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Abstract

Globally the prevalence of landslides has increased,
impacting more than 4.8 million people between 1998
and 2017 and reported more than 18,000 casualties
[UNDP]. The scenario has worsened dramatically, and it
has become imperative to develop early warning systems
to save human life. This demands the need for systems
that could identify the potential of imminent landslides
and disseminate the information related to landslide
initiation in real-time. This would provide the opportunity
to save lives. However, globally the research on reliable
end-to-end systems for early warning of landslides is still
in its nascent stage. Therefore, this paper explores in
detail the requirements for developing systems for
real-time monitoring, detection, and early warning of
landslides. An integrated solution for building the
real-time landslide monitoring and early warning system
to provide community-scale disaster resilience is also
proposed. This solution integrates multiple modules such
as a heterogeneous sensor system, data storage and
management, event detection framework, alert dissemi-
nation, and emergency communication system to address
issues such as capturing dynamic variability, managing
multi-scale voluminous datasets, extracting key triggering

information regarding the onset of possible landslide,
multilevel alert dissemination, and robust emergency
communication among the stakeholders respectively. The
paper also presents two case studies of real-time landslide
early warning systems deployed in North-eastern Hima-
layas and Western Ghats of India. These case studies
demonstrate the approaches utilized for risk assessment,
risk analysis, risk evaluation, risk visualization, risk
control, risk communication, and risk governance. The
results from the deployed system in the case study areas
demonstrate the capability of the IoT system to gather
Spatio-temporal triggers for multiple types of landslides,
detection and decision of specific scenarios, and the
impact of real-time data on mitigating the imminent
disaster.
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1 Introduction

Extreme and dynamic variability in weather patterns is
leading to an unprecedented increase in natural hazards.
Globally, from 2004 to 2016, there were 4862 distinct
landslide events resulting in 55,997 reported deaths (Froude
and Petley 2018). A recent study reported that more than
42% of the municipalities in Italy had been affected by
landslides. (Franceschini et al. 2022). Asian Countries like
China, India, Nepal, and Japan have experienced significant
losses every year due to several catastrophic landslides. India
also has a history of landslides combined with multiple
hazards, leading to massive loss of human life (UNDP
2018). During the 2013 monsoon in Uttarakhand, 6000
people lost their lives during numerous landslides and
extreme rainfall that led to flash flooding (Martha et al.
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2015). The North Indian states of Jammu and Kashmir,
Himachal Pradesh, Sikkim, Assam of Himalayas ranges, and
Peninsular states of Maharashtra, Karnataka, Tamil Nadu,
and Kerala also suffer the loss of life and property every
year, predominantly in the monsoon season (Geological
Survey of India, https://www.gsi.gov.in). This clearly shows
there is an increasing trend in landslides globally.

Furthermore, in the past four years, 2018–2021, India has
experienced extreme rainfall in unpredicted pockets leading
to multi-hazards such as floods, landslides, etc. (Ramesh
et al. 2022). Most of the landslides in India are reported
during the monsoon season. Furthermore, in recent years due
to unprecedented extreme heavy rainfall events within a
short duration, numerous catastrophic landslides have been
experienced. The unpredictability of landslide events in
space and time is leading to an increase in loss of life and its
impact on the established infrastructure. This situation
demands solutions that are capable of reducing landslide risk
and increasing the community’s resilience to landslides.

The state of Kerala, India, has reported more than 200
landslides in 2018. There were tragedies and incidents of
catastrophic scale caused by the more than 65 landslides
reported in 2019 (Manorama Online 2019); the events over
Puthumala and Kavalappara also caused 81 deaths (Wad-
hawan et al. 2020). In 2021, the Pettimudi landslide event
took place, claiming 66 lives (Achu et al. 2021). During the
field visits and semi-structured interviews, it was observed
that the time difference between landslide initiation and
occurrence was about 8–10 h (Wadhawan et al. 2020).
However, the community members did not receive any
warnings and were not prepared enough to handle this dis-
aster situation. This led to massive loss of lives, which could
have been avoided. These incidents clearly demonstrate that
landslides are becoming more and more life-threatening
worldwide, and their impact could be reduced by developing
integrated solutions that will provide landslide risk reduction
and landslide resilience.

This research work details the challenges and require-
ments for building landslide early warning systems and their
sub-systems. These events and their sequence of sub-events
differ for different types of landslide classifications. This
work also focuses on enhancing community-scale landslide
resilience. Additionally, two case study scenarios from
(i) tectonically active North Eastern Himalayas, and (ii) the
structurally moderate dissected hills of Western Ghats are
elaborated to unveil the complexity of building a landslide
early warning system.

Section 2 details the review of the existing literature.
Section 3 details the landslide dynamics related to different
landslide types and their importance in early warning sys-
tems. It also discusses the requirements of the landslide risk
management framework. Further, in Sect. 4, experiences
from decade-long operational early warning systems in India

are elaborated. The focus will be on the real-world deploy-
ments of such systems in India. Section 5 covers the
(Internet of Things-Landslide Early Warning Systems)
IoT LEWS Discussions based landslide early warning sys-
tem in case study areas and the last Sect. 6, concludes by
summarizing the early warning systems, which is an effec-
tive solution for Disaster Risk Reduction.

2 Literature Review

For Disaster Risk Reduction (DRR), several solutions have
been proposed in the literature. However, there exists a
trade-off among the costs of systems, range of coverage,
time of forewarning, and reliability of systems. (Izumi and
Shaw 2022). Moreover, the design and development of
solutions for Disaster Risk Reduction vary according to the
concept utilized, i.e., through community champions or
technology. In technology-based solutions, the systems
perform either based on remote sensing data (Orimoloye
et al. 2021) or by utilizing the geophysical sensors for in-situ
measurements (Abraham et al. 2020). Further, in-situ mea-
surements are classified into hydrological and movement-
based measurements. The community champions-based
solution is explained in detail later. Both these systems
have both advantages and disadvantages. In general, the
community champions-based system lacks the accurate
detection of the event, whilst the technology-based solutions
lack effective communication of detected risk.

According to a recently published review on landslide
early warning systems, there is a lack of information on past
landslide incidents, inhibiting the refinement of models used
in early warnings (Guzzetti et al. 2020). There is also a lack
of literature on the systematic instrumentation of LEWS.
However, there has been an increasing global interest in
designing, developing, and deploying landslide early warn-
ing systems as a solution to disaster risk reduction (Guzzetti
et al. 2020; Pecoraro et al. 2019). New geographical areas
are being explored for the deployment of landslide early
warning systems utilizing the application of geospatial
technology and Web-GIS in order to save human lives by
utilizing precipitation measurement as a key indicator for a
regional level warning (Ahmed et al. 2020; Hidayat et al.
2019).

Site-specific monitoring using heterogeneous sensors
such as rain gauges, moisture sensors, pore pressure sensors,
inclinometers, and tiltmeters are detailed in the publications
(Ramesh and Rangan 2014; Michoud et al. 2013; Gian et al.
2017; Thirugnanam et al. 2022). However, landslide detec-
tion and early warning demand long-term monitoring using
these sensor systems. Most of the time, the spatial scale of
monitoring required for landslide detection covers a very
large area. This will lead to incurring a very high cost of
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deployment, operation, and maintenance. This makes it an
impractical solution for some landslide-prone areas. The
lifetime extension of these systems is highly challenging.
Context-aware algorithms are applicable in extending the
lifetime of such systems (Prabha et al. 2017; Tao 2020).
Dixon et al. (2018) have proposed and prototyped a low-cost
sensing using acoustic emission (AE) monitoring system.
This system needs to be scaled and experimented with
multiple sites having different types of landslide classifica-
tions. This solution needs to be further explored to under-
stand its capability for early warning of landslides since the
AE system lacks in deriving and mapping the multiple
heterogeneous causative factors.

The recent literature covers the details of some of the rel-
evant decisionmodels for deriving rainfall thresholds, (Segoni
et al. 2018; Harilal et al. 2019; Canavesi et al. 2020), pore
pressure thresholds (Conrad et al. 2021; Thirugnanam et al.
2020), moisture thresholds (Orland et al. 2020) utilizing deep
learning methods for forecasting the hydrologic response of
hillslopes prone to landslides. Additionally, new attempts at
utilizing soil moisture have given promising results with their
own limitation after reaching the moisture saturation limit
(Segoni et al. 2018;Wicki et al. 2020). However, none of these
existing works have detailed a comprehensive decision model
for early warning of landslides.

The review of selected recently published articles focused
on the effectiveness and limitations of the landslide early
warning systems. It briefly differentiates the research based
on the landslide type, study area, types of sensors used,
method for modeling, mode of data communication, and
information dissemination capability. All these detailed
analyses clearly show that existing landslide early warning
systems need enhancements to incorporate the comprehen-
sive needs for capturing the heterogeneous sensing to derive
integrated decision models for forecasting imminent disas-
ters and adaptively disseminate landslide early warnings to
relevant stakeholders.

3 Landslide Dynamics and Requirements
of LEWS

The most common categories of landslides detailed by
Varnes (1978) include slides, flows, falls, topples, and
spreads. However, each of these landslide types differs with
respect to their causative factors or triggers and also with
respect to the geological, morphological, hydrological, and
meteorological conditions that lead to them. Therefore, one
of the critical challenges in developing a LEWS is to identify
and understand the distinct signals generated for different
types of landslides. This would require in-depth knowledge
of the different types of pre-events, failure mechanisms, and
post-event spatial impacts for each type of landslide.

The proposed LEWS would require accurate capturing in
real-time, the distinct signals generated due to pre-events,
initiation of failure mechanism, and post-event scenario to
provide an effective early warning to the at-risk, vulnerable
community. This demands the identification of the
sub-events involved in each type of landslide as well as the
methodologies to timely collect those distinct signals accu-
rately. Existing landslide-prone areas experience either sin-
gle or multiple types of landslides at the same time. This
demands the LEWS to capture the sub-events of multiple
types of landslides for effectively delivering the location-
specific landslide warnings. The key complexities lie in
capturing location-specific causative or triggering signals
based on the landslide type and developing context-aware
decision models based on the interrelationship between the
sub-events specific to each type of landslide.

Sensing and communication technologies, algorithms,
and heterogeneous data analysis have to be designed and
developed for deriving these decision models. The existing
spatio-temporal relationship between these sub-events for
specific landslide types needs to be uniquely knitted together
for monitoring different types of landslides prevalent in
specific landslide-prone areas. Table 1 details the landslide
dynamics for major types of landslides prevalent in India.
These landslide types include rock-topple, slide and fall,
debris flow, debris slide, mudflow and slide, creep, and
complex landslides. These have been analyzed for their
precursor scenarios, failure mechanism, post-landslide sce-
nario, sequence of sub-events, measurement techniques, and
monitoring period.

For landslide detection, it is enough to identify the failure
at its initiation point. However, when early warning of
landslides is considered, it is necessary to detect the failure
as well as to identify and monitor all the sub-events asso-
ciated with the phenomena, including final deposition of the
debris and sediments post landslide. Depending on the
landslide type, debris rheology, and rate of movement, the
location of sediment deposition will differ, thereby resulting
in varying spatial impacts. Therefore, an efficient LEWS
should be able to integrate multiple types of decision models
for monitoring different types of landslides and deduce their
final deposition areas as well. Based on the above factors,
the risk levels will vary temporally as well as spatially and
this demands the development of a metric of evaluation to
map and assess these risk levels and identify the regions that
can be impacted by these events in the future. Therefore the
understanding of the real-time variability of landslide
dynamics based on heterogeneous triggering factors, its
spatial prevalence, and spatial impact on forecasted hazard
zones need to be utilized to derive the lead time for effective
landslide warning. Table 2 details the detection mechanism,
decision model, expected temporal scale, and expected
spatial scale for the key landslide types. These details need
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Table 2 Landslide dynamics (part II) for major types of landslides prevalent in India

Landslide type Detection mechanism Decision models Expected
temporal scale

Expected spatial
scale

Rock:
topple/slide/fall

(a) GEOPHONE: multiple sensors
capturing low-frequency ground
vibration (5–10 Hz) signals for a
specific duration,

(b) CRACKMETER: multiple sensors
capture the increase in crack length

(c) TILTMETERS: sensors capture
the change in orientation of the
unstable rock body

(d) EXTENSOMETERS: multiple
sensor captures the increase in
movement of the unstable rock
with reference to stable rock body

(e) LiDAR: periodic point cloud data
points for change detection

(f) DRONE CAMERAS: periodic
change detection

In all four scenarios of sub-events, the
same decision model could be used for
identifying crack initiation and
propagation. However, the threshold for
detecting rock toppling, rock sliding, and
rock fall using various detection
mechanisms will be different. The
threshold values can be determined from
the strength of the material, size of the
unstable mass, structural properties of the
rock,

Immediate to
short duration

Site specific

Debris flow (a) RAIN GAUGE: crossing rainfall
thresholds,

(b) STRAIN GAUGES: change in
strain measurements beyond the
threshold levels,

(c) GEOPHONES: low frequency
microseismic signal detection

(d) ACCELEROMETERS: variations
in ground acceleration

Rainfall thresholds, thresholds from
various sensors can be used to derive the
integrated decisions to early warn the
scenario

Immediate to
maximum of
15 days of
antecedent
condition

Regional/catchment
scale, site specific

Debris slide (a) RAIN GAUGE: crossing rainfall
thresholds,

(b) PORE PRESSURE: crossing pore
pressure threshold,

(c) STRAIN GAUGES: change in
strain measurements beyond the
threshold levels,

(d) INCLINOMETERS: change in
inclination beyond threshold
levels. monitoring at slip zones

(e) SLOPE STABILITY: factor of
safety value moves below one,

(f) GEOPHONES: low-frequency
microseismic signal detection

(g) ACCELEROMETER: detection of
change in acceleration

Meteorological models: rainfalls
thresholds, Hydrological models: pore
pressure thresholds geological models:
slope stability (Factor of Safety) can be
used, signal processing models, forecast
models

Short term to a
maximum of
15 days of
antecedent
condition

Regional/catchment
scale, site-specific

Mud:
flow/slide

(a) RAIN GAUGE: crossing of
rainfall threshold

(b) SOIL MOISTURE: initial
moisture conditions

(c) PORE PRESSURE: saturation
condition

(d) ACOUSTIC: capturing variability
in acoustic emission

(e) VIBRATION/ACCELERATION:
detection of ground acceleration

Rainfall threshold based models,
movement, acoustic and signal
processing based models. Derive
integrated decision models based on the
sub-events

Very short term
to a few days of
antecedent
rainfall condition

Regional/catchment
scale, site specific

(continued)

264 M. V. Ramesh et al.



to be integrated with the decision model of the LEWS for
large-scale spatial monitoring of landslides since each of
these events has a different time scale and diverse spatial
scale of prevalence. This is essential for effective early
warning of imminent landslides to save lives. However, this
comprehensive approach is lacking in existing landslide
monitoring and detection systems. This demands our exist-
ing traditional systems to be enhanced to derive landslide
early warning. Therefore, this study is devised to explore
and detail a few case studies of LEWS deployed in India for
capturing multidimensional and multilevel landslide
dynamics to effectively issue early warnings to the vulner-
able population at risk.

4 Landslide Risk Management Framework

To achieve a real-time understanding and forecasting of the
complex and unpredictable landslide phenomena, the key
functionalities that need to be performed are compiled into
an integrated landslide risk management framework, as
illustrated in Fig. 3. The framework consists of three sec-
tions as follows.

(a) Risk Assessment
1. Measure
2. Monitor

3. Knowledge Discovery, Event detection: Risk
analysis

4. Forecast Model, Artificial Intelligence Model: Risk
evaluation

(b) Cost-Benefit Analysis
1. Risk Visualization
2. Early warning: Risk control
3. Dynamic Model
4. Artificial intelligence model
5. Multiphase Decision model
6. Multiscale Early Warning Model

(c) Risk Communication and Risk Governance
1. Risk policy/protocol development
2. Operations management
3. Community engagement
4. Capacity development
5. Real-time communication
6. Multiscale communication model
7. Services and Alerts

To implement the above framework, we require a system
with requirements as shown in Fig. 1. Such a system can
bring community-level disaster resilience. These require-
ments can only be achieved through a multi-domain
approach since a single domain is not capable of providing
solutions to the challenges encountered in each and every
area. Experts from the domains of climate science,

Table 2 (continued)

Landslide type Detection mechanism Decision models Expected
temporal scale

Expected spatial
scale

Creep (a) CRACKMETERS: increase in
crack length

(b) RAIN GAUGE: crossing rainfall
thresholds,

(c) PORE PRESSURE: crossing pore
pressure threshold,

(d) STRAIN GAUGES: change in
strain measurements beyond the
threshold levels,

(e) INCLINOMETERS: change in
inclination beyond threshold
levels. monitoring at slip zones

(f) ERT: periodic resistivity profiles
for moisture changes

(g) GEOMORPHIC CHANGES:
ground survey to mark the cracks,
subsidence etc

(h) SAR interferometry: deformation
monitoring

Rainfall threshold-based models,
multiple thresholds for monitoring the
rate of change of movement, after few
years it crosses factor of safety and can
fail

Multiple months
to years

Site specific

Complex
landslides

(a) Landslide hydrology plays
important role in a complex
landslide

(b) Three-dimensional groundwater
regime in both the short and long
term needs to be captured

Meteorological models: rainfalls
thresholds, hydrological models: pore
pressure thresholds geological models:
slope stability model can be used

Immediate to
long-term

Site specific
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geoscience, hydrology, engineering, data science, and social
science, as well as community leaders, administrators, and
community members, need to be involved to jointly design,
develop, and deploy the solutions.

The complexity of landslide phenomena demands
heterogeneous types of sensing to capture sub-events,
unveiled through dynamic changes in multiple earth sys-
tems. Therefore it would require physical sensing of several
events using sensors, where each sensor interacts with its
surroundings to measure various environmental parameters.
Participatory sensing by the community members is also
very effective in capturing any anomaly, which could be a
precursor. This is a community champions-based solution,
where groups of individuals trained in physical landslide
monitoring like measuring rainfall, new crack formation, old
crack width tracking, open well water level tracking, etc.,
work as a group using social networking tools to detect the
possibility of landslides and help the community to evacuate
during disaster prone months of the year. Virtual sensing in
landslide detection is another effective measurement tool to

derive a few events based on the physical sensing of some
other related parameters. This reduces the cost incurred for
developing a direct sensing system and enhances the spatial
and temporal coverage of sensing. The real-time measure-
ment of causative factors and triggering mechanisms using
physical sensors, participatory sensing approaches, and vir-
tual sensing, need to be monitored either continuously or
adaptively for each of the sub-events based on its domain
characteristics. These data need to be aggregated in multiple
levels based on the order of the sub-events and perform data
visualization to extract inherent and useful knowledge for
event detection.

Multilevel data aggregation, knowledge discovery, and
event detection need to be utilized for risk analysis. How-
ever, the key challenge is that the different landslide classes
differ in the temporal and spatial scale of prevalence. This
demands the knowledge of landslide causative parameters,
triggers, and causal relationship between the parameters, and
dynamic thresholds. This knowledge will dynamically vary
based on the context. Hence the sensing system needs to be

Fig. 1 Requirements for
community level disaster
resilience

Fig. 2 Temporal variability in
the landslide monitoring process
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unique in capturing and processing the data on multiple
scales to derive efficient landslide warnings. As Fig. 2
showcases, the temporal scale of monitoring and mapping of
weather parameters, triggers, contexts, casual relationships,
thresholds, decisions, and warnings differ. Therefore the
sensing, processing, communication, and visualization sys-
tem need to accommodate data collection, storage, and
visualization in multiple time and spatial scales.

Specific to each of the landslide types and the charac-
teristics of each of its sub-events, knowledge discovery and
event detection need to be performed for real-time risk
analysis. The knowledge discovery and event detection
could be achieved using different models such as statistical,
geological, hydrological, metrological, machine learning,
and data analysis models. This derived knowledge will be
utilized for risk evaluation by forecasting the events using
existing and new models such as weather forecast models,
hydrological models, slope instability models, and expert
models. The output from these forecasting models will be
utilized to provide early warning about the probable immi-
nent landslides using artificial intelligence techniques, and
multi-phase, multi-level decision models. The early warn-
ings will be adaptively communicated in real-time using the
different web and mobile app-based services.

The underlying dynamics resulting in landslides can be
derived utilizing theoretical as well as data-driven models
incorporating the real-time observations, historical data,
and antecedent conditions of the triggering factors. This
further leads to reliable forecasts of landslide initiation,
incorporating meteorological, hydrological, and slope sta-
bility modeling systems along with advanced machine
learning and artificial intelligence techniques. These fore-
casts will be utilized in a multi-phase, multi-level decision
system in order to provide robust early warnings. Efficient
web-based, as well as mobile app-based services, will
enable the effective communication of these warnings in
real-time. This process aids in providing warnings at
regional, catchment, and site-specific scales. The visual-
ization system further aids in the demonstration of the
interrelations between the various heterogeneous parame-
ters as well as their individual impact on landslide
initiation.

Periodic cost-benefit analysis needs to be performed on
such a system. This would require the deployment of con-
tinuous real-time visualization and risk control models. The
visualization system should be equipped to deliver interre-
lationships between the spatio-temporal heterogeneous data
collected from various sensing systems.

Fig. 3 Integrated landslide risk management framework
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This will be utilized to elucidate the impacts due to
individual parameters and their interrelationships on land-
slide initiation. Risk control demands the development of
early warning models. This would require gathering an
understanding of the dynamic variability of heterogeneous
parameters, interrelationships, antecedent conditions, and
their impact on landslide initiation. This knowledge could be
utilized for developing machine learning-based models and
artificial intelligence-based models to derive the thresholds
and forecasts for single and multiple parameters. These
models would be integrated based on the type of landslides
prevalent in the deployment area, and the sequence of
sub-events to derive the multiphase decision models. The
output of the multiphase decision model will be utilized to
derive the multiscale early warning model to produce
warnings at regional, catchment, and site-specific scales.

In order to translate the outcomes of risk assessment and
cost-benefit analysis, active risk communication, and an
efficient risk governance mechanism are mandatory. Effec-
tive risk governance requires multi-level risk communication
among the stakeholders such as scientists, research institutes,
government bodies, local administration, non-profit organi-
zations, and the community. To achieve this, specific risk
policies or protocols need to be developed with the
involvement of the stakeholders so that early warnings can
be disseminated to the relevant stakeholders and local gov-
ernance institutions in the expected region of landslide
impact. The risk governance and risk communication are
also dependent on end-to-end operations management,
active community engagement, and integration of capacity
development programs to equip the multi-stakeholders for
operating and managing the LEWS.

The effectiveness of LEWS functionality is dependent on
timely communication of real-time risk information and early
warnings to relevant stakeholders. Multiscale communication
models need to be developed to disseminate the risk levels to
relevant stakeholders in specific landslide-prone areas.
Additionally, this system needs to be adaptive to manage
communication services during the dynamic scenarios of
network and power outages. The real-time services and alerts
need to be generated in local languages and disseminated
using web services or mobile applications to reach a large
number of stakeholders in the shortest time period.

Envisioning the need for a system integrated with the
above requirements to provide an end-to-end solution for
real-time landslide monitoring and early warning, a landslide
risk management framework has been designed, as shown in
Fig. 3. Multi-domain solutions such as IoT-based landslide
early warning systems, social media analytics, community
engagement, etc., are integrated to develop comprehensive
solutions for landslide risk reduction and resilience building.
Figure 3 depicts the landslide risk management framework
and its sub-modules that could be utilized for developing

landslide early warning systems for multiple landslide
classifications.

5 Case Study: Real-World Deployment
in India

The Himalayan region in North India and the Western Ghats
in South India are major hotspots of landslides because of
their ongoing tectonics and mass wasting processes, which
are also accelerated due to anthropogenic activity (Martha
et al. 2021). Therefore to observe and investigate these
landslides with widely varying dynamics, one case study
area has been chosen from each of the regions. These two
case study areas are (i) Western Ghats region: Munnar,
Idukki District, Kerala, (10° 5′ 26.56″ N; 77° 3′ 22.93″ E)
(Ramesh and Vasudevan 2012) and (ii) North Eastern
Himalayas region: Chandmari, Gangtok (Dist), Sikkim
(27° 20′ 17.54″ N; 88° 37′ 22.78″ E) (Harilal et al. 2019)
(see Fig. 4).

The first case study area, Munnar, being named after the
confluence of three perennial rivers, lies in the Western
Ghats. These are Precambrian mountains with Granitic
bedrocks overlaid by a weathered regolith of aluminum-rich
saprolites with variable thickness (GSI 2016). The mountain
belts of Munnar are covered by tea estates, montane grass-
lands, shola forests, and urban areas which receive about
2470 mm of average rainfall annually (IMD, https://
mausam.imd.gov.in/). These denudational hills see several
landslides during the monsoon season resulting in the loss of
lives and property (Ramesh and Vasudevan 2012). Rainfall
is the major trigger for the landslides in this area and in the
past 10 years, there have been more than 50, small and big
landslides in less than 10 km2 around Munnar (Source GSI
2018, 2020).

The second case study area, Chandmari comes under the
main central thrust zone (MCT) of the Himalayas. Here the
underlying lithology is weathered gneisses interbedded with
mica-schists. This region receives more than 2500 mm of
annual rainfall which makes it highly prone to landslides.
The landslides here, and in the Himalayas in general, are
induced by both rainfall and/or earthquakes. Therefore
Chandmari is chosen as a representative case study area to
learn about the dynamics of complex Himalayan landslides.
Chandmari is an active landslide since the 1960s. It has been
reactivated several times in the past with a huge landslide in
1968 and has experienced movements subsequently in 1984,
1997, 2007, and 2011. Recently during the monsoon periods
of 2018–2022, several types of small and medium size
landslides in the study area, Chandmari, have been observed
as listed in Table 3. This mostly includes debris flow,
shallow surface road-side slumps, rockfalls, mudslides,
complex landslides, and deep-seated subsidences.
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Additionally, anthropogenic activities such as unplanned
construction, road widening, unscientific changes to land-use
land cover, mining activities, heavy vehicular movement,
seepage from sewages drains, etc., have accelerated the
landslide activity in both the study areas (Kanungo et al.
2020). The architecture of buildings is also unique to both
sites. In Munnar, there are buildings with mostly one to two
stories whereas in Chandmari the buildings have three to six
stories. These building practices are also influenced by the
population density of both the sites; the population density
of Chandmari is 1858 people per km2 whereas at Munnar it
is 170 people per km2. In terms of seismic activity, Munnar
lies in Zone III of Seismic maps whereas Sikkim comes
under Zone IV, often experiencing micro tremors. Topsoil
composition in Munnar is weathered granitic gneiss overlaid
by red weathered saprolite (red colored soil where feldspars
weathers to clay) whereas Chandmari has interbedded
mica-schists in gneissic rock (sandy soil layers where mica
minerals weathers to partially expansible clays such as illite
and vermiculite).

In Chandmari the landslides are both rainfall-induced and
earthquake-induced; whereas in Munnar the landslides are
majorly rainfall-induced. The prominent types of landslides

that occurred in Chandmari are rock falls, debris slides, and
creep movement whereas debris-cum-earth slides, complex
landslides with retrogrative movement, are active in Munnar.
The design, development, and deployment of IoT-based
LEWS at both the case study areas are unique due to the
distinctive landslide dynamics present at each of the case
study sites, as explained above. Moreover, this affects each
of the LEWS subsystem’s design in different ways. For
example, the selection of sensor/detection mechanism has to
be performed in accordance with the landslide triggers of the
area and the decision models deployed in servers also have
to be tweaked, for detection of these triggers and for tracking
the evolution of the sub-events associated with the landslide
type for generating warnings.

6 IoT Based Landslide Early Warning System
in Case Study Areas

The Amrita’s IoT-based LEWSs have been deployed and
operational 24/7 in the two sites namely Munnar, Western
Ghats and Chandmari, North Eastern Himalayas as depicted
in Fig. 4. The LEWSs at both the sites consist of several

Fig. 4 Case study areas: the two
Amrita-LEWS deployment sites
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Deep Earth Probes (DEPs) installed below ground that can
sense the various geophysical parameters and their dynam-
ics. These DEPs are connected to above-ground,
state-of-the-art embedded systems, heterogeneous commu-
nication systems, and smart algorithms to make them Intel-
ligent Wireless Probes (IWPs). These IWPs constitute the
edge nodes and are integrated within an IoT framework
across the case study site and into the decision models in the
cloud servers.

The pilot system of Munnar was deployed from January
to March 2008, and the full-scale system from January to
June 2009. Currently, the whole area consists of 20 Deep
Earth Probes integrated with approximately 150 geophysical
sensors connected to 20 wireless sensor nodes. At Chand-
mari in Sikkim, 11 potential locations for deployment of
DEP were identified after detailed investigations. The pilot
deployment was completed in 2015 and included three pore

pressure sensors, two inclinometers, three 3-axis geophones,
and one weather station to monitor the area. The full
deployment was completed in 2018, with the area consisting
of 11 IWPs with around 200 geophysical sensors.

Indeed for effective early warning of landslides, the
IoT-based LEWS should integrate features such as multi-
parameter sensing, adaptive scalability with respect to the
dynamic contexts, heterogeneous coverage in sensing and
networking, remote configuration, dynamically acquiring the
sensing data based on the context, a scalable resilient com-
munication network for handling heterogeneous upstream
and downstream data transfer in harsh environments, spatial
knowledge absorption, multiple level decisions based on
both real-time and historic heterogeneous sensor data, and
information dissemination to different stakeholders such as
students, researchers, citizens, administrators, policymakers
etc. Therefore, the subsystems need to be integrated with

Table 3 Details the different types of landslide occurred in the study areas

Study area Types of
landslides

Location of landslide Date of slide Activity

Chandmari Rockslide Near Dep 1, 2 mile JN road 16 June 2022 Active

Rockfall Near Dep 5 Aug 2019 Suspended

Debris flow Below Dep 5 1997, 2005, 2018 Reactivated

Debris slide Above Dep 8 Aug 2019 Active

MudSlide Below Enchey Monastery 26 June 2022 Suspended

Deep seated
Subsidence/
creep

Near petrol pump near Dep 7, on the JN road above
Dep 3, above Dep 1 (crown region)

Aug 2018, July 2019, Aug
2020, July 2021, June 2022

Active

Complex
landslides

Chandamri Hill Recorded since 1984–2022 Active

Channel wash JN road along the drainges between Dep 1 and Dep
3

Aug 2019, 16th June 2022,
28th June 2022

Suspended

Anthropogenic
landslides

Below Enchey Monastery 28th June 2022 Active

Munnar and
Devikulam
villages

Debris cum earth
slides

Nalathani road 2018 Suspended

Deep seated
complex
landslide

Govt college Munnar 2018, 2019 Active

Channel wash Near Devikulam Hospital Aug 2018 Inactive

Rock falls Gap road Every monsoon 2018–2022 Active

Mudslide Behind Sarvana Bhavan, Munnar town 2018 Inactive

Creep slide Near Dep 4, Anthonior colony 2013–2022 Active

Debris cum earth
Slides

Behind SBI, Devikulam Aug 2018 Active

Debris cum earth
Slides

Behind Brothers house, Devikulam Aug 2018 Active

Debris flow with
long runout

Pettimudi landslide, Munnar Aug 2020 Suspended
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features such as heterogeneity, flexibility, adaptability, and
scalability for autonomous information generation. Consid-
ering all the above parameters Amrita LEWS has been
developed and is designed for continuous monitoring and
warning of landslides.

The unique features of the Amrita LEWS are summarized
below:

1. Real-time risk assessment is performed by measuring
and monitoring of multi-domain parameters using a
dynamic IoT platform, crowd sourced- landslide
tracker (Hariharan et al. 2021) and Amritakripa app
(Guntha et al. 2020; Guntha and Vinodini Ramesh
2021) and Social media data collection (Phengsuwan
et al. 2019) as opposed to traditional static maps. The
dynamic platform of Amrita LEWS captures:
(a) Meteorological dynamics: Rainfall, Temperature,

Humidity, Wind speed and direction. Both
Chandmari and Munnar have different climatic
regimes. One is Himalayan tropical, temperate, and
alpine climatic conditions with several snow-
capped mountains and glaciers but the other is
Western Ghats climate where heavy rainfall varies
from 935 ± 185.33 to 1794 ± 247 mm. Rainfall
patterns of both regions differ and thus rainfall
threshold also varies both at regional and
site-specific scales.

(b) Hydrogeological dynamics: Volumetric water
content from moisture sensor, hydraulic pressure,
groundwater level, and soil temperature from
piezometers.

(c) Geophysical dynamics: Three components of
ground velocity data from three axis geophones,
Time-varying three-dimensional resistivity profiles
from electrical resistivity tomography (ERT),
(Ramesh 2017; Vinodini Ramesh et al. 2017).

(d) Landscape dynamics: Movements along two axes
from inclinometers, strain gauges, and tilt meters

(e) Social dynamics: Response of community data
from Twitter feeds and participatory sensing
approaches such as mobile apps which include
text, audio, video, maps, and lat-long information.

2. Risk analysis is performed by knowledge discovery by
initiating continuous learning of dynamic behaviors and
interrelationships between multiple heterogeneous
parameters for identifying Precursor scenarios, under-
standing FailureMechanisms, forecasting Post Landslide
scenarios, and identifying Reinitiating mechanisms
(Ramesh 2014).

3. Risk analysis is enhanced by integrating event detection
modules through heterogeneous Models such as rainfall

threshold (Prabha et al. 2017) Hydrological models,
slope stability and IoT edge analytics (Kumar et al.
2020).

4. Risk evaluation is performed by forecasting and early
warning through machine learning and artificial
intelligence-based models (Hemalatha et al. 2019) to
predict the pore pressure variability and factor of safety
of the hill.

5. Cost-benefit analysis is performed by utilizing “Amrita
Drishti”, a web-based visualization software integrated
with decision models for spatio-temporal data analysis,
deriving interrelationships, and multi-level thresholds
for causative and triggering parameters

6. Enhancing the reliability of detection and early warning
using heterogeneous detection models (Harilal et al.
2019; Thirugnanam et al. 2020) and integration of
multi-domain parameters, for reducing false alarms.

7. Multi-phase decision models developed based on the
expected sub-events for each type of landslides

8. Multi-scale early warnings utilizing the knowledge
discovered from real-time heterogeneous data and his-
toric data have been developed

9. Real-time risk communication and risk governance
through participatory DRR approach and mobile
applications (Amritanand et al. 2020) to adaptively
disseminate context and location-aware information to
relevant stakeholders

10. In-person multi-level multi-phase community engage-
ments performed during pre-monsoon time period

11. Training provided for empowering the community
Monitoring social dynamics related to rain, flood,
members to map the triggers, causative factors, and
real-time sub-events using the landslide tracker
mobile application for achieving enhanced risk gov-
ernance and risk communication to relevant stake-
holders and landslides from automated tweet
collection, event detection, and providing situational
awareness of the real-world conditions from tweets
and online news.

7 Uniqueness of LEWS: Munnar
and Chandmari

Case Study Area 1: Munnar, Western Ghats
The key landslide types prevalent in Munnar are
debris-cum-earth slides, complex landslides with retrogrative
movement, creep landslides, and debris flow. Most of them
are triggered by long-duration medium/heavy rainfall,
changes in LULC, and anthropogenic activities. The material
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type and heavy rainfall cause increased pore pressure leading
to landslide initiation as shown in Fig. 5.

Based on the triggering mechanisms, the material type,
and the major geological, hydrological, and meteorological
features the key parameters that need to be measured by
LEWS are selected. The key sub-event group is rainfall
leading to water infiltration, and saturation of the material,
which results in increased pore pressure leading to failure of
the slope. This failure mechanism could initiate landslide
types such as flow or slide or creep, based on the localized
geomorphology. Therefore the risk assessment demands
measurement and monitoring of Deep Earth Probe
(DEP) integrated with sensors such as rain gauges, moisture
sensors, pore pressure transducers, strain gauges, tiltmeters,
etc. The slip surface activity of landslides in the Western
Ghats is much lower in comparison to the Himalayas and
hence strain gauges are good at detection of activity in
comparison to inclinometers. The frequency of monitoring
by each type of sensor will depend on the characteristics of
(a) weather pattern to decide on rain gauge sampling rate,
(b) water infiltration rate to decide on moisture sensor
sampling rate, (c) water flow lines and soil layer properties
to decide the pore pressure sampling rate, (d) strength of soil
or rock materials in the deployment field and its geological
structure to decide the rate for sampling strain gauge, tilt-
meter, etc. This knowledge will provide the opportunity to
finalize the dynamic temporal scale monitoring for the
heterogeneous parameters. The monitoring of spatial vari-
ability of sensing parameters will be dependent on the
sensing systems coverage and variability of parameters with
respect to its domain, rainfall rate, and soil or rock proper-
ties. Based on these variabilities, the risk analysis is

performed either in the edge node or in the cloud. The DEP
integrated with the IoT system for edge analytics, real-time
communication, and powering the whole system is known as
the intelligent wireless probe (IWP), as shown in Fig. 6.

Risk analysis is performed through spatiotemporal anal-
ysis of single parameters for a long duration, deriving
interrelationship among the parameters using data analysis
or machine learning, and integrated multistage analysis for
the heterogeneous parameters to derive the progression of
sub-events using data analysis, machine learning and artifi-
cial intelligence approaches. This provides the opportunity
for knowledge discovery and acts as the impetus for fore-
casting selected parameters and thus deriving the early
warning models.

Over the years the rainfall patterns in the region have
been drastically varying. The key rainfall data for more than
ten years and the landslide event details are utilized in
developing the Amrita Regional Rainfall Threshold Model
and Amrita Site Specific Rainfall Threshold Model for
Munnar. An integrated decision model using both real-time
data and historic data is utilized to compare multiple models
such as Caine, Amrita Model, and Innes Model (Harilal et al.
2019) for both real-time and antecedent rainfall scenarios.
Based on this integrated model, both regional and
site-specific warnings are provided for multi-stakeholders in
Munnar. This will contribute to risk evaluation and risk
control.

The unique soil properties in the Munnar region can lead
to high pore pressure during extended periods of rainfall
leading to landslides, hence pore pressure data collection by
the detection mechanism in LEWS is very important. It is
highly beneficial for risk evaluation and risk control if the

Fig. 5 Interrelationships of triggering factors and temporal variability
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LEWS can forecast the pore pressure based on the real-time
and antecedent rainfall conditions and soil properties of the
specific location. The work detailed in Hemalatha et al.
2019, showcases the approaches used for nowcasting and
forecasting the pore pressure and factor of safety values for
the Munnar region using support vector regression
methodology, as shown in Fig. 7. Support vector regression
methodology is an adaptive learning methodology that takes
into account the historic data and real-time data for learning
and forecasts the futuristic condition of the slope 24 h ahead
of time. The algorithm is designed in such a manner that
even when real-time data from the field is not available due
to any unforeseen reasons, the algorithm takes into account
the rainfall forecast information from the Indian Meteoro-
logical Department to forecast the futuristic condition of the
slope, thereby ensuring the reliability of the system. The
forecasted futuristic conditions of the slope are utilized for
risk evaluation and risk control. This approach is intended
for enhancing the reliability of LEWS and provides extra
lead-time for early warning.

The risk communication is integrated to perform auto-
matically through the “Amrita Drishti” web platform to all
stakeholders. However, based on the suggestion provided by
Kerala State Disaster Management Authority (KSDMA), the
initial communication will be sent to the secretary of
KSDMA, the District collector, and Sub-district collector of
the LEWS deployment location. KSDMA and District

Government officials work with the local administration to
implement the risk governance. In addition, has created a
vast network of youngsters, women, and community mem-
bers to inclusively work with Amrita and disseminate timely
information. The team has also created a WhatsApp group
named “Munnar community 4 DRR” for effective exchange
of relevant information from multiple groups to enhance
community-level disaster resilience.

Case Study Area 2: Chandmari, Eastern Himalayas
The key landslide types prevalent in Chandmari are triggered
by short-duration heavy rainfall, seismic activity, high sur-
face runoff, erosion, change in LULC, etc. Therefore in
LEWS, the key parameters for observation are selected
accordingly to detect these events and their subevents. In the
Himalayas, geophones are key components of the detection
mechanism, as seismic activity is very high and can lead to
landslides with unique sub-events. Creep movement and
subsidence along the slip surface of the slide is also com-
monly seen leading to landslide sub-events that require
inclinometers and geophones to measure the slip surface
activity and ground velocity. The pore pressure build-up and
excessive pore pressure triggered landslides are much less in
the selected case study area, possibly due to the presence of
internal cracks leading to high drain out rates. Moreover, the
design and maintenance of the subsystem are also complex
due to the harsh operational conditions. For example, the

Fig. 6 Intelligent Wireless Probe
with Edge Computation (Ramesh
et al. 2014)
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thick vegetative cover introduces challenges for the opera-
tion of wireless communication and solar power systems.
The wireless signal attenuation is very high in these condi-
tions, requiring us to use heterogeneous communication
architecture for better reliability. The challenges introduced
by vegetation cover over solar panels have also led us to use
a heterogeneous power system drawing power from multiple
power sources.

Chandmari study area (32 ha) demonstrates the real-time
risk analysis, risk evaluation, and risk control for multiple
types of landslides (Fig. 8). The deployment area contains
11 Deep Earth Probes (DEP) integrated with heterogeneous
sensors such as rain gauges, weather stations, moisture
sensors, pore pressure sensors, strain gauges, inclinometers,
and geophones.

The location of DEP 1 is more prominent for rock falls and
rock slides, DEP 2 is more prominent for deep-seated land-
slides, DEP 3 is prominent for creep movements, DEP 4 creep
movement, DEP 5 is prominent for debris flow and debris
slide, DEP 6 is prominent for creep movements, DEP 7 is
more prominent for subsidence cum complex movement,
DEP 8 has shown debris slide, DEP 9 is relativity stable DEP
10 is more prominent for creep movements and debris flow or
debris slide. Additionally, mudslides are also experienced
within 1 km of the deployment area. The integrated IoT
system deployed in each of these locations is fine-tuned to
capture the causative factors, triggers, and the context using
heterogeneous sensors. The thresholds of the decision models

Fig. 8 Satellite view of Chandmari site, Sikkim (courtesy Google Maps)

Fig. 7 Forecasting pore pressure. Forecasting factor of safety
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also differ due to the way the slopes react to the hydro-
meteorological inputs. The integrated decision model for the
whole deployment area had to integrate the models required
for detecting the subevents of each landslide type. The deci-
sion model for Munnar is different from that of Chandmari as
the sub-event types are different in both regions.

The risk assessment for the Chandmari case study area
demands measurement and monitoring of Deep Earth Probe
(DEP) integrated with sensors such as rain gauge, moisture
sensor, pore pressure transducer, strain gauges, inclinome-
ters, geophones, etc. The data analysis, knowledge discovery
and event detection using these multiple parameters provide
the opportunity to derive real-time risk assessment. Figure 9
displays the inclinometer data from DEP 7 Sikkim showing
considerable movements, indicating displacement along slip
zones.

Figure 10 displays the microseismic activity in DEP 1
captured by the geophones. These microseismic activities
indicate the cracks’ initiation and propagation leading to
rock fall at about 7:30 am on 17th June 2020 about 100 m

from DEP 1. These indications are further analyzed for
undertaking propagation of movement within the subsurface
and dynamically varying risks in the crown, middle and
bottom part of the hill slope.

Knowledge discovery and event detection are very key
modules for risk analysis and risk evaluation. For Chand-
mari, the impact of rainfall intensity on landslide triggering
is studied in detail. Daily rainfall observations from the India
Meteorological Department (IMD), from six stations of
Sikkim, namely Gangtok, Mangan, Namathang, Maziar,
Dentam, and Damthang, during the period 1990–2017 and
the rainfall observations from our R-LEWS in Chandmari
from 2015 onwards were utilized to derive regional rainfall
threshold and site-specific rainfall Threshold. For this work,
an intensity–duration (I–D)-based regional rainfall threshold
for Sikkim state (Fig. 11) is derived as I = 43.26 D − 0.78
(I = rainfall intensity in mm/day and D = duration in days)
for the rainfall-triggered landslides, and a site-specific rain-
fall threshold for Gangtok area is derived as I = 100
D − 0.92 (Fig. 12) (Harilal et al. 2019). Along with this, the
influence of antecedent rainfall in landslide initiation is
explored by considering the daily, 3-day, 5-day, 7-day, and
20-day cumulative rainfall values associated with landslides.
The proposed threshold equations will aid in enhancing the
real-time landslide early warning system (R-LEWS) being
developed for Sikkim and will act as the first level regional
and site-specific warning for the Chandmari region. Fig-
ures 11 and 12 showcases the implementation of the Amrita
Regional Rainfall Threshold Model and Amrita Site Specific
Rainfall Threshold Model in “Amrita Drishti”—a web-based
platform respectively. Figure 13 shows a 7 days threshold
crossed during 2021 in Chandmari and a comparison of three
different types of thresholds. It compares and indicates how
different models are utilized for generating early warnings
for different types of landslides.

The LEWS at both the case study sites have been
enhanced by the integration of an event-specific detection
mechanism and corresponding response protocols. Each
landslide event is thus sub-divided into a sequence of
sub-events inside the LEWS as mentioned in Table 1. This
knowledge of sub-events is generated based on learnings
from the past landslide activity in the study area. The whole
landslide process is therefore modeled as an evolution from
one sub-event to another sub-event, from initiation to slope
failure.

The detection mechanism as mentioned in Table 1 helps
in capturing the dynamics of the signal from the geophysical
sensors. The detection mechanism consists of heterogeneous
sensors such as Meteorological, Hydrological, and other
Geophysical sensors. Thresholds exist for each of the mea-
sured parameters such as rainfall or movement rate and for
derived parameters such as slope factor of safety.

Fig. 9 Inclinometer data from Chandmari: detection of movements
from 14 m beneath the earth
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The real-time data is collected from all the DEPS and
stored into data servers for further processing. In order to
increase the reliability of the LEWS and increase the avail-
able lead time for warning, edge processing based algo-
rithms are also deployed on the IWPs and these also increase
the reliability of the system.

In comparison to other LEWS globally, the LEWS
deployed in both the case study sites monitor the sub-events
of a landslide and pinpoint the evolution of the subevents.
For example, Munnar has more prominently debris cum
earth slides with head ward retreat movement owing to
large soil thickness and extremely heavy rainfall. The
sequence of events for such slides is saturation leading to
loss of strength in the surficial deposits. After prolonged
rainfall the movement along the plane either bedrock/
overburden interface or a surface gets initiated which turns
to rapid downward sliding and forward rolling of rock
fragments within a few minutes. Whereas in Sikkim the
terrain is more rocky with both rainfall and seismic tremors
resulting to rock-cum debis falls. The sequence of events
for such slides as detailed in Table 1, starts with crack
initiation which over time progresses to crack propagation
finally leading to rock toppling, rock sliding and rock fall.
Although both in Munnar and Sikkim, several other types
of landslides are prevalent at different locations as detailed
in Table 3 and for each of them a combination of sequence
of events needs to be captured.

The decision model is selected based on the sub-event
type being encountered by the LEWS, this increases the
reliability of the overall early warning system, as the
detection algorithms are dealing with individual sub-events.
In addition to this, the decision model outputs four levels of
warnings based on the current status in the evolution of the
landslide process. The four level warning generated by the
system is shown in Fig. 14.

Based on the above shown four-level early warning
system, the LEWS has generated warnings for Munnar sites
in the year 2009, 2011, 2013, 2018, 2019, 2020, 2021 and
2022 and for Chandmari site in the year 2022. And these
warnings have been relayed to various stakeholders for the
purpose of evacuation (Fig. 16).

Risk control and mitigation could be initiated from the
continuous measurement data. For example in Chandmari,
the output from the inclinometer sensors has been selected
by Sikkim State Disaster Management Authority to initiate
mitigation activities near DEP6, DEP7 and DEP8. The
output of the movement sensor (inclinometer) (Fig. 8) in the
Chandmari site is used to map the downslope vulnerable
areas associated with the landslide. The total volume of the
unstable sliding mass was calculated as roughly
7 � 105 m3. This entire unstable mass is also measured to
be moving in the north 195° East [S15E] direction as per the
sensor data. For calculating the mass of the unstable mate-
rial, mean density for underlying material, biotite granite

Fig. 10 Geophone data from Chandmari—micro seismic activity detection
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gneiss (1.65 gm/cm3) is used for rough estimates. The mass
of the material is approximately 1.155 million tons. This
indicates if a landslide is initiated 1.155 million tons of
material will fall on individuals living on the downslope.
The various elements at risk as a result of this movement are
fuel stations, roads connecting the Gangtok Town to Nathula
Pass, Numerous Human settlements, Schools and a Tourist
Parking lot. With the calculated affected/ destabilized soil
mass, the stability of the slope/vertical cut could be esti-
mated and retaining structures could be built suiting the
needs.

The risk control, communication and governance at
Chandmari site is explained below. Figure 15 shows the
rainfall thresholds were crossed on 28th July 2022 followed
by initiation of six small landslides in the Chandmari.

For incorporating the comprehensive needs of end-to-end
community disaster resilience, an adaptive and integrated
approach is proposed. This approach has been developed
and enhanced through the decade-long involvement in dis-
aster management in the Munnar region and is also being
implemented in Sikkim since 2018 in collaboration with
state disaster management and Indian Meteorological

Fig. 11 Sikkim—Amrita
regional rainfall threshold model.
Implementation of Amrita
regional rainfall threshold model
in “Amrita Drishti”—web based
platform
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Department (IMD). The adaptive integrated community
disaster resilience solutions implemented in the case study
area are detailed as follows (Fig. 17). For enhancing the
preparedness development of crowdsourced applications,
social media based awareness programs, IoT systems for

monitoring have been implemented. In order to equip the
rescue and response team, we developed Amrita Kripa
Mobile app, 24/7 call centers, prepared and trained field
volunteers during the 2018–2019 Kerala Multihazards. To
optimize the response based on early warnings from the

a

b

Fig. 12 Sikkim—Amrita site specific rainfall. Implementation of Amrita site specific rainfall threshold model in “Amrita Drishti”—web-based
platform
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Fig. 13 Rainfall threshold and comparison of models: 7 days threshold crossed during 2021 in Chandmari

Fig. 14 Multi level warning:
integration of heterogeneous
spatio temporal data and
intelligent knowledge
management
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Fig. 15 Regional and site specific rainfall threshold crossed on 28th July 2022. Six landslides got initiated within 24 h of the issuing of warning in
Chandmari area

Fig. 16 Sample screenshot of a first level warning based on rainfall thresholds
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LEWS, multi-level risk communication using mobile appli-
cations and early warning using social media were
developed.

Furthermore, in LEWS design, we explored enhancing
reliability, reducing false alarms through multi domain
integration, reducing the cost of deployment and mainte-
nance through bringing in the participatory approaches. In
the year 2018 in Munnar, the automatic integrated decision
model was used by LEWS and three effective warnings were
issued on 12 July 2018, 15 July 2018, 9 Aug 2018. Based on
these warnings the district administration and tahsildar
evacuated the community members to safe places. During
the initial phase of these monsoon periods, the Amrita IoT
system was able to clearly convey that regional thresholds
have crossed however site-specific thresholds have not.
Based on these instructions from the LEWS, the community
in the case study area stayed back in their home, trusting
Amrita’s warning. As these warnings were later validated by
the absence of landslides in study site, the reliability of the
warnings and the communities trust on these warnings from
the LEWS has increased. The Amrita IoT systems capability
to predict the regional landslides and denied the possibility
of initiation of site specific landslides is highly appreciated
by the community as this provides site specific warnings
with higher reliability avoiding the need for unnecessary
preparedness/evacuation based on regional warnings alone.
The heavy downpour on 6 Aug 2020, initiated a regional
warning and second level warning. These are communicated
to KSDMA and its screenshot is shown in Fig. 18.

Further to increase the reliability of warnings, risk gov-
ernance through capacity building and community partici-
pation has been initiated. As a first step, the community has
been trained in measuring rainfall and updating these mea-
surements via crowdsourcing platforms such as mobile apps
and WhatsApp to derive better rainfall thresholds, which act
as the first level community-wise warning for that region and
enhances the risk perception of the community.

Therefore, by integrating all the components the early
warning system has a comprehensive set of submodules to
ensure the reliability of the landslide early warning as shown
in Fig. 20. The key submodules include such as site char-
acteristics, inputs from landslide laboratory, modeling and
simulation, sensor system, algorithms, communication sys-
tem, software system, dynamic learning and multilevel
warning system. This clearly demonstrates that landslide risk
reduction would be required to solve multi scale needs
through a multipronged approach by utilizing transdisci-
plinary capabilities and community empowerment as shown
in Fig. 21.

Extending landslide risk reduction to multihazard disaster
risk reduction, the key solutions that has been developed and
utilized are: (a) vulnerability mapping, (b) geotechnical
analysis, (c) real-time monitoring of multihazards, (d) Mul-
tiscale decision models and early warning, (e) community
resilience programs using social media. These integrated
comprehensive solutions will enhance the capability to
provide multihazard disaster risk reduction (Fig. 19).

Requirements and solutions discussed in this paper are
summarized below.

(i) Real-time risk assessment through physical sensing
using IoT platform

(ii) Threshold models for decision making from
sub-events leading to a landslide

(iii) Machine learning and Artificial Intelligence based
models to forecast the futuristic conditions of the
slope.

(iv) Factor of Safety models to understand the dynamic
variations in slope stability conditions

(v) Multi-level early warning models to provide
site-specific and regional warnings.

(vi) Community awareness program to create awareness
about landslides in the community and encourage the
community to participate in collecting data related to
landslides and multi-hazards

(vii) Participatory sensing approaches involving the
community through Landslide Tracker mobile app to
report landslides and other precursor events.

(viii) Amrita Kripa app to provide rescue and relief during
a disaster

Fig. 17 Snapshot of Kerala flood 2018 efforts to facilitate the rescue
and relief operations: Amrita Kripa rescue app
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(ix) Social models for understanding the ground reality
and people’s reaction to disaster through social
media data analytics.

(x) Twitter data-based automatic event detection, track-
ing and providing situational awareness models.

To facilitate disaster preparedness and response, specific
solutions for the following areas to enhance the existing
system are given below:

1. Strengthening activity in the existing volunteer group in
Munnar, extending to other landslide-prone areas and
facilitating them through community engagements and
awareness programs for preparing the community to face
future disasters

2. Conducting pre and post monsoon medical camps and
providing ICU Ambulance facility during the time of
monsoon

3. Providing a copy of LEWS alerts issued to the State
government to the community through WhatsApp and
facilitating relief and rescue operations through volunteer
groups.

4. Facilitating Communication during the rough climate by
providing radio-based communication devices

5. Further development of Amrita Kripa App to coordinate
and facilitate the relief and rescue operations

6. Suggesting suitable mitigation measures for wherever
possible

7. Providing alternative places for their stay after a landslide
has destroyed their homes

There is still a long way to go. Also since the areas prone
to landslides are quite large and it is challenging to cover the
entire area with limited resources. However, the proposed
integrated approach detailed in the present paper provides a
feasible workflow to achieve this (Fig. 22).

8 Conclusion

The current study is intended to unveil the requirements for
landslide risk reduction and design a comprehensive land-
slide risk management framework. Using this framework,
IoT solutions have been proposed. The IoT system for

Fig. 18 Regional first level warning. Reply from the KSDMA. Second level warning
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landslide early warning systems deployed at North Eastern
Himalayas and Western Ghats has been elaborated. It elab-
orated the decade-long experience of establishing an
end-to-end system for landslide disaster risk reduction. An
adaptable and integrated method is suggested for combining

the entire requirements of end-to-end community disaster
resilience in Amrita-LEWS. Landslide disaster risk reduction
is continuously enhanced over a decade-long involvement in
Munnar through various means such as threshold models,
machine learning models, social models, community

Fig. 19 Landslide tracker: a crowdsourced mobile application

Fig. 20 Comprehensive landslide early warning system
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engagement, Landslide Tracker app and Amrita Kripa
app. Amrita-LEWS is replicated in Sikkim region with
customization for the terrain conditions there.
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