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Predicting Corporate Failure Using
Ensemble Extreme Learning Machine

David Veganzones

Abstract Corporate failure prediction has become a major topic in the accounting
and finance literature. Effective prediction models are essential for banks and
financial institutions to solve financial decision-making problems. In general, artifi-
cial intelligence and machine learning techniques have been mainly employed to
develop corporate failure models due to their prediction superiority in comparison to
the traditional statistical method. Extreme learning machine is a newly developed
artificial intelligence technique with an extremely fast learning speed. Nonetheless,
its performance instability may be a major constraint for its practical application. The
literature documents that the ensemble is one of the widely used methods to improve
the generalization performance of weak classifiers. Therefore, we propose in this
study an ensemble of extreme learning machine for improving the prediction
performance on corporate failure task. In particular, we compare four benchmark
ensemble methods (multiple classifiers, bagging, boosting, and random subspace) to
evaluate which is best suited for extreme learning machine. Experimental results on
French firms indicated that bagged and boosted extreme learning machine showed
the best-improved performance.

Keywords Forecasting · Corporate failure · Machine learning · Extreme learning
machine · Ensemble

1 Introduction

The global economic developments of recent decades have put corporate failure and
their consequences for economic well-being under the spotlight, to the extent that
bankruptcy or business failure has become a crucial task in finance. This, in turn, has
emphasized that financial institutions need effective prediction mechanisms in order
to make an appropriate lending decision.
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In general, the objective of corporate failure prediction is to forecast the likeli-
hood that a firm will survive or fail with the minimum possible classification error.
That is why corporate failure research aims at binary classification (Séverin &
Veganzones, 2021; Ouenniche & Tone, 2017). From the binary classification point
of view, the model’s output is a dichotomous variable that takes the value of 1 when
the firm follows a bankruptcy procedure and is set to 0 when the firm survives. The
explanatory variables to design corporate failure prediction models are often finan-
cial ratios, which measure the relationship between any two items on financial
statements.

Since the pioneer studies of Beaver (1966) and Altman (1968) who documented
the predictive power of ratio analysis, many prediction techniques have been
employed to develop corporate failure prediction models, including statistical and
artificial intelligence methods (Veganzones & Severin, 2020; Kumar & Ravi, 2007;
Moula et al., 2017). On the one hand, researchers still employ well-known statistical
methods, notably linear discriminant analysis and logistic regression, due to their
simplicity and capacity to interpret the data, even though they are clearly
outperformed by machine learning techniques. On the other hand, artificial intelli-
gence techniques (i.e., support vector machine, decision trees, neural networks,
fuzzy set theory, self-organizing map) have become indispensable tools in the field
of corporate failure prediction, especially in this era of advanced informatics and
computing technology (Abedin et al., 2021). Their superiority relies on the fact that
they learn directly from the data, which makes it possible to test complex data using
nonlinear approaches, and therefore, their predictions are more reliable. Nonetheless,
these mentioned methods are not free of drawbacks: low learning rate, slow com-
putational time, converge in local minima, etc. (Yu et al., 2014; Abedin et al., 2018),
which could make corporate failure prediction time consuming and arduous.

To overcome these, we consider a novel prediction method, Extreme Learning
Machine (ELM) (Huang et al., 2006a) to predict corporate failure. There are several
reasons behind choosing ELM as the classifier for the prediction of corporate
failures. Firstly, despite many existing methodologies for predicting corporate fail-
ure, new methods of research should be continually explored by researchers and
practitioners. Secondly, the main concept behind ELM is the random initialization of
the Single Layer Feed-Forward Neural Network (SLFN), which replaces the com-
putationally cost procedure of training the hidden layer performed by other artificial
intelligence techniques. Unlike the AI techniques, it does not need to calibrate
parameters, such as the learning rate. For this reason, ELM has good performance
with an extremely fast learning speed (Akusok et al., 2015) and it is proven to be a
universal approximator given enough hidden neurons (Huang et al., 2006b).

However, as other techniques, ELM possesses a main drawback: the random
initialization that allows ELM to be an extremely fast algorithm, it becomes ELM a
highly unstable classifier as well. In ELM, even if we train the same training sample
several times, it performs differently due to the random initialization of bias and
weights between the input and hidden nodes. Although the reliance on a single ELM
may be misguided, the ensemble of predictions might improve the generalization
performance of the ELM. Indeed, ensemble methods are usually used as an



instrument for improving the accuracy of the learning algorithm by constructing and
combining a set of weak classifiers (Kim & Kang, 2010; Abedin et al., 2022). This
rationale motivates our specific study of the performance of the ensemble extreme
learning machine to predict corporate failure.

Predicting Corporate Failure Using Ensemble Extreme Learning Machine 109

Consequently, the aim of this current work is to fully examine which is the best
ensemble procedure to improve the performance of ELM for corporate failure
prediction. This is of significant importance because the diversity generation method
is key in the process of creating an ensemble of classifiers. According to Rokach
(2010), diversity creation can be obtained in several ways: by manipulating the
training sample, by manipulating the inducer, by varying the representation of the
target attribute and by changing the search space. Of all possible ensemble tech-
niques, we selected 4 based on their popularity in the literature (Verikas et al., 2010):
Multiple classifiers, Bagging, Boosting, and Random Subspace. The fact that the
chosen techniques rely on different ensemble procedures might provide further
insight into the general characteristics of ensemble techniques that are influenced
by the base classifier. In turn, a rigorous study of such methods would provide
assistance in designing a model of corporate failure based on ensemble ELM.
Furthermore, optimal performance of prediction models developed based on ensem-
ble ELMmodels can be employed as a baseline prediction model for future research.

The rest of the paper is organized as follows. Section 2 presents the research
methodology. Sections 3 and 4 describe the experimental design and results, respec-
tively. Finally, in Sect. 5, the conclusions are summarized.

2 Research Methodology

In this section, we present the method employed in this study. In particular, we
describe the extreme learning machine classifier as well as the ensemble modeling
techniques.

2.1 Extreme Learning Machine

The Extreme Learning Machine (ELM) classifier was proposed by Huang et al.
(2006a). The ELM represents a fast way of creating a Single Layer Hidden Feed-
Forward Neural Network (SLFN) by the random initialization of the internal bias
and weights. The hidden layer does not need to be iteratively tuned; it bypasses the
time-consuming calibration setup performed by artificial intelligence algorithms. As
a result, ELM is an extremely fast learning speed while being a simple method. The
ELM algorithm can be described as follows:

Consider a set of N observations with features xi 2 ℝN and the corresponding
output labels Y 2 {-1, 1}Nxc. A SLFN with m neurons in the hidden layer is written
by the following sum:
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Fig. 1 Architecture of the
multiple classifier

Σm
j= 1 βj ϕ wj xi þ bj =Y ik,i= 1, . . . ,N k= 1, . . . ,c, ð1Þ

where βj are the output weights, ϕ is the activation function, wj are the input weights
and bj represents the biases. The Eq. (1) can be expressed in the form of a matrix as
Hβ = Y, where

H=
ϕ w1 x1 þ b1ð Þ ⋯ ϕ wm x1 þ bmð Þ
⋮ ⋱ ⋮
ϕ w1 xN þ b1ð Þ ⋯ ϕ wm xN þ bmð Þ

0
B@

1
CA: ð2Þ

β= β1 ⋯ βmð Þc Y= Y1 ⋯ YNð Þc:

Then, the output weights β can be calculated by the Ordinary Least Squares
method using the Moore-Penrose pseudo inverse of H (Rao & Mitra, 1971):

β=H{Y: ð3Þ

2.2 Ensemble Techniques

2.2.1 Multiple Classifiers Technique

The multiple classifier technique relies on the simple idea that the combination of
multiple classifiers leads to higher classification prediction and efficiency than the
single classifier. This approach is equivalent to the wisdom of crowds: the combined
opinion of diverse and independent experts usually outperforms the opinion of single
individuals. According to Kitter et al. (1998), the multiple classifier technique
achieves higher efficiency when learners generalize in different ways, i.e., the
diversity of the ensemble is generated. As ELM is based on the random initialization
of internal bias and weights, each learner will be different; there is diversity in the
ensemble. Therefore, the forecast of several ELMs will be combined using majority
voting to produce the final decision rule. Figure 1 shows the general architecture of
the multiple classifier.
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The classifiers C1(X), . . .,CM(X) are built based on the data set {(x1, y1), (x2, y2),
. . ., (xn, yn)}. Each classifier provides an output byM that will be combined into the
final output by.
2.2.2 Bagging

Bagging (short for bootstrap aggregating) is one of the primal ensemble techniques
(Breiman, 1996). Its popularity lies in the fact that it is intuitive and simple to
implement, with notably good performance. Bagging generates the essential diver-
sity to create the ensemble process that manipulates the training set. In this regard,
the training set samples are randomly resampled in order to generate several different
bags of samples. Thus, each bag represents a set of training samples. Finally, the
base classifier is applied to each bag, and the output classification is made by a
majority vote of all the base classifier results.

Bagging technique generates an improvement in generalization performance due
to the reduction in variance while maintaining steady or only slightly increasing the
bias, in particular, when it is applied to weak classifiers (Grandvalet, 2004). The
bagging algorithm can be expressed as follows:

Given a data set {(x1, y1), (x2, y2), . . ., (xn, yn)} .

1. Repeat for i = 1, 2, . . ., I.

(a) Build a bootstrap sample x�1, y�1 , x�2, y�2 , . . . , x�n, y�n by randomly
selecting n times with replacement from the data {(x1, y1), (x2, y2), . . ., (xn,
yn)}.

(b) Fitting the bootstrapped classifier Ci on corresponding bootstrap sample.

2. Calculate the output of the final classifier:

C xð Þ= I - 1 I

i
Ci xð Þ: ð4Þ

2.2.3 Boosting

Unlike the bagging technique, the boosting technique combines inaccurate and
relatively weak rules to produce highly accurate predictions. That is, it progressively
gives more weight to observations that have been misclassified by previously
generated classifiers in order to generate new classifiers and then combines the
classifiers of different iterations with weighted voting to make final predictions.
Since numerous algorithms for boosting have been proposed, we use the Adaboost
algorithm (Freund & Schapire, 1996) which is one of the most popular boosting
techniques applied to pattern recognition (Verikas et al., 2010). The Adaboost
algorithm can be described as follows:
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Given a data set {(x1, y1), (x2, y2), . . ., (xn, yn)} .

1. Initialize the weight vector of the training set:

W1 ið Þ= 1=N for i= 1, . . . ,N: ð5Þ

2. For t = 1, . . ., T,

(a) Train the weak classifier Ct on the weighted training samples.
(b) Calculate the sum of weighted errors of Ct:

εt =
N

i= 1
Wt

i,Yi ≠Ct Xið Þ: ð6Þ

(c) Choose

αt =
1
2
ln

1- εt
εt

: ð7Þ

(d) Update the weights:

Wtþ1
i =

Wt
i exp - αtY iCt Xið Þð Þ

Zt
, ð8Þ

where Zt is a normalization factor.

3. Output:

f xð Þ= sign
T

t= 1
αtCt xð Þ : ð9Þ

2.2.4 Random Subspace

The random subspace (Ho, 1998) bases its ensemble process on the modification of
the feature space. That is, it creates different bags of training samples by randomly
selecting features drawn for the initial feature set that characterizes each sample. The
training sample Xi(i = 1, . . ., n) in the training set X = (X1,X2, . . .,Xn) is a p-dimen-
sional vector Xi = (xi1, xi2, . . ., xip), where p represents the feature components.
Within the random subspace, the k-dimensional subspace is randomly selected
from the original p-dimensional feature space, k < p. The new learning samples
Xb = Xb

1, X
b
2, . . . , X

b
n

� �
in a k-dimensional subspace Xb

i = xbi1, x
b
i2, . . . , x

b
in

�
,



Prev xð Þ=
y 2 - 1; 1f g b= 1

δ sgn Cb xð Þð Þ,y: ð10Þ

where xbij j= 1, . . . , rð Þ, are built and then, the classifiers in the random subspace Xb

are combined using majority voting to create the final decision rule. Thus, the
random subspace can be organized as follows:
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1. Repeat b times, with b = 1, 2, . . ., B

(a) Randomly select a k-dimensional subspace Xb among the initial p-dimen-
sional feature space X.

(b) Design a classifier Cb(x) using the sample Xb.

2. Combine the forecast of Cb(x) classifiers using majority voting to a final
decision rule.

argmax XB

3 Experimental Design

3.1 Data

Our empirical study uses non-listed French firms taken from the Diane database
created by Bureau Van Dijk. The French companies must submit annual reports to
the French Commercial Court under French law provide accounting and income
statements to the Bureau Van Dijk authority. We drew firms from all sectors of
activity (excluding financial companies) for the years 2016–2018, allowing us to
examine the model’s capacity to create good prediction rules in a real-world scenario.

The Diane database provides the information on whether firms have failed or remain
healthy; in the case of failure, it also provides the date. A firm is considered to be failed
if it proceeded to be liquidated or reorganized, and non-failed firms were those that
continued their activity for at least a year after the period studied. We decided to be
conservative in the selection of non-failed firm in order to avoid the inclusion of healthy
companies that may suddenly fail and ensure a reliable sample that does not fail.
Moreover, firms that presented missing values in their financial statement, as well as
outliers, were excluded to ensure the prediction model stability. Consequently, the
collected dataset is composed of 3000 failed and 3000 non-failed firms.1

1Corporate failure is a rare phenomenon in the real world, so failed firms are clearly outnumbered
by non-failed ones. That is why the sample selection process becomes a significant paradigm. If one
design a model based on the actual population, the dataset must be imbalanced. However, this
procedure has a main drawback: it is likely to lead to significant degradation of the prediction
performance due to low percentage of failed firm in the entire sample (López et al., 2013; Shajalal
et al., 2021). Therefore, we collect a stratified sample with same observations of failed and
non-failed based on matched pair technique (Ciampi, 2015), in which failed firms are matched
with non-failed firms according to industry sector, size, and firm age.
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To minimize the bias effect and sample variability that might influence the model
prediction performance, we carried out a tenfold cross-validation method in which
the dataset is split into ten distinct training and test set in order to learn and evaluate
the model prediction. This procedure was repeated ten times to ensure the reliability
of our results. Therefore, the final prediction performance is calculated as the
average of 100 testing results.

3.2 Variables

Financial dimensions characterize the main explanatory factors for corporate failure.
Therefore, the balance sheets and income statements of the collected firms were used
to calculate 30 financial ratios to use as explanatory variables. This representation
layer is important because it guarantees that the variables, we have used actually
represent all aspects of the phenomenon.

The initial set of financial ratios that we compute includes at least four indicators
representing six categories: liquidity, solvency, profitability, financial structure,
turnover, and activity. These variables are presented in Table 1.

However, using all financial ratios may result in very high-dimensional feature
space, which may reduce model predictive capability. Therefore, a variable selection
process has been performed in order to choose a subset of the most relevant financial
ratios. Following the study by Kainulainen et al. (2011), a feed-forward variable
selection process was performed to retain the necessary information for prediction.

3.3 Evaluation Metrics

The evaluation criteria of our experiments are adopted from standard measures
established in the field of prediction (Shahriare et al., 2021). These measures include
average accuracy, type error I, and type error II. The formula of these measures
provided below can be explained with respect to the confusion matrix shown in
Table 2.

Accuracy=
TPþ TN

TPþ FPþ FNþ TN
, ð11Þ

Type- I error=
TP

TPþ FN
, ð12Þ

Type- II error=
TN

TNþ FP
: ð13Þ

In addition to these evaluation metrics, we also used the area under the receiver
operating characteristic curve (AUC) to estimate the model performance. This is a



graphical plot used to represent the model performance while changing the cutoff
value. In this case, the proportion of true positive and false positive are plotted on the
x-axis and y-axis of the curve. AUC has become a widely used evaluation metric in
corporate failure prediction because it is insensitive to the matrix of misclassification
cost2 to assess the discrimination ability of a model. In summary, two classifiers can
be easily compared according to differences in the ROC curve performance. A
classifier should get as close to the top left corner as possible, where its value will
be close to 1.

Predicting Corporate Failure Using Ensemble Extreme Learning Machine 115

Table 1 Initial set of variables

Profitability Liquidity

X1 Profit before Tax/Shareholders’ Funds X16 Cash/total assets

X2 Net income/shareholders’ funds X17 Current assets/current liabilities

X3 EBITDA/Total assets X18 Current assets/total debts

X4 EBIT/Total assets X19 Quick assets/Total assets

X5 Net income/Total assets X20 (Cash +Marketable securities)/Total sales

Financial structure Turnover

X6 Shareholder’s funds/Total assets X21 Inventory/Total sales

X7 Total debt/shareholders’ funds X22 Net operating working /Total sales

X8 Total debt/Total assets X23 Accounts receivable/Total sales

X9 Net operating working/Total assets X24 Accounts payable/Total sales

X10 Long term debt/Total assets X25 Current assets/Total sales

Solvency Activity

X11 Financial expenses/Total sales X26 Cash flow/total sales

X12 Labor expenses/Total sales X27 Total sales/total assets

X13 Financial debts/equity X28 Value added/total sales

X14 Financial expenses/EBITDA X29 Net income/value added

X15 Financial expenses/net income X30 EBITDA/Total sales

EBIT, earnings before interest and taxes; EBITDA, earning before interest, taxes, depreciation, and
amortization

Table 2 Confusion matrix for the prediction of corporate failure

Actually

Failed Healthy

Prediction Failed True positive (TP) False positive (FP)

Healthy False negative (FN) True negative (TN)

With the data set mentioned above, a cross-validation loop (tenfold cross-
validation repeated ten times) was performed to estimate the average evaluation
measures. To compare the classifier performance, Demšar (2006) recommends a

2The misclassification of a failed firm (predict that a firm is healthy when it fails) represent a loss in
capital, while the misclassification of a healthy firm (predict that a firm is failed when it survives)
represents only a loss of commercial bargain. That is why, misclassified a failed firm is considered
to be more costly.
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Wilcoxon signed ranks non-parametric test because it only assumes limited com-
mensurability and can be applied to prediction accuracy, misclassification errors or
any other evaluation metric. It is expressed as follows:
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Given R+ be the sum of ranks when the second classifier outperforms the first one,
R- be the sum of ranks for the opposite and the ranks of di = 0 are split evenly
among the sums:

Rþ =
X
di > 0

rank dið Þ þ 1
2

X
di = 0

rank dið Þ, ð14Þ

R- =
di < 0

rank dið Þ þ 1
2
di = 0

rank dið Þ: ð15Þ

Let T be the smaller of the sums, T= min (R+,R-), the normal approximation can
be used and the following statistic is used to calculate the z-statistics with a
corresponding p-value:

z=
T - n nþ1ð Þ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ1ð Þ 2nþ1ð Þ

24

q : ð16Þ

However, Garcia and Herrera (2008) caution that several repeated pairwise
comparison tests between algorithms conducted by us may lead to loss of control
over family-wise errors.

4 Results

Experimental analysis is designed to compare the prediction ability of different
ensemble methods based on extreme learning machine classifier. Table 3 indicates
the evaluation metrics achieved to assess the performance of the methods. Further-
more, this table is complemented by Table 4, which highlights whether the differ-
ences between the methods are statistically significant.3

We first analyze the overall performance of the methods. Boosting ELM and
Bagging ELM achieve the best mean accuracy values, 82.2% and 82.6%, respec-
tively, while Random subspace ELM attains mean accuracy value of 81.7% and that
of 81.4% is achieved with Multiple ELM. All ensemble methods are more accurate
than the single ELM (80.4% of the mean accuracy). Thus, it confirms that ensemble
ELM methods produce greater predictive power compared to a single ELM

3Appendix 1 shows the results on the database using ELM and ELM-ensemble methods. Figures 2
and 3 indicates the testing results with different number of hidden nodes and the average classifi-
cation error of the ELM-ensemble methods as a function of the number of ensemble members.



classification. The fact that Bagging and Boosting ensembles lead to the best
reduction in the generalization error is not entirely surprising, as it is well
documented their robustness to overfitting (Xiao et al., 2013; González et al.,
2020). In contrast, variation of the parameters of the classifiers, such as Multiple
ensemble and Random Subspace, can generate greater diversity (Bi, 2012). None-
theless, the information perceived by the varying diversity does not generate con-
sistent guidance so that the ensemble classifier can obtain a good generalization. On
the whole, the key of Boosting and Bagging is that they build a set of diverse
classifiers, while they benefit from the balance between diversity and accuracy,
which is an important determinant of the performance of ensemble classifiers.
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Table 3 Performance of different ELM-based ensemble methods

Accuracy Type-I error Type-II error AUC

ELM 80.4% 21.7% 17.5% 0.821

Multiple ELM 81.4% 20.3% 16.7% 0.834

Bagging ELM 82.6% 18.2% 16.5% 0.849

Boosting ELM 82.2% 18.8% 16.8% 0.842

Random subspace ELM 81.7% 20.0% 16.6% 0.836

Table 4 Significance levels of a test of differences by method and evaluation metric

Multiple ELM Bagging ELM Boosting ELM Random subspace ELM

Accuracy

ELM 0.0866* 0.0001*** 0.0012*** 0.0338**

Multiple ELM 0.0463** 0.0971* 0.3372

Bagging ELM 0.2908 0.985*

Boosting ELM 0.2883

Type-I error

ELM 0.0976* 0.0001*** 0.0001*** 0.0652*

Multiple ELM 0.0179** 0.0751* 0.7871

Bagging ELM 0.5584 0.0386**

Boosting ELM 0.182

Type-II error

ELM 0.4275 0.0987* 0.4752 0.1255

Multiple ELM 0.7213 0.6531 0.6466

Bagging ELM 0.7889 0.6777

Boosting ELM 0.5133

AUC

ELM 0.0610* 0.0001*** 0.0001*** 0.0462**

Multiple ELM 0.0133** 0.1170 0.8674

Bagging ELM 0.2891 0.0811*

Boosting ELM 0.3746

*Significant at 10% threshold; **Significant at 5% threshold; ***Significant at 1% threshold

Secondly, we find no uniform improvement among the ensemble methods. If the
misclassification errors are analyzed, Boosting ELM and Bagging ELM, here as



well, lead to lower misclassification error for failed firms, 18.8% and 18.2%,
respectively, significant at 1% threshold in comparison with ELM. In contrast, we
do not observe any significant differences in misclassification error for non-failed
firms across ensemble methods; rather, the mean type-II error ranges from 16.5%
with Bagging ELM and Random Subspace ELM to 18.8% with Bagging ELM.
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Finally, the Bagging and Boosting ELM-based methods lead to higher AUC
values than the other ensemble methods, which is in line with the previous results. In
particular, Bagging ELM seems to be the most optimal ensemble method for
corporate failure prediction as results are significantly better than those achieved
with the other ensemble methods, but with respect to Boosting ELM.

In sum, the better overall prediction of Bagging and Boosting methods over the
other ensemble methods, as previously observed, is due to their capacity to better
identify failed firms. The superiority of Bagging ELM is based on the creation of a
unique training set for each ensemble member because the perturbation generated in
the learning set causes a significant change in the prediction constructed. As a
model’s prediction is order-correct for most of the replicated observation, the
bagging-based ELM can be transformed into a nearly optimal predictor, in particu-
lar, for failed firms. Furthermore, one of major reasons why boosted ELM better
identifies failed firms may be due to the fact that the new classifier generation gives
more relevance to misclassified observation, mostly failed firms. That is, the likeli-
hood of instances that have been misclassified by the previously generated classifier
increases, and the set of classifiers grows progressively diverse. This trend explains
why this method provides higher accuracy for the minority class without jeopardiz-
ing the accuracy of the majority class.

4.1 Further Validation

In order to further evaluate the effectiveness of the ensemble extreme learning
machine for the corporate failure prediction task, a new data set has been collected.
In general, there is no universal accepted definition of corporate failure; bankruptcy,
the more severe form of failure, is commonly used. The popularity of bankruptcy as
the definition of failure is based on two concepts: on the one hand, it provides an
objective criterion to distinguish failed and non-failed firms, and, on the other hand,
the moment of failure can be dated when a firm fills in the bankruptcy procedure.
Therefore, the bankruptcy notion offers a discrimination criterion for obtaining a
well-defined dichotomy, or at least, a representation of corporate failure, that can be
applied methodologically. Nonetheless, numerous studies (Sun et al., 2014; Brédart
et al., 2021) consider that corporate failure begins when a firm experiences financial
distress. That is, when a firm encounters financial difficulties or struggles to fulfill its
obligations. Accordingly, we collected a data set considering financial distress as the
definition of corporate failure. We consider the criterion provided by Balcaen et al.
(2011), who define financial distress as a firm with negative recurring profit after



taxes over two consecutive years. Consequently, the collected dataset is composed
of 2500 failed and 2500 non-failed firms.4
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Table 5 Performance of different prediction methods

Accuracy Type-I error Type-II error AUC

ELM 78.2% 24.7% 18.9% 0.790

Multiple ELM 79.5% 23.0% 18.0% 0.804

Bagging ELM 81.1% 20.7% 17.1% 0.824

Boosting ELM 80.5% 21.4% 17.6% 0.812

Random subspace ELM 80.0% 22.1% 17.9% 0.808

Table 6 Significance levels of a test of differences by method and evaluation metric

Accuracy

Multiple ELM Bagging ELM Boosting ELM Random subspace ELM

ELM 0.0753* 0.0001*** 0.0032** 0.0217**

Multiple ELM 0.0265** 0.1333 0.2766

Bagging ELM 0.1267 0.0836*

Boosting ELM 0.3045

Type-I error

Multiple ELM Bagging ELM Boosting ELM Random subspace ELM

ELM 0.0592* 0.0001*** 0.0001*** 0.0154**

Multiple ELM 0.0144** 0.0869* 0.1936

Bagging ELM 0.1709 0.0935*

Boosting ELM 0.2423

Type-II error

Multiple ELM Bagging ELM Boosting ELM Random subspace ELM

ELM 0.2611 0.0348** 0.0107 0.2414

Multiple ELM 0.2560 0.3987 0.5612

Bagging ELM 0.6214 0.3521

Boosting ELM 0.3951

AUC

Multiple ELM Bagging ELM Boosting ELM Random subspace ELM

ELM 0.0509* 0.0001*** 0.0028*** 0.0131**

Multiple ELM 0.0106** 0.1635 0.5145

Bagging ELM 0.0958* 0.0439**

Boosting ELM 0.3153

*Significant at 10% threshold; **Significant at 5% threshold; ***Significant at 1% threshold

The results presented in Tables 5 and 6 are consistent with those of the previous
ones. Boosting ELM and Bagging ELM achieve the highest accuracy values, in
particular, due to their effectiveness in the reducing the type-I error in comparison to

4To design the prediction methods, the same procedure used in Sect. 3.2 was followed. Then, they
were evaluated based on a 10-cross validation and using the abovementioned evaluation metrics.



the single ELM.5 Moreover, it is important to mention that the prediction perfor-
mance of the methods in this data set is inferior to the previous one. Thus, it is more
arduous to differentiate failed firms from healthy ones in the initial steps of failure,
when firms just experience financial distress. The literature documented that firms
have shown a certain resilience for a long time, even though their financial situation
resembles to a bankrupt one (Iftikhar et al., 2021). In contrast, firms that seem
completely sound may suddenly fail. Therefore, the inability to know whether the
echoes of financial distress may result in corporate failure makes it difficult to
capture distinguishable factors that might reinforce model accuracy. That is why
the performance of models is lower when corporate failure is represented as financial
distress than when it is defined as bankruptcy.
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5 Conclusion

In this study, we propose to evaluate several ensemble methods applied to corporate
failure prediction in order to improve the classification performance of ELM. An
ensemble strategy that combines the predictions of individual models is more
performance-based than relying on the prediction capacity of a single model. Our
results confirm that the Extreme Learning Machine-based ensemble is more accurate
and robust than the “individual best” ELMmodel using two real financial datasets. In
particular, the ensemble methods used in this study increase, on average, the
classification accuracy estimated for the single ELM by 1.6 and 2.1 percentage
points for the bankruptcy data and financial distress data, respectively. An increase
in prediction performance of these magnitudes may seem modest, but the readers
need to understand that financial institutions and banks can save a huge amount of
the limited financial resources with decision technology that can increase the pre-
diction power by 2%.

As Bagging ELM and Boosting ELM give similar results – there is some
evidence that the bagging strategy is more effective for the prediction of corporate
failure using ELM – it is arduous to make a design recommendation for which
method is more optimal. However, we do notice that both methods, which operate by
taking a base learner and invoking it multiple times using different training sets, are
most effective in the ensemble ELM prediction method. We also notice that bagged
ELM is more computationally efficient, as it requires 40–50 ensemble members,
while 60–70 members as necessary for the boosting ensemble.

Acknowledgments We sincerely thank Prof. Abedin and Prof. Hajek for their assistance.

5The Appendix 2 shows graphically the testing results with different hidden nodes (Fig. 4) and the
average classification error of ELM-ensemble methods as a function of ensemble members (Fig. 5).
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Appendices

Appendix 1

Fig. 2 Testing results for different hidden nodes in ELM for bankruptcy data

Fig. 3 Average classification errors of the Ensemble ELM methods by ensemble members for
bankruptcy data
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Appendix 2

Fig. 4 Testing results for different hidden nodes in ELM for financial distress data

Fig. 5 Average classification errors of the Ensemble ELM methods by ensemble members for
financial distress data
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