¢ =ae?eC). (16.4.6)
To solve problem (16.4.6), we introduce the Cauchy-type integral

1 if (t)dt

Q((z) = i 2 (16.4.7)
and put [20]
Q St
wo=| 9@ s (164.8)
—Q(z) (zeS$7),

where S is a circle of radius a centered at the origin and with a boundary circle C,
and S~ is a complex plane with a circular hole of radius a. It is easy to see that

QIO - Q) =—if(©) = V) +V () =—if©§) ¢ €0)

and hence, the piecewise holomorphic function W(z) does give a solution to the
boundary value problem (16.4.6). Now, by multiplying relations (16.4.5), we obtain

[-25 (@)@ (0)]" =¥ @V (9) (-7 <¢<m)
and, further, from the same relations, we find
D (p) = [—‘I’+(§0)‘If_(§0)]];7m‘lf+(§0), @, (@)
= [~V @] F () (—x <p <. (16.4.9)

Then, the solution of the original NSIE (16.3.11) according to (16.4.2) and (16.4.9)
will be expressed by the formula

xo(@) = [—‘Iﬁ((p)‘lf_((p)]%m[‘lﬁ(w) —VT (@] (7 < <m.

From here, using (16.4.7) and (16.4.8), after simple transformations, taking into
account condition (16.3.2), we finally obtain the solution of the original NSIE
(16.3.11)
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2
X0(9) :X(ae"‘/’) — 2" [f (¢)+[ /Cotdn( )f(z?)dz?:| ] — /Coldn( )f(l?)dﬂ

(—m <@ <m). (16410)

In the linear case m = 1 and we get from (16.4.10)

T
1 Y —
xo(@) = ——/Cotan( ‘p>f(z9)dﬁ.
2
—7T
In a particular case, we take
flp) =sin(ng) (n=1,2,..., —m <@ <m).

Taking into account, the known relations [21]

1 f 9
— / Cotan( _
2

-1

from (16.4.10), we have

fﬂ) sin(n®)dd = cos(ng) (—m <@ <m, n=1,2,..),

Yo(@) = —2"% cos(ng) (-1 < ¢ <1). (16.4.11)
We represent it as

1

X0(®) = X(9) = on (€™ + ™), @y ==

and compare it with the expansion in a Fourier series by the second formula in
(16.3.6). We get

in a_"_l(C,Iei”‘/’ — C_,,e_i""’) = ozm(ei”"’ + e_i"‘”) n=12,.. —m<¢p<mn).
Taking into account the properties of the coefficients C,, from (16.3.4), we have
C, = —i“Tma"“ n=1,2..). (16.4.12)

Now, using (16.4.12) and formulas (16.2.10), (16.3.4)—(16.3.6), we calculate the

corresponding harmonics of stresses 7., 7., and functions w(g), A(r, @), w(r, ¢).
We obtain
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a\mn+1) a\mmn+l)
) ) costng);

Tpz = _2|am|m_lam<_ Sin(”¢)§ Tz = _2|am|m_lam -
r r
am a n .
(@) = 2a,, cos(ng); A(r, ) = 2a—<—) sin(ng); (¢ =>a —nwm<e<mn)
n r

w(r, ) = 2K (m) 2" cos(ng). (n=1,2, ...).
n

16.5 Conclusion

Further, development of the results presented in this article is connected with the
application of the conformal mapping method. Namely, the solution of the first
boundary value problem in the NSSCT formulation under a power law and an
antiplane deformation for a given domain can be obtained from the solution (16.4.10).
The solution constructed here using a conformal mapping of this domain onto a plane
with a circular hole or onto a half-plane, for which the solution of the first boundary
problem is given in [8]. Consideration of these issues is the subject of a separate
study.
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Chapter 17 )
On the Generalised Boundary Conditions | oo
in Harutyunyan’s Model of Growing

Solids

Evgenii V. Murashkin

Abstract The paper deals with the problem of boundary conditions derivation on
the propagating growing surface for Harutyunyan’s model in case of materials sen-
sitive to mirror reflections and inversions of three-dimensional space. The growing
surface positions are specified as the level surface of the pseudoscalar field. The
notions of fundamental orienting pseudoscalar and pseudoscalar time of weight W
are introduced. The unit normal pseudovector to the propagating growing surface
given by the pseudoscalar field are calculated and discussed. The boundary condi-
tions for stresses on the propagating growing surface proposed by G.I. Bykovtsev
are generalised to the case of pseudoscalar geometry.

Keywords Surface growth + Differential constraint - Pseudotensor + Pseudoscalar
time + Harutyunyan’s model

17.1 Introduction

Conventional methods of manufacturing complex shape products imply a variety of
technological treating processes, both related to the material removal and based on
the synthesis of products by sequentially depositing material to a boundary surface
[1-3]. All these stimulates the development of mechanics of growing solids. Addi-
tive manufacturing technologies are widely used in modern industrial production of
parts with complex shapes and designs. These methods include: laser stereolithogra-
phy, selective laser sintering, electron beam melting, deposition modelling, multi-jet
modelling, lamination, 3D-printing, computer axial lithography, layer-by-layer con-
creting and production of woven composites.

The mentioned above methods are based on well-known natural processes of
surface growth: accretion of space objects, formation of avalanches and glaciers and
crystal growth processes. At the same time, the processes of growth of biological

E. V. Murashkin (X))

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Vernadsky
Ave 101 Bldg 1, Moscow 119526, Russian Federation

e-mail: murashkin @ipmnet.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 237
H. Altenbach et al. (eds.), Solid Mechanics, Theory of Elasticity and Creep,
Advanced Structured Materials 185, https://doi.org/10.1007/978-3-031-18564-9_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18564-9_17&domain=pdf
mailto:murashkin@ipmnet.ru
https://doi.org/10.1007/978-3-031-18564-9_17

238 E. V. Murashkin

tissues and organisms are related to the processes of volumetric growth; nevertheless,
processes of surface growth can also be distinguished among them. For example, the
growth of atherosclerotic plaques [4-6], growth of the root system and the human
bones growth. The growth of an atherosclerotic plaque can be described as the process
of initial infiltration of blood plasma components into a thin subsurface layer of the
inner wall of an artery. The growth of a crystal nucleus occurs by deposition individual
atoms or their groups to its surface.

The main feature of the growing solids is the solids forming simultaneously with
the deformation process. This circumstance, of course, significantly complicates the
mathematical modelling of such deformation processes in comparison with solids of
constant staff. Suffice it to mention the situation that takes place in the dynamics of an
absolutely rigid body of variable mass. The mass variability, on the one hand, leads to
more complex mathematical problems, and on the other hand, generates qualitatively
new effects in the behaviour of bodies. It is natural to expect that generalised model
of solids and the initial-boundary value problems will become more complicated,
and the influence of the growth parameters on the response of the solids will become
more diverse.

The solution of the boundary problem of growing solids is a very laborious prob-
lem. An important feature of boundary value problems in mechanics of growing
solids is the derivation of boundary conditions at the propagating growing surface
between the main solids and the deposited part. We can found the discussions on
boundary conditions problems in studies [7, 8]. The present paper deals with the con-
sideration of Harutyunyan’s model of surface growing solids [7] and several variants
of constitutive relations on the growing surface, akin to the simplest relations (see
the well-known book by G.I. Bykovtsev: [8, pp. 288-292]). Throughout the paper,
the terminology and notations adopted in publications [8—13] will be used.

17.2 Governing Equations of Harutyunyan’s Model
of Surface Growing Solids

The in-depth study of modelling surface growing solids proposed by N.Kh. Haru-
tyunyan can be found in [7]. Let us revisit the governing equation of this model.
The equilibrium equations for Cauchy stress tensor 0" can be furnished in terms of

velocities by
Vi(0.6°7) =0, 17.1)

where V; is the Hamilton (nabla) operator, o. is a time derivative.
Boundary conditions on a non-growing part of the surface (surface of the main
solids) are reads by
ngd.0°" = d.p; (17.2)
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and (or)
v = 0.uy. (17.3)

where py is the given traction vector, v* is the velocity vector, uy is the given dis-
placement vectors, n; is the unit normal covariant vector.

Condition on a growing surface X can be obtained from the solution of contact
problem between 3D solid and 2D surface in form [14]

ngd.o’ = —cgikhL;,knk, (17.4)

where c is the linear velocity of propagating growing surface in the normal direction
ng, g{ kh is the 2D tensor of the given elastic surface tension, Ly is the 2D tensor of

the surface curvature.
Constitutive equations for the strain rates ¢;, and velocities are furnished by

1
Esr = E(str + V), (17.5)

and the general form of constitutive equations for Cauchy stress rate tensor can be
assumed in form
0.0 = 2.7 (&g, Vy). (17.6)

where .%°" is the tensor function defining by experiments.
The equation of the propagating growing surface X (¢) in the implicit form reads
by formula
=10, (17.7)

Governing Eqs. (17.1)—(17.7) must be supplemented by the recovering rules for
stress tensor and displacements according to

o (xk 1) = ot () + / 9.0 (x*, ¢ dr’,

7 (xk)

(17.8)

t
W (KD = () + / v (xk, 1) dr.
*
T(xh)
Herein ¢*" = a”} u (xF) = us} Equation (17.8) are the simple inte-
* *

I:E(xk);
grating rule of primitives.

It should be noted that the boundary value problem for a growing solid can be
controlled by loads, stresses on the propagating growing surface and velocity of
material deposition.

1=tk
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17.3 Differential Constraints on Propagating Growing
Surface

Boundary conditions on the propagating growing surface require additional attention
and discussion. An attempt to obtain boundary conditions from the equilibrium equa-
tions was made by G.I. Bykovtsev (see book [8, pp. 288-292]) and later generalised
in [9-13] to the case of micropolar media and predeformed media.

As previously shown (see, for example, [9—13]), the transformation of equations
of equilibrium (17.1) using a formula for the actual components of the force stress
tensor o/

t
ol = / [0.077 (x*, H1dt + .7 + o' (x%), (17.9)
£+0
£+O
S = f[a.o"f(xf,t’)]dz/, (17.10)
7—0

*

allows us to derive the equation on the propagating growing surface in the form of
the following differential constraints

Vo' () + V; AT+ X' (x)] —njdol (x*,t) =0 (t=17+0), (17.11)
* * *

where the unit normal vector n; on the propagating growing surface X directed
towards its propagation is related to the spatial gradient (17.7) by the equation

n=cot, c=|Vr|™" ¢ =r1). (17.12)
* * *

In Egs. (17.9)-(17.11), we use the notation adopted in [9-11]: .77/ is the stress
jump related integral, 0/ (x*) = 0"/ (x*, t)|,=¢(xs)—0 are the stress tensor components,
* %

respectively, at the moment # = 7(x*) — O right before when the element is included
*
in the main solid, )*(’ ) =X'(x%,1) |z:§(xf)+0'

to the moment right after attaching the element to the growing surface.
In the general case, the forces stresses o/ are to be expressed in terms of the
*

Moment t = t(x*) + 0 corresponds
*

actual stresses and couples on propagating growing surface by a tensor constitutive
equations as follows
o =8, n;,...). (17.13)
*

Constitutive tensor function §;; can be determinate by experiments. The function
§ij means possible changes in the parameters of the stress-strain state of the growing
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material in the time interval from the moment of growing element creation to the

moment of its deposition to the main solid, i.e. in the time intervalt — 0 <t < v + 0.
* *

In particular, constitutive tensor functions §j; in the woven materials producing will
depend on the selected directions associated with the propagating growing surface
and localisation of composite fibres. An important restriction on constitutive tensor
functions §;; is the insensitivity of its arguments under rotations of the moving
coordinate system around the unit normal vector 7 to the growing surface. In this
case, it is necessary to choose a system of joint invariants of tensors ¢/ and vectors
nj,1;, satisfying the condition of rotational invariance with respect to the vector n;.

17.4 Pseudoscalar Geometry of Propagating Growing
Surface

In some case, it may turn out that the propagating growing surface is the level surface
of the pseudoscalar field. For example, in the case of materials (woven composites,
chiral materials, metamaterials and biological tissues) exhibiting the properties of
sensitivity to mirror reflections and inversions of three-dimensional space. The base
object sensitive to mirror reflections and inversions of three-dimensional space is
the fundamental orienting pseudoscalar of weight +1 defined as a triple product of
covarinat base vectors (ll, 5 , g )

e= H’é’éj =@ x1)-1. (17.14)

A number of approaches to the development of pseudotensor formalism can be found
out in books on tensor analysis and continuum mechanics [15-20].
Let the propagating surface X in three-dimensional space is defined as the level

wy .
surface of the pseudoscalar field f (x') of weight W:
w1 Wl
t = fxh, (17.15)
w1, .
where ¢ is pseudoscalar time, and
t =e"t. (17.16)

(W]
Considering the pseudoscalar time differential ¢ in virtue of (17.16) we can get

[W]
dt =de"t)=e"dt +tWe" " de, (17.17)
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or
(W]
di = ew(dt + te*laxedxf) (17.18)

Let us note the important in applied problems case [21]. We choose a coordinate
system subject to the condition:

Jg =1, (17.19)
and using following equation,
=g (17.20)
come to restriction
e =sgne. (17.21)

There are infinitely many such systems in three-dimensional space, for example,
Cartesian left-handed and right-handed coordinate systems.

The constraint ,/g = 1 is often used not only in the theory of relativity [21],
but also in mechanics of solids [22]. On pages 135-142 of the [21] monograph,
the condition ,/g = 1 is used to derive the gravity equation in 4-space-time, which
greatly simplifies the equations of relativity theory.

If, in addition to equation (17.21), we assume that the coordinate system is left-
handed (i.e. ¢ < 0), then the pseudoscalar time differential takes the form

dt =

W de, if W is even weight;
{ —dr, if W is odd weight. (17.22)

The covariant vector of the unit normal n, to the surface X, can be determined
up to a multiplier according to the formula

W
Nn; =0i(e™" f). (17.23)

Note that the absolute scalar a satisfies the equation
Via = 9;a. (17.24)

Then the Eqgs. (17.12), (17.24) are transformed to the form
W] 4 (W]
Nni =3 fy=Vie " f)=e"V f. (17.25)

Introducing into consideration the normal pseudovector according to the formula

= eVn,, (17.26)
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we can get

W]
N v (17.27)

According to equation
AWIWD oy

g n; nj=e (17.28)
it is easy to conclude that
N2V = gy, ”}]v,f? (17.29)
hence for the unknown multiplier, N can be calculated by the equation
N =e"y gV, [y]V,{[? (17.30)

Finally, the normal pseudovector to the level surface ¥ of the pseudoscalar field

(W]
f is calculated by the formula

v [W]
w_w__ Vif (17.31)
. W] [W]
g Vi f Vi f

The linear velocity of the propagating growing surface in the direction of the

W] . .
normal pseudovector n; is calculated according to

—1
_ [W]
= | gty A (17.32)

The absolute vector of the normal to the level surface X of the pseudoscalar field
(W]
f can be calculated by the formula

_ [W]
n=" g (17.33)

17.5 Differential Constraints on Propagating Growing
Pseudoscalar Surface

Following the discussions in previous sections, we can obtain the differential con-
straints on propagating growing pseudoscalar surface. In the growth process, the
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maximum intensity of shear stresses can be reached at the contact (growing) surface
between the main solid and the growing part. Let us define the growing surface as a
level surface of a pseudoscalar function, as was indicated in the Sect. 17.3

t =", (17.34)

The relations (17.11) in the case of propagating growing pseudoscalar surface are
transformed as follows

[=W] i ; [-W] i W]
¢ [V;t! (x*) + X ()] —nja.1/ (xk)|ly1:wp(xk) = 0. (17.35)

The recovering equation for the stress tensor components takes the form

W]

t
. [-wW] .. [W] [W] ..
£ :/[ 9.t (K, r Y d T + 1 (xR, (17.36)

w1
T
*

Equations (17.35) and (17.36) are the generalised boundary conditions on the
growing surfaces which can be used for wide class of materials including woven
composites.

17.6 Conclusions

The paper is devoted to the boundary value problems formulations in the frameworks
of Harutyunyan’s model in case of materials sensitive to mirror reflections and inver-
sions of three-dimensional space. The growing surface positions have been specified
as the level surface of the pseudoscalar field. The notions of fundamental orienting
pseudoscalar and pseudoscalar time of weight W have been introduced. The unit
normal pseudovector to the propagating growing surface given by the pseudoscalar
field have been calculated and discussed. The boundary conditions for stresses on
the propagating growing surface proposed by G.I. Bykovtsev have been generalised
to the case of pseudoscalar geometry.
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Chapter 18 ®)
Concerning Identification of Two i
Thermomechanical Characteristics

of Functionally Graded Pipe

Rostislav D. Nedin, Sergei A. Nesterov, and Alexander O. Vatulyan

Abstract We consider an inverse problem on the identification of two thermome-
chanical characteristics of a functionally graded pipe based on the additional data
picked on the outer surface of the pipe over a finite time interval. The pipe’s thermo-
mechanical characteristics depend on the radial coordinate. Two direct thermoelas-
ticity problems for different thermal loads on the pipe’s outer surface, after applying
the Laplace transform, are solved with the help of the shooting method and transform
inversion based on the expansion of the actual space in terms of shifted Legendre
polynomials. The numerical solution of the inverse problem is built via the iterative
process of solving the system of the Fredholm integral equations of the 1st kind.
Computational experiments are carried out to restore two thermomechanical charac-
teristics with the known others. It is revealed that monotonic functions are restored
with sufficient accuracy; the reconstruction procedure is resistant to 2% input data
noise.
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18.1 Intro

Cylindrical elements are used to be the parts of many structures subjected to high
thermomechanical loads. Calculations related to finding the stress-strain state of such
structures are usually carried out for homogeneous materials. However, at present,
functionally graded materials (FGM) are increasingly being introduced into various
fields of technology, mainly as two-phase composites synthesized from metal and
ceramics, providing a continuous change in thermomechanical characteristics [1,
2]. Due to the complex and multi-stage FGM manufacturing technology, deviations
from the specified laws may be present in the final product. Therefore, determination
of the actual properties after fabrication is of certain importance. However, due to the
dependence of thermomechanical characteristics on coordinates, the former can be
determined by non-destructive testing methods based on the theoretical foundations
of the apparatus of coefficient inverse problems (CIPs) of thermoelasticity [3]. Ther-
moelasticity CIP is the problem of determining thermomechanical characteristics as
coefficients of thermoelasticity differential equations from some additional data on
the displacement or temperature fields measured on a part of the body’s boundary.
From a mathematical point of view, such problems are essentially ill-posed and non-
linear. Therefore, building time-saving and stable algorithms for their treatment is
an urgent issue.

The most common way of solving CIP is to construct the residual functional
and to minimize it by any of the gradient methods [4]. Based on this approach,
studies on CIP thermal conductivity [4-9] and elasticity theory [10-12] were carried
out. Alternative techniques were also proposed, for example, the quasi-inversion
method [13], the inversion of finite-difference schemes [14], the reduction to the
Fredholm integral equation of the Ist kind [15]. In these research works, only one
material characteristic was restored with the known others. However, in practice,
several thermomechanical characteristics are usually unknown at once. In [16], an
approach was proposed to identify two thermophysical characteristics, the rod’s
thermal conductivity coefficient and specific heat capacity, based on conducing two
thermophysical experiments with different thermal loads applied to the rod ends. The
numerical solution of the inverse problem was constructed on the basis of the iterative
process, at each stage of which the system of the Fredholm integral equations of the
1st kind was solved.

However, for a number of material classes, it is necessary to take into account the
coupling of elastic and thermal fields and solve inverse thermoelasticity problems;
such problems have been solved mainly for weakly inhomogeneous materials [3].
Previously, the authors of [17] proposed an approach to solving the nonlinear ther-
moelasticity CIP via the iterative process, at each stage of which linear problems
were solved. To do this, starting from the weak statement in the Laplace transforms
space and using the linearization technique, the operator equations that relate the
sought-for and measured within the experiment characteristics were obtained. After
applying the transformation to the actual space, the operator equations were obtained
for solving one-dimensional thermoelasticity CIP over a finite time interval. Based
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on the iterative approach, the identification of thermomechanical characteristics of a
rod [18], a pipe [19, 20] and a finite cylinder [21, 22] was carried out. In these cases,
only one of the thermomechanical characteristics was restored, while the rest were
assumed to be given. At the same time, the thermoelasticity CIP on restoring two
characteristics is still relevant.

The present research is aimed at solving the thermoelasticity CIP on the identi-
fication of two thermomechanical characteristics of the pipe. Two thermoelasticity
problem statements for different types of thermal load on the outer surface of the
pipe are considered. For the first problem, a constant heat flux acts on the outer
surface of the pipe, and for the second one, a temperature does. The additional data
measured on the outer pipe’s surface represents the temperature for the first problem
considered, and the heat flux for the second one. Direct problems for the pipe after
non-dimensionalization and applying the Laplace transform are solved based on the
shooting method and transform inversion by expanding the actual space in terms of
the shifted Legendre polynomials. A system of two coefficients of thermoelasticity
differential operators is restored in two stages. At the first stage, the initial approxi-
mation is determined in the class of positive bounded linear functions based on the
minimization of the residual functional. At the second stage, the corrections to the
reconstructed functions are determined by solving the corresponding system of the
Fredholm integral equations of the 1st kind. Computational experiments were carried
out to reconstruct two pairs of characteristics: (1) thermal conductivity coefficient
and specific heat capacity; (2) thermal conductivity coefficient and thermal stress
coefficient.

18.2 Inverse Thermoelasticity Problem Statement

Let us study the thermoelasticity CIP on the reconstruction of two thermomechanical
characteristics of functionally graded pipe. To do this, we consider two quasi-static
thermoelasticity problems for a radially inhomogeneous pipe with different loads
applied to its surfaces. In both problems, a constant temperature is maintained on the
inner stress-free surface of the pipe » = r;. On the outer surface of the pipe r = r,
stress-free as well, in the first problem (Problem 1), there is a constant heat flux, and
in the second problem (Problem 2), the temperature changing according to the law
te™" is set. The initial conditions are zero.
The Problem 1 statement has form
B, o =

%e 0, r<r<nr, (18.1)
ar r

ou u ou u
o =A+2U)— + A= —y0, 0py=A—+A+2u)——y0, (18.2)
ar r ar r
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d 20 a0 92 10
-— <k(r)r8—) _cp(r) +T0y(r)( u ~|———u), rn<r<rmr,t=>0,
r r

arot  r ot
(18.3)
0 (ri, 1) = 0,p(r2, 1) =0, (18.4)
a0
0(r1,1) =0, —k(rz)g(rz, 1) = qo, (18.5)
ou
0@, 0) =u(r,0) = E(r, 0)=0. (18.6)

Here, r is the radial coordinate, 0, and o, are nonzero components of the stress
tensor in the cylindrical coordinate system, u is the component of the displacement
vector in the radial direction, 0 is the temperature increment from the natural state with
the temperature 7y, A and p are the Lame coefficients, k is the thermal conductivity
coefficient, c, is the specific volumetric heat capacity at a constant strain tensor, y
is the radial component of the thermal stress tensor and g is the heat flux density.

The statement of the Problem 2 coincides with the Problem 1 statement, except
for the thermal boundary conditions (18.5), which take the form:

O(r1,1) =0, 0(rp, 1) = Opte". (18.7)

Let us pass in (18.1)—(18.7) to dimensionless parameters and functions, denoting:

_ _r Uy _ 0 __ nc _ Y 1T O _

E=1.6="1, —zW—,fof——f o 80 = g Sbrr = U0 Sy =
Opp y _ S _ C _ 490m2%0 Boracovo

/10’)\'_ ILO,M 9)/ k_ 0’ - Co’ﬁ - kopo ° /3 - kU//«O 'Here)"()»/"LO

005 Y0, ko and cq are characterlstlc quantlties.
Then the statement of the dimensionless Problem 1 takes the form:

BQ;{r QI _ Ql

v _ ), <1, 18.8
o : & <& (18.8)
U, -oU; - _ U _

=(O+20 )—S—l-)»?—yW,, Q;W:A¥+(A+2M)——yW1,

(18.9)
1o _ “Ur 10U;

fg(k@)&—g) (s)+6oy(s)<a$3 +§3t), fp<&<1,1>0,
(18.10)
Q! (&, 1) =0, Q (1,7)=0, (18.11)
W (&, 1) =0, —12(1)%(1,1)=/31, >0, (18.12)

9§

aU
Wi(§.0)=U;(§,0) = a—r’(g, 0) = 0. (18.13)
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The statement of the dimensionless Problem 2 has the form:

Il 11 _ 11
8er Q”’ Q‘ﬁW

—0, fH<E<l, (18.14)
9§ 3
7 =00 U U - Ui
Q= ()\‘FZM)? +A? —vWir, Qg = AY +GA+20)— —rvWqy,
(18.15)
10 (/- Wy . Wy _ 32U11 lBU”
EoE (k(é)é o8 ) =c(§) o7 + 807 (§) ( sear T & ar ) §p<&<1, >0,
(18.16)
Qll, =0, Qld,7=0, (18.17)
Wiro. 1) =0, Wy, 1) =pre ", >0, (18.18)
oU;,
Wi (§,0)=U;;(5,0) = A (£,0) =0. (18.19)
As the additional data on the pipe’s outer surface we consider:
1. Temperature for the Problem 1
Wi(l,7) = fi(r), T €lai, b1l (18.20)
2. Heat flux for the Problem 2
011, t) = fu(r), t¢€la,bl (13.21)

The direct thermoelasticity problem is to find the stress-strain state of the pipe from
(18.8)—(18.13), (18.14)—(18.19) with the known thermomechanical characteristics A,
L, 7, k, €. In the inverse problem, it is required to restore two thermomechanical
characteristics with the rest known from (18.8)—(18.13) and (18.14)—(18.19) using
the additional data (18.20), (18.21).

18.3 Solution of the Direct Thermoelasticity Problem

Direct thermoelasticity problem for the pipe (18.8)—(18.13) and (18.14)—(18.19) after
applying the Laplace transform in time t with arbitrary laws of change in thermome-
chanical characteristics can only be solved numerically, for example, by the shooting
method, similarly as in [21, 23]. After applying some standard transformations, we
pass to the canonical system of 4 ordinary differential equations of the 1st order with
variable coefficients:
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dw

— = —Q@ D)s (18.22)
dé k(&)
a0 Lo <‘+8 7’ )W+5 Y a4
— = —— Cc = = rr
ag g7 24 RSPy,
+50pZ (1 - > U (18.23)
§ r+2n) '
asy. 1 X - 1 (- 22 . ,7( A )
—=—(1-= Qrr— = A+200— = —|1-=
dE s( A+2ﬁ> " 52( +2k A+2ﬁ>U+S vV
(18.24)
dUu 1 - A - IR
< 3, — U+ 2w (18.25)

de — A+42a " (A+20E  A+20

Next, we consider two auxiliary Cauchy problem statements for the canonical
system of differential equations (18.22)—(18.25) and two sets of conditions for:

1. Wi (. p) =0, Qi (0. p) =0, Uy (%0, p) = 1, Q1 (4. p) = 0;
2. Wa(&o, p) =0, 2:(80, p) =0, U2(&, p) =0, 025, p) = 1.

For any value of the Laplace transform parameter, the Cauchy problems are solved
numerically by the 4th order Runge—Kutta method. Next, two groups of solutions
arecomposedmtheform U, = a1U1 + azUz, Q = a1§21 + ozzQz, W, = a1W1 +
W, Q1 = a1 Q1 + 202 Upp = U +064U2, QI = a3Q) + s, Wiy = o3
Wl + oy Wz, Q” =3 Ql + oy Qz. The unknown constants «1, ..., a4 are determined
by satisfying 4 conditions in the transforms for € = 1: Q;(1, p) = %, er(l, p) =

Q11 p) =0, Wi (1, p) = £

Since the temperature, d1splacement and stress transforms are known in the set
of values of the Laplace transform parameter, the inversion of the Laplace transform
can only be performed numerically. We use the numerical inversion of the Laplace
transform based on the technique of expanding the actual space into a series in terms
of shifted Legendre polynomials; the latter (P) differ from the common Legendre
polynomials P, by the fact that their domain of definition is reduced to the segment
[0, 1] instead of common [—1, 1], i.e., P;(x) = P,(2x — 1).

The shifted Legendre polynomials have the form:

nls!

i) = (- 1)"2( 1)3< )(”“) . (18.26)

According to [24], the expansion of the function F(t) with respect to the shifted
Legendre polynomials takes the form:
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[e¢]

F(r) =) (2s+ Da, P} (™). (18.27)
s=0

In [24], an expression was obtained for the expansion coefficients a; through the
known coefficients cl.(s) of the polynomials P and the Laplace transform values F(p)

atinteger points p = 1, 2, ...inthe forma, = ) ;_, cfs) F(i). The accuracy of solving
the direct problems (18.8)—(18.13) and (18.14)—(18.19) was verified by comparing
the approximate solution for a homogeneous cylinder with the finite element method
(FEM) solution obtained in the FlexPDE package.

Table 18.1 gives a comparative analysis of the dimensionless temperature values
on the pipe’s outer surface, £ = 1, calculated by the FEM and the shooting method
when solving the problem (18.8)—(18.13) with the parameters 6y = 0.05, §; = 1,
&) = 0.6 and different values of the parameter s in the series (18.27).

Table 18.2 gives a comparative analysis of the dimensionless temperature values
for§ = 0.9, obtained by the FEM and the shooting method when solving the problem
(18.14)—(18.19) with the parameters 5o = 0.05, 8, = 1 £y = 0.6 and different values
of the parameter s in the series (18.27).

From the analysis of Tables 18.1 and 18.2, it follows that in order for the error in
calculating the temperature for the time T > 1072 to not exceed 1%, it is sufficient
to make a restriction to 45 terms in the expansion (18.27).

Table 18.1 Comparison of the results of solving the direct problem (18.8)—(18.13) for & = 1

Moment of time FEM Shooting method

s =20 s =45
0.001 0.03619 0.04988 0.03628
0.01 0.11814 0.11901 0.11819
0.1 0.38639 0.385446 0.38643
0.2 0.47512 0.47467 0.475165
0.5 0.50997 0.50828 0.50998

Table 18.2 Comparison of the results of solving the direct problem (18.14)—(18.19) for £ = 0.9

Moment of time FEM Shooting method

s =20 s =45
0.001 0.02503 0.03649 0.02532
0.01 0.40389 0.40435 0.40393
0.1 0.63451 0.63534 0.63458
0.2 0.75789 0.76035 0.75792
0.5 0.76749 0.76759 0.76750
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18.4 Iterative Scheme for Solving the Inverse
Thermoelasticity Problem

In this work, we solve the nonlinear thermoelasticity CIP on the identification of two
characteristics of the pipe on the basis of the construction of an iterative process, at
each stage of which a linear problem is to be solved. The scheme for solving the
considered CIP for the pipe is constructed similarly to the scheme for reconstructing
two thermophysical characteristics of a rod [16].

The iterative process of identifying two thermomechanical characteristics of the
pipe consists of two stages. At the first stage, the initial approximation is determined
in the class of positive bounded linear functions k& + by, k& + b, based on the
residual functional minimization:

b by
J = / (fi(r) = w1, 0))2dt + / (frr(r) — V"1, )%dr.  (18.28)

At the second stage, the corrections of the two reconstructed functions are deter-
mined by solving a system of the integral Fredholm equations of the 1st kind, and
the current laws of change in thermomechanical characteristics are then corrected.
In [21], to find corrections for thermomechanical characteristics, the operator equa-
tions were obtained in the Laplace transform space, both for thermal and mechanical
loading applied of the outer surface of the cylinder. Using only thermal loading,
taking into account two types of thermal load on the outer surface of the pipe, we
now obtain a system of the following two operator equations of the 1st kind:

1 ~ 2
o aw e i o
p/ék( g <—’ ) £dt +p2/3c<"—1>(w,“ D)2edg

de
& &
| 4o ey -
S 2 8—(7‘[71) 1 1 an d
+dop / % ( aE + : ) ; &d§
&
= B1(fi(p) — W "1, p)), pel0,o00), (18.29)

1 - 2 1
- dW(n_l) - Tr(n—
(417 [ 5 <—d’é ) ede -+ p(p+ 12 [ o D e
&0 &o
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1 - ~
4oy ge-vy
+80p(p+1)2/ p (- ”( éé + ’g W Vede
&

=B (fi(p) — OV "1, p)), p€l0,00). (18.30)

The system of two Eqs. (18.29), (18.30) is written out to identify three correc-
tions IE(E ), ¢(§) and y (§), which is impossible to implement. Therefore, we confine
ourselves to identifying two pairs of thermomechanical characteristics: (1) k(&) and
¢(€) when 7 (&) is known; (2) k(&) and 7 (£) when &(&) is known.

1. Assumey (&)to be known. Required to restorelz(é ) and c(§).
Here, putting 7~V = 01in (18.29), (18.30) , we get:

1

1
aw b I
/8k(n 1) (T SdS‘l‘PZ/SC(” 1)(W1( 1))2Ed€
o &o

= Bi(fr(p) — W "1, p)), pel0,00), (18.31)

1 ~ 2 1
oy (AW oty i (o
(p+ 1)2f5k<"—“ (—(;E’ ) §d& + p(p+ 1)2/50(" W) e ds
&

= B2(f1r(p) — OV (1, p)). (18.32)

Inverting the Eqgs. (18.31), (18.32), we obtain a system of operator equations in
the actual space:

1
[ (RO DR @ o)+ 520 D R ) £ = Sy (0~ W, DL 0. 7 e L)
0

(18.33)

1

/ (SR Ry, (6. 1) + 86" Rn(E, 1)) £dE = f1,(1) — Q"D (1, ),

&0
(18.34)

€ |ay, by]. Here, the kernels of (18.33), (18.34) have the form:

1 a2y (=) (n—1) _
R”(é’r):_/'a w; &, n) 0w, (€4 Tl)dl’[,
B1 J 0§01 &
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T

(n—1) (n—1) B
Ru(é,‘[):i/ aWI (E, Tl) aW[ (é,f Tl)d_’:

1,

1 Ty T
0
Ry (§,7) =
T
1 /(33W11("_])(§, T1)+232W11("_1)(§, Tl)_i_aWu("_])(é’ Tl))
B2 J dEIT} AEIT, o€
AW VE T — 1)
X d‘L'l,
0&
Ry, 1) =
1 2w, D& ¢ AW, =D, ¢
_/( 11 2(5 1)+2 11 & 1)+W”(”_1)($,1'1)>
,32 811 81’1
0
AW VE T — 1)
X drty
81’]

2. Assume ¢(£) to be known. Required to restore k(€) and 7 (£). this case, putting in
(18.29), (18.30) A"~V = 0, after inversion, we obtain a system of the operator
equations in the actual space allowing to find the system of corrections k"~
and §y "~ V:

(SE" Mg, 1) + 87"V Mia(E. D) £ = fi(x) = WiV ),

g\
—_

(18.35)
T € [ay, b1,

(k"D My (8, T) + 57"V Mn (€, 1)) £dE = fri(v) — 0V (1, 1),

e
-

(18.36)
T € [ay, by], where the kernels of the Egs. (18.35), (18.36) have the form:

M (§,7) = R, 1), My, 1) =RnuE, 1),

T
$
M, 1) =ﬁ% J (

220" Ve 100" Ve ) aw, D —T,,
3EdT £ a7 at| N

T

)
M. 1) = ﬂ—Z/Al(s, ) A, m)da,

0
U V& ) 10UV, m)

A§, 1) = ( 0EaT, E P
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W VE, ) AWV E, )
_ +2 +
81’1 31’1

Ay, 7)) = ( WiV, Tl)) .

The iterative process is repeated until the stopping condition is fulfilled: reaching
the threshold value of the residual functional (18.28), equal to 1074, or reaching the
limit number of iterations equal to 20. Since solving systems of the integral Fredholm
equations of the Ist kind (18.33), (18.34) and (18.35), (18.36) represents an ill-posed
problem, the method of A.N. Tikhonov [25] was employed.

18.5 Results of Two Thermomechanical Characteristics
Reconstruction

Computational experiments were carried out to reconstruct two thermophysical char-
acteristics in the classes of power and exponential functions, which are most often
used to model FGM. When carrying out computational experiments, it was accepted:
B =p=1,38 =0.05% =0.8.

The influence of the inhomogeneity laws for the variable characteristics on the
simulated input data values gained in the experiment is analyzed. It is found that
the laws of change in the thermal conductivity coefficient and specific heat capacity
proportionally affect the boundary physical fields—temperature and heat flux, while
the influence of the thermal stress coefficient is proportional to the value of the
coupling parameter.

For each inhomogeneity law, the most informative intervals for measuring the
input data are determined in which the boundary temperature and heat flux change
most rapidly.

During the first series of computational experiments, the thermal conductivity
coefficient IE(S) and specific heat capacity c(§) were restored. The residual func-
tional (18.28) reached the threshold value in no more than 12 iterations. A pair of
dimensionless characteristics was reconstructed with sufficient accuracy: the maxi-
mum error in the reconstruction of two monotonic functions did not exceed 5%.

The figures below reveal the results of recovering the thermophysical charac-
teristics; the solid line shows the exact law of inhomogeneity, the dots show the
reconstructed law. Figure 18.1 presents the results of reconstructing the following
decreasing functions: (a) k(£) = 4e~8¢—5); (b) ¢(&) = 2e0¢ 50,

The additional data was collected at 6 equally spaced points inside the selected
informative segments [a;, b;] = [0.05, 0.35], [a2, b,] = [0.01, 0.18]. It took 7 itera-
tions to reach the threshold value of the functional (18.28), while the maximum error
in the reconstruction of two functions did not exceed 4%.
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Fig. 18.2 Reconstruction of increasing functions: a 12(5) 0.8+0.5 ( ) b c&)=0.6+

0.3 (§:§3)2

Figure 18.2 shows the results of reconstructing the increasing functions:
@ k(©) =08+05 (52 50) -

(b) c(é)—06+03(f fo)

The input data was measured at 6 equally spaced points inside the selected infor-
mative segments [a;, b;] = [0.04, 0.28], [a,, b,] = [0.02, 0.14]. This time it took 6
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Table 18.3 Values of residual 2functional and maximum relati}le reconstruction error for the func-
tions k(&) = 0.8+ 0.5 (Hﬂ) and E(€) = 0.6 + 0.3 (f*&)

1-& 1-&o

Iteration # Functional J Relative reconstruction error, %
1 0.007123 15.64

2 0.003612 12.32

3 0.000951 10.71

4 0.000711 9.02

5 0.000294 8.43

6 0.000089 6.78

iterations to reach the threshold value of the functional (18.28), and the maximum
error in the reconstruction of two functions did not exceed 3%.

The convergence of the iterative process was also investigated. Table 18.3 gives
the residual values and the maximum relative reconstruction error depending on the
iteration number when restoring functions

_ 2
k(&) =08+05 (i:gg) and

2
¢(€) = 0.6 +0.3 (.g — 50) (18.37)
1—4§

The effect of the input data noise on the reconstruction accuracy was also inves-
tigated; the former was modeled by using the relations:

fi@ = fi@A +sp), f1,(0) = fr (D)1 +5B), (18.38)

where s is the noise level and g is random variable with a uniform distribution law
on the interval [—1, 1]. It was found that in the presence of noise, the reconstruction
error increased with the growth of s, but even with 2% noise (s = 0.02) it did not
exceed 11%.

_ 2
Table 18.4 gives the values of the function k(§) = 0.8 + 0.5 (‘?:—g) and its recon-

struction in the absence of input data noise and for 2% noise.

From Table 18.4, it follows that the maximum reconstruction error for 2% noise
does not exceed 9%.

In the course of the second series of computational experiments, the thermal
conductivity coefficient k(£) and thermal stress coefficient 7 (£) were restored. It
is found out that the accuracy of the reconstruction of this pair increases with an
increase in the value of the coupling parameter &y. In this way, with o = 0.1 and
in the absence of the input noise, the maximum error in the reconstruction of two
monotonic functions was 16%, and with 5, = 0.4, it did not exceed 5%.

Figure 18.3 presents the reconstruction results for the decreasing functions:
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Table 18.4 Reconstruction of the function k(¢) = 0.8 4+ 0.5 (

R. D. Nedin et al.

&

2
1*50)

Radial coordinate & | Exact value IE(E;‘) Recovered value Ig(é) Relative reconstruction error
s=0 s=0.02 |s=0 s =0.02
0.8 0.80 0.792 0.771 1.19 3.63
0.82 0.805 0.801 0.762 0.49 5.34
0.84 0.82 0.822 0.791 0.24 3.54
0.86 0.845 0.841 0.821 0.47 2.84
0.88 0.880 0.861 0.832 2.27 5.46
0.9 0.925 0.927 0.891 0.21 3.68
0.92 0.980 0.994 0.903 1.43 7.86
0.94 1.045 1.051 1.021 0.57 2.30
0.96 1.120 1.098 1.18 1.96 5.36
0.98 1.205 1.192 1.310 1.07 8.71
1 1.30 1.310 1.393 0.77 6.34
< ~\ 7 =,
14 ™ 12 ““n,\‘*
13 o3 N
\\‘\ 115 \\
AN ™
12 “ 11 N
. ERY
N \
11 \\ 105 \\_
\\ \e.
1 ‘.‘ ' \‘\
08 09 21 0s 09 &
a) = b) '

Fig. 18.3 Reconstruction of monotonically decreasing functions: a k() = —8t24+ 126 —3; b
y(€) =—4E7 + 65 — 1

(a) k(§) = —88> + 126 — 3;
(b) 7(§) = —48> +65 — 1

for §y = 0.4. The input data was gained at 8 equally spaced points inside the segments
[a;, b1] = [0.01, 0.17], [az, b2] = [0.02, 0.26]. To reach the threshold value of the
functional (18.28), it took 7 iterations, while the maximum error in the reconstruction
of two functions did not exceed 4%.
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Fig.18.4 Reconstruction of monotonically increasing functions: a Ig(‘g“ ) =09+ %13 y(&) =
1.5 —¢!3%

In the same way, Fig. 18.4 shows the results of the increasing functions recon-
struction:

(a) k(£) = 0.9 + %13,
(b) 7(§) =1.5—¢' "%

for 6o = 0.4.

The additional data was collected at 8 equally spaced points inside the selected
informative segments [a;, b;] = [0.03, 0.27], [a2, b2] = [0.05, 0.13]. It took 9 iter-
ations to reach the threshold value of the functional (18.28), and the maximum error
in the reconstruction of two functions did not exceed 4%.

18.6 Conclusion

e The inverse coefficient thermoelasticity problem on the identification of thermo-
mechanical characteristics of a functionally graded pipe has been studied.

e The solution of the nonlinear inverse problem is built on the basis of the iterative
process, at each stage of which the system of the Fredholm integral equations of
the Ist kind is solved.

e Computational experiments on reconstructing two pairs of characteristics (“ther-
mal conductivity coefficient + specific heat capacity”, and “thermal conductivity
coefficient + thermal stress coefficient””) were conducted.

e Successful reconstruction of the pair “thermal conductivity coefficient + thermal

stress coefficient” is possible only with a large coupling parameter. A pair of

dimensionless characteristics “thermal conductivity + specific heat capacity” was
reconstructed with sufficient accuracy for any coupling parameter.

The computational reconstruction scheme proposed is resistant to 2% input noise.
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Chapter 19

Regularities of Technological Residual e
Stress Fields Formation in Cylindrical

Products Manufactured by Additive

Methods

Dmitry A. Parshin

Abstract The regularities of the development of residual stress fields in deformable
solids formed in layers of viscoelastic aging materials are investigated by the exam-
ple of the technological problem on additive manufacturing of a hollow cylindrical
product of arbitrary thickness on a rapidly rotating substrate, with arbitrarily varying
initial circumferential stress in the added material. Quasi-static processes of defor-
mation of such products during and after their manufacture, which are accompanied
by small strains, have been studied. An effective procedure for calculating the dis-
tributions of the mentioned stresses is constructed.

Keywords Additive manufacturing - Technological stresses * Residual stresses *
Viscoelasticity + Aging - Quasi-static deformation + Prestress *+ Centrifugal inertia
forces - Hollow cylindrical product + Layered product

19.1 Introduction

In this paper, the process of additive manufacturing of a product is considered from
the standpoint of mechanics of deformable solids. Classical for mechanics are solids
of constant material composition, which have already acquired their final appearance
by the beginning of the deformation process. This appearance is represented in the
configuration of the solid, which is called natural and which the displacements
of the solid points, causing its deformation under the action of applied loads, are
then referred to. The main difference between any classical solid and an additively
manufactured one is that the latter still continues to be replenished with new material
elements during the deformation process and, thus, is basically devoid of a natural
configuration. This feature is the reason for, among other things, the emergence of
residual stress fields in additively manufactured solids after their manufacture is
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completed and the loads accompanying the manufacturing process are removed. The
presented work is devoted to the analysis of these stresses on the example of one
specific technological problem—the problem of additive forming a cylindrical layer
of material with mechanical properties of viscoelasticity and aging on the surface of
an axisymmetric substrate. The need for such an analysis is dictated by the urgency of
solving various engineering problems on contact, wear and destruction of structural
elements and machine parts layered with coatings having complex properties [4,
5, 7, 11]. It is obvious that the results of the corresponding calculations should be
influenced in a decisive way by the stress distributions in the considered products
that have arisen as a result of the technological features of their manufacture.

It is obvious that an adequate mechanical study of additive processes requires
correct consideration of kinematic and power features of the manufactured solid
replenishment with a new material. Such consideration cannot take place within
the scope of classical equations and boundary conditions of solid mechanics, even
when they are formulated for the time variable region of space associated with the
growing solid. This is easy to understand if we pay attention to the fact, native for
growing solids, that while some of material elements are only included in the mate-
rial composition of the solid, others have been already deformed compatibly with it
for some time. This foundational fact is expressed in strain incompatibility (in the
classical sense of the term) inside any growing solid and generates a special class
of problems in solid mechanics—the problems of mechanics of growing solids. The
mathematical approach to the formulation and research of this class of problems is
dynamically developed in the framework of the Russian scientific school founded by
Academician N.Kh. Arutyunyan and his disciple Professor A.V. Manzhirov. Some of
the results of this school can be found, for instance, by Arutyunyan et al. [3], Manzhi-
rov and Chernysh [10], Manzhirov [8], Arutyunyan and Manzhirov [2], Manzhirov
[9], Manzhirov and Mikhin [11], Manzhirov and Parshin [13], Parshin [14], Parshin
[15], Kazakov and Parshin [6].

19.2 Basic Relations for the Problem Under Consideration

In Parshin [14], a mathematical model for the process of manufacturing axisymmet-
ric cylindrical products with an arbitrary wall thickness by additive methods using
viscoelastic aging isotropic materials [1] was formulated. As mechanical factors
causing deformation of the manufactured product, and already in the process of its
manufacture, the model takes into account:

1. centrifugal inertia forces caused by the rapid rotation of the (absolutely) rigid
substrate used around its axis with an arbitrary (variable) angular velocity w(z);
2. arbitrary initial circumferential stresses o, 0(p) arising in the (infinitely thin)
material layers sequentially deposited onto the (inner) surface of this substrate.



19 Regularities of Technological Residual Stress Fields Formation ... 267

Here ¢, p and ¢ indicate respectively the time, radial and circumferential coordinates
in the rotating frame of reference associated with the substrate.

Let us be interested in two, generally speaking, different programs of the substrate
rotation during the manufacture of the product in question: w (¢) and w,(¢). For these
programs, we shall have the following initial boundary value problem [14].

V-Sis+e,fiap, 1) =0 as a(t) <p <ag, t>1p;

1 trans
=2D 117,[D Di,=—(V P+ Vvo);
Si2 12 +¢11[Di>], Dy 2( Vi 1+ Vvia); (19.1)

e,-Sio=¢e,812(t) as p=a(); Vvi2=0 as p=ap;
T2 =epe,000(p) as t=1o(p).
In this problem, we use the notation consistent with the notation adopted in the

paper by Parshin [14], index i = 1, 2 for all the variables corresponds to the i-th
rotation program:

a(t) is the current radius of the inner surface of the manufactured product;
79(p) function inverse to a(t) in all intervals of strict monotony of the latter,

a(zo(p)) = p;
to initial moment of the manufacturing process;
ap initial radius of the inner surface of the manufactured product, ap = a(#);
§,- tensor of operator stress velocities, S; = dT,/dz, where
T; tensor of operator stress, T; = Qy () T;, where
o) viscoelasticity operator,
yo [
t T
Q )= — — K(t, t)dr,
¥ (1) GO Go) (t,7)

To

K, t)=G(1) %[% + Cshear (7, T)], where

K kernel of creep,
Cshear ~ Measure of creep,
G(t) elastic modulus of pure shear;

T; stress tensor;
D; tensor of strain rates;
v; velocity vector;

fi, g  are the known functions determined by the program of replenishment of the
product with additional material and the program of rotation of the substrate
during manufacture, and also by the density of the material used and its
viscoelastic and aging properties,
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fi(p, 1) = 1o Wi (1),
t

0Cshear (t, To) + 1 dy(?) /dW(T) 0Cshear(t, T) dr

Wrey ¥ (1) = ¥ (t0)

ot G(t) dr dr ot
70
(19.2)
1 da(®)| 0yp0(a(?)) 2
(1) = — . — “(t)a(t)|, where 19.3
gi(0) GO dr [ a() pw; (1) a(r) (19.3)
u is the material density;
e;(¢p) ortof a coordinate direction,
or or h
e = — —|, s=p,¢, where
S 0s as p-e
r radius-vector of an arbitrary point of the manufactured product referred to
the rotating frame;
1 tensor unit;
0] material constant depending only on the Poisson ratio;

I;[A] linear invariant of the tensor A.

Note that at each point of the additively manufactured solid under consideration,
the stress-strain state begins to develop from the moment this point is included in the
composition of the solid, that is, from the moment of time ¢ = 7y(p)

A=A@ 1, A=S,.T.T,.D. vi=vir1), 1=1).

Remark also that problem (19.1) describes the mechanical behavior of the product
in question not only during the process (including possible pauses in it), but also
for an arbitrarily long time affer the moment ¢ = fg, of final completion of additive
application of the material to the inner surface of this product, unless in those time
intervals when the product is not replenished with new material, its inner surface is
not being loaded [8].

19.3 Calculating Residual Stresses After Stopping Rotation

Suppose now that the first rotation program w (¢) corresponds to the frue change in
angular velocity during the manufacture of the product, i.e., for # < t5,, and then is
arbitrary. In particular, it can be w;(t) = @ = const for any ¢ € (¢p, +00) (note that
the constancy of w; for all ¢ > 1, including for ¢ > f4,, noticeably simplifies the
solution of corresponding problem (19.1)—see formula (19.2)).

Let the second rotation program w; (¢) coincide with the firstone at 7y < ¢ < #0p,
where fop > th, is some arbitrarily fixed moment in time. Herewith w>(¢) # w, (¢)

’
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at 1 = fyop and
wr(t) > 0 as t — +oo. (19.4)

It is clear that in the above assigned case, the residual technological stresses in
the finished product under consideration, caused by the manufacturing process in
itself and acting indefinitely at the points r of this product after the manufacturing
completion and stopping rotation, will be equal to

Ties(r) = lim To(r, t). (19.5)
t—+o0
We set the task to calculate these residual stresses under the assumptions that

3 lim o (f) = weo (19.6)
t—>—+00

and we have found the limit values

Too(r) = lim Ti(r.1) (19.7)

of the stresses corresponding to the solution of the problem (19.1);.
Define the following functions

ASZSQ—Sl, ADZDQ—Dl, AV=V2—V1,
AT=T,-T,, AT =T, T, Af = fr— fi. Ag =g — &1

Looking at (19.3), we can see that Ag(t) = 0 for all # > f. Indeed, for # < #op,
there is the identical match of the both rotation programs, i.e.,

h(t) = 03(t) — 0} () =0 as t < tyop, (19.8)

and for any ¢ > tg,, there will be da(¢)/dt = 0. By virtue of (19.2) and (19.8) we
can also declare that

Af(p,t) = o Wy(nh(@) =0 as 1 < tyop. (19.9)

For t > top, we have obviously to use the general expression
0Cshear (7, T0(P))
Weiph(t) = h(zo(p) —————
t

1 dh@) /dh(f) acshear(tvt)dr
G(t) dt dr ot

(19.10)

T0(p)
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where the first term on the right-hand side vanishes by virtue of (19.8) because
T0(0) < tin < Iyop at any point of the considered solid and consequently i (to(0)) =
0.

For further transformations, let us fix an arbitrary time instant € (tan, fstop)- Then
we can transform (19.10) into

Wfo(p)h(l) = I dh@®) f dh(7) dcshear(t, T) d

G(t) dt dr Jt

i

inasmuch A(t) =0 as T € (1o(p), £ ]. With use of the rule for differentiating an
integral with respect to a parameter and of partial integration procedure (considering
that 2 (f) = 0) we can write

a1 d [ dh(o)
WTO(P)h(t) = 7[% Cshear (2, t)i| + dr / de Cshear(t, T)dT
. dh(t) 1 d 0Cshear(t, T)
- dr I:% - Cshear(t’ t)i| + al:h(t) Cshear(t’ t) - fh( )—‘L' f]~

f

Here we have cgpear (2, ) = 0 since the creeping strain is equal to zero at the time
of load application. And so far as

dh(t) 1 zih(t) ()_—=E[M_/h(r)i 1 dri|
/ dr G(1)

dt G@) deG@) dt G@t) dt[G(@)

we get thereupon

h(t) 1 dQ;h(1)
Wemh(t) = [G(:) / ()—[G()+cshear<r r)} } -

(19.11)
forany t > f (fort € (f, fstop) Tormula (19.11) remains true because of (19.8)).
Subtract (19.1); from (19.1),. For the time interval (fo, fyop), we will have the
problem

V-AS=0 as a(t) < p <ap, fy<t < lyop;
1 ,
AS =2AD + ¢11,[AD], AD = E(VAvm““p + VAvV);

e,-AS=0 as p=a(t); Av=0 as p=ay;
AT =0 as t = 19(p).
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which obviously has the only trivial solution. Hereby
AT(r, 1) =0 as 1 € [1(p), tsop) (19.12)

including ¢ = 7. So we can formulate the following initial boundary value problem
for the A-variables in the time interval (£, +00)

~

V-AS+e, Af(p,t) =0 as amp <p <ap, t>1

1
AS =2AD + ¢1L[AD], AD = E(VAV‘“‘“Sp + VAv);

(19.13)
e,-AS=0 as p=as; Av=0 as p=ap;
AT =0 as t=1.
where ag, = a(f5,) and (considering (19.9), (19.11), and (19.8))
dQ;h(1) h(7)
Af(p,t) = e ch(t)=—==0. 19.14
flo.t) = pmp —4- Q;h(1) ) (19.14)
Taking into account (19.12) we find for t > 7
t
- AT(r, 1) AT(r, 7)
AT(r, 1) = Q) AT(r, 1) = — —K(t,1)d
(.0 = QAT = 2520 = [ SEE Dk nar

70(p)
t

_ AT(r, 1) _/ AT(r, 1)

K, t)dt = Q; AT(r, 1),

G(1) / G(1)
A,y = A1ED h_
G
Therefore,

t t
AT(r, 1) = / AS(r, t)dr, AT(r,t) = Q;I/ AS(r, T)dr.
7 f
At the same time, it follows from (19.14) that

t t

1p Qi h(r) = f Af(p.1)de, pph(t) = Q7! f Af(p. ) dr.

i
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Thus, from the differential equation of problem (19.13), we obtain the equation
V-AT +e,uph(t) =0 as as <p <ap, t> f. (19.15)

Let us introduce the following tensor- and vector-function on the entire spatial
domain which the finally manufactured cylindrical product under consideration occu-
pies

t t
Au(r,t) = / Av(r, 7)dr, AE(r,t) = / AD(r, t)dr.

7 i

Then we get the relations
1 ans
AT = Q7 '(2AE + ¢11[AE]), AE = 7 (VAU +V Au) (19.16)

from the corresponding relations of problem (19.13). And we do similarly for bound-
ary conditions in (19.13)

e, - AT =0 as p = ag; Au=0 as p=ay. (19.17)

Boundary value problem (19.15), (19.16), (19.17) represents a classical problem
(for the fixed composition deformable cylindrical solid of inner radius ag, and outer
radius ag) of the viscoelasticity theory for aging solids, with the stress tensor AT,
small strain tensor AE, and displacement vector Au, with homogeneous boundary
conditions and with the point- and time-dependent bulk forces. The correspondence
principle is well known [2] according to which the stresses AT(r, ¢) in this problem
coincide with the stresses in the corresponding classical problem of the elasticity
theory for the finally manufactured product

~

V- -AT +e,uph(t) =0 as as <p <ap, t>1;

el

1 rans
AT/G(t) = 2AE g + ¢1 [[AEy], AE, = E(VAu”‘ P4 VAugy): (19.18)

e, - AT =0 as p=as; Aug=0 as p=ap.

The time variable ¢ in boundary value problem (19.18) is considered as a param-
eter.

Subject to the definition of 4 (¢) and to conditions (19.4), (19.6), we can pass in
(19.18) to the limit when the parameter ¢ tends to +0o
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V.- AT, = epu,oa)go as agp < p < agp;
AToo/Goo = 2AEel,oo + ¢1 I [AEel,oo]:
(19.19)

el,00

1 ans
AE oo = E(VAu“ P LV AUl 0);

e, AT =0 as p = agy; Alg 0o =0 as p =ap.

Here AT (r) = lim, 1o AT(r,t) and G = lim,_, 1, G ().

Now we are ready to formulate the following result (on the basis of formula (19.5),
(19.7) and the definition of the tensor AT) the resulting residual stress field in the
technological problem in question is to be calculated as

Tres (I‘) = Too (I') + ATOO (I')

where the tensor field T (r) can be found by formula (19.7) using the solution of
nonclassical initial boundary value problem of mechanics of growing solids (19.1);,
and the tensor field ATy (r) is known after solving classical elasticity problem
(19.19).

19.4 Conclusions

In the additive manufacture of products using rapidly rotating substrates, signifi-
cant technological stresses develop in these products. After stopping the rotation
of a fully manufactured product, these stresses cannot disappear. This is due to the
incompatibility of strains in a solid made by additive growth. The resulting tech-
nological stresses in the finished product are re-formed into residual stresses. The
regularities of the stress occurrence and re-formation under specific conditions of the
technological process organization and specific rheological features of the material
mechanical behavior considered in this paper are described by the above formulated
initial boundary value problems. As a result of the conducted research, an effective
procedure has been developed for predicting the distribution of final residual stresses
that will persist indefinitely in the finished cylindrical product made of aging vis-
coelastic material after the termination of rotation, when no external influences are
acting on this product.
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Chapter 20 ®)
Two-Point Rotations in Geometry oo
of Finite Deformations

Yuri N. Radayev

Abstract The paper is devoted to a study of deformed states of continuous medium.
The study is restricted to the case when a deformed state admits a comparison to the
referential state. The latter are considered to be immersed in the three-dimensional
Euclidean space. A derivation of the two-point tensor of finite rotation and its uncon-
ventional orthogonality are discussed. One-point rotation tensors are introduced.
Both of the two one-point rotation tensors are orthogonal in the conventional sense
thus allowing to determine all geometrical characteristics related to a rotation in a
three-dimensional space. Priority in the paper is given to simple algorithmic proce-
dures for obtaining natural components of measures and tensors of finite deforma-
tions, as well as transformations of the fundamental equations of continuum mechan-
ics realized by the rotation tensors and corresponding vectors of finite rotations. The
two pseudovectors of finite rotations are defined and are to be employed, along with
the pseudovectors of the “extra” rotations, as the principal kinematic parameters in
mathematical models of micropolar elastic continuum.

Keywords Finite deformation -+ Distortion - Two-point rotation tensor -
Conventional orthogonality + Unconventional orthogonality - Finite rotation
pseudovector + Micropolar continuum

20.1 Requisite Notions and Equations

Deformation of continuous media is recognized by the change in the mutual dis-
tances between the spatial positions of the material points, chosen for observation,
measured in the referential and the actual (deformed) states. The spatial positions
of these points are characterized by coordinates (generally speaking, curvilinear):
X in the reference position and x* in the actual one. Therefore, the deformation is
a differentiable transformation of variables (the Lagrangian referential to the Eule-
rian spatial):
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X% —> x°. (20.1)

Since deformation manifests itself as a change in the metric characteristics of
continuum, in the theory of finite deformations, it is then necessary to compare the
referential ‘g,, and the convective g,, metrics. The spatial metric is denoted by
8rs- We systematically employ Latin indices in order to refer to spatial components
of geometrical objects, whereas Greek indices to point on convective components
(only a few instances can be found in the present study) or referential components
(additionally, root symbol is sometimes supplied by backprime).

In the following, tensors (including two-point tensors, see [1]) will always be
considered with respect to one of two tensor bases (or a suitable combination of
them in the case of a two-point tensor): referential or spatial.

We proceed to the notion of the reciprocal description of finite deformation. It is
now well established that also acceptable to describe the deformation by the inverse
with respect to (20.1) transformation:

X% «— x°. (20.2)

In such a case, we talk about the inverse description of finite deformation. Both
descriptions of deformation are absolutely equivalent although the first of them is
given a priority. In order to emphasize the equivalence of the two mathematical
descriptions of finite deformation, we write

X% «— x°. (20.3)

In nonlinear continuum mechanics, the two-point distortion tensor is determined
by partial differentiations of the Eulerian coordinates by the Lagrangian coordinates.
Denoting by 9, operators of partial differentiations by variables X%, we define the
components of the distortion tensor according to

0,x" (a,s=1,2,3). (20.4)
For the distortion tensor (20.4), we will also employ a more compact notation:
X2 =0,x"  (a,s=1,2,3).
In the inverse description of deformation, operating with the inverse distortion
tensor
9, X%  (a,s=1,2,3). (20.5)
is required. For the inverse distortion tensor, in turn, the notation
X7 =0X* (a,5=1,2,3).

is introduced.
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The polar Cauchy decomposition of the two-point distortion tensor (20.4) has
two reciprocal forms. This fact is of crucial importance for the entire theory of finite
deformations since it is based on the principle of reciprocity: any tensor field with
referential Lagrangian indices can always be correlated with a reciprocal (dual) tensor
field with Eulerian spatial indices. The principle of reciprocity is then applied to the
straightforward classification of strain measures and strain tensors.

At first, let us consider the polar decomposition of distortion in the form

aaxs = |x|aa)\sav (206)

where | x|y, is the distortion modulus, A*? is the tensor of finite rotation (or rotation
tensor).

The distortion modulus is a one-point absolute second rank symmetric tensor. It
is positive, i.e., the eigenvalues |x|) (¢ = 1, 2, 3) are positive.

The rotation tensor is a two-point second rank tensor. It can be characterized by
the following equations of “two-point orthogonality”:

Moo =8, A% =65, (20.7)
The reciprocal to (20.6) variant of polar decomposition reads

0ax* = 151" Ma, (20.8)

wherein |x|** is the reciprocal distortion modulus.
It is not difficult to notice that the reciprocal distortion modulus is obtained from
the original one by raising the lower Greek indices by means of finite rotation tensors

X% = |x|go A%42K (20.9)

In fact, the rotation tensor A°? acts in nonlinear continuum mechanics as a simple
mean for transforming Greek indices into Latin ones. A remarkable Eq. (20.9) just
reflects such an opportunity provided by the two-point rotation tensor A5

20.2 Pairs of Reciprocal Deformation and Strain Tensors

The geometry of finite deformations is thoroughly described in a number of classical
monographs (see, for example, [1-5]). Now, we proceed to discussion of the based
on the principle of reciprocity classification of measures and tensors known from
the theory of finite deformations. All tensors related to measurements of finite defor-
mations are one-point, have the second rank, and are determined by their natural
components in tensor bases formed by dyadic products of local vectors of referential
or spatial coordinate trihedra.
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For measures of finite deformation, we have the following three pairs of recip-
rocal tensors (the algebraic powers of a tensor are situated above the root symbol;
conventional symbols and terminology are used):

The 1st pair:

Ugp = |x]ap the right Biot stretch tensor
Vik = |x|ik the left Biot stretch tensor

The 2nd pair:

2 .
Cop =Uqp = gup = X, ka 8ik the right Cauchy—Green deformation tensor

. 2, .
Bk = yik = xi xb’“ g the left Cauchy—Green deformation tensor
or the Finger deformation tensor

The 3rd pair:

-1

C =gksx &X ;ﬁ the Finger deformation tensor

-1

Bk = cix = ‘gupX;* X)(ﬂ the Cauchy (Finger, Piola) deformation tensor

The three most widely used pairs of reciprocal finite strain tensors of continuum
mechanics are given below:

The 1st pair:

Yap = Uap — ‘gap the Biot strain tensor

pik = vik _ gtk the Almansi—Hamel strain tensor

The 2nd pair:

1
Eaqp = 7 (Cap —8ap) the Green—Lagrange (Green—St-Venant) strain tensor

. 1 . .
bk = E(Blk — g™ no known conventional terminology

The 3rd pair:

1 -1
AYP — 3 (‘g — C*P) the Almansi strain tensor

1
aix = E(g;k — Bir) the Euler—Almansi strain tensor

Note that the components of strain and deformation tensors with Greek indices
are invariant under rotations of local spatial coordinate trihedra (and in this sense
they are objective); in turn, the components of strain tensors with Latin indices are
invariant under rotations of local referential coordinate trihedra. It is clear that the
two-point finite rotation tensor A*? does not have any of these properties.
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It should be noted that the covariant components of the right Cauchy—Green
deformation tensor are the same that the components of the convective metric tensor.
Simple reasoning allows us to demonstrate that

q ok
8ap = xalxﬂ 8ik = \gy(r |x|ay|x|ﬂav
and to come to the reciprocal equation

q ok 1) k
xaxi g% = gilx|"x[®.

20.3 Unconventional Orthogonality of the Two-point
Rotation Tensor

In view of (20.9) the two-point tensor of the finite rotation A*” determines the rota-
tion of the principal axes of deformation in the referential state to their new spatial
orientations. In the referential state, the corresponding trihedron consists of mutually
orthogonal eigenvectors of the tensor |x|.g. The new spatial orientations are deter-
mined by mutually orthogonal eigenvectors of the reciprocal distortion modulus |x|*.
Translations of the spatial and referential coordinates do not affect the distortion. The
same is true for the distortion modulus and reciprocal distortion modulus. However,
rotations of the local coordinate frame (referential or spatial) affect the distortion.

We proceed to discussion of the metric properties of the rotation tensor A*?. As
in the case of transformation (20.9), the rotation tensor A*° allows us to transform
Latin indices into Greek ones for components of the referential and spatial metrics.
Namely, it is not difficult to see that the following equation is valid

gij)hiﬁ)hjj/ = \gﬁ)/ (2010)
along with the reciprocal equation
‘g, MPATY = gl (20.11)

The pair of Egs. (20.10) and (20.11) establishes that an arbitrary referential vector
‘pg is transformed into the spatial vector p' determined by

p=1Ppg (20.12)

and having exactly the same length as ‘pg, while the lengths of the corresponding
vectors are measured based on the referential and spatial metrics, respectively. The
formulated property leads to the following conclusions: The rotation tensor A°” can be
called as unconventionally orthogonal; the transformation (20.12) can be interpreted
as a rotation in three-dimensional space.
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In applications of continuum mechanics to micropolar elasticity, the two-point
unconventionally orthogonal tensor of finite rotation A*? is not convenient since the
rich arsenal of the linear algebra techniques cannot be directly applied to it. Therefore,
there is a need to pass from A*? to a one-point orthogonal rotation tensor.

An orthogonal second rank tensor o’/ is conventionally defined by the fundamental
relation

or the equivalent pair of equations
ai-iakj = S,i, ai'iaik = 8,5
In a three-dimensional space, a proper orthogonal tensor o’/ is completely deter-
mined by the spatial axis of rotation (directed along the unit vector ¢, c*c; = 1) and
the angle of rotation 6. In geometric terms of ¢; and 6, a proper orthogonal tensor
can be represented as follows:
o =cosfg” + (1 —cos@)c'c! — sinBe*ey, (20.13)

where ¢'/% is the discriminant tensor. In (20.13) the first and the second terms give
the symmetric part of «'/, whereas the third term—the skewsymmetric part:

a® = cos Qgij + (1 —cosO)c'c!, o= —sin Qeijkck.

The unit spatial director ¢, is the eigenvector of o/ corresponding to the real
eigenvalue +1:

aVc; =c'.
It can be obtained in the form
1 y
_ [ij]
= — e,
KT T 2sing

The rotation angle 6 can be found from the equation
2cosf = gial,
demonstrating that this angle is determined by the symmetric part of the in general
asymmetric conventional orthogonal tensor «'/.
In micropolar theories of continuum mechanics, it is much more convenient to

operate with the modulated rotation vector

Ck =sin6 Ck.
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20.4 Conventionally Orthogonal Finite Rotation Tensors.
Finite Rotation Pseudovectors

Taking into consideration the discussion of Sect.20.3, we now define two conven-
tionally orthogonal tensors determined by the rotation of the principal axes of defor-
mation.

At this aim, it is convenient to start from the two-point g-symbols introduced as
the scalar products of the local base vectors {LT (or ‘7) and g (or ;) of the referential

and spatial coordinate frames. As an example, we write down two of them:

o \& -k \ k
8 =t-t, g, = L-L
K o

The g-symbols have a number of remarkable properties. For example, it is easily
verified that

g g ="g""gs. (20.14)

In addition, the following reciprocal relations are valid

\

8% =gjs8i8l.
git = '8ou8’ 8"

The reciprocal one-point rotation tensors can be introduced in continuum mechan-
ics by the aid of g-symbols according to

A =gk, A =g A (20.15)

First of them is called as Lagrangian rotation tensor, while the second—Eulerian.

Both of the one-point tensors (20.15) satisfy the conventional orthogonality con-
ditions. Both are characterized by the same rotation angle since their first principal
invariants are the same:

"Qaph ="gapgi W = "gupis 8% 85 = gusgs M = gush®.

The spatial modulated rotation vector A; can be obtained from the one-point
rotation tensor A% as .
A= —Ee,,-k)\[fk]. (20.16)

The following two new rotation pseudovectors (of weights —1 and 41 are derived
from the modulated rotation vector (20.16):

[-1] 1 i
A] = _Eelik)‘-[l ], (2017)
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[+1] 1 ..
A = ——€ltkyy (20.18)
) [ik]s .

where €, €'™* are the alternating symbols (the covariant alternating symbol is of

weight —1, the contravariant alternating symbol is of weight +1).
Thus, the absolute vector and the two pseudovectors can be associated with a
finite instantaneous rotation of the deformation principal axes trihedron:

-1 [+1]
A, AjorAD, Al

We conclude this section by relations among the rotation vector and pseudovec-
tors. The most remarkable relations are as follows:

-1 A, (=11
A= 2L AT = B2glA,
E
where E is the fundamental orienting pseudoscalar, defined as the triple product of
the covariant base vectors
X

E=€~( ).

l l
2 3

20.5 Final Remarks and Conclusions

The vector and pseudovectors of rotation and “extra” rotation can be considered as
the most important kinematic parameters of mathematical models of micropolar elas-
ticity (see [6]). The micropolar continuum theories are still rapidly developing due to
their numerous applications to mechanics of granular media, fibrous materials, and
honeycomb structures. Hemitropic micropolar mechanical properties are inherent in
biomaterials sensitive to mirror reflections of their physical states.

The equations of the micropolar theory of elasticity are known from numerous pre-
vious discussions. A derivation of the covariant linear theory of micropolar elasticity,
based on the principle of virtual displacements and virtual microrotations combined
with the Lagrange multipliers rule, is given in the paper [7].

In micropolar continuum, rotation of an elementary volume consists of a rota-
tion of principal axes of deformation and an “extra” rotation, which is determined
by a kinematically “independent” rotation vector. The “extra” rotation reflects the
presence of a microstructure. In simple models of the micropolar elasticity, the
microstructure manifests itself by a characteristic microlength and the three other
physically dimensionless constitutive constants. In pseudotensor formulations of the
micropolar elasticity, the characteristic microlength can be treated as a pseudoscalar
of the negative weight —1.

Introduced in Sect. 20.4 the modulated rotation pseudovectors do not change their
components after reflections of the local coordinate frame. They are associated in
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the simplest way with skewsymmetric parts of conventionally orthogonal absolute
rotation tensor.

The final conclusion we give as the following statement: In developments of
micropolar continuum theories, the absolute microrotation vector is conventionally
used (see [6] as an example); developments of micropolar continuum models sensitive
to mirror reflections of physical states (as for hemitropic elastic continuum) require
operating with modulated microrotation pseudovectors: covariant pseudovector of
weight —1 or contravariant pseudovector of weight +1.
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Chapter 21 )
Quadrature Formulas for Integrals Gzt
with a Weak Singularity in the Kernel

and a Weight Function of Jacobi

Polynomials with Complex Exponents

Avetik V. Sahakyan and Harutyun A. Amirjanyan

Abstract Quadrature formulas are presented for integrals with a logarithmic singu-
larity and with a sign function, containing the weight function of Jacobi orthogonal
polynomials, the exponents of which can be complex numbers with a real part greater
than minus one. The latter are remarkable in that they have the same structure as
the quadrature formulas for singular and regular integrals and can be used to solve
singular integral equations that also contain terms with a weak singularity. Formulas
for calculating the integral with a logarithm at an arbitrary point of the complex
plane are also presented, and by numerical analysis, the area around the interval is
outlined, outside of which this integral, with a certain degree of accuracy, can also
be calculated using the quadrature formula for smooth functions.

Keywords Quadrature formula - Weight function + Jacobi polynomials - Complex
exponents * Logarithmic singularity - Signum function

21.1 Introduction

It is known that many problems of mathematical physics and, in particular, of
continuum mechanics are reduced to solving singular integral equations. The most
effective methods for solving such equations are direct integration methods, among
which the mechanical quadrature method occupies a special place, since it takes into
account the behavior of the solution at the ends of the integration interval. There
are a huge number of works devoted to the development of methods for calculating
singular integrals and solving singular integral equations. Among them, we note only
the following monographs [1-10]. Most of the papers refer to the case when the expo-
nents of the weight function are equal to £0.5. The number of papers in which the
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exponents of the weight function are real numbers different from +0.5, or they are
complex numbers, is significantly smaller. Among such works, the following works
[11-21] can be noted. Much less attention has been paid to integrals and integral
equations with a weak singularity, for example, a logarithmic one [22-27]. Perhaps
this is a consequence of the fact that in plane problems of elasticity theory, equations
with a logarithmic singularity, as a rule, are reduced to singular integral equations.
However, in axisymmetric problems of the theory of elasticity, there are singular
integral equations that also contain integrals with a logarithm and a signum function.

In this paper, we derive quadrature formulas for integrals containing a weak singu-
larity of the type of a logarithmic function or a signum function together with the
weight function of Jacobi polynomials.

21.2 Quadrature Formula for an Integral
with a Logarithmic Singularity

Let us consider the integral

1

Ji(2) =f1n : pX)w(x)dx (21.1.1)
X —z
-1

Here, ¢(x) is a function that satisfies the Holder condition along the interval [—1, 1],
and w(x) is a weight function d