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Abstract. Convolutional Neural Networks have played a significant role
in various medical imaging tasks like classification and segmentation.
They provide state-of-the-art performance compared to classical image
processing algorithms. However, the major downside of these methods is
the high computational complexity, reliance on high-performance hard-
ware like GPUs and the inherent black-box nature of the model. In this
paper, we propose quantised stand-alone self-attention based models as
an alternative to traditional CNNs. In the proposed class of networks,
convolutional layers are replaced with stand-alone self-attention layers,
and the network parameters are quantised after training. We experimen-
tally validate the performance of our method on classification and seg-
mentation tasks. We observe 50–80% reduction in model size, 60–80%
lesser number of parameters, 40–85% fewer FLOPs and 65–80% more
energy efficiency during inference on CPUs. The code will be available at
https://github.com/Rakshith2597/Quantised-Self-Attentive-Deep-Neur
al-Network.
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1 Introduction

Deep neural networks have played a significant role in medical image analysis.
Since the advent of UNet [18] to UNetr [5], the performance of neural networks
on various tasks like classification, segmentation, and restoration has improved
considerably. Deeper and broader convolutional neural networks generally show
an improvement in performance at the cost of an increase in the number of
learnable parameters, model size and total floating-point operations performed
during a single forward pass of the data through the network. Moreover, these
models require specialised high-performance hardware even during inference.
This reliance on larger models and high-performance hardware hinders the last-
mile delivery of AI solutions to improve the existing healthcare system, especially
in resource constrained developing and under-developed countries.
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Challenges: The performance and trustability of deep neural network-based
methods are of utmost importance, especially in the medical domain. The per-
formance of these methods decreases as we try to reduce the number of learn-
able parameters in the model. As an example, in the case of image classification,
deeper networks have been shown to be superior to shallow networks with fewer
parameters [6,8]. Despite the good performance measured in terms of quanti-
tative evaluation metrics, deep neural network (DNN) are known to make the
right decision for the wrong reasons [4]. This limits the trustability of DNN-
based frameworks in practical application. Additionally, the black box nature
of the convolutional neural networks makes them unreliable for clinical appli-
cations. Developing a method that relies on fewer parameters and is clinically
verifiable is a challenging task. Also, an efficient model is expected to replicate
the performance during inference at a reasonable execution speed even in the
absence of GPUs.

Attention-based networks were proposed to augment DNNs with explainabil-
ity in the case of natural images. However, due to the inherent differences in the
nature of images, we cannot assume an equivalent performance in the medical
images. As an example, in detecting objects in natural images, the objects of
interest often have a well-defined shape and structure, which are absent in the
case of medical images. In the case of medical image classification, the biomarkers
are usually unstructured pathologies with variable appearance. In this work, we
try to verify the effectiveness of replacing convolutions with attention in neural
networks for medical images.

Related Works: Transformers [21], based solely on attention mechanisms has
revolutionised the way models are designed for natural language tasks. Moti-
vated by their success, [17,26,27] and [25] explored the possibility of using
self-attention to solve various vision tasks. Among these, the stand-alone self-
attention proposed by [17] established that self-attention could potentially
replace convolutional layers altogether. Even though it is efficient compared to
other DNNs, such models can be further improved by quantising the weights
and activations of the networks [15]. The quantisation of deep neural networks
has shown significant progress in recent years [1,24]. The ability to quantise the
neural network trained in high precision without substantial loss in performance
during inference simplifies the process.

Our Approach: Inspired by the success of [17] in natural image classification
tasks, we propose the design of a new class of networks for medical image clas-
sification and segmentation, in which we replace the convolution layers with
self-attention layers. Furthermore, we optimise the networks for inference by
quantising the parameters thereby decreasing energy consumption. To the best
of our knowledge, a quantised fully self-attentive network for classification and
segmentation of medical images and comparison with its convolutional counter-
parts has not been attempted so far. Schematic overview of the proposed method
is illustrated in Fig. 1.
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Fig. 1. Overview of the proposed method. Convolutional layers in deep neural
network architectures are replaced with self-attention layers and networks with param-
eters at FP32 precision are trained till convergence. To optimise the model for storage
and faster inference, the network parameters are quantised without loss in performance.

2 Method

2.1 Stand-Alone Self-attention

Attention was introduced by [3] for a neural machine translation model. Atten-
tion modules can learn to focus on essential regions within a context, making
it an important component of neural networks. Self-attention [21] is defined as
attention applied to a single context instead of across multiple contexts; that is,
Key, Query and Values are derived from the same context. [17] introduced the
stand-alone self-attention layer, which can replace convolutions to construct a
fully attentional model. Motivated by the initial success of [17] in natural images,
we explore the feasibility of using such modules in the proposed class of networks
for medical image analysis.

To compute attention for each pixel xi,j ∈ R
Cin×1×1 in an image or an

activation map, local regions with spatial extent h × w around xi,j are used to
derive the keys and values. Learned linear transformations are performed on xi,j

and its local regions to obtain query (Q), keys (K) and values (V) as

Q = WQxi,j (1)

K = WKxh,w (2)

V = WVxh,w (3)

where WQ ∈ R
Cout×Cin , WK ∈ R

Cout×Cin and WV ∈ R
Cout×Cin are learnable

transformation matrices and xh,w ∈ R
Cin×h×w is the local region centered at

xi,j .
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Self-attention on its own does not encode any positional information, which
makes it permutation equivariant. Relative positional embedding [19] as used
in [17] are incorporated into the attention module. The keys K ∈ IRCout ×h×w
are split into K1,K2 ∈ IRCout/2×h×w each and column offset Ecol and row offset
Erow of the positional embedding are added to these separately. After this, we
concatenate K1,K2 to obtain a new key (K′ ∈ IRCout×h×w) which contains the
relative spatial information of pixels in the local region of size h × w. Thus, the
relative spatial attention for a pixel xij is mathematically defined as in Eq. 4 and
is graphically illustrated in Fig. 2.

yi,j =
∑

{u,v}∈Nh,w(i,j)

softmaxu,v(Q
�
i,jKu,v)Vu,v (4)

where Nh,w(i, j) is the neighbourhood of size h × w centered at (i, j).

Fig. 2. Self-attention mechanism with local context. Operations are performed
on a per-pixel basis to compute attention as shown in the figure. Linear transformations
for obtaining query, keys and values are implemented using 2D convolution (Conv2d)
operation. The learnt relative positional embedding are added to the keys to incorporate
the inter-pixel relationships within the local context.

We use these attention blocks instead of 2D convolutional blocks in our net-
works. During training, all the weights and activations are represented and stored
with a precision of FP32. The parameters are quantised to INT8 precision for
inference.

2.2 Quantisation of Network Parameters

We perform quantisation using the FBGEMM (FaceBook GEneral Matrix Mul-
tiplication) [10] backend of PyTorch for x86 CPUs, which is based on the quan-
tisation scheme proposed by [9]. In order to be able to perform all the arithmetic
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operations using integer arithmetic operations on quantised values, we require
the quantisation scheme to be an affine mapping of integers q to real numbers r
as

r = S(q − Z) (5)

where S and Z are quantisation parameters. We have employed a post-training
8-bit quantisation of all the weights and operations for our proposed model.

2.3 Network Architecture

Classification: The architecture of the proposed classification network is illus-
trated in Fig. 3(a) with the details of the constituent modules in Fig. 3(c). The
network consists of a series of alternating attention blocks and attention down
blocks followed by fully-connected linear layers. The feature maps are downsam-
pled using the max-pooling operation. The size of the output linear layer is equal
to the number of target classes. The network is trained to perform multi-label
classification using a binary cross-entropy loss.

Segmentation: The proposed segmentation network has a fully attention-based
encoder-decoder architecture as shown in Fig. 3(b). The encoder unit consists of
stand-alone self-attention blocks with ReLU activation and max-pooling opera-
tions with the number of feature maps increasing progressively with each atten-
tion block. The decoder consists of attention blocks and max-unpooling opera-
tions. The size of activation maps of the decoder matches with the corresponding
layer in the encoder. The unpooling operations are performed using the indices
transferred from the pooling layers in the encoder. To prevent the loss of sub-
tle information, we employ activation concatenation in the decoder, similar to
UNet [18]. The network is trained using soft dice loss [12].

3 Experiments

3.1 Datasets

Classification: To evaluate the performance of the fully self-attentive network
(SaDNN-cls) on classification tasks, we have used the NIH Chest X-ray dataset of
14 Common Thorax Disease [22]. The dataset comprises 112, 120 frontal-view X-
ray images of 30, 805 patients with fourteen disease labels. These disease classes
can co-occur in an image; therefore, the classification problem is formulated as
multi-label classification. The train, validation and test split provided in the
dataset was used for the experiments.

Segmentation: A subset of the medical segmentation decathlon dataset [2]
is used to evaluate the performance of the proposed fully-attentive network
(SaDNN-seg) for liver segmentation. Out of the 131 ground truth paired 3D
CT volumes-Ground truth pairs available in the dataset, 80% were randomly
chosen for training, and the remaining 20% were used for testing.
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Fig. 3. Architecture of the proposed Self-attentive Deep Neural Networks
(SaDNN). Detailed architecture of the networks for classification and segmentation
are shown in (a) and (b) respectively. Components of the various blocks in these net-
works are detailed in (c).

3.2 Implementation Details

Training: The proposed models were trained using an Adam Optimiser [11]
with a learning rate of 1 × 10−4. The models for classification task were trained
for 15 epochs and the models for segmentation were trained for 25 epochs.

Baselines: Performance of the proposed quantised self-attention network for
the classification task is compared with ResNet-18, ResNet-50 and their 8–bit
quantised versions q-ResNet-18, and q-ResNet-50. To assess the performance
of the segmentation network, we chose a modified UNet [18] (UNet-small) and
SUMNet [13] architecture trained on the same dataset split and their quantised
versions q-UNet-small and q-SUMNet as baselines.

System Specifications: All networks were trained on a high-performance
server with a NVIDIA V 100 GPU, x8664 Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10 GHz, 96 GB RAM and 1 TB HDD running on Ubuntu 18.01.1 LTS
OS. The inference of quantised models was also performed on the same class of
CPUs.
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4 Results and Discussions

4.1 Qualitative Analysis

visualisation of predictions of the proposed q-SaDNN-seg network and its
unquantised version SaDNN-seg are presented in Fig. 4. Over-segmented regions
in the predicted segmentation maps are marked in green, under-segmented
regions are marked in red and correctly segmented region is shown in white.
We observe that the tendency of the original unquantised network SaDNN-seg
to over-segment is significantly reduced post quantisation. However, the quan-
tisation of network parameters causes the q-SaDNN-seg to under-segment the
target organ. This is reflected in the slightly lower Dice coefficient (DSC) of the
proposed model as seen in Table 2.

Fig. 4. Comparison of segmentation predictions. Figure shows sample input CT
images in (a) and (e) with the corresponding ground truths of liver in (b) and (f)
respectively. Segmentation map as predicted by SaDNN-seg, with the over-segmented
region marked in green and under-segmented region marked in red are presented in
(c) and (g) for the two sample images. Similar visualisation of segmentation by the
proposed q-SaDNN-seg are presented in (d) and (h). (Color figure online)

4.2 Quantitative Analysis

The performance of the proposed quantised fully self-attentive network and base-
lines for multi-label classification task is reported in terms of accuracy in Table 1.
It can be observed that the proposed network can achieve performance slightly
better than the existing deep residual convolutional neural networks. Table 2
shows the comparison of the proposed segmentation network with the baselines
in terms of DSC. The proposed quantised network performs almost as good as
the quantised versions of the baseline convolutional neural networks.
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Table 1. Evaluation of classification

Model Accuracy

ResNet-18 0.89

q-ResNet-18 0.88

ResNet-50 0.84

q-ResNet-50 0.83

SaDNN-cls (ours) 0.90

q-SaDNN-cls (ours) 0.89

Table 2. Evaluation of segmentation

Model DSC

UNet-small 0.88

q-UNet-small 0.88

SUMNet 0.89

q-SUMNet 0.89

SaDNN-seg (ours) 0.88

q-SaDNN-seg (ours) 0.85

4.3 Computational Analysis

The DNNs used for the experiments exhibited superior classification and segmen-
tation performance in terms of quantitative metrics, but they require a consid-
erable amount of computations and memory access operations to be performed.
Deploying a framework which needs excessive computations to be performed
results in large energy consumption, which is not feasible in diverse resource-
constrained scenarios. Therefore, it is key to have an energy-efficient model with-
out degradation in performance. A rough estimate of energy cost per operation
in 45nm 0.9V IC design can be calculated using Table 3 presented in [7,14,23].

Table 3. Approximate energy cost in 45 nm 0.9 V for different multiplication and
addition operations

Operation Energy (pJ)

MUL ADD

8-bit INT 0.2 pJ 0.03 pJ

16-bit FP 1.1 pJ 0.40 pJ

32-bit FP 3.7 pJ 0.90 pJ

The number of multiplication and addition operations in a standalone self-
attention layer [20] can be calculated as

Opsmul = Opsadd = 2b2c (6)

where b is the block (local region) size and c is the number of channels.
The total number of parameters, MACs, energy consumed during forward

pass and model size of the proposed q-SaDNN-cls and q-SaDNN-seg networks
are reported in Table 4 and Table 5 with graphical comparisons in Fig. 5. Models
with the least area in the radar charts are more efficient. The proposed q-SaDNN-
cls network is 58.59% smaller than quantised ResNet-18 and 80.75% smaller than
quantised ResNet-50 in terms of model size. In terms of total MAC units, the
propsed networks have 65.93% fewer MACs than ResNet-18, 85.32% fewer than



186 R. Sathish et al.

ResNet-50. Similarly, in terms of the total trainable parameters, the proposed
networks have 59.17% lesser parameters than ResNet-18 and 80.62% lesser than
ResNet-50.

Table 4. Comparison of classification networks

Model #Params MACs Model size Energy

ResNet-18 11.17 M 9.10 G 44.79 MB 20.93 J

q-ResNet-18 11.17 M 9.10 G 11.40 MB 1.04 J

ResNet-50 23.53 M 21.11 G 94.45 MB 48.53 J

q-ResNet-50 23.53 M 21.11 G 24.52 MB 2.41 J

SaDNN-cls 4.56 M 3.10 G 18.30 MB 7.13 J

q-SaDNN-cls 4.56 M 3.10 G 4.72 MB 0.35 J

Fig. 5. Graphical comparison of proposed networks. Figure shows radar chart
based comparison of proposed (a) classification network and (b) segmentation network
in terms of number of parameters, MACs, model size and energy. The model with the
least area within the plot is the best one.

Similar improvement in efficiency of computing can be observed in the case of
segmentation as well. The segmentation network q-SaDNN-seg is 73.06% smaller
than q-UNet-small and 64.94% smaller than q-SUMNet in terms of model size. In
terms of total MAC units, the q-SaDNN-seg has 34.94% fewer than SUMNet. In
terms of the trainable parameters, q-SaDNN-seg has 74.37% lesser parameters
than UNet-small and 66.21% lesser than SUMNet. It is to be noted that the
proposed models are superior in terms energy consumption as well.
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Table 5. Comparison of segmentation networks

Model #Params MACs Model size Energy

UNet-small 31.03 M 218.60 G 118.48 MB 502.78 J

q-UNet-small 31.03 M 218.60 G 29.77 MB 25.13 J

SUMNet 23.53 M 425.98 G 91.07 MB 979.75 J

q-SUMNet 23.53 M 425.98 G 22.88 MB 48.97 J

SaDNN-seg 7.95 M 277.15 G 30.47 MB 637 J

q-SaDNN-seg 7.95 M 277.15 G 8.02 MB 31.87 J

Fig. 6. Figure shows (a) a sample image from the test set used in our experiments
with the clinically relevant region as provided in the dataset marked in green and (b)
saliency map of q-SaDNN-cls. Regions shown in red in the saliency map are perceived
as most important and those in blue to be least important by the network during
prediction. (Color figure online)

4.4 Analysis of Clinical Relevance

Validating the results of the model with respect to clinically relevant information
to provide some explanations for the decision made by the model is an important
factor that determines trustability. The clinically relevant region provided in the
NIH Chest X-ray dataset as marked by a radiologist and the saliency map based
explanation generated using RISE [16] for the proposed quantised self-attention
deep neural network for classification are shown in Fig. 6. It can be observed
that the proposed model focuses on the clinically relevant region while making
the decision.

5 Conclusion

We proposed a class of quantised self-attentive neural networks which can be
used for medical image classification and segmentation. In these networks, con-
volutional layers are replaced with attention layers which have fewer learnable
parameters. Computation of attention while considering a small local region
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surrounding a pixel prevents degradation of performance despite the absence of
local feature extraction which is typically performed in a CNN. We show that
our energy efficient method achieves performance at par with the commonly
used CNNs with fewer number of parameters and model size. These attributes
make our proposed models affordable and easy to adopt in resource constrained
settings.
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