Chapter 2)
Variability Implementation and Sheghie
UML-Based Software Product Lines

Ana Paula Allian, Elisa Yumi Nakagawa, Jabier Martinez,
Wesley Klewerton Guez Assuncio, and Edson OliveiraJr

Abstract Variability makes it possible to easily change and adapt software systems
for specific contexts in a preplanned manner. It has been considered in several
research topics, including self-adaptive systems, large-scale enterprise systems, and
system-of-systems, and was mainly consolidated by the Software Product Line
(SPL) engineering. SPL manages a common platform for developing a family of
products with reduced time to market, better quality, and lower cost. Variability in
the SPL must be clearly identified, modeled, evaluated, and instantiated. Despite
the advances in this field, managing the variability of systems is still challenging
for building software-intensive product families. One difficulty is that the software
architecture, the cornerstone of any design process, is usually defined with notations
and languages lacking accurate forms to describe the variability concerns of
software systems. Hence, in this chapter, we analyze approaches used for describing
software variability in SPL, paying special attention to the architecture.

A. P. Allian (?<) - E. Y. Nakagawa
Department of Computer Systems, University of Sdo Paulo, Sdo Carlos, Brazil
e-mail: ana.allian@usp.br; elisa@icmc.usp.br

J. Martinez
Tecnalia, Basque Research and Technology Alliance, Derio, Spain
e-mail: jabier.martinez@tecnalia.com

W. K. G. Assung¢do
ISSE, Johannes Kepler University Linz, Linz, Austria

OPUS, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: wesley.assuncao@jku.at

E. Oliveiralr
Informatics Department, State University of Maringd, Maringd, Parand, Brazil
e-mail: edson@din.uem.br

© Springer Nature Switzerland AG 2023 27
E. Oliveiralr (ed), UML-Based Software Product Line Engineering with SMarty,
https://doi.org/10.1007/978-3-031-18556-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18556-4_2&domain=pdf

 66 3267
a 66 3267 a

mailto:ana.allian@usp.br

 615 3267 a 615 3267 a

mailto:elisa@icmc.usp.br

 66 3558 a 66
3558 a

mailto:jabier.martinez@tecnalia.com

 66 3973 a 66 3973 a

mailto:wesley.assuncao@jku.at

 66 4263 a 66 4263 a

mailto:edson@din.uem.br

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-18556-4_2

28 A. P. Allian et al.
2.1 Introduction

Variability is a mechanism that allows a system, software asset, or development
environment to be configured, customized, or changed for use in a specific domain
in a preplanned manner [11]. This mechanism enables the mass customization of
software products, which is the basis for creating Software Product Lines (SPL) [9,
26]. An advantage of managing variability is to bring flexibility when constructing
families of software systems. For example, variability allows engineers to delay
design decisions to later stages during the software development process by using
mechanisms to define in which moment concrete design choices are bound to the
software products (i.e., binding times) [10, 21, 49].

In a broader view, variability is described by three pieces of information: (i) vari-
ation point occurs in generic SPL artifacts, allowing the resolution of its variability
in one or several locations through its associated variants; (i) variants' represent
software artifacts or possible elements, which can be chosen and resolved through
a variation point; and (iii) constraints establish the relationships between two or
more variants to resolve their respective points of variation [21, 29]. Once variability
is described in an SPL, the configuration of valid products (i.e., configurations) is
defined by resolving all variation points using available variants, taking into account
existing constraints. As mentioned above, the resolution of variability can be in
different binding times, as for example, at design time, compilation time, or runtime.

Variability involves all life cycle phases of a system development through the
identification, modeling, derivation, and evaluation of variation points and variants
to create specific products in an SPL [9]. Variability can then be associated
with different levels of abstraction associated with different stages of software
development [29, 39], for instance, at requirements level, architecture description,
design documentation, source code, compiled code, linked code, or even executable
code. In addition, variability can be initially identified through the concept of feature
that can be defined as a characteristic of a system that is relevant and visible to end
users [4, 26, 39]. Once the set of desired features for an SPL is established, the design
of how features are configured to create products is done by defining variation points
(i.e., where a feature can vary) and the variants (i.e., which are the alternatives that
can be selected for a variation point).

This chapter is structured as follows. Section 2.2 presents the basics for how
to model and implement variability. Given the relevance in the topic of the book,
Sect. 2.3 focuses on UML-based SPL. Then, Sect.2.4 presents a discussion, and
Sect. 2.5 concludes this chapter with a summary and future directions.

I For clarification, sometimes the term “variants” is also used to refer to members of a system
family (i.e., the whole product variant), as an alternative to the term “products.”

2 Variability Implementation and UML-Based Software Product Lines 29
2.2 Implementing Variability

This section describes key concepts for implementing variability. Notably, a family
of software products can be developed by properly specifying two dimensions of
decomposition, known as variability in problem space and variability in solution
space. Sections 2.2.1 and 2.2.2 present the variability in the problem space and
solution space, respectively. Section 2.2.3 discusses existing tooling support.

2.2.1 Variability in the Problem Space

Variability in problem space refers to identifying features that may vary to express
different products during domain analysis. Domain analysis assumes the existence
of an SPL infrastructure to identify variations and features that may vary according
to the needs of market segments or business goals [11]. Two main techniques to
support domain analysis are:

* Questionnaire-based analysis: it is based on surveys, questions, and meetings
with domain experts aiming to identify what can vary in SPL. Questions are
used to support the identification of variability: “what does it vary?” is used for
identifying variation points; “why does it vary?” and “how does it vary?” are
used for identifying variants. Extending the questions proposed in [44], Milani
et al. [36] developed a framework to identify and classify variation drivers in
the business architecture layer based on w-questions (how, what, where, who,
and when). The variability elicitation starts with identifying branching points
(variation points) from the business process model. Each branching point is
classified as a decision or as a variation point. When a variation point is identified,
the analysis goes to identifying variation drivers (variants) with the support of w-
questions. This activity must be repeated for each branching point of the process
models; however, an architectural process must be given as input.

* Scenario-based analysis: it supports the identification of risks by analyzing
anticipated changes to be made in the software systems and architectures; as
a consequence, it results in suitable mitigation actions introduced before the
software system is completely designed. Park et al. [41], Moon et al. [37], Pohl et
al. [44], Weiss et al. [52], Meekel et al. [34], Tekinerdogan and Aksit [50], Kim
et al. [27], and Bayer et al. [7, 8] proposed solutions to identify variability in
Product Line Architectures (PLAs) through scenario-based analysis. The process
starts with the detection of goals, and a scenario composed of one or more actions
is created for each goal with purposeful interactions. Then, a feature is attached to
scenario actions, which guide the identification of domain requirements, actors,
and variability during the requirements elicitation analysis.

30 A. P. Allian et al.

Several notations exist to capture the configuration space defined through the
domain analysis, as the well-established ones listed below:

* Feature modeling: Feature models offer a formal way to describe variability
by defining features and their dependencies [26]. The two main components of
a feature model are features and relationships. Variability is described using a
hierarchical decomposition of features connected between each other that yields
a tree-like structure. Figure 2.1 presents an example of a feature model with eight
features connected through different relationships [46].

* Decision modeling: Decision models focus on capturing variability in the form
of a set of requirements and engineering decisions that are mandatory to describe
and construct a product [17]. Additionally, these models enable to determine the
extent of possible variation among desired products of the domain [49]. Decision
models are usually represented using tables or spreadsheets. Figure 2.2 illustrates
a decision model [49].

* Orthogonal variability modeling: Orthogonal variability models (OVMs) are
based on a language that defines the variability of products using a cross-sectional
view across all product line artifacts [44]. For example, OVM allows modeling
variability by interrelating base models such as requirement models, design

Mandatory
Optional
Alternative
Or
Requires
Excludes
Fig. 2.1 Example of feature model, extracted from [46]
Example of a decision model
Name Relevance Description Range Selection Constraints Binding Times
Memory System_Mem Does the TRUE, 1 Compile
= True system have ~ FALSE Time
memory?
Memory_Size The amount 0..100.000 1 Memory=TRUE Installation,
of memory => Memory_Size System
the system >0 Initialisation
has (KB)
Time_Measure- How is time ~ Hardware, 1 Compile
ment measurement Software Time
done?

Fig. 2.2 Example of decision model, extracted from [49]

2 Variability Implementation and UML-Based Software Product Lines 31

OVM
\\\ AN
VANt PRSI
A RN ”, ’ LN
NN S o 2z ra AY
~ ~o . 7 N
‘\ AN S P Pl “ A
‘\ s \\\ T J/ ‘\ A
. N S< S
A \\ ,’ S N
Base Models ', AR BTSN v K
.M N .
\‘ :\,, \\\ 'l \\\\ ‘i \\
TN L 3
Requirements Architecture Components Test artefacts

Fig. 2.3 Illustration of an orthogonal variability model, extracted from [46]

models, component models, and test models, as illustrated in Fig.2.3. These
dependencies among base models and OVM enable traceability to support the
SPL engineering [35].

2.2.2 Variability in the Solution Space

Variability in the solution space describes the representation of features that are
used to realize the problem space. Different approaches can describe variability
in the solution space, mostly depending on the artifacts type. Existing approaches
are classified mainly into two categories [48]: (i) negative variability considers
one model for all products (also known as 150% models) with variant information
determining which model elements are present in which products or features, and
(i) positive variability associates model fragments to features and composes them
for a given feature configuration. Negative and positive variability can be used with
any artifact during the SPL development, including hybrid approaches; however, in
this chapter, we focus on the main approaches to deal with source code and design
models.

Variability in source code. There are two main approaches to describe variability
in the source code, namely, annotative or compositional:

* Annotative approach: This negative variability approach is based on annotative
directives used to indicate pieces of code that should be compiled/included or
not based on the value of variables [24]. The pieces of code can be marked at
the granularity of a single line of code or to a whole file. Feature toggling is also

32 A. P. Allian et al.

public final class DiagramFactory {
private DiagramFactory() {
super();
diagramClasses.put(DiagramType.Class, UMLClassDiagram.class);

e ~CCAC
= JSECAS

ae

diagramClasses.put(DiagramType.UseCase, UMLUseCaseDiagram.class);

.State, UMLStateDiagram.class);

.Deployment, UMLDeploymentDiagram.class);

A\GRAM)
RA/S

.Collaboration, UMLCollaborationDiagram.class);
.Activity, UMLActivityDiagram.class);

.Sequence, UMLSequenceDiagram.class);

Fig. 2.4 Example of variability management with annotative directives (extracted from [38])

a used annotative approach [32] where there is no need for specific variability
management libraries, as the annotations are based on the standard if clauses of
the target programming language. Variability annotations have long been used in
programming languages like C but can also be used in object-oriented languages,
such as C++ [24] and Java [38]. Figure 2.4 presents a code snippet illustrating
the use of preprocessor directives in ArgoUML-SPL [38]. The preprocessor
directives //#1f and //#endif are applied to indicate the beginning and end
of each line of code belonging to a specific feature.

* Compositional approach: This positive variability approach is based on the
addition of implementation fragments in specified places of a system [4]. The
compositional approach enables SPL engineers to define separated reusable
assets composed during derivation when features are selected. A widely known
implementation is the superimposition approach [3]. The code snippet in Fig. 2.5
was extracted from Gruntfile,”> which is another solution used to compose
products implemented in JavaScript. The modules in the figure have a name and
are followed by a brief description, if they are optional or not, and if they are
replaceable by a stub version. During the building process, developers are able to
define which modules they would like to exclude from their build.

2 https://gruntjs.com/sample- gruntfile.

 -108 4378 a -108
4378 a

https://gruntjs.com/sample-gruntfile

2 Variability Implementation and UML-Based Software Product Lines 33

var modules = {

'intro': { 'description': 'Phaser UMD wrapper',
'optional': true, 'stub': false },
'phaser': { 'description': 'Phaser Globals',

'optional’': false, 'stub': false },
‘geom': { 'description': 'Geometry Classes',
'optional': false, 'stub': false },
‘core': { 'description': 'Phaser Core',
'optional': false, 'stub': false },
"input’': { 'description': 'Input Manager + Mouse and Touch
Support', ‘'optional': false, 'stub': false },
'gamepad ' : { 'description': 'Gamepad Input',
‘optional': true, 'stub': false },
'keyboard': { 'description': 'Keyboard Input',
‘optional': true, ‘stub': false },
'components': { 'description’': 'Game Object Components',
‘optional': false, 'stub': false },
'gameobjects': { 'description': 'Core Game Objects',
'optional': false, 'stub': false },
'bitmapdata’: { 'description’': 'BitmapData Game Object',
'optional': true, 'stub': false },
'graphics': { 'description': 'Graphics and PIXI Mask Support',
‘optional': true, 'stub': false },
'rendertexture':{ 'description': 'RenderTexture Game Object',
‘optional': true, ‘stub': false },
et s { 'description': 'Text Game Object (inc. Web

Support)', ‘optional': true, 'stub': false },
'bitmaptext': { 'description': 'BitmapText Game Object',

‘optional': true, 'stub': false },
‘retrofont’': { 'description': 'Retro Fonts Game Object',

‘optional': true, ‘'stub': false },

i

Fig. 2.5 Example of variability management with compositional approach (extracted from [38])

Variability in design models. Most approaches to represent variability in design
models are UML-based, ADL-based, and domain-specific [2]. Following, we
present an overview of these approaches:

* UML-based approaches: They describe variability in software systems based
on UML properties, such as stereotypes and inheritance. Different UML-based
approaches have been developed to model variability in SPL. These approaches
usually describe a metamodel where inheritance associations are represented
as variants, and variability relationship properties are expressed as a Boolean
formula.

e ADL-based approaches: They describe variability using code and formal
representation, supporting the variability’s evolution and automatic formal anal-
ysis. An example of an ADL-based approach is FX-MAN [14], a component
model that incorporates variation points and composition mechanisms to handle
variability in PLAs. EAST-ADL [28] is focused on a formal architecture

34

A. P. Allian et al.

description and offers a complete feature model technique to represent variability
in embedded system domains (automotive electronic systems). ADLARS [5], an
architecture description language, captures variability information from feature
models and links them to architecture structure using keyword descriptions.
ArchStudio4 [16] is an open-source tool that implements an environment of
integrated tools for modeling, visualizing, analyzing, and implementing software
and systems architectures. For variability management, ArchStudio has a tool
called product line selector with a user interface that enables graphically invoking
the Selector, Pruner, and Version Pruner components. Hence, product architec-
ture can be derived from a PLA automatically selected based on user-specified
variable-value bindings. Finally, xLineMapper [15] is an Eclipse-based toolset to
manage the relationships automatically (e.g., traceability, conformance) among
product line features, architecture, and source code.

Domain-specific approaches: They provide specific constructs and other tech-
niques that complement UML and ADL notations. For example, Common
Variability Language (CVL) models variability in architecture with metamodels
combining representation of variability with its resolution [19]. The Variability
Modeling Language (VML) represents variation points, features, constraints, and
variants as entities in a textual language format. VML links the features in the
feature model to architectural elements (e.g., components and compositions) by
allowing features to be selected for specific variation points [31]. Alternatives to
CVL are KCVL and BVR. KCVL? is bundled as a set of Eclipse plugins with a
basic implementation of the OMG CVL with several additional features, namely,
a textual editor for expressing variability abstraction models, variability real-
ization models, and resolution models. Base Variability Resolution (BVR) [51]
is a tool bundle to support SPL engineering and implements a language with
advanced concepts for feature modeling, reuse, and realization of components
in SPL. BVR covers design, implementation, and quality assurance to close the
development cycle.

2.2.3 SPL Variability Tools

For nearly 30 years, industry and academia have proposed many variability tools to

cope with the complexity of modeling variability in SPL [23]. Much research effort
and investment have been already devoted to investigating, developing, and making
available these tools [6, 30, 43].

Most tools represent variability with a graphical representation of features using

feature-oriented domain analysis (FODA) [26] and its extensions. Examples of such

tools are pure::variants, FeatureIDE, SPLOT, fmp, Clafer, GEARS, Fama, CVL,
Hephaestus, CaptainFeature, PlugSPL, EASy-Producer, FW Profile, PREEVision,

3 https://diverse-project.github.io/kevl/.

 -108 4378 a -108
4378 a

https://diverse-project.github.io/kcvl/

2 Variability Implementation and UML-Based Software Product Lines 35

Kconfig, and TypeChef [6]. Commercial tools like pure::variants and GEARS and
open-source tools like FeatureIDE, CVL, and PLUM provide integration support
to different tools to encompass more variability management functionalities. Some
practitioners from the industry claimed that some tools fail to integrate with new
technologies, including cloud and mobile applications. They stated the need for an
independent application with graphical editors apart from Eclipse-based plugins.

The main concern to adopting feature models instead of UML on these tools
is related to the graphical representation. UML suffers from low expressiveness
to represent detailed variability concerns due to visualization to handle large
variability models with multiple dependencies among them. Scalability has been a
big challenge when considering millions of features (and variants) in the variability
model. Ways to improve such scalability and usability of tools concerning adequate
model visualization are still open research issues.

2.3 Overview of UML-Based SPL

Over the last three decades, the SPL community has witnessed a significant
evolution from traditional feature-based model representation such as FODA [26] to
more sophisticated languages to represent and configure variability to derive distinct
products. UML is the most well-known and easier notation for modeling software
systems [25] and has also been widely adopted to model variability in SPL [45].
UML can be easily extended in standardized ways; hence, generic UML models
can be used to describe variability.

Some initiatives have been proposed based on the possibility of extending UML
to describe variability. Ziadi et al. [53, 54] leveraged the idea that UML models
can be considered reference models from which product models can be derived and
created. Based on that, those authors proposed using UML extension mechanisms
to specify product line variability in UML class diagrams and sequence diagrams.
Basically, Ziadi et al. introduced two types of variability using stereotypes: (i)
optionality, which indicates that a UML element is optional for the SPL. members,
represented by «optionals, and (ii) variation, in which a variation point will
be defined by an abstract class stereotyped «variation» and a set of subclasses
stereotyped «variant». Figure 2.6 presents an example of a camera SPL with the
proposed stereotypes.

Other UML-based approaches have been developed to model variability in SPL.
ClauB [13] describes a metamodel where inheritance associations are represented as
variants, and variability relationship properties are expressed as a Boolean formula
(i.e., (component 1) XOR (component 2)). Pascual et al. [42] also made use of
inheritance associations and included the use of cardinality properties to represent
variability (i.e., Optional (0..*), alternatives (1..*)). Albassam and Gomaa [1, 18]
introduced the Product Line UML-based Software (PLUS) method, an extension of
UML to explicitly model variability and commonality in PLAs. VarSOAML [12] is
another UML extension that allows modeling variability in services architectures.

36 A. P. Allian et al.

<<variation>> I Display
Interface PY Camera >——— |
1 1
Switch_on() 191 Write()
Capture() 1 ShowPic()
Recall()
Info()
1 1 L :
4& - ‘ImageFormats
<<optional>> Sensor Memory
Compressor °
Compress() Start_capture() Store_data()
<<variant>> <<variant>> <<variant>> Decompress() Recall()
Interface 1 Interface 2 interface 3

Fig. 2.6 Class diagram of a camera SPL with Ziadi et al. stereotypes, extracted from [53]

VxUML [22] models variability in architecture using many properties extracted
from UML notation (i.e., stereotypes, diagrams, inheritance). Systems Modeling
Language (SysML) is based on UML and can represent variability by combining
SysML block diagrams with variants in the variability model. Ortiz et al. [40]
present an example of a study that addresses variability with SysML. It uses thick
lines to represent mandatory elements and dotted lines to represent variability
elements. Guessi et al. [20] show a regular notation for SysML where optional
blocks are represented with bold lines and fonts. This notation can be used to
describe reference architectures and facilitate the identification of variable elements.

One of the main benefits of specifying variability in UML-based approaches is
the usability for stakeholders. One disadvantage is the poor scalability of UML
models when the number of variants increases [11] and the poor derivation process
of variability models from UML notations to code. Besides that, maintaining the
variability model embedded with UML constructs is hard when we add or remove
variants and their corresponding constraints [11]. Therefore, expressing variability
with UML must count on several UML diagrams, including use case, class,
activity, components, and sequence diagrams. The Stereotype-based Management of
Variability (SMarty), presented further in Chap. 4, explores various UML diagrams
to provide a broader view of variability in SPL [39].

2.4 Discussion

This chapter summarizes the main approaches proposed to handle variability,
considering its identification and representation. Most approaches for variability
identification focus on SPL and were proposed in academic contexts. Domain
analysis is a key process for eliciting reusable assets for SPL. Many domain analysis
approaches depend on SPL infrastructure and experience from stakeholders for
identifying variability and commonalities. In general, the list of features (different
characteristics of a given system and relations among them) identified during the

2 Variability Implementation and UML-Based Software Product Lines 37

domain analysis are further modeled with feature models. Domain analysis encom-
passes many activities to guide stakeholders during the identification of variability in
SPL, and some activities might be helpful at different architectural levels, including
enterprise architecture, software architecture, and reference architecture. However,
these architectures are often designed without explicitly considering information
about variability. A crucial cause of this problem is that the variability information
exists as tacit knowledge in architects’ minds, and it is rarely documented explicitly
[33, 47]. Although UML-based approaches are easy to understand, their limitations
in terms of visualization and scalability to describe large variability models are
major drawbacks. There is still a lack of a unique variability modeling solution
that various variability modeling tools could adopt. Apart from this, the inability
of graphical representations and the fact that most domain-specific languages lack
support for runtime concerns or dynamic variability are another drawbacks of the
existing approaches. New notations are needed to handle the changes in variability
models at a post-deployment time. For the future, we believe more effort must be put
into interoperability concerns among the existing tools and languages to facilitate a
smooth transition from variability models to implementation and from configuration
to derivation process where the variability is realized.

2.5 Final Remarks

This chapter provided a general view of existing approaches to handle variability
in SPL. Such approaches offer important advantages for software development,
as efforts for introducing variability in the architecture are reduced, and the
reusability of architectural elements is improved. UML-based approaches simplify
the variability representation through stereotypes and inheritance mechanisms,
whereas ADL-, CVL-, and VML-based approaches, combined with tools, provide
better support for configuration and runtime derivation capabilities.

Variability in SPL lacks a support tool capable of fully handling variability from
identification, representation, and evaluation of variability and also derivation of
concrete architectures. To improve such approaches, more empirical evaluations
with industrial partners are needed, aiming to demonstrate the importance of
handling variability in SPL. Results from such evaluations would allow other
researchers to adequate their approaches to industrial needs.

Acknowledgments The work is supported by the Brazilian funding agencies FAPESP (grants
2015/24144-7, 2016/05919-0, 2018/20882-1), CNPq (Grant 313245/2021-5), and Carlos Chagas
Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), under the
PDR-10 program, grant 202073/2020.

38 A. P Allian et al.
References
1. Albassam, E., Gomaa, H.: Applying software product lines to multiplatform video games.

10.

11.

12.

13.

14.

15.

16.

17.

18.

In: 3rd International Workshop on Games and Software Engineering: Engineering Computer
Games to Enable Positive, Progressive Change (GAS), pp. 1-7. IEEE Computer Society, San
Francisco (2013)

. Allian, A.P,, Capilla, R., Nakagawa, E.Y.: Observations from variability modelling approaches

at the architecture level. In: Software Engineering for Variability Intensive Systems — Foun-
dations and Applications, pp. 41-56. Auerbach Publications/Taylor & Francis, Milton Park
(2019)

. Apel, S., Kastner, C., Lengauer, C.: FEATUREHOUSE: Language-independent, automated

software composition. In: Proceedings of the 31st International Conference on Software
Engineering, ICSE 09, pp. 221-231. IEEE Computer Society, Washington (2009)

. Apel, S., Batory, D., Kistner, C., Saake, G.: Feature-Oriented Software Product Lines.

Springer, Berlin (2016)

. Bashroush, R., Brown, T.J., Spence, I.T.A., Kilpatrick, P..: ADLARS: an architecture descrip-

tion language for software product lines. In: 29th Annual IEEE/NASA Software Engineering
Workshop (SEW), pp. 163-173. IEEE Computer Society, Greenbelt (2005)

. Bashroush, R., Garba, M., Rabiser, R., Groher, 1., Botterweck, G.: CASE tool support for

variability management in software product lines. ACM Comput. Surv. 50(1), 14:1-14:45
(2017)

. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud,

J.: Pulse: a methodology to develop software product lines. In: Symposium on Software
reusability (SSR), Los Angeles, pp. 122-131 (1999)

. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud,

J.M.: Pulse: a methodology to develop software product lines. In: Proceedings of the 1999
Symposium on Software Reusability (SSR), pp. 122-131. ACM, Los Angeles (1999)

. Bosch, J., Capilla, R., Hilliard, R.: Trends in systems and software variability. [IEEE Softw.

32(3), 44-51 (2015)

Capilla, R., Bosch, J.: Binding Time and Evolution, pp. 57-73. Springer, Berlin (2013). https://
doi.org/10.1007/978-3-642-36583-6_4

Capilla, R., Bosch, J., Kang, K.C.: Systems and Software Variability Management: Concepts,
Tools and Experiences. Springer, Berlin (2013)

Chakir, B., Fredj, M., Nassar, M.: A model driven method for promoting reuse in SOA-
solutions by managing variability. Computing Research Repository (CoRR), abs/1207.2742
(2012)

ClauB3, M.: Modeling variability with UML. In: 3rd International Conference on Generative
and Component-Based Software Engineering (GCSE), pp. 1-5. Springer, Berlin (2001)

Cola, S.D., Tran, C.M., Lau, K., Qian, C., Schulze, M.: A component model for defining
software product families with explicit variation points. In: 19th International ACM SIGSOFT
Symposium on Component-Based Software Engineering (CBSE), pp. 79-84. IEEE Computer
Society, Venice (2016)

Cu, C., Ye, X., Zheng, Y.: Xlinemapper: a product line feature-architecture-implementation
mapping toolset. In: 41st International Conference on Software Engineering: Companion
Proceedings, ICSE ’19, pp. 87-90. IEEE Press, Piscataway (2019). https://doi.org/10.1109/
ICSE-Companion.2019.00045

Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor, R.: Arch-
studio 4: an architecture-based meta-modeling environment. In: 29th International Conference
on Software Engineering (ICSE’07 Companion), pp. 67-68. IEEE, Piscataway (2007)
Dhungana, D., Griinbacher, P.: Understanding decision-oriented variability modelling. In:
Software Product Line Conference — SPLC (2), pp. 233-242 (2008)

Gomaa, H.: Designing Software Product Lines with UML — from Use Cases to Pattern-Based
Software Architectures. ACM, New York (2005)

 2416 2445 a 2416 2445
a

https://doi.org/10.1007/978-3-642-36583-6_4
https://doi.org/10.1007/978-3-642-36583-6_4

 1947 3691
a 1947 3691 a

https://doi.org/10.1109/ICSE-Companion.2019.00045
https://doi.org/10.1109/ICSE-Companion.2019.00045

19.

20.

2

—_

22.

23.

24.

25.

26.

217.

28.

29.

30.

3

—_

32.

33.

34.

35.

36.

Variability Implementation and UML-Based Software Product Lines 39

Gonzalez-Huerta, J., Abrahdo, S., Insfran, E., Lewis, B.: Automatic derivation of AADL
product architectures in software product line development. In: 1st International Workshop on
Architecture Centric Virtual Integration and 17th International Conference on Model Driven
Engineering Languages and Systems (ACVI/MoDELS), pp. 1-10. CEUR-WS.org, Valencia
(2014)

Guessi, M., Oquendo, F., Nakagawa, E.Y.: Variability viewpoint to describe reference architec-
tures. In: Working IEEE/IFIP Conference on Software Architecture (WICSA), pp. 14:1-14:6.
ACM, Sydney (2014)

. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to

customers. Softw. Syst. Model. 2(1), 15-36 (2003)

He, X., Fu, Y., Sun, C., Ma, Z., Shao, W.: Towards model-driven variability-based flexible
service compositions. In: 39th IEEE Annual Computer Software and Applications Conference,
COMPSAC, pp. 298-303. IEEE Computer Society, Taichung (2015)

Horcas, J.M., Pinto, M., Fuentes, L.: Software product line engineering: a practical experience.
In: Proceedings of the 23rd International Systems and Software Product Line Conference,
SPLC 2019, Paris, September 9—13, 2019, vol. A, pp. 25:1-25:13. ACM, New York (2019)
Hu, Y., Merlo, E., Dagenais, M., Lague, B.: C/c++ conditional compilation analysis using
symbolic execution. In: 30th International Conference on Software Maintenance, ICSM ’*00.
ACM, New York (2000)

Janior, E., Farias, K., Silva, B.: A Survey on the Use of UML in the Brazilian Industry,
pp- 275-284. Association for Computing Machinery, New York (2021). https://doi.org/10.
1145/3474624.3474632

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report. CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh (1990). http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=11231

Kim, M., Yang, H., Park, S.: A domain analysis method for software product lines based on
scenarios, goals and features. In: 10th Asia-Pacific Software Engineering Conference (APSEC,
pp. 126-135. IEEE Computer Society, Chiang Mai (2003)

Leitner, A., Mader, R., Kreiner, C., Steger, C., Wei}, R.: A development methodology
for variant-rich automotive software architectures. Elektrotechnik und Informationstechnik
128(6), 222-227 (2011)

Linden, FJ.V.D., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering, vol. 20. Springer, New York (2007)

Lisboa, L.B., Garcia, V.C., Lucrédio, D., de Almeida, E.S., de Lemos Meira, S.R., de Mat-
tos Fortes, R.P.: A systematic review of domain analysis tools. Inf. Softw. Technol. 52(1), 1-13
(2010)

. Loughran, N., Sanchez, P., Garcia, A., Fuentes, L.: Language support for managing variability

in architectural models. In: 7th International Symposium on Software Composition (SC),
pp- 36-51. Springer, Budapest (2008)

Mahdavi-Hezaveh, R., Dremann, J., Williams, L.: Software development with feature toggles:
practices used by practitioners. Empir. Softw. Eng. 26(1) (2021)

Martinez-Fernandez, S., Ayala, C.P., Franch, X., Marques, H.M.: Benefits and drawbacks of
software reference architectures: a case study. Inf. Softw. Technol. 88, 37-52 (2017)

Meekel, J., Horton, T.B., Mellone, C.: Architecting for domain variability. In: 2nd International
ESPRIT ARES Workshop on Development and Evolution of Software Architectures for
Product Families, pp. 205-213. Springer, Berlin (1998)

Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating the docu-
mentation of variability in software product lines: a separation of concerns, formalization and
automated analysis. In: 15th IEEE International Requirements Engineering Conference (RE
2007), pp. 243-253. IEEE, Piscataway (2007)

Milani, F.,, Dumas, M., Matulevicius, R.: Identifying and classifying variations in business
processes. In: Enterprise, Business-Process and Information Systems Modeling — 13th Inter-
national Conference, BPMDS 2012, 17th International Conference, EMMSAD 2012, and 5th
EuroSymposium, held at CAiSE 2012, pp. 136-150. Springer, Gdafisk (2012)

 2108 1637 a 2108 1637
a

https://doi.org/10.1145/3474624.3474632
https://doi.org/10.1145/3474624.3474632

 1595 1970 a 1595 1970 a

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

40

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

A. P. Allian et al.

Moon, M., Yeom, K., Chae, H.S.: An approach to developing domain requirements as a core
asset based on commonality and variability analysis in a product line. IEEE Trans. Softw. Eng.
31(7), 551-569 (2005)

Moreira, R.A.F., Assun¢do, W.K., Martinez, J., Figueiredo, E.: Open-source software product
line extraction processes: the argoUML-SPL and phaser cases. Empir. Softw. Eng. 27(4), 1-35
(2022)

Oliveiralr, E., Gimenes, .M.S., Maldonado, J.C., Masiero, P.C., Barroca, L.: Systematic
evaluation of software product line architectures. J. Univer. Comput. Sci. 19(1), 25-52 (2013)
Ortiz, FJ., Pastor, J.A., Alonso, D., Losilla, F.,, de Jédar, E.: A reference architecture for
managing variability among teleoperated service robots. In: 2nd International Conference on
Informatics in Control, Automation and Robotics (ICINCO), pp. 322-328. INSTICC Press,
Barcelona (2005)

Park, S., Kim, M., Sugumaran, V.: A scenario, goal and feature-oriented domain analysis
approach for developing software product lines. Ind. Manag. Data Syst. 104(4), 296-308
(2004)

Pascual, G.G., Pinto, M., Fuentes, L.: Automatic analysis of software architectures with
variability. In: 13th International Conference on Software Reuse (ICSR), pp. 127-143.
Springer, Pisa (2013)

Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic literature review of software
product line management tools. In: 14th International Conference on Software Reuse for
Dynamic Systems in the Cloud and Beyond (ICSR), pp. 73-89. Springer International
Publishing, Miami (2015)

Pohl, K., Bockle, G., van der Linden, F.: Software product line engineering: foundations,
principles, and techniques, Springer, Berlin (2005)

Raatikainen, M., Tiihonen, J., Ménnisto, T.: Software product lines and variability modeling: a
tertiary study. J. Syst. Softw. 149, 485-510 (2019)

Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware
analysis in product line engineering with the orthogonal variability model. Softw. Qual. J.
20(3—4), 519-565 (2011). https://doi.org/10.1007/s11219-011-9156-5

Rurua, N., Eshuis, R., Razavian, M.: Representing variability in enterprise architecture. Bus.
Inf. Syst. Eng. 61(2), 215-227, (2019)

Schaefer, I.: Variability modelling for model-driven development of software product lines. In:
4th International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS),
pp. 85-92 (2010)

Schmid, K., John, L: A customizable approach to full lifecycle variability management. Sci.
Comput. Program. 53(3), 259-284 (2004)

Tekinerdogan, B., Aksit, M.: Managing variability in product line scoping using design space
models. In: Journal of The American Chemical Society, pp. 1-8. Elsevier, Groningen (2003)
Vasilevskiy, A., Haugen, @., Chauvel, E, Johansen, M.F.,, Shimbara, D.: The BVR tool bundle
to support product line engineering. In: Proceedings of the 19th International Conference on
Software Product Line, pp. 380-384 (2015)

Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Longman Publishing Co. Inc., Boston (1999)

Ziadi, T., Hélouét, L., Jézéquel, J.: Towards a UML profile for software product lines.
In: Software Product-Family Engineering, 5th International Workshop, PFE 2003, Siena,
November 4-6, 2003, Revised Papers. Lecture Notes in Computer Science, vol. 3014, pp. 129—
139. Springer, Berlin (2003)

Ziadi, T., Jézéquel, J.: Software product line engineering with the UML: deriving products.
In: Software Product Lines — Research Issues in Engineering and Management, pp. 557-588.
Springer, Berlin (2006)

 705 2302 a 705 2302 a

https://doi.org/10.1007/s11219-011-9156-5

	2 Variability Implementation and UML-Based Software Product Lines
	2.1 Introduction
	2.2 Implementing Variability
	2.2.1 Variability in the Problem Space
	2.2.2 Variability in the Solution Space
	2.2.3 SPL Variability Tools

	2.3 Overview of UML-Based SPL
	2.4 Discussion
	2.5 Final Remarks
	References

