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Abstract. Federated training of large deep neural networks can often
be restrictive due to the increasing costs of communicating the updates
with increasing model sizes. Various model pruning techniques have been
designed in centralized settings to reduce inference times. Combining cen-
tralized pruning techniques with federated training seems intuitive for
reducing communication costs—by pruning the model parameters right
before the communication step. Moreover, such a progressive model prun-
ing approach during training can also reduce training times/costs. To this
end, we propose FedSparsify, which performs model pruning during fed-
erated training. In our experiments in centralized and federated settings
on the brain age prediction task (estimating a person’s age from their
brain MRI), we demonstrate that models can be pruned up to 95% spar-
sity without affecting performance even in challenging federated learning
environments with highly heterogeneous data distributions. One surpris-
ing benefit of model pruning is improved model privacy. We demonstrate
that models with high sparsity are less susceptible to membership infer-
ence attacks, a type of privacy attack.
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1 Introduction

Federated Learning [16,18,32] enables distributed training of machine learning
and deep learning models across geographically dispersed data silos. In this set-
ting, no data ever leaves its original location, making it appealing for training
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models over private data that cannot be shared. For these reasons, Federated
Learning has witnessed widespread adoption across multiple disciplines, espe-
cially in biomedical settings [3,24,26]. Federated training of neural networks
involves exchanging/communicating parameters that are updated during local
training on private datasets. This parameter exchange incurs high communi-
cation costs, limiting the size of neural networks that can be learned [25]. To
circumvent this, model pruning techniques that have been extensively studied in
centralized settings [6,9,17] for improving models’ training and inference time
seem a natural fit towards this direction.

In this work, we propose a federated training approach incorporating model
pruning by directly extending previous work on model pruning in centralized
settings [6,35]. Similar to these, we use a simple pruning approach of removing
weights with the lowest magnitude. However, we consider federated learning
environments with heterogeneous data distributions. The learning task is to
predict brain age from T1-weighted MRI scans obtained from the UK BioBank
dataset [19]. We show that with our progressive model pruning strategy, i.e.,
increasing the sparsity in the model with each federation round, we can learn a
neural network model with less than 5% parameters of the original model while
preserving most of the performance.

Even though Federated Learning avoids private data sharing, models trained
using federated learning are not always private and may leak sensitive informa-
tion [8,23,33]. This can often be attributed to overfitting or memorization [8,30].
Pruning parameters excessively can reduce the memorization capacity of neural
networks. Inspired by this intuition, we evaluate the empirical privacy of the
obtained sparsified models through membership inference attacks. We observe
that pruned models at extreme degrees of sparsification (>95%) are less sus-
ceptible to membership inference attacks while maintaining learning perfor-
mance. This suggests a triple win for using pruning during federated training—a)
reduced communication costs, b) reduced inference costs due to small sized final
models, and c) reduced privacy leakage.

Existing federated model pruning strategies focus on reducing the required
communication cost during training in order to achieve specific levels of model
performance [1,12]. However, in this work we aim to train highly sparsified mod-
els of similar performance to the non-sparsified counterparts while at the same
time exploring the privacy gains of federated model sparsification against mem-
bership inference attacks. To the best of our knowledge, this is the first work
that studies the learning performance and privacy properties of model pruning
for deep learning models in the federated neuroimaging domain.

2 Neuroimaging Learning Environments

An extensive number of machine learning and deep learning approaches have
been recently proposed [31] with great success [4,34] across multiple biomedical
imaging tasks, such as image reconstruction, automated segmentation and pre-
dictive analytics. In this work, we evaluate such deep learning approaches for the
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BrainAGE prediction task over a set of challenging neuroimaging environments
in centralized and federated settings.

Brain Age Prediction Task. Brain age prediction involves creating a machine
learning model to predict a person’s chronological age from their brain MRI scan,
after training the model on large amounts of data from healthy individuals. When
this trained model is applied to new scans from patients and healthy controls,
the age difference between each individual’s true chronological age and that
predicted from their MRI scan has been found to be associated with a broad
range of neurological and psychiatric disorders, and with mortality [2,22]. This
age prediction task is formulated as a regression task also known as the Brain
Age Gap Estimation (BrainAGE). Various efficient deep learning architectures
have been recently proposed based on RNNs [13,15] and CNNs [7,22] with highly
accurate brain age estimations. In our work, we use a 3D-CNN model, similar
to [15,27] consisting of seven blocks. The first five blocks are composed of a 3×3×
3 3D convolutional layer, instance norm, a 2×2×2 max-pool and ReLU activation
functions. The sixth block is a 1 × 1 × 1 3D convolutional layer followed by
an instance norm and ReLU activation. The final block has an average pooling
layer, and a 1 × 1 × 1 3D convolutional layer. We test the performance of the
model on the BrainAGE task over the UK BioBank dataset [19]. Out of the
16,356 subjects with neuroimaging in dataset, we selected 10,446 subjects with
no neurological pathology and psychiatric diagnosis as defined by the ICD-10
criteria.

Centralized Environment. For centralized training, we follow the same setup
as [7,15]. We consider 10,466 healthy subjects from the UKBB dataset and split
them into train, test and validation sets of sizes 7,312, 2,172 and 940 respectively.

Federated Learning Environments. In our federated learning environment,
we consider a centralized (star-shaped) topology [24] where a single controller
orchestrates the execution of the participating learners. The controller aggregates
learners’ local models based on the number of training examples each model was
trained on and learners train the global model on their local dataset using Vanilla
SGD [18]. We refer to this federated training procedure as FedAvg [18].

Similar to the centralized settings, our learning task is BrainAGE prediction
and the learning model is a 3D-CNN [22,27]. We partition the MRI scans of
the training and validation datasets from the centralized environment across 8
learners in four federated learning environments [27,29] of heterogeneous data
amounts (Uniform, Skewed) and distributions (IID, Non-IID) per learner (see
Fig. 1). Uniform and Skewed refer to the cases where learners have an equal and
rightly skewed number of training samples, respectively. IID and Non-IID refer
to the cases where the age range of the local data distribution of the scans owned
by a learner captures the global range or a subset, respectively.

Measuring Privacy via Membership Inference Attacks. To measure how
much information the model leaks about the training set, we consider Member-
ship Inference Attack. A Membership Inference Attack is often the preferred app-
roach to evaluate practical privacy leakage from machine learning models [10,20].
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(a) Uniform-IID (b) Uniform-NonIID

(c) Skewed-IID (d) Skewed-NonIID

Fig. 1. UKBB federated learning environments.

Unlike differential privacy which considers worst-case privacy leakage, member-
ship inference attacks can be seen as evaluating average case practical privacy
leakages. In particular, given a sample (a subject’s brain MRI in our case), these
attacks infer if the sample was used during training or not. Discovering whether
the subject’s MRI is in the training set can reveal the personal medical history
of the subject, which is undesirable. We use the same attack setups as in [8].

In particular, for evaluating models trained in our centralized environment we
use their white-box attack setup. We consider access to some actual training and
unseen samples for training the attack model; this is a stronger attack setup. One
can also launch attacks without accessing actual training samples by training
shadow models [8,21]. We create a balanced test set of training and unseen
examples, and report the accuracy of correct predictions as “attack accuracy”.
Lower attack accuracy is more private, and hence better.

For models trained in our federated environments, we consider one of the
learners as malicious and launching attacks against other learners. In our feder-
ated environments we consider 8 learners, which translates to 56 (7×8) attacks.
The learner may train attack models using their private training set and some
unseen examples. We report the accuracy of correctly differentiating between
other learners’ training examples and unseen samples as the “attack accuracy”
and report the average accuracy, as in [8]. We also report the number of success-
ful attacks, since due to data heterogeneity not all attacks are successful. We
use features derived from the predictions, labels, and gradients of the last two
layers of the 3D-CNN to train the attack models.

3 Model Pruning

In this section, we discuss model pruning approach for centralized and federated
environments for neuroimaging tasks. We evaluate the efficacy of the weight
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magnitude-based pruning approach on a 3D-CNN trained on centralized and
distributed MRI scans.

Centralized Model Pruning. Neural networks can often have redundant
parameters which do not affect the outcome. One of the simplest ways of identi-
fying such parameters is by looking at the magnitude of parameters. Parameters
with low absolute values do not influence the output much and thus can be safely
pruned [6,35]. We use this simple approach for pruning. [35] showed that gradual
parameters pruning during training is more effective than one-shot pruning at
the end. Our federated pruning approach exploits this observation. However, in
the centralized setting, we prune in one step at the end of 90th epoch, followed
by finetuning for 10 epochs.

Fig. 2. Federated models number of parameters progression with (FedSparsify) and
without (FedAvg) sparsification.

Federated Model Pruning. We develop our sparsified federated training on
top of FedAvg. The global model is pruned at the controller after the controller
aggregates the local model updates from the participating learners. Once the new
(sparsified) global model is computed, the controller sends new global model to
the learners along with the associated binary mask representing pruned and
unpruned parameters. We use weight magnitude-based pruning approach [35]
and remove the weights with lowest absolute values. A parameter once pruned is
never resurrected. To enforce this during local training, each learner applies the
binary mask at every training step (see also Algorithm 1 in Appendix). As we
prune during every federation round, our pruning strategy follows a progressive
schedule similar to [28,35]. The percentage of additional parameters pruned in
each round follows an exponentially decreasing schedule, and the overall sparsity
at round t is governed by this formula:

st = ST + (S0 − ST )
(

1 − F �t/F � − t0
T − t0

)n

(1)

Here T is total number of federation rounds, S0 and ST are the initial and desired
final sparsity, F is frequency of sparsification, and t0 is the initial sparsification
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round. The exponent n controls the exponential sparsification rate. We refer to
this pruning strategy as FedSparsify. In our experimental evaluation, we explore
different final sparsities, i.e., ST = {85%, 90%, 95%, 99%}. Throughout our
experiments, we set the rate of sparsification n to 3, we prune the global model
at every federation round, i.e., F = 1, for a total number of 40 federation rounds,
T = 40, and we start the sparsification schedule at federation round 1, t0 = 1.
Figure 2 presents the progression of global model parameters of this sparsification
schedule over the course of 40 federation rounds.

4 Results

We train the 3D-CNN model1 for the brain age prediction task in different
learning setups. We perform one-shot pruning in the centralized setup to achieve
different sparsity levels. For the federated learning setup, we vary ST , the final
sparsity level in Eq. 1 and prune progressively before communicating updated
weights to the learners (see Algorithm 1). In all environments the model is trained
using Vanilla SGD with a batch size of 1 and learning rate of 1e−5. During
federated training learners train the global model locally for 4 epochs in between
federation rounds. All experiments were run on a dedicated GPU server equipped
with 4 Quadro RTX 6000/8000 graphics cards of 50 GB RAM each, 31 Intel(R)
Xeon(R) Gold 5217 CPU @ 3.00 GHz, and 251 GB DDR4 RAM.

(a) (b)

Fig. 3. Centralized BrainAGE model performance at different sparsity levels (left plot)
and model vulnerability to membership inference attacks with respect to model per-
formance (right plot).

Model Pruning Does Not Hurt Performance. We first study model per-
formance at different sparsity levels by evaluating the models on a held-out
test set. These results are summarized in Fig. 3a for centralized training. Even

1 https://github.com/dstripelis/FedSparsify.

https://github.com/dstripelis/FedSparsify
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Fig. 4. Federated BrainAGE models learning performance at different degrees of spar-
sification across all four federated learning environments. Dashed line represents per-
formance of non-sparsified model.

Fig. 5. Federated BrainAGE models vulnerability to membership inference attacks
with respect to learning performance across all federated environments.

through the one-step pruning approach, we observe that most of the model per-
formance is preserved when 90% of the parameters are removed. This validates
the applicability of weight magnitude-based pruning for deep learning models on
neuroimaging tasks. We apply our proposed progressive pruning procedure for
federated training at different final sparsity levels across four different environ-
ments. The results are summarized in Fig. 4. In all cases, model performance is
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Table 1. Federated models comparison in the Skewed-IID environment.

Sparsity Params Size (MBs) Comm. (MM) Test MAE MIA (Success) Throughput

0.0 2,950,401 10.85 1888 2.879 0.66 (50) 64.31

0.85 442,561 2.09 714 2.881 0.671 (52) 69.06

0.9 295,041 1.43 645 2.859 0.672 (51) 71.28

0.95 147,521 0.73 576 2.861 0.659 (54) 78.27

0.99 29,505 0.16 521 3.024 0.596 (47) 128.55

not affected at 95% sparsity level and performs the same as the FedAvg model,
which is trained without pruning. Even when only 1% of the parameters are
preserved, i.e., 99% sparsity, the model performance degrades slightly. Table 1
provides a quantitative comparison of the total number of parameters and mem-
ory/disk size of the final model, the cumulative communication cost in terms
of the total number of parameters exchanged during training2, and the model’s
learning performance. Our pruning schedule can learn a highly sparsified fed-
erated learning model with 3 to 3.5 times lower communication cost than its
unpruned counterpart (cf. 521 million to 1888 million parameters). Moreover,
the reduced number of the final model parameters also leads to reduced model
space/memory footprint, with the sparsified models at 95% and 99% sparsifica-
tion being 67 times smaller than the original model. Following previous work [14]
on model efficiency evaluation3, we benchmark the inference time for sparse and
non-sparse models by recording the total number of processing items per second
(i.e., Throughput - items/sec) that each model can perform. Specifically, we take
the final model learned with (FedSparsify) and without sparsfication (FedAvg)
and stress test its inference time by allocating a total execution time of 60 s with
a warmup period of 10 s. As we show in Table 1, as sparsification increases model
throughput increases too, leading to improved inference efficiency especially at
99% sparsity.

Excessive Model Pruning May Reduce Privacy Vulnerability. Intu-
itively, pruning can reduce the ability of a neural network to memorize training
data and thus reduce privacy vulnerability. To this end, we evaluate pruned mod-
els for privacy leakage using membership inference attacks (Fig. 3b and Fig. 5).
We find that at extreme sparsity levels (>95% for centralized settings and 99%
for federated setting) the attack accuracy reduces suggesting that these models
are less vulnerable to privacy leakage compared to non-sparsified models. Com-
pared to the non-sparsified model, the sparsified models are 10% to 20% less
vulnerable in case Skewed IID and Uniform IID environments, respectively, and
5% for the Non-IID environments.

2 Communication cost is computed as
∑T

t 2N t
ZL. T represents the total number of

federation rounds, N t
Z the non-zero model parameters at round t and L the number

of participating learners. Factor 2 accounts for the model parameters sent from the
controller to the learners and from the learners to the controller within a round.

3 https://github.com/neuralmagic/deepsparse.

https://github.com/neuralmagic/deepsparse
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5 Discussion

We investigated model pruning for deep learning models in the neuroimaging
domain through the BrainAGE prediction task in both centralized and feder-
ated learning environments. We demonstrated that sparsified models are equally
performant as their non-sparsified counterparts even at extreme sparsity lev-
els across all investigated environments. We also evaluated the effectiveness of
sparsified models in improving model resiliency against membership inference
attacks. We discovered that highly sparsified models could reduce vulnerability to
this privacy attack. The vulnerability to membership inference attack is related
to the mutual information between the training dataset and activations [11] or
model parameters [5]. These results could provide a plausible theoretical expla-
nation as to why pruning reduces the information about the training dataset
in neural network weights compared to weights obtained by training without
pruning. In the future, we plan to analyze the relation between model sparsi-
fication and model privacy and provide a theoretical framework to understand
the connection between them better. We also plan to improve model privacy by
introducing notions of stochasticity while applying model weight pruning.
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