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Preface DeCaF 2022

Machine learning approaches have demonstrated the capability of revolutionizing almost
every application and every industry through the use of large amounts of data to cap-
ture and recognize patterns. A central topic in recent scientific debates has been how
data is obtained and how it can be used without compromising user privacy. Industrial
exploitation of machine learning and deep learning (DL) approaches has, on the one
hand, highlighted the need to capture user data from the field of application in order to
yield a continuous improvement of the model, and on the other hand it has exposed a
few shortcomings of current methods when it comes to privacy.

Innovation in the way data is captured, used, and managed, as well as how privacy
and security of this data can be ensured, is a priority for the whole research community.
Most currentmethods rely on centralized data stores,which contain sensitive information
and are often out of the direct control of users. In sensitive contexts, such as healthcare,
where privacy takes priority over functionality, approaches that require centralized data
lakes containing user data are far from ideal, and may result in severe limitations in what
kinds of models can be developed and what applications can be served.

Other issues that result in privacy concerns are more intimately connected with the
mathematical framework ofmachine learning approaches and, in particular,DLmethods.
It has been shown that DL models tend to memorize parts of the training data and,
potentially, sensitive information within their parameters. Recent research is actively
seeking ways to reduce issues caused by this phenomenon. Even though these topics
extend beyond distributed and collaborative learning methods, they are still intimately
connected to them.

The third MICCAIWorkshop on Distributed, Collaborative and Federated Learning
(DeCaF 2022) aimed at creating a scientific discussion focusing on the comparison, eval-
uation, and discussion ofmethodological advancement and practical ideas aboutmachine
learning applied to problemswhere data cannot be stored in centralized databases; where
information privacy is a priority; where it is necessary to deliver strong guarantees on
the amount and nature of private information that may be revealed by the model as a
result of training; and where it’s necessary to orchestrate, manage, and direct clusters of
nodes participating in the same learning task.

During the third edition of DeCaF, 18 papers were submitted for consideration, and,
after peer review, 14 full papers were accepted for presentation. Each paper was rigor-
ously reviewed by at least three reviewers in a double-blind review process. The papers
were assigned to reviewers considering (and avoiding) potential conflicts of interest and
recent work collaborations between peers. Reviewers were selected from among the
most prominent experts in the field from all over the world.

Once the reviews were obtained, the area chairs formulated final decisions over
acceptance, conditional acceptance, or rejection of each manuscript. These decisions
were always taken according to the reviews and could not be appealed. In the case
of conditional acceptance, authors had to make substantial changes and improvements
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to their paper according to reviewer feedback. The nature of these changes aimed to
increase the scientific validity as well as the clarity of the manuscripts.

Additionally, the workshop organizing committee granted the Best Paper Award to
the best submission presented at DeCaF 2022. The Best Paper Award was assigned as a
result of a secret voting procedure where each member of the committee indicated two
papers worthy of consideration for the award. The paper collecting most votes was then
chosen by the committee.

The double-blind review process with three independent reviewers selected for each
paper, united with the mechanism of conditional acceptance, as well as the selection and
decision process through meta-reviewers, ensured the scientific validity and the high
quality of the works presented at the third edition of DeCaF, making our contribution
very valuable to the MICCAI community, and in particular to researchers working on
distributed and collaborative learning. We would therefore like to thank the authors for
their contributions and the reviewers for their dedication and fairness when judging the
works of their peers.

August 2022 Shadi Albarqouni
Spyridon Bakas

M. Jorge Cardoso
Bennett Landman

Xiaoxiao Li
Chen Qin

Nicola Rieke
Holger Roth
Daguang Xu



Preface FAIR 2022

Aswewitness a technological revolution that is spinning diverse researchfields including
healthcare at an unprecedented rate, we face bigger challenges ranging from the high
cost of computational resources to the reproducible design of affordable and innovative
solutions. While AI applications have been recently deployed in the healthcare systems
of high-income countries, their adoption in developing and emerging countries remains
limited.

Given the breadth of challenges faced, particularly in the field of healthcare and
medical data analysis, we presented the first Workshop on Affordable AI and Health-
care (FAIR) aiming to i) raise awareness about the global challenges in healthcare, ii)
strengthen the participation of underrepresented communities at MICCAI, and iii) build
a community around affordable AI and healthcare in low resource settings.Our work-
shop stands out from otherMICCAIworkshops as it prioritizes and focuses on developed
AI solutions and research suited to low infrastructure, point-of-care-testing, and edge
devices. Examples include, but are not limited to, AI deployments in conjunction with
conventional X-rays, ultrasound, microscopic imaging, retinal scans, fundus imaging,
and skin lesions. Moreover, we encouraged works that identify often neglected diseases
prevalent in low resource countries and propose affordable AI solutions for such diseases
using medical images. In particular, we were looking for contributions on (a) making
AI affordable for healthcare, (b) making healthcare affordable with AI, or (c) pushing
the frontiers of AI in healthcare that enables (a) or (b).

In the second edition of the FAIR workshop (FAIR 2022), held in conjunction with
MICCAI 2022 (Singapore), nine papers, eight regular and one white paper, were sub-
mitted for consideration, and after the peer review process, only four regular papers were
accepted for publication (an acceptance rate of: 50%) along with the white paper. The
topics of the accepted submissions are around deep ultrasound segmentation, portable
OCT image quality enhancement, self-attention deep networks, and knowledge distil-
lation in a low-regime setting. Papers were presented both virtually and in-person in
Singapore.

We followed the same review process as themainMICCAI conference by employing
a double-blind review process with three to four reviewers per submission. Reviewers
were selected from a pool of excellent researchers in the field, who have published at
top-tier conferences, and manually assigned to the papers avoiding potential conflict
of interest. Submissions were ranked based on the overall scores. Final decisions about
acceptance/rejection and oral presentations were made by the Program Chairs according
to ranking, quality, and the total number of submissions. Springer’s Editorial Policy was
been shared with the authors to aid the preparation of camera-ready versions.
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We would like to thank the authors for their contributions and the reviewers for
their commitment, patience, and constructive feedback. Also, we would like to thank
the publicity committee and the advisory committee for their support.

August 2022 Shadi Albarqouni
Sophia Bano

Bishesh Khanal
Islem Rekik
Nicola Rieke

Debdoot Sheet
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Incremental Learning Meets Transfer
Learning: Application to Multi-site

Prostate MRI Segmentation

Chenyu You1(B), Jinlin Xiang2, Kun Su2, Xiaoran Zhang3, Siyuan Dong1,
John Onofrey4, Lawrence Staib1,3,4, and James S. Duncan1,3,4

1 Electrical Engineering, Yale University, New Haven, CT, USA
chenyu.you@yale.edu

2 Electrical and Computer Engineering, The University of Washington, WA, USA
3 Biomedical Engineering, Yale University, New Haven, CT, USA

4 Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA

Abstract. Many medical datasets have recently been created for med-
ical image segmentation tasks, and it is natural to question whether we
can use them to sequentially train a single model that (1) performs bet-
ter on all these datasets, and (2) generalizes well and transfers better to
the unknown target site domain. Prior works have achieved this goal by
jointly training one model on multi-site datasets, which achieve compet-
itive performance on average but such methods rely on the assumption
about the availability of all training data, thus limiting its effectiveness
in practical deployment. In this paper, we propose a novel multi-site seg-
mentation framework called incremental-transfer learning (ITL),
which learns a model from multi-site datasets in an end-to-end sequen-
tial fashion. Specifically, “incremental” refers to training sequentially
constructed datasets, and “transfer” is achieved by leveraging useful
information from the linear combination of embedding features on each
dataset. In addition, we introduce our ITL framework, where we train the
network including a site-agnostic encoder with pretrained weights and at
most two segmentation decoder heads. We also design a novel site-level
incremental loss in order to generalize well on the target domain. Sec-
ond, we show for the first time that leveraging our ITL training scheme
is able to alleviate challenging catastrophic forgetting problems in incre-
mental learning. We conduct experiments using five challenging bench-
mark datasets to validate the effectiveness of our incremental-transfer
learning approach. Our approach makes minimal assumptions on com-
putation resources and domain-specific expertise, and hence constitutes
a strong starting point in multi-site medical image segmentation.

Keywords: Incremental learning · Transfer learning · Medical image
segmentation

C. You and J. Xiang—Equal contribution.
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4 C. You et al.

1 Introduction

Many medical image datasets have been created over the year, and recent break-
through achieved by supervised training accelerates the pace in medical image
segmentation. Despite great promise, many prior works have limited clinical
value, since they are separately trained on small datasets in terms of scale,
diversity, and heterogeneity of annotations. As a result, such single-site methods
[10,14,21,22,29,31,32,35–41] are vulnerable to unknown target domains, and
linearly expand parameters since they assume to train a new model in isolation
when adding new datasets. This jeopardizes their trustworthiness and practical
deployment in real-world clinical environments.

In this paper, we carry out the first-of-its-kind comprehensive exploration
of how to build a multi-site model to achieve strong performance on the training
domains and can also serve as a strong starting point for better generalization
on new domains in the clinical scenarios. Multi-site training [1,3,7,8,11,24,25]
has been proposed to consolidate the generalization on multi-site datasets, but
it has the following limitations: (1) it still exhibits certain vulnerability to differ-
ent domains (i.e., different imaging protocols), which yields sub-optimal perfor-
mance [1,13,34]; (2) due to various constraints (i.e., imaging time, privacy, and
copyright status), it could become challenging or even infeasible for the require-
ment on the availability of all training data in a certain time phase. For exam-
ple, when a new site’s data will be available after training, the model requires
retraining, which largely prohibits the practical deployments; and (3) consider
the relatively small size of the single medical imaging dataset, simply training
a dense network from scratch usually leads to sub-optimal segmentation quality
because the model might over-fit to those datasets.

Our key idea is to combine the benefits of incremental-learning (IL) and
transfer-learning by sequentially training a multi-dataset expert: we continu-
ally train a model with corresponding pretrained weights as new site data are
incrementally added, which we call Incremental-Transfer Learning (ITL). This
setting is appealing as: (1) the common IL setting [4,5,15,17,23,27,28,42] is to
train the base-learner when different site datasets gradually come; thus the effec-
tiveness of this approach heavily depends on the optimality of the base-learner.
Consider each single medical image dataset is usually of relatively small size, it
is undesirable to build a strong base-learner from scratch; (2) transfer-learning
[26,30,33,43,44] typically leads to better performance and faster convergence
in medical image analysis. Inspired by these findings above, we develop a novel
training strategy for expanding its high-quality learning abilities to our multi-site
incremental setting, considering both model-level and site-level. Specifically, our
system is built upon a site-agnostic encoder with pretrained weights from natural
image datasets such as ImageNet, and at most two segmentation decoder heads
wherein only one head is trainable, and the other is fixed associated with specific
sites - a parameter-efficient design. Our intuition is that the shared site-agnostic
encoder network with pretrained weights encodes regularities across different
medical image datasets, while the target and source segmentation decoder heads
model the sub-distribution by our proposed site-level incremental loss, resulting
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Fig. 1. Overview of (a) our proposed Incremental Transfer Learning framework, and
(b) the multi-site expert model. Note that in this study, we only use one multi-site
expert model and one source decoder network, which will not introduce additional
parameter.

in an accurate and robust model that transfers better to new domains without
sacrificing performance. We conduct a comprehensive evaluation of ITL on five
prostate MRI datasets. Our approach can consistently achieve competitive per-
formance and faster convergence compared to the upper-bound baselines (i.e.,
isolated-site and mixed-site training), and has a clear advantage on overall seg-
mentation performance compared to the lower-bound baselines (i.e., multi-site
training). We also find that our simple approach can effectively address the
forgetting issues. Our experiments demonstrate the benefits of modeling both
multi-site regularities and site-specific attributes, and thereby serve as a strong
starting point on this important practical setting.

2 Method

2.1 Problem Setup

In ITL, a model incrementally learns from a sequential site stream wherein new
datasets (namely, medical image segmentation tasks with new sites) are gradu-
ally added during the training, as illustrated in Fig. 1. More formally, we denote
the sequence of multi-site datasets to be trained as a multi-domain data sequence
D={D1,D2, · · · ,DN} of N sites, and i-th site Di contains the training images
X = {xj}Mj=1 and segmentation labels Y = {yj}Mj=1, where xj ∈ R

H×W×3 is the
augmented image input, and yj ∈ {0, 1}H×W is the ground-truth label. Here the
augmented input setting is appealing: the axial context naturally provided by a
3D volume can uniquely yield more robust semantic representations to the down-
stream tasks. We assume access to a multi-site expert model Fi = {Ei, Gi} for
i-th (site) phase, including a pretrained model as a site-agnostic encoder network
Ei with the weight θi, a target decoder network Gt

i with the weight θti . During
training, we additionally attach a source decoder network Gs

i (i.e., using Gs
i−1

from previous phrase) with the weight θsi . In the i-th incremental (site) phase,
the multi-site expert model has access to two types of domain knowledge: the
site-specific knowledge from the current dataset Di and old exemplars Pi. The
latter refers to a set of old exemplars from all previous training datasets D1:i−1 in
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Table 1. Information about five different sites from three benchmark datasets.

Dataset Modality # of cases Field
strength
(T)

Resolution
(in/through
plane) (mm)

Coil Source

Site0 MRI 30 3 0.6–0.625/3.6–4 Surface NCI-ISBI13 [2]

Site1 MRI 30 1.5 0.4/3.0 Endorectal NCI-ISBI13 [2]

Site2 MRI 19 3 0.67–0.79/1.25 - I2CVB [12]

Site3 MRI 12 1.5 0.625/3.6 Endorectal PROMISE12 [16]

Site4 MRI 13 1.5 and 3 0.325–0.625/3–
3.6

- PROMISE12 [12]

the memory protocol M. This is highly nontrivial to preventing the challenging
“catastrophic forgetting” problem [20] of the current dataset i against previous
sites in clinical practice. Note that, in this study, we only use one multi-site
expert model and one source decoder network, which will not introduce addi-
tional parameters. Based on the setting above, we define the ITL problem below.

Problem of ITL. In the current site i, our goal is to continuously learn a multi-
site expert model based on the knowledge from both (Di, Pi) and the pretrained
weight, making the model (1) generalizes well on the unseen data at site i, and
(2) achieves competitive performance on the previous sites.

2.2 Preliminary

Our goal is to build a strong multi-site model by learning a site-agnostic
encoder with pretrained weights as well as a segmentation decoder over multi-
site datasets. This naturally raises several interesting questions: How well will
ITL-based methods perform in multi-site medical image datasets? Will transfer
learning make the base learner stronger on the unseen site? If yes, can they
perform stably well? To answer the above questions, a prerequisite is to define
the upper bound and lower bound. Here we introduce three common paradigms
for multi-site medical image segmentation: (1) isolated-site training, (2) mixed-
site training, and (3) multi-site training. It is well-known that the isolated-
site and mixed-site training approaches can achieve state-of-the-art performance
when evaluating the same dataset, while the performance catastrophically drops
when evaluating new datasets. On the other hand, the multi-site training app-
roach often yields inconsistent performance across multiple sites. For all training
paradigms, we minimize Dice loss between the predicted outputs and the ground
truth label.

Upper Bound. We consider two training paradigms (i.e., isolated-site and
mixed-site training) as our upper bound baseline. For isolated-site training,
given each site Di, we train isolated-site models separately. The architecture of
the isolated-site model consists of a pretrained encoder Ei and a segmentation
decoder network, same architecture as Gi. Then, we apply different isolated-site
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models to predict results based on the site-specific data at inference. However,
this approach dramatically increases memory and computational overhead, mak-
ing it practically challenging at scale. For mixed-site training, we train one full
model on the full mixed-site data D, and then use the well-trained model for
inference. However, it requires the simultaneous presence of all data in training
and inference.

Lower Bound. For multi-site training, we sequentially train only one model
coupled with the pretrained weights on all sites. This can get rid of large param-
eter counts, making it appealing in practice. However, due to the forgetting
quandary, it inevitably suffers from severe performance degradation. This nat-
urally questions: can we improve performance on multi-site medical image seg-
mentation with minimal additional memory footprint? In the following, we give
an affirmative answer.

2.3 Proposed Incremental Transfer Learning Multi-site Method

To address the aforementioned problems, we develop the incremental transfer
learning framework to perform well on the training distribution and general-
ize well on the new site dataset with minimal additional memory. To our best
knowledge, we are the first work to apply incremental transfer learning to the
limited clinical data regimes. To control the parameter efficiency, we decompose
the model into a share site-agnostic encoder Ei and two segmentation decoder
heads (i.e., source decoder Gs

i and target decoder Gt
i). In this way, we can

keep the network parameters the same when adding a new site. Specifically, Gs
i

is designed to transfer the knowledge of a previously learned site, and Gt
i is

designed to comprehensively train on a new site and previous datasets. During
training, we only update Gt

i while Gs
i is frozen. It is worth mentioning that

our proposed framework is independent of the encoder architecture, and can be
easily plugged in other pretrained vision models.

The full ITL algorithm is summarized in Algorithm 1. We describe our ITL
algorithm as follows. We first randomly initialize Gt

i, Gs
i , and then iteratively

train our full model (i.e., a pretrained encoder Ei and two decoders Gt
i, Gs

i )
with N -site training samples. Bounded by the computational requirements, it is
challenging or even infeasible to retain all data for training. Inspired by recent
work [23], to maintain the knowledge of previous sites, we “store” all the old
site data exemplars in the memory protocol Mi. In the i-th incremental (site)
phase, we first load Pi, and then use both Pi and Di to train Fi initialized by
θsi . This setting is appealing as (1) it can substantially alleviate the imbalance
between the old and new site knowledge, and (2) it is efficient to train on them.
Of note, we do not use the source decoder when training on the first-site dataset.
We formulate ITL as model-level and site-level optimization.

Model-Level Optimization. To perform better on all these training distribu-
tions, we propose improving generic representations by distilling knowledge from
previous data. In each incremental phase, we jointly optimize two groups of learn-
able parameters in our ITL learning by minimizing the model-level incremental
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Algorithm 1. Incremental-Transfer Learning(ITL) Algorithm
Require: Dataset: D; Hyper-parameters: α, δ, γ
1: Initialize the M (Memory) : M
2: Initialize the Model F0: Pertrained Encoder −→ E0, G0

3: for i = 1,2,3,....N do
4: for All training Sample in Di and Mi−1 do

5: Ltarget =
∑N−1

j=0 αjLEi,G
t
i

Dice (Mj , Yj) or 0 When N = 1

6: Lsource =
∑N−1

j=0 δjLEi,G
s
i

Dice (Mj , Yj) or 0 When N = 1
7: Lmodel = Lsource + Ltarget

8: Lsite = LEi,G
t
i

Dice (Di, Yi)
9: Lall = Lsite + Lmodel

10: Fi = (Ei, G
t
i) by minimizing the Lall

11: end for
12: Update Memory: M + γ%DN −→ M
13: Save Teacher Model: GN

14: end for

loss (i.e., Lmodel =Ltarget + Lsource) on all training samples (i.e., Di

⋃
D0:i−1):

(1) a share site-agnostic encoder Ei and a target decoder Gt
i; (2) a share site-

agnostic encoder Ei and a source decoder Gs
i . This helps ITL avoid catastrophic

forgetting of prior site-specific knowledge.

Site-Level Optimization. The above model-level optimization is used to main-
tain previously learned knowledge. In contrast, this step is design to train the
multi-site model to learn site-specific knowledge on the newly added site. Specif-
ically, we minimize the site-level incremental loss Lsite between the probabil-
ity distribution from Fi and the ground truth. This essentially learns the site-
specific knowledge for the downstream medical image segmentation tasks. Of
note, Lsource, Ltarget, and Lsite use the Dice loss. The overall loss combines the
model-level loss and the site-level loss as follows:

Lall = Lmodel + Lsite. (1)

3 Experiments

Datasets and Settings. We evaluate our proposed incremental transfer learn-
ing method on three prostate T2-weighted MRI datasets with different sub-
distributions: NCI-ISBI13 [2], I2CVB [12], and PROMISE12 [16]. Due to the
diverse data source distributions, they can be split into five multi-site datasets,
which is similar to [19]. Table 1 provides some dataset statistics. For pre-
processing, we follow the setting in [18] to normalize the intensity, and resample
all 2D slices and the corresponding segmentation maps to 384 × 384 in the axial
plane. For all five site datasets, we randomly split each original site dataset into
training and testing with a ratio of 4:1. For each site training, we divide the data
from the previous site into a small subset with a certain portion (i.e., 1%, 3%,
5%), and combine it with the current site data for training.
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Table 2. Comparison of segmentation performance (DSC[%]/95HD[mm]) across
datasets. Note that a larger DSC (↑) and a smaller 95HD (↓) indicate better perform-
ing ITL models. We use four models pretrained on ImageNet: ResNet-18, ResNet-34,
ResNet-50, and ViT under different portions (i.e., 1%, 3%, 5%) of exemplars from
previous data for every incremental phase. We consider multi-site training as the lower
bound, isolated-site, and mixed-site training as the upper bound.

Backbone Scheme HK UCL ISBI ISBI1.5 I2CVB

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

RES-18 Multi 59.38 64.17 66.26 54.19 54.38 73.40 66.89 44.49 84.54 11.70

1% 67.82 56.08 67.12 58.05 59.47 70.46 77.34 34.77 82.94 6.06

3% 71.60 18.41 82.18 23.92 72.26 20.91 81.53 19.21 84.08 13.75

5% 81.81 5.50 84.45 13.95 84.52 15.65 89.32 10.11 86.72 11.70

Isolated 93.46 2.06 88.29 6.20 93.35 2.04 90.89 7.53 88.74 13.93

Mixed 92.17 7.60 83.38 12.22 91.70 2.46 90.08 9.20 89.12 13.86

RES-34 Multi 57.75 55.13 64.87 52.50 57.47 65.38 65.61 56.83 91.46 8.83

1% 67.40 24.18 79.55 30.43 69.61 44.69 84.68 18.71 89.38 15.24

3% 80.90 28.41 82.57 22.18 75.89 26.26 84.68 10.57 90.35 13.15

5% 80.46 22.92 87.79 17.32 88.14 14.64 90.29 8.57 91.30 8.52

Isolated 93.87 1.89 89.03 4.05 92.08 2.19 92.57 7.96 91.57 7.98

Mixed 93.85 1.71 87.81 16.85 91.49 3.35 93.82 5.30 92.58 6.64

RES-50 Multi 63.24 53.98 64.79 56.59 72.95 26.63 69.41 49.89 90.40 8.21

1% 69.01 60.70 69.85 44.21 75.30 28.74 80.27 20.10 90.08 8.02

3% 78.72 16.89 83.74 12.81 84.96 8.51 86.95 6.18 92.34 5.24

5% 92.46 2.92 88.79 10.97 92.16 2.04 92.18 4.87 91.35 2.12

Isolated 93.73 2.12 89.03 7.23 93.26 4.39 93.48 5.10 93.20 2.40

Mixed 94.38 1.34 88.28 9.77 92.71 9.43 92.27 5.29 90.45 5.29

VIT Multi 66.94 53.57 65.85 54.69 92.66 6.37 72.80 51.35 90.56 7.02

1% 71.99 48.61 85.29 11.35 75.99 17.87 84.73 12.32 90.11 7.23

3% 79.33 20.84 88.16 7.08 85.48 7.97 87.64 9.95 90.07 6.94

5% 93.25 1.37 87.62 9.23 92.22 4.82 91.62 2.82 91.87 6.59

Isolated 94.44 1.88 88.80 8.21 93.23 4.76 92.47 6.27 93.23 6.43

Mixed 93.30 1.38 87.20 9.21 92.86 9.29 86.92 12.28 92.01 6.99

Training and Evaluation. In this study, we implement all models using
Pytorch. We set H,W as 384, α, δ as 0.5, and the batch size as 5. To mitigate the
overfitting, we augment the data by random horizontal flipping, random rota-
tion, and random shift. We adopt ResNet family [9] (i.e., ResNet18, ResNet34,
ResNet50) and ViT [6] (i.e., R50+ViT-B/16 hybrid model) as our pretrained
encoder. We evaluate the model performance by Dice coefficient (DSC) and 95%
Hausdorff Distance (95HD). For a fair comparison, we adopt the same decoder
architecture design in [18] are shown in Appendix Table 4, and do not use any
post-processing techniques. All of our experiments are conducted on two NVIDIA
Titan X GPUs. All the models are trained using Adam optimizer with β1 = 0.9,
β2 = 0.999. For 100 epochs training, a multi-step learning rate schedule is ini-
tialized as 0.001 and then decayed with a power of 0.95 at epochs 60 and 80.

Main Results. We conduct extensive experiments on five benchmark datasets.
We adopt four models: ResNet-18, ResNet-34, ResNet-50, and ViT. We select
three portions (i.e., 1%, 3%, 5%) of exemplars from previous data for every
incremental phase. Our results are presented in Table 2 and Appendix Fig. 2.
First and foremost, we can see ITL-based methods generalize across all datasets
under two exemplar portions (i.e., 3% and 5%), yielding the competitive
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segmentation quality comparable to the upper bound baselines (i.e., isolated-site
and mixed-site training), which are much higher than the lower bound counter-
parts. The 1% exemplar portion seems slightly more challenging for ITL, but
its superiority over the lower bound counterparts is still solid. A possible expla-
nation for this finding is that using two exemplar portions (i.e., 3% and 5%)
maintains enough information of ITL, which mitigates the catastrophic forget-
ting, while ITL trained in the setting of 1% exemplar portion is not powerful
enough to inherit prior knowledge and generalize well on newly added sites.
Second, we consistently observe that ITL using larger models (i.e., ResNet-50
and ViT) generalize substantially better than those using small models (i.e.,
ResNet-18 and ResNet-34), which demonstrate competitive performance across
all datasets. These results suggest that our ITL using the large model as our
pretrained encoder leads to substantial gains in the setting of very limited data.

4 Analysis and Discussion

We address several research questions pertaining to our ITL approach. We use a
ResNet-18 model as our encoder in our experiments. For comparisons, all models
are trained for the same number of epochs, and all results are the average of three
independent runs of experiments. To study the effectiveness of our proposed ITL
framework, we performed experiments with 5% exemplars ratio.

Table 3. Comparison of segmentation performance in different phases.

HK UCL ISBI ISBI1.5 I2CVB

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

94.06 1.96 - - - - - - - -

93.68 1.98 88.74 8.72 - - - - - -

93.20 1.83 87.38 9.30 92.87 1.82 - - - -

90.37 8.34 86.73 12.75 89.84 13.32 91.57 11.05 - -

88.88 8.91 85.14 10.97 85.98 14.23 89.74 13.11 88.46 12.15

Does Transfer Learning Lead to Better ITL? We draw two perspectives
that may intuitively explain the effectiveness of transfer learning in our proposed
ITL framework. As a first test of whether transfer learning makes the base-
learner stronger, we plot the training loss/validation loss (i.e., Lall) to iteration to
demonstrate the convergence improvements in Appendix Fig. 3. We can see that
training from pretrained weights can converge faster than training from scratch.
Another (perhaps not so surprising) observation we can get from Appendix Fig. 3
is that using pretrained weights usually yields slightly smaller loss compared to
training from scratch. We then ask whether transfer learning produces increased
performance on multi-site datasets. Since each single medical image dataset is
usually of relatively small size, training the model from scratch tends to overfit a
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particular dataset. To evaluate the impact of transferring learning, we compare
w/pretraining to w/o pretraining. As shown in Appendix Table 7, training from
scratch does not bring benefits to the ITL framework. Instead of training from
scratch, we find that simply incorporating transfer learning significantly boots
the performance of ITL while achieving faster convergence speed, suggesting that
transfer learning provides additional regularization against overfitting.

Does ITLGeneralizes Well on Multi-site Datasets? We investigate whether
the ITL framework generalizes well on multi-site datasets. We report the seg-
mentation results of different phases in Table 3, from which we observe that ITL
achieves good performance in different phases. This reveals that our approach is
greatly helpful in reducing forgetting issues. We evaluate the proposed ITL meth-
ods with two random ordering (i.e., (1) {HK→UCL→ISBI→ISBI1.5→I2CVB},
and (2) {ISBI→ISBI1.5→I2CVB→HK→ UCL}). The results are shown in
Appendix Table 5. We perform experiments using both ordering strategies and
observe comparable performance.

Efficiency of ITL. We report the network size and memory costs in Appendix
Table 6. We observe that ITL achieves competitive performance and utilizes less
network parameters compared to isolated-site training (upper bound), which
requires the new model when adding new site data. We also examine the required
memory footprint at each incremental phase. We observe that ITL is significantly
more memory-efficient than mixed-site training (upper bound), although the
latter remains the same network size when adding a new training phase. These
results further demonstrate the efficiency of our proposed ITL framework.

5 Conclusion

In this paper, we present a novel incremental transfer learning framework for
incrementally tackling multi-site medical image segmentation tasks. We pose
model-level and site-level incremental training strategies for better segmentation,
generalization, and transfer performance, especially in limited clinical resource
settings. Extensive experimental results on four different baseline architectures
demonstrate the effectiveness of our approach, offering a strong starting point
to encourage future work in these important practical clinical scenarios.
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Appendix

Fig. 2. Visualization of segmentation results on five benchmarks using ResNet-18 as
the encoder. Different site results are shown in different colors.

Table 4. Segmentation decoder head architecture

Deocder

Layer Feature size

Upsample 1 48 × 48

Residual block 1 48 × 48

Upsample 2 96 × 96

Residual block 2 96 × 96

Upsample 3 192 × 192

Residual block 3 192 × 192

Upsample 4 384 × 384

Residual block 4 384 × 384

Output prediction 384 × 384

Table 5. Comparison of different ordering strategies using ResNet-18. We report mean
and standard deviation across three random trials. Note that a larger DSC (↑) and a
smaller 95HD (↓) indicate better performing ITL models.

Training sequence DSC[%] 95HD[mm]

HK→UCL→ISBI→ISBI1.5→I2CVB 85.36 ± 0.33 11.38 ± 0.36

ISBI→ISBI1.5→I2CVB→HK→UCL 86.27 ± 0.27 12.01 ± 0.68
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Table 6. Comparison of different training strategies using ResNet-18. We report mean
and standard deviation across three random trials.

Scheme DSC[%] 95HD[mm] Model size(Mb) Add new sites? Memory cost

Isolated 90.95± 0.27 6.35± 0.68 77.9× Site Num. Linearly increase New data

Mixed 89.29± 0.38 9.06± 0.84 77.9 Constant Old data + New data

ITL 85.36± 0.33 11.38± 0.36 77.9 Constant 5% old data + new data

Table 7. Ablation of each component in the proposed ITL when using ResNet-18 under
5% exemplar portion. We report mean and standard deviation across three random
trials. Note that a larger DSC (↑) and a smaller 95HD (↓) indicate better performing
ITL models. The best results are in bold.

Backbone Component HK UCL ISBI ISBI1.5 I2CVB Avg. DSC Avg. 95HD

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

RES-18 Pretraining only 59.38 64.17 66.26 54.19 54.38 73.40 66.89 44.49 81.54 28.70 65.69 ± 1.51 52.99 ± 0.72

Lmodel only 74.02 18.86 73.79 31.90 51.23 51.66 80.89 21.96 80.88 58.44 72.16 ± 0.38 36.56 ± 0.85

Pretraining + Lmodel 81.81 5.50 84.45 13.95 84.52 15.65 89.32 10.11 86.72 11.70 85.36± 0.33 11.38± 0.36

Fig. 3. Comparison of training from scratch against using pretraining. We use ResNet-
18 on ImageNet as the encoder. Under 5% exemplar portion, we plot (a) training loss
(Scratch), (b) training loss (Pretraining), (c) validation loss (Scratch), (d) validation
loss (Pretraining)
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ical centers conduct similar medical imaging tasks, their differences, such
as specializations, number of patients, and devices, lead to distinctive
data distributions. Data heterogeneity poses a challenge for FL and the
personalization of the local models. In this work, we investigate an adap-
tive hierarchical clustering method for FL to produce intermediate semi-
global models, so clients with similar data distribution have the chance
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learning to improve the personalization of the participants’ models. We
compare the clustering approach with classical FedAvg and centralized
training by evaluating our proposed methods on the HAM10k dataset for
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1 Introduction

Deep learning models outperform classic techniques for pathological diagnoses
in medical imaging tasks [14]; however, their performance highly depends on the
training data. Unavailability of medical imaging data due to privacy concerns,
along with data heterogeneity, can negatively impact the representativity of the
model. Federated learning (FL) tackles both of these challenges [12]. A federated
setting consists of multiple clients and a server; local clients send their models
to the server, and the server aggregates them and produces a global model [15].
Weighted aggregation in FL aims to improve performance in favor of a global
model; in turn, parts of the data distribution that potentially have distinctive
features are considered outliers, e.g., since hospitals often outweigh specialized
centers in terms of the number of patients, the global model tends to represent
hospitals’ distribution, so the prospect of collaboration among institutes with
similar data distribution is neglected. To improve personalization, we pose FL
as a meta learning problem [8,16]. We demonstrate that clustering and applying
a meta learning scheme improve personalization, preserve more specialized data,
and enhance the convergence of the model. FedAvg (federated averaging) [15]
was proposed as one of the first FL algorithms and has been used as a standard
benchmark. Meta learning, or learning to learn [25], is learning how to efficiently
solve new tasks from a set of known tasks [8]. FL clients can be interpreted
as meta learning tasks since each client’s data distribution equals a different
problem; hence, meta learning ideas have been successfully applied to FL [5,6,
9,10]. Inspired by MAML [8], clients with similar distributions are grouped in
clusters as a set of tasks, so each cluster is redefined a separate FL problem. This
improves the homogeneity of the data between the clients in their corresponding
clusters. Although in FL data is not explicitly accessible, we used the value
differences of model parameters between the clients from the latest round and the
global model as a similarity measure between those clients. Briggs et al. explores
a hierarchical clustering technique to group similar models [4], and we utilized
the same method for personalization of clients’ models and combined it with our
proposed Adaptive Personalization (FedAP) for the final training inside clusters.
We kept the simplicity of FedAvg [9], but with two differences: 1) FedAP treats
the aggregated global update as a meta-level gradient that can be used with
a different optimizer to update the global model. Particularly, it introduces the
new hyperparameter of a meta learning rate. 2) At the end of the training, FedAP
personalizes the global model to each individual client. This can have a strong
advantage in the context of FL [6,9]. An overview of our method is depicted in
Fig. 1. The main contributions of this work are as follows: We propose FedAP, a
new hierarchical clustering approach to perform adaptive personalization inside
the clusters and each client for non-IID (not independent or identical) data.
Our proposed method gains significant performance improvement in terms of
classification accuracy and decreasing the accuracy variance between different
clients.
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Fig. 1. Method overview. Our pipeline has four steps: 1) splitting the dataset, 2)
training all clients with FedAvg for predefined rounds, 3) clustering the clients based
on the latest model update, 4) performing FedAvg or FedAP on each separate cluster.

2 Related Work

A study on live data of millions of users shows that significant improvements
can be achieved by personalizing the learning rate and batch size to clients [26].
FedOpt [17] extends the FedAvg algorithm and implements personalization by
introducing adjustable gradient update strategies for each client and server.
Employing weight decay over training rounds on the server-side is shown to
be required to lower the error on non-i.i.d. data [13]. [1] proposes to learn
base layers globally while keeping classification layers private on the client-side.
FedMD [11] introduces a framework for individually designed by each client.
The MOCHA [23] enables efficient meta-learning in the federated environment.
Communication efficiency in federated learning is also addressed in [21] suggest-
ing a compression protocol based on quantization. Non i.i.d. data is shown to
impact both the convergence speed and the final performance of the FedAvg
algorithm [13,21]. [13,30] tackle data heterogeneity by sharing a limited com-
mon dataset. IDA [28] proposes to stabilize and improve the learning process
by weighting the clients’ updates based on their distance from the global model.
Motivated from classical machine learning techniques [12] introduces a weight
regularization term to the local objective function to prevent the divergence
between local and global models. Recently, a semi-supervised learning approach
for federated learning on the ISIC skin lesion dataset was proposed [2,3]. Yue
et al. [29] surveys on the data availability and heterogeneity in the medical
domain, concluding that privacy restrictions and missing data pipelines block
the full potential of deep Learning which requires big data sets. The described
advances in the field of federated learning can help overcome the challenge of
medical data privacy and disseminate machine learning techniques in health-
care [22]. Notably, data heterogeneity remains a significant hurdle to this devel-
opment, so robust techniques towards non-IID data carry considerable future
potential [18].

3 Method

In this section, we present our approach to tackling the problem of non-IID data
distribution in federated learning. First, we describe the optimization process
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in a federated setting and its development in adaptive personalization. Then,
we define the original federated averaging scenario. Later, we explain the entire
pipeline of our proposed federated adaptive personalization method, followed by
how hierarchical clustering can be embedded in our approach.

3.1 Definitions

The global data distribution is denoted by D, while S ∼ D is the sampled data
points and s1, ...sN = S. The data points are distributed across M clients. Each
client i ∈ {1, . . . , M} only sees its local dataset, which is a subset Si ∼ Di of
the global data and s1, ..., sNi

= Si. Di being the client’s local data distribution.
With the global model parameters θglobal, the overall optimization task can be
defined as:

min
θglobal

L(S) = min
θglobal

1
M

M∑

i=1

lθglobal
(Si) (1)

where L is the global loss function and l the local loss function of each client. We
hypothesize that, while each distribution Di is different, they can be clustered
by similarity. Following Briggs et al. [4], we introduce a distinct model θc for
each resulting cluster c ∈ C, where C is the set of all clusters and θC is the set
of all cluster model parameters.

We annotate the data distribution in each cluster by Dc with Sc ∼ Dc being
the data points and s1, ..., sNc

= Sc. Integrating these clusters into Eq. (1), we
arrive at the following global and local loss function for each cluster c:

min
θC

L(S) = min
θC

1
|C|

∑

c∈C

lθc
(Sc) (2)

lθc
(Sc) =

1
|c|

∑

i∈c

lθc
(Si) (3)

Extending this model to a personalized version where each client has its own
model results in Eq. (4):

min
(θ1,...,θM )

L(S) = min
(θ1,...,θn)

1
M

M∑

i=1

lθi
(Si) (4)

Equations (2) and (4) both introduce additional degrees of freedom which allow
us to learn the sampled training data points from the respective distributions
better than a single model as shown in Eq. (1). We can sum up the results in
the following form:

min
θglobal

L(S) ≥ min
θC

L(S) ≥ min
(θ1,...,θM )

L(S) (5)

While Eq. (5) introduces the idea of each client learning its own model to
reduce the loss on its distribution, the amount of data available for training is
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reduced. As theoretical works in deep learning show, the generalization error of
models grows if the number of training samples shrinks. This can also be observed
in practice and is reflected by the overfitting phenomenon. To maintain a good
generalization performance, we propose to train on all of the mentioned levels,
gathering information about as many training samples as possible while reducing
the problem complexity each model has to solve step by step. We start an initial
training overall clients to find a global model θglobal which should learn basic
features of the whole distribution. In the next step, we cluster the clients and
begin with the training inside the clusters. The resulting cluster models θC are
then personalized in the final step by performing local training on each client i,
leading to the final personalized model θi for each client. Figure 1 visualizes the
whole pipeline.

3.2 Federated Averaging

In the following, we analyze the federated averaging (FedAvg) algorithm in more
detail. If we have M clients and Ni = |Di| is the number of data samples of client
i, the global and local loss functions take the following form:

f(θ) =
M∑

i=1

Ni

N
Fi(θ) where Fi(θ) =

1
Ni

∑

j

fj(θ) (6)

where, Fi(θ) is the local objective of each client and f(θ) is the global objective
averaged over all clients. Training with FedAvg consists of two main updat-
ing schemes. Firstly, the clients are training locally with an initially distributed
model on their local data for a predefined amount of epochs e. For each commu-
nication round, a client i updates its model parameter θi, with learning rate α
as follows,

∀i, θt+1
i ← θt

i − α · Δθ (7)

In a second step, the server computes a weighted average based on the number
of data points of each client i of all locally updated model parameters θi’s:

θt+1
global ←

M∑

i=1

Ni

N
θt+1

i (8)

3.3 Federated Adaptive Personalization

Our methodology (Federated Adaptive Personalization or FedAP) begins with
the initialization of the global model parameters θglobal. At the start of each of k
federated rounds, they are transferred to a batch of n randomly selected clients,
and local training is performed, yielding updated local model parameters θi in
each client i. Next, θ is updated using an adaptive meta learning rate η based on
the current round number. The adaptive meta learning rate decreases linearly
throughout the training.

θglobal ← θglobal + η

n∑

i=1

Ni

N
(θi − θglobal) (9)
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Following the last federated round, the local model parameters of all clients
i ∈ {1, . . . , M} are personalized by performing a fixed number of gradient opti-
mization epochs on the local training data.

3.4 Hierarchical Clustering

The personalization of the local models can benefit more from clients that share
more similarities in their data with each specific client. Therefore, we propose to
perform hierarchical clustering [4] after an initial phase of global federated learn-
ing, including all the clients. After performing FedAvg for a specified number
of federated rounds, clients are clustered via hierarchical clustering according to
their model updates in the current round. Each of the resultant client clusters
is then treated as an isolated federated learning problem where either FedAvg
or our proposed FedAP is employed. The full pipeline is visualized in Fig. 1.

4 Experiments and Results

In this section, we present the experimental setup and the results of our experi-
ments. The dataset, data preprocessing, and the employed data split for feder-
ated learning are discussed in Sect. 4.1. We compare our proposed personalized
clustered models to two baselines, a standard supervised model trained in the
centralized setting and FedAvg [15]. Furthermore, we present the results of com-
bining clustering and personalization with existing approaches on the HAM10k
skin lesion dataset [24].

4.1 Experimental Setup

We employ a pretrained MobileNetV2 [19,20] on ImageNet as a base classifier
for all the baselines and our proposed model. The hyperparameter tuning was
performed using a validation set without any overlap with the test set for the
centralized model. For all the federated learning experiments, hyperparameter
optimization comprised two steps: First, all clients were generated using a fixed
random seed, and the hyperparameters were optimized against the client’s test
sets. Then, we generated all clients anew for the evaluation using a different
random seed, and a final learning curve was acquired using the previously fixed
hyperparameter. The following hyperparameters were optimized: learning rate,
batch size, and a number of local training epochs. The final values were re-
used in all of the experiments. The models were optimized with SGD optimizer,
with learning rate 0.001, inner epochs e = 1, inner personalization epochs 7,
inner batch size 16, initial and final meta-learning rate η0 = 1.0, ηk = 0.46, total
federated rounds k = 220, meta batch size n = 5. In FedAP, SGD is also used for
global training so that the global update rule became θ ← θ + η · Δθ. Moreover,
the adaptive weight decreases linearly with the number of federated rounds, from
specified initial to final values. In the hierarchical clustering (HC) experiments,
the models were trained with 20 cluster initialization rounds, Euclidean distance
metric, ward linkage mechanism and maximum distance of 5.
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Dataset and Preprocessing. The HAM10k dataset [24] is a collection of
10, 015 dermatoscopic images of seven types of skin lesions. The ground truth
labels in HAM10k are based on histopathology in over 50% of the cases and
on follow-up examination, expert consensus, or in-vivo confocal microscopy. Our
choice of HAM10k for evaluation of our method was due to this dataset’s unbal-
anced and high non-IID nature. To address the problem of unbalancedness in
the dataset, we utilized random undersampling [7]; i.e. at most 500 images from
each lesion class were randomly sampled and used for training.

Federated Data Split. One of the common problems in clinical datasets that
challenge machine learning methods is low statistical heterogeneity [27]. We mod-
eled highly non-IID data distributions between our clients to represent this prob-
lem. Images within each class were partitioned into 35 groups, and the clients
were randomly assigned two partitions from different classes until no partition
pairs were left. This resulted in 34 clients, with 70 images assigned to each
in total from two classes (see the supplementary material for the distribution
heatmap). The 70 images were randomly split into training and test sets at an
80:20 ratio within each client.

4.2 Results and Discussions

In this section, we present the results of our experiments and the comparison of
our proposed model to previous work. In order to take the number of person-
alization rounds in FedAP and initialization rounds in HC into account for our
total training rounds, the reported accuracy values in Table 1 are based on the
total number of training steps for all models.

Fig. 2. Average test accuracy in dif-
ferent rounds. Classification accuracy
averaged over all clients. This figure
shows the increase in the convergence
rate using both FedAP and HC.

Table 1. Results. comparison of our
methods to the baselines on the non-
IID HAM10k dataset. The reported
values for federated models are based
on the mean and std of all the clients.

Method Accuracy (%)

Centralized 76.8

FedAvg [15] 41.1 ± 34.31

FedAvg + HC [4] 44.1 ± 20.86

FedAP (Ours) 84.1 ± 14.53

FedAP + HC (Ours) 86.9 ± 12.81
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A standard centralized training setting was intended as a standard against
which the more constrained federated learning experiments could be measured.
For this experiment, a global training and test sets were created by pooling all
clients’ respective training and test data. Due to the availability of all clients’
data to a single model, this model achieves much higher performance compared
to FedAvg.

FedAvg achieves the worst performance across all methods. The learning
curve shows a high degree of oscillation due to the fact that the single global
model was not able to learn all necessary features from the different learning
tasks imposed by different data distributions of the clients. Thus, this demon-
strates the lack of robustness of FedAvg in a highly non-IID data setting, as
indicated by preliminary evidence [13,21,30].

For the FedAvg + HC experiment, several FedAvg rounds (given by the
hyperparameter “cluster initialization rounds”) were performed before cluster-
ing. Following this, clients were clustered according to their local updates using
hierarchical clustering (as in Briggs et al. [4]). Inside the individual clusters,
conventional FedAvg training was performed. The global accuracy was obtained
by simply averaging the test set accuracy of all clients. Hierarchical cluster-
ing increased the overall convergence speed of FedAvg. A sudden jump in the
accuracy, as well as final model performance improvement, can be seen after
clustering in Fig. 2. We assume that an approximation of a homogeneous learn-
ing setting is recovered inside the clusters, and indeed the model updates can
be used to represent the data distribution. However, this approach still falls
far behind the performance of FedAP, substantiating the crucial importance of
model personalization in a highly non-IID data environment. similar to FedAvg,
FedAP randomly samples a batch of n clients at each round. The evaluation of
FedAP was performed in the same way as of FedAvg with the difference that,
after the distribution of the global model, it was personalized to the clients by
performing a number of gradient optimization steps on the local training sets.
After this personalization, the model was evaluated on the test set, and again
a global accuracy was calculated by averaging all local test set accuracies. The
global model for FedAP was able to learn continuously, while the personaliza-
tion step allowed the adaption to the different client distributions. Especially the
extreme non-IID setting with simple underlying tasks allows the personalization
to perform very well.

The FedAP + HC experiment was performed in the same way as the pre-
vious one, only that the adaptive personalization is performed after hierarchical
clustering. As in the FedAvg + HC experiment, clusters were formed according
to clients’ model updates after initial 20 rounds of FedAvg. FedAP + HC shows
the overall best performance compared to all other approaches. We observe the
same learning curve behavior as in FedAvg + HC. It improves the convergence
speed of the algorithm, shown again by the immediate jump in balanced accu-
racy after clustering depicted in Fig. 2. Despite achieving the best performance
among the different mentioned variations of the federated setting, we observed
that the FedAP + HC model suffers from overfitting in very long runs; i.e.
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if we train both FedAP and FedAP + HC for around 500 more rounds, the
performance stays the same or gains minimal improvement in FedAP, but the
FedAP + HC starts deteriorating. We assume that this is an indication of the
global model’s higher adaptability to distinct tasks than the cluster models. The
core idea of meta-learning roots in learning from many distinctive tasks. Indeed,
clustering clients (representing the meta-learning task in a federated learning
setting) reduces the diversity of tasks in each cluster to learn from. Therefore,
this might be the reason behind FedAP + HC model’s sensitivity to overfitting
in more extended training.

5 Conclusion

In this work, we presented and analyzed an adaptive personalization approach
along with hierarchical clustering of the clients to tackle the non-IID problem in
federated learning. Our adaptive model parameter weighting with hierarchical
clustering enables the better adaptation of the local models of clients to their
distinctive data distribution while still taking advantage of the global aggrega-
tion of the different client model updates. The clients are clustered based on
their similarity to local model updates and thus can approximate an IID set-
ting in the respective clusters. Our experiments on the HAM10k dataset with
the MobileNetV2 network show drastic improvements in classification accuracy
over the standard supervised and over the FedAvg baseline. The lower standard
deviation of our proposed method compared to previous work demonstrate that
adaptive personalization of client models in the federated setting, inspired by
meta-learning, yields higher generalizability of all clients models. In addition,
hierarchical clustering increases the convergence speed and allows for better
global models. Our experiments show that the models trained with FedAP and
HC have the lowest standard deviation and highest average accuracy, demon-
strating the proposed methods’ effectiveness in reaching a reasonable and high
accuracy performance in all clients. Despite the high performance gain of our
proposed method, if the model is trained for too many rounds, the performance
decreases, which shows its sensitivity to overfitting. Therefore, we plan to inves-
tigate this issue in future work.
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Abstract. In privacy-preserving machine learning, it is common that
the owner of the learned model does not have any physical access to the
data. Instead, only a secured remote access to a data lake is granted
to the model owner without any ability to retrieve the data from the
data lake. Yet, the model owner may want to export the trained model
periodically from the remote repository and a question arises whether
this may cause is a risk of data leakage. In this paper, we introduce the
concept of data stealing attack during the export of neural networks. It
consists in hiding some information in the exported network that allows
the reconstruction outside the data lake of images initially stored in
that data lake. More precisely, we show that it is possible to train a
network that can perform lossy image compression and at the same time
solve some utility tasks such as image segmentation. The attack then
proceeds by exporting the compression decoder network together with
some image codes that leads to the image reconstruction outside the data
lake. We explore the feasibility of such attacks on databases of CT and
MR images, showing that it is possible to obtain perceptually meaningful
reconstructions of the target dataset, and that the stolen dataset can be
used in turns to solve a broad range of tasks. Comprehensive experiments
and analyses show that data stealing attacks should be considered as a
threat for sensitive imaging data sources.

Keywords: Data stealing attack · Privacy · Medical images

1 Introduction

A growing number of medical data warehouses or data lakes are been built
within major hospitals or health organisations in order to exploit medical data.
With those infrastructures, the access of health data such as medical images or
health records is heavily restricted and regulated, and only a remote access to the
training and test data is often granted to data scientists sitting outside those
organizations. Any leakage of privacy sensitive medical data from those data
lakes represents a serious threat to the reputation of the health organization
holding the data lake, and it may also be used by cybercriminals to earn money
through ransoms, or to cause harms [13].
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Table 1. Attacks targeting the recovery of training data with the attacker knowledge
about the trained model or the output of the model on the training data.

Attack Adversary knowledge

Model Output

Architecture Parameters Final Intermediate

Inverting visual representations [5] � � ✗ �
Model inversion attack [11] � � � ✗

Inverting gradients [7] � � ✗ ✗

Data stealing attack � � ✗ �

A number of AI-related cyber-attacks such as adversarial attacks [13] have
been studied in the literature. In this paper, we are interested in attacks targeting
the extraction of information from images available at the training stage. Indeed,
previous studies have shown that trained models encapsulate some information
about the training data, thus making them vulnerable to privacy attacks. A first
group of attacks such as property inference [6] or reconstruction attacks [15]
tries to retrieve some partial information about the training data. Membership
inference attacks [9] identify whether a data sample is present in the dataset.

In Table 1, we list a second group of attacks that are aiming to reconstruct
partially or entirely training set images from the knowledge of the complete
model and some model output. Early work aimed at inverting visual represen-
tations [5] from some intermediate output. However, this leads to image recon-
structions of limited quality and more sophisticated model inversion attacks have
been proposed [4,8,16] based on GANs. Yet, these attacks generate images that
look like the original ones but are not close copies. Also, they are restricted
to solve classification tasks only. Finally, our study is also related to inverting
gradient methods [7,10] that try to recover input images from model parameter
gradient that are exchanged during training in federated learning framework.

In this paper, we introduce a new attack, the data stealing attack, allowing
an attacker to recover training data from a remote data lake or in a federated
learning setting. This attack is solely based on the export of a trained model and
makes both limited and realistic assumptions. It consists in training an algorithm
to perform lossy image compression and then to hide the image compression
codes and the decoder into the exported neural network. Thus, the attacker
can regenerate the training images with high perceptual quality outside the
data lake by applying the decoder on the image codes. Besides, we show that a
dedicated branch of the compression network can still solve a utility task such as
segmenting an image, thus making it difficult to detect the nature of attack. To
the best of our knowledge, this is the first work using learned image compression
to develop such type of data attacks. Furthermore, we show that such attacks
may be realistically deployed in the sensitive context of medical imaging.
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Fig. 1. Overview of the proposed data stealing attack. The attacker either uses the
lossy compression (on top) or the lossless compression (on bottom) to compress the
original data into compression codes. Then, the attacker recovers the original data with
the exported model outside the data lake.

2 Data Stealing Attack

2.1 Attack Strategy

Attack Assumptions. We consider a practical setting where a data owner,
usually an hospital or a medical center that controls a data lake, gives to a user,
a remote access to some sensitive training data (see Fig. 1). This configuration is
commonly encountered for instance when data scientists are remotely accessing
health datasets in hospitals without the ability to retrieve locally the data for
regulatory reasons. This is also the situation encountered in federated learning
where the data lake corresponds to a participating node in a centralized or
decentralized architecture. Inside the data lake the remote user has free access
to some original imaging data that serve to solve a utility task. This task may
be for example solving an image segmentation problem. Eventually, the remote
user asks the data owner to retrieve the trained model in order to exploit it for
its own purposes. In the case of federated learning, the locally trained model is
periodically sent to a central server or another participating node in order to be
aggregated into a global model.

Without sharing any data outside the data lake, this seems to be a robust
privacy preserving framework, but what if the remote user acts as an attacker?
The attacker may have stolen the identity of a trusted honest user with the
motivations to create his or her own dataset for solving other tasks, or to cause
harm to the reputation of the data owner, or to ransom the owner.
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Attack Principle. The attack consists in exporting a neural network from the
data lake that solves the utility task but also contains image codes allowing the
attacker to reconstruct with or without losses images stored in the data lake. A
limiting factor of the attack is the size of the exported network, since exporting a
very large network may be suspicious to the data owner. Therefore the objective
of the attacker is to maximize the number of stolen images while minimizing the
disk size of the exported model.

To tackle this trade-off, the attacker may adopt either lossy or lossless com-
pression approaches. In lossless compression (see Fig. 1 bottom), the attacker can
apply a standard compression tool, such as ZIP, or RAR on images in the data
lake and then store the compressed images inside the exported utility model.
Yet, lossless image compression usually produces restricted compression ratio
thus potentially limiting the number of images that can be stolen.

An interesting alternative is to develop lossy compression algorithms (see
Fig. 1 top) reaching low bitrate but requiring a domain-specific encoder and
decoder. For that purpose, we adopt in this paper the generative image com-
pression model developed in [14] that combines GAN with learned compression
techniques. It includes an encoder that transforms an image x into its latent
code y = E(x) and a decoder or generator which transforms the code y into an
approximation of the original image, x′ = G(y) ≈ x, and a discriminator D(x′)
to decide if the generated image is real or fake. In addition, a utility model
solving for instance an image segmentation task must be devised in order to
convince the data owner that the exported model is effective. To create a light
utility model taking a limited amount of disk space, the attacker can use the
encoder of the generative compression model as the feature extraction network,
and train a decoding branch that is specialized in the utility task.

The proposed attack relies on an encoder E, generator G (a.k.a the decoder)
and discriminator network D, thus in some ways mixing a GAN (with G and
D) and an autoencoder (with E and G). This architecture is suitable for learned
image compression with high quality data reconstruction. It differs from other
attack models (such as model inversion) that rely on a GAN model with random
noise as input. In data stealing attack, the exported model includes the generator
G and the image codes generated by the encoder that are hidden in the neural
network. The attacker can then generate the images outside the data lake by
applying the decoder on the image codes.

Case of Centralized Federated Learning. In this setup, several aggregation
steps are iteratively applied to send a local model from each participating node
to a central server. Therefore, if the attacker controls the central server, each
aggregation step may be an occasion to steal some more data from those local
models. Since each node trains its own encoder, generator, and discriminator
networks on the local dataset, the generator from each node may only be sent
to the central server in the last aggregation step.
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2.2 Attack Implementation

Training Pipeline. In the lossy compression case, the attacker starts to train
the generative image compression model composed on the three E, G and D
networks. The input of the encoder is a 2D 256×256 image with three channels,
but to handle 3D medical images, specific preprocessing steps are detailed in
Sect. 3.1. Once the compression model is trained, all images are encoded. Then
the attacker freezes the parameters of the encoder network and trains the utility
branch to solve the utility task. It is sufficient to obtain reasonable results for
the utility task to convince the data owner to export the trained network.

Hiding Image Codes in Network Weight Files. In both cases, the data
stealing attack assumes that image codes are hidden in network weight binary
files. Indeed, those weights are commonly saved in HDF5 file formats where the
weights of each layer are stored in a dictionary. Image codes may then be added
as entries to the dictionary with dedicated keys making them easy to retrieve.

3 Experiments

3.1 Datasets and Models

We evaluate the effectiveness of our attack model on two public datasets. The for-
mer is the MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge dataset [2]
that contains 130 CT cases for training and 70 CTs for testing. In this dataset,
the utility task is to segment the liver parenchyma in a supervised manner. The
second dataset is the BraTS 2021 challenge dataset [1] which includes 1251 skull-
stripped brain images with multiple MR sequences for training and 219 cases for
validation. The utility task is to segment the whole tumor based on FLAIR MR
sequences.

On the LiTS (resp.BraTS 2021) dataset, we randomly partition the training
set into 104/13/13 (resp. 1000/126/125) images that are used for training, val-
idation, and testing of the utility task. Also, for testing the lossy compression
network, we use the 70 (resp. 219) test images in the LiTS (resp. BraTS) dataset.

Table 2. Fidelity & compression results on LiTS and BraTS datasets. ‘BPPinput/
BPPcomp’: bit per pixel of input/compressed data, ‘Pratio’: practical ratio.

Input BPPinput BPPcomp ↓ PSNR↑ MS SSIM↑ Pratio ↓
HighLiTS

Training 17.858 ± 1.791 0.221 ± 0.053 40.322 ± 0.793 0.992 ± 0.002 0.168 ± 0.019

LowLiTS
Training 17.858 ± 1.791 0.097 ± 0.027 38.193 ± 0.444 0.987 ± 0.002 0.017 ± 0.002

HighLiTS
Testing 16.289 ± 1.899 0.125 ± 0.024 40.306 ± 1.096 0.995 ± 0.001 0.185 ± 0.023

LowLiTS
Testing 16.289 ± 1.899 0.145 ± 0.029 33.424 ± 1.021 0.981 ± 0.004 0.021 ± 0.002

HighBraTS
Training 3.801 ± 0.285 0.241 ± 0.100 37.842 ± 1.687 0.996 ± 0.001 0.395 ± 0.024

HighBraTS
Testing 3.926 ± 0.282 0.250 ± 0.100 36.070 ± 2.280 0.995 ± 0.001 0.387 ± 0.025
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Pre and Post-processing. Each slice of the LiTS CT images is of size 512 ×
512 whereas the input size of the encoder network is 256 × 256 × 3. Two different
approaches were tested corresponding to two different cost-quality compromises.
The first method (Low) is to downsample each slice by a factor of 2 while the
second (High) is to decompose each 512 × 512 slice into 3 × 3 overlapping patches
that are separately encoded. Thus, the latter requires 9 times more image codes
than the former to reconstruct an image. In the BraTS dataset, edge padding
is applied since the slice resolution is only 240 × 240 pixels. Finally, a min-
max intensity normalization is applied on the whole image, and each slice is
surrounded by its upper and lower slices to fill the three input channels. For
post-processing, the image intensity is mapped back to its original minimum
and maximum range and upsampling with bilinear image blending is used to
reconstruct the original slices for Low/High slice sampling.

Image Compression and Utility Models. Following [14], to speed-up train-
ing, the image compression model is first trained with rate and distortion losses
only, then with all losses in a second stage. With lossy compression networks,
the utility task is solved with a Utility Branch (UB) model connected to the
last layer of the image encoder network. When lossless compression is chosen,
we train from scratch an off-the-shelf model [3] coined as Public Utility (PU)
model in the remainder. All models are optimized with Adam [12] and training
continues until the validation loss has converged.

3.2 Effectiveness of Data Stealing Attacks

Compression-Fidelity Compromise. Table 2 reports the trade-off between
image fidelity and compression ratio. The practical ratio is the ratio of the disk
space needed to store the image codes of a volumetric image (lossy compression)
to the disk space to store the ZIP compressed image (lossless compression). On
the LiTS dataset, the low slice sampling approach leads to image codes 60 times
smaller than an image compressed by ZIP. The high slice sampling approach
requires 10 times more disk space but leads to higher image fidelity. On the
BraTS dataset, the lossy compression gain is far smaller probably due to the
large uniform background in the original images. Good fidelity reconstruction is
obtained with a PSNR of nearly 40. A visual comparison between original and
reconstructed images is available in Fig. 2 for both training and test sets.

Utility Task Performances. In Table 3, we report performances of the two
utility models, branch (UB) and public (PU) models to solve the liver (resp.
whole tumor) segmentation on the LiTS (resp. BraTS) dataset. Those models are
trained on both the original images in the data lake and the lossy reconstructed
(or stolen) version of the training set. The same unseen test image set is used
for the three utility models and various metrics are used for comparison. We
see that the performances of the public model are the same on the original and
stolen data, showing that the image modifications due to image compression do
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Fig. 2. Lossy image reconstructions on training and testing images from the LiTS and
BraTS datasets. From left to right: original data, highly sampled reconstructions, under
sampled reconstructions (LiTS dataset only).

not impact its generalization ability. The branch model is clearly less efficient
since it is based on a frozen encoder branch. Yet, it leads to an average 0.93 Dice
score, which makes it a plausible network to solve this task.

Table 3. Utility task results on LiTS and BraTS datasets. ‘UB’: the utility branch
model, ‘PU’: the public utility model, ‘stolen’: the stolen dataset, ‘VOE’: volumetric
overlap error, ‘RVD’: relative volume difference, ‘ASSD’: average symmetric surface
distance, ‘MSD’: maximum surface distance, ‘RMSD’: root means square symmetric
surface distance.

Methods Dice↑ VOE↓ RVD↓ ASSD↓ MSD↓ RMSD↓
UBLiTS

High 0.933± 0.04 0.123± 0.07 0.085± 0.12 1.757± 0.8 31.048± 21.9 3.665± 2.7

UBLiTS
Low 0.923±0.04 0.141± 0.07 0.032± 0.13 2.815± 3.4 51.690± 43.0 6.154± 8.5

PULiTS
High 0.948± 0.03 0.098± 0.05 0.053± 0.08 1.449± 0.7 38.275± 35.5 3.405± 2.29

PULiTS
Low 0.954± 0.03 0.087± 0.05 0.027± 0.07 1.404± 1.1 39.200± 28.8 3.768± 3.9

PULiTS
High stolen 0.958± 0.02 0.080± 0.04 0.033± 0.07 1.154± 0.6 37.876± 38.1 2.902± 2.0

PULiTS
Low stolen 0.97±8e–3 0.054±0.01 0.001±0.02 0.704±0.2 28.16±19.5 1.817±1.25

UBBraTS
High 0.885± 0.07 0.200± 0.1 0.086± 0.2 1.087± 0.54 12.804± 5.27 1.876± 0.92

PUBraTS
High 0.90± 0.07 0.168± 0.10 0.046±0.17 0.884± 0.5 11.892± 5.6 1.641± 0.9

PUBraTS
High stolen 0.92±0.06 0.149 ±0.09 0.083± 0.11 0.735±0.45 10.185± 5.6 1.375±0.85

Trade-Off Between Network Size and the Number of Stolen Images.
In Table 4, we estimate the disk size of three exported models (checkpoint files)
involved in a data stealing attack on both the BraTS and LiTS datasets trying
to steal 100 original images. In lossy compression, the decoder is very large (600
MB) but the generated image code per image is small: in average 2.2 MB (resp.
22 MB) for low (resp. high) slice sampling for LiTS CT dataset, and 0.9 MB
for the BraTS dataset. With lossless compression, there is no need to export
the decoder but the ZIP compressed images are fairly large to store: in average
134 MB for each CT scan in LiTS and 2.3 MB for BraTS. The branch utility
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model has negligible disk size and the results in Table 4 suggest that an attacker
willing to optimize the exported model disk size, would pick a lossy compression
for CT images and lossless compression for MR skull-stripped images.

3.3 Mitigation of Data Stealing Attacks

To detect a data stealing attack, the data owner may check the size of the
exported model considering large models as suspicious. In our test, the com-
pression decoder is fairly large (598 MB) but has typically a similar size as a
backbone such as VGG16 (576 MB). It is possible to largely decrease the disk
size of such decoder by using for instance network quantization, or drop-out.
Therefore, a robust mitigation to this type of attack is probably to certify that
the code running in a data lake guarantees data privacy. Computational time
may be another suspicious factor. For each training epoch, attack (A) model,
utility (U) model (with shared encoder branch with A), and the public util-
ity model (i.e. the baseline model) take 13.5 h/5 h, 14.5 h/3 h, and 24 h/8.5 h on
LiTS/BraTS, respectively. Therefore, there is no significant impact of the attack
(A+U) on the training time compared to the baseline (PU).

Table 4. Disk size needed to steal 100 images with various attack strategies. ‘D’:
the decoder of attack model, ‘UB’/‘PU’: the utility branch and public utility models,
‘High/Low/ZIP’: lossy or lossless compressed codes.

Disk size (MB)

Dataset D D + UB D + UB+ D + UB+ PU+

100 · HighTraining 100 · LowTraining 100 · ZIPTraining

LiTS 598 601 2800 828 13466

BraTS 598 601 692 / 260

4 Conclusion

In this paper, we have introduced a novel attack aiming to steal training data
from a data lake or from participating nodes in federated learning. An attacker
proceeds by using a learned generative lossy image compression network and
exporting a decoder together with image codes. An alternative for stealing image
annotation masks for instance is to use lossless compression with standard tools.
We have shown that such attacks are feasible on two medical imaging datasets
with a trade-off between the size of the exported network and the number of
stolen images.
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Abstract. In federated learning for medical image analysis, the safety
of the learning protocol is paramount. Such settings can often be com-
promised by adversaries that target either the private data used by the
federation or the integrity of the model itself. This requires the medical
imaging community to develop mechanisms to train collaborative models
that are private and robust against adversarial data. In response to these
challenges, we propose a practical open-source framework to study the
effectiveness of combining differential privacy, model compression and
adversarial training to improve the robustness of models against adver-
sarial samples under train- and inference-time attacks. Using our frame-
work, we achieve competitive model performance, a significant reduction
in model’s size and an improved empirical adversarial robustness without
a severe performance degradation, critical in medical image analysis.

Keywords: Collaborative learning · Federated learning · Medical
image analysis · Differential privacy · Adversarial training · Model
compression

1 Introduction

Collaborative machine learning (CML), and in particular collaborative med-
ical image analysis, can significantly benefit from A) having access to large,
well-descriptive datasets, which are often highly sensitive and hence difficult to
obtain and B) deep machine learning models, which can require significant com-
putational resources during training [21,23]. Such models are often trained in
a distributed manner, allowing a federation of clients to obtain a joint model
without the need to share the data directly, often at the cost of an additional
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communication burden being put on the federation [20]. The existing methods of
collaborative training, such as federated learning, are also particularly vulnerable
to inference as well as model poisoning attacks [25], additionally requiring formal
means of privacy and integrity protection [11]. One such scenario was demon-
strated by [10], showing that without carefully selected privacy parameters, the
adversary in the context of multi-institutional federated learning on pneumonia
classification data was able to reconstruct the private chest X-ray data. Cur-
rent methods that aim to resolve these issues can pose additional challenges to
the federation as they can be difficult to implement in practice (such as model
compression, which often requires a public dataset that comes from the same
distribution as the training data for calibration), rely on unobvious additional
hyper-parameters (such as ε in DP) or only mitigate a subset of attacks (such
as adversarial training that improves model robustness, but does not mitigate
any inference attacks). In this work we propose a framework for training and
evaluation of ML models, which can help the medical imaging community to A)
reduce the communication overhead, B) formally preserve privacy and C) achieve
better adversarial robustness. We investigate this by studying model poisoning
attacks [7] and their mitigations through the utilisation of differentially private
training (DP) [4], model quantization and adversarial training. We investigate
two main threat models, which include inference-time and train-time attackers
on collaborative learning. Our contributions can be summarised as follows:

– We determine how techniques for private and scalable ML (such as DP and
model compression) training can be combined to improve adversarial robust-
ness in CML;

– We evaluate the most commonly used (e.g. projected gradient descent or
PGD) as well as the state-of-the-art (e.g. fast adaptive boundary or FAB)
adversarial attacks in these settings and show that the combination of these
techniques can provide sufficient protection against utility-oriented adver-
saries;

– We propose an updated view on the relationship between these mechanisms
and threat modelling, providing recommendations for achieving improved
adversarial robustness using these techniques;

– Finally, we propose a framework (namely PSREval1) for private training and
evaluation of image classification models trained in low-trust environments.

2 Related Work

Several studies have studied the applications of model compression against adver-
sarial samples in CML [5,9,12,14,28], however, there is no prior unified perspec-
tive on whether quantization techniques improve adversarial robustness against
all utility-based attacks. Authors of [15] discover that when the trained model is
subjected to train-time attacks (e.g. backdoor attacks), model compression can
significantly reduce robustness. Additionally, the work of [8] highlights, that as

1 Code available at https://github.com/dimasquest/PSREval.

https://github.com/dimasquest/PSREval
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there exists a number of quantisation strategies (e.g. discretisation, distillation
assisted quantization), a large number of such strategies provide the participants
with a semblance of robustness. However, authors of [12] and [19] discover that
for a number of inference-time poisoning attacks, model compression reduces
the effectiveness of most adversaries. This is due to a smaller set of values that
the model can utilise compared to its full-precision counterpart, making the
attacker use a significantly higher perturbation budget to affect the decision of
the model. Originally, [13] deployed DP as a method to provably certify ML
models against adversarial samples of known perturbation budgets. However,
this discussion was limited as the noise was applied directly to the training data
or to the output of the first model layer, without considering the arguably most
widely used application of DP in deep learning, namely DP-SGD [1]. Various
other works [2,18] discussed how DP-SGD can be augmented or combined with
adversarial training for better model robustness, yet none of them made links to
model compression before or considered a train-time attacker, which we address
in this work. Finally, adversarial training is considered to be one of the most
successful empirical defence mechanisms against malicious samples [6,22], but
similarly to model compression, its effects when combined with other robustness
enhancement methods have not been studied in sufficient detail.

Fig. 1. Overview of our PSREval framework, which we describe in Sect. 3.

3 Methods

We present an overview of our methodology in Fig. 1. In this work we gener-
ate an adversarial dataset that is used over the course of collaborative training:
This dataset can be either used for adversarial training or used to attack the
model at train time. We then train two models: One using a normal training
procedure and the other using DP-SGD. If the adversary is an active train-time
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attacker, they would use their malicious data at train time, otherwise the adver-
sary only targets the model at inference-time. Once the models are trained, we
then quantize them using the validation dataset (public) to tune the quanti-
zation parameters. In this study we perform a static model quantization (i.e.
post-training quantization of both the weights and the activations), where we
replace the full-precision 32-bit floating point parameters in the model with
signed 8-bit integer parameters. Finally, we perform one of the two attacks to
validate the robustness of the model. In the first setting, the adversary has full
access (white-box or WB) to the trained model before it is deployed and thus is
able to utilise it to generate the adversarial data directly. In the second setting,
the adversary is attacking a similar (same architecture, different weights) model
that has previously been deployed elsewhere, while only having WB access to the
model they obtained during training (partial WB). This setting is termed the
transfer attack. Our framework provides the robustness scores (in this case accu-
racies) for both adversarial settings. Note that our framework allows the user
to train the models individually and perform model aggregation using their pre-
ferred aggregation algorithm (in this study we used federated averaging, where
the data was split between 2 clients, one of which was an adversary).

4 Experiments

4.1 Experimental Setting

In this study we perform two collaborative classification tasks on CIFAR-10
and paediatric pneumonia prediction (PPPD) (adapted from [10]) datasets. We
utilise ResNet-9 and ResNet-18 architectures. We employ ReLU as our activation
function and replace the batch norm layers with group norm layers for compat-
ibility with DP. For DP training we utilise the opacus library [27] with three
privacy regimes (representing different end on the privacy-utility spectrum):
Concretely, we implemented settings for (ε = 1.7), (ε = 3.4) and (ε = 7.0).
For PPPD δ = 1e−4 and for CIFAR-10 δ = 1e−5. We utilise three adversarial
attacks methods, namely PGD [16], FGSM [7] and FAB [3]. When performing
train time attacks and adversarial training, we experiment with different propor-
tions of adversarial data, namely 10%, 20%, 30% or 40% of the training dataset.
By default, each attack (if required) is ran for 10 steps, with a perturbation
budget of 8/255 and a step size (the limit of perturbation during a single step)
of 2/255. We deliberately chose a high perturbation budget (in comparison to
the frequently used budget of 2/255 [3]) to represent the worst-case scenarios,
when the adversary has an ability to significantly affect the training process. We
repeat the attacks 10 times for each setting and report the average values.

4.2 Performance Overview

We begin by discussing the performance comparison between a normally trained
model as well as its DP and quantized counterparts. We present a summary
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of the standard accuracies for each setting in the Supplementary Material. We
note that after the compression procedure, the sizes of ResNet-9 and ResNet-18
were reduced by 74.4% and 76.6% respectively. The accuracy of the model post-
quantization step has not been significantly altered and stayed within ±1% of
the original value.

4.3 Different Privacy Regimes Under Quantization

We experiment with three distinct privacy settings, defined by the values of
ε, where lower value represents the “stronger” notion of privacy as there is a
stricter bound on the release of information content (Sect. 4.1). This allows us to
establish a more clear relationship between the DP-SGD and its ability to affect
adversarial robustness when subjected to partial WB attacks. In general, for par-
tial WB attacks, we did not find the DP-trained model to be significantly more
robust than the original ones (within ±2%), regardless of the privacy regime.
When adding post-training quantization, we found that robustness of the model
can be improved by up to 5% for smaller models and by up to 20% in larger mod-
els (Fig. 2). This seemingly small post-training adaptation allows the federation
to achieve a significantly higher adversarial robustness as well as significantly
reduce the model size.

Fig. 2. Transfer attack comparison (generators are the WB models for both, PPPD,
ResNet-18, ε = 7.0). Higher is better. Here we observe that quantization does not affect
adversarial robustness of privatised models as much as it affects the non-private models
under inference-time attacks.

From Fig. 3, we see that the overall loss of accuracy for DP-trained mod-
els (when the adversary uses a model trained with DP-SGD to generate the
adversarial samples) is significantly larger than for its non-private counterparts
under transfer or partial WB attacks. In fact, we found that the adversary is,
in some cases, able to attack a DP-trained model that has the same architec-
ture with almost 100% accuracy, which they are unable to do if the generating
model is non-private. The opposite is partially true: If a non-private model is
used as a generator, DP-SGD retains a robust accuracy of 30% in compari-
son to 5% for the original model. Additionally, while for smaller architectures,
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Fig. 3. Transfer attack comparison (generators are the WB models for both, PPPD,
ResNet-18, ε = 1.7). Higher is better. This experiment shows that DP models (of
various privacy levels) published online can be used to generate adversarial images for
private models of identical architectures with high fidelity.

both the original and the DP models showed a severe lack of robustness, larger
models and datasets were significantly more vulnerable only when trained with
DP-SGD. This result holds for all three attack implementations and raises ques-
tions about the “safety” of the publication of private models, because while they
provide theoretical guarantees with regards to the privacy of the training data,
they can be used as perfect adversarial sample generators, potentially violating
the integrity of other learning contexts relying on similar data or architectures.
We finally note, that this finding is even more important under the light of
the recent publications on the robustness of DP models, as this attack vector
has previously not been considered in enough detail, resulting in a semblance
of robustness associated with a blind application of DP-SGD without a careful
threat model selection.

4.4 Using Adversarial Training

One method that has been particularly effective against utility-based attacks
is adversarial training. We analyse three methods of generating the adversarial
samples and compare the results to identify the method that is A) effective
against malicious adversaries, B) does not result in a significant performance
overhead and C) does not interfere with the learning process. We note that
FAB was an ineffective method that both severely degraded the performance
(a ×20 increase in training time) and the utility (down to 20% accuracy in all
settings) of the trained model. We see (from Fig. 4) that adversarial training
can significantly improve the robustness of the trained model in all settings. We
also note, however, that this robustness can come at a severe utility cost, which
is typically associated with such training process augmentation (reducing the
overall accuracy by up to 13% for ResNet-18). Similarly to [2] we found that
adversarial training can be effectively combined with DP training, significantly
improving the robustness of the model as well as suffering a much smaller utility
penalty when compared to a non-private learning setting. We show exemplary



Can Collaborative Learning Be Private, Robust and Scalable 43

results for a high-privacy (low ε) regime in Fig. 4 and more in the Supplementary
Material. We found PGD to be the optimal sample generation method in a
private setting, allowing the federation to mitigate both the privacy-oriented
and the utility-oriented attacks. It must be noted, however, that PGD results
in a significantly longer training time when compared to FGSM (up to 8 times
longer training for 40% of adversarial samples). In general, we find that there
is no “optimal” amount of adversarial data that can be used irrespective of the
learning context, but using 20% of adversarial data typically resulted in highest
robustness across most settings.

Fig. 4. Accuracy loss under a partially WB attack with adversarial training (generators
are the WB models for both, CIFAR-10, ResNet-9, ε = 1.7). Lower is better. Here we
see that DP can effectively mitigate a train-time attacker even when they control 40%
of the training data.

4.5 Train- and Inference-Time Attacks

While a number of previous works typically considers an adversary who has a
WB access to a pre-trained model, we believe that it is important to evaluate
the learning settings against an adversary who actively interferes with the train-
ing process itself. As described in our Sect. 4.1, the adversary controls different
proportions of the training data and we study how this can affect the federation.
Overall, as seen in Fig. 5 (as well as in the Supplementary Material), we find that
any train time attack can pose a significant risk to a non-private learning setting,
irrespective of the dataset or the architecture of the shared model. However, we
also found that DP training can severely reduce this risk even for adversaries
that control 40% of the training data, as the contributions of the outlier sam-
ples are greatly reduced under DP-SGD. This, alongside with the application of
adversarial training, leads us to recommend a wider use of DP-SGD against WB
attackers. We additionally note that both of these approaches are fully compat-
ible with quantization techniques, allowing the federation to train private and
robust models at scale.



44 D. Usynin et al.

Fig. 5. Robust accuracy under a train-time attacker (CIFAR-10, ResNet-9, ε = 3.4).
Higher is better. The result here corresponds to the setting above, showing that we can
expect this behavior to hold even under a weaker privacy regime.

5 Discussion and Conclusion

In this work we propose a framework for training and evaluation of image anal-
ysis models, combining differentially private training, model compression and
adversarial training against model poisoning attacks. Our framework allowed us
to determine that for the strongest insider adversary, post-training quantization
did not have a significant impact on the results of the attack. The opposite is
true for partial WB attacks, where the federation enjoys an improvement in
robustness of up to 20% in certain contexts compared to an uncompressed set-
ting. In general, we found DP-SGD to be detrimental in partially WB settings,
which is primarily due to a significantly lower accuracy of the DP-trained mod-
els after training. Our framework revealed that DP-trained models can be more
susceptible to transferable adversarial samples. This finding can be surprising,
given a greatly higher robustness of DP-trained models (particularly at train
time). In essence, DP models are very sensitive to the threat model that the
adversary chooses to employ, therefore not allowing a concrete overall conclu-
sion about the effectiveness of this method. However, there also exist a number
of factors that can potentially have an influence on the results of our evaluations
that are not explicitly covered. Firstly, similarly to [24], we discovered that the
accuracy of the trained model can have a significant impact on the results of the
attack. This is due to the fact that the adversarial labels (i.e. those used by the
train-time adversary) are inferred from model predictions and these depend on
how well the model is able to distinguish between different classes, affecting the
attack. This, in turn, makes it more challenging for us to disentangle how the
individual factors that influence model accuracy can affect adversarial robust-
ness. Secondly, in this work, we relied on the post-training quantization, as we
find this approach to be the most practical (or low-effort and foolproof), as it
only requires a single calibration round and a replacement of a small number of
operations during model initialisation. Other approaches can be applicable when
discussing robustness of collaboratively trained models, such as train-time quan-
tization or quantization-aware training. However, these methods require a larger
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number of setup steps and adaptations of the training process, making them less
practical. Finally, there exists a number of contexts that we have not covered in
PSREval, which go beyond the scope of this work. We are planning to expand
our framework with other robustness-enhancement methods, such as adversarial
regularisation, knowledge distillation [17] and feature squeezing [26], all of which
were previously shown to mitigate utility-oriented adversaries in CML. We used
a simple federated averaging aggregated method in our work, therefore leaving
more advanced aggregation techniques (some of which can come with additional
adversarial robustness) as part of the future work. Additionally, we are aiming to
produce a more context-agnostic study, including attacks on image segmentation
and object detection tasks, so that the research community can evaluate their
model in a much larger number of clinical settings, resulting in a wider adoption
of private, robust and scalable training.
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Abstract. Split learning (SL) has been proposed to train deep learning
models in a decentralized manner. For decentralized healthcare applica-
tions with vertical data partitioning, SL can be beneficial as it allows
institutes with complementary features or images for a shared set of
patients to jointly develop more robust and generalizable models. In
this work, we propose “Split-U-Net” and successfully apply SL for col-
laborative biomedical image segmentation. Nonetheless, SL requires the
exchanging of intermediate activation maps and gradients to allow train-
ing models across different feature spaces, which might leak data and
raise privacy concerns. Therefore, we also quantify the amount of data
leakage in common SL scenarios for biomedical image segmentation and
provide ways to counteract such leakage by applying appropriate defense
strategies.

Keywords: Split learning · Vertical federated learning · Multi-modal
brain tumor segmentation · Data inversion

1 Introduction

Collaborative and decentralized techniques to train artificial intelligence (AI)
models have been gaining popularity, especially in healthcare applications where
data sharing to build centralized datasets is particularly challenging due to
patient privacy and regulatory concerns [20]. Federated learning (FL) [16] and
split learning (SL) [7] are two approaches that can be useful depending on the
nature of the data partitioning [32]. In the healthcare and biomedical imag-
ing sector, data is often “horizontally” partitioned such that each participating
site, i.e., a hospital, possesses some data/features and optionally corresponding
labels for their set of patients. Horizontal FL (HFL) algorithms like federated
averaging [16] typically train models initialized from a current “global” model
independently on each participant and frequently update the global model with
the model gradients sent by each site. In contrast, so-called “vertical” data par-
titioning allows sites with complementary features but from an overlapping set
of patients to collaborate [32]. This vertical FL (VFL) scenario could be useful
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Albarqouni et al. (Eds.): DeCaF 2022/FAIR 2022, LNCS 13573, pp. 47–57, 2022.
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where different sites possess features that need to be securely combined in order
to train a joined AI model, e.g., one hospital has imaging while the other one
has lab results or the diagnoses for the same set of patients. Here, SL can be
used to train models when using deep learning (DL) methods for VFL. Dur-
ing training, SL splits the forward pass of a DL model into two or more parts
and exchanges intermediate features or activation maps and gradients between
participating sites to complete a training step. Therefore features from different
sites can be combined in later parts of the network and the model can be trained
across institutional boarders [28].

In biomedical image segmentation, VFL could be useful to combine different
image modalities of the same patient in order to train joined segmentation mod-
els collaboratively. This scenario is what we explore in this work by studying
SL as a collaborative technique to learn a tumor segmentation model for multi-
model MRI images. For this purpose, we propose “Split-U-Net”, a modification
to the popular U-Net [21] architecture, to allow its use in a VFL setup. Figure 1
illustrates the situation where four sites would like to jointly train a multi-modal
segmentation model given their corresponding images. Only one site possesses
the label mask and computes the loss to be optimized. Previous works on SL in

Fig. 1. Split learning set up with Split-U-Net.

healthcare applications have focused on classification and regression tasks [8,19,
28]. One example of splitting U-Net for single modality semantic segmentation
was described in [18], but to the best of our knowledge, our work is the first
to apply SL in a multi-modal vertical data partitioning scenario for biomedical
image segmentation across multiple parties.

We show that SL can be used successfully for this task and also investi-
gate potential security implications that arise from sharing intermediate features
between collaborating sites by implementing an effective inversion attack. Prior
works on inversion attacks in SL were mainly focused on images of small sizes
(MNIST or CIFAR-10) [5,11,12,17] and are theoretical in nature. However, it
is important for the medical imaging community to understand the potential
benefits and security considerations for applying SL in healthcare applications.



Split-U-Net 49

Our inversion attack not only shows the potential risks but can be used to quan-
tify and inform appropriate defense strategies against it. In this work, we explore
both dropout [25] and differential privacy (DP) [4] to prevent data leakage during
SL. Our contributions can be summarized as follows.

– We propose “Split-U-Net” and successfully apply SL for biomedical image
segmentation for multi-institutional collaboration.

– We develop a successful inversion attack to measure and quantify data leakage
in SL.

– We propose and evaluate defense measures (dropout and DP) to prevent data
leakage.

2 Methods

2.1 Split-U-Net

The basis of our network is a common implementation of U-Net [21] with L = 4
down- and up-sampling levels. The default number of output features at each
level are configured as shown in Table 1. To turn this network F (x) into Split-
U-Net F (x) = g(f(x)) used for multi-modal collaborative SL, we divided the
number of encoder features by the number of sites/modalities K involved in
training. The number of features in the decoder stays the same as in the default
network. Figure 1 shows an example setup with K = 4. In this example, the
“split” is done at the bottleneck. All encoder layers participate in SL, and only
the site with label images has the decoder for segmentation. During training,
each site k computes the forward pass

{
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k
1 , . . . , x

k
L

}
= fk(Ik) where Ik is

a mini-batch of size B of input images with modality k and xk
i is the feature

map of layer i of L. Corresponding batch indices are communicated to each site
before each training step. The site k with label images then takes the activation
maps from all other participating sites and concatenates them at the appropriate
feature levels (see Fig. 1). It then computes the loss and backward pass to obtain
a gradient
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and performs an optimizer update on its part of the network g(x). The gradient
∇ at the split level is then communicated back to all fk(x) to complete the back-
ward pass and update their parts of the model (the encoder branches fk(x)),
and the process is iterated until convergence. Note that in SL, a larger batch
size can be used to reduce the total number of communication steps needed [24].
We assume that at each iteration, a random set of batch indices bi is selected
such that each client uses the same patients’ data and augmentation to build
their mini-batch Ik. Furthermore, each site might apply additional spatial nor-
malization steps, e.g., using non-linear image registration to bring their images
from different modalities into a common data space to help the network better
encode common anatomical features across modalities [3,30].
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Table 1. U-Net and Split-U-Net features for brain tumor segmentation.

Level i In 0 1 2 3 4 5 6 7 8 Out

U-Net (default) F (x) 4 32 32 64 128 256 128 64 32 32 4

Split-U-Net Encoder (per site) fk(x) 1 8 8 16 32 64 - - - - -

Split-U-Net Decoder g(x) - - - - - - 128 64 32 32 4

2.2 Measuring Data Leakage by Inversion Attack

In SL, activation maps are shared to complete each iteration step [7]. Therefore, a
potential malicious actor, e.g., Site-1 in Fig. 1, receiving the activation maps from
other sites may invert them to recover the underlying private data. Such attacks
used to recover the data are called “inversion attacks” [27]. In the following, we
explain how our inversion attack is executed and how its result can be used to
measure the data leakage in order to inform an appropriate defense strategy.
Our attack tries to optimize a randomly initialized C-channel input Ĩi such that
the activations x̃i at the forward layer of the attacker model f̃i(x) become the
same as the intercepted activations xi. In this work, we assume the attacker
has access to the current state of the model used by the client to generate the
forward pass. Therefore f̃k

i (x) ≡ fk
i (x) given the same input x. This setting is

typically referred to as a “white-box” attack [11]. In practical implementations
of SL, this could be the case if a common network is used to initialize fk(x) on
each participating client. The main loss used to align both activation maps is
a L2-norm. Furthermore, we employ two common image prior losses often used
in inversion attacks [6,33], namely total variation [22] (TV) and L2-norm of the
recovered image Ĩ. The main loss for the inversion attack hence becomes

Linv

(
x
k
i , x̃

k
i , Ĩ

k
i

)
= αact||xk

i − x̃
k
i ||2 + αtvTV (Ĩ

k
i ) + αl2 ||Ĩk

i ||2. (2)

Therefore, the final inversion attack to recover an image Ĩi from activation
xi at level i of Split-U-Net can be formulated as

Ĩi = argmin
Ĩ

Linv

(
x
k
i , x̃

k
i , Ĩ

k
i

)
, (3)

where Ĩi ∈ RB,C,H,W with B,C,H,W being the batch size, number of channels,
height and width of the image, respectively. Note that the inversion can be run
on large batch sizes B or independently for each activation in a mini-batch,
depending on the compute resources of the attacker. The data inversions from
intercepted activation maps can be seen in Fig. 2. To measure the amount of data
leakage, we compute a common similarity metric between the recovered image Ĩi

and the original image I used to produce the activation xi. Structural Similarity
index (SSIM) [29] aims to provide a more intuitive and interpretable metric
compared to other commonly used metrics like root-mean-squared error or peak
signal-to-noise ratio. We, therefore, use SSIM in our analysis, but including other
metrics would be possible.
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2.3 Defenses

A straightforward defense strategy is to not send feature activation maps from
early layers (x0, x1, and x2) which are likely to leak more data (see Fig. 2 and
Fig. 4). We also investigate dropout [25] as an effective tool against inversion
attacks. Each layer of the encoder can randomly drop the activations from neu-
rons of the network with a probability of pdropout. Another effective tool often
used in the FL literature [10,13,15,31], is differential privacy (DP). DP in its
simplest form adds some calibrated random noise to any shared values in order
to preserve the privacy of individual data entries. Here, we use a Gaussian mech-
anism [31] to add random noise sampled from a normal distribution N

(
0, σ2

)

to each activation mask xk
i before sharing it with the next participant.

3 Experiments and Results

Data: In our study, we assume a collaborative model training setup where four
institutes, here referred to as “sites”, jointly train a multi-modal image segmen-
tation model using split learning. We use the Medical Segmentation Decathlon
MSD1 brain tumor segmentation dataset (Task 1) to simulate this setup. Each
3D volume in the dataset contains four MRI modalities, namely T1-weighted,
post-Gadolinium contrast T1-weighted, T2-weighted, and T2 Fluid-Attenuated
Inversion Recovery volumes [23]. For the purpose of this study, we extract one
axial slice from each volume through the center of the tumor and formulate
the task as a 2D semantic segmentation problem, resulting in a total of 484
images with ground truth annotation masks. We randomly split the data into
338 training, 49 validation, and 97 testing images, corresponding to 70%, 10%,
20% of the data, respectively. The segmentation task is to predict the brain
tumor sub-regions, i.e., edema, enhancing, and non-enhancing tumor. There-
fore, our network predicts four output classes, including the background, using a
final softmax activation. Given the K = 4 MRI input modalities, we simulate the
Split-U-Net to be trained collaboratively among four sites, as shown in Fig. 1.
Each site possesses the images for all patients but for just one modality. Site-1
is assumed to also have the annotation masks and can therefore compute the
objective function using a combined Dice loss and cross-entropy loss.

1 http://medicaldecathlon.com.

http://medicaldecathlon.com
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(a) originals [1, 192, 192]

(b) activations x0 [8, 192, 192]

(c) activations x1 [8, 96, 96]

(e) activations x2 [16, 48, 48]

(f) activations x3 [32, 24, 24]

(g) activations x4 [64, 12, 12]

Fig. 2. Inversions from activations sent from different layers of the Split-U-Net encoder
of Site-4 possessing one MRI modality when training with a mini-batch size of 8.
Activations from earlier layers from the encoder are more likely to leak data, i.e.,
x0 ∼ x2. The inversions from other sites and modalities are of the same quality.

Data leakage of shared activation maps: First, we investigate how much
data the activation map at each layer can leak when sharing them during
Split-U-Net training. We invert all activation maps of a mini-batch from layers
x0, x1, x2, x3, x4, respectively. One can observe that the amount of data leakage
reduces with the depth of the network and the resolution of the share activation
map. The first level x0 with a resolution similar to the input image is practically
non-distinguishable from the original augmented images fed to the encoder net-
works during training. All inversions computed in this work used αact = 1e − 3,
αtv = 1e− 4, and αl2 = 1e− 5 (see Eq. 2). We used the Adam optimizer to solve
Eq. 3 using a cosine learning rate decay with an initial rate of 0.12.

Collaborative multi-modal image segmentation: To evaluate the effective-
ness of Split-U-Net, we compare it to a baseline U-Net model taking the four
MRI modalities directly as input (see the default setup in Table 1). In Table 2,
we show Split-U-Net performs on par with its centralized counterpart (U-Net).
The performance is comparable3 to the MSD challenge results reported for 3D
tumor segmentation [2].

2 Implementation: We utilize components from MONAI (https://monai.io/) and
NVIDIA FLARE (https://developer.nvidia.com/flare) to implement our SL simu-
lation. In particular, we utilize MONAI’s BasicUNet as basis for Split-U-Net. All
experiments were run on NVIDIA V100 GPUs with 16 GB memory.

3 The current leading entry - Swin UNETR [9] achieves an average Dice score of 0.647
for the three foreground tumor classes.

https://monai.io/
https://developer.nvidia.com/flare
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Table 2. Comparison of a centralized U-Net and different Split-U-Net settings with
different privacy-preserving measures (dropout and differential privacy (DP)). The set-
ting “w” and “w/o” indicates the performance of Split U-Net with and without skip
connections, respectively; “x3, x4 only” indicates the performances when only activa-
tions from later layers are being shared. The best Dice score achieved with Split-U-Net
for each data subset is highlighted in bold.

Dice Training (n=338) Validation (n=49) Testing (n=97)

U-Net 0.732 0.701 0.698

Split-U-Net (w/o skip) 0.743 0.619 0.599

Split-U-Net (w skip) 0.882 0.663 0.693

Split-U-Net (x3, x4 only) 0.821 0.675 0.650

Split-U-Net (pdropout=0.1) 0.818 0.648 0.681

Split-U-Net (pdropout=0.2) 0.843 0.658 0.683

Split-U-Net (pdropout=0.5) 0.766 0.637 0.665

Split-U-Net (pdropout=0.8) 0.719 0.643 0.650

Split-U-Net (DP σ=1) 0.865 0.671 0.691

Split-U-Net (DP σ=2) 0.797 0.669 0.695

Split-U-Net (DP σ=3) 0.821 0.658 0.666

Split-U-Net (DP σ=5) 0.811 0.684 0.687

Split-U-Net (DP σ=50) 0.543 0.394 0.393

Effectiveness of defenses: Adding dropout and Gaussian noise during train-
ing can be an effective defense (Fig. 3). The SSIM scores between originals and
inversions go down with higher pdropout or σ as shown in Fig. 4. The model
performance is less affected when adding DP and even benefits from it during
training, as seen in Table 1 for σ = 2.0 in contrast to using dropout as a defense.

4 Discussion

To the best of our knowledge, our work was the first to apply SL to a multi-
modal image segmentation task. We showed competitive results of Split-U-Net
for 2D brain tumor segmentation on a relatively small dataset (only one slice per
original volume). Further hyperparameter tuning and data augmentation might
improve the performance. It should be investigated if weight sharing between the
encoder branches could allow for further performance boosts [26]. An extension
of Split-U-Net to 3D semantic segmentation tasks would be straightforward.
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(a) activations x0 (pdropout=0.1)

(b) activations x0 (pdropout=0.2)

(c) activations x0 (pdropout=0.5)

(d) activations x0 (pdropout=0.8)

(e) activations x0 (σ=1)

(f) activations x0 (σ=2)

(g) activations x0 (σ=3)

(h) activations x0 (σ=5)

Fig. 3. Dropout (a-d) and differential
privacy (e-h) as a defense against inver-
sion attacks.

Fig. 4. Structural SIMilarity index
(SSIM) [29] between the original images
and inversions of each activation.

A major focus of this work is on the security aspect when applying SL. As
shown in our results, depending on the depth of activation layers inside Split-
U-Net, the data inversion attack can be successful, generating inversions that
are visually indistinguishable from the original images (SSIM close to 1.0). This
is the case, especially for the first layer (x0). Finding an appropriate defense
strategy against such inversion attacks is very important. It can be assumed
that the same defense settings are effective for each modality used in Split-U-
Net training. Therefore, a recommendation would be for the site possessing both
images and labels to study the data leakage vulnerabilities using our proposed
data inversion and data leakage metrics to establish a secure setting that each
collaborator can use. Of course, this assumes a level of trust in this site but
might help protect against a potentially malicious server that coordinates the
split learning. At the same time, each site could utilize public datasets with
images and labels, as we have done in this study, to measure the data leakage
risks of the network architecture they would like to train in real-world SL. Our
results indicate that the dangers come from the architecture itself rather than
the particular dataset used for training (see Fig. 2 where the inversion quality
is not affected by different samples in the batch). This is in contrast to other
studies in horizontal FL, where certain images in the batch are more likely to
leak data [10,33].
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Our study also has some limitations. For example, the inversion attack
assumes to have access to the current state of the model that the data site
uses to compute its forward pass (fk(X)). This setting is typically referred to
as a “white-box” attack [11] and assumes the attacker has knowledge about the
state of the model during training. This could be true in some implementations
of SL where one of the participants sends an initialization for all participants.
As the training continues, this initial model will become less and less useful to
the attacker. At the same time, our finding shows that a potential avenue for
more secure implementations of SL is to not use a common initialization but
let each participant randomly initialize their part of the model. A “black-box”
attack [11] where the inversion needs to optimize for both the inputs and the
current state of the model could be implemented next to better measure the
data leakage risks in such a scenario. Furthermore, we assumed the participat-
ing sites to have a common anonymous identifier used to build mini-batches
with images of corresponding patients. In real-world scenarios, a pre-processing
step to securely compute the intersecting set of patients between sites has to
be performed [1]. Also, some synchronization of data augmentation across dif-
ferent modalities should be incorporated in the communication protocols. An
additional privacy risk in SL is the inversion of label sets from the shared model
gradients. A similar attack to the one presented in this work could be applied to
match gradients during SL to recover the label masks. However, we assumed that
tumor segmentation masks are less likely to leak patient-identifiable information
and therefore focused on the data/image recovery in this work. In this work, we
simulated a multi-site FL study using pre-registered multi-modal MRI scans. In
reality, more variations that are potentially critical to model performance would
need to be considered before performing similar collaborative model training,
including temporal and spatial misalignment across images of the same patient
and mismatch between image and annotation masks. Finally, cryptographic tech-
niques like homomorphic encryption [34] or secure multi-party computation [14]
could be employed to reduce the risk of data leakage in SL. Those techniques
typically come with higher computation costs but should be explored, especially
for medical image analysis tasks where patient privacy is of utmost concern.

In conclusion, we provided strong evidence that SL can be useful for biomed-
ical image segmentation tasks when taking the appropriate security considera-
tions into account. A real-world implementation of SL will provide clinical col-
laborators the chance to jointly leverage all available data to train more robust
and generalizable AI models.
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Abstract. Segmentation studies in medical image analysis are always
associated with a particular task scenario. However, building datasets to
train models to segment multiple types of organs and pathologies is chal-
lenging. For example, a dataset annotated for the pancreas and pancre-
atic tumors will result in a model that cannot segment other organs, like
the liver and spleen, visible in the same abdominal computed tomography
image. The lack of a well-annotated dataset is one limitation resulting in
a lack of universal segmentation models. Federated learning (FL) is ide-
ally suited for addressing this issue in the real-world context. In this work,
we show that each medical center can use training data for distinct tasks
to collaboratively build more generalizable segmentation models for mul-
tiple segmentation tasks without the requirement to centralize datasets
in one place. The main challenge of this research is the heterogeneity
of training data from various institutions and segmentation tasks. In
this paper, we propose a multi-task segmentation framework using FL
to learn segmentation models using several independent datasets with
different annotations of organs or tumors. We include experiments on
four publicly available single-task datasets, including MSD liver (w/
tumor), MSD spleen, MSD pancreas (w/ tumor), and KITS19. Experi-
mental results on an external validation set to highlight the advantages
of employing FL in multi-task organ and tumor segmentation.

Keywords: Federated learning · Segmentation · Partial labels

1 Introduction

Fully automated segmentation of organs and tumors from computed tomogra-
phy (CT) volumes is essential for medical image analysis. Numerous studies have
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concentrated on single specialized task segmentation throughout the last few
decades [1,4,15,17]. For instance, the pancreas regions and pancreatic tumors
will be included in the annotations if we want to develop an automated segmen-
tation model for pancreatic cancer. However, this model cannot segment other
organs and pathologies, like the liver and liver tumors. In a real-world clinical
scenario, a generalized segmentation model for various organ types and associ-
ated malignancies is desired to develop comprehensive computer-aided diagnostic
(CAD) systems.

The main challenge for achieving such generalized models is the lack of sub-
stantial datasets for multi-task organ segmentation. Most datasets are solely
intended for a few very specialized segmentation tasks [5,18]. It is also tough
to get annotated datasets for multi-task scenarios from multiple institutions
to cover a large and diverse patient population and different scanner types and
acquisition protocols. To simultaneously annotate various organ and tumor types
demands extensive medical expertise as well as time.

In order to address these issues, several studies have attempted to build a
generalized segmentation using multiple partially annotated datasets [2,6,21].
However, they centralized all training datasets locally. In real-world clinical sit-
uations, sharing the datasets among different institutions presents numerous
technological, legal, and privacy concerns and might be therefore infeasible.

Federated learning (FL) is inherently suited for solving this problem [10,13].
Recently, combining FL methods with other deep learning techniques has grown
in favor. A rising number of studies have been conducted using the FL method
in segmentation tasks in the medical field. Li et al. [9] applied FL to brain tumor
segmentation in practical for preserving data privacy. Wang et al. [19] carried out
the real-world pancreas and pancreatic tumor segmentation using FL between
two institutions across different nations. This work shows that FL considerably
enhances the model performance of organ and tumor segmentation when com-
pared to local standalone training. Additionally, recent real-world studies have
shown that the FL approach is beneficial in many applications such as brain
tumor segmentation [16], mammography classification [14], and COVID-19 pre-
diction [3,11]. However, the main goal of these studies is to enhance the effec-
tiveness of a single particular task. Some studies proposed to handle the multiple
datasets using FL for classification task [8], but research on segmentation models
for medical imaging is lacking.

In this work, we suggested a multi-task segmentation framework that makes
use of FL to increase the generalizability of segmentation models using sev-
eral partially annotated datasets. We explored the efficacy of the FedAvg model
aggregation approach across several different segmentation tasks. We employed
the MSD liver (w/ tumor), MSD spleen, MSD pancreas (w/ tumor) [18], and
KITS19 [5] datasets, which are publicly accessible for single-task segmentation.
Examples of axial CT slices of four partial labeled datasets for different seg-
mentation tasks are shown in Fig. 1. Experimental results revealed that the FL
framework boosted the segmentation performance of jointly trained task-specific
models. Additionally, we evaluated our models on an unseen external dataset,
and the segmentation results were satisfactory. To our knowledge, this is the
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(a) KITS19 (b) MSD liver (c) MSD pancreas (d) MSD spleen

Fig. 1. Samples of (a) KITS19 (b) MSD liver (c) MSD pancreas and (d) MSD spleen.
The kidney and kidney tumor are pink and brown, respectively; the liver and liver
tumor are red and green, respectively; the pancreas and pancreatic tumor are yellow
and aquamarine, respectively; and the spleen is blue. (Color figure online)

Fig. 2. An overview of the federated learning framework for multi-task medical image
segmentation from partial labels. The training model is shared by each client for dif-
ferent segmentation tasks, and the model is aggregated by the server.

first work on multi-organ and tumor segmentation from partial labels for medi-
cal imaging using FL.

2 Methods

2.1 Federated Learning

FL [10] is a prominent distributed learning technique applied in many fields. In
the area of medical image analysis, there is growing interest in FL techniques [13,
19,20]. The key advantage of FL is that it can learn from various datasets without
the necessity for centralizing all datasets locally. An FL framework consists of a
server and several clients. The server manages the whole FL process, and each
client tackles their own task independently. The models are trained on the clients
using local datasets, and they only exchange the learned parameters with the
server; the server does not possess any data. The server only aggregates the model
after receiving new parameters from a minimum number of clients specified and
then sends an updated global model back to each client. In a new FL round, each
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client receives the global model from the server and refines it using their local
dataset. An overview of our federated learning framework is shown in Fig. 2. In
this study, each client trains on a different segmentation task.

2.2 Federated Averaging for Learning from Partial Labels

Federated averaging (FedAvg) is an effective aggregation method widely used in
FL [10]. In FedAvg, the server aggregates the parameters shared by clients after
each client trains trains on their local data using gradient-based optimization.
In each round of FL, the following objective is being optimized:

L = min

N∑

k

ηkLk, (1)

where Lk represents the k-th client’s local loss function out of the N clients.
Each client trainers to optimize its Lk independently. The weight of each client
is denoted as ηk, and the total weight of all clients in a round equals to 1. Using
all clients for stochastic gradient updates in real-world FedAvg usage is costly
in terms of both time and communication. At each round, a subset of N clients,
which can be represented as K, can be selected for server model updates. Each
client’s weight is determined by the percentage of training data, with a total of
n. We have n =

∑K
k nk, where nk is the number of training data in client k. The

weight of client ηk is ηk = nk

n . When updating the global model using FedAvg,
the client with more training data contributes more during the aggregation.

To avoid conflict of background labels between each client, we use sigmoid
as the output activation function, and Lk for each client is the average Dice of
all output channels except the background.

Lk =
1
C

C∑

c=2

LDice(F(x)c, yc) (2)

where F is the model and C is the number of total classes, in this work C = 8,
the corresponding organ for indices 1 to 8 are background, liver, liver tumor,
spleen, pancreas, pancreas tumor, kidney, kidney tumor.

3 Experimental Details and Results

3.1 Datasets

Four publicly accessible datasets were used in this experiment. The server only
collects the model parameters provided by the client and does not possess any
data. Each client trained the model with a single dataset among distinct segmen-
tation tasks. There are four types of different segmentation tasks, including the
segmentation of the liver and liver tumor (Task 1); the pancreas and pancreatic
tumor (Task 2); the kidney and kidney tumor (Task 3); the spleen (Task 4).



62 C. Shen et al.

Table 1. Number of images used in the experiments. Each dataset was randomly
divided into training, validation, and testing sets in the equal amounts.

Training Validation Testing Total

Task 1 (MSD liver) 79 26 26 131

Task 2 (MSD pancreas) 169 56 56 281

Task 3 (Kits19) 126 42 42 210

Task 4 (MSD spleen) 25 8 8 41

The dataset for Task 1 is from Medical Segmentation Decathlon (MSD) liver
task [18]. We only kept the 131 training cases with liver and liver tumor labels
here. All the volumes are contrast-enhanced and the resolutions of volumes are
(0.5–1.0, 0.5–1.0, 0.45–6.0) mm. For Task 2, we used 281 MSD pancreas task
cases collected from patients undergoing pancreatic mass resection [18]. These
CT volumes are in portal-venous phases. For Task 3, we utilized 210 cases from
the KITS19 Challenge (Kits19) [5]. The CT volumes are in the late-arterial
phase. For Task 4, 41 cases of portal venous phase CT from the MSD spleen
task were used [18]. We randomly split the datasets into training, validation, and
testing sets in the proportions of 60%, 20%, and 20%, respectively. The details
of data divisions are shown in Table 1.

We employ another open dataset, MICCAI Multi-Atlas Labeling Beyond
the Cranial Vault challenge (BTCV) [7], as an external validation dataset. This
dataset contains 30 portal venous phase CT images with segmentation mask of 13
abdomen organs. We only kept the liver, pancreas, kidney, spleen segmentation
mask in our testing as they overlap with the partial labels from tasks used during
training.

3.2 Implementation Details

We use NVIDIA Federated Learning Application Runtime Environment
(NVIDIA FLARE )1 [12] as the backend of the FL framework. Our implementa-
tion is base on PyTorch Lighting2. We use a single NVIDIA GPU (Tesla V100
with 32GB) for each client in all experiments. We resampled all the volumes
to 1 × 1 × 1mm3 isotropic spacing to guarantee the CT volumes had the same
resolution. The intensity of the Hounsfield unit (HU) was clipped to the range
[–500, 500] and normalized to [0, 1], which encompasses most of the abdominal
organs. A random intensity shift augmentation was applied on training volumes
with a probability of 0.8. The offset factor of it is 0.1 under the MONAI imple-
mentation3. We reset the orientation close to RAS+ so that all the CT volumes
are in the same orientation. The input size of our model is 96 × 96 × 96 with a
batch size of 8.
1 https://nvidia.github.io/NVFlare/.
2 https://www.pytorchlightning.ai/.
3 https://monai.io/.

https://nvidia.github.io/NVFlare/
https://www.pytorchlightning.ai/
https://monai.io/
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Table 2. Comparison of Dice Score for the four different segmentation tasks on stan-
dalone model trained from scratch on single dataset; on FL global best model on server
side; and FL local best model on client side.

Dice (%) Task 1 Task 2 Task 3 Task 4 Avg.

Liver Tumor Pancreas Tumor Kidney Tumor Spleen

SL 67.4% 13.3% 64.2% 19.6% 93.1% 30.2% 48.7% 63.5%

FL global model (server) 0.0% 0.0% 66.9% 30.4% 90.6% 39.3% 0.0% 44.6%

FL local model (client) 84.4% 33.8% 74.3% 38.4% 94.9% 63.7% 72.9% 86.7%

The network architecture we utilized was obtained from the coarse-to-fine
network architecture search (C2FNAS), which already demonstrates strong gen-
eralizability on organs and tumors segmentation in multiple different medical
image segmentation tasks [20]. We training using the loss formulated in Eq. 2.
For validation and testing we threshold the output values by 0.5 and calculate
the Dice score for each channel separately. Clients train locally in the FL and
communicate the learned parameters to the server at every 500 iterations. A total
of 60 rounds were completed on the server, and the minimum client number to
aggregate the model is 4.

3.3 Experimental Results

Our experimental results include the standalone training model (SL) trained
with each partially labeled dataset, the FL client model on the local client, and
the FL global best model aggregated by FedAvg on the server.

Table 2 compares the Dice score on four different segmentation tasks with
standalone training (SL) models, FL global model on the server, and FL local
model on each client. Comparing FL local models to SL models, the average
Dice score for each client increases by 23.3%. The highest improvement, which
is 33.5%, is in the segmentation of kidney tumors. The Dice score of the FL
global model is not ideal. The FL global model fails on the liver, liver tumor,
and spleen segmentation.

We present the axial visualizations of the four segmentation tasks in Fig. 4.
The segmentation of organs and tumors performs best when using the local client
model for specialized to each task during FL.

3.4 Validation on External Dataset

To verify the generalizability of our FL model for multi-organ segmentation, we
validate the ensemble of the local models on the BTCV [7], which is a completely
unseen dataset in this work. Table 3 shows our evaluation Dice scores for the
spleen, kidney, pancreas, and liver organs. We compared the results of the FL
global model, the ensembled local models and the ensembled results with extra
post processing. The ensemble method we used is to combine corresponding
output channels of the four local models. Since the final activation is sigmoid, the
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GT Prediction GT (3D) Prediction (3D)

Fig. 3. The segmentation visualization of an external dataset in axial slice and 3D
rendering using FL local model with post-processing. On this entirely new dataset, the
major organ segmentation performs satisfactorily.

Table 3. Testing results on external dataset of the ensemble of four FL local models
and FL global model.

Dice (%) Task 1 Task 2 Task 3 Task 4 Avg.

Liver Pancreas Kidney Spleen

SL 65.8% 57.5% 70.7% 44.6% 60.0%

FL global model 0.0% 62.9% 54.5% 0.0% 29.4%

FL local model (ensemble) 87.7% 71.8% 80.5% 69.9% 77.5%

FL local model (processed) 91.6% 75.4% 80.2% 73.1% 80.1%

output of the global model and the ensembled model may overlap. To overcome
the overlapping issue we first take the largest connected components from each
channel and discard any smaller objects. Then we fuse the output channels
from corresponding models in the order of liver, liver tumor, spleen, pancreas,
pancreas tumor, kidney and kidney tumor. Note, the later label might override
a former label but we did not notice this to be problematic. The visualization of
post processed results are presented in Table 3.

4 Discussion

As seen in Table 2, federated learning considerably improved the segmentation
performance on the local model of each client compared to the results of stan-
dalone training. The average Dice score of the four segmentation tasks increased
by 23.3%. By employing the task-specialized FL local models, there is a notice-
able improvement in the segmentation of both tumors and organs. Although
the training data on each client only contains annotations for one of the dif-
ferent segmentation tasks, the learned global parameters are beneficial for all
other segmentation tasks. The FL local models were improved by adjusting the
parameters obtained from the server to fit the particular segmentation task for
the local dataset. However, the heterogeneity between different client datasets
and annotation tasks causes the averaged global to not perform well, especially
on Task 1 and Task 3 (liver and spleen).
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Task 1 Task 2 Task 3 Task 4

GT

SL
organ

SL
tumor

FL
(server)
organ

FL
(server)
tumor

FL
(client)
organ

FL
(client)
tumor

Fig. 4. Examples of segmentation results of four tasks including liver and tumor
(Task 1); pancreas and tumor (Task 2); kidney and tumor (Task 3); spleen
(Task 4) on ground truth (GT), standalone model (SL), and FL model on server-
site and client-site.

Nevertheless, we validate the ensemble of local segmentation models on an
external dataset. Both qualitative and quantitative evaluation results demon-
strate the robustness of our FL local models. The segmentation performance
of the ensemble models on the corresponding organs is satisfactory and shows
how a successful ensemble model can be trained using FL with only partially
annotated datasets.
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5 Conclusion

In this study, we apply the FL techniques for multi-task organs and tumors seg-
mentation. The experimental results suggest that FL has a favorable impact on
the segmentation of organs and tumors, although the datasets on other clients
are dissimilar. The FedAvg is not well-suited to address the heterogeneous prob-
lems of multi-task datasets. Hence the FL global model underperformed. We
confirmed the robustness of the local model ensemble with external validation
using an unseen dataset. Future work is required to address the heterogeneity
challenge in multi-task organs and tumor segmentation from partially labeled
datasets.
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Abstract. Federated learning aims at improving data privacy by train-
ing local models on distributed nodes and at integrating information on a
central node, without data sharing. However, this calls for effective inte-
gration methods that are currently missing as existing strategies, e.g.,
averaging model gradients, are unable to deal with data multimodality
due to different distributions at multiple nodes. In this work, we tackle
this problem by having multiple nodes that share a synthetic version of
their own data, built in a way to hide patient-specific visual cues, with
a central node that is responsible for training a deep model for medical
image classification. Synthetic data are generated through an aggrega-
tion strategy consisting in: 1) learning the distribution of original data
via a Generative Adversarial Network (GAN); 2) projecting private data
samples in the GAN latent space; 3) clustering the projected samples
and generating synthetic images by interpolating the cluster centroids,
thus reducing the possibility of collision with latent vectors correspond-
ing to real samples and a consequent leak of sensitive information. The
proposed approach is tested over two X-ray datasets for Tuberculosis
classification to simulate a realistic scenario with two different nodes
and non-i.i.d. data. Experimental results show that our approach yields
performance comparable to, or even outperforming, training on the full
joint dataset. We also show quantitatively and qualitatively that images
synthesized with our approach are significantly different from original
images, thus limiting the possibility to recover original data through
attacks.

Keywords: Federated learning · Generative models · Privacy
preserving

1 Introduction

The recent success of deep learning in the medical domain has shown it to be a
promising tool to support medical diagnosis and treatment, but large amounts of
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training data are still needed to build models able to achieve good accuracy and
generalization. However, medical institutions generally curate their own datasets
and keep them private for privacy concerns. Due to their small size, models
trained on private datasets tend to overfit, introduce biases and generalize badly
on other data sources that address the same task [27].

A viable solution for increasing the size and diversity of data is to employ
a collaborative learning strategy, where multiple distributed nodes support the
training of a model for a shared task [26]. Federated Learning [16,21], in par-
ticular, has emerged as a training paradigm where each node trains a copy of
a shared model on its private data and sends the local updates to a central
server, where model parameters are tuned based on aggregated local updates.
However, aggregating gradients or weights from multiple nodes does not deal
with the non-i.i.d. nature of distributed data. Furthermore, gradient integration
raises privacy issues as training data might be reconstructed, to a certain degree,
starting from the shared gradients as demonstrated in [6,30,31].

In this work, we propose a generative approach where each distributed node
generates, and shares, a synthetic version of its own data through manipula-
tion and aggregation of latent spaces learned by a Generative Adversarial Net-
work (GAN). In particular, our synthetic samples are drawn from the same
distribution as the original ones, but are designed to prevent the inclusion of
patient-specific visual patterns. Sharing the manipulated images, rather than
the generation model, prevents the reconstructions of real data through attacks
to the model and circumvents the gradient/weight aggregation problem.

We tested our approach on the task of tuberculosis classification from X-ray
images of two different datasets, namely, the Montgomery County X-ray Set and
Shenzhen Hospital X-ray Set [2,9,10]. Our experiments simulate a multi-node
multimodal data scenario, where each dataset is located on a different node.
It achieves 75% and 60% in classification accuracy on the Shenzhen and the
Montgomery datasets, respectively, whereas standard centralized training on the
dataset union (i.e., not in a federated learning setting) yields 78% and 43%. The
capabilities of our approach to synthesize images visually distant from the real
ones are measured quantitatively by evaluating LPIPS distance [29] between real
images and samples generated through latent space optimization on a standard
(non-privacy-preserving) GAN and by the proposed approach. Qualitatively, we
also show several examples of generated images with corresponding closest match
in the real dataset, demonstrating significant differences that prevent tracing
back to the original real distribution.

2 Related Work

Federated learning (FL) embraces a family of privacy-preserving distributed
learning strategies that allow nodes to keep training data private, while sup-
porting the creation of a shared model. Typically, a central server sends a model
to a set of client nodes; local model updates are aggregated by the server, which
sends the new model to the clients in an iterative process. In FedAvg [16], the
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server computes model averaging combining local stochastic gradient descent
updates of each client. FedProx [14] is a generalization and re-parametrization
of FedAvg proving theoretically convergence guarantee when training over non-
identical distributed data (statistical heterogeneity). FedMA [23] builds a shared
global in a layer-wise manner by matching and averaging hidden elements with
similar feature extraction signatures. All these methods attempt to train a cen-
tral model using the gradients gathered from multiple models trained on local
private data.

FL particularly suits medical field applications, where data privacy is a criti-
cal concern. Li et al. [15] present the first FL system for medical image analysis,
employing FedAvg and differential privacy [1] for brain tumor segmentation.
Roy et al. [20] also apply FL for whole-brain segmentation in MRI. Recently,
several other collaborative learning methods [4,5,18] have been proposed, espe-
cially because of the emergency need raised by the COVID-19 pandemic, in order
to harness multiple data sources to promptly react to emergency scenarios.

However, gradient aggregation does not seem to guarantee the required level
of data privacy, as it has been demonstrated that network inputs can be recovered
from gradient updates [6,24,31]. Differential privacy [1,8,13] attempts to reduce
this issue by obfuscating gradients through noise. Zhu et al. [31], for instance,
add Gaussian/Laplacian noise to gradients and compress the model with gradi-
ent pruning. However, adding noise to the gradients significantly compromises
model’s performance.

In this work, we tackle the problem of federated learning from a data-
perspective: rather than sharing weights/updates, which can be attacked, we
share a synthetic version of private data—generated through a GAN—that
retains visual content to support distributed training, but improves privacy by
hiding specific visual patterns of patients. GANs have been also employed in
federated learning regime, but always in the view of aggregating parameters to
create a general model. In GS-WGAN [3], a gradient-sanitized Wasserstein GAN
improves differential privacy, by carefully distorting gradient information in a
way that reduces loss of information and generates more informative samples.
Federated CycleGAN [22] is designed to perform unsupervised image translation;
however, they still share local gradients, which may introduce the above privacy
concerns. FedDPGAN [28] designs a distributed DPGAN [25] trained in a FL
framework, to train models for COVID-19 diagnosis from chest X-ray images,
without data sharing. In [19], the authors propose a framework to extend a large
family of GANs to a FL setting utilizing a centralized adversary.

3 Method

3.1 Overview

In our approach, shown in Fig. 1, a set of distributed nodes create synthetic
images and share them with a central node, where a model is trained using
the received data. Specifically, each node trains a GAN to transform its own
private dataset into a privacy-preserved one where patient information leak is
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minimized. The visual features of the privacy-preserved dataset still come from
the same distribution of the real private one (as per GAN training) in order to
support the training of the centralized model.

Although we do not perform a formal security analysis of our approach, for
the sake of readability we will refer to it as “privacy-preserving”, to distinguish it
from the cases where no precaution is taken to prevent patient information leak
in the sharing and learning process (referred to as “non privacy-preserving”).

Fig. 1. The proposed federated learning framework

3.2 Generative Adversarial Network

Generative Adversarial Networks (GANs) [7] consist of two networks, a generator
model and a discriminator model: the former is trained to generate realistic
images, while the latter is trained to distinguish between real and synthetic
samples. In the conditional settings, where the generation process is controlled
by a label to synthesize samples for a specific class, the two models are alternately
trained to minimize the following losses, respectively:

LD = Ex,y[log(D(x, y))] + Ez,y[log(1 − D(G(z, y), y))] (1)

LG = Ez,y[log(D(G(z, y), y))] (2)

where (x, y) is sampled from the real data distribution D, z is sampled from a
latent distribution Z (mapped by generator G to the real distribution for class
y) and D is the discriminator model that predicts the likelihood of the input
being real, given the target label. During training, the better D becomes at
recognizing fake samples, the more G has to improve its generation capabilities,
thus increasing the realism of synthetic data.

In this work, our GAN architecture is based on StyleGAN2 [12], where an
auxiliary network maps a class-conditioned latent vector z to an intermediate
latent vector w ∈ W, which helps to improve generation quality and simplifies
the projection of real images in D to the latent space W. Indeed, given a real
image x of class y, it is then possible to find an intermediate latent point ŵ such
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that G(ŵ) ≈ x, by optimizing the LPIPS distance loss [29] between x and G(ŵ)
with respect to ŵ, which measures the similarity of activations by a pre-trained
model. Of course, this projection property negatively affects the sought privacy
in FL, as the generated synthetic distribution may contain visual patterns highly
similar to those of the original samples.

3.3 Privacy-Preserving Aggregation

To address the privacy limitation of existing GAN methods, we propose a
Privacy-Preserving Aggregation strategy (shown in Fig. 2) injected in the GAN
training during data generation to encourage privacy.

Fig. 2. Privacy Preserving Aggregation: a) a generator G is trained for each node using
its own private dataset. Training images are then projected in the generator latent
space; b) projected latent vectors are clustered through spectral clustering, based on
pairwise LPIPS distance between corresponding images; c) linear interpolation among
cluster centroids produces new latent vectors, which are used to generate synthetic
samples that are sent to the central node.

Let Ŵ = {ŵ1, ŵ2, ..., ŵN} be a set of points obtained by projecting N images
onto the GAN latent space, for a given dataset class. We carry out spectral
clustering [17] based on LPIPS distances between the images corresponding to
Ŵ projections. Cluster centroids Ŵ c =

{
ŵc

1, ŵ
c
2, ..., ŵ

c
M

}
, representing latent

aggregations with similar visual features in terms of LPIPS distance, are then
employed as a starting point for data synthesis. Working with centroids allows
us to capture shared patterns between dataset samples while improving privacy,
since the resulting latent vectors cannot be traced back to specific patients. To
create enough synthetic samples to allow model’s training, we then carry out
an augmentation procedure based on linearly interpolating the Ŵ c centroids in
the latent space and generating training samples using points along the trajecto-
ries between them. This is also beneficial for increasing dataset variability, as it
allows to produce samples that combine patterns of groups of patients (e.g., inter-
polating clusters with lesions on left/right lung may produce synthetic images
with lesions on both lungs), leading to better generalization capabilities. Note
that clustering and interpolation are carried out independently for each dataset
class, by exploiting the conditional generation capabilities of the generator. This
ensures that sampled latent vectors are assigned a well-defined label, making the
corresponding synthetic images suitable for training the central node classifier.
Clusters with only one sample are discarded in the process.
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4 Experiments and Results

We test the proposed approach on the task of tuberculosis classification from
X-ray images in a non-i.i.d. federated learning setting, where different datasets
are used for each node, to simulate a more realistic training scenario. Each node
generates synthetic X-ray images by applying our aggregation approach on its
private dataset; images generated by each node are shared with a central node
and used to train a classification model.

4.1 Datasets and Training Procedure

We employ the Montgomery County X-ray Set and the Shenzhen Hospital X-
ray set1 [2,9,10]. The Montgomery Set contains 138 frontal chest X-ray images
(80 negatives and 58 positives), captured with a Eureka stationary machine
(CR) at 4020 × 4892 or 4892 × 4020 pixel resolution. The Shenzhen dataset was
collected using a Philips DR Digital Diagnostic system. It includes 662 frontal
chest X-ray images (326 negatives and 336 positives), with a variable resolution of
approximately 3000 × 3000 pixels. In our federated learning setting, each dataset
is associated to a node. We employ 80% of each dataset to train a GAN and
generate synthetic images using the proposed approach. The remaining 20% of
each dataset is used for testing the model trained on the central node. Test
labels are balanced: 65 positives and 65 negatives on the Shenzhen dataset, and
15 positives and 15 negatives on the Montgomery dataset.

We use StyleGAN2-ADA [11] for image generation on each node, because of
its suitability in low-data regimes and its intrinsic latent projection mechanism.
GANs are trained in a label-conditioned setting and yield a Fréchet inception
distance (FID) of 21.36 and 55.38 on the Shenzhen and Montgomery datasets,
respectively. Latent space projection is carried out as in [12] for 500 iterations.
Spectral clustering is carried out using 20 clusters on the Shenzhen Dataset and
10 on Montgomery one, due to the difference in sizes. Centroid interpolation
computes 9 intermediate points for each pair of centroids. The resulting synthetic
datasets include 1,730 samples per class on Shenzen and 415 samples per class
on Montgomery. On the central node, we use a ResNet-50 classifier, trained by
minimizing a cross-entropy loss with mini-batch gradient descent using the Adam
optimizer for a total of 1,000 epochs; mini-batch size is set to 64 and the learning
rate is 10−6. All images are resized to 256 × 256, and data augmentation is carried
out with random horizontal flip and random 90-degree rotations. Experiments
are performed on an NVIDIA GeForce RTX 3090, using PyTorch.

4.2 Experimental Results

We evaluate the performance of our approach by considering three different data
usage scenarios:

1 This dataset was released by National Library of Medicine, National Institute Of
health, Bethesda, USA.
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1. Real data: the central server trains a classifier on the original joint dataset
using images of all nodes (this is the standard supervised centralized setting).

2. Synthetic (non privacy-preserving) data: each node generates a syn-
thetic training set by sampling from a GAN trained on the real data; synthetic
samples are then used to train on the central server. No privacy-preserving
mechanism is enforced: sampled images are drawn from the original distribu-
tion as learned by the GAN.

3. Synthetic privacy-preserving data: the training set for the central server
is created by employing our privacy-preserving generation procedure (see
Sect. 3.3).

Table 1 reports the test accuracy on each dataset under the above three sce-
narios. On the Shenzhen dataset, our approach is close to centralized training
using all data, respectively 0.75 and 0.78 classification accuracy. Interestingly,
the non-privacy-preserving synthetic setting achieves even higher performance,
which is explained by the larger number of training samples (662 real samples
in Shenzhen, compared to 3,460 synthetic samples), confirming that sample syn-
thesis helps making up for data scarcity—although in this case no precautions
are taken to improve privacy. This phenomenon is even more evident on the
smaller Montgomery dataset (138 samples), where the usage of synthetic data
yields significantly improved accuracy (0.43 on the original dataset vs 0.60 on
the synthetic one).

Table 1. Classification accuracy on the test set of each dataset, in different training
scenarios.

Dataset Training data Accuracy

Shenzhen Real 0.78

Synthetic (non privacy-preserving) 0.82

Synthetic (privacy-preserving) 0.75

Montgomery Real 0.43

Synthetic (non privacy-preserving) 0.60

Synthetic (privacy-preserving) 0.60

Privacy-preserving capabilities of the proposed approach are measured quan-
titatively by computing the LPIPS distance between real training images and a)
their projected counterparts using StyleGAN2, and b) the most similar samples
from the pool of images generated by our strategy. Ideally, we would expect
that, when using a standard StyleGAN2 network, the latent projection pro-
cedure should be able to recover an image that the model has used at train-
ing time—which is undesirable, since knowledge of the model would allow an
attacker to reconstruct original samples; we also expect that images synthesized
through generative aggregation should be significantly dissimilar to any real sam-
ple. Indeed, LPIPS distance histograms in Fig. 3 show that a distribution shift
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can be observed between the two sets of measured distances: latent space projec-
tion of real images tends to produce samples with significantly smaller distances
than those obtained with most similar synthetic images generated by our app-
roach. This effect can be also appreciated qualitatively in the samples reported
in Fig. 4, showing six images randomly sampled from the Shenzhen Dataset (top
row) compared to their projection in the generator latent space (middle row)
and the closest image in the aggregated dataset (bottom row).

Fig. 3. In red, LPIPS distance histogram between real images and the corresponding
images obtained through latent space projection. In blue, LPIPS distance histogram
between real images and the closest images generated with the proposed approach.
(Color figure online)

Fig. 4. Top: real images from Shenzhen Dataset; middle: images generated by latent
projection; bottom: most similar synthetic images obtained with the proposed method.

5 Conclusion

In this study we propose a synthetic data aggregation approach as an alterna-
tive to classic federated learning with gradient aggregation, which is subject to
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privacy concerns due to the risk of reconstructing the original inputs. Rather
than training a central model by aggregating gradients from individual nodes,
we propose to generate a synthetic dataset for each node and use the union of
these datasets to train the central model. We tested our approach in a realistic
scenario, using two X-Rays datasets for Tuberculosis classification, simulating a
system with two nodes and non-i.i.d. data. The results demonstrated the validity
of our approach, which obtains comparable performance to those obtained when
training on the union of all datasets. Moreover, we showed, both quantitatively
and qualitatively, that the generated images exhibit visual features typical of the
original data, while being significantly different from any actual real image, thus
preventing to trace them back to individual patients. Still, this is a preliminary
work: future developments will investigate its validity in the presence of more
nodes or in the presence of i.i.d. distributions.
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Abstract. MRI translation models learn a mapping from an acquired
source contrast to an unavailable target contrast. Collaboration between
institutes is essential to train translation models that can generalize
across diverse datasets. That said, aggregating all imaging data and
training a centralized model poses privacy problems. Recently, federated
learning (FL) has emerged as a collaboration framework that enables
decentralized training to avoid sharing of imaging data. However, FL-
trained translation models can deteriorate by the inherent heterogeneity
in the distribution of MRI data. To improve reliability against domain
shifts, here we introduce a novel specificity-preserving FL method for
MRI contrast translation. The proposed approach is based on an adver-
sarial model that adaptively normalizes the feature maps across the gen-
erator based on site-specific latent variables. Comprehensive FL experi-
ments were conducted on multi-site datasets to show the effectiveness of
the proposed approach against prior federated methods in MRI contrast
translation.

Keywords: Federated learning · Site-specificity · MRI · Translation ·
Heterogeneity

1 Introduction

Multi-contrast MRI enables non-invasive diagnostic assessment of anatomy and
accumulates complementary information via examination of multiple tissue con-
trasts [2,26]. Yet, multi-contrast protocols have time and economic costs that can
prevent collection of all desired contrasts in an MRI exam [18,34]. This limita-
tion can be addressed by contrast translation, which is the imputation of missing
sequences in a protocol from the acquired sequences [15]. Deep models have made
remarkable progress in this area, enabling centralized models to significantly
improve MRI translation performance. [8,36,39]. Unfortunately, learning gener-
alizable models for medical imaging tasks requires training on diverse datasets.
However, compiling such datasets at a central institution would inevitably com-
promise patient privacy [17].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. SPFL-Trans is a decentralized contrast translation method based on federated
learning of a conditional adversarial model. AdaIN layers along with site-specific latents
produced by a subnetwork effectively modulate feature maps in order to cope with data
heterogeneity across different sites.

Federated learning (FL) is a powerful framework to address this major
limitation based on decentralized model training across multiple institutions
[9,21,23,29,30,33]. In this framework, a server aggregates locally optimized
models to compute a shared global model [24,35]. Aggregated models can
be impaired by the heterogeneity in the data distribution naturally evident
for multi-institutional datasets [29,32] due to different scanners, acquisition
parameters etc. Previous studies on FL-based medical imaging have introduced
several prominent approaches to cope with data heterogeneity in segmenta-
tion [5,22,23,27,31,38], classification [3,22,40], and reconstruction [10,11] tasks.
However, influence of data heterogeneity on FL-based MRI contrast translation
remains understudied.

Here, we introduce a novel Specificity-Preserving Federated Learning method
for MRI Translation (SPFL-Trans). In contrast to previous approaches, the pro-
posed method embodies a site-aware architecture that effectively addresses the
inherent data heterogeneity in multi-institutional datasets. SPFL-Trans is based
on a generator backbone equipped with Adaptive Instance Normalization layers
(AdaIN) to adaptively tune the statistics of feature maps for improved general-
ization across sites. FL experiments conducted on multi-contrast MRI datasets
indicate the superiority of the proposed approach against prior FL-based trans-
lation methods.
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2 Theory

2.1 MRI Translation with Adversarial Models

Conditional generative adversarial networks (cGANs) have emerged as a gold-
standard for MRI contrast translation in recent years due to their exceptional
recovery for high-frequency textural details in medical images [4,7,8,20]. cGANs
perform adversarial learning via a pair of generator (G) and discriminator (D)
subnetworks [8]. G predicts a synthetic target-contrast image (x̂t) given as input
an acquired source-contrast image (xs), whereas the D tries to distinguish actual
(xt) and synthetic target-contrast images. To learn image translation, cGANs are
typically trained to minimize an aggregate loss function composed of adversarial
and pixel-wise terms:

L =Exs,xt
[−(D(xs, xt) − 1)2 − D(xs, G(xs))2 + λpix||xt − G(xs)||1], (1)

where E denotes expectation, and λpix is the relative weighing term for the
pixel-wise loss.

2.2 Specificity-Preserving Federated Learning of MRI Translation

Network Architecture. The proposed model is a conditional adversarial archi-
tecture that takes as input the source image along with site-specifying informa-
tion (Fig. 1). The first component of the generator is a latent producing block
(LPS) to form site-specific latents wk given one-hot encoding of site index
vk ∈ R

K :
wk = LPS(vk) (2)

The generator architecture is inspired by the ResNet model [8,13] with a residual
bottleneck between a convolutional encoder and a convolutional decoder. To
mitigate heterogeneity reflected in the statistics of derived feature maps, an
AdaIN layer is inserted after each convolutional layer in the encoder/decoder,
and each residual block in the bottleneck. At the output of the ith layer of
the generator, the mean and standard deviation of output feature maps gi ∈
R

Fi,Hi,Wi are modulated. To do this, site-specific latents wk are first transformed
into scale and bias vectors γi, βi ∈ R

Fi :

γi = Qγ
i wk + bγ

i ; βi = Qβ
i wk + bβ

i (3)

where Qγ,β
i ∈ R

Fi,J and bγ,β
i ∈ R

Fi are learnable linear transformations. The
AdaIN layer then modulates the first- and second-order statistics of each channel
[14]:

g
′
i = AdaIN(gi, γi, βi) =

⎡
⎢⎢⎣

γi[1] gi[1]−μ(gi[1])1
σ(gj [1])

+ βi[1]1

γi[2] gi[2]−μ(gi[2])1
σ(gj [2])

+ βi[2]1
...

⎤
⎥⎥⎦ (4)

where 1 ∈ R
Hj ,Wj is a matrix of ones, μ, σ compute the mean and standard

deviation of individual channels gi[j] ∈ R
Hi,Wi , and g

′
i is the input to the next

network layer i + 1.
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Algorithm 1: Training of SPFL-Trans
Data: {D1, · · · , DK} from K sites
Input: P : number of communication rounds
α1, · · · , αK : averaging weights for K sites
G: global generator with parameters θG

D1, · · · , DK : local discriminators with θD1 , · · · , θDK

Opt(): optimizer for parameter updates
Output: θ∗

G Optimized global generator
1 Randomly initialize θG and θD1 , · · · , θDK

2 for p = 1 to P do
3 for k = 1 to K do
4 for one epoch do

5 θk
G ← θG // Broadcast global generators to the sites

6 Calculate ∇θk
G

Lk(Dk) and ∇θk
D

Lk(Dk) based on Eq. 1

7 θk
G ← θk

G − Opt(∇θk
G

Lk(Dk)); θk
D ← θk

D − Opt(∇θk
D

Lk(Dk))

8 θG =
∑K

k=1 αkθk
G, // Aggregate locally trained generators

Federated Training. To train SPFL-Trans, a decentralized learning proce-
dure takes place for a total of P communication rounds between the FL server
and individual sites (see Fig. 1, Algorithm 1) [25]. Throughout the procedure,
generators are shared across sites, though discriminators are kept unshared for
enhanced privacy preservation [12,28]. During local training, models are opti-
mized on the training sets from individual sites according to the aggregate cGAN
loss function as expressed in Eq. 1.

3 Methods

3.1 Datasets

Demonstrations were performed on four public datasets taken to represent four
different sites in the FL framework: IXI (https://brain-development.org/ixi-
dataset/), BRATS [1], MIDAS [6], and OASIS [19]. Multi-contrast brain MRI
data including T1- and T2-weighted images were analyzed. A total of 53 healthy
subjects were selected from the IXI dataset, and data were split into 25 training,
10 validation, 18 test subjects. A total of 55 glioma patients were selected from
the BRATS dataset, and data were split into 25 training, 10 validation, 20 test
subjects. A total of 66 healthy subjects were selected from the MIDAS dataset,
and data were split into 48 training, 5 validation, 13 test subjects. Lastly, a total
of 48 healthy subjects were selected from the OASIS dataset, and data were split
into 22 training, 9 validation, 17 test subjects. In each subject, nearly 100 axial
cross-sections centrally located within the volume were included.

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
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Table 1. Performance of centralized and federated translation models in T1 → T2 and
T2 → T1 tasks. Higher PSNR, SSIM scores and lower FID score indicate improved
performance. Bold font indicates the top performing federated model for each task.

IXI BRATS MIDAS OASIS

T1 → T2 T2 → T1 T1 → T2 T2 → T1 T1 → T2 T2 → T1 T1 → T2 T2 → T1

Centralized PSNR 28.6 ± 1.3 27.9 ± 1.1 26.1 ± 0.9 24.5 ± 1.9 28.1 ± 0.5 25.9 ± 1.2 25.2 ± 0.6 21.2 ± 0.8

SSIM 94.3 ± 1.3 94.4 ± 1.2 93.0 ± 1.1 92.5 ± 1.1 91.9 ± 0.9 87.0 ± 2.1 83.7 ± 2.4 76.8 ± 1.9

FID 7.4 27.3 24.9 14.2 9.7 11.9 18.1 18.6

SPFL-Trans PSNR 28.0±1.4 27.6 ± 1.0 26.0 ± 0.9 24.7 ± 1.6 27.9 ± 0.5 26.0 ± 1.1 24.7 ± 0.5 20.9 ± 0.7

SSIM 94.1 ± 1.2 94.1 ± 1.2 92.8 ± 1.1 92.5 ± 1.0 91.6 ± 0.9 86.4 ± 2.1 82.1 ± 2.0 75.0 ± 2.6

FID 9.0 31.3 26.8 16.9 9.4 11.1 32.0 24.5

FedGAN PSNR 26.6 ± 1.1 26.4 ± 0.8 25.2 ± 1.2 22.9 ± 0.7 27.0 ± 0.5 24.6 ± 0.9 21.7 ± 0.5 20.8 ± 1.4

SSIM 91.8 ± 1.7 92.8 ± 1.1 91.1 ± 1.3 88.8 ± 1.0 89.6 ± 1.4 81.5 ± 2.2 67.7 ± 3.5 74.3 ± 3.5

FID 14.7 39.2 45.2 47.0 13.3 20.6 43.7 37.7

FedMRI PSNR 27.5 ± 1.0 27.4 ± 1.1 25.7 ± 0.7 24.7 ± 1.2 27.6 ± 0.6 25.9 ± 1.2 23.6 ± 0.5 20.7 ± 1.0

SSIM 93.6 ± 1.3 94.0 ± 1.2 92.6 ± 1.1 91.6 ± 0.9 91.3 ± 1.0 85.4 ± 2.1 80.6 ± 2.1 72.1 ± 2.6

FID 11.2 35.6 34.9 19.4 12.2 12.3 33.2 27.2

FedMedGAN PSNR 25.6 ± 1.2 24.9 ± 0.7 24.7 ± 1.2 20.9 ± 0.8 26.8 ± 0.5 22.5 ± 0.6 21.5 ± 0.4 20.5 ± 1.3

SSIM 91.7 ± 1.8 91.6 ± 1.2 90.8 ± 1.3 86.5 ± 0.8 89.9 ± 0.9 82.3 ± 1.9 62.9 ± 3.8 72.6 ± 3.5

FID 19.8 48.3 36.1 58.6 16.8 84.8 59.1 35.3

3.2 Competing Methods

We demonstrated the proposed approach against a centrally-trained translation
model [8], and FL-based translation models including FedGAN [28], FedMRI [11]
and FedMedGAN [37]. The centralized model and FedGAN was implemented
with matching architecture to the proposed model, except for the AdaIN layers
that were excluded. FedMRI was implemented with a U-Net backbone, where
encoders were shared while decoders were kept site-specific as originally proposed
in [11]. The loss function of the proposed model was adopted for fair comparison.
FedMedGAN was implemented with a U-Net backbone as originally proposed in
[37]. However, the loss function of the proposed model was used in FedMedGAN
as opposed to cycle-consistency loss for fair comparison in the paired translation
tasks reported here. FL-based models followed the same federated optimization
procedure as the proposed approach. Hyperparameter selection was performed
for each model in order to maximize the performance in the validation set. Shared
generators across sites and site-specific local discriminators were adopted for all
FL models considered here.

3.3 Experiments

SPFL-Trans was implemented with an LPS with 6 dense layers to produce
latent variables. The encoder in the generator had three convolutional layers of
kernel size 7, 3, 3. The bottleneck contained 9 residual blocks of kernel size 3. The
decoder had three convolutional layers of kernel size 3, 3, 7. Discriminators for
all competing methods were based on the PatchGAN architecture [16]. Network
weights were learned via the Adam optimizer run at β1 = 0.5 and β2 = 0.999.
Training was continued for P = 150 rounds. A fixed learning rate was selected as
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Fig. 2. Synthesized images in IXI and BRATS for the T2 → T1 task. Results are
shown for all competing methods, and they are displayed along with the source images
and the reference target images.

0.0002 during the first 75 rounds, and it was linearly decayed to 0 during the last
75 rounds. The relative weight of the pixel-wise loss was selected as λpix = 100.
Modeling was performed via Pytorch framework.

We considered learning two individual one-to-one translation tasks
(T1 → T2, T2 → T1 where the mapping is denoted as source → target)
in an FL setup with 4 sites. Translation performance was evaluated via PSNR,
SSIM, and Fretchet Inception Distance (FID) metrics. PSNR and SSIM were
measured between synthetic and reference target-contrast images for individual
cross-sections, and averaged across the volume. Results were reported as mean
and standard deviation across test subjects within each individual dataset.
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Fig. 3. Synthesized images in MIDAS and OASIS for the T1 → T2 task. Results are
shown for all competing methods, and they are displayed along with the source images
and the reference target images.

4 Results

To demonstrate the effectiveness of the proposed approach in federated learn-
ing of multi-contrast MRI translation, we compared it against state-of-the-art
FL-based translation models and a centrally-trained model as a performance
baseline. Quantitative performance metrics for the competing methods in each
dataset and in each task are listed in Table 1. The proposed approach yields
the highest performance across tasks and across sites. On average, SPFL-Trans
achieves 1.3 dB higher PSNR, 3.3 % higher SSIM, and 13.5 point lower FID over
competing methods. Representative target images from all competing methods
are shown in Fig. 3 for the T1 → T2 task in MIDAS and OASIS datasets.
Representative results are shown in Fig. 2 for the T2 → T1 task in IXI and
BRATS datasets. SPFL-Trans yields superior translation performance in regions
where competing models have inaccurate tissue depiction, especially near gray
matter and pathology. Overall, SPFL-Trans generates images with fewer arti-
facts and lower noise levels compared to baselines. These quantitative and qual-
itative assessments indicate that site-specific modulation of feature statistics in
SPFL-Trans enhances translation performance compared to competing federated
models.

We also conducted an ablation study to investigate the benefits of the sta-
tistical modulation mechanism achieved by AdaIN layers in federated learning
of MRI synthesis. To do this, we compared SPFL-Trans with an ablated variant
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where LPS and AdaIN layers were jointly removed (w/o LPS and AdaIN) from
the generator. Quantitative performance metrics for SPFL-Trans and w/o LPS
and AdaIN models are listed in Table 2. The proposed method outperforms the
ablated variant across all sites and tasks except for SSIM. These results sig-
nals the performance gain brought by the LPS subnetwork and AdaIN layers in
SPFL-Trans.

Table 2. Performance of SPFL-Trans and a variant ablated of LPS and AdaIN layers
in T1 → T2 and T2 → T1 tasks. Higher PSNR, SSIM scores and lower FID score
indicate improved performance. Bold font indicates the top performing model for each
task.

IXI BRATS MIDAS OASIS

T1 → T2 T2 → T1 T1 → T2 T2 → T1 T1 → T2 T2 → T1 T1 → T2 T2 → T1

SPFL-Trans PSNR 28.0±1.4 27.6 ± 1.0 26.0 ± 0.9 24.7 ± 1.6 27.9 ± 0.5 26.0 ± 1.1 24.7 ± 0.5 20.9 ± 0.7

SSIM 94.1 ± 1.2 94.1 ± 1.2 92.8 ± 1.1 92.5 ± 1.0 91.6 ± 0.9 86.4 ± 2.1 82.1 ± 2.0 75.0 ± 2.6

FID 9.0 31.3 26.8 16.9 9.4 11.1 32.0 24.5

w.o. LPS and AdaIN PSNR 26.4 ± 1.2 26.5 ± 0.8 25.6 ± 0.9 23.2 ± 0.9 27.1 ± 0.4 24.3 ± 0.8 22.0 ± 0.5 20.8 ± 1.3

SSIM 90.9 ± 2.1 93.1 ± 1.3 90.1 ± 1.6 89.5 ± 0.9 89.6 ± 1.3 80.9 ± 2.4 65.3 ± 3.9 77.2 ± 3.0

FID 14.8 43.2 42.4 48.0 12.9 19.8 43.6 39.3

5 Discussion and Conclusion

Federated MRI translation involves multi-site imaging data collected under dif-
ferent settings, so it has to operate reliably under distributional heterogeneity
[22]. In this context, the proposed approach offers a site specificity-preserving
global MRI translation model for multi-institutional collaborations. Experiments
on public multi-site brain MRI data demonstrate that SPFL-Trans offers com-
petitive performance to a centralized baseline model, while significantly out-
performing alternative federated baselines both visually and quantitatively. Our
results suggest that SPFL-Trans can improve generalizability and flexibility in
multi-site collaborations by enabling training on imaging data from diverse sites
and protocols. Improved generalization against domain shifts in the distribution
of MRI data renders SPFL-Trans a promising candidate for multi-site training
of MRI contrast translation models. In the future, the proposed approach might
also be adopted for cross-modal image translation tasks.
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Abstract. Differential privacy (DP) has arisen as the gold standard
in protecting an individual’s privacy in datasets by adding calibrated
noise to each data sample. While the application to categorical data is
straightforward, its usability in the context of images has been limited.
Contrary to categorical data the meaning of an image is inherent in the
spatial correlation of neighboring pixels making the simple application
of noise infeasible. Invertible Neural Networks (INN) have shown excel-
lent generative performance while still providing the ability to quantify
the exact likelihood. Their principle is based on transforming a com-
plicated distribution into a simple one e.g. an image into a spherical
Gaussian. We hypothesize that adding noise to the latent space of an
INN can enable differentially private image modification. Manipulation
of the latent space leads to a modified image while preserving important
details. Further, by conditioning the INN on meta-data provided with the
dataset we aim at leaving dimensions important for downstream tasks
like classification untouched while altering other parts that potentially
contain identifying information. We term our method content-aware dif-
ferential privacy (CADP). We conduct experiments on publicly available
benchmarking datasets as well as dedicated medical ones. In addition, we
show the generalizability of our method to categorical data. The source
code is publicly available at https://github.com/Cardio-AI/CADP.
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1 Introduction

The predictive performances of algorithms especially neural networks are heav-
ily dependent on the amount of data they are trained with. In contrast, privacy
regulations aiming at hiding individual sensitive information hinder the appli-
cation of machine learning tools on heterogeneous multi-center data. Since it is
not our objective to argue about the benefits of these privacy regulations, we
strive to find methods that allow publishing of sensitive data simultaneously to
maintaining individual’s privacy. While such methods are trivial to implement
for categorical data (e.g. a data base with entries for sex, age, gender, etc.) com-
plex data such as images pose a difficult objective. Contrary to categorical data
images obtain their meaning by the spatial relationship of individual pixels. Per-
turbing pixels by adding random noise would not hinder a human or a machine
observer from re-identifying the image’s content; recognizing people by their face
being the most obvious example. Older techniques rely on blurring or pixelation
of people’s faces, e.g. Google Street View [11].

Training of machine learning models with such samples would tremendously
decrease their predictive performance because a great deal of features are lost in
the process which the model never sees (see Fig. 1). This is of utmost importance
in the medical domain as we must ensure the model learns on valid features for
detecting pathologies.

We hypothesize that the tools of machine learning namely neural networks
based on Normalizing Flows (NF) known as Invertible Neural Networks (INN)
may be used to address the privacy issue when dealing with images and medical
ones in particular [2]. Our contribution is three-fold:

– First, we provide mathematically grounded evidence that INNs provide a
valuable tool to obtain ε-differentially private images that exhibit all features
of natural images (e.g. sharpness or authenticity). ε quantifies the probability
of data leakage, the lower ε the more privacy is guaranteed.

(a) GT (b) noise (c) blur (d) mosaic (e) CADP = 10 (f) CADP = 3 (g) CADP = 1

Fig. 1. Example of face anonymization with Differential Privacy [17]. Compared to
conventional approaches based on noise (a), blur (b), and mosaic (d) our content-aware
approach (e)–(g) changes the identity of the image. For ε = 10 (e) one can still see
strong similarities between reconstruction and ground truth as e.g. the lock of hair on
the forehead. For small ε the similarity decreases as desired to disable re-identification.
However, if the subsequent task was to classify the eye color, this would still be possible
with the CADP results from (e)-(g), since we can condition the transformation and
therefore leave important aspects unaltered.
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– Second, by conditioning our network on meta-data provided in conjunction
with the dataset (e.g. pathologies) the INN is able to automatically extract
dimensions most likely corresponding to classifying those meta variables. We
assume these features merit attention for downstream tasks and, thus, should
be modified as little as possible self-evident within the bounds of desired
privacy. We term this method Content-Aware DP (CADP).

– Third, we show the generalizability of our method not just to images but
also to categorical data making it a universal tool for obtaining differentially
private data.

We focus on the task of protecting images in particular, or data in general
in any context, detached from their intended usage.

2 Related Work

Differentially Private Invertible Neural Networks. In general each learning based
algorithm can be trained in a privacy preserving fashion by using differentially
private stochastic gradient descent (DP-SGD) [1]. DP-SGD achieves differen-
tially private model training by clipping the per-sample gradient and adding
calibrated Gaussian noise proportional to the desired level of privacy. Therefore,
DP-SGD tweaks the model parameters instead of the input to obtain privacy by
e.g. ensuring no inputs might be reconstructed from the model parameters [23].

One can distinguish between input-, output-, and algorithm-perturbation
to achieve DP. When the output of the algorithm or the algorithm itself is
perturbed as e.g. in DP-SGD the analysis is performed on the non-private data,
where one has to be concerned about the composition property (ε degrades over
multiple analyses of the dataset). Further, since one cannot release the data the
possibilities for analysis are limited. We circumvent above mentioned limitations
by performing input-perturbation and use the robustness of DP against post-
processing (any further processing of differential private data retains privacy
guarantees).

Fig. 2. Content-aware differential privacy (CADP) pipeline. After training the INN to
convergence we feed each sample x with the corresponding condition c(y) to obtain
our latent representation z. After clipping its L1-norm to the desired sensitivity s,
Laplacian distributed noise Lap(0, s/ε) is added to obtain ε-DP. The perturbed z̃ is fed
in reverse to obtain the differentially private image x̃.
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Obviously, INNs can be trained with DP-SGD as well [24]. However, after
training one can only use the INN in a generative manner by sampling the
latent space z ∼ N (0; I) and obtain data samples that have no relation to in
reality occuring data samples and are therefore artificial. Thus, it does not allow
for perturbation of the real data samples intended to be published or used for
model training. Even worse, using artificial data is also not completely secure
against attacks [4] and may even lead to wrong pathologies in generated images
[5,15].

Differential Privacy for Images. The most prominent application in the litera-
ture about differentially private images deals with faces, as this is the most vivid
example. Older approaches rely on pixeling, blurring, obfuscation, or inpainting
[10], but this has been proven as ineffective against deep learning based recogniz-
ers [18,19]. Another promising path is the generation of fully artificial data with
e.g. Generative Adversarial Networks (GAN) with the known drawbacks men-
tioned above [6,21,24,25]. Ziller et al. claimed to having applied DP to medical
images. [27]. However, their approach also only involves training a conventional
CNN on medical images with DP-SGD. We take a different path and alter the
content of the input image in a private manner as we want to preserve as much
information as possible and only alter dimensions that are not identification
related. To the best of our knowledge DP has never been applied directly to the
content of medical images before.

3 Methods

3.1 (Conditional) Invertible Neural Networks

INNs deal with the approximation of a complex, unobservable distribution p(x)
by a simpler tractable prior q(z), usually a spherical multivariate Gaussian. Let
X =

{
x(1), ...,x(n)

}
be n observed i.i.d. samples from p(x). The objective is to

approximate p(x) via a model fθ consisting of a series of K bijective functions
fθ = f1 � ... � fK parameterized fully by θ transforming q(z) = N (0; I) into
p(x) and vice versa (fθ (x) = z ←→ f−1

θ (z) = x).
Such a model can efficiently be used in a generative manner to sample x ∼ p

by first sampling z ∼ N (0; I) and subsequently transforming the sample as
x = fθ (z).

Since fθ exhibits invertibility, exact likelihood evaluation becomes tractable
by utilizing the change of variables formula [7,8].

log p(x) = log q
(
f−1

θ (z)
)

+ log
∣
∣
∣
∣det

(
∂f−1

θ (z)
∂x

)∣
∣
∣
∣ (1)

An isotropic Gaussian is usually chosen as prior. Since its covariance matrix is
diagonal, components are independent. With INNs sharp image details can be
obtained, while simultaneously allowing to modify independent components of
the image in latent space [14].
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We build on the foundations laid by Ardizzone et al., who incorporated con-
ditions by e.g. concatenation of class labels to the input [3]. This enables the
INN to implicitly learn the meta-data dependent distribution in latent space. In
the reverse pass we provide the label we would like to obtain, e.g. a pathology,
and the INN generates an altered version of the original image that still exhibits
the desired pathology (fθ (x, c) = z ←→ f−1

θ (z, c) = x).

3.2 Content-Aware Differential Privacy

Being termed the gold standard in obscuring data sample sensitive information,
DP provides a mathematically grounded, quantifiable measure of leaked infor-
mation while simultaneously being applicable in a simple manner [26]. From a
high-level perspective it guarantees that changing one value in the database (X
and X ′) will have only a small effect on the model prediction [9].

Pr [M(X ) ∈ S] ≤ exp(ε)Pr [M(X ′) ∈ S] , (2)

where M denotes a randomized mechanism and S all sets of outputs. The closer
the two probabilities are, the less information is leaked (small ε). DP is usually
obtained by perturbing data with calibrated noise proportional to the function’s
f (L1-norm) sensitivity on dataset X , which is the maximum change in the
function’s value by changing one data point. To achieve pure ε-DP the Laplace
mechanism is commonly used.

s = max
X ,X ′

||f(X ) − f(X ′)||1 , (3) M(X ) = f(X ) + Lap
(s

ε

)
. (4)

After training an INN to convergence i.e. fθ (X , C) ∼ N (0, I), each image and
label (xi,yi) ∈ X with corresponding condition ci(yi) is forwarded through the
network (see Fig. 2). The resulting latent space fθ (xi, ci(yi)) = zi is modified
in a differentially private manner by sampling from a Laplace distribution with
standard deviation determined by the sensitivity s and the desired ε. We clip
our sensitivity by dividing each zi by its L1-norm (Algorithm 1) [1]. Since Z
is learned to be an isotropic Gaussian each component is independent and can,
thus, be modified individually. INNs can trivially be expanded to be trained on
categorical data as well, making our method a general technique for applying
DP on data.

Theorem 1 (ε-Content-Aware-DP Mechanism). For an image x ∈ X
there exists a mechanism MCA that maps x to its differentially private counter-
part x̃ ∈ X . We say MCA satisfies ε-DP, if and only if for all x,x′ ∈ X

MCA = f−1
θ [fθ (x) + (l1, ..., lk)] = f−1

θ [z + (l1, ..., lk)] = f−1
θ [z̃] , (5)

where fθ denotes a function that maps x to a latent vector z ∈ Z and by reverse
pass f−1

θ maps z to x. z̃ = z + (l1, ..., lk) denotes the ε-DP perturbed version of
z with li i.i.d. random variables drawn from Lap (s/ε).
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Proof. Let x ∈ R|X | and x′ ∈ R|X | be such that ||x − x′||1 ≤ 1, and
g(x) = f−1

θ (fθ (x)) be some function g : R|X | → R|Z| → R|X |. We only con-
sider functions that are volume preserving meaning their Jacobian determinant is
equal to one (|det (∂fθ (x)/∂z)| = 1). Let px denote the probability density func-
tion of MCA(x, g, ε), and px′ of MCA(x′, g, ε). We assume the distance between
points is similar in X and Z as shown by [14]. We compare the two at some
arbitrary point t ∈ R|Z|

px(t)
px′(t)

=
k∏

i=1

(
exp

(− ε
s |g(x) − f−1

θ (t)|)

exp
(− ε

s |g(x′) − f−1
θ (t)|)

)

=
k∏

i=1

(
exp

(− ε
s |f−1

θ (fθ (x) − t) |)

exp
(− ε

s |f−1
θ (fθ (x′) − t) |)

)

=
k∏

i=1

(
exp− ε

s
|f−1

θ (zx − t) − f−1
θ (zx′ − t) |

)

=
k∏

i=1

(
exp− ε

s
|f−1

θ (zx − zx′) |
)

≤
k∏

i=1

exp
(

−ε|zx − zx′ |
s

)
= exp

(
ε||zx − zx′ ||1

s

)

≤ exp(ε),
(6)

where the first inequality follows from the triangle inequality, and the last follows
from the definition of sensitivity and ||x − x′||1 ≤ 1. px(t)

px′ (t) ≥ exp(−ε) follows by
symmetry.

4 Experiments

We apply our approach for content-aware differential privacy to several publicly
available datasets to showcase its generalizability. In each case we first train the
INN on the training partition and subsequently train a classifier on the differen-
tially private data. Note that our goal is not to reach as high as possible predic-
tive performance but to close the gap between original and differentially private
training. To exemplify the principle of content-aware DP we use the MNIST
dataset, since the effect of transformations in latent space is obvious [16]. Next,
we use two dedicated medical datasets, the first being a collection of retinal
optical coherence tomography (OCT) scans with four classes (choroidal neovas-
cularization (CNV), diabetic macular edema (DME), drusen, and healthy) [12]
and the second being a series of chest x-ray scans with healthy and pneumonic
patients [12], which contain more complicated and indistinct transformations.

Since most works in adding privacy to images deal with the prototype exam-
ple of identifiability of faces, we also apply our approach to the CelebA Faces
dataset (see Fig. 1) [17]. After having investigated our method on image data,
we expand it to categorical data i.e. diabetes dataset from scikit-learn [20].

For each dataset we train a separete INN with convolutional subnetworks,
with depth (number of downsampling operations) dependent on the image res-
olution. We chose d = 2 for MNIST (28 × 28), d = 4 for OCT and chest x-ray
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Fig. 3. Differentially private reconstruction of
MNIST with different ε and s = ε/2.
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Fig. 4. Accuracy of classifier on different
datasets with different ε and s = min(ε/2, 4).
Further, we trained the same model with DP-
SGD [1]. Training/testing is performed on
either original (o) or CADP altered (p) data.

Algorithm 1. CADP
Require: Samples from training

set X = {(x1,y1), ..., (xN ,yN )}
with corresponding conditions
C = {c1(y1), ..., cN (yN )}, INN
fθ trained to convergence s.t.
fθ (X ) = Z ∼ N (0, I), sensitivity
s, epsilon ε
for (xi,yi) ∈ X and ci(yi) ∈ C
do

Forward pass
zi ← fθ (xi, ci(yi))
Clip norm of zi

zi ← s · zi
||zi||1

Add calibrated noise
z̃i ← zi + Lap

(
s
ε

)

Reverse Pass
x̃i ← f−1

θ (x̃i, ci(yi))
end for

Output:
X̃ = {(x̃1,y1), ..., (x̃N ,yN )}

(128 × 128), and d = 6 for CelebA (3 × 128 × 128). As coupling block we use
the volume preserving GIN (general incompressible-flow) [22] for MNIST and
diabetes data, and Glow (generative flow) [14] for the other, more complicated
datasets. After having trained an INN to convergence we train a classifier with
convolutional blocks and two linear layers on the differentially private data. Test-
ing is performed on original data to investigate the amount of true features the
model learns. We believe that the performance of the classifier acts as an implicit
benchmark to make sure the INN not only reconstructs conditional noise. It is
common practice for all works dealing with DP algorithms to be compared to
the non-private benchmark. The goal must be to close the still existing gap to
incentivize differentially private training by eliminating all its shortcomings. For
comparison we also train the same classifier with DP-SGD, the current gold
standard [1]. All experiments were performed on a NVIDIA Titan RTX.

5 Results

The results are presented in a two-fold manner. We first show the differentially
private adjusted images per class for each dataset with different levels of ε.
Second, we show the reached accuracy of the classifier on the original, not-
CADP altered test data chunk when trained on the original, on the CADP
altered dataset, or with DP-SGD.
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MNIST. Even for small ε our approach generates visually appealing results
that are indistinguishable from real digits but exhibit a large difference from the
original (see Fig. 3). Attributes being altered are line thickness (e.g. 6), slant (e.g.
1), and even style (e.g. 2). For ε = 0.2 a classifier trained on CADP-altered data
outperforms the commonly accepted DP-SGD, CADP reaches 92.94% accuracy
while DP-SGD only results in 89.24% (c.f. Fig. 4). The gap closes for larger ε.

Retinal OCT and Chest X-ray. In retinal OCTs the perturbations are rather
subtle and difficult to interpret for a human observer or a non-expert. Identifica-
tion related attributes like retinal detachments in specific places are (re-)moved
impeding de-identification (see Fig. 5). The CADP-altered images images exhibit
transformations resulting in large dissimilarites to their original counterpart.
However, CADP induces a smaller privacy-utility tradeoff since the performance
of the classifier trained on CADP altered data is close to the one trained on
original data (Fig. 4). The classifier trained on data altered by our method out-
performs the one trained with DP-SGD by 23.63% on average across all ε on the
OCT test dataset and by 16.52% on the chest X-ray test dataset. We attribute
this to the content-awareness of our method, which leaves dimensions corre-
sponding to conditions, i.e. pathologies, unaltered. This is desirable in settings,
where one trains a model on private data of another location, e.g. a hospital,
and applies it to its own in-house samples.

Categorical Data. INNs can also generate differentially private categorical data
as can be seen in Fig. 6 for the diabetes dataset from scikit-learn [20]. The
data distributions are kept similar but are still altered equipping each data sam-
ple with plausible deniability. To obtain the binary feature of sex, we condition
the INN on this feature; the others are learned in an unsupervised fashion.

∞ 10.0 6.0 3.0 2.0 1.0 0.5 0.2

CNV

DME

Fig. 5. Content-aware differentially private images from OCT dataset with different ε
for classes CNV and DME [12]. The sensitivity is set to min (ε/2, 4). For high ε (e.g. 10)
the reconstructed retinal OCT still share similarities as in Fig. 1. For smaller ε qualita-
tively the images look different from their original counterpart. However, the classifier
(Fig. 4) still performs well acting as an implicit control of the preserved features.
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Fig. 6. Content-aware differentially private data from diabetes dataset from scikit-

learn with ε = 1 and sensitivity s = 1 [20]. With conditions the INN is able
to reconstruct the approximate distributions even if binary distributed.

6 Discussion and Conclusion

We introduced a new method to achieve differentially private images based on
invertible neural networks, which we term CADP (content-aware differential pri-
vacy). We applied the method to medical images and ensured the identity i.e.
pathology of the patient is not changed by conditioning the INN on the class
labels. We could show that in three experiments on diverse medical data (images
of digits, OCT, and X-ray scans), the subsequent classifiers outperformed con-
ventional approaches by a margin when fed with CADP-generated data. By this
we reduce the risk for false diagnosis and increase the safety of patients against
wrong diagnoses while providing provable and mathematically grounded pri-
vacy guarantees. Hence, CADP pre-processed datasets may be used to increase
anonymity of medical image data in the future. However, the level of required
anonymity should be decided depending on the individual use case.

Even for small ε < 1.0 our method generates visually appealing results that
can be used to train a classifier outperforming DP-SGD with the same pri-
vacy guarantees. However, clipping of the latent space discards information for
reconstruction. In future work, it can be investigated how much information is
lost to assure privacy. Further, an in-depth exploration of the latent space can
be conducted.
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Abstract. Training predictive models with decentralized medical data
can boost the healthcare research and is important for healthcare appli-
cations. Although the federated learning (FL) was proposed to build
the predictive models, how to improve the security and robustness of
a learning system to resist the accidental or malicious modification of
data records are still the open questions. In this paper, we describe
DeMed, a privacy-preserving decentralized medical image analysis frame-
work empowered by blockchain technology. While blockchain is limited
in serial computing, the decentralized data interaction in blockchain is
very desired to preserve the data privacy when training models. To adapt
blockchain in medical image analysis, our framework consists of the self-
supervised learning part running on users’ local devices and the smart
contract part running on blockchain. The prior is to obtain the prov-
able linearly separable low-dimensional representations of local medical
images and the latter is to obtain the classifier by synthetically absorbing
users’ self-supervised learning results. The proposed DeMed is validated
on two independent medical image classification tasks on pathological
data and chest X-ray. Our work provides an open platform and arena for
FL, where everyone can deploy a smart contract to attract contributors
for medical image classification in a secure and decentralized manner
while preserving the privacy in medical images.

Keywords: Blockchain · Federated learning · Self-supervised learning

1 Introduction

Machine learning (ML) models have shown their advantage in many different
tasks in healthcare filed. The medical image analysis is one of the most impor-
tant applications. To effectively train a high-quality deep learning model, the
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aggregation of a significant amount of patient information is required. Multi-
institutional healthcare predictive model can accelerate research and facilitate
quality improvement on patient-care by leveraging different data sources and
learning a model from data originated from the other institutions. However,
improper data disclosure could place sensitive personal health information at
risk. In addition, regulations such as GDPR [22] and HIPPA [8] strictly require
protecting user information and granting transparent authorizations for the use
of healthcare data.

Although federated learning [19] (FL) can be a solution to training ML mod-
els in a multi-party setting without data sharing, the users in FL still must
share other forms of sensitive information (e.g., model gradients or weights) to
a centralized service. Such sharing is problematic when the central third party
is not trustworthy, as prior work has demonstrated that adversaries can attack
the model or data by the poisoning attack [26] and inversion attack [28] through
observation of the target’s shared model updates in the central server.

The blockchain [20] has emerged as a more appropriate system to facilitate
private, verifiable, crowd-sourced decentralized computation, which is based on
peer-to-peer networking and coordination while maintaining confidentiality with-
out the need for a central coordinator, thereby going beyond FL. In a blockchain
system, the data records are not saved in a centralized data server but main-
tained by network peers with consecutive data blocks. Further, the blockchain
system provides an open platform and arena for FL, which enables sharing ML
models among all parties without an intermediary. With blockchain and smart
contact (SC), it is not the privilege of the big institutes to propose and train the
learning models, but everyone can deploy a SC to attract contributors for medi-
cal image classification in a decentralized manner. However, there are inevitable
obstacles to launching deep learning (DL)-based FL on the blockchain. First,
latency and capacity are two fundamental elements that limit the throughput
on blockchain. For example, on the Ethereum blockchain, the cost necessary to
perform a transaction on the network is known as ‘gas cost’. Transmission of
DL models with hundreds of thousands of parameters hampers their practical
utility. Second, without a central controller, if something goes wrong in a model
training, i.e., receiving weights from malicious users, we don’t have a clear idea
of how to identify the problem and correct it.

To overcome the aforementioned limitations, we propose DeMed, which is
a framework for decentralized medical image analysis. It can reduce the input
dimension of medical data to the point where the features are provably separable
using a simple linear classifier. To this end, we first leverage the state-of-the-art
reconstruction-based self-supervised learning (SSL) method, MAE [14], for low-
dimensional representation learning. We then propose a lightweight yet reliable
metric to select high quality users. Furthermore, we write a SC [9] using Solid-
ity [6] for model parameter transmission. We tested the system on microscopic
and X-Ray image classification tasks [21,23], and achieve comparable perfor-
mance with Swarm Learning [24] and Centralized Learning, while protecting the
model from users that may degrade the model. The comparison between the
learning strategies are given in Fig. 1(a).
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Fig. 1. (a) Comparison with different learning strategy. For centralized learning, a
center collects data and be in charge of training the model. For swarm learning, users
under SC keep their own data and train the model in peer-to-peer communications. For
DeMed, users keep their data, train their own local model, and upload the weights to
blockchain. The strategy is similar to federated learning, but the weights are aggregated
and protected inside SC. (b) Four steps in the blockchain module of DeMed: i) every
global epoch, users download same weights from the SC (blue). ii) Each user trains
these weights locally with their respective data and iii) uploads them to the SC (grey).
iv) Weights are aggregated after the epoch and original weights are updated to the new
aggregated weights, to be used in the next epoch. (Color figure online)

2 Preliminary

2.1 Blockchain

A blockchain system [1] is a decentralized data processing and maintaining sys-
tem built on top of the peer-to-peer computer networks. Each peer in blockchain
saves the data in the bundles (i.e., blocks) which are chained up in chronolog-
ical order. All the data records in the chain of blocks, so called blockchain, are
maintained by each peer individually. Having one peer with its local data copy
tampered does not affect the global data records, which makes the blockchain
system be resistance to tampering. Another attractive feature in blockchain is
no single point of failure, when comparing with the traditional database system.
Every peer in the peer-to-peer network can provide the data access service to
the public. Besides, the evolution history of the data records are fully trace-
able. Indeed, the data records in the chain of blocks are no more than the state
transition events which are called transactions in blockchain [2,3].

There are several works utilizing blockchain for FL. For example, [15] uses
SVM over blockchain based federated learning which enables different opera-
tors to train intelligent driving models without sharing data. [18] investigates
blockchain assisted FL that punishes malicious users by the reward system, and
ensures robustness in FL training. [10] leverages Private Blockchain and Public
Blockchain to attain accountability, privacy, and robustness, and propose an off-
chain trojan detection for malicious users. Most of the related works focuses on
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privacy and robustness concerns in FL. However, to the best of our knowledge,
we are the first one that utilizes SSL to facilitate blockchain based training on
large Deep Learning models.

2.2 Self-supervised Learning (SSL)

SSL solves auxiliary prediction tasks (known as pretext tasks) without requiring
labeled data to learn useful semantic representations. These pretext tasks are
created solely using the input features, such as predicting a missing image patch,
recovering the color channels of an image from context, predicting missing words
in text, or forcing the similarity the different views of images, etc. [11,13,14,
27]. They improve the effectiveness of learning representations for downstream
prediction tasks. Studies have shown that simple machine learning model, such
as linear classifier, can achieve superiors performance by taking the embedded
feature learned by SSL. Empirical and theoretical results have shown the features
learned by proper SSL strategy are linearly separable using simple classifiers [16].

3 Method

3.1 Overview of the Framework

We aim to train a medical image classifier on a blockchain via SC1. Using the
DeMed pipeline, the input dimensions of the medical data are reduced to the
point where the features are separable by a linear classifier, thus also reducing
the number of parameters that need to be stored in the SC. This makes our
system viable even without integration of decentralized storage infrastructure.
We collect publicly available in-domain data to pre-train MAE and distribute
the MAE encoder as feature extractor to all users.2 The users can use the extrac-
tor to obtain the features of their own data and only the weights of the linear
classifier will be trained and uploaded to the SC where the aggregation is done
automatically. In this paper, we implement two different aggregation methods.
The blockchain module of DeMed pipeline is shown in Fig. 1(b). Note DeMed is
different from two existing learning framework for mult-user data learning: Cen-
tralized Learning and Swarm Learning (shown in Fig. 1(a)). Centralized Learning
aggregates all weights from the users which requires a server center, while Swarm
Learning requires all users to train at the same time at the blockchain side and
directly write the whole deep model to SC.

We consider there is a hospital that wants to train a medical image classifier
but doesn’t have enough data. The hospital initializes a DeMed system for the
task and is in charge of collecting in-domain unlabeled data, training a SSL rep-
resentation extractor, and distributing the extractor to the users. The users will

1 https://github.com/ubc-tea/DeMed-DeCaF22/blob/main/contracts/decentraldl.
sol.

2 An alternative way is to pre-train MAE using ImageNet and finetune on the collected
data afterwards, if the number of the collected data is low.

https://github.com/ubc-tea/DeMed-DeCaF22/blob/main/contracts/decentraldl.sol
https://github.com/ubc-tea/DeMed-DeCaF22/blob/main/contracts/decentraldl.sol
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contribute their data by uploading the weights of locally trained linear classifier.
DeMed is a learning framework that launches FL on blockchain. We aim to do
an in depth privacy analysis in future work to investigate the privacy preserving
attribute of DeMed.

3.2 Launch Efficient Deep Learning Training on Blockchain

Self-supervised Learning Embedding Space. Motivated by [16], a well-
trained SSL backbone can project the data onto a linearly separable space under
proper assumptions. We utilize a state-of-the-art reconstruction-based SSL frame-
work, Masked AutoEncoder (MAE) [14], as our feature extractor. MAE utilizes
state-of-the-art image classification framework, Vision Transformer (ViT) [12], as
the encoder for semantic feature extraction, and uses a lighter version of ViT as
decoder. It divides an input image into patches, randomly blocks a certain per-
centage of image patches, and feeds them into the autoencoder architecture. By
blocking out a large amount of image patches, the model is forced to learn a more
complete representation. With the aim of positional embedding and transformer
architecture, MAE is able to generalize the relationship between each image patch
and obtain the semantic information among the whole image, which achieves the
state-of-the-art performance in self-supervised image representation training. The
pre-trained MAE encoder is then distributed to the users in SC.

Training Federated Linear Model on Blockchain. We deploy the SC in
Ethereum [25] blockchain to facilitate privacy-preserving FL. Ethereum can be
seen as a transaction-based state machine, and a transaction is a cryptographi-
cally signed instruction constructed by an actor. Ethereum blockchain provides
a mechanism to facilitate transactions between two consenting parties, which is
called the SC. [9] SC is a piece of code, residing on a blockchain based plat-
form, that executes an agreement or a logic. The code itself is replicated on
multiple nodes of the blockchain, hence demarking the permanence, security
and immutability of agreed upon logic. When the code is executed, a new block
is added to the blockchain. The code is executed only on acceptance of all the
parameters for the called functions.

In our pipeline, the communication exists between a hospital and the users
of the system through the Ethereum and smart contracts. The transactions in
our pipeline include storing weights in the SC, downloading the weights from
the SC, and aggregating these weights. The only trained weights are from the
classifier, which we use a linear layer. To begin with, the hospital will initialize
the weights in the blockchain Sect. 3.2. For every epoch, the users download the
weights from the blockchain, update the weights on their data, and upload the
updated weights to the blockchain. Weights are gathered from all the users in
the SC for aggregation.

3.3 Secure Training on Blockchain with User Selection

One essential step in DeMed is model aggregation. Considering the communica-
tion cost in writing model weights to SC, we select a portion of users in each
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global round. In this section, we describe a näıve weights aggregation method
and a more advanced aggregation strategies that is robust to malicious users. The
logic to choose the users based on any of the following two aggregation methods
lies within the hospital. In case of user selection, the users add their norms and
cosines to the SC, which help the hospital make a decision on user selection for
the secure aggregation. To reduce the gas consumption for blockchain transac-
tions, we could adopt Layer-2 solutions [4] such as the Optimistic Rollup [5] or
Zero Knowledge Proof Rollup [7] technologies. They bundle up transactions and
submit a summary of the changes required to represent all the transactions in a
batch rather than sending each transaction individually.

Näıve Weights Aggregation. To ensure the model sees all the users’ data,
we divide the users into small sets (batches) where each set has B users. During
training, we iteratively feed in B users’ data until all users’ data are “seen” by
the model. For example, the users from i-th set will download the global weights
after the weights of users from (i − 1)-th set are aggregated.

User Selection Weights Aggregation. Although näıve weights aggregation
makes use of all users’ weights to contribute to the global model, it may lead to
unstable convergence and is prone to be attacked by malicious users. Malicious
users are those who tries to drag down model training by uploading poisoned
weights. Therefore, we propose User Selection (US) weights aggregation that
selects users that contribute better weights would allow more efficient training
and avoids malicious users. To address this problem, we use the weight drifts
(denoted by d) and cosine similarity (denoted by cos) for user selection, which
are defined as follows:

d = ||W0 − wk||2, (1)

and
cos =

V · Wk

max(||V ||2 · ||Wk||2, ε) , (2)

with V = W − W0,Wk = wk − W0, ε = e−8, where V is the direction of the
gradient, W is the näıve aggregation of the epoch, wk and Wk are the local
model weights and gradient direction of the k-th user after training for that
epoch, and W0 is initial weights used to train for the model for the particular
epoch. Note that this is similar to [17] but we calculate the V based on all
the gradients of the current run. Furthermore, instead of using a single criteria,
we leverage both weight drifts and cosine similarity in user selection, which is
detailed in Sect. 4.1. Weight drift and cosine similarity aim to pick users who
have weights closest to the other weights in distance and direction, respectively.

4 Experiment

4.1 Experiment Setup and Datasets

Setup. We evaluate DeMed on 2 medical datasets: PCam [21], a microscopic
dataset for identifying metastatic tissue in histopathologic scans of lymph node
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sections and COVIDx [23], a chest X-Ray dataset for COVIDx classification. In
our experiments, we divide a dataset into 3 disjoint sets:

– Public Train Set: randomly sampled large amount of data from the
datasets. This resembles the public available in-domain data and is used
to pre-trained the SSL representation extractor.

– Validation Set: Randomly sampled data points for testing. This simulates
the testing set that is kept in the smart contract to examine the weights
uploaded by the users.

– User Train Sets: Randomly sampled 100 data points for 16 users. This
resembles the data that each user has.

For training MAE, the experiments are run on NVIDIA DeForce RTX 3090
Graphic card with PyTorch. We follow the training strategy in [14]. However, due
to the hardware limitation, we fix the batch size to 256 and adjust the training
epoch accordingly. For DeMed learning, we use the extracted representations to
train a linear layer that maps the embedding dimensions into predictions. Here,
the embedding dimension of MAE is 1024 and number of classes is 2, so a fully
connected (1024× 1) layer and BCELoss is applied. Note that although we only
simulate 16 users in User Train Sets, the system is scalable to more users. We
test the performances of scenarios that there are only 2, 4, 8 users are allowed to
join per transaction, and found that the accuracies are similar. In the following
experiments, we will only show the results for 8 users per transaction (please
refer to Table 2).

Due to the lightweight of DeMed, we could launch the blockchain module on
CPU only. We used Ganache as a local blockchain for our experiment. The SC
for the weights of linear layer was written in Solidity programming language.
For training local linear classifier, the experiments run on 8-Core Intel Core i9
processor. Each user will download the global weights, train for 3 epochs locally,
and then upload the new weights to the SC. Learning rate is set to 5e−3, and
Adam optimizer is selected.

The Näıve aggregation of weights does not filter out malicious users from
the system. Hence, we used model weights drift d (Eq. (1)) and cosine similarity
cos (Eq. (2)) to filter out users from our system that would lead to a decline in
the accuracy. We first request calculating the d for all users, and band weight
submission for those whose d are too large/small (we remove 10 users from this
step). Second, we request calculating the cos for the rest 10 users, and pick the
2, 4, 8 number of users with the largest cosine similarity. Finally, we aggregate
the weights of the selected users as the final weights for the respective epoch.

4.2 Comparison Between Aggregation Methods

We evaluate training results of the two aggregation methods. We first show that
Näıve aggregation and US aggregation result in similar performance. Then we
show adding one malicious user will degrade Näıve aggregation’s performance
while US aggregation is not influenced by the malicious user.
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(a) Covidx (b) PCam

Fig. 2. Comparison of testing accuracy over training epochs for two weights aggregation
methods: näıve vs user selection (US). One user is malicious. The zigzag curve for
näıve aggregation and worse testing results indicate that it is prone to be attacked by
malicious users. We show the results for selecting 8 users per transaction.

Table 1. Testing accuracy for DeMed (2, 4, 8 users) using näıve weights aggregation
and user selection (US) weights aggregation.

# users/round 2 4 8

Aggregation method Naive US Naive US Naive US

CovidX 84.1 84.1 84.6 84.1 84.4 85.2

PCam 86.2 86.5 87.4 87.3 87.2 87.3

Testing Performance. We train the classification model for two datasets on
DeMed (2, 4, 8 users cases) using Näıve Weights Aggregation and User Selec-
tion(US) Weights Aggregation as shown in Table 1. One can observe that using
8 users per aggregation gives the best results. The user selection method has
slightly better accuracy as the best contributing users are selected for weight
aggregation, while for Näıve method every user contributes their weights evenly.

Training with Malicious Users. We simulate a malicious user attack by
manipulating a user’s weight into Wpoisoned = −10 × Woriginal. The accuracy
curve is shown in Fig. 2. One can observe that the curve for näıve aggregation
is zigzag. This is because for Näıve user aggregation, the malicious user also
contributes it’s weights, thus leading to declined accuracy whenever the model
sees the malicious data. On the other hand, in case of user selection, the malicious
user is screened out and accuracy does not decline.

4.3 Comparison Between Learning Strategies

We train classification models for the 2 datasets on DeMed (2, 4, 8 users cases),
Swarm Learning, and Centralized Learning, and the testing accuracy are shown
in Table 2. One can observe that using 8 users in DeMed results in the best
classification performance. Also, we would like to emphasize that DeMed can
achieve comparable results while having better flexibility than Swarm Learning
and being more privacy preserving than Centralized Learning.
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Table 2. Testing accuracy for DeMed, swarm learning, and centralized learning.

Method Centralized learning Swarm learning DeMed

User selection – – 2 4 8

CovidX 84.8 84.8 84.1 84.1 85.2

PCam 87.8 87.9 86.5 87.3 87.4

5 Conclusion

We propose DeMed, an efficient decentralized learning framework that utilizes
pre-trained SSL feature extractor to realize blockchain-based training on SC. By
training classifier on the extracted features, we leverage a linear model on SC in
a FL fashion. We also design user selection mechanism similar to [17] but with
slight difference in finding the most representative users in each aggregation to
detect malicious users. Overall, DeMed shows comparable model performance to
Centralized Learning and Swarm Learning, while preserving security and flexibil-
ity. We believe that DeMed can facilitate privacy-preserving decentralized learning
for medical image analysis.

Acknowledgement. This work is supported in part by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada (RGPIN-2021-02970, DGECR-2021-
00187, DGECR-2022-00430), NVIDIA Hardware Award, and Public Safety Canada
(NS-5001-22170).

References

1. Blockchain. https://www.investopedia.com/terms/b/blockchain.asp. Accessed 30
July 2022

2. Blockchain transactions. https://onezero.medium.com/how-does-the-blockchain-
work-98c8cd01d2ae. Accessed 30 July 2022

3. Etehreum transactions. https://ethereum.org/en/developers/docs/transactions/.
Accessed 30 July 2022

4. Optimistic rollups. https://ethereum.org/en/developers/docs/scaling/. Accessed
30 July 2022

5. Optimistic rollups. https://ethereum.org/en/developers/docs/scaling/optimistic-
rollups/. Accessed 30 July 2022

6. Solidity. https://docs.soliditylang.org/en/v0.8.15/. Accessed 30 July 2022
7. Zero-knowledge rollups. https://ethereum.org/en/developers/docs/scaling/zk-

rollups/. Accessed 30 July 2022
8. Act, A.: Health insurance portability and accountability act of 1996. Public Law

104, 191 (1996)
9. Buterin, V.: Ethereum white paper: a next generation smart contract & decentral-

ized application platform (2013). https://github.com/ethereum/wiki/wiki/White-
Paper

10. Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: Blockfla: accountable federated learn-
ing via hybrid blockchain architecture. In: Proceedings of the Eleventh ACM Con-
ference on Data and Application Security and Privacy, pp. 101–112 (2021)

https://www.investopedia.com/terms/b/blockchain.asp
https://onezero.medium.com/how-does-the-blockchain-work-98c8cd01d2ae
https://onezero.medium.com/how-does-the-blockchain-work-98c8cd01d2ae
https://ethereum.org/en/developers/docs/transactions/
https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://docs.soliditylang.org/en/v0.8.15/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper


DeMed: Decentralized Medical Image Classification on Blockchain 109

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

13. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised
learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

14. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

15. Hua, G., Zhu, L., Wu, J., Shen, C., Zhou, L., Lin, Q.: Blockchain-based federated
learning for intelligent control in heavy haul railway. IEEE Access 8, 176830–
176839 (2020)

16. Lee, J.D., Lei, Q., Saunshi, N., Zhuo, J.: Predicting what you already know helps:
provable self-supervised learning. In: Advances in Neural Information Processing
Systems, vol. 34 (2021)

17. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

18. Ma, C., et al.: When federated learning meets blockchain: a new distributed learn-
ing paradigm. arXiv preprint arXiv:2009.09338 (2020)

19. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR (2017)

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decent. Bus. Rev.
21260 (2008)

21. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equiv-
ariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos,
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Abstract. Federated learning (FL) is a decentralized method enabling
hospitals to collaboratively learn a model without sharing private patient
data for training. In FL, participant hospitals periodically exchange
training results rather than training samples with a central server. How-
ever, having access to model parameters or gradients can expose private
training data samples. To address this challenge, we adopt secure mul-
tiparty computation (SMC) to establish a privacy-preserving federated
learning framework. In our proposed method, the hospitals are divided
into clusters. After local training, each hospital splits its model weights
among other hospitals in the same cluster such that no single hospi-
tal can retrieve other hospitals’ weights on its own. Then, all hospitals
sum up the received weights, sending the results to the central server.
Finally, the central server aggregates the results, retrieving the aver-
age of models’ weights and updating the model without having access
to individual hospitals’ weights. We conduct experiments on a publicly
available repository, The Cancer Genome Atlas (TCGA). We compare
the performance of the proposed framework with differential privacy and
federated averaging as the baseline. The results reveal that compared to
differential privacy, our framework can achieve higher accuracy with no
privacy leakage risk at a cost of higher communication overhead.

Keywords: Federated learning · Decentralized learning · Secure
multiparty computation · Privacy preservation · Histopathology imaging

1 Introduction

Machine learning methods rely on a large number of data collected in a central-
ized location for training purposes. However, most data owners such as medical
centers are not willing to share their private data with others because of privacy
regulations [13]. To address the data privacy concern, decentralized methods such
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as Federated learning (FL) are emerging. FL enables learning a model while all
participants keep data private, sharing training results with the central server.
However, authors in [17] have shown that sharing the model’s parameters or gra-
dients is not safe. They demonstrate that having access to the model’s weight
or gradients can expose training samples. Therefore, privacy-preserving methods
in FL have recently been introduced to protect training samples from leakage.
There are three different strategies for privacy-preserving FL in the literature to
securely share the training results [8,15].

– Differential Privacy (DF) [2] protects privacy by adding noise to the train-
ing results before sharing with the central server. Although perturbing the
training results improves the privacy of the training samples, it adversely
impacts accuracy.

– Secure Multiparty Computation (SMC) [11] is a privacy-preserving
method, enabling hospitals to jointly compute a function on their model’s
weight without revealing the actual weights values. Although SMC does not
perturb the training results, it has communication overhead since hospitals
communicate with each other to compute the average weights.

– Homomorphic Encryption (HE) [4] relies on encoding/decoding gradi-
ents and uses encrypted data for training. It allows computation on encrypted
gradients and decryption of the results is equivalent to performing the same
operations on gradients without any encryption. This method is efficient in
terms of communication cost, however, it is computationally expensive.

The effectiveness of DP in decentralized learning has been investigated in the
healthcare domain [3,9]. Authors in [9] preserve accuracy by adding Gaussian
noise to the trained model weights, providing extensive experiments on MRI
images. In [3], the authors conduct the feasibility study of DP in federated
learning. Also, the impact of the design factors of DP in decentralized learning
has been investigated on histopathology images.

SMC has played a successful role in cloud computing and the Internet of Things
(IOT) [16]. Recently, SMC has been adopted as a privacy-preserving method in
federated learning. For example, authors in [10] applied chained SMC in FL to pro-
tect model weights from disclosure. In their framework, first, the central server
sends one of the participants a random number. Then participants sequentially
communicate with each other to compute the average of the local models. This
framework imposes extreme latency and cannot be scaled since all the participant
has to communicate sequentially. However, in our proposed method, communi-
cations happen in parallel within clusters. In this paper, we address the privacy
challenges of federated learning by introducing a novel framework based on SMC.
Unlike DP, SMC does not compromise the model accuracy since it does not per-
turb training results. In our proposed method, we divide the hospitals into small
clusters. Hospitals within each cluster collaborate to learn the summation of the
local weights without having access to individual hospitals’ trained weights. We
perform experiments on the histopathology lung cancer dataset, comparing the
performance of the proposed method with DP and baseline.
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2 Method

Fig. 1. Cluster-based secure multi-party computation for federated learning.

In this section, we introduce our proposed SMC-based FL method in detail.
Figure 1 represents our proposed framework for cluster-based SMC. Before train-
ing, hospitals need to be divided into multiple groups. Clustering can be per-
formed in different ways depending on three factors: the geographical distance
between hospitals, hardware resources in each hospital, and network communica-
tion types deployed in each hospital. For instance, if hospitals are geographically
far from each other, hospitals closer to each other can form a cluster. Another
real-world scenario is that hospitals may indeed have different hardware resources
to train the model causing latency and leading to asynchronous schedules. In
these situations, one way to cluster hospitals is to group them into clusters of
different sizes to improve total communication overhead between hospitals and
the central server. Finally, network communication type is another important fac-
tor that impacts clustering in real-world scenarios. Different hospitals may have
deployed different communication protocols and APIs to send/receive updates
to/from other hospitals. We can group hospitals with the same communication
protocols in the same cluster.

In this work, we assume that all hospitals are placed geographically at the
same distance from each other, have the same hardware resource and commu-
nication prototype. As such, we randomly select hospitals and form clusters of
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the same size. More specifically, given K hospitals, which will be equally divided
into M clusters with size N = K/M . Each hospital belongs to one cluster which
is denoted by c = {1, . . . , M}. Hospital k in cluster c is represented by Hc

k. The
set nc with length N represents indexes of all hospitals in cluster c.

Model training in our proposed approach is performed in three steps.
Step1: Local Training. All hospitals train the model with their local data,

updating the model. We denote model parameters trained by the kth hospital
with wk.

Algorithm 1. Proposed method. There are K hospitals, M clusters, T is the
number of epochs, E is the number of local epochs, η is learning rate, nc index
of all hospitals in cluster c.
Input: M, C, T, w0, η, nc

Output: wT−1

1: for t = 0, . . . , T − 1 do
2: Server sends wt to all hospitals

% Step1: Local Training
3: for k = 1, 2, . . . , K do
4: wt+1

k ← LocalTraining(k, wt, η) % update weights
5: end for

% SMC
Rc

k ← 0
6: for c = 1, 2, . . . , M do
7: for k ∈ nc do
8: for i ∈ nc do
9: Rc

k+ = βc
i,kwt

i

10: end for
11: Hospital k feedbacks Rc

k to the central server.
12: end for
13: end for

% Step3: Aggregation
14: Server updates wt+1 as

wt+1 ← 1

K

K∑

k=1

Rc
k

15: end for
16: return wT−1

LocalTraining(i, wt, η) :

1: B ← (split dataset of ith hospital into batches of size B)
2: for local epoch j = 1, 2, . . . , E do
3: for batch b ∈ B do
4: w ← wt − η∇Fk(wt; b) % Fk(.) is the loss function for hospital k
5: end for
6: end for
7: return w
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Step2: SMC. Hospital Hc
k generates N random numbers {βc

k,j |0 < βc
k,j <

1, j ∈ nc} that sum up to one.
∑

j∈nc

βc
k,j = 1 (1)

Then, each hospital k in cluster c, Hc
k, sends portions of its own locally trained

model parameters to each of N − 1 neighbours in cluster c. Mathematically,
Hc

k sends βc
k,jwk to hospital j for all j ∈ nc. In the end, the kth hospital will

have some portion of its own, and some portion of its N − 1 neighbor’s model
parameters as follows:

Hc
k : Rc

k =
∑

i∈nc

βc
i,kwi (2)

Step3: Aggregation. Finally, each hospital sends Rc
k to the central server,

and the central server takes the average of Rc
k of all the hospitals in all clusters

as follows:

w =
1
K

M∑

c=1

∑

k∈nc

Rc
k =

1
K

M∑

c=1

∑

k∈nc

∑

i∈nc

βc
i,kwi (3)

If we exchange the position of the two summations in Eq. 3, we will get

w =
1
K

M∑

c=1

∑

i∈nc

∑

k∈nc

βc
i,k

︸ ︷︷ ︸
1

wi

=
1
K

M∑

c=1

∑

i∈nc

wi =
1
K

K∑

i=1

wi

As shown above, the central server can receive the exact average weights
without having access to the weights of each individual hospital. These steps
have been summarized in Algorithm 1.

Table 1. The summary of the dataset [3].

Client # Slides # Patches

C1: Int. Gen. Cons. 267 66,483

C2: Indivumed 211 52,539

C3: Asterand 207 51,543

C4: Johns Hopkins 199 49,551

C5: Christiana H. 223 55,527

C6: Roswell Park 110 27,390

Fig. 2. Label distribution in dataset.
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3 Experiments and Results

3.1 Datasets

We evaluate our proposed privacy-preserving FL on The Cancer Genome Atlas
(TCGA) [1,14] dataset, the largest publicly available archive of the histopathol-
ogy whole slide images (WSIs). This annotated dataset has more than 30, 000
H&E stained WSIs that have been collected from various medical centers all over
the world. To validate the proposed method, we select TCGA WSIs diagnosed
with non-small cell lung cancer (NSCLC) to construct a dataset of multiple
institutions. This cancer has two frequent subtypes, namely

– Lung Adenocarcinoma (LUAD)
– Lung Squamous Cell Carcinoma (LUSC).

This study includes hospitals that have WSIs from both LUAD and LUSC sub-
types. In TCGA, only six hospitals met this requirement. Therefore, we collected
WSIs diagnosed with NSCLC from those six hospitals to create the dataset with
six participants. WSIs are extremely large images of size up to 50, 000 × 50, 000
pixels. Therefore, they cannot directly be fed into any neural network. The com-
mon approach to deal with these images is to divide them into patches of smaller
sizes for further analysis [5]. We divide the selected WSIs into patches of size
1000 × 1000 pixels. Due to space limitation, we refer readers to [3] for more
details on patch extraction and selection of the lung dataset that has been used
in our experiments. The statistics of this dataset for each hospital are presented
in Table 1 and Fig. 2. The dataset of each hospital has been randomly divided
into 80% and 20% groups for training and testing purposes, respectively.

3.2 Experimental Details

Figure 3 illustrates WSI preprocessing as well as the model used to classify lung
samples into LUAD and LUSC subtypes. As shown in this figure, for the classifi-
cation of lung histopathology WSIs, we first employ pretrained DenseNet121 [6]
to extract features of length 1024 for each patch. Next, We employ attention-
gated multiple instance learning (MIL) to combine feature vectors of patches of
each WSI, creating a feature of size 1024 for each WSI classification [7]. The rea-
son why we use MIL is that when we divide a WSI into multiple patches, we are
dealing with instances for which only a single WSI level label, medical diagnosis,
is provided. Therefore, we require multiple instance learning (MIL) architec-
ture to learn a model that can predict the WSI label given a bag of instances
(patches). The attention-based MIL architecture enables the model to combine
the features of patches to create one feature vector of length 1024 that will be
used for the classification of WSI. This architecture aggregates feature vectors of
those patches such that key patches are assigned relatively higher weights. The
high-level structure of the MIL classifier has been visualized in Fig. 3. The MIL
gated attention classifier is the network that we learn in a decentralized feder-
ated learning fashion. Due to space limitations, we refer readers to [7] for more
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Fig. 3. The illustration of the end to end training procedure. First WSIs are divided
into patches of size 1000 × 1000. Next the features of patches are extracted using Den-
sNet121. Finally, those features of patches are fed into MIL gated attention classifier.

detail on this MIL network. The histopathology lung dataset includes data from
six hospitals. We divide those K = 6 hospitals into M = 2 clusters of size N = 3.
We deploy DP according to [9] with additive Gaussian noise standard deviation
of 0.03. The standard deviation has been selected to have the highest possible
privacy while the classification performance is still acceptable. For all these three
methods, we use an Adam optimizer with the following hyper-parameter values,
epochs = 300, batch size = 32, number of local epochs = 1, and learning rate =
0.009.

3.3 Results and Discussions

In this section, we present our experimental results on the lung histopathol-
ogy dataset. We compare our proposed SMC based method with the baseline
which is FedAVG [12] without any privacy-preserving consideration. We also
compare our method with DP which has been implemented on top of FedAvg.
An ideal privacy-preserving method has to have a closed performance to the
baseline while preserving privacy of training results. Table 2 shows the perfor-
mance of each method for each hospital in terms of accuracy and F1 Score. As
represented, in each hospital, the proposed method has a closed performance to
the baseline and outperforms DP. Additionally, the average performance of our
method surpasses DP. Figure 4 and 5 compare methods in terms of the average
testing accuracy and average training loss of participant hospitals for 300 rounds
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of training communication between hospitals and the central server. As can be
seen, the proposed method performs close to the baseline, surpassing DP. To
eliminate the impact of random parameters in our experiments, we repeated all
the experiments five times and all the results have been provided by taking the
average over these five realizations.

Table 2. Experimental results.

Client Method ACC F1-Score

C1 FedAvg 76.38 82.51

DP 66.12 69.89

Proposed 75.01 81.08

C2 FedAvg 85.46 87.63

DP 79.06 81.12

Proposed 87.20 89.03

C3 FedAvg 81.54 80.96

DP 74.40 70.27

Proposed 80.95 80.47

C4 FedAvg 75.01 82.74

DP 69.37 73.84

Proposed 75.62 83.12

C5 FedAvg 73.33 82.31

DP 64.87 68.54

Proposed 68.88 78.58

C6 FedAvg 68.18 66.74

DP 68.18 63.34

Proposed 69.31 66.78

Avg FedAvg 76.65 80.48

DP 70.33 71.16

Proposed 76.16 79.84

Fig. 4. The average testing accuracy for
300 rounds of training over all hospitals.

Fig. 5. The average training loss for 300
rounds of training over all hospitals.

4 Conclusions

In this paper, we addressed the privacy-preserving challenge of the federated
learning. We have proposed cluster-based SMC to protect individual hospitals’
model parameters from disclosure. In the proposed method, neither participant
hospitals nor the central server has access to model weights of individual hos-
pitals; however, weights average can be recovered at the central server. Our
experimental results suggested that the proposed method outperforms DP in
terms of accuracy and F1 Score at the expense of more communication overhead.
However, we believe that having slight communication overhead to get higher
accuracy is most likely acceptable in the medical domain. Additionally, each
hospital needs to perform preprocessing to find suitable additive noise standard
deviation in DP method. However, our proposed method does not require any
preprocessing since it does not have any hyper-parameter. Therefore, depending
on the application, applying cluster-based SMC for privacy-preserving purposes
might be preferable compared to other privacy-preserving method such as DP.
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Abstract. Federated Learning (FL) wherein multiple institutions col-
laboratively train a machine learning model without sharing data
is becoming popular. Participating institutions might not contribute
equally - some contribute more data, some better quality data or some
more diverse data. To fairly rank the contribution of different institu-
tions, Shapley value (SV) has emerged as the method of choice. Exact SV
computation is impossibly expensive, especially when there are hundreds
of contributors. Existing SV computation techniques use approximations.
However, in healthcare where the number of contributing institutions are
likely not of a colossal scale, computing exact SVs is still exorbitantly
expensive, but not impossible. For such settings, we propose an efficient
SV computation technique called SaFE (Shapley Value for Federated
Learning using Ensembling). We empirically show that SaFE computes
values that are close to exact SVs, and that it performs better than cur-
rent SV approximations. This is particularly relevant in medical imaging
setting where widespread heterogeneity across institutions is rampant
and fast accurate data valuation is required to determine the contribu-
tion of each participant in multi-institutional collaborative learning.

Keywords: Federated Learning · Data valuation · Healthcare AI

1 Introduction

Federated Learning (FL) allows machine learning (ML) models to be trained on
data from multiple data contributors without the need to bring data to a central
location [23]. With the growing adoption of FL in enterprise including health-
care [31], it is important to quantitatively determine the contribution of indi-
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vidual data sources (henceforth referred to as institutions) to the performance
of the global model. This data valuation technique must be fair and accurate.
Shapley value (SV) [33], a technique from co-operative game theory can be used
to evaluate the contribution that each institution’s data bring to a global model.
In a cooperative game, the contribution of each player is determined by calcu-
lating the average of all marginal contributions that the particular player brings
to all possible coalitions not involving that player. SV can be used to value the
data contributions of different institutions participating in FL. However, calcu-
lating SV is computationally very expensive. To determine the contribution of
each institution requires training an exponential number of FL models (2n mod-
els [16]), which becomes utterly infeasible due to astronomical computational
and communication costs, even with a small number of participants. It is impos-
sible to compute exact SV in a reasonable time when contributing institutions
number in hundreds, with current techniques using approximations [7,12].

In healthcare settings, the number of contributing institutions is unlikely
to be in the hundreds. For example, recent FL training research for predicting
clinical outcomes of COVID-19 patients involved twenty contributing institu-
tions [10]. Given infrastructure and legal constraints, it is reasonable to expect
30 or fewer participating institutions in healthcare FL. Though calculating exact
SV with thirty institutions is still exorbitantly expensive (230 FL models to com-
pute), yet such calculations are not infeasible.

Generalizable AI models will immensely benefit from diverse data from varied
sources. This is especially relevant in healthcare because there is so much het-
erogeneity across medical cohorts - variability across geographies, across socio-
economic levels, across different data acquisition devices and techniques. Unfor-
tunately, healthcare data is hard to share, due to legal and ethical reasons. FL
can solve this sharing problem, but contributing healthcare institutions will still
want to be fairly rewarded for participating in such collaborations, specifically
because annotated healthcare data - which requires specialized labelling skills,
is precious. In addition, noisy labels are not uncommon in healthcare and SV
computations can be useful for identifying poor quality data contributors. SV
can also be used to detect malicious institutions as well as identify institutions
whose contributions are marginal [37].

We propose SaFE (Shapley value for Federated Learning using Ensembling)
to calculate SV when number of contributing institutions is not immensely large
(less than 30). SaFE uses models trained on each institution’s data as a proxy
to the data itself. We still create 2n models, but we use simpler models (logistic
regression models), which we then aggregate using ensembling in a data-centre
environment, making SaFE computationally tractable. Using empirical studies,
we show that SaFE is fast, computes SV close to exact values, and performs
better than existing SV approximations.

2 Related Work

The term Federated Learning was introduced in 2016 by Mcmahan et al. [28].
There are two types of FL settings - cross-device and cross-silo [18]. Mobile device



Towards More Efficient Data Valuation in Healthcare Federated Learning 121

applications with thousands of devices are considered cross-device e.g. Google’s
mobile keyboard prediction [14] and Apple’s “Hey Siri” [1], while enterprise
applications where a comparatively smaller number of reliable institutions train
a model (e.g. healthcare), is considered cross-silo. Cross-silo FL has been pro-
posed in domains such as financial risk prediction [6], drug discovery [5,9] and
cybersecurity [30]. There is increasing interest in FL for a variety of healthcare
applications e.g., image segmentation [21], multi-institutional medical collabora-
tion [19,32,34], digital health [38], COVID-19 research [10] and pathology [26].
However, data valuation for FL in healthcare applications is yet to be explored.

There has been considerable work on data valuation using SV in centralized
setting, including in the medical domain [13,15–17,36]. J. Kang, Z. Xiaong et al.
[20] assume prior knowledge of data quality of different participating institutions
and propose mechanisms to maximize participation. SV is also used to compute
feature importance for explainable AI [27]. In [36], S. Tang, A. Ghorbani et al.
use a technique called Data Shapley to compute the contribution of single datum
to a model which is trained on a centralized chest X-Ray dataset. The computed
SV is used to identify low quality data, to create better models for pneumonia
detection. Since it is impossible to compute exact SV for any dataset with more
than a handful of data points, Data Shapley uses Monte Carlo (MC) approxi-
mation methods, thus using only a randomly selected subset of data points in
the computation. However, there are relatively limited studies on data valuation
using approximate SV for FL.

The few studies exploring computation of SV for cross-device FL set-
tings [24,35,37], cannot consider contributions from all devices at the same time.
In particular, this limits the applicability of these methods for cross-silo settings,
which is relevant to medical use cases where all institutions contribute at the
same time. We further note that the approximate SV computation methods may
have difficulties in fairly assessing the value of data from different institutions.
For example, two institutions with fairly large proportion of samples from a
minority class/race/ethnicity might both be of high value compared to other
institutions, but the valuation might change based on whether one or both of
them have been sampled in the Monte Carlo approximation.

3 Background: SV Computation

Even though it is possible to value data based on attributes such as age, volume
and lineage, increasingly SV has become the method of choice for data valuation.
Let v denote a utility function (performance score) with respect to which SVs are
calculated. v is a mapping 2n → R, where n is the total number of players (users).
The SV φi for the player i is defined as the average of marginal contribution the
player brings to all coalitions(subsets of the players) S which do not involve the
player i. So S = {s | s ∈ P(N) � i �∈ s)} or we can denote (S ⊆ N\{i}) where
N = {1, 2, 3, . . . , n}

φi(v) =
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S)) (1)
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where |S| denotes the cardinality. Approximation methods use Monte Carlo or
Truncated Monte Carlo [13,36], both of which are based on random sampling of
different data permutations. This random sampling is repeated for many differ-
ent permutations (until a convergence criterion is met), after which the approx-
imate SV is computed by averaging over all calculated marginal contributions.
Truncated in the truncated Monte Carlo means that the method stops parsing
the current permutation and moves to a new permutation if the contribution of
current is below a certain threshold.

4 Shapley Value for Federated Learning Using
Ensembling

Step-1: Traditional FL: Train a FL model, using the FedAvg technique or
similar model aggregation technique. At the end of FL training, every partici-
pating institution has a globally trained FL model.
Step-2: Fine-Tuning: Every participating institution uses the globally trained
FL model to fine-tune a locally created model, using its own dataset. In our
scheme, to enable faster SV computation in Step-3, we create a logistic regression
(LR) model, trained using per-datum feature vectors extracted using a scheme
similar to that proposed by S. Tang, A, Ghorbani et al. [36]. Unlike [36], which
uses a pretrained CNN CheXNet, we use the FL model created in Step-1. This
locally trained LR model is sent back to the global server.
Step-3: SV using Ensembling: On the global server, we compute all 2n mod-
els using ensembling [3] of LR models from Step-2. Unlike current Monte Carlo
techniques to compute SV approximations, we compute SV using a simpler model
(LR) and ensembling. For ensembling, we combine the Softmax predictions from
each LR model to get a combined prediction.

Fig. 1. Shapley For Federated Learning using Ensembling (SaFE)
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Algorithm 1. Proposed Methodology to compute Shapley Value
Input: n participants, A global model (G), FeatureExtract- function for feature extrac-

tion from trained G, TrainLR- function to train a LR model, GetEnsemble- function
that takes a subset and the set of all LR models and returns the ensemble of LR
models for that subset, v- Performance score metric

Output: φi, . . . , φn (Shapley values for all users)

1: Initialize the global model(G) with initial weights
2: Perform Federated Learning and obtain a trained Model G
3: for each user i=1..n in parallel do
4: Send global model to each user
5: Fi ← FeatureExtract(G, Di)
6: Li ← TrainLR(Fi)
7: end for
8: L ←{Li, . . . , Ln} local trained logistic regression models are made available to the

central server
9: Initialize all φi ← 0

10: for each user i=1..n do
11: S ← subsets of {1. . . n} not containing i
12: for s in S do
13: φi ← φi+

1
n

(
n−1
|s|

)−1
(v(GetEnsemble(L,s ∪{i})-v(GetEnsemble(L, s)))

14: end for
15: end for
16: return φi, . . . , φn

Time Cost Analysis. Training exponential number of models for even simple
datasets e.g. MNIST, CIFAR takes several hours. In our experimental set-up
(Linux desktop with Intel Xeon E5-2637v4 CPU, 3.5 Ghz clock, 32 GB RAM
with 2 Nvidia GTX 1080 GPUs), training one FL model for MNIST (five insti-
tutions) using a simple CNN on a single GPU takes approximately 15 min. For
a more complex dataset (ROP) and a more complex CNN, one FL model takes
approximately 30 min. Training a 3D CNN for brain imaging using 2 GPUs
takes longer, around 45 min. Computing exact SV for MNIST and ROP took
approximately 3 and 6 h respectively, including computing 25 FL models. Note
that FL training was simulated on a single machine, so data exchange between
institutions and the global server was inter-process, not over the Internet, which
could an order of magnitude slower and costlier.

These time costs appear reasonable, but as the number of institutions
increase, the time cost increases exponentially. For example, with 20 institu-
tions, assuming FL training costs similar to MNIST (15 min per FL training),
computing 220 models will take an incredible 30 years. If we make the utterly
unreasonable assumption that each institution can train 1000 models in parallel
(using 1000 GPU VMs), we can reduce this time cost to 3 years. However, if
there are 30 institutions, even with 1000 GPU VMs, the time-cost is 30 years!

Using SaFE, we compute one FL model and 20 LR models (one for each of
the 20 institutions) and 220 ensembled models at the central server. Ensembling
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models is inexpensive. In our experimental setup creating one ensembled model
takes approximately 15 ms. With MNIST and ROP datasets, SaFE takes approx-
imately 20 min and 35 min respectively. Ensembling does not require GPU and
can be parallelized. With 20 institutions, we still compute 220 models, but the
time to compute SV using SaFE is 4.5 h. For 30 institutions, if we leverage 1000
parallel cloud CPU VMs, we can still compute SV in a very reasonable 4.5 h.
More SaFE Advantages
1. The ensembled model created using LR models of all participating institutions
performs as well as the global FL model (see result sections).
2. Ensembling LR models is much faster compared to training FL models and
does not require GPU.
3. Ensembling is done on the global server, so communication costs of training
2n FL trained models is not incurred.
4. SV computation (Steps 2 and 3 in Fig. 1) is done separate and independent
of Step-1. Since Step-3 is done centrally, this allows parallelization of the SV
computation.
5. Step 2 and 3 do not leak private information any more than the FL training
(Step-1). Only locally trained LR model is sent to the global parameter server,
no institutional data is shared with the central server.

5 Experimental Evaluation

We use four different datasets - 2 well known computer vision toy datasets,
namely CIFAR10 [22] and MNIST [11]; and 2 real world medical datasets:
Retinopathy Of Prematurity (ROP): This contains 5600 fundoscopic
images from 7 different institutions classified by disease severity, namely No,
Plus, and Pre-Plus [25].
Brain-MRI: Two different datasets were used to create an MRI dataset for clas-
sification. The pathological brain images are from the Brain Tumour Segmenta-
tion (BraTS) 2019 dataset [29] which contains 335 patients. The IXI Dataset [4]
was used for healthy brain scans and contains 550 images. T1 contrast enhanced
(T1ce) images were used from both datasets to create this dataset.

With all the 4 datasets, we perform experiments under both IID and non-
IID settings. For MNIST, CIFAR10 and ROP, we split the dataset assuming 5
institutions. For brain-MRI dataset, we split assuming 4 institutions (to reduce
computational costs for our experiments). We also assume that the testset is
located at global server, against which the performance of different models are
tested. For each of the 4 datasets, we first extract this global testset (20% dat-
apoints from each dataset), before creating the institutional splits. For MNIST
and CIFAR the global testset is the datasets’ original test split.
For IID, we use the same number of samples with nearly identical label distribu-
tion. Next, for non-IID (MNIST and CIFAR10), we introduce non-iidness
in label distribution, by keeping the number of data samples in each institution
fixed but creating highly skewed label distribution splits. Institution 1 has sur-
plus of classes 0, 1 (95% for 0, 1 and rest 5% for other classes); institution 2
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has surplus of classes 2, 3 and so forth. Lastly, for non-IID (ROP and Brain
MRI), since both datasets have just three classes, we maintain uneven label
distribution by identifying the majority label within the two datasets and divid-
ing that majority label amongst the different institutions in a linearly increasing
fashion. The opposite is done with the minority labels. They are distributed
among the splits in a linearly decreasing fashion. This ensures an increasing per-
centage of majority labels and decreasing one for minority labels across splits.

Note that we chose these data splits to demonstrate the effectiveness of our
SaFE method to compute SV, not to demonstrate the effectiveness of the ML
learning algorithm.
Experimental Setup. To compute exact SV in FL training, we need 2n models.
In out MNIST and CIFAR-10 experiments, we train 25 FL models, while for
Brain-MRI experiments, we train 24 models.

For ROP classification, we use a Resnet18 model with pretrained Ima-
geNet weights. For MNIST and CIFAR10 classification, we use a simpler CNN
from [28]. For Brain-MRI, we use a 3D Resnet18 mixed convolution network [8]
with pretrained weights. The learning rate for Brain-MRI classification is 2.5e–7.
For CIFAR10, MNIST and ROP experiments, learning rate is 1e−4. The batch
size was 64 for CIFAR10, MNIST, ROP whereas for Brain-MRI experiments,
a batch size of 8 was used. We used epoch size of 20 for MNIST, ROP and
Brain-MRI dataset and for CIFAR10 it was 50. For logistic regression models,
the solver used was saga with elasticnet regularization with l1 ratio of 0.5.

We used a Linux desktop with Intel Xeon E5-2637v4 CPU, clocked at 3.5
GHZ, with 32 GB RAM and two Nvidia GTX 1080 GPUs. A single GPU was
used for CIFAR10, MNIST and ROP experiments and both GPUs were used for
Brain-MRI classification. Code-base is available on request.

6 Results

LR Ensembling vs Global FL: We compare the performance of the glob-
ally ensembled model created using locally fine-tuned LR models (from every
contributing institution) and compare it to the performance of the FL model
(Step-1 of SaFe). As shown in Table 1 the ensembled model accuracy is very
similar to the performance of traditional FL model. For ROP experiments, the
AUROCs are 0.96 and 0.95 for IID and non-IID splits respectively for both FL
and LR-ensembled models. We observe the same with Brain-MRI as well, with
both FL and LR-ensembled models having AUROCs of 0.94.
SV Comparison Results: To compare our proposed SaFE method for com-
puting SV against exact SV computation, we use the cosine similarity measure,
commonly used to compare similarity between two vectors [2]. SV computed
using SaFE are very similar to exact SV as shown in Table 2. Quite expectedly,
the SV for each institution in an IID setting is almost the same. For Brain MRI
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Table 1. Ensemble LR performance vs Traditional FL performance

Dataset LR Ensemble Model acc Global FL Model acc

MNIST 98.28 98.41

CIFAR10 82 83

ROP 90 94

Brain MRI 93 94

(a) IID

Dataset LR Ensemble Model acc Global FL Model acc

MNIST 96.8 96.78

CIFAR10 73 76

ROP 95 96

Brain MRI 89 91

(b) Non-IID

and ROP datasets, we observe almost similar SV too. With non-IID splits, the
similarity scores are not as close as IID splits, but still very high.
TMC vs SaFE: To compute Truncated Monte Carlo (TMC) SV, we perform
random sampling of different permutations of the LR models. We used the imple-
mentation by [13] but adapted it to work in a FL setting. SV is calculated
by parsing through these permutations and calculating the marginal contribu-
tion of every new institution once its added to the existing list of institutions
already scanned. This marginal contribution is the difference in performance of
the ensemble model due to the added institution while parsing a permutation.
This process is repeated for many different permutations and the final SV is
the average over all calculated marginal contributions. This technique doesn’t
consider all possible model ensembles, since it stops sampling permutations after
a threshold. As seen in Fig. 2, in comparison to TMC, SaFE is much closer to
exact SV.

Fig. 2. Shapley for MNIST-IID (left) and CIFAR-IID (right).
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Table 2. Calculated Shapley values for different datasets using our SaFe method

Dataset Expt. Setting Shapley type 1 2 3 4 5 Similarity

Institutions

MNIST IID Exact Shapley 0.197 0.197 0.196 0.196 0.196 0.999

Our Shapley 0.196 0.197 0.196 0.197 0.196

NON IID Exact Shapley 0.195 0.194 0.192 0.191 0.195 0.999

Our Shapley 0.186 0.197 0.199 0.190 0.193

CIFAR IID Exact Shapley 0.115 0.113 0.111 0.115 0.113 0.999

Our Shapley 0.116 0.115 0.116 0.114 0.111

NON IID Exact Shapley 0.101 0.070 0.086 0.115 0.100 0.973

Our Shapley 0.106 0.104 0.097 0.080 0.101

ROP IID Exact Shapley 0.183 0.175 0.181 0.200 0.200 0.997

Our Shapley 0.182 0.182 0.180 0.180 0.176

NON IID Exact Shapley 0.209 0.202 0.187 0.192 0.176 0.99

Our Shapley 0.187 0.192 0.186 0.192 0.193

Brain MRI IID Exact Shapley 0.230 0.209 0.230 0.226 0.998

Our Shapley 0.218 0.216 0.209 0.230

NON IID Exact Shapley 0.235 0.222 0.230 0.225 0.99

Our Shapley 0.187 0.210 0.176 0.176

7 Conclusion

When healthcare institutions participate in collaborative FL training, the con-
tributions that their data make to the global model might not be equal. Some
institutions might contribute more data, some better quality data or some more
diverse data. To fairly rank the data valuation of datasets, Shapley value (SV)
has emerged as the method of choice. But SV computation is impossibly expen-
sive, when there are immensely large number of participating institutions. Even
in healthcare FL, where we have a sizeable number of participants, calculating
SV can be exorbitant. Existing SV techniques use approximations, which can
result in unfair SV attributions. In this paper, we propose an efficient SV tech-
nique called SaFE (Shapley value for Federated Learning using Ensembling), that
relies on “model” approximation (ensembling being an instance of it) instead of
“SV computation” approximation. We show empirically that SaFe computes SV
faster, its SV are close to exact SV, and that SaFe performs better than current
approximation techniques. Future work would deepen the theoretical foundation
of SaFE to obtain guarantees for different model approximation scenarios.
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Abstract. The Radiological Cooperative Network (RACOON) is dedi-
cated to strengthening Covid-19 research by establishing a standardized
digital infrastructure across all university hospitals in Germany. Using a
combination of structured reporting together with advanced image anal-
ysis methods, it is possible to train new models for a standardized and
automated biomarker extraction that can be easily rolled out across the
consortium. A major challenge consists in providing generic and robust
tools that work well on relevant data from all hospitals, not just on those
where the model was originally trained. Potential solutions are federated
approaches that incorporate data from all sites for model generation. In
this work, we therefore extend the Kaapana framework used in RACOON
to enable real-world federated learning in clinical environments. In addi-
tion, we create a benchmark of the nnU-Net when applied in multi-site
settings by conducting intra- and cross-site experiments on a multi-site
prostate segmentation dataset.

Keywords: Federated learning · Platforms · nnU-Net · Segmentation

1 Introduction

The outbreak of the Covid-19 virus has shown that hospital-overarching appli-
cation of machine learning algorithms is a key concept in fighting a pandemic
[27]. A standardized application of machine learning algorithms across clinics
requires from an organizational point of view national and international collabo-
rations. For this reason, the Radiological Cooperative Network (RACOON) was
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established in Germany in 2021 in order to enable Covid-19 research across all
German university clinics. From a technical point of view, a standardized infras-
tructure is required for the deployment of algorithms inside hospitals and for
federated scenarios across hospitals [19,21,28]. From a methodological point of
view, algorithms are required which perform well and robust on in-house data
as well as on unseen data from other clinics.

Besides the availability of well-curated medical data, the application of fed-
erated learning in healthcare faces security and heterogeneity challenges. Addi-
tional challenges are the management and administration of training large
models as well as the avoidance of data leakage in order to ensure data pri-
vacy [12,13,21]. In contrast to NVIDIA Clara Federated or the OpenMined-
based Privacy-preserving Medical Image Analysis software framework (PriMIA)
[11,22,23], the used Kaapana-based infrastructure within RACOON does not
support federated use cases so far. For this reason, one main contribution of
this work is an extension of the Kaapana toolkit with a federated functionality,
which is tailored to the technical and political requirements within RACOON,
to allow the application of federated use cases.

In addition to the technical challenges, current state-of-the-art algorithms
often lack good performance on unseen, out-of-distribution data. This holds
also for the nnU-Net [6,7,9]. In RACOON, one main objective is to train seg-
mentation algorithms in order to automate and standardize the assessment of
Covid-19-related tissue alterations. For this, Covid-19 relevant anatomies and
pathologies were segmented in the lung of a site-overarching patient cohort. One
way of creating robust and well-performing algorithms is to train the model on
more heterogeneous data [1], which in the case of RACOON requires a federated
training strategy due to data privacy regulations. Therefore, another main con-
tribution of this work is the adaptation of the nnU-Net to be used for federated
learning and to assess its performance on train and test data coming from the
same clinical site or from different clinical sites against single-site, centralized
and ensemble-trained models on the example of a multi-site prostate segmenta-
tion dataset [14,15].

2 Related Work

Federated learning for medical use cases poses challenges in various aspects,
ranging from learning methodology over data protection and privacy to the tech-
nical infrastructure and algorithm implementation [21,28]. The authors of [13]
systematically analyse different federated learning strategies as well as domain-
independent open-source software solutions for federated learning which include
FATE, TensorFlow Federated, OpenMined, PaddleFl or FedML. In the medical
domain, the open-source software framework PriMIA (Privacy-preserving Med-
ical Image Analysis) [11] is presented for the application of privacy-preserving
deep learning algorithms on multi-institutional medical imaging data. A widely
used non-open-source solution is the healthcare application framework NVIDIA
Clara which features federated learning with its NVIDIA Clara Train SDK.
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[2,3,22–24] prove its successful application in multiple real-world scenarios.
Apart from NVIDIA, efforts for federated learning in the imaging domain are
pursued by OpenFL or Substra in conjunction with the Medical Open Network
for Artificial Intelligence (MONAI) framework.

A key difference of our solution compared to most existing tools is that
it requires only unidirectional communication from the clients to the central
instance, which is a prerequisite for the application in RACOON. Furthermore,
our solution wraps the federated functionality in an agnostic way around a locally
running workflow without the need of any customization in the code itself.

Federated learning and its challenges in a clinical environment are analysed
and summarized from a methodological point of view in [20,21]. A focus on
differential privacy is set in [12,29]. Centralized versus local and alternative
federated learning strategies are assessed in [5,26]. In our work, we follow the
model averaging approach introduced by [17]. [2,22–24] compare amongst others
local and federated trained models across multiple institutions. Publicly available
datasets often used to benchmark federated learning and domain shifts in medical
imaging are the BRATS dataset [18,26] and the multi-site prostate segmentation
dataset from [8,10,14–16]. Federated learning was applied on Covid-19 data
by [2–5]. In this work, we use the multi-site prostate segmentation dataset to
benchmark our implementation. The question of domain generalizability and
cross-domain performance were tackled amongst others in [6,7,16], where [6]
propose an approach of how to improve generalizibility of the nnU-Net and [7]
introduce a method to detect when the nnU-Net fails on out-of-distribution data.

3 Methods

To enable federated learning in RACOON, it is needed to, firstly, add a backend
and a user interface to Kaapana that manages the federated communication
between the clinical sites and the central instance, secondly, add the possibility
of locally running workflows to share data with the central instance and, lastly,
adjust the nnU-Net to work in the federated setup. Since Kaapana itself is a
medical imaging platform, we try to reuse most of its existing technology stack
to add the needed features. A detailed description of the technology stack and
how a typical local workflow looks like in Kaapana is given in [25].

The demands on the backend and the user interface are mainly driven by
the setup of RACOON, which consists of multiple clinical sites that have a one-
way communication with a dedicated central instance. Therefore, we added a
FastAPI backend to Kapaana that allows a secure unidirectional SSL communi-
cation from the local to the central site. The FastAPI uses a custom token based
authentication for the communication to the central instance. Any file transfer
is forwarded to the MinIO S3 object storage, available on the central Kaapana
instance. In addition to the usage of so-called pre-signed URLs the transferred
files can be protected via Fernet encryption. The backend itself manages all
running workflows (jobs) that run locally as well as on the remote sites in the
open-source workflow-management-platform Apache Airflow. Therefore, to exe-
cute a job on a local site, the job has to be submitted on the central instance
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and afterwards actively fetched and accepted by the local site. Following this
kind of a job queuing architecture, our implementation allows in the first place
to execute a workflow on a remote instance, which during a federated training
we do periodically. The backend is operated by a dedicated user interface which
allows to register local and central instances. In addition, it allows to manage
whether to automatically or manually fetch and execute a job as well as which
jobs (workflows) and which tag-based image data are available for a remote exe-
cution. Finally, it shows detailed information of submitted jobs and their current
state. Screenshots of the interface are available online1.

In Airflow data processing workflows are represented by Directed Acyclic
Graphs (DAGs) consisting of multiple building blocks called operators. A sim-
plified version of the nnU-Net training workflow is illustrated in Fig. 1. Fed-
erated training of the nnU-Net requires a dynamic exchange of data between
locally running workflows and the central instance. In our implementation we
try to allow this data exchange as flexible as possible, i.e. any workflow that runs
locally should be usable in a federated setting without any customization to the
workflow itself. This is achieved by adding to each operator a configurable pre-
hook to download data and a post-hook to upload data to the central instance.
In addition, we add the functionality to skip operators and to load local data,
e.g. pre-processed data which are needed for training, from a previous workflow.
Since a federated training increases the difficulty of a robust, error-free train-
ing, we added at different levels in the pipeline multiple error exceptions and
retries. In addition, we added the possibility to recover a training at its training
step in case it stopped for unexpected reasons. From a security perspective, the
central instance has no possibility to maliciously manipulate the locally running
workflows, which are deployed upon installation of the local instance.

Adjustments to the nnU-Net are necessary because it creates the segmenta-
tion pipeline based on local data characteristics, so-called fingerprints, which are
likely to be inconsistent in a federated setup. In detail, a fingerprint of a training
dataset is created to dynamically configure the pre-processing pipeline and the
model architecture. To work with consistent models in a federated training, we
concatenate all locally created fingerprints on the central instance in a prepara-
tion round, before the model configuration and pre-pocessing is started at the
local sites.

4 Experiments

To benchmark the proposed extension in a multi-site setting, we implement the
federated training of the nnU-Net in Kaapana and run experiments on a setup
consisting of six independent Kaapana instances which serve as clients and one
Kaapana instance which serves as the central instance. We run experiments on
the pre-processed multi-site prostate MRI segmentation dataset2, which consists
of data from six different institutions with varying number of cases and acqui-
sition protocols [14,15]. As in [8,14,16], the peripheral zone (PZ) and central
1 https://kaapana.readthedocs.io/en/release-0.1.3/.
2 https://liuquande.github.io/SAML/.

https://kaapana.readthedocs.io/en/release-0.1.3/
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gland (CG) segmentations of the RUNMC (Site A) and BMC (Site B) datasets
are merged together to have a consistent ground truth across all sites.

In federated settings like RACOON, a common challenge is to learn an accu-
rate model despite the existing data heterogeneity. Therefore, in a first experi-
ment (“seen” setup), we evaluate the performance of models trained and tested
on data from the same sites with a training and testing split of 70% and 30%,
respectively. The test cases of each site are listed in the appendix, Table 2. How-
ever, we note that unlike [10], the train test split is done on case- instead of
slice-level and unlike [8], we do not use a validation split. In a second experi-
ment (“unseen” setup), we evaluate the domain generalizability for the use case
in which a site does not participate in the federated training. Like [8,14,16],
we apply the leave-one-domain-out strategy, i.e., we train on K-1 seen sites and
test on the omitted unseen target site. In contrast to [8], we do not use an extra
validation split of the unseen site, but test on all cases of the unseen site.

In all experiments, we compare the performance of nnU-Net models trained
on all source domains in a centralized (denoted as DeepAll) or federated fashion.
Additionally, we train nnU-Nets on every single site independently and create
an ensemble of these (using only the source domain models in the leave-one-
out experiments). In contrast to existing works ([8,10,14]), we evaluate a 2D
and a 3D-full-resolution model architecture, despite the large variance on slice
thickness between the different sites. To keep the overall computational costs
low, but still train with as many cases as possible, we train all models without a
validation set and without cross-validation. However, to make sure local models
are neither over- nor underfitting, we ran preliminarily single-site experiments
with cross-validation. In all presented experiments, we train each model for 500
epochs with respectively 250 batches per epoch and use the final model for
testing. The rest of the hyperparameter are either hard-coded or dynamically
determined from the nnUNet. More information about its selection can be found
in [9]. During the federated training, we apply federated averaging (FedAvg) [17],

x(t+1) = x(t) +
K∑

k=1

Δ(t)
k

K
, (1)

after every epoch, where x denotes the parameters of the model andK the number
of clients. We note that we weight clients equally in our experiments, to optimize
all local objectives equally. The performances of the models are evaluated for each
case based on the Dice score (Dice) and the Average Surface Distance (ASD). The
federated extensions and the implementation of the federated training of the nnU-
Net are integrated in the open source platform toolkit Kaapana3.

5 Results

Figure 1 illustrates how we implement the federated training of the nnU-Net
in Kaapana with all its steps and the client-central communication in detail.
3 https://github.com/kaapana/kaapana.

https://github.com/kaapana/kaapana
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Fig. 1. Overview of the federated learning rounds while training the nnU-Net. The left
site corresponds to the central instance, with the federated backend, MinIO and the
nnU-Net federated operator. The right site represents a client instance with a simplified
view of the nnU-Net training DAG and its operators.The green boxes correspond to
Airflow DAGs and operator and all red boxes represent pre- or post-hooks of the
operators. (Color figure online)

After authenticating client instances with the central instance, the central
instance submits jobs (1./7....), which are fetched by the corresponding clients
(3./9...). In a preparation round only the pre-processing of the nnU-Net is exe-
cuted. Its generated fingerprint of the local datasets are uploaded by a post-hook
to MinIO (5.) and concatenated on the central instance (6.). All requests to
MinIO are forwarded by the federated backend. In a second round, the finger-
prints are downloaded by a pre-hook (11.) and used to configure the nnU-Net.
After pre-processing the image data, the nnU-Net training operator initializes
the model weights and biases and uploads them to central (12.), where the models
are averaged. In the following training rounds, a pre-hook of the pre-processing
operator copies the pre-processed data from one run to the next. A pre- and
post- hook download and upload the model for the nnU-Net training operator,
which executes one epoch of training, respectively. In the final round, the final
model is downloaded and some post-processing steps are executed, including the
storage of the trained model and the generation of a training report.

For the experiments from Sect. 4, Table 1 reports the Dice (%) and ASD (mm)
for the 2D and 3D−fullres nnU-Net model as well as the results from [8,14,16].
Since the 2D nnU-Net models trained on single sites could not determine a pre-
diction on all target domain cases, we only report the ensemble performance for
the 3D trained models. Furthermore, We note that the reported Dice scores rep-
resent the arithmetic mean over all test cases per site. The “Average” column is
the unweighted average over the reported per-site mean scores. The average rank
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Table 1. Dice (%) and ASD (mm) scores for all experiments in comparison with
existing methods, along with the average scores over the sites, the average rank per
site and the total number of cases per dataset. We note that for the “seen” experiments,
the test set includes 30% of all cases, whereas for the “unseen” experiments, all cases
are used for testing. The best nnU-Net scores are marked as bold and the best overall
scores are underlined.

Setup Dataset
algorithm

RUNMC
# 30

BMC
# 30

I2CVB
# 19

UCL
# 13

BIDMC
# 12

HK
# 312

Average Rank

Seen DCA-Net [8] 91.83 0.72 91.59 0.81 89.93 0.77 91.99 0.64 90.68 0.93 90.57 0.82 90.93 0.78

2D Intra-site 87.74 0.79 91.14 0.72 81.12 2.05 88.06 0.82 69.83 2.35 85.11 1.08 83.83 1.30 5.05

DeepAll 88.55 0.73 91.04 0.73 79.21 2.32 90.14 0.67 80.98 1.58 89.46 0.71 86.57 1.12 3.67

Federated 88.27 0.77 90.88 0.70 84.50 2.00 90.59 0.61 78.01 1.62 88.97 0.77 86.87 1.08 3.72

3D Ensemble 87.48 0.92 86.27 3.46 48.28 20.93 88.02 0.88 58.32 15.54 82.51 8.00 75.15 8.29 6.12

Intra-site 89.58 0.78 90.46 0.74 83.64 2.14 88.19 1.25 73.95 40.65 84.96 1.01 85.13 7.76 4.07

DeepAll 90.00 0.67 91.57 0.64 82.27 2.14 90.02 0.70 87.64 1.26 90.49 0.66 88.66 1.01 2.78

Federated 89.96 0.69 91.50 0.61 84.50 1.95 90.16 0.63 87.70 1.28 90.99 0.62 89.14 0.96 2.60

Unseen SAML [14] 89.66 1.38 87.53 1.46 84.43 2.07 88.67 1.56 87.37 1.77 88.34 1.22 87.67 1.58

ELCFS [16] 90.19 87.17 85.26 88.23 83.02 90.47 87.39

DCA-Net [8] 90.61 1.12 88.31 1.14 84.89 1.76 89.22 1.09 86.78 1.58 89.17 1.02 88.16 1.29

2D DeepAll 84.89 1.37 83.10 1.26 71.17 4.54 85.88 1.04 74.18 4.73 86.24 1.20 80.91 2.36 3.22

Federated 85.84 1.11 81.96 1.33 76.52 4.52 84.94 1.53 73.19 2.56 86.09 1.03 81.42 2.01 3.18

3D Ensemble 76.53 38.57 84.99 2.25 49.14 37.49 84.34 16.68 72.15 18.96 85.81 5.72 75.49 19.95 3.56

DeepAll 83.97 4.91 80.37 16.77 58.45 24.77 85.59 8.34 78.98 25.48 89.24 1.47 79.43 13.62 2.78

Federated 85.01 3.65 85.36 8.05 67.63 16.34 86.97 1.78 81.95 21.16 88.51 1.86 82.57 8.81 2.25

(“Rank”) is computed by first taking the arithmetic mean of a case-based rank-
ing of the models per dataset, before averaging it again over the sites. Ranks are
calculated independently for the “unseen” and “seen” experiments, but across
the different architectures and algorithms. We find that in all experiments the
differences in Dice scores between the centralized and the federated trained nnU-
Nets are non-significant (Mann-Whitney U test, Benjamini-Hochberg corrected:
all p > .05). Cross-site performances with standard deviations of the individually
trained models are attached in the appendix in Table 3 and Table 4.

To get an intuition about the variability in performance for the different
cases, we illustrate in Fig. 2 box plots of the Dice scores on all datasets for the
different algorithms and for the 3D trained nnU-Net architecture. The plot of
the Dice scores for the 2D trained nn-UNets along with an illustration of the
training loss of the centralized and federated trained nnU-Net models is attached
in the appendix in Fig. 3 and 4.

6 Discussion

The two key features added to Kaapana in this work are on the one hand the
possibility to trigger a workflow on a remote instance in a well-controlled envi-
ronment and on the other hand the possibility to transfer the generated file-based
output of Airflow operators to the object storage of another instance. With this
functionalities, we enable in general the implementation of all kind of network
topologies like decentralized or hierarchical and federated learning compute plans
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Fig. 2. Distribution of Dice scores of each dataset and algorithm for the “seen” and
“unseen” experiments and for the 3D nnU-Net architecture.

like sequential or peer-to-peer. The design choice to run a separated workflow for
each federated round provides full flexibility when creating a federated learning
pipeline. In this work, we were able to setup a federated training of the nnU-
Net with federated averaging without the need to modify anything in the local
running nnU-Net workflow.

The experimental results with nnU-Net show that our federated learning
implementation can reach the same performance as centralized training, sug-
gesting that the potential improvements of nnU-Net through advanced federated
learning methods are small. Reasons for the slightly, but not significantly, better
results of the federated trained nnU-Net might originate from the fact, that in
contrast to the federated approach, the centralized approach does not distin-
guish to which site a case belongs to and might be biased towards some sites,
due to the imbalanced number of cases between different sites. Furthermore,
for the 3D models, we observe that an ensemble of the models often has diffi-
culties to reach the performance of federated or centralized trained nnU-Nets.
In both experiments, we were not able to outperform existing state-of-the-art
models. One reason for this might be that no further measures were taken to
adjust the nnU-Net for the multi-site setting. In addition, the numbers of the
DCA-Net baseline cannot be compared directly to ours because of inconsistent
train, validation and test data splits. In the “seen” experiments, we found that
additional training data from other sites can for some sites slightly enhance the
performance in comparison to intra-site trained models. However, given the, in
our application, still very high performance of the intra-site trained models, the
question arises whether federated learning is needed for sites with enough train-
ing data. In the experiments on nnU-Net’s capability to generalize to unseen
sites we underpin the result from [6,7] that there is a necessity to validate and
to improve the performance of nnU-Net on data from unseen sites.

An important next step is to use the proposed system in a real-world setting,
e.g. within the RACOON project, where Kaapana is already being used across
clinics. Furthermore, federated learning capabilities of Kaapana can be further
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augmented, for example by adding a certificate-based authentication or inte-
grating common functionalities of federated learning toolkits like homomorphic
encryption, encrypted computation or differential privacy. The main bottleneck
of training the nnU-Net federated is the communication cost between each feder-
ated round. Therefore, interesting research topics include decreasing the model
size of nnU-Net, trying out different hyperparameter settings like increasing
the number of local epochs per federated round or investigating different feder-
ated aggregation or optimization methods. As mentioned above, another topic of
interest is to improve the generalizability of nnU-Net on unseen data, by incor-
porating methods presented in [6,8,10,16] into nnU-Net. Finally, it will be inter-
esting to add the federated functionality to more, also non-imaging workflows
and to try out different federated setups like peer-to-peer federated learning.

Acknowledgements. This research was supported by the German Cancer Consor-
tium (DKTK, Strategic Initiative Joint Imaging Platform), the Helmholtz Association
within the project Trustworthy Federated Data Analytics (TFDA) (funding number ZT-
I-OO1 4) and by the German Federal Ministry of Education and Research (BMBF) as
part of the University Medicine Network (Project RACOON, 01KX2021). Furthermore,
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Abstract. Federated training of large deep neural networks can often
be restrictive due to the increasing costs of communicating the updates
with increasing model sizes. Various model pruning techniques have been
designed in centralized settings to reduce inference times. Combining cen-
tralized pruning techniques with federated training seems intuitive for
reducing communication costs—by pruning the model parameters right
before the communication step. Moreover, such a progressive model prun-
ing approach during training can also reduce training times/costs. To this
end, we propose FedSparsify, which performs model pruning during fed-
erated training. In our experiments in centralized and federated settings
on the brain age prediction task (estimating a person’s age from their
brain MRI), we demonstrate that models can be pruned up to 95% spar-
sity without affecting performance even in challenging federated learning
environments with highly heterogeneous data distributions. One surpris-
ing benefit of model pruning is improved model privacy. We demonstrate
that models with high sparsity are less susceptible to membership infer-
ence attacks, a type of privacy attack.

Keywords: Neuroimaging · Federated learning · Model pruning ·
Security & Privacy

1 Introduction

Federated Learning [16,18,32] enables distributed training of machine learning
and deep learning models across geographically dispersed data silos. In this set-
ting, no data ever leaves its original location, making it appealing for training
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models over private data that cannot be shared. For these reasons, Federated
Learning has witnessed widespread adoption across multiple disciplines, espe-
cially in biomedical settings [3,24,26]. Federated training of neural networks
involves exchanging/communicating parameters that are updated during local
training on private datasets. This parameter exchange incurs high communi-
cation costs, limiting the size of neural networks that can be learned [25]. To
circumvent this, model pruning techniques that have been extensively studied in
centralized settings [6,9,17] for improving models’ training and inference time
seem a natural fit towards this direction.

In this work, we propose a federated training approach incorporating model
pruning by directly extending previous work on model pruning in centralized
settings [6,35]. Similar to these, we use a simple pruning approach of removing
weights with the lowest magnitude. However, we consider federated learning
environments with heterogeneous data distributions. The learning task is to
predict brain age from T1-weighted MRI scans obtained from the UK BioBank
dataset [19]. We show that with our progressive model pruning strategy, i.e.,
increasing the sparsity in the model with each federation round, we can learn a
neural network model with less than 5% parameters of the original model while
preserving most of the performance.

Even though Federated Learning avoids private data sharing, models trained
using federated learning are not always private and may leak sensitive informa-
tion [8,23,33]. This can often be attributed to overfitting or memorization [8,30].
Pruning parameters excessively can reduce the memorization capacity of neural
networks. Inspired by this intuition, we evaluate the empirical privacy of the
obtained sparsified models through membership inference attacks. We observe
that pruned models at extreme degrees of sparsification (>95%) are less sus-
ceptible to membership inference attacks while maintaining learning perfor-
mance. This suggests a triple win for using pruning during federated training—a)
reduced communication costs, b) reduced inference costs due to small sized final
models, and c) reduced privacy leakage.

Existing federated model pruning strategies focus on reducing the required
communication cost during training in order to achieve specific levels of model
performance [1,12]. However, in this work we aim to train highly sparsified mod-
els of similar performance to the non-sparsified counterparts while at the same
time exploring the privacy gains of federated model sparsification against mem-
bership inference attacks. To the best of our knowledge, this is the first work
that studies the learning performance and privacy properties of model pruning
for deep learning models in the federated neuroimaging domain.

2 Neuroimaging Learning Environments

An extensive number of machine learning and deep learning approaches have
been recently proposed [31] with great success [4,34] across multiple biomedical
imaging tasks, such as image reconstruction, automated segmentation and pre-
dictive analytics. In this work, we evaluate such deep learning approaches for the
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BrainAGE prediction task over a set of challenging neuroimaging environments
in centralized and federated settings.

Brain Age Prediction Task. Brain age prediction involves creating a machine
learning model to predict a person’s chronological age from their brain MRI scan,
after training the model on large amounts of data from healthy individuals. When
this trained model is applied to new scans from patients and healthy controls,
the age difference between each individual’s true chronological age and that
predicted from their MRI scan has been found to be associated with a broad
range of neurological and psychiatric disorders, and with mortality [2,22]. This
age prediction task is formulated as a regression task also known as the Brain
Age Gap Estimation (BrainAGE). Various efficient deep learning architectures
have been recently proposed based on RNNs [13,15] and CNNs [7,22] with highly
accurate brain age estimations. In our work, we use a 3D-CNN model, similar
to [15,27] consisting of seven blocks. The first five blocks are composed of a 3×3×
3 3D convolutional layer, instance norm, a 2×2×2 max-pool and ReLU activation
functions. The sixth block is a 1 × 1 × 1 3D convolutional layer followed by
an instance norm and ReLU activation. The final block has an average pooling
layer, and a 1 × 1 × 1 3D convolutional layer. We test the performance of the
model on the BrainAGE task over the UK BioBank dataset [19]. Out of the
16,356 subjects with neuroimaging in dataset, we selected 10,446 subjects with
no neurological pathology and psychiatric diagnosis as defined by the ICD-10
criteria.

Centralized Environment. For centralized training, we follow the same setup
as [7,15]. We consider 10,466 healthy subjects from the UKBB dataset and split
them into train, test and validation sets of sizes 7,312, 2,172 and 940 respectively.

Federated Learning Environments. In our federated learning environment,
we consider a centralized (star-shaped) topology [24] where a single controller
orchestrates the execution of the participating learners. The controller aggregates
learners’ local models based on the number of training examples each model was
trained on and learners train the global model on their local dataset using Vanilla
SGD [18]. We refer to this federated training procedure as FedAvg [18].

Similar to the centralized settings, our learning task is BrainAGE prediction
and the learning model is a 3D-CNN [22,27]. We partition the MRI scans of
the training and validation datasets from the centralized environment across 8
learners in four federated learning environments [27,29] of heterogeneous data
amounts (Uniform, Skewed) and distributions (IID, Non-IID) per learner (see
Fig. 1). Uniform and Skewed refer to the cases where learners have an equal and
rightly skewed number of training samples, respectively. IID and Non-IID refer
to the cases where the age range of the local data distribution of the scans owned
by a learner captures the global range or a subset, respectively.

Measuring Privacy via Membership Inference Attacks. To measure how
much information the model leaks about the training set, we consider Member-
ship Inference Attack. A Membership Inference Attack is often the preferred app-
roach to evaluate practical privacy leakage from machine learning models [10,20].
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(a) Uniform-IID (b) Uniform-NonIID

(c) Skewed-IID (d) Skewed-NonIID

Fig. 1. UKBB federated learning environments.

Unlike differential privacy which considers worst-case privacy leakage, member-
ship inference attacks can be seen as evaluating average case practical privacy
leakages. In particular, given a sample (a subject’s brain MRI in our case), these
attacks infer if the sample was used during training or not. Discovering whether
the subject’s MRI is in the training set can reveal the personal medical history
of the subject, which is undesirable. We use the same attack setups as in [8].

In particular, for evaluating models trained in our centralized environment we
use their white-box attack setup. We consider access to some actual training and
unseen samples for training the attack model; this is a stronger attack setup. One
can also launch attacks without accessing actual training samples by training
shadow models [8,21]. We create a balanced test set of training and unseen
examples, and report the accuracy of correct predictions as “attack accuracy”.
Lower attack accuracy is more private, and hence better.

For models trained in our federated environments, we consider one of the
learners as malicious and launching attacks against other learners. In our feder-
ated environments we consider 8 learners, which translates to 56 (7×8) attacks.
The learner may train attack models using their private training set and some
unseen examples. We report the accuracy of correctly differentiating between
other learners’ training examples and unseen samples as the “attack accuracy”
and report the average accuracy, as in [8]. We also report the number of success-
ful attacks, since due to data heterogeneity not all attacks are successful. We
use features derived from the predictions, labels, and gradients of the last two
layers of the 3D-CNN to train the attack models.

3 Model Pruning

In this section, we discuss model pruning approach for centralized and federated
environments for neuroimaging tasks. We evaluate the efficacy of the weight
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magnitude-based pruning approach on a 3D-CNN trained on centralized and
distributed MRI scans.

Centralized Model Pruning. Neural networks can often have redundant
parameters which do not affect the outcome. One of the simplest ways of identi-
fying such parameters is by looking at the magnitude of parameters. Parameters
with low absolute values do not influence the output much and thus can be safely
pruned [6,35]. We use this simple approach for pruning. [35] showed that gradual
parameters pruning during training is more effective than one-shot pruning at
the end. Our federated pruning approach exploits this observation. However, in
the centralized setting, we prune in one step at the end of 90th epoch, followed
by finetuning for 10 epochs.

Fig. 2. Federated models number of parameters progression with (FedSparsify) and
without (FedAvg) sparsification.

Federated Model Pruning. We develop our sparsified federated training on
top of FedAvg. The global model is pruned at the controller after the controller
aggregates the local model updates from the participating learners. Once the new
(sparsified) global model is computed, the controller sends new global model to
the learners along with the associated binary mask representing pruned and
unpruned parameters. We use weight magnitude-based pruning approach [35]
and remove the weights with lowest absolute values. A parameter once pruned is
never resurrected. To enforce this during local training, each learner applies the
binary mask at every training step (see also Algorithm 1 in Appendix). As we
prune during every federation round, our pruning strategy follows a progressive
schedule similar to [28,35]. The percentage of additional parameters pruned in
each round follows an exponentially decreasing schedule, and the overall sparsity
at round t is governed by this formula:

st = ST + (S0 − ST )
(

1 − F �t/F � − t0
T − t0

)n

(1)

Here T is total number of federation rounds, S0 and ST are the initial and desired
final sparsity, F is frequency of sparsification, and t0 is the initial sparsification
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round. The exponent n controls the exponential sparsification rate. We refer to
this pruning strategy as FedSparsify. In our experimental evaluation, we explore
different final sparsities, i.e., ST = {85%, 90%, 95%, 99%}. Throughout our
experiments, we set the rate of sparsification n to 3, we prune the global model
at every federation round, i.e., F = 1, for a total number of 40 federation rounds,
T = 40, and we start the sparsification schedule at federation round 1, t0 = 1.
Figure 2 presents the progression of global model parameters of this sparsification
schedule over the course of 40 federation rounds.

4 Results

We train the 3D-CNN model1 for the brain age prediction task in different
learning setups. We perform one-shot pruning in the centralized setup to achieve
different sparsity levels. For the federated learning setup, we vary ST , the final
sparsity level in Eq. 1 and prune progressively before communicating updated
weights to the learners (see Algorithm 1). In all environments the model is trained
using Vanilla SGD with a batch size of 1 and learning rate of 1e−5. During
federated training learners train the global model locally for 4 epochs in between
federation rounds. All experiments were run on a dedicated GPU server equipped
with 4 Quadro RTX 6000/8000 graphics cards of 50 GB RAM each, 31 Intel(R)
Xeon(R) Gold 5217 CPU @ 3.00 GHz, and 251 GB DDR4 RAM.

(a) (b)

Fig. 3. Centralized BrainAGE model performance at different sparsity levels (left plot)
and model vulnerability to membership inference attacks with respect to model per-
formance (right plot).

Model Pruning Does Not Hurt Performance. We first study model per-
formance at different sparsity levels by evaluating the models on a held-out
test set. These results are summarized in Fig. 3a for centralized training. Even

1 https://github.com/dstripelis/FedSparsify.

https://github.com/dstripelis/FedSparsify
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Fig. 4. Federated BrainAGE models learning performance at different degrees of spar-
sification across all four federated learning environments. Dashed line represents per-
formance of non-sparsified model.

Fig. 5. Federated BrainAGE models vulnerability to membership inference attacks
with respect to learning performance across all federated environments.

through the one-step pruning approach, we observe that most of the model per-
formance is preserved when 90% of the parameters are removed. This validates
the applicability of weight magnitude-based pruning for deep learning models on
neuroimaging tasks. We apply our proposed progressive pruning procedure for
federated training at different final sparsity levels across four different environ-
ments. The results are summarized in Fig. 4. In all cases, model performance is
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Table 1. Federated models comparison in the Skewed-IID environment.

Sparsity Params Size (MBs) Comm. (MM) Test MAE MIA (Success) Throughput

0.0 2,950,401 10.85 1888 2.879 0.66 (50) 64.31

0.85 442,561 2.09 714 2.881 0.671 (52) 69.06

0.9 295,041 1.43 645 2.859 0.672 (51) 71.28

0.95 147,521 0.73 576 2.861 0.659 (54) 78.27

0.99 29,505 0.16 521 3.024 0.596 (47) 128.55

not affected at 95% sparsity level and performs the same as the FedAvg model,
which is trained without pruning. Even when only 1% of the parameters are
preserved, i.e., 99% sparsity, the model performance degrades slightly. Table 1
provides a quantitative comparison of the total number of parameters and mem-
ory/disk size of the final model, the cumulative communication cost in terms
of the total number of parameters exchanged during training2, and the model’s
learning performance. Our pruning schedule can learn a highly sparsified fed-
erated learning model with 3 to 3.5 times lower communication cost than its
unpruned counterpart (cf. 521 million to 1888 million parameters). Moreover,
the reduced number of the final model parameters also leads to reduced model
space/memory footprint, with the sparsified models at 95% and 99% sparsifica-
tion being 67 times smaller than the original model. Following previous work [14]
on model efficiency evaluation3, we benchmark the inference time for sparse and
non-sparse models by recording the total number of processing items per second
(i.e., Throughput - items/sec) that each model can perform. Specifically, we take
the final model learned with (FedSparsify) and without sparsfication (FedAvg)
and stress test its inference time by allocating a total execution time of 60 s with
a warmup period of 10 s. As we show in Table 1, as sparsification increases model
throughput increases too, leading to improved inference efficiency especially at
99% sparsity.

Excessive Model Pruning May Reduce Privacy Vulnerability. Intu-
itively, pruning can reduce the ability of a neural network to memorize training
data and thus reduce privacy vulnerability. To this end, we evaluate pruned mod-
els for privacy leakage using membership inference attacks (Fig. 3b and Fig. 5).
We find that at extreme sparsity levels (>95% for centralized settings and 99%
for federated setting) the attack accuracy reduces suggesting that these models
are less vulnerable to privacy leakage compared to non-sparsified models. Com-
pared to the non-sparsified model, the sparsified models are 10% to 20% less
vulnerable in case Skewed IID and Uniform IID environments, respectively, and
5% for the Non-IID environments.

2 Communication cost is computed as
∑T

t 2N t
ZL. T represents the total number of

federation rounds, N t
Z the non-zero model parameters at round t and L the number

of participating learners. Factor 2 accounts for the model parameters sent from the
controller to the learners and from the learners to the controller within a round.

3 https://github.com/neuralmagic/deepsparse.

https://github.com/neuralmagic/deepsparse
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5 Discussion

We investigated model pruning for deep learning models in the neuroimaging
domain through the BrainAGE prediction task in both centralized and feder-
ated learning environments. We demonstrated that sparsified models are equally
performant as their non-sparsified counterparts even at extreme sparsity lev-
els across all investigated environments. We also evaluated the effectiveness of
sparsified models in improving model resiliency against membership inference
attacks. We discovered that highly sparsified models could reduce vulnerability to
this privacy attack. The vulnerability to membership inference attack is related
to the mutual information between the training dataset and activations [11] or
model parameters [5]. These results could provide a plausible theoretical expla-
nation as to why pruning reduces the information about the training dataset
in neural network weights compared to weights obtained by training without
pruning. In the future, we plan to analyze the relation between model sparsi-
fication and model privacy and provide a theoretical framework to understand
the connection between them better. We also plan to improve model privacy by
introducing notions of stochasticity while applying model weight pruning.
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Abstract. Optical coherence tomography (OCT) is widely used for
detection of ophthalmic diseases, such as glaucoma, age-related macular
degeneration (AMD), and diabetic retinopathy. Using a low-coherence-
length light source, OCT is able to achieve high axial resolution in biolog-
ical samples; this depth information is used by ophthalmologists to assess
retinal structures and characterize disease states. However, OCT systems
are often bulky and expensive, costing tens of thousands of dollars and
weighing on the order of 50 pounds or more. Such constraints make it dif-
ficult for OCT to be accessible in low-resource settings. In the U.S. alone,
only 15.3% of diabetic patients meet the recommendation of obtaining
annual eye exams; the situation is even worse for minority/under-served
populations. In this study, we focus on data acquired with a low-cost,
portable OCT (p-OCT) device, characterized by lower resolution, scan-
ning rate, and imaging depth than a commercial OCT system. We use
generative adversarial networks (GANs) to enhance the quality of this
p-OCT data and then assess the impact of this enhancement on down-
stream performance of artificial intelligence (AI) algorithms for AMD
detection. Using GANs trained on simulated p-OCT data generated from
paired commercial OCT data degraded with the point spread function
(PSF) of the p-OCT device, we observe improved AI performance on
p-OCT data after single-image super-resolution. We also achieve denois-
ing after image-to-image translation. By exhibiting proof-of-principle AI-
based AMD detection even on low-quality p-OCT data, this study stim-
ulates future work toward low-cost, portable imaging+AI systems for eye
disease detection.
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1 Introduction

1.1 Background and Motivation

Much of the Artificial Intelligence (AI) being developed to detect ophthalmic
diseases is trained using data and ground-truth that are collected in leading
clinics with state-of-the-art equipment and expert ophthalmologists [1,2]. How-
ever, perhaps one of the most compelling uses for AI is for under-served areas
which must utilize low-cost portable systems and in which high-quality ground
truth may not be available given lack of experienced readers [3]. In this paper, we
investigate whether we can use generative adversarial networks (GANs) to map
the lower quality of data acquired using a portable-OCT (p-OCT) system (about
tenfold cheaper than a commercial system) to the higher quality of commercial
OCT data on which an AI model was trained to detect AMD. We hypothesize
that this mapping will enable the p-OCT data to be “rescaled” to match the
resolution and noise characteristics of the high-quality data used to train an AI
model, enabling better downstream AI-based AMD classification performance.
To test this, we utilize data collected from a p-OCT device developed by Kim
et al. [4], who have successfully designed, implemented, and characterized a low-
cost, portable OCT system tailored for retinal imaging use in clinical/laboratory
studies. This p-OCT device was used for imaging human patients and achieved a
contrast-to-noise ratio 5.6% less than that achieved by a commercial Heidelberg
Spectralis OCT system [5].

Furthermore, since data shortage is a challenge for the development of AI-
based tools, future potential applications of p-OCT data/devices include (1)
efficient data collection and augmentation for AI training due to the p-OCT’s
portable form factor, and (2) GAN-based simulation/synthesis of medical data
(as shown to be possible in previous work with commercial OCT and fundus
images [6,7]) for enhancing data privacy. The above use cases of p-OCT data
and GANs are predicated on the assumption of having robust AI algorithms
that can achieve high-accuracy eye disease detection even from p-OCT data; we
seek to confirm this assumption through our work by using GANs to improve
downstream AI performance on p-OCT data. By showing proof-of-principle AI-
based AMD detection using low-quality p-OCT data, we aim to equip a broader,
diverse population with access to potentially sight-saving imaging+AI technol-
ogy.

1.2 Past Work

Existing noise removal approaches for natural images have been applied to med-
ical images [8,9] to successfully generate noise-free images even when clean tar-
get images are not available for training. In contrast, in this work we specifi-
cally seek to map low-quality image statistics of test data to high-quality image
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statistics to mimic the quality of data on which an existing AI-based AMD
detection model has been trained. This requires capturing the resolution differ-
ence between low and high-quality data (achieving super-resolution) as well as
capturing the spatially-correlated noise differences between low and high-quality
data (past approaches [9] often assume spatially uncorrelated/‘pixel-wise inde-
pendent’ noise). In order to achieve this, we turn to the class of generative adver-
sarial networks (GANs), particularly conditional GANs, which learn mappings
between source and target data. First, we use super-resolution GANs (such as
ESRGAN [10]) to enhance the resolution of output images by learning both the
scale and noise mapping between low and high-quality data; such GANs enable
‘informed hallucination’ of missing information to generate super-resolved ver-
sions of input low-resolution data. Second, we use image-to-image translation
GANs [11] (such as MedGAN [12]) for the denoising of simulated p-OCT images,
to attempt to transform their perceptual quality toward that of commercial OCT
images.

1.3 Baseline Performance on p-OCT Data and Dataset Details

Through a collaboration with Duke University’s Wax Lab, we obtained 221 b-
scan images from 59 subjects that were acquired directly with a p-OCT system
[5]. We used this data (Institutional Review Board exempt) to test the authors’
previously-developed [13,14] deep learning algorithm’s (DLA’s) robustness to
AMD detection using p-OCT input images. (This previous DLA was trained
from scratch on 301 commercial OCT b-scan images [14]). We showed the p-OCT
images to AMD experts to label for presence of CNV (choroidal neovasculariza-
tion, characteristic of ‘wet AMD’) or no AMD; 39 images were excluded due to
presence of pathologies other than AMD, and 14 ‘non-neovascular’ (‘dry AMD’)
eyes were excluded in order to directly assess the DLA’s binary AMD classifica-
tion performance with p-OCT data vs. with commercial OCT data. This resulted
in 168 p-OCT images (42 classified as neovascular (NV) AMD (‘wet AMD’) and
126 classified as non-AMD). For training, we utilized a dataset (described in
detail in [14]) of 1270 NV AMD vs. non-AMD commercial OCT images (520 NV
AMD, 750 non-AMD) captured with a Carl Zeiss Cirrus HD-OCT 5000 device.
Thus, the training set is much closer to balanced (40% NV AMD vs. 60% non-
AMD) even though the test set is not balanced. Commercial OCT training data
and p-OCT test data examples are shown in Fig. 1 (left). Although both image
types are impacted by characteristic speckle noise from the OCT instrument,
the amount of noise and the distribution of pixel intensities vary significantly
between the two images.

To present the baseline performance of the high-performing DLA in a
threshold-independent manner (and to control for imbalance in classes, espe-
cially relevant for the p-OCT test data), we plotted the AMD detection model’s
performance via Receiver Operating Characteristic (ROC) curves (Fig. 3, left
panel). The Area Under the Curve (AUC) achieved by the model on baseline
commercial OCT data is 0.8 (95% CI, 0.694–0.906), while the baseline
AUC on p-OCT data prior to any image quality enhancement is 0.518 (95%
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Fig. 1. Left: Original commercial training data (top); histogram-matched p-OCT test
data (bottom). Right: Image processing pipeline to generate super-resolved images for
downstream AI performance evaluation. Commercial OCT data is convolved with the
PSF of the p-OCT device, histogram-matched with p-OCT images, and then downsam-
pled by 4x (to form simulated p-OCT data through ‘B’) prior to being used for paired
ESRGAN training. The resulting trained generator (‘G’) is used to super-resolve (‘S’)
p-OCT test inputs prior to AI-based AMD detection (figure concept from [15]).

CI, 0.396–0.640), barely above chance. To improve the AI model’s perfor-
mance and make it generalizable for p-OCT data, we attempted one GAN-based
super-resolution (SR) approach and one GAN-based image-to-image translation
approach; these approaches are described in detail in the following sections.

2 Super-Resolving p-OCT Data with ESRGAN

We used the Enhanced Super Resolution Generative Adversarial Network (ESR-
GAN) [10], one of the latest state-of-the-art deep learning based super-resolution
(SR) techniques, to enhance the resolution of the portable OCT test data prior
to downstream classification via a high-performing AMD detection model to
evaluate the impact of super-resolution on downstream binary AMD detection.

2.1 ESRGAN Background and Methods

ESRGAN goes beyond the Super-Resolution Generative Adversarial Network
(SRGAN) [16] by creating the Enhanced SRGAN. Architectural highlights
of ESRGAN that enable its enhanced functionality include the Residual-in-
Residual Dense Block (RRDB) [10], which has higher capacity and thus is easier
to train than the original SRGAN model, residual scaling [17], and use of a
relativistic generator [18]. ESRGAN must be trained with paired low-resolution
and high-resolution data (i.e. the same object captured with two imaging instru-
ments). Since we do not have p-OCT and commercial OCT data of the same
patients, we simulated paired ESRGAN training data by matching the histogram
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of the commercial OCT data to that of the p-OCT data, convolving the com-
mercial OCT data with the Point Spread Function (PSF) of the portable OCT,
and downsampling the data by a factor of 4 (as dictated by the ESRGAN archi-
tecture [10]). This approach resembles past ‘Blind Super-resolution’ approaches
[15] and is appropriate for this situation since we know the point spread func-
tion (i.e. degradation kernel) that generated the low-resolution p-OCT data. The
pipeline used for generating the paired training data is shown in Fig. 1 (right).
Examples of the degraded and ground truth commercial images used for paired
training are shown in Fig. 2. We then super-resolved the p-OCT test data using
the resulting ESRGAN generator trained (via BasicSR [19]) on the paired, ‘sim-
ulated p-OCT’/commercial OCT dataset. After histogram-matching the p-OCT
test data to the commercial OCT data and denoising via a 5 × 5 kernel Weiner
filter, we inputted the p-OCT data to the trained ESRGAN generator for super-
resolution. We then used the super-resolved outputs for downstream AI-based
AMD detection.

2.2 ESRGAN Results and Discussion

Training ESRGAN on this paired dataset exhibits qualitatively improved results
on validation data, as can be seen by the input and validation output images
in Fig. 2. For test data (super-resolved p-OCT data), the improvement is visu-
alized most clearly through the ROC curve in Fig. 3, left panel. AUC achieved
by the high-performing AI model on baseline commercial OCT data is 0.8
(95% CI, 0.694–0.906), while baseline AUC on portable OCT data prior to
application of super-resolution is 0.518 (95% CI, 0.396–0.640). In contrast,
after ESRGAN super-resolution (without training on paired commercial OCT
and simulated p-OCT data, i.e. just using an ‘off-the-shelf’ ESRGAN model pre-
trained on natural images, called After SR, No Train), this AUC increases to
0.792 (95% CI, 0.684–0.900). After ESRGAN training on paired simulated
p-OCT data and commercial OCT data (called After SR, Train), AI perfor-
mance on super-resolved p-OCT data increases to an AUC of 0.897 (95% CI,
0.815–0.979). This increase in AUC beyond that achieved on the original com-
mercial OCT data could be due to the super-resolution process in fact increasing
the resolution of the p-OCT data beyond that of the original commercial OCT
data (the ESRGAN architecture enables a 4× resolution increase compared to
input resolution; input resolution is 500 × 500 pixels, so output resolution is
2000 × 2000 pixels, while commercial OCT data resolution is only 700 × 1052
pixels).

It is interesting to note that although the AI performance on super-resolved
p-OCT data improves dramatically compared to that on the commercial OCT
data and that on the original p-OCT data, this improvement is harder to observe
visually/perceptually (see Fig. 4). This is confirmed by computing the BRISQUE
scores [20] for sets of these images. The BRISQUE score is a reference-less per-
ceptual image quality metric; lower BRISQUE scores indicate higher perceptual
quality. Figure 3 (right panel) shows that, while commercial OCT data and
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Fig. 2. Left: Simulated portable (degraded commercial) OCT data used for ESRGAN
paired training, after histogram matching to p-OCT data, convolving with PSF of the
p-OCT device, and 4x bicubic down-sampling; Center: SR validation output during
training; Right: original commercial OCT ground truth.

Fig. 3. Left Panel: Receiver Operator Characteristic (ROC) curve comparing perfor-
mance of AI on original p-OCT data (red), on p-OCT data after super-resolution
with paired training (After SR, Train in yellow), on commercial OCT data (vio-
let), and on p-OCT data after super-resolution without training (After SR, No-
Train in green). Interestingly, super-resolution enhances AI AUC beyond that on the
high-quality commercial data, suggesting the value of super-resolution for facilitat-
ing AI-based eye disease detection even from p-OCT data. ROC curve in blue shows
MedGAN generated images (described in Sect. 3) with AUC approaching that of
target (commercial OCT) images. Right Panel: AUCs and normalized BRISQUE
scores for 5 image types. Note inverse relationship between AUC scores and normal-
ized BRISQUE scores for After SR, Train (highlighted with light yellow background)
and MedGAN Gen images; they have significantly higher AUCs (AI performance)
compared to p-OCT images but significantly poorer (higher) normalized BRISQUE
scores (perceptual quality) compared to commercial OCT images (highlighted with
light green background) [*: p < 0.05; **: p < 0.01; ***: p < 0.0001]. Note overall
similarity in normalized BRISQUE scores across all image types. (Color figure online)
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Fig. 4. Left: Original portable OCT image; Right: super-resolved, denoised,
commercial-OCT-histogram-matched portable OCT image; Center: histogram of pixel
intensity frequency quantitatively shows super-resolution (increase in presence of varied
pixel intensities for red histogram, corresponding to red boxed region in super-resolved
(SR) p-OCT image, compared to blue histogram, corresponding to blue boxed region
in original p-OCT image). Note shifted peak of SR p-OCT histogram is due to learn-
ing histogram of commercial OCT data during paired ESRGAN training. (Color figure
online)

super-resolved p-OCT data without training (After SR, No Train) have sig-
nificantly different BRISQUE scores from that of the original p-OCT data,
the trained, super-resolved (SR) p-OCT data (After SR, Train) data has a
BRISQUE score that is not significantly different from that of the original p-
OCT data. This aligns with the fact that clinicians who viewed the trained
SR p-OCT data also qualitatively described that the trained SR p-OCT data
did not provide any additional features beyond what the original p-OCT data
provided for their diagnosis. This qualitative finding and the similar BRISQUE
scores for the original p-OCT and trained SR p-OCT data, combined with the
enhanced AI performance on the SR p-OCT data, are consistent with past work
[21], which showed that deep neural networks (DNNs) are less impaired than
their human counterparts at deciphering spatially correlated noise. Also, ‘noise-
trained’ DNNs, like the trained ESRGAN here, more closely emulate human
vision’s robustness to noise than DNNs not trained with noise [21]. This further
strengthens the potential value of an SR-enhanced, AI-embedded p-OCT system
that could provide high-accuracy automated disease detection, especially when a
human expert or commercial OCT system are not available, such as in resource-
limited environments. The AI’s boosted performance on the SR p-OCT data
could be attributed to the SR process transforming the original p-OCT data
into a space that is more similar to that on which the AMD-detection model has
been trained (commercial OCT data). The effective ‘transfer learning’ during
the paired training between simulated p-OCT data and true commercial OCT
data also improved AI performance for the trained SR model compared to the
non-trained one (when the SR model was only pre-trained on natural images).
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3 Enhancing Source Domain Perceptual Image Quality
with MedGAN

Given the dramatic improvement in AI performance with super-resolved p-OCT
data without accompanying significant improvement in perceptual quality, we
also implemented (in Python Tensorflow/Keras) an image-to-image translation
[11] GAN to enhance p-OCT perceptual image quality via image denoising.

3.1 MedGAN Background

MedGAN was proposed by Armanious and colleagues [12] as a multi-purpose
GAN for the transformation (translation, motion-correction, or denoising) of
medical images. Unlike standard GANs, which transform noise into a desired
image, MedGAN is conditional, taking as input a source image and transform-
ing it into a desired target image. This type of operation is enabled by MedGAN’s
particular architecture and the losses that optimize it. Its generator is composed
of several U-Net [22] architecture blocks that refine images as they propagate
through a sequential encoder-decoder pathway. Modeled after PatchGAN, its dis-
criminator decomposes generated images into 64 patches (each of size 16×16) in
order to determine which are most likely to resemble a target image and which
are least likely to do so. Together, the generator and discriminator are trained via
adversarial loss, which places them in competition, respectively generating real-
istic images and identifying unrealistic images. While this leads the generator to
output broadly sufficient images, they are often blurry. As a result, the generator
uses three other loss functions that leverage feature extractors to produce more
accurate images. Using the discriminator as a feature extractor, perceptual loss
attempts to capture discrepancy between high frequency components of gener-
ated and target images, while content and style loss both use layers of VGG-19
[23] to quantify dissimilarities between the generated and target images. These
loss formulations are given in the paper’s Supplementary Materials. A schematic
of our MedGAN denoising use-case and of the components of the MedGAN
architecture are shown in Fig. 5, left panel.

3.2 MedGAN Methods

MedGAN Generator. The CasNet generator is built from U-Net modules [22],
concatenated sequentially to create a richer output image. The blocks themselves
are identically composed of an 8-layer encoding section followed by an 8-layer
decoding section. The former employs convolutional layers with kernel sizes of
four, stride length of 2, and convolutional filters of size 64, 128, 256, 512, 512,
512, 512, and 512. Given the input image size of 256×256×3, these parameters
eventually yield a 1×1×512 object, which then feeds into the decoding section,
built of 8 deconvolutional blocks with the same stride and kernel parameters as
their convolutional counterparts and with filter sizes of 512, 1024, 1024, 1024,
1024, 512, 256, and 128. This section of the block deconvolves the 1 × 1 object
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Fig. 5. Left Panel: Our MedGAN use-case is for image denoising; CasNet generator
is composed of U-Net blocks; PatchGAN discriminator computes perceptual loss and
patched adversarial loss; VGG-19 feature extractor computes style and content losses
[12]. Right Panel: (Clockwise from top left) An example original low-resolution source
image, high resolution target image, a heatmap showing the discriminator’s prediction
of image patches as real (yellow) or fake (blue), and the final MedGAN-generated
image. The MedGAN-generated image is able to achieve a similar level of perceptual
quality to the high resolution commercial OCT image, but the persistent artifact at the
image’s bottom affects this quality. Although these artifacts remained through many
iterations of the MedGAN, this particular artifact is low-impact, away from important
parts of the image (the retinal layers) and is well contained. (Color figure online)

with 512 channels back to a 256×256 object with 128 channels, allowing for the
last deconvolutional layer to feed directly into the next block’s first convolutional
layer, ensuring modularity of the blocks. To output an image after the last U-Net
block, we changed the output filter size of the last filter to 3 (to accommodate our
RGB input images), such that a 256×256×3 image results. Every convolutional
and deconvolutional layer is followed by batch normalization and leaky ReLU
layers, and the final deconvolutional layer employs a tanh activation function.
We modified the original MedGAN architecture by using a sigmoid activation
function at the output of the final block (to ensure output images remain in the
range [0, 1]). Finally, encoding and decoding layers of the same dimension in each
block are concatenated to ensure transfer of contextual information throughout
the encoding-decoding pathway and to strengthen back-propagation.

MedGAN Discriminator. Unlike classic discriminators that output single val-
ues (the probability of the whole generated image being real or fake), MedGAN
uses a patch discriminator that returns a 64 × 64 matrix of values indicating
the probability that each 16 × 16 patch of an input image (either generated
or target) is ‘real’ (each patch equals 1 for a target image, 0 for a generated
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image.) This approach permits sharper results, especially in conjunction with
non-adversarial losses like the perceptual loss. The architecture of this network
is relatively straightforward, consisting of two convolutional layers with kernel
sizes of 4, strides of 2, and spatial filters with parameters 64 in the first layer and
128 in the second. This ultimately produces a 64 × 64 × 128 object, which can
be compressed into a final 64 × 64 × 1 matrix using a convolutional layer with
its stride and spatial filter both set to 1, kernel size equal to 4, and a sigmoid
activation function, as proposed in the original MedGAN design [12].

MedGAN Training. Training the MedGAN (via Lambda Labs Vector, RTX
3090 GPU) occurs in four iterations. In the first three, the generator produces
images upon which losses can be computed and optimized. The discriminator
receives no training during these iterations, only being optimized in the fourth
and final iteration. This approach emphasizes the training of the generator over
the discriminator, as the generator contains a much more complex architecture.
This allows the two models to maintain a healthy training equilibrium, rather
than creating a situation where the discriminator can dominate the generator.

3.3 MedGAN Results and Discussion

We chose a generator architecture with 6 CasNet blocks (as proposed in the
MedGAN paper [12]), as it outperforms 1-block and 3-block architectures based
on BRISQUE scores of generated outputs. We found the following loss hyperpa-
rameters to be optimal for the portable OCT data based on empirical tuning:
Perceptual loss λpi of 1, Style loss λsj of 0.0001, and Content loss λcj of 0.0001.
Smaller content and style losses may be preferred, because the VGG-19 feature
extractor has been trained on ImageNet [24]; replacing VGG-19 with a network
fine-tuned on OCT data may enhance quality of extracted features for p-OCT
data, increasing the content/style loss contributions. We trained the model for
100 epochs (48 h) and with up to 1270 input images. Loss definitions and curves
for all loss types are shown in the paper’s Supplementary Materials. We found
that the MedGAN-generated images (when scaled to match target image size)
still exhibited significantly higher (poorer) average BRISQUE scores (44.6) than
those of target commercial OCT images (35.5); in spite of visible reduction
in noise (low perceptual loss) within the generated images, perceptual quality
did not quantitatively match that of target images. As a more rigorous test,
downstream AI performance using generated images is therefore shown via the
blue ROC curve in Fig. 3 (left panel); MedGAN generated images exhibit
an AUC of 0.774 (95% CI, 0.663–0.885), approaching that achieved by the
target commercial OCT data of 0.8 (95% CI, 0.694–0.906). An example
generated image and a heatmap indicating probability of ‘realness’ of patches
within generated images according to the discriminator are also shown in Fig. 5,
right panel.

We believe that mode collapse contributed to the persistent artifact occurring
in the MedGAN output images. In typical GANs, this phenomenon transforms
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all GAN inputs into a single output image, but mode collapse is not well-defined
for conditional GANs like MedGAN. All of MedGAN’s generated images appear
to have a layer overlaying the original input image, with similar noise patterns
and artifact locations in each. Therefore, while the conditional input remains
different for all images, the generated artifacts are functionally identical.

4 Conclusions and Future Directions

In the first half of this paper, we used ESRGAN-based super-resolution to
enhance AI-based AMD detection using p-OCT images and simulated paired
training via the p-OCT point spread function. Perceptual quality of super-
resolved outputs may be improved by first denoising the p-OCT data via existing
high-performing, deep-learning based retinal-OCT denoising techniques [25,26]
prior to ESRGAN super-resolution. An alternate future approach could involve
using ‘GAN-CIRCLE’ and the cycle-consistency constraint to achieve super-
resolution with unpaired training data and no task specific regularization [27].
In the second half of this paper, we sought to denoise/improve perceptual qual-
ity of simulated p-OCT data via MedGAN by reducing noise and perceptual
loss (between source and target images). This resulted in AI performance close
to that of target images, without significant quantitative perceptual quality
improvement (lowering of BRISQUE scores). Artifacts in MedGAN-generated
images could be eliminated by additional use of regularization and VGG-19 fea-
ture extractor fine-tuning on OCT data. Regularization strategies include adding
instance noise to the MedGAN training input images and adding gradient penal-
ties to the networks [28]. Another promising future direction is to integrate
progressively growing generated images into GAN training [29], which would
provide more stable image synthesis. Overall, we observed that GAN-based pro-
cessing of p-OCT/simulated p-OCT data significantly improved AI-based AMD
detection performance, in spite of not significantly changing perceptual quality,
as assessed by classical metrics (BRISQUE) and the human eye. Our proof-of-
principle findings stimulate future work toward AI-embedded p-OCT devices for
eye disease detection, especially in situations when ophthalmic expertise or high
quality testing data are not available.
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Abstract. Ultrasound imaging plays a crucial role in assessing disease
and making diagnoses for a range of conditions, especially so in low-to-
middle-income (LMIC) countries. One such application is the assessment
of pleural effusion, which can be associated with multiple morbidities
including tuberculosis (TB). Currently, assessment of pleural effusion is
performed manually by the sonographer during the ultrasound examina-
tion, leading to significant intra-/inter-observer variability. In this work,
we investigate the use of deep learning (DL) to automate the process of
pleural effusion segmentation from ultrasound images. On two ultrasound
datasets of suspected TB patients acquired in a LMIC setting, we achieve
median Dice Similarity Coefficients (DSCs) of 0.82 and 0.74 respectively
using the nnU-net DL model. We also investigate the use of coordinate
convolutions in the DL model and find that this results in a statistically
significant improvement in the median DSC on the first dataset to 0.85,
with no significant change on the second dataset. This work showcases,
for the first time, the potential of DL in automating the process of effu-
sion assessment from ultrasound imaging and paves the way for future
work on artificial intelligence-assisted acquisition and interpretation of
ultrasound images. This could enable accurate and robust assessment of
pleural effusion in LMIC settings where there is often a lack of experi-
enced radiologists to perform such assessments.
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1 Introduction

In 2020 there were an estimated 10 million cases of tuberculosis (TB) worldwide,
and the global case fatality ratio was 15% [12]. However, the prognosis for TB is
generally good if treatment can be initiated early enough. The gold standard for
diagnosis of TB is detection of mycobacterium tuberculosis through a culture
test. However, such tests can be expensive and time-consuming, limiting their
utility in low-to-middle-income (LMIC) countries [7]. In many LMIC countries
radiological indicators play an important role in assessing clinical symptoms
associated with TB, with a view to initiating treatment. One such symptom is
pleural effusion, which refers to a build-up of excess fluid between the layers of
the pleura outside the lungs. It can be caused by TB and several other condi-
tions, including congestive heart failure, kidney failure, cancer, pneumonia, and
pulmonary embolism. Pleural effusion can be identified using a chest X-ray but
the sensitivity of this method is only good when the effusion volume is large,
which makes it unsuitable for initiating early treatment.

Ultrasound imaging allows earlier identification of pleural effusion and grad-
ing of its severity, allowing better treatment allocation [9]. However, ultrasound
image acquisition and interpretation for pleural effusion assessment require
expertise, and in many LMIC countries there is a shortage of skilled sonographers
who can perform this task. Even for experienced sonographers, ultrasound-based
assessment of pleural effusion is a challenging task, made difficult by the fact that
the lungs can change appearance in ultrasound images in the presence of some
pathologies, and the appearance of the effusion itself can change as it progresses
from exudate to empyema. Furthermore, shadowing caused by the ribs in ultra-
sound imaging can make it difficult to reliably measure the extent of the effusion.
As well as identifying the presence of effusion it is also useful to know its severity.
Typically, effusion severity is estimated by manually measuring the “depth” of
the effusion in ultrasound (i.e. the perpendicular distance between the pleural
boundary and the lung). However, this measurement will vary depending on the
probe orientation and how superior/inferior the measurement is taken, and so
there is significant inter-/intra-observer variability.

In other applications, deep learning techniques have been used to automate
medical image analysis tasks with a view to reducing intra-/inter-observer vari-
ability. For example, in ultrasound, deep learning has been applied to cardiac
functional quantification [6,10], assessing kidney function [3] and estimating fetal
biometrics [15]. Across a range of recent medical image segmentation challenges,
the nnU-Net framework [2] has proved to exhibit state-of-the-art performance.

In this paper we investigate the potential of deep learning to automate the
task of pleural effusion segmentation from ultrasound imaging. To the best of
our knowledge this is the first attempt to automate this challenging task. We
employ the state-of-the-art nnU-Net framework and also investigate whether



170 G. Morilhat et al.

coordinate convolutions can improve performance by explicitly encoding spatial
information to improve the model’s learning. Coordinate convolutions were first
proposed in [5] and have since been shown to improve performance or optimisa-
tion properties in medical image segmentation tasks [1]. In our application, due
to the standard protocols used for acquiring effusion images, there is good reason
to suspect that spatial information may improve segmentation performance and
we investigate this hypothesis in this paper. Some previous works have demon-
strated this potential in ultrasound image analysis tasks [8,11,13] and here we
investigate its potential for the task of pleural effusion segmentation in suspected
TB patients.

The primary goal of this work is to demonstrate the feasibility of deep learn-
ing methods to tackle the pleural effusion segmentation task. Our first contri-
bution is using the state-of-the-art nnU-Net deep learning model to address this
task. Our second contribution is to investigate the use of spatial context infor-
mation by extending the nnU-net model to use coordinate convolutions.

2 Materials

All ultrasound images were acquired using a SONOACE X7 ultrasound machine
by an experienced radiologist at Gondar University Hospital in Ethiopia.
Patients underwent clinical examination after reporting with symptoms con-
sistent with a possible diagnosis of TB. All gave informed consent to the use
of their images for research purposes and the study was approved by the uni-
versity’s hospital administration. All images were stored in DICOM format and
pseudonymised (including blanking of patient details in the image) before being
transferred to a password-protected remote file server for subsequent analysis.

A total of 143 images were acquired from 59 patients. The images were
obtained at the left and right PLAPS (PosteroLateral Alveolar and/or Pleural
Syndrome) and subcostal views [4] with linear array and curved array (abdomi-
nal) ultrasound probes. The data were split according to the use of these probes
into two datasets of 51 and 92 images, respectively for linear array and curved
array. We denote these datasets as Dataset A (linear array) and Dataset B
(curved array). All images were annotated at the time of acquisition to measure
the extent of the effusion. These annotations consisted of small crosses at the top
and bottom of the deepest area of effusion. See Fig. 1 (left column) for example
images.

Before being used for training and evaluating the models, each image was
automatically cropped using a rectangular/cone mask to remove non-imaging
content. Next, we applied an inpainting text algorithm using keras-ocr followed
by template matching and edge detection algorithms from opencv to remove the
annotations that were added to the images to measure the effusion. Examples
of the outputs of this preprocessing are shown in Fig. 1 (centre column).

All images in both datasets were manually segmented using the ITK-SNAP
software [14] (www.itksnap.org) by a trained observer. Examples of ground truth
segmentations are shown in Fig. 1 (right column). These segmentations acted as

www.itksnap.org
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Fig. 1. Sample ultrasound images. Left-to-right: original image, image after cropping
and inpainting to remove annotations, further cropping, with ground truth segmenta-
tion overlaid in red. Top row: Dataset A. Bottom row: Dataset B. (Color figure online)

ground truths for training and evaluating the proposed models. Additionally,
a second trained observer performed independent segmentations of subsets of
10 random images each from the two datasets. These were used to compute an
estimate of inter-observer variability in the manual segmentation process.

3 Methods

For our baseline model we employed the nnU-Net deep learning framework [2].
We used the 2-D implementation and the model was trained for 100 epochs
to limit computational demands. Training was performed with a batch size of
4 using stochastic gradient descent with Nesterov momentum (µ = 0.99) and
an initial learning rate of 0.01. The loss function was the sum of cross entropy
and Dice loss. The default nnU-Net data augmentation setting was used which
included rotations, scaling, Gaussian noise, Gaussian blur, brightness, contrast,
simulation of low resolution, gamma correction and mirroring. The model used
for inference was the final model after all training epochs. We chose to use this
model rather than the best model over the training epochs so that our results
could be treated as test rather than validation results (see Sect. 4).

We also investigated whether using coordinate convolutions [5] could improve
the performance of the nnU-Net baseline. Coordinate convolutions work by
adding extra channels to the input layer which contain the coordinates of the
pixels. In our case, as our images are 2-D this involved adding two extra chan-
nels, one containing the x-coordinates and one containing the y-coordinates,
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with the coordinates being specified in pixels and the origin being at the top left
of the image.

4 Experiments

Evaluation for both experiments was performed using a 5-fold cross validation,
i.e. the data were split into 5 folds and each was held out in turn and evaluated
on a model trained using the other 4 folds. Due to the large variation in appear-
ance between images acquired from the same patients, we performed the cross
validation split at the image level rather than the patient level. Because nnU-
net performs hyperparameter optimisation using heuristic rules and not using
the validation data, and we used the model from the last epoch rather than
using the validation data for model selection, these cross validation results can
be considered as independent test results.

All models were evaluated using the Dice Similarity Coefficient (DSC),

DSC =
2|X ∩ Y |
|X| + |Y | (1)

where X and Y are the predicted and ground truth segmentations respectively.
We report the median and lower/upper quartiles of DSC across the valida-
tion/test results of all images.

Additionally, we computed measures of the error and bias in estimation of
effusion area, since these are likely to be clinically important measurements in
effusion assessment. Specifically, we calculated:

Abs. area error % = (abs(|X| − |Y |)/|Y |) × 100% (2)
Area bias % = ((|X| − |Y |)/|Y |) × 100% (3)

where |X| and |Y | represent counts of the numbers of foreground pixels in the
predicted and ground truth segmentations respectively. We report the median
and lower/upper quartiles of these measures.

Finally, we also compute the DSC between the manual segmentations of the
two observers on the subsets of 10 images for each dataset. The median DSCs
are reported as estimates of inter-observer variability in manual segmentation.

5 Results

Qualitative prediction results of the two proposed models (baseline nnU-Net and
nnU-Net with coordinate convolutions) on the two datasets are shown in Fig. 2.
Tables 1 and 2 summarise the quantitative performances in terms of DSC and
area statistics. Histograms of the DSC values are shown in Fig. 3. The median
DSCs between the manual segmentations on the subsets of 10 images (i.e. the
estimates of inter-observer variability) are also shown in Table 1.

It can be seen that, despite having fewer images, the baseline model for
Dataset A obtained a higher median DSC than the model for Dataset B. For
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Dataset A the coordinate convolution model improved the DSC and reduced the
area error and bias. In two-tailed Wilcoxon signed rank tests (0.05 significance)
the difference between the baseline DSC and that of the coordinate convolution
model was found to be statistically significant for Dataset A (p = 0.0133) but
there was no statistically significant difference for Dataset B (p = 0.8). Inter-
estingly, for both Dataset A and Dataset B, both the baseline and coordinate
convolution models performed better than the estimate of inter-observer vari-
ability. However, we note that the inter-observer variability is quite high (i.e.
median DSCs of 0.78 and 0.71), likely reflecting the difficulty and partly sub-
jective nature of the effusion segmentation task. Therefore, it seems likely that
the deep learning models are learning to segment effusion in the style of the
main observer, which may not always be consistent with the second observer.
In addition, the histograms shown in Fig. 3 suggest that there are a significant
number of failure cases in the outputs of both models (although fewer for the
coordinate convolution model for Dataset A), again reflecting the difficulty of
the task.

Table 1. Summary of deep learning model segmentation performances. All figures
are the median (lower, upper quartiles) of Dice Similarity Coefficients (DSC) across
the entire dataset, computed using a 5-fold cross validation. For the inter-observer
variability estimate, we quote only the median DSC.

Dataset DSCs

Baseline Coord. conv. Inter-observer var.

A 0.82 (0.7, 0.89) 0.85 (0.73, 0.92) 0.78

B 0.74 (057, 0.88) 0.73 (0.55, 0.88) 0.71

Table 2. Summary of deep learning model performamces in terms of area statistics.
All figures are the median (lower, upper quartiles) across the entire dataset, computed
using a 5-fold cross validation.

Dataset Baseline Coord. conv.

Abs. area error % Area bias % Abs. area error % Area bias %

A 20.0 (8.0, 63.4) 1.9 (−17.6, 43.6) 11.2 (4.7, 33.1) 3.5 (−7.8, 19.7)

B 19.9 (5.4, 60.0) 1.5 (−16.1, 37.4) 24.6 (7.9, 52.3) 0.85 (−16.1, 33.4)

6 Discussion and Conclusions

To the best of our knowledge, we have presented the first study into the use
of deep learning for automation of pleural effusion assessment from ultrasound
images. Our results have demonstrated the potential of deep learning for this
challenging task. The performance of the baseline model was superior to that
of our reported inter-observer study, although we acknowledge that a number
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Fig. 2. Model prediction results. Left-to-right: baseline model prediction, baseline with
coordinate convolutions prediction, ground truth segmentation. Rows 1–2: Dataset A.
Rows 3–4: Dataset B.
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Fig. 3. Histograms of DSC values, from left to right: baseline model (Dataset A),
coordinate convolution model (Dataset A), baseline model (Dataset B), coordinate
convolution model (Dataset B). Refer to Table 1 for summary statistics.

of failure cases remain (see e.g. the bottom row of Fig. 2). The coordinate con-
volution model improved performance for one of the two datasets (Dataset A,
which was acquired using the linear array probe), but not for the other one. One
possible explanation for this difference is that for the linear array probe one of
the coordinates represents the distance from the probe (i.e. the y-coordinate).
This may have made it easier for the model to exploit this potentially important
piece of information. In future work we will examine more closely the impact
of presenting spatial information to the model in different ways, e.g. using dis-
tance from the probe for the curved array probe dataset. Nevertheless, this work
represents an important proof-of-concept, paving the way for future work into
artificial intelligence-assisted effusion assessment from ultrasound images. Our
eventual aim in this work is to reduce the need for skilled operators (who can
be scarce in some LMIC settings) using machine learning techniques.

We have demonstrated the potential of our approach on a dataset of sus-
pected TB patients. However, pleural effusion can be caused by a number of
other factors and so we believe that our work will have wider potential applica-
bility, both in LMIC settings and beyond. In fact, not all patients in our dataset
were confirmed as TB cases. In addition to pleural effusion, pericardial effusion
can also be assessed using ultrasound and we will investigate this possibility in
future work. In addition, different aspects of the effusion (which hold clues to the
underlying disease process) could potentially be recognised using deep learning
models, further reducing the need for skilled operators.

One limitation of our work is the lack of control cases in our database. All
of the subjects in the database had effusion identified clinically (although its
severity was variable). Expansion of the dataset to include cases with no pleu-
ral effusion would enable a more robust model to be trained. Furthermore, it
would be beneficial for our ground truths to be reviewed by a panel of trained
observers to reach a consensus on where the effusion lies, to reduce uncertainty
and variability in assessments between observers.

Our work has focused on the interpretation of ultrasound images, with a
view to reducing intra-/inter-observer variability and (eventually) reducing the
required skill level to widen access to ultrasound-based pleural effusion assess-
ment in LMIC settings. However, in reality, acquiring good quality images of
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pleural effusion requires a certain level of skill. Therefore, the impact of our cur-
rent work would be to speed up the workflows of skilled operators and to reduce
intra-/inter-observer variability. However, the standardised BLUE-protocol for
lung ultrasound [4] acquisition might require less skill compared to image inter-
pretation. Nevertheless, in the future, we will address the issue of image acquisi-
tion, and investigate the potential of machine learning techniques to simplify this
process and enable less experienced operators to acquire good quality images. We
envisage that this would involve some basic training and a simplified acquisition
protocol combined with machine learning-based quality control and real-time
integration of our automated effusion assessment model.

Acknowledgements. This work was part-funded by a King’s College London Over-
seas Development Assistance Research Partnership Seed Fund award.
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Abstract. Convolutional Neural Networks have played a significant role
in various medical imaging tasks like classification and segmentation.
They provide state-of-the-art performance compared to classical image
processing algorithms. However, the major downside of these methods is
the high computational complexity, reliance on high-performance hard-
ware like GPUs and the inherent black-box nature of the model. In this
paper, we propose quantised stand-alone self-attention based models as
an alternative to traditional CNNs. In the proposed class of networks,
convolutional layers are replaced with stand-alone self-attention layers,
and the network parameters are quantised after training. We experimen-
tally validate the performance of our method on classification and seg-
mentation tasks. We observe 50–80% reduction in model size, 60–80%
lesser number of parameters, 40–85% fewer FLOPs and 65–80% more
energy efficiency during inference on CPUs. The code will be available at
https://github.com/Rakshith2597/Quantised-Self-Attentive-Deep-Neur
al-Network.

Keywords: Self-attention · Quantisation · Medical image analysis

1 Introduction

Deep neural networks have played a significant role in medical image analysis.
Since the advent of UNet [18] to UNetr [5], the performance of neural networks
on various tasks like classification, segmentation, and restoration has improved
considerably. Deeper and broader convolutional neural networks generally show
an improvement in performance at the cost of an increase in the number of
learnable parameters, model size and total floating-point operations performed
during a single forward pass of the data through the network. Moreover, these
models require specialised high-performance hardware even during inference.
This reliance on larger models and high-performance hardware hinders the last-
mile delivery of AI solutions to improve the existing healthcare system, especially
in resource constrained developing and under-developed countries.
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Challenges: The performance and trustability of deep neural network-based
methods are of utmost importance, especially in the medical domain. The per-
formance of these methods decreases as we try to reduce the number of learn-
able parameters in the model. As an example, in the case of image classification,
deeper networks have been shown to be superior to shallow networks with fewer
parameters [6,8]. Despite the good performance measured in terms of quanti-
tative evaluation metrics, deep neural network (DNN) are known to make the
right decision for the wrong reasons [4]. This limits the trustability of DNN-
based frameworks in practical application. Additionally, the black box nature
of the convolutional neural networks makes them unreliable for clinical appli-
cations. Developing a method that relies on fewer parameters and is clinically
verifiable is a challenging task. Also, an efficient model is expected to replicate
the performance during inference at a reasonable execution speed even in the
absence of GPUs.

Attention-based networks were proposed to augment DNNs with explainabil-
ity in the case of natural images. However, due to the inherent differences in the
nature of images, we cannot assume an equivalent performance in the medical
images. As an example, in detecting objects in natural images, the objects of
interest often have a well-defined shape and structure, which are absent in the
case of medical images. In the case of medical image classification, the biomarkers
are usually unstructured pathologies with variable appearance. In this work, we
try to verify the effectiveness of replacing convolutions with attention in neural
networks for medical images.

Related Works: Transformers [21], based solely on attention mechanisms has
revolutionised the way models are designed for natural language tasks. Moti-
vated by their success, [17,26,27] and [25] explored the possibility of using
self-attention to solve various vision tasks. Among these, the stand-alone self-
attention proposed by [17] established that self-attention could potentially
replace convolutional layers altogether. Even though it is efficient compared to
other DNNs, such models can be further improved by quantising the weights
and activations of the networks [15]. The quantisation of deep neural networks
has shown significant progress in recent years [1,24]. The ability to quantise the
neural network trained in high precision without substantial loss in performance
during inference simplifies the process.

Our Approach: Inspired by the success of [17] in natural image classification
tasks, we propose the design of a new class of networks for medical image clas-
sification and segmentation, in which we replace the convolution layers with
self-attention layers. Furthermore, we optimise the networks for inference by
quantising the parameters thereby decreasing energy consumption. To the best
of our knowledge, a quantised fully self-attentive network for classification and
segmentation of medical images and comparison with its convolutional counter-
parts has not been attempted so far. Schematic overview of the proposed method
is illustrated in Fig. 1.
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Fig. 1. Overview of the proposed method. Convolutional layers in deep neural
network architectures are replaced with self-attention layers and networks with param-
eters at FP32 precision are trained till convergence. To optimise the model for storage
and faster inference, the network parameters are quantised without loss in performance.

2 Method

2.1 Stand-Alone Self-attention

Attention was introduced by [3] for a neural machine translation model. Atten-
tion modules can learn to focus on essential regions within a context, making
it an important component of neural networks. Self-attention [21] is defined as
attention applied to a single context instead of across multiple contexts; that is,
Key, Query and Values are derived from the same context. [17] introduced the
stand-alone self-attention layer, which can replace convolutions to construct a
fully attentional model. Motivated by the initial success of [17] in natural images,
we explore the feasibility of using such modules in the proposed class of networks
for medical image analysis.

To compute attention for each pixel xi,j ∈ R
Cin×1×1 in an image or an

activation map, local regions with spatial extent h × w around xi,j are used to
derive the keys and values. Learned linear transformations are performed on xi,j

and its local regions to obtain query (Q), keys (K) and values (V) as

Q = WQxi,j (1)

K = WKxh,w (2)

V = WVxh,w (3)

where WQ ∈ R
Cout×Cin , WK ∈ R

Cout×Cin and WV ∈ R
Cout×Cin are learnable

transformation matrices and xh,w ∈ R
Cin×h×w is the local region centered at

xi,j .
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Self-attention on its own does not encode any positional information, which
makes it permutation equivariant. Relative positional embedding [19] as used
in [17] are incorporated into the attention module. The keys K ∈ IRCout ×h×w
are split into K1,K2 ∈ IRCout/2×h×w each and column offset Ecol and row offset
Erow of the positional embedding are added to these separately. After this, we
concatenate K1,K2 to obtain a new key (K′ ∈ IRCout×h×w) which contains the
relative spatial information of pixels in the local region of size h × w. Thus, the
relative spatial attention for a pixel xij is mathematically defined as in Eq. 4 and
is graphically illustrated in Fig. 2.

yi,j =
∑

{u,v}∈Nh,w(i,j)

softmaxu,v(Q
�
i,jKu,v)Vu,v (4)

where Nh,w(i, j) is the neighbourhood of size h × w centered at (i, j).

Fig. 2. Self-attention mechanism with local context. Operations are performed
on a per-pixel basis to compute attention as shown in the figure. Linear transformations
for obtaining query, keys and values are implemented using 2D convolution (Conv2d)
operation. The learnt relative positional embedding are added to the keys to incorporate
the inter-pixel relationships within the local context.

We use these attention blocks instead of 2D convolutional blocks in our net-
works. During training, all the weights and activations are represented and stored
with a precision of FP32. The parameters are quantised to INT8 precision for
inference.

2.2 Quantisation of Network Parameters

We perform quantisation using the FBGEMM (FaceBook GEneral Matrix Mul-
tiplication) [10] backend of PyTorch for x86 CPUs, which is based on the quan-
tisation scheme proposed by [9]. In order to be able to perform all the arithmetic
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operations using integer arithmetic operations on quantised values, we require
the quantisation scheme to be an affine mapping of integers q to real numbers r
as

r = S(q − Z) (5)

where S and Z are quantisation parameters. We have employed a post-training
8-bit quantisation of all the weights and operations for our proposed model.

2.3 Network Architecture

Classification: The architecture of the proposed classification network is illus-
trated in Fig. 3(a) with the details of the constituent modules in Fig. 3(c). The
network consists of a series of alternating attention blocks and attention down
blocks followed by fully-connected linear layers. The feature maps are downsam-
pled using the max-pooling operation. The size of the output linear layer is equal
to the number of target classes. The network is trained to perform multi-label
classification using a binary cross-entropy loss.

Segmentation: The proposed segmentation network has a fully attention-based
encoder-decoder architecture as shown in Fig. 3(b). The encoder unit consists of
stand-alone self-attention blocks with ReLU activation and max-pooling opera-
tions with the number of feature maps increasing progressively with each atten-
tion block. The decoder consists of attention blocks and max-unpooling opera-
tions. The size of activation maps of the decoder matches with the corresponding
layer in the encoder. The unpooling operations are performed using the indices
transferred from the pooling layers in the encoder. To prevent the loss of sub-
tle information, we employ activation concatenation in the decoder, similar to
UNet [18]. The network is trained using soft dice loss [12].

3 Experiments

3.1 Datasets

Classification: To evaluate the performance of the fully self-attentive network
(SaDNN-cls) on classification tasks, we have used the NIH Chest X-ray dataset of
14 Common Thorax Disease [22]. The dataset comprises 112, 120 frontal-view X-
ray images of 30, 805 patients with fourteen disease labels. These disease classes
can co-occur in an image; therefore, the classification problem is formulated as
multi-label classification. The train, validation and test split provided in the
dataset was used for the experiments.

Segmentation: A subset of the medical segmentation decathlon dataset [2]
is used to evaluate the performance of the proposed fully-attentive network
(SaDNN-seg) for liver segmentation. Out of the 131 ground truth paired 3D
CT volumes-Ground truth pairs available in the dataset, 80% were randomly
chosen for training, and the remaining 20% were used for testing.
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Fig. 3. Architecture of the proposed Self-attentive Deep Neural Networks
(SaDNN). Detailed architecture of the networks for classification and segmentation
are shown in (a) and (b) respectively. Components of the various blocks in these net-
works are detailed in (c).

3.2 Implementation Details

Training: The proposed models were trained using an Adam Optimiser [11]
with a learning rate of 1 × 10−4. The models for classification task were trained
for 15 epochs and the models for segmentation were trained for 25 epochs.

Baselines: Performance of the proposed quantised self-attention network for
the classification task is compared with ResNet-18, ResNet-50 and their 8–bit
quantised versions q-ResNet-18, and q-ResNet-50. To assess the performance
of the segmentation network, we chose a modified UNet [18] (UNet-small) and
SUMNet [13] architecture trained on the same dataset split and their quantised
versions q-UNet-small and q-SUMNet as baselines.

System Specifications: All networks were trained on a high-performance
server with a NVIDIA V 100 GPU, x8664 Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10 GHz, 96 GB RAM and 1 TB HDD running on Ubuntu 18.01.1 LTS
OS. The inference of quantised models was also performed on the same class of
CPUs.
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4 Results and Discussions

4.1 Qualitative Analysis

visualisation of predictions of the proposed q-SaDNN-seg network and its
unquantised version SaDNN-seg are presented in Fig. 4. Over-segmented regions
in the predicted segmentation maps are marked in green, under-segmented
regions are marked in red and correctly segmented region is shown in white.
We observe that the tendency of the original unquantised network SaDNN-seg
to over-segment is significantly reduced post quantisation. However, the quan-
tisation of network parameters causes the q-SaDNN-seg to under-segment the
target organ. This is reflected in the slightly lower Dice coefficient (DSC) of the
proposed model as seen in Table 2.

Fig. 4. Comparison of segmentation predictions. Figure shows sample input CT
images in (a) and (e) with the corresponding ground truths of liver in (b) and (f)
respectively. Segmentation map as predicted by SaDNN-seg, with the over-segmented
region marked in green and under-segmented region marked in red are presented in
(c) and (g) for the two sample images. Similar visualisation of segmentation by the
proposed q-SaDNN-seg are presented in (d) and (h). (Color figure online)

4.2 Quantitative Analysis

The performance of the proposed quantised fully self-attentive network and base-
lines for multi-label classification task is reported in terms of accuracy in Table 1.
It can be observed that the proposed network can achieve performance slightly
better than the existing deep residual convolutional neural networks. Table 2
shows the comparison of the proposed segmentation network with the baselines
in terms of DSC. The proposed quantised network performs almost as good as
the quantised versions of the baseline convolutional neural networks.
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Table 1. Evaluation of classification

Model Accuracy

ResNet-18 0.89

q-ResNet-18 0.88

ResNet-50 0.84

q-ResNet-50 0.83

SaDNN-cls (ours) 0.90

q-SaDNN-cls (ours) 0.89

Table 2. Evaluation of segmentation

Model DSC

UNet-small 0.88

q-UNet-small 0.88

SUMNet 0.89

q-SUMNet 0.89

SaDNN-seg (ours) 0.88

q-SaDNN-seg (ours) 0.85

4.3 Computational Analysis

The DNNs used for the experiments exhibited superior classification and segmen-
tation performance in terms of quantitative metrics, but they require a consid-
erable amount of computations and memory access operations to be performed.
Deploying a framework which needs excessive computations to be performed
results in large energy consumption, which is not feasible in diverse resource-
constrained scenarios. Therefore, it is key to have an energy-efficient model with-
out degradation in performance. A rough estimate of energy cost per operation
in 45nm 0.9V IC design can be calculated using Table 3 presented in [7,14,23].

Table 3. Approximate energy cost in 45 nm 0.9 V for different multiplication and
addition operations

Operation Energy (pJ)

MUL ADD

8-bit INT 0.2 pJ 0.03 pJ

16-bit FP 1.1 pJ 0.40 pJ

32-bit FP 3.7 pJ 0.90 pJ

The number of multiplication and addition operations in a standalone self-
attention layer [20] can be calculated as

Opsmul = Opsadd = 2b2c (6)

where b is the block (local region) size and c is the number of channels.
The total number of parameters, MACs, energy consumed during forward

pass and model size of the proposed q-SaDNN-cls and q-SaDNN-seg networks
are reported in Table 4 and Table 5 with graphical comparisons in Fig. 5. Models
with the least area in the radar charts are more efficient. The proposed q-SaDNN-
cls network is 58.59% smaller than quantised ResNet-18 and 80.75% smaller than
quantised ResNet-50 in terms of model size. In terms of total MAC units, the
propsed networks have 65.93% fewer MACs than ResNet-18, 85.32% fewer than
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ResNet-50. Similarly, in terms of the total trainable parameters, the proposed
networks have 59.17% lesser parameters than ResNet-18 and 80.62% lesser than
ResNet-50.

Table 4. Comparison of classification networks

Model #Params MACs Model size Energy

ResNet-18 11.17 M 9.10 G 44.79 MB 20.93 J

q-ResNet-18 11.17 M 9.10 G 11.40 MB 1.04 J

ResNet-50 23.53 M 21.11 G 94.45 MB 48.53 J

q-ResNet-50 23.53 M 21.11 G 24.52 MB 2.41 J

SaDNN-cls 4.56 M 3.10 G 18.30 MB 7.13 J

q-SaDNN-cls 4.56 M 3.10 G 4.72 MB 0.35 J

Fig. 5. Graphical comparison of proposed networks. Figure shows radar chart
based comparison of proposed (a) classification network and (b) segmentation network
in terms of number of parameters, MACs, model size and energy. The model with the
least area within the plot is the best one.

Similar improvement in efficiency of computing can be observed in the case of
segmentation as well. The segmentation network q-SaDNN-seg is 73.06% smaller
than q-UNet-small and 64.94% smaller than q-SUMNet in terms of model size. In
terms of total MAC units, the q-SaDNN-seg has 34.94% fewer than SUMNet. In
terms of the trainable parameters, q-SaDNN-seg has 74.37% lesser parameters
than UNet-small and 66.21% lesser than SUMNet. It is to be noted that the
proposed models are superior in terms energy consumption as well.
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Table 5. Comparison of segmentation networks

Model #Params MACs Model size Energy

UNet-small 31.03 M 218.60 G 118.48 MB 502.78 J

q-UNet-small 31.03 M 218.60 G 29.77 MB 25.13 J

SUMNet 23.53 M 425.98 G 91.07 MB 979.75 J

q-SUMNet 23.53 M 425.98 G 22.88 MB 48.97 J

SaDNN-seg 7.95 M 277.15 G 30.47 MB 637 J

q-SaDNN-seg 7.95 M 277.15 G 8.02 MB 31.87 J

Fig. 6. Figure shows (a) a sample image from the test set used in our experiments
with the clinically relevant region as provided in the dataset marked in green and (b)
saliency map of q-SaDNN-cls. Regions shown in red in the saliency map are perceived
as most important and those in blue to be least important by the network during
prediction. (Color figure online)

4.4 Analysis of Clinical Relevance

Validating the results of the model with respect to clinically relevant information
to provide some explanations for the decision made by the model is an important
factor that determines trustability. The clinically relevant region provided in the
NIH Chest X-ray dataset as marked by a radiologist and the saliency map based
explanation generated using RISE [16] for the proposed quantised self-attention
deep neural network for classification are shown in Fig. 6. It can be observed
that the proposed model focuses on the clinically relevant region while making
the decision.

5 Conclusion

We proposed a class of quantised self-attentive neural networks which can be
used for medical image classification and segmentation. In these networks, con-
volutional layers are replaced with attention layers which have fewer learnable
parameters. Computation of attention while considering a small local region
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surrounding a pixel prevents degradation of performance despite the absence of
local feature extraction which is typically performed in a CNN. We show that
our energy efficient method achieves performance at par with the commonly
used CNNs with fewer number of parameters and model size. These attributes
make our proposed models affordable and easy to adopt in resource constrained
settings.
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Abstract. An electrocardiogram (ECG) monitors the electrical activity
generated by the heart and is used to detect fatal cardiovascular dis-
eases (CVDs). Conventionally, to capture the precise electrical activity,
clinical experts use multiple-lead ECGs (typically 12 leads). Recently,
large-scale deep learning models have been used to detect these diseases,
however, they require large memory and long inference time. We propose
a low-parameter model, Low Resource Heart-Network (LRH-Net), that
detects ECG anomalies in a resource-constrained environment. On top,
multi-level knowledge distillation (MLKD) is employed to improve model
generalization. MLKD distils the dark-knowledge from higher parameter
models (teachers) trained on different lead configurations to LRH-Net.
The LRH-Net has 106× fewer parameters and 76% faster inference than
the teacher model for detecting CVDs. Using MLKD, the performance
of LRH-Net on reduced lead data was scaled up to 3.25%, making it
suitable for edge devices.

Keywords: Knowledge distillation · Low resource · Cardiovascular
diseases · SE-Resnet · Edge computing

1 Introduction

One of the most common causes of death around the globe is cardiovascular dis-
eases (CVDs). According to WHO, in 2021, around 32% of all deaths, i.e., 17.9
million people died from CVDs [27]. These diseases manifest with no severe symp-
toms and are difficult to diagnose, leading to underestimating the risk or severity.
Thus, early diagnosis of these diseases can potentially save millions of lives [24].

Electrocardiography (ECG) is a low-cost and widely used process to monitor
abnormal electrical activity in the heart [20]. However, this process can only be
used and interpreted by a cardiologist [15]. The advancement of the Internet
of Things (IoT) makes real-time capturing of ECG signals feasible using wear-
able devices. Thereby resulting in massive ECG data, which is used in machine
learning techniques to detect CVDs [10,26].

Most of the early literature on CVD used classical feature extraction
approaches along with machine learning models [1,2,4,11]. Then, artificial neu-
ral networks such as multilayer perceptrons demonstrated great performance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Albarqouni et al. (Eds.): DeCaF 2022/FAIR 2022, LNCS 13573, pp. 190–201, 2022.
https://doi.org/10.1007/978-3-031-18523-6_18
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and removed the requirement of manually handpicked features to some extent,
especially with the advent of deep neural networks [5,13]. However, these net-
works are typically unconcerned with power consumption, memory consumption
and execution time, preferring to be more accurate [7], making them difficult for
deploying on low-compute resources. There has always been a trade-off between
performance and size – trading off the extent to which size should be decreased
and yet retain acceptable performance.

In recent years, most of the work is pivoted on capturing ECG signals using
wearable devices using Bluetooth and Internet connectivity of the mobile phones
which are later processed on cloud to detect the anomalies. Furthermore, tra-
ditional electrocardiography setups use 12 electrodes to monitor heart activity,
but using such a setup in a real-time environment would require excessive com-
putation and be inconvenient or tedious process for the end user. Rural areas,
on the other hand, have significant contributions to cardio-vascular disease bur-
den, and finding such compute resources is difficult there [16,27]. Therefore, an
efficient neural network which takes data from fewer electrodes and requires less
memory and inference time is required for an edge computing wearable device.

To the best of our knowledge there is no other solution proposed in the
literature for resource constrained environments while considering heterogeneity
in datasets (and disease conditions). We propose a low-parameter model called
Low Resource Heart-Network (LRH-Net) on top of which Multi-Level Knowledge
Distillation (MLKD) methods are also proposed to enhance its performance.
This novel approach is compared with an existing high-performance large-scale
model [28] and a commonly used low-scale model [18] baselines on heterogeneous
dataset [21]. The source code for the proposed model and all the experiments
that are done are made public to motivate further research in this field1.

Main contributions of this paper are:

1. A real-time cardiovascular disease detection model which is 106× smaller than
a large-scale model and 12× times smaller than the existing low-scale model.

2. A Multi-Level knowledge distillation approach to improve the performance of
LRH-Net (student model) and to reduce the number of electrodes and input
leads data required for the student model.

3. Performed evaluation on a very diverse, publicly available and combination
of multiple datasets to increase its desirability.

2 Methodology

2.1 Pre-processing

The sampling frequency ranges 257 Hz to 1 KHz in the datasets being used. As
part of pre-processing, we resampled the data 257 Hz, the minimum in our case.
Each ECG is set to be 4096 points long, approximately 16 s. The time series
is randomly clipped for longer duration and zero-padded for shorter duration

1 https://github.com/ekansh09/LRH-Net.

https://github.com/ekansh09/LRH-Net
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signals in order to give a fixed sequence length as an input to the deep learning
models. The signal is then normalized using z-score to remove technological
biases between datasets i.e., a signal xn ∈ nth channel (lead) was transformed
using Eq. 1, where xn is the mean and σn is the standard deviation across the
nth channel.

xn =
xn − xn

σn
(1)

Finally, we also took one-hot encoded phenotypic information such as age
(scaled between 0 and 1) and gender, into consideration and represented missing
values with additional two mask variables.

2.2 Architecture

The proposed model, LRH-Net, inspired from the ResNet architecture [6] with
3 residual blocks (Res-Blocks) in it and is depicted in Fig. 1. The motivation for
using a Resnet based architecture is the power of skip connections that amelio-
rate the vanishing gradients problem of the back propagation learning scheme
and enhance model convergence. Each residual block has two convolution lay-
ers, ReLU activation function, batch normalization and one squeeze and exci-
tation (SE) block [9]. The starting filter is always 16 and increased by a factor
of two in the case of Res-blocks. SE-Block aids in learning the importance of
various features and paying more attention to those that are more important,
thereby improving classification performance. We used it to model the spatial
relationship among the ECG channels. Additionally, [28] showed that integrating
patient’s age and gender improves the performance and is easy to feed into an
edge device. Considering this, we passed these values through a linear layer fol-
lowed by concatenation to the features obtained from the average pool layer, that
then passes all of them through two more linear layers with ReLU in between in
the model to generate the logits.

Knowledge distillation (KD) refers to the idea of model compression where
the small model (student model) mimics the larger model (teacher model) using
soft labels provided by the teacher model [8]. We used this knowledge distilla-
tion method to further improve the performance of LRH-Net. While distilling
information from a large network to a smaller network, it is preferable to use a
similar kind of architecture for the distillation training [17]. Hence, we used the
runner-up network (SE-Resnet) of PhysioNet-2020 challenge proposed in [28] as
our Teacher Network (ΘT ).

Recent work on knowledge distillation methods led to an idea of having a
multi-teacher approach to reduce the gap between the high parameter model and
the low parameter target model by introducing an intermediate size parameter
model [17]. Using this as inspiration, we propose a Multi-Level Knowledge Distil-
lation (MLKD) approach to reduce the number of electrodes required to gener-
ate fewer lead data and simultaneously enhance the performance of LRH-Net in
multiple steps, in a sequential or parallel configuration, to retain the knowledge
(representations) from a large-scale model trained on multi-lead ECG data (see
Fig. 2). Both sequential and parallel configurations are put to the test in a 2-step
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Fig. 1. LRH-Net architecture: proposed low parametric model

procedure. First, by decreasing the number of input channels while maintaining
the network’s size, and secondly, by reducing the network’s size while keeping
the input channels constant.

Fig. 2. Multi-level knowledge distillation (MLKD) methods.

Let n be the number of channels (leads). Θn1
T be the pre-trained teacher net-

work with n1 input channels and Θn2
T be the teacher network with n2 (n2 < n1)

input channels. We use Binary cross-entropy (BCE) loss (Eq. 2) as student loss
and Kullback-Leibler divergence (KL) loss (Eq. 3) as distillation loss to account
the knowledge transfer from the teacher model to the student model.

Sequential MLKD (s-MLKD): At step one (t = 1), knowledge is distilled
(KD) from Θn1

T to Θn2
T . Therefore, from Eqs. 4 and 5, the loss at this step is given
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by L(Θn2
T , Θn1

T ). Now, let the distilled Θn2
T be Θn2

Td
, where d denotes the distilled

model. At second step, we perform KD from Θn1
T and Θn2

Td
to LRH-Net with n2

input channels (Θn2
L ). We give different weightage to knowledge obtained from

each teacher model, denoted as β in Eq. 4. Therefore, the final loss function for
a 2-step s-MLKD method is given at 2nd-step as L(Θn2

L , Θn2
Td

, Θn1
T ). Here, steps

are equal to the number of teacher networks, i.e. after each step (except last),
we get a trained intermediate teacher network.

BCE (p, y) = −1
N

∑N
i

∑M
j yij log pij + (1 − yij) log (1 − pij) (2)

KL (p, y) =
∑

x∈X y (x) log y(x)
p(x) (3)

MLKD loss (Θ0, Θ1, . . . , Θt) =
∑t

x=1 βxKL
(

log(s(z0))
τ , s(zx)

τ

)
(4)

L(Θ0, Θ1, . . . , Θt; y) = λBCE (σ (zΘ0) , y) + (1 − λ)MLKD loss (Θ0, Θ1, . . . , Θt) (5)

where, p, y are probability and ground truth values. In Eq. 2, N is number of
samples in each batch and M is number of classes. In Eq. 3, X is probability space
of p, y. Equation 5 represents the loss at every step and in the series notation
(Θ0, Θ1, . . . , Θt), Θ0 is student and all other are teacher networks. λ parame-
ter implements the trade-off between BCE-loss and MLKD-loss. zt represents
the logits of Θt network. σ is the Sigmoid activation function, s is the SoftMax
activation function and τ is the temperature hyper-parameter used to gener-
ate soft-labels. The log-softmax is applied to student’s logits in MLKD loss for
numerical stability in Pytorch.

Parallel MLKD (p-MLKD): In this scheme, the first step is to train Θn2
T

independently and the second step looks almost like the s-MLKD scheme, Θn2
T

being different. In p-MLKD, we use two independently pre-trained networks
to teach a student network. So, from Eqs. 4 and 5, the final loss function for
p-MKLD will be L(Θn2

L , Θn2
T , Θn1

T ).
Finally, with s- and p-MLKD schemes, the distilled LRH-Net has the dark

knowledge of 12 leads but takes fewer leads as input and outputs logits from the
last dense layer. Probability scores are obtained by applying σ (sigmoid) to the
output from logits block. Then, a differential evolution genetic technique is used
to optimize class thresholds [19]. Our experiments reveal that these thresholds
do not vary as the number of leads are varied.

3 Experiments

3.1 Dataset

A total of 43101 standard 12-lead ECG (I, II, III, aVL, aVR, aVF, V1–V6)
recordings are used from four publicly available datasets provided by Physionet-
2020 challenge [21], i.e., CPSC Database and CPSC-Extra Database, INCART
Database, PTB and PTB-XL Database, and the Georgia 12-lead ECG Challenge.
It has 24 unique class labels and a signal may have more than one class label
assigned to it. The distribution among these 24 classes in the dataset can be
visualized from Fig. 3. The signal length varies from 10 s to 30 min.
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Fig. 3. Dataset distribution

3.2 Implementation Details

The Pytorch framework is used to create the models. LRH-Net is trained for 1 h
40 min using the Adam optimizer with L2 weight decay of 5e−4 for 90 epochs
with a batch size of 64. We start with a learning rate of 0.001 and utilise the
StepLr scheduler with step size of 20 to change it throughout the training. α
and τ are set to 0.3, 7 respectively. Since we used a 2-step approach, the weight
list given to the teachers, β, is [0.4, 0.6]. It has 84,516 trainable parameters. All
the experiments are carried out using Nvidia Tesla P100 GPUs.

4 Results and Discussion

5-Fold cross-validation is employed to evaluate LRH-Net using the metric pro-
vided by the Physionet-2020 challenge called challenge metric score (CM-Score)
and the micro-F1-score. Misdiagnoses that result in treatments or outcomes that
are similar to the true diagnosis as determined by the cardiologist are given par-
tial credit in the challenge metric. It reflects the clinical reality that some mis-
diagnoses are more harmful than others and should be scored accordingly [21].
The F1-score is also reported as it more accurately reflects the performance on
an imbalanced class data set in one vs all setup.

4.1 Baselines

There are no methods available to reduce ECG leads without compromising on
the knowledge of all leads. Also, none of the previously available low-parameter
models have trained on diverse multiple-datasets as provided in [21]. Thus, we
use four KD techniques mentioned below (see Table 3) and the following two
models as our baselines, SE-Resnet (our teacher) and 1D-CNN (see Table 1, 2).
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Table 1. Comparison of LRH-Net in terms of the number of trainable parameters, size
and inference time with baseline models.

Model Parameters Size Inference time

SE-Resnet 8.9M 35.30 Mb 3.43 s

1D-CNN 994K 3.88 Mb 0.47 s

LRH-Net 84K 0.35 Mb 0.84 s

Parameters and Size: Table 1 shows comparison of our proposed model with
both the baselines. Empirically, it is noted that the number of parameter are
almost directly proportional to the size of the model. In comparison to the
baselines, LRH-Net has the fewest parameters which results in a more compact
and efficient network. Because LRH-Net’s parameters are 106 times smaller than
SE-Resnet and 12 times smaller than 1D-CNN, the model size (in mb) is likewise
101 times and 11 times lower respectively.

Inference Time and Complexity: The inference time of a model is directly
proportional to the model complexity. The inference time of LRH-Net is sig-
nificantly smaller than SE-Resnet but slightly more than that of 1D-CNN due
to the presence of additional squeeze-and-excitation block within the Res-block
and larger kernel size. The kernel size is experimentally chosen and squeeze-and-
excitation block is added to help the architecture to draw attention to the fact
that the dataset has classes (cardiovascular anomalies) that are not spread out
evenly [9].

LRH-Net makes a trade-off between memory consumption and complexity
with inference time, which results in superior performance when compared to
the baseline (1D-CNN), which has less inference time but poor performance and
high memory consumption.

Few studies [14,25] have shown that a 3-lead ECG (I, II, V2) contains the
majority of the information found in a 12-lead ECG. Considering this, all the
models are tested on standard 12-lead, 3-lead, and 2-lead configurations which
are also provided by [22]. The 3-lead configuration is [I, II, V2] and for 2-lead, it
is [I, II]. Information from 10, 5, and 4 electrodes (including ground electrode)
are required to obtain the data for 12, 3, and 2 leads, respectively.

Table 2 shows the performance comparison between LRH-Net and baselines
on various lead configurations. LRH-Net with 83,748 parameters outperforms
the existing low-scale baseline model of 1D-CNN with 993,860 parameters by a
significant margin for all the lead configurations, i.e., 3.07%, 2.76%, 1.41% incre-
ment in CM scores for 12-lead, 3-lead, and 2-lead configurations, respectively.
When LRH-Net is compared to SE-Resnet, the model size or parameters are
drastically reduced (LRH-Net has fewer parameters), which results in a perfor-
mance drop of about 10.5% (in CM scores) for all lead configurations.
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Table 2. Comparison of LRH-Net in terms of performance with baseline models.

Model CM-score F1-score

12-lead 3-lead 2-lead 12-lead 3-lead 2-lead

SE-Resnet 67.43 65.37 63.34 76.65 75.42 74.86

1D-CNN 58.66 56.92 55.87 69.50 67.61 67.16

LRH-Net 60.46 58.49 56.66 72.76 71.33 70.21

Knowledge Distillation: The following four knowledge distillation techniques
are tested to increase the performance of LRH-Net. Vanilla knowledge distilla-
tion [8] is a method of extracting dark knowledge from the logits of deep models.
In Fitnets [23], the main idea is to directly match the feature activation of the
teacher and the student. In Cross Layer distillation [3], each student layer distills
knowledge contained in multiple layers rather than a single fixed intermediate
layer from the teacher model. With progressive self-knowledge distillation (PS-
KD) [12], on the other hand, a student model itself becomes a teacher model.

Table 3. Evaluation of LRH-Net on various knowledge distillation techniques.

KD technique Distilled LR-HNet

CM-score F1-score

12-lead 3-lead 2-lead 12-lead 3-lead 2-lead

Vanilla KD 60.67 59.49 57.27 73.41 73.04 71.18

FitNet 60.46 58.88 57.20 72.22 72.61 70.22

PS-KD 57.81 55.80 55.58 68.62 68.05 68.03

Cross-layer 60.17 59.04 57.13 73.34 73.28 70.69

Table 3 shows the performance of LRH-Net on multiple lead configurations
after being distilled from the pre-trained SE-Resnet on 12-Lead input. When com-
pared to all the recent knowledge distillation techniques, the vanilla KD delivers
the best results for our use case. Surprisingly, LRH-Net performance deteriorated
when combined with the newest KD-Methods, PS-KD and Cross-Layer and Fit-
nets. Vanilla KD improved the CM-Score of non-distilled LRH-Net (as compared
from LRH-Net results of Table 2) by 0.35%, 1.71%, 1.08% for 12-, 3- and 2-leads,
respectively. Cross-Layer KD gives best F1-scores for 3-lead configuration. It can
also be noted that the F1-Score is not directly proportional to CM-Score. This lat-
ter method is useful when each class is considered independently, i.e., assuming no
correlation among the disease classes.

Multi-level Knowledge Distillation: To reduce the knowledge drop while
distilling a low-lead, low-parameter model from a high-lead, high-parameter
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model, we use the multi-level knowledge distillation (MLKD) methods. These
methods help the low-scale network in learning dark knowledge from the large-
scale network in a step-by-step process. The CM-score and F1-scores of the
LRH-Net with 3-lead and 2-lead inputs with sequential and parallel MLKD are
reported in Table 4. For both the configurations, the proposed MLKD incorpo-
rating Vanilla KD performs better than directly downgrading the leads using
simply Vanilla KD (see results in Table 3). The percentage increments in CM-
Scores, when LRH-Net using MLKD and non-distilled LRH-Net (see Table 2) are
compared are 3.25% and 3.12% for 3- and 2-lead configurations, respectively.

Table 4. Evaluation of LRH-Net on MLKD methods with two teacher networks i.e.
(step (t) = 2).

Number of leads (n2) KD-technique CM-score F1-score

3-lead s-MLKD 60.39 73.44

p-MLKD 60.36 72.51

2-lead s-MLKD 58.36 71.43

p-MLKD 58.43 72.66

Fig. 4. Bar-plot showing the improvement in LRH-Net’s CM-score using Vanilla knowl-
edge distillation (KD) and multi-level knowledge distillation using Vanilla-KD.

Knowledge distillation helps LRH-Net to further reduce its size or param-
eters with the reduction in number of leads which causes a steady decrease
in performance too. This makes it easier to utilise on an edge device because
only a small number of electrodes are needed to capture the requisite lead data.
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In MLKD, KL losses for the outputs of the student network with both teacher
networks result in some amount of conflict in the gradients between these two
losses. In the sequential configuration, the second teacher network has been
trained to reproduce the outputs of the first teacher network. This will result in
less conflict between the two KL loss terms, as the outputs will be closer in the
latent-space. In the case of the parallel configuration, both KD loss terms will
be in conflict with each other simultaneously to make the outputs of the student
network close to each of the teacher networks.

The experimental results shown in the Tables 3 and 4 show that MLKD not
only generalizes LRH-Net on fewer leads but also makes it more robust and
accurate. LRH-Net after distillation using MLKD with Vanilla KD on 3-Leads
is performing almost similar to LRH-Net on 12-Leads (Fig. 4). This could be
because the V2 lead (calculated using chest electrode) in a 3-lead configura-
tion has more disease-specific information. However, the low-parameter model
is drastically affected in the F1 scores of few hard-to-classify diseases like Sinus
Arrhythmia (SA).

5 Conclusion

In this work, we propose the Low Resource Heart-Network (LRH-Net) for detect-
ing cardiovascular diseases. The proposed model is evaluated on a combination
of four large heterogenous datasets provided by the PhysioNet-2020 challenge.
The proposed low resource model not only enables edge computing on a wearable
device but also gives better results as compared to other architectures proposed
for wearable devices previously. In addition to compressing the model, our work
also focused on using reduced number of leads to reduce the input processing
without sacrificing much on the performance using multi-level knowledge distilla-
tion (MLKD). As a result, the computational resources, cost, and input channels
required for our proposed model are reduced. This approach is carefully designed
to increase the ease of use and affordability of an accurate edge device in rural or
semi-urban areas. Further research can focus on lowering the performance gap
in low-lead configurations by optimizing the number of steps required to dis-
till majority of the critical information by varying the levels of MLKD so that
the classification performance on hard-to-classify diseases does not get severely
affected.
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