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Abstract. Top-k lists are being increasingly utilized in various fields
and applications including information retrieval, machine learning, and
recommendation systems. Since multiple top-k lists may be generated
by different algorithms to evaluate the same set of entities or system
of interest, there is often a need to consolidate this collection of het-
erogeneous top-k lists to obtain a more robust and coherent list. This
work introduces various exact mathematical formulations of the top-
k list aggregation problem under the generalized Kendall tau distance.
Furthermore, the strength of the proposed formulations is analyzed from
a polyhedral point of view.
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1 Introduction

Top-k lists are a special form of item orderings (i.e., rankings) wherein out of
n total items only a small number of them, k, are explicitly ordered. Top-k
lists have many advantages that can overcome some of the practical drawbacks
of the traditional full-list approach: a collection of items may be too large to
rank or even present, processing the full list could present a massive computa-
tional/cognitive load, and it may be impossible or meaningless to compare and
rank items beyond a certain point [7]. Examples of top-k lists are the top-250
movies on IMDB or the top-10 played songs on Spotify [22].

Due to the increased use of such lists, the top-k list aggregation problem
(TOP-k-AGG) has attracted considerable attention. TOP-k-AGG seeks to find
a top-k list or full list that best represents the input lists. This problem has
been utilized in many different applications, including recommender systems [20],
metasearch engines [12], and bioinformatics [17]. TOP-k-AGG is interrelated
with many other problems such as top-k recommendation and top-k query.

TOP-k-AGG falls under the umbrella of the more general rank aggregation
problem whose objective is to combine individual rankings over a set of items
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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into one representative collective ranking [5]. Variants of this problem have been
studied probabilistically [6,8] and deterministically [10,12]. In the probabilistic
approach, it is assumed that the observed rankings are realizations of a proba-
bilistic model on ranking data, such as Mallows model [16], and the goal is to
recover the ground-truth ranking.

Deterministic approaches can be further categorized into score-based and
distance-based methods. Approaches in the first category apply relatively sim-
ple and efficient functions to calculate the score of each item, and the aggregate
ranking is obtained by sorting items based on their total scores. Score-based
methods are relatively susceptible to errors and manipulation, and they may
violate certain fundamental social choice properties [5]. Conversely, distance-
based methods provide more robust aggregation mechanisms. The aim of these
approaches is to find a consensus list that has the least cumulative disagreement
with the input lists. They are typically founded on axiomatic frameworks, from
which the aggregate solution is formally guaranteed to satisfy certain desirable
properties [9]. However, their aggregation problems tend to be more computa-
tionally demanding and are often NP-hard [5].

Distance-based TOP-k-AGG techniques can be divided based on whether
the output ranking is considered a full list or another top-k list. Dwork et al.
[10], Ailon [1], and Nápoles et al. [19] fall into the first category; Fagin et al.
[12] falls into the second category. The works referenced under the first category
define TOP-k-AGG as finding a full list with the least cumulative distance to the
input lists using the induced Kendall tau, Kendall tau, and Hausdorff distances,
respectively. Fagin et al. [12]’s method provides higher flexibility, and it induces
a far smaller solution space. Letting n denote the total number of items, there
are

(
n
k

)
k! possible top-k lists using the latter approach, which is (n − k)! times

smaller than n! (the number of possible full strict lists over n).
There are various distance measures for comparing top-k lists including gen-

eralized Kendall tau, generalized Spearman’s footrule, Hausdorff [12], and Good-
man and Kruskal’s gamma [14]. This paper focuses on the distance-based vari-
ant of TOP-k-AGG induced by the generalized Kendall tau distance [12]. This
focus is motivated by its widespread use for comparing top-k lists, and more
importantly, its flexibility at handling partial information from these lists. This
distance measure has been used in this capacity for similarity search [21], search
engines [18], and influence maximization [4]. Additionally, variants of this dis-
tance have been used for comparing and aggregating bucket orders [2,11] and
top-k XML lists [23]. However, to the best of our knowledge, this distance mea-
sure has not been utilized for the purpose of aggregating top-k lists since its
introduction in Fagin et al. [12], possibly due to a lack of existing exact meth-
ods. To facilitate this essential use of the distance measure, this paper studies
various exact mathematical formulations.

Contributions. Section 3 introduces a binary nonlinear programming formula-
tion and four mixed integer linear programming (MIP) formulations of TOP-
k-AGG under the generalized Kendall tau distance. Two of these formulations
result from the introduction of preference cycle-prevention constraints specific to
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TOP-k-AGG. Section 4 compares the strengths of the MIP formulations using
techniques from polyhedral theory. The mathematical formulations and poly-
hedral analyses presented herein can be extended to TOP-k-AGG using any
other distance measure between top-k lists by modifying the objective functions
accordingly.

2 Preliminaries

The rank aggregation problem was originally defined over strict rankings. For-
mally, a strict ranking π is a bijection of [n] = {1, 2, . . . , n} onto itself, which
represents a strict order of the n items. The Kendall tau distance [15] is one of
the most prominent measures of dissimilarity between rankings, which counts
the number of distinct item-pairs whose relative order is different in two rank-
ings. The Kendall tau distance between strict rankings π1,π2 is given by
K(π1,π2) =

∑

i∈[n]

∑

j∈[n]

Ki,j(π1,π2), where Ki,j(π1,π2) is set to 1 if the rel-

ative orderings of i and j are different in π1 and π2, and 0 otherwise. The
rank aggregation problem under Kendall tau distance is known alternatively as
Kemeny Aggregation (KEMENY-AGG).

A top-k list τ is a bijection from a domain Iτ (the members of τ ) to [k] =
{1, . . . , k}, where k < n. All items in τ are presumed to be ranked ahead of
items not in τ ; however, the exact ordering of items not in the list is unknown.
Let i ∈ τ indicate that item i appears in the top-k list, and let τ (i) denote the
rank or position of i therein. Additionally, let i �τ j denote that item i is rank
ahead of item j in τ , that is, if (i ∈ τ ∧ j /∈ τ ) OR (i, j ∈ τ ∧ (τ (i) < τ (j))).
Given top-k lists τ 1 and τ 2, let Λ(τ 1, τ 2) be the set of all unordered pairs of
distinct items in Iτ 1

⋃
Iτ 2 .

Definition 1 (TOP-k-AGG). Let L = {1, 2, . . . ,m} be the set of indices of the
input top-k lists, τ l be the input top-k list l ∈ L, I =

⋃

l∈L
Iτ l be the universe

of items, n := |I| be the number of items in the universe I, T be the set of
all possible top-k lists over I, and d(., .) be a distance measure between top-k
lists. TOP-k-AGG seeks to find a top-k list τ ∗ ∈ T with the lowest cumulative
distance to the input lists; it can be written succinctly as

τ ∗ = argmin
τ ∈T

∑

l∈L
d(τ , τ l). (1)

The rest of this paper focuses on the generalized Kendall tau distance [12].
Accordingly, the distance is restated in the following. Let p be a fixed parameter,
with 0 ≤ p ≤ 1, and let K(p)

i,j (τ 1, τ 2) be the contribution to the distance function,
for each item-pair (i, j) ∈ Λ(τ 1, τ 2). The generalized Kendall tau distance with
penalty parameter p, denoted by K(p), is defined as

K(p)(τ 1, τ 2) =
∑

(i,j)∈Λ(τ 1,τ 2)

K
(p)
i,j (τ 1, τ 2), (2)
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where

K
(p)
i,j (τ 1, τ 2) =

⎧
⎪⎨

⎪⎩

1 (i �τ 1 j ∧ j �τ 2 i) ∨ (j �τ 2 i ∧ i �τ 1 j)
p (i, j ∈ τ 1 ∧ i, j /∈ τ 2) ∨ (i, j /∈ τ 1 ∧ i, j ∈ τ 2)
0 otherwise.

K(p) is a near metric since it satisfies a relaxed version of the triangle inequality
[12]. TOP-k-AGG under K(p) is a combinatorial NP-hard problem [12], which
includes KEMENY-AGG as a special case (when k = n).

3 Integer Programming Formulations

To the best of our knowledge, no efforts have been made to derive an explicit
mathematical model of TOP-k-AGG. This section presents various formulations.

First, we define required parameters for defining the objective functions of
the presented formulations. Let µil be an indicator parameter that is equal to
1 if i ∈ τ l, where l ∈ L. Additionally, let sij denote the number of input lists
where item i is ranked ahead of item j, which can be expressed as

sij =
∑

l∈L
1(i, j∈ τ l ∧ (τ l(i) < τ l(j))∨ (i ∈ τ l∧ j /∈ τ l)

=
∑

l∈L

[
µilµjl1τ l(i) < τ l(j) + µil(1 − µjl)

]
.

(3)

In words, sij tallies the number of input lists in which i is ranked ahead of j,
that is, the number of input lists in which both items are present and i is ranked
ahead of j, plus the number of inputs lists in which i is present but j is not.

Using these parameters, the cumulative K(p) distance between a given top-k
list τ ∈ T and all of the input top-k lists, i.e.,

∑

τ l∈L

∑

(i,j)∈Λ(τ ,τ l)

K
(p)
ij (τ , τ l), can

be expressed as
∑

(i,j)∈Λ

K
(p)
ij (τ ) where Λ is set of all unordered pairs of distinct

items in I, and

K
(p)
ij (τ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sji + p
∑

l∈L
(1 − µil)(1 − µjl) if i, j ∈ τ ∧ (τ (i) < τ (j)),

sji if i ∈ τ ∧ j /∈ τ ,

p
∑

l∈L
µilµjl if i, j /∈ τ .

(4)

Equation (4) states that, whenever item i and j are both present in τ (the
solution top-k list) and i is ranked ahead of item j, the imposed K(p) distance
between τ and all of the input lists for this pair of items equals the number of
input lists where j is ranked ahead of i, plus p-times the number of input lists
neither i nor j is present in the same list. Whenever i but not j is present in
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τ , the imposed K(p) distance equals the number of input lists where j is ranked
ahead of i. Finally, whenever neither i nor j is present in τ , the imposed K(p)

distance equals p times the number of input lists where i and j are simultaneously
present.

The first formulation is an MIP possessing an assignment problem-like struc-
ture, with which exactly k items are assigned to the k available positions of the
solution top-k list. Its decisions variables are as follows:

uit =

{
1 if i is assigned to position t ∈ [k]
0 otherwise;

wij =

{
1 if i and j are in the top-k list, and i is ranked ahead of j
0 otherwise;

w′
ij =

{
1 if i is in the top-k list, but not j
0 otherwise;

w′′
ij =

{
1 if neither inor j is present in the top-k list, where j > i

0 otherwise.

From the definitions, item i is present in the top-k list if
∑k

t=1 uit = 1, and it
is absent if

∑k
t=1 uit = 0. The variables w, w′, and w′′ determine the relative

ordering of the items; these are dependent variables, as their exact values are
determined by the values of the u-variables. The first formulation (MIP#1) is
as follows.

min
u,w,w′,w′′

∑

i∈I

∑

j∈I

[
(sji + p

∑

l∈L
(1 − µil)(1 − µjl))wij + sjiw

′
ij

]
+

p
∑

i,j∈I,j>i

∑

l∈L
µilµjlw

′′
ij

(5a)

s.t.
∑

i∈I
uit = 1 ∀t ∈ [k] (5b)

∑

t∈[k]

uit ≤ 1 ∀i ∈ I (5c)

wij ≥
t∑

t′=1

uit′ +
k∑

t′′=t+1

ujt′′ − 1 ∀i, j ∈ I, i 	= j; ∀t ∈ [k − 1]

(5d)
∑

i,j∈I
wij ≤ k(k − 1)

2
(5e)

w′
ij ≥

∑

t∈[k]

uit −
∑

t∈[k]

ujt ∀i, j ∈ I, i 	= j (5f)

∑

i,j∈I
w′

ij = k(n − k) (5g)
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w′′
ij ≥ 1 −

∑

t∈[k]

uit −
∑

t∈[k]

ujt ∀i, j ∈ I, i 	= j (5h)

∑

i,j∈I,j>i

w′′
ij =

(n − k)(n − k − 1)
2

(5i)

uit ∈ {0, 1} ∀i ∈ I; ∀t ∈ [k] (5j)
wij , w

′
ij ≥ 0 ∀i, j ∈ I, i 	= j (5k)

w′′
ij ≥ 0 ∀i, j ∈ I, j > i. (5l)

Objective function (5a) minimizes the cumulative K(p) distance to the input
lists according to Eq. (4). Constraint (5b) enforces that exactly one item must
be assigned to each position of the top-k list. Constraint (5c) enforces that
every item must be assigned to at most one position of the list. Constraint (5d)
determines the respective values of the w-variables. More specifically, wij = 1 if
i occupies one of the first t positions (

∑t
t′=t+1 uit′ = 1) and j occupies position

t′′, where t+ 1 ≤ t′′ ≤ k (
∑k

t′′=t+1 ujt′′ = 1); otherwise, this constraint becomes
redundant. Constraint (5d) and (5e) together impose preference transitivity (i.e.,
prevent preference cycles); this means that if h is ranked ahead of i, and i is
ranked of j, then h must be ranked ahead of j as well (see Theorem 1). Constraint
(5f) determines the respective values of w′-variables; it enforces that w′

ij = 1
if i is present in the top-k list but not j; otherwise, this constraint becomes
redundant. Constraint (5g) enforces that at most k(n − k) of the w′-variables
can take a value of 1 as there are k(n− k) distinct item-pairs where exactly one
of the items appears in the list. Constraint (5h) enforces that w′′

ij = 1 if neither
i nor j is present in the top-k list; otherwise, this constraint becomes redundant.
Constraint (5i) enforces that at most (n − k)(n − k − 1)/2 of the w′′-variables
can take a value of 1 as this is the number of distinct item-pairs where both
items are absent from the list. Constraints (5j)–(5l) specify the domain of the
variables.

Taking a closer look at the structure of the constraints, we can observe that
even though variables w, w′ and w′′ are specified as binary, they can be treated
as non-negative continuous variables since the constraints of the model alone
enforce them to only take a value of 0 or 1. It is important also to remark that
the reason for including constraints (5f) and (5g) is that the objective function
coefficients are not necessarily positive. More specifically, if both i and j are
present in the solution top-k list, constraint (5f) implies that w′

ij ≥ 0; however,
if the objective function coefficient sij is 0, then any value of w′

ij results in the
same objective function value, which is not desirable.

Theorem 1. Constraints (5d)–(5e) impose preference transitivity.

Proof. Assume that items h, i, j are present in the solution top-k list with h
placed in position t ≥ 1, i in position t′ > t, and j in position t′′, where k ≥ t′′ >
t′. Constraint (5d) enforces that whi = whj = wij = 1. However, this constraint
only implies that wjh ≥ −1. In other words, the optimization model may have
incentive to assign wjh = 1, creating a preference cycle, in order to decrease the
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objective function value. Hence, Constraint (5d) on its own does not prevent
preference cycles.

However, the total number of w-variables that must take a value of 1 is given
by (k − 1) + (k − 2) + · · · + 1 + 0 = k(k − 1)/2—the first-ranked item is ahead
of k − 1 other items in the list, the second-ranked item is ahead of k − 2 items,
. . . , and the item at the bottom of the list is not ranked ahead of any other
items on the list. For this reason, constraint (5e) allows at most k(k − 1)/2 of
the w-variables to take a value of 1, forcing all other variables (including wjh) to
equal 0. Therefore, constraints (5d)–(5e) together impose preference transitivity
on the solution top-k list returned by solving MIP#1. 
�

Since KEMENY-AGG is a special case of TOP-k-AGG, MIP#1 provides a
novel formulation for that problem as well; however, it does not apply to the
variant of the problem with ties (see Yoo and Escobedo [24]). It is important
to mention that Cook [9] proposed a binary linear programming formulation of
KEMENY-AGG using the structure of the assignment problem; however, their
set of preference cycle prevention constraint is different from constraints (5d)–
(5e).

Next, we present a binary non-linear programming formulation for TOP-k-
AGG. The formulation uses the w-variables defined for MIP#1 as well as the
following decision variables:

zi =

{
1 if i is in the top-k list
0 otherwise.

The formulation is given by:

min
w,z

∑

i∈I

∑

j∈I

[
(sji + p

∑

l∈L
(1 − µil)(1 − µjl))wij + sjizi(1 − zj)

]
+

p
∑

i,j∈I,j>i

∑

l∈L
µilµjl(1 − zi)(1 − zj)

(6a)

s.t.
∑

i∈I
zi = k (6b)

whi + wij + wjh ≤ 2 ∀h, i, j ∈ I, i, j > h, i 	= j (6c)
wij + wji = zizj ∀i, j ∈ I, j > i (6d)
zi, wij ∈ {0, 1} ∀i, j ∈ I, i 	= j. (6e)

Objective function (6a) minimizes the cumulative K(p) distance to the input
lists. Constraint (6b) restricts k items to be present in the top-k list. Constraint
(6c) imposes preference transitivity only whenever items h, i, j all appear in the
list; otherwise it becomes redundant, with the help of constraint (6d). Constraint
(6d) enforces that, when both i and j are present in the list, one must proceed
the other. Constraint (6e) specifies the domains of the variables. Given a feasible
solution, the output top-k items are defined by the set τ := {i ∈ I|zi = 1}, and
the exact rank of item i ∈ τ is obtained as τ (i) := k − ∑

j∈τ wij .
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The above non-linear optimization model can be linearized using a technique
from Glover and Woolsey [13]. Specifically, constraint (6d) can be replaced with
three linear constraints for each distinct item pair (i, j): wij + wji ≤ zi, wij +
wji ≤ zj , and wij + wji ≥ zi + zj − 1. Similarly, the term zi(1 − zj) in the
objective function is replaced by auxiliary continuous variable x′

ij and constraints
x′
ij ≥ zi − zj and x′

ij ≥ 0; and the term (1 − zi)(1 − zj) in the objective function
is replaced by auxiliary continuous variable x′′

ij and constraints x′′
ij ≥ 1 − zi − zj

and x′′
ij ≥ 0. The latter two cases use the fact the objective function coefficients

of zi(1 − zj) and (1 − zi)(1 − zj) are non-negative, leading to a reduction in the
number of constraints required by the linearization. The resulting formulation
(MIP#2) is given by:

min
w,x′,x′′,z

∑

i∈I

∑

j∈I

[
(sji + p

∑

l∈L
(1 − µil)(1 − µjl))wij + sjix

′
ij

]
+

p
∑

i,j∈I,j>i

∑

l∈L
µilµjlx

′′
ij

(7a)

s.t. (6b), (6c), (6e) (7b)
wij + wji ≥ zi + zj − 1 ∀i, j ∈ I, j > i (7c)
wij + wji ≤ zi ∀i, j ∈ I, i 	= j (7d)
x′
ij ≥ zi − zj ∀i, j ∈ I, i 	= j (7e)

∑

i,j∈I
x′
ij = k(n − k) (7f)

x′′
ij ≥ 1 − zi − zj ∀i, j ∈ I, j > i (7g)

∑

i,j∈I,j>i

x′′
ij =

(n − k)(n − k − 1)
2

(7h)

x′
ij ≥ 0 ∀i, j ∈ I, i 	= j, (7i)

x′′
ij ≥ 0 ∀i, j ∈ I, j > i. (7j)

The rationale behind including constraints (7f) and (7h) is the same as con-
straints (5g) and (5i) in MIP#1.

Next, we define two variants of the preference transitivity constraints utilized
in MIP#2.

Proposition 1. Constraint (6c) can be replaced by non-linear constraints

whi + wij + wjh ≤ 3 − zhzizj ∀i, j > h, i 	= j, or (8)
whi + wij + wjh ≤ 1 + zhzizj ∀i, j > h, i 	= j. (9)

Furthermore, these constraints can be linearized respectively as

whi + wij + wjh ≤ 3 − 1
3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 	= j, (10)

whi + wij + wjh ≤ 1 +
1
3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 	= j. (11)
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Proof. The right-hand side of constraints (8)–(11) becomes 2, as desired, when
items h, i, j are all in the solution top-k list, i.e., when zh = zi = zj = 1. For the
remaining cases, these constraints become redundant, with the help of constraint
(7d). In particular, assume i is not in the top-k list; constraint (7d) enforces that
wij + wji ≤ 0 and wih + whi ≤ 0; hence, constraints (8)–(11) effectively reduce
to wjh ≤ 1, which is redundant. 
�

Replacing constraint (6c) with constraints (10) and (11), respectively, induces
two additional MIPs.

MIP#3:

min
w,x′,x′′,z

(7a)

s.t. (6b), (6e), (7c)–(7g)

whi + wij + wjh ≤ 3 − 1
3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 	= j.

MIP#4:

min
w,x′,x′′,z

(7a)

s.t. (6b), (6e), (7c)–(7g)

whi + wij + wjh ≤ 1 +
1
3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 	= j.

4 Polyhedral Comparison

Next, we compare the strength of the proposed MIPs based on their linear
programming (LP) relaxation models. First, we compare the strength of MIPs
#2, #3, and #4. To that end, notice that these three MIPs become equivalent
when k ≤ 2—when the preference transitivity relations are irrelevant—or when
n = k—when all items appear in the solution top-k list. Afterwards, we show
that each of these formulations is stronger than MIP#1. For the remainder of the
paper, let P1,P2,P3,P4 be the polyhedral corresponding to the LP relaxations
of MIPs #1, #2, #3, #4, respectively.

Theorem 2. For any instance of TOP-k-AGG, P4 ⊆ P2 ⊆ P3, and these
inclusions can be strict.

Proof. Note that MIPs #2, #3, and #4 differ only in their preference transitivity
constraints. First, we show that P4 ⊆ P2 ⊆ P3.

Since 0 ≤ zi ≤ 1 ∀i ∈ I, for every feasible solution in P2,P3,P4, we have
that (zh + zi + zj)/3 ≤ 1∀h, i, j ∈ I, i, j > h, i 	= j. Letting (w,x′,x′′,z)(4) ∈
P4 be a feasible solution to MIP#4, we have that

w
(4)
hi + w

(4)
ij + w

(4)
jh ≤ 1 +

1
3
(z(4)i + z

(4)
j + z

(4)
h ) ≤ 2 ≤ 3 − 1

3
(z(4)i + z

(4)
j + z

(4)
h ).
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Therefore, all feasible solutions to MIP#4 are also feasible to MIPs #2 and #3.
Using the same logic, all feasible solutions to MIP#2 are feasible to MIP#3.
This gives that P4 ⊆ P2 ⊆ P3.

To show that the inclusion P4 ⊆ P2 can be strict, consider a small instance
with I = {1, 2, 3, 4} and k = 3. Fix the solution (w,x′,x′′,z)(2) ∈ P2 as

x
′(2)
14 = x

′(2)
24 = x

′(2)
34 = 0.24, w

(2)
12 = w

(2)
23 = w

(2)
31 = 0.62, w

(2)
14 = w

(2)
24 = w

(2)
34 = 0.38,

z
(2)
1 = z

(2)
2 = z

(2)
3 = 0.81, z

(2)
4 = 0.57;

with all other variables equal to 0. By inspection, this solution satisfies all con-
straints of MIP#2. However, we have that

w
(2)
12 + w

(2)
23 + w

(2)
31 = 1.86 � 1 +

0.81 + 0.81 + 0.81
3

= 1.81.

This indicates that this solution does not satisfy the preference transitivity con-
straints of MIP#4.

Next, we use a similar process to show that the inclusion P2 ⊆ P3 can be
strict. Consider a small instance with I = {1, 2, 3, 4} and k = 3. Fix the solution
(w,x′,x′′,z)(3) ∈ P3 as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.4, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.7, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.3,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.85, z

(3)
4 = 0.45;

with all other variables equal to 0. By inspection, this solution satisfies all con-
straints of MIP#3. However, we have that

w
(3)
12 + w

(3)
23 + w

(3)
31 = 2.1 � 2.

This indicates that this solution does not satisfy the preference transitivity con-
straints of MIP#2. 
�
Theorem 3. For any instance of TOP-k-AGG, projw P2, projw P3, projw P4 ⊆
projw P1, and these inclusions can be strict.

Proof. First, we prove that projw P3 ⊆ projw P1. We show that, starting from an
arbitrary solution (w,x′,x′′,z) ∈ P3, we can deduce a solution (u,w,w′,w′′) ∈
P1. To this end, we define the following affine mappings of variables from P3 to
P1:

uit =
zi
k

∀i ∈ I, ∀t ∈ {1, . . . , k} →
k∑

t=1

uit = zi ∀i ∈ I, (12a)

w′
ij = x′

ij ∀i, j ∈ I, i 	= j, (12b)

w′′
ij = x′′

ij ∀i, j ∈ I, j > i. (12c)

Mapping (12b)–(12c) guarantees that the objective function values achieved by
the respective feasible points are equal. To establish that projw P3 ⊆ projw P1,
it is sufficient to show that, given a feasible solution in P3, the mapped variables
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are guaranteed to satisfy all constraints of MIP#1 (i.e., this point belongs to
P1).

Consider constraint (5b). For any t ∈ {1, . . . , k}, we have

∑

i∈I
uit =

∑

i∈I

zi
k

=
∑

i∈I zi

k

∑
i∈I zi=k−−−−−−−→

∑

i∈I
uit = 1.

Therefore, mapping (12a) provides a solution that is guaranteed to satisfy con-
straint (5b).

Consider constraint (5c). For every i ∈ I, we have

k∑

t=1

uit =
k∑

t=1

zi
k

=
kzi
k

= zi ≤ 1.

The last inequality follows from the fact that the z-variables are binary. There-
fore, mapping (12a) provides a solution that is guaranteed to satisfy constraint
(5c).

Next, consider constraint (5d); we focus on the maximum value of the right-
hand side of this constraint given mapping (12a). For any arbitrary item-pair
(i, j) and any t ∈ {1, . . . , k − 1} we have

t∑

t′=1

uit′ +
k∑

t′′=t+1

ujt′′ − 1 =
t∑

t′=1

zi
k

+
k∑

t′′=t+1

zj
k

− 1

=
tzi
k

+
(k − t)zj

k
− 1

≤ t

k
+

k − t

k
− 1 =

k

k
− 1 = 1 − 1 = 0.

The above equation states that using mapping (12a), the left-hand side values
of constraint (5d) will be non-positive. Since wij ≥ 0, mapping (12a) provides a
solution that is guaranteed to satisfy constraint (5d).

Next, consider constraint (5e). By summing over constraint (7d), we have

2
∑

i,j∈I
wij ≤ (k − 1)

∑

i∈I
zi = k(k − 1)

→
∑

i,j∈I
wij ≤ k(k − 1)

2
,

which is exactly constraint (5e).
Finally, consider constraints (5f)–(5i). Mappings (12a)–(12c) imply that all

feasible solutions to constraints (7e)–(7h) are feasible to constraints (5f)–(5i).
Putting all pieces together, we have projw P3 ⊆ projw P1.

Note that the preference cycle-prevention constraints of MIP#3 have no
counterpart in MIP#1. Therefore, we can show that the inclusion projw P3 ⊆
projw P1 can be strict by providing a solution that satisfies constraints (7c)–(7f)
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but violates preference cycle-prevention constraint (10), as this solution satis-
fies all constraints of MIP#1. There is an infinite number of such solutions; for
example, consider a small instance with I = {1, 2, 3, 4} and k = 3. Fix the
solution (w,x′,x′′,z)(3) as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.44, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.72, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.28,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.86, z

(3)
4 = 0.42;

with all other variables equal to 0. By inspection, this solution satisfies con-
straints (7c)–(7f); however, it violates the preference transitivity constraints
involved in MIP#3, as we have

w12 + w23 + w31 = 2.16 	≤ 3 − (0.86 + 0.86 + 0.86)/3 = 2.14.

Finally, from Theorem 2, we have that P4 ⊆ P2 ⊆ P3; therefore, we can con-
clude that projw P2,projw P4 ⊆ projw P1, and these inclusions can be strict. 
�

5 Concluding Remarks

This paper studies the top-k list aggregation problem, which includes Kemeny
aggregation as a special case. It presents a binary non-linear and four mixed-
integer linear programming formulations. Furthermore, it studies the strength of
the four mixed-integer linear programming formulations using polyhedral anal-
ysis. Our findings shows that the presented formulations can be ordered based
on the strength of their LP relaxations. The strongest formulation is induced
by a novel set of preference cycle-prevention constraints tailored to the specific
structure of the top-k list aggregation problem introduced herein.

Future research will explore heuristic and approximation algorithms for
this problem. Additionally, investigating whether lower bounding techniques of
Kemeny aggregation [3] can be modified for the top-k list aggregation problem
can be another avenue of research.
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