
Chapter 18
Reengineering UML Class Diagram
Variants into a Product Line Architecture

Wesley Klewerton Guez Assunção, Silvia R. Vergilio,
and Roberto E. Lopez-Herrejon

Abstract Software reuse is a way to reduce costs and improve the quality of
products. In practice, software reuse is commonly done by opportunistic strategies.
In these strategies, the artifacts are simply copied/cloned and modified/adapted to
fulfill existing needs. Opportunistic reuse leads to a set of system variants developed
independently, generating technical debts. The maintenance and evolution of these
independent variants are a costly and difficult task since most of the times the
practitioners do not have a global view of such variants nor a clear understanding
of the actual structure of the system. In such a case, a systematic reuse approach
is paramount. Software product line engineering (SPLE) is a well-established
approach to deal with a set of product variants in a specific domain, including
systematic reuse in the software development process. One of the main design assets
generated during the SPLE is the product line architecture (PLA), which describes
how commonalities and variabilities are implemented in an SPL. Designing a PLA
from scratch is challenging, since it must contemplate a detailed description of a
whole family of products. PLAs can be obtained from existing product variants,
requiring less effort and time from practitioners. Commonly,UML class diagrams of
system products are available or can be reverse engineered easily. These UML class
diagrams are a rich source of information to support PLA creation. In this chapter,
we describe our method of reengineering UML class diagram of variants into an
initial version of a PLA. Our method relies on a search-based technique to merge a
set of UML model variants and insert annotations in model elements to describe
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the system features they belong to. The output of our method is an annotated
UML class diagram that shows the whole structure of product variants that allows
practitioners to reason better about the adoption of SPLE, aiding communication
among stakeholders, supporting SPLE planning, and helping estimate maintenance,
evolution, and testing activities.

18.1 Introduction

The development of a software system from scratch is a complex and high-cost
activity. Software reuse, which is based on the use of existing artifacts to develop
new software systems, is a well-established strategy to reduce costs, improve
productivity, and increase quality [13]. The reuse of artifacts can be performed in
different levels of abstraction and in different phases of the software development
life cycle. Artifacts that can be reused include source code, design models, and test
cases, to cite some.

In practice, software reuse is generally carried out using an opportunistic reuse
strategy, which is also known as clone-and-own reuse, copy-and-paste reuse, or
ad hoc reuse [10]. In this strategy, existing software artifacts are cloned/copied
and adapted/modified to fulfill the new requirements. The opportunistic reuse
strategy offers a simple way to reuse software artifacts. It does not require an
upfront investment and quickly obtains adequate short-term results. However, the
extensive use of opportunistic software reuse quickly becomes problematic. For
example, opportunistic reuse results in extensive refactoring, adding technical debt,
and eventually leading to unanticipated behavior, violated constraints, conflicts in
assumptions, fragile structure, and software bloat [14]. To make matters even worse,
the simultaneous maintenance of many independent variants of the same system is
a complex activity, as duplicated functionalities must be managed individually [7].

We can find several studies in the literature dealing with the reengineering of
multiple system variants into SPLs [2, 15]. Only a few of them focus on the
definition of a product line architecture (PLA) from existing product variants.
Software architectures are artifacts that provide a high-level view of functional parts
of systems, allowing analysis of their structure and supporting design decisions [5].
In addition, PLAs describe how commonalities and variabilities are implemented
in an SPL. To recover or discover a PLA that best represents an existing family of
software products demands high human effort [21]. Furthermore, the few existing
approaches to recover/discover are based on source code [8, 11, 12].

Taking into account the aforementioned limitations of existing work, in a
previous study, we presented an approach to automatically merge multiple UML
model variants to obtain a documented software architecture that is a step toward the
definition of a PLA [3]. The goal of our approach is to discover a global model that
contains an overview of all the implementation elements spread across the different
variants. The input of our approach is a set of UML model variants, and the output
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is a complete model, the most similar to all variants. The proposed merging process
relies on a search-based technique, in which the evolutionary process is in charge
of dealing with domain-specific constraints of systems under consideration and
possible conflicts amongmodels merging operations.We implemented our approach
with a genetic algorithm and evaluated it using four case studies from different
domains and with different sizes. The evaluation of the proposed approach showed
that the merging of UML class diagram variants represented good documented
architectures to support the maintenance, evolution, and testing of system variants.

In this book chapter, we describe our approach of mergingUMLmodels to obtain
a documented architecture [3] and introduce an additional step of variability annota-
tions, where UMLmodel elements are annotated to describe existing variability. The
goal is to provide a UML-based PLA to aid practitioners to reengineer independent
variants into SPLs.

The remainder of this chapter is as follows: In Sect. 18.2, we describe in detail
the proposed search-based approach. The evaluation of the proposed approach and
the results are presented in Sect. 18.3. Finally, Sect. 18.5 presents the final remarks
and suggestions of future work.

18.2 Proposed Approach

In this section, we describe our approach to reengineer UML class diagram variants
into PLAs. The proposed approach has two steps: (i) a search-based algorithm to
mergeUML class diagram variants to obtain a global UMLmodel having as many as
possible of the features contained across the variants and (ii) the process to annotate
variability information in the UML models.

The input for the proposed approach is a set of UML class diagrams, which
is used for the search-based algorithm, and traceability information of features
implemented in the products and the model elements mapped to them, which is used
for variability annotation. This traceability1 should be provided by practitioners
based on their knowledge or discovered by using automated tools. The output is
a PLA, composed of a global UML model and annotated elements that describe
variability information. To illustrate how our approach works, we rely on three
variants of a banking system [19]. These variants2 are presented in Fig. 18.1.

1 Traceability links describe where features are implemented in the source code. The definition
or reverse engineering of traceability links is out of the scope of this work. For further details,
see [16].
2 Available at https://github.com/but4reuse/but4reuse/wiki/Examples.
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Fig. 18.1 Three banking system model variants, adapted from [19]

18.2.1 Step 1: Search-Based Model Merging

The first step of our approach relies on a genetic algorithm with the goal of merging
UML class diagram variants. In what follows, we present the representation of
individuals and generation of the initial population, the fitness function, and the
genetic operators.

18.2.1.1 Representation of Individuals and Initial Population

Our search-based approach deals with models created with the well-known and
widely used Eclipse Modeling Framework (EMF) [22]. We represent the models
using EMF-based UML23 implementation of the UMLTM 2.x metamodel for the
Eclipse platform.Whenmodels are represented using EMF-based UML2 data types,
they can be compared and modified. These operations enabled by EMF tools are the
basis of our search-based approach.

Based on the proposed representation and considering the set of UML class
diagram variants used as input, the initial population is created by duplicating every
variant until reaching the population size. For example, consider a population of 90
individuals for the search-based algorithm and the three variants of Fig. 18.1. The
initial population will be composed of 30 copies/duplicates of each input model.
Each duplicated mode variant is an individual.

3 http://wiki.eclipse.org/MDT/UML2.
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Fig. 18.2 Differences between variants Bank 1 and Bank 2

18.2.1.2 Fitness Function

The fitness function of our approach is based on differences among UML models of
system variants. The computation of these differences is based on the Eclipse EMF
Diff/Merge tool.4 EMFDiff/Merge compares two models and returns the differences
between them. EMF Diff/Merge computes three essential types of differences
between models: (i) presence of an unmatched element, which refers to an element
in a model that has no match in the opposite model; (ii) presence of an unmatched
reference value, which means that a matched element references another element
in only one model; (iii) presence of an unmatched attribute value, where a matched
element owns a certain attribute value in only one model.

Figure 18.2 presents the output of EMF Diff/Merge when comparing differences
between variants Bank 1 and Bank 2 (Fig. 18.1). The total number of differences is
13, but it is composed of two sets of differences. At the top of the figure, we have
seven differences that are elements present in Bank 2 but missing in Bank 1, and
at the bottom of the figure, we have six elements that belong to Bank 1 but do not
appear in Bank 2.

EMF Diff/Merge tool is able to compare only two or three models at once.
However, to evaluate a candidate architecture, we have to compute differences from
one model to many model variants. Considering this, we propose a fitness function
composed of the sum of differences from one model to all input model variants.
Definition 18.1 presents the fitness function called here model similarity. The

4 http://www.eclipse.org/diffmerge/.
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function diff represents the number of differences found by using EMF Diff/Merge,
but here we sum only the set of differences that indicate the elements that exist in the
variant v but are missing in the candidate_model. There are no distinctions among
the three essential types of differences.

Definition 18.1 (Model Similarity (MS)) Model similarity expresses the degree
of similarity of the candidate architecture model to a set of model variants:

MS =
∑

v ∈ V ariants

diff (candidate_model, v) (18.1)

To illustrate the computation of MS, we consider the candidate architecture
model presented in Fig. 18.3a and the input models in Fig. 18.1. Using EMF
Diff/Merge tool, we obtain the sets of differences presented in Fig. 18.3b,c, and d,
corresponding to Bank 1, Bank 2, and Bank 3, respectively. For our fitness function,
only the differences from the candidate architecture to each variant are relevant,
which are highlighted in the figures. There are no differences from the candidate
model to Bank 1. From the candidate model to Bank 2, there exist six differences.
From the candidate model to Bank, 3 we have also six differences. We can observe
12 differences from the candidate model to all input variants and then MS = 12. The
goal is to minimize the value of MS. An ideal solution has MS equal to zero, which
indicates that the candidate architecture has all elements from the variants for which
we want to discover the corresponding architecture.

18.2.1.3 Genetic Operators

The set of differences returned by EMF Diff/Merge is used to perform crossover
and mutation. This result of EMF Diff/Merge also allows duplication and/or
modification of models to incorporate the changes done by the operators. The
mechanisms of the operators of crossover and mutation are described next.

Crossover
The crossover operator starts with two candidate architectures. From these two
models, we generate two children: one with the differences merged and one without
the differences. For instance, let us consider any parent models X and Y. The
children will be:

• Crossover Child Model 1: This model has differences between its parents
merged. For example, the elements of X that are missing on Y are merged in
this later, or vice versa. Both ways will produce the same child.

• Crossover Child Model 2: This child is generated by removing the differences
between the parents. For example, the differences of X that are missing on Y are
removed, or vice versa. Both ways will produce the same child.
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Fig. 18.3 Example of fitness evaluation. (a) Candidate model. (b) Differences to Bank 1= 0. (c)
Differences to Bank 2= 6. (d) Differences to Bank 3= 6

The strategy adopted by Child Model 1 aims at creating a model that has more
elements, going toward a more complete system architecture. On the other hand,
the strategy used by Child Model 2 has the goal of eliminating possible conflicting
elements from a candidate architecture.

To illustrate the crossover operator, let us consider as parents Bank 1 and Bank 2
presented in Fig. 18.1 and the differences between them, presented in Fig. 18.2. The
offspring generated by crossover is presented in Fig. 18.4. In Fig. 18.4a, we have the
child with all differences merged (highlighted) and in Fig. 18.4b the child with the
differences removed.
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Mutation
The mutation operator aims at applying only one modification in each model parent.
The start point of the mutation is two candidate architectures, and the result is also
two children. Let us again consider any parent models X and Y. The children are:

• Mutation Child Model 1: The first child is created by merging one difference
from model Y to model X. After randomly selecting one element of model Y but
missing on model X, this element is added into model X.

• Mutation Child Model 2: The same process described above is performed again,
but in the opposite direction, namely, including one element of model X into
model Y.

An example of mutation between Bank 1 and Bank 2 (Fig. 18.1) is presented in
Fig. 18.5. Considering the differences shown in Fig. 18.2, we have seven differences
to select one to be included in Bank 1 and six differences to select one to be
included in Bank 2. As highlighted in Fig. 18.5a, the attribute limit was chosen
to be included in Bank 1. In the child of Fig. 18.5b we can see that the class
Consortium was selected to be included in Bank 2.

The mutation process can select a difference that is part of another difference. In
such cases, the entire owning difference is moved to the child. For example, when a
mutation selects a parameter owned by an operation, the entire operation is moved
to the child.

Selection
The genetic algorithm of our approach uses the binary tournament strategy whereby
a set of individuals are randomly selected from the population. Among the randomly
selected individuals, the ones with the best fitness are chosen to undergo crossover
and mutation [9].

18.2.2 Step 2: Variability Annotation

The best solution found during the evolutionary process in Step 1 is the basis for this
step. Since in our context a PLA is a global UML class diagram with annotations
regarding variabilities, to generate such representation the traceability information
provided as input for our approach is used to annotate the class diagram. To include
annotation of variability information in the PLA, we decided to use UML-owned
comments which are available for each element of a UML class diagram. By
adopting this strategy, the obtained PLA can be viewed in any UML editor.

The process of variability annotation is presented in Algorithm 1. Basically, the
algorithm goes through all the UML elements comparing them to the traceability
links. When there is a matching between the model element of the class diagram and
the model element in the traceability information, an owned comment is assigned
to the UML element with the name of the feature obtained from the traceability
information.
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Algorithm 1: Variability annotation
Input: UML class diagram, traceability information
Output: PLA

1 modelElements ← all UML model elements from the UML class diagram;
2 traceLinks ← all trace link tuples (feature, modelElement) from the Traceability

information;
3 for each element ∈ modelElements do
4 for each trace ∈ modelElements do
5 if modelElements.name = trace.modelElement.name then
6 modelElements.ownedComment ← trace.f eature.name;
7 end if
8 end for
9 end for

Figure 18.6 presents a PLA constructed using the merged model obtained in
the first step of our approach. The figure presents the variability information of an
attribute of Bank with the comment that indicates it belongs to Converter.

18.3 Evaluation

In this section, we present the setup and the subject systems used to evaluate the
proposed approach, along with the results obtained and their analysis.

18.3.1 Implementation Aspects and Experimental Setup

We implemented our work using JMetal5 framework which provides several
algorithms for multi-objective and mono-objective optimization [6]. We selected
the mono-objective generational genetic algorithm (GA) [9]. Our GA was designed
to deal with a minimization problem; recall that an ideal solution for our architecture
recovery problem is an individual (i.e., candidate architecture) with fitness equal to
zero (0).

EMF framework was used to load and save models. For the evolutionary process,
where we compare and modify models, we used EMF Diff/Merge. Despite of EMF
Diff/Merge having many functionalities, we needed to develop a customized match
policy. The default match policies of EMF Diff/Merge only perform comparisons
based on XMI:ids. However, model variants could have similar semantics even with
different structures. Our customized match police considers qualified names, data
types, and relationship types.

5 Available at: http://jmetal.sourceforge.net/.
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Fig. 18.6 Example of variabilities in the PLA

The GA parameters were population size= 200, crossover probability= 0.95,
mutation probability= 0.2, and number of fitness evaluations= 8000. We set the
parameters of crossover and mutation based on default values used in other discrete
problems available on JMetal. Population size and the number of evaluations
were set based on hardware’s limitation. When we tried to use greater values for
these two latter parameters, they caused limited memory exceptions. The elitism
strategy adopted in the generational GA is to copy the best four individuals of one
generation to the next one. The number of fitness evaluations is the stop criterion.
The experiments were run on a machine with an Intel® CoreTM i7-4900MQ CPU
with 2.80 GHz, 16GB of memory, and running a Linux platform.
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Table 18.1 Banking system

Features

Variant BS WL CON CC #Cl #Attr #Op #Rel

1 � 3 5 6 1

2 � � 4 6 7 3

3 � � 3 6 8 1

4 � � 4 7 11 2

Baseline � � � � 5 9 14 4

BS, base; WL, withdraw limit; CON, consortium; CC, currency converter

Table 18.2 Draw product line

Features

Variant DPL L R C W F #Cl #Attr #Op #Rel

1 � � 4 13 26 3

2 � � � 5 24 37 4

3 � � 4 18 29 3

4 � � � 4 22 27 3

5 � � � 4 27 30 3

6 � � � 4 15 27 3

7 � � � 4 20 30 3

8 � � � � 4 33 32 3

Baseline � � � � � � 5 42 41 4

DPL, base; L, line; R, rectangle; C, color; W, wipe; F, fill

18.3.2 Subject Systems

In our experiment, we used four subject systems, where each one is a set of UML
model variants implementing different system features, and composed of classes,
attributes, operations, and relationships. The subject systems are banking system
(BS), a small banking application composed of four features [18]; draw product line
(DPL), a system to draw lines and rectangles with six features [1]; video on demand
(VOD), which implements 11 features for video-on-demand streaming [1]; and
ZipMe (ZM), a set of tools to file compression with 7 features [1]. The variants are
presented in Tables 18.1, 18.2, 18.3, and 18.4, respectively. These tables show the
features, number of classes (#Cl), number of attributes (#Attr), number of operations
(#Op), and number of relationships (#Rel) for each variant. This information was
computed using SDMetrics.6 Only BS is originally a set of UML model variants;
for other subject systems, we reverse engineered the models from Java code using
the Eclipse MoDisco.7

6 http://www.sdmetrics.com.
7 https://eclipse.org/MoDisco.
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Table 18.3 Video on demand

Features

Variant VOD SP SelM StaM PI VRC P StoM QP CS D #Cl #Attr #Op #Rel

1 � � � � � � 32 362 217 75

2 � � � � � � � 32 362 217 75

3 � � � � � � � 33 364 221 77

4 � � � � � � � � 33 364 221 77

5 � � � � � � � 33 364 221 77

6 � � � � � � � � 33 364 221 77

7 � � � � � � � � 34 366 225 79

8 � � � � � � � 37 377 232 87

9 � � � � � � � � 37 377 232 87

10 � � � � � � � � 38 379 236 89

11 � � � � � � � � 38 379 236 89

12 � � � � � � � 35 374 226 82

13 � � � � � � � � 35 374 226 82

14 � � � � � � � � 36 376 230 84

15 � � � � � � � � 36 376 230 84

16 � � � � � � � � 40 389 241 94

Baseline � � � � � � � � � � � 42 393 249 98

VOD, base; SP, start player; SelM, select movie; StaM, start movie; PI, play Imm; VRC, VRC
interface; P, pause; StoM, stop movie; QP, quit player; CS, change server; D, details

We have variants with all possible feature combinations for every subject system.
However, we selected only variants that implement at most half of the non-
mandatory features. To select these variants, we followed the rule:

threshold = (RoundUp
(#all_f eatures − #mandatory_f eatures

2

)
+ #mandatory_f eatures)

We selected for our experiment only variants that implement a number of features
below the threshold. The reason to select only a subset of variants is to have the
combinations of features spread on different variants, to assess the ability of our
approach to merge the models and get good system architectures. For each subject
system, we also had a variant that implements all features, i.e., the most complete
variants. We use this variant as a baseline for our analysis, since we consider this
variant as the most similar model to a known system architecture. In the last line of
Tables 18.1, 18.2, 18.3, and 18.4, there is information about the baseline.

Observing the information in the subject system tables (Tables 18.1, 18.2,
18.3, and 18.4), we can see that there are no variants with as many features
as the baselines. Furthermore, the number of classes, attributes, operations, and
relationships in the variants of all systems is smaller than the baselines.
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Table 18.4 ZipMe

Features

Variant ZM C CRC AC GZIP A32 E #Cl #Attr #Op #Rel

1 � � 22 212 241 64

2 � � � 23 215 251 66

3 � � � 22 212 243 66

4 � � � � 23 215 253 68

5 � � � 25 223 263 68

6 � � � � 26 229 282 72

7 � � � � 25 223 265 70

8 � � � 23 216 263 69

9 � � � � 24 219 273 71

10 � � � � 23 216 265 71

11 � � � � 26 227 285 73

12 � � � 23 219 262 70

13 � � � � 24 223 279 74

14 � � � � 23 219 264 72

15 � � � � 26 230 284 74

16 � � � � 24 223 284 75

Baseline � � � � � � � 28 241 334 87

ZM, ZipMe; C, compress; CRC, CRC-32 checksum; AC, archive check; GZIP, GZIP format
support; A32, Adler32 checksum; E, extract

18.3.3 Results and Analysis

Figure 18.7 shows the evolution of the best candidate architecture in each GA
generation during the first step of our approach. The best individual of each system
after the first 200 fitness evaluations is an input model from the initial population
that has the least difference from other input models. For BS, the best individual is
variant 4 that has 25 differences from the input. For DPL, the best initial individual
is variant 2 with 127 differences. For VOD, the best initial candidate architecture
is variant 16 with 315 differences. Finally, variant 11 of ZM is the best individual
of the initial population having 854 differences from the input. These individuals
are the first solutions presented in the charts in Fig. 18.7. Observing the figures, we
can see how the evolutionary process is able to find better candidate architectures by
reducing the number of differences. On average, the best solution is found after 1400
fitness evaluations. VOD is the simplest subject system, since the best solution was
reached with approximately 1000 fitness evaluations. On the other hand, ZM is the
most complex system, needing approximately 1800 fitness evaluations to reach the
best solution. As expected for a GA, in all subjects, there is a great improvement in
the number of found solutions in the initial generations, and then the search remains
stable.
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Fig. 18.7 Evolution of the
best individual. (a) Banking
system. (b) Draw product
line. (c) Video on demand.
(d) ZipMe
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Table 18.5 Candidate
architectures

System Model MS #Cl #Attr #Op #Rel

BS Baseline 20 5 9 14 4

Best individual 6 5 9 14 3

DPL Baseline 40 5 42 41 4

Best individual 20 5 42 41 4

VOD Baseline 162 42 393 249 98

Best individual 136 42 393 249 98

ZM Baseline 633 28 241 334 87

Best individual 250 28 241 381 79

#Cl, number of classes; #Attr, number of attributes; #Op,
number of operations; #Rel, number of relationships

Another piece of information gathered during the evaluation of the first step
of our approach is the runtime. The amount of time spent by the GA to perform
the entire evolutionary process was BS= 55 s 740ms, DPL= 6m 13 s 17ms,
VOD= 1 h 46m 55 s 698ms, and ZM= 2 h 10m 29 s 267ms. GA ran very fast
for BS, which has the smallest number of features, classes, attributes, operations,
and relationships. DPL has more features and model elements (Table 18.2) than BS,
and for this system, the GA took a little more than 6min. A huge difference in the
runtime is observed for VOD and ZM. VOD needed almost 2 h to be finished. ZM
is the subject system that required the biggest amount of time; it took more than 2 h.

Now, let us consider the details of the best candidate architecture found, i.e.,
global UML class diagram. Table 18.5 shows the information of candidate archi-
tectures and baseline models. The values of MS presented in the third column are
based on the input models. Regarding the number of classes, attributes, operations,
and relationships, the baseline model and the best individual model are very similar.
For BS, there is only a single difference in the number of relationships, where
the best individual has one relationship less. In DPL and VOD, the number of
model elements is the same. For ZM, the number of model elements is different in
operations and relationships. Despite having a similar number of model elements,
we can observe that the values of MS are not similar. As mentioned before in
Sect. 18.2.1.2, the fitness function EMF Diff/Merge computes the presence of
elements, presence of attributes values, and presence of reference values. This latter
difference happens when a model element references to, or belongs to, different
model elements. This explains the reason why baselines and best individuals have a
similar number of model elements but different values of MS.

Table 18.6 presents the differences between baseline and the best individuals for
each system. Since the comparison of EMF Diff/Merge has two directions, we show
the number of differences existing from baseline to the best individual (candidate
architecture), and vice versa. For example, considering BS, there are seven differ-
ences needed for baseline having all elements of the candidate architecture. On the
other hand, candidate architecture needs 14 existing differences to have all elements
of baseline. In the values of Table 18.6, we can observe that the baseline is less
different for systems BS, DPL, and VOD. This means that it is easier to transform
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Table 18.6 Differences
between baseline and
candidate architectures

System From baseline to best From best to baseline

BS 7 14

DPL 5 451

VOD 20 3425

ZM 4155 200

baseline in the best than vice versa. For ZM, the solution obtained by the GA is the
most similar to the baseline.

The analysis of Tables 18.5 and 18.6 reveals that a model having all features does
not imply that it is the most similar to a set of model variants. We can infer this by
considering that the best individual obtained by the GA for each system is the most
similar to the model variants than the baseline (third column in Table 18.5) and,
on the other hand, baseline is more similar to the best individual when comparing
these two models (second and third columns of Table 18.6). To illustrate this
situation, let us use the models of BS presented in Fig. 18.8. In Fig. 18.8a, the
baseline has all features implemented, and in Fig. 18.8b, the best solution found
is the most similar to the input models. Observe that in the best solution there
exists an operation withdrawWithoutLimit(amount: double). This operation is
present in the variants that do not implement the feature WL (see Fig. 18.1), i.e., it
is present in three out of four variants. This operation is not present in the baseline
model, so this baseline model does not provide a global overview of the variants.
The baseline would not serve as a reference for maintaining variants that do not have
the feature WL. However, in the architecture, we can find out where the operation
withdrawWithoutLimit is located.

The results of the second step of our approach, namely, variability annotation,
are presented in Table 18.7. The number of model elements annotated with the
traceability information is presented in the second column. The runtime for each
application is in the last column. Applications VOD and ZM have the largest
models; therefore, the variability grafting algorithm took the largest runtime.
However, the runtime did not take more than 10 s.

18.4 UML-Based SPLs

Our approach to merge UML class diagrams in order to obtain a documented
UML-based PLA is a step toward the reengineering of independent variants into
SPLs. On one hand, we used the standard UML class diagram model and widely
adopted modeling tools, such as Eclipse Modeling Framework and Eclipse EMF
Diff/Merge tool. These tools are commonly adopted for designing of single-product
development, which can ease the extractive adoption of SPLs. On the other hand,
this same tolling support is limited on covering the whole SPL development life
cycle and dealing with variability management [4].
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Fig. 18.8 Baseline and best
solution for banking system.
(a) Baseline. (b) Best solution
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Table 18.7 Variability
annotation results

Model elements Runtime

System annotated s ms

BS 44 1 481

DPL 103 1 811

VOD 728 8 972

ZM 857 9 31

Considering the above limitations, we envisage the use of SPL-based tools for
dealing better with the design and management of variability. For example, SMarty
is an approach to manage variabilities in UML diagrams based on a profile and
respective guidelines [20]. SMarty is flexible for use since it relies on profile
stereotypes to represent variability in use case diagrams, class diagrams, component
diagrams, activity diagrams, and sequence diagrams [17]. As tool support, we can
mention SMartyModeling8 that is an environment for engineeringUML-based SPLs
in which variabilities are modeled using the SMarty approach.

18.5 Final Remarks

This chapter presented our approach to reengineer UML class diagram variants
into PLAs. The approach is composed of two steps, in which firstly a model-based
software architecture is discovered by merging UML model variants and secondly
variability annotation is included based on traceability information. The first step
relies on a search-based technique that does not require information regarding
domain constraints or conflicting model elements in advance. The variability anno-
tation is a basic matching between UML model elements and traces information,
using the name of the features to include UML-owned comments.

We performed an evaluation of our approachwith four case studies from different
domains and of different sizes. The results show that our approach is able to find
good PLAs even when features are spread across multiple variants. Furthermore,
we could observe that having a variant that implements all features of a system does
not imply that this variant has all model elements of all individual variants.

We acknowledge that some results could be influenced by internal aspects of the
subject systems; however, our approach is an easy way to support the reengineering
of UML model variants into PLAs. Furthermore, the PLAs found by using our
approach can help practitioners duringmaintenance by (i) providing a global view of
a set of variants that supports the identification of bad smells and refactoring activi-
ties, (ii) allowing design reconciliation of different variants (potentially inconsistent)
implemented by many designers, and (iii) showing clearly which product will
be affected by modifications, since commonalities and variabilities are explicitly

8 https://github.com/leandroflores/demo_SMartyModeling_tool.
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shown. The documented architecture supports evolution by (i) being a start point to
transform artifacts into an SPL and (ii) reducing the time to produce products with
a new combination of features.
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