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Abstract The COVID 19 pandemic has given rise to a new normal. This includes
wearing masks and maintaining social distance. Nowadays sudents don’t focus in
offline classes. Also, students with masks in offline proctored exams find ways to
roll their eyes at others’ work for malpractice. The systems designed to date are not
accurate to detect facial features with mask. These problems have motivated us to
develop a reliable, robust model to detect mask, eye location, eyeball location, eye
status, and head pose of people wearing and not wearing a mask, all at once. We
have used 3800 masked, unmasked images to train our model using MobileNetV2,
a convolutional neural network, with 99% accuracy. The output of this model is
processed using image processing, facial landmark analysis, EAR, and deep learning
to detect the facial landmarks accurately. Ultimately, a unique method is used to detect
head pose of person.

Keywords Image processing - Deep learning + Face mask - Eye location - Eyeball
location - Head pose estimation

1 Introduction

Covid 19 pandemic has changed the style of living in the world. Although the virus
is exiting, it has an impact on people. Schools and colleges have opened but people
still wear masks to all places. In this masked environment, face image processing
has faced a lot of challenges. To overcome all these problems, we have developed
a model to detect the face mask accurately and to detect the eye, eye status, eye
location, eyeball location and the head pose of the person in front of the camera. Our
model is also designed to detect the attentiveness of the person in a classroom. This is
one of the major problems faced in the school environment, students are not paying
attention in the classroom under the masks, and this decreases the productivity of
education in the schools, colleges and classes. Our model can also be used in the
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offline proctored exams where students are not allowed to roll their eyes elsewhere
during the duration of the exam. To avoid malpractice, our model can be used in
runtime to capture images and process the eye landmarks and head pose of the
candidate. The model can be further progressed to end the test of the user if the
person has attempted malpractice. We have used mobilenet_v2 to classify the 3800
images of masked and unmasked people. On getting a very high accuracy of 99%,
we proceeded to filter out the eyes and other facial features. We ultimately determine
mask, eye status, eye location, eyeball location, and head pose irrespective of the
person wearing or not wearing a mask.

2 Related Work

The masking of a face can be identified by an edge computing-based deep learning
algorithm [1], this method is specifically implemented in busses to identify people
wearing masks or not. A dataset of masked faces (MAFA) and two CNN algo-
rithms (LLE-CNN algorithm) are applied in [2]. A model comprising of PIR Sensor,
microcontroller and smartphone system is proposed in [3] to detect the motion and
store the corresponding output video in the cloud. In [4], a generative adversarial
network for masked object detection and image completion of the removed masked
region is proposed and implemented. Detection of wearing state of face mask by
training a custom dataset: a face without a mask, face with the wrong mask, face
with the correct mask is done using Context-Attention R-CNN method in [5]. Head
Pose estimation can also be done using the HGL method which is a combination of
the H-channel of the HSV colour space with the face portrait and grayscale image,
this method is proposed in [6] and achieves an accuracy of 87.17%. The paper [7]
includes two novel ideas, a residual context attention module for crucial face mask
related regions and an auxiliary task using a synthesized gaussian heat map regression
method to discriminate features of the face. The authors of [8] have proposed a model
to detect candidates wearing mask regions using the transfer model of Faster RCNN
and InceptionV?2 structure, in the second stage real facial masks are verified using
a broad learning system. A simple and effective facial landmark detection method
comprising of a lightweight U-Net model and a dynamic optical flow is proposed in
[9] which exhibits better performance than others without requiring heavy computa-
tional loadings. The authors of [10] have developed a model using driving environ-
ment datasets and eye aspect ratio (EAR), to detect facial landmarks, eye location
and state evaluation, they achieved an average accuracy of 93.9%. The authors of
[11] used the method of segmentation of pupil and iris images by pixel to determine
the eye status of the driver and his fatigue, they achieved an accuracy of 96.72%. In
[12] fatigue detection convolutional network (FDCN) based CNN network was built
which has a 1.0% accuracy improvement on the ZJU database on fatigue detection.
DriCare, a new face-tracking algorithm to improve the tracking accuracy is devel-
oped in [13], and it achieved 92% accuracy. Eye status, PERCLOS of both coloured
and infrared, fatigue is detected around the clock in [14]. Using logistic regression,
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EAR and analyzing facial landmarks percent eye-closure over a fixed time window
(PERCLOS), blink rate, statistics of blink duration, closing speed, reopening speed
and number of yawns are extracted in [15]. In [16], eyes for a frontal face are extracted
precisely. Histograms of Oriented Gradient (HOG) descriptors are proved to be better
than existing models in the case of human detection in [17]. You Only Look Once
(YOLO) method for object detection uses regression models instead of repurposing
classifiers is developed in [18], this method outperforms DPM, R-CNN methods.
In [19] overall face detection, facial feature localization, and face comparison is
carried out all at once. The authors of [20] have built a model to gather environ-
mental parameters to build a smart campus environment. The parameters include
air temperature, light intensity, and humidity. The paper also carries out an in-depth
study on how to store real-time data in a standard and organized manner. The work
in [21] is about principal component analysis (PCA) used for feature extraction that
helps in achieving superior performance. The authors of the paper have worked to
achieve a high recognition rate for IoT based image recognition. On analyzing all
the pre-existing researches, it is evident that a robust model to detect all the facial
features and head pose of a person with a mask all at once, does not exist. This has
motivated us to develop a plentiful model which extracts all the features mentioned,
from an image.

3 Proposed Work

3.1 Hardware Integration

To test the model’s performance with different cameras and different lighting, we have
used a raspberry pi camera, webcam, CCTV security camera and laptop webcam.
The raspberry pi board can be integrated easily with Rpi camera and can also be
used to transfer images from one computer to the other, in the same network using
file transfer protocol (FTP). The raspberry pi has a very fast processing speed and
capability torun long codes as compared to other boards. Using Rpi OS, the Raspberry
pi provides an interface to work on and can be programmed using python, C, etc.
The raspberry pi camera or a portable webcam, is interfaced with the raspberry pi.
Using a python code, the images are sent periodically through file transfer protocol
to the Jupyter notebook for image processing. In the case of the raspberry pi camera,
picamera module is used to interface the camera with the raspberry pi. Imwrite
function of OpenCV module is used to store the images on the RPI OS. File Transfer
Protocol is a set of guidelines that controls how computers transfer data across the
internet from one system to another. An FTP server is first set up, by connecting the
raspberry pi and laptop to the same Wi-Fi network as shown in Fig. 1. ftplib library
of python is used to send images through FTP. In the case of CCTV cameras, the
TAPO camera serves Real-Time Streaming Protocol (RTSP). The protocol combines
intricate programming, transcoding and client server method to send video through a
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Fig. 1 Using FTP folder with webcam and RPI

network or to the internet using a link. Using this protocol, we have written a python
code to display the stream on the Jupyter notebook. By analyzing the frames per
second (FPS) we extract the frames periodically and save them in the OS using the
OpenCV library. These images are then used for image processing and the results are
obtained. In the case of a laptop webcam, images are captured and directly sent to the
respective folder where images are extracted one at a time for image processing. The
flowchart of working of hardware components of the model is shown in Fig. 2a—c.

3.2 Training the Model

Initially we import ImageDataGenerator, MobileNeyV2, AveragePooling2D,
Dropout, Flatten, Dense, Input, Model, Adam, preprocess_input, img_to_array,
load_img, to_categorical libraries from their respective Tensorflow.keras libraries.
For preprocessing the dataset, we imported libraries from Sklearn. Other imported
libraries included utils, matplotlib, NumPy, argparse and OS. Then we initialize
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Fig. 2 a Flowchart of working of model with CCTV camera and Jupyter notebook, b flowchart
of working of model with laptop webcam and Jupyter notebook, ¢ flowchart of working of model
with Rpi and Rpi camera

the initial learning rate, number of epochs to train for, and batch size which are
determined through the hit and trial method. Once the dataset (with 3800 images)
is imported, the model loops over all the images in the folder by simultaneously
labelling them. Data and labels are converted into NumPy arrays and passed to a
LabelBinarizer to fit the model. The dataset is split into train and test with 80% for
training and 20% for testing. Data augmentation is also applied to increase the accu-
racy. After creating the base model with the help of MobileNetV2, head Model is
made using the layers AveragePooling2D, Flatten, Dense, Dropout and again Dense
layer. The head model is then placed on top of the base model. Finally, the model
is fit with 20 epochs. The model is tested with the testing dataset and we get the
classification report. Using this method, we have achieved an accuracy of 99% for
our model.

3.3 Detect and Predict Mask

The extracted frames/images are sent as arguments to this function. FaceNet and
MaskNet have defined weights for the convolutional neural network applied. Once
the frame/image is obtained, first the height and weight are extracted and saved in
shape. A blob image is made using the weights from faceNet. FaceNet contains a
module, forward, that detects frontal faces, this is applied to the captured image. If
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Fig. 3 Input image (left), output image (right), mask applied on the input image to detect eyes
(white portion detecting eyes). Source Adapted from [21]

the confidence of the detected face is greater than 50%, the coordinates of the face
are extracted and saved in locs. If a face has been detected, maskNet is used to detect
the face with a mask on it. Once this is predicted, the coordinates are saved in preds.
Ultimately a tuple of locs and preds is returned.

3.4 Eye on Mask

To detect the eyes on a face, we have applied a mask on the whole face except on the
eyes. This helps to detect the eye location accurately. For this function, the predefined
mask and the side of the eyes are sent as arguments. The location of the predefined
eyes is saved in points, it is then converted into a NumPy array for processing. Once
all the preprocessing is done, the fillConvexPoly () function is used to fill the face
with a mask except for the eyes as shown in Fig. 3.

3.5 Eye Open or Closed

We have used the Eye Aspect Ratio (EAR) method to determine the status of the eye.
In this method, once the eye location is obtained, the distance between the upper and
lower eyelid is calculated. The points used to calculate EAR are shown in Fig. 4 (red
points). This is compared with the standard value of eyes open and closed. It helps
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Fig. 4 Pictorial image of an
eye marked red points used
to calculate EAR

in determining if the eye is closed or opened. The standard values for a masked and
unmasked face are different, the functions are defined respectively.

3.6 Eye and Eye Ball Contours

In the case of eye contours, the shape_68.dat is used to extract the coordinates of
the eye. Once the coordinates are obtained it is sent as arguments to the eye contour
function. The circle() function of OpenCV module takes five arguments, including
the source picture, the (X, y) coordinates, the radius, the colour, and the thickness.
The circle function draws a circle on the coordinates of the image with the mentioned
radius and thickness. Obtained coordinates, radius = 2, respective color and thickness
= 2 are passed to the function to draw the contours.

In the case of the eyeball contours, a threshold value is set (different for masked
and unmasked faces), the midpoint of the eyeball is calculated and the threshold,
midpoint and image are sent with right = False. Now, each eye is taken at a time and
a mask is applied to them. Once the mask is applied, contours are detected. These
contours are found by adjusting the threshold values sent. The contours detected are
eyeballs. Obtained coordinates are marked using the circle function of OpenCV.

3.7 Head Pose of Person

The image obtained from hardware is sent as an argument to the function. The image
is first resized to 1000 x 600 pixels and then flipped for processing. Then the image
is converted to grayscale, a face mesh is created on the detected image. Using the
defined weights, the landmarks of the face are detected. Once detected a loop is
iterated on the coordinates. Using the nose coordinates and the other coordinates of
the face, rotational and translational vectors are created using the function solvePnP
of OpenCV. The rotational vector is then sent to rodrigues function of OpenCV to
calculate rmat and jac. Rmat is then sent to RQDecomp 3 x 3 to get the angles (X,
y, z) that are roll, pitch and yaw of the face. While testing the algorithm for different
images, we found that the images form a pattern, when (x, y, z) is summed and
compared. For different images, the summation of roll, pitch and yaw values had
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different outputs. Hence the method is generalized and it became a distinguishing
factor in the head pose estimation. Finally, the summation of the angles is returned.

3.8 Function Calling and Display of Output

On reading the image, it is converted into grayscale and locs and preds are found.
We predict if the person has worn a mask or not. On detecting a mask, we find the
locs and preds to create a rectangle in which we detect the eye contours and eyeball
contours, eye status is found using Eye Aspect Ratio. Ultimately the head pose of
the person is found. The output is displayed on the image. Then we display the final
output image with all the labels. If the face is unmasked, we use the detector to find
the rectangle surrounding the face. Then we find the eye status, eye contours, eyeball
contours and head pose. The final output image is displayed with all the labels. The
flowchart in Fig. 5 illustrates the process.
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Fig. 5 Flowchart of application of the developed algorithm
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4 Result Analysis

We used a laptop webcam for the input image. The input and output images are
shown in Fig. 6.

Part 2: Interfacing raspberry pi camera and laptop using File Transfer Protocol (FTP).
The results of image processing are shown in Fig. 7.

Part 3: Interfacing webcam, raspberry pi and laptop for the input image we received
accurate results. The processed images are shown in Fig. 8.

Part 4: Interfacing Tapo camera directly with Jupyter notebook by extracting the
stream using Real-Time Streaming Protocol (RTSP). We saved the frames of the
stream at regular intervals. The images and their respective processed output images
are shown in Fig. 9.

Part 5: Combining all parts, the head pose of the person is also displayed on the
image as shown in Fig. 10.

The training loss and accuracy versus epoch plot are shown in Fig. 13. Loss and
accuracy functions from the deep Learning model, training history, in keras is used to
find the training loss and accuracy of the model. It is clearly evident that the accuracy
of the model is 99% and the training loss of the model is 1%, when the number of
epochs reaches 20. The epoch results with 20 epochs are shown in Fig. 14. The
classification report with precision, recall, f1-score and support is shown in Fig. 15.
The accuracy of the model increases and validation loss of the model decreases with

Fig. 6 Input image from a laptop webcam
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Fig. 8 Using webcam and Rpi to get input image for masked image
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Fig. 10 Final output images with all the features and head pose

increasing epochs. Once the model is trained, it is fit into the input images to get
the output. The model achieves 99% accuracy with both mask images and unmask
images. The obtained accuracy is better than other existing models.

The accuracy is calculated using the below formula:

True categoryl 4+ True category2

Accuracy =
y True categoryl + True category2 + False categoryl 4+ False category?
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Opened

Fig. 11 Final output images with all the features and head pose (left)

Computationally, the training loss is calculated by taking the sum of errors for
each example in the training set. The training loss is measured after each batch.

The results obtained are accurate and the model is working perfectly. It can be
described as a robust model. The method of detecting each landmark one after the
other has increased the performance of the model. The results from the laptop webcam
are shown in Figs. 11 and 12. Here the image processing is done with a grayscale
image, this increases the performance of the model too. The rotational vector calcu-
lated during the head pose estimation differs from one camera to another as the focal
length of each camera is different. The model works best when the image processing
is done at regular intervals, this reduces the processor requirements. Images are sent
at regular intervals to the Jupyter notebook for image processing. Once the image
processing is completed, the output image with labels is displayed. The model can
be used to alert the alarm system if a person, wearing or not wearing a mask, is not
attentive in a class or in a driving system. In a classroom, once the direction of the
teacher or the blackboard is set, the model can be modified to detect if the pupil is
attentive in the class or not. The major limitation of the model is that it cannot be
used in very dim light conditions or at night, where there is minimum or no light. To
overcome this problem, night vision cameras can be incorporated, to get the input
stream, which can be processed by the model to get the desired results. Another
limitation is the hardware interconnections between the camera and the raspberry
are prone to wear and tear, and have to be handled with care for accurate results and
smooth processing.

5 Conclusion

We have achieved a maximum accuracy of 99% and our model is working better
than the pre-existing models. We have also worked on head pose estimation and we
achieved better accuracy and precision than the existing solutions. Our model is best
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Fig. 12 Final output images with all the features and head pose (right)
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Fig. 15 Classification report [INFO] evaluating network...
of fit model precision  recall fi-score support
with_mask 0.99 0.99 0.99 383
without_mask 0.99 0.99 0.99 384
accuracy 0.99 767
macro avg 0.99 8.99 0.99 767
weighted avg 0.99 0.99 0.99 767

fit in real-time applications and can be used in different scenarios in driving environ-
ments, schools, colleges, and offline proctored exams to examine the attentiveness
of a person accurately. The model can be trained and modified to get appropriate
results in the night too. Night vision cameras can be incorporated in the model to
get images in the night. The night vision cameras could be fit inside a car, where
the lighting conditions are very less or negligible, to check the status, eye status and
head pose, of a masked driver. In case of any abnormality in the driver status or negli-
gence in driving an alarm could be triggered to aware about a possible accident. Our
developed model outperforms the pre-existing models, faster_ RCNN, inceptionV2
structure, fatigue detection convolutional network (FDCN), Histograms of Oriented
Gradient (HOG), of image processing to detect if a person has worn a mask or not or
to detect facial features without a mask. The achieved accuracy of the model makes
it robust and fit for all lighting conditions and angles.
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