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Abstract. In federated learning for medical image analysis, the safety
of the learning protocol is paramount. Such settings can often be com-
promised by adversaries that target either the private data used by the
federation or the integrity of the model itself. This requires the medical
imaging community to develop mechanisms to train collaborative models
that are private and robust against adversarial data. In response to these
challenges, we propose a practical open-source framework to study the
effectiveness of combining differential privacy, model compression and
adversarial training to improve the robustness of models against adver-
sarial samples under train- and inference-time attacks. Using our frame-
work, we achieve competitive model performance, a significant reduction
in model’s size and an improved empirical adversarial robustness without
a severe performance degradation, critical in medical image analysis.
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image analysis · Differential privacy · Adversarial training · Model
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1 Introduction

Collaborative machine learning (CML), and in particular collaborative med-
ical image analysis, can significantly benefit from A) having access to large,
well-descriptive datasets, which are often highly sensitive and hence difficult to
obtain and B) deep machine learning models, which can require significant com-
putational resources during training [21,23]. Such models are often trained in
a distributed manner, allowing a federation of clients to obtain a joint model
without the need to share the data directly, often at the cost of an additional
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communication burden being put on the federation [20]. The existing methods of
collaborative training, such as federated learning, are also particularly vulnerable
to inference as well as model poisoning attacks [25], additionally requiring formal
means of privacy and integrity protection [11]. One such scenario was demon-
strated by [10], showing that without carefully selected privacy parameters, the
adversary in the context of multi-institutional federated learning on pneumonia
classification data was able to reconstruct the private chest X-ray data. Cur-
rent methods that aim to resolve these issues can pose additional challenges to
the federation as they can be difficult to implement in practice (such as model
compression, which often requires a public dataset that comes from the same
distribution as the training data for calibration), rely on unobvious additional
hyper-parameters (such as ε in DP) or only mitigate a subset of attacks (such
as adversarial training that improves model robustness, but does not mitigate
any inference attacks). In this work we propose a framework for training and
evaluation of ML models, which can help the medical imaging community to A)
reduce the communication overhead, B) formally preserve privacy and C) achieve
better adversarial robustness. We investigate this by studying model poisoning
attacks [7] and their mitigations through the utilisation of differentially private
training (DP) [4], model quantization and adversarial training. We investigate
two main threat models, which include inference-time and train-time attackers
on collaborative learning. Our contributions can be summarised as follows:

– We determine how techniques for private and scalable ML (such as DP and
model compression) training can be combined to improve adversarial robust-
ness in CML;

– We evaluate the most commonly used (e.g. projected gradient descent or
PGD) as well as the state-of-the-art (e.g. fast adaptive boundary or FAB)
adversarial attacks in these settings and show that the combination of these
techniques can provide sufficient protection against utility-oriented adver-
saries;

– We propose an updated view on the relationship between these mechanisms
and threat modelling, providing recommendations for achieving improved
adversarial robustness using these techniques;

– Finally, we propose a framework (namely PSREval1) for private training and
evaluation of image classification models trained in low-trust environments.

2 Related Work

Several studies have studied the applications of model compression against adver-
sarial samples in CML [5,9,12,14,28], however, there is no prior unified perspec-
tive on whether quantization techniques improve adversarial robustness against
all utility-based attacks. Authors of [15] discover that when the trained model is
subjected to train-time attacks (e.g. backdoor attacks), model compression can
significantly reduce robustness. Additionally, the work of [8] highlights, that as

1 Code available at https://github.com/dimasquest/PSREval.

https://github.com/dimasquest/PSREval
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there exists a number of quantisation strategies (e.g. discretisation, distillation
assisted quantization), a large number of such strategies provide the participants
with a semblance of robustness. However, authors of [12] and [19] discover that
for a number of inference-time poisoning attacks, model compression reduces
the effectiveness of most adversaries. This is due to a smaller set of values that
the model can utilise compared to its full-precision counterpart, making the
attacker use a significantly higher perturbation budget to affect the decision of
the model. Originally, [13] deployed DP as a method to provably certify ML
models against adversarial samples of known perturbation budgets. However,
this discussion was limited as the noise was applied directly to the training data
or to the output of the first model layer, without considering the arguably most
widely used application of DP in deep learning, namely DP-SGD [1]. Various
other works [2,18] discussed how DP-SGD can be augmented or combined with
adversarial training for better model robustness, yet none of them made links to
model compression before or considered a train-time attacker, which we address
in this work. Finally, adversarial training is considered to be one of the most
successful empirical defence mechanisms against malicious samples [6,22], but
similarly to model compression, its effects when combined with other robustness
enhancement methods have not been studied in sufficient detail.

Fig. 1. Overview of our PSREval framework, which we describe in Sect. 3.

3 Methods

We present an overview of our methodology in Fig. 1. In this work we gener-
ate an adversarial dataset that is used over the course of collaborative training:
This dataset can be either used for adversarial training or used to attack the
model at train time. We then train two models: One using a normal training
procedure and the other using DP-SGD. If the adversary is an active train-time
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attacker, they would use their malicious data at train time, otherwise the adver-
sary only targets the model at inference-time. Once the models are trained, we
then quantize them using the validation dataset (public) to tune the quanti-
zation parameters. In this study we perform a static model quantization (i.e.
post-training quantization of both the weights and the activations), where we
replace the full-precision 32-bit floating point parameters in the model with
signed 8-bit integer parameters. Finally, we perform one of the two attacks to
validate the robustness of the model. In the first setting, the adversary has full
access (white-box or WB) to the trained model before it is deployed and thus is
able to utilise it to generate the adversarial data directly. In the second setting,
the adversary is attacking a similar (same architecture, different weights) model
that has previously been deployed elsewhere, while only having WB access to the
model they obtained during training (partial WB). This setting is termed the
transfer attack. Our framework provides the robustness scores (in this case accu-
racies) for both adversarial settings. Note that our framework allows the user
to train the models individually and perform model aggregation using their pre-
ferred aggregation algorithm (in this study we used federated averaging, where
the data was split between 2 clients, one of which was an adversary).

4 Experiments

4.1 Experimental Setting

In this study we perform two collaborative classification tasks on CIFAR-10
and paediatric pneumonia prediction (PPPD) (adapted from [10]) datasets. We
utilise ResNet-9 and ResNet-18 architectures. We employ ReLU as our activation
function and replace the batch norm layers with group norm layers for compat-
ibility with DP. For DP training we utilise the opacus library [27] with three
privacy regimes (representing different end on the privacy-utility spectrum):
Concretely, we implemented settings for (ε = 1.7), (ε = 3.4) and (ε = 7.0).
For PPPD δ = 1e−4 and for CIFAR-10 δ = 1e−5. We utilise three adversarial
attacks methods, namely PGD [16], FGSM [7] and FAB [3]. When performing
train time attacks and adversarial training, we experiment with different propor-
tions of adversarial data, namely 10%, 20%, 30% or 40% of the training dataset.
By default, each attack (if required) is ran for 10 steps, with a perturbation
budget of 8/255 and a step size (the limit of perturbation during a single step)
of 2/255. We deliberately chose a high perturbation budget (in comparison to
the frequently used budget of 2/255 [3]) to represent the worst-case scenarios,
when the adversary has an ability to significantly affect the training process. We
repeat the attacks 10 times for each setting and report the average values.

4.2 Performance Overview

We begin by discussing the performance comparison between a normally trained
model as well as its DP and quantized counterparts. We present a summary
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of the standard accuracies for each setting in the Supplementary Material. We
note that after the compression procedure, the sizes of ResNet-9 and ResNet-18
were reduced by 74.4% and 76.6% respectively. The accuracy of the model post-
quantization step has not been significantly altered and stayed within ±1% of
the original value.

4.3 Different Privacy Regimes Under Quantization

We experiment with three distinct privacy settings, defined by the values of
ε, where lower value represents the “stronger” notion of privacy as there is a
stricter bound on the release of information content (Sect. 4.1). This allows us to
establish a more clear relationship between the DP-SGD and its ability to affect
adversarial robustness when subjected to partial WB attacks. In general, for par-
tial WB attacks, we did not find the DP-trained model to be significantly more
robust than the original ones (within ±2%), regardless of the privacy regime.
When adding post-training quantization, we found that robustness of the model
can be improved by up to 5% for smaller models and by up to 20% in larger mod-
els (Fig. 2). This seemingly small post-training adaptation allows the federation
to achieve a significantly higher adversarial robustness as well as significantly
reduce the model size.

Fig. 2. Transfer attack comparison (generators are the WB models for both, PPPD,
ResNet-18, ε = 7.0). Higher is better. Here we observe that quantization does not affect
adversarial robustness of privatised models as much as it affects the non-private models
under inference-time attacks.

From Fig. 3, we see that the overall loss of accuracy for DP-trained mod-
els (when the adversary uses a model trained with DP-SGD to generate the
adversarial samples) is significantly larger than for its non-private counterparts
under transfer or partial WB attacks. In fact, we found that the adversary is,
in some cases, able to attack a DP-trained model that has the same architec-
ture with almost 100% accuracy, which they are unable to do if the generating
model is non-private. The opposite is partially true: If a non-private model is
used as a generator, DP-SGD retains a robust accuracy of 30% in compari-
son to 5% for the original model. Additionally, while for smaller architectures,
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Fig. 3. Transfer attack comparison (generators are the WB models for both, PPPD,
ResNet-18, ε = 1.7). Higher is better. This experiment shows that DP models (of
various privacy levels) published online can be used to generate adversarial images for
private models of identical architectures with high fidelity.

both the original and the DP models showed a severe lack of robustness, larger
models and datasets were significantly more vulnerable only when trained with
DP-SGD. This result holds for all three attack implementations and raises ques-
tions about the “safety” of the publication of private models, because while they
provide theoretical guarantees with regards to the privacy of the training data,
they can be used as perfect adversarial sample generators, potentially violating
the integrity of other learning contexts relying on similar data or architectures.
We finally note, that this finding is even more important under the light of
the recent publications on the robustness of DP models, as this attack vector
has previously not been considered in enough detail, resulting in a semblance
of robustness associated with a blind application of DP-SGD without a careful
threat model selection.

4.4 Using Adversarial Training

One method that has been particularly effective against utility-based attacks
is adversarial training. We analyse three methods of generating the adversarial
samples and compare the results to identify the method that is A) effective
against malicious adversaries, B) does not result in a significant performance
overhead and C) does not interfere with the learning process. We note that
FAB was an ineffective method that both severely degraded the performance
(a ×20 increase in training time) and the utility (down to 20% accuracy in all
settings) of the trained model. We see (from Fig. 4) that adversarial training
can significantly improve the robustness of the trained model in all settings. We
also note, however, that this robustness can come at a severe utility cost, which
is typically associated with such training process augmentation (reducing the
overall accuracy by up to 13% for ResNet-18). Similarly to [2] we found that
adversarial training can be effectively combined with DP training, significantly
improving the robustness of the model as well as suffering a much smaller utility
penalty when compared to a non-private learning setting. We show exemplary
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results for a high-privacy (low ε) regime in Fig. 4 and more in the Supplementary
Material. We found PGD to be the optimal sample generation method in a
private setting, allowing the federation to mitigate both the privacy-oriented
and the utility-oriented attacks. It must be noted, however, that PGD results
in a significantly longer training time when compared to FGSM (up to 8 times
longer training for 40% of adversarial samples). In general, we find that there
is no “optimal” amount of adversarial data that can be used irrespective of the
learning context, but using 20% of adversarial data typically resulted in highest
robustness across most settings.

Fig. 4. Accuracy loss under a partially WB attack with adversarial training (generators
are the WB models for both, CIFAR-10, ResNet-9, ε = 1.7). Lower is better. Here we
see that DP can effectively mitigate a train-time attacker even when they control 40%
of the training data.

4.5 Train- and Inference-Time Attacks

While a number of previous works typically considers an adversary who has a
WB access to a pre-trained model, we believe that it is important to evaluate
the learning settings against an adversary who actively interferes with the train-
ing process itself. As described in our Sect. 4.1, the adversary controls different
proportions of the training data and we study how this can affect the federation.
Overall, as seen in Fig. 5 (as well as in the Supplementary Material), we find that
any train time attack can pose a significant risk to a non-private learning setting,
irrespective of the dataset or the architecture of the shared model. However, we
also found that DP training can severely reduce this risk even for adversaries
that control 40% of the training data, as the contributions of the outlier sam-
ples are greatly reduced under DP-SGD. This, alongside with the application of
adversarial training, leads us to recommend a wider use of DP-SGD against WB
attackers. We additionally note that both of these approaches are fully compat-
ible with quantization techniques, allowing the federation to train private and
robust models at scale.
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Fig. 5. Robust accuracy under a train-time attacker (CIFAR-10, ResNet-9, ε = 3.4).
Higher is better. The result here corresponds to the setting above, showing that we can
expect this behavior to hold even under a weaker privacy regime.

5 Discussion and Conclusion

In this work we propose a framework for training and evaluation of image anal-
ysis models, combining differentially private training, model compression and
adversarial training against model poisoning attacks. Our framework allowed us
to determine that for the strongest insider adversary, post-training quantization
did not have a significant impact on the results of the attack. The opposite is
true for partial WB attacks, where the federation enjoys an improvement in
robustness of up to 20% in certain contexts compared to an uncompressed set-
ting. In general, we found DP-SGD to be detrimental in partially WB settings,
which is primarily due to a significantly lower accuracy of the DP-trained mod-
els after training. Our framework revealed that DP-trained models can be more
susceptible to transferable adversarial samples. This finding can be surprising,
given a greatly higher robustness of DP-trained models (particularly at train
time). In essence, DP models are very sensitive to the threat model that the
adversary chooses to employ, therefore not allowing a concrete overall conclu-
sion about the effectiveness of this method. However, there also exist a number
of factors that can potentially have an influence on the results of our evaluations
that are not explicitly covered. Firstly, similarly to [24], we discovered that the
accuracy of the trained model can have a significant impact on the results of the
attack. This is due to the fact that the adversarial labels (i.e. those used by the
train-time adversary) are inferred from model predictions and these depend on
how well the model is able to distinguish between different classes, affecting the
attack. This, in turn, makes it more challenging for us to disentangle how the
individual factors that influence model accuracy can affect adversarial robust-
ness. Secondly, in this work, we relied on the post-training quantization, as we
find this approach to be the most practical (or low-effort and foolproof), as it
only requires a single calibration round and a replacement of a small number of
operations during model initialisation. Other approaches can be applicable when
discussing robustness of collaboratively trained models, such as train-time quan-
tization or quantization-aware training. However, these methods require a larger
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number of setup steps and adaptations of the training process, making them less
practical. Finally, there exists a number of contexts that we have not covered in
PSREval, which go beyond the scope of this work. We are planning to expand
our framework with other robustness-enhancement methods, such as adversarial
regularisation, knowledge distillation [17] and feature squeezing [26], all of which
were previously shown to mitigate utility-oriented adversaries in CML. We used
a simple federated averaging aggregated method in our work, therefore leaving
more advanced aggregation techniques (some of which can come with additional
adversarial robustness) as part of the future work. Additionally, we are aiming to
produce a more context-agnostic study, including attacks on image segmentation
and object detection tasks, so that the research community can evaluate their
model in a much larger number of clinical settings, resulting in a wider adoption
of private, robust and scalable training.
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