Aatmanirbhar Sanchar: Self-Sufficient)
Communications L

Jay Jhaveri®, Abhay Gupta®, Prem Chhabria@®, Neeraj Ochani®),
Sharmila Sengupta®, Mrs. Sunita Suralkar @, and Shashi Dugad

Abstract In the light of recent war crimes and data piracy conspiracies, privacy is
of utmost importance to an organization and even to an individual. The majority of
the population is dependent on third-party services for their daily communication.
Albeit these major corporations advertise “secure” means of chat transfer, they install
various kinds of backdoors to sell the user’s data to advertisers. Under the notion
of going “Aatmanirbhar” i.e., Make in India, we have developed an indie solution
without incorporating any third-party services or APIs. “Aatmanirbhar Sanchar” aims
at providing users with a real-time off-the-grid, secure, and anonymous messaging
service. It features an End-to-End encrypted transmission of messages and data files
likewise. This is achieved by combining the open-source AES algorithm with a
self-developed XOR encryption process.

Keywords Messaging * Security + Privacy - Self-sufficient - Aatmanirbhar -
Self-hosting + AES - Hash-based message authentication code verification

J. Jhaveri (B<)) - A. Gupta - P. Chhabria - N. Ochani - S. Sengupta - Mrs. S. Suralkar
Computer Engineering, Vivekanand Education Society’s Institute of Technology, Mumbai, India
e-mail: 2018 jay.jhaveri@ves.ac.in

A. Gupta
e-mail: 2018.abhay.gupta@ves.ac.in

P. Chhabria
e-mail: 2018.prem.chhabria@ves.ac.in

N. Ochani
e-mail: 2018.neeraj.ochani @ves.ac.in

S. Sengupta
e-mail: sharmila.sengupta@ves.ac.in

Mrs. S. Suralkar
e-mail: sunita.suralkar@ves.ac.in

S. Dugad
Tata Institute of Fundamental Research (TIFR), Mumbai, India
e-mail: shashi@tifr.res.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 545
J. Hemanth et al. (eds.), Intelligent Cyber Physical Systems and Internet of Things,

Engineering Cyber-Physical Systems and Critical Infrastructures 3,
https://doi.org/10.1007/978-3-031-18497-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18497-0_41&domain=pdf
http://orcid.org/0000-0002-9232-9051
http://orcid.org/0000-0002-2227-5991
http://orcid.org/0000-0001-8732-5366
http://orcid.org/0000-0003-0823-4170
http://orcid.org/0000-0003-1126-1049
http://orcid.org/0000-0002-3248-253X
mailto:2018.jay.jhaveri@ves.ac.in
mailto:2018.abhay.gupta@ves.ac.in
mailto:2018.prem.chhabria@ves.ac.in
mailto:2018.neeraj.ochani@ves.ac.in
mailto:sharmila.sengupta@ves.ac.in
mailto:sunita.suralkar@ves.ac.in
mailto:shashi@tifr.res.in
https://doi.org/10.1007/978-3-031-18497-0_41

546 J. Jhaveri et al.

(HMAC) - Indigenous private server * Scalability « Cross plat-form + Throwaway *
Anonymous

1 Introduction

In today’s world, privacy and security are of utmost importance to an individual. Let
me elaborate: Data Privacy and Data Theft are the hot debate in the World-Wide mass
media at the moment, but have you ever wondered what exactly it is? Have you ever
questioned how the so-called “Free” applications are kept afloat? They pay their bills
by selling that very data you unknowingly give them while using their “free” services.
This borderline stolen data is then used for targeted, personalized advertisements
and much worse. To combat this, we are developing anonymous communication
software without the use of any third-party services, hence maximizing the privacy
of an individual. To put it simply, secure messaging is a way of safely exchanging
documents between users, healthcare providers, organizations, and their customers.

2 Motivation

Currently, all other messaging services are hosted on Third-party cloud platforms,
mainly Google and AWS cloud services. Let us consider WhatsApp for example,
which has been recently acquired by The Facebook (META) team. After this acquisi-
tion, WhatsApp updated its privacy policy which gave access to Facebook to collect
private information on its users causing many controversies and heated discussions
in the IT industry around the globe.

There is a dire need for us to focus on these privacy problems faced by users using
these “free” applications like WhatsApp and Facebook messenger. The companies
owning these applications do not take adequate security measures in handling the
user data but drive their marketing/advertising agenda through the data provided by
their users.

Further, In the light of recent events, amidst the Russian-Ukraine War, there are
major sanctions placed by the west on Russia, disabling them from using multiple
western applications. Even their banking apps were restricted leading to a major
downfall in their economy. Now, India has developed a native solution for the banking
sector called the Unified Payments Interface, also known as UPL. Why not take this
spirit and create an indie chat application?

These were mainly our inspiration to create India’s very own messaging service
without utilizing any kind of third-party services. In collaboration with the Tata
Institute of Fundamental Research (TIFR), we have built a secure communication,
cross-platform messaging application wherein a user can exchange vital information
with other users and groups of users without being concerned about any kind of data
leak or data monetization.

Aatmanirbhar Sanchar: Self-Sufficient Communications 547

3 Literature Review

Cohn-Gordon et al. [1] in “A Formal Security Analysis of the Signal Messaging
Protocol” explained that Signal Protocol is a private messaging protocol that provides
instant messaging encryption to applications such as Skype, Facebook Messenger,
and WhatsApp among many others, with more than 1 billion active users. The
signal contains unique unfamiliar security features (such as “future privacy” or “post-
compromise security”’), which are made possible by ratcheting, a process through
which session keys are updated with each new message.

Singh et al. [2] in “Blockchain-Enabled End-to-End Encryption for Instant
Messaging Applications” presented a blockchain-based E2EE framework for miti-
gating current messaging application vulnerabilities. During the installation of the
application, the end-user device generates a pair of public/private keys and asks its
mobile network operator to issue a digital Identifier and store it in the blockchain.
The end user can obtain another user’s certificate from their chat private server and
utilize a ratchet forward encryption process to interact securely with them.

Bothal et al. [3] in “A Comparison of Chat Applications in Terms of Security and
Privacy, ECCWS 2019 18th European Conference on Cyber Warfare and Security”
described a gadget that helps people adapt to social life by allowing them to under-
stand domain messages, names, letters used in mailboxes, in daily newspapers, and
so on. The major goal of the project is to solve the above problem by using a Rasp-
berry Pi and an OCR sensor to recognize environmental messages automatically and
then using TTS to translate those messages into voice or audio for better and easier
engagement with society.

Sabah et al. [4] in “Developing an End-to-End Secure Chat Application” presented
a chat program that provides end-to-end security, allowing users to safely transmit
confidential information without fear of data loss. In addition to the storage protec-
tion. This article presents a list of requirements for creating a secure chat application,
and the program was created based on these requirements. The suggested chat appli-
cation was compared to other popular apps based on those criteria, and it was also
put to the test as a proof of concept for delivering End-to-End security.

Burak [5] in “Encryption Methods and Comparison of Popular Chat Applications”
proposed end-to-end encryption chat solutions that allow users to safely transmit
personal information. The paper includes a list of requirements for developing a
secure chat application.

Canetti [6] in “Universally Composable End-to-End Secure Messaging” explained
all the contemporary widely accepted encryption algorithms in detail and their limita-
tions in the real practical world. It also helped in choosing the most suitable encryption
algorithm for this chat application.

Emura [7] in “Membership Privacy for Asynchronous Group Messaging” focuses
on a method capable of hiding membership information from the viewpoint of
non-group members in a secure group messaging (SGM) protocol, which we call
“membership privacy”.

548 J. Jhaveri et al.

Back up to Google Drive

It means, it is plain text an

can be read by anyone
There «

which «

chat, sc

Fig. 1 WhatsApp Plain text Backup Proof

4 Lacuna in the Existing System

“Data is the new fuel” and major tech corporations are utilizing every gizmo at
their disposal to amass and utilize user data for monetary advantage because their
customers’ personal and behavioral data is worth millions of dollars if mined to its
full potential.

WhatsApp and other Applications [8] provide the option of verifying users’ public
keys, but the mechanisms used are not robust and pose major session hijacking issues.
Besides this, there is no reliable third-party involvement to check the suitability of
keys stored on WhatsApp servers [9-13].

The backup method utilized by WhatsApp does not provide real end-to-end
encryption (see Fig. 1). The alternate copy is kept in plain text on the user’s cloud,
depending on the user’s OS, such as iCloud, Google Drive, One Drive, and so on.

5 Methodology

5.1 Joining a Chat Room

When a user visits the web application at http://aatmanirbhar-sanchar.live/, hosted
on the private servers at Vivekanand Education Society’s Institute of Technology
(VESIT), he is greeted with the homepage asking for a Username along with a
Room key (RK) (see Fig. 2). The entered username will act as the main identity of
that particular user for the ongoing session. The room key is the most significant
aspect of the chat application. This key serves a dual purpose:

1. The hash of the key acts as the identity of a particular group chat created using
the same.

http://aatmanirbhar-sanchar.live/

Aatmanirbhar Sanchar: Self-Sufficient Communications 549

G

AATMANIRBHAR-SANCHAR

Simple, secure and ephemeral anonymous messaging.

Usemame 0‘

€

Fig. 2 Home page

2. The key itself is used in the encoding and decoding process of incoming and
outgoing messages.

When the user enters a room key (RK), the key first goes through an extensive
algorithm to test the strength of the key. If the resulting strength is not up to the
standards for secure communication, it will warn the user of a weak key and the user
may decide if he wants to proceed or add a new key.

A passphrase is highly recommended instead of a password to ensure utmost
privacy while communicating. To keep it user-friendly, a random passphrase gener-
ator has been added. Now, when the user clicks the join button, the following
processes occur (see Fig. 3):

Joining the Chat Room

Room key is SHA-512 hashed and sent o | Room key is SHA.
the server along with encrypted usemams the server alon

2 hashed and sent to
crypled usemame

Enters his usermname and the

pe agr non
Secure room key

between two

NOTE: The whole process is end to end encrypted, hence the actual plain text keys never leave the client side without hashing.

Fig. 3 Joining process

550 J. Jhaveri et al.

1. Thekey is firsthashed using the SHA-256 algorithm to get ready to be transmitted
to the server.

2. NOTE: The plain text key never leaves the client side

3. The username, AES encrypted using the RK, is appended along with the hashed
RK and is sent to the server.

The user can now share this room key with the intended recipients to begin a
secure private communication channel with him/her.

5.2 The Ephemeral Chat Room

When a user joins a chat room using the shared RK, the active user counter is
incremented and their encrypted username is broadcasted to all the users active in
the room utilizing which a greeting message is displayed (see Fig. 4).

Now every user is subscribed to the following events:

Join Response: Handles a new incoming user.
Chat Response: Handles incoming text messages.
File Response: Handles incoming files.

Leave Response: Handles a user leaving.

bl

When a user joins a chat room using the shared RK, the active user counter is
incremented and encrypted.

AATMANIRBHAR-SANCHAR

A stunning encrypted chat webapp.

ConscleBot has jeined the room.
ConscleBot Hs
Abhay has joined the room.

Abhay Helol

¢

Fig. 4 The chat room

Aatmanirbhar Sanchar: Self-Sufficient Communications 551

5.3 Encryption Process

Aatma Sanchar uses a double-layered encryption process for achieving enhanced
security. The first layer constitutes the self-developed XOR encryption process:

This encryption system is based on the concept that if an object is XOR’ed by
the same key twice it will revert to its original state. To make this viable in this
innovative era of cybercriminals vs cybersecurity, multiple iterations of permutations
and combinations on the original entity take place before further encoding. To put it
simply, a text message is first converted to its binary format in the shape of matrices.
These matrices are then shuffled and reshuffled to increase protection followed by
undergoing the XOR process by the room key 10.

This encryption system is based on the concept that if an object is XOR’ed by
the same key twice it will revert to its original state (Fig. 5). To make this viable
in this innovative era of cybercriminals vs cybersecurity we have added multiple
iterations of permutations and combinations of the original entity. To put it simply,
a text message is first converted to its binary format in the shape of matrices. These
matrices are then shuffled and reshuffled to increase protection followed by it getting
XOR’d by the room key [9].

This encryption layer is followed by the Advanced Encryption Standard (AES-
256) algorithm 11 to ensure privacy while maintaining efficiency. From the Graph in
Fig. 6, it is clear that while there exist faster encryption algorithms other than AES,
as the file size increases (which is a common situation in a messaging platform),
AES easily comes out on top. Hence, AES-256 was selected as the second layer in
this encryption process.

D4 | A0 | 9a | ES

3D |Fa | CB | F8

E3 I E2 | 8D | 48 CB |9C | 73 | FE
BE [2B [2a |08 03 |13 |43 | 6B

1F I 3c | E9 | 17 3 77 |E3 | 6B [C1 D4 | AD | 9A | E9
3E |E7 |85 |93 55 |Fa | C4|C3 30 | F4 | ce | Fa
o4 | or'[es | 89 3 E3 | E2 | 8D | 48

EB | D2 | EE | CB BE | 2B | 2A | 08

We also do a series of
permutation and

combination after this key
based encryption

Fig. 5 Second layer encryption using the XOR matrix method

552 J. Jhaveri et al.

1800
1600
7 10
2 £ 12004 u DES
e g 19 " 3068
Z 80
= - AES
S w . - | ¥ Blowfsh
. .
2568 S0K8 M8 M8 3M8
File size

Fig. 6 Second layer encryption using the XOR matrix method

Finally, to ensure the integrity and authenticity of the transmitted message, the
process of Hash-based Message Authentication Code verification (HMAC) is also
practiced which guarantees tamper-proof messaging 12. This is done by creating a
hash-based checksum using the combination of the room key and the data ready to be
sent to the sender’s client. This checksum value is then recomputed on the receiver’s
device, and if any discrepancy is detected it indicates that the message was tampered
with (Fig. 13).

5.4 Transmitting a Message

The users can either directly type or send a text message using the provided chat box,
else a user can also attach files up to the 50 MB limit to be transmitted.

1. Sending a text message (see Fig. 7):

a. When auser types a message and hits the send button the message is encrypted
using the Room Key (RK) utilizing the doubly layered encryption algo-
rithm mentioned before. Further, the SHA-256 hashed RK and the encrypted
Username are appended into a dictionary along with the encoded message.

b. Next, we use the HMAC (hash-based message authentication code) algorithm
to ensure the authenticity and integrity of the message being sent. The HMAC
is generated using the above-created dictionary and the Room Key (RK).

Aatmanirbhar Sanchar: Self-Sufficient Communications 553

Juser 1

The Chat Process

[The following details are then received from the server
1) Encrypled user name

2) Encrypted message

) Message HMAC

ser 2

he following detais are then sent 10 the server
1) Hashed Room name
2) Encrypled user name
3) Encrypled message
4) Message HMAC

N

1) The message is encrypted using
AES and XOR mechanism uliizing
the local Key

1) The received HMAC is compared
to a locally calculated one and the
authenticity is hence verified

Server only acts as a
mediating point and
handies the connection,
between two users

Uzs:,: ?ﬂiﬁ?ﬁyza;g;;e::.e?o 2) if verified, the encrypted message
9 badiies b el is then decrypled using the locally

verify the authenticity and integrity of tored Key and displayed to the user
the message being sent ¥ Spay i

NOTE: The whole process is end to end encrypted, hence the actual plain text keys never leave the client side without hashing.

Fig.7 Sending a text message

c. Finally, this encoded dictionary along with the HMAC appended to it is
emitted through a socket to the server.

2. Sending a File as an Attachment (see Fig. 8):

a. A user also has the option to send any type of file as long as it is under the
50 MB limit. When he/she selects the file to be uploaded, the file is first
converted into its binary (Base 64) format.

b. This binary format is encrypted using the Dual layer encryption process and
is stored in the dictionary along with its file name and file type. Finally, as in
the text messaging process, an HMAC code is calculated utilizing the above

The File Transfer Process

The following details are then sent to the server
1) Encrypted user name

[2) Encrypted binary data

3) Encrypted string of File Type(MIME)

14) Encrypted string of File Name

5) Message HMAC

ser 1 -
[The following details are then sent to the server

1) Hashed Room name

[2) Encrypted user name

A 3) Encrypted binary data

Attaches 3 fle L1) Encrypted string of File Type(MIME)
5) Encrypted string of File Name

[5) Message HMAC

"

1) The file is converted in baseSd binary
format and stored in a blob

1) The received HMAC i compared 1o a
locally calculated one and the

Server only acts as a authenticity is hence veriied

mediating point and
handles the connection
between two users

1) The biob is encrypted using AES and
XOR mechanism utilizing the local Key

2) If verified, the encrypled message s
then decrypted using the locally stored
Key and then the decrypled binary string
is converted back to the original file
format and shown 1o the user.

2) A SHA-256 HMAC is generated using
the enc. msg and room key 1o verify the
authenticity and integrity of the message

[, being sent

NOTE: The whole process is end to end encrypted, hence the actual plain text keys never leave the client side without hashing.

Fig. 8 File transfer process

554 J. Jhaveri et al.

dictionary and the room key. This is then sent using the same socket method
as for a text message.

5.5 Receiving a Message

After a user has sent the encrypted message to the server then broadcasts the message
to all the users currently connected to that particular room. On the receiver’s end
before any decryption process can start, the HMAC is recalculated on the client end
utilizing the encrypted dictionary and if any disruption is found, an error is displayed
in the chat box indicating the message was tampered with (Further explained in the
Cryptanalysis part of the paper).

After verifying the HMAC code, the actual decryption process starts:

1. Receiving a text message (see Fig. 7):

a. The incoming encoded dictionary is first decrypted using the AES algorithm
followed by the reverse XOR method.

b. This decrypted message is shown to the user in the chat box along with the
decrypted username of the sender (see Fig. 4).

2. Receiving a file as an attachment (see Fig. 8):

a. The incoming encoded dictionary is first decrypted using the AES algorithm
followed by the reverse XOR method.

b. This generates the file in its pure binary (Base 64) format. This binary file is
then converted according to the MIME type into its original form.

c. This original form is then converted into a blob link from where the receiver
can download the same. If the File type is in a known multimedia format
(Music, Image, Video), then the user is also given the option to preview the
same within the chat box itself (see Fig. 9).

5.6 Leaving the Chat Room

A user can press the “leave” button to securely exit the chat room. Once pressed, the
client is unsubscribed from all the live-time events and finally emits an encoded
dictionary constituting the hashed room key and the encrypted user name. This
username is then broadcasted to every active user with a message indicating that
this person left the chat room.

Once left, the user cannot access the chat history and for enhanced security, the
chats are never stored on the local device. If every user leaves a particular chat room,
the session is destroyed in instantly.

Aatmanirbhar Sanchar: Self-Sufficient Communications 555

Fig. 9 File preview in the chat room (light mode)

5.7 Experimental Environment Details

The following tools and technologies have been used in the development of
Aatmanirbhar Sanchar:

e Front-End Development:

React JS
HTML/CSS

e Backend Development (server-side):

Languages used:

— Nodel]S
— Socket.IO

Compatible Operating System:

— Ubuntu (16.04)
— Windows 10

Requirements:

— A Public Static IP to host the messaging application.
— Android Studio for mobile applications (Auto File Sync).
— Maps and Google Sheets API

556 J. Jhaveri et al.

6 Applications

6.1 In Large Organizations as a Quick, Secure Chat Platform

Our chat application being ephemeral does not store any of the chat data on the local
client machine or the cloud server. This, apart from making our product more secure
from any kind of unauthorized access to the local machines, also saves a lot of vital
storage space in the cloud servers that can be essential for more important subjects.
Being a throwaway chat application, it can be reused N number of times without any
load on the server or the client.

6.2 Communications Where Security is of National
Importance

In matters where national security is of utmost importance, one cannot simply rely
on the external, untrustworthy third-party application for secure communication
[11]. Our chat application has up-to-date encryption algorithms along with our self-
developed XOR encryption process ensuring utmost protection without using any
kind of third-party material. For instance, during a hostage situation, the officers in
command can safely plan a rescue operation along with their subordinates without
sacrificing the vital game plan to anyone intercepting the conversation.

6.3 Aatmanirbhar Samakraman: File
Auto-Synchronization App

Using our encryption process, we have also developed an auto synchronization file
app useful in situations where the user repeatedly stores important readings in the
format of a file in a selected directory and wants to securely upload the same to a
remote server.

The user first selects a specific directory to be continuously monitored by the
app. He/she then selects another directory where he wants these files to be moved
once uploaded to the server. He then presses the start syncing button to activate the
background process (see Fig. 10).

Now every time a new file is stored in that specific directory it triggers the applica-
tion and the file are automatically uploaded to the remote servers and the locally stored
file is moved to the second directory. This transfer of the file to the server takes place
using the Multi-Part technology after being encrypted with our XOR-encryption
process.

Aatmanirbhar Sanchar: Self-Sufficient Communications 557

Aatmanirbhar Samakraman

Aatmanirbhar Samakraman Aatmanirbhar Samakraman

Now watching for new files at /storage)
emutabed/ 0/ Documents, it

SERVER SELECTED: hitp158.144.55.73:
WT8/upload/multipart

Fig. 10 Aatmanirbhar Samakraman android application

Along with the file, the current location coordinates of the user are also sent which
is then used to display a tracking history on a web-based map UI for easy analysis:
(http://file.aatmanirbhar-sanchar.live/) (see Fig. 11).

7 Results

In the end, we were successful in developing a secure, private, ephemeral chat appli-
cation and deployed it on a private server hosted at our college, the VESIT campus.
The web application is completely free from third-party services and is fully built
upon open-source libraries.

We also developed an encryption system from scratch. This XOR encryption
process is nothing but dividing the binary data into matrices followed by shuffling
and reshuffling of the data and finally the data being XOR’d by a predefined key (see
Fig. 5).

Finally, the output generated from the XOR method is passed to the Advanced
Encryption Standard (AES-256) Algorithm in turn ensuring utmost security.

http://file.aatmanirbhar-sanchar.live/

558

J. Jhaveri et al.

Map Satellite

Thane
A ot
MuLUND -1,
-
e

p——T
-
Mnm’

L& P

Fig. 11 Aatmanirbhar Samakraman live-map tracking

Finally, to ensure the integrity and authenticity of the transmitted message, the
process of HMAC (hash-based message authentication code) verification is also prac-
ticed which guarantees tamper-proof messaging. To test the security of our product,
we have tried the following Cryptanalysis techniques:

1.

a.

Snooping

An intruder listens to traffic between two machines on a network in a snooping
attack. We prevent this attack by only transmitting everything in an encrypted
format. To an outsider, everything will look like gibberish (see Fig. 12).

Man in the middle attack (MITM)

An attacker intercepts a message/key sent between two communicating parties
through a secure channel in this sort of attack and tries to alter them. We can
detect any tampering in the incoming messages due to the HMAC verification
process. If any alterations are detected, a “decryption error” is shown to all the
users indicating a tampered message (see Fig. 13).

Server attack
In the case wherein an intruder has successfully gained access to the remote
server would cause no harm to the privacy of the users. This is achieved due

Aatmanirbhar Sanchar: Self-Sufficient Communications 559

http://103.197.221.163:3478/chat
Content-type: text/plain;charset=UTF-8
Content-Length: 350

Origin: http://103.197.221.163:3478
Connection: close

42 ["chat
event”, ("roomName":"c62dec34d3b8clcéle

8al9lebl08ceeda63668b8deefdld®4a8lebd?
e4b7d63411c600elda88bl04ctfSedb8c77£4c58
db59p59175b675ce0473df71£f17a7e8224", "u
ser name":"U2FsdGVkX1+yzvEKmiAGSJy3E3D7
/7CO/pVDdybg9Dz8=", "message": "U2FsdGVk
X1/adlVvcZbJ0XotHy0633Dy2sXuk3QXeZI=",
"hmac": "bbbbb5f4f264a7fcc0dl0c2éce8bSbb
93ff08885dcabfc373a4945db9%cdfc2f4am}]

Fig. 12 Intercepted message as visible to an intruder

Fig. 13 Error is shown indicating message tamper

560 J. Jhaveri et al.

to the fact that no vital information is stored or even transmitted to the server
without it being dually encrypted. So, the worse this intruder can do is shut
down the server itself.
4. TCP-SYN flood attack

a. TCP-SYN flood is a type of DDOS attack where the attacker starts pinging
the server continuously from several different IP addresses by not providing
Full information which is required by the server. Due to this, the server has to
disconnect the running applications and wait for the partially opened connec-
tion started by the mugger, which can take enough resources to render the
system unusable to authorized congestion.

7.1 Comparison of Results with Existing Systems

One of the major differences between Aatmanirbhar Sanchar and other similar appli-
cations is the promise of keeping your data safe and keeping the application open
source for anyone to verify its’ contents. The majority of the existing chat appli-
cations keep their source code proprietary and hide data mining loopholes in their
terms and conditions (Fig. 14.).

DATA LEAKS IN EXISTING SYSTEM

=S=pm
b
b

Fig. 14 Data leaks in existing software

Aatmanirbhar Sanchar: Self-Sufficient Communications 561

BLOCKCHAIN BASED END TO END ENCRYPTION MESSAGING

NEW USER:

USER 2 WANTS TO SEND MESSAGE TO USER 1:

Send
""""""" Message
Message is
not Shown to vsa;:m
Recipient
Yes
Decrypt the
received : ;
Message recipient

Fig. 15 Decentralized chat application

8 Future Scope

8.1 Converting the Application to a Decentralized WEB3
Application (See Fig. 15)

Now, instead of a centralized server, we can also theoretically use a blockchain
network to convert the application into a web3 decentralized application.

Blockchain is a type of database. In this database, data is stored in the form of
blocks and these blocks are chained together to form a blockchain. When each block
in the chain is added to the chain, it is given a precise timestamp.

It is extremely difficult to modify the contents of a block after it has been put
into the blockchain. This is because each block has its own hash in addition to the
previous block’s hash.

So, in this, if a new user installs the app for the first time a certificate will be
generated which is then stored in a block and appended to the blockchain. This
certificate will be used as a public key to the blockchain system.

If a user wants to send a message to a particular person the certificate of the
recipient is accessed from the blockchain. The message will be encrypted using the
signal protocol before being sent. Now, user 1 verifies user 2’s certificate, and once
verified, user 2 will be allowed to decrypt the message otherwise an error should be
thrown.

562 J. Jhaveri et al.

9 Conclusion

Secure and Private communication is a serious issue in today’s world. One is not
able to communicate with their loved ones without being spied upon by the “Mark
Zuckerbergs” of the world. There is a serious lack of an indie Secure Communication
application that can be freely and securely used by public and private organizations.

Hence, we are very excited to present to the world, “Aatmanirbhar Sanchar: An
Ephemeral, Anonymous, Secure Chat Application” based on a custom-based encryp-
tion algorithm that can be easily hosted on one’s very own private servers without
any external eyes watching over.

Conflict of Interest Statement On behalf of all authors, the corresponding author states that there
is no conflict of interest.

References

1. Cohn-Gordon K, Cremers C, Dowling B, Garratt L, Stebila D (2020) A formal security analysis
of the signal messaging protocol. J Cryptol 33(4):1914-1983. https://doi.org/10.1007/s00145-
020-09360-1

2. Singh R, Tewari H (2021) Blockchain-enabled end-to-end encryption for instant messaging
applications. https://arxiv.org/abs/2104.08494

3. Botha JG, Van ‘t Wout MC, Leenen L (2019) A comparison of chat applications in terms of
security and privacy. In: 18th European conference on cyber warfare and security. University
of Coimbra, Portugal

4. Sabah N, Kadhim JM, Dhannoon BN (2017) Developing an end-to-end secure chat application.
Int J Comput Sci Netw Secur

5. Burak M (2021) Encryption methods and comparison of popular chat applications. Adv Artif
Intell Res 52-59

6. Emura K, Kajita K, Nojima R, Ogawa K, Ohtake G (2022) Membership privacy for asyn-
chronous group messaging. National Institute of Information and Communications Technology
(NICT), Japan.

7. Canetti R, Jain P, Swanberg M, Varia M (2022) Membership privacy for asynchronous group
messaging. National Institute of Information and Communications Technology (NICT), Japan

8. Marlinspike M, Perrin T (2016) The X3DH key agreement protocol. Signal

9. Whatsapp whitepaper (2021) WhatsApp encryption overview. Whatsapp. https://www.wha
tsapp.com/security/WhatsApp-Security-Whitepaper.pdf

10. Perrin T, Marlinspike M (2016) The double ratchet algorithm. Signal

11. Daemen J, Rijmen V (1999) AES proposal: Rijndael. Rijndael Block Cipher

12. Bellare M, Canetti R, Krawczyk H (1996) Message authentication using hash functions—the
HMAC construction. RSA Lab CryptoBytes

13. Hess A (2015) Encryption and cyber security for mobile electronic communication devices.
Fed Bur Inv

https://doi.org/10.1007/s00145-020-09360-1
https://arxiv.org/abs/2104.08494
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	 Aatmanirbhar Sanchar: Self-Sufficient Communications
	1 Introduction
	2 Motivation
	3 Literature Review
	4 Lacuna in the Existing System
	5 Methodology
	5.1 Joining a Chat Room
	5.2 The Ephemeral Chat Room
	5.3 Encryption Process
	5.4 Transmitting a Message
	5.5 Receiving a Message
	5.6 Leaving the Chat Room
	5.7 Experimental Environment Details

	6 Applications
	6.1 In Large Organizations as a Quick, Secure Chat Platform
	6.2 Communications Where Security is of National Importance
	6.3 Aatmanirbhar Samakraman: File Auto-Synchronization App

	7 Results
	7.1 Comparison of Results with Existing Systems

	8 Future Scope
	8.1 Converting the Application to a Decentralized WEB3 Application (See Fig. 15)

	9 Conclusion
	References

