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An Overview of Multi-View Methods for
Text Clustering
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8.1 Introduction

The rapid development of information technology and the abundant amount of
available data have considerably contributed to the growth of studies on multi-
view clustering [8, 32] . Multi-view data is observed from varying points resulting
in different representations (views) with distinct statistical properties. In text
clustering, these views can be obtained through word frequencies, topic and context
based representations, and many other embedding models capable of capturing
either syntactic or semantic information or both [14]. The main task of multi-view
text clustering is to achieve better clustering by combining information held by each
view, such information is disregarded when only a single view is used. However,
efficiently integrating different views while preserving their characteristics remains
a challenge. A naive solution for multi-view clustering consists in concatenating
features from all views then apply a single-view clustering algorithm. Nevertheless,
such combination fails to exploit the specificity of each view. Hence, multiple
approaches have been proposed to optimize multi-view clustering [16, 19, 35].

This chapter reviews multi-view methods for text clustering. In fact, textual data
was examined early on in the context of multi-view, particularly in cross-lingual text
categorization where the data is labeled in one view and not in another, the aim is to
use the information in both views to label all data [1, 28, 30]. With the abundance
of unlabeled data, this process was extent to multi-view text clustering [13].
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The reminder of this chapter is organized as follows: Sect. 8.2 presents an
overview of exiting multi-view clustering methos, specifically for text clustering.
Section 8.3 evaluates the performance on real-world textual data. Finally, Sect. 8.4
presents the conclusion and current challenges.

8.2 Overview of Multi-View Textual Data Clustering

The main challenge of multi-view clustering consists in integrating the different
views while taking advantage of the characteristics of each view to improve the
clustering results. An intuitive solution consists of concatenating all features from
all views and apply a clustering algorithm afterwards, this, however, ignores the
statistical properties of each view and can conceal valuable information [3]. To this
end, according to the integration scheme, existing multi-view clustering methods
can be presented under three main categories [22]. The first category called late
integration derives clustering results from each view individually, then a fusion step
is applied to reach a consensus clustering [7, 29]. The second category is based
on co-training, which incorporate multi-view integration into the clustering process
directly through jointly optimizing the objective function [2, 17]. The third category
is based on space learning, such that views are mapped into a new space to reveal the
latent data structure. We present in the following the characteristics of each category
and detail a number of existing methods.

8.2.1 Late Integration Based Methods

The late integration approach, also known as late fusion, consists of applying a
clustering algorithm on each view individually and subsequently combines the
results into a consensus clustering. The idea examines the relations between the
clusters derived from each view rather than the relations between data points. The
combination of clustering results can be obtained using different methods, such
as latent probabilistic models [7] or more recently ensemble methods [9, 13, 26].
Figure 8.1 presents the overall process of late integration based methods.

8.2.1.1 Ensemble Methods for Multi-View Text Clustering

Xie et al. [31] proposed a multi-view clustering ensembles, an combination of
multi-view clustering algorithms and ensemble clustering. The method extends
both multi-view kernel K-means [27] and multi- view spectral clustering [16] to
ensemble clustering and compares the two methods. Given a data set X, different
clustering results {π1, π2, . . . , πH } are obtained through different runs of the
clustering algorithm. These clustering are then combined based on plurality voting,
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Fig. 8.1 General process of late integration based methods

Algorithm 1: Multi-view clustering ensembles
Input: data set X, number of clusters k, number of clustering ensembles L

Output: clustering ensembles
1 for eachσl ∈ [σmin, σmax ] do
2 for v = 1 to m do

3 Compute RBF Kv = exp
−‖xv

i − xv
j ‖2

2σ 2
l

4 end for
5 K̃l = [K1

l , K2
l , . . . , Km

l ]
6 Run multi-view kernel K-means or multi-view spectral clustering with K̃ and k

7 end for
8 Combine the clusterings using selective voting

i.e., considering the majority cluster label for each data point to give the final
clustering π∗.

Hussain et al. [13] presented a late integration framework for multi-view
document clustering based on ensemble method. The proposed method first converts
views into term weighted matrices using two weighting schemes: TF-IDF and
TF-ICF [24]. Hierarchical clustering is then applied on each view individually to
obtain different partitions. In order to aggregate the clustering results, different
ensemble techniques are adopted: the Cluster Based Similarity Partitioning (CBSP)
[25], the Pairwise Dissimilarity (PD) [36], and the Affinity matrix based technique.
Each ensemble technique provides a similarity matrix, which are then aggregated
into an overall similarity matrix used for the final clustering. Similarly, Fraj et
al. [9] proposed a multi-view ensemble methods for text clustering (MEMTC)
based on multiple representations. The main idea consists of integrating different
text representation models: TF-IDF, LDA, and skip-gram to generate, respectively,
syntactic, topic, and semantic views. Lastly, ensemble techniques CBSP and
Pairwise Dissimilarity are used to aggregate the different partitions yielded by each
view. The main steps of MEMTC are presented in Algorithm 2
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Algorithm 2: Ensemble methods for multi-view clustering
Input: a collection of text documents X
Output: final consensus clustering

1 Xv ← R(X) v ∈ {TF-IDF, LDA, Skip-gram }
// R: document representation

2 Apply hierarchical clustering to obtain per-view partitions. Calculate the cluster based
similarity partitioning matrix SH

3 Calculate the pairwise similarity matrix SPDM
4 Aggregate the similarity matrices into one matrix S
5 Apply the hierarchical clustering on S

8.2.1.2 Multi-View Clustering Based on Latent Models

Bruno et al. [7] proposed an integration framework based on latent models for
document clustering. In this work, documents from each view are clustered into kv

clusters. The set of clusterings {cv
1, . . . , c

v
k } are then concatenated intoK×M matrix

C, such that K = ∑
v kv is the total number of clusters over all views. Based on

C, a joint probability P(ck, ck′) is derived to deduce the pairwise cluster agreement,
which represents the number of documents belonging simultaneously to clusters ck

and ck′ . The joint cluster-cluster probability is defined as follows:

P(ck, ck′) =
∑

n

P (ck|xi)P (ck′ |xi)P (xi)

=
∑

n

P (ck, xi)P (ck′ , xi)

P (xi)

(8.1)

where the joint-cluster document probability is obtained by:

P(ck, xi) = Ck,i

MN
, ∀k ∈ [1,K],∀i ∈ [1, N ] (8.2)

To obtain the final clustering for each document, the Probabilistic Latent Semantic
Analysis (PLSA) [12] is adopted to derive latent variable zj such that

P(ck, ck′) = P(ck′)
L∑

j

P (ck|zj )P (zj |ck′) , j = 1, . . . , L (8.3)

PLSA seeks to find the relationship between the clusters observations across
different views and the latent variables z. The overall clustering is established by
assigning to document xi the discrete variable zj that maximizes the following
posterior probability:
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Algorithm 3: A late fusion approach using latent models
Input: multi-view documents Xv

Output: Final clustering assignment z
1 Run a clustering algorithm on each view individually
2 Concatenate clusterings {cv

1 , . . . , c
v
k } into matrix C

3 Apply PLSA using Eqs. 8.1 and 8.2
4 for i = 1 to N do
5 Assign zj to xi by maximizing Eq. 8.4
6 end for

P(zj |xi) =
∑

k P (zj |ck)P (ck, xi)

P (xi)
(8.4)

To estimate the latent variables, experiments were carried using the Expectation-
Maximization (EM) algorithm and the Nonnegative Matrix Factorization (NMF)
[11] where both methods have performed similarly. Algorithm 3 summarizes the
main step of the approach.

8.2.2 Co-training Based Methods

Co-training based methods seek to find a consensus by maximizing the mutual
agreement across all views. Co-training was originated by Blum et al. [4] in order to
tackle semi-supervised problem. Given the abundance of unlabeled data, such data
can be used to enrich the training set of the labeled data, such that given two views
the learning algorithm is trained on the labeled data of both views in a bootstrapping
manner. Finally, based on the consensus principle, the views should agree on all
labeled data. Eventually, co-training was adopted in unsupervised learning [3] and
has shown good performance despite the absence of labeled data. In general, co-
training based methods are based on three main assumptions: Sufficiency: each view
is sufficient to perform the clustering task, Compatibility: each pair of views predicts
with high probability the same label for data points with co-occurring features, and
Conditional independence: the views are conditionally independent given the class
label [16]. Figure 8.2 presents the general process of co-training based methods.

8.2.2.1 Multi-View K-Means Based Methods

Multi-view clustering was advanced by Bickel et al. [3], where the empirical results
show that the proposed multi-view spherical k-means improves the quality of
document clustering in comparison to the single-view version of the algorithm. The
presented co-training algorithm is based on the following assumptions: given two
views v1 and v2, each view is sufficient to output clustering results by itself, and
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views are conditionally independent given the class label. The clustering process
starts by randomly initializing the set of parameters �v including the centers
cv
j , j = 1, . . . , k, where k is the desired number clusters and v = 1 or v = 2.
Documents are then assigned to clusters given the smallest computed distance to cv

j .
A two-step iterative process is applied afterwards taking turns between views. The
first step consists of updating the clusters centers such that:

cv
j =

∑

xv∈πv
j

xv

‖ ∑

xv∈πv
j

xv‖ (8.5)

where πv
j is the j th partition given the vth view. The assignment step consists

of calculating the distance between documents and centers, and finding the new
partitions. After each iteration, partitions are exchanged for an updating and
assignment steps for the other view. For the final clustering, consensus centers are
calculated by considering the documents that both views agree on such that:

cons_cv
j =

∑

x1i ∈π1
j ∧x2i ∈π2

j

xv
i

‖ ∑

x1i ∈π1
j ∧x2i ∈π2

j

xv
i ‖ (8.6)

The final partitioning is obtained by assigning documents to the closest consensus
vector. Given that the algorithm is based on alternating partitions between views,
convergence is not guaranteed. The main steps of multi-view spherical k-means are
presented in Algorithm 4.

Bettoumi et al. [2] proposed a collaborative multi-view K-means CO-K-means
that introduces an interconnection term to overcome the inter-view disagreement.
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Algorithm 4: Multi-view spherical k-means

Input: multi-view documents X = {X1,X2, . . . ,Xm}, number of clusters k

Output: Final clustering assignment π
1 Initialize randomly �2 and c2j , j = 1, . . . , k

2 Assign each document to the partition corresponding to the closest center c2j
3 t=0
4 while t < tmax do
5 for v = 1 : 2 do
6 t = t + 1
7 Calculate the new centers using Eq. 8.5
8 Compute the cosine distance between documents and centers
9 Assign each document its closest center

10 end for

11 Compute Objective function by J (�t ) =
k∑

j=1

∑

xv∈πv
j

〈xv, cv
j 〉

12 if (J (�t ) < J (�min)) then
13 t = 0
14 end
15 end
16 Calculate the consensus centers using Eq. 8.6
17 Find the final clustering assignment

Views are encouraged to reach an agreement by minimizing the contradiction across
partitions. To solve this problem, the K-means objective function is altered such that:

� =
∑

v

∑

i

∑

k

‖xv
i − cv

k‖22 + μϕ (8.7)

where μ is a modulation parameter and ϕ is the interconnection term denoted by:

ϕ = 1

|V | − 1

∑

v>v′

n∑

i

∑

k

(‖xv
i − cv

k‖22 − ‖xv′
i − cv′

k ‖22) (8.8)

Similarly to the classic K-means, the proposed algorithm starts by randomly
initializing the clusters centers for each view, followed by an assignment step. Then,
for each view, new centers are computed. The interconnection term ϕ aims to reduce
the distance between the partitions yielded from each view. The main steps of Co-
K-means are given in Algorithm 5.

8.2.2.2 Self-Organizing Map Multi-View Clustering

Fraj et al. [10] proposed a multi-view clustering method based on the Self-
Organizing Map neural network [15]. Similarly to [9], each view corresponds to
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Algorithm 5: Collaborative multi-view K-means

Input: multi-view data X = {X1,X2, . . . ,Xm}, number of clusters k

Output: Final clustering assignment π
1 For all views, initialize the clusters centers.
2 repeat
3 Assign data points to clusters with the smallest distance

π = argmin(
∑

v

‖xv
i − cv‖22 + 1

|V | − 1
(
∑

v>v′
‖xv

i − cv
k‖22 − ‖xv′

i − cv′
k ‖22))

4 for v = 1 : m do
5 Update centers cv

k by cv
k = argmin

cv

∑ ‖xv
i − cv‖22

6 end for
7 until convergence of 8.7;

a text representation model, i.e., TF-IDf, LDA, and skip-gram. The views are
presented as input layers, such that each document has three vector representations
x = {x1, x2, x3}. Documents are then mapped onto the output layer, such that each
document is assigned to a node on the map. Consequently, each node (neuron) of
the output layer is defined by v prototypes w each of which is associated with a
view. First, the learning process consists in generating random SOM prototypes,
Wv . Secondly, an overall distance is calculated for each document xv

i in the view v

and the node w such that

D =
∑

i

Dv(x
v,w), v ∈ 1, 2, 3 (8.9)

The node with the smallest distance is considered the Best Matching Unit BMU

to which the document xi is assigned. The number of nodes on the output map
is set empirically to boost the performance of the SOM learning, the number,
however, may not coincide with the desired number of clusters which is usually
less important. Therefore, the nodes on the map are clustered using agglomerative
hierarchical clustering and each document is assigned to the same cluster as its
corresponding SOM node. The main steps ofMVSOM are presented in Algorithm 6.

8.2.2.3 Multi-View Spectral Clustering

Kumar et al. [16] have presented a co-training based spectral clustering, where two
views exchange the eigenvectors resulting from the graph Laplacian of each view.
The algorithm ensures consistency across views such that if two points are assigned
in same cluster in one view, it should be so in all the views. On the other hand, if two
points belong to different clusters in one view, they should be clustered separately
across all views. The proposed algorithm first builds an adjacency matrix Av for
each view, from which the graph Laplacian matrix Lv is obtained such that:
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Algorithm 6: Self-organizing map for multi-view text clustering
Input: multi-view documents Xv , number of SOM neurons l, learning rate α0, radius σ0
Output: SOM prototypes of each view Wv

1 t ← 1
2 repeat
3 for v = 1 to m do
4 Initialize random SOM prototypes Wv

5 for i = 1 to n do
6 determine Best Matching Unit BMU for document xi

// Update SOM prototypes
7 for j = 1 to l do

8 wv
j ← wv

j + h × α ×
(
xv
i − wv

j

)

9 end for
10 end for
11 end for

// Update radius of the neighborhood

12 σ ← σ0 exp
(

t
tmax

)

// Update the learning rate

13 α ← α0 exp
(

t
tmax

)

14 t ← t + 1
15 until t > tmax

Lv = Dv−1/2AvDv−1/2 (8.10)

where Dv is the diagonal matrix such that Dv
ii = ∑

j

Av
ij . The k largest eigenvectors

of L hold the discrimination information for clustering. Thus, the eigenvectors are
exchanged across views to propagate the per-view clustering information, such that
the largest k eigenvectors form the matrix Uv . Precisely, the co-trained spectral
clustering uses the eigenvectors of one view to modify the adjacency matrix of the
other view and consequently the graph structure, such that each column ai of A
represents the similarity of the data point i with all point in the graph. The algorithm
projects the column vectors of one view in the direction of the k eigenvectors of
the other view, then back projects them to the original space to obtain the modified
graph. To obtain the update adjacency matrix Sv , a symmetrization step is performed
such that:

Sv = sym(Uv̄Uv̄T
Av) (8.11)

where sym(S) = (S + ST )/2. The new graph Laplacian Lv are obtained from Sv ,
from which the k eigenvectors and Uv are deduced. The algorithm performs these
steps for a defined number of iteration. The final clustering is given by the k-means
algorithm performed on matrix V, the column-wise concatenation of Uv . The main
steps of co-training multi-view spectral clustering are given in Algorithm 7.
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Algorithm 7: Co-training based multi-view spectral clustering

Input: multi-view documents X = {X1,X2, . . . ,Xm}, number of clusters k

Output: Final clustering assignment π
// Initialization

1 for v = 1 : 2 do
2 Compute adjacency matrix Av

3 Compute normalized Laplacian matrix using Eq. 8.10
4 Initialize Uv0 by Uv0 = argmax tr(UvT AvUv) s.t UvT Uv = I
5 end for
6 for t = 1 to tmax do
7 Compute S1 and S2 using 8.11
8 Compute the Laplacian matrices Lv from Sv

9 Build Uv from the k largest eigenvectors of Lv

10 end for
11 Normalize the rows of U1 and U2

12 Build V as the column-wise concatenation of U1 and U2

13 Run k-means on V to obtain the clustering assignments

Lin et al. [20] proposed Multi-view Proximity Learning for Clustering (MVPL),
a method that learns the proximity matrix based on data representative and spectral
clustering. Given a set of multi-view data X = {X1,X2, . . . ,Xm} ∈ R

dv×n, a
data representative matrix Uv ∈ R

dv×n is associated with each view to exploit
the relations between objects within the same view. The new data representative
considers the proximity between each pair of data points. Therefore the learned
similarity matrix is affected by these representatives, and inversely. On the other
hand, MVPL considers the spectral embedding of data to integrate the different
views and thus consider the inter-view relations into the similarity matrix. The goal
of MVPL is to minimize the following objective function:

min{Uv},{Sv},F
1

n

m∑

v=1

( n∑

i=1

‖xv
i − uv

i ‖22 + α

n2

( n∑

i,j=1

‖uv
i − uv

j‖22sij + β‖S‖2F
))

+ γ
1

2n2

m∑

v=1

n∑

i,j=1

sv
ij‖fi − fj‖22

s.t

n∑

j=1

sij = 1, sv
ij ≥ 0,∀i, j,FFT = I

(8.12)

where the first term considers the impact of the data representatives, while the
second term models the relation between the spectral embedding matrix F and
the similarity matrix Sv , γ is a trade-off parameter that balances the two terms,
α controls the distance between the original data features and their representatives,
and β controls the sparsity of S. Algorithm 8 describes the main steps of MVPL.
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Algorithm 8: Multi-view proximity learning

Input: multi-view documents X = {X1,X2, . . . ,Xm}, number of clusters k, parameters α, γ

Output: Proximity matrices {S1,S2, . . . ,Sm}
1 Initialize representative matrices Uv as Xv

2 Initialize proximity matrices Sv by
3 Determine sparsity parameter β

4 Initialize F by solving min
FFT =I

T r(FLT
SF)

5 repeat
6 for v = 1 to m do

7 Update Uv by solving Uv(I + 2α

n
LS) = Xv

8 Update Sv by solving min
svi

‖svi + dv
i

2βv
‖22

9 end for
10 Update F
11 until converged or max iteration is reached;

Data

View 1

View m

.

.

.

Subspace S1

Subspace Sm

Latent shared
subspace S*

Clustering 

update

update

Fig. 8.3 General process of multi-view subspace clustering

8.2.3 Subspace Clustering Based Methods

The third category of multi-view clustering is based on subspace learning. Recently,
more and more studies have exploited subspace clustering to extract distinct
clustering features. Multi-view subspace clustering assumes that the data samples
from different views share the same subspace [33]. Figure 8.3 illustrates the process
of learning a shared subspace from multi-view data. The performance of subspace
clustering relies on the latent representation matrix obtained from the different
multi-view subspaces. Several methods have been proposed in order to identify the
common subspace, we distinguish two main subcategories: NMF based methods
and latent representation based methods.
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8.2.3.1 Muti-View Subspace Clustering Based on Nonnegative Matrix
Factorization

Liu et al. [22] proposed MultiNMF, a multi-view clustering via joint nonnegative
matrix factorization. The algorithm enforces each view’s indicator matrix towards a
common consensus. Given multi-view data Xv ∈ R

d×n+ , its matrix factorization is:

Xv ≈ UvVvT (8.13)

where Vv ∈ R
n×k+ and Uv ∈ R

d×k+ represent the indicator matrix and the basis
matrices of view v, respectively. MultiNMF adopts a normalization constraint so
that all indicator matrices are comparable and significant for clustering. The problem
can be defined as a joint minimization of the following objective function:

m∑

v

‖Xv − UvVvT ‖2F +
m∑

v

λv‖VvQv − V∗‖2F

s.t v ∈ {1, . . . , m},Uv � 0,Vv � 0,V∗ � 0

(8.14)

where V∗ is the consensus matrix, and Qv is a diagonal matrix such that:

Qv = Diag

⎛

⎝
d∑

j=1

Uv
j1,

d∑

j=1

Uv
j2, . . . ,

d∑

j=1

Uv
jk

⎞

⎠ (8.15)

Finally, the clustering assignment of data point i is computed as argmaxk V
∗
ik . The

main steps of MultiNMF are given in Algorithm 9.
Zhang et al. [34] proposed a constrained NMF based clustering (CMVNMF)

that uses an inter-view must-link (ML) and cannot-link (CL) constraints in order to
minimize the disagreement between each pair of views. To accomplish the clustering
task, the following objective function is minimized:

‖Xv − UvVvT ‖ + β
∑

v,v′∈[1,m]
�v,v′ s.t Uv ≥ 0,Vv ≥ 0 (8.16)

where β is a regularization parameter, and � measures the disagreement between v

and v′ such that:

�v,v′ =
∑

(xv
i ,x

v′
j )∈MLv,v′

(vi − v′
j ) + 2

∑

(xv
i ,xv′

j )∈CLv,v′
viv′

j (8.17)

The must-link and cannot-link constraints are defined by matrices Mvv′
and Cvv′

,
respectively, such that :
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Algorithm 9: Multi-view NMF

Input: multi-view documents X = {X1,X2, . . . ,Xm}, number of clusters k, parameters
{λ1, λ2, . . . , λm}

Output: Basis matrices {U1,U2, . . . ,Um}, Consensus Matrix V∗
1 Normalize each view Xv such that ‖Xv‖1 = 1
2 Initialize Uv and V∗
3 repeat
4 for v = 1 to m do
5 repeat
6 Fixing V∗ and Vv , update Uv by

Uv = Uv 
 (XvVv) + λv

∑n VvV∗

(UvVvT Vv) + λv

∑d Uv
∑n Vv2

// 
 is the element-wise multiplication
7 Normalize Uv by Uv = UvQv−1
8 Normalize Vv by Vv = VvQv

9 Fixing V∗ and Uv , update Vv by Vv = Vv 
 (XvT Uv) + λvV∗

(VvUvT Uv) + λvVv

10 until convergence of ‖Xv − UvVvT ‖2F + λv‖VvQv − V∗‖2F ;
11 end for

12 Fixing Uv and Vv , update V∗ by V∗ =
∑m

v λvVvQv

∑m
v λv

13 until convergence of 8.14;

Mvv′
ij

{
1, (xv

i , xv′
j ) ∈ MLv,v′

0, otherwise

Cvv′
ij

{
1, (xv

i , xv′
j ) ∈ CLv,v′

0, otherwise

The distance between a pair of data points in the same cluster from different views is
minimized through the must-link constraints, while the cannot-link constraints aim
to maximize the distance of data points belonging to different views and different
clusters. The main steps of CMVNMF are given in Algorithm 10.

8.2.3.2 Multi-View Subspace Clustering Based on Shared Latent
Representation

Zhang et al. [33] proposed Latent Multi-view Subspace Clustering (LMSC),
which is based on the assumption that multi-view data share a latent subspace
representation. LMSC learns a common representation from the different views
based on subspace clustering. First, the original multi-view data Xv is reconstructed
based on projection models Pv and achieve a common latent representation H such
that:
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Algorithm 10: Constrained multi-view NMF

Input: multi-view documents X = {X1,X2, . . . ,Xm}, the number of cluster k, the must-link
constraints matrixMvv′

, the cannot-link constraints matrix Cvv′

Output: the clustering assignment π
1 Normalize Xv

2 For each pair of views (v, v′), compute diagonal matrices Dvv′
by Dvv′

ii = ∑n
j M

vv′
ij with

i = 1, . . . , n
3 Initialize Uv and Vv

4 repeat
5 for v = 1 to m do

6 Fix Vv , and update Uv by Uv = Uv 
 (XvVv)

(UvVvT Vv)
7 Fix Uv , and update Vv by

Vv = Vv 
 (XvT Uv) + β
∑m

v=1,v �=v′ (Mv,v′
Vv′

(VvUvT Uv) + β
∑m

v=1,v �=v′ (Dvv′Vv + Cvv′Vv′
)

8 end for
9 until convergence of 8.16;

xv
i = Pvhi + ev

i (8.18)

where ev
i denotes the reconstruction error. Then, the latent representation is inte-

grated into subspace clustering, such that the clustering problem is defined as:

min
Z

Lr (H,HZ) + α�(Z) (8.19)

where Z is the subspace representation matrix, Lr () is the loss function of the
subspace reconstruction, �() corresponds to the regularization term, α balances
the regularization. By introducing the parameters λ1 and λ2, the overall objective
function of LMSC becomes as follows:

min
P,H,Z,Eh,Er

‖Eh‖2,1 + λ1‖Er‖2,1 + λ2‖Z‖∗

s.t X = PH + Eh,H = HZ + Er, and PPT = 1
(8.20)

The �2,1 norm ensures robustness in the presence of noise, while the nuclear norm
�∗ captures the underlying clustering structure. To solve Eq. 8.20, the error matrices
Eh and Er are vertically concatenated, and the Augmented Lagrangian Multiplier
with Alternating Direction Minimization (ALM-ADM) strategy proposed in [21] is
adopted. The main steps of LMSC are given in Algorithm 11.

Brbic et al. [6] proposed a multi-view low-rank and sparse subspace clustering
(MLRSSC), with two regularization scheme: pairwise and centroid based. The first
establishes a pairwise agreement across views, whereas the second coerces the
representations towards a common centroid, as first introduced by Kumar et al. [17].
Both methods are based on constructing a low-rank and sparse affinity matrix from
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Algorithm 11: Latent multi-view subspace clustering

Input: multi-view documents X = {X1,X2, . . . ,Xm}, number of clusters k, parameter λ

Output: Z,H,P,E
1 Initialize P = 0, E = 0, Z = 0, Y1 = 0, Y2 = 0, Y3 = 0, μ = 10−6, ρ = 1.1, ε = 10−4

2 Initialize randomly H
3 while not converged do
4 Update P by P = argmin μ

2 ‖(X + 1
μ
Y1 − Eh) − HT PT ‖

5 Update H by

AH + HB = C

with A = μPT P ,B = μ(ZZT − Z − ZT + I)

C = PT Y1 + Y2(ZT − I)

+μ(PT X + ET
r − PT Eh − ErZT )

Update Z by Z = (HT H + I)−1[(J + HT H − HT Er

) + (
Y3 + HT Y2

)
/μ]

6 Update E by E = argminE
1
μ
‖E‖2,1 + 1

2‖E − G‖2F
7 Update J by J = λ

μ
‖J‖∗ + 1

2‖J − (Z − Y3/μ) ‖2F

8 Update Y1,Y2,Y3 by

⎧
⎨

⎩

Y1 = Y1 + μ(X − PH − Eh

Y2 = Y2 + μ(H − HZ − Er

Y3 = Y3 + μ(J − Z)

9 Update μ by μ = min(ρμ;maxμ)

10 Check convergence criteria ‖X − PH − Eh‖∞ < ε, ‖H − HZ − Er‖∞ < ε and
‖J − Z‖∞ < ε

11 end

multi-view data. Given a set of multi-view data Xv , MLRSSC aims to find a joint
representation matrix C that presents an agreement across views by minimizing the
following objective function:

min
C(1),C(2),...,C(m)

m∑

v=1

(β1
∥
∥Cv

∥
∥∗ + β2

∥
∥Cv

∥
∥
1) +

∑

1≤v,w≤m,v �=w

λv
∥
∥Cv − Cw

∥
∥2
F

s.t. Xv = XvCv, diag(Cv) = 0, v = 1, . . . , m,

(8.21)

where Zv is the representation matrix of view v, β1 and β2 are the balancing
parameters of low-rank and sparsity constraint, λv is the consensus parameter. In
case where all views are considered equally important, the same λv is used. The
last term maximizes the pairwise similarity across views. To solve the problem in
Eq. 8.21, the Alternating Direction Method of Multipliers (ADMM) strategy is used
[5]. Algorithms 12 and 13 summarize the steps of pairwise MLRSSC and centroid-
based MLRSSC, respectively.
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Algorithm 12: Pairwise MLRSSC

Input: Multi-view documents X = {X1,X2, . . . ,Xm}, k, β1, β2, {λv}mv=1, {μi}4v=1, μ
max, ρ

Output: k clusters assignments
1 Initialize: {Cv

i = 0}3i=1, A
v = 0, {�v

i = 0}4i=1, i = 1, . . . , m
2 repeat
3 for v = 1 to m do
4 Update Av by solving

Av = [μ1XvTXv + (μ2 + μ3 + μ4)I]−1 × (μ1XvTXv + μ2Cv
2

+ μ3Cv
1 + μ4Cv

3 + WvT �v
1 + �v

2 + �v
3 + �v

4)

Update Cv
1 by solving min

Cv
1

β1
∥
∥Cv

1

∥
∥∗ + μ3

2

∥
∥
∥Av − Cv

1 + �v
3

μ3

∥
∥
∥
2

F

5 Update Cv
2 by solving min

Cv
2

β2
∥
∥Cv

2

∥
∥
1 + μ2

2

∥
∥
∥Av − Cv

2 + �v
2

μ2

∥
∥
∥
2

F

6 Update Cv
3 by solving

min
Cv
3

λv
∑

1≤w≤m,v �=w

∥
∥Cv

3 − Cw
∥
∥2

F
+ μ4

2

∥
∥Av − Cv

3

∥
∥2

F
+ tr

[
�vT

4

(
Av − Cv

3

)]

7 Update �v
1,�

v
2,�

v
3,�

v
4

8 end for
9 Update μi = min(ρμi, μ

max), i = 1, . . . , 4
10 Check convergence conditions: ‖Av − Cv

1‖∞ ≤ ε, ‖Av − Cv
2‖∞ ≤ ε,

‖Av − Cv
3‖∞ ≤ ε, and ‖Av

t − Av
t−1‖ ≤ ε

11 until Convergence or reaching the maximum number of iterations
12 Combine Cv

1,C
v
2,C

v
3 by considering the element-wise average

13 Perform spectral clustering on the affinity matrix S = |Cavg | + |Cavg |T

Algorithm 13: Centroid-based MLRSSC

Input: Multi-view documents Xv , k, β1, β2, {λv}mv=1, {μi}4v=1, μ
max, ρ

Output: k clusters assignments
1 Initialize: {Cv

i = 0}3i=1, C
∗ = 0, Av = 0, {�v

i = 0}4i=1, i = 1, . . . , m
2 repeat
3 for v = 1 to m do
4 Update Av , Cv

1, C
v
2, C

v
3 as in Algorithm 12

5 Update �v
1,�

v
2,�

v
3,�

v
4

6 end for
7 Update μi = min(ρμi, μ

max), i = 1, . . . , 4

8 Update C∗ =
∑

v λvCv
∑

v λv

9 Check convergence conditions: ‖Av − Cv
1‖∞ ≤ ε, ‖Av − Cv

2‖∞ ≤ ε,
‖Av − Cv

3‖∞ ≤ ε, and ‖Av
t − Av

t−1‖ ≤ ε

10 until Convergence or reaching the maximum number of iterations
11 Perform spectral clustering on the affinity matrix S = |C∗| + |C∗|T
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8.2.4 Summary of Multi-View Methods for Text Clustering

Compared to single-view data, multi-view data presents multiple advantages given
its ability to describe objects from different aspects and thus give a more compre-
hensive representation of data. However, the manipulation and exploitation of multi-
view data require further advanced algorithms in order to mine the complementarity
between views and discover knowledge that is otherwise hidden in a single-view
framework. Multi-view data is furthermore challenging in the case of unlabeled
data given that no prior knowledge is available. The existing multi-view clustering
algorithms, as the ones presented in this chapter, have shown good performance
in dealing with different points of multi-view data such as finding a consensus
across views, integrating the information provided by each view, discovering hidden
patterns, etc.

Multiple methods for multi-view text clustering rely on a single representation
model, usually the TF-IDF [16]. Although this model is capable of capture the
syntactic properties of text, it is, however, unable to give an insight on semantic
concepts or topically related features of text data. To this end, other methods
exploited different representation models such as TF-ICF in [13] or topic models
and word embeddings [9, 10]. Table 8.1 summarizes the characteristics of multi-
view clustering methods.

8.3 Experiments

We evaluate in this section the performance of multi-view clustering methods on text
data. We select methods from each category: MEMTC [9], MVEM [13], MVKM
[3], MVSOM [10], LMSC [33], pairwise MLRSSC and centroid-based MLRSSC
[6]. We also compare these methods to other baseline such as PCA and basic spectral
clustering applied to concatenated views.

8.3.1 Data Sets Description

The experiments are carried on four commonly used data sets for multi-view text
clustering. The Reuters data set is a collection of 2189 documents belonging to 8
classes. The 20 Newsgroups consists of 2828 news articles distributed on 20 classes.
The WebKB data set is a collection of 4168 web pages collected from computer
science departments, belonging to 4 classes (student, faculty, project, course). The
BBC Sport consists of 737 documents from the BBC Sport website corresponding
to sports news articles belonging to 5 areas: football, rugby, tennis, athletics, and
cricket. Before applying the clustering algorithms, a preprocessing step is performed
on the data sets including stop words removal. Stop words removal consists in
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Table 8.2 Data sets
description

Data set Documents Features k

Reuters 2189 2577 8

BBC Sports 737 3853 5

20 newsgroup 2263 6943 20

webKB 2084 3857 4

eliminating common words that appear frequently and offer no additional semantic
value. Table 8.2 summarizes the properties of all data sets.

8.3.2 Evaluation Measures

To measure the quality of the clustering and compare it with existing methods, three
evaluation measures are utilized: the F-measure [18], the Normalized Mutual Infor-
mation (NMI) [37], and Purity [23]. Given a set of clusters C = {c1, c2, . . . , ck} and
the gold standard classes G = {g1, g2, . . . , gj }:
F-measure is a trade-off between Precision and Recall such that:

F − measure(ck, gj ) = 2 ∗ Precision(ck, gj ) × Recall(ck, gj )

P recision(ck, gj ) + Recall(ck, gj )
(8.22)

Precision(ck, gj ) = |ck ∩ gj |
|ck| (8.23)

Recall(ck, gj ) = |ck ∩ gj |
|gj | (8.24)

Normalized Mutual Information (NMI) measures the quality of clustering with
regards to the number of clusters and their sizes. NMI is defined as:

NMI(C,G) = I (C,G)

[E(C) + E(G]]/2 (8.25)

where I is the mutual information and E(C) is entropy.

I (C,G) =
∑

k

∑

j

|ck ∩ gj |
N

log
N |ck ∩ gj |

|ck||gj | (8.26)

E(C) = −
∑

k

|sk|
N

log
|sk|
N

(8.27)
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Purity: measures the number of correctly assigned documents, where each cluster
is assigned to the dominant class in that cluster. The larger the number of clusters
is, the higher the Purity is. Unlike NMI, Purity cannot trade-off the quality of the
clustering against the number of clusters

Purity(C,G) = 1

N

∑

k

max
j

|ck ∩ gj | (8.28)

For all measures, the values range from 0 to 1, such that values closer to 0 represent
poor quality

8.3.3 Experimental Results

Table 8.3 reports the performance of the different methods. Given the results, we
can observe that most multi-view methods provided better clustering in comparison
to concatenated views. This shows that concatenating views can result in losing the
individual properties of views and affect the overall clustering. Another noticeable
observation is that all methods have given their best results on the smallest data set,
the BBC Sport, while the overall performance is affected on the largest data set,
20 newsgroup. We can conclude that the size and the dimension of the data set can
jeopardize the performance; this may be due to noise and redundant information.
Although all methods have yielded close results, we can notice that multi-view
subspace clustering methods achieve relatively better results on almost all data sets,
which can indicate that these methods are capable of learning a common latent
representation from all views. On the other hand, both ensemble methods have
performed similarly, however, MEMTC had better performance, which indicates
that including other representation scheme can improve the final clustering.

Overall, late integration based method has shown good empirical performance
given that the individual clustering provided by each view can compensate the
clustering inaccuracy of another view. However, such methods can be computa-
tionally expensive since the clustering is performed of the number of views and the
integration phase is independent from the clustering phase and can add on to the
computational cost.

Co-training based on a simultaneous optimization of one unified objective func-
tion to achieve one clustering result from different views [2, 3]. However, having
a unified objective function does not allow to learn from each view independently,
which can result in losing the knowledge held in different views and can later be
integrated to improve the overall clustering. Furthermore, co-training based method
becomes intractable when the number of views is over three.

Another issue consists of integrating multiple views while maintaining their
diversity. Precisely, in the clustering process reaching a consensus, or co-training
based clustering can result in losing the specificity of each view. To this end sub-
space clustering based algorithm can present a solution [6]. However, the challenge
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Table 8.3 Comparison of clustering results with multi-view methods

Data set Method F-score NMI Purity

Reuters PCA 0.442 0.335 0.422

Concat SC 0.476 0.227 0.436

MVKM 0.648 0.428 0.743

MEMTC 0.814 0.604 0.458

MVEM 0.490 0.337 0.493

LMSC 0.705 0.508 0.593

Centroid MLRSSC 0.629 0.430 0.534

Pairwise MLRSSC 0.539 0.339 0.443

MVSOM 0.709 0.464 0.606

BBC Sport PCA 0.613 0.388 0.606

Concat SC 0.500 0.206 0.405

MVKM 0.693 0.564 0.633

MEMTC 0.797 0.730 0.771

MVEM 0.819 0.717 0.753

LMSC 0.804 0.711 0.767

Centroid MLRSSC 0.838 0.708 0.833

Pairwise MLRSSC 0.873 0.716 0.871

MVSOM 0.821 0.728 0.744

20 newsgroup PCA 0.356 0.302 0.290

Concat SC 0.440 0.439 0.392

MVKM 0.432 0.380 0.373

MEMTC 0.511 0.534 0.458

MVEM 0.380 0.305 0.300

LMSC 0.539 0.470 0.525

Centroid MLRSSC 0.540 0.531 0.494

Pairwise MLRSSC 0.519 0.516 0.482

MVSOM 0.445 0.446 0.382

webKB PCA 0.578 0.304 0.558

Concat SC 0.277 0.172 0.558

MVKM 0.564 0.321 0.460

MEMTC 0.596 0.406 0.465

MVEM 0.542 0.268 0.448

LMSC 0.394 0.160 0.294

Centroid MLRSSC 0.622 0.418 0.561

Pairwise MLRSSC 0.632 0.405 0.581

MVSOM 0.618 0.255 0.597

remains in finding a shared subspace while incorporating the diversity aspect. To
summarize, this experimental results help drawing the following conclusions:
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• Large data set and high-dimensional data affects the performance of multi-view
methods. Therefore, considering a dimensionality reduction methods can help
avoid this issue.

• Taking advantage of different representation schemes can improve the clustering
performance of multi-view methods.

• Subspace based methods have good performance, yet these methods include
multiple parameters and the optimization scheme is not evident to achieve.

8.4 Conclusion

We have presented in this chapter a categorization of existing multi-view clustering
methods based on the fusion style of multi-view data. Three main integration
scheme can be distinguished: late integration, co-training based methods, and
subspace based methods. For each category, we have detailed a number of multi-
view clustering algorithms, and the means of managing text data. Lastly, we have
discussed the advantages and the limits of these methods and raised the following
issues: the representation of multi-view text data relies on terms frequencies only,
the intra-view properties of each view can be further leveraged to improve the
clustering results, incorporating the specificity of each view in the clustering process
can provide a better understanding of data. Multiple recent research studies focus
on incomplete views with missing values. Some other works rely on incorporating
deep learning into multi-view clustering to further discover hidden patterns shared
among views.
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