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Preface

It is the first thing we do upon arrival in this world, the last thing when it is time to
leave and just like a person’s heartbeat, it is a sign of life—breathing.

But breathing is more than simply the process of moving air in and out of the
lungs. Without breathing, we would not be able to speak or even to laugh. Therefore,
without the ability to breath, we would be deprived of the expression of many of our
emotions. Moreover, breath exhale provides a mirror to the biochemical processes,
occurring not only in the lungs but in the whole body, thanks to the gas exchange
between lungs and blood taking place at the alveoli. It is therefore not surprising that,
since ancient times, analysing breath is a popular diagnostic tool for systemic
disorders and diseases.

There is evidence that already the ancient Greeks and the Chinese people
analysed breath. Within the fifth and fourth century BC, the period of Hippocrates,
breath odour was used to diagnose kidney failure, lung abscess, diabetic
ketoacidosis, liver disease and halitosis in Greece. One milestone of breath analysis
was reached in 1780, when Antoine Laurent Lavoisier, accompanied by Pièrre
Simon de Laplace and Armand Séguin, was able to describe the metabolism of a
guinea pig, discovering the metabolization of oxygen to carbon dioxide under the
emission of heat. Lavoisier’s pioneering work in this field also included the first
attempt to describe the human respiratory gas metabolism, thus making an important
contribution to the development of respiratory physiology. At the beginning of the
nineteenth century, it was A. Nebelthau who invented one of the first colorimetric
breath tests. With his test, he was able to detect breath acetone of people suffering
from Diabetes Mellitus. In 1874, Francis Edmund Anstie, a British doctor, used an
acidic chrome solution changing its colour from red-brown to green upon contact
with ethanol, representing the first alcohol breath test. About one century later, in the
1970s, the age of modern breath analysis was heralded by the studies of Linus
Pauling. Using gas-liquid partition chromatography, he was able to quantitatively
determine about 250 different substances in human breath exhale.

Within the last decades, highly sensitive and selective offline and real-time mass
spectrometry emerged and opened new opportunities. Research was mainly focusing
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on the discovery of biomarkers, which could be used for early detection of diseases.
However, until now, except for nitrogen monoxide, which is an approved biomarker
for asthma, no “magic” biomarker or breath print has been discovered. Besides,
many resources have been invested in the development of point-of-care devices for
potential biomarkers but breath analysis is still failing to proceed from bench to bed
and become part of the everyday diagnostic routine in clinics or doctoral offices.

This book therefore addresses the mistakes that have been made in the past and
offers answers on how to take breath analysis to the next level. Besides, real-time
and offline analysis methods based on spectrometers as well as reviews about
different sensing approaches for targeted point-of-care devices are presented. More-
over, this book discusses pulmonary function analysis and its role in modern breath
analysis.

The first chapter deals with the physio-metabolic monitoring of breath exhale
using real-time mass spectrometry. It describes the complexity of breath analysis
since many factors can easily change the composition of breath including different
respiratory patterns or rhythms as well as posture or exhaling flow rates. On the one
hand, the chapter deals with the challenges and pitfalls coming along with current
breath analysis research, but on the other hand highlights its importance and
potentials for modern diagnostics.

Within the second chapter, offline breath analysis using gas chromatography
coupled with mass spectrometry and the role of standardization of breath sampling
as well as data analysis are discussed. Furthermore, the chapter addresses innovative
algorithms and how they improve the analytical performance of the measurement
device.

In the third chapter, gas chromatography coupled with ion mobility spectrometry
for the detection of volatile breath compounds in clinical and emergency settings is
presented. It focuses on the potentials of this real-time measurement technique for
rapid testing, diagnosis and biomarker discovery. In addition, it addresses the
remaining limitations in current applications and how to meet remaining challenges.

The fourth chapter is concerned with the applicability of optical sensing strategies
in the infra-red region. Different measurement methods and current applications are
reviewed providing an overview on the fundamental principles and recent develop-
ments in this emerging field.

The applicability of photoacoustic spectroscopy is addressed in the fifth chapter
of this book. The measurement principle is described in detail highlighting the
potentials and pitfalls. Besides, the application of innovative algorithms is discussed
to employ this technology in complex measurement matrices like breath. Finally,
recent applications of photoacoustic spectroscopy in breath analysis are reviewed
within the chapter.

Within the sixth chapter of this book, sensor-array-based devices for breath
analysis are discussed, highlighting electronic noses. The chapter includes material
design advances, material selections and innovative sensor structures. Besides, a
discussion of parametric resonance and excitation applied to sensor-based breath
analysis devices is presented. An analysis of a review on the development of carbon
nanomaterials concludes the chapter by discussing the current challenges related to
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sensor array devices, machine-learning algorithms and the application of breath
analysis.

The final chapter of the book addresses modern pulmonary function diagnosis
highlighting its importance for reliable breath analysis. The techniques described
include spirometry, body plethysmography and a variety of other common tests used
to assess a patient’s respiratory status. Furthermore, the chapter deals with blood gas
analysis, capnometry and capnovolumetry and the analysis of nitrogen oxide in
human breath exhale for asthma detection.

Although this book covers many aspects of breath analysis, it is not all-
encompassing since this would go far beyond the scope of this book. However, it
provides a good overview and addresses the most important aspects of modern
breath analysis including the advantages and disadvantages of offline and real-time
mass spectrometers, the scopes and limits of targeted sensing approaches as well as
the importance of pulmonary function diagnostics in the field of breath analysis.
Besides, the challenges and pitfalls of breath analysis are addressed and potential
solutions like improved standardizations and innovative algorithms are presented.

At this point, I would like to express my deepest gratitude to all authors and co-
authors. Without your fine work, this book would not have been possible. I hope you
all agree that this big effort and the long hours of work have been worthwhile. The
book will be of interest not only for experts in the field but also to students and their
teachers in various interdisciplinary research fields encompassed by modern breath
analysis.

Regensburg, Germany Stefan Weigl
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Employing Real-Time Mass Spectrometry:
Importance, Challenges, Potentials,
and Pitfalls

Pritam Sukul and Phillip Trefz

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Dynamic Nature of Exhaled VOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Mass Spectrometric Methods for Real-Time Breath Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Physiological and Metabolic Effects on Breath Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Standardization of Real-Time Sampling for Breath Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Applications and Potentials of Physio-Metabolic Monitoring in Breath Analysis . . . . . . . . . . 12
7 Conclusions and Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Abstract A tiny fraction of our breath contains trace volatile organics of various
chemical classes. Due to their endogenous and/or exogenous origins, these volatiles
can denominate many intrinsic and extrinsic effects. Exhaled volatile profiles are
super dynamic in nature and their expressions may change from seconds to years.
Exhaled volatile concentrations largely depend on normal or abnormal fluctuations
in physiological and metabolic attributes. Minute or pronounced alterations in
cardiorespiratory and other bronchopulmonary gas-exchange parameters due to
simple changes in respiratory patterns, routes, and rhythms, posture, expiratory/
inspiratory flow, and upper-airway resistance can immediately affect volatile
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profiles. Similarly, the subject’s age, gender, sexual orientation, metabolic state or
status, diet, nutrition, therapy, lifestyle habits and habitats, menstrual phases, con-
traception, pregnancy, menopause, as well as any acute or chronic condition and
comorbidities may cause transient or long-lasting differences in breath composi-
tions. Applications of real-time mass spectrometric techniques along with alveolar
sampling enabled us to frame fast occurring and continuous changes under diverse
physio-metabolic conditions. Physio-metabolic conditions affected breath compo-
nents more pronouncedly than the differential expression proposed as disease bio-
markers in the literature. Investigations of such regulating factors helped us to
develop the present state of the art for clinical breath sampling and analysis. Besides,
assessments of ventilation and hemodynamics driven changes in exhaled volatiles
have depicted potential for physio-metabolic monitoring. Longitudinal personalized
analysis of breath profiles may offer unconventional path toward pathophysiological
and therapeutic monitoring.

Keywords Pathophysiology · Biomarkers · Breath analysis · Metabolism ·
Monitoring · Omics · Physiology · Sampling · Standardization · Volatile organic
compounds (VOCs)

Abbreviations

COVID-19 Coronavirus disease 2019
FeNO Fractioned exhaled nitric oxide
IMS Ion mobility spectrometry
ppbV Parts per billion by volume
pptV Parts per trillion by volume
PTR-ToF-MS Proton transfer reaction–time of flight–mass spectrometry
SARS-CoV-2 Severe acute respiratory distress syndrome – coronavirus 2
SESI-MS Secondary electrospray ionization–mass spectrometry
SIFT-MS Selected ion flow-tube–mass spectrometry
VOCs Volatile organic compounds

1 Introduction

A very tiny fraction (<1%) of our breath contains hundreds of volatile organic
compounds (VOCs). These compounds belong to various substance classes and the
tracible concentrations of most of these VOCs range between parts per billion and
parts per trillion by volume (ppbV–pptV) levels [1]. Many of these volatiles are
exogenous – meaning that those are accumulated from our habits, habitats, diet,
lifestyle, therapy, etc. For instance, if we smoke a cigarette, we will exhale consid-
erable amounts of acetonitrile and furan [2, 3]. Visiting a fuel station will source
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benzene and toluene, whereas entry to a hospital may increase breath isopropanol
and formaldehyde concentrations. If we drink orange juice, limonene will become
abundant in our breath and a visit to the forest will do the same for alpha-pinene
[4]. On the other hand, some other VOCs are potentially endogenous – meaning that
those are produced within us via various physiological, metabolic, biochemical,
systemic microbial, and/or pathophysiological processes at the cellular/organ levels
[5, 6]. For example, acetone is known to originate from cellular and/or hepatic
glycolysis and lipolysis [7]. Ammonia, dimethyl, and trimethylamine are linked to
protein catabolism [8, 9]. Organosulfur such as dimethyl sulfide, methanethiol, and
butanethiol are produced by anerobic methylation by the systemic microbiota of our
lower gut [8, 10]. Nonetheless, some substances such as isopropanol, ethanol, acetic
acid, acetaldehyde, and acrolein have mixed origins – means that they are sourced
within and without. Irrespective of the origin (after being produced in vivo or being
accumulated/stored from outside), all VOCs are transported via blood to our lungs,
and thereafter, they are released during the bronchopulmonary gas-exchange process
and thereby are found in breath. Therefore, profiling of these substances may offer
non-invasive, rapid, repeatable, and beyond conventional insights into various
systemic phenomena, events, or status [11].

While largely abundant breath gases, e.g., oxygen (O2) and carbon dioxide (CO2),
are conventionally applied in human medicine for diagnosis and monitoring of
certain conditions, nitric oxide (NO) is the only trace gas, which is vividly investi-
gated for point-of-care (PoC) applicability [12–14]. As NO is produced within the
proximal airways and inflammation facilitates its production, the fractioned exhaled
NO (FeNO) is well attributed to allergic asthma [13, 15]. Nonetheless, the scenario is
substantially different in case of other trace VOCs. Same substances were proposed
in independent studies as biomarker for different diseases [15–17]. Despite many
efforts to find, propose, or establish unique volatile (profiles or patterns) as disease-
or event-specific biomarkers in different studies, none of those could pass the
independent validation tests [18]. Consequently, the trace volatiles could not enter
into routine clinical practice yet.

In fact, almost all the VOCs are present in everyone’s breath, and if we simply
measure or compare the exhaled compositions of diseased patients with that of an
age- and gender-matched healthy cohort, it is very unlikely to come across any
unique VOC profile or pattern [19, 20]. After decades of breath analysis, the focus
has shifted toward the detection of changes in exhaled VOC concentrations rather
than expecting a unique marker. Meanwhile, a series of systematic investigations of
immediate, transient, and/or persistent physio-metabolic effects on VOC profiles
(mainly from healthy human subjects) helped us to realize the extremely dynamic
nature of breath volatiles [21–25]. Changes observed in these physio-metabolic
studies turned out to be even more pronounced than those published as biomarkers
for diagnosis (even for early detection!) in many cross-sectional (healthy vs. sick)
studies. Real-time mapping of such dynamic nature under various conditions along
with the available knowledge and fundamental understanding of human physiology,
metabolism, and analytical chemistry are the indispensable prerequisites to eventu-
ally translate VOCs into clinical applications [5].
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2 The Dynamic Nature of Exhaled VOCs

Exhaled VOC concentrations are affected via immediate or precedent extrinsic and
intrinsic factors such as environment exposure, diet and lifestyle habits, healthy
physiological (respiratory, hemodynamic) and metabolic attributes, systemic micro-
bial activity, as well as any health condition and/or therapy [25–27]. Putative breath
markers not only differ interindividually but also may change instantly or over time
within the same individual. Even if we succeed to rule out and exclude various
extrinsic factors and/or pathological effects, simple and daily life fluctuations in
normal and healthy physiology (ventilation and hemodynamics) and/or metabolism
may alter our VOC profiles significantly. Besides relying upon our physio-metabolic
and health status, such changes and differences are also closely related to the
potential origins, physicochemical characters, exhalation kinetics, and compartmen-
tal distributions of these VOCs. Thus, while thinking of the dynamic nature of the
breath volatiles, a fundamental question does arise. How dynamic are these VOCs or
how long does it take to change concentrations?

Well, the actual dynamic timeframe for VOC concentrations ranges from seconds
to years.

VOC concentrations can change within seconds simply due to changes in our
normal breathing patterns. For example, if we hold our breath for a few seconds,
sudden and profound changes are observed after the breath holding phase
[21, 28]. Such changes are substance specific and depend on the origin and physi-
cochemical characters such as solubility, volatility, and blood-gas partition coeffi-
cients of the VOCs. Concentrations of substances with low aqueous solubility, e.g.,
isoprene, benzene, furan, and acetonitrile, will increase significantly due to
perfusion-limited accumulation during breath holding. In contrast to that, com-
pounds like acetone will remain almost constant due to high solubility – that will
allow it to get absorbed within the surrounding lung tissue/compartments. On the
other hand, oral microbiota-originated VOCs, e.g., hydrogen sulfide, will decrease
via washout due to increased respiratory rate (physiological compensation) after
breath holding. The physiological effects due to breath holding of 10–60 s by healthy
adults are neutralized to baseline within 8–10 breaths.

VOC concentrations will change within minutes if we just switch our body
positions [22]. For instance, if you are reading this book by sitting on a chair, and
you suddenly switch to supine posture, your cardiac output and pulmonary perfusion
will change immediately resulting in increased exhalation of isoprene and similar
substances, whereas compounds like acetone and alike compounds will remain
unaffected by hemodynamic effects.

VOC concentrations may reflect metabolic changes taking place within hours or
throughout the day [29, 30]. If we continuously measure breath VOCs from early
morning till evening, systemic changes will be observed on VOC exhalations. Intake
of standard breakfast and lunch will cause systematic postprandial metabolic adap-
tation via hyperglycemia and corresponding oxidative stress, which will be reflected
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in the time profiles of substances such as acetone, 2-propanol, pentanal, dimethyl
sulfide, and isoprene.

Changes in VOC concentrations are reported to occur within days, weeks, and
also throughout the month. While looking at the natural menstrual cycle in
pre-menopausal adult women, exhaled VOC concentrations largely depend on
different phases of the monthly endocrine regulation [31]. Endogenous substances
such as ammonia, isoprene, acetone, and dimethyl sulfide closely mirror many well-
known effects of the female sex hormones on various metabolic pathways [32–
35]. Natural interplay between estrogen and progesterone levels at the period,
follicular, ovulation, and luteal phases is reflected distinctly on VOC profiles.
Such changes differed significantly in adults undertaking daily oral contraceptive
pills (i.e., comprised of supplementary female sex hormones). Similarly, longitudi-
nal changes in VOC concentrations take place throughout pregnancy [36, 37]. In
pregnant women, various physio-metabolic effects such as gestational endocrine
changes, embryonic development, fetal oxygen and nutrient demand-driven increase
in cardiac output and respiratory rate, increased cholesterol biosynthesis, and altered
breathing pattern via diaphragm upliftment and physiological hyperventilation cause
progressive changes in VOC exhalations [37–40].

If we look into the healthy aging process, exhaled expressions of many endog-
enous and exogenous VOCs differ significantly, based on our biological age. Recent
analysis of breath VOCs from a large cohort of healthy females aged between 7 and
80 years has depicted substance-specific changes in breath composition. Breath
concentrations of endogenous aldehydes, alcohols, organosulfur, short-chain fatty
acids, alkene, ketones, and exogenous nitriles, aromatics, and terpenes have indi-
cated physio-metabolic milieu between endocrine homeostasis, oxidative stress, gut
and pulmonary microbial diversity/activity, energy metabolism, and lifestyle habits
[41–45].

Due to such dynamic nature, it is utterly critical to trace and translate the actual
pathophysiological information from breath VOC expressions – as those are often
overridden by the everlasting physio-metabolic effects. Continuous breath-resolved
profiling of VOC concentrations under different physio-metabolic conditions may
pave the path for framing the complex behavioral dynamics and exhalation kinetics
of the potential VOC biomarkers in real time.

3 Mass Spectrometric Methods for Real-Time Breath
Analysis

Despite the fact that gas-chromatography and mass spectrometry (GC-MS) has been
applied for many years as the gold standard for trace gas analysis [46, 47] at low
ppbV–pptV levels, punctual measurements could not provide the actual insight into
the dynamic nature of breath VOCs. Further, unavoidable confounding factors
related to offline mass spectrometry such as preconcentration steps, sample
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collection (e.g., blowing into bags, mixed breath phases), sample storage time/
conditions, and analysis time remained as everlasting challenges. Inception of
end-tidal CO2 controlled manual or automated breath sampling in glass syringes or
in micro-extraction-based traps (e.g., needle-trap microextraction) enabled
researchers to collect the alveolar fractions of VOCs, which represents the actual
systemic/blood concentrations [48, 49]. Nevertheless, fast occurring changes (within
seconds or a minute) remained untraceable via offline MS methods.

Development and application of real-time MS techniques, e.g., selected ion flow-
tube (SIFT)-MS, proton transfer reaction (PTR)-quadrupole-MS, and PTR-time of
flight (ToF)-MS [50], along with online end-tidal/alveolar sampling have eventually
overcome various confounding influences [51–53]. In principle, a SIFT and a PTR
use alike ionization principles based on various primary/reagent ions such as hydro-
nium (H3O

+), NO+, or O2
+. Both of the instruments allow switching between reagent

ions according to diverse analytical requirements. Given the fact that most of the
breath VOCs belong to the relatively lower mass range (<500 Da) and have higher
proton affinity than water, in the field of breath analysis, soft ionization via H3O

+ ion
is desirable to have minimal fragmentation [21, 23].

PTR-ToF-MS, H3O
+ ions are produced via cathode discharge on pure (99.99%)

water vapor. After production they are pulsed to the next chamber (drift tube) where
the proton transfer reaction takes place. The breath sample is introduced to this
chamber to react with H3O

+ ions. Based on the proton affinity, VOCs react with
H3O

+ ions and get protonated (VOC + H3O
+ → VOCH+ + H2O). After that,

protonated VOCs are detected via a quadrupole-MS or a ToF-MS according to
their mass/charge ratio. Introduction of a ToF allows us to achieve mass resolution
of 1,000–4,500 m/Δm that can assign volatiles upon their measured mass and
corresponding sum formula with high precision as well as enable isobaric separation
of VOC masses [54–56]. Unlike GC-MS, no sample preparation, preconcentration
steps, and storage are required. Application of constant inlet flows in side-stream
mode (in order to avoid interference to the mainstream of breathing) can uniformly
introduce samples to the drift tube and measure at high time resolution in millisec-
onds (ms). For instance, studies have demonstrated application of 200 ms in clinical
environment to simultaneously measure rapid changes of VOC concentrations in the
ambient air and in the exhaled breath of healthy subjects or ventilated patients
[24, 57, 58]. Here, in every 200 ms a data point was recorded and, on each data
point, all protonated VOCs were measured as per mass/charge ratio. Thus, the
assignment of VOCs at the exhaled alveolar plateau is also possible in real time.
Besides continuous measurements, assignment of inspiratory and end-tidal breath
phases (via customized data processing algorithms) helps to date the alveolar
fraction of VOCs in a breath-resolved manner [21, 54]. For instance, signal intensity
of an endogenous and blood-borne VOC (e.g., acetone or isoprene – abundant in
exhalation) can be used to denominate the expiratory and inspiratory phases of
breath. Based on the area/mass range of interest, mass scale can be recalibrated in
desired time intervals. For clinical breath studies, 21.0226 Th (H3O

+-isotope),
29.9980 Th (NO+), and 59.049 Th (protonated acetone) can be used for mass scale
calibration because of their natural abundances in expired and inspired air [52].
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Secondary electrospray ionization-mass spectrometry (SESI-MS) has enabled
ambient ionization via nano-electrospray-driven positive (protonated) and negative
(deprotonated) ions that collide with sample analytes within the gas phase
[59]. Detection of relatively large, semi-volatile, and even nonvolatile molecules is
plausible by integrating high-resolution mass spectrometers such as Orbitrap-MS
[60]. Nevertheless, the identification of substances with higher molecular weights is
extremely challenging – especially where internal standards are not available for
such mass ranges [61]. SESI is at an early stage and offers vivid scope for further
optimizations and advancements in order to bridge other downstream omics (e.g.,
metabolomics, proteomics, and lipidomics) with volatolomics and exhaled
breathomics.

In contrast to real-time MS techniques for nontargeted screening of VOCs,
simpler methods such as electronic noses (eNOSE) or differential ion mobility
spectrometry (DMS/IMS) are suitable for targeted approaches [62]. Artificial olfac-
tion is often conducted via chemical, nano-optical sensors as well as via customized
laser-based spectroscopy methods. Despite chemical and nano-optical methods
being relatively cheap, easy to use, adaptable (e.g., integration of certain gas sensing
arrays as per analytical requirements), and PoC applicable [63], they suffer from
many demerits. These methods do not allow an unequivocal substance identification
due to limited selectivity and specificity but offer promising perspectives for PoC
breath tests, once marker substances are defined. Susceptibility to matrix effects,
e.g., humidity, temperature, and complex sample compositions, is also an important
disadvantage for eNOSEs and IMS.

4 Physiological and Metabolic Effects on Breath
Biomarkers

Soon as it was realized that “magic bullet” biomarkers may not exist and pursuing
VOC concentration changes under various pathophysiological conditions is more
important and realistic than looking for unique biomarkers, the research focus was
imposed on framing the factors that are affecting VOC concentrations. Gradually it
is realized that “we are our actual challenge/problem.” Being human, our own
physiology and metabolism affect our VOC profiles more critically than other
external factors.

After being produced or stored in vivo, VOCs undergo various metabolic cas-
cades (regulated by our enzyme systems at cellular, systemic microbial, and organ
levels, e.g., liver, gut, and muscle) and larger hydrocarbons often break down into
smaller molecules. Thereafter, VOCs are carried by blood and pass through other
body compartments where they are distributed/redistributed further. For instance,
lipophilic substances are absorbed within the fatty compartments [64]. The lung is
our blood–gas interface and the alveolar gas-exchange process is largely
denominated by pulmonary ventilation-perfusion (VQ) mechanism and the

Physio-Metabolic Monitoring via Breath Employing Real-Time. . . 7



distributions of blood flow and air in lung compartments. Consequently, VOC
exchange is closely relying on the pulmonary ventilation/perfusion (V/Q) ratios,
i.e., primarily regulated by cardiac output and minute ventilation [26, 65–67]. After
being released in alveolar air, VOCs are further distributed/redistributed within
alveolar compartments (due to collateral ventilation between fused alveoli), undergo
dilution via airway dead space and substances (e.g., NO and acetone) originating
from airway epithelium, and are taken up via extra-alveolar exchange [24, 67]. Mech-
anisms such as pre-alveolar absorption and post-alveolar revalorization are also
playing a crucial role in VOC modifications. Therefore, it is important to achieve a
steady state of physio-metabolic interplay, while reproducible breath samples can be
collected under minimal and systematic influence from subject’s own physiology
and metabolism.

Minute muscle movements during sleep or vigorous muscle activity under exer-
cise are well known to reflect physio-metabolic effects on breath VOC profiles in
real time [68–71]. The anerobic threshold under exhaustive exercise (e.g., by
following step-wise and incremental ramp protocols) can be determined by means
of VOC-based modeling of lactate threshold and ventilatory threshold. Besides the
changes during movements, VOC profiles are also affected by normal physio-
metabolic effects at rest.

In addition to the aforementioned effects from altered breathing patterns (e.g.,
breath holding) and/or posture, simple changes in breathing route during breath
sampling can also cause substance-specific changes in breath composition at rest.
For instance, if you are breathing in and out via mouth and suddenly (even uncon-
sciously) switch to nasal breathing, immediate changes will take place in exhaled
VOC concentrations [25]. Substances originating from the nasal cavity bacteria (e.g.,
methyl-propyl sulfide) will occur and substances originating from the oral cavity
(e.g., H2S and allyl-methyl sulfide) will immediately reduce in concentrations.
Effects will be also seen on substances regulated by ventilation and hemodynamics.
For example, switching from nasal to oral breathing will significantly reduce iso-
prene concentrations. Isoprene is negatively correlated to minute ventilation. There-
fore, bypassing the nasal cavity dead space (i.e., 70–80 ml) will increase the minute
ventilation at oral breathing and thereby will reduce isoprene exhalation.

Similarly, if we simply blow our breath into bags or canisters via small straws
(i.e., <1 cm of diameter), the uncontrolled upper-airway resistance from the small
breathing orifice will immediately affect our exhaled constituents [72, 73]. Reduction
of the breathing mouthpiece diameter has shown substance-specific effects. Such
effects depend largely on the breathing resistance-driven changes in respiratory and
hemodynamic parameters [72]. Alveolar eliminations of VOCs with relatively
higher volatility are increased due to airway resistance-driven negative intrathoracic
pressure (at inspiration), which instantly alters the alveolar diffusion gradient and
respiratory mechanics.

Spontaneously breathing human subjects (even if healthy) start to hyperventilate
once they are asked to breath normally via a mouthpiece or mask [74]. Application
of paced breathing (i.e., metronome-controlled via sound beats or via visual guide)
can be used for breath sampling in order to keep subjects within the normal
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respiratory rate of 10–14 breaths/min. Researchers observed that the intra- and
interindividual ventilatory variations in exhaled VOCs increase significantly during
paced breathing. On the other hand, switching between spontaneous and paced
breathing causes immediate changes in exhaled concentration and variations of
endogenous and blood-borne VOCs [75]. Such changes depended on minute venti-
lation and CO2 exhalation. Any conscious and voluntary effort of breathing induces
autonomic control and momentarily overwrites the natural automatic control of
breathing by our respiratory center. Paced breathing, therefore, induces autonomic
function that hampers the normal inspiratory:expiratory (I:E) ratio of ~1:2 and
increases the minute ventilation. Switching to spontaneous breathing gradually
resumes automatic control of breathing and thereby neutralizes the minute ventila-
tion and associated ventilatory variations in CO2 and VOC exhalations.

Moreover, simple changes in exhalation time and expiratory flow may cause
profound effects on VOC exhalations [24, 76]. For instance, if we normally expire
our expiratory reserve volume (i.e., maximum exhalation), substances like isoprene,
furan, dimethyl sulfide, and allyl-methyl sulfide will increase immediately by
mirroring the end-tidal CO2 profile. This happens mainly due to the change in
alveolar slope of exhalation and increased blood-gas contact time which facilitate
collateral exchange of gases and VOCs (with low aqueous solubility) between the
alveolar compartments [24]. On the other hand, if we perform a forced expiration,
those VOCs will decrease instantly due to dilution effects, whereas other substances
like acetone will increase significantly as the decelerating flow of exhalation may
induce bronchial contribution of such VOCwith aqueous miscibility and high blood-
gas partition coefficient.

Alongside the above-described immediate and transient effects during sampling,
long-term effects and differences due to subject’s age, gender, sexual aerosol and
orientation, menstrual cycle, pregnancy, menopause, and circadian metabolic
rhythms are important attributes for comparison of VOC expressions between
cohorts [5, 31, 77, 78]. Such factors increase the overall heterogenicity and
randomness in breath data and call for more fundamental investigations to address
physio-metabolic crosstalk with VOC exhalations. As physio-metabolic effects are
everlasting and unavoidable during breath sampling, a basic understanding of those
beyond analytical effects is extremely important for interpreting observations
pragmatically.

Therefore, no matter how sophisticated and high end the analytical instrument we
may use, if we cannot collect a standardized breath sample, the obvious physio-
metabolic effects at the time of sampling may induce unsupervised effects that are
sufficient to mislead our clinical interpretations. During the last decade, the impor-
tance of standardization of breath sampling came into focus and several taskforces
were formed by the International Association of Breath Research (IABR) to address
the relevant factors and state of the art for clinical breath sampling and analysis
[20, 79]. The following section will briefly summarize the lessons learned during the
efforts for standardization including the dos and don’ts.
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5 Standardization of Real-Time Sampling for Breath
Analysis

Around 20 years ago, alveolar sampling came into consideration in order to represent
systemic/blood concentrations of VOCs. Thus, confounding effects from mixed-
alveolar (i.e., including anatomical dead space of airways, trachea, and mouth/nasal
cavity) sampling were minimized significantly reduced. Certainly, the case will be
different if airways are of potential interest of a study – such as in obstructive and
restrictive tracheobronchial conditions.

During the last 10 years, continuous real-time monitoring of VOCs under various
breathing maneuvers at rest have enabled us to knock out the key factors that are
essential to collect reproducible breath samples with minimal physio-metabolic
influences. Reliable sampling at rest in consciously breathing humans should con-
sider the following crucial aspects:

• Avoid muscle movements: During sampling, subjects should maintain relaxed
body postures (e.g., sitting or supine) without having any unnecessary muscle
movement [22]. These mainly include voluntary or unmindful movements of
limbs and other body parts [68]. Even minute and/or involuntary muscle move-
ments must be recorded for data interpretations.

• Alveolar/end-tidal sampling: As indicated earlier, if airways are not of the study
interest, breath sampling must extract the alveolar phase of the breath [64, 80]. In
case of continuous breath-resolved measurements, exhaled alveolar and inspira-
tory phases should be determined during data analysis for valid interpretations of
systematic VOC concentrations.

• Subjects breathing patterns: Breathing pattern must remain as spontaneous,
constant, and normal as possible during sampling [21]. That means parameters
such as respiratory rate, minute ventilation, respiratory flow, and I:E ratio should
remain constant throughout the sampling phase. Subjects should not perform
prolonged (slow breathing with deeper inhalation and exhalation) or forced
expiration or increased respiratory rate [24]. Unusual breathing pattern-driven
physiological hyperventilation and cardiorespiratory fluctuations must be
avoided to attain steady state of breathing. Prolongation of unusual respiratory
rate-driven physiological hyper- and hypoventilation is well known to cause
respiratory acidosis and alkalosis, which leads to change in plasma acid–base
balance (pH) and affects VOC exhalation [81, 82].

• Subject’s posture: A particular posture (e.g., sitting or lying on back) must be
maintained in order to avoid effects from hemodynamic fluctuations and pulmo-
nary distribution of ventilation and blood flow [22, 83]. If the breath from a sick
patient is sampled while he or she was at supine position, during follow-up the
same supine posture must be maintained (even if the patient is recovered and can
sit on a chair) for valid comparisons of pathophysiological effects beyond normal
physiological noise (i.e., posture-driven differences). This is also true for
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cross-sectional comparisons between healthy vs. sick cohorts. Sampling should
be executed at the same posture in both cohorts.

• Subject’s breathing route: Either oral or nasal breathing must be maintained
without any unconscious switching between both [25]. This is to avoid ventila-
tory fluctuations and dead space ventilation and to avoid sudden contributions
from oral or nasal cavity flora.

• Applied (instrumental/analytical) upper-airway resistance against breathing:
Any obstruction to the mainstream of breathing must be avoided. In order to
overcome unsupervised upper-airway resistance-driven change in pulmonary
diffusion gradients and respiratory mechanics, smaller breathing mouthpiece
should not be used. The diameter of the breathing mouthpiece should range
between 1.5 and 2.0 cm [72]. In case of unavoidable infection safety mandates
(e.g., for SARS-CoV-2 and similarly contagious pathogens), mainstream viral/
bacterial filters are applied to stop respiratory viral/bacterial transmission to room
air [84]. In such cases, effects due to instrumental resistance must be accounted
for while evaluating breath data.

• Precedent effects from wearing face masks: Researchers have demonstrated
pronounced side effects of wearing medical face masks (e.g., COVID-19 protec-
tive surgical and FFP2 masks) on respiratory-hemodynamic parameters and
exhaled VOC concentrations, at rest. Physiological effects from precedent mask
wearing may cause significant hyperventilation (especially in older adults, aged
>60 years) as a respiratory compensation process [85]. As such effects may last
for minutes to hours based on subject’s age and/or health condition, observed
breath compositions must account for mask-related effects (where relevant). It is
reasonable to allow such subjects to sit without mask for at least 15–30 min prior
to breath sampling, in order to minimize precedent physiological effects.

• Subject’s ventilatory variations: Respiratory rhythms must be meticulously con-
trolled in order to sample breath with minimal ventilatory variations. A recent
study has reported that if at least a minute of paced breathing is applied (with
fixed respiratory rate of 10–12/min) and then switch to spontaneous breathing,
ventilatory variations tend to reduce significantly and attain a steady state after the
2 min of spontaneous breathing and third minute is suitable for collecting/
considering reproducible sample without physiological fluctuations [75].

Besides the above-indicated sampling conditions, analysis and interpretation of
exhaled VOC markers should incorporate effects from acute ambient conditions and
also due to long-term effects from subject’s personal attributes. These are mainly
associated with subject’s age, gender, diet, habits, environment, and lifestyle
[5]. Studies have proposed that application of fasting or certain standard diet prior
to breath sampling may reduce effects from food intake [86–88]. Nevertheless, such
pre-selection is far from the real-life situation and any screening scenario or
nontargeted approach [89]. Furthermore, fasting may cause hypoglycemic adapta-
tion and metabolic compensation effects that may induce inseparable effects onto the
volatile metabolites [29, 90]. Therefore, it is rather reasonable to carefully consider
the attributes from diet, lifestyle habits (e.g., smoking, drinking, nutrition
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supplement, and oral contraception), therapy, acute or chronic condition/comorbid-
ity, and living environment as questionnaires during recruitment and retrospectively
account for any suspected effects. Most importantly, simultaneous measurements of
VOC concentrations in the inspiratory ambient air are extremely important to rule
out acute effects.

6 Applications and Potentials of Physio-Metabolic
Monitoring in Breath Analysis

Despite the fact that breath research is still in its infancy, the above-mentioned
knowhows reflect a steady development toward a state of the art for clinical breath
sampling. Nevertheless, the list is rather exhaustive and a lot more effort and time
toward standardization of unequivocal confounders related to breath analysis has to
be invested.

In principle, a disease/pathophysiological condition is nothing but a disturbed
physio-metabolic state. Exhaled VOC profiles may provide rapid information on
in vivo physiological or metabolic processes as the time span between marker
production and exhalation of VOCs is short. Available knowledge of physiology
and metabolism must be translated into disease-driven pathophysiology, for realiz-
ing effects on breath compositions. Assessments of physio-metabolic interplay can
bridge the gap between our analytical and clinical expertise. Therefore, real-time
breathomics holds great promise toward non-invasive monitoring of physiology,
metabolism, diseases, and therapy. Screening of a large number of population (e.g.,
at COVID-19 test center) is also feasible via real-time breathomics. Physio-
metabolic and pathobiological effects induced by SARS-CoV-2 and other respira-
tory pathogens are well addressed in recent studies in hundreds of subjects
[89]. Framing of systemic physio-metabolic effects also helped to optimize exper-
imental setups and methods for safe breath analysis and patient monitoring under
high safety conditions/mandated at this very time of the global pandemic [84].

As real-time breath analysis can rapidly deliver results directly at the point of care
it is especially attractive for personalized monitoring in patients. No risk is imposed
on the patient even if the analysis is done frequently or continuously. Physio-
metabolic monitoring can be used to follow up substances that were administered
to the patient, such as volatile or intravenous anesthetics [26, 47, 91]. Moreover,
VOCs enabled continuous monitoring and immediate recognition of therapeutic
efforts in intensive care unit patients [57, 58]. Individual monitoring of selected
breath VOCs facilitates recognition of metabolic transition without any delay. These
findings encourage more research with respect to therapeutic monitoring, longitudi-
nal studies, and follow-up of patients. Besides there is large scope for metabolic
monitoring of aging, related life events, and health conditions such as menopause,
oxidative stress, endocrine changes, and energy homeostasis. Monitoring of VOC
changes during menstrual cycle and pregnancy may reflect phases of healthy natural
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cycles, gestation, or any complications based on continuous changes in exhalation
profiles [31, 36]. Similarly, physio-metabolic monitoring is applicable to physical
fitness tests, exercise training, and various applications in sports science/medicine
[70]. Non-invasive assessment of anaerobic threshold, exercise capacity, combined
diet, and isotopically labeled substrate interventions are of significant interest. As the
putative endogenous origin of most of the VOCs is largely debatable/uncertain and a
recent study has even disqualified the long-believed metabolic origin of the second
most abundant VOC (i.e., isoprene) in our breath [36], physio-metabolic monitoring
under labeled substrate intervention may offer unique insights into the downstream
denominators of VOCs and thereby indicate the way to their true systemic sources.

7 Conclusions and Perspective

The dynamic nature of breath VOCs offers a complex but comprehensive spectrum
of immediate, transient, and chronic aspects. As breath biomarkers may provide
unique and immediate physio-metabolic information on the whole-body status, new
insights into normal and pathological processes may be achieved. A fundamental
understanding of substance’s origins, physicochemical properties, and potential
regulating factors such as physiology, metabolism, microbiome, nutrition, lifestyle,
and pre-exposure is essential to perceive the VOC expressions case or individual
wise. If such knowledge is integrated with state-of-the-art advances in sampling and
analytical techniques, observed changes or difference in VOC concentrations may
translate actual effects from pathobiological and clinical conditions.

Surprisingly, normal physiology and metabolism-driven changes and variations
in VOC concentrations observed in follow-up measurements (where subjects were
used as his or her own control) were more pronounced than those reported as unique
biomarkers in many published cross-sectional studies. Therefore, cross-sectional
comparisons between healthy and ill subjects, in relation to screening or early
detection of diseases via breath analysis, are far from our current abilities. In
perspective, longitudinal assessments of ventilation and hemodynamics driven
changes in breath compositions have depicted excellent potential for physio-
metabolic monitoring. Continuous and personalized analysis of breath profiles
may serve as an unconventional window for monitoring disease progression and
response to therapy that could become a cornerstone toward individualized medicine
and therapy.
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analysis is currently the most common method used for biomarker discovery phase
in human exhaled breath. In offline breath analysis, exhaled breath samples are
collected in containers and stored prior to analysis, which enables to collect samples
from patients at different places. This approach is mainly conducted by analytical
platforms with high sensitivity, robustness, and reproducibility, such as technologies
based on mass spectrometry. This comprehensive review provides an overview of all
aspects of offline breath analysis, including sample collection protocols, challenges
of breath sampling standardization, analytical techniques, data preprocessing, and
the complex algorithms implemented for data analysis.

Keywords Breath analysis · Exhaled breath · Offline breath analysis · VOCs ·
Volatile organic compounds · Volatilome · Volatilomics

Abbreviations

ANNs Artificial neural networks
APCI Atmospheric pressure chemical ionization
ARDS Acute respiratory distress syndrome
BAL Bronchoalveolar lavage
BCA Breath collecting apparatus
CAR Carboxen
CI Chemical ionization
COVID-19 Coronavirus disease-2019
DVB Divinylbenzene
EBC Exhaled breath condensate
EI Electron ionization
EIC Extracted ion chromatogram
ESI Electrospray ionization
GC Gas chromatography
GC-MS Gas chromatography-mass spectrometry
GCxGC Two-dimensional gas chromatography
LASSO Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
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m/z mass-to-charge ratio
MS Mass spectrometry
NTDs Needle trap devices
PA Polyacrylate
PCA Principal component analysis
PCR Principal component regression
PDMS Polydimethylsiloxane
PLS Partial least squares regression
PLS-DA Partial least squares-discriminant analysis
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PTR-MS Proton transfer reaction-mass spectrometry
PTR-ToF-MS Proton transfer reaction time-of-flight mass spectrometry
RI Retention index
ROS Reactive oxygen species
SESI-HRMS Secondary electrospray ionization-high resolution mass

spectrometry
SESI-MS Secondary electrospray ionization-mass spectrometry
SIFT-MS Selected ion flow tube-mass spectrometry
SPME Solid-phase microextraction
SVM Support vector machine analysis
TD Thermal desorption
TIC Total ion chromatogram
ToF Time-of-flight
VOCs Volatile organic compounds

1 Introduction

In the twenty-first century, a major challenge for medicine is the establishment of
noninvasive and cost-effective methodologies for early diagnosis and monitoring of
highly prevalent chronic diseases, as well as rapid screening for infectious diseases.
As a result, improvements in patient prognosis, a reduction in national medical
burdens and a decrease in over-saturation of health services could be achieved. In
this regard, the analysis of volatile organic compounds (VOCs) in exhaled breath as
a diagnostic tool has generated a great expectation in recent years [1, 2].

The whole pool of VOCs in an organism is defined as “volatilome”, and
“volatilomics” as the new branch of “omics” dedicated to researching it [3]. Even
though analysis of human exhaled breath has been used for medical purposes since
Classical Antiquity [4], the emergence of the current field of breath analysis dates
back to the 1970s thanks to the research of Nobel laureate Linus Pauling who was
able to detect about 250 compounds in the air breathed out [5]. Since then, owing to
advances in analytical techniques, it has been demonstrated that there are a large
number of VOCs of different chemical groups (hydrocarbons, aldehydes, ketones,
alcohols, etc.) in human exhaled air. Indeed, Lacy Costello et al. [6] reported
872 VOCs from human breath in 2014. In contrast, these compounds are found in
low concentrations and represent a relatively small percentage of exhaled breath,
whose main components are nitrogen (N2), oxygen (O2), carbon dioxide (CO2),
water vapor, and inert gases [2, 7, 8]. In addition, breath samples also contain
nonvolatile compounds (e.g., cytokines, isoprostanes, leukotrienes, etc.), which
can be determined by analysis of exhaled breath condensate (EBC) [9, 10].

VOCs detected in exhaled breath can originate from different sources. In fact, it is
possible to distinguish VOCs in exhaled breath derived from tobacco, the combus-
tion of fuels or other environmental pollutants. Furthermore, measuring these VOCs
allows us to assess human exposure to air pollutants and health risks [11, 12]. In
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contrast, many VOCs found in exhaled breath have an endogenous origin and come
from both human metabolism and microbiota [4, 9]. In this sense, a lot of hydrocar-
bons of exhaled air are derived from lipid peroxidation, which increases in inflam-
matory processes and oxidative stress. In inflammation typical of many disorders,
there is an increased production of reactive oxygen species (ROS), which enhances
the oxidation of unsaturated fatty acids in cell membranes and the generation of
subproducts such as hydrocarbons [13, 14]. Analogously, ROS produced during
inflammatory processes and oxidative stress can also damage DNA, proteins, and
carbohydrates and generate by-products [15, 16]. For all these reasons, breath
analysis has been proposed as a noninvasive alternative for monitoring oxidative
stress and airway inflammation in respiratory diseases given that current gold
standard methodologies, such as bronchoscopy with bronchoalveolar lavage
(BAL) and biopsy, are strongly intrusive (Fig. 1) [13, 17–19].

In addition, among VOCs detected in exhaled breath, there are also by-products
of different pathways such as cholesterol biosynthesis (e.g., isoprene), ethanol
metabolism (e.g., acetaldehyde), or acetoacetate and acetyl-CoA decarboxylation
(e.g., acetone) [4, 9]. Therefore, analysis of volatilome in exhaled breath could be
helpful to gain insight into the metabolic processes of the organism in both healthy
and pathological states [11, 20]. Consequently, in recent years, a large number of
studies have been conducted in order to search for biomarkers in exhaled breath to
discriminate between healthy controls and patients with different disorders (e.g.,
asthma [21, 22], diabetes mellitus [23, 24], lung cancer [25], inflammatory bowel
disease [26], infectious diseases [27], etc.), to distinguish between different stages of
pathology (e.g., stable asthmatics and asthmatics with exacerbations [28–30]), and to
differentiate patients suffering from a disease and subjects with similar symptoms
but different illness (e.g., COVID-19 (coronavirus disease 2019) ARDS (acute
respiratory distress syndrome) patients and non-COVID-19 ARDS patients [31]).

Nevertheless, the field of breath analysis is still in its infancy. To date, no further
progress beyond the biomarker discovery phase has been achieved and introduction
into daily clinical practice has not yet occurred [22]. After the biomarker discovery
phase, both analytical validation and clinical validation must be carried out before
new biomarkers can be used in day-to-day clinical practice [32]. The biomarker
discovery phase involves the following steps: study design, breath sampling, exhaled
breath analysis, data preprocessing, VOC identification, data analysis, and validation
of the putative biomarker in an independent cohort study (Fig. 2). The lack of
standardization, especially at the breath sampling step, has been traditionally pointed

Fig. 1 Techniques for airway inflammation and oxidative stress surveillance. BAL bronchoalveolar
lavage, EBC exhaled breath condensate. Adapted from van de Kant et al. [13] and Ferraro et al. [17]
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out as the main cause of stagnation of this approach [33, 34]. However, it is also
essential to integrate well-established metabolomics best practices, such as recruit-
ment of large cohorts of subjects, incorporation of reproducible and transparent
workflows for data preprocessing and data analysis, and external validation,
among others [35, 36]. Therefore, both the suitable selection of strategies and the
right implementation of each of the biomarker discovery steps are mandatory for the
successful progress of breath analysis [33, 36].

Another important limitation of the process standardization is the great diversity
of organic compounds in strongly varying concentrations that may require a specific
protocol for their sampling and subsequent analysis, which are often unknown a
priori [37]. The most widely used analytical techniques for the analysis of exhaled
breath are technologies based on mass spectrometry and array sensors like the
electronic nose (e-nose) [38]. In addition, other methodologies, for example, tech-
nologies based on optical spectroscopy, have also been deployed, but not as exten-
sively [39]. In this sense, recent developments in mid-infrared laser spectroscopy
have led to the promise of compact optical instruments for the detection of small
molecules [40]. On the other hand, array sensors have some strengths for day-to-day
clinical settings, such as cheapness, simplicity, and portability. However, there are
currently a multitude of mass spectrometry platforms, e.g., gas chromatography-
mass spectrometry, that are capable of individual identification of VOCs in a
complex gas mixture, sensor arrays can only distinguish patterns or “breath prints.”
Hence, analytical platforms based on mass spectrometry are useful for the untargeted

Fig. 2 Process of establishing a biomarker for clinical application: biomarker discovery phase,
analytical validation phase, clinical validation phase, and clinical utility phase
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search for disease biomarkers as they are able to determine the identity of discrim-
inant VOCs and the metabolic pathways related to them [34]. Therefore, mass
spectrometry-based technologies may be more appropriate at the current stage of
specific biomarker identification compared to targeted or pattern-based sensor
systems.

Regarding the procedure for breath sample collection, there are two types of
breath analysis (Fig. 3): offline breath analysis (the sample is collected in a breath
container and stored before analysis) and real-time online breath analysis (exhaled
breath is analyzed directly) [11, 41]. Over the last years, real-time online breath
analysis has gained popularity as it offers numerous advantages for breath analysis
implementation in daily clinical practice, for instance, minimal sample manipulation
before analysis, continuous monitoring of the volatilome of patients, or fast findings.
In spite of these benefits, offline breath analysis remains the preferred method of
breath analysis [41, 42]. In offline breath analysis, exhaled breath samples can be
easily stored and transported. As a result, samples can be collected at different places
and MS analyses can be centralized in a single laboratory, without the patient having
to travel to the analytical platform location. It is especially attractive for passive
non-cooperative patients (e.g., intensive care patients, elderly, neonates, infants, etc.)
[42, 43]. It is also preferable for analytes that require a preconcentration stage for
proper detection.

Fig. 3 Main breath analysis approaches: offline breath analysis and real-time online breath
analysis. BCA breath collecting apparatus, GC-MS gas chromatography-mass spectrometry, TD
thermal desorption, SPME solid-phase microextraction, NTDs needle trap devices, SIFT-MS
selected ion flow tube-mass spectrometry, PTR-MS proton transfer reaction-mass spectrometry,
SESI-MS secondary electrospray ionization-mass spectrometry
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This chapter provides a comprehensive review of the offline breath analysis
approach using technologies based on mass spectrometry (MS). This review empha-
sizes on protocols, challenges for breath sampling standardization, analytical tech-
niques, methods for data preprocessing and data analysis, and the future perspectives
of offline breath analysis.

2 Factors Influencing Offline Breath Analysis

Several factors can affect volatilomics studies, ranging from demographic charac-
teristics of subjects to methodologies employed that influence the presence of
confounding factors. Concerning the study population, different aspects such as
age, gender, comorbidities, smoking habits, physical activity, or medication of
subjects should be considered in the study design and results interpretation [8, 21,
25, 44]. In fact, Blanchet et al. [45] determined that age, sex, smoking, and some
drugs affected the VOC composition of exhaled breath. Therefore, some studies
have focused on specific population groups (children [21, 36], women [46, 47], obes
[48], etc.) or tried to estimate the real influence of some of these factors on VOC
levels in exhaled breath. For instance, Capone et al. [49] reported differences in some
VOCs levels between smokers and non-smokers. On the other hand, breath sampling
protocols, containers used for breath collection, time and way of breath storage, or
material cleaning protocols are also factors that play a very important role in offline
breath analysis. In this sense, quantitative breath measurements depend on a valid,
reproducible sampling technique wherefore samples may not be comparable with
each other if they have been collected with different protocols. In addition, the
choice of the analysis platform and the methods of data preprocessing and data
analysis has a great impact on the biomarker searching process increasing its
complexity [8, 13, 25, 35, 50].

3 Breath Sampling

Breath sampling is a distinctive aspect of offline breath analysis; thus, it must be
carried out correctly in order to avoid introducing bias into sample stability and in
breath analysis. In general, the main stages are the selection of the type of exhaled
breath collected and the breath container used. In addition, another aspect to consider
is either collecting a single or multiple exhalations [2].
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3.1 Exhaled Breath Sampling Portions

The human respiratory cycle can be monitored by capnography (measurement of
exhaled CO2). Figure 4 shows a capnogram of the different phases of exhalation.
Phase I includes dead space air or air from the airways without gas exchange with the
alveoli (low CO2 levels are observed in the capnogram). Phase II consists of air from
both airways and alveoli (an almost linear rise of CO2 levels is observed in the
capnogram). Phase III includes air from the alveoli (a flattening of CO2 curve can be
seen in the capnogram). Finally, a decrease in CO2 is again observed in the
inspiration phase [51–54].

Depending on the exhalation phases collected for breath analysis, the exhaled
breath sampling portions are classified into three types [51]:

– Mixed expiratory breath. The whole exhaled breath of subject is collected
without excluding any of the exhalation phases. Therefore, both dead space air
and alveolar air are included. Mixed expiratory breath is widely used because it is
simple and easy to collect, being a useful alternative for passive non-cooperative
patients. However, it is more susceptible to environmental contaminants. Thus, if

Fig. 4 Schematic representation of a capnogram of the human respiratory cycle. Phases of
exhalation (Phase I, Phase II, and Phase III) and exhaled breath portions (mixed expiratory breath,
late expiratory breath, and end-tidal breath). Adapted from Lawal et al. [51] and Beauchamp and
Miekisch [52]
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this option is chosen, room air analysis should be performed to remove the
influence of the ambient background [36, 51].

– Late expiratory breath. Dead space air is discarded using different strategies,
such as excluding the first few seconds of expiration or collecting dead space air
in another gas sampling bag. The late expiratory breath includes air from both
Phase III and part of Phase II, since these strategies employed cannot accurately
determine the time of Phase III beginning [51].

– End-tidal breath. Phase III air is collected using the levels of an endogenous VOC
as a reference. In general, monitoring of exhaled CO2 is the most frequent
strategy. Thus, exhaled air sampling begins once the capnogram starts to flatten,
avoiding Phase I and Phase II air collection. Hence, this is the most accurate and
reproducible approach to collect alveolar air [51].

3.2 Breath Containers

From a clinical standpoint, the ideal collector should be inexpensive and easy to use,
inert, and most importantly, not allowing VOCs to enter or exit the sample. The most
popular breath containers in offline breath analysis are gas sampling bags and other
sampler devices such as the Bio-VOC™ sampler or breath collecting apparatus
[34, 51, 55].

– Gas sampling bags.Gas sampling bags are the most widespread breath containers
due to their simplicity and inexpensive cost. Polymer bags such as Tedlar®

(polyvinyl fluoride) bags and aluminized Mylar® bags are the most commonly
used [34, 51, 56]. They are inert and can be easily incorporated into breath
analysis systems. Tedlar® bags can be reused more than once. However, Tedlar®

bags have two inherent contaminants (phenol and N,N-dimethylacetamide), so
they must be cleaned with pure nitrogen gas before use. In addition, diffusion
through the walls of gas sampling bags and condensation issues can compromise
the stability of breath samples over long periods of storage. Therefore, it is
recommended to use these containers to collect exhaled breath and to use
absorbent matrices for sample storage. Other polymer bags used are Teflon®

(polytetrafluoroethylene ethylene) bags and Nalophan® (polyethylene terephthal-
ate) bags [34, 56–58].

– Bio-VOC™ sampler. The Bio-VOC™ sampler allows the discarding of dead
space air, is inert and economical. The Bio-VOC™ sampler consists of three
parts: a mouthpiece, a volumetric sampler (a small container with a capacity of
100–150 mL) and a plunger. The Bio-VOC™ sampler has an open side so that air
is moved as expiration progresses, in order to collect only the late expiratory
breath. One of the main limitations of the Bio-VOC™ sampler is that it is not able
to collect a large volume of exhaled breath [34, 51, 59].

– Breath collecting apparatus (BCA). The subject breathes into a tubular structure
with a mouthpiece. VOCs are retained at the end of the tube by absorbent resins. It
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has two different absorbent traps. One is usually used to collect late expiratory
breath and the other to capture room air. In addition, it has a heating band to
reduce condensation problems [34, 51, 60–62].

Other breath collection devices are reported by White et al. [63], such as the
RTubeVOC or the Alveosampler, but are less widespread.

3.3 Standardization of Breath Sampling

In recent years, special emphasis has been placed on the standardization of breath
sampling, because the success of the discovery of potential biomarkers in exhaled
breath largely depends on this first step. Firstly, it is essential to determine the
exhaled breath portion to be collected based on the purpose of the study and to
establish a reproducible sampling protocol. Although Phase III air (alveolar air only)
provides the most meaningful information for human metabolism and disease
research, collection of breath portions that also include dead space air and airway
air could be of interest. For example, dead space air may be useful for monitoring
exposure to environmental pollutants and in oral health, and airway air collection
could be beneficial in studies focusing on asthma for its symptoms. Furthermore,
information on smoking habits or daily medication taken by the subjects should be
compiled to assess whether they have an impact on their volatilome. In this sense,
hours of fasting prior to breath sampling should also be taken into account [1, 8, 64].

On the other hand, it is highly recommended to collect environmental samples
during breath sampling, especially if dead space and airway air are not excluded.
Thus, it is possible to identify which variations observed in the exhaled breath
samples are exclusively due to ambient air, avoiding the determination of incorrect
biomarkers. Another alternative approach to minimize the impact of VOCs from
ambient air is the use of VOC filters during breath sampling [1, 8, 25, 36]. Further-
more, the season of the year in which breath sampling and analysis was conducted
could influence the exhaled breath VOC composition. Therefore, it is another factor
to be taken into account [13, 47].

In summary, the variability of breath gas VOC measurements can be affected by
many factors during sampling [51], including the physical-chemical properties of the
compounds, and must be taken into account for reproducibility of the method
applied [65].
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4 Analytical Platforms Based on Mass Spectrometry

The plethora of analytical platforms based on mass spectrometry can be divided into
two main groups: offline analytical systems (samples are preconcentrated before
analysis) and online analytical systems (samples do not need pretreatment prior to
analysis) [52].

4.1 Offline Analytical Systems

Most studies focusing on offline breath analysis employ gas chromatography
coupled to mass spectrometry (GC-MS). GC-MS is a typical offline analytical
system, since it requires a previous preconcentration of exhaled breath samples
[2, 34, 51]. Nowadays, GC-MS is generally recognized as the gold standard tech-
nique in the field of breath analysis. Although it has some drawbacks compared to
online analytical systems (e.g., higher time consumption), GC-MS offers high
sensitivity, robustness, and reproducibility. In this sense, this methodology allows
the identification and quantification of different individual VOCs from exhaled
breath samples, including unknowns [33, 34, 38, 66, 67].

Gas chromatography separates VOCs from exhaled breath according to retention
time (time required to pass through the capillary GC column), which depends on the
interaction between VOCs and column-coating stationary phase [1, 33]. In this
regard, an additional gas chromatography column, comprehensive
two-dimensional gas chromatography (GCxGC), is used in some studies to improve
the separation of co-eluting compounds [61, 68] (Fig. 5). On the downside this
method has a higher price and requires more complex data analysis [71].

Once the exhaled metabolites are separated by GC, the compounds are transferred
to the mass spectrometer to be analyzed. The main components of a mass spectrom-
eter are an ion source, a mass analyzer and a detector. In the ion source stage,
compounds are ionized and fragmented by different types of ionization techniques.
Thus, in this stage, different charged fragments are generated depending on which

Fig. 5 Schematic diagram illustrating two-dimensional gas chromatography (GCxGC). Adapted
from Zanella et al. [69] and Forsythe et al. [70]
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compounds are analyzed. Although the use of soft ionization such as atmospheric
pressure chemical ionization (APCI) is gaining popularity, electronic ionization
(EI) is the most common ionization technique in GC-MS. EI is a high ionization
technique and a large number of fragments are generated. Mass analyzer is used to
separate these fragments by their mass-to-charge ratio (m/z). The type of mass
analyzer determines the characteristics of the mass spectrometer (resolution, sensi-
tivity, accuracy, and mass range) [66, 72–74]. Both low-resolution mass analyzers
with unit mass resolution (accuracy of 1 Da) as single quadrupole [75, 76], and high
resolution (at least accuracy of 10,000 Da) as time-of-flight (ToF) [33, 77, 78] have
been used in breath analysis. GC-MS has the capacity of detecting VOCs within a
range of parts per billion, or lower, with good reproducibility and linearity. Finally,
signals of the separated fragments are registered in the detector, resulting in a plot
called mass spectrum that illustrates the intensity of signals of m/z fragments
obtained. In this sense, in hard ionization such as EI, matching of experimental
mass spectrum with mass spectral libraries is useful for compound identification
[34, 66, 72]. In the case of soft ionization, the molecular ion is generally obtained, so
compound identification is based on accurate mass determination rather than on
matching with spectral libraries as in hard ionization [73, 74].

4.2 Preconcentration Methods

Preconcentration methods typically involve two stages, whereby VOCs are retained
in sorbent traps and then released by thermal desorption (TD). Currently, sorbent
traps most commonly used in offline breath analysis are thermal desorption tubes,
solid-phase microextraction (SPME), and needle trap devices (NTDs).
Preconcentration is a critical step because some VOCs could be diluted during
breath sampling as well as removing water vapor from samples, especially when
mixed expiratory breath is collected [4, 51, 52].

– Thermal desorption (TD) tubes.Nowadays, thermal desorption tubes are the most
widespread devices for preconcentration in breath analysis. Exhaled breath col-
lected in gas sampling bags can be transferred to the thermal desorption tubes,
where the samples can be stored for a longer period of time. In addition, it is
possible to fill the thermal desorption tubes directly or to fill them with ambient
air using a syringe, which is useful for monitoring the environmental influence.
Another advantage of using thermal desorption tubes is that the samples can be
easily transported inter-laboratorily without being altered. Thermal desorption
tubes are usually made of stainless steel or glass and packed with sorbent
materials such as organic polymers, graphitized carbon, or carbon molecular
sieves. Whereas organic polymers (e.g., Tenax TA) present low sensibility
of humidity and are indicated to capture hydrocarbons of medium size, tubes of
graphitized carbon (e.g., Carbopack X) can trap VOCs with low number of
carbons. For this reason, it is recommended to use a combination of different
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absorbent beds. Considering the high percentage of water in exhaled breath, the
use of organic polymers as sorbents is of great interest [4, 51, 52, 79, 80].

– Solid phase microextraction (SPME). It is a methodology commonly used in the
preconcentration and storage of exhaled breath samples. The extraction of volatile
organic compounds is based on the headspace technique. Thus, a fiber (silica rod
coated with different sorbent materials) is exposed to the exhaled breath sample
until chemical equilibrium between them is achieved. The type and thickness of
the fiber influences the time required to reach equilibrium [51, 81, 82]. Caldeira
et al. [57] tested different coating fibers (DVB/CAR/PDMS, PDMS/DVB,
PDMS, and PA), obtaining better extraction efficiency with DVB/CAR/PDMS
(DVB: divinylbenzene, CAR: carboxen, PDMS: polydimethylsiloxane, PA:
polyacrylate). It is important to note that both temperature and extraction time
have a great impact on the SPME process.

– Needle trap devices (NTDs). Needle trap devices are not as commonly used as TD
tubes and SPME in breath analysis, but offer some benefits of both. They consist
of needle-shaped devices with absorbent materials inside, where exhaled breath is
introduced through a syringe to be captured. Like TD tubes, storage and transport
of exhaled breath samples is straightforward [51].

4.3 Online Analytical Systems

The most widespread online analytical systems based on mass spectrometry for
VOC measurement in exhaled breath are SIFT-MS (Selected ion flow tube-mass
spectrometry), PTR-MS (Proton transfer reaction-mass spectrometry), and SESI-MS
(Secondary electrospray ionization-mass spectrometry). Although online analytical
systems are used in real-time online breath analysis, these analytical platforms are
also implemented in offline breath analysis [41, 83]. Table 1 shows some examples

Table 1 Examples of offline breath analysis by online analytical systems

References Breath containers Online analytical systems

Alkhouri et al. [84] Mylar® bags SIFT-MS

Boshier et al. [85] Nalophan® bags SIFT-MS

Dryahina et al. [86] Nalophan® bags SIFT-MS

Wang et al. [87] Tedlar® bags SIFT-MS

Alkhouri et al. [48] Mylar® bags SIFT-MS

Eng et al. [88] Mylar® bags SIFT-MS

Hamilton et al. [89] Mylar® bags SIFT-MS

Greiter et al. [90] Teflon® bags PTR-MS

Liangou et al. [91] Tedlar® bags PTR-ToF-MS

Decrue et al. [43] Nalophan® bags SESI-HRMS

SIFT-MS selected ion flow tube-mass spectrometry, PTR-MS proton transfer reaction-mass spec-
trometry, PTR-ToF-MS proton transfer reaction time-of-flight mass spectrometry, SESI-HRMS
secondary electrospray ionization-high resolution mass spectrometry
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where online analytical systems have been successfully used in offline breath
analysis. Thus, breath containers were used for sample collection prior to breath
analysis using online analytical systems.

For both SIFT-MS and PTR-MS, VOCs from exhaled breath are ionized by
chemical ionization (CI). Whereas the reagent ions typically used in SIFT-MS are
H3O

+, NO+ and O2
+, H3O

+ is the most popular reagent ion in PTR-MS. In SIFT-MS,
the reaction between the reactive ions (produced in a microwave plasma and
screened on a quadrupole filter) and the exhaled metabolites is conducted in a drift
tube. In general, helium is used as carrier gas. Nevertheless, PTR-MS does not
require prior selection of the reagent ions before the reaction in the drift tube; hence,
it does not have a quadrupole filter. In PTR-MS, H3O

+ reagent ions are produced
from water vapor using a hollow cathode ion source. Furthermore, PTR-MS is more
sensitive than SIFT-MS, as the exhaled breath sample is not diluted because the
sample air is used as a carrier gas. On the other hand, the resolution of PTR-MS and
SIFT-MS is determined by the mass spectrometer connected to the instrument. Both
PTR-MS and SIFT-MS enable the quantification of metabolites. In particular, the
quantification of VOCs from breath samples in SIFT-MS is based on kinetic studies
of the chemical reactions between these compounds and reagent ions as well as on
comparison with kinetic libraries. In this regard, SIFT-MS is mainly used in targeted
analysis, focusing on compounds whose chemical reactions with the reagent ions are
well-understood. For breath analysis, humidity present in breath samples can inter-
fere with the computation of VOC concentrations due to the generation of hydrates
[41, 83, 92].

In recent years, SESI-MS has generated considerable enthusiasm in the field of
breath analysis. Secondary electrospray ionization (SESI) is an innovative variant of
electrospray ionization (ESI) that allows gaseous sample analysis. Thus, in SESI-
MS, VOCs from exhaled breath samples are ionized at ambient pressure by reacting
with primary ions formed by an electrospray ionization source from a pure solvent
and a conductivity-enhancing additive. The ionization process is efficient and soft,
obtaining very often the molecular ion. One of the main strengths of SESI-MS is that
SESI can be coupled to any mass analyzer including high-resolution mass spectrom-
eters [41, 93, 94].

5 Data Preprocessing

Raw data obtained from breath analysis by mass spectrometry-based technologies
must be processed to obtain a matrix useful for statistical analysis. Proper data
preprocessing is key to minimizing potential analytical artifacts and to obtain
accurate results in data analysis [95–97]. However, despite the great relevance of
this step in the biomarker discovery process, only a few studies provide a compre-
hensive description of the data preprocessing workflows performed [22, 36]. In
contrast, some recent studies focused on breath analysis [98–101] have implemented
open-source tools typical of metabolomics such as xcms [102]. The use of open-
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source tools is essential to overcome the challenges of both metabolomics and
volatilomics studies, as it encourages collaboration within the scientific community
and the development of reproducible and transparent protocols for data
preprocessing [103].

The raw data obtained and the data preprocessing workflows to be conducted
depend on the choice of the analytical platform. In the case of GC-MS by EI
ionization, raw data involve three dimensions (retention time, m/z value, and
intensity) which are represented through chromatograms (retention time on the x-
axis and intensity on the y-axis) and mass spectra (m/z value on the x-axis and
intensity on the y-axis) (Fig. 6). TIC (total ion chromatogram) is defined as the sum
of intensities of all m/z signals or ion peaks in the mass spectrum per unit time or per
scan. The gas chromatogram is the total TICs of the scans performed during breath
analysis or TIC chromatogram. On the other hand, EICs (extracted ion chromato-
gram) show the intensities of a particular m/z signal versus the retention time.
Therefore, each gas chromatogram peak, which could correspond to one or more
volatile organic compounds, has an associated mass spectrum with several features
(ion peaks characterized by a specific retention time and an m/z value) at different
intensities [72, 95, 96, 102, 104].

In this sense, there are two main approaches for data preprocessing of raw
GC-MS data. Whereas approach 1 is based on peak-picking or determination of
ionic peaks in spectra obtained from exhaled breath samples, approach 2 focuses on
the detection of compounds present in breath samples by means of spectral
deconvolution [104]. Both have benefits and limitations [104–106]; therefore, an
interesting strategy could be the integration of both two approaches [97]. Some
examples of computational tools are xcms [102] or MetAlign [107] for approach
1, and eRah [104, 108] for approach 2. Regardless of the approach employed, there
are some common steps in data preprocessing such as denoising, baseline correction,
retention time correction or alignment, missing compounds/features recovery and
normalization [34, 95, 102, 104].

An important task in data preprocessing, especially in untargeted analysis, is
compound identification. In GC-MS using EI, compound identification is mainly
based on the similarity of retention times and mass spectra matching with a spectral
library. Hence, it is strongly recommended to analyze chemical standards for
retention index (RI) calculation and to confirm the identity of the compounds
[11, 35, 72, 104].

6 Data Analysis

Once raw data has been transformed into a useful data matrix by data preprocessing,
the next step in biomarker discovery is data analysis [33]. A single biomarker is
usually not enough to perform an optimal diagnosis and monitoring of complex and
heterogeneous diseases. For this reason, in recent years, there has been an increasing
interest in finding a set of biomarkers to unravel the metabolic processes related to
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Fig. 6 Outcomes of breath analysis using gas chromatography-mass spectrometry. TIC total ion
chromatogram, EIC extracted ion chromatogram. Plots of this figure were generated by plotChr and
plotSpectra functions of the package eRah in R
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pathological conditions. This trend has also extended to the field of breath analysis
and several studies are focused on searching for profiles of VOCs rather than on a
single discriminant VOC. In this sense, multivariate statistical analysis is claimed to
be the most suitable approach for VOC profiling. Currently, a wide range of machine
learning algorithms are useful for data analysis in breath analysis [2, 35, 109].

6.1 Machine Learning Algorithms

Data obtained in breath analysis shows a high dimensionality. Therefore, volatilome
data are characterized by a higher number of VOCs detected than samples available
(leading to fat matrices), low prevalence of each VOC in all samples and high
probability of non-normal distribution. Additionally, multicollinearity, which con-
sists of aleatory correlations of variables, is a typical problem in VOC profiling
studies [95, 110]. Multivariate statistical methods are usually classified as:
unsupervised learning methods (e.g., principal component analysis (PCA)) and
supervised learning methods (e.g., linear discriminant analysis (LDA), logistic
regression (LR), random forest (RF), support vector machine (SVM), or artificial
neural networks (ANNs)). Whereas unsupervised learning methods are used to
perform exploratory data analysis without previous assumptions and labeled data,
supervised learning methods are implemented in order to obtain a discriminant and
predictive model through labeled data and prior information (Fig. 7) [95, 105, 111,
112].

Overall, unsupervised methods are used as a first step in data analysis. In this
sense, PCA is certainly the most common technique used in studies focused on
breath analysis. Mainly, PCA is conducted in order to perform an explorative
analysis to observe groups or data tendencies [95, 113]. Then, the next step is
usually the implementation of supervised learning methods for model building.

Fig. 7 Machine learning algorithms. PCA principal component analysis, LDA linear discriminant
analysis, LR logistic regression, RF random forest, SVM support vector machine analysis, ANNs
artificial neural networks
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Supervised learning methods are able to predict the values of outputs or dependent
variables, based on the values of inputs or independent variables [111, 114]. Using
supervised learning methods is an excellent strategy for biomarker determination
[105]. However, any supervised learning method is not adequate for volatilome data,
due to the presence of multicollinearity. In this regard, LDA and logistic regression
are not the best options for VOC profiling without a prior variable selection
[95, 115]. The issue of multicollinearity could be approached mainly from three
different perspectives: (1) using an unsupervised learning method before a super-
vised learning method (e.g., PCA + LDA) [116], (2) data pretreatment by specific
techniques such as the shrinkage methods (ridge, LASSO (least absolute shrinkage
and selection operator), etc.) or methods using derived input directions (PCR
(principal component regression), PLS (partial least squares regression)) [111] and
a supervised learning method, or (3) supervised learning methods with tolerance to
high-dimensional data (e.g., random forest, SVM, etc.) [117–119]. Table 2 shows
some examples of studies focused on breath analysis by technologies based on mass
spectrometry that used one of the strategies to obtain a predictive model.

PLS-DA is an algorithm that combines the PLS regression method and a dis-
criminant analysis in order to deal with the multicollinearity problem [95, 126,
127]. Thus, PLS-DA is a widely used supervised learning method in biomarkers
discovery [95, 127]. However, Brereton et al. claim that it is possible to achieve
similar results with the first strategy (e.g., PCA + LDA) [116]. Nevertheless, a
problem of this strategy is that important information may not be considered if it
is not compiled by the first principal components [95]. On the other hand, several
studies focusing on breath analysis have followed the third strategy and innovative
algorithms such as random forest, SVM or ANNs have been implemented. However,
these methods have a high computational complexity and their outcomes are often
not easy to understand [95].

Table 2 Examples of machine learning algorithms used in breath analysis by technologies based
on mass spectrometry to obtain a predictive model

Machine learning algorithms References

PCA + LDA Zhou et al. [120]

LASSO+LR Wang et al. [87], Monasta et al. [121], Sola-Martínez et al. [47]

PLS-DA Caldeira et al. [57], Van Oort et al. [99], Beccaria et al. [122]

SVM Robroeks et al. [30], Van Berkel et al. [123], Beccaria et al. [122]

Random forest Beccaria et al. [122], Gashimova et al. [124]

ANNs Rudnicka et al. [125]

PCA principal component analysis, LDA linear discriminant analysis, LASSO least absolute shrink-
age and selection operator, LR logistic regression, PLS-DA partial least squares-discriminant
analysis, SVM support vector machine analysis, ANNs artificial neural networks
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6.2 Validation of Models

Validation of the models is an essential step in data analysis to assess the perfor-
mance of the models, the real applicability of the models on unknown data, and the
suitability of the selected VOC profiles. However, if model generation and validation
are performed on the same data set, which is unfortunately very frequent in
volatilomics studies, there is a high risk of overfitting. Accordingly, external vali-
dation of models is the best option. In this approach, the model is constructed based
on a training set and model validation is carried out over other independent sets
(validation set). In this sense, it is frequent to randomly divide exhaled breath
samples from subjects into a training set and a validation set. However, it is more
desirable that the exhaled breath samples in the validation set belong to a group of
new subjects enrolled at a different time or place than those in the training set (real
external validation). On the other hand, the sample size in studies focused on breath
analysis is sometimes insufficient to provide two independent sets. For this reason,
an attractive approach is internal validation of model or resampling techniques such
as cross-validation (CV) or bootstrapping. Thus, the most popular cross-validation
strategies are “leave-one-out” and “n-fold” cross-validation [35, 36, 95, 105,
112]. The use of resampling methods causes great controversy, since it has been
suggested that these techniques could overestimate the predictive power of the
models. In this regard, a permutation test can be deployed together with resampling
techniques in order to address these challenges. The permutation test evaluates that
the performances of the constructed models are significantly better than the perfor-
mances of predictive models constructed with randomly labeled data [95, 96]. Even
though the permutation test is not yet widely used in volatilomics studies, some
recent studies have introduced this test [47, 75].

7 Conclusions and Perspective

Since years, exhaled breath has been considered a promising source of potential
biomarkers, because it is a noninvasive methodology. In particular, this approach
could be especially beneficial for passive non-cooperative patients such as intensive
care or pediatric patients. VOC analysis could be extremely useful in the future for
the diagnosis and monitoring of prevalent diseases in children such as asthma. In
addition, it could also play an important role in monitoring oxidative stress and
exposure to environmental pollutants. Specifically, this chapter focuses on offline
breath analysis using mass spectrometry-based technologies. This approach provides
for easy storage and transport of exhaled breath samples, thereby avoiding unnec-
essary transit of patients to the location of the analysis platform. Furthermore, the
typical analytical techniques used in this approach offer high sensibility, robustness,
and reproducibility. The main steps involved in biomarker discovery by offline
breath analysis have been reviewed in this chapter. Special emphasis has been
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given to protocols and the standardization process of breath sampling since the
acquired data are significantly affected by the experimental design and instrumental
parameters. The choice of the exhaled breath portion must be based on the main aim
of the study. It is also essential to check the influence of the room ambient air where
breath sampling is performed. On the other hand, the review has addressed different
analytical platforms based on mass spectrometry which have been used in offline
breath analysis. In fact, offline analytical systems such as GC-MS with
preconcentration methods are clearly the most popular for offline breath analysis.
However, this review also shows the emerging use of online systems for this
approach. Finally, the innovative strategies and algorithms recommended for data
preprocessing and data analysis in the breath analysis field have been reported.
Volatilome data has a high dimensionality and often exhibit multicollinearity prob-
lems. Therefore, it is crucial to select robust techniques that deal with such issues. By
using machine learning algorithms, specifically supervised learning methods, it is
possible to obtain predictive models and discriminant VOC profiles. Validation of
these models must be rigorously carried out to avoid overfitting and to ensure their
universal use.

In summary, exhaled breath analysis is currently an area of intense research that
requires a collective effort to move beyond its exploratory stage as it has an immense
clinical potential in healthcare in the near future.
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Abstract Interest in the use of GC-IMS for the detection of volatiles has seen a
rapid expansion over the last decade. The following chapter will focus on classical
GC-IMS and its research applications in the potential for diagnosis, rapid testing and
biomarker discovery, with an emphasis on breath testing. Breath analysis via
GC-IMS has enormous potential in many clinical areas including screening for
pulmonary diseases, infections and toxins. Due to the technology’s small footprint,
robustness in various environments and ease of use, there have been many studies
looking at its potential utility in the clinical field, including its use as a screening tool
for SARS-CoV-2 infections. There remain limitations to the device usage and data
processing which are discussed throughout the chapter. An introduction to its
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fundamentals, standardisation, breath collection methods and active areas of
research and development will be covered.

Keywords Biomarkers · Breath analysis · Clinical applications · Detection · Gas
chromatography ion mobility spectrometry (GC-IMS) · Physiology · Sampling ·
SARS-CoV-2 · Standardisation · Volatile organic compounds (VOCs)
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1 Introduction

Ion mobility spectrometry (IMS) is a trace gas detection technique, developed
through the 1960s and 1970s, now widely used commercially for security, military
and industrial process applications. One of the most widely used applications is the
use of IMS in airport security for the detection of explosives and illicit drugs. It has
also been an important tool for chemical warfare detection in military applications
[1, 2]. The technology offers multiple benefits including high sensitivity (ppb/ppt
trace detection), portability, ease of use, relatively low cost and detection times on
the milliseconds scale. By coupling an IMS to a chromatographic or multicapillary
column (GC/MCC), the analysis of complex matrices was enabled; including bio-
logical samples, allowing the technology to merge into the clinical research field.
This technique combines the ultra-sensitivity of the device with the high efficiency
of GC – separation, improving selectivity and providing an additional information
dimension for compound characterisation and identification. There are currently
several types of IMS, which differ in the way they identify ions. The most important
among them are classical time-of-flight IMS, but other methods such as differential
mobility spectrometry (DMS) or high-field asymmetric waveform ion mobility
spectrometers (FAIMS) are also available. However, their main use is exploited as
a mobility filter, when coupled to other detectors such as mass spectrometers.
Commercially available GC-IMS/MCC-IMS systems now offer a platform for the
analysis of volatiles from bacterial cultures, blood, urine, saliva and breath, prom-
ising bedside testing. Research is ongoing with this application for diagnostic and
rapid screening in community settings. This device may bridge the gap between
current mass spectrometry platforms and clinical needs. Current platforms for
analysis of Volatile Organic Compounds (VOCs) are either laboratory-based and
resource intensive such as mass-spectrometric methods (GC, GCxGC – MS) and
stand-alone Proton Transfer Reaction Mass Spectrometry (PTR-MS), or, point-of-
care but less selective sensors/sensor arrays (metal oxides, semiconductor metal
oxides, conducting polymers or functionalised nanoparticles). It would be cost,
labour and workflow prohibitive to deploy large numbers of mass spectrometers
for point-of-care, large cohort settings. Conversely, while sensor arrays are often
cited as providing high-discrimination power between cohorts they do not identify
biomarkers; their data is difficult to verify and cannot really be used in synoptic or
meta-studies. Chemically specific sensors can be used most effectively for targeted
analysis, exhaled NO being a case-in-point; however, a different sensor will be
needed for each potential analytical target; not a sustainable solution. GC/MCC-IMS
devices can easily be adapted for multiple and newly developed applications. In the
area of rapid testing of VOCs, it is breath analysis that drew the most interest in
recent years, thanks to its many advantages. It is the least invasive of all sampling
techniques, the sample is easy to obtain and unlimited in amount. It is not a surprise
then that a large part of the clinical studies with GC/MCC-IMS focus on the
development of such a test. In this chapter, we will strongly focus on such applica-
tions, specifically with GC-IMS.
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The chemical information obtained from the GC-IMS generated data: ion inten-
sity, retention time, and drift time allow for both targeted and untargeted analysis in
research settings. For example, in biomarker discovery, studies on drug kinetics and
metabolomic profiling by GC-IMS are becoming a powerful tool due to the use of
modern Artificial Intelligence (AI) technology. However, when it comes to identi-
fication there are still challenges to overcome. Currently, the identification of
compounds is based on drift time and retention times libraries, which are limited,
and the information provided do not include structural information. Though, there is
ongoing development in this research field.

Within this chapter, we will focus on the classical GC-IMS, and its applications in
diagnosis, rapid testing and biomarker discovery, with an emphasis on breath testing
and will provide some recent examples of research and development in this area.

2 Ion Mobility Spectrometry Fundamentals

Ion mobility spectrometry is a gas phase detection technique that uses differences in
ion velocities in an electrostatic field as a means to characterise and separate
compounds typically under atmospheric pressure. The fundamentals of IMS date
from the late nineteenth century with Thomson’s studies on ionised air via X-ray
radiation. The discovery was followed by further explorations on ion behaviour in
the gas phase, development of a drift tube and apparatus that ultimately reached its
modern form in the 1970s [3]. The basis of the technique lay in the proportional
relationship between velocity of ions with an electric field, and mobility constant K,
which is unique for an ion (Eq. 1).

Vd =KE ð1Þ

where: Vd is ion drift velocity in cm s-1; K is mobility in cm2 V-1 s-1; E is electric
field strength in V cm-1.

Ions have different mobilities under a constant electric field due to differences in
their structures. A version of the Mason–Schamp equation (Eq. 2) describes mobility
in relation to the structural parameters of the species [4].

K=
3ze
16N

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
μkBTeff

r

×
1
Ω ð2Þ

where: z is an ion charge, e is an electronic charge, N is gas density number, μ is
reduced mass of ion, Ω is cross-sectional area of ion cluster, Teff is effective
temperature, kB is Boltzmann constant; and = mM

mþM , where m is mass of the ion
and M is the mass of drift gas molecules.

Note: If the ratio of the electric field strength (E) to gas number density (N )
exceeds the low-field limit (EN > 2 Townsend ) such as in DMS, which oscillates
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between high and low electric fields, then the gas phase mobility of an ion, K, is no
longer independent of the electric field gradient and additional laws apply [3].

IMS measures the drift time (tD); the time it takes for the ion to traverse through a
drift cell (from the ion shutter to the Faraday plate detector) of known length (L ) and
in linear fashion under a uniform electric field. The time is inversely proportional to
the ion velocity under the applied conditions; and it is one of the measurements used
to characterise the ion. The typical time for an ion swarm to travel through the drift
tube is on the order of milliseconds.

Vd =
L
tD

ð3Þ

However, this value only represents the specific conditions used. The velocity of
the ion is certainly mostly affected by the field but pressure and temperature also play
an important role; therefore, the use of tD values has limited power in transferring the
results across different devices.1

To reduce the effect of the instrument conditions, researchers often report the
relative drift time (tDr), which provides its normalised value towards the drift time of
the reactant ion peak (RIP), protonated water H + (H2O)n cluster in most cases
(Eq. 4).

tDr =
tD ið Þ
tD RIPð Þ

ð4Þ

However, the most accurate and universal way used to characterise/identify ions
is by using the reduced form of the mobility constant K0. This value is used in most
of the existing mobility data bases, and is in principle transferable. The K0 coefficient
normalises the constant K to the standard conditions of temperature and pressure, by
using the expression shown in Eq. 5.

K0 =K ×
273:15

T
×

P
760

ð5Þ

where: T is temperature and P is the pressure of the buffer gas.
The operational schematic of a typical IMS system is shown in Fig. 1.
Another important aspect of working with IMS-based systems is understanding

the underlying ionisation processes, which lie at the heart of the technique. This
includes the ionisation potential of the analytes and the ionisation type and
regime used.

1Note: The extensive review on the studies of those effects and the IMS principles in general, its
history and applications and future perspective can be found in “Ion Mobility Spectrometry” by
G.A. Eiceman, Z. Karpas, and Herbert H. Hill, Jr. [5] an important and complete reference on
GC-IMS technique.
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In IMS common ionisation sources include beta emitters: Nickel (63Ni) or Tritium
(3H), non-radioactive sources: corona discharge, photo- and electrospray-ionisation
are also available. In pure nitrogen or air (most common transport gases used in
IMS), the energy emitted from the radioactive source generates positively charged
nitrogen cation radicals [4] from reactions with thermalised electrons. The ionised
buffer gas (nitrogen or air) then reacts with traces of water present in the gas at and
through a series of ion–molecule reactions, reactant ion species such as H + (H2O)n
(with up to six water molecules, n, in the typical atmosphere) are formed. Finally, the
ionisation of the analyte molecules (M) happens in the ionisation region of the IMS
via ion-molecule reactions based on proton transfer and driven by the affinity of the
compound to accept the proton. The proton affinity of water is equal to
691 ± 3 kJ mol-1, so molecules with higher potential will be ionised and form the
product ion (Eq. 6).

Hþ H2Oð Þn þM=HþM H2Oð Þn- 1 þ H2Oð Þ ð6Þ

If the concentration of the analyte is high enough, higher clusters such as dimers
or trimers can be formed, via the reaction shown in Eq. 7.

HþM H2Oð Þn- 1 þM=HþM2 H2Oð Þn- 2 þ H2Oð Þ ð7Þ

Fig. 1 Schematic of the IMS system working principle, where the sample is introduced into an
ionisation region to become charged mainly via proton-transfer reactions (PTR) process and moved
towards a shutter grid, which will regularly inject an ion swarm into the drift region. In this region,
the separation of the ions takes place, on the basis of ion differences in their mobilities under the
electric field, when passing through a neutral buffer gas, also called drift gas. The aperture grid
focuses the ions as they move towards the detector (Faraday plate), producing an electric signal
which is then acquired and provides the results in a form of the IMS spectrum (See Fig. 2)
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Example of a typical IMS spectrum, showing the RIP and product ions: monomer
and dimer of eucalyptol in this case, is shown in Fig. 2.

It needs to be understood that in complex systems, there may be competitive
ionisation happening at the same time between other compounds or impurities
present; therefore, pre-separation is essential for the analysis of such matrixes. To
fulfill its application potential as a fast clinical screening tool, the systems used in
clinical research have been interfaced with chromatographic columns (GC-IMS),
which provide an additional dimension to the analysis and compound characterisa-
tion via retention times (Fig. 3).

As explained above, the parameters such as temperature and pressure affect the
velocity of the ions and must be carefully monitored on a daily basis as a part of
quality assurance procedures. The humidity level in the system also has an ability to
alter the results, and although the influence of humidity has been known for decades,
it has not been largely documented. What is known is that changes in water levels
may affect sensitivity, quantification of an analyte and may alter ion composition.
The best way to tackle this challenge is to monitor its level or incorporate changing/
conditioning moisture filters on a regular basis, in accordance with manufacturer
specifications. Humidity commonly causes changes in RIP drift times and its
intensity as well as peak broadening and in extreme cases complete loss of sensitivity
in the system. Monitoring of the RIP signal is essential for the successful use of IMS
technology.

Fig. 2 Example of typical ion mobility spectrum with reactant ion peak (RIP) present 7.7 ms drift
time, and product ions of eucalyptol: monomer ion at 10.1 ms and the dimer peak at further drift
time of 13.6 ms. Traces of ammonia present in the atmosphere are also detected (peak to the left of
the RIP), often seen in the IMS systems
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3 Sampling Methods

Rapid analysis with GC-IMS devices has the potential to be revolutionary for
clinical practice. One of the most important aspects is the sample collection process.
Ideally, sampling is reproducible, fast, easy to use by both patient and operator and
above all safe. Volatiles are complex matrixes and proper, consistent sample collec-
tion is paramount. The amount of an analyte is often present at part per billion (ppb)
or part per trillion (ppt) levels; therefore, any slight change in the system can
potentially introduce significant error. There is also active chemistry with absorp-
tion, and reactions along the entire sampler device, as well as artefacts that can be
introduced during collection. A comprehensive review on all physicochemical
processes happening during the transfer of biochemical signals from the body to
an analyser and details on VOC sampling can be found in the ion mobility spec-
trometry section of “Breath borne Biomarkers and the Human Volatilome” (Second
Edition) [6].

Many sampling techniques commonly used for the analysis of VOCs can be
adapted for use with GC-IMS. However, since the main advantage of GC-IMS
devices comes from rapid detection, direct sample introduction methods are com-
monly implemented without further enhancement. For solid and liquid samples such
as urine, blood, sputum or microbiological analysis, headspace (HS) sampling is
most widely used. Samples are either transferred into an inert, thermally resistant
container and subsequently agitated and heated prior to analysis to release volatiles
or a volume of headspace is collected directly from above the sample without

Fig. 3 Example of 3D GC-IMS chromatograph, obtained from analysing a homologous mixture of
ketones, where separation in both directions: chromatographic elution (retention times in seconds)
and mobility (drift times in ms) is highlighted, used to characterise an analyte. On the Z axis, the
intensity is shown (V) used for quantification. Copyrights: G.A.S Dortmund
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additional heating [7–11]. This technique is commonly used in in-vitro bacterial
studies. The collected volume of HS is then either injected or withdrawn into the
analyser. Commercially available HS autosamplers are now available, for example,
Flavourspec® from G.A.S Dortmund/IMSPEX (Fig. 4a), which allows for faster
sample processing. For gas analysis such as breath, both online and offline
approaches are common. Online techniques are most often used with disposable
mouthpieces and a heated transfer line, connected directly to the instrument. In many
cases additional sensors are implemented such as CO2 sensors, allowing for the
collection of the end-tidal portion of breath (SpiroScout spirometer from B&S
Analytics or Loccioni® Sampler – See Fig. 4d, f) [12]. These methods however
are often fitted with either pre-built or attached bio-filters to protect against infectious
pathogens, reducing the risk of person-to-person transmission. The use of a bio-filter
may introduce condensation and adsorption artefacts into analysis. This has been
demonstrated recently with GC-MS studies by Myers et al. [13]. A similar effect was
also observed within the breath standardisation study by GC-IMS, using peppermint
oil. In the group of participants, where a High-Efficiency Particulate Air (HEPA)
filter was used the number of compounds detected from ingestion of the capsule was
also reduced [14]. BreathSpec from G.A.S/IMSPEX have an option for direct
sampling and is not employed with a filter, but has the option to attach one into
the sampling line (Fig. 4e). Offline techniques have gained much more popularity
recently, especially during the emergence of the COVID-19 pandemic. With such
approaches, the risk of patient-to-patient transmission is greatly minimised. The two
commonly used methods for sample collection are: polymer bags and Haldane-type
samplers (Fig. 4b, c). The bags are hermetically sealed and fitted with a valve,
allowing for the bag to be filled in with breath, using a required volume. The sample
is then drawn into an analyser or adsorbent tube. The bags are made from different

Fig. 4 Commonly used with IMS sampling devices: (a) FlavourSpec® (G.A.S/Imspex), (b)
polymer bags, (c) Haldane sampler, (d) Loccioni® sampler with CO2 monitor, (e) direct online
sampling, (f) SpiroScout® (B&S Analytics)
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materials (Tedlar® (Dupont™), Nalophan®, Cali-5-Bond™, FlexFoil® and Teflon®,
ALTEF®) which may introduce contaminant VOCs and are prone to condensation
artefacts; they also have different storage performance [15]. It is important to note at
this stage that with this type of sampling technique, mixed exhaled breath is
collected. Sometimes, a practice of exhaling the first part of the breath into the
room, followed by exhalation of the remaining part into the bag, is applied, to
concentrate the end-tidal portion of breath. This, however, could reduce the repro-
ducibility of the sampling techniques, and studies standardising this approach are
non-existent. An advantage of using polymer bags is their simplicity and relatively
low cost. The bags can be reused in theory, but re-conditioning protocols, especially
in the era of COVID-19, would have to be carefully studied first. The second type of
offline sampler, known as Haldane-type samplers, captures a small volume of
end-tidal breath. A participant exhales through a small inert tube (10–20 cm3), fitted
with one-way valves, to completely empty their lungs. The last part of the breath
(1–5 cm3) is captured within the tube and withdrawn and injected into the analyser.
The sampler is cheap and disposable but its main limitation is the small volume of
sample and the possibility of condensation artefacts.

Regardless of the sampling method used for the analysis of biological matrixes
with IMS, due to the small volume of sample required to provide fast analysis, it is
extremely rare to see more than 100 features detected in a sample. This limits the
detectable concentration levels of compounds to tens of ppbV, despite instrument
sensitivity. Therefore, depending on the requirement of the analysis it may be worth
considering the use of the adsorption techniques, such as adsorption tubes or needle
traps, followed by thermal desorption.

The use of needle-trap and GC-IMS was shown with controlled study of breath,
demonstrating that the method can be used for appropriate quantification when the
adsorbent and the sample volume are adapted properly to the required concentration
range of the targeted compounds of interest and humidity of the sample. Depending
on the sample volume used the detectable concentration levels were reduced to: pptV
with 20 cm3 and low ppbV for 10 cm3 of sample volume [16]. Enhancement using
adsorbent tubes with GC-IMS is also being explored, for example, with the use of a
μ-Thermal Desorption system (μ-TD) developed for use with GC-IMS systems from
AIRSENSE Analytics. The power of the enhancement delivered is truly impressive,
with full analysis times below 20 min and 100 cm3 of collected sample (Fig. 5).

Each method has its advantages and disadvantages, and one size will most likely
not fit all. Regardless of the method, for the technique to find a place in routine
clinical use, sampling procedures will need to be standardised and quality control
measures developed. In the next section, we will look at work done with IMS
systems in this context.
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3.1 Breath Sampling Standardisation

The need for standardisation of breath sampling approaches has been highlighted by
the European Respiratory Society and described within recommendation for breath
analysis [17]. This need has also been realised by the breath research community,
resulting in the formation of the “Peppermint Initiative”, which aims to provide
standardised methods that allow comparison of breath sampling techniques in an
evidential manner [18]. The protocol has been developed using an MCC-IMS
system. So far, 17 partners from eight countries have joined the effort to run the
experiment, using eight analytical techniques. The proposed experiment involves
ingesting a peppermint oil capsule (200 mg, Boots, UK) and collecting of series of
breath samples at baseline and at +60, +90, +165, +285 and +360 min post capsule
ingestion. The teams seek to establish a current benchmark value – the time for the
compound measurement to return to baseline levels – for each comparable analytical
technique, as a measure of sensitivity of the analytical process. The linear regression
analysis of the washout profile also allows for the reproducibility of the sampling
approach to be evaluated and the analytical process monitored. So far, the results
from three analytical techniques and various sampling methods have been published:
GC-MS, PTR/SIFT-MS and most recently with GC-IMS [14, 18, 19]. Within the
GC-IMS studies, a single IMS system has been used by three international teams –
BreathSpec G.A.S/IMSPEX – with two sampling methods: offline Haldane tube and
online sampling with Loccioni sampler. An average extrapolated from the regression

Fig. 5 Logarithmic plots of the eucalyptol washout curves of the fold-change change in peak
volume versus time, for current benchmark, based on GC-IMS studies from three different centres,
two direct analysis methods versus sampling using 100 cm3 volume of breath and application of
μTD
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analysis time, taken for exhaled eucalyptol (the main constituent of the peppermint
oil capsule) level to return to baseline was 429 ± 62 min (±95% confidence-
interval). The Benchmark value, set on the lower 95% Ci band, was 367 min. This
means that, if such time cannot be reached, the system operates below the current
standard, and the analyst needs to seek improvements. On the other hand, if higher
values of time are reached, then it should certainly be reported, for continuous
improvement of the technique. The performance of the μTD-GC-IMS for breath
analysis is currently being studied, and preliminary results demonstrate the baseline
time for the eucalyptol washout to be over 1,800 min, an enhancement of nearly five
times, what is comparable with results obtained with GC-MS using 1 L of sample
volume (Fig. 5).

Moreover, the number of peppermint-related features detected also demonstrates
significant improvement. For example, when sampling with a Loccioni sampler, on
average two to three peppermint-related compounds were detected, most likely due
to HEPA filter involvement. All five targeted compounds: eucalyptol, limonene,
alpha and beta pinene and eucalyptol metabolite, and in some cases their dimer peaks
are seen (Fig. 6).

The peppermint experiment can be used to evaluate breath samplers, but it can be
implemented within routine quality control protocols for monitoring system perfor-
mance and as a means to train clinical staff with sampling procedures. The ability to
measure the consistency of sampling proficiency is important for international
multicentre trials. It provides an excellent layer of quality control and especially in
clinical applications where chemists are not on-site.

Fig. 6 A cut-out section of GC-IMS contour plots of breath samples collected 60 min post-
peppermint oil digestion, using direct (1 cm3 volume, left) and μ-TD sampling (100 cm3 volume,
right) techniques, where tr is the retention time and tDr is relative drift time. The graph shows
impressive enhancement in the number of features detected with the pre-concentration method
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4 Applications

Due to the small footprint, ease of use and fast analysis time of IMSs, they make for
ideal point-of-care devices that have the potential to be added to any clinical practice.
They are also extremely simple to operate and sample introduction methods can be
automated for faster processing. IMS devices can also be programmed with auto-
mated methods that give simple positive or negative results back to the operator
without the need for interpretation by trained staff. Over the past 5 years, there have
been three main areas of clinical and research usage for GC-IMS: (a) the determi-
nation of drugs and drug volatile metabolites; (b) rapid detection for medical
diagnoses; and (c) identification of micro-organisms with in-vitro studies.

4.1 CBRN and Mass Casualty Triage

A promising development is being made in utilising GC-IMS in fields where fast
diagnostic, bed side and field testing are most required. This includes toxicology and
forensic testing, but also triage in mass casualty incidents, such as those with the use
of CBRN (chemical, biological, radiological, nuclear) agents.

One such example was demonstrated in a large European Union Horizon 2020
project called Toxi-triage (http://toxi-triage.eu). Eighteen partners from seven coun-
tries developed technologies and procedures that were integrated to provide situa-
tional awareness at the level of an individual casualty for a mass casualty event,
secondary to a CBRN agent. One of the goals was to develop a biomarkers database
and test preparedness of dual-use devices which would have the capacity to assist
doctor’s decision-making but also being able to identify VOCs indicative of CBRN
exposure, in the event of an attack. Within this chapter, some detailed examples of
the results from those studies are provided, which demonstrated high compatibility
of the GC-IMS with the needs of the medical emergency services, targeted toxins
detection and untargeted biomarker discovery.

One of the clinical applications demonstrated in the project was on the detection
of toxic alcohols, such as methanol. Diagnosing methanol poisoning is difficult,
since the presentation is similar to intoxication with ethanol, and laboratory analyses
for toxic alcohols are frequently unavailable in smaller medical centres or take hours
to get results secondary to samples being sent to reference laboratories [20, 21]. With
clinical suspicion of toxic alcohol poisoning, but no proof of exposure from blood
sample analysis, patients must be treated with an expensive antidote (fomepizole) or
an antidote with complex dosing regimens and a high risk of adverse reactions
(ethanol) until the diagnosis can be confirmed [22]. This is a major issue, especially
in developing countries, which report the highest number of deadly methanol
poisonings. GC-IMS devices were set in a University Hospital in Oslo (Norway)
and in a General Hospital in Jakarta (Indonesia). A sample of breath was collected
(volume 0.5 cm3) and analysed with a 10 min long analysis method
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[23]. Simultaneous blood samples were collected and sent for analysis in a reference
laboratory. Thirty-seven participants were recruited, 19 from participants with
elevated ethanol levels and 18 from patients with suspected methanol poisoning.
High correlation between breath and blood ethanol levels was demonstrated, within
0.3 and 2 g L-1 concentration range (Fig. 7, left), and elevated methanol levels were
observed in all suspected methanol poisoned patients (Fig. 7, right).

The methanol levels in blood were below the detection limits of the GC-FID
instrument used in the reference laboratory, which was at 0.2 g L-1. The results
showed greater sensitivity of the IMS for methanol detection from breath, in
comparison to the current clinical approach, even in samples where the methanol
level was below the cut-off on the GC-FID. Further studies are still needed to
correctly determine the correlation between breath and blood levels using a more
appropriate method for analysing blood.

A second application of GC-IMS in the project was the detection of radiation
exposure biomarkers, related to CBRN. Recent studies indicate that the damage
caused by radiotherapy to tissues can be detected in breath [24, 25]. This offers the
opportunity for detecting in real-time the quantity of injury produced during radio-
therapy. This may allow rapid revision of radiotherapy protocols according to an
individual’s response to radiotherapy, allowing for personalised treatment. In this
study, participants undergoing radiation treatment were recruited and breath collec-
tion/assessment was completed after the participants’ first dose to further develop the
methodology for repeated radiation treatment. The study was set in a Western
Edinburgh Hospital. Breath samples were collected from 23 participants using a
Haldane tube sampler, before radiotherapy and at 1, 3 and 6 h post-exposure. 0.5 cm3

of breath was immediately analysed with GC-IMS using a 10-min-long analysis
method to evaluate its feasibility as a point-of-care device and to compare the results
with previously described radiation markers. The device was able to detect four
radio-sensitive compounds, including tentatively assigned methylated furaldehyde
and 3-methylthiopropanal [23]. Those findings were in line with those observed with

Fig. 7 Left: ethanol breath/blood level correlation obtained from 19 ethanol intoxicated partici-
pants. Right: example of GC-IMS chromatograph showing detection of methanol in breath in
presence of elevated ethanol level
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GC-MS. The Receiver Operating Characteristic (ROC) curve based on the summary
score (summary of the Log(10) GC-IMS peak volumes of the four compounds) for
each participant gave an accuracy of 84.6% in distinguishing pre- and post-radiation
exposure participants (Fig. 8).

It is important to note that the study targeted one of the previously described VOC
(3-methylthiopehene), found in the study by TD-GC-MS, and reported its breath
concentration to be between 80 and 790 ng m-3. Its detection limit was assessed with
GC-IMS and was estimated to be 210 fg s-1, showing its full capability to detect it in
breath [25]. However, the feature was only found in 8/28 participants with GC-IMS
(Note: TD-GC-MS generates a 104 enrichment from a 1 L of breath sample while the
GC-IMS only used volume of 0.5 cm3 sample of end-tidal breath without enrich-
ment). What this means is that even though the instrument detection limit is
sufficient the method detection limit is not. This demonstrates how the choice of
sampling device, sampling volume and method optimisation will play an important
role in full translation of the findings but demonstrates feasibility.

4.1.1 Mass Casualty Triage

The operational capacity for mass triage with breath testing was evaluated during
two field technical (FTX) exercises simulating a chemical weapon attack [26]. Chem-
ical weapon attacks, as occurred in 1995 in Tokyo [27] and more recently in Syria
[28], are an ongoing global threat [29]. The current war in Ukraine makes this threat
even more likely to happen in Europe. Rapid identification of the agent involved is
difficult and currently only patients who develop symptoms are easily triaged
[30]. Health care systems can be overwhelmed with unexposed but worried individ-
uals after an attack becomes widely known [31]. Multiple detection, security, clinical

Fig. 8 Left: Box-Whisker plots of pre- and post-radiation summary score of 23 participants, based
on peak volume of four features selected in the GC-IMS study. 95% confidence interval was used to
provide classification cut-off value used to produce a receiver operating characteristic curve (right)
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and information technologies were tested during the exercises, to increase prepared-
ness, management capability and situational awareness. The larger scale exercise,
FTX DISPERSE, took place in the Finish city of Mikkili and closely reflected a
civilian CBRN crises response as it was run by multi-agencies involving the: Fire
and Rescue Service; Emergency Medical Services, military CBRN specialists,
Police Service, and the local hospital. Two IMS-based technologies were tested,
one for the detection of a nerve agent simulant (methyl salicylate) which alarmed at
the presence of methyl salicylate in the attack centre point (Hot-Zone) and was used
by CBRN services at the casualty’s decontamination lines; second device
BreathSpec GC-IMS was used to detect the signs of poisoning with chemical
agent in breath (simulated by eucalyptol from peppermint oil) and inform triage of
casualties.

BreathSpec GC-IMS was installed and used in an emergency medical vehicle
(Fig. 9, right) in the marketplace city centre. The device was supplied with external
power supply (battery life of over 1 h) to avoid a re-start with movement of the
instrument, so it can be brought to the patient and casualty to provide fast breath
profiling at point of care. A second device was set at the emergency department of
the local hospital. The medical service teams were ready to perform breath tests and
operating the device, after just half a day of a training. The use of Peppermint test
safely provided a controlled trace metabolite profile in the breath of participants
enabling a robust operational performance and training evaluation of breath analysis
to be undertaken in close to operational conditions.

One hundred and thirteen volunteer participants undertook the role of casualties.
Throughout the crisis, emergency service paramedics were instructed to “tag” each
target they interacted with. The information was collected on triage status, contam-
ination status, and the result of any breath analysis. This allowed monitoring of the

Fig. 9 FTX-disperse: left: a complicated and dynamic environment in FTX Disperse. Number of
casualties awaiting decontamination, triage and treatment. Right: a paramedic analysing a breath
sample for the presence of peppermint simulant. A sensitive analytical procedure detecting picto-
gram levels of eucalyptol in exhaled breath tested from the cargo area of an emergency response
vehicle
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casualty journey through the exercise, from the Hot-Zone, where the attack took
place, through decontamination and triage (Fig. 9) prioritising treatment, based on a
positive breath test. There were 39 casualties, who showed signs of exposure and
qualified for the breath test. The test took less than a minute from sample collection
to results, allowing all 39 casualties to be triaged within the first hour of the exercise.
The test showed 83% sensitivity and 100% specificity. The results of this exercise
demonstrated convincingly, how this technology was compatible with emergency
medical service operations and simple enough to use in austere conditions.

4.2 Breath as a Screening Tool for COVID-19

Since the emergence of the pandemic, much attention was given to identifying breath
biomarkers to detect SARS-CoV-2 infections for screening purposes, but also to
study the biology of the disease through the metabolites and shed light on the disease
mechanisms. There have been several prospective trials published. Ruszkiewicz
et al. provided the first evidence that distinguishing SARS-CoV-2 infection from
other respiratory disorders using breath testing in an emergency room setting may be
possible with portable GC-IMS [32]. Although breath sampling via GC-IMS has not
been accepted as a clinical COVID-19 screening tool to date, there have been over
10 published research papers prospectively designed using VOC-based analysis to
distinguish COVID-19 in various clinical settings. Recently the FDA approved a
portable GC-MS machine for screening COVID-19 via breath, allowing for this
technique to be used as a clinical screening tool. Subali et al. present a detailed
review on existing studies with exhaled breath and provided its cumulative diag-
nostic evaluation, with sensitivity and specificity values of 98.2% (97.5% CI
93.1–99.6%) and 74.3% (97.5% CI 66.4–80.9%), respectively [33]. This demon-
strates the potential for further development of the breath test for clinical use. In
recently presented work by Myers et al., the breath profile of patients was repeated
through active infection to recovery, allowing for differentiation of symptomatic
SARS-CoV-2 positives vs. SARS-CoV-2 negatives patients presenting with upper
respiratory tract infection [34]. They included a longitudinal study following patients
through recovery; an important subgroup to study for potential screening applica-
tions and more importantly the potential to understand the biology of the disease and
long COVID.

In April 2022 the FDA approved the first clinical breath test for screening of
SARS CoV-2 infections in the USA based on 2409 subjects, 102 were RT-PCR
SARS-CoV-2 positives. The sensitivity and specificity of the test was 91.2%
(90% CI: 85.4, 94.8%) and 99.3% (95% CI: 98.8, 99.5%), respectively. Addition-
ally, a small cohort of 12 people were tested during the emergence of the Omicron
variant (11 were RT-PCR SARS-CoV-2 positives). The test showed high sensitivity
of 90.9%. The study had limitations in both design and practicality. The data set was
unbalanced and demonstration of the applicability to the newly emerging variants
needs further testing. The mass spectrometer used is a substantial size and requires
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trained operators supervised by health care professionals, limiting its applicability;
however, this is an exciting step forward for the breath analysis field as it is the first
breath test permitted for clinical use in the pandemic.

4.2.1 COVID-19 Studies with GC- IMS

Three GC-IMS volatolomic papers have been published so far using IMS technology
to study COVID-19 detection.

The first study demonstrating the ability to find differences in the VOC profiles
between SARS-CoV-2 positive participants and SARS CoV-2 negative patients was
carried out using GC-IMS. The work involved two independent studies in the UK
and Germany [32]. The studies were set up rapidly and early on in the emergence of
the pandemic with first patients being recruited at the end of March 2020. The
devices were set in two Hospitals: Royal Infirmary of Edinburgh (RIE) and in
Klinikum Dortmund (KD), to study whether patients with COVID-19 can be
distinguished from those admitted with other respiratory symptoms. Both teams
used the same GC-IMS device with disposable Haldane tube breath sampler and
10-min-long analytical method with slightly different chromatographic conditions.
The simplicity of the device and sampling procedures allowed for efficient set-up.
The clinical teams went through 2 days of training and finished with proficiency
testing using the peppermint proficiency protocol. In this pilot study, data from
28 and 65 patients admitted to RIE and KD, respectively, was analysed. Twenty-
seven were RT-PCR SARS-CoV-2 positive and 66 were RT-PCR SARS-CoV-2
negative (respectively). Two different and independent data processing approaches
were applied to the data to extract candidate markers (data mining – KD and
vectorising peak volume – RIE), before combined sets were assessed with principal
component analysis (PCA-X) model. The compounds distinguishing COVID-19
from other upper respiratory tract infections were increased levels of ketones
(acetone and 2-butanone) suggesting ketosis, aldehydes, specifically heptanal and
octanal which are known inflammatory and oxidative stress markers as well as
ethanal and reduced methanol production. The models produced for each centre
provided AUROC curves of 0.87 (RIE) and 0.91 (KD), with sensitivity of 82.4%
(RIE) and 90.0% (KD) and specificity of 75.0% (RIE) and 80% (KD). The results
were assessed without a need for specialised software and complicated algorithms,
using simple ratio-metric scoring (C19) based on the peak volumes used in each
model shown in Fig. 10. The classification based on that assessment provided
comparable AUROCs. To fully explore the potential of a screening breath test
with GC-IMS, a much larger study is needed based on different populations and
cohorts. This is underway with a partnership including COVID-19 clinics in the
tropics (Sri Lanka) and community COVID-19 test centres in British Columbia,
Canada as well as clinics in the UK including Leicester and Glenfield University
Hospital. The consortium also includes researchers from Warwick University who
will lead the data processing. It is a prospective study design with breath collection
from symptomatic patients presenting for RT-PCR COVID-19 testing. Breath is
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collected at the time of presentation with respiratory illness symptoms and all
participants will have a gold standard RT-PCR for COVID-19. There is concurrent
development of a data pipeline for uniform processing of the data and creation of
single model from the different data sets from all study sites.

Additional data published from a UK cooperation between Leicester Glenfield
hospital, Leicester University Hospital and Warwick University, evaluated 113 par-
ticipants from highly diverse populations, via breath test after admission to the
hospital [35]. One hundred and fifteen participants were evaluated with 72 partici-
pants RT-PCR SARS-CoV-2 positive (COVID-19), 20 were RT-PCR SARS-CoV-2
negative but symptomatic with a respiratory tract infection (RI). An additional,
21 healthy controls were included (HC). The team used an automated method for
analysis of the data, with the pipeline published elsewhere [36]. The extracted
(by ten-fold cross-validation) features were used to produce a model using different
classifiers such as Gaussian Process and Neural Network. The relation between
variables including white cell count and urea levels at admission, number of
comorbidities and duration of symptoms was also investigated using multivariable
logistic regression to test the ability of GC-IMS to distinguish COVID-19 from other
Respiratory infections and predict the requirement for subsequent Continuous Pos-
itive Airway Pressure (CPAP) treatment. The study provided similar discrimination
power for the breath test to distinguish between acute COVID-19 infection and other
respiratory infections, as those previously reported by Ruszkiewicz et.al (Table 1).
There was a high correlation between breath and subsequent need for CPAP in
hospitalised patients with COVID-19; however, it was independent for predicting
outcomes. More studies need to be done to fully explore the potential of breath
VOCs analysis via GC-IMS to not only detect SARS CoV-2 infections but also
predict disease outcome.

Challenges remain with deploying GC-IMS at multiple centres and combining
the data, as even though individual studies were run using the same chromatographic

Fig. 10 Box-Whisker plots derived from ratio-metric studies with a 95% confidence limit
highlighted, based on the group of COVID-19 negative patients. Left: Dortmund data (KD),
right: Edinburgh data (RIE) with ROC curve
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column there were differences in chromatographic conditions and aligning the data
sets (retention times and drift times), required compensation. Researchers from
Warwick University produced a data processing pipeline for GC-IMS data collected
at different sites from the global partnership of the COVID-19 query. This was
achieved by selecting a single master file from one site and aligning all the data to
that master file. This included RIP alignment of all the samples to the master file and
then undertaking manual re-alignment of the drift and retention times for chemical
peak alignment, until all the key peaks aligned in all the data. It required moving
peaks in the drift and retention axes and re-scaling the axes. In addition, all the data
was scaled so that the RIP magnitude was the same in all the samples. Three hundred
and twelve samples from a mixed cohort with participants from Sri Lanka, Leicester
and Vancouver were processed via this pipeline (Table 2). The participants were
symptomatic and either admitted to hospital or recruited from community test sites.
Seventy percent of the data was used as a training set to construct the predictive
model, using different classifiers (Gaussian Process, Sparse Logistic Regression and
Neural Network) and 30% was used as a validation set.

The results are impressive (Fig. 11), with average AUROCs for the validation
data set of 0.85 (95% ci 0.86–0.79), The combination of data science with AI
methods demonstrates an attractive way of combining different GC-IMS data sets

Table 1 Characteristics of the GC-IMS performance in distinguishing COVID-19 participants
from healthy controls (HC) and participants with other respiratory infections (RI) as well as its
ability to predict the need for subsequent CPAP in SARS-CoV-2 positives

Characteristic
COVID-19 vs HC (neural
network)

COVID-19 vs RI (Gaussian
process)

*Subsequent
CPAP
No subsequent
CPAP (neural
network)

AUROC
(95% ci)

0.85 (0.74–0.96) 0.89 (0.81–0.96) 0.70 (0.53–0.87

Sensitivity 80% (56–94%) 85 (76–91%) 62% (32–86%)

Specificity 88% (79–94%) 90 (68–99%) 80% (69–89%)

p-value <0.001 <0.001 <0.01

Table 2 Breakout of participants’ SARS-CoV-2 status, from three sites taking part in breath test
COVID-19 query

Testing
centre

RT-PCR SARS-CoV-2
positives

RT-PCR SARS-CoV-2
negatives with RI

Cohort
description

Vancouver 16 85 Community test-
ing site

Leicester 91 20 Admitted to
hospital

Sri Lanka 83 48 Admitted to
hospital

Total/312 167 148
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to increase the statistical power of the test. Work is ongoing to identify the VOCs
produced in the above models and apart from this, only one other study performed by
Chen et al. reports identified VOCs determined by GC-IMS [37]. The study included
191 subjects recruited in Beijing, including 74 RT-PCR SARS-CoV-2 positive
(COVID-19) patients and 30 RT-PCR SARS-CoV-2 negative patients with respira-
tory infection symptoms, and 87 healthy controls, RT-PCR negative.

The samples were collected into small ALTEF bags, attempting to capture end
tidal breath, then immediately transferred into the instrument for analysis. 12 features
were selected as significant based on differences between cohorts. Five of those were
identified including acetone, acetic acid, acetaldehyde, and 1- and 2-propanol. The
common compound between GC-IMS COVID detection studies is acetone and
possibly acetic acid. 2-propanol is a common disinfectant, and high background
levels were observed in clinical areas, often overwhelming this part of the GC-IMS
chromatographs; therefore, it was excluded from the analysis. They reported a high
level of specificity and selectivity of the method and used different modelling
approaches summarised in Table 3.

The environmental surroundings in clinical settings need to be carefully consid-
ered when working with GC-IMS. The presence of elevated alcohol levels in the
environment such as iso-propanol (common sanitiser) may change the chemistry of

Fig. 11 Receiver operating characteristic curves obtained from combined models, produced using
three different classifiers and based on three data sets from Global COVID-19 query
(312 samples). Top: training set (70% of the samples), bottom: validation set (30% of the samples)
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proton transfer reactions producing a mixed cluster of the compound and contami-
nant, changing the desired response and making data much more variable. Certain
precautions should be taken to avoid contamination including: careful attention to
instrument set-up location, minimising number of chemicals used in its proximity
and frequent glove changes.

In summary, GC- IMS technology truly proved itself as a valuable clinical
research device, throughout the pandemic, which can be rapidly deployed into health
care settings and provide reliable data in extreme conditions, from the tropical heat
and humidity of Sri Lanka to the biting winter cold of the Canadian Rockies.
Although not yet incorporated in the clinical field, recent studies have demonstrated
a strong foundation for the technology to be potentially adapted as a rapid screening
test showing both: low burden on participants and operators, as well as a possible
economic impact. Further validation studies are required.

4.3 Potential Clinical Point of Care Applications for GC-IMS

As seen in the previous section on sampling, breath samples for GC-IMS are
non-invasive and simple to collect. The smaller footprint of the machine allows for
easy portability and integration into busy clinical settings. Since breath is already in
the gas phase, the sample is directly transferred to the GC-IMS device with an online
or offline sampler. Breath is a rich matrix that is being studied for possible insight
into screening and detection of diseases such as lung cancer, COVID-19 infection,
COPD, asthma, etc. [35, 37, 38]. GC-IMS devices can also provide real-time data of
anaesthetic states of patients during surgery. There have been several studies inves-
tigating the real-time concentration of propofol in exhaled breath compared to the
concentration in blood during surgeries [39, 40]. This has been demonstrated to be
comparable and could greatly help an anaesthesiologist during surgery to accurately
dose anaesthetics.

Urine is a very common and easily collected bio-specimen from patients as it is
non-invasive and quick to collect. In order to analyse the VOCs released from urine,
an autosampler such as Flavorspec® is needed to heat and introduce the sample into
the GC-IMS. Current studies have shown urine to discern pancreatic ductal adeno-
carcinoma (PDAC) cancer from healthy participants using logistic regression with

Table 3 The AUOC for COVID-19 detection in symptomatic patients with respiratory illness via
three different modelling approaches

Model
COVID-19 vs RI AUROC
(95% ci)

COVID-19 vs controls AUROC
(95% ci)

Random forest 1.00 (1.00–1.00) 0.99 (0.97–1.00)

Support vector machine 0.93 (0.90–1.00) 1.00 (1.00–1.00)

Gradient boosting
machine

1.00 (1.00–1.00) 0.97 (0.92–1.00)
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an AUC of 0.88 with a sensitivity of 0.84 and specificity of 0.94. This study
completed by Daulton et al. collected 123 urine samples from participants who
were diagnosed with PDAC, chronic pancreatitis, and healthy controls [9]. The urine
samples were analysed using GC-IMS as well as TD-GC-MS and compared to one
another. The results from the GC-IMS data performed as well, and in some cases
better than the TD-GC-MS data when comparing different cohorts to one another.
Urine has also been shown to be able to distinguish the presence of bladder or
prostate cancer with good sensitivity and specificity.

Blood is also being actively studied; it is typically a sample matrix that contains
many VOCs; however, most of them are unable to be detected by GC-IMS due to
their low proton affinities. There are certain use cases for analysing blood with
GC-IMS devices for specific scenarios such as detecting infections of the blood due
to pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas
aeruginosa [11]. Routine medical microbiological tests for these pathogens are
relatively slow and can take anywhere from 24 to 48 h to complete. Drees et al.
were able to demonstrate that they could detect and differentiate a blood-borne
infection in just 6 h using a GC-IMS. This reduced the analysis time of 75%
compared to conventional methods with good sensitivity and specificity. This
remains an area that is actively being researched.

GC-IMS devices have the potential to be used as screening tools to group patients
in risk categories and can help guide clinical treatment courses. Although IMS
devices have shown the potential to distinguish multiple disease states from multiple
clinical matrices, further standardisation of methods is needed along with external
validation and multi-centred studies. It also needs to be said that most published IMS
research papers do not necessarily identify their discovered biomarkers and instead
use names such as “Peak Area 2” or “Molecular Feature 2”. Regulators such as the
FDA may not be satisfied with this level of identification routinely performed and
may require better identification levels before these devices make the move into
clinical practice. The future for the use of IMS devices in clinical settings is
promising; however, there is still a great deal of work to be done to move the IMS
from a research centre to an emergency room.

5 Future Perspective

Interest in the use of GC-IMS for the detection of volatiles has seen a rapid
expansion over the last decade. This is reflected in the number of published papers,
book chapters and review articles on the subject. According to the Science Direct
journal database, nearly a quarter of all published GC-IMS work describes its
potential use in clinical applications, which has more than tripled in size within the
last 10 years (Fig. 12). This trend is expected to carry on into the next decade.

This successful decade allowed for the GC-IMS to become an established
analytical tool used by researchers in many fields, including clinical with VOC
markers discovery, study on drug intervention and rapid triage. The technique is also
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succeeding in certain industries, for example, in quality control of the food sector,
demonstrating that when working with targeted analytes, fast analysis times and
reliability can be achieved.

Despite the demonstrated potential, expansion of the GC-IMS into the clinical
field for routine analysis of VOCs will depend on large robust clinical trials to
overcome its main challenges and limitations.

The first challenging aspect is the complexity of the GC-IMS data, processing is
laborious and requires highly skilled analysts to extract the required information.
The work in this sector has already started in recent years (for example, as presented
in the example of the COVID-19 application) with the employment of AI algorithms
and the automation of processing workflows. This sector is expected to rapidly
develop, allowing a wider use of pre-concentration sampling techniques and a richer
spectrum of information to be extracted from biological samples.

The second challenge lies in the continued use of radio-active sources, which the
technique largely relies on. The sources are highly regulated, increasing the burden
on the organisation and transportation. It is expected that a less or non-radioactive
source (based on photoionisation or corona discharges) will be adapted for clinical
GC-IMS instrumentation, as has happened in the case of IMS field detectors for
security applications.

Finally, IMS technology does not provide enough structural information for the
compound to be identified; therefore, the identification relies on limited libraries of
mobility coefficients and retention indexes when coupled to a chromatographic
column. If such information could be provided, the device would truly compete
with the golden standard technology for the analysis of VOCs, which currently is
GC-MS. Tandem IMS with a Field Induced Fragmentation stage is at its early stage

Fig. 12 Number of published work (research papers, review papers and book chapters) found by
search of following keywords: IMS, GC-IMS and Clinical GC-IMS, using ScienceDirect Database
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of development but shows that different chemical classes provide specific fragmen-
tation patterns, which could be used for ion identification in the way that mass
spectrometry identifies ions. Active work on this on this subject is especially exciting
[41, 42] and is certainly expected to grow in the next decade, to provide the next
generation of IMS technology.
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Abstract To date, the most commonly applied method for detecting constituents in
exhaled breath is gas chromatography (GC) coupled with mass spectrometry
(GC-MS). Despite the ability to accurately detect a wide range of volatile organic

Michael Hlavatsch and Sarah Klingler contributed equally to this work.

M. Hlavatsch and S. Klingler
Institute of Analytical und Bioanalytical Chemistry, Ulm University, Ulm, Germany

B. Mizaikoff (*)
Institute of Analytical und Bioanalytical Chemistry, Ulm University, Ulm, Germany

Hahn-Schickard, Ulm, Germany
e-mail: boris.mizaikoff@uni-ulm.de

http://crossmark.crossref.org/dialog/?doi=10.1007/11663_2022_16&domain=pdf
https://doi.org/10.1007/11663_2022_16#DOI
mailto:boris.mizaikoff@uni-ulm.de


compounds (VOCs), GC-MS-based instruments are frequently large and expensive,
and the analysis is time consuming. Modern exhaled breath analysis requires on-line
sampling and real-time selective biomarker detection with high sensitivity, preci-
sion, and accuracy. Therefore, optical sensing strategies are increasingly adopted
and have emerged as a promising alternative method to meet these requirements. In
particular, the mid-infrared wavelength regime has substantial potential, as almost
any biomedically relevant gaseous molecule has species-characteristic vibrational,
ro-vibrational, and rotational transitions in this frequency range. This chapter pro-
vides an overview on the fundamental principles and recent developments in this
emerging field with a focus on technological and application examples in the
infrared regime, as these sensing devices have already demonstrated their potential
serving as a smart diagnostic tool in exhaled breath analysis.

Keywords Exhaled breath analysis · Mid-infrared sensing techniques · Optical
sensing techniques

Abbreviations

ATR Attenuated total reflection
CEAS Cavity-enhanced absorption spectroscopy
CKD Chronic kidney disease
COPD Chronic obstructive pulmonary disease
CRDS Cavity ring-down spectroscopy
CW Continuous wave
DFB Distributed feedback diode laser
DFG Difference frequency generation
DLATGS Deuterated L-alanine triglycine sulfate
DTGS Deuterated triglycine sulfate
EB Exhaled breath
ECL External cavity laser
EM Electromagnetic
FC Frequency comb
FIR Far-infrared
FT-IR Fourier transform infrared
GC Gas chromatography
GC-MS Gas chromatography coupled with mass spectrometry
HOT High operating temperature
HWG Hollow-core waveguide
ICAS Intracavity absorption spectroscopy (or ICLAS)
ICL Interband cascade laser
ICLAS Intracavity laser absorption spectroscopy
ICLED Interband cascade light emitting diode (or IR-LED)
ICLS Intracavity laser spectroscopy
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ICOS Integrated cavity output spectroscopy
iHWG Substrate-integrated hollow-core waveguide
IR Infrared
IR-LED Infrared light emitting diode
IRMS Isotope ratio mass spectrometry
LSL Lead-salt laser
MCT Mercury cadmium telluride (or HgCdTe)
MIR Mid-infrared
MPC Multi-pass cell
MQW Multi-quantum well
MS Mass spectrometry
NDIR Non-dispersive infrared
NIR Near-infrared
OFC Optical frequency comb
OF-CEAS Cavity-enhanced absorption spectroscopy
QCL Quantum cascade laser
QD Quantum dot
QDL Quantum dot laser
QW Quantum well
SNR Signal-to-noise ratio
T1D Type 1 diabetes
T2D Type 2 diabetes
TDLAS Tunable diode laser absorption spectroscopy
TLAS Tunable laser absorption spectroscopy
UV Ultraviolet
VAP Valproic acid (drug for therapy of epilepsy patients)
VIS Visible
VOC Volatile organic compound
WMS Wavelength modulation spectroscopy

1 Introduction

The current state of the art in breath analysis for clinical use requires on-line
sampling, real-time detection, and quantification of selective biomarkers in small
sample volumes with high accuracy, precision, and selectivity. Fast measurement
times allow high sample throughput ideally providing direct results and enabling
statistics for extended clinical/epidemiological studies. Continuous measurements
over extended periods of time can provide information on the uptake and excretion
of biomarkers, such as volatile organic compounds (VOCs), from the body or
provide information on the body’s response to interventions.

Analysis of the exhaled breath matrix immediately after exhalation without
preconcentration and storage simplifies sample handling and minimizes the risk of
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contamination or analyte loss. Ideally, several different VOCs should be detected
simultaneously to provide a reliable diagnostic panel of a person’s health status.
However, this exhibits a major challenge for the main analytical techniques currently
in use, especially mass spectrometry (MS). MS techniques are very sensitive in the
low concentration range (i.e., ppb – ppt) of larger VOCs in exhaled air, but
quantification remains difficult, and the need for large and expensive equipment
and highly skilled personnel, as well as long measurement times renders direct
clinical applications cumbersome. Optical sensing techniques offer a viable
alternative. In particular, the infrared wavelength range – more specifically the
near-infrared (0.78–2.5 μm) and mid-infrared (2.5–20 μm) regime – are of great
importance for the detection of gaseous molecules in environmental analysis, pro-
cess monitoring, and especially biomedical diagnostics. In the infrared region, many
relevant gases such as ammonia (NH3), methane (CH4), hydrogen chloride (HCl),
nitrous oxide (N2O), sulfur dioxide (SO2), carbon dioxide (CO2), and carbon
monoxide (CO) have molecule-specific vibrational, oscillatory, and rotational tran-
sitions [1]. Other optical techniques based on alternative wavelength ranges or using
different techniques such as Raman spectroscopy, ultraviolet (UV), and visible (VIS)
spectroscopy, and mm-wave/THz spectroscopy should be mentioned here as well,
but will not be discussed in detail in this chapter.

The main advantages of optical sensing are reasonable cost, compact size,
potential for miniaturization, and the possibility of on-line and real-time analysis
combined with easy quantification, high sensitivity, and selectivity for small mole-
cules and isotope effects. Although MS is better suited for the identification and
fingerprinting, optical methods complement rather than replace MS-based methods
and hold promise for integrating breath analysis into routine clinical practice,
especially in on-line and in-line monitoring scenarios.

1.1 Basic Principles

Optical spectroscopy takes advantage of the fact that different properties of mole-
cules can be investigated depending on the energy used, i.e. the wavelength range.
The electronic structure of a molecule can be probed by using UV/Vis light, whereby
the infrared (IR) range is sensitive toward the intermolecular band vibrations and
rotations. Transitions involving both, changes in vibrational and rotational quantum
number are called ro-vibrational transitions.

Generally, excitation of either valence electrons or resonant vibrations and
rotations are caused by absorption of photons with the respective energy equal or
higher than the energy gap (i.e., the energy levels are quantized). Electronic transi-
tions are predominately excited by photons with higher energy (electromagnetic
(EM) radiation with lower wavelength) which is used in fluorescence spectroscopy
as well as ultraviolet, visible, and near-infrared (NIR) absorption spectroscopy.
Photons with lower energy (longer wavelength) are too low in energy to address
electronic transitions but provide sufficient energy for transitions between the much
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closer vibrational and rotational molecular states. Frequently, the mid-infrared range
(MIR; 2–20 μm, 4,000–400 cm-1) is used for identification, as in this spectral
regime the basic vibrational and mixed ro-vibrational modes of molecules with a
change in dipole moment during the vibration occur and are therefore considered the
most pronounced IR transitions. Within this region, also the so-called fingerprint
region is located giving rise to distinctive spectral patterns resulting from combina-
tion vibrations that are characteristic for each molecule.

The wavelength range from 20 to 100 μm (500–100 cm-1) is known as the
far-infrared (FIR) regime, while the range above 100 μm (3 THz) to 1 mm (0.3 THz)
is considered as THz radiation. To date, the terahertz region is the most less
researched area, because the needed light sources, light-guiding structures, and
suitable detectors have only recently emerged. As the typical photon energies are
only a few meV, this area is feasible for the study of macromolecules like proteins or
DNA with regard to low-energy vibrational modes (i.e., for example, protein folding
or receptor binding) [2].

Raman spectroscopy – the complementary technique to the aforementioned IR
spectroscopy – has also matured into a commonly applied optical technique for
medical diagnosis. In general, Raman spectroscopy is based on the absorption of EM
radiation in the UV/Vis/NIR spectral range and relaxation from these excited states
by elastically and inelastically scattering. The optical response is mainly located in
the MIR spectral range, as the relaxation from higher energy states results in
molecular vibrations at much longer wavelengths.

Each interaction between molecules and photons of different energy leads to
specific information about organic or inorganic compounds, i.e. identification, quan-
tification, determination of functional groups or electronic structure. Thereby, it is
obvious that all the different optical spectroscopic techniques support and comple-
ment each other rather than compete with each other and should be selected
depending on the analytical questioning.

1.2 Fundamentals of Infrared Spectroscopic Analysis

Infrared spectroscopy relies on the absorption of IR photons by a sample placed in
the path of an IR light source. Therefore, if the frequency of a particular vibration of
a molecule is equal to the frequency of the IR radiation directed at the molecule, that
molecule absorbs the radiation and undergoes the corresponding motion. A
stretching motion resulting from absorption is caused by the movement of the two
atomic nuclei toward and away from each other. During the motion, the distance
between the two atoms decreases, which leads to an increase in energy due to the
repulsion of the atomic nuclei. Again, as the distance between the atoms of the
molecule increases, the potential energy approaches its equilibrium. If further
stretching of the bond leads to an increase in the atomic spacing, again the potential
energy may increase to the point of dissociation energy, thus breaking the molecular
bond. In the simplest way, neglecting the repulsion of the nuclei and the possibility
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of dissociation, this periodic molecular motion is described by a classical harmonic
oscillator:

ν=
c0
λ
=

1
2π

ffiffiffiffiffi

k=μ

q

with ν the frequency of the motion, c0 the speed of light, λ the wavelength, k the
spring constant of the imaginary spring mass connecting the two atoms, and μ the
reduced mass of the molecular atoms.

In addition to vibrational motions, molecules can undergo rotational motion
perpendicular to the bond axis. In the case of linear molecules, the energy associated
with rotational transitions can be described by the rigid rotation model. Excitation of
the rotational energy levels usually requires much less energy than energy available
at room temperature. As a result, many different rotational levels can be occupied at
room temperature and just as many different energy transitions can occur. In
particular, small gaseous diatomic molecules have a large number of absorption
lines corresponding to energy transitions between rotational and vibration. These
spectral lines are only resolved in spectra of gas molecules, because in the condensed
phase, due to the smaller degrees of freedom, molecular collisions often occur.

Since molecules have more than one fundamental IR vibration, they are divided
into two classes. These are classified by whether or not the fundamental vibration
occurs at the same frequency in many molecules. Furthermore, the absorption of
molecules with the same functional group is called group frequency, which are
typically in the spectral range of 4,000–1,300 cm-1 (2.5–7.7 μm). On the other hand,
in the range of 1,300–400 cm-1 (7.7–25 μm) absorptions can be found, which result
from the combination and superposition of absorptions of the whole molecule. In
this range, absorbances of organic molecules are predominantly observed, and this
regime is therefore called the “fingerprint region,” as it uniquely identifies basically
any molecular species.

Lambert-Beer’s law can be used to quantitatively analyze the IR absorption data
of gases. It describes the linear relationship between the sample concentration c and
the proportion of IR light Aλ absorbed by the sample at a given wavelength,
measured in wavenumbers:

Aλ = - log
I1
I0

� �

= ελ ∙ c ∙ d

where I0 is the intensity of the incident radiation, I1 is the intensity of the transmitted
radiation, ελ is the frequency-dependent absorption coefficient, and d the optical path
length.

Although theory suggests a linear relationship between the two quantities, in
practice linearity depends on the concentration range and other instrumental factors
such as background noise, stray light, and instrument bandpass. For this reason, the
absorbance is determined empirically for a given sample, concentration range, and
operating conditions.
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1.3 Infrared Waveguides

For the guidance of photons from a light source to an optical detector, many sensors
use optical fibers [3, 4]. Infrared optical fibers can be categorized into three main
types: glass, crystalline, and hollow waveguides, guiding wavelengths>2 μm [5]. In
addition, a further subdivision of these broad categories can be made based on the
fiber structure and material [6].

Rayleigh was the first one, describing the principle of propagating electromag-
netic radiation through a hollow tube in 1897 [7]. Because the requirements in the
microwave range (especially for optical communication technologies [4]) in the
1930s increased, there was a need for the further development of optical waveguides
leading to the invention of the waveguides for the IR region. In the 1960s, the first IR
fibers were manufactured from chalcogenide glasses. In the following, around 1975
they were complemented by a variety of other materials like heavy metal fluoride
glass, polycrystalline fibers, and hollow-core waveguides (HWG) [6, 8].

For application in gas sensing, it is of great advantage if the light-guiding channel
can also function as a gas cell, which is fulfilled by HWGs. Mostly, HWGs are
hollow tubes with a high-reflective coating made out of plastic, metal, or glass,
enabling to be filled via an in- and outlet with different media such as gases [5, 9].

Hollow waveguides can be divided into two different major classes by the way
how they are guiding light through their structure – (1) attenuated total reflection
(ATR) HWGs, and (2) leaky-type HWGs [5]. Because HWGs are frequently coated
silica or glass tubes, they are fragile, not resistant against mechanical vibrations,
influenced by temperature changes and of limited utility for compact sensing devices
(see Fig. 1d) [10]. That is due to the fact that the sensitivity is proportional to the
optical light path, i.e., for obtaining sufficient sensitivity, there is the need of
relatively long HWGs ideally avoiding bending or coiling for the resulting attenu-
ation/outcoupling losses.

A significant improvement was the introduction of the so-called substrate-inte-
grated HWGs (iHWG) as a new generation of robust HWGs by the research team of
Mizaikoff [4]. As evident in Fig. 1a, b, the straight or meandered light-guiding
channel is integrated into a robust, solid-state substrate (e.g., brass, aluminum, etc.)
with a mirror-like polished inner wall. Thereby, sufficient robustness yet design
flexibility is ensured, and via different geometrics the optical path length may be
tailored while maintaining a compact size. At the same time, the hollow core also
serves as an efficient gas cell for probing minute gas volumes (usually a few hundred
microliters), allowing fast transient times and thus excellent temporal
resolution [11].

Another light-guiding structure, also able to function as gas sample chamber
while enabling the achievement of very long optical path lengths, are the so-called
multi-pass cells (MPCs), which are frequently used in conventional IR gas spectros-
copy (see Fig. 1c). The use of a series of spherical mirrors leads to multiple
reflections in between these devices thereby “folding” the IR beam multiple times
in a wide variety of configurations (e.g., White cell already introduced in 1942, etc.)
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[13]. Thereby, extended absorption path lengths of up to several tens to hundreds of
meters can be achieved greatly enhancing the sensitivity, while maintaining a
compact configuration. However, the probed gas volume ranges from few hundreds
of milliliters up to several liters, which is often a limiting factor in selected applica-
tions. Nowadays, the most used geometry is the so-called Herriott cell, which
comprises two concave mirrors with the same radius of curvature R and separated
by a distance L < 2R [14, 15]. Besides, also circular cells are commercially sold and
already used in a variety of gas sensing applications [16–20].

1.4 Infrared Light Sources

One of the fundamental components determining the overall performance of an
optical setup is the light source. Therefore, their evolution has played an important
role in the development of optical sensing technologies in recent decades. Tradi-
tionally, the most commonly used IR light sources are broadband thermal light
sources. Broadband IR radiation is usually generated by a heated material (e.g., a
silicon carbide (SiC) or tungsten (W) filament), which respectively covers the entire
NIR or MIR spectral range. These thermal light sources typically require operating

Fig. 1 Substrate-integrated hollow waveguide (iHWG) with straight (a) and meandered (b) light-
guiding channel, multi-pass cell (MPC) (c) and exemplary silica hollow waveguide (HWG)
structure (d). (a), (b), and (d) reprinted and modified from [4]: Copyright © Royal Society of
Chemistry 2013; (c) reprinted and modified from [12]: Copyright © American Chemical
Society 2020
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temperatures of ~200–1,400 K and follow the emission behavior of the black body
radiator. However, due to the nature of broadband blackbody radiators, the energy
density per wavelength is limited. In addition, such radiation sources are inefficient
in terms of optical power and are not compatible with applications that require either
low-power consumption or highly directional, narrowband, or coherent IR radiation.

As an alternative to broadband light sources, semiconductor light sources com-
bined with a distributed feedback (DFB) element or with an external cavity config-
uration enable narrowband or even single-mode emission. Such sources include
lead-salt lasers (LSL), diode lasers (DL), interband cascade lasers (ICL), quantum
cascade lasers (QCL), and quantum dot lasers (QDL). These advanced light sources
allow to selectively tune and thus detect defined absorption lines even of low
molecular weight constituents thanks to their narrow bandwidth, wavelength tun-
ability, and emissive power (i.e., energy density) in a narrow frequency band.

The two most prominent representatives of single-mode semiconductor light
sources are QCLs and ICLs [21, 22]. QCLs were first experimentally reported in
1994 [23] and are based on intersubband transitions between engineered conduction
band states in multilayer semiconductor heterostructures instead of conventional
electron-hole recombination within a semiconductor bandgap [24, 25]. However,
QCLs were limited to wavelengths λ > 5 μm due to the common use of the InGaAs/
InAlAs material system. When materials like InP substrates [26, 27], III-nitride [28],
or II-Vi material systems [29] were introduced, wavelengths smaller than 5 μm were
achieved.

At about the same time as QCLs, ICLs were proposed and realized [30, 31]. Unlike
QCLs, ICLs are based on electron-hole recombination of type-II interfaces. Their
design allows the ICL to operate at room temperature in continuous-wave (cw) mode
in a spectral window of 3–6 μm.

Alternative light sources that combine the advantages of narrowband lasers and
broadband light sources are optical frequency comb (OFC) light sources [32]. Optical
frequency comb light sources have an optical spectrum consisting of equidistant
lines, i.e., featuring equidistant optical frequency components, while the intensity of
the frequencies can vary considerably. Typically, these frequency components are
generated by a regular sequence of ultrashort pulses (i.e., synchronized coherent
modes) with a fixed pulse repetition rate. Utilizing interferometers, OFCs provide
spectrally resolved information over a broad spectral window, which makes them an
attractive light source for sensitive, broadband, and high-resolution spectroscopy.

In recent years, increasing research efforts have been dedicated to light sources
beyond today’s established and proven laser systems with the goal of developing
low-cost, low-power, narrowband IR sensors for diagnostics. In particular, thermal
emitters based on metamaterial structures and interband cascade light emitting
diodes (ICLED, or IR-LED) with a heterostructure similar to ICLs are the most
promising device strategies. For this purpose, thermal emitters use structures such as
microelectromechanical systems, plasmonic nanostructured arrays, or photonic crys-
tals in combination with metal-semiconductor compounds such as SiO2 doped with
SnO2:Sb or Ag/SiO2/Ag, Au/SiO2/Au [33–39].
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In IR-LEDs, the recombination of electrons and holes in heterostructures is
achieved using a type-II interface. In a “W”-element structure, electrons in the
so-called quantum wells (QWs) in the conduction band recombine with holes in
the QWs in the valence band. As a result, the fractional bandgap type-II alignment
enables emission energies below the bulk bandgap of the two components via
controlling the QW thickness and thus the position of the electron and hole energy
states in the active region where electron-hole recombination occurs. Using multi-
quantum well (MQW), superlattice structures as well as quantum dots (QD) and
based on organic solutions, various IR-LEDs are fabricated in the wavelength range
from 780 nm to 8 μm [40–47].

1.5 Infrared Detectors

Besides light sources, the sensitivity of the detection device plays a crucial role in the
analysis of trace amounts of analytes with small absorption cross sections. For
infrared imaging, detector materials are needed that have high quantum efficiency
and suitable absorption band gaps.

Common broadband IR detector materials for room temperature analysis in the
NIR range are systems based on InAs, InAsSb, or InGaAs. Therefore, they are also
called uncooled or high operating temperature (HOT) detectors and commercially
available. Whereas, for the MIR range detectors based on deuterated triglycine
sulfate (DTGS) or deuterated L-alanine triglycine sulfate (DLATGS) are found.
For both – NIR and MIR – in order to achieve even better detectability, materials
are mostly used that reach their maximum sensitivity at temperatures of liquid
nitrogen (77 K). Therefore, semiconductor detector elements and structures such
as InSb or type-II superlattices (consisting, for example, of InAs and GaSb layers)
for NIR detectors, or mercury cadmium telluride (MCT or HgCdTe) for MIR are
mainly used. It is worth mentioning that detectors of the respective IR ranges can
also detect radiation of the other range with a lower sensitivity.

As an alternative to the conventional infrared detectors, various type-II materials
such as indium arsenide/indium arsenide antimonide (InAs/InAsSb) [48, 49], and
type III-V such as GaAsSb [50, 51] or InGaAs [52] have been reported in recent
years. However, detector models based on surface structure modification have also
been developed, e.g., with quantum dots [53–55] or by structural etching and
deposition of graphene monolayers [56, 57].

2 Measurement Techniques

Absorption spectroscopy is the most commonly used optical method in breath
analysis. Thanks to its simplicity and high sensitivity, it is possible to determine
analyte concentrations in real-time without additional time-consuming sample
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preparation and enrichment. Based on the optical elements described in the previous
chapter, an overview of the most important device components is summarized in
Fig. 2. In the following, the most established and emerging measurement techniques
will be discussed focusing primarily on methodologies in the MIR regime.

2.1 NDIR and FT-IR Spectroscopy Using Thermal Light
Sources

One application of IR spectroscopy is the non-dispersive infrared (NDIR) gas
measurement, which has its beginnings in the 1930s [58]. An NDIR setup consists
of a broadband IR radiation source, a gas cell, a photodetector, and optionally, an
optical filter. The analyte concentration is determined by the extent of attenuation of
a certain wavelength, while the wavelength filter transmits only a narrow spectrum
of the light source. Ideally, the analyte molecules absorb effectively at this wave-
length, while other molecules of the gas matrix do not absorb this light. NDIR
devices can be constructed in a very robust and compact way, because they profit
from the small number of components. However, there are mainly two drawbacks:
(1) the lack of selectivity (i.e., interference with other molecules absorbing at the
same wavelength), and (2) the high detection limits, as the absorption path length is
usually short. Consequently, NDIR sensors are more likely applicable for the highly
abundant breath constituents such as water vapor and carbon dioxide [59–63], but
also usable for breath biomarker in lower quantities [64–69].

Fig. 2 Schematic overview on IR light sources, waveguide types and gas cells, and detection
strategies used in photonic exhaled breath diagnostics
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Fourier transform infrared (FT-IR) spectroscopy is another commonly used
spectroscopic technique utilizing broadband thermal light sources but splitting the
light through an interferometer before hitting the detector [70]. Mostly, a Michelson
interferometer is utilized in a conventional FT-IR spectrometer, as illustrated in
Fig. 3a). The emitted light is focused to a parallel light beam by a collimator and
hits the beam splitter. The IR beam is separated into two beams with half of the initial
intensity. One part of the beam reaches a fixed mirror after a distance s and is
reflected back. The other beam part is incident at a movable mirror, which can be
moved by the distance x resulting in the total light path 2(s + x). At the beam splitter,
the two waves recombine after reflection off the stationary and the moving mirror
with an optical difference of 2x. If this distance 2x is an integer multiple of the
wavelength of a particular wave, constructive interference occurs and the full light
intensity is incident at the detector. If there is a difference of a multiple of λ/4, the
distance difference is a multiple of λ/2 and a minimum (i.e., destructive interference)
is occurring. To every position of the movable mirror, one wavelength can be related
that causes maximum constructive interference. This modulated signal passes the

Fig. 3 Schematic of a Michelson interferometer (a), an interferogram recorded for a 200 ppm
acetone gas sample (left) (b), and the corresponding band spectrum after Fourier transformation
(right) (b)
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sample and is incident at the detector, where the so-called interferogram is recorded
as function of the intensity of the radiation depending on the position of the movable
mirror [71, 72]. As shown in Fig. 3b), the interferogram collected by the photode-
tector may then be converted numerically from a function of position or time into a
function of spectral frequency – respectively, wavenumber – via a so-called Fourier
transformation [70].

2.2 Direct Laser Absorption Spectroscopy

The most commonly used method among direct laser absorption spectroscopy is
tunable laser absorption spectroscopy (TLAS), in which the absorption characteris-
tics of sample molecules are measured by scanning their respective central absorp-
tion peak. Here, the laser light with a narrow linewidth, which is the limiting factor of
spectral resolution, is tuned to a specific wavelength and the absorption of the light
by a sample is measured as a function of this wavelength. However, TLAS is subject
to low-frequency laser noise and is therefore limited in its sensitivity.

Other methods related to TLAS that use tunable, narrowband semiconductor
diode lasers include tunable diode laser absorption spectroscopy (TDLAS) and
wavelength modulation spectroscopy (WMS). These systems have the ability to be
miniaturized and can be designed to be compact and robustly optimized for targeted
detection of a few biomarkers with high selectivity and temporal resolution. This
enables real-time detection of respiratory biomarkers in the ppb to ppm range with
TDLAS [20, 73–77].

2.3 Cavity-Enhanced Laser Absorption Spectroscopy

Cavity-enhanced absorption spectroscopy (CEAS) uses an optical cavity comprising
two or more highly reflective mirrors enclosing the gas sample. As the sensitivity
strongly depends on the absorption path length, CEAS provides a substantial
improvement of the sensitivity by several orders of magnitude from multiple reflec-
tions of light essentially “trapped” between the reflective mirrors inside the cavity for
few tens of microseconds. Thereby, depending on the reflectivity of the mirrors, the
effective absorption path length can reach tens of kilometers, while maintaining a
compact size. The reflectivity is determined by the mirror coating which is the
highest in the NIR spectral region, since the coating technology is the most advanced
in this region. For the MIR range, the reflectivity is lower but sufficient for being
compensated through the stronger absorption line strengths of the exited fundamen-
tal vibrational transitions.

The CEAS can be used in different configurations, whereby the so-called cavity
ring-down spectroscopy (CRDS) is one of the most common approaches [78–87]. In
CRDS, the time evolution of the laser intensity inside the optical cavity is recorded
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by a fast-response photodetector and the decay time constant is extracted, which is
directly dependent on the level of absorption, i.e. the molecular species, inside the
cavity. Therefore, the direct quantitative analysis of the molecular species is acces-
sible without secondary calibration, if the absorption cross-section of the molecule is
known at a certain wavelength.

Another strategy is to measure the total amount of transmitted light, leaking out of
the cavity, which is called integrated cavity output spectroscopy (ICOS). By scan-
ning rapidly and repetitively with the laser wavelength across the spectral range of
the analyte molecule and then averaging the scans, high-quality spectra with
improved signal-to-noise ratio (SNR) can be obtained within a few seconds
[88, 89]. Depending on how the laser light is coupled into the optical resonator, a
distinction is made between optical feedback cavity-enhanced absorption spectros-
copy (OF-CEAS) [90] and off-axis cavity-enhanced absorption spectroscopy
(OF-CEAS) [91–93].

Besides, there is the intracavity absorption spectroscopy (ICAS; a.k.a.,
intracavity laser spectroscopy (ICLS) or intracavity laser absorption spectroscopy
(ICLAS)). As the name implies, in ICAS the sample is placed inside the laser
resonator whereby the laser light passes through the sample many times [94].

All the different variants of CEAS have in common, that the effective absorption
length is significantly enhanced, leading to a very high detection sensitivity, enough
for the detection of almost all small breath VOCs at trace quantities.

2.4 Frequency Comb Spectroscopy

A variety of analytical applications require a compromise between broadband and
narrowband light sources that provide sensitive, fast, and versatile detection for IR
absorption spectroscopy studies to investigate sufficiently complex samples with a
limited number of compounds. This requirement can be met by using frequency
combs (FCs). With the equidistant frequencies within the FC, this technique can be
used for narrowband absorption of molecules to obtain spectrally resolved, high-
resolution information. Thus, it is possible to distinguish and characterize both
narrow- and broad-band absorbers with FC spectroscopy.

Radiation in the mid-infrared with such spectral properties can be generated by
various techniques. Mode-locked lasers in the mid-infrared are similar to known
sources in the near-infrared. Typically, approaches using mode-locked lasers in the
MIR are similar to established sources in the NIR. Typical approaches in combina-
tion with lasers include difference frequency generation (DFG), femtosecond lasers,
optical parametric oscillation, and Kerr comb generation [32, 95–97]. An FC
spectrometer is more complicated compared to spectrometers using single-mode
lasers because the broadband spectrum must be spectrally analyzed to generate an
absorption spectrum. It is possible to perform this spectral analysis using a diffrac-
tion grating or FT-IR, both of which have a disadvantage in terms of selectivity,
measurement speed, and sensitivity.
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3 Selected Applications of IR Sensing Technologies
in Exhaled Breath Diagnostics

Over the last few years, research has focused on VOCs and their prevalence/role in
disease detection. In the following chapter, the importance and application of optical
sensor technologies for respiratory gas analysis will be highlighted using selected
examples based on relevant biomarker molecules.

3.1 Acetone as Biomarker for Diabetes

Diabetes mellitus is one of the best known and most common metabolic disorders, in
which the body’s blood glucose level either exceeds 11.1 mml/L [98] (hyperglyce-
mia) or falls below 3.9 mmol/L [99] (hypoglycemia). In this case, affected individ-
uals are unable to produce or properly use the hormone insulin, which regulates
blood glucose levels and consequently allows cells to take up glucose as an energy
source. Long-term, chronic consequences of diabetes include heart disease, kidney
disease, stroke, vision loss, and damage to the nervous system [100].

In general, diabetes can be divided into two groups: Type 1 diabetes (T1D) and
Type 2 diabetes (T2D). In T1D, beta cells are destroyed by an autoimmune reaction,
resulting in glucose not being recognized and insulin not being released into the
bloodstream. In T2D, on the other hand, the body of affected does not respond
properly to insulin production, which is caused by damaged or desensitized insulin
receptors.

For both diabetes types, acetone can be used as an indicator molecule. Acetone is
a ketone that is more highly expressed in diabetic patients due to insulin deficiency
and lack of conversion. Consequently, diabetics have an acetone concentra-
tion > 1 ppm, while healthy people have an acetone level between 0.3 and
0.9 ppm [101–103]. In addition to diabetes, acetone is also used as an indicator
molecule of other medically relevant processes such as fat burning during weight
loss [104, 105], monitoring of ketogenic diets in children with epileptic seizures
[106, 107], testing of anaerobic limits in sports [108], and heart failure [109, 110].

In the last decade, a wide variety of research groups have been able to detect and
quantify acetone in the low ppm range, mainly on the combination of QCLs and
multi-pass cells or with cavity-enhanced setups [111–116]. Among these, it is worth
mentioning the study by Reyes-Reyes et al. [113], who compared the measured
acetone concentration of T1D patients and a control group with their blood glucose
levels. They showed that the acetone content in exhaled air was significantly higher
in adults than in healthy subjects, although this did not apply to minors. However, in
the case of a repeat measurement in an underage subject when ketosis was under
control after injecting insulin, they saw that blood glucose and acetone concentra-
tions in exhaled air were higher than in the first measurement. This confirmed that
excretion of acetone via the respiratory air is a slow process, which is responsible for
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acetone being present in the respiratory air long after ketosis has been controlled.
The measurements by Reyes-Reyes and colleagues have shown that measurement of
acetone can be helpful in detecting diabetes, although the question of correlation
between acetone in respiratory gases and blood glucose levels is still hotly debated
and studied.

As an alternative to the expensive and complex laser-based setups, Xing et al.
[117] have presented NDIR measurements based on a plasmon enhanced emitter. In
their measurements of acetone in dry air and 25% relative humidity, they were able
to detect concentrations as low as 50 ppm. While this detection limit is significantly
higher compared to laser-based sensors, such a sensor would be significantly less
expensive, more compact, and simpler.

These optical sensors offer the possibility of real-time analysis and have the
potential to develop wearable and mobile devices. However, for practical use, they
require sensitivity and are currently limited by available technology to achieve
sufficient species selectivity. In addition, IR-based research has shown that tailored
studies are required for more accurate detection of acetone by such sensors.

3.2 Ammonia Detection in Exhaled Breath

Ammonia (NH3) is one of the simplest and smallest molecules and can therefore be
forced into the blood–lung barrier and thus occur in exhaled breath (EB). There are
different causes of elevated ammonia concentration in the exhaled breath, like
asthma, Helicobacter pylori, oral cavity disease, and epilepsy. Most commonly,
the ammonia (fishy) odor is associated with renal disorder (e.g., chronic kidney
disease (CKD)), dysfunction or failure causing high levels of blood urea nitrogen.
Normally, ammonia and ammonia ions are converted into urea through the urea
cycle by the liver and then excreted by the kidneys. In case of disorders, the urea
amount cannot be sufficiently removed leading to an excessive build-up of ammonia
[118, 119]. As alternative to blood analysis, the development of optical sensors for
the non-invasive detection and quantification of ammonia in EB is a current field of
research.

The relationship between chronic kidney disease, epilepsy, and the NH3 concen-
tration in the breath was investigated by Bayrakli et al. [120]. Here, the breath
ammonia content of 15 healthy volunteers, 10 epilepsy patients before and after
taking valproic acid (VAP; drug for therapy of epilepsy patients), and 27 patients
with different stages of CKD was evaluated. They used external cavity laser (ECL-)
based off-axis cavity-enhanced absorption spectroscopy and determined ammonia
levels of 120–530 ppb for healthy and 710–10,400 ppb for CKD patients and found
that VAP led to increasing ammonia levels in the exhaled breath.

In another study, Luo et al. [93] used near-infrared OF-CEAS for the detection of
ammonia in human exhaled breath, while eliminating the main interference of the
gases CO2 and H2O. A fibered DFB diode laser with an emission wavelength of
1531.6 nm was coupled to the V-shaped cavity using an appropriate optical
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feedback. For their study, exhaled breath was collected into a 10 L Tedlar bag
through a disposable mouthpiece. Thereby, a detection limit of 17 ppb for NH3 in
breath gas was achieved for a single scan and could be improved by averaging over
16 scans down to 4.5 ppb, showcasing the detection of very low NH3 concentrations
in human breath.

3.3 CO & NO: Biomarkers for Inflammatory Diseases

Some other small and light molecules that have received attention due to their
medical relevance are CO and NO. Most notably, these two molecules stand out
for their potential as biomarkers of inflammation or disease, and as possible candi-
dates as inhalation gases for therapeutic use in lung disease [20, 73, 77, 121–
127]. Both CO and NO have been implicated as potential indicators of pulmonary
and/or systemic inflammation or oxidative stress. In this context, both exhaled CO
(eCO) and exhaled NO (eNO) have been extensively studied as putative inflamma-
tory markers for diseases, with applications in respiratory diseases such as asthma,
chronic obstructive pulmonary disease (COPD), and cystic fibrosis. In addition, eCO
has been shown to be useful in screening for smoking status in the form of a breath
test [20, 77, 125].

Several groups performed initial eNO studies in volunteers with cavity-enhanced
TDLAS with the background of NO as a potential biomarker for asthma and COPD
[123, 124, 128]. With a sensor measurement accuracy in the low ppb range, it was
possible to prove that an increased NO concentration is present in asthma and COPD
disease in numbers of probands between 170 and 2,500.

In a more recent study to improve sensitivity, Ventrillard et al. [122] demon-
strated OF-CEAS for NO trace gas analysis using a QCL at room temperature that
achieves a detection limit of 60 ppt.

In contrast to NO, primarily CO studies have been conducted using tunable
(diode) laser absorption spectroscopy, examining the effect of smoking as well as
various exhalation flow rates and breath-holding durations in the low CO ppb range
to provide a reliable sampling method for future medical investigations [20, 77, 125,
127]. Most notably, Ghorbani and Schmidt’s [20, 77] studies using their QCL multi-
pass cell sensor showed a clear dependence on exhalation flow rate and breath-hold
time for the eCO exhalation profiles. Figure 4 illustrates the setup used for their eCO
experiments. Furthermore, for the smokers they found increased eCO values after
smoking. Their subsequent analysis of the isotopic ratio of e13CO and e12CO
revealed a depletion of e13CO in all breath samples after smoking compared to the
natural abundance.
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3.4 12CO2/
13CO2 Isotope Ratio Analysis and Its Use

in Medical Diagnosis

As optical spectroscopy is very sensitive to distinguish between isotopes it is a fast
and low-cost alternative to the commonly used isotope ratio mass spectrometry
(IRMS). Especially the ratio between 12CO2 and 13CO2 has been already used in
various studies for the diagnosis of bacterial overgrowth, liver malfunction, fat
absorption, the diagnosis of Helicobacter pylori infection, and the monitoring of
glucose metabolism [63, 129]. The latter is in particular an important parameter in
the monitoring of animal experiments in preclinical research or for diagnosis in
veterinary medicine. To meet the special requirements such as very small pore
volumes (as is the case for mice, for example), on-line and in-situ analysis and
real-time results, Tütüncü et al. [130] developed TDLAS gas sensors based on
interband cascade lasers and iHWGs and used the mid-infrared spectral window
around 2,293–2,295 cm-1 (~4.35–4.37 μm) for the distinction between 12CO2 and
13CO2. Within this study, a 4.35 μm DFB-ICL single-mode IR radiation source was
coupled into a straight dual-channel iHWG (75 mm) with 50/50 beam splitter for
simultaneous reference measurement. Two pyroelectric infrared detectors were used
to evaluate the sample and reference signals synchronously to the oxygen concen-
trations, evaluated by electron spun oxygen sensors based on luminescence
quenching of an immobilized dye. The designed sensor was applied for the routine
on-line breath monitoring of 14 ventilated and instrumented mice, illustrated in
Fig. 5. The device was able to monitor important metabolic parameters, i.e. total
CO2 amount, 13CO2 isotope enrichment, and O2 in the mice EB, in a sample volume
of 315 μL.

Fig. 4 Schematic of an experimental TDLAS setup for CO measurements including PZT piezo
amplifier, FGen function generator, LiA lock-in amplifier, WCS water cooling system, MPC multi-
pass cell, PT pressure transducer, and PD photodetector. Copyright © 2017, Optica Publishing
Group. Reprinted and modified with permission from [77]
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Another study showed the versatility of FT-IR-iHWG-based gas sensors to
monitor the 13C-enriched carbon dioxide in the same measurement scenario, i.e. in
metabolic monitoring via mouse breath analysis. Seichter et al. [131] used an FT-IR-
iHWG-sensor to monitor metabolic parameters such as the contribution of protein,
carbohydrate, or fat oxidation. The test mice got a 13C glucose stable isotope
infusion and the exhaled breath measurements were performed on-line during
murine experiments to investigate the reaction of mice to thorax trauma and hemor-
rhagic shock, using a conventional and compact FT-IR spectrometer combined with
a straight-channel iHWG (7.5 cm). For the monitoring of oxygen, a luminescence-
based flow-through sensor was integrated into the ventilation equipment in the
mouse intensive care unit.

Zhou and co-workers [132, 133] have focused in two studies on the real-time
monitoring of 13C and 18O isotopes in CO2 with an HWG (1 m)-based mid-infrared
gas sensor. In the first study, a 2.73 μm DFB laser was used for simultaneous
measurement of concentration changes of the three isotopologues 13CO2,

12CO2

and 18OC16O via direct absorption spectroscopy. In a second study, the results were
compared with calibration-free WMS and calibration-needed WMS. The sequences
of three CO2 isotope expirograms of tidal breathing in healthy volunteer and the
ratios of 13C/12C and 18O/16O were evaluated using the same setup as in their
previous work, demonstrating the potential for clinical respiratory monitoring.

Fig. 5 Mouse breath analyzer: PEEP peep positive and expiratory pressure system, ICL interband
cascade laser, PD pyroelectric detector (m measurement, r reference), A/D AD converter, DAQ data
acquisition system. Copyright © 2018 American Chemical Society. Reprinted and modified from
[130]
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4 Summary and Outlook

Optical sensors and especially mid-infrared sensing technologies are a powerful and
smart approach for the analysis of exhaled breath. Provided that the chemical
identity of the biomarker(s) in exhaled air is known and the molecule has well-
defined absorption characteristics, robust, user-friendly, and relatively inexpensive
optical sensing and analysis devices are readily made available. It has been shown
that based on the wide variety of optical breath gas sensing strategies, a large number
of biomedically relevant analytes could be detected with concentrations in the
diagnostically relevant ppm-to-ppb concentration range. Ultimately, the cost, size,
and complexity of the device will depend on the sensitivity required for the desired
application scenario. For example, NDIR-based sensors for analyzing CO2 are
significantly cheaper than laser-based systems with, e.g., cavity enhancement,
which in comparison have significantly better spectral resolution and sensitivity
albeit at higher cost.

Conversely, optical sensors also have remaining challenges to overcome. For
example, the sensitivity of an optical absorption measurement depends linearly on
the linewidth of the optical transition of the analyte under investigation. Another
important aspect is that advanced data analysis strategies (i.e., multivariate statistics;
also known as chemometrics) are used in obtaining broadband – i.e., often highly
convoluted – IR data from breath samples containing a large variety of absorbing
molecules at a variety of concentrations. In addition, the analysis of diagnostically
relevant low-concentrated molecules (i.e., usually sub-ppm concentrations) such as
frequently encountered for NO, CO, NH3, and acetone, their signatures may be
overlapped by the relatively high-concentrated molecules such as H2O and CO2. A
third limitation of current optical gas analyzers may be the number of analytes that
can be addressed with a single light source. Most optical analyzers are designed to
determine one up to maybe three or four analytes simultaneously, while frequently
only one of them may be analyzed with high sensitivity.

In conclusion, optical sensor technology with its outstanding ability for real-time
analysis and monitoring represents a viable strategy for the accurate quantification of
volatile biomarkers at low concentration levels within complex exhaled breath
matrices. In particular, the mid-infrared region is the most information-rich segment
of the electromagnetic spectrum, which is therefore ideally suited for the develop-
ment of non-invasive and label-free sensing devices and diagnostic technologies.
Especially due to the revolution – and ongoing evolution – of IR light sources,
waveguides, and detectors, a new generation of exhaled breath analyzers and sensing
tools will be emerging. Their inherent molecular selectivity, robustness, and ease of
implementation and handling combined with appropriated automated data evalua-
tion, mining, and classification algorithms render them ideally suited for routines use
in daily clinical practice, intensive care scenarios, and – once available in a hand-
held format – even in medical emergencies and first responder scenarios.
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Abstract Photoacoustic spectroscopy is a viable tool for trace gas detection in
various application fields. In recent years, this technique has been exploited more
and more for modern breath analysis as well. Within this chapter, a holistic overview
of photoacoustic spectroscopy is presented, while maintaining the relationship to
breath analysis. Therefore, a concise description of the fundamentals of
photoacoustic spectroscopy is provided. This is essential for understanding the
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scopes and limits of this outstanding measurement technique being described within
this chapter. In the past several different types of photoacoustic measurement setups
for trace gas detection have emerged, including different light sources, modulation
techniques, and detection schemes. These are described shortly and advantages as
well as disadvantages, especially in relation to breath analysis, are highlighted.
Though being a promising sensor principle, measurement devices based on
photoacoustic spectroscopy are still rare on the sensor market, especially when it
comes to trace gas detection in complex gas matrices, e.g., human breath exhale. One
main reason is due to possible molecular interactions influencing the relaxational
behavior of the analyte altering the sensor signal. Recent results shedding light on
the intricate relaxational processes within complex gas matrices are discussed in
detail, providing approaches to overcome this issue. Finally, various applications of
photoacoustic spectroscopy in breath analysis are described demonstrating the great
potential of this technology.

Keywords Breath analysis · Cross-sensitivities · Photoacoustic cell design ·
Photoacoustic spectroscopy · Relaxational effects
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ACS Absorption cross-section
AM Amplitude modulation
AS Absorption spectroscopy
BA Breath analysis
BF Beat frequency
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1 Introduction

Nowadays, the need for innovative and smart diagnostics is omnipresent. Especially
the COVID-19 pandemic has once more demonstrated the importance of fast,
sensitive, and selective diagnostic tools. In the last decades, breath analysis
(BA) has emerged as a promising diagnostic tool contributing to mastering these
challenges by fulfilling these requirements and furthermore representing a
non-invasive and easily repeatable diagnostic procedure.

Linus Pauling’s human breath examinations from 1971, using a gas chromato-
graph coupled with a flame ionization analyzer, mark the beginning of modern
breath analysis [1]. Pauling detected about 250 different analytes though at this
time an identification was not yet possible. Today, more than 50 years after Pauling’s
pioneering work, BA is considered a multidisciplinary research field consisting of
different elements, which are depicted in Fig. 1 [2].

In general, for the development of a new medical device for diagnosis, it is
mandatory to define the target analytes also known as biomarkers. Therefore,
depending on the molecules of interest pre-concentration methods combined with
a comprehensive analysis of the human breath exhale must be performed. This
allows the detection of a huge number of molecules, including volatile organic
compounds (VOC) and other volatile substances like ammonia or carbon monoxide
to name only a few. The analysis tools of choice are usually either offline methods
like gas chromatography combined with mass spectrometry (MS) [3] or online
techniques like proton transfer reaction (PTR) MS or selected-ion flow-tube
(SIFT) MS [4]. The measured spectra are then post-processed using different
statistical treatments, e.g., multivariate analysis (MVA), revealing the biomarkers.
Changes of the concentration of these biomarkers in the exhaled breath can hence be
used to detect diseases or abnormalities. This is usually done by a targeted sensor

Fig. 1 Generic overview of the different steps with regard to sensor development for breath
analysis after [2]. NTD needle trap device, MEPS microextraction by packed sorbent, SPME solid
phase microextraction, GC gas chromatography, MS mass spectrometry, PTR proton transfer
reaction, SESI secondary electrospray ionization, SIFT selected ion flow tube, PCA principal
component analysis, MVA multivariate analysis, PLS partial least-square, VOC volatile organic
compound, POC point of care
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device, forming the heart of a point of care (POC) device, and it is regarded as the
final research and development stage toward a breath analysis diagnostic tool.
Targeted sensors based on optical spectroscopy, electronic noses, or other sensor
principles are considered superior to expensive and bulky MS systems for a POC.
However, for fundamental research those MS systems are essential.

Although photoacoustic spectroscopy (PAS) could be treated as a subcategory of
absorption spectroscopy (AS), the fact that an acoustic transducer is used as a sensor
element clearly distinguishes PAS from common AS, which is discussed within the
chapter Infrared Sensing Strategies: Toward Smart Diagnostics for Exhaled Breath
Analysis of this book. Though discovered already in 1880 by Alexander Graham
Bell [5], the photoacoustic effect and photoacoustic spectroscopy can be considered
a quite novel research field. Using the database dimensions.ai Müller et al.
highlighted that between the years 2000 and 2020 the number of publications
dealing with photoacoustic spectroscopy, excluding photoacoustic imaging, rose
from 140 to about 800 [6]. In recent years, PAS has proven a highly sensitive tool
for a plethora of target analytes in various application fields. These areas include
atmospheric and environmental monitoring, production monitoring, facility mainte-
nance, the detection of chemical warfare agents and explosives, agricultural appli-
cations and, of course, medical applications like non-invasive breath analysis to
name a few [7–9]. At this point, it must be mentioned that this chapter will not cover
medical applications of the photoacoustic effect by means of photoacoustic imaging,
photoacoustic tomography, photoacoustic microscopy, or other photothermal sensor
principles.

Within this chapter, the sensor principle of photoacoustic spectroscopy will be
presented in detail as it is a promising, yet rarely mentioned candidate for future POC
devices in human breath analysis. The following sections describe the physical
fundamentals from light absorption to the creation of an acoustic signal. Concepts
of acoustic amplification as well as attenuation effects will be described, too.
Furthermore, it covers a variety of different photoacoustic sensor setups pointing
out their advantages and disadvantages. Since BA can be certainly considered a
complex gas matrix, it is important to take measures to ensure a reliable analyte
quantification. Therefore, this work discusses these measures in detail based on
recent findings. Finally, selected applications of PAS in breath analysis will be
described demonstrating the potential and future perspective of this technique in BA.

2 Theory

This section presents the physical derivation of the photoacoustic signal along with
an explanation of fundamental concepts like absorption, absorption bands, and
various relaxation paths. This description of theory is intended to facilitate subse-
quent discussion of problems and potential solutions, respectively.
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2.1 Molecular Absorption of Light and Relaxation of Excited
States

Absorption of light is a phenomenon of interaction between electromagnetic radia-
tion and matter, that is based on energy transfer processes. Among atoms and
molecules in the gas phase, the energy components consist of kinetic Ekin and
internal energy Eint. The internal energy in turn is stored in descending order in
electronic, vibrational, and rotational states, while the respective energy compo-
nents are denoted as Eel, Evib and Erot

Etotal =Ekin þ Eel þ Evib þ Erot|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Eint

ð1Þ

According to Beer–Lambert, a light beam of intensity I0 penetrating a homoge-
nous, isotropic medium of thickness d is absorbed to a certain extent yielding an
attenuated intensity I1.

I1 = I0e
- αd ð2Þ

Herein the absorption coefficient α is a measure of reduction in intensity at a
certain wavelength in cm-1 when passing through a medium. The energy of the
absorbed photon converts into internal energy by stimulating transitions between
discrete energy states of the sample. Therefore, the wavelength of the light deter-
mines the energy level of the transition, i.e., infrared (IR) radiation excites rotational
and vibrational transitions, whereas ultraviolet and visible (UV/Vis) light addition-
ally induces electronic transitions. Those modes can also be superimposed yielding
ro-vibrational (rotational + vibrational), vibronic (vibrational + electronic), and
ro-vibronic (rotational + vibrational + electronic) excitation, respectively. The
stimulation of vibrations can be approximated by a harmonic oscillator model
considering the atoms in the molecule as masses connected by springs. The energy
stored in the spring-mass oscillator thus corresponds to the energy of the absorbed
light quantum, which equals the energy difference between excited and ground state
of a molecule in the gas phase for example. The first excited state of a vibration
describes the fundamental oscillation, any additional excited state represents a
harmonic of this fundamental mode. However, the energy differences between the
fundamental mode and harmonics are not equidistant but decrease with ascending
order. This results from the potential distribution in the molecule, which does not
correspond to the idealized one of a parabola, but to that of the Morse potential.

Each molecule exhibits characteristic absorption bands, where photons of the
respective energy are absorbed with the probability of the absorption cross-section
(ACS) σ in cm2/molecule. Since the absorption coefficient is defined as the product
of the absorption cross-section and the volume number density of a gas sample, the
concentration of the sample can be quantified by measuring the intensity attenuation.
In an idealized view, absorbing or emitting systems only show line spectra.
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However, real spectra are affected by broadening mechanisms, causing the absorp-
tion bands to not only correspond exactly to the actual energy transitions in the
molecule. These broadening effects can be assigned to three different phenomena:

• Natural line broadening: Since the lifetime τe of excited states is subject to an
uncertainty, a range of possible frequencies results in showing a Lorentz profile.
The resulting frequency broadening amounts to ~30 MHz in case of electronic
excitation, ~10 kHz in case of vibrational excitation, and only to ~10-4 Hz in case
of rotational excitation [10, p. 11]. In comparison, natural line broadening has
only a minor effect compared to Doppler and collision broadening, which are
discussed below. Consequently, it can be neglected in terms of excited rotational,
vibrational, and ro-vibrational states [11, p. 35].

• Doppler broadening: This inhomogeneous type of line broadening can be attrib-
uted to the Doppler effect, i.e., when a molecule exhibits the same velocity
component as the propagation of the photon, causing a frequency shift. Line
broadening resulting from the Doppler effect is approximately two orders of
magnitude more pronounced compared to that one of natural line broadening in
the visible range and dominates in gaseous samples at low pressure [12, p. 49].
Typical values of Doppler broadening in the NIR region are 100–300 MHz and
20–40 MHz in the IR region at about 10 μm, respectively [10, p. 12].

• Collision broadening: Collision broadening results from the collision of atoms or
molecules while absorbing a photon. Similar to natural line broadening, collision
broadening is a homogeneous effect yielding a Lorentzian distribution. When
atoms or molecules approach each other, their potential wells deform, causing the
energy states to shift, which is directly related to a change in frequency by
E = hνPh. This type of line broadening thus depends on the mean free path length
between the collision partners, which is statistically scattered around a mean
value influenced by both, pressure and temperature [12, p. 52]. Typically, colli-
sion broadening accounts for approximately 2 GHz of line broadening [10, p. 13].

Altogether, the Lorentzian distribution dominates at atmospheric conditions due
to fast molecular movement, whereas natural broadening as well as Doppler broad-
ening can be neglected. In case of both, collision and Doppler broadening, the
Gaussian and Lorentz profile are convoluted to the so-called Voigt profile. The
different profiles, Gaussian (black), Lorentz (blue), and Voigt (red) are plotted in
Fig. 2.

In terms of relaxation processes, after a certain lifetime τe of an excited state,
different decay mechanisms exist to restore energetic equilibrium. In case of higher
energetic photon absorption, e.g., in the UV or visible wavelength range, photodis-
sociation can occur, too, i.e., the breaking of covalent bonds within a molecule. This
phenomenon mitigates toward lower energetic photons, e.g., in the IR region. Here,
the entire absorbed energy is released by relaxation either radiatively as an emission
(rarely occurring) or non-radiatively as heat, returning the molecule to its ground
state, which is also known as deactivation. In other words, interrupting the illumi-
nation of a gas sample restores the initial energy distribution after the time τe. The
radiative relaxation processes are referred to as the luminescence processes
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fluorescence and phosphorescence. In terms of PAS, collision-induced vibrational-
vibrational (VV) and vibrational-translational (VT) relaxations are crucial
non-radiative deactivation processes. Besides, photodissociation causes a redistribu-
tion of the kinetic and internal energy of the resulting fragments. The released energy
due to further relaxation or recombination of the fragments with themselves or
surrounding molecules causes an increase of kinetic energy and thus a local heat
input into the medium. Photophysical processes, e.g., internal conversion1 (IC) and
inter-system crossing2 (ISC) are non-radiative processes changing isoenergetic
electronic states into vibrational and rotational states. A visualization of all transi-
tions between ground state and the excited singlet and triplet states is provided by the
Jablonski diagram in Fig. 3.

2.2 Photoacoustic Spectroscopy

PAS is based on the photoacoustic effect, discovered by Alexander Graham Bell
(1847–1922) in 1880. During experiments with a photophone, he noticed an audible

Fig. 2 Surface normalized Gaussian, Lorentz, and Voigt profiles within absorption spectra

1Isoenergetic, non-radiative transition of an electronically excited state into a highly excited
vibrational state of the next lower electronic state, e.g., S1→S0.
2Isoenergetic, non-radiative transition from one electronic excited state to another excited state,
e.g., S→T and T→S transitions, respectively.
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sound, when a rapidly interrupted (chopped), focused ray of sunlight hit a solid
substance [5]. The application of the photoacoustic effect on gases started already
one year after Bell’s discovery by Tyndall. In collaboration with Wilhelm Conrad
Röntgen (1845–1926), Bell discovered that the photoacoustic effect also occurs in
liquids. Due to a lack of instrumentation, like suitable light sources, microphones,
and electronics, the photoacoustic effect did not apply in analytical methods right
after its discovery. Only half a century later, in 1938, Viegerov [13] developed the
first systematic application of photoacoustics in analytics, based on a blackbody
infrared source and a microphone. He constructed a photoacoustic spectroscope,
named spectrophone, that succeeded in producing absorption spectra of molecules in
the gas phase. In the 1960s an important breakthrough was achieved by the first use
of a laser source in PA gas detection [14] and the actual development of PAS began.

Compared to AS, PAS offers certain advantages, especially in the field of trace
gas analysis, although both principles are based on the absorption of light. Both have
advantages like fast response time or high selectivity and sensitivity; however, PAS
additionally offers an offset-free and direct measurement. Here, in contrast to AS,
not the transmission of light is monitored (optical transducer) as a measure of
absorption but an acoustic signal, that is proportional to the concentration of the
absorbing species (acoustic transducer). By inelastic collisions, the energy stored
due to photon absorption is transferred to translational (kinetic) energy, which yields
a local heat input with heat production rate _H . As a consequence of modulation,
sequences of dilatation and contraction generate a periodic pressure oscillation,

Fig. 3 Jablonski diagram of the electronic ground state So, excited singlet – S1 and triplet state T1:
F fluorescence, P phosphorescence, IC internal conversion, ISC inter-system crossing, VR vibronic
relaxation
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which stimulates the generation of an acoustic wave. Modulating techniques of the
light source include mainly amplitude modulation (AM) or wavelength modulation
(WM) by an overlaid sine on the laser current. The resulting sound wave can now be
detected as an acoustic signal with an amplitude directly proportional to the present
analyte concentration. Figure 4 illustrates the functional principle of PA signal
generation.

2.2.1 Heat Production Rate at Thermal Equilibrium

A simplified scenario of heat production can be modeled as a two-level system.
Within this derivation, the absorbing gas concentration is expressed as the volume
number density ρ½ �= molecules

m3 , which is defined as the dimensionless volume ratio
[N] = ppmV3 multiplied by the ratio of Avogadro-constant NA and molar volume
Vmol:

ρ=N
NA

Vmol
ð3Þ

The volume number density ρ can be considered separately as the population
density of ground state ρ and excited state ρ′, respectively. The rate equation in (4)
calculates the density of the excited analyte molecules ρ′ in thermal equilibrium:

dρ0

dt
= ðρ- ρ0Þσð~νPhÞψ- ρ0σð~νPhÞψ-

ρ0

τe
ð4Þ

Fig. 4 Schematic drawing of the photoacoustic principle

3Due to the dependence on temperature and pressure, concentrations of gaseous samples cannot be
described as ratio of weights as it is carried out for solids and liquids [15]. Therefore, gas
concentrations are expressed as the ratio of two volumes, e.g., ppm → ppmV (parts per million
by volume).

110 S. Weigl et al.



where σ ~νPhð Þ is the absorption cross-section in m2 and ψ the photon flux in s-1 m-2.
The total lifetime of the excited state τe can be expressed by the reciprocal sum of the
time constants of non-radiative τn and radiative relaxation τr.

τ- 1
e = τ- 1

n þ τ- 1
r ð5Þ

The first term of the right-hand side in Eq. (4) expresses the absorption of photons
at a frequency νPh = E1 -E0

h . The second term represents stimulated emission, and the
third term combines the phenomena of spontaneous emission of photons and
non-radiative relaxation. At atmospheric pressure τe can be approximated by τn
within the IR region, since the relaxation time of radiative deactivation is signifi-
cantly higher compared to non-radiative relaxation [16]. Therefore, a major part of
the energy absorbed by the molecule is released as heat. If the excitation rate σ ~νPhð Þψ
is small, the population density of the excited state is also considerably lower than
the total volume number density of the absorbing species, i.e., (ρ′≫ ρ). Accordingly,
the stimulated emission can be neglected and Eq. (4) simplifies to:

dρ0

dt
= ρσð~νPhÞψ-

ρ0

τe
ð6Þ

In case of harmonic modulating the light with angular frequency ω = 2πf, e.g.,
AM or WM, the photon flux ψ can be calculated by

ψ=ψ0 1þ eiωt
� � ð7Þ

with

ψ0 =
I0
hνPh

=
P0

hc0~νPhπðdb2 Þ
2 ð8Þ

where ψ0 is the photon flux without modulation. In calculating ψ0, h is the Plank
constant, νPh the frequency and ~νPh the wavenumber of the photon, respectively. P0

represents the intensity expressed as optical power per cross-section area of the light
beam I0 = P0

A

� �
with diameter db. By applying Eq. (7) to Eq. (6), the rate equation

yields

dρ0

dt
= ρσð~νPhÞψ0ð1þ eiωtÞ- ρ0

τe
ð9Þ

having only one time-dependent term contributing to the PA signal. In consequence,
the solution of the type ρ0 = ρ00e

iωt can be obtained by
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ρ00 =
ρσð~νPhÞτeψ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτeÞ2

q eiφ ð10Þ

where φ= arctan (ωτe) describes the phase lag between the number density ρ′ of the
excited state and the photon flux ψ0 . Then, the solution of the rate Eq. (9) can finally
be written as

ρ0ðtÞ= ρσð~νPhÞτeψ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτeÞ2

q eiðωt-φÞ ð11Þ

The heat production rate _H is related to ρ′(t) by multiplying with the average
thermal energy released due to VT-relaxation of the excited state hc0~νPh and divided
by its relaxation time τn. In consequence, a time-dependent power density with unit
J s-1 m-3 results as the heat production rate at thermal equilibrium.

_HðtÞ= ρ0ðtÞ hc0~νPh
τn

= _H0e
iðωt-φÞ ð12Þ

with

_H0 = ρσð~νPhÞI0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτnÞ2

q
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Erelax

ð13Þ

with I0 =ψ0hc0~νPh being the incident light intensity and Erelax denominates the total
efficiency of non-radiative relaxation (refer to Sect. 4.3.2).

2.2.2 Acoustic Wave Generation

Sound describes a pressure or deflection wave, which propagates as a longitudinal
wave in gases as well as in liquids. In solids, however, the wave propagates with an
additional transverse component. In gases, the static pressure is superimposed by the
sound pressure wave, which can be detected by an acoustic transducer, e.g., micro-
phone, quartz tuning fork (QTF), or cantilever (refer to Sect. 3.3). In terms of PAS,
the absorption of a modulated light beam and subsequent conversion into thermal
energy causes the generation of such a sound wave. This section aims to shortly
describe the development of an expression for the PA signal derived from the
physical quantities temperature T, pressure p, volumetric mass density ~ρ, and the
three components of the particle velocity vector v

*
. To determine these six quantities,

the same number of independent linear equations is necessary, which are all derived
from classical physics, i.e., fluid mechanics, thermodynamics, the conservation laws
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of energy (heat diffusion), momentum (Navier–Stokes), and mass (continuity), as
well as the thermodynamic equation of state. As this is a complex problem, no
general solution can be found, and simplifications need to be made. For instance, the
changes in T, p, and ~ρ induced by the light absorption are very small compared to
their equilibrium values (index 0) so that new variables can be introduced indicating
the changes through absorption (index a). By coupling and solving the initial
different equations for the absorption-induced sound pressure pað r*,tÞ , a damped
wave equation can be obtained which leads to

Δpað r*,tÞ- 1
c2s

�
∂2

∂t2
pað r*,tÞ þ γμk

∂
∂t

Δpað r*,tÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
loss term

�
= -

γ- 1
c2s

∂
∂t

_Hð r*,tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
source term

ð14Þ

where γ is the heat capacity ratio, μk the kinematic viscosity of the medium, and cs
the speed of sound. The loss term corresponds to the damping caused by the
viscosity of the medium. Since a detailed derivation of this equation is beyond the
scope of this chapter, the interested reader may find more information elsewhere [17,
pp. 80–83]. Furthermore, this loss term prevents an analytical solution of (14)
wherefore this part is neglected in the first approximation and added again later as
an excess term [18, 19]. The solution of the resulting non-damped inhomogeneous
equation can be obtained by taking the Fourier transformation on both sides, which
yields to [20]

Δþ ω2

c2s

� 	
pa r

*, ω

 �

=
γ- 1
c2s

� 	
iω _H r

*, ω

 �

ð15Þ

with

pað r*,tÞ=
Z

dω pað r*,ωÞe- iωt ð16Þ

and

_Hð r*,tÞ=
Z

dω _Hð r*,ωÞe- iωt ð17Þ

Equation (15) links the frequency-dependent heat production rate derived from
the absorption of photons with the generation of an acoustic wave.
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2.3 Signal Amplification by Resonant Geometries

The solution of the inhomogeneous wave Eq. (15) depends directly on the geometry
of the photoacoustic cell (PAC). Within this section, a commonly used approach of
signal amplification based on an acoustic resonator tube with diameter R0, length LR
and open ends is introduced (see Fig. 5). Sections 3.2.1 and 3.3 give an overview of
alternative PAC geometries as well as alternative acoustic transducers that have been
reported in literature.

The PAC shown in Fig. 5 is composed of an acoustic resonator tube that is
enclosed by two buffer volumes with radius Rb. Halfway through the resonator tube,
there is a small opening, which is connected to a microphone (mic). In this section,
however, only the actual resonator is considered. Later, the approximation made
within this section is compared with experimentally determined values. Using
cylindrical coordinates, the resonances of the PAC are given by the solutions of
the homogeneous wave equation in (14) disregarding the source term and loss term.

Δpaðr,ϕ,z,tÞ- 1
c2s

∂2

∂t2
paðr,ϕ,z,tÞ= 0 ð18Þ

Applying the approach paðr,ϕ,z,tÞ= paðr,ϕ,zÞpaðtÞ= paðr,ϕ,zÞe- iΩkmnt , Ωkmn is
the resonance angular frequency depending on longitudinal (k), azimuthal (m), and
radial (n) modes. By introducing the wavenumber of acoustical modes κj with

κj =
Ωkmn

cs
ð19Þ

Equation (18) yields to the well-known Helmholtz equation:

Fig. 5 Cross-section of an H-shaped photoacoustic cell
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½Δþ κ2j �paðr,ϕ,z,tÞ= 0 ð20Þ

The boundary conditions for resonance amplification must be selected according
to the geometry of the photoacoustic cell in order to obtain the oscillation modes of
this acoustic wave [21]. Therefore, the walls of the resonator are considered rigid and
the openings are assumed to constitute zero acoustic impedance [10, p. 21].

∂
∂r

paðr,ϕ,zÞj
r=R0

= 0 ð21Þ

paðr,ϕ,z= 0,LRÞ= 0 ð22Þ

By separation of variables, pa(r,ϕ, z) can be written as a product of solutions to
the uncoupled differential equations representing radial, azimuthal, and longitudinal
modes, i.e., pa(r,ϕ, z) = R(r)Φ(ϕ)Z(z). By solving the Helmholtz Eq. (20) applying
the separation ansatz and substitution, respectively, we obtain expressions for the
respective modes, which are visualized in Fig. 6.

• radial dependence Rmn(r)

Rmn rð Þ= Jm αmn
πr
R0

� 	
ð23Þ

where Jm is a Bessel function of index m and αmn is the n
th root of the derivative of an

mth order Bessel function.

• azimuthal dependence Φm(ϕ)

Φm ϕð Þ= cos mϕð Þ ð24Þ

• longitudinal dependence Zk(z)

Fig. 6 Different acoustic modes within a cylindrical, both-side-opened resonator. (a) Radial mode,
(b) azimuthal mode, (c) longitudinal mode
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ZkðzÞ= sin

�
kπz
LR

	
ð25Þ

From the relations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2j - ðkπLRÞ

2
q

= αmn π
R0

and κj =
2πf j
cs
, the discrete frequencies

(eigenfrequencies) for transverse pressure modes fkmn can be determined via

f j =
cs
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αmn
R0

� 	2

þ k
LR

� 	2
s

ð26Þ

However, the great majority of the PACs are based on tube-shaped resonators,
thus most often longitudinal pressure modes at low frequencies are of interest. In
doing so, m = n = 0 → αmn = 0 and (26) simplifies to

f k =
kcs
2LR

ð27Þ

Using the relation c = λf, Eq. (27) transforms into the resonance criteria for
longitudinal resonance amplification within a two-sided open tube

LR = k
λs
2

ð28Þ

Generally, the theoretical value of the longitudinal resonance frequency is higher
than the experimentally determined value. This discrepancy can be explained by a
phenomenon called node shifting. Literature already provides plenty of phenomena
that cause elongation of the longitudinal mode, e.g. the assumption of a
one-dimensional resonator, the assumption of infinite buffer volumes, the neglected
out-coupling hole in the tube at half-length, classical attenuation effects, or
non-perfectly adiabatic behavior of real gases [22, p. 42]. By disregarding this
node shifting effect for the moment we can express the pressure wave pað r*,ωÞ ,
which is a complete orthonormal system of linear combinations of the

orthonormalized functions pj r
*

 �

, since the acoustic pressure is the sum over all

normal modes.

pað r*,ωÞ=
X
j

AjðωÞpjð r*Þ ð29Þ

where Aj(ω) is the amplitude of the jth mode and pj r
*

 �

its dimensionless spatial

distribution. Since the normal modes are orthogonal, they obey the relationship [23,
p. 7]
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1
VR

hpijpji= δij ð30Þ

normalized by the resonator volume VR. Substituting (29) in (15) and making use
of (20) and (30) we obtain an expression for the amplitude of this pressure wave [23,
p. 8]

AjðωÞ= -
iω

ω2
j

�
1- ω2

ω2
j

	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

resonance

condition

γ- 1
VR

Z
p�j ð r*Þ _Hð r*,ωÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coupling of heating

and pressure normal mode

ð31Þ

While the integral in Eq. (31) represents the heat production rate _H r
*, ω

 �

and

the (complex conjugate) normal mode p�j r
*

 �

. If the angular frequencyω approaches

the resonance angular frequency ωj, the amplitude of the photoacoustic signal Aj(ω)
would become infinite. This ideal scenario results from the previously neglected
losses (the loss term was excluded from this derivation in Eq. (14)). Including a
mode damping term caused by losses from fluid viscosity and heat conduction [23,
p. 8], Eq. (31) yields to

AjðωÞ= -
iω

ω2
j

�
1- ω2

ω2
j
þ i

ω
ωjQj|fflffl{zfflffl}

loss term

	 γ- 1
VR

Z
p�j ð r*Þ _Hð r*,ωÞdV ð32Þ

where Qj is the quality factor of the j
th normal mode. The quality factor describes the

ratio of accumulated and dissipated energy during one period of acoustic oscilla-
tion.4 Another method to determine the quality factor empirically is to take the ratio
of fj and the half-power bandwidth Δf. Since generally root mean square values are
taken, this point is at

ffiffiffi
2

p
of the measured output voltage, i.e.,

Qj =
f j

Δf ffiffi2p ð33Þ

Continuing with the derivation of the connection between cell illumination and
acoustic pressure, there are several steps that are skipped here for reasons of

4The energy dissipation of the acoustic amplitude is caused by numerous different factors, which
are treated in detail in Sect. 4.
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simplicity but evaluated in detail in [17, pp. 90–92]. Assuming the resonant case,
i.e., (ω → ωj) the PA amplitude with unit Pa results in

AjðωjÞ= ðγ- 1ÞQj

ωj

LR
VR

pjErelaxαP0e
- μj ð34Þ

where μj is the reciprocal light-to-sound coupling factor of the jth normal mode.
Provided the modulation angular frequency ω is equal to the resonator’s
eigenfrequencies ωj, the energy of multiple modulation cycles is accumulated in a
standing acoustic wave and the system operates as an acoustic amplifier. In order to
find an expression of the photoacoustic signal, combining (34) and (29) finally yields
to

pað r*,ωjÞ= ðγ- 1ÞQj

ωj

LR
VR

pj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} Erelax
cell constant Ccell

αP0e
- μj pjð r*Þ ð35Þ

Here, the amplitude of the PA signal is directly proportional to the absorption
coefficient α, i.e., the product of volume number density ρ and absorption cross-
section σ ~νPhð Þ of the absorbing molecules, as well as to the optical power P0, used
for the excitation of analyte molecules. Besides, the PA amplitude is also determined
by cell constant Ccell consisting of parameters that are independent of light and
analyte, namely:

• The ratio of the quality factor Qj and angular frequency ωj of acoustic resonance
amplification.

• The length-to-volume ratio in terms of a tube-shaped PACs5.
• The decremented heat capacity ratio (γ - 1.)
• The dimensionless normalization coefficient pj, which depends on the

detected mode

pj r
*

 �

is the only factor that depends on spatial coordinates. However, in the case

of first longitudinal mode excitation in a tube-shaped resonator (using cylindrical
coordinates), the acoustic pressure only varies in z-direction and remains constant
with respect to the tube radius r and spatial angle ϕ. In this case the normalization

coefficient pj =
ffiffiffi
2

p
[19, 24] and the scale factor pj r

*

 �

can be expressed as

sinusoidal half-wave ranging from 0 to 1 [24]

5In terms of calculations, also the node shifting phenomenon has to be considered here. For this
reason LR → LR, eff.
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pjð r*Þ � p100ðzÞ= sin ðz π
LR;eff

Þ ð36Þ

Assuming optimal light-to-sound coupling, i.e. μj → 0 together with a micro-
phone position in the middle of the resonator as depicted in Fig. 5, i.e., r

*→
r
*

mic = ðR0,0,
LR
2 Þ, then e- μ100p100 zð Þ→ 1 and Eq. (35) reduces to

pað r*mic,ω100Þ= ðγ- 1ÞQ100

ω100

LR;eff
VR

ffiffiffi
2

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Erelax

cell constant C cell

ρσð~νPhÞ|fflfflfflffl{zfflfflfflffl}
α

P0 ð37Þ

Regarding breath gas detection with low volume number densities ρ of the
analyte in the sub-ppmV range some suggestions for achieving a higher PA signal
and therefore a higher sensitivity and limit of detection can be derived from Eq. (37)
after [22, p. 52]:

• Choose a wavelength to excite molecular transitions with a large absorption
cross-section σ ~νPhð Þ in order to achieve a high absorption coefficient α, but
avoid spectral cross sensitivities to other components within the gas matrix.

• Use a light source with high optical power in the wavelength region of interest.
• Apply resonant PAC designs with a quality factor Qj ≳ 20 and maintain constant

pressure and temperature during measurements to ensure a constant resonance
frequency.

• Use small tube diameters 2R0 but consider the beam collimation and the resulting
PA background signal caused i.a. by interactions between beam and inner cell
walls.

• Focus illumination to regions with pressure maxima in order to achieve a high
light-to-sound coupling (μj → 0).

3 Overview of Different Photoacoustic Setups
and Techniques

In Sect. 1, the general interest in the photoacoustic technique for trace gas analysis
was already highlighted to have rapidly increased within the last two decades. As an
ongoing trend, this interest on the part of academia but also on the part of sensor
manufacturers is also reflected in the diversity of different setups and approaches that
are reported. With reference to the path of PA signal generation (refer to Fig. 4 in
2.2), this diversity is based on the application of various light sources, modulators,
cell designs, and signal transducers, but also on the development and implementa-
tion of innovative concepts for acoustic resonance amplification, noise reduction,
optical power amplification or self-calibration of the sensor system. This section is
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meant to give a good overview of the state of the art of photoacoustic setups and
highlights obvious advantages and disadvantages for breath analysis. It is intended to
be a guide for the non-expert reader to decide which technique or setup might be best
for a specific application. However, it is recommended that the references provided
be explored further, as this overview does not claim to be all-inclusive.

3.1 Electromagnetic Signal Stimulation

Developing PA gas sensors should always start with choosing an appropriate light
source. This requires research and simulation of suitable internal energy states of the
analyte molecules as well as potential spectral interference with other species on the
one hand, and the availability and characteristics of suitable emitters such as
wavelength, optical output power, spectral bandwidth, optical divergence,
tuneability, modulation capability, size, and cost on the other hand. The references
within the following sections identify PA sensors to take advantage of exciting
ro-vibronic states using most commonly near-infrared (NIR), middle infrared
(MIR), or visible radiation, though also the exploitation of ultraviolet [25, 26] and
Terahertz [27] radiation is viable.

3.1.1 Light Sources

Nowadays, laser diodes (LD) are most used to excite internal analyte states by
photon absorption for PA signal stimulation. Whether standard Fabry–Perot lasers
(0.4–3 μm) [28–33] interband cascade lasers (ICL) (3–6 μm) [6, 24, 34] or quantum
cascade lasers (QCL) (6–14 μm) [35–37] are utilized, LDs combine the advantages
of narrow bandwidth, high output power, small size, and simple operation, current
modulation, and cooling. Once very narrow bandwidth single mode emission
(≤5 cm-1) is required in order to scan distinct narrow-band absorption features
applying wavelength modulation for example (refer to Sect. 3.1.3), Bragg gratings
can be integrated into the light source to achieve distributed feedback (DFB) aiming
for DFB-LDs [38–49], DFB-ICLs [50], or DFB-QCLs [51–55]. Regarding their
price, those three types of emitters roughly scale with the wavelength of emission;
hence, it is recommended to choose a rather low wavelength if the spectral properties
of the sample allow it. In case ultra-narrow-band emitters are required, Pan et al.
reported the use of sub-attometer bandwidth whispering-gallery-mode diode lasers
[56]. However, standard PA applications, which do not take advantage of special
techniques for background signal reduction, optical amplification, or self-calibration
such as the use of Brewster windows (Sect. 3.2.4) optical cavities (Sect. 3.2.2) or
beat frequency methods (Sect. 3.2.5), do not necessarily rely on single mode
emitters.

For this reason, low-cost applications based on thermal light sources [57, 58] or
light emitting diodes (LED) [25, 59, 60] have recently been described more
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frequently. While thermal emitters and LEDs are rather inexpensive compared to
laser sources, both share the disadvantages of highly divergent and spectrally
broadband radiation, which entails elaborate beam shaping and excludes wavelength
modulation. Further disadvantages of thermal sources are the necessity of narrow-
band optical filters and separate modulators,6 which drastically attenuate the optical
power that is available for PA signal generation and increase the error susceptibility
of the sensor system, respectively. Nevertheless, in 2019 the first miniaturized
photoacoustic CO2 sensors based on broadband infrared excitation have been
announced to be commercially available by Sensirion AG7 and Infineon Technolo-
gies AG.8 Recently, Gaßner et al. reported another thermal emitter-based concept
that, however, rather exploits standard optical absorption according to Beer–Lam-
bert Law with an analyte-filled photoacoustic detector cell [61]. Although beam
shaping using LEDs is more complex than LDs, they provide an additional pathway
of high-energy electronic excitation, as the development of UV LEDs has increased
significantly in recent years [26]. Another alternative for generating broadband
radiation is the use of supercontinuum (SC) sources [62]. Compared to thermal
emitters or LEDs, SC beams can be more easily focused or collimated, but they are
also more expensive as they additionally require a pump source.

The tunability of light sources becomes important with respect to multi-
component monitoring. Provided extensive research of the absorption spectra of
all matrix components, Fabry–Perot LDs [48], ICLs [24] or QCLs [52] may be used
to monitor multiple species, since laser diodes often can be tuned up to about 10 cm-

1 by adjusting the operation temperature and current. Besides common QCLs,
external cavity QCLs provide even wider tuning range (>100 cm-1) [63]. Albeit
thermal sources and broadband LEDs may also be used to monitor several species by
integrating appropriate optical filters [57, 64], optical parametric oscillators (OPO)
still offer the most degrees of freedom for monitoring multiple components with a
single light source, since signal- and idler-emission can be tuned over several
microns each. Although OPO radiation in PAS is usually modulated by means of
mechanical choppers [65], further concepts are reported that base upon amplitude
modulating the pump source [66] or even applying a WM/AM double-modulation
technique [67]. CO2 lasers also enable multi-component monitoring between 9.4
and 10.6 μm [68, 69]; however, they are now being used less frequently in PAS,
because preferable alternatives became available.

3.1.2 Amplitude Modulation

According to Sect. 2.2, PA signal generation relies on modulating the light to trigger
periodic heating. The simplest way to achieve this is called amplitude modulation

6At least when exploiting acoustic resonance amplification in the kHz range.
7https://sensirion.com/products/catalog/SCD40/ visited 28.08.2022.
8https://www.infineon.com/cms/en/product/sensor/co2-sensors/pasco2v01/ visited 28.08.2022.
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(a.k.a. intensity modulation), in which the light is periodically turned on and off.
Resonance amplification then is accomplished once this periodicity matches an
Eigenfrequency of the sensor module comprising photoacoustic cell (see Sect.
3.2.1) and signal transducer (see Sect. 3.3). Regarding LDs, LEDs, or in case of
low-frequency modulation even thermal emitters [61], AM can be accomplished
without the need of additional hardware by modulating the operating current of the
light source. Most common alternatives to realize AM are choppers [53, 58, 64, 69]
that might, however, produce interfering acoustic noise, be prone to jitter inaccura-
cies in particular at kHz frequencies and are more susceptible to mechanical vibra-
tions. Further, albeit rather uncommon parts that were reported to be used for AM in
photoacoustics are fiber-coupled electro-optic [56] and acousto-optic modulators
[70] or micro-electro-mechanical-system (MEMS) based scanning mirrors [71, 72].

In some references that apply AM, the duty cycle, i.e., the temporal ratio of
illumination and shading, was optimized as it is associated with certain characteris-
tics of the source, such as the modulation frequency of LEDs [26] or the emission
linewidth of DFB-QCLs [53]. Regarding the latter reference, pulsed photoacoustic
spectroscopy is utilized as a special case of AM, where the duty cycle is far lower
than 50% [62]. Such a regime is based on pulsed emitters with a certain repetition
rate instead of continuous wave (cw) sources. This drastically boosts the pulse
energy, and thus the optical power which scales linearly with the PA magnitude.
Whether amplitude modulating a cw source or using pulsed emitters, it should be
considered that the off-time, i.e., the period without illumination, might affect the
efficiency of energy relaxation and therefore the PA signal (refer to Sect. 4)
[6]. Finally, a general disadvantage of amplitude modulation has to be mentioned,
namely spectral interferences with other species in the gas sample and periodic
heating of the inner walls or the windows of the PAC, respectively, which both
might contribute to the PA signal. Provided that the concentrations of absorbing
non-analyte species and the absorption properties of the PAC do not change, this
causes a background signal, which can be subjected to an offset correction according
to Eqs. (38) and (39), respectively, otherwise the PA sensor has to undergo complex
calibration before it is used in the field.

3.1.3 Wavelength Modulation

Figure 7 illustrates an alternative technique that is mainly applied to diode lasers,
namely wavelength modulation. In this process, periodic heating is not achieved by
periodically turning on and off illumination but by modulating a sinusoidal alternat-
ing current (AC) of low amplitude onto a constant offset laser diode current, which is
fine-tuned, thus the emission spectrally coincides with the maximum of an absorp-
tion peak of the analyte. The AC modulation causes the wavelength to be swept
approximately over the full width at half maximum (FWHM) of the absorption
feature yielding a maximum symmetric sound pressure signal, which is doubled in
frequency compared to the initial AC modulation. In terms of WM-based
photoacoustic spectroscopy, these two currents often are further superimposed
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with a ramped current signal that is considerably lower in frequency compared to the
sinusoidal alternating current. In order to scan across the entire absorption feature,
the current must be ramped over a certain range, which, besides a distinct modulation
of the emission wavelength, might also result in a minor residual amplitude
modulation [37].

The key advantage of WM is that no spectrally overlapping absorption profiles of
PAC components or other species in the gas sample contribute to the PA signal, as
long as this overlapping absorption remains rather constant within the range of
wavelength modulation. In view of breath analysis, applying WM might reduce
cross-sensitivities toward varying amounts of CO2 and H2O in the sample, once an
appropriate analyte feature has been chosen. However, non-constant interfering
absorption as well as varying ambient parameters, especially changing the pressure
of the gas sample, may cause distinct peak deformations which in turn might affect
the PA magnitude, thus falsifying the analyte concentration reading. One approach
to face this problem of peak deformation is to simulate the superimposed absorption
of the sample in real-time using the HITRAN (High-resolution transmission molec-
ular absorption database) API known as HAPI. However, this requires to separately
monitor the concentrations of the interfering species that cause peak deformation.
Moreover, some absorption features especially of electronic transitions such as the
n → π� transition of acetone between 220 and 330 nm [26] or the excitation of
electronic 2B2 and 2B1 states of nitrogen dioxide between 300 and 500 nm [73]
cannot be excited by means of WM as they are simply too broad.

3.2 Techniques and Photoacoustic Cell Designs

Apart from the variety of different light sources to initiate PA signal generation,
literature provides a multitude of photoacoustic cell designs as well as innovative

Fig. 7 Principle of wavelength modulated PAS and 2f-signal generation. LDC laser diode control-
ler, FWHM full width at half maximum, PA photoacoustic
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concepts to increase the signal-to-noise ratio (SNR) or to facilitate the self-
calibration of sensor systems.

3.2.1 Acoustic Resonance Amplification

In principle, the frequency of light modulation, which corresponds to the frequency
of the resulting acoustic signal, can be freely selected when designing a PA trace gas
sensor. Only under the condition that resonant signal amplification is aimed at, the
frequency of modulation must be adapted to the corresponding natural resonance
frequency of the system. Hence, non-resonant PA setups are usually operated at low
frequencies between 20 and 300 Hz in order to facilitate data acquisition and signal
processing as well as to assure maximum relaxation efficiency (refer to Sect. 4)
[62, 74, 75]. The photoacoustic cell design is not related to the principle of modu-
lation, thus non-resonant PACs have been described to be operated in amplitude
modulation mode [57, 58] or wavelength modulation mode accompanied by 2f-
demodulation [43, 46, 47]. By utilizing an LED-based non-resonant setup that was
operated in AM mode, for example, Karhu et al. achieved a remarkable limit of NO2

detection in the sub-ppbV range [59].
However, Hofstetter et al. identified the exploitation of acoustic resonance ampli-

fication to further improve the SNR by a factor of 70 compared to non-resonant cell
designs [53]. In detail, they compared the PA signal of a PAC by modulating the
light source out of resonance with the equivalent signal after matching the frequency
of modulation with the frequency of the first mode of longitudinal resonance
amplification, which is derived in Sect. 2.3, Eq. (27). Most commonly, PACs
exploiting longitudinal resonances are designed as open cylinders that are accom-
panied by two buffer volumes, a.k.a. H-type resonators [24, 37, 69, 70]. In view of
optimizing the dimensions of H-type cell designs, literature provides a variety of
references, where the length of the buffer volumes was identified to affect the
frequency and quality factor of resonance amplification [73] or the diameter of the
resonator tube and the diameter of one buffer volume were enlarged, respectively, in
order to enhance light-to-sound coupling [25, 60, 67].

A common alternative PAC design is based on so-called T-type resonators, where
the resonator tube is not open on both sides surrounded by buffer volumes, but only
on one side, while the second one is closed and equipped with an acoustic transducer
[38, 64]. Unlike H-type resonators, where the length of the resonator tube must
correspond to a multiple of half the length of the amplified standing sound wave with
sound pressure nodes at the open ends of the tube (refer to Eq. (28) in Sect. 2), T-type
resonators must correspond to an odd multiple of a fourth of the standing sound
wave with a sound pressure anti-node at the closed end of the tube. Gong et al.
performed sophisticated research comparing T-type with H-type resonators and
identified the former one to show a limit of C2H2 detection enhanced by 17%
compared to H-type PACs, further accompanied by a faster response of the sensor
system [39]. Besides, literature provides alternative, albeit less common approaches
of acoustic resonance amplification, namely the exploitation of Helmholtz
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resonances [40] or acoustic azimuthal and radial modes according to Eqs. (24)
and (23), respectively [41].

In general, but not limited to applications for breath analysis, acoustic resonance
amplification should only be utilized once it is needed to achieve certain sensitivity
specifications, as it requires acoustic resonance tracking (refer to Sect. 3.2.5).
Moreover, it increases the probability of relaxational losses (refer to Sect. 4), since
acoustic amplification is usually operated at higher modulation frequencies; other-
wise, the dimensions of the PAC would become too large.

3.2.2 Optical Power Amplification

According to Eq. (35), the PA signal scales linearly with the optical power of
illumination, thus, various concepts of optical power amplification have been
reported in order to accomplish photoacoustic trace gas monitoring. The most
common one of these concepts is referred to as multi-pass photoacoustics, where
the light beam passes the PAC several times causing optical power enhancement.
Multi-pass regimes can be used in most PA applications, regardless the applied
modulation technique is amplitude [28, 62] or wavelength [43, 46, 47, 51, 76]
modulation as well as regardless of whether acoustic resonance amplification is
exploited [28, 51, 67] or not [43, 46, 47, 57]. While the majority of multi-pass
absorption cells in photoacoustics are designed as Herriott cells [46, 47, 62, 76] or
without any pre-defined beam path [43, 46, 57], also sphere tube designs [28] and
White cells [51] are reported. However, White cells on the one hand are less stable
and more complex to manufacture than Herriott cells, but on the other hand, they
allow for higher numerical aperture beams. Based on a sphere tube design, Li et al.
determined the SNR to be enhanced by a factor of 5 by exploiting multi-pass
reflection [28]. While in most PA multi-pass setups the reflecting mirrors are
employed within the PAC, Mikkonen et al. reported an approach where external
mirrors were positioned outside next to the windows of the PAC [62]. Finally, multi-
pass regimes are not restricted to the usage of microphones as sound transducers, but
also quartz enhanced (refer to Sect. 3.3) photoacoustic (QEPAS) multi-pass appli-
cations have been reported, both using bare QTF [49, 77] or exploiting the on-beam
QEPAS technique [45].

An even more sophisticated approach to enhance the radiative flux density within
the PAC is called cavity-enhanced photoacoustic spectroscopy, where external
mirrors are used to form an optical cavity in order to gain optical resonance
amplification. As already mentioned in case of multi-pass techniques, cavity
enhancement can be applied to microphone-based photoacoustic setups [56] and
QEPAS applications [52, 54, 78]. More specific, combining optical cavities with
QEPAS is even less complex than combining multi-pass with QEPAS, because the
focal point halfway through the optical resonator can be more easily adjusted to pass
between the prongs of a QTF than multiple beam reflections. While Wojtas et al. [54]
and Borri et al. [79] employed an optical bow-tie cavity with bare QTF detection,
Hayden et al. [52] and Wang et al. [78] utilized on-beam QEPAS and determined the
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optical cavity to cause an at least 600 times SNR improvement and a remarkable
limit of C2H2 detection in the sub-pptV range, respectively. To the best of the
authors’ knowledge, cavity-enhanced PAS is the most sensitive photoacoustic
technique that has been reported so far. However, as in the case of multi-pass
technology, a decision must be made as to whether such sensitivity is necessary
and whether the expense and complexity of optics is justified.

An alternative option of optical power amplification is the usage of optical fibers
together with Erbium-doped fiber amplifiers [76, 80] or the installation of a fiber-
ring-cavity using a pump laser and a Bragg grating [70]. However, concluding these
approaches of optical power amplification, it must be noted that the derivation of the
photoacoustic formula in Sect. 2 assumes the population of the excited analyte state
to be considerably lower than the population of the ground state [22, pp. 35–36]. By
pronounced optical amplification, this assumption may not be valid anymore,
causing non-linear effects to gain influence, which may result in non-linear calibra-
tion characteristics of the sensor system.

3.2.3 Fourier Transform and Frequency Comb Photoacoustic
Spectroscopy

Fourier Transform PAS (FT-PAS) and frequency comb PAS are two rather seldomly
used techniques for photoacoustically detecting trace gases. Both approaches have in
common, that the resulting measurement provides a whole photoacoustic absorption
spectrum within a comparatively short period of time.

As in common FT spectroscopy, usually broadband emitters are employed for
FT-PAS and combined with an interferometer to create an optical interferogram.
This interferogram illuminates a gas-filled cell, which is equipped with an acoustic
transducer as well as a photodiode for later signal normalization. The resulting
photoacoustic signal consists of a superposition of acoustic waves originating from
the periodic interaction between optical interferogram and analyte gas. The acoustic
signal is then Fourier transformed and normalized providing a photoacoustic absorp-
tion spectrum of the analyte illuminated within the gas sample. Besides, each
absorption line can be assigned to its respective acoustic frequency after the Fourier
transformation of the photoacoustic signal [62].

Mikkonen et al. [62] used FT-PAS with a supercontinuum light source to detect
several hydrocarbons (methane, ethane, ethene, propene in N2) in a multi-pass setup
with a non-resonant Herriot cell and a cantilever as an acoustic transducer. The ten
beam-pass in the Herriot cell allowed for compensation of the rather low incident
spectral power density of 15 μW cm-1 leading to a detection limit of 32 ppb (1 s) for
methane after 40 s signal averaging. Instead of a broadband emitter, a frequency
comb can be employed as well, which was demonstrated by Sadiek et al. [81] and
Karhu et al. [82].

A further technique exploiting frequency combs for rapid broadband
photoacoustic scanning is dual comb PAS. Compared to FT-PAS, instead of an
optical interferogram, a frequency comb is illuminating the gas sample directly. This
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novel approach was recently published by Wildi et al. [83]. In their proof-of-concept
study, they estimated a minimal noise equivalent acetylene concentration of 10 ppm
for a 1,000 s averaging time.

3.2.4 Noise and Background Reduction

The key parameter of a trace gas monitoring system is its limit of detection (LOD),
a.k.a. noise equivalent concentration, i.e., the ratio of sensor noise and sensor
sensitivity (see Sect. 3.4.1). While optical amplification yields a sensitivity enhance-
ment, an alternative way to improve the LOD is to reduce the sensor noise. An
elementary approach of noise reduction that is applied in almost every PA applica-
tion is the implementation of lock-in amplification in terms of signal processing
[84]. Without going into detail, the lock-in technique can be considered as a very
narrow bandpass, only observing the acoustic signal with respect to the frequency of
light modulation. This technique can therefore be used to detect photoacoustic
signals that are significantly below the actual broadband acoustic noise that is
recorded by a microphone for example. Alternative yet less common methods of
signal processing are the usage of standard soundcards with Fast Fourier Transform
(FFT) analysis [85] or the implementation of the so-called Goertzel algorithm [86].

Another term, that is sometimes confused with the noise level of a PA sensor in
literature, is the photoacoustic background signal. Generally, photoacoustic spec-
troscopy is an offset-free technique, i.e., zero sensor signal if no analyte is present in
the gas sample. However, even if no other species in the sample shows an absorption
feature in the wavelength range of illumination, photoacoustic background signals
might result from interactions of intensity modulated light with the windows or the
inner walls of the PAC for example, thus causing periodic heating, i.e., PA signal
generation. Besides, purely acoustic background signal components may originate
from environmental noise or gas flowing through the PAC. Once such a background
signal can be assumed to be constant over a certain measuring period without
calibration, a zero-point measurement with a magnitude bu0 and phase ϕ0 can be
performed beforehand in the absence of an analyte. Afterward, every PA signal
reading (bui, ϕi) can be offset corrected (index oc) in vector space according to [22,
p. 65].

ϕi,oc = tan - 1 bui sinϕi -bu0 sinϕ0bui cosϕi -bu0 cosϕ0

� ����� ���� ð38Þ

bui,oc = bui cosϕi -bu0 cosϕ0

cosϕi,oc

���� ���� ð39Þ

However, as soon as it can no longer be ensured that the background signal is
constant, a new zero-point calibration must be performed. A further common
approach of background reduction is to incorporate acoustic filters into the PAC
design in order to proactively tone down acoustic background signals [33, 87, 88]. In
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view of reducing light-initiated background signals, various options such as mount-
ing Brewster windows [31, 69] or implementing modulation cancelation methods
(MOCAM) have been reported [59, 89, 90].

Beyond that, a more comprehensive approach of background and noise reduction
entails the utilization of differential PA concepts. Liu et al., for example, applied the
most obvious differential concept by assembling two identical PACs, while each of
them was equipped with a condenser microphone and the analog microphone signals
were pre-processed by a mixing unit prior to lock-in amplification [64]. With both,
the sample cell and the reference cell being filled with an analyte-containing gas
sample and ambient air in advance, respectively, they achieved a remarkable nor-
malized noise equivalent absorption (NNEA) of 4.1 × 10-10 W cm-1 Hz-0.5 (refer to
Sect. 3.4.1). By implementing this technique, noise and background originating from
environmental acoustic noise or interactions of the modulated light with parts of the
PAC can be drastically reduced. However, this concept precludes flow-through
operation and requires a reference equivalent to the actual gas sample, but with
only the analyte species removed. In view of breath analysis, this concept has the
disadvantage that the bulk composition of different samples from different test
persons, especially the H2O and CO2 content, cannot be assumed to be constant,
thus no universal reference can be provided. Therefore, most differential PA designs
are based on an alternative concept that allows for flow-through operation. More
precisely, these designs employ two parallel tubes for amplifying the longitudinal
acoustic resonance, both equipped with a microphone and being continuously
flushed with sample gas while only one of the tubes is illuminated [56, 66, 73,
80]. By mixing both microphone signals using a differential amplifier, noise and
background signals resulting from environmental acoustic noise and gas flow can be
significantly reduced. In order to additionally account for background signals due to
light-with-PAC interaction, this concept may be complemented by implementing
Brewster windows or the MOCAM technique. Alahmari et al. demonstrated that
differential PA cell designs cannot only be adopted to concepts that are based on
longitudinal resonance amplification, but also on Helmholtz resonance amplification
[40]. An extensive comparison of various differential PA setups can be found
in [91].

3.2.5 Resonance Tracking for Self-calibration

As already discussed in Sect. 3.2.1, exploiting acoustic resonance amplification
entails the modulation frequency to be adjusted to the dimensions of the acoustic
resonator, but also to the actual speed of sound within the gas sample. Since
temperature and bulk composition of the gas sample affect the speed of sound,
field applications require knowledge about that, to either adjust the frequency of
modulation or to apply different calibrations, that must be recorded in laboratory
beforehand. However, in case there is no knowledge about the actual speed of sound,
resonance tracking techniques have been reported. In common microphone-based
PA setups, these techniques use an additional speaker, which is integrated in the
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PAC and allows for recording the frequency response of the acoustic module
[73, 92]. Regarding bare QTF-based PA setups, such resonance tracking systems
can be implemented even more easily, as simple circuit designs allow to switch
between measuring mode and electronic QTF excitation, respectively [93], which is
not that important for real-time resonance adjustment though, since the frequency of
QTF resonance rather depends on the viscosity than of the speed of sound of the
sample.

However, bulk composition and temperature may not only affect the frequency
but also the quality factor of resonance amplification, which in turn affects the PA
signal (see Eq. (37)). Therefore, an alternative approach of simultaneously deter-
mining analyte concentration, as well as frequency and quality of resonance is the
application of beat frequency (BF) photoacoustics, which, however, requires the
utilization of a resonant acoustic signal transducer, e.g., a quartz tuning fork.
Comparing BF-QEPAS with standard QEPAS, the frequency of light modulation
is slightly detuned from the natural frequency of the signal transducer, and illumi-
nation rather triggers an acoustic pulse than a continuous acoustic wave. This
subsequently causes free instead of forced vibrations of the signal transducer,
which are demodulated at the frequency of light modulation. The demodulated
signal will thus oscillate at a frequency equal to the difference of light modulation
frequency and QTF resonance frequency. The benefit of such transient signal
analysis is the simultaneous identification of analyte concentration, quality factor
and frequency of the transducers’ resonance by evaluating its peak value, ring-down
time and period of oscillation, respectively (see Sect. 4.2, Fig. 11). In view of bare
QTF setups [94], this technique avoids calibration and improves the sensor response
time. Finally, Li et al. recently adapted the BF technique for real-time ammonia
measurement at pptV-level with regard to breath analysis [35]. A major drawback of
the BF technique is that a fast wavelength scan does not allow coverage of a broad
spectrum, making its applicability infeasible for the analysis of overlapping absorp-
tion features, which is, however, the most common situation in breath analysis.

3.3 Acoustic Signal Transducers

Standard photoacoustic setups use condenser microphones that may be
micromechanically fabricated, e.g., MEMS microphones that were originally
intended to be used in mobile phones or hearing aids [24, 25, 31, 36, 37, 66,
70]. The most common alternative signal transducers in PA setups are quartz tuning
forks [33, 44], which were basically designed as clock generators for electronic
watches. The major advantages of QTFs over microphones are a superior immunity
to ambient acoustic noise due to their quadrupole transducer characteristics [95] and
their small size and low-cost allowing for miniaturization and mass production. On
the other hand, their small size requires elaborate beam focusing between the prongs
of the fork, and the SNR of bare QTF setups is known to be about at least one
magnitude of order inferior compared to sophisticated microphone-based PA setups
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exploiting acoustic resonance amplification [96]. To compensate the disadvantage of
lower sensitivity, QTFs also are often combined with acoustic resonators, which are
either arranged as on-beam QEPAS configuration with two resonator tubes being
placed in front and behind the prong spacing of the QTF or as off-beam QEPAS
configuration, resembling a standard microphone-based setup, where only the micro-
phone is replaced by a tuning fork. The latter of these configurations facilitates beam
shaping, as the light does not have to be focused between the prongs. Moreover,
Shang et al. identified the SNR of off-beam QEPAS to exceed the SNR of bare QTF
QEPAS by at least a factor of 5 [29] and based on a literature research, Hu et al.
further reported the off-beam regime to outperform on-beam QEPAS as well [45]. In
order to compensate for the disadvantage of difficult optical alignment in terms of
bare QTF or on-beam QEPAS as well as to enhance the SNR, the scientific
community spent a lot of effort in designing and fabricating custom QTFs in recent
years [97]. This has resulted in a large number of publications, introducing custom
QTFs with flexural modes that are lower than the 32.8 kHz natural frequency of
common QTFs that are commercially available, namely 28 kHz [48], 15.2 kHz
[30, 34], 12.5 kHz [55], or even below 3 kHz [27, 49]. By customizing a QTF with a
fundamental frequency at 2.9 kHz and a first overtone mode at 17.8 kHz, Elefante
et al. introduced an inventive technique of dual-gas on-beam QEPAS, that allows to
simultaneously exploit the fundamental mode for water monitoring and the overtone
mode for CH4 or N2O detection, using two laser sources but only one signal
transducer [98]. However, regardless of their natural frequency, combining mechan-
ically resonant signal transducers with acoustic resonance amplification yields
double-resonant systems, that are more difficult to calibrate than systems, which
solely exploit single resonance amplification, as they may be prone to detuning.
Detuning may result from changes in the speed of sound, e.g., by variations in
temperature or in the composition of the gas sample, which severely affects acoustic
resonance, but influences mechanical resonance only to a small degree. As it was
investigated in [32] in detail, changes in air humidity of less than 2%V might cause
25% signal deviations due to changes in the speed of sound causing detuning of a
double-resonant off-beam QEPAS application.

Another way to increase the SNR of a photoacoustic setup is the application of
multiple transducers, e.g., an array of microphones. By using three MEMS micro-
phones, for example, Mitrayana et al. were able to detect noise equivalent concen-
trations of 6, 11, and 31 ppbV of ethylene, acetone, and ammonia in the breath of
patients with lung diseases such as lung cancer [69]. To further increase the
sensitivity, Hofstetter et al. [53] and Romann et al. [74] even employed arrays of
16 and 80 microphones, respectively. Because sensitivity scales with n and noise
scales with

ffiffiffi
n

p
, the SNR is known to be improved by

ffiffiffi
n

p
when operating a number

of n microphones in parallel [99]. By cascading two tuning forks, Ma et al. verified
that the concept of multiple signal transducers can also be transferred to an array of
QTFs [42]. Although the electronic noise is not expected to increase by cascading
multiple forks at all, they only observed a 70% instead of 100% SNR improvement
due to minor mismatching of the resonance frequencies of both QTFs. However,
they were able to compensate for those frequency deviations by means of
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temperature or pressure regulation in later studies [44]. Further alternatives for
acoustic signal detection in PA applications are the utilization of fiber-optic
[38, 39, 47] or cantilever-based acoustic transducers with optical readout [58, 59,
62, 75]. Concluding this section, Zhang et al. published a comprehensive review
article, summing up the most used detectors in PA gas-phase analysis [96].

3.4 Selecting the Most Suitable Setup for Your Requirements

To summarize Sect. 3, there is an enormous variety of different methods and
concepts available, when it comes to photoacoustic trace gas detection. This pro-
vides the opportunity to customize PA applications in order to adapt it to specific
needs, but the multitude of possibilities also requires an in-depth study of the subject
and the available literature. This section is intended to assist in selecting the
appropriate methods for photoacoustic breath analysis applications.

3.4.1 Limit of Detection and Normalized Noise Equivalent Absorption
Coefficient

Since biomarkers for recognizing diseases in human breath are only present in very
low volume ratios, ranging from about 1 ppbV to several ppmV [9], the most
important parameter of a suitable measuring device might be its limit of detection,
which is the ratio of sensor noise and sensor sensitivity. However, in order to be able
to compare the multitude of different approaches and concepts in PA trace gas
analysis, the scientific community introduced a physical quantity, namely the nor-
malized noise equivalent absorption coefficient. The NNEA in units W cm-1 Hz-0.5

is a uniform way to express the performance of a photoacoustic setup, as it takes into
account:

• The minimum detectable dimensionless volume ratio Ni, min (i.e., the detection
limit), calculated by using n -times the standard deviation as the sensor noise.

• The absorption cross-section of the analyte at a given wavelength σ(λ) in units
[cm2].

• The optical power of the light P0 [W] that contributes to PA signal generation.
• The equivalent noise bandwidth Δf [Hz], which depends on the lock-in time

constant as well as on the filter roll-off

NNEA=
Ni, min NA σðλÞ P0 p

n
ffiffiffiffiffiffi
Δf

p
R T

ð40Þ

In Eq. (40), NA in mol-1 denominates the Avogadro constant, R in J mol-1 K-1 is
the universal gas constant, and T and p are the given temperature in K and pressure in
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Pa, respectively. The NNEA lacks only one parameter, namely the time of sensor
data averaging that had been taken for LOD determination, which must not be
confused with the integration time of lock-in amplification. Without providing a
detailed comparison, non-resonant multi-pass designs, concepts that exploit solely
acoustic resonance amplification as well as acoustically double-resonant quartz-
enhanced techniques usually are characterized by NNEAs in the order of 10-9 to
10-10, when averaging the sensor data over 1 s. Increasing the data acquisition and
averaging time can significantly suppress sensor noise, thus improving the LOD.
Many publications, therefore, provide an Allan–Werle deviation plot in order to
characterize the sensor noise as well as to quantify noise suppression as a function of
averaging time [100]. While single-resonant bare QTF sensors may rather be one
magnitude of order inferior in terms of performance, optical cavity-enhanced
methods, on the contrary, may perform 2–3 magnitudes of order better.

3.4.2 Assessment Criteria

As it has already been briefly touched upon in Sect. 3.1, conceptualizing a PA
application should always start with choosing an appropriate analyte absorption
feature together with a suitable emitter. In this regard, the product of optical power
and cross-section of the absorption feature must be ensured to meet the requirements
of sensitivity. The easiest way to verify this is to browse references that specify these
quantities together with the limit of detection, the authors achieved. This theoretical
study must also take into account potential spectral cross-sensitivities toward com-
ponents, which you may expect to be part of the gas sample. Furthermore, it has to be
considered if emitter as well as absorption feature allow for wavelength modulation,
which might be preferable to that of amplitude modulation, especially if the
non-analyte components must be assumed to significantly vary in concentration or
if light-with-PAC interactions are expected to generate a non-neglectable back-
ground signal. Cost is also a decisive factor with regard to the development of a
respiratory gas sensor, and it scales with complexity. Accordingly, while for exam-
ple a bare QTF setup or a LED-based non-resonant multi-pass approach can meet the
requirements of a simple sensor for private self-administration, systems for qualita-
tive pre-diagnosis in a family doctor’s office or quantitative high-end clinical
analysis may rather necessitate sophisticated resonant PAC designs or even optical
cavity-enhanced approaches.

In terms of calibration and sensor resilience, changes of temperature as well as of
water or carbon dioxide concentrations in the exhaled breath have to be considered.
Once these parameters are not kept constant by application, e.g., by temperature
control, humidification or de-humidification, resonant or especially acoustically
double-resonant systems require sophisticated calibration. If, in addition,
relaxation-induced signal changes must be suspected due to concentration changes
of the main components of the mixture (refer to Sect. 4), acoustically double-
resonant systems must be supported by a robust multivariate data analysis as
discussed in [101]. Besides calibration intervals, maintenance and ease of use are
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further criteria, that must be regarded when comparing simple non-resonant designs
with complex optics in cavity-enhanced approaches, for example. A final and yet
very important property is the long-term stability of the sensor and its drift behavior.
As PA sensor drifts often correlate with the light that is used for PA signal
generation, e.g., by emitter aging or contamination and de-alignment of the optical
path, respectively, a reliable monitoring of the optical power inside the PAC is
recommended. All things considered, an all-including comparison of different PA
techniques culminating in a perfect hardware concept proposal is hardly possible, as
it depends heavily on the application and the targeted specifications, such as LOD,
selectivity, ambient noise, analyte species, measuring interval, target size of the
sensor, importance of cost factor, static or varying bulk composition, maintenance
interval and so forth. A comprehensive review of NIR PA applications for human
breath analysis can also be found in [9].

4 Photoacoustic Spectroscopy in Complex Gas Matrices

Based on the very first experimental studies carried out by Pauling in 1971 [1], it has
been demonstrated that human exhaled breath represents a complex gas matrix. In
the following years, various components of exhaled air could be identified, see
Table 1. Some of those molecules, called biomarkers could be linked to correlate
with various diseases or metabolism anomalies. However, since until today only
nitrogen monoxide has been accepted as a unique biomarker for asthma it is more
appropriate to refer to these molecules as “potential” biomarkers. A more detailed
discussion on biomarkers in breath analysis is provided in the chapter Physio-
Metabolic Monitoring via Breath Employing Real-Time Mass Spectrometry: Impor-
tance, Challenges, Potentials and Pitfalls within this book.

Medical POC devices need to be capable of reliably measuring the low concen-
tration ranges and changes of the respective analytes of interest in human breath
exhale. Photoacoustic sensors already proved their potential for ultra-sensitive trace
gas analysis in many fields of application, e.g. monitoring of environmental relevant
trace gases [24, 31, 32, 48, 119–121], industrial process control [122, 123] or
exhaled breath diagnostics [9, 25, 26, 69, 124, 125].

Utilizing low-cost and miniaturized components, photoacoustic-based sensors
provide a suitable technique for mobile and affordable breath diagnostics. Never-
theless, the inherent disadvantages of PAS, such as the dependency of the measure-
ment signal on environmental parameters, i.e., pressure p, temperature T, and gas
composition ∑χ should not be neglected, when developing reliable medical diag-
nostic tools.

Variations in ambient conditions may affect the measurement signal due to
spectral effects, e.g., additional photon absorption of interfering molecules or spec-
tral peak deformation. The generation of the acoustic wave within the PAC may be
also influenced, as the speed of sound changes and potential attenuation effects
might occur. Furthermore, the overall efficiency of photoacoustic signal generation
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Erelax via non-radiative relaxation is also strongly dependent on environmental
conditions. In general, the photoacoustic signal is prone to three major categories
of cross-sensitivities:

• Spectral cross-sensitivities: Since PAS is an optical measurement technique, i.e.,
stimulating certain energy transitions of the analyte, possible spectral influences
pose a major challenge. Detailed investigation, e.g., utilizing well-known spectral
databases like HITRAN, PNNL, or MPI-Mainz UV/Vis Spectral Atlas can
minimize the risk of such cross-influences a priori. Nevertheless, in complex
gas mixtures containing multiple gases it cannot be guaranteed that a completely
cross-influence-free wavelength or wavelength region can be found. Section 4.1
discusses various approaches to cope with spectral cross-influences. The appli-
cation of wavelength-adjustable light sources (refer to Sect. 3.1.1) and statistical
evaluation methods, such as partial least squares regression (PLSR), can com-
pensate for interfering spectral effects for a major part, or even allow reliable
multicomponent detection in highly overlapping spectral regions [101].

Table 1 List of selected compounds in healthy human breath exhale adapted from [17, pp. 23–24]

Exhale breath
component Concentration range (healthy, altered) in ppmV Reference

Nitrogen (N2) 740,000

Oxygen (O2) 140,000–160,000

Carbon dioxide
(CO2)

40.000–50.000 [102, 103]

Water (H2O) 29.000–50.000 [104]

Argon (Ar) 10.000 [102]

Carbon monox-
ide (CO)

0.4–0.8
1.14–1.37; 13.6–19.3

[105, 106]

Methane (CH4) 3–8 [105, 107]

Hydrogen (H2) ppmV range [107, 108]

Ammonia (NH3) 0.43–1.8; 14.7
0.05–0.15
0.628

[105, 109,
110]

Isoprene (C5H8) 0.12; <0.014
0.04
0.02–0.23

[110–113]

Methanol
(CH3OH)

0.46 [114, 115]

Ethanol
(C2H5OH)

0.26 [110]

Carbonly sulfide
(OCS)

0.1; 0.64 [116, 117]

Acetone
(C3H6O)

0.3–0.9; 128 (The concentration has been converted from
5,063 nmol L-1 to 128 ppmV using Vmol = 25.28 L mol-1 and
T = 308 K)

[113, 118]

The typical healthy concentration range is displayed in normal font numbers, the altered concen-
trations for non-healthy conditions are highlighted in bold and italic numbers
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• Classical acoustic attenuation effects: In PAS, the periodic local heat input via
non-radiative relaxation of the excited molecules is detected. This periodic heat
input results in compression and subsequent dilatation of the gas, which is per
definition a sound wave. Several acoustic effects influence the propagation of this
sound wave. Typically, an acoustic resonator is employed in PA setups to amplify
the generated sound wave (refer to Sects. 2.3 and 3.2.1). The resonant properties
of such an acoustic resonator and its attenuation effects due to several loss
mechanisms can be described by its quality factor (Q-factor). For cylindrical
acoustic resonators, the photoacoustic signal is directly proportional to the
Q-factor (see Eq. 37). Section 4.2 discusses real-time capable compensation
approaches regarding acoustic attenuation effects for different PA setups.

• Non-radiative relaxational effects: The periodic heat input results from
non-radiative relaxation via molecular collisions. When an excited molecule
collides with another molecule, three possible energy transition may occur. The
first possibility describes no exchange of internal energy, only a change in the
direction of translational motion of the respective collisional partners.
Vibrational-translational relaxation on the contrary considers the possibility of
converting internal energy of an excited molecule into translational energy of
motion, in turn generating heat. Vibrational energy transfer from one collisional
partner to another is labeled vibrational-vibrational relaxation. Those VV pro-
cesses increase the complexity of the overall relaxation path and tend to become
more influential with regard to complex multi-component gas mixtures. The
example of methane is used to illustrate the challenge of calibrating photoacoustic
sensors with respect to relaxational effects. A special case of non-radiative
relaxational effects is a phenomenon called kinetic cooling. Concluding Sect.
4.3, an algorithmic model is briefly introduced, which increases the resilience of
the PA signal against relaxational effects.

A further effect that might influence the photoacoustic signal is the effect of
photodissociation. This effect has been discussed in detail regarding photoacoustic
acetone [25, 26] and ozone detection [126, 127] in the UV/Vis range.

Spectral and relaxational cross-effects on the photoacoustic signal apply to all PA
setups, as they are inherent in the basic physics behind the photoacoustic effect.
However, from this point, only a longitudinally excited cylindrical resonator is
considered. Other PAC designs that exploit different ways of acoustic amplification
are described in Sect. 3.2.1 and will be neglected for further consideration.

The photoacoustic pressure of the first longitudinal mode can be represented by
Eq. (37). Besides geometrical factors of the cylindrical measurement cell (L/V )R and
the light-to-sound coupling factor μj, which both can be assumed constant for a given
setup, the photoacoustic pressure depends on the resonance condition (Q/ω)res, the
non-radiative relaxation efficiency Erelax and the absorption coefficient α of the gas
matrix at the wavelength of emission.

The complex correlations between the non-spectral, non-constant
photoacoustically relevant parameters and environmental conditions, i.e., tempera-
ture T, pressure p, and gas composition ∑χ, are schematically illustrated in Fig. 8.
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Variations in ambient conditions (solid arrows) affect the heat capacity ratio of the
measurement gas, the resonance parameters and Erelax. The circular dependencies
between these PA parameters are indicated by the dashed arrows labeled with the
respective underlying physical effects. The absorption coefficient α likewise
depends on pressure, temperature and measurement matrix, but is excluded from
these circular relationships.

In the following sections, the challenges for PAS in complex and varying gas
matrices, such as human exhaled breath are discussed. Experimental as well as
mathematical approaches to cope with different cross-influences on the
photoacoustic signal are provided to conclude this section.

4.1 Spectral Cross-Sensitivities

The photoacoustic pressure results from initial photon absorption of analyte mole-
cules and subsequent non-radiative relaxation of the excited molecules. Spectral
cross-sensitivities pose a major challenge in any photon absorption-based measure-
ment technique, especially in complex gas matrices, such as human breath exhale.
Due to spectral overlap with the analyte molecules, even low concentrated breath
components in the ppbV to ppmV range might have a significant influence on the
photoacoustic signal. Figure 9 illustrates the problem of overlapping absorption
features in human breath exhale. The spectral region from 3,500 to 7,500 cm-1 is
completely dominated by the high concentration breath components water and
carbon dioxide. In this region, a reliable analyte detection in the ppmV or

Fig. 8 Schematic representation of the circular dependencies of different environmental parame-
ters, i.e., temperature T, pressure p, and gas composition ∑χi on certain PA parameters. The
environmental influences are arranged in descending order of influence
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sub-ppmV range by means of PAS is hardly feasible. For the IR region at around
3,000 cm-1 and lower, some of the trace gas breath components exhibit relatively
strong absorption, thus providing an interesting area for optical breath analysis. In
the ultraviolet region (Fig. 9b) the spectral overlap is less pronounced. While not all
analytes present in human exhale breath show noticeable absorption in the UV
region, some, such as acetone, can be detected without significant spectral cross-
sensitivities at approximately 0.28 μm [25, 26].

In regions where spectral interference from other molecules cannot be avoided,
the employment of tunable light sources, e.g., ICL and QCL, provide a possible
approach for reliably determining the target analyte concentration [123, 128–
130]. Utilizing the tunability of those light sources, the PA response can be recorded
for multiple wavelengths. Consequently, the individual contribution of interfering
molecules to the overall PA signal can be determined, thus allowing to retrieve the
desired analyte concentration. A simple hypothetical example regarding the effect of
overlapping absorption spectra is illustrated in Fig. 10. While molecules A and B
show gaussian distributed absorption characteristics with center wavelengths λA and
λB, molecule C exhibits constant absorption over the whole displayed spectral
region. Due to the strong overlap of the individual absorption characteristics, the
actual concentration of molecule B cannot be determined by recording the PA signal
of the mixture at a single wavelength.

The PA signals bSij of the individual components i in a gas sample containing
multiple species K, scanned over a wavelength region from λj to λn can be
represented as a (K × n) matrix of linear equations

Fig. 9 Absorption coefficients of the endogenous exhale breath components listed in Table 1 in the
infrared (a) and ultraviolet/visible (b) – region. The data was taken from HITRAN and the
MPI-Mainz UV/Vis Spectral Atlas. For better visual clarity the spectra of water and carbon dioxide
were filled
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bSij = S11 =P1 λ1ð ÞN1R11 λ1ð Þ ⋯ S1n =Pn λnð ÞN1R1n λnð Þ
⋮ ⋱ ⋮
SK1 =P1 λ1ð ÞNKRK1 λ1ð Þ ⋯ SKn =Pn λnð ÞNKRKn λnð Þ

0B@
1CA ð41Þ

Each element of the matrix is a function of emitted optical power Pj at wavelength
λj, the unknown volume ratio Ni of molecule i and the respectively measured
response Rij of the PA sensor [131]. The photoacoustic signal of the gas matrix bSj
at wavelength λj is defined as the sum of the individual responses Rij

bSj =Pj λj
� �XK

i= 1

NiRij ð42Þ

Solving Eq. (42) for the unknown volume ratio Ni of component i results in

Ni =
XK
j= 1

R- 1
ji

bSj
Pj λj
� � ð43Þ

where R- 1
ji represents the inverse of the matrix Rij. In order to deduce the concen-

trations of the individual species within a gas sample, an unambiguous solution for
the set of linear Eq. (42) must be found. This requires the photoacoustic signal to be
measured at a minimum of K different wavelengths [131]. It is obvious that
appropriate wavelengths should be selected based on the absorption characteristics
of the individual components. Utilizing wavelength modulation of the light source
the effect of constant absorbers, such as molecule C can be avoided in terms of PA
signal generation, see Fig. 10b. When dealing with complex gas mixtures, a com-
bination of WM and AM may be an appropriate approach.

Fig. 10 Schematic representation of multicomponent analysis, with overlapping spectra of the
individual components (A, B, C) resulting in a cumulative spectrum of the gas mixture (a). The
graphs on the right side (b) display the absolute resulting 2f spectra
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In recent literature, several examples can be found that successfully apply the
approach of spectra reconstruction in complex gas mixtures utilizing PAS. Zifarelli
et al. employed a QCL to reconstruct the spectra of mixtures diluted in N2 containing
traces of N2O and CO2 from 2,188.8 to 2,191.2 cm-1 as well as CH4, C2H2, and N2O
from 1,295.5 up to 1,296.5 cm-1 by means of WM-QEPAS [129]. With an overlap
Z of the individual absorption features of up to 97.4%
ZCO-N2O = 7:3%, ZCH4 -N2O = 79:8%, ZCH4 -C2H2 = 97:4%ð Þ spectral cross-sensi-
tivities pose a significant challenge. The approach in this study was to combine the
spectral measurements with statistical evaluation algorithms, i.e., multi linear regres-
sion (MLR) and PLSR, to retrieve the desired analyte concentrations. In principle,
both MLR and PLSR are suitable for retrieving individual concentrations from
highly overlapping gas mixtures. However, Zifarelli et al. demonstrated that PLSR
improves the root mean squared error of calibration by up to a factor of 5 compared
to MLR [129]. The work of Loh et al. [132] and Saalberg et al. [133] represent
further examples of the successful implementation of PLSR in multi-component gas
mixtures. In [132], PLSR allowed to accurately quantify individual short-chained
12C, 13C hydrocarbon isotopologues from CH4, C2H6, and C3H8 in the region from
2,998.8 to 3,005.1 cm-1 and from 2,944.0 to 2,964.5 cm-1. Volatile organic
compounds, such as 2-butanone, 1-propanol, isoprene, ethylbenzene, styrene, and
hexanal exhibit strong spectral overlap in the range from 2,817 to 3,077 cm-1.
Despite these strong cross-influences, Saalberg et al. were able to quantify the
individual concentrations in mixtures with excellent relative accuracy of 2.6%,
emphasizing the potential of PLSR for spectral measurements [133].

4.2 Acoustic Attenuation Effects and Resonance Monitoring

While regarding spectral interferences even trace gases could potentially cause a
significant impact on the PA signal, due to overlapping absorption features, acoustic
attenuation and relaxational effects more likely occur at higher concentrations.
Formula (37) describes the photoacoustic pressure pa of the first longitudinal
mode. Referring to Fig. 8 changes in environmental conditions, i.e., temperature,
gas composition, or pressure, will affect the standing wave formation within the
acoustic resonator. This in turn influences the resonance parameters (Q/ω)res. Refer-
ring to Eq. (27) changes in the speed of sound result in a shift of acoustic resonance
frequency. In microphone-based PA setups, the resonance frequency of the system
can be determined by the acoustic resonator, since microphones generally feature a
rather flat frequency response between 1 and 20 kHz. When using resonant acoustic
transducers instead, e.g., QTF or cantilever, the resonance frequency of the system is
predetermined by the transducer properties. Utilizing beat frequency photoacoustics
the resonance frequency fres, Q-factor and analyte concentration can be determined
in real-time. In BF-PAS the modulation frequency of the laser flaser is set slightly
different to the actual resonance frequency of the PA system fres.
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f laser = f res ± f ð44Þ

Demodulating the measured BF-PAS signal at flaser results in the transient signal
of the setup, as displayed in Fig. 11. The frequency f = Δt-1 of the demodulated
transient signal corresponds to the difference between laser modulation flaser and
resonance frequency of the transducer, thus allowing simple fres tracking. The
Q-factor depends on the ringdown time τ and fres, according to classical damped
oscillator theory [50].

Q= τπf res ð45Þ

The ringdown time τ is defined as the time required for the system to drop to 1/e
of the initial vibration amplitude and can be determined by exploiting the envelope
of the BF-PAS transient signal.

Regarding microphone-based PA setups, Schindler et al. presented a simple
approach to determine the resonance frequency of acoustic resonators by integrating
a miniaturized speaker within the PA sensor [134]. In this work, the resonance
frequency was quantified by frequency sweeping the speaker and recording the
resulting microphone response. Moreover, substituting the frequency sweeps with
pulsed, periodic excitation of the speaker and analyzing the FFT of the microphone
signal allows for real-time resonance frequency tracking (RT) [135]. Furthermore,
the FFT of the microphone signal contains information about the Q-factor of the PA

Fig. 11 Typical demodulated BF-PAS (beat frequency – photoacoustic spectroscopy) signal (black
solid line) with frequency f = Δt-1 and the resulting envelope fit (red dashed line) to determine the
ringdown time τ
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system [135]. Utilizing this could potentially yield a real-time monitoring system for
all relevant resonance properties.

Implementing an RT technique guarantees the photoacoustic signal to match the
Eigenfrequency of the system. This avoids signal losses provided that the system is
not based on the exploitation of multiple acoustic resonators, that are affected
differently by varying ambient conditions, such as changing temperature. Addition-
ally, utilizing BF-PAS or Q-factor monitoring the influence of acoustic attenuation
on the photoacoustic signal might be compensated by determining the resonance
parameters (Q/ω)res. This would increase the reliability of PA gas sensors in case of
varying environmental parameters. In [26] the effect of temperature on the Q-factor
for a microphone-based PA sensor was investigated. A temperature shift of 30 K
from 20 to 50°C of the PAC resulted in a 3.4% decrease in the Q-factor. Considering
that the PA amplitude is directly dependent on the Q-factor, this effect, if not taken
into account, would result in a 3.4% deviation of the sensor reading from the
calibrated value.

As an alternative approach to avoid signal deviation that might occur due to
changes in bulk composition, several PA-based sensor concepts for breath analysis
successfully include dehumidifiers or CO2 scrubbers to avoid potential cross-
sensitivities [66, 69]. However, these approaches are accompanied with an increase
in apparatus complexity as well as an increase in sensor dimensions. By combining a
multi-wavelength approach (see Sect. 4.1) with the concept of acoustic resonance
monitoring, the reliability of the sensor system can be improved without increasing
its mechanical complexity.

4.3 Molecular Effects in Photoacoustic Spectroscopy

4.3.1 Heat Capacity Ratio γ in Gaseous Media

Referring to Eqs. (14) and (37) the heat capacity ratio γ is directly correlated to the
source term of photoacoustic signal generation and the resulting photoacoustic
pressure pa. In gaseous media, this ratio can generally be expressed as a function
of the sum over all degrees of freedom (DOF) ∑f.

γ= 1þ 2P
f

ð46Þ

The sum ∑f includes three categories of molecular motion. Linear motion in
three-dimensional space (x-, y-, z-direction) is described by the translational degrees
of freedom ftrans = 3. Rotational and vibrational states of the molecules are summa-
rized in frot and fvib, respectively. Linear molecules, e.g., CO2 exhibit two possibil-
ities of rotational motion frot = 2, while for non-linear molecules frot = 3. The
vibrational DOF equal (3N - 5) in case of linear and (3N - 6) in case of non-linear
molecules, consisting of N atoms. However, since temperature and frequency affect
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which DOF are thermally activated and exhibit sufficiently fast relaxation to con-
tribute to sound propagation, respectively, T and fsound have to be considered. At
moderate temperatures and moderate acoustic frequencies in the lower kHz range, all
rotational and translational degrees of freedom can be assumed to completely
contribute to sound propagation. However, this assumption cannot be applied
generally to vibrational DOF. The ratio of thermally excited fvib can be calculated
according to Eq. (47), which considers the temperature T of the sample, as well as the
degeneracy n and the temperature Θvib of the vibration, respectively.

f vib Tð Þ= 2n
Θvib

T


 �2 exp - Θvib
2T

� �
1- exp - Θvib

T

� � !2

ð47Þ

The temperature of vibration Θvib is a function of the related wavenumber ~ν, the
speed of light c0, the Planck constant h and the Boltzmann constant kB.

Θvib =
hc0~ν
kB

ð48Þ

The term acoustic dispersion describes the phenomenon of the frequency depen-
dency of fvib(ω). With increasing sound frequencies9 some vibrational modes may
not be able to follow the energy exchange finally causing periodic compression and
subsequent dilatation. In terms of sound propagation, those modes are no longer
relevant, even if they are thermally excited. In order to correctly calculate the
adiabatic exponent of complex gas mixtures, Eq. (46) must be adjusted to

γðT ,ωÞ= 1þ 2

f trans þ
Pk
i= 1

χi �
�
f rot þ

Pn
m= 1

f vibðTÞ � Erelax,i,νmðT ,ωÞ
	 ð49Þ

The sum
Pk

i= 1 takes into account every species within the measurement matrix,
where the individual volume ratios of the individual species are considered as χi. The
vibrational states νm of the molecule i and their respective relaxational efficiencies
are considered by

Pn
m= 1 Erelax,i,νm . The relaxation efficiency accounts for acoustic

dispersion (Erelax,i,νm = 1: no acoustic dispersion; Erelax,i,νm = 0: maximal acoustic
dispersion). The following section explains why molecular relaxation plays another
significant role in photoacoustic signal generation. For a more theoretical profound
derivation of the phenomenon of molecular relaxation processes refer to literature
[136–138].

9Regarding AM-PAS, the sound frequency equals the frequency of light modulation.
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4.3.2 Non-radiative Molecular Relaxation

A major challenge when calibrating photoacoustic gas sensors against environmen-
tal influences is the effect of non-radiative molecular relaxation. If a vibrationally
excited molecule collides with another molecule, some part of (VV relaxation) if not
all vibrational energy (VT relaxation) of prior photonic excitation may be released as
translational energy into the system. VV relaxations cover intramolecular and
intermolecular energy exchange. In the latter case, part of the energy is transferred
to the collisional partner. A simplified illustration of possible energy transitions
during molecular collision is depicted on the left side of Fig. 12, while the Jablonsky
diagram on the right shows the concrete example of NIR CH4 detection in a complex
gas matrix containing H2O, O2, N2, and CO2.

In the case of 100% relaxation, all vibrational states actively involved in the
overall relaxation process are capable of releasing their vibronic energy prior to de
novo light absorption. The relaxation efficiency Erelax of an individual energy state ν
is defined as

Erelax,ν =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ωk- 1
ν

� �2q ð50Þ

with ω being the angular frequency of laser modulation and kν the non-radiative
relaxation rate of ν, i.e. the reciprocal relaxation time τν. While fast relaxation rates
result in 100% relaxation, i.e., Erelax, ν = 1, slower rates may cause delayed

Fig. 12 Schematic representation of non-radiative relaxation processes (left) and a complete
Jablonsky diagram (right) showing all relaxational routes regarding the near-IR detection of CH4

in a mixture further containing H2O, O2, N2, and CO2. The left diagram displays all possibilities that
may occur while collision of a CH4 molecule with any other molecule (a). These include intramo-
lecular energy transfer (b), VT relaxation (c), and VV relaxation (d). On the right side, the solid
arrows indicate intramolecular relaxation, while the dashed arrows represent intermolecular energy
transitions
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relaxation, i.e., Erelax, ν < 1, leading to PA signal loss as slowly relaxing vibrational
states cannot be completely depopulated before a new cycle of absorption begins.
The number of VV transitions scales with the number of different species composing
the gas sample. Such transitions tend to increase the complexity of the relaxation
cascade, thus considerably complicating an analytical description of the underlying
processes. As is discussed in [6] in detail, literature in this regard often utilizes
oversimplified assumptions. More recently, however, analytical approaches have
been reported to adequately deal with relaxational effects by considering all molec-
ular collision reactions involved in the respective relaxation process, yielding a
theoretically derived PA signal [24, 55, 121].10 Their calculations show excellent
agreement with the measured data, verifying the fundamental mathematical correla-
tions presented by Hunter et al. in 1974 [139].

With CoNRad (an algorithm to compute the collision-based non-radiative effi-
ciency and phase lag of energy relaxation on a molecular level) a more sophisticated
approach was introduced in 2022 by Müller et al. [6]. In this work, the capability of
CoNRad to compensate for relaxational-induced signal alterations in the concrete
case of NIR methane detection was demonstrated. The potential of CoNRad to
predict the relaxation-dependent PA signal for different sensor setups employing
other acoustic transducers than a microphone, e.g., a QTF, and detecting different
analytes was also shown exemplarily in [6]. The direct comparison of the measure-
ment results regarding QEPAS-based carbon monoxide detection from [121] with
the theoretical calculations obtained from CoNRad showed excellent agreement.
Utilizing this algorithmic approach in combination with a method to calculate or
empirically determine the resonance characteristics of the PAC as well as a spectral
analysis of the sample may significantly increase the robustness, resilience, and
reliability of PA sensors.

5 Selected Applications: Photoacoustic Spectroscopy
in Breath Analysis

This section discusses potential biomarkers found in human breath as well as their
detection by means of photoacoustic spectroscopy. A more detailed discussion on
the term “biomarker” for breath analysis is provided in the chapter Physio-Metabolic
Monitoring via Breath Employing Real-Time Mass Spectrometry: Importance,
Challenges, Potentials and Pitfalls within this book. Table 2 lists potential and
already approved (e.g., NO) biomarker molecules, which have been detected by
means of photoacoustic spectroscopy. Since until today only a few BA studies have
been performed using PAS as a detection method, studies that are still in the
laboratory phase but aim to apply their research in the field of breath analysis have

10By the example of the Jablonsky diagram depicted in Fig. 12, 50 different collision reactions have
to be considered.
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been listed as well. Hence, care has been taken to highlight the technology readiness
level of the PAS studies discussed within the following subsections.

5.1 The Human Volatilome Regarding Breath Analysis

The human volatilome comprises all volatile metabolites as well as other volatile
organic and inorganic compounds originating from humans, i.e., saliva, sweat, urine,
stool, blood, and exhaled breath. Thus, more than 870 volatile organic compounds
have been identified in breath samples [176]. The origin of the VOCs can thereby be
endogenous, i.e., arising in the body, or exogenous, i.e., originating from the
environment. Biomarkers are usually endogenous species that either result from
normal metabolic processes or reveal an imbalance, which may indicate a disease or
a systemic dysfunction. Since breath sampling is non-invasive, breath analysis is
considered patient friendly and hence preferable for medical diagnosis. As already
listed in Table 1, human exhaled breath contains primarily nitrogen (74%V), oxygen
(14–16%V), carbon dioxide (4–5%V), water vapor (2.9–5%V), and argon (1%V)
[102–104], while VOCs with clinically relevant information are quite low concen-
trated. The actual concentrations depend on the patient’s age, medical condition, and
individual metabolism. In this context, the volume ratio of different potential bio-
markers ranges from the pptV to the lower ppmV range. Therefore, it is of crucial
relevance to quantify specific biomarkers as accurately as possible in order to
generate reliable diagnostic data.

Table 2 Summary of potential biomarker species and associated diseases, which have been
measured by means of photoacoustic spectroscopy

Biomarker Disease References

Ammonia Liver or kidney anomalies [35, 140–148]

Ethylene Oxidative stress: lipid peroxidation [125, 142, 143, 145,
146, 149–152]

Acetone Metabolic processes, obesity, children with epileptic sei-
zures (ketogenic diet), acute decompensated heart failure

[25, 118, 153–160]

Methane Sugar malabsorption [105, 161–164]

Nitric oxide Lung disease, asthma [165–169]

Carbon
monoxide

Jaundice [63, 106, 170–172]

Hydrogen
cyanide

Cystic fibrosis [173]

Nitrous
oxide

Partial gastrectomy, atrophic gastritis [174, 175]
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5.2 Breathborne Biomarkers and Photoacoustic Spectroscopy

Ammonia
Ammonia is present in all body fluids and originates from protein metabolism
processes. As a potential biomarker, ammonia is of growing interest as it is com-
paratively easy to measure with a typical concentration in breath of 0.25–2.9 ppm
[140]. However, the sampling should be conducted rather nasally than orally as
studies have revealed ammonia to be produced by enzymes in the oral cavity, too
[141]. NH3 is associated with liver or kidney anomalies, as it cannot be properly
filtered out of the blood in case of hypofunction. Since ammonia is volatile, some of
the NH3 is released into the exhaled breath through alveolar exchanges. Applying
amplitude modulated PAS, ammonia is often monitored together with ethylene (see
below), since both molecules can be excited with a CO2 laser (spectral range approx.
9.2–10.8 μm). Further references reports PA NH3 detection limits in the lower ppbV
or even sub-ppbV range [35, 142–148].

As an example, Mitrayana et al. compared the ammonia content of healthy people
to patients suffering from a liver disease. On average, they discovered that the NH3

concentration in the breath of the patients (3.27 ppmV) was about 2 ppmV higher
than in the breath of healthy people (1.34 ppmV) [144]. Wang et al. used a tunable
NIR fiber laser at 1,522.44 nm to photoacoustically detect the ammonia content in
exhaled breath of dialysis patients before and after treatment noticing a reduction of
NH3 concentration by about 1.5 ppmV on average [177]. Recently, Li et al. [35]
analyzed the breath of eight healthy volunteers using BF-QEPAS reaching a detec-
tion limit of 9.5 ppbV with an integration time of 3 ms.

Ethylene
Ethylene is a potential biomarker mainly associated with oxidative stress (OS). OS is
caused by an imbalance of free radicals (oxidative process) and antioxidant pro-
cesses, which may induce cellular damage or dysfunction. Hence, OS is directly
related to physiological or biochemical events. Through lipid peroxidation (LP), i.e.,
the oxidative degradation of lipids, a radical chain reaction is initiated, causing lipids
in the cell membrane to degrade the cell. Diseases associated with OS, as a
consequence of LP, are cancer, atherosclerosis, stroke, rheumatoid arthritis,
neurodegeneration and diabetes, to name only a few [178]. Besides ethane and
pentane, ethylene is a stable end product of LP which can be photoacoustically
detected with a CO2 laser down to the pptV range [149]. Based on the list of possible
diseases caused by LP, the determination of ethylene content in breath has a wide
range of clinical applications [125, 142, 143, 145, 146, 149–152].

Petrus et al. studied the ethylene concentrations in the breath of lung cancer
patients as a direct consequence of smoking before and after chemotherapy. While
healthy people are reported to exhale ethylene concentrations between 10 and
25 ppbV, lung cancer patients were identified to exhale up to 480 ppbV
[151]. Cristescu et al. monitored the ethylene levels induced by LP in patients
undergoing cardiac surgery in real-time with a detection limit of 300 pptV
[149]. In other studies, Petrus et al. showed that the breath ethylene content could
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be associated with type 2 diabetes. Again, the ethylene content increases signifi-
cantly as a result of OS. Accordingly, the ethylene content of diabetics was about one
order of magnitude higher than compared to non-diabetics [142, 143]. Popa et al.
demonstrated breath ethylene to originate generally endogenously by comparing
nasal and oral samples before and after brushing with toothpaste/baking soda,
obtaining no significant differences [125].

Acetone
Like other ketones, acetone is formed in the liver during fat metabolism by the
breakdown of fatty acids, passed to the lungs via the bloodstream, and finally
exhaled alveolarly. Besides fat metabolism monitoring, acetone is also used to
identify the maximum performance of athletes by determining the anaerobic thresh-
old [153]. However, acetone as a biomarker is often associated with type 1 diabetes,
although no clear evidence for a reliable relation has been found so far [154]. Even
though it has been shown that the breath acetone content is linearly correlated with
the blood glucose level [155], the acetone concentrations in type 1 diabetes vary
substantially and therefore cannot completely replace the common blood glucose
tests. Nevertheless, acetone is regarded to be a useful target analyte for monitoring
ketogenic diets. Thus, monitoring acetone levels can not only help in overcoming
obesity [156] but also support children with epileptic seizures on their ketogenic diet
[118, 157]. Besides, the clinical relevance of acetone as a biomarker became
emphasized in studies by Samara et al. reporting an increased acetone and pentane
level among patients with acute decompensated heart failure [158]. Among healthy
adults, the mean acetone content is about 500 ppbV [159].

In view of photoacoustic detection, Tyas et al. used a CO2 laser to compare the
acetone content of diabetes Mellitus patients with that of healthy persons, and
achieved a detection limit of 30 ppbV [160]. As a low-cost alternative, Weigl et al.
developed a measurement system based on a modulated UV LED and reported a
detection limit of 20 ppbV under laboratory conditions [25].

Methane
Methane is formed during the metabolism of bacteria in the gut. About 20% of thus
generated methane diffuses into the blood and is emitted by breath with an abun-
dance of 3–8 ppmV [105, 161]. In the case of sugar malabsorption (SM), methane
serves as a biomarker. As a consequence of SM bloating, cramps, diarrhea, and other
symptoms of irritable bowel syndrome may occur in the intestine. It might also
interfere with other nutrient intake processes [161].

From the photoacoustic point of view, Lassen et al. follow an approach with a
pulsed MIR-OPO between 3.1 and 3.5 μm achieving a methane detection limit of
0.2 ppbV at 100 s integration time [162]. Similarly, using a MIR-OPO but with
QEPAS technique, Petersen et al. reached a detection limit of 32 ppbV under
laboratory conditions [163]. By means of pig and rat models, Szucs et al. were
able to photoacoustically detect methane within a concentration range between
12 and 90 ppmV [164].
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Nitric Oxide
Nitric oxide is involved in many processes in the respiratory system and is used as a
biomarker for the detection and monitoring of lung disease or asthma, since NO
levels are increased in such pathologic states [165]. According to the 2017 NICE
Asthma Guidelines, the critical level is 40 ppbV among adults and 35 ppbV among
children [166].

Using a QCL emitting at 5.26 μm, where no spectral cross-sensitivities toward
water or CO2 have to be expected, Dong et al. achieved a detection limit of 4.9 ppbV
with 1 s integration time measuring synthetic gas mixtures [167]. Similarly, with a
QCL at 5.26 μm as well as an integration time of 1 s, Wu et al. reported a detection
limit of 7 ppbV by exploiting a differential photoacoustic cell approach (refer to
Sect. 3.2.4) [168]. However, this sensor has not yet been tested for real breath
samples. Gondal et al. used a Q-switched Nd:YAG laser at the fifth harmonic to
reach the strong UV absorption band of NO between 200 and 250 nm [169]. By
means of three different PA cells, they investigated the parametric dependence on
cell geometry, NO gas pressure, buffer gas including He, Ar, and N2 as well as laser
pulse energy. Finally, they determined the highest sensitivity when using three
acoustic filters and argon as buffer gas, achieving detection limits for the 3 PACs
of 41, 11, and 20 ppbV, respectively. Again, this setup was only used in the
laboratory.

Carbon Monoxide
Increased carbon monoxide levels in exhaled air among neonates may indicate
jaundice. In general, exhaled CO is a potential biomarker for oxidative stress (see
above), chronic respiratory disease, or exposure due to air pollution [170]. The
median CO level, depending on smoking or non-smoking persons, is 16.4 ppm
and 1.3 ppmV, respectively [106].

In their laboratory, Dong et al. developed a QEPAS-based sensor system using a
4.65 μmQCLwith a detection limit of 2 ppbV (1 s integration time) [63]. Meanwhile,
Zhou et al. reached a detection limit of 1.1 ppbV with a QCL-based system, too. In
studies of breath samples from non-smokers and smokers, a significant increase of
about 2 ppmV CO content was observed [171]. In an experimental comparison
between QEPAS and photothermal spectroscopy (PTS), Pinto et al. obtained a
detection limit of 6 and 15 ppbV (QEPAS/PTS) in the laboratory. Therefore, they
realized compact QEPAS and PTS detection modules assembled as a gas sensor
system for CO that stimulates the fundamental mode at 4.6 μm with a distributed
feedback QCL [172].

Further Potential Biomarker Species
Hydrogen cyanide is produced by the Pseudomonas aeruginosa bacterium, which
causes the fatal respiratory disease cystic fibrosis (CF). Neerincx et al. developed a
mid-IR laser PAS system using clinical isolates from CF patients. They identified
that the HCN concentration increases as soon as the P. aeruginosa bacterium reaches
its stationary phase [173].

N2O is an indicator of bacterial growth in the stomach due to the reduction of
gastric acidity. Accordantly, the N2O content in exhalate in healthy people amounts
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to approx. 0.8 ppm V and up twofold in patients with partial gastrectomy or atrophic
gastritis, respectively [174]. Bayrakli developed a portable QEPAS system based on
a 4.474 μm QCL, which is used to determine the N2O content in breath with a
minimum detection limit of 2 ppbV (100 s integration time) [175].

6 Summary and Outlook

Breath analysis is an emerging technology, which has proven its high potential for
modern, non-invasive, and fast diagnostics in the last decades. However, this
technique is still struggling to find its way into the everyday routine of clinics
let alone the doctoral office or the consumer market. Photoacoustic spectroscopy is
a highly promising and innovative technique, which can contribute to paving the
way for breath analysis to advance from bench to bed or market.

Illuminating all facets of photoacoustic spectroscopy, the chapter introduces a
fundamental understanding of the physical principles this sensor technique exploits.
To be able to grasp the potential for an application in breath analysis, a comprehen-
sive overview of various photoacoustic setups including their pros and cons is
presented. Besides, it is demonstrated that in terms of sensitivity, PAS achieves
the required limits of detection in breath analysis for several biomarkers. Since
selectivity is an even greater challenge than sensitivity in breath analysis, care
must be taken regarding spectral and non-spectral cross-sensitivities. Especially
the latter one is often neglected or oversimplified leading to unreliable sensor
readings within changing gas matrices. Therefore, one section of this chapter is
dedicated to discussing potential cross-sensitivities when PAS is applied in breath
analysis. In the future, digital twins of PA sensors may provide the means to
compensate for such cross-sensitivities even in the case of complex and varying
measurement conditions. Furthermore, by providing an overview and a discussion of
the recent achievements of photoacoustic spectroscopy in the field of breath analysis,
the potential of PAS is highlighted once more.

With the current development of novel, less expensive, more reliable and higher
output power providing light sources, PAS is gaining more and more momentum
toward market readiness. Using application-tailored photoacoustic setups and con-
sidering the spectral and non-spectral cross sensitivities during sensor calibration
will be the key for compact and reliable photoacoustic sensors that are ready for
breath analysis and further applications.
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Abstract This chapter discusses sensor-array-based devices for breath analysis
highlighting electronic noses as a prominent example. The sections within the
chapter examine material design advances to demonstrate progress in materials
selection and innovative sensor structures. In sum, these advances have contributed
to a significant increase in the surface ratio of sensors. This has led to a growth in the
number of active sites available for sensors to detect particles within the surrounding
environment. Besides, a discussion of parametric resonance and excitation applied to
sensor-based breath analysis devices is presented as both a hardware and software
improvement. Current sensors have the potential to become more relevant and
reliable for clinical diagnosis by utilizing parametric resonance. An analysis of a
review on the development of carbon nanomaterials concludes the chapter by
discussing the current challenges relating to sensor array devices, machine learning
algorithms, and the application of breath analysis as a whole. A further emphasis is
placed on the fact that parametric resonance can serve as a smart algorithm to meet
those challenges.

Keywords Algorithms · Breath analysis · Carbon nanomaterials · Clinical
diagnosis · Electronic noses · Parametric resonance · Sensor array devices · Sensor
material design · Sensor structure · Sensor surface ratio

Abbreviations
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
ANN Artificial neural networks
ANOVA Analysis of variance
BAW Bulk acoustic wave
BP Black phosphorus
CNN Convolutional neural networks
CNT Carbon nanotubes
DFA Discriminant function analysis
E-nose Electronic nose
GC-MS Gas chromatography-mass spectrometry
GEBT Gastric emptying breath test
GLSR Generalized least squares regression
GS Graphene sheets
hBN Hexagonal boron nitride
IMS Ion mobility spectroscopy
KNN K-nearest neighbor
LDA Linear discriminant analysis
MEMS Micro-electromechanical
MLR Multiple linear regression
MOF Metal organic frameworks
MOS Metal oxide semiconductor

162 P. Nosovitskiy et al.



MWCNT Multi-walled carbon nanotubes
MXene Transition metal carbides/nitrides
NP Nanoparticles
NS Nanostructures
PCA Principal component analysis
PLSR Partial least squares regression
ppb Parts per billion
ppm Parts per million
ppt Parts per trillion
PTR-MS Proton transfer reaction mass spectrometry
QCM Quartz crystal microbalances
QD Quantum dots
RNN Recurrent neural network
SAW Surface acoustic wave
SDA Stepwise discriminant analysis
SIFT-MS Selective ion flow tube mass spectroscopy
SVM Support vector machines
SWCNT Single-walled carbon nanotubes
TMD Transitional metal chalcogenides
US EPA United States Environmental Protection Agency
UV Ultraviolet
VOC Volatile organic compound

1 Introduction

A person’s nose detects particles in the air and transmits the information to the brain.
The brain then calls upon neurons to assemble as a specialized group of elements,
perform a coordinated action, such as remember or react to the smell, and separate
once the task is complete. Returning to their origins, the neurons wait to be called on
again for the same or a different task. A parallel can be drawn in using electronic
noses or sensor arrays to measure volatile organic compounds (VOCs) in exhaled
breath. In contrast to applying individual sensors to specific, targeted VOCs, this
cross-reactive approach mimics natural processes such as smell, sight, and sound.

By using both hardware and software components to create a breathprint [1],
sensor arrays collect particles from the surrounding environment, analyze the data
gathered, and record the results for display, storage, and classification as illustrated
in Fig. 1. Metal oxide semiconductor (MOS) sensors continue to dominate the
hardware of sensor arrays [2]. The sensing process begins with the ambient particles
being absorbed by the sensor array. At first, a sensitive material layer is exposed to
the target gas. The interaction between the sensing layer and the target gas results in
some physical properties of the material being altered. These include mass, surface
potential, conductivity, dielectric constant, and optical absorbance. In turn, this is
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converted into the parameter of an electronic device, such as resistance, capacitance,
or transconductance, using a basic sensor. The basic sensor is coupled to an
electronic circuit to establish signals, such as voltage, that are a function of the
concentration of the target gas or gases [3]. Following the sensing stage, the signal is
amplified, filtered, and digitized for use in later stages of data analysis [4]. The
obtained data is then preprocessed following the requirements of the pattern recog-
nition algorithm once sufficient data has been obtained from the processed signals.
Finally, the sensed signal is classified during the pattern recognition stage and
displayed, stored, or transmitted as required [5].

On the software side, machine learning algorithms are heavily deployed to
distinguish, classify, and store the digital signatures produced by the hardware
component. Machine learning is widely used since it can process and comprehend
large amounts of data, calibrate gas sensor arrays, and provide accurate recognition
and classification results. There are several commonly used tools for pattern recog-
nition algorithms, including linear discriminant analysis (LDA) [6], discriminant
function analysis (DFA) [7], stepwise discriminant analysis (SDA) [8], partial least
squares regression (PLSR) [9, 10], generalized least squares regression (GLSR)
[11, 12], multiple linear regression (MLR) [13], principal component analysis
(PCA) [7, 14], support vector machines (SVMs) [15, 16], artificial neural networks
(ANNs) [17, 18], and deep learning [5].

Breath analysis is an emerging method to diagnose disease by detecting changes
within the VOCs of exhaled breath. In addition to providing the advantage of being
noninvasive and direct, this method has the potential to advance the development of
predictive, preventive, personalized, and participatory medicine [19]. Sensors and
sensor arrays can be applied to breath analysis to provide point-of-care instruments
characterized by low fabrication and operation costs and intuitive, low-power,
portable operation – a significant advantage over optical and mass spectrometry
[20, 21].

For breath analysis, increasing information resources, such as maps of disease-
related VOCs to their sources [22], and databases such as the US EPA CompTox

Fig. 1 Schematic comparison of olfactory system and an electronic nose after [1]
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Chemicals Dashboard [23], a collection of ~1,178 triaged volatile compounds
documented in the gas phase of human breath, allow for sensor development,
including the selection of sensing layers, the implementation of sampling methods,
and the development of machine learning models using validated datasets.

There is a significant challenge for breath sensors to have a sufficiently low
detection limit that can distinguish and accurately detect the constituents of the
human breath. Sensors have a limit of detection, illustrated by Fig. 2, defined as
the point at which a signal no longer exhibits a predictable linear pattern and is hence
classified as noise. A parametrically excited system, or the concept of parametric
resonance applied to a system, offers a framework for transforming what is consid-
ered noise into signal under non-linear conditions.

The systematic study of non-linear problems and parametrically excited systems
dates back to the mid-nineteenth century, with the contributions of Mathieu [25],
Rayleigh [24], Stoker [26], and Nayfeh [27] as significant milestones. They created
intuitive concepts, such as self-excited systems, forced oscillations, parametric
pumps, and non-linear restoring forces, and backed them with rigorous mathematical
proofs. In recent studies aimed at understanding and utilizing parametric resonance,
especially in resonant micro-electromechanical systems, the possibility of applying
parametric excitation in gravimetric sensing [28], chemical sensing [29], inertial
sensing [30], and scanning tunneling microscopy [31] has been explored. A previous
demonstration of attogram mass sensitivity through frequency resolution enhance-
ment in a parametrically excited mass sensor provides inspiration for parametric
control [32]. Further, parametric resonance is widely observed in quantum physics,
cosmology, optomechanics, and cellular biology. Among the research topics studied

Fig. 2 Sensitivity ranges for types of gas sensors and sensing applications [24]. Permission granted
by Figaro, Inc.
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are the scattering and memory effects of two particles in the context of quantum field
theory, the self-induced parametric resonance of collective neutrinos, and the evo-
lution of entanglement in the dynamical Casimir effect [33]. The same algorithms
used to solve parametric resonance problems are the basis of particle accelerators
and mass spectrometers. By using parametric control, extremely sensitive detection
of mass change can be achieved.

The next part of this chapter discusses sensor-array-based devices, highlighting
electronic noses as an example. Further sections examine material design advances
to demonstrate progress in materials selection and structure of MOS gas sensors. In
sum, these advances have contributed to a significant increase in the surface ratio of
sensors, increasing the number of active sites available for sensors to detect particles
within the surrounding environment. There will be a discussion of parametric
resonance and excitation applied to sensor-based breath analysis devices as both a
hardware and software improvement. Current sensors can potentially become more
relevant and reliable for clinical diagnosis by utilizing parametric resonance. An
analysis of a review on the development of carbon nanomaterials concludes the
chapter by discussing the current challenges relating to sensor array devices,
machine learning algorithms, and the application of breath analysis. A further
emphasis is placed on the fact that parametric resonance can serve as a smart
algorithm to meet those challenges.

2 Sensor Arrays

Since the late 1990s, an “electronic nose,” or e-nose, has been defined as a device
containing a multi-sensor array capable of detecting more than one chemical com-
ponent [34]. Today, electronic nose devices, like sensor arrays for breath analysis,
consist of a hardware component, the sensor array, and a software component,
machine learning algorithms. Devices of this nature are commercially available
and widely used to study various diseases via breath in medicine [35] and in other
fields such as agriculture [36], food [37], water [37], and security systems [36].

The following companies dominate the space with their devices: Electronic
Sensor Technology zNose [38], AirSense Analytics PEN [39], Electronic Nose
Co. [40], Sensigent Cyranose [41], FOODsniffer [42], EN PTY E-Nose Mk4 [43],
Alpha MOS Heracles Neo [44], RoboScientific Model 307 [45], Aryballe NeOse Pro
[46], Odotech MultiNose [47], Figaro Engineering gas sensors [48], and the eNose
Company AeoNose [49]. In addition to their applications, these devices differ
according to the machine learning algorithms utilized, the sensor types employed,
and the number of sensors included. Sensigent’s Cyranose, for example, contains
32 gas sensors that utilize PCA, KNNs, and SVMs to detect and analyze a wide
variety of gases. It is one of the most discussed e-noses in research and is used for
medical purposes, including breath analysis and air quality monitoring [5].

In recent research, attention has been directed toward the multivariable response
principle [50]. The idea is to create a sensor material with multiple response
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mechanisms to different gases, a multivariable transducer, and data analysis. Trans-
ducers with multivariable capabilities can distinguish between gas responses and
provide independent outputs [51]. These outputs are then quantified and classified
via data analytics.

2.1 Data Analytics of Sensor Arrays

Machine learning algorithms constitute the software component of e-noses and
sensor array devices. Machine learning entails collecting the data, selecting the
optimal model and parameters, training the model on the collected data, and eval-
uating the results. Presented below are the most widely used data analysis algo-
rithms. Furthermore, linear regression, t-test, and ANOVA are employed.

Principal component analysis (PCA) is an unsupervised tool for linearly decreas-
ing the dataset’s dimensionality. Despite rotation, it retains the variance structure of
the data. High-dimensional data is represented in a new lower-dimensional subspace,
spanned by the principal components of the largest variance in the original variables.
Principal components are known as eigenvectors of the data covariance matrix. The
largest eigenvalue and its corresponding eigenvector exhibit the greatest variation,
hence making the greatest contribution between dimensions [5]. Linear discriminant
analysis (LDA) is a dimensionality reduction technique that employs linear trans-
formations. LDA is a supervised method that maximizes class discrimination while
considering class labels in contrast to PCA [5]. Support vector machines (SVMs) are
commonly utilized in regression and classification problems [52, 53]. They have
many applications in linear and non-linear binary classification problems as a
supervised learning technique. SVMs are used to identify a best-fitting hyperplane
(i.e., decision boundary) that helps distinguish between data points [5].

Artificial neural networks (ANNs) are based on the principles of biological neural
networks. They are typically designed as fully connected multilayer networks.
Depending on the task to be carried out, the number of hidden layers may vary
[5]. Hidden layers are activated based on the input layer and the weights between the
input and hidden layers [54]. Similarly, the hidden layers and their weights deter-
mine the activation of the output layer. It is essential to mention that the activation
functions of individual neurons are the gates of ANNs, and without them, any
network would behave like a linear regression model. Although there are linear
functions, non-linear activations are generally employed to assist the network in
learning complex data structures and complex functional mappings for making
accurate predictions. Choosing non-linear functions is also advantageous because
they are more suitable for use in backpropagation [5]. An array of gas sensors must
use a paradigm that can combine the individual sensor outputs and provide an
integrated identification and classification result. It is important to note that sensor
fusion enables e-noses and sensor-array-based devices to make decisions with
minimal error. ANNs incorporate the capability of connecting the outputs of differ-
ent sensors [55]. Therefore, several ANNs are utilized in sensor fusion, such as
quick-prop learning algorithms and multilayer perceptron incorporated with stan-
dard backpropagation, cascade correlation, and radial basis functions [56].
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As a relatively new phenomenon, deep learning refers to the ability of a machine
to detect and classify information within a raw dataset automatically. Deep neural
networks are a recent extension of artificial neural networks and have been success-
fully utilized in various academic and industrial applications [57]. The use of
convolutional neural networks (CNNs) has been prevalent. CNNs are generally
constructed as layered structures consisting of an input layer, several convolutional
layers, pooling layers, non-linear activation layers, fully connected layers, and an
output layer. Unlike conventional feature-based pattern recognition algorithms, the
CNN technique automatically identifies and extracts features, so the input data does
not need to be preprocessed [58]. Another example based on deep learning is using
convolutional recurrent neural networks (consisting of both CNNs and RNNs) to
perform fast gas recognition [59]. A more detailed description of data analytics used
for breath analysis can be found in the chapter “Offline breath analysis: stan-
dardization of breath sampling and analysis using mass spectrometry and
innovative algorithms.”

2.2 Types of Gas Sensors

The hardware component of sensor arrays, such as e-noses, differs in the types of
sensors included. For the application of breath analysis, the most common types of
sensors include chemo-resistive sensors (metal oxide, conducting polymer), electro-
acoustic sensors (surface acoustic wave, quartz crystal microbalance), electrochem-
ical sensors (potentiometric, amperometric, conductometric), and optical sensors
(colorimetric) [60–70].

Gas sensors based on metal oxide semiconductors are widely used since they
show good performance in detecting volatile compounds. A MOS gas sensor is an
example of a chemo-resistor whose operating principle is based on a change in
conductance due to an interaction between the gas and the sensing surface of the
metal oxide film, typically through oxygen ions adsorbed on the surface. They
possess a high sensitivity, in the order of ppb [71]. Compared with standard gas
chromatography and mass spectrometry methods, MOS gas sensors are more
straightforward, easier to implement, can be miniaturized, have low power con-
sumption, and are less costly to manufacture [72]. However, they often exhibit
instability at the particle/polymer interface. Due to the morphology and structure
of the sensing materials, these types of sensors are susceptible to drift phenomena
and other external factors such as temperature and humidity. A further disadvantage
is their slow recovery time, making them unsuitable for applications where rapid
changes in the measurement occur due to continuous fluctuations in the
surroundings [73].

The electro-acoustic and piezoelectric sensors work based on the propagation of
sound waves created by a piezoelectric material in a multilayer structure. Depending
on the type of sensor, acoustic waves may travel on the surface of the sensor, such as
surface acoustic wave (SAW) sensors [64], or inside of the sensor, such as bulk
acoustic waves (BAW) or quartz crystal microbalances (QCM) [65–67]. As a result
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of their small size, sensitivity, low cost, and ability to detect nearly all gases, BAW
and SAW sensors are frequently used in e-noses and sensor-array-based devices
[74]. The BAW sensor consists of a thin disk of quartz patterned with gold electrodes
on both sides. An acoustic wave travels through the crystal when a potential
difference between the electrodes is applied. The stability of the crystal allows the
measurement of tiny frequency changes [73]. Another advantage of the BAW sensor
is its low cost, simplicity, and robustness. However, these sensors are not effective in
liquid media [5]. The SAW sensor is derived from the BAW device. This device
operates at a high frequency to achieve its high sensitivity. On the other hand, the
signal-to-noise ratio is poor because of the high operating frequency [75].

A sensitive coating is present on the surface of a quartz crystal microbalance
(QCM) sensor [76]. The selective barrier on the crystal surface captures the released
gas from the environment, increasing the total mass. Subsequently, the resonant
frequency decreases due to the mass change on the surface of the QCM. As a result,
QCM sensors determine small changes on the sensor’s surface by measuring
frequency changes on the quartz crystal resonator [77]. QCM sensors can operate
in both gaseous and liquid environments [78]. With the assistance of sensitive
biosensors, they can detect matter as small as a nanogram [79]. Furthermore,
QCM sensors are highly adaptable. These sensors can be modified to detect entire
cells or only a single-molecule monolayer [80]. Molecularly imprinted polymers
(MIPs) [81], polished gold films [82], biomimetic peptide-based materials [83],
multi-wall carbon nanotubes [84, 85], and calixarenes [86] are used to coat the
surface layers in QCM sensors.

A typical electrochemical gas sensor consists of at least two electrodes and an
electrochemical cell. Traditional electrochemical approaches include cyclic
voltammetry, amperometry, potentiometry, impedance spectroscopy, and field-
effect transistor-based techniques [87]. A gas sample may flow directly into the
cell or pass through specific diffusion barriers; hence, if the gas sample reacts with
the cell electrodes, the resulting electrochemical reaction can cause either a change in
the electrode potential (potentiometric sensor) or an electric current to flow through
the cell (amperometric sensor). Overall performance and the transduction method are
dependent on the surface layout connecting the sensing element and the sample [88].

Compactness, immunity to electromagnetic interference, and rapid performance
make optical sensors attractive [76]. The measurement of fluorescence, optical layer
thickness, dye response, light polarization, and absorbance by optical sensors is used
to detect environmental odors [89]. Optical sensors are classified according to their
ability to detect objects based on color differences, such as colorimetric sensors, and
light differences, such as fluorescence sensors. Colorimetric sensors consist of thin
films of chemically responsive dyes. Using fluorescent sensors, which are more
sensitive than colorimetric sensors, samples are identified by their fluorescent light
emission [5]. Optical gas sensing is usually more sensitive, selective, and stable than
non-optical methods. These advantages usually come at the cost of more technical
complexity and, therefore, more significant miniaturization issues and higher costs.
There are only a few commercial gas sensors based on optical principles [90].

As a result of using specific sensing techniques, there are many advantages and
disadvantages regarding response and recovery times, sensitivity, detection range,
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operating limitations, physical size, costs, and other limitations associated with
individual sensor types [73]. For example, chemo-resistors can be used for
low-power sensor arrays [91], but for the application of breath analysis using
MOS sensors can be challenging, as the signal relating to a compound of interest
might be buried by background noise due to significant humidity fluctuations
[92]. However, similar to QCM sensors that can be modified through changes in
their surface layer coatings, semiconductor-based gas sensors offer similar potential.
While several types of gas sensors have been discussed thus far, this chapter focuses
on the materials and structures available for improving the sensing layer of metal
oxide semiconductor-based sensors utilized in breath analysis. Other types of sen-
sors, such as photoacoustic or optical sensors, are discussed in other chapters of
this book.

3 Metal Oxide Semiconductor Gas Sensors

The ability to control metal oxide semiconductors’ physical and chemical properties
forms the basis of many modern materials and devices. Many chemical and struc-
tural characteristics influence the functional properties of MOSs, such as their
chemical composition, structural defects, morphology, grain size, and specific sur-
face area [71]. Thus, not only are MOSs one of the most diverse classes of materials,
but they also come with additional advantages such as low cost, ease of use, simple
fabrication, and commercialization [93].

3.1 Sensor Hardware Components

It is pertinent to review the structure of MOS gas sensors before addressing the
optimization of their physical and chemical properties. Pictured in Fig. 3, the typical
MOS gas sensor consists of the gas sensing layer, the heater coil, the electrode line,
the electrode, the tubular ceramic, and a mesh covering the sensing element.

Fig. 3 Picture of a commercial metal oxide VOC gas sensor (Winsen MQ138) and interior
components [94, 95]. Permission granted by John Wiley and Sons, Inc., and under the terms of
the Creative Commons Attribution 4.0
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By interacting with the environment, the gas sensing layer senses the variation in
concentrations of gases and generates a change in electrical resistance. The sensing
element is burned in to increase its sensitivity and efficiency via the heater coil. The
typical operating temperature ranges from 150 to 450°C. Nickel-chromium is fre-
quently used because it has a high melting point and can remain heated without
melting. Most conventional designs print the heater on the bottom of the substrate,
while the electrode is printed on top. The electrode line efficiently transmits the tiny
currents generated by the sensing element. Wires made of platinum transport
electrons. An electrode provides a connection between the output of the sensing
layer and the electrode line, enabling the output current to flow to the required
terminal. The conductivity of gold makes it ideal for this purpose since it is well
known to be a good conductor. A tubular ceramic composed of aluminum oxide sits
between the heater coil and the gas sensing layer to maintain the burn-in effect
necessary for a high-efficiency output current. Finally, a metal mesh prevents dust
particles from entering the setup and reduces damage to the gas sensing layer caused
by corrosive particles [94].

In recent years, digital sensor platforms have integrated analog and digital
electronics, a micro hotplate, and sensing elements onto a single dye [95]. In addition
to utilizing more advanced signal processing circuitry in the digital domain, they
incorporate a digital interface that simplifies integration into different applications
since the output signal is directly used without further processing [96].

3.2 Sensing Mechanism of the Sensing Layer

The charge carrier affects the sensing mechanism in the sensing layer of MOS
materials. P-type, in which the charges are holes, and n-type, in which the charges
are electrons, are the two main types of charge carriers. For n-type semiconductors,
the presence of reducing gases in the sensing layer increases the conductivity, and if
the gas is oxidizing, the conductivity decreases. The opposite is true for p-type
materials [71].

3.3 Sensor Quality Characteristics

Gas sensors are typically evaluated based on the following characteristics: sensitiv-
ity, selectivity, stability, working temperatures, response time, recovery time, and
detection limit [97].

The sensitivity of a material refers to a change in its physical or chemical
properties when exposed to the gas. This parameter is determined by the ratio of
the resistance of the sensor to that of air in the presence of an oxidizing gas; however,
when a reductive gas is present, the ratio is the opposite [2, 98]. Selectivity refers to
the ability of a semiconductor layer to distinguish between a group of target gases or
a single gas within a gas mixture [97]. The stability or reproducibility of gas sensors
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is their ability to provide repeatable measurements over time. Preheating at temper-
atures above the sensor’s operating temperature improves the stability of the sensi-
tive layers [71].

In general, the response time is defined as the time it takes for a sensor to reach
90% of the total response after exposure to the target gas. The recovery time is the
time it takes for a sensor to return to 90% of its baseline signal after removing a target
gas. The detection limit refers to the minimum concentration of gas detected by the
sensing layer [71].

3.4 Sensor Hardware Optimizations

Researchers are currently investigating multiple ways to improve MOS gas sensors’
physical and chemical properties to enhance their performance. Illustrated in Fig. 4,
these include the choice of semiconductor materials for the sensing layer, particle
size reduction, nanostructures (NSs), synthesis in different morphologies, and the
formation of heterostructures from (nano)composites and polymers. In addition,
surface modification techniques such as doping and UV light activation have
shown to be effective in improving the performance of MOS gas sensors
[100, 101]. Core-shell nanostructures and metal organic frameworks (MOFs) pro-
vide examples of how material, morphological, and surface modifications can be
combined. The resulting MOS gas sensors are characterized by improved selectivity,
sensitivity, and the ability to operate at low temperatures and in high relative
humidity conditions [99]. A description of each of these pathways follows.

3.4.1 Sensing Layer Materials

Effective performance of sensing material design consists of a substantial exposed
surface for interaction with gas molecules, sufficient active sites for binding these

Fig. 4 Sensing layer material, different morphologies, and common strategies to enhance sensing
properties of gas sensors after [99]
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molecules, the ability to convert these binding events into detectable signals, and an
adequate recovery time, i.e., releasing bound molecules and returning to a baseline
for subsequent measurements.

Various metal oxides are used as sensing materials in semiconductor gas sensors,
such as tin dioxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3), tungsten
trioxide (WO3), cadmium oxide (CdO), titanium dioxide (TiO2), and others [102–
104]. Such materials target most gases. Additionally, carbon-based materials, such
as single-wall/multi-wall nanotubes and graphene, along with metal chalcogenides,
target nitrogen oxide, nitrogen dioxide, and ammonia [105]. The most popular
materials continue to be SnO2 and TiO2 due to their manufacturing characteristics,
low cost, chemical stability, mechanical strength, heat resistance, and adhesion to
various surfaces [71].

Advances in nanomaterials are highlighted by examples such as Das et al., who
prepared a sensor of barium hexaferrite oxide nanoparticles (BaFe12O19) [106] for
detecting trace ammonia vapor in human exhalation with a biomarker of kidney
disease; Aghaei et al., who demonstrated the use of graphene-like carbon boron
nitride (BC6N) as a high-performance volatile organic compound (VOC) sensor
[107] for human breath analysis; and Zhang et al., who comprehensively introduced
semiconductor gas sensors made from two-dimensional materials for disease
diagnosis [108].

The sensing layer in gas sensors continues to attract dominant attention [99] as
researchers demonstrate the advantage of low-cost composite nano-dimensional
materials in the design of simple human breath gas sensor devices [109]. More
examples pertaining to breath analysis are further highlighted in Sect. 3.7.

3.4.2 Reduction of Grain Size

An extremely effective way to enhance the gas sensing properties, such as stability,
sensitivity, selectivity, and response time, of MOS gas sensors is to reduce grain size
to the nanoscale. Grain boundary barriers hinder the sensor’s conductivity the most
in the presence of gas. In contrast, the sensitivity of the sensing material is indepen-
dent of the grain boundaries, but it is controlled by the grain size (D) as pictured in
Fig. 5. Due to the cross-sectional area and the boundary barriers at the grain
boundary, the conductivity increases for grains with D ≥ 2 L, where L is the size
of the charge depletion layer. If, however, D < 2 L, the grain size determines the
sensitivity of the sensing material as conduction channels between the grains become
distorted, and conductivity decreases drastically. These results indicate that the
grains’ morphology and aspect ratio (D/L ) also significantly influence gas sensor
performance [71].
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3.4.3 Effects of Morphology

Illustrated by Fig. 6, the research trend in MOS gas sensors is the emergence of
sensors that utilize hierarchical nanostructures (NSs) instead of sensors based on thin
films. A range of high aspect ratio nanomaterials have been successfully fabricated,
ranging from zero-dimensional (0D) quantum dots (QDs) and nanoparticles (NPs) to
one-dimensional (1D) nanorods, nanotubes, and nanowires, to two-dimensional
(2D) nanosheets, to 3D core-shell nanostructures, such as nanoflowers and
nanocubes. Microstructure and morphology determine surface area, active site
quantity, and gas diffusion channels [109].

Nanomaterials with grain sizes less than 10 nm, including QDs, are classified as
0D nanomaterials. Using their unsaturated bonds and high surface energies, QDs
present a promising solution for lowering the operating temperature of MOS gas
sensors to room temperature [110–112].

Compared to other 1D nanomaterials, nanotubes, such as nanowires, nanofibers,
and nanorods, have a large surface area and an open porous structure that makes
them particularly noteworthy [113, 114]. The formation of meso- and nanosized
pores on various nanotube surfaces during the synthesis process can significantly

Fig. 5 Schematic model of
the effect of grain size on the
sensitivity of semiconductor
metal oxide gas sensors. (a)
D > > 2 L. (b) D ≥ 2 L. (c)
D < 2 L [110]. Permission
granted by the terms of the
Creative Commons
Attribution 4.0
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improve the gas sensing performance by increasing the penetration of the target gas
into the deepest parts of the sensing device [109].

2D materials have attracted attention for gas sensing applications in recent years
due to their high electron conductivity and excellent mechanical durability
[114, 115]. Graphene is a 2D monolayer of bonded carbon atoms that exhibits
high electron mobility at room temperature. Its unique structure makes every carbon
atom a surface atom, leading to electron transport that is highly responsive to
molecules adsorbed on the surface [116, 117]. Compared with carbon nanotubes
(CNTs), graphene’s sheet-like structure is more conducive to the deposition and
stabilization of nanoparticles (metals or metal oxides). It can be easily integrated into
sensor devices [76]. Carbon nanotubes (CNTs) consist of a seamless cylinder formed
by wrapping graphene sheets in the axial direction. CNTs fall into two categories:
single-walled CNTs (SWCNTs), formed of one sheet when all atoms behave as
surface atoms, or multi-walled CNTs (MWCNTs), formed of several sheets where
only atoms in the outermost layer contribute to sensor response [118]. Carbon
nanotubes possess good mechanical and chemical stability, have a high surface-to-
volume ratio, and have excellent electronic properties, making them suitable for gas
sensing applications [119]. Commercialization, however, is hampered by a variety of
technological barriers. They are costly to synthesize due to the difficulty of growing
continuous, defect-free nanotubes. CNTs exhibit slow response and recovery due to
their material’s adsorption and desorption processes [120].

Due to graphene’s popularity as a 2D material for gas sensing, analogs have been
developed, including transitional metal chalcogenides (TMDs), hexagonal boron
nitride (hBN), black phosphorus (BP), and transition metal carbides/nitrides

Fig. 6 Models and equivalent circuits of the (a) thin film, (b) submicron-rod, and (c) submicron
tree Cu2O sensors [111]. Permission granted by Elsevier
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(MXene family of materials) [119]. The single-layer architecture of these 2D
structures allows gas molecules to make complete contact with their surfaces
[51]. The band gap value of TMDs is more suitable for practical device applications
than that of graphene [121]. Most of the investigation has been conducted on
disulfides, which have shown excellent gas sensing properties in terms of high
sensitivity, fast response rates, and good stability. Many recent studies have focused
on the use of MXenes for gas sensors [122].

Furthermore, the ability of 3D nanostructured devices to be made into layers of
porous thin films composed of different materials can potentially be exploited to
create a single sensor that can detect a wide range of sensing targets [123]. In such
sensors, the most significant flaw is the reaction between water vapor molecules and
oxygen ions on the MOS surface, resulting in less reactive hydroxyl groups and
decreasing sensing performance [124, 125]. This obstacle may be overcome by
increasing the operating temperature and doping with NiO and CuO [125–127].

3.4.4 Polymers

Conducting polymers are advantageous as gas sensing materials because they
operate at room temperature, have good mechanical properties, and can be easily
synthesized [51]. Oxidation reduces the lifetime of gas sensors based on conducting
polymers (9–18 months) compared to metal oxide sensors, preventing widespread
adoption. Conducting polymers have nevertheless been widely investigated for the
development of sensor arrays [76, 119]. An electronic nose composed of polypyrrole
gas sensors is one example [128]. It can discriminate between methanol, ethanol,
acetone, 2-butanone, and 2-pentanone. Another example is the electronic nose
developed by NASA’s Jet Propulsion Laboratory at Caltech (JPL ENose) to monitor
air quality in space stations [129, 130]. Conducting polymers enable the detection of
redox-active gases, such as NH3, NO2, and some organic vapors; however, they have
difficulty detecting volatile organic compounds (VOCs) [51].

As with heterostructures, the conductivity of conducting polymers can be further
enhanced by nanostructuring and the formation of composites of two polymers
(conducting and insulating), such as polypyrrole and ethanol [131]. Conducting
polymer composites with metal oxides, particularly nanoparticles such as SnO2 or
TiO2, have been developed for CO gas detection [132]. Other functional materials,
such as carbon nanotubes [133] and graphene [134], have been incorporated into
composite structures with conducting polymers. By using conducting polymer
nanocomposite sensors, flexible multisensory platforms can be designed,
manufactured, and integrated at a relatively low cost into smart textiles or
radiofrequency identification tags [51].
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3.4.5 Doping and Light Activation

Even at the nanoscale, surface modifications of metal oxides through doping and
light activation remain viable approaches to improving the performance of MOS gas
sensors.

The doping approach has proven to be an effective method of overcoming the
drawbacks of pure MOS gas sensing materials [135]. In general, transition metals
such as Fe, Cr, Al, Ni, Tb, Co, Fe, Sn, and Ce and noble metals such as Au, Pt, and
Pd have been used as dopants in nanostructured metal oxide semiconductors.
Dopants are used in gas sensors to increase the activity and modify the sensing
material’s resistance by changing its surface’s chemical environment [93]. When a
metal and semiconductor are in contact, electron transfer occurs, and a barrier layer
(high resistance area) forms around the metal nanoparticle. A metal nanoparticle/
nanocluster, therefore, represents an electronegative surface. When exposed to gas or
vapor, the area with high resistance becomes an area of high conductance, signifi-
cantly enhancing the sensing performance. In addition, the dopants provide
improved stability, selectivity, response time, reproducibility, and a reduction in
sensor operating temperature. Lastly, some studies have demonstrated that the type
of metallic dopant can influence the type of target gas that can be detected. High-
valence dopants, such as Sn, W, and Nb, produce sensors with an excellent response
to reducing gases [51, 71, 93].

The exposure of MOS gas sensors to ultraviolet light improves their sensing
capability. It is possible, for example, to reduce the gas sensor’s operating temper-
ature requirement to room temperature. Upon exposure to ultraviolet light, the
material’s conductivity is improved due to the photogenerated electrons or holes,
which increase the concentration of free carriers at the surface. The electrons emitted
from UV light are responsible for promoting chemical reactions between the targeted
gas molecules and the adsorbed oxygen ions. The result is that the targeted gas
molecules show a high and rapid response [71].

3.5 Combining Sensor Hardware Optimizations: Core-Shell
Nanostructure and MOFs

Core-shell nanostructures and metal organic frameworks (MOFs) demonstrate pos-
sible advancements when combining material selection, morphology, design, and
surface modification techniques.

The core-shell structure refers to heterogeneous nanoparticles (NPs) formed from
two or more materials. One nanomaterial forms the core at the center, and the other
material or materials form the shell located around the core [71]. Core-shell
nanostructures may be classified as nanocomposites, but in contrast to
nanocomposites with uniform structures, core-shell NPs typically exhibit an appar-
ent separation between the core and the shell [136]. As new functional materials,
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these structures possess unique properties, such as providing more active sites for
electrochemical reactions compared to uniform nanostructures [137, 138]. For
instance, SnO2 and TiO2 core-shell nanostructures have been fabricated in different
ways, such as using noble metals (Au, Ag, Pt, and Pd) as cores and MOSs (TiO2,
SnO2, NiO, and WO3) as shells. In comparison with pure metal oxide nanostructures
and nanocomposites of metal oxides with noble metals, the core-shell structures
display superior sensing properties [139].

MOFs are a novel class of crystalline and porous functional materials comprised
of strong bonds between metal ions and organic ligands [140]. Pyrolysis or calcina-
tion converts these precursor structures into diverse metal oxide sensor
nanostructures and nanocomposites [141]. The following characteristics of MOFs
make them an attractive candidate for gas sensing applications. Their high surface
area and permanent porosity provide numerous active sites, enhancing sensitivity
and selectivity. A second advantage is their ability to be tailored in terms of pore
size, shape, and surface environment. Third, MOFs are highly recyclable and
regenerable as they possess excellent reversibility for the desorption and adsorption
of target molecules. Finally, they can operate at or near room temperature [142].

3.6 Sensor Fabrication Process

As a final point, the manufacturing process itself plays an essential role in sensor
performance. The interface circuitry design, diagramed in Fig. 7, will differ
depending on whether the gas sensor interface is hybrid or monolithic.

Integration is traditionally achieved using a multi-chip approach in which the
sensor and circuitry are designed and fabricated on separate chips. The two-chip
solution, also known as the hybrid approach, enables independent adjustment and
optimization of the gas sensor and the interface circuitry. As a result, design and
manufacturing processes are more flexible, leading to shorter development cycles.

Fig. 7 Chemo-resistive metal oxide gas sensor model and interface circuitry [53]. Permission
granted by the terms of the Creative Commons Attribution 4.0
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However, the parasitic capacitances and inductances associated with long bonding
wires and interconnections between the two chips are undesirable, as they add to the
noise and degrade the signal. In addition, the hybrid approach is less robust and more
costly than a single-chip implementation, particularly when considering high vol-
ume production [51].

The monolithic approach is a relatively new and more advanced approach that
combines the design and fabrication of the sensor and interface circuitry on a single
substrate. The single-chip solution enhances the gas sensor’s performance by reduc-
ing its size, power consumption, and noise. In addition, it is both more cost-efficient
and more commercially attractive when unit volumes are high. There is, however,
the issue of a lengthy and costly development process. Moreover, a potential fault in
the nearby circuitry or sensor can cause the chip to fail [51].

3.7 MOS Sensors in Breath Analysis

Common methods for monitoring breath biomarkers include gas chromatography-
mass spectrometry (GC-MS) [143], currently the gold standard, selective ion flow
tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry
(PTR-MS), ion mobility spectroscopy (IMS) [144], and several other sensitive
techniques [145–148]. Biomarkers for certain diseases include acetone, ammonia,
hydrogen, methane, and isoprene. For example, as a biomarker for diabetes, the
normal range for acetone gas concentration is 300–900 ppb (parts per billion), while
the symptomatic range is above 1,800 ppb [149]. Elevated concentrations of iso-
prene gas indicate renal disease at concentrations ranging from 57 to 329.8 ppb,
while the normal range is from 28 to144 ppb [150]. In the absence of alcohol or fruit
consumption, ethanol, at concentrations above 2,848 ppb in the exhaled breath, is
discussed to indicate lung cancer, with normal concentrations ranging from 96 to
2,848 ppb [151].

Biomarker reference ranges provide guidance for gas sensor material and design
to establish relevance. For example, a ZnO nanorod sensor demonstrated a detection
limit of 1,000 ppb for ethanol [152]. Using nanoneedles based on V2O5, Hakim et al.
achieved a detection limit of 941 ppb when measuring acetone [153]. A hybrid of
graphene and SnO2 was used to measure formaldehyde and reached a detection limit
of 20 ppb [154]. Choi et al. showed that a sensor comprised of Pt-WO3 nanoflowers
can detect 1,000 ppb of H2S gas [155]. A single crystal polypyrrole sensor demon-
strated a detection limit of 0.05 ppb at room temperature [156].

To date only five breath tests have received necessary regulatory approval and are
in clinical practice [21, 157]. The first is the urea-13C breath test for detection,
diagnosis, and eradication of a Helicobacter pylori infection in the gastrointestinal
tract developed by Otsuka America Pharmaceutical Inc. in 1996. The second is the
nitrogen oxide, NO, breath test for monitoring asthma therapy and test for FeNO
developed by Aerocrine AB in 2003. The third is the Heartsbreath test for monitor-
ing heart transplant rejection developed by Menssana Research Inc. in 2004. The
fourth is the gastric emptying breath test, GEBT, using 13C-Spirulina, developed by
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Cairn Diagnostics in 2015. Lastly, the LiMAx test with intravenous 13C-methacetin
to monitor the progression of liver disease was developed by Humedics GmbH in
2016–2017. Currently, there is no single breath test that can diagnose a disease as a
stand-alone test [21].

The continued aggregation of connections among sensor material types, clinical
diagnosis, gas concentration ranges for diseased and non-diseased states, differences
in sensor morphology, target gases, sensor operating temperatures, sensitivity, and
response time, as exemplified by sources such as US EPA CompTox Chemicals
Dashboard [23], is paramount for the advancement of human breath analysis.
Making such information available and easily accessible is key.

4 The Sensor’s Output and Role of Resonance

One of the most challenging components of a MOS gas sensor is the interfacing
circuitry. In order to produce an accurate output signal, the signal processing unit
must compensate for the drift in the baseline resistance of the sensing element as well
as handle the precision and dynamic range of the gas sensing element [51].

The most straightforward circuit scheme for this challenge involves a resistance-
to-voltage conversion utilizing either a resistive voltage divider or a Wheatstone
bridge. These methods are not optimal if complete integration is needed since they
require either a large resistor bank circuit or variable resistors to cover a wide range
and match the sensing material resistance [51]. Additionally, the output of the sensor
is commonly interpreted in linear terms, where the limit of detection denotes the
point at which a signal ceases to behave predictably and is therefore classified as
noise.

Resistance-to-frequency conversion is an alternative to resistance-to-voltage con-
version. It is relatively simple to compress the large dynamic range by using a
logarithmic converter; however, this inevitably compromises the accuracy of the
measurement [51]. A more complex method of analyzing the output signal is to
apply non-linear dynamic theory, such as the concept of parametric resonance.
Consequently, complexity increases, but accuracy remains unaffected, selectivity
is maintained, relationships above the detection limit are preserved, and noise from
below the detection limit is transformed into a signal.

Classically, resonance is defined as the amplitude build-up of oscillations caused
by direct stimulation of a system at a specified input frequency. Resonant amplifi-
cation does not, however, refer only to direct excitation [158]. Parametric resonance
is a resonant phenomenon [159]. It is caused by a periodic fluctuation in at least one
of the system parameters, resulting in an internal build-up of energy instead of an
externally forced response as with a mass-spring-damper system [27]. As an exam-
ple, consider a base-excited pendulum. Using intuition, one can envision the possi-
bility of large angular motions in this system under resonant, horizontal excitation of
the pivot. In addition, there are vertical base excitations, which can cause time-
varying stiffness and large angular deflections under certain amplitude/frequency
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conditions. These vertical excitations seem strange at first glance, but one must
consider that as a child, they might have used analogous changes in their effective
length to create large-amplitude motions on playground swings [160].

In 1831, Michael Faraday first observed this peculiar vibration phenomenon after
observing a vertically oscillating cylinder on the surface of a fluid with a half-
frequency of excitation [161]. Mathieu [25] initiated the study of the underlying
mathematics, and Floquet and Hill built on it [162, 163]. Lord Rayleigh (J. Strutt)
conducted additional experimental studies in the 1880s utilizing vibrating strings
and a wave propagation apparatus [24, 164]. Studies of parametric resonance have
traditionally centered around its control and prevention of structural failure since
increasing oscillation amplitude, en route to chaos, could accumulate to significantly
greater amplitudes than direct resonance [27, 165, 166]. Today, increasing attention
and research show that parametric resonance can be an efficient amplifier for a given
transducer.

Further, passive approaches have been developed to overcome the critical initi-
ation threshold excitation amplitude that otherwise limits the onset of this phenom-
enon. This principle has been demonstrated by micro-electromechanical (MEMS)
gyroscopes, mass sensors, and vibration energy harvesting [167–169]. Therefore,
parametric resonance offers potential advantages such as amplification, noise sup-
pression, and high sensitivity with selectivity.

The unique instability phenomenon of parametric resonance is governed by the
Mathieu function [27]:

€yðtÞ þ ½δ- 2ε cosð2tÞ� yðtÞ= 0

where δ and ε are generic parameters relating to the square of the natural frequency
and the parametric excitation amplitude, respectively. An instability chart, also
known as the Strutt diagram, pictured in Fig. 8, can be plotted from δ and ε (also
known as a and q) to illustrate the regions where parametric resonance can be
activated [158]. Notably, parametric excitations can yield large-amplitude responses
or parametric resonances if the excitation frequency satisfies the condition
ω = 2ω0∕n, where n is a positive integer greater than or equal to unity
[171]. When applying this analysis to a gas, each amplitude response will be unique
due to the varying molecular weight of the gas. Thus, gas mixtures can further be
broken down into its constituent parts. The resulting information looks much like the
output of a gas chromatographer or a mass spectrometer. Furthermore, as a system,
read gas or gas mixture, traverses from a stable region to an unstable region, as
shown by the line with ten points in Fig. 8, the associated calculations not only
identify whether a resulting solution, read output, is stable or unstable, but also
provides guidance on how to move the system from one region to another.

Tracking resonant frequency shifts of micro/nano-oscillators is an established
technology with chemical and biological sensing applications. Mass change is
detected by measuring the frequency shift of the stability boundary of the first-
order parametric resonance tongue [172–174], which is directly related to the shift of
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the resonator’s natural frequency. The transition at the boundary is very sharp,
making small frequency changes readily observable with high resolution [171].

There are various transduction mechanisms for parametric excitation, including
electrostatic, electromagnetic, piezoelectric, and optical actuation [32]. Piezoelectric
parametric excitation applies a periodic voltage to an external shear piezoelectric
element to modulate its total stiffness, corresponding to a resonant device’s periodic
base excitation [29, 175]. The alternation of the polarity of the current and the
magnetic field in electromagnetic parametric excitation may cause a direct or
parametric Lorentz force to be generated in a MEMS device [167, 176, 177]. The
thermal effect introduced by a laser beam can also affect the time-varying impedance
of the silicon disk oscillator, creating a parametric amplification effect when the
optical pump drive phase is selected properly [178].

The overarching point is that if a model meeting the prerequisites for utilizing
Mathieu’s equation is developed, an example pictured in Fig. 9, such a model can be

Fig. 8 Strutt diagram illustrating stability and instability regions for Mathieu’s equation with
plotted solutions of varying parameters demonstrating not only whether the solution is stable and
unstable but also the concept of moving from one solution to the next, after [170]. s = stable,
u = unstable, colored curves = boundaries between stable and unstable, line with ten points,
numbered 1–5, represents a particular system with ten different parameter changes. Permission
granted by Samuel Lereah
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implemented to significantly improve the sensitivity and selectivity of a sensor.
Understanding the combination of parameters that produce stable and unstable
solutions is paramount, as is knowing how to move from a region with unstable
solutions to one with stable solutions and vice versa. Fortunately, given the specific
case of gas sensors, there are several avenues for developing such models and
deploying the notion of parametric resonance. With this approach, one can create a
sensitive and selective sensor that provides outputs in real time and under ambient
conditions.

Furthermore, the manufacturing of a particular design or the use of a particular
material is not necessary. Following the multivariable response principle, the exploi-
tation of parametric resonance operates as an algorithm-based, “smart” transducer
that can provide individual inputs for various gas responses. In addition to being
compatible with existing commercial sensors, it can also be used with new advanced
sensors. The combination of such characteristics is particularly attractive for breath
analysis. The following review on carbon nanotube sensors for breath analysis
highlights the most recent development in materials and design of gas sensors and
how applying the concept of parametric resonance can lead to even more significant
improvements and benefits.

Fig. 9 Examples of physical equations for mechanical and electrical systems which can be
modeled by Mathieu’s equation [179]. Permission granted by the terms of the Creative Commons
Attribution 4.0
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5 Advances in Carbon Nanomaterials and Application
of Parametric Resonance

During the past several decades, the rapid development of nanotechnology observa-
tion instruments led to the discovery and investigation of various carbon
nanomaterials, pictured in Fig. 10, including carbon nanotubes (CNTs) [179, 181,
182], graphene sheets (GSs) [180], and carbine [183]. For carbon nanomaterial
properties, the representative one-dimensional (1D) CNTs and two-dimensional
(2D) GSs exhibit superior mechanical, thermal, electrical, and optical properties
almost equally [184–190]. Due to their exceptionally high electronic conductivities,
CNTs and GSs have been applied to transistors [186], nanoelectronics [187], and
supercapacitors [188]. In addition to being utilized as sensing elements in biosensors
[191–193], strain sensors [194–196], and gas sensors [51, 197, 198], CNTs and GSs
are also used in nano-mass and nano-force sensors [199].

Mechanical resonators are used as inertial balances to detect an otherwise too tiny
mass by measuring the oscillation frequency shifts [200]. Silicon-based mass sensors
using the same approach have also been investigated [28, 201–212]. Compared to
carbon nanomaterials, silicon-based mass sensors are limited by their relatively
lower material properties and larger cross section [199]. The CNT/GS-based nano-
mass sensors have been the subject of many experimental and theoretical investiga-
tions, demonstrating a much higher sensitivity (>10-21 g) than silicon-based mass
sensors [213–222].

Fig. 10 Examples of carbon nanomaterials [180]. Permission granted by the terms of the Creative
Commons Attribution 4.0
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In general, the resonant frequency shift, which is related to the mass or force of
the resonator, is determined by frequency-based vibration analysis in nano-mass and
nano-force sensors. By adding additional mass or extra force to a nano-sensor
system, the resonant frequency of the resonator changes, and the accurate measure-
ment of the resonant frequency variation can precisely determine the additional mass
or the unknown additional force [215, 218, 223, 224].

For a nano-mass sensor system in natural vibration, the typical governing equa-
tion of vibrational motion for determining its fundamental frequency can be
given as:

M½ �€yþ K½ � yf g= 0f g

where [M] and [K] denote the mass and stiffness matrices of the analytical system
and {y} and ÿ are the displacement and acceleration vectors, respectively [199].

The mechanism of the nano-mass sensor is the following: the fundamental
frequency, f, of the sensor system without attached mass is calculated if the dimen-
sions (e.g., thickness, diameter, length, and width) and density of the resonator
related to the mass matrix [M] and the material properties of the resonator (e.g.,
Young’s modulus, shear modulus, and Poisson’s ratio), related to stiffness matrix
[K], are known. A tiny mass with a mass matrix of [ΔM] is then added to the
resonator to generate a different mass matrix [M + ΔM] of the total sensor system
and determine a new fundamental frequency, f0. The frequency shift, Δf = f0 - f, is
then calculated. Following repeated repetitions of this process, a correlation curve is
established between the additional mass and the frequency shift of the total sensor
system, allowing one to measure a tiny unknown mass. However, when the tiny
mass becomes so small that the frequency shift is no longer discernible, the nano-
mass sensor is considered to have reached its detection limit [199].

In the governing equation of a nano-force sensor system for detecting unknown
external forces, a loading vector {F} is added on the right side of the same equation,
shown as

M½ � €yþ K½ � yf g= Ff g

A similar approach is utilized up to a point where the nano-force sensor reaches
its limit of detection.

This exemplary review of carbon nanomaterials presents the theoretical models
for nano-mass and nano-force sensors based on vibration analysis, highlighting that
when studying the vibrational behavior of CNTs and GSs, the densities should be
determined simultaneously with Young’s modulus, shear modulus, and thickness.
Citing recent studies of carbon nanomaterial-based (CNTs) [225–242], GS [243–
255], and carbyne [256–258] nano-mass sensors, minimum sensitivities of 10-23 g,
10-24 to 10-22 g, and 10-26 to 10-23 g, respectively, have been achieved. The
authors conclude that such sensors should be studied further by vibration analysis,
though due to the small size and weight of carbon nanomaterials, the real-time
application of nano-testing techniques is complex. Hence, they call for new methods
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and approaches to be developed so that measurement uncertainty is reduced, and
testing accuracy is improved [199].

The example of nano-mass and nano-force sensors based on carbon
nanomaterials described above immediately catches the eye because the typical
governing equation for the detection mechanism and the discussion on setting up
the mass and stiffness matrices closely matches Mathieu’s equation and the setup of
its coefficients. Unlike direct resonance, described by the vibration analysis in the
review, parametric resonance increases both the response amplitude and the fre-
quency bandwidth with decreased damping. Therefore, parametric resonance cir-
cumvents the dilemma of balancing resonant amplification with frequency
bandwidth, enabling analysis beyond the detection limit for classical resonators.
Furthermore, the application of parametric resonance is agnostic as to whether the
sensors are carbon nanomaterial-based or silicon-based. In both cases, sensor per-
formance will be enhanced. Aside from the ease of designing elements with the
required features, utilizing this phenomenon under ambient pressures and tempera-
tures makes it even more appealing, especially for breath analysis. Therefore, the call
for new real-time approaches and methods can be answered by applying the concept
of parametric resonance and analyzing a similar equation differently.

6 Conclusion

Of the more than 870 types of VOCs found in human breath, those most widely
studied include ammonia, acetone, isoprene, nitric oxide, and hydrogen sulfide.
Detecting VOC concentrations in the breath accurately is challenging, and the
typical range of endogenous VOCs, as measured by GC-MS technology, is
1–5,000 ppb (parts per billion). In this regard, sensors and sensor-based devices
used to diagnose diseases through exhaled breath must meet such low detection
limits while accurately separating the numerous VOCs present before being trusted
in point-of-care and clinical settings. These devices must also perform in conditions
such as high humidity, at room temperature, deliver results in real time or as close to
real time as possible, and present information in an understandable form. Applying
sensors and sensor-based devices to analyze human breath poses additional chal-
lenges. These challenges include distinguishing and measuring endogenous versus
exogenous compounds, capturing exhaled breath from the nose instead of the mouth,
analyzing alveolar breath versus dead space air, and considering influences such as
diet, age, gender, pregnancy status, exercise, and smoking. Furthermore, how breath
samples are analyzed – offline versus online, direct versus stored – affects the
measured results. With the advancement of breath analysis, it has become evident
that basing diagnosis on a single VOC (with the notable exception of NO for asthma)
is usually unreliable. Hence, current research is shifting from targeted analysis to
non-specific analysis of exhaled breath. Consequently, single sensors are being
substituted for sensor arrays, and sensors that react to multiple compounds are
being developed.
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This chapter primarily discussed using metal oxide semiconductor gas sensors for
breath analysis, exemplified by sensor array devices such as electronic noses.
Typically, such devices consist of a hardware component, the sensor array, and a
software component, machine learning and pattern recognition algorithms. Thus, a
review of materials, structures, and advancements in techniques to increase the
amount of reactive active sites has been presented. MOS gas sensors remain at the
forefront of the development of simple, repeatable, reproducible, reliable, real-time,
lightweight, hand-held devices that are inexpensive, particularly for breath analysis.
The utilization of nanomaterials and nanostructures represents the next generation of
gas sensors. Such techniques increase the surface area, thereby lowering detection
limits and improving sensitivity by orders of magnitude over semiconductor sensors.
Their nuances have also been discussed in this chapter. Lastly, parametric resonance,
a method for dealing with non-linear dynamics below a sensor’s detection limit, has
been presented, reviewed, and illustrated. The application of parametric resonance
can serve as a “smart algorithm” to enable sensors and sensor arrays to meet and
exceed the collection of requirements and challenges posed by breath analysis for
disease diagnosis.
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Abstract Modern methods of pulmonary function diagnosis include spirometry,
body plethysmography and a variety of other common tests used to assess a patient’s
respiratory status. Additional procedures such as different forms of blood gas
analysis applications are available and can be supplemented by an analysis of
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expiratory carbon dioxide in the form of capnometry or capnovolumetry. In the field
of exhaled breath components analysis, measurement of the fraction of exhaled
nitrogen oxide has proven to be an additional means of supporting the diagnostic
process. The aforementioned lung function tests form the basis for further breath
tests since they allow other biomarkers, e.g., certain volatile organic compounds, to
be interpreted in the physiological context. Hence, the lung function tests provide
important additional information for the correct interpretation of the breath tests.

Keywords Blood gas analysis · Capnovolumetry · FeNO · Pulmonary function test

Abbreviations

ARTP Association for Respiratory Technology & Physiology
ATS American Thoracic Society
BGA Blood gas analysis
BTPS Body temperature, pressure, saturated with water vapour
CO Carbon oxide
CO2 Carbon dioxide
COPD Chronic obstructive pulmonary disease
CPET Cardio pulmonary exercise test
DLCO Diffusion capacity of the lung for carbon monoxide
DLNO Diffusing capacity of the lung for nitric oxide
DLO Diffusing capacity of the lung for oxygen
ECG Electrocardiogram
ERS European Respiratory Society
ERV Expiratory reserve volume
FeNO Fractional exhaled nitric oxide
FeNO50 Fractional exhaled nitric oxide, measured at a flow of 50 ml/s
FEV1 Forced expiratory volume in 1 s
FOT Forced oscillation technique
FRC Functional residual capacity
FVC Forced vital capacity
GOLD Global initiative for chronic obstructive lung disease
H+ Hydron
Hb Haemoglobin
HCO3

- Standard bicarbonate
ICS Inhaled corticosteroids
IOS Impulse oscillometry
IRV Inspiratory reserve volume
LED Light emitting diode
LCI Lung clearance index
NO Nitric oxide
O2 Oxygen

202 M. Aufderhaar



pCO2 Partial pressure of carbon dioxide
P0.1 Mouth closure pressure at 0.1 seconds
PaCO2 Arterial partial pressure of carbon dioxide
PaO2 Arterial partial pressure of oxygen
PEF Peak expiratory flow
PEmax Maximal static expiratory pressure
PImax Maximal static inspiratory pressure
pO2 Partial pressure of oxygen
ppb Parts per billion
RER Respiratory exchange ratio
RV Residual volume
TLC Total lung capacity
TGV Thoracic gas volume
TLCO Transfer factor of the lung for carbon monoxide
SaO2 Arterial oxygen saturation
SF6 Sulphur hexafluoride
SpO2 Pulse oximetry oxygen saturation
SNIP Sniff Nasal inspiratory pressure
VC Vital capacity
VT Tidal volume
VCO2 Carbon dioxide output
VO2 Oxygen uptake
VO2max Maximum oxygen uptake

1 Introduction

Additionally to the composition of the expired gas that is subject of the volatile
organic compound analysis, lung function diagnostic has traditionally been inflicted
with the mechanics of breathing. Pressure, flow and volume are the measurable
mechanical variables that can be used to characterize the lung function and model it.

Lung diseases are on the rise worldwide. They have increased disproportionately
in relation to other diseases in internal medicine and are of significant importance in
terms of morbidity, mortality and also health related expenses [1]. Infamous exam-
ples are chronic obstructive pulmonary disease (COPD) and asthma. COPD is one of
the leading causes of death in both developing and developed countries. Approxi-
mately 170 million people suffer from this lung disease which has a strong impact on
the quality of life of those affected [2–4]. It is characterized by a non-reversible
airflow limitation which usually progresses over time. The lung tissue reacts with an
abnormal inflammatory response to exogenous noxious particles, resulting, for
example, from cigarette smoking or air pollution [5]. Asthma is one of the most
common chronic diseases that can occur at any age. The disease is characterized by
chronic inflammation and increased sensitivity of the bronchi to inhaled substances
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and stimuli. Consequently, airway obstruction can occur [6]. In contrast to COPD, in
asthma the obstruction is usually reversible if the trigger substances are avoided.
According to different estimates, about 235 to more than 300 million people
worldwide are affected by bronchial asthma [2, 6].

More than 175 years ago, in the year 1846, John Hutchinson introduced an
apparatus to the world that should become the gold standard of diagnosing lung
function. He framed the important terms still in use today, spirometer and vital
capacity [7]. Early spirometers were closed systems with a diving bell inside a water
tank that changed its height depending on the volume the patient was breathing into
the system via a tube. The change of height could be directly measured [7]. Since
then, great advances in sensor technology and diagnostics have been achieved to
further refine the diagnostic of lung function. The use of the parameter describing the
forced expiratory volume in 1 s, FEV1, was proposed in 1947. The first peak flow
meter has been created in 1959. The flow-volume-curve that is utilized today to
depict spirometry results became famous in its current form in the late 1950s to the
early 1960s [7].

Methods such as spirometry and body plethysmography have since then become
established standards for the first assessment of lung function and lung function
deficiencies. However, as these rather mechanical methods are not within the
objective of this book, they shall only be briefly mentioned here. The exact pro-
cedures are described in detail and extensively in other publications. For detailed
procedural information, among others, guidelines from the American Thoracic
Society (ATS), European Respiratory Society (ERS) and Association for Respira-
tory Technology & Physiology (ARTP) are available. Some diagnostic procedures
of the area of lung function assessment make use of the gases that participate in the
natural gas exchange, such as, for example, oxygen, carbon dioxide and nitrogen,
which does not participate in the respiratory exchange to a notable amount but is
present in the ambient air. These methods such as single-breath diffusion measure-
ment and the nitrogen washout procedure will also be described in the following
chapters. As these gases are present in the human blood, blood gas analysis is also
considered a part of lung function diagnostics.

Though breath analysis is usually known for revealing systemic issues by
detecting the volatile blood compounds emitted via the lungs in the exhaled breath,
blood gas analysis can work vice versa. Emphasis shall be put on the development
on newer measurement techniques of exhaled breath compounds. Foremost, lots of
research has been conducted in the last years on capnometry and capnovolumetry,
respectively, to assess obstructive conditions and matters of gas exchange in mam-
malian lungs. A recent approach has been to analyse the fractional exhaled nitrogen
monoxide (FeNO), which has proven useful in the diagnostic and monitoring of
asthma.

Summarizing, this chapter provides an overview of rather seldom mentioned
techniques in breath analysis related literature including body plethysmography or
spirometry but furthermore discusses methods of analysing the gas exchange func-
tionality of highly abundant gases like oxygen in the lungs. Those techniques
provide vital information over the functionality of a patient’s or test person’s lung,
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which must be accounted for as well in modern breath analysis. Finally, modern
measurement techniques like capnovolumetry or FeNO, tackling diseases like
asthma or COPD, will be closing the chapter.

2 Modern Lung Function Diagnostic

Breath is a mixture of gas consisting of the gases present in ambient air, mainly
nitrogen, oxygen carbon dioxide and traces of argon. Additionally, it can contain all
kinds of environmentally present pollutants and organic compounds. Those sub-
stances are characterized as exogenous. Metabolic, endogenous compounds such as
isoprene and acetone can be found in exhaled breath as well.

Breathing patterns and posture during measurements have a high impact on the
measurement results. Hypoventilation or hyperventilation induce haemodynamic
changes that alter the expiratory patterns of the gas mixture. Similar effects can
occur after deep inhalation or forcefully executed exhalations [8]. Therefore, for
many diagnostic approaches, standard breathing patterns have been agreed upon. In
others, standard breathing patterns have yet to be developed and introduced for better
comparability of different studies.

Pulmonary functions tests are used to diagnose and assess mainly airway obstruc-
tion in terms of severity and prognosis. Age, height, sex and ethnicity influence lung
function and must be taken into account in the respective context [9]. If the analysis
of volatile organic compounds requires a defined and standardized breathing
manoeuvre from a patient, it might be sensible to perform a pulmonary function
test beforehand to assess the patient’s ability to cope and meet the required standards.
Limitations of the lung function could influence the assessment of the volatile
organic compounds analysis. Results of pulmonary function tests should then be
taken into account when evaluating the results. The state-of-the-art methods of lung
function diagnostic will be briefly presented in this chapter.

2.1 Spirometry

Spirometry is currently considered to be the gold standard of lung function diagnos-
tics and is the most widely used pulmonary function test in clinical practice and
primary care [2, 7, 10, 11]. It is often used to get a first impression of the patient’s
respiratory health and essential to respiratory disease diagnosis and management
[7, 12]. Spirometry can be used to determine various volumes of the lungs, including
tidal volume (VT), inspiratory and expiratory reserve volume (IRV, ERV) and vital
capacity (VC), as shown in Fig. 1. A whole-body plethysmography measurement is
necessary to determine the residual volume (RV) that remains in the lungs even after
an exhalation performed under maximum effort. Total lung capacity (TLC) can
therefore only be determined via plethysmography [13, 14]. To measure dynamic

Breath Analysis as Part of Pulmonary Function Diagnostics 205



breathing parameters, a Tiffeneau test is performed to determine the forced expira-
tory volume in 1 s (FEV1), the peak expiratory flow (PEF) and the forced vital
capacity (FVC) [14]. In the forced manoeuvre, the patient’s cooperation is essential
for obtaining usable measurement results. Spirometry aids physician in the diagnos-
tic of the severity of a condition and is often used as a monitoring tool for regular
check-ups in various lung diseases, such as COPD, asthma or cystic fibrosis [15].

Early spirometers consisted of a closed tube system with a diving bell in which a
float changed its height depending on inhalation and exhalation. This change in
height is displayed over time with the help of a recorder [14]. Modern spirometers
measure the flow rate during inspiration and expiration and determine the respiratory
volumes by mathematical integration of the determined flow. Thus, in addition to the
spirogram, a flow-volume curve can be obtained, which can be used to better assess
dynamic breathing parameters [16].

Turbines, pneumotachographs or ultrasonic sensors are used for spirometry
measurement. The ultrasonic measurement method is considered the most accurate
because no secondary parameters such as pressure drop or rotational speed need to
be measured and it is calibration-free. Two diagonally opposed ultrasonic trans-
ducers, which penetrate the respiratory flow at a defined angle, measure the differ-
ence in transit time of two signals. In the process, one signal is accelerated and the
other is slowed down. Gas properties, temperature and humidity are the same in both
measurement directions and have no influence on the measurement. The measured
transit time difference is proportional to the respiratory flow, which is integrated to
the volume. Spirometers that directly co-determine temperature and humidity per-
form the BTPS (body temperature, pressure, saturated with water vapour) correction
of the values obtained internally during the measurement [17].

Fig. 1 Spirogram, representation of inhaled and exhaled volume over time
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One of the important limitations of spirometry to consider is its inability to
represent the condition of the peripheral airways as each of those only contributes
little to the cumulative flow that is measured at the mouth. Therefore, spirometry is
less sensitive in detecting peripheral airway changes compared to other measurement
techniques such as, for example, the forced oscillation technique [7, 18]. Addition-
ally, the spirometry measurement relies on forced expiratory manoeuvres and
therefore does not represent the state of the lung function during normal tidal
breathing [7].

In order to investigate the applicability and reliability of spirometers, especially in
children and elderly people, several studies have been conducted in recent years.
There is disagreement about the age at which valid results can be obtained with
spirometry [7]. The current guidelines of the ATS suggest that spirometry could be
performed from 2.5 years of age [17]. The British Association for Respiratory
Technology & Physiology states that often spirometry can be successfully
performed from the age of 3 years [16] and prediction equations have been published
by Quanjer et al. for the age range from 3 to 95 [9]. Lo et al. found in their study that
quality spirometry could be achieved in children as young as 5 years of age [19],
whereas Lundberg et al. believe it still to be a challenge at 6 years of age, although it
is possible to obtain valid data [10]. For elderly patients, Melo et al. found that the
majority of them are able to perform a valid spirometry measurement if no cognitive
deficits are present. Other comorbidities were not an obstacle [11].

To investigate various lung diseases such as asthma, COPD or cystic fibrosis in
detail and to assess patients’ condition post stem cell and lung transplantation, the
use of home spirometry has been studied [7]. Home measurements have correlated
with measurements performed at a clinic, as Noth et al. proved recently. Home
spirometry offers great potential as it is easy to perform for cooperative patients.
Having a spirometry device as home, patients can provide frequent measurements to
contribute to earlier detection of disease progression or acute exacerbations [20].

2.2 Body Plethysmography

In contrast to spirometry, a body plethysmography measurement requires a much
higher level of equipment. Consequently, it is able to provide additional information.
Residual volume and airway resistance can be determined. Knowing the residual
volume, the thoracic gas volume (TGV) can also be determined. The additional time
required is low. For those reasons, the whole-body plethysmography (comprising a
spirometry measurement) is regarded as the gold standard for advanced pulmonary
function testing [21, 22]. The body plethysmograph is an airtight cabin that includes
a spirometry sensor that is equipped with a shutter. The measurement is largely
independent of patient cooperation and not physically strenuous. The patient’s tidal
breathing is measured continuously due to ventilation-related volume changes or
compression/decompression, the pressure is measured continuously and displayed as
a so-called breathing loop, representing flow over shift volume, as shown in Fig. 2.
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The specific airway resistance is an expression of the work of breathing determined
by a straight line through the breathing loop [23].

The measurement of thoracic gas volume is based on Boyle and Mariotte’s law of
physics, according to which the product of pressure and volume is constant. The lung
volume at a particular time in the respiratory cycle (e.g. the thoracic gas volume at
the end of normal expiration/resting breathing) can be calculated by automatically
closing the shutter for a short time at the end-expiratory peak of tidal breathing, when
the alveolar pressure closely approximates the pressure at the mouthpiece. The
patient is asked to continue to breathe frustratingly against the shutter. The actual
airway resistance can be calculated by putting the specific airway resistance into
relation to the lung volume [16, 23, 24].

The basic assumption of the body plethysmography measurement is the isother-
mal behaviour of the changes of pressure and volume inside the cabin. However, it is
not entirely clear to what extent heat may be lost through the walls during the
patient’s respiration that causes changes in temperature and humidity inside the
plethysmograph. In prolonged measurements, a resulting drift of the signal must be
corrected [25]. It is assumed that the pressure changes in the lungs are uniform.
Another assumption is the equivalence of the pressure at the mouth and the pressure
in the alveoli at the end of expiration. This might not always be the case in airway
obstruction because of the time needed to achieve the equilibrium and therefore the
total thoracic gas volume might be overestimated [16].

The body plethysmography measurement includes all the volumes in the thoracic
cage including trapped gas compartments [14, 22]. Abdominal gas is believed to be
negligible although it is not recommended to consume fizzy beverages prior to a
measurement [16]. Limiting factors of body plethysmography are the large volume
and the immobility of the cabin, which are associated with high costs and regular

Fig. 2 Resistance curves,
representation of flow over
shift volume. 1 normal curve
of a healthy individual,
2 curve of a present
obstruction
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maintenance. The manoeuvres required are comparable to those of spirometry in
terms of complexity and patient compliance [12, 21].

Gupta et al. recently assessed parameters of spirometry and body plethysmogra-
phy in the male Indian population. They described that, in contrast to body plethys-
mography, spirometry could not differentiate between healthy controls and smokers
with COPD and they conclusively recommend body plethysmography for the early
detection of changes in pulmonary function. Damages to the lung tissue caused by
smoking could be reduced when smokers manage to quit timely [4].

Dreher et al. found an alarmingly high prevalence of undiagnosed COPD in a
study of patients with acute myocardial infarction undergoing percutaneous coro-
nary intervention. In 80% of the COPD patients of the study, the disease was not
treated. They recommend a general pulmonary workup for patients with myocardial
infarction and coronary heart disease [26]. These results underline the close connec-
tion between pulmonary and cardiac diseases. Body plethysmography could be used
for routine screening for COPD. A combination of spirometry and body plethys-
mography has been found feasible for asthma control in children in a study by
Korten et al. No single lung function parameter could indicate a difference between
controlled and uncontrolled asthma [27].

Body plethysmography has become an important tool as well in clinical practice
as in biomedical research. It can even be used to analyse respiration in
non-anaesthetized animals in preclinical studies and enable the observation of effects
such as sighing or sniffing [28].

2.3 Occlusion Pressure

The ventilation of the lung is driven by the so-called respiratory pump, which
consists of the respiratory centre, nerves and respiratory muscles. By measuring
the occlusion pressure maximum respiratory muscle strength and current load can be
determined. Just like other muscles the inspiratory muscles are fatigable when
overstrained. Since it is not possible to assess the respiratory muscle strength
directly, the airway pressure is measured as a surrogate of their output. The respi-
ratory muscle strength is therefore determined by measuring the pressure at the
mouth with a closed shutter and with different breathing manoeuvres [16, 24].

To measure the current load (P0.1), the mouth closure pressure is determined
0.1 s after the start of the inspiration during tidal breathing with the shutter closed.
The measured pressure is proportional to the inspiratory pressure or pleural pressure
[24]. The pressure that is generated by the respiratory muscles is reflected by the
maximal static inspiratory pressure (PImax) and maximal static expiratory pressure
(PEmax). The respiratory muscle strength is dependent on the lung volume during the
test because this influences the operating length of the muscle fibres. To measure
PImax, the pressure is measured during a forced inspiratory manoeuvre against the
shutter. To measure PEmax, the pressure is similarly measured during a sustained
forceful expiration from total lung volume [16, 24]. P0.1 is also measured with
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specialized ventilators in intensive care settings to assess the respiratory drive in
ventilated patients before undergoing weaning trials [29]. P0.1 is increased in case of
respiratory muscle weakness, for example, in diseases like amyotrophic lateral
sclerosis, as recently described by Pinto et al. [30].

Another possibility to assess the inspiratory muscle strength non-invasively is the
so-called SNIP test, the Sniff Nasal Inspiratory Pressure. For this test, one nostril is
equipped with a catheter connected to a pressure sensor. The duration of a sniff
should be less than 0.5 s. This test is simple for patients to perform since sniffing is a
natural manoeuvre that does not require special training. Therefore, it is suitable for
children from the age of 4 years. Pressure values obtained with the SNIP test usually
exceed those of PImax. The common approach to assessing inspiratory muscle
strength is to perform both PImax and SNIP measurements [16].

With the occlusion pressure measurement, it is possible to detect limitations of the
maximum inspiratory force (capacity), as well as increased strain (load) on the
inspiratory muscles. Possible causes can be chronic diseases or acute diseases with
reduced maximum inspiratory force or overuse of the inspiratory muscles due to
increased load. In the case of larger interindividual deviations, the method is only
suitable to a limited extent for determining general degrees of severity. However, it is
suitable for assessing the course of the disease if the intraindividual results are stable
[16, 24].

2.4 Forced Oscillation Technique

Forced oscillation technique (FOT), or in short oscillometry, provides another
non-invasive way to assess the lung function. It can be used in clinical settings
such as lung function laboratories and the intensive care unit as well as for field
testing or home monitoring. Forced oscillations are brought to the lung by a
loudspeaker during the patient’s tidal breathing and allow to measure the respiratory
system impedance [10, 18, 31–34]. The impulse oscillometry (IOS) is a variant of
this technique, where a series of pulses is applied [7, 31, 32, 35].

During tidal breathing, the oscillometry assesses the respiratory impedance,
which is comprised of the system’s resistance and reactance. Those are measured
and displayed as a function of the different applied frequencies. The resistance
represents the size and diameter of the airway. Elastic and inert properties of the
respiratory system are represented by the reactance [7, 18, 34, 36–38]. The use of
multiple waveforms has been described in literature. Either single-frequency sine
waves or multi-frequency pressure waves can be applied at the patient’s mouth
during tidal breathing [7, 10, 32]. The typically applied frequency range is between
5 and 50 Hz, with the majority of publications reporting ranges from 5 to 35 Hz [34,
36–38]. The lower frequencies (5 Hz) are capable of penetrating deep into the
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periphery and small airways, whereas mid- to high frequencies only reach the
proximal airways [39, 40].

The distribution of resistances, elastances and inertances within the lung is
heterogeneous, even for healthy lungs. This explains the frequency dependence.
At frequencies decreasing below 5 Hz, the reactance is more negative whereas the
resistance increases. When the frequency increases, the elastance decreases, so that
the reactance in total becomes less negative. Consequently, at higher frequencies
inertance becomes positive [34]. The frequency at which inertance and elastance are
equal, so that the reactance becomes zero, is called the resonance frequency [34, 38].
Norm values for the resonance frequency from healthy adults range from 8 to 12 Hz,
while children have higher resonance frequencies [34]. Also in lung diseases, where
typically a decreased reactance can be seen, while the resistance is increased, the
resonance frequency tends to move to higher frequencies.

Oscillometry measurements should be performed before testing methods that
require forced breathing manoeuvres and deep breaths (such as spirometry, diffusing
capacity or FeNO measurement) are carried out as those are known to have an effect
on the lung function and bronchial tonus [34, 41, 42]. The forced oscillation
technique is in particular useful to assess the function of the small airways. The
function of the large airways is pronounced in spirometry measurements and the gas
exchange can be assessed with a diffusion measurement. Therefore, the oscillometry
offers a possibility to assess the so-called silent zone in between. The reactance
parameters of the oscillometry measurements are found to be far more sensitive than
spirometry to assess peripheral airway diseases. It shows mild cases of obstruction
much earlier than a spirometry measurement [10, 18, 32, 35, 36, 38, 40, 43].

Cho et al. showed that about 75% of the small airways must be affected from
obstruction before changes can be detected by measuring the FEV1 [39]. The forced
oscillation technique is also more sensitive to determine bronchoconstriction than
spirometry. Oscillation measurement and spirometry are equally able to identify
exercise-induced bronchoconstriction [34, 44]. For the monitoring and follow-up
programmes for the treatments of diseases like asthma oscillometry might therefore
provide supplementary and clinically relevant information as it correlates better with
respiratory symptoms [7, 10, 18, 34, 36, 37]. It is also a useful tool to spot rejection
reactions after lung transplantation in a very early stage. In spirometry, the effects
appear up to 2 weeks later [39].

Forced oscillation technique also proves a suitable alternative for patients that are
unable to perform a satisfactory spirometry, especially children or elderly patients. It
demands less cooperation of the patient as it only requires tidal breathing but no
complex manoeuvres, so it can be performed more easily and quickly. The mea-
surement can be repeated as needed without stressing and exhausting the patient
[32–34, 36, 37, 39, 40, 43, 44]. However, the direct correlations between spirometry
and oscillometry outcomes have not proven feasible and have been described to be
moderate at best [10].

According to Lundblad et al., oscillometry has already become the gold standard
in laboratory animal research [43]. Problematic for the clinical use of oscillometry
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are the substantial differences of the commercially available devices in measurement
duration, frequency content, waveform and intensity of oscillations, and signal
processing techniques. Studies from different devices are therefore not extensively
comparable [34, 35].

Further standardization is needed to exploit the full potential of the technology. It
is important to ensure compliance with criteria for acceptability and reproducibility
as for all pulmonary function testing [32, 34]. More studies are necessary to
determine normal values for different ethnic groups, equivalent to the normal values
of the Global Lung Initiative for spirometry measurements [34].

2.5 Ergo Spirometry/CPET

Ergo spirometry, also known as cardiopulmonary exercise testing, short CPET, is a
measurement of the body’s performance for the diagnosis of cardiorespiratory
diseases, for monitoring during rehabilitation or for training monitoring of athletes,
as it allows a full diagnosis of the cardiorespiratory system. The parameter for
the maximum oxygen uptake (VO2max) is considered a suitable means of assessing
the fitness status of patients or athletes [14, 46, 47]. Further parameters of interest
are the carbon dioxide production and lung ventilation. Different causes of exercise
limitation can be evaluated with ergo spirometry as it allows conclusions about the
disturbances occurring under stress that resting pulmonary and cardiac function
testing cannot reliably predict [48, 49]. In healthy individuals, performance is
primarily limited depending on cardiac output [23]. Therefore, CPET also plays an
important role in cardiology, for example, in the assessment of patients with severe
heart failure for the decision on heart transplantation or to support the optimal
programming of a pacemaker [47]. As Stavrou et al. described in a recent review,
patients with obstructive sleep apnoea have a reduced aerobic capacity that is
associated with a dysfunction of the pulmonary, cardiovascular, neuropsychological
and skeletal muscle systems and their interaction. Ergo spirometry could therefore
also be useful for early detection of sleep apnoea [49].

A CPET is usually carried out on a treadmill or a bike ergometer, sometimes
rotary crank ergometers have been used [14, 23]. The choice of method depends on
availability and preference. When using a treadmill, the maximum values can be up
to 10% higher compared to those achieved in a test on a cycle ergometer. Ramp or
step protocols can be utilized to increase the workload. The ramp protocol is
preferred to determine the patient’s performance limit as stepwise increases of
intensity can lead to artefacts that might be misinterpreted as thresholds [50].

A complete CPET consists of four stages: A resting phase to determine baseline
values, a warm-up phase, the workload phase and the recovery phase. The breathing
volume, breathing frequency and heart rate are continuously monitored during the
exercise test and related to the ergometer workload. During the test, oxygen, carbon
dioxide and the flow are directly measured [51]. The latter is used to determine the
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respired volume. Additionally, a 12-channel ECG should be recorded. All signals
must be precisely synchronized.

For the detection of oxygen during CPET, different types of sensors are available.
Biochemical cells offer a fast response time for breath-by-breath analysis. However,
their life time is limited and highly dependent on usage and storage conditions.
Paramagnetic oxygen sensors can also be used. They are more sensitive to shock, but
usually offer a longer lifetime. Zirconium cells, optical spectrometers or chemical
cells have also been described to be used for the oxygen measurement [51]. For the
detection of carbon dioxide, non-dispersive infrared sensors are utilized, where the
infrared absorption of the molecules is measured with a pulsating light beam through
a cuvette. Alternatively, chemical cells can be used [51]. For the measurement of the
flow during CPET, turbines and pneumotachographs are commonly used.
Pneumotachographs offer the advantage of linear behaviour for a large flow range.
Light turbines can be scanned by a photo sensor, they must respond immediately to
flow changes and must not run after the flow has stopped. Orifice spiroceptors with a
thin plastic foil allow the measurement of pressure differences proportional to the
respiratory flow as the orifice opening is proportional to the flow. Alternatively, mass
flow sensors can be used [51].

During the test, the ventilatory thresholds can be determined. The first ventilatory
threshold appears when the organism begins with lactate metabolism, so additional
carbon dioxide is produced [14, 50]. The second ventilatory threshold marks the
point of the test when the patient starts to hyperventilate. It shows the respiratory
compensation point. Individual thresholds are useful to assess the endurance perfor-
mance and control the intensity to provide training recommendations for preventive
and rehabilitative sport. A key advantage for the use of CPET in occupational
medicine is the patient’s inability to cheat during the exercise test as the ventilatory
thresholds are independent of motivation or workload [50]. It is sensible to use data
averaging to display the test data. However, a high averaging lowers the resulting
maximum values. Therefore, for athletes, a breath-by-breath inspection might be
useful to evaluate the true maximum values. Peak oxygen uptake and ventilatory
threshold can be severely altered by switching the averaging method [46, 51].

Lie et al. recently investigated the influence of exercise-induced laryngeal
obstruction in CPET because the larynx represents an important point of resistance
in the airway tree. They described the effect as common and found prolonged
inspiratory time, lower breathing frequency, lover ventilation and lower inspiratory
flow rate at maximal exercise. Still, most data overlapped so only the inspiratory
flow rate could be promising in discriminating patients with an exercise-induced
laryngeal obstruction although further investigations are needed to confirm their
findings [52].

The usage of filters in a CPET measurement is problematic. Firstly, it will
increase the dead space and even more important, because of the long duration of
the measurement the filter will eventually become wet from the permanent exposure
to exhaled breath, which is saturated with water vapour and might contain saliva and
sputum. Therefore, resistance of the filter will rise and thus breathing becomes more
difficult for the test subject.
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3 Diffusion Measurement Techniques

In lung function diagnostics, a number of procedures have been established in which
the lung volume can be determined with the aid of various gases. By the application
of external gases, the functional residual capacity (FRC) of the lung can be deter-
mined without the need for a body plethysmography measurement. The FRC is
defined as the sum of the residual volume and the expiratory reserve volume. It
describes the volume that remains in the lungs at end-tidal expiration [22].

Furthermore, the diffusion of gases is an essential part of respiration. Oxygen has
to be transported from the air in the lung into the blood and carbon dioxide has to be
disposed. Besides ventilation and perfusion, the efficiency of the diffusion is depen-
dent on the surface area of the lungs and membrane thickness. To measure the
capability of the respiratory system for diffusion, the diffusion capacity of the lung
for carbon monoxide (DLCO) can be determined by measuring the uptake of carbon
monoxide from a specific test gas during a phase of breath holding. Decisive for this
process are above all the conductivity of the membrane and the ability of the carbon
monoxide to bind to haemoglobin. The concentration of haemoglobin also directly
affects the gas exchange across the alveolar–capillary membrane [12, 53].

In volatile organic compound analysis, advantage is taken of the fact that the
volatile substances pass from the blood into the lungs and are present in the exhaled
breath. In the case of diffusion measurement, the approach is vice versa: The
diffusion of the tracer gases from the lungs into the tissue is used for diagnostic
purposes. Diffusion measurement techniques can be either single-breath or multiple-
breath techniques. Nowadays, the single-breath techniques are most widely used
[16]. Common tracer gases are helium, methane or carbon monoxide, also nitrogen
washout is utilized. In contrast to the body plethysmograph, the diffusion measure-
ment techniques are only able to measure the volume of the ventilated areas of the
lung and not the total thoracic gas volume, which includes also gas trapped in
non-ventilated areas [16, 22]. The most common diffusion measurement techniques
shall be presented in the subsection below.

3.1 Single-Breath Diffusion Measurement and CO Transfer
Factor

To measure the diffusion capacity, test systems must have a source to apply the test
gas, a measurement method to determine inspired and expired volume and a
measurement method to determine carbon monoxide and the tracer gas concentra-
tion. Carbon monoxide can easily be measured by infrared or electrochemical
analysis [16]. The analysers need to be linear and should have a high accuracy
with a recommended sampling rate of 1,000 Hz. A precise alignment of gas
concentration signals to the flow signal is crucial [53].
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Cross sensitivities of the gas analysers have to be observed and reduced as far as
possible. An offset for water vapour and carbon dioxide can be provided by
measuring the patient’s expiration over some tidal breath cycles before inhalation
of the test gas to adjust the concentration signal [53].

For a single-breath diffusion measurement, a test gas that comprises carbon
monoxide, helium and ambient air is used. Carbon monoxide has a high affinity to
haemoglobin and displaces the oxygen. The similar behaviour to oxygen regarding
the diffusion coefficient and rate of reaction with haemoglobin makes carbon
monoxide the ideal test gas. It does not naturally occur in the respired air, except
for smokers [24]. At lower concentrations, the inhalation of CO is not dangerous.
Common test gases for diffusion measurement contain 0.3% carbon monoxide, 21%
oxygen, a tracer gas and a balance of nitrogen. Helium or methane are suitable tracer
gases because they are relatively insoluble, inert and are not present in the alveolar
gas [16, 23, 53]. The most important parameter of this measurement technique is the
DLCO. It is dependent on the volume of capillary blood flow, the chemical reaction
between carbon monoxide and haemoglobin and the diffusion conductivity of the
alveolar membranes. Nowadays, it is therefore common to acknowledge the influ-
ence of the different factors by using the term of transfer factor (TLCO) rather than
DLCO, albeit the term is still popular and broadly present in literature
[24, 53]. Among others, DLCO values are varying with height, age and sex and
are also influenced by haemoglobin, lung volume, exercise and body position. A
premise of the method is that carbon monoxide and the tracer gas are diluted equally
in the lung. However, in diseases such as severe COPD or emphysema this is not the
case. The inspired test gas will be distributed primarily in the well ventilated parts of
the lungs. Subsequently, the measured diffusion properties will likely be describing
the situation in these regions of the lungs [53]. Méndez and Menéndez reported a
reduced DLCO in Covid-19 survivors as the disease is associated with diffuse
alveolar damage and vascular changes. They acknowledged that it is yet unknown,
which clinical variables may be responsible [54].

The measurement of helium dilution with multiple breaths is a well-known
method to determine the resting lung volume (FRC) [22]. The helium is equilibrated
between the unknown lung volume and the closed measurement system [22]. The
system contains a spirometer, a sampling gas pump and analysers for helium and
oxygen, as well as a source for oxygen and an absorber for carbon dioxide
[16]. Although the test is simple and relatively cheap, this steady-state method for
measuring gas uptake during tidal breathing has become less important in clinical
practice in recent years [22, 24].

Single-breath diffusion measurement takes less time and has therefore partially
replaced the dilution method. In a recent study, Fragoso et al. suggested that the
combined measurement of spirometry and DLCO may be sufficient for the evalua-
tion of respiratory diseases, without the need for a body plethysmography
measurement [12].

Additionally to DLCO and the originally determined diffusing capacity of the
lung for oxygen (DLO), recent studies investigate in the use of the diffusing capacity
of the lung for nitric oxide (DLNO) [55]. Radtke et al. compared two commercial
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devices capable of determining the combined single-breath diffusion capacities for
DLNO and DLCO in one manoeuvre in 35 healthy adults but found substantial
differences for DLNO and lamented the absence of an established gold standard,
since DLNO has up to now been mainly used in research settings. Despite, its
additional value for use in clinical practice should be further evaluated to overcome
the current shortcomings that impact the utility of DLNO as a biomarker [55].

3.2 Nitrogen Washout

The nitrogen washout measurement is a relatively new application to determine FRC
that has only recently been emerging into commercial diagnostic markets, even
though the principle has long been known. Also known under the term Fowler’s
method, nitrogen is used as an indicator to determine the FRC and the anatomic dead
space of the lung [56]. Additionally, the lung clearance index (LCI) can be deter-
mined by calculating the quotient of the total expiratory volume and the FRC.
Measurements can either be performed with a single breath or multiple ones. Both
variants provide information about the functional residual capacity and irregularities
in gas distribution in the lungs. The multiple-breath test is believed to be more
accurate when it comes to measure absolute lung volumes [22].

For the multiple-breath washout measurement, the patient breathes 100% medical
oxygen from a gas bottle. This displaces the nitrogen from the lungs, hence the term
“wash out”. The volume of the exhaled nitrogen is measured. Because of the
inspiration of pure oxygen, nitrogen washout measurements should take place
after the measurement of TLCO, otherwise the measurement could be influenced
too strongly [16, 22, 56].

The concentration of washed out nitrogen can be measured directly and contin-
uously by fast-responding nitrogen analysers at the mouthpiece [22] or indirectly by
using carbon dioxide and oxygen sensors [57]. Air flow at the mouth can be
measured with a pneumotachographs or an ultrasound flowmeter. The signal must
be corrected for BTPS. The oxygen required for the inspiration is either provided
from a tank via an on-demand valve or from a reservoir bag filled with 100% oxygen
[22, 57]. The measurement system measures the flow and analyses the amount of
nitrogen that is exhaled by the patient after the inspiration of oxygen has started.
Exhaled concentrations of gas are plotted against the volume in real time. It is
recommended that the system also monitors end-tidal carbon dioxide [16, 22,
57]. The tidal breathing of oxygen is continued until the expired nitrogen concen-
tration becomes less than 1.5%. Healthy subjects will reduce the expired nitrogen
concentration typically within 7 min. The actual duration is dependent on whether or
not and to what extent an airway obstruction is present [16].

The measurement of FRC with a body plethysmograph and with the nitrogen
washout technique shows close agreements for unobstructed lungs. In patients with
severe emphysema, the body plethysmography will determine a considerably larger
FRC than the nitrogen washout test and the test will typically take longer than 7 min
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to achieve nitrogen concentrations of less than 1.5%. This can be explained with the
areas of trapped gas that are not or hardly ventilated. Hence, gas mixing in these
areas is very slow [16, 22]. Disagreements between the helium dilution technique
and the nitrogen washout supposedly result from environmental and methodological
differences [22].

The multiple-breath washout and determination of LCI have been investigated in
some recent studies regarding cystic fibrosis. Hardaker et al. and Stahl et al. found it
useful to detect changes in lung function and early ventilation inhomogeneity at an
early stage [58, 59]. Hardaker describes abnormal LCI values in children to be an
indicator for lower spirometric lung function in later years and believes the washout
technique to be feasible to detect those children [58]. Stahl et al. used sulphur
hexafluoride (SF6) for their study in infants and pre-schoolers with cystic fibrosis
to determine the LCI. Because sedation was necessary to ensure cooperation, the
nitrogen washout technique could not be used as the inhalation of pure oxygen in this
age group can cause alterations in the natural breathing pattern [59]. In a recently
published study by Arigliani et al., LCI was determined to detect peripheral lung
abnormalities in patients with sickle cell anaemia at an early stage. In comparison to
spirometry and body plethysmography, the lung clearance index detected slightly
more deviations in patients with sickle cell anaemia [60].

4 Blood Gas Analysis

Blood gas analysis is used to assess the oxygen uptake and ventilation of the lungs
and the metabolic situation of the organism. It is used in the emergency room, to
assess the risk of surgery, during anaesthesia, in intensive care monitoring, to
monitor respiratory parameters in patients with COPD or cystic fibrosis, to monitor
the course of cardiopulmonary diseases and to diagnose unexplained tachypnoea and
dyspnoea. The change in blood gases can provide indications of the patient’s
diseases and help to initiate a targeted therapy [16, 61, 62].

Different gases are found in different concentrations in the blood. Some of them
are physically dissolved, but chemical bonds also occur. Among the gases dissolved
in the blood, the two respiratory gases oxygen and carbon dioxide are of diagnostic
interest in lung function diagnostics. Nitrogen also occurs in the blood, but only in
low concentrations and exclusively in physically dissolved form [14].

Because of its high informative value, the determination of blood gases is of
prime importance for the practice of the lung function diagnostics, even before the
measurement of expiratory carbon dioxide and oxygen concentrations [23, 48].
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4.1 Parameters of Blood Gas Analysis

Important parameters of the blood gas analysis to assess the efficiency of lung
function are partial pressure of oxygen (pO2), partial pressure of carbon dioxide
(pCO2) and the pH value, representing the potential of hydrogen. To assess the acid–
base balance, standard bicarbonate and base excess are also commonly
determined [24].

Oxygen is poorly soluble in the blood and is mainly transported in the erythro-
cytes bound to haemoglobin. About 96–98% of the oxygen is thus chemically bound
to the double positive iron ions of the haem group [63, 64]. A haemoglobin molecule
can bind up to four oxygen molecules, one to each of its four subunits. These four
subunits interact cooperatively so that when the first oxygen molecule attaches, the
affinity for oxygen attachment to the other subunits increases [13]. The bonds are
reversible, so that the oxygen can easily be released again in an oxygen-deficient
environment. The partial pressure of oxygen is therefore decisive for the amount of
oxygen that is bound to haemoglobin. The position of the binding curve describes
the haemoglobin–oxygen affinity, i.e. the strength of the bond between haemoglobin
and oxygen [64, 65]. A balance between oxygen demand and delivery is maintained
in the organism [66]. The upper part of the binding curve is almost flat, so even if the
pO2 increases, the SpO2 does no change much. Thus, the system is able to buffer a
drop in pO2 while keeping the haemoglobin highly saturated with O2. The lower part
of the binding curve is steep, offering the advantage that if the tissue requires larger
quantities of O2, those can be removed from the haemoglobin while keeping pO2

fairly stable [65].
The pO2 is used to assess the oxygen uptake of the lungs. It is measured with a

polarographic gold or platinum electrode (Clark electrode) and an Ag/AgCl refer-
ence electrode in an electrolyte solution, which are connected to a voltage source.
The oxygen molecules are reduced at the electrode, which leads to a measurable
charge shift that is proportional to the partial pressure of oxygen. Polycrystalline
boron-doped diamond is being discussed as a new, promising electrode material
because it shows a pronounced linear behaviour between current and dissolved
oxygen molecules. The normal value for pO2 is between 72 and 100 mmHg
(9.6–13.3 kPa) [62, 63].

For carbon dioxide, the physical solubility in the blood is greater than that of
oxygen. At the same time, however, the arteriovenous partial pressure difference is
lower, so that only a small part of the carbon dioxide from the tissue is physically
dissolved in the blood. Instead, the majority is chemically bound and transported as
bicarbonate by reacting with water in the erythrocytes to form carbonic acid. The
carbonic acid dissociates to form protons and the carbonate residue, which diffuses
back out of the erythrocytes in exchange for chlorine ions. In the capillaries of the
lungs, this process is reversed. The carbonate residues diffuse back into the eryth-
rocytes where they react with the protons buffered by haemoglobin to form carbonic
acid, which in turn dissociates to form water and carbon dioxide, which is exhaled
[14, 63]. The pCO2 reflects the ratio of carbon dioxide production to carbon dioxide
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elimination. pCO2 is measured using a Severinghaus electrode, a pH electrode in a
bicarbonate solution, which is considered the gold standard for clinical blood gas
analysis. The selection of the molecules takes place via a gas-permeable membrane
around the electrode. The diffusing carbon dioxide leads to a change in the concen-
tration of the H+ ions and thus to a change in the measured difference in potential. A
slight drawback of the Severinghaus electrode is the long response time of more than
a minute due to the slow carbon dioxide diffusion. The normal value for pCO2 is
between 35 and 46 mmHg (4.7–6.0 kPa) [16, 62, 63].

The pH value can influence all physiological processes. Analysis is done with a
pH electrode [16], an ion selective glass membrane that is permeable for the H+ ions
and a silver wire. The potential difference that can be measured with a voltmeter is
proportional to the hydrogen ion concentration. The normal value for blood pH is
between 7.35 and 7.45, on average approximately 7.4 [14, 16].

Standard bicarbonate (HCO3
-) is the main buffer system for physiological

processes. It is dependent on the pCO2 and calculated via the Henderson–Hasselbach
equation related to the standard bicarbonate concentration at a pCO2 of 40 mmHg at
37°C. This eliminates the effects of respiratory acidosis or alkalosis. The normal
value for standard bicarbonate is between 22 and 26 mmol/l [16]. The base excess
describes the amount of the buffer bases or acids that is necessary to titrate 1 l of
blood to the standard values of pH 7.4 at pCO2 5.3 kPa (40 mmHg) and 37°C
[16]. The normal range lies between -2 and +2 mmol/l.

The percentage of haemoglobin saturated with oxygen is called oxygen saturation
(SaO2) [16]. It can be determined with a photometric oximetry and the calculation of
the concentration via Lambert–Beer’s law. The normal value SaO2 is between 94%
and 98% [16, 64]. With a normal arterial value, saturation reaches a saturation
plateau at 97% [14]. Haemoglobin can also be determined with a photometric
measurement. Normal values range from 11 to 18 g/dl with the mean value being
about 15 g/dl [14].

The aim of lung function diagnostics is to analyse how well the organism is
supplied with oxygen and able to eliminate the metabolic waste product carbon
dioxide. Therefore, blood gas analysis is regarded as an important part of the lung
function diagnostic. With blood gas analysis, the result and efficiency of the lung
function can be assessed by displaying the amount of the blood gases oxygen and
carbon dioxide [24]. In the clinical practice, the invasive blood gas analysis repre-
sents the state of the art and will be presented in the following. Some approaches
have been made to determine blood gas values in a non-invasive way, such as
transcutaneous blood gas measurement and capnometry.

4.2 Invasive Determination of Blood Gases

Blood samples for the invasive determination can be taken arterial, venous or from
capillaries. The analysis of arterial blood is considered to be the gold standard for
blood gas analysis [16, 24, 67]. Indwelling arterial catheters can be used in intensive
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care setting where frequent blood gas samples are required [16]. Arterial puncture
can be painful for the patient [16, 68] and carries some risks for the patient, like the
general risk of infection, the possibility of a major vascular injury and haematoma
formation. Arterial blood sampling can therefore only be performed by qualified and
trained personnel. The notation of PaO2 and PaCO2 instead of pO2 and pCO2 is used
to indicate the arterial measurement. Venous blood gas analyses can be performed
faster and safer. Taking a venous blood sample is less painful for the patient,
although, venous blood is not well suited because the venous blood gases are
significantly dependent on the metabolism of a subject [24]. A compromise regard-
ing simplicity and safety is the usage of arterialized capillary blood, which has been
proven to be sufficient for routine examinations to determine pH, pCO2 and pO2

[16, 23]. Puncture of the hyperaemised earlobe is patient-friendly, especially if
frequent samples are necessary to closely monitor the blood gases. With this method,
comparable biochemical parameters can be determined as with the arterial blood gas
analysis [68]. The capillary sample contains mostly blood from the arterioles and to a
lesser extent from the venule side because of the differences in blood pressure
[16]. However, capillary blood samples have no validity in shock states with reduced
peripheral perfusion [23, 24].

Difficulties in the measurement are the small sample volumes and the volatiliza-
tion of the gases with advancing time. Therefore, the analysis of the collected blood
samples is usually done in close proximity to the patient. Invasive blood gas
measurement is time-consuming and the results cannot be determined in real time.
Modern analysers can analyse the blood samples for the desired parameters within a
few minutes. For each measurement, a sufficient amount of blood must be taken
from the patient for analysis. During follow-up visits in the hospital, the analysis
must be repeated frequently, depending on the patient’s condition [69]. For all
methods of taking invasive blood gas samples, possible complication include bleed-
ing to tissue, formation of thrombus, damage of peripheral nerves or a vasovagal
responses of the patient. Additionally, the risk of infection must be taken into
account [16].

Blood gas levels are influenced by many other factors. The altitude of the
measurement site has a major influence, as the air pressure and thus also the partial
pressure of oxygen decreases with increasing altitude above sea level. The arterial
pO2 decreases accordingly while the pCO2 in the blood remains largely constant.
Only at high altitudes compensatory hyperventilation can occur due to the lack of
oxygen which can lead to a lowering of the pCO2 [70]. In addition, arterial blood gas
levels fluctuate by up to 8 mmHg (1.07 kPa) over the course of a day. The pCO2 also
increases slightly overnight during sleep [71]. With increasing age, the pO2

decreases. Changes in diffusion conditions at the alveolar membrane may be respon-
sible for this [72]. However, the loss of uniform lung elasticity with age and the
altered proportion of diaphragmatic and chest wall breathing may also lead to greater
distribution abnormalities that limit oxygen uptake [73]. In obese patients, ventila-
tion is complicated by increased extra pulmonary airway resistance. There is a drop
in oxygen pressure and hypoxaemia, as well as an increase in pCO2 due to retention
of carbon dioxide [74].
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Because of their diverse applicability, blood gas values continue to be a subject of
interest in many research fields. Calvo et al. have recently demonstrated that arterial
blood gas values show significant correlations to pulmonary function tests in patients
with amyotrophic lateral sclerosis and thus recommended blood gas analysis as a
substitute for pulmonary function tests. According to their findings, standard bicar-
bonate, base excess and pCO2 could be early predictors of respiratory failure [75]. In
a study with Covid-19 patients, Elezagic et al. found venous pCO2 values to be
significantly higher and pO2 and SaO2 to be significantly lower in positive tested
patients compared to patients who tested negative for SARS-CoV-2. They recom-
mend to use these parameters in symptomatic patients to early identify signs of
hypoxia and to prevent development of respiratory failure [76]. Bezuidenhout et al.
assessed arterial blood gas and acid–base patterns in Covid-19 patients in an
intensive care unit. They observed alkalaemia in the majority of patients and that a
higher pH and lower pO2 were significantly associated with patient survival [77].

4.3 Non-invasive Determination of Blood Gases

Compared to arterial blood gas analysis, the analysis of capillary blood is perceived
as more comfortable by patients, but by definition also belongs to the invasive
procedure, since the skin must still be pierced with a needle. Transcutaneous
measurement of blood gases has been thoroughly investigated in the last decades.
Additionally, pulse oximetry is a common procedure to measure SpO2 and estimate
pO2 without conducting a complete blood gas analysis.

4.3.1 Transcutaneous Blood Gas Monitoring

There are only a few approaches for the non-invasive determination of blood gases
so far. One possibility is the transcutaneous determination of the carbon dioxide
partial pressure. For this, local hyperthermia is induced [48]. The skin is heated to
approximately 43–45°C under a special electrode in order to increase the perme-
ability of the tissue. This increases local perfusion and arterializes the capillary blood
of the skin [78]. The carbon dioxide diffuses from the capillaries through the tissue
and through the semi-permeable membrane of the electrode [62]. This electrode is a
modified version of the Severinghaus electrode [69]. The Severinghaus electrode is a
pH electrode with a buffer of sodium hydrogen carbonate. The carbon dioxide
diffusing in through the membrane influences the chemical equilibrium of the
carbonic acid reaction. The ions of the solution, on the other hand, cannot penetrate
the membrane. The pH value of the solution consequently changes according to the
concentration of the carbon dioxide. There is a logarithmic relationship between the
two quantities [79]. Transcutaneous measurements need longer measurement times
and do not provide blood gas values instantly [62]. After a short warm-up time, the
transcutaneous carbon dioxide partial pressure can be read in real time. The
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measured values can also be recorded continuously over a longer period of time
[23, 67, 69, 80].

The transcutaneous determination of the carbon dioxide partial pressure is
established in some medical specialities, in others it is doubted. The values deter-
mined in this way correlate more or less well with the measured arterial values. Good
agreement with directly measured arterial values is only found in infants [48]. An
overestimation of the transcutaneous pCO2 is likely because of the cellular metabolic
production [62]. In a study of 22 healthy volunteers, Bertram et al. compared the
transcutaneous measurement with a capillary blood gas analysis while the subjects
were hyperventilating. They found the comparability of the readings of the healthy
volunteers acceptable, but did not rule out a change in severely ill patients
[81]. Kelly and Klim investigated the accuracy of transcutaneous measurement in
non-invasively ventilated patients. Based on their results, they did not recommend
the use of transcutaneous pCO2 as a substitute for arterial pCO2 [80]. Rosier et al.
also found insufficient agreement in their studies of patients with severe brain injury
to use transcutaneous pCO2 to infer arterial partial pressure of carbon dioxide
[69]. The results of transcutaneous carbon dioxide measurement can also be
influenced by age-related changes in skin blood flow, metabolism and skin thick-
ness. A study on elderly patients by Janssens et al. nevertheless showed a very high
correlation between transcutaneous measured carbon dioxide and the carbon dioxide
partial pressure of an arterial blood gas analysis [78]. In a more recent study, Galetin
et al. recommend to use transcutaneous measurement of the pCO2 during and after
bronchoscopy in analgosedation in patients with COPD because of the induced
alveolar hypoventilation and hypercapnia from the procedure [82]. Saruhan et al.
evaluated the measurement of transcutaneous pCO2 in patients with sepsis and septic
shock. In patients with sepsis, it may be used as less invasive method for continuous
measurement. However, in patients with septic shock the assessment of transcuta-
neous pCO2 appears to be questionable [83]. Transcutaneous measurement of pCO2

during electrophysiological catheter ablation procedures has been investigated by
Weinmann et al. and proven feasible during the conscious sedation of the procedure.
They reported good correlation to arterial and venous blood gas samples [84]. A
recent study of vanWijk et al. observed the course of transcutaneous measured pCO2

in mechanically ventilated children under general anaesthesia. They too reported
good agreement to the arterial measured values for pCO2 [67].

Transcutaneous determination of oxygen partial pressure is also possible with a
similar method. In contrast to pCO2, pO2 is likely to be underestimated by the
transcutaneous measurement because of the oxygen consumption of the superficial
tissue [62]. Originally, the method was used in vascular surgery to assess diseases of
the blood vessels [85]. Janssen’s study of elderly patients showed that although there
was a significant correlation between the transcutaneous oxygen values and the
partial pressures of oxygen in the blood gas analysis, the high variability of the
measured values precluded clinical application [78]. Saruhan et al. concluded after
their study, that transcutaneous measured pO2 is not reliable in patients with sepsis or
in septic shock [83]. Van Wijk et al. found transcutaneous pO2 to be only accurate in
ventilated children under 6 months of age [67]. Miniaturized polydimethylsiloxane
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based oxygen sensors are currently under investigation as a possible alternative to
conventional transcutaneous devices [62].

4.3.2 Pulse Oximetry

For non-invasive determination of oxygen saturation, a photometric measurement
with a pulse oximeter can be conducted. This is a spectrophotometric method for the
non-invasive, continuous measurement of the arterial oxygen saturation of the blood.
It allows to continuously measure the saturation and pulse rate on a finger, toe or the
earlobe by sending two wavelengths of red and infrared light (typically 660 and
940 nm) through the tissue to a photodetector. Healthy people have an arterial
oxygen saturation of about 94%–98%. The clinically relevant saturation range is
between 70% and 90%. At a low saturation value, pulse oximeters have a lower
accuracy than at high saturations. Below 70%, only the trend information of the
measurement result is retained. The continuous measurement is particularly useful in
anaesthesia as well as in emergency and intensive care medicine in order to quickly
detect disturbances in oxygen uptake and oxygen distribution [16, 23, 48, 64, 76].

For a valid pulse oximetry, the measurement site must be well perfused. The
amount of light absorption is dependent on the haemoglobin saturated with oxygen.
Deoxygenation changes the colour of the blood from reddish to bluish. The pulse
oximeter measures this colour change. When broadband light is sent through a
haemoglobin bond, the individual electromagnetic wave frequencies are absorbed
to different degrees. Absorption depends on concentration, thickness and material
properties. Haemoglobin behaves like an optical filter that only allows red and near-
infrared light to shine through. The ratio of the two main components of
haemoglobin, oxyhaemoglobin and reduced haemoglobin, is measured [64].

The common technology is the use of light-emitting diodes (LED) for pulse
oximetry with two wavelengths. They offer high light intensity with low heat
generation and narrow spectral content. The disadvantage is deviations from the
desired average wavelength, which can be up to ±15 nm due to production and
temperature. The wavelengths 600 and 940 nm are advantageous because the
extinction curves of oxyhaemoglobin and reduced haemoglobin differ greatly and
stable LEDs exist for these ranges [64]. Since the received red and infrared signals
are usually strongly disturbed, signal processing is required. Filtering and averaging
are used to improve the represented values. Relative movements between the patient
and the sensor cause movement artefacts. With a finger clip sensor, slightest hand
movements or shaking influences the shape of the plethysmogram. Scattered light
from external light sources absorbed by the detector can also alter the measured
saturation value and readings are influenced by nail polish, artificial nails or skin
pigmentation [16, 64]. As Sjoding et al. pointed out, there is a significant racial bias
in pulse oximetry. In their study, black patients had a higher frequency of silent
hypoxaemia that could not be detected with pulse oximetry. They see the cause in the
original development of pulse oximetry in a homogeneous population without racial
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diversity and warn that oxygen administration based on pulse oximetry may put
black patients at increased risk of hypoxaemia [86].

It is important to note that pulse oximetry will overestimate oxygen saturation
values in patients with acute poisoning from carbon monoxide as the measurement
technique does not allow to distinguish between haemoglobin saturated with oxygen
and haemoglobin bound to carbon monoxide (carboxyhaemoglobin)
[16]. Carboxyhaemoglobin is on average around 2% of total haemoglobin, but can
be up to 15% in smokers. Car exhaust fumes, industrial emissions and fire accidents
can also cause carboxyhaemoglobin to rise [64]. As Dünnwald et al. recently
reported in a review of pulse oximetry in acclimatization to high altitude, measure-
ment of SpO2 levels becomes more difficult with increasing height. The technical
characteristics of the device must allow for the respective altitude and operating
temperature [87].

A new and promising development regarding home use is the possibility of
modern smartphones or wearables, like smartwatches, to measure SpO2 with report-
edly high accuracy. During silent hypoxia, which occurs, for example, in Covid-19
patients, the need for hospitalization can be identified faster and before worsening of
symptoms [76, 88, 89].

5 Expiratory Carbon Dioxide

Another approach for the non-invasive determination of the carbon dioxide partial
pressure is the determination of the expiratory carbon dioxide fraction. Various
authors have dealt with capnometry in different publications and compared
end-tidal carbon dioxide values with arterial blood gases. Though the accuracy of
the end-tidal pCO2 is not comparable to the arterial determination because of gas
admixtures from the alveolar dead space, they correlate clearly with the PaCO2. The
mean difference is between 2 and 5 mmHg [62]. The measurement and monitoring
of the partial pressure of exhaled carbon dioxide during tidal breathing has been
utilized for a long time to monitor respiration. It can be regarded as the most
commonly used breath biomarker [8].

The graphical representation of the expired carbon dioxide concentration is called
capnography. The course of the concentration can be plotted either against time or
the expired volume. A sensor measures the carbon dioxide concentration of the
expired air to record the capnogram. The measurement of capnography takes place
during tidal breathing, whereby the courses of the carbon dioxide concentration can
be recorded and displayed in real time. Changes in the pattern indicate complications
regarding circulation or breathing [8, 90]. In various lung dysfunctions, the resulting
capnograms differ from those of healthy individuals.

For the analysis of volatile organic compounds the monitoring of expired carbon
dioxide is particularly suited for controlled sampling of breath [8]. It shows a clear
respiratory phase profile and allows the distinction between alveolar and
non-alveolar gas. In clinical practice, carbon dioxide is detected with commercially
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available capnometers with high sampling frequencies [8]. In the following section,
the principles and the milestones of capnometry and capnovolumetry will be
addressed.

5.1 Capnometry

Capnography, the plotting of expired CO2 over exhalation time, has been used for
some time in intensive care medicine and anaesthesia in addition to the pure
measurement of end-tidal CO2 partial pressure. It has already been used there as
an aid for intubation control and for monitoring the position of the tube, e.g. during
transport. It can also be used to assess the patient’s ventilation status or the effec-
tiveness of resuscitation. Advantages are the capability for continuous analysis and
the breath-by-breath resolution. In this context, capnometry or capnography is an
important indicator of the patient’s respiratory status for doctors and nurses. Pulse
oximetry measurement of blood oxygen saturation, unlike capnometry, is slow to
respond to changes in pulmonary ventilation; it primarily describes oxygenation.
The measurement of end-tidal CO2 content, on the other hand, primarily describes
ventilation. Therefore, capnography would indicate apnoea immediately, while
pulse oximetry would still indicate high saturation levels in the blood for a few
minutes [8, 91–94] [108].

For a capnogram, the course of the CO2 concentration over the time axis is
usually recorded over the duration of multiple breaths. In this way, the inspiratory
and expiratory courses are recorded continuously. The capnogram shows character-
istic phases: the phases of anatomical dead space, mixed air volume and alveolar
plateau, as shown in Fig. 3. The end-tidal concentration most closely mirrors the
alveolar gas [8, 23].

These phases are important for the standardization of other measurement methods
for respiratory gas analysis. Capnometry can be used to determine at which point in
time alveolar gas is available for sampling. In the end-tidal gas mixture, blood borne
volatiles are present in higher proportions and end-tidal samples contain lower
amounts of impurities from the dead space [8].

In the dead space phase, air is first exhaled that was predominantly in the
air-conducting airways and was not in contact with the alveoli. The CO2 concentra-
tion in this section is therefore negligible and corresponds approximately to the
concentration of the ambient air. In the mixed air phase, the CO2 content increases
almost linearly. The proportion of alveolar volume in the exhaled air increases
steadily in this phase. The alveolar plateau represents air from the alveoli involved
in the gas exchange [95, 96]. The end-tidal CO2 level is determined at the end of the
alveolar plateau. The end-tidal CO2 level is thought to be representative of the
concentration of CO2 in the alveolar gas. However, due to the admixture of gas
from the alveolar dead space, it is somewhat lower than the actual alveolar CO2

content. The alveolar dead space includes the portions of the alveoli that do not
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participate in gas exchange due to poor circulation or ventilation. Therefore,
end-tidal concentrations are not identical to the alveolar concentrations [8].

Ventilation disorders change the shape of the capnogram and mixed air and
alveolar air phases are no longer separable from each other. The rise of the mixed
air phase is less steep depending on the severity of the impairment and the shape of
the alveolar plateau changes to a so-called shark fin [23]. In 1949, Fowler first
described that the respiratory phases were clearly distinguishable in healthy subjects
whereas in patients with asthma or emphysema, there were greater deviations and the
phases could not always be clearly delineated [97]. Smidt and Worth later confirmed
the diagnostic value of the gas washout curves [98]. Capnography has since been
assessed for the diagnosis of airway obstruction and emphysema. The deformation
of the CO2 time curve indicates emphysema [99] and shows correlations to spirom-
etry parameters [100]. The slope of the plateau of the curve and the angle between
the rise phases of the CO2 time curve are suitable for the diagnostic differentiation of
patients with airway obstruction from healthy subjects. Correlations of the plateau
slope of the capnograms with the FEV1 value have been reported [100–102].

There are various methods for determining expired CO2. Selective CO2 sensors
use non-dispersive infrared absorption or mass spectrometry. In the non-dispersive
infrared absorption measurement method, a photodetector measures the amount of
infrared light absorbed. The CO2 molecules absorb specific wavelengths of infrared
light, specifically wavelengths of 4.256 μm. The absorption is proportional to the
CO2 concentration. For the measurement, the infrared light penetrates a cuvette with
the gas to be analysed and hits the detector. A filter allows only a narrow spectrum
from the spectrum of the light source to pass through, which is effectively absorbed
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Fig. 3 Exemplary capnogram representing carbon dioxide over time
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by the molecules of the gas under investigation. A second detector with a separate
infrared filter that is not influenced by the measuring gas serves as a reference. Since
many gases absorb in the infrared range, the water vapour contained in the air, for
example, influences the measurement due to the spectral proximity of the absorption
characteristics to each other. Infrared sensors have short response times, long
lifetimes and low power consumption [91, 103]. Mass spectrometry is technically
more complex and expensive, but it enables very precise detection of the partial
volumes of all gas components with a high temporal resolution. The molecules of the
gas to be analysed are ionized, accelerated in an electric field and deflected by a
magnetic field. The individual components of the gas separate according to their
charge and molecular masses and are registered by a detector [63, 91].

Depending on the design, it is more favourable to use either the main or the
secondary flow method. Hygienic aspects must also be taken into account when
analysing respiratory gases. With the side stream method, the pump for suction must
be particularly protected against contamination. The condensation of water vapour in
the system must also be prevented. In contrast to the main stream method, in the side
stream method only a part of the expired gas mixture is extracted and passed on to a
sensor [8]. The measured values are then extrapolated accordingly. This method is
flexible and can easily be adapted to different positions of the patient (e.g. when used
in anaesthesia), but also offers many critical points where gas leaks can occur [94]. A
disadvantage of this method is the delay between actual expiration and the actual gas
analysis, which can be up to several milliseconds. In addition, mixing of expiratory
gases from several breaths can occur in the suction system, especially with small
breath volumes and high breathing frequencies [91]. If the volume of breaths is too
small, air may even be extracted and evaluated exclusively from the anatomical dead
space [104]. An advantage over the main stream method is the usually lower weight
of the sensors [94].

The fields of application of capnometry are manifold and still subject of research.
Sandroni et al. suggest to employ continuous capnography during cardiac arrest to
monitor the quality of cardiopulmonary resuscitation in addition to confirming
correct placement of the endotracheal tube. A sudden rise of end-tidal CO2 could
suggest the return of spontaneous circulation [105]. In a recent study by Leonova
et al. to assess changes of heart rate regulation in patients with myocardial infarction,
capnometry was used to avoid adverse events during cardiorespiratory training
sessions. The fraction of end-tidal CO2 was determined to exclude hyperventilation
syndrome by adjusting the depth of breathing if necessary [106]. Williams et al.
investigated the use of end-tidal CO2 in the monitoring of ventilated infants to reduce
the magnitude of difference in CO2 levels that can lead to cerebral injury. The
continuous measurement of end-tidal CO2 was associated with a reduction of CO2

abnormalities [90]. Ostacher et al. evaluated the use of capnometry for a guided
respiratory intervention in patients with posttraumatic stress disorders, which has
already been successfully applied in patients with panic disorders. A lower end-tidal
CO2 value has been reported to be a marker of panic-related respiratory dysfunction.
Therefore, feedback on end-tidal CO2 and respiratory rate is given to the patient in
real time in order to increase the end-tidal CO2 while decreasing the breathing
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frequency. Ostacher et al. described the intervention as safe and well-tolerated by
patients during home use. Symptoms improved and posttraumatic stress disorder
scores persistently decreased in the majority of participants [107].

5.2 Capnovolumetry

Capnovolumetry or volumetric capnography is the measurement of CO2 expired per
breath as a function of expired volume. The course of this measurement can be
displayed graphically as a volumetric capnogram. For this purpose, a CO2 sensor
measures the exhaled CO2 and software integrates the measured respiratory flow
value to display the concentration over the volume. The measurement is carried out
during tidal breathing and the expiratory curves can be displayed in real time.

The capnogram is also called a volumetric capnogram when plotted against
volume. With a volumetric capnogram, in contrast to the plotting of a CO2 time
curve, only the expiratory component is recorded. Figure 4 shows the volumetric
capnogram that can be divided into four characteristic phases [15, 108]:

• Phase I: The flat course of the capnogram up to the beginning of the first slope
represents the volume from the anatomical dead space, the air-conducting air-
ways. In this section, there is hardly any CO2 present in the exhaled air.

• Phase II: The first slope of the capnogram represents a mixed volume, the CO2

concentration increases sharply, while the proportion of alveolar volume in the
exhaled air increases steadily and less and less dead space air is contained.

• Phase III: The plateau phase of the capnogram shows a flat slope. In this section,
air is predominantly expired from the alveoli with the same CO2 concentration.

Fig. 4 Schematic volumetric capnogram showing the four phases of expiration
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• Phase IV: A renewed steep rise in CO2 concentration can be explained by the
collapse of the alveoli at the end of expiration. This phase is not pronounced in all
capnograms.

With healthy subjects and resting breathing that is not too slow, often only the
first three phases are recognizable and can be clearly distinguished from each other.
Ideally, phase II follows phase I with a short, steep rise and phase III ideally runs
almost flat with a slight slope. In various lung diseases, sometimes large deforma-
tions of the capnogram can occur. In the case of obstruction, the plateau of phase III
is rising while the inclination of phase II becomes less steep, resulting in a wider
angle between the two lines [108, 109].

Since the shape of the volumetric capnogram naturally differs from that of the
non-volumetric one, there are different reference values and calculation formulae for
different parameters for both shapes. For the angle between phases II and III, the
normal range is 100°–110° when plotted against time [94]. For a volumetric
capnogram, angles up to 130° are normal for healthy individuals. This deviation of
the angle values results mainly from the changes in phase II of the volumetric
capnogram compared to the classical capnogram. When plotted against volume,
the mixed air phase is recorded as a gradual increase, whereas when plotted against
time, it shows an almost vertical course. The reason for this is the large flow velocity
at the beginning of expiration, whereby the volume of the anatomical dead space is
usually exhaled very quickly. In contrast to the plot over time, the plot over volume
was found to reduce the dependence of the curve on respiratory rate [110]. However,
in a recent study by Klütsch et al., dead space volumes and the slope of phase III
were found to be significantly dependent on the respiratory volume [111].

The various dead spaces that can be derived from the course of the CO2 volume
curve were frequently considered to distinguish patients with emphysema from
asthmatics [101]. Most attention was given to the Bohr dead space and the threshold
dead space, which are the largest and smallest dead spaces that can be determined.
For emphysema diagnosis, significant differences have been demonstrated from a
healthy control group when the Bohr dead space was related to the previously
inspired volume [112]. The threshold dead space most clearly reflected the changes
after bronchospasmolysis in children with asthma [113].

Following the promising approaches of CO2-time curves for diagnostic purposes,
approaches have been made to use the volumetric capnogram for diagnostic pur-
poses. The use of capnography in the diagnostic of COPD has been suggested
frequently. The different progressions of the slopes of the CO2 curves were regarded
promising to distinguish between healthy and obstructed individuals [15, 101, 102,
108, 110, 114, 115]. Therefore, in addition to the methods of capnography,
capnovolumetry seems to be extremely promising for the diagnosis of ventilatory
disorders of the lung. Jarenbäck et al. created an artificial efficiency index in their
2018 study to express the efficiency of the breath in the elimination of CO2 that they
found to be aiding in the diagnostic and grading of COPD [109]. Klütsch et al.
recommend capnovolumetry especially in already suspected COPD [111]. This is in
accordance with the findings of Kellerer et al., who found only a moderate potential
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for the recognition of airway obstruction and an increased diagnostic accuracy with
the severity of airway obstruction [116]. Conclusively, capnovolumetry can support
the diagnostic of obstructive airway diseases, while basic anamnestic information
should be taken into account [115].

In contrast to spirometry, capnovolumetry offers the advantages to be an easy and
effortless test that requires minimal patient cooperation and minimal maintenance,
making it a suitable test for children, home use or point of care diagnostics [15, 109,
111, 115, 116]. However, both measurements do not assess the same elements, as
Parazzi et al. pointed out. While spirometry aids in assessing the degree of airway
obstruction, the capnovolumetry reflects the alveolar ventilation inhomogeneity
[15]. Parazzi et al. have compared spirometry and capnovolumetry in patients with
cystic fibrosis before, during and after a treadmill exercise test. They concluded that
capnovolumetry can also be useful as a complementary tool for the monitoring of the
pulmonary status of patients with cystic fibrosis [15].

So far, the method of capnovolumetry is still used rather experimentally and has
not yet been established as a standard in lung function diagnostics. Additionally, it
has been investigated in veterinary medicine in different animals. In addition to
previous studies on calves [91] and horses [117], Tolnai et al. investigated the
potential to assess the shape and parameters in rats and confirmed the value for the
study of ventilation-perfusion mismatches [118].

6 Fraction Exhaled Nitric Oxide

In the human body and the respiratory system, nitric oxide (NO) takes part in various
processes. It plays an important role as vasodilator, bronchodilator, neurotransmitter
and inflammatory mediator [119]. NO diffuses through the cell membranes and is
evidently present in the exhaled breath, where it can be measured and analysed as
fraction exhaled nitric oxide (FeNO). Nitric oxide and thus FeNO values in exhaled
breath are increased in the case of mucosal inflammation, especially in eosinophilic
asthma [8, 119–122].

Nitric oxide has first been observed in exhaled breath in 1991 [122, 123]. It shows
its highest concentrations at the beginning of the exhalation, since NO production is
highest in the upper airways and nasal cavity. Elevated values have been found in
acute airway inflammation and asthma. Diagnostic use of FeNO measurement to
assess asthma has first been possible after comprehensive studies had evaluated the
flow dependency of the measured FeNO concentrations. The most commonly used
parameter is FeNO50, which describes the present concentration of NO as part per
billion (ppb). The index 50 is added to indicate that measurement took place at a
recommended flow of 50 ml/s [8].
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6.1 FeNO Measuring Technology

The first devices to measure FeNO were stationary chemiluminescence devices,
which measure NO indirectly when light is generated in a chemical reaction between
NO and ozone [120, 122]. They offer fast response times and accurate detection
limits from 0.1 to 0.5 ppb in a wide range of flow rates. The use of chemilumines-
cence instruments for routine clinical applications is limited because of the high
costs. The chemical reaction converters and other components have to be checked
and maintained regularly. Because of the occurrence of drift, chemiluminescence
instruments have to be calibrated daily [122].

Electrochemical sensors can be integrated in lightweight handheld devices
[120, 122]. The concentration of NO is measured with an electrical signal like the
current in a large detection range from 5 ppb up to 300 ppb with a high accuracy of
5 ppb up to 300 ppb in less than 10 s. The electrochemical sensor has to be changed
after a specified period of 1–2 years. The analysers are exclusively used to measure
the FeNO value at a flow of 50 ml/s (FeNO50), which is considered to be suitable for
routine clinical practice [122]. Further options to measure FeNO are smart solid-state
microsensors or laser-based NO sensors. The optical sensors are able to detect low
levels of NO in the range of ppb. The change of light intensity due to the absorption
by NO is measured. These laser-based analysers do not need consumables and
require minimal maintenance [122].

In a recent study, Korn et al. compared three different commercially available
FeNO devices and found that measured concentrations were statistically equivalent
and the measurements were highly accepted by the patients [120]. FeNO measure-
ment is a simple and safe non-invasive method to assess airway inflammation
quantitatively [119–121]. Important to note is that devices of different manufacturers
are as of yet not interchangeable [120, 122]. Until further standardization is reached,
patients should always be measured with the same device type.

6.2 FeNO Measurement in Asthma

For the diagnosis of asthma, treatment decisions have traditionally been based on
assessing airflow obstruction, frequency of occurrence of symptoms and the fre-
quency of exacerbations. With the development of the FeNO measurement, a point
of care test has been developed which is promising to support the diagnostic pathway
and treatment decisions for asthma [120, 121]. However, because asthma is a
heterogeneous disease, a clinical diagnosis cannot be made with a single test
[119]. There are different types of asthma and FeNO is associated with eosinophilic
airway inflammation. FeNO values have been found to be high in subjects with
eosinophilic asthma, therefore it can be used as a biomarker in the process of
diagnosing asthma as an eosinophilic or non-eosinophilic asthma [119, 121,
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123]. If asthma is not caused by eosinophilic inflammation, FeNO values can be
inconspicuous [119].

Rather than reference values, cut points are recommended by the ATS when
evaluating FeNO values [119]. FeNO value above 50 ppb in adults and above 35 ppb
in children indicates an eosinophilic inflammation of the respiratory system, espe-
cially if accompanied by symptoms, and responsiveness to inhaled corticosteroids
(ICS) is likely [8, 119]. Values below 25 ppb and 20 ppb in children are in general
considered low and eosinophilic inflammation and responsiveness to corticosteroids
are less likely [119]. In the presence of nonspecific respiratory symptoms but with
low FeNO values an eosinophilic airway inflammation is unlikely, as is the respon-
siveness to ICS [119]. FeNO values between 25 ppb and 50 ppb and for children
between 20 ppb and 35 ppb must be interpreted cautiously [119, 121]. Because of the
wide ranges there is an overlap between mean FeNO values in healthy and asthmatic
subjects [119]. Values can even be normal in subjects with asthma [122]. Allergen
exposure should be taken into account when higher FeNO levels are detected
[119]. Reference values have limited application in practice. The derived values
from a normal population are unlikely to offer cut points in patients with airways
diseases [119]. The personal FeNO values might be most useful to establish a
baseline to evaluate the treatment with anti-inflammatory drugs [119, 122]. FeNO
values are influenced by a variety of factors. Men have slightly higher values than
women and values increase with age [119, 122]. Body height and pre-existing
conditions like allergic sensitization or smoking influence the values
[8, 119]. FeNO levels are lower in smokers [119] but have also been observed to
increase after exposure to electronic cigarette aerosol with and without nicotine in a
recent study by Antoniewicz et al. [40].

Treatment decisions for the usage of ICS in asthma can be supported by using
FeNO as a biomarker. The measured FeNO value can predict the likelihood of
corticosteroid responsiveness [119]. The inflammatory response of the airways
following changes in dosage can be monitored [119, 120, 122, 123]. Low FeNO
values in asymptomatic patients can be an indicator to reduce the dose of ICS
[119]. A high FeNO value in asthmatic patients is associated with a higher risk of
exacerbation [120, 122, 123]. Additionally, FeNO measurement is also suitable to
verify the patient’s adherence to anti-inflammatory medication [119, 123]. Persis-
tently high FeNO values might be an indication for poor adherence to prescribed ICS
therapy [119] as inhalation of ICS decreases FeNO values [121], but they return to
their baseline level when the patient does not continue the regular intake of the
medication. Therefore, it is possible to assess the patients’ compliance in taking the
prescribed medication [8].

FeNO does not directly correlate with lung function parameters in asthma, but has
been observed to correlate with acute hyper responsiveness [121, 123]. FeNO values
have been observed to decline correspondingly to a decreasing FEV1 in provocation
challenges [8, 121, 122]. It is suggested, that after bronchodilation a decrease in
FEV1 simultaneously to an increase of FeNO values might hint to the involvement
of more proximal airways while a decrease in FEV1 and FeNO indicates the
involvement of peripheral airways. Further evidence is needed to verify this thesis.
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After its verification, FeNO could be used as a pulmonary function test after
bronchodilation to identify the site of obstruction [8].

In patients with a chronic inflammatory airway disease like eosinophilic asthma,
it is recommended to use FeNO measurements as an additional tool to usual care
[121], because conventional lung function tests are not associated directly with
airway inflammation [119]. Including FeNO in asthma management at an early
stage leads to an increased sensitivity and specificity. Both quality of care and
expected costs are improved. With additional FeNO measurements, the probability
for light exacerbations and the necessity for the use of ICS were reduced
[124, 125]. Asthma diagnosis can be supported by spirometry and FeNO in adults
and paediatric patients above the age of 5 years, as recommended in asthma
guidelines. FeNO testing has been proven to be successful in this age group.
However, while patients at the age of 5 years had a low success rate of only 17%,
at the age of 8 years, 80% were able to perform a valid FeNO measurement.
Therefore, in general practice, it is recommended to apply FeNO testing in patients
above the age of 8 years [19].

6.3 FeNO Measurement in Other Diseases

The use of FeNO measurements has been studied in numerous other diseases and
elevated levels have not been entirely specific to asthma [121, 122]. In addition to
occurring in eosinophilic asthma, high levels of FeNO have also been found in
patients with bronchiectasis, viral respiratory tract infections, systemic lupus
erythematosus and liver cirrhosis. FeNO values have also been elevated in cases
of acute lung allograft rejection [122, 123]. Different diseases such as cystic fibrosis,
HIV infection and pulmonary hypertension have been reported to be associated with
low FeNO values [119, 122, 123].

Cystic fibrosis is a congenital metabolic disease, in which lung tissue is progres-
sively deteriorated. In the assessment and monitoring of the disease, spirometry is
the most frequently applied method. But as pointed out earlier, sensitivity of
spirometry for the detection of early lung changes is rather poor and challenging
in young age groups [58]. Additionally, capnovolumetry and also FeNO can be used
to assess the status and progression of cystic fibrosis [15]. In cystic fibrosis, which is
associated with chronic airway inflammation and accompanying increased mucus
production, FeNO values have been found to be reduced [8, 123]. The low levels are
related to a missing enzyme, the nitric oxide synthase, which is normally present in
the epithelium of the airways [119].

Many patients show symptoms and features of asthma and COPD [119]. In
COPD, FeNO values have not yet been studied as thoroughly as in asthma. Smokers
and ex-smokers have generally lower FeNO values than non-smoker. In the case of
COPD, this leads to a more problematic interpretation of the patients’ FeNO values.
They have not been found to correlate with the GOLD (Global Initiative for Chronic
Obstructive Lung Disease) stages of COPD, although they increase during
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exacerbations [8, 123]. Treatment with ICS and active smoking decrease the
NO-concentrations inside the alveolar walls. This is believed to be an additional
reason for the large variabilities of FeNO values in different patients with COPD. For
the follow-up of individual COPD patients FeNO measurement could be beneficial,
since increasing values could be an early prediction of exacerbations. However, for
patients with persisting airway obstructions it can be difficult to generate the FeNO
specific exhalation flow of 50 ml/s [8].

6.4 FeNO Summary

FeNO has become an exhaled biomarker parameter that has been established in
clinical routine use [8]. FeNO appears to be more sensitive in identifying airway
inflammation in asthma [7] and has thus been established as a suitable tool to
monitor the progress of eosinophilic asthma and to assess adherence to medication.
First guidelines on FeNO measurements were published by the ATS in 1999 and
updated in 2005 in collaboration with the ERS [8]. Key advantages compared to a
standard spirometry measurement are that FeNO measurement does not require
forced expiratory manoeuvres, leading to a high patient acceptance. Single measure-
ments can be performed at moderate costs [121]. Although FeNO50 is the established
standard parameter for a FeNO measurement, an extended analysis can include the
measurement of FeNO levels at multiple expiratory flows [8].

FeNO values must always be interpreted in their clinical context [119]. Relevant
reference values for FeNO cannot be given. Instead, the concept of limit values is
followed. Individuals that regularly perform FeNO measurements can use their
personal baseline and best values to monitor changes and trends for comparison
and assessment [8, 119]. For the assessment of COPD and cystic fibrosis, FeNO
values are only of limited use [8]. Because of the wide range of physiological
mechanisms, that affect the NO parameter, it cannot be recommended to use the
exhaled NO concentration alone to make a diagnosis. However, it can be a beneficial
additional parameter to support diagnoses originating from other measurements and
the patient’s history [8].

7 Summary and Outlook

Modern methods of pulmonary function diagnosis include spirometry, body pleth-
ysmography and a variety of other common tests used to assess a patient’s respira-
tory status. These include determination of occlusion pressure, forced oscillation
techniques and cardiopulmonary exercise testing. The analysis of flow, volume,
pressure and their relationships to each other provide information about the ventila-
tion of the lungs. Diffusion measurement techniques assess the distribution of the gas
in the lungs and provide information about the diffusion capacity. Besides, variants
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of invasive and non-invasive blood gas analysis are available to determine the
oxygen uptake and the metabolic situation of the organism. Supplementary, analysis
of expiratory carbon dioxide in the form of capnometry or capnovolumetry can be
used for the determination of the carbon dioxide partial pressure. Furthermore, the
measurement of the fraction of exhaled nitrogen oxide has proven to be an additional
means of supporting the diagnostic process. All pulmonary function tests suffer to a
greater or lesser extent from limitations in terms of their diagnostic value. They are
generally more accurate in healthy people than in patients with lung diseases [53]. It
is often the combination of different measurement approaches, paying respect to the
patients’ medical history and possible apparent symptoms that lead to a reliable
diagnosis.

For an enhanced understanding of respiratory physiology laboratory and clinical
research should be pursued and encouraged. A strong collaboration between
researchers and clinicians is inevitable to ensure the development of suitable stan-
dards and guidelines for better comparability of clinical results and to assure full and
equitable patient treatment. Evidence for routine clinical use must be established for
newly developed measurement techniques to realize their full potential. The deter-
mination of volatile organic compounds is a promising and beneficial addition to
classical lung function diagnostics to optimize patient care. Typical breathing pro-
files can indicate certain diseases. Non-invasive measurement of exhaled compounds
is ideal for serial monitoring of patients without much patient burden. In this context,
the combination of information from modern lung function diagnostics and breath
analysis of volatile organic compounds can make a valuable contribution to
healthcare. However, a challenging mission remains in the detection of the small
trace amounts in the expired air. A lot of research is currently performed in this area
and it shows potential to become a cornerstone of personalized medicine in the
future. It remains to be seen what benefits volatile organic compound analysis will
add to the field of respiratory diagnostics to optimize patient care in clinical settings
as well as at home.
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