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Abstract. Many medical datasets have recently been created for med-
ical image segmentation tasks, and it is natural to question whether we
can use them to sequentially train a single model that (1) performs bet-
ter on all these datasets, and (2) generalizes well and transfers better to
the unknown target site domain. Prior works have achieved this goal by
jointly training one model on multi-site datasets, which achieve compet-
itive performance on average but such methods rely on the assumption
about the availability of all training data, thus limiting its effectiveness
in practical deployment. In this paper, we propose a novel multi-site seg-
mentation framework called incremental-transfer learning (ITL),
which learns a model from multi-site datasets in an end-to-end sequen-
tial fashion. Specifically, “incremental” refers to training sequentially
constructed datasets, and “transfer” is achieved by leveraging useful
information from the linear combination of embedding features on each
dataset. In addition, we introduce our ITL framework, where we train the
network including a site-agnostic encoder with pretrained weights and at
most two segmentation decoder heads. We also design a novel site-level
incremental loss in order to generalize well on the target domain. Sec-
ond, we show for the first time that leveraging our ITL training scheme
is able to alleviate challenging catastrophic forgetting problems in incre-
mental learning. We conduct experiments using five challenging bench-
mark datasets to validate the effectiveness of our incremental-transfer
learning approach. Our approach makes minimal assumptions on com-
putation resources and domain-specific expertise, and hence constitutes
a strong starting point in multi-site medical image segmentation.
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1 Introduction

Many medical image datasets have been created over the year, and recent break-
through achieved by supervised training accelerates the pace in medical image
segmentation. Despite great promise, many prior works have limited clinical
value, since they are separately trained on small datasets in terms of scale,
diversity, and heterogeneity of annotations. As a result, such single-site methods
[10,14,21,22,29,31,32,35–41] are vulnerable to unknown target domains, and
linearly expand parameters since they assume to train a new model in isolation
when adding new datasets. This jeopardizes their trustworthiness and practical
deployment in real-world clinical environments.

In this paper, we carry out the first-of-its-kind comprehensive exploration
of how to build a multi-site model to achieve strong performance on the training
domains and can also serve as a strong starting point for better generalization
on new domains in the clinical scenarios. Multi-site training [1,3,7,8,11,24,25]
has been proposed to consolidate the generalization on multi-site datasets, but
it has the following limitations: (1) it still exhibits certain vulnerability to differ-
ent domains (i.e., different imaging protocols), which yields sub-optimal perfor-
mance [1,13,34]; (2) due to various constraints (i.e., imaging time, privacy, and
copyright status), it could become challenging or even infeasible for the require-
ment on the availability of all training data in a certain time phase. For exam-
ple, when a new site’s data will be available after training, the model requires
retraining, which largely prohibits the practical deployments; and (3) consider
the relatively small size of the single medical imaging dataset, simply training
a dense network from scratch usually leads to sub-optimal segmentation quality
because the model might over-fit to those datasets.

Our key idea is to combine the benefits of incremental-learning (IL) and
transfer-learning by sequentially training a multi-dataset expert: we continu-
ally train a model with corresponding pretrained weights as new site data are
incrementally added, which we call Incremental-Transfer Learning (ITL). This
setting is appealing as: (1) the common IL setting [4,5,15,17,23,27,28,42] is to
train the base-learner when different site datasets gradually come; thus the effec-
tiveness of this approach heavily depends on the optimality of the base-learner.
Consider each single medical image dataset is usually of relatively small size, it
is undesirable to build a strong base-learner from scratch; (2) transfer-learning
[26,30,33,43,44] typically leads to better performance and faster convergence
in medical image analysis. Inspired by these findings above, we develop a novel
training strategy for expanding its high-quality learning abilities to our multi-site
incremental setting, considering both model-level and site-level. Specifically, our
system is built upon a site-agnostic encoder with pretrained weights from natural
image datasets such as ImageNet, and at most two segmentation decoder heads
wherein only one head is trainable, and the other is fixed associated with specific
sites - a parameter-efficient design. Our intuition is that the shared site-agnostic
encoder network with pretrained weights encodes regularities across different
medical image datasets, while the target and source segmentation decoder heads
model the sub-distribution by our proposed site-level incremental loss, resulting
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Fig. 1. Overview of (a) our proposed Incremental Transfer Learning framework, and
(b) the multi-site expert model. Note that in this study, we only use one multi-site
expert model and one source decoder network, which will not introduce additional
parameter.

in an accurate and robust model that transfers better to new domains without
sacrificing performance. We conduct a comprehensive evaluation of ITL on five
prostate MRI datasets. Our approach can consistently achieve competitive per-
formance and faster convergence compared to the upper-bound baselines (i.e.,
isolated-site and mixed-site training), and has a clear advantage on overall seg-
mentation performance compared to the lower-bound baselines (i.e., multi-site
training). We also find that our simple approach can effectively address the
forgetting issues. Our experiments demonstrate the benefits of modeling both
multi-site regularities and site-specific attributes, and thereby serve as a strong
starting point on this important practical setting.

2 Method

2.1 Problem Setup

In ITL, a model incrementally learns from a sequential site stream wherein new
datasets (namely, medical image segmentation tasks with new sites) are gradu-
ally added during the training, as illustrated in Fig. 1. More formally, we denote
the sequence of multi-site datasets to be trained as a multi-domain data sequence
D={D1,D2, · · · ,DN} of N sites, and i-th site Di contains the training images
X = {xj}Mj=1 and segmentation labels Y = {yj}Mj=1, where xj ∈ R

H×W×3 is the
augmented image input, and yj ∈ {0, 1}H×W is the ground-truth label. Here the
augmented input setting is appealing: the axial context naturally provided by a
3D volume can uniquely yield more robust semantic representations to the down-
stream tasks. We assume access to a multi-site expert model Fi = {Ei, Gi} for
i-th (site) phase, including a pretrained model as a site-agnostic encoder network
Ei with the weight θi, a target decoder network Gt

i with the weight θti . During
training, we additionally attach a source decoder network Gs

i (i.e., using Gs
i−1

from previous phrase) with the weight θsi . In the i-th incremental (site) phase,
the multi-site expert model has access to two types of domain knowledge: the
site-specific knowledge from the current dataset Di and old exemplars Pi. The
latter refers to a set of old exemplars from all previous training datasets D1:i−1 in



6 C. You et al.

Table 1. Information about five different sites from three benchmark datasets.

Dataset Modality # of cases Field
strength
(T)

Resolution
(in/through
plane) (mm)

Coil Source

Site0 MRI 30 3 0.6–0.625/3.6–4 Surface NCI-ISBI13 [2]

Site1 MRI 30 1.5 0.4/3.0 Endorectal NCI-ISBI13 [2]

Site2 MRI 19 3 0.67–0.79/1.25 - I2CVB [12]

Site3 MRI 12 1.5 0.625/3.6 Endorectal PROMISE12 [16]

Site4 MRI 13 1.5 and 3 0.325–0.625/3–
3.6

- PROMISE12 [12]

the memory protocol M. This is highly nontrivial to preventing the challenging
“catastrophic forgetting” problem [20] of the current dataset i against previous
sites in clinical practice. Note that, in this study, we only use one multi-site
expert model and one source decoder network, which will not introduce addi-
tional parameters. Based on the setting above, we define the ITL problem below.

Problem of ITL. In the current site i, our goal is to continuously learn a multi-
site expert model based on the knowledge from both (Di, Pi) and the pretrained
weight, making the model (1) generalizes well on the unseen data at site i, and
(2) achieves competitive performance on the previous sites.

2.2 Preliminary

Our goal is to build a strong multi-site model by learning a site-agnostic
encoder with pretrained weights as well as a segmentation decoder over multi-
site datasets. This naturally raises several interesting questions: How well will
ITL-based methods perform in multi-site medical image datasets? Will transfer
learning make the base learner stronger on the unseen site? If yes, can they
perform stably well? To answer the above questions, a prerequisite is to define
the upper bound and lower bound. Here we introduce three common paradigms
for multi-site medical image segmentation: (1) isolated-site training, (2) mixed-
site training, and (3) multi-site training. It is well-known that the isolated-
site and mixed-site training approaches can achieve state-of-the-art performance
when evaluating the same dataset, while the performance catastrophically drops
when evaluating new datasets. On the other hand, the multi-site training app-
roach often yields inconsistent performance across multiple sites. For all training
paradigms, we minimize Dice loss between the predicted outputs and the ground
truth label.

Upper Bound. We consider two training paradigms (i.e., isolated-site and
mixed-site training) as our upper bound baseline. For isolated-site training,
given each site Di, we train isolated-site models separately. The architecture of
the isolated-site model consists of a pretrained encoder Ei and a segmentation
decoder network, same architecture as Gi. Then, we apply different isolated-site
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models to predict results based on the site-specific data at inference. However,
this approach dramatically increases memory and computational overhead, mak-
ing it practically challenging at scale. For mixed-site training, we train one full
model on the full mixed-site data D, and then use the well-trained model for
inference. However, it requires the simultaneous presence of all data in training
and inference.

Lower Bound. For multi-site training, we sequentially train only one model
coupled with the pretrained weights on all sites. This can get rid of large param-
eter counts, making it appealing in practice. However, due to the forgetting
quandary, it inevitably suffers from severe performance degradation. This nat-
urally questions: can we improve performance on multi-site medical image seg-
mentation with minimal additional memory footprint? In the following, we give
an affirmative answer.

2.3 Proposed Incremental Transfer Learning Multi-site Method

To address the aforementioned problems, we develop the incremental transfer
learning framework to perform well on the training distribution and general-
ize well on the new site dataset with minimal additional memory. To our best
knowledge, we are the first work to apply incremental transfer learning to the
limited clinical data regimes. To control the parameter efficiency, we decompose
the model into a share site-agnostic encoder Ei and two segmentation decoder
heads (i.e., source decoder Gs

i and target decoder Gt
i). In this way, we can

keep the network parameters the same when adding a new site. Specifically, Gs
i

is designed to transfer the knowledge of a previously learned site, and Gt
i is

designed to comprehensively train on a new site and previous datasets. During
training, we only update Gt

i while Gs
i is frozen. It is worth mentioning that

our proposed framework is independent of the encoder architecture, and can be
easily plugged in other pretrained vision models.

The full ITL algorithm is summarized in Algorithm 1. We describe our ITL
algorithm as follows. We first randomly initialize Gt

i, Gs
i , and then iteratively

train our full model (i.e., a pretrained encoder Ei and two decoders Gt
i, Gs

i )
with N -site training samples. Bounded by the computational requirements, it is
challenging or even infeasible to retain all data for training. Inspired by recent
work [23], to maintain the knowledge of previous sites, we “store” all the old
site data exemplars in the memory protocol Mi. In the i-th incremental (site)
phase, we first load Pi, and then use both Pi and Di to train Fi initialized by
θsi . This setting is appealing as (1) it can substantially alleviate the imbalance
between the old and new site knowledge, and (2) it is efficient to train on them.
Of note, we do not use the source decoder when training on the first-site dataset.
We formulate ITL as model-level and site-level optimization.

Model-Level Optimization. To perform better on all these training distribu-
tions, we propose improving generic representations by distilling knowledge from
previous data. In each incremental phase, we jointly optimize two groups of learn-
able parameters in our ITL learning by minimizing the model-level incremental



8 C. You et al.

Algorithm 1. Incremental-Transfer Learning(ITL) Algorithm
Require: Dataset: D; Hyper-parameters: α, δ, γ
1: Initialize the M (Memory) : M
2: Initialize the Model F0: Pertrained Encoder −→ E0, G0

3: for i = 1,2,3,....N do
4: for All training Sample in Di and Mi−1 do

5: Ltarget =
∑N−1

j=0 αjLEi,G
t
i

Dice (Mj , Yj) or 0 When N = 1

6: Lsource =
∑N−1

j=0 δjLEi,G
s
i

Dice (Mj , Yj) or 0 When N = 1
7: Lmodel = Lsource + Ltarget

8: Lsite = LEi,G
t
i

Dice (Di, Yi)
9: Lall = Lsite + Lmodel

10: Fi = (Ei, G
t
i) by minimizing the Lall

11: end for
12: Update Memory: M + γ%DN −→ M
13: Save Teacher Model: GN

14: end for

loss (i.e., Lmodel =Ltarget + Lsource) on all training samples (i.e., Di

⋃
D0:i−1):

(1) a share site-agnostic encoder Ei and a target decoder Gt
i; (2) a share site-

agnostic encoder Ei and a source decoder Gs
i . This helps ITL avoid catastrophic

forgetting of prior site-specific knowledge.

Site-Level Optimization. The above model-level optimization is used to main-
tain previously learned knowledge. In contrast, this step is design to train the
multi-site model to learn site-specific knowledge on the newly added site. Specif-
ically, we minimize the site-level incremental loss Lsite between the probabil-
ity distribution from Fi and the ground truth. This essentially learns the site-
specific knowledge for the downstream medical image segmentation tasks. Of
note, Lsource, Ltarget, and Lsite use the Dice loss. The overall loss combines the
model-level loss and the site-level loss as follows:

Lall = Lmodel + Lsite. (1)

3 Experiments

Datasets and Settings. We evaluate our proposed incremental transfer learn-
ing method on three prostate T2-weighted MRI datasets with different sub-
distributions: NCI-ISBI13 [2], I2CVB [12], and PROMISE12 [16]. Due to the
diverse data source distributions, they can be split into five multi-site datasets,
which is similar to [19]. Table 1 provides some dataset statistics. For pre-
processing, we follow the setting in [18] to normalize the intensity, and resample
all 2D slices and the corresponding segmentation maps to 384 × 384 in the axial
plane. For all five site datasets, we randomly split each original site dataset into
training and testing with a ratio of 4:1. For each site training, we divide the data
from the previous site into a small subset with a certain portion (i.e., 1%, 3%,
5%), and combine it with the current site data for training.
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Table 2. Comparison of segmentation performance (DSC[%]/95HD[mm]) across
datasets. Note that a larger DSC (↑) and a smaller 95HD (↓) indicate better perform-
ing ITL models. We use four models pretrained on ImageNet: ResNet-18, ResNet-34,
ResNet-50, and ViT under different portions (i.e., 1%, 3%, 5%) of exemplars from
previous data for every incremental phase. We consider multi-site training as the lower
bound, isolated-site, and mixed-site training as the upper bound.

Backbone Scheme HK UCL ISBI ISBI1.5 I2CVB

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

RES-18 Multi 59.38 64.17 66.26 54.19 54.38 73.40 66.89 44.49 84.54 11.70

1% 67.82 56.08 67.12 58.05 59.47 70.46 77.34 34.77 82.94 6.06

3% 71.60 18.41 82.18 23.92 72.26 20.91 81.53 19.21 84.08 13.75

5% 81.81 5.50 84.45 13.95 84.52 15.65 89.32 10.11 86.72 11.70

Isolated 93.46 2.06 88.29 6.20 93.35 2.04 90.89 7.53 88.74 13.93

Mixed 92.17 7.60 83.38 12.22 91.70 2.46 90.08 9.20 89.12 13.86

RES-34 Multi 57.75 55.13 64.87 52.50 57.47 65.38 65.61 56.83 91.46 8.83

1% 67.40 24.18 79.55 30.43 69.61 44.69 84.68 18.71 89.38 15.24

3% 80.90 28.41 82.57 22.18 75.89 26.26 84.68 10.57 90.35 13.15

5% 80.46 22.92 87.79 17.32 88.14 14.64 90.29 8.57 91.30 8.52

Isolated 93.87 1.89 89.03 4.05 92.08 2.19 92.57 7.96 91.57 7.98

Mixed 93.85 1.71 87.81 16.85 91.49 3.35 93.82 5.30 92.58 6.64

RES-50 Multi 63.24 53.98 64.79 56.59 72.95 26.63 69.41 49.89 90.40 8.21

1% 69.01 60.70 69.85 44.21 75.30 28.74 80.27 20.10 90.08 8.02

3% 78.72 16.89 83.74 12.81 84.96 8.51 86.95 6.18 92.34 5.24

5% 92.46 2.92 88.79 10.97 92.16 2.04 92.18 4.87 91.35 2.12

Isolated 93.73 2.12 89.03 7.23 93.26 4.39 93.48 5.10 93.20 2.40

Mixed 94.38 1.34 88.28 9.77 92.71 9.43 92.27 5.29 90.45 5.29

VIT Multi 66.94 53.57 65.85 54.69 92.66 6.37 72.80 51.35 90.56 7.02

1% 71.99 48.61 85.29 11.35 75.99 17.87 84.73 12.32 90.11 7.23

3% 79.33 20.84 88.16 7.08 85.48 7.97 87.64 9.95 90.07 6.94

5% 93.25 1.37 87.62 9.23 92.22 4.82 91.62 2.82 91.87 6.59

Isolated 94.44 1.88 88.80 8.21 93.23 4.76 92.47 6.27 93.23 6.43

Mixed 93.30 1.38 87.20 9.21 92.86 9.29 86.92 12.28 92.01 6.99

Training and Evaluation. In this study, we implement all models using
Pytorch. We set H,W as 384, α, δ as 0.5, and the batch size as 5. To mitigate the
overfitting, we augment the data by random horizontal flipping, random rota-
tion, and random shift. We adopt ResNet family [9] (i.e., ResNet18, ResNet34,
ResNet50) and ViT [6] (i.e., R50+ViT-B/16 hybrid model) as our pretrained
encoder. We evaluate the model performance by Dice coefficient (DSC) and 95%
Hausdorff Distance (95HD). For a fair comparison, we adopt the same decoder
architecture design in [18] are shown in Appendix Table 4, and do not use any
post-processing techniques. All of our experiments are conducted on two NVIDIA
Titan X GPUs. All the models are trained using Adam optimizer with β1 = 0.9,
β2 = 0.999. For 100 epochs training, a multi-step learning rate schedule is ini-
tialized as 0.001 and then decayed with a power of 0.95 at epochs 60 and 80.

Main Results. We conduct extensive experiments on five benchmark datasets.
We adopt four models: ResNet-18, ResNet-34, ResNet-50, and ViT. We select
three portions (i.e., 1%, 3%, 5%) of exemplars from previous data for every
incremental phase. Our results are presented in Table 2 and Appendix Fig. 2.
First and foremost, we can see ITL-based methods generalize across all datasets
under two exemplar portions (i.e., 3% and 5%), yielding the competitive
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segmentation quality comparable to the upper bound baselines (i.e., isolated-site
and mixed-site training), which are much higher than the lower bound counter-
parts. The 1% exemplar portion seems slightly more challenging for ITL, but
its superiority over the lower bound counterparts is still solid. A possible expla-
nation for this finding is that using two exemplar portions (i.e., 3% and 5%)
maintains enough information of ITL, which mitigates the catastrophic forget-
ting, while ITL trained in the setting of 1% exemplar portion is not powerful
enough to inherit prior knowledge and generalize well on newly added sites.
Second, we consistently observe that ITL using larger models (i.e., ResNet-50
and ViT) generalize substantially better than those using small models (i.e.,
ResNet-18 and ResNet-34), which demonstrate competitive performance across
all datasets. These results suggest that our ITL using the large model as our
pretrained encoder leads to substantial gains in the setting of very limited data.

4 Analysis and Discussion

We address several research questions pertaining to our ITL approach. We use a
ResNet-18 model as our encoder in our experiments. For comparisons, all models
are trained for the same number of epochs, and all results are the average of three
independent runs of experiments. To study the effectiveness of our proposed ITL
framework, we performed experiments with 5% exemplars ratio.

Table 3. Comparison of segmentation performance in different phases.

HK UCL ISBI ISBI1.5 I2CVB

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

94.06 1.96 - - - - - - - -

93.68 1.98 88.74 8.72 - - - - - -

93.20 1.83 87.38 9.30 92.87 1.82 - - - -

90.37 8.34 86.73 12.75 89.84 13.32 91.57 11.05 - -

88.88 8.91 85.14 10.97 85.98 14.23 89.74 13.11 88.46 12.15

Does Transfer Learning Lead to Better ITL? We draw two perspectives
that may intuitively explain the effectiveness of transfer learning in our proposed
ITL framework. As a first test of whether transfer learning makes the base-
learner stronger, we plot the training loss/validation loss (i.e., Lall) to iteration to
demonstrate the convergence improvements in Appendix Fig. 3. We can see that
training from pretrained weights can converge faster than training from scratch.
Another (perhaps not so surprising) observation we can get from Appendix Fig. 3
is that using pretrained weights usually yields slightly smaller loss compared to
training from scratch. We then ask whether transfer learning produces increased
performance on multi-site datasets. Since each single medical image dataset is
usually of relatively small size, training the model from scratch tends to overfit a
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particular dataset. To evaluate the impact of transferring learning, we compare
w/pretraining to w/o pretraining. As shown in Appendix Table 7, training from
scratch does not bring benefits to the ITL framework. Instead of training from
scratch, we find that simply incorporating transfer learning significantly boots
the performance of ITL while achieving faster convergence speed, suggesting that
transfer learning provides additional regularization against overfitting.

Does ITLGeneralizes Well on Multi-site Datasets? We investigate whether
the ITL framework generalizes well on multi-site datasets. We report the seg-
mentation results of different phases in Table 3, from which we observe that ITL
achieves good performance in different phases. This reveals that our approach is
greatly helpful in reducing forgetting issues. We evaluate the proposed ITL meth-
ods with two random ordering (i.e., (1) {HK→UCL→ISBI→ISBI1.5→I2CVB},
and (2) {ISBI→ISBI1.5→I2CVB→HK→ UCL}). The results are shown in
Appendix Table 5. We perform experiments using both ordering strategies and
observe comparable performance.

Efficiency of ITL. We report the network size and memory costs in Appendix
Table 6. We observe that ITL achieves competitive performance and utilizes less
network parameters compared to isolated-site training (upper bound), which
requires the new model when adding new site data. We also examine the required
memory footprint at each incremental phase. We observe that ITL is significantly
more memory-efficient than mixed-site training (upper bound), although the
latter remains the same network size when adding a new training phase. These
results further demonstrate the efficiency of our proposed ITL framework.

5 Conclusion

In this paper, we present a novel incremental transfer learning framework for
incrementally tackling multi-site medical image segmentation tasks. We pose
model-level and site-level incremental training strategies for better segmentation,
generalization, and transfer performance, especially in limited clinical resource
settings. Extensive experimental results on four different baseline architectures
demonstrate the effectiveness of our approach, offering a strong starting point
to encourage future work in these important practical clinical scenarios.
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Appendix

Fig. 2. Visualization of segmentation results on five benchmarks using ResNet-18 as
the encoder. Different site results are shown in different colors.

Table 4. Segmentation decoder head architecture

Deocder

Layer Feature size

Upsample 1 48 × 48

Residual block 1 48 × 48

Upsample 2 96 × 96

Residual block 2 96 × 96

Upsample 3 192 × 192

Residual block 3 192 × 192

Upsample 4 384 × 384

Residual block 4 384 × 384

Output prediction 384 × 384

Table 5. Comparison of different ordering strategies using ResNet-18. We report mean
and standard deviation across three random trials. Note that a larger DSC (↑) and a
smaller 95HD (↓) indicate better performing ITL models.

Training sequence DSC[%] 95HD[mm]

HK→UCL→ISBI→ISBI1.5→I2CVB 85.36 ± 0.33 11.38 ± 0.36

ISBI→ISBI1.5→I2CVB→HK→UCL 86.27 ± 0.27 12.01 ± 0.68
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Table 6. Comparison of different training strategies using ResNet-18. We report mean
and standard deviation across three random trials.

Scheme DSC[%] 95HD[mm] Model size(Mb) Add new sites? Memory cost

Isolated 90.95± 0.27 6.35± 0.68 77.9× Site Num. Linearly increase New data

Mixed 89.29± 0.38 9.06± 0.84 77.9 Constant Old data + New data

ITL 85.36± 0.33 11.38± 0.36 77.9 Constant 5% old data + new data

Table 7. Ablation of each component in the proposed ITL when using ResNet-18 under
5% exemplar portion. We report mean and standard deviation across three random
trials. Note that a larger DSC (↑) and a smaller 95HD (↓) indicate better performing
ITL models. The best results are in bold.

Backbone Component HK UCL ISBI ISBI1.5 I2CVB Avg. DSC Avg. 95HD

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

RES-18 Pretraining only 59.38 64.17 66.26 54.19 54.38 73.40 66.89 44.49 81.54 28.70 65.69 ± 1.51 52.99 ± 0.72

Lmodel only 74.02 18.86 73.79 31.90 51.23 51.66 80.89 21.96 80.88 58.44 72.16 ± 0.38 36.56 ± 0.85

Pretraining + Lmodel 81.81 5.50 84.45 13.95 84.52 15.65 89.32 10.11 86.72 11.70 85.36± 0.33 11.38± 0.36

Fig. 3. Comparison of training from scratch against using pretraining. We use ResNet-
18 on ImageNet as the encoder. Under 5% exemplar portion, we plot (a) training loss
(Scratch), (b) training loss (Pretraining), (c) validation loss (Scratch), (d) validation
loss (Pretraining)
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