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Abstract. Optical coherence tomography (OCT) is widely used for
detection of ophthalmic diseases, such as glaucoma, age-related macular
degeneration (AMD), and diabetic retinopathy. Using a low-coherence-
length light source, OCT is able to achieve high axial resolution in biolog-
ical samples; this depth information is used by ophthalmologists to assess
retinal structures and characterize disease states. However, OCT systems
are often bulky and expensive, costing tens of thousands of dollars and
weighing on the order of 50 pounds or more. Such constraints make it dif-
ficult for OCT to be accessible in low-resource settings. In the U.S. alone,
only 15.3% of diabetic patients meet the recommendation of obtaining
annual eye exams; the situation is even worse for minority/under-served
populations. In this study, we focus on data acquired with a low-cost,
portable OCT (p-OCT) device, characterized by lower resolution, scan-
ning rate, and imaging depth than a commercial OCT system. We use
generative adversarial networks (GANs) to enhance the quality of this
p-OCT data and then assess the impact of this enhancement on down-
stream performance of artificial intelligence (AI) algorithms for AMD
detection. Using GANs trained on simulated p-OCT data generated from
paired commercial OCT data degraded with the point spread function
(PSF) of the p-OCT device, we observe improved AI performance on
p-OCT data after single-image super-resolution. We also achieve denois-
ing after image-to-image translation. By exhibiting proof-of-principle AI-
based AMD detection even on low-quality p-OCT data, this study stim-
ulates future work toward low-cost, portable imaging+AI systems for eye
disease detection.
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1 Introduction

1.1 Background and Motivation

Much of the Artificial Intelligence (AI) being developed to detect ophthalmic
diseases is trained using data and ground-truth that are collected in leading
clinics with state-of-the-art equipment and expert ophthalmologists [1,2]. How-
ever, perhaps one of the most compelling uses for AI is for under-served areas
which must utilize low-cost portable systems and in which high-quality ground
truth may not be available given lack of experienced readers [3]. In this paper, we
investigate whether we can use generative adversarial networks (GANs) to map
the lower quality of data acquired using a portable-OCT (p-OCT) system (about
tenfold cheaper than a commercial system) to the higher quality of commercial
OCT data on which an AI model was trained to detect AMD. We hypothesize
that this mapping will enable the p-OCT data to be “rescaled” to match the
resolution and noise characteristics of the high-quality data used to train an AI
model, enabling better downstream AI-based AMD classification performance.
To test this, we utilize data collected from a p-OCT device developed by Kim
et al. [4], who have successfully designed, implemented, and characterized a low-
cost, portable OCT system tailored for retinal imaging use in clinical/laboratory
studies. This p-OCT device was used for imaging human patients and achieved a
contrast-to-noise ratio 5.6% less than that achieved by a commercial Heidelberg
Spectralis OCT system [5].

Furthermore, since data shortage is a challenge for the development of AI-
based tools, future potential applications of p-OCT data/devices include (1)
efficient data collection and augmentation for AI training due to the p-OCT’s
portable form factor, and (2) GAN-based simulation/synthesis of medical data
(as shown to be possible in previous work with commercial OCT and fundus
images [6,7]) for enhancing data privacy. The above use cases of p-OCT data
and GANs are predicated on the assumption of having robust AI algorithms
that can achieve high-accuracy eye disease detection even from p-OCT data; we
seek to confirm this assumption through our work by using GANs to improve
downstream AI performance on p-OCT data. By showing proof-of-principle AI-
based AMD detection using low-quality p-OCT data, we aim to equip a broader,
diverse population with access to potentially sight-saving imaging+AI technol-
ogy.

1.2 Past Work

Existing noise removal approaches for natural images have been applied to med-
ical images [8,9] to successfully generate noise-free images even when clean tar-
get images are not available for training. In contrast, in this work we specifi-
cally seek to map low-quality image statistics of test data to high-quality image
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statistics to mimic the quality of data on which an existing AI-based AMD
detection model has been trained. This requires capturing the resolution differ-
ence between low and high-quality data (achieving super-resolution) as well as
capturing the spatially-correlated noise differences between low and high-quality
data (past approaches [9] often assume spatially uncorrelated/‘pixel-wise inde-
pendent’ noise). In order to achieve this, we turn to the class of generative adver-
sarial networks (GANs), particularly conditional GANs, which learn mappings
between source and target data. First, we use super-resolution GANs (such as
ESRGAN [10]) to enhance the resolution of output images by learning both the
scale and noise mapping between low and high-quality data; such GANs enable
‘informed hallucination’ of missing information to generate super-resolved ver-
sions of input low-resolution data. Second, we use image-to-image translation
GANs [11] (such as MedGAN [12]) for the denoising of simulated p-OCT images,
to attempt to transform their perceptual quality toward that of commercial OCT
images.

1.3 Baseline Performance on p-OCT Data and Dataset Details

Through a collaboration with Duke University’s Wax Lab, we obtained 221 b-
scan images from 59 subjects that were acquired directly with a p-OCT system
[5]. We used this data (Institutional Review Board exempt) to test the authors’
previously-developed [13,14] deep learning algorithm’s (DLA’s) robustness to
AMD detection using p-OCT input images. (This previous DLA was trained
from scratch on 301 commercial OCT b-scan images [14]). We showed the p-OCT
images to AMD experts to label for presence of CNV (choroidal neovasculariza-
tion, characteristic of ‘wet AMD’) or no AMD; 39 images were excluded due to
presence of pathologies other than AMD, and 14 ‘non-neovascular’ (‘dry AMD’)
eyes were excluded in order to directly assess the DLA’s binary AMD classifica-
tion performance with p-OCT data vs. with commercial OCT data. This resulted
in 168 p-OCT images (42 classified as neovascular (NV) AMD (‘wet AMD’) and
126 classified as non-AMD). For training, we utilized a dataset (described in
detail in [14]) of 1270 NV AMD vs. non-AMD commercial OCT images (520 NV
AMD, 750 non-AMD) captured with a Carl Zeiss Cirrus HD-OCT 5000 device.
Thus, the training set is much closer to balanced (40% NV AMD vs. 60% non-
AMD) even though the test set is not balanced. Commercial OCT training data
and p-OCT test data examples are shown in Fig. 1 (left). Although both image
types are impacted by characteristic speckle noise from the OCT instrument,
the amount of noise and the distribution of pixel intensities vary significantly
between the two images.

To present the baseline performance of the high-performing DLA in a
threshold-independent manner (and to control for imbalance in classes, espe-
cially relevant for the p-OCT test data), we plotted the AMD detection model’s
performance via Receiver Operating Characteristic (ROC) curves (Fig. 3, left
panel). The Area Under the Curve (AUC) achieved by the model on baseline
commercial OCT data is 0.8 (95% CI, 0.694–0.906), while the baseline
AUC on p-OCT data prior to any image quality enhancement is 0.518 (95%



158 K. A. Thakoor et al.

Fig. 1. Left: Original commercial training data (top); histogram-matched p-OCT test
data (bottom). Right: Image processing pipeline to generate super-resolved images for
downstream AI performance evaluation. Commercial OCT data is convolved with the
PSF of the p-OCT device, histogram-matched with p-OCT images, and then downsam-
pled by 4x (to form simulated p-OCT data through ‘B’) prior to being used for paired
ESRGAN training. The resulting trained generator (‘G’) is used to super-resolve (‘S’)
p-OCT test inputs prior to AI-based AMD detection (figure concept from [15]).

CI, 0.396–0.640), barely above chance. To improve the AI model’s perfor-
mance and make it generalizable for p-OCT data, we attempted one GAN-based
super-resolution (SR) approach and one GAN-based image-to-image translation
approach; these approaches are described in detail in the following sections.

2 Super-Resolving p-OCT Data with ESRGAN

We used the Enhanced Super Resolution Generative Adversarial Network (ESR-
GAN) [10], one of the latest state-of-the-art deep learning based super-resolution
(SR) techniques, to enhance the resolution of the portable OCT test data prior
to downstream classification via a high-performing AMD detection model to
evaluate the impact of super-resolution on downstream binary AMD detection.

2.1 ESRGAN Background and Methods

ESRGAN goes beyond the Super-Resolution Generative Adversarial Network
(SRGAN) [16] by creating the Enhanced SRGAN. Architectural highlights
of ESRGAN that enable its enhanced functionality include the Residual-in-
Residual Dense Block (RRDB) [10], which has higher capacity and thus is easier
to train than the original SRGAN model, residual scaling [17], and use of a
relativistic generator [18]. ESRGAN must be trained with paired low-resolution
and high-resolution data (i.e. the same object captured with two imaging instru-
ments). Since we do not have p-OCT and commercial OCT data of the same
patients, we simulated paired ESRGAN training data by matching the histogram
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of the commercial OCT data to that of the p-OCT data, convolving the com-
mercial OCT data with the Point Spread Function (PSF) of the portable OCT,
and downsampling the data by a factor of 4 (as dictated by the ESRGAN archi-
tecture [10]). This approach resembles past ‘Blind Super-resolution’ approaches
[15] and is appropriate for this situation since we know the point spread func-
tion (i.e. degradation kernel) that generated the low-resolution p-OCT data. The
pipeline used for generating the paired training data is shown in Fig. 1 (right).
Examples of the degraded and ground truth commercial images used for paired
training are shown in Fig. 2. We then super-resolved the p-OCT test data using
the resulting ESRGAN generator trained (via BasicSR [19]) on the paired, ‘sim-
ulated p-OCT’/commercial OCT dataset. After histogram-matching the p-OCT
test data to the commercial OCT data and denoising via a 5 × 5 kernel Weiner
filter, we inputted the p-OCT data to the trained ESRGAN generator for super-
resolution. We then used the super-resolved outputs for downstream AI-based
AMD detection.

2.2 ESRGAN Results and Discussion

Training ESRGAN on this paired dataset exhibits qualitatively improved results
on validation data, as can be seen by the input and validation output images
in Fig. 2. For test data (super-resolved p-OCT data), the improvement is visu-
alized most clearly through the ROC curve in Fig. 3, left panel. AUC achieved
by the high-performing AI model on baseline commercial OCT data is 0.8
(95% CI, 0.694–0.906), while baseline AUC on portable OCT data prior to
application of super-resolution is 0.518 (95% CI, 0.396–0.640). In contrast,
after ESRGAN super-resolution (without training on paired commercial OCT
and simulated p-OCT data, i.e. just using an ‘off-the-shelf’ ESRGAN model pre-
trained on natural images, called After SR, No Train), this AUC increases to
0.792 (95% CI, 0.684–0.900). After ESRGAN training on paired simulated
p-OCT data and commercial OCT data (called After SR, Train), AI perfor-
mance on super-resolved p-OCT data increases to an AUC of 0.897 (95% CI,
0.815–0.979). This increase in AUC beyond that achieved on the original com-
mercial OCT data could be due to the super-resolution process in fact increasing
the resolution of the p-OCT data beyond that of the original commercial OCT
data (the ESRGAN architecture enables a 4× resolution increase compared to
input resolution; input resolution is 500 × 500 pixels, so output resolution is
2000 × 2000 pixels, while commercial OCT data resolution is only 700 × 1052
pixels).

It is interesting to note that although the AI performance on super-resolved
p-OCT data improves dramatically compared to that on the commercial OCT
data and that on the original p-OCT data, this improvement is harder to observe
visually/perceptually (see Fig. 4). This is confirmed by computing the BRISQUE
scores [20] for sets of these images. The BRISQUE score is a reference-less per-
ceptual image quality metric; lower BRISQUE scores indicate higher perceptual
quality. Figure 3 (right panel) shows that, while commercial OCT data and
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Fig. 2. Left: Simulated portable (degraded commercial) OCT data used for ESRGAN
paired training, after histogram matching to p-OCT data, convolving with PSF of the
p-OCT device, and 4x bicubic down-sampling; Center: SR validation output during
training; Right: original commercial OCT ground truth.

Fig. 3. Left Panel: Receiver Operator Characteristic (ROC) curve comparing perfor-
mance of AI on original p-OCT data (red), on p-OCT data after super-resolution
with paired training (After SR, Train in yellow), on commercial OCT data (vio-
let), and on p-OCT data after super-resolution without training (After SR, No-
Train in green). Interestingly, super-resolution enhances AI AUC beyond that on the
high-quality commercial data, suggesting the value of super-resolution for facilitat-
ing AI-based eye disease detection even from p-OCT data. ROC curve in blue shows
MedGAN generated images (described in Sect. 3) with AUC approaching that of
target (commercial OCT) images. Right Panel: AUCs and normalized BRISQUE
scores for 5 image types. Note inverse relationship between AUC scores and normal-
ized BRISQUE scores for After SR, Train (highlighted with light yellow background)
and MedGAN Gen images; they have significantly higher AUCs (AI performance)
compared to p-OCT images but significantly poorer (higher) normalized BRISQUE
scores (perceptual quality) compared to commercial OCT images (highlighted with
light green background) [*: p < 0.05; **: p < 0.01; ***: p < 0.0001]. Note overall
similarity in normalized BRISQUE scores across all image types. (Color figure online)
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Fig. 4. Left: Original portable OCT image; Right: super-resolved, denoised,
commercial-OCT-histogram-matched portable OCT image; Center: histogram of pixel
intensity frequency quantitatively shows super-resolution (increase in presence of varied
pixel intensities for red histogram, corresponding to red boxed region in super-resolved
(SR) p-OCT image, compared to blue histogram, corresponding to blue boxed region
in original p-OCT image). Note shifted peak of SR p-OCT histogram is due to learn-
ing histogram of commercial OCT data during paired ESRGAN training. (Color figure
online)

super-resolved p-OCT data without training (After SR, No Train) have sig-
nificantly different BRISQUE scores from that of the original p-OCT data,
the trained, super-resolved (SR) p-OCT data (After SR, Train) data has a
BRISQUE score that is not significantly different from that of the original p-
OCT data. This aligns with the fact that clinicians who viewed the trained
SR p-OCT data also qualitatively described that the trained SR p-OCT data
did not provide any additional features beyond what the original p-OCT data
provided for their diagnosis. This qualitative finding and the similar BRISQUE
scores for the original p-OCT and trained SR p-OCT data, combined with the
enhanced AI performance on the SR p-OCT data, are consistent with past work
[21], which showed that deep neural networks (DNNs) are less impaired than
their human counterparts at deciphering spatially correlated noise. Also, ‘noise-
trained’ DNNs, like the trained ESRGAN here, more closely emulate human
vision’s robustness to noise than DNNs not trained with noise [21]. This further
strengthens the potential value of an SR-enhanced, AI-embedded p-OCT system
that could provide high-accuracy automated disease detection, especially when a
human expert or commercial OCT system are not available, such as in resource-
limited environments. The AI’s boosted performance on the SR p-OCT data
could be attributed to the SR process transforming the original p-OCT data
into a space that is more similar to that on which the AMD-detection model has
been trained (commercial OCT data). The effective ‘transfer learning’ during
the paired training between simulated p-OCT data and true commercial OCT
data also improved AI performance for the trained SR model compared to the
non-trained one (when the SR model was only pre-trained on natural images).
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3 Enhancing Source Domain Perceptual Image Quality
with MedGAN

Given the dramatic improvement in AI performance with super-resolved p-OCT
data without accompanying significant improvement in perceptual quality, we
also implemented (in Python Tensorflow/Keras) an image-to-image translation
[11] GAN to enhance p-OCT perceptual image quality via image denoising.

3.1 MedGAN Background

MedGAN was proposed by Armanious and colleagues [12] as a multi-purpose
GAN for the transformation (translation, motion-correction, or denoising) of
medical images. Unlike standard GANs, which transform noise into a desired
image, MedGAN is conditional, taking as input a source image and transform-
ing it into a desired target image. This type of operation is enabled by MedGAN’s
particular architecture and the losses that optimize it. Its generator is composed
of several U-Net [22] architecture blocks that refine images as they propagate
through a sequential encoder-decoder pathway. Modeled after PatchGAN, its dis-
criminator decomposes generated images into 64 patches (each of size 16×16) in
order to determine which are most likely to resemble a target image and which
are least likely to do so. Together, the generator and discriminator are trained via
adversarial loss, which places them in competition, respectively generating real-
istic images and identifying unrealistic images. While this leads the generator to
output broadly sufficient images, they are often blurry. As a result, the generator
uses three other loss functions that leverage feature extractors to produce more
accurate images. Using the discriminator as a feature extractor, perceptual loss
attempts to capture discrepancy between high frequency components of gener-
ated and target images, while content and style loss both use layers of VGG-19
[23] to quantify dissimilarities between the generated and target images. These
loss formulations are given in the paper’s Supplementary Materials. A schematic
of our MedGAN denoising use-case and of the components of the MedGAN
architecture are shown in Fig. 5, left panel.

3.2 MedGAN Methods

MedGAN Generator. The CasNet generator is built from U-Net modules [22],
concatenated sequentially to create a richer output image. The blocks themselves
are identically composed of an 8-layer encoding section followed by an 8-layer
decoding section. The former employs convolutional layers with kernel sizes of
four, stride length of 2, and convolutional filters of size 64, 128, 256, 512, 512,
512, 512, and 512. Given the input image size of 256×256×3, these parameters
eventually yield a 1×1×512 object, which then feeds into the decoding section,
built of 8 deconvolutional blocks with the same stride and kernel parameters as
their convolutional counterparts and with filter sizes of 512, 1024, 1024, 1024,
1024, 512, 256, and 128. This section of the block deconvolves the 1 × 1 object
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Fig. 5. Left Panel: Our MedGAN use-case is for image denoising; CasNet generator
is composed of U-Net blocks; PatchGAN discriminator computes perceptual loss and
patched adversarial loss; VGG-19 feature extractor computes style and content losses
[12]. Right Panel: (Clockwise from top left) An example original low-resolution source
image, high resolution target image, a heatmap showing the discriminator’s prediction
of image patches as real (yellow) or fake (blue), and the final MedGAN-generated
image. The MedGAN-generated image is able to achieve a similar level of perceptual
quality to the high resolution commercial OCT image, but the persistent artifact at the
image’s bottom affects this quality. Although these artifacts remained through many
iterations of the MedGAN, this particular artifact is low-impact, away from important
parts of the image (the retinal layers) and is well contained. (Color figure online)

with 512 channels back to a 256×256 object with 128 channels, allowing for the
last deconvolutional layer to feed directly into the next block’s first convolutional
layer, ensuring modularity of the blocks. To output an image after the last U-Net
block, we changed the output filter size of the last filter to 3 (to accommodate our
RGB input images), such that a 256×256×3 image results. Every convolutional
and deconvolutional layer is followed by batch normalization and leaky ReLU
layers, and the final deconvolutional layer employs a tanh activation function.
We modified the original MedGAN architecture by using a sigmoid activation
function at the output of the final block (to ensure output images remain in the
range [0, 1]). Finally, encoding and decoding layers of the same dimension in each
block are concatenated to ensure transfer of contextual information throughout
the encoding-decoding pathway and to strengthen back-propagation.

MedGAN Discriminator. Unlike classic discriminators that output single val-
ues (the probability of the whole generated image being real or fake), MedGAN
uses a patch discriminator that returns a 64 × 64 matrix of values indicating
the probability that each 16 × 16 patch of an input image (either generated
or target) is ‘real’ (each patch equals 1 for a target image, 0 for a generated
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image.) This approach permits sharper results, especially in conjunction with
non-adversarial losses like the perceptual loss. The architecture of this network
is relatively straightforward, consisting of two convolutional layers with kernel
sizes of 4, strides of 2, and spatial filters with parameters 64 in the first layer and
128 in the second. This ultimately produces a 64 × 64 × 128 object, which can
be compressed into a final 64 × 64 × 1 matrix using a convolutional layer with
its stride and spatial filter both set to 1, kernel size equal to 4, and a sigmoid
activation function, as proposed in the original MedGAN design [12].

MedGAN Training. Training the MedGAN (via Lambda Labs Vector, RTX
3090 GPU) occurs in four iterations. In the first three, the generator produces
images upon which losses can be computed and optimized. The discriminator
receives no training during these iterations, only being optimized in the fourth
and final iteration. This approach emphasizes the training of the generator over
the discriminator, as the generator contains a much more complex architecture.
This allows the two models to maintain a healthy training equilibrium, rather
than creating a situation where the discriminator can dominate the generator.

3.3 MedGAN Results and Discussion

We chose a generator architecture with 6 CasNet blocks (as proposed in the
MedGAN paper [12]), as it outperforms 1-block and 3-block architectures based
on BRISQUE scores of generated outputs. We found the following loss hyperpa-
rameters to be optimal for the portable OCT data based on empirical tuning:
Perceptual loss λpi of 1, Style loss λsj of 0.0001, and Content loss λcj of 0.0001.
Smaller content and style losses may be preferred, because the VGG-19 feature
extractor has been trained on ImageNet [24]; replacing VGG-19 with a network
fine-tuned on OCT data may enhance quality of extracted features for p-OCT
data, increasing the content/style loss contributions. We trained the model for
100 epochs (48 h) and with up to 1270 input images. Loss definitions and curves
for all loss types are shown in the paper’s Supplementary Materials. We found
that the MedGAN-generated images (when scaled to match target image size)
still exhibited significantly higher (poorer) average BRISQUE scores (44.6) than
those of target commercial OCT images (35.5); in spite of visible reduction
in noise (low perceptual loss) within the generated images, perceptual quality
did not quantitatively match that of target images. As a more rigorous test,
downstream AI performance using generated images is therefore shown via the
blue ROC curve in Fig. 3 (left panel); MedGAN generated images exhibit
an AUC of 0.774 (95% CI, 0.663–0.885), approaching that achieved by the
target commercial OCT data of 0.8 (95% CI, 0.694–0.906). An example
generated image and a heatmap indicating probability of ‘realness’ of patches
within generated images according to the discriminator are also shown in Fig. 5,
right panel.

We believe that mode collapse contributed to the persistent artifact occurring
in the MedGAN output images. In typical GANs, this phenomenon transforms
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all GAN inputs into a single output image, but mode collapse is not well-defined
for conditional GANs like MedGAN. All of MedGAN’s generated images appear
to have a layer overlaying the original input image, with similar noise patterns
and artifact locations in each. Therefore, while the conditional input remains
different for all images, the generated artifacts are functionally identical.

4 Conclusions and Future Directions

In the first half of this paper, we used ESRGAN-based super-resolution to
enhance AI-based AMD detection using p-OCT images and simulated paired
training via the p-OCT point spread function. Perceptual quality of super-
resolved outputs may be improved by first denoising the p-OCT data via existing
high-performing, deep-learning based retinal-OCT denoising techniques [25,26]
prior to ESRGAN super-resolution. An alternate future approach could involve
using ‘GAN-CIRCLE’ and the cycle-consistency constraint to achieve super-
resolution with unpaired training data and no task specific regularization [27].
In the second half of this paper, we sought to denoise/improve perceptual qual-
ity of simulated p-OCT data via MedGAN by reducing noise and perceptual
loss (between source and target images). This resulted in AI performance close
to that of target images, without significant quantitative perceptual quality
improvement (lowering of BRISQUE scores). Artifacts in MedGAN-generated
images could be eliminated by additional use of regularization and VGG-19 fea-
ture extractor fine-tuning on OCT data. Regularization strategies include adding
instance noise to the MedGAN training input images and adding gradient penal-
ties to the networks [28]. Another promising future direction is to integrate
progressively growing generated images into GAN training [29], which would
provide more stable image synthesis. Overall, we observed that GAN-based pro-
cessing of p-OCT/simulated p-OCT data significantly improved AI-based AMD
detection performance, in spite of not significantly changing perceptual quality,
as assessed by classical metrics (BRISQUE) and the human eye. Our proof-of-
principle findings stimulate future work toward AI-embedded p-OCT devices for
eye disease detection, especially in situations when ophthalmic expertise or high
quality testing data are not available.
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