
Signals and Communication Technology

Anupam Biswas
Emile Wennekes
Alicja Wieczorkowska
Rabul Hussain Laskar   Editors

Advances 
in Speech 
and Music 
Technology
Computational Aspects and Applications



Signals and Communication Technology

Series Editors
Emre Celebi, Department of Computer Science, University of Central Arkansas,
Conway, AR, USA

Jingdong Chen, Northwestern Polytechnical University, Xi’an, China

E. S. Gopi, Department of Electronics and Communication Engineering, National
Institute of Technology, Tiruchirappalli, Tamil Nadu, India

Amy Neustein, Linguistic Technology Systems, Fort Lee, NJ, USA

H. Vincent Poor, Department of Electrical Engineering, Princeton University,
Princeton, NJ, USA

Antonio Liotta, University of Bolzano, Bolzano, Italy

Mario Di Mauro, University of Salerno, Salerno, Italy



This series is devoted to fundamentals and applications of modern methods of
signal processing and cutting-edge communication technologies. The main topics
are information and signal theory, acoustical signal processing, image processing
and multimedia systems, mobile and wireless communications, and computer and
communication networks. Volumes in the series address researchers in academia
and industrial R&D departments. The series is application-oriented. The level of
presentation of each individual volume, however, depends on the subject and can
range from practical to scientific.

Indexing: All books in “Signals and Communication Technology” are indexed
by Scopus and zbMATH

For general information about this book series, comments or suggestions, please
contact Mary James at mary.james@springer.com or Ramesh Nath Premnath at
ramesh.premnath@springer.com.


 8967 14360 a 8967 14360
a
 
mary.james@springer.com

 -2016 15693 a -2016 15693 a
 
ramesh.premnath@springer.com.


Anupam Biswas • Emile Wennekes •
Alicja Wieczorkowska • Rabul Hussain Laskar
Editors

Advances in Speech and
Music Technology
Computational Aspects and Applications



Editors
Anupam Biswas
Department of Computer Science &
Engineering
National Institute of Technology Silchar
Cachar, Assam, India

Emile Wennekes
Department of Media and Culture Studies
Utrecht University
Utrecht, Utrecht, The Netherlands

Alicja Wieczorkowska
Multimedia Department
Polish-Japanese Academy of Information
Technology
Warsaw, Poland

Rabul Hussain Laskar
Department of Electronics &
Communication Engineering
National Institute of Technology Silchar
Cachar, India

ISSN 1860-4862 ISSN 1860-4870 (electronic)
Signals and Communication Technology
ISBN 978-3-031-18443-7 ISBN 978-3-031-18444-4 (eBook)
https://doi.org/10.1007/978-3-031-18444-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-0756-6026

 -2016
39040 a -2016 39040 a
 
https://doi.org/10.1007/978-3-031-18444-4


Preface

Speech and music are two prominent research areas in the domain of audio signal
processing. With recent advancements in speech and music technology, the area has
grown tremendously, bringing together the interdisciplinary researchers of computer
science, musicology, and speech analysis. The language we speak propagates
as sound waves through various media and allows communication between, or
entertainment for us, humans. Music we hear or create can be perceived in different
aspects as rhythm, melody, harmony, timbre, or mood. The multifaceted nature
of speech or music information requires algorithms, systems using sophisticated
signal processing, and machine learning techniques to optimally extract useful
information. This book provides both profound technological knowledge and a
comprehensive treatment of essential and innovative topics in speech and music
processing.

Recent computational developments have opened up several avenues to further
explore the domains of speech and music. A profound understanding of both speech
and music in terms of perception, emotion, mood, gesture, and cognition is in
the forefront, and many researchers are working in these domains. In this digital
age, overwhelming data have been generated across the world that require efficient
processing for better maintenance and retrieval. Machine learning and artificial
intelligence are best suited for these computational tasks.

The book comprises four parts. The first part covers state of the art in com-
putational aspects of speech and music. The second part covers machine learning
techniques applied in various music information retrieval tasks. The third part
comprises chapters dealing with perception, health, and emotion involving music.
The last part includes several case studies.

Audio technology, covering speech, music, and other signals, is a very broad
domain. Part I contains five review chapters, presenting state of the art in selected
aspects of speech and music research, namely automatic speaker recognition, music
composition based on artificial intelligence, music recommendation systems, and
investigations on Indian classical music, which is very different from Western music
that most of us are used to.

v



vi Preface

Chapter “A Comprehensive Review on Speaker Recognition”, written by Banala
Saritha, Mohammad Azharuddin Laskar, and Rabul Hussain Laskar, offers a
comprehensive review on speaker recognition techniques, mainly focusing on text-
dependent methods, where predefined text is used in the identification process. The
authors review feature extraction techniques applied often as pre-processing, and
then present various models that can be trained for speaker identification, with a
special section devoted to deep learning. Measures that can be applied to assess the
speaker recognition quality are also briefly discussed.

Chapter “Music Composition with Deep Learning: A Review”, authored by
Carlos Hernandez-Olivan and Jose R. Beltran, presents a review of music compo-
sition techniques, based on deep learning. Artificial intelligence has been applied
to music composition since the previous millennium, as briefly reviewed in this
chapter. Obviously, deep neural networks are also applied for this purpose, and
these techniques are presented in this chapter. Next, the authors delve into the
details of the music composition process, including musical form and style, melody,
harmony, and instrumentation. Evaluation metrics are also provided in this chapter.
Finally, the authors pose and answer interesting questions regarding automatic
music composition: how creative it is, what network architectures perform best,
how much data is needed for training, etc. Possible directions of future works in this
area conclude this chapter.

Chapters “Music Recommendation Systems: Overview and Challenges” and
“Music Recommender Systems: A Review Centered on Biases” describe music
recommendation systems. Chapter “Music Recommendation Systems: Overview
and Challenges”, written by Yesid Ospitia-Medina, Sandra Baldassarri, Cecilia
Sanz, and José Ramón Beltrán, offers a general overview of such systems,
whereas chapter Music Recommender Systems: A Review Centered on Biases,
by Makarand Velankar and Parag Kulkarni, presents a review focusing on biases.
Chapter “Music Recommendation Systems: Overview and Challenges” presents
very broadly content-based approach to music recommendation systems, as well
as collaborative and approach, and the hybrid approach to creating such systems.
Context-aware recommendation systems, which result in better recommendations,
are also briefly presented in this chapter. The authors discuss business aspects
of music recommendation systems as well. A special section is devoted to user
profiling and psychological aspects, as the type of music the users want to listen to
depends on their mood and emotional state. The chapter is concluded with current
challenges and trends in music recommendation.

Chapter “Music Recommender Systems: A Review Centered on Biases” presents
an overview of biases in music recommendation systems. The authors set off with
presenting research questions that are the basis of research in this area, and thus
answering them can introduce biases. These research questions include the main
characteristics of music recommender systems (approaches to the creation of such
systems are presented in the chapter), and how new songs are introduced. The
authors review what are the main biases in such systems, and the relationships
between the biases and both recommendation strategies and music datasets used.
Biases are classified into three categories, namely pre-existing, technical, and
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emerging biases, detected in use of the system. Works on biases, as well as general
works on music recommendation systems, are reviewed here. The authors discuss
on how biases impact these systems, and also propose guidelines for handling biases
in such systems.

Chapter “Computational Approaches for Indian Classical Music: A Comprehen-
sive Review” presents a review of research on computational techniques applied in
Indian classical music, by Yeshwant Singh and Anupam Biswas. This traditional
music has roots in singing swaras. Nowadays, it is divided into Hindustani music,
with ragas (raags), mainly practiced in northern India, and Carnatic music in
southern part of the country. Microtones called shruti are specific to Indian classical
music, and make it very different from the Western music. The authors review papers
on tonic identification in classical Indian music, including feature extraction and
distribution, and melody processing, with segmentation, similarity analysis, and
melody representation. The automatic recognition of ragas is also covered in this
chapter. The authors also describe datasets of classical Indian music, and evaluation
metrics for the research on this music. Before concluding the chapter, the authors
present open challenges in this interesting research area.

Machine learning is helpful in understanding and learning from data, identifying
patterns, and making decisions with minimal human interaction. This is why
machine learning for audio signal processing has attracted attention recently for its
applications in both speech and music processing, presented in the five chapters of
Part II. Two chapters are focused on speech and multimodal audio signal processing,
and three on music, including instruments, raags, shruti, and emotion recognition
from music.

Chapter “A Study on Effectiveness of Deep Neural Networks for Speech Signal
Enhancement in Comparison with Wiener Filtering Technique” by Vijaya Kumar
Padarti, Gnana Sai Polavarapu, Madhurima Madiraju, V. V. Naga Sai Nuthalapati,
Vinay Babu Thota, and V.D. Subramanyam Veeravalli explores speech signal
enhancement with deep learning and Wiener filtering techniques. The speech signal
in general is highly susceptible to various noises. Therefore, speech denoising is
essential to produce noise-free speech signals from noisy recordings, thus improving
the perceived speech quality and increasing its intelligibility. Common approach
is to remove high frequency components from the original signal, but it leads to
removal of parts of the original signal, resulting in undesirable quality degradation.
In this chapter, Wiener filtering and neural networks are compared as tools for
speech signal enhancement. The output signal quality is assessed in terms of signal
to noise ratio (SNR) and peak signal to noise ratio (PSNR). Advanced MATLAB
toolboxes such as Deep Learning toolbox, Audio toolbox, and Signal Processing
toolbox are utilized for the analysis.

Chapter “Video Soundtrack Evaluation with Machine Learning: Data Availabil-
ity, Feature Extraction, and Classification” by Georgios Touros and Theodoros
Giannakopoulos evaluates multimodal signals using machine learning techniques,
with a combined analysis of both video and audio data, in order to find satisfactory
accompaniment music for video content. The availability of data, feature extraction,
and classification are discussed in this chapter. Creating or choosing music that

http://doi.org/10.1007/978-3-031-18444-4_5
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accompanies visual content, i.e. video soundtracks, is an artistic task that is usually
taken up by dedicated professionals, namely a composer and music supervisor,
to have the musical content that best accentuates each scene. In this chapter,
a method is proposed for collecting and combining relevant data from three
modalities: audio, video, and symbolic representations of music, in an end-to-end
classification pipeline. A comprehensive multimodal feature library is described,
together with a database that has been obtained by applying the proposed method
on a small dataset representing movie scenes. Furthermore, a classifier that aims
to discriminate between real and fake examples of video soundtracks from movies
has been implemented. This chapter also presents potential research directions and
possible improvements in the investigated area.

Chapter “Deep Learning Approach to Joint Identification of Instrument Pitch and
Raga for Indian Classical Music” by Ashwini Bhat, Karrthik G. K., Vishal Mahesh,
and Vijaya Krishna A. explores deep learning approaches for joint identification of
instruments, pitch, and ragas in Indian classical music. The concept of raag and
shruti is fundamental in Indian classical music, so their identification, although
difficult, is crucial for the analysis of a very complex Indian classical music. The
chapter offers a comprehensive comparison of Convolution Neural Network (CNN),
Recurrent Neural Network (RNN), and XGboost as tools to achieve the goal. Three
feature sets have been created for each task at hand, three models trained, and next
a combined RNN model created, yielding approximately 97% accuracy.

Chapter “Comparison of Convolutional Neural Networks and K-Nearest Neigh-
bors for Music Instrument Recognition” by Dhivya S and Prabu Mohandas analyses
convolutional neural networks and k-nearest neighbours (k-NN) for identifying
instruments from music. Music instrument recognition is one of the main tasks of
music information retrieval, as it can enhance the performance of other tasks like
automatic music transcription, music genre identification, and source separation.
Identification of instruments from the recording is a challenging task in the case
of polyphonic music, but it is feasible in the monophonic case. Temporal, spectral,
and perceptual features are used for identifying instruments. The chapter compares
a convolutional neural network architecture and k-nearest neighbour classifier
to identify the musical instrument from monophonic music. Mel-spectrogram
representation is used to extract features for the neural network model, and mel-
frequency cepstral coefficients are the basis for the k-NN classification. The models
were trained on the London Philharmonic dataset consisting of six classes of musical
instruments, yielding up to 99% accuracy.

Chapter “Emotion Recognition in Music Using Deep Neural Networks” written
by Angelos Geroulanos and Theodoros Giannakopoulos deals with the emotion
recognition in music, using deep learning techniques. Although accessing music
content online is easy nowadays, and streaming platforms provide automatic
recommendations to the users, the suggested list often does not match the current
emotional state of the listener; even the classification of emotions poses difficulty,
due to the lack of universal definitions. In this chapter, the task of music emotion
recognition is investigated using deep neural networks, and adversarial architectures
are applied for music data augmentation. Traditional classifiers such as support

http://doi.org/10.1007/978-3-031-18444-4_8
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vector machines, k-NN, random forests, and trees have also been applied, using
hand-crafted features representing the audio signals. Mel scale spectrograms were
used as a basis to create inputs to the deep convolutional networks. Six archi-
tectures (AlexNet, VGG16bn, Inception v3, DenseNet121, SqueezeNet1.0, and
ResNeXt101-32x8d) with an equal number of ImageNet pre-trained models were
applied in transfer learning. The classification was evaluated for the recognition of
valence, energy, tension, and emotions (anger, fear, happy, sad, and tender).

In the era of deep learning, speech and music signal processing offers unprece-
dented opportunities to transform the healthcare industry. In addition, the quality of
the perceived speech and music signals, both for normal and hard of hearing people,
is one of the most important requirements of the end users. Music can help deal with
stress, anxiety, and various emotions, and influence activity-related brain plasticity.
Part III comprises five chapters that explore the potential use of speech and music
technology for our well-being. The first three chapters focus on music processing
for the hearing impaired, as well as on music therapy addressed to relieve anxiety
in diabetic patients and stress in the era of pandemic. The fourth chapter sheds light
on the plasticity of the brain when learning music, and the fifth chapter is focused
on expressing emotions in speech automatically generated from text.

Chapter “Music to Ears in Hearing Impaired: Signal Processing Advancements in
Hearing Amplification Devices” by Kavassery Venkateswaran Nisha, Neelamegara-
jan Devi, and Sampath Sridhar explores music perception in the hearing impaired,
using hearing aids and cochlear implants. The hearing aids improve the auditory
perception of speech sounds, using various signal processing techniques. However,
the music perception is usually not improved, as hearing aids do not compensate
the non-linear response of human cochlea, a pre-requisite for music perception. The
limited input dynamic range and higher crest ratio in analogue-to-digital converters
of hearing aids fall short of processing live music. The cochlear implants were
developed to improve speech perception rather than music perception, and they have
limitations for music perception in terms of encoding fine structure information
in music. The electrode array that is surgically implanted results in difficulty in
perceiving pitch and higher harmonics of musical sounds. This chapter provides
elaborate discussion on the advancements in signal processing techniques in hearing
amplification devices such as hearing aids and cochlear implants that can address
their drawbacks.

Chapter “Music Therapy: A Best Way to Solve Anxiety and Depression in
Diabetes Mellitus Patients” by Anchana P. Belmon and Jeraldin Auxillia evaluates
the potential of music therapy as an alternative solution towards the anxiety and
depression in diabetic patients. There are pharmacological and non-pharmacological
treatments available to deal with anxiety and depression. Music therapy along with
relaxation and patients training is the main non pharmacological method. The effect
of music in human body is unbelievable. There are two types of music therapy,
namely passive and active music therapy. In this chapter, the effectiveness of music
therapy in 50 diabetic patients has been assessed using Beck Anxiety Inventory and
Beck Depression Inventory, reporting 0.67 reliability. The anxiety and depression
measures were assessed in pre-evaluation, post-evaluation, and follow-up stages.

http://doi.org/10.1007/978-3-031-18444-4_11
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The statistical analysis suggests that music is an effective tool to accelerate the
recovery of patients.

Chapter “Music and Stress During Covid-19 Lockdown: Influence of Locus of
Control and Coping Styles on Musical Preferences” by Junmoni Borgohain, Rashmi
Ranjan Behera, Chirashree Srabani Rath, and Priyadarshi Patnaik explores music as
one of the effective strategies to enhance well-being during the lockdown. It tries
to analyse the relation between stress during Covid-19 lockdown and preferences
towards various types of music as a remedial tool. Music helps to reduce stress,
but the ways people deal with stress are influenced by individual traits and people’s
musical tastes. The reported study was conducted on 138 Indian participants, repre-
senting various age, social, and demographic groups. Several quantitative measures
(scaled from 1 to 5) such as BRIEF-COPE inventory, Perceived Stress Scale, the
Cantril scale, and Brief-COPE Inventory are used for parametric representation
of various activities performed by the subjects, and statistical analysis applied for
data analysis. This study has observed several patterns in music preference during
lockdown period. The study shows how music can be used as a tool for socio-
emotional management during stressful times, and it can be helpful for machine
learning experts to develop music-recommendation systems.

Chapter “Biophysics of Brain Plasticity and Its Correlation to Music Learning”
authored by Sandipan Talukdar and Subhendu Ghosh explores the correlation
of brain plasticity with learning music, based on experimental evidence. Brain
plasticity is one of the key mechanisms of learning new things through growth
and reorganization of neural networks in the brain. Human brains can change both
structurally and functionally, which is a basis of the remarkable capacity of the brain
to learn and memorize or unlearn and forget. The plasticity of the brain manifests
itself at the level of synapses, single neurons, and networks. Music learning involves
all of these mechanisms of brain plasticity, which requires intensive brain activities
at different regions, whether it is simply listening to a music pattern, or performing,
or even imaging music. The chapter investigates the possibility of any correlation
between the biological changes induced in the brain and the sound wave during
music perception and learning. Biophysical mechanisms involved in brain plasticity
at the level of synapses and single neurons are considered for experimentation. The
ways in which this plasticity is involved in music learning are discussed in this
chapter, taking into account the experimental evidence.

Chapter “Analyzing Emotional Speech and Text: A Special Focus on Bengali
Language” by Krishanu Majumder and Dipankar Das deals with the development
of a text-to-speech (TTS) system in Bengali language and incorporates as much
naturalistic features as possible using deep learning technique. The existing multi-
lingual state-of-the-art TTS systems that produce speech for given text have several
limitations. Most of them lack naturalness and sound artificial. Also, very limited
work has been carried out on regional languages like Bengali, and no standard
database is available to carry out the research work. This has motivated the authors
to collect a database in Bengali language, with different emotions, for developing
TTS engine. TTS systems are generally trained on a single language, and the
possibility of training a TTS on multiple languages has also been explored. The

http://doi.org/10.1007/978-3-031-18444-4_13
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chapter explores the possibility of including the contextual emotional aspects in the
synthesized speech to enhance its quality. Another contribution of this chapter is to
develop a bilingual TTS in Bengali and English languages. The objectives of the
chapter have been validated in several experiments.

The concluding part of this volume comprises six chapters addressing an equal
amount of case studies. They span from research addressing the duplication of
audio material to Dutch song structures, and from album covers to measurements
of the tabla’s timbre. Musical influence on visual aesthetics as well as the study on
emotions in audio-visual domain complete the picture of this part’s contents.

Chapter “Duplicate Detection for Digital Audio Archive Management: Two Case
Studies”, by Joren Six, Federica Bressan, and Koen Renders, presents research
aimed at identifying duplicate audio material in large digital music archives. The
recent and rapid developments of Music Information Retrieval (MIR) have yet to be
exploited by digital music archive management, but there is promising potential for
this technology to aid such tasks as duplicate management. This research comprises
two cases studies to explore the effectiveness of MIR for this task. The first case
study is based on a VRT shellac disc archive at the Belgian broadcasting institute.
Based on 15,243 digitized discs (out of about 100,000 total), the study attempts to
determine the amount of unique versus duplicate audio material. The results show
difficulties in discriminating between a near exact noisy duplicate and a translated
version of a song with the same orchestral backing, when based on duplicate
detection only. The second case study uses an archive of tapes from the Institute
for Psychoacoustic and Electronic Music (IPEM). This study had the benefit of the
digitized archive, first in 2001 and then in 2016. The results showed that in this
case, MIR was highly effective at correctly identifying tracks and assigning meta
data. This chapter concludes with a deeper dive into the recent Panako system for
acoustic fingerprinting (i.e. the technology for identifying same or similar audio data
in the database), to show its virtues.

Yke Paul Schotanus shows in chapter “How a Song’s Section Order Affects Both
‘Refrein’ Perception and the Song’s Perceived Meaning” how digital restructuring
of song sections influences the lyrical meaning, as well as our understanding of the
song’s structure. When the section order of a song is manipulated, the listeners’
understanding of a song is primarily based on how and where they perceive the
chorus (refrein in Dutch), and/or the leading refrain line. A listening experiment was
conducted, involving 111 listeners and two songs. Each participant listened to one
of three different versions of the same Dutch cabaret song. The experiment showed
that section order affects refrain perception and (semantic) meaning of Western pop
songs. Manipulating musical properties such as pitch, timing, phrasing, or section
order shows that popular music is more complex than thus far presumed; “the refrain
of a song cannot be detected on the basis of strict formal properties”, he concludes.

The objective of chapter “Musical Influence on Visual Aesthetics: An Explo-
ration on Intermediality from Psychological, Semiotic, and Fractal Approach” (by
Archi Banerjee, Pinaki Gayen, Shankha Sanyal, Sayan Nag, Junmoni Borgohain,
Souparno Roy, Priyadarshi Patnaik, and Dipak Ghosh) is to determine the degree
to which music and visuals interact in terms of human psychological perception.

http://doi.org/10.1007/978-3-031-18444-4_16
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Auditory and visual senses are not isolated aspects of psychological perception;
rather, they are entwined in a complex process known as intermediality. Further-
more, the senses are not always equal in their impact on each other in a multimodal
experience, as some senses may dominate others. This study attempts to investigate
the relationship between auditory and visual senses to discover which is more
dominant in influencing the total emotional outcome for a certain audience. To
this end, abstract paintings have been used (chosen because of the lack of semantic
dominance and the presence of pure, basic visual elements – lines, colours, shapes,
orientation, etc.) and short piano clips of different tempo and complexity. Forty-
five non-artist participants are then exposed to various combinations of the music
and art – both complimentary and contradictory – and asked to rate their response
using predefined emotion labels. The results are then analysed using a detrended
fluctuation analysis to determine the nature of association between music and
visuals – indifferent, compatible, or incompatible. It is found that music has a
more significant influence on the total emotional outcome. This study reveals that
intermediality is scientifically quantifiable and merits additional research.

Chapter “Influence of Musical Acoustics on Graphic Design: An Exploration
with Indian Classical Music Album Cover Design”, by Pinaki Gayen, Archi
Banerjee, Sankha Sanyal, Priyadarshi Patnaik, and Dipak Ghosh, analyses strategies
for graphic design for Indian classical music album covers and options to determine
new possible design strategies to move beyond status quo conventions. The study
is conducted with 30 design students who are asked to draw their own designs
upon hearing two types of musical examples – Komal Rishav Asavari and Jaunpuri,
which had been rated as “sad music” and “happy music”, respectively, by a previous
70-person experiment. The design students were split into two groups, and each
given 1 hour to complete their own designs while listening to the music. The
resulting designs were then analysed using semiotic analysis and fractal analysis
(detrended fluctuation analysis) to identify patterns of intermediality. This semiotic
analysis entailed analysing iconic or symbolic representation (direct association
to objects) versus indexical representation (cause and effect relationships). The
findings showed that album cover designs fell in three categories: direct mood
or emotional representation using symbolic followed by indexical representation;
visual imageries derived from indexical followed by iconic representational; and
musical feature representation primarily relying on iconic representation. In sum-
mary, the study provides new design possibilities for Indian classical music album
covers and offers a quantitative approach to establishing effective intermediality
towards successful designs.

Shankha Sanyal, Sayan Nag, Archi Banerjee, Souparno Roy, Ranjan Sengupta,
and Dipak Ghosh present in chapter “A Fractal Approach to Characterize Emotions
in Audio and Visual Domain: A Study on Cross-Modal Interaction” their study
about classifying the emotional cues of sound and visual stimuli solely from their
source characteristics. The study uses as a sample data set a collection of six audio
signals of 15 seconds each and six affective pictures, of which three belonged to
positive and negative valence, respectively (“excited”, “happy”, “pleased”, etc.,
versus “sad”, “bored”, “angry”, etc.). Then, using detrended fluctuation analy-

http://doi.org/10.1007/978-3-031-18444-4_19
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sis (DFA), the study calculates the long-range temporal correlations (the Hurst
exponent) corresponding to the audio signals. The results of the DFA technique
were then applied on the array of pixels corresponding to affective pictures of
contrast emotions to obtain a single unique scaling exponent corresponding to each
audio signal and three scaling exponents corresponding to red/green/blue (RGB)
component in each of the images. Finally, detrended cross-correlation (DCCA)
technique was used to calculate the degree of nonlinear correlation between the
sample audio and visual clips. The results were next confirmed by a follow-up
human response study based on the emotional Likert scale ratings. The study
presents an original algorithm to automatically classify and compare emotional
appraisal from cross-modal stimuli based on the amount of long-range temporal
correlations between the auditory and visual stimulus.

The closing chapter, chapter “Inharmonic Frequency Analysis of Tabla Strokes
in North Indian Classical Music”, by Shambhavi Shivraj Shete and Saurabh Harish
Deshmukh, features the tabla. It is one of the essential instruments in North Indian
Classical Music (NICM) and is highly unique compared to Western drums for its
timbre. The tabla’s timbre is related to inharmonicity (i.e. its overtones departing
from harmonic series, being multiple of the fundamental) which is due to a complex
art involving the application of ink (Syahi) to the table drum surface. This study aims
to create a set of standard measurements of the tabla’s timbre as this could be useful
for instrument makers and performers. This measurement process is accomplished
in two steps. First, a recording session collects 10 samples of a tabla playing the 9
common strokes within NICM for a total of 90 audio samples. These samples are
then processed by a fast Fourier transform function to extract a frequency spectrum
and determine the fundamental. The results are then compiled and organized by
stroke type with comments about which overtones are most defining and which
aspects of the stroke technique are especially important towards affecting those
overtones responses.

We cordially thank all the authors for their valuable contributions. We also
thank the reviewers for their input and valuable suggestions, and the Utrecht
University intern Ethan Borshansky, as well as Mariusz Kleć from the Polish-
Japanese Academy of Information Technology for their editorial assistance.

Finally, we thank all the stakeholders who have contributed directly or indirectly
to making this book a success.

Cachar, Assam, India Anupam Biswas
Utrecht, The Netherlands Emile Wennekes
Warsaw, Poland Alicja Wieczorkowska
Cachar, India Rabul Hussain Laskar
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A Comprehensive Review on Speaker
Recognition

Banala Saritha , Mohammad Azharuddin Laskar ,
and Rabul Hussain Laskar

1 Introduction

Speech is the universal mode of human communication. In addition to exchanging
thoughts and ideas, speech is considered to be useful for extracting a lot of other
information like language identity, gender, age, emotion, cognitive behavior, and
speaker identity. One of the goals in speech technology is to make human-machine
interaction as natural as possible, with systems like intelligent assistants, e.g., Apple
Siri, Cortana, and Google Now. Speaker recognition also has a huge scope in this
line of products. Every human has a unique speech production system [1]. The
unique characteristics of the speech production system help to find a speaker’s
identity based on his or her speech signal. The task of recognizing the identity
of a person from speech signal is called speaker recognition. It may be classified
into speaker identification and speaker verification. The process of identifying
an unknown speaker from a set of known speakers is speaker identification,
while authentication of an unknown speaker claiming a person’s identity already
registered with the system is called speaker verification [2]. Speaker recognition
finds numerous applications across different fields like biometrics, forensics, and
access control systems [3]. Further, speaker recognition is classified into text-
dependent and text-independent tasks based on whether the test subject is required
to use a particular fixed utterance or is free to utter any valid text for recognition
purposes [4]. Research on speaker recognition has been carried out since the
1960s [5]. Significant advancements have been made in this field over the recent
decades where various aspects like features, modeling techniques, and scoring have
been explored. The advances in deep learning and machine learning techniques
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have helped to promote speaker recognition and develop renewed interest among
researchers in this field. Owing to its ease of use and higher accuracy, text-dependent
speaker verification has been one of the focus areas. It plays a vital role in fraud
prevention and access control. This chapter presents a comprehensive review of the
techniques and methods employed for speaker recognition, with emphasis on text-
dependent speaker verification.

The chapter’s organization is as follows: Sect. 2 describes the basic structure
of speaker recognition system. Section 3 presents a review of feature extraction
techniques with an emphasis on the Mel-frequency cepstral coefficient (MFCC)
feature extraction method. Speaker modeling involving classical techniques is
discussed in Sect. 4. Advancements in speaker recognition with deep learning
are discussed in Sect. 5. It also describes the performance metric for speaker
recognition. The last section concludes the chapter.

2 Basic Overview of a Speaker Recognition System

Figure 1 represents the basic block diagram of the speaker verification system. The
design of the speaker verification system mainly consists of two modules, namely,
frontend and backend. Frontend takes the speech as an input signal and extracts
the features. Generally, features are the more convenient representation of a given
speech signal. It is represented in the form of a set of vectors and is termed as
acoustic features.

The acoustic features are fed to the backend, which consists of a pre-designed
speaker model along with classification and decision-making modules. The model
based on these features is then compared with that of the registered speakers’ models
to determine the match between speakers. In text-dependent speaker verification
(TDSV), the systems need to model both the text and the speaker characteristics.
Figure 2 presents the block diagram representation of a text-dependent speaker
verification system.

The speech signal input is first pre-processed using pre-emphasis filter followed
by windowing and voice activity detection. Feature extraction is carried out using
the voiced speech frames. These features are further modeled using techniques like
Gaussian mixture model (GMM), identity vector (i-vector), or neural network and

Fig. 1 Basic block diagram of a speaker verification system
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Fig. 2 Text-dependent
speaker verification system
block diagram representation

used for enrollment and verification. In the enrollment phase, speech utterance of
adequate duration is taken and subjected to the said feature extraction and modeling
modules to obtain the speaker model. Generally, a background or development
set data is also required in conjunction with the enrolment data for training.
During verification, the test utterance undergoes similar transformations and is
then compared with the model corresponding to the claimed speaker identity. The
comparison results in a score that helps to decide whether to accept or reject the
claim [6].

3 Review on Feature Extraction

Every speaker has a unique speech production system. The process of capturing
vocal characteristics is called feature extraction. Features can be classified into
two types, namely, behavior-based (learned) features and physiological features.
Behavior-based features include prosodic, spectro-temporal, and high-level features.
Rhythm, energy, duration, pitch, and temporal features constitute the prosodic and
spectro-temporal features. Phones, accents, idiolect, semantics, and pronunciation
are the high-level features [7]. Figure 3 shows a classification of feature character-
istics.

The physiological features are representative of the vocal tract length, dimension,
and vocal fold size. Short-term spectral feature representations are commonly
used to characterize these speaker-specific attributes. Some of the commonly used
spectral features include Mel-frequency cepstral coefficients (MFCCs), gammatone
feature, gammatone frequency cepstral coefficients (GFCCs), relative spectral-
perceptual linear prediction (RASTA-PLP), Hilbert envelope of gammatone filter
bank, and mean Hilbert envelope coefficients (MHECs) [8]. Of these features,
MFCCs are the most widely used spectral features in the state-of-the-art speaker
identification and verification systems.
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Fig. 3 Classification of
feature characteristics [7]

3.1 MFCC’s Extraction Method

MFCCs are based on human auditory perception. Auditory perception is nonlinear
and can be approximated using linear functions. The Mel scale is roughly linear at
low frequencies and logarithmic at higher frequencies [9]. For a given frequency
f in Hz, corresponding Mel scale frequency can be determined by the following
formula:

mel(f ) = 2595 ∗ log10(1 + f/700) (1)

Figure 4 represents the commonly followed feature extraction process. Speech
signals are non-stationary in nature, i.e., the spectral content of the signals varies
with time. Hence, in order to process a speech signal, it is divided into short
(overlapping) temporal segments called frames, 10–30 ms long, as speech signal
is quasi-stationary over a very short time frame, and short-time Fourier transform
can be applied to analyze this signal. Further, to reduce the artifacts due to sudden
signal truncations at the boundaries of the frames, windowing is done. Generally,
the Hamming windowing (2) is applied to all frames to obtain smooth boundaries
and to minimize the spectral distortions.

w(n) = 0.54 − 0.46 cos(2πn/M − 1);0 ≤ n ≤ M (2)

where M is the number of samples in the frame.
The short segments can be assumed to be stationary and are used for short-

term frequency analysis. To obtain MFCCs, the windowed frames are subjected
to fast Fourier transform (FFT) followed by the Mel filterbank, as shown in
Fig. 5. The Mel spectrum is then represented on log scale before performing
discrete cosine transform (DCT) to obtain the MFCC features. Usually, the first 13
coefficients, C0, C1, . . . , C12, are considered. The coefficients are then normalized
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Fig. 4 Process of extracting feature vectors

Frame Signal

Mel Filterbank

Window Frame FFT

Log() DCT()

Speech signal frames

mel-spectrum log mel-spectrum

20ms 10ms For each frame

MFCCs

Fig. 5 MFCC feature extraction process

using techniques like cepstral mean subtraction (CMS), relative spectral filtering
(RASTRA), and feature warping techniques. Once the features are normalized, the
difference between C0 coefficients of a frame and its subsequent frame is calculated
to obtain the delta parameter d0. Similarly, d1, d2, . . . , dn are obtained from
C1, C2, . . . , Cn coefficients, respectively, as shown in Fig. 6. These are known
as delta features. In the same way, acceleration or double-delta features are obtained
by using difference of delta features [10]. The 13 MFCCs, the 13 delta features,
and the 13 double-delta features are concatenated to obtain 39-dimensional feature
vector for every frame.
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Fig. 6 Delta and acceleration features

4 Speaker Modeling

Once the acoustic features are extracted, speaker models are trained on it. The
traditional speaker modeling techniques are categorized into two types. They are
template models and stochastic models. Vector quantization (VQ) and dynamic
time warping (DTW) approaches are the most popular template-based modeling
techniques [11]. For text-dependent speaker verification, DTW template matching
is a widely used technique. The acoustic feature sequence is obtained from the
enrollment utterance and stored as a speaker-phrase template model. During the
testing phase, the feature sequence corresponding to the test utterance is compared
with the speaker-phrase template model using the DTW algorithm. DTW helps to
time-align the two sequences and gives a similarity score, which is then used for
the decision-making process. Another popular system for text-dependent speaker
verification is realized using the VQ technique. In this method, the vector space
consists of feature vectors and is mapped to a finite number of regions in the vector
space. These regions are formed as clusters and represented by centroids. The set of
centroids that represents the entire vector space is known as a codebook. Hence, the
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speaker-phrase models are prepared in terms of codebooks. This technique allows
more flexibility in modeling the speaker-phrase model.

The stochastic models make use of probability theory. The most popular
stochastic models are the Gaussian mixture model-universal background model
(GMM-UBM) and hidden Markov model (HMM).

GMM-UBM is also a commonly used method for text-dependent speaker
verification [12]. A UBM is built to represent a world model. Using the maximum
a posteriori (MAP) adaptation technique, speaker-phrase-specific GMM is built
from UBM using class-specific data [13]. The log-likelihood ratio is used to make
the decision of whether to accept or reject the speaker-phrase subject. A number
of HMM-based methods have also been proposed for text-dependent speaker
verification. Such models are good at modeling the temporal information in the
utterance and help to provide improved results. An unsupervised HMM-UBM and
temporal GMM-UBM have also been proposed for TDSV [14]. In the case of HMM-
UBM-based method, speaker-specific HMM is built through MAP adaptation from
speaker-independent HMM-UBM trained in an unsupervised manner without using
any transcription. In the temporal GMM-UBM approach, however, the temporal
information is incorporated by computing the transition probability among the
GMM-UBM mixture components using the speaker-specific training data. The
HMM-UBM-based method is found to outperform the other systems by virtue
of more effective modeling of the temporal information. Hierarchical multi-layer
acoustic model (HiLAM) is an example of an HMM-based speaker-phrase model. It
is a hierarchical acoustic model that adapts a text-independent, speaker-dependent
GMM from UBM and then adapts the different HMM states from the mid-level
model.

4.1 Gaussian Mixture Model-Universal Background Model

GMM-UBM model as shown in Fig. 7 is a popularly used method for text-dependent
speaker verification. When all features are populated in large dimensional space,
clusters are formed. Each cluster can be represented by a Gaussian distribution
specified by mean and variance parameters. The overall data may be represented
by a mixture of such Gaussian distributions, known as GMM, which is defined by
a set of mean, variance, and weight parameters. Universal background model is a
general speaker-independent model. It is used to obtain speaker-dependent GMMs
with adaptation of mean, variance, and weight using target-specific data [15].

A training set is required to build up the UBM model, alongside a target set for
which we are designing the system and a test set to evaluate the performance of the
system.

A representation of GMM-based speaker model is given in Fig. 8. For a speaker
model X1, each mixture ranging from 1 to 1024 has a 1×1 weight vector, 39×1
mean matrix, and 39×1 covariance matrix. Similarly, for developing a system for
speaker models 2 to M, we have to store 1024 weight vectors and 39×1024 mean
and covariance matrices.
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Fig. 7 A basic system of GMM-UBM model

Fig. 8 Gaussian mixture model for speaker

When a speaker claims the identity of a registered speaker, the speaker verifica-
tion system first extracts the features and compares them with the speaker model
(GMM), determines the level of the match based on the log-likelihood ratio with a
predefined threshold, and makes a decision whether to accept or reject the claimed
speaker [16]. This process is shown in Fig. 9. The problem with GMM-UBM is that
loads of vectors and matrices need to be stored. A single vector concept called a
supervector S is introduced to represent a speaker to overcome the abovementioned
difficulty.
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Fig. 9 Representation of universal background model

4.2 Supervector

Supervector is formed by concatenating all individual mixture means, scaled by the
corresponding weights and covariances resulting in 39*1024-dimensional feature
vector shown in Fig. 10. Each GMM (speaker model) can be represented by a super-
vector. Speech of different durations can be represented by supervectors of fixed
size. Model normalization is typically carried out on a supervector when the speaker
model is built. Supervectors are further modeled using various techniques available
like nuisance attribute projection (NAP), joint factor analysis (JFA), i-vector, within-
class covariance (WCCN), linear discriminant analysis, and probabilistic linear
discriminant analysis (PLDA) [17].

Joint factor analysis is one of the popular techniques used to model GMM
supervectors. The supervector is assumed to embed speaker information, channel
information, some residual component, and speaker-independent components [18].
Accordingly, the supervector S is decomposed into different components given by

S = m + Vy + Ux + Dz (3)
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Fig. 10 The process of supervector formation

where m is the speaker-independent component, Vy represents the speaker infor-
mation, Ux represents the channel information, and Dz represents the speaker-
dependent residual component.

4.3 i-vector

In this technique, factor analysis is performed considering a common subspace
for channel and speaker information as research indicated that relevant speaker
information is also present in the channel feature obtained in JFA [19]. A lower-
dimensional identity vector (w) is used to represent speaker model. The model may
be represented as follows:

S = m + T w (4)

where S is the GMM supervector, m is the UBM supervector mean, T represents the
total variability matrix, and w indicates the standard normal distributed vector.

w may be represented as p(w‖X) = N(φ,L − 1)

where w represents all the speaker information, and it follows a normal distribu-
tion with mean φ and variance (L -1).

4.4 Trends in Speaker Recognition

Table 1 attempts to report the trends and progress in the field of speaker recognition.
Techniques like NAP and WCCN have been used to normalize channel effects
and session variability. Also, PLDA has been a popular backend model for many
systems.
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Table 1 Trends in speaker recognition with adopted techniques

S. no. Year Techniques adopted

1 2005 Supervector + NAP + support vector machine (SVM) scoring

2 2007 Supervector + JFA + y (reduced dimension vector) + WCNN +
SVM scoring

3 2007 i-vector + WCNN + LDA (reduced dimension i-vector) + cosine
distance scoring

4 2009 i-vector + PLDA (divides into channel and speaker space/channel
compensation) + cosine distance scoring

5 2010 i-vector replaced with DNN + cosine distance/PLDA as
decision-making

5 Deep Learning Methods for Speaker Recognition

The significant advancements in deep learning and machine learning techniques
developed renewed interest among researchers in speaker recognition. The different
deep learning architectures have received impetus from the availability of increased
data and high computational power and have resulted in state-of-the-art systems.
The DTW framework has also been implemented using deep neural network (DNN)
posteriors extracted from the DNN-HMM automatic speech recognition (ASR)
model [20]. The system leverages the discriminative power of the DNN-based
model and is able to achieve enhanced performance. The deep neural network
framework has two approaches in speaker recognition. The leading approach is
feature extraction with deep learning methods. Another approach is classification
and decision-making using deep learning methods [21]. In the first approach, Mel-
frequency cepstral coefficients or spectra are taken as inputs and used to train a DNN
with speaker IDs as the target variable.

Speaker feature embeddings are then obtained from the last layers of the trained
DNN. The second approach replaces the cosine distance and probabilistic linear
discriminate analysis; a deep network can be used for classification and decision-
making.

2014 d-vector In d-vector framework shown in Fig. 11, instead of MFCC, stacked
filter bank energies are used as input, to train a DNN in a supervised way
[22]. The averaged activation function outputs from the last hidden layer of the
trained network are used as the d-vector [23]. The 13-dimensional perceptual linear
prediction coefficients (PLP) and delta and double-delta features were used in the
training phase. “OK Google” database was used for experimentation [24].

2015 j-vector The multi-task learning approach shown in Fig. 12 extends the “d-
vector” concept and leads to the j-vector framework [25]. The network is trained to
discriminate both speakers and text at the same time.
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Fig. 11 d-vector framework in Variani et al. [23]

Fig. 12 Multi-task DNN in Chen et al. [25]

Like d-vectors, once the supervised training is finished, the output layer is
discarded. Then joint feature vector called a j-vector is obtained from the last layer
[26].

2018–2019 x-vector The authors (D. Snyder, D. Garcia-Romero) have proposed
DNN embeddings in their work, called “x-vectors,” to replace i-vectors for text-
independent speaker verification [27, 28]. The main idea is to take variable length
audio and to get a single vector representation for that entire audio. This single
vector is capable of capturing speaker discriminating features. This architecture
shown in Fig. 13 uses time delay neural network (TDNN) layers with a statistics
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Fig. 13 x-vector DNN
embedding architecture [26]

Fig. 14 TDNN framework
[28]

pooling layer. TDNN operates at frame level as shown in Fig. 14 and works better
for a smaller amount of data. Speech input (utterances) is fed to the TDNN layer in
frames (x1, x2. . . , xT), and it generates a sequence of frame-level features.

The statistics pooling layer determines the mean and standard deviation for the
sequence of vectors. Concatenation of these two vectors is passed on as input to the
next layer, which operates at the segment level. In the end, the softmax layer predicts
the probability of speaker for a particular utterance. Additionally, data augmentation
is done where noise and reverberation are added to original data with different SNR
[29]. This makes the system more robust and improves accuracy compared to the i-
and d-vector, particularly for short-duration utterances.

2018–2019 End-to-End System In the paper “End-to-end text-dependent speaker
verification” by Heigold et al. [30], Google introduced DNN embedding-based
speaker verification, which is one of state-of-the-art systems [30]. In this archi-
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Fig. 15 End-to-end
architecture used in [29]
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tecture, long short-term memory (LSTM) is used to process the “OK Google”
kind of utterances. It gives speaker representations which are highly discriminative
feature vectors. There are two inputs, namely, enrollment and evaluation utterances,
applied to the network. As shown in Fig. 15, the network aggregates N vectors
corresponding to N enrollment utterances to obtain a representation of the enrolled
speaker. When the same speaker claims during the verification stage, it compares the
generated vector with the previously stored vector from the enrollment data. Using
cosine similarity, it compares the difference between vectors. If it is greater than the
pre-determined threshold, the claimed speaker is accepted; otherwise, rejected. This
end-to-end architecture performance on the “OK Google” database is similar to that
of the “d-vector” technique.

2019–2020 Advancements in TDNN System A number of variants have been
introduced to improve the performance of TDNN. They are factorized TDNN
(F-TDNN), crossed TDNN (C-TDNN), densely connected TDNN (D-TDNN),
extended TDNN (E-TDNN) [31], and emphasized channel attention and propaga-
tion and aggregation TDNN (ECAPA-TDNN). The current state-of-the-art TDNN-
based speaker recognition is ECAPA-TDNN represented in Fig. 16. This architec-
ture is proposed by Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck
[32]. The complete architecture of squeeze-excitation (SE)-based Res2Net block
(SE-Res2Block) of the ECAPA-TDNN is given in Fig. 17.
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Fig. 16 Network topology of
the ECAPA-TDNN [31] Input 80
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5.1 Deep Learning for Classification

Classification models with deep learning are presented in Table 2.

6 Performance Measure

To decide whether a speaker is accepted or rejected by the system, a threshold may
require against which the score may generate.

Correct Decision If a system correctly identifies the true speaker, it may be the
“correct decision.”

Miss If a system rejects the true speaker, it may be “miss.”

False Acceptance If the system accepts the imposter, the system makes an error
known as false acceptance.

Detection Error Trade-Off (DET) Curve
To plot the DET curve, first record the number of times the system rejected the true
speaker (miss) and the number of times the imposter is accepted (false acceptance).
Then express these two parameters in terms of percentage. Take false acceptance
on the x-axis and miss rate on the y-axis for a particular threshold value ′θ ′. We
will get the point on two-dimensional space. By varying the ′θ ′ value continuously,
we will obtain a curve known as the detection error trade-off curve. As example,
the dot point on the DET curve in Fig. 18 indicates the miss rate is very high and
false acceptance is very low [48, 49]. This shows the system rejects true speakers
in a good number of times and less number of imposters allowed. It is preferable in
high-security systems like banking.

On the other end of the curve, the miss rate is meager, and false acceptance is
very high. This shows the system is allowing imposters easily and not missing the
true speaker. Such a scenario is useful in low-security applications [50].

The point at which the miss rate is equal to the false acceptance rate is the equal
error rate (EER). Any system can be operated at this point. For example, let a system
having EER of 1% indicates it has 1% of miss rate and 1% of false acceptance rate
[51]. In Fig. 19, if the EER point is decaying toward the origin, it is a better system.
If the EER point is rising toward the y=x line, it is not a better system.



Table 2 Classification models with deep learning

S. no. Techniques adopted Key concept Merits/demerits

1 Variational
autoencoder (VAE)
[33–35]

VAE is used for voice conversion,
speech, and speaker recognition, and
it consists of stochastic neurons along
with deterministic layers. The
log-likelihood ratio scoring is used to
discriminate between the same and
different speakers

The performance of
VAE is not superior to
PLDA scoring

2 Multi-domain
features [36]

Automatic speaker recognition (ASR)
output is given as input to the speaker
recognition evaluation (SRE) system
and vice versa Extracted frame-level
features are the inputs to ASR and
SRE

For WSJ database,
EERs are low compared
to the i- vector

3 DNN in place of
UBM [25]

DNN is used instead of UBMs.
Universal deep belief networks are
developed and are used as a backend.
The target i-vector and imposter i
-vector develop a vector such that it
should have good discriminating
properties. It is stored in a
discriminative target model

This model not
accomplished better
performance compared
to PLDA-based i-vector

4 Unlabeled data
[37–39]

It introduces unlabeled samples
continuously, and by taking a labeled
corpus, it learns the DNN model

Proposed LSTM- and
TDNN-based systems
outperform the
traditional methods

5 Hybrid framework
[40]

Zero-order feature statistics are fed to
a standard i-vector model through
DNN. Also, speech is segmented into
senones by training the DNN using
the HMM-GMM model

A low equal error rate is
achieved with this
method

6 SincNet [41–45] SincNet is a distinctive convolutional
neural network (CNN) architecture
that takes one-dimensional raw audio
as input. A filter at the first layer of
CNN acquires the knowledge of lower
(fl) and higher (fu) cut-off
frequencies. Also, the convolutional
layer can adjust these frequencies
before applying them to further
standard layers

Fast convergence,
improved accuracy, and
computational
efficiency. SincNet
method outperforms the
other DNN solutions in
speaker verification

7 Far-field
ResNet-BAM [46]

It is an easy and effective novel
speaker embedding architecture with
the ResNet-BAM method, in which
the bottleneck attention module
(BAM) with residual neural network
(ResNet) is mixed. It focused on the
smallest speech and domain mismatch
where the frontend includes a data
processing unit. The backend consists
of speaker embedding with a DAT
extractor

With the help of
adversarial domain
training along with
gradient reversal layer
provides domain
mismatch

8 Bidirectional
attention [47]

Proposed to unite CNN-based feature
knowledge with a bidirectional
attention method to attain improved
performance with merely single
enrollment speech

It is outperformed over
the
sequence-to-sequence
and vector models
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Fig. 18 Detection error trade-off (DET) curve

Fig. 19 Performance of system with EER on DET curve

7 Conclusion

This chapter attempts to present a comprehensive review of speaker recognition
with more emphasis on text-dependent speaker verification. It discusses the most
commonly used feature extraction and modeling techniques used for this task. It
also surveys all the recent advancements proposed in the field of text-independent
speaker recognition. The deep learning models have been found to outperform many
classical techniques, and there exists a huge scope to further improve the perfor-
mance of the systems with more advanced architectures and data augmentation
techniques.
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Music Composition with Deep Learning:
A Review

Carlos Hernandez-Olivan and José R. Beltrán

1 Introduction

Music is generally defined as a succession of pitches or rhythms, or both, in some
definite patterns [1]. Music composition (or generation) is the process of creating
or writing a new piece of music. The music composition term can also refer to an
original piece or work of music [1]. Music composition requires creativity. Chomsky
defines creativity as “the unique human capacity to understand and produce an
indefinitely large number of sentences in a language, most of which have never been
encountered or spoken before” [9]. On the other hand, Root-Bernstein defines this
concept as “creativity comes from finding the unexpected connections, from making
use of skills, ideas, insights and analogies from disparate fields” [51]. Regarding
music creativity, Gordon declares that there is not a clear definition of this concept.
He stands that music creativity cannot be taught but the readiness for one to fulfill his
potential for music creativity, that is, the audation vocabulary of tonal patterns or the
varied and large rhythmic patterns [22]. This is a very important aspect that needs to
be taken into account when designing or proposing an AI-based music composition
algorithm. More specifically, music composition is an important topic in the music
information retrieval (MIR) field. It comprises subtasks such as melody generation,
multi-track or multi-instrument generation, style transfer, or harmonization. These
aspects will be covered in this chapter from the point of view of the multitude of
techniques that have flourished in recent years based on AI and DL.
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1.1 From Algorithmic Composition to Deep Learning

From the 1980s, the interest in computer-based music composition has never stop
to grow. Some experiments came up in the early 1980s such as the Experiments in
Musical Intelligence (EMI) [12] by David Cope from 1983 to 1989 or Analogiques
A and B by Iannis Xenakis that follow the previous work from the author in 1963
[68]. Later in the 2000s, also David Cope proposed the combination of Markov
chains with grammars for automatic music composition, and other relevant works
such as Project1 (PR1) by Koening [2] were born. These techniques can be grouped
in the field of algorithmic music composition which is a way of composing by means
of formalizable methods [46, 58]. This type of composing consists of a controlled
procedure which is based on mathematical instructions that must be followed in
a fixed order. There are several methods inside the algorithmic composition such
as Markov models, generative grammars, cellular automata, genetic algorithms,
transition networks, or chaos theory [28]. Sometimes, these techniques and other
probabilistic methods are combined with deep neural networks (NNs) in order to
condition them or help them to better model music which is the case of DeepBach
[25]. These models can generate and harmonize melodies in different styles, but
the lack of generalizability capacity of these models and the rule-based definitions
that must be done by hand make these methods less powerful and generalizable in
comparison with DL-based models.

From the 1980s to the early 2000s, the first works which tried to model music
with NNs were born [3, 17, 44]. In recent years, with the growing of deep learning
(DL), lots of studies have tried to model music with deep NNs. DL models for music
generation normally use NN architectures that are proven to perform well in other
fields such as computer vision or natural language processing (NLP). There can also
be used pre-trained models in these fields that can be used for music generation. This
is called transfer learning [74]. Some NN techniques and architectures will be shown
later in this chapter. Music composition today is taking input representations and
NN’s architectures from large-scale NLP applications, such as transformer-based
models which are demonstrating very good performance in this task. This is due to
the fact that music can be understood as a language in which every style or music
genre has its own rules.

1.2 Neural Network Architectures for Music Composition with
Deep Learning

First of all, we will provide an overview of the most widely used NN architectures
that are providing the best results in the task of musical composition so far. The
most used NN architectures in music composition task are generative models such
as variational autoencoders (VAEs) or generative adversarial networks (GANs) and
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NLP-based models such as long short-term memory (LSTM) or transformers. The
following is an overview of these models.

1.2.1 Variational Autoencoders (VAEs)

The original VAE model [37] uses an encoder-decoder architecture to produce a
latent space by reconstructing the input (see Fig. 1a). A latent space is a multidi-
mensional space of compressed data in which the most similar elements are located
closest to each other. In a VAE, the encoder approximates the posterior, and the
decoder parameterizes the likelihood. The posterior and likelihood approximations
are parametrized by a NN with λ and θ parameters for the encoder and decoder,
respectively. The posterior inference is done by minimizing the Kullback-Leibler
(KL) divergence between the encoder and approximate posterior, and the true
posterior by maximizing the evidence lower bound (ELBO). The gradient is
computed with the so-called reparametrization trick. There are variations of the
original VAE model such as the β-VAE [27] which adds a penalty term β to the
reconstruction loss in order to improve the latent space distribution. In Fig. 1a,
we show the general VAE architecture. An example of a DL model for music
composition based on a VAE is MusicVAE [50] which we describe in further
sections in this chapter.

1.2.2 Generative Adversarial Networks (GANs)

GANs [21] are generative models composed by two NNs: the generator G and
the discriminator D. The generator learns a distribution pg over the input data.
The training is done in order to let the discriminator maximize the probability of
assigning the correct label to the training samples and the samples generated by
the generator. This training idea can be understood as if D and G follow the two-
player minimax game that Goodfellow et al. [21] described. In Fig. 1b, we show the
general GAN architecture. The generator and the discriminator can be formed by
different NN layers such as multi-layer perceptrons (MLPs) [52], LSTMs [30], or
convolutional neural networks (CNNs) [19, 40].

1.2.3 Transformers

Transformers [61] are being currently used in NLP applications due to their well
performance not only in NLP but also in computer vision models. Transformers can
be used as auto-regressive models like the LSTMs which allow them to be used in
generative tasks. The basic idea behind transformers is the attention mechanism.
There are several variations of the original attention mechanism proposed by
Vaswani et al. [61] that have been used in music composition [33]. The combination
of the attention layer with feedforward layers leads to the formation of the encoder
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and decoder of the transformer which differs from purely autoencoder models that
are also composed by the encoder and decoder. Transformers are trained with tokens
which are structured representations of the inputs. In Fig. 1c, we show the general
transformer architecture.

1.3 Challenges in Music Composition with Deep Learning

There are different points of view about the challenges perspective in music
composition with DL that make ourselves ask questions related to the input
representations and DL models that have been used in this field, the output quality
of the actual state-of-the-art methods, or the way that researchers have measured
the quality of the generated music. In this chapter, we ask ourselves the following
questions that involve the composition process and output: Are the current DL
models capable of generating music with a certain level of creativity? What is the
best NN architecture to perform music composition with DL? Could end-to-end
methods generate entire structured music pieces? Are the composed pieces with
DL just an imitation of the inputs or can NNs generate new music in styles that
are not present in the training data? Should NNs compose music by following the
same logic and process as humans do? How much data do DL models for music
generation need? Are current evaluation methods good enough to compare and
measure the creativity of the composed music?

To answer these questions, we approach music composition or generation from
the point of view of the process followed to obtain the final composition and
the output of DL models, i.e., the comparison between the human composition
process and the music generation process with DL and the artistic and creative
characteristics presented by the generated music. We also analyze recent state-of-
the-art models of music composition with DL to show the result provided by these
models (motifs, complete compositions, etc.). Another important aspect analyzed
is the input representation that these models use to generate music to understand if
these representations are suitable for composing. This gives us some insights on how
these models could be improved, if these NN architectures are powerful enough to
compose new music with a certain level of creativity, and the directions and future
work that should be done in music composition with DL.

1.4 Chapter Structure

In this chapter, we make an analysis of the symbolic music composition task from
the composition process and the type of generated output perspectives. Therefore,
we do not cover the performance or synthesis tasks. This chapter is structured as
follows. Section 2 introduces a general view of the music composition process and
music basic principles. In Sect. 3, we give an overview of state-of-the-art methods
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Fig. 1 (a) VAE [37], (b)
GAN [21], and (c)
transformer general
architecture. Reproduced
from [61]
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from the melodic composition perspective. We also examine how these models deal
with the harmony and structure. In Sect. 4, we describe DL models that generate
multi-track or multi-instrument music. In Sect. 5, we show different methods and
metrics that are commonly used to evaluate the output of a music generation model.
In Sect. 6, we describe the open questions in music generation field by analyzing the
models described in the previous sections. Finally, in Sect. 7, we expose future work
and challenges that are still being studied in the music generation with DL field.

2 The Music Composition Process

Much like written language, the music composition process is a complex process
that depends on a large number of decisions [41]. In the music field, this process
[11] depends on the music style we are working with. As an example, it is very
common in Western classical music to start with a small unit of one or two bars
called motif and develop it to compose a melody or music phrase, and in styles like
pop or jazz, it is more common to take a harmonic progression and compose or
improvise a melody ahead of it. In spite of the music style we are composing in,
when a composer starts a piece of music, there is some basic melodic or harmonic
idea behind it. From the Western classical music perspective, this idea (or motif )
is developed by the composer to construct the melody or phrase that generates or
follows a certain harmonic progression, and then these phrases are structured in
sections. The melody can be constructed after the harmonic progression is set, or it
can also be generated in the first place and then be harmonized. How the melody
is constructed and the way it is harmonized are decisions made by the composer.
Each section has its own purpose which means that it can be written in different
tonalities and its phrases usually follow different harmonic progressions than the
other sections. Sometimes, music pieces have a melodic part and an accompaniment
part. The melodic part of a music piece can be played by different instruments whose
frequency range may or may not be similar, and the harmonic part gives the piece
a deep and structured feel. The instruments, which are not necessarily in the same
frequency range, are combined with Instrumentation and Orchestration techniques
(see Sect. 3.2). These elements are crucial in musical composition, and they are
also important keys when defining the style or genre of a piece of music. Music
has two dimensions, the time and the harmony dimensions. The time dimension is
represented by the notes duration or rhythm which is the lowest level in this axis.
In this dimension, notes can be grouped or measured in units called bars, which are
ordered groups of notes. The other dimension, harmony, is related to the note values
or pitch. If we think of an image, time dimension would be the horizontal axis and
harmony dimension the vertical axis. Harmony does also have a temporal evolution,
but this is not represented in music scores. There is a very common software-based
music representation called piano-roll that follows this logic.

The music time dimension is structured in low-level units that are notes. Notes
are grouped in bars that form motifs. In the time high-level dimension, we can find
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Fig. 2 (a) General music composition scheme and (b) an example of the beginning of Beethoven’s
fifth symphony with music levels or categories

sections which are composed by phrases that last eight or more bars (this depends
on the style and composer). The lowest level in the harmony dimension is the note
level. The superposition of notes played by different instruments creates chords. The
sequence of chords is called harmonic progressions or chord progressions that are
relevant to the composition, and they also have dependencies in the time dimension.
Having said that, we can think about music as a complex language model that
consists of short- and long-term relationships. These relationships extend in two
dimensions, the time dimension which is related to music structure and the harmonic
dimension which is related to the notes or pitches and chords, that is, the harmony.

From the symbolic music generation and analysis points of view, based on the
ideas of Walton [63], some of the basic music principles or elements are (see
Fig. 2):

– Harmony. It is the superposition of notes that form chords that compose a chord
progression. The note level can be considered as the lowest level in harmony, and
the next level that can be considered is the chord level. The highest level is the
progression level which usually belongs to a certain tonality in tonal music.

– Music Form or Structure. It is the highest level that music presents, and it is
related to the time dimension. The smallest part of a music piece is the motif
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which is developed in a music phrase, and the combination of music phrases
forms a section. Sections in music are ordered depending on the music style
such as intro-verse-chorus-verse-outro for some pop songs (also represented
as ABCBA) or exposition-development-recapitulation or ABA for sonatas. The
concatenation of sections that can be in different scales and modes gives us the
entire composition.

– Melody and Texture. Texture in music terms refers to the melodic, rhythmic, and
harmonic contents that have to be combined in a composition in order to form
the music piece. Music can be monophonic or polyphonic depending on the notes
that are played at the same time step and homophonic or heterophonic depending
on the melody, if it has or not accompaniment.

– Instrumentation and Orchestration. These are music techniques that take into
account the number of instruments or tracks in a music piece. Whereas instru-
mentation is related to the combination of musical instruments which compose
a music piece, orchestration refers to the assignment of melodies and accompa-
niment to the different instruments that compose a determined music piece. In
recording or software-based music representation, instruments are organized as
tracks. Each track contains the collection of notes played on a single instrument
[18]. Therefore, we can call a piece with more than one instrument as multi-track
which refers to the information that contains two or more tracks where each track
is played by a single instrument. Each track can contain one note or multiple
notes that sounds simultaneously, leading to monophonic tracks and polyphonic
tracks, respectively.

Music categories are related between them. Harmony is related to the structure
because a section is usually played in the same scale and mode. There are cadences
between sections, and there can also be modulations which change the scale of
the piece. Texture and instrumentation are related to timbral features, and their
relationship is based on the fact that not all the instruments can play the same
melodies. An example of that is when we have a melody with lots of ornamentation
elements which cannot be played with determined instrument families (because of
a fact of each instrument technique possibilities or a stylist reason).

Another important music attribute is the dynamics, but they are related to the
performance rather than the composition itself, so we will not cover them in this
chapter. In Fig. 2, we show the aspects of the music composition process that we
cover in this chapter, and the relationships between categories and the sections of
the chapter in which each topic is discussed are depicted.

3 Melody Generation

A melody is a sequence of notes with a certain rhythm ordered in an aesthetic way.
Melodies can be monophonic or polyphonic. Monophonic refers to melodies in
which only one note is played at a time step, whereas in polyphonic melodies, there
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Fig. 3 Scheme of an output-like score of melody generation models

is more than one note being played at the same time step. Melody generation is
an important part of music composition, and it has been attempted with algorithmic
composition and with several of the NN architectures that include generative models
such as VAEs or GANs, recurrent neural networks (RNNs) used for auto-regression
tasks such as LSTM, neural autoregressive distribution estimators (NADEs) [38], or
current models used in natural language processing like transformers [61]. In Fig. 3,
we show the scheme with the music basic principles of an output-like score of a
melody generation model.

3.1 Deep Learning Models for Melody Generation: From
Motifs to Melodic Phrases

Depending on the music genre of our domain, the human composition process
usually begins with the creation of a motif or a chord progression that is then
expanded to a phrase or melody. When it comes to DL methods for music
generation, several models can generate short-term notes sequences. In 2016, the
very first DL models attempted to generate short melodies with recurrent neural
networks (RNNs) and semantic models such as unit selection [4]. These models
worked for short sequences, so the interest to create entire melodies grew in parallel
to the birth of new NNs. Derived from these first works and with the aim of creating
longer sequences (or melodies), other models that combined NNs with probabilistic
methods came up. An example of this is Google’s Magenta Melody RNN models
[62] released in 2016 and the Anticipation-RNN [24] and DeepBach [25] both
published in 2017. DeepBach is currently considered one of the current state-of-the-
art models for music generation because of its capacity to generate 4-voice chorales
in the style of Bach.

However, these methods cannot generate new melodies with a high level of
creativity from scratch. In order to improve the generation task, generative models
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were chosen by researchers to perform music composition. In fact, nowadays, one
of the best-performing models to generate motifs or short melodies from 2 to 16
bars is MusicVAE1 [50] which was published in 2018. MusicVAE is a model for
music generation based on a VAE [37]. With this model, music can be generated by
interpolating in a latent space. This model is trained with approximately 1.5 million
songs from the Lakh MIDI Dataset (LMD)2 [49], and it can generate polyphonic
melodies for almost 3 instruments: melody, bass, and drums. After the creation of
MusicVAE model along with the birth of new NN architectures in other fields, the
necessity and availability of new DL-based models that can create longer melodies
grew and this led to the birth of new transformer-based models for music generation.
Examples of these models are the Music Transformer [33] in 2018, and models that
use pre-trained transformers such as MuseNet in 2019 proposed by OpenAI [47]
which uses the GPT-2 to generate music. These transformer-based models, such as
Music Transformer, can generate longer melodies and continue a given sequence,
but after a few bars or seconds, the melody ends up being a bit random, that is, there
are notes and harmonies that do not follow the musical sense of the piece.

In order to overcome this problem and develop models that can generate longer
sequences without losing the sense of the music generated in the previous bars
or the main motifs, new models were born in 2020 and 2021 as combinations of
VAEs, transformers, or other NNs or machine learning algorithms. Some examples
of these models are the TransformerVAE [36] and PianoTree [66]. These models
perform well even in polyphonic music, and they can generate music phrases. One
of the latest released models to generate entire phrases is the model proposed in
2021 by Mittal et al. [42] which is based in denoising diffusion probabilistic models
(DDPMs) [29] which are new generative models that generate high-quality samples
by learning to invert a diffusion process from data to Gaussian noise. This model
uses a MusicVAE 2-bar model to then train a diffusion model to capture the temporal
relationships among the VAE latents zk with k = 32 which are the 32 latent variables
that allows to generate 64 bars (2 bars per latent). In spite that there can be generated
longer polyphonic melodies, they do not follow a central motif so they tend to lose
the sense of a certain direction.

3.2 Structure Awareness

As we mentioned in Sect. 1, music is a structured language. Once melodies have
been created, they must be grouped into bigger sections (see Fig. 2) which play a
fundamental role in a composition. These sections have different names that vary
depending on the music style such as introduction, chorus, or verse for pop or trap
genres and exposition, development, or recapitulation for classical sonatas. Sections

1 https://magenta.tensorflow.org/music-vae, accessed August 2021.
2 https://colinraffel.com/projects/lmd/, accessed August 2021.
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can also be named with capital letters, and song structures can be expressed as
ABAB, for example. Generating music with structure is one of the most difficult
tasks in music composition with DL because structure means an aesthetical sense
of rhythm, chord progressions, and melodies that are concatenated with bridges and
cadences [39].

In DL, there have been models that have tried to generate structured music by
imposing the high-level structure with the self-similarity constrains. An example of
that is the model proposed by Lattner et al. in 2018 [39] which uses a convolutional
restricted Boltzmann machine (C-RBM) to generate music and self-similarity
constrain with a self-similarity matrix [45] to impose the structure of the piece as
if it was a template. This method which imposes a structure template is similar to
the composition process that a composer follows when composing music, and the
resulting music pieces followed the imposed structure template. Although new DL
models are trending to be end to end, and new studies about modeling music with
structure are being released [7], there have not been DL models that are capable of
generating structured music by themselves, that is, without the help of a template or
high-level structure information that is passed to the NN.

3.3 Harmony and Melody Conditioning

Inside music composition with DL, there is a task that is the harmonization of
a given melody which differs to the task of creating a polyphonic melody from
scratch. On the one hand, if we analyze the harmony of a created melody from
scratch with a DL model, we saw that music generated with DL is not well
structured as it does not compose different sections and write aesthetic cadences
or bridges between the sections in an end-to-end way yet. In spite of that, the
harmony generated by transformer-based models that compose polyphonic melodies
is coherent in the first bars of the generated pieces [33] because it follows a
certain key. We have to emphasize here that these melodies are written for piano,
which differs from multi-instrument music that presents added challenges such as
generating appropriate melodies or accompaniments for each instrument or deciding
which instruments make up the ensemble (see Sect. 4).

On the other hand, the task of melody harmonization consists of generating the
harmony that accompanies a given melody. The accompaniment can be a chord
accompaniment regardless of the instrument or the track where the chords are and
multi-track accompaniment where the notes in each chord belong to a specific
instrument. The first models for harmonization used HMM, but these models were
improved by RNNs. Some models predicted chord functions [70], and other models
match chord accompaniments for a given melody [69]. Regarding the generation
of accompaniment with different tracks, there have been proposed GAN-based
models which implement lead sheet arrangements. In 2018, a Multi-Instrument Co-
Arrangement Model called MICA [72] and its improvement MSMICA in 2020 [73]
were proposed to generate multi-track accompaniment. There is also a model called
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the Bach Doodle [32] which used Coconet [31] to generate accompaniments for
a given melody in Bach style. The harmonic quality of these models improves
the harmony generated by models that create polyphonic melodies from scratch
because the model focus on the melodic content to perform the harmonization which
represents a smaller challenge than generating an entire well-harmonized piece from
scratch.

Several additional tasks remain within music generation with DL using condi-
tioning, such as generating a melody given a chord progression, which is a way of
composing that humans follow. These tasks have been addressed with variational
autoencoders (VAEs) [57], generative adversarial networks or GAN-based models
[26, 59],3 and end-to-end models [72]. Other models perform the full process of
composing, such as ChordAL [56]. This model generates chords, and then the
obtained chord progression is sent to a melody generator, and the final output is
sent to a music style processor. Models like BebopNet [26] generate a melody from
jazz chords because this style presents additional challenges in the harmony context.

3.4 Genre Transformation with Style Transfer

In music, a style or genre is defined as a complex mixture of features ranging
from music theory to sound design. These features include timbre, the composition
process, and the instruments used in the music piece or the effects with which music
is synthesized. Due to the fact that there are lots of music genres and the lack of
datasets for some of those genres, it is common to use style transfer techniques
to transform music in a determined style into other style by changing the pitch of
existing notes or adding new instruments that fit in the style into which we want to
transform the music.

In computer-based music composition, the most common technique for perform-
ing style transfer in music is to obtain an embedding of the style and to use this
embedding or feature vector to generate new music. Style transfer [20] in NNs
was introduced in 2016 by Gatys et al. with the idea of applying style features
to an image from another image. One of the first studies that used style transfer
for symbolic music generation was MIDI-VAE [5] in 2018. MIDI-VAE encodes the
style in the latent space as a combination of pitch, dynamics, and instrument features
to generate polyphonic music. Style transfer can also be achieved with transfer
learning [74]. The first work that used transfer learning to perform style transfer was
a recurrent VAE model for jazz which was proposed by Hung et al. [34] in 2019.
Transfer learning is done by training the model on the source dataset and then fine-
tuning the resulting model parameters on the target dataset that can be in a different
style than the source dataset. This model showed that using transfer learning to
transform a music piece in a determined style to another is a great solution because

3 https://shunithaviv.github.io/bebopnet/, accessed August 2021.
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it could not only be used to transform existing pieces in new genres but it could also
be used to compose music from scratch in genres that are not present in the music
composition datasets that are being used nowadays. An example of this could be the
use of a NN trained with a large dataset for pop such as the Lakh MIDI Dataset
(LMD) [49] and use of this pre-trained model to generate urban music through
transfer learning.

Other music features such as harmony and texture (see Fig. 2) have been also
used as style transfer features [65–67]. There have also been studied fusion genre
models in which different styles are mixed to generate music in an unknown
style [8].

4 Instrumentation and Orchestration

As we mentioned in Sect. 2, instrumentation and orchestration are fundamental
elements in the musical genre being composed and may represent a characteristic
signature of each composer by the use of specific instruments or the way their com-
positions are orchestrated. An example of that is the orchestration that Beethoven
used in his symphonies that changed the way in which music was composed [23].
Instrumentation is the study of how to combine similar or different instruments in
varying numbers in order to create an ensemble. Orchestration is the selection and
combination of similarly or differently scored sections [54]. From that, we can relate
instrumentation as the color of a piece and orchestration to the aesthetic aspect of the
composition. Instrumentation and orchestration have a huge impact on the way we
perceive music and so, to the emotional part of music, but, although they represent
a fundamental part of the music, emotions are beyond the scope of this chapter.

4.1 From Polyphonic to Multi-Instrument Music Generation

In computer-based music composition, we can group instrumentation and orches-
tration concepts in multi-instrument or multi-track music. However, the DL-based
models for multi-instrument generation do not work exactly with those concepts.
Multi-instrument DL-based models generate polyphonic music for more than one
instrument, but does the generated music follow a coherent harmonic progression?
Is the resulting arrangement coherent in terms of instrumentation and orchestration,
or do DL-based models just generate multi-instrument music not taking into account
the color of each instrument or the arrangement? In Sect. 3, we showed that
polyphonic music generation could compose music with a certain harmonic sense,
but when facing multi-instrument music, one of the most important aspects to take
into account is the color of the instruments and the ensemble. Deciding how many
and which instruments are in the ensemble and how to divide the melody and
accompaniment between them is not yet a solved problem in music generation with
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Fig. 4 Scheme of an output-like score of multi-instrument generation models

DL. In recent years, these challenges have been faced by building DL models that
generate music from scratch that can be interactive models in which humans can
select the instruments of the ensemble [18]. There are also models that allow to
inpaint instruments or bars. We describe these models and answer to the exposed
questions in Sect. 4.2. In Fig. 4, we show the scheme with the music basic principles
of an output-like score of a multi-instrument generation model.

4.2 Multi-Instrument Generation from Scratch

The first models that could generate multi-track music have been proposed recently.
Prior to multi-track music generation, some models generated the drums track for
a given melody or chords. An example of those models is the model proposed in
2012 by Kang et al. [53] which accompanied a melody in a given scale with an
automated drums generator. Later on, in 2017, Chu et al. [10] used a hierarchical
RNN to generate pop music in which drums were present.

One of the most commonly used architectures in music generation is the
generative models such as GANs and VAEs. The first considered and most well-
known model for multi-track music generation is MuseGAN [15], presented in
2017. Then, more models followed the multi-instrument generation task [16, 71],
and later in 2020, other models based on autoencoders such as MusAE [60] were
released. The other big group of NN architectures that have been used recently
to generate music are the transformers. The most well-known model for music
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Fig. 5 MMM token representations. Reproduced from [18]

generation with transformers is the Music Transformer [33] for piano polyphonic
music generation. In 2019, Donahue et al. [14] proposed LakhNES for multi-track
music generation, and in 2020, Ens et al. proposed a conditional multi-track music
generation model (MMM) [18] which is based on LakhNES and improves the token
representation of this previous model by concatenating multiple tracks into a single
sequence. This model uses a MultiInstrument and a BarFill representations which
are represented in Fig. 5. In Fig. 5, we show the MultiInstrument representation
which contains the tokens that the MMM model uses for generating music and the
BarFill representation that is used to inpaint, that is, generating a bar or a couple of
bars but maintaining the rest of the composition.

From the composition process perspective, these models do not orchestrate, but
they create music from scratch or by inpainting. This means that these models do
not choose the number of instruments and do not generate high-quality melodic
or accompaniment content related to the instrument that is being selected. As an
example, the MMM model generates melodic content for a predefined instrument
which follows the timbral features of the instrument, but when inpainting or
recreating a single instrument while keeping the other tracks, it is sometimes
difficult to follow the key in which the other instruments are composed. This leads
us to the conclusion that multi-instrumental models for music generation focus on
end-to-end generation, but still do not work well when it comes to instrumentation or
orchestration, as they still cannot decide the number of instruments in the generated
piece of music. They generate music for the ensemble they were trained on, such as
LakhNES [14], or they take predefined tracks to generate the content of each track
[18]. More recent models, such as MMM, are opening up interactivity between
human and artificial intelligence in terms of multi-instrument generation, which
will allow better tracking of the human compositional process and thus improve
the music generated with multiple instruments.
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5 Evaluation and Metrics

Evaluation in music generation can be divided according to the way in which the
output of a DL mode is measured. Ji et al. [35] differentiate between the evaluation
from the objective and subjective perspectives. In music, it is necessary to measure
the results from a subjective perspective because it is the type of evaluation that tells
us how much creativity the model brings compared to human creativity. Sometimes,
the objective evaluation that calculates the metrics of the results of a model can give
us an idea of the quality of these results, but it is difficult to find a way to relate it
to the concept of creativity. In this section, we show how the state-of-the-art models
measure the quality of their results from objective and subjective points of view.

5.1 Objective Evaluation

The objective evaluation measures the performance of the model and the quality
of its outputs using some numerical metrics. In music generation, there is the
problem of comparing models trained for different purposes and models trained
with different datasets, so we give a description of the most common metrics used
in state-of-the-art models. Ji et al. [35] differentiate between model metrics and
music metrics or descriptive statistics and other methods such as pattern repetition
[64] or plagiarism detection [25].

When attempting to measure the performance of a model, the most used metrics
depending on the DL model used to generate music are the loss, perplexity, BLEU
score, precision (P), recall (R), or F-score (F1). Normally, these metrics are used to
compare different DL models that are built for the same purpose.

Loss is usually used to show the difference between the inputs and outputs of
the model from a mathematical perspective, while, on the other hand, perplexity
tells us the generalization capability that a model has, which is more related to how
the model generates new music. As an example, the Music Transformer [33] uses
the loss and the perplexity to compare the outputs between different transformer
architectures in order to validate the model, TonicNet [48] only uses the loss for the
same purpose, and MusicVAE [50] only uses a measure that indicates the quality of
reconstruction that the model has, but it does not use any metric to compare between
other DL music generation models.

Regarding metrics that are specifically related to music, that is, those that take
into account musical descriptors, we can find that these metrics help to measure
the quality of a composition. According to Ji et al. [35], these metrics can be
grouped into four categories: pitch-related, rhythm-related, harmony-related, and
style transfer-related. Pitch-related metrics [35], such as scale consistency, tone
spam, ratio of empty bars, or number of pitch classes used, are metrics that measure
pitch attributes in general. Rhythm-related metrics take into account the duration
or pattern of the notes and are, for example, the rhythm variations, the number of
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concurrent three or four notes, or the duration of repeated pitches. The harmony-
related metrics measure the chords entropy, distance, or coverage. These three
metric categories are used by models like MuseGAN [15], C-RNN-GAN [43], or
JazzGAN [59]. Finally, techniques related to style transfer help to understand how
close or far the generation is from the desired style. These include, among others,
the style fit or the content preservation [6].

5.2 Subjective Evaluation

The subjective perspective determines how the generated music is in terms of
creativity and novelty, that is, to what extent the music generated can be considered
art. There is no a way to define art, although art involves creativity and aesthetics.
Sternberg and Kaufman [55] defined creativity as “the ability to make contributions
that are both novel and appropriate to the task, often with an added component such
as being quality, surprising, or useful.” Creativity requires a deeper understanding
of the nature and use of musical knowledge. According to Ji et al. [35], there is a
lack of correlation between the quantitative evaluation of music quality and human
judgement, which means that music generation models must be also evaluated from
a subjective perspective which would give us insights of the creativity of the model.
The most used method in subjective evaluations is the listening test which often
consists of humans trying to differentiate between machine-generated or human-
created music. This method is known as the Turing test which is performed to
test DeepBach [25]. In this model, 1.272 people belonging to different musical
experience groups took the test. This test showed that the more complex the model
was, the better outputs it got. MusicVAE [50] also perform a listening test and
the Kruskal-Wallis H test to validate the quality of the model, which conclude
that the model performed better with the hierarchical decoder. MuseGAN [15] also
conducted a listening test with 144 users divided into groups with different musical
experience, but there were predefined questions that the users had to vote in a range
from 1 to 5: the harmony complaisance, the rhythm, the structure, the coherence,
and the overall rating.

Other listening methods require scoring the generated music; this is known as
side-by-side rating [35]. It is also possible to ask some questions to the listeners
about the creativity of the model or the naturalness of the generated piece, among
other questions, depending on the generation goal of the model. One important thing
to keep in mind in listening tests is the variability of the population that is chosen
for the test (if listeners are music students with a basic knowledge of music theory,
if they are amateurs and so they do not have any music knowledge, or if they are
professional musicians). The listeners must have the same stimuli and also listen
to the same pieces and have as reference (if it applicable) the same human-created
pieces. Auditory fatigue must also be taken into account as there can be an induced
bias in the listeners if they listen to similar samples for a long period of time.
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Having said that, we can conclude that listening tests are indispensable when it
comes to music generation because it gives a feedback of the quality of the model
and they can also be a way to find the better NN architecture or DL model that is
being studied.

6 Discussion

We have showed that music is a structured language model with temporal and
harmonic short- and long-term relationships which requires a deep understanding of
all of its insights in order to be modeled. This, in addition to the variety of genres and
subgenres that exist in music and the large number of composing strategies that can
be followed to compose a music piece, makes the field of music generation with DL
a constantly growing and challenging field. Having described the music composition
process and recent work in DL for music generation, we will now address the issues
raised in Sect. 1.3.

Are the Current DL Models Capable of Generating Music with a Certain
Level of Creativity? The first models that generated music with DL used RNNs
such as LSTMs. These models could generate notes, but they failed when they
generated long-term sequences. This was due to the fact that these NNs did not
handle the long-term sequences that are required for music generation. In order to
solve this problem and being able to generate short motifs by interpolating two
existing motifs or sampling from a distribution, MusicVAE was created. But some
questions arise from here: Do interpolations between existing motifs generate high-
quality ones which have sense inside the same music piece? If we use MusicVAE
for creating a short motif, we could get very good results, but if we use this kind
of models to generate longer phrases or motifs that are similar to the inputs, these
interpolations may output motifs that can be aesthetic, but sometimes they do not
follow any rhythmic or notes direction (ascendent or descendent) pattern that the
inputs have. Therefore, these interpolations usually cannot generate high-quality
motifs because the model does not understand the rhythmic patterns and notes
directions. In addition, chord progressions normally do have inversions, and there
are rules in classical music or stylistic restrictions in pop, jazz, or urban music that
determine how each chord is followed by another chord. If we analyze the generated
polyphonic melodies of DL methods, there is a lack of quality in terms of harmonic
content, because NNs which are trained to generate music could not understand all
these intricacies that are present in the music language or because this information
should be passed to the NN as part of the input, for example, as tokens.

What is the Best NN Architecture to Perform Music Composition with DL?
The transformer architecture has been used with different attention mechanisms
that allow longer sequences to be modeled. An example of this is the success of
the MMM model [18] that used GPT-2 to generate multi-track music. Despite the
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fact that the model used a pre-trained transformer for text generation, it generates
coherent music in terms of harmony and rhythm. Other architectures use generative
networks such as GANs or VAEs and also a combination of these architectures with
transformers. The power that brings these models is the possibility to extract high-
level music attributes such as the style and low-level features that are organized in a
latent space. This latent space is then used to interpolate between those features and
attributes to generate new music based on existing pieces and music styles.

Analyzing the NN models and architectures that have been used in the past years
to generate music with DL, there is not a specific NN architecture that performs
better for this purpose because the best NN architecture that can be used to build a
music generation model will depend on the output that we want to obtain. In spite
of that, transformers and generative models are emerging as the best alternatives
in this moment as the latest works in this domain demonstrate. A combination of
both models is also a great option to perform music generation [36] although it
depends on the output we want to generate, and sometimes the best solution comes
from a combination of DL with probabilistic methods. Another aspect to take into
account is that generally, music generation requires models with a large number of
parameters and data. We can solve this problem by taking a pre-trained model as
some state-of-the-art models which we have described in the previous sections and
then performing fine-tuning to another NN architecture. Another option is having
a pre-trained latent space which has been generated by training a big model with a
huge dataset like MusicVAE proposes and then training a smaller NN with less data
taking advantage of the pre-trained latent space in order to condition the style of the
music compositions as MidiMe proposes [13].

Could End-to-End Methods Generate Entire Structured Music Pieces? As we
described in Sect. 3.2, nowadays, there are structure template-based models that can
generate structured music [39], but there is not yet an end-to-end method that can
compose a structured music piece. The music composition process that a human
composer follows is similar to this template-based method. In the near future, it
would be likely that AI could compose structured music from scratch, but the
question here is whether AI models for music generation will be used to compose
entire music pieces from scratch or whether these models would be more useful as
an aid to composers and thus as an interaction between humans and AI.

Are the Composed Pieces with DL Just an Imitation of the Inputs or Can NNs
Generate New Music in Styles That Are Not Present in the Training Data?
When training DL models, some information that is in the input which is passed to
the NN can be present without any modification in the output. Even that, MusicVAE
[50] and other DL models for music generation showed that new music can be
composed without imitating existing music or committing plagiarism. Imitating the
inputs could be a case of overfitting which is never the goal of a DL model. It
should also be taken into account that it is very difficult to commit plagiarism in
the generation of music due to the great variety of instruments, tones, rhythms, or
chords that may be present in a piece of music.
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Should NNs Compose Music by Following the Same Logic and Process as
Humans Do? We showed that researchers started to build models that could
generate polyphonic melodies but these melodies did not follow any direction after
a few bars. When MusicVAE came out, it was possible to generate higher-quality
motifs, and this encouraged new studies to generate melodies taking information
of past time steps. New models such as diffusion models [42] are using these
pre-trained models to generate longer sequences to let melodies follow patterns
or directions. We also show that there are models that can generate a melody by
conditioning it with chord progressions which is the way of composing music in
styles like pop. Comparing the human way of composing to the DL models that
are being used to generate music, we can see some similarities of both processes
specially in auto-regressive models. Auto-regression consists of predicting the
future values from past events. Some DL methods are auto-regressive, and the fact
that new models are trying to generate longer sequences by taking information of
past time steps resembles the human classical music composing process.

How Much Data do DL Models for Music Generation Need? This question can
be answered partially if we look at the state-of-the-art models. MusicVAE uses the
LMD [49] with 3.7 million melodies, 4.6 million drum patterns, and 116 thousand
trios. Music Transformer instead uses only 1.100 piano pieces from the Piano-e-
Competition to train the model. Other models such as the MMM takes the GPT-2
which is a pre-trained transformer with lots of text data. This leads us to affirm
that DL models for music generation do need lots of data, specially when training
generative models or transformers, but taking pre-trained models and performing
transfer learning is also a good solution specially for music genres that are not
represented in the actual datasets for symbolic music generation.

Are Current Evaluation Methods Good Enough to Compare and Measure
the Creativity of the Composed Music? As we described in Sect. 5, there are
two evaluation categories: the objective and the subjective evaluation. Objective
evaluation metrics are similar between existing methods, but there is a lack of
a general subjective evaluation method. The listening tests are the most used
subjective evaluation method, but sometimes the Turing test which just asks to
distinguish between a computer-based and a human composition is not enough to
know all the characteristics of the compositions created by a NN. The solution to
this problem would be to ask general questions related to the quality of the music
features showed in Fig. 2 as MuseGAN proposes and use the same questions and the
same rating method in the DL models to set a general subjective evaluation method.
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7 Conclusions and Future Work

In this chapter, we have described the state of the art in DL music generation by
giving an overview of the NN architectures that have been used for DL music
generation and discussed the challenges that are still open in the use of deep NNs in
music generation.

The use of DL architectures and techniques for the generation of music (as
well as other artistic content) is a growing area of research. However, there are
open challenges such as generating music with structure, analyzing the creativity of
the generated music, and building interactivity models that could help composers.
Future work should focus on better modeling the long-term relationships (in time
and harmony axes) in order to generate well-structured and harmonized music that
does not get loose after a few bars and inpainting or human-AI interaction which
is a task with a growing interest in recent years. There is also a pending challenge
that has to do with transfer learning or the conditioning of the generation of styles
that allows not to be restricted only to the same authors and genres that are present
in the publicly available datasets, such as the JSB Chorales Dataset or the Lakh
MIDI Dataset, which makes most of the state-of-the-art works only focus on the
same music styles. When it comes to multi-instrument generation, this task does
not follow the human composing process, and it will be interesting to see new
DL models that first compose a high-quality melodic content and then decide by
themselves or with human’s help the number of instruments of the music piece
and be able to write music for each instrument attending to its timbral features.
Further questions related to the directions that music generation with DL should
focus on, that is, building end-to-end models that can generate high-creative music
from scratch or interactive models in which composers could interact with the AI,
are a task that the future will solve, although the trending of human-AI interaction
is growing faster everyday.

There are more open questions in music composition with DL that are not in the
scope of this chapter—questions like who owns the intellectual property of music
generated with DL if the NNs are trained with copyrighted music. We suggest that
this would be an important key in commercial applications. The main key here is
to define what makes a composition different from others, and there are several
features that play an important role here. As we mentioned in Sect. 1, these features
include the composition itself, but also the timbre and effects used in creating the
sound of the instruments. From the composition perspective which is the scope of
our study, we can state that when generating music with DL, it is always likely to
generate music that is similar to the inputs, and sometimes the music generated has
patterns taken directly from the inputs, so further research would have to be done in
this area from the point of view of music theory, intellectual property, and science
to define what makes a composition different from others and how music generated
with DL could be registered.
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We hope that the analysis presented in this chapter will help to better understand
the problems and possible solutions and thus may contribute to the overall research
agenda of DL-based music generation.
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Music Recommendation Systems:
Overview and Challenges

Makarand Velankar and Parag Kulkarni

1 Introduction

The internet has revolutionized the way people interact and communicate. An
enormous amount of data is available at the fingertips due to affordable technology.
It includes audio, video, and text from various media, blogs, books, journals,
and web pages. In music, a large number of songs are available on the internet.
As a result, music listening habits have changed in recent years. The storage
of songs on personal devices such as compact disks or hard disks is no longer
relevant. Instead, online streaming services dominate the music industry, and music
consumption patterns have shifted in recent years. Conventionally, the significant
issues faced by music recommendation systems are the cold start problem and
playlist generation. The cold start problem is recommending new users or songs
when no user or song history is available. The playlist is a personalized list of
favorite songs representing specific moods or artists or genres. Automatic playlist
generation is another significant challenge for precisely deducing the purpose of the
current playlist. The related problem is to rank songs in response to a user-selected
metadata query.

As per one survey done in the year 2019 [1], it was observed that 27% of people
use mobile phones for music listening. The trend to use smartphones for music
listening was more among youth mainly in the age range of 18 to 24 years where
48% prefer to use a mobile device for enjoying music. Different music streaming
apps have dominated the industry growth to cater for this changing need of users.
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In the survey done [2] in 2021, 443 million users had a paid subscription account,
which is increased by 18.5% compared with the previous year.

A significant noticeable change in music production has been observed in recent
years. Previously, only specific companies had recording set up used to produce the
music. Now, anyone can create music and upload it on different websites or social
media apps. With the massive amount of music available online, recommendation
systems must adapt to this rapid growth in music data and online demand. Specific
factors make the music recommendation system different from other recommenda-
tion systems [3]. It includes the duration of items, the magnitude of items, sequential
consumption, repeated recommendations, consumption behavior, listening intent,
occasion, context, and associated emotions. It is addressed using approaches such as
content-based recommendation, hybridization, and cross-domain recommendations.

In a content-based approach, the automatic feature extraction for each item is
done by extracting the feature vector. The feature vectors are created individually
and independently, considering the cross-relation among the training data set items.
Various approaches are used in recommendation systems. The collaborative and
hybrid approaches are currently dominating the music recommendation systems,
and researchers are also exploring different approaches. The scalability and com-
mercial viability of these approaches will decide the future revolutions in the music
recommendation systems. User orientation plays a crucial role in designing user
interfaces, easing user interactions, and getting implicit and explicit feedback to
improve the systems. User psychology and cognitive approaches are also being
studied in order to design an efficient recommendation system. Machine learning
approaches are explored to improve the performance for prediction, classification,
and clustering [4]. Novel trends related to technology advancement and user
perspectives, including popularity bias, provide new opportunities and challenges
in the changing times.

The chapter is organized in the following manner. Overview of different
approaches in recommendation systems and business aspects is covered in Sect. 2.
Section 3 covers user orientation and related aspects of the recommendation.
Current challenges and trends in music recommendation are covered in Sect. 4.
Finally, Sect. 5 provides concluding remarks and future directions in the field of
music recommendations.

2 Overview of Recommendation Systems

The recommendation systems can be broadly classified based on various parameters
such as technology, domain, geographical coverage, items, and system users.
The classification based on technology is as shown in Fig. 1. Content-based
recommendation systems predominantly use content in the form of metadata of
songs for the recommendation. User preferences are modelled using the history of
user interactions and preferences. The demographic filtering approach recommends
songs based on user location. Hybrid approaches attempt to build systems based on
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Fig. 1 Classification of recommendation systems

different approaches with benefits from them. Finally, the context-aware approach
attempts to identify user context for an effective recommendation. The following
subsections cover the popular approaches used today.

2.1 Content-Based Approach

The content-based technique recommends items by comparing their contents to a
user profile as shown in Fig. 2. The content-based approach relies on item similarity
based on identified features and recommends the items with similar features. K-
means clustering and Monte Carlo sampling are some of the standard methods used
to compute similarity. K-means clustering technique recommends songs based on
very little data, and hence, the problem of cold start is solved partially. K-means
clustering involves [5, 6] matching the similarity of cluster centroid attribute value
and item object attribute values. Different cluster centroids are made based on the
output of the K-means algorithm. New suggestions are provided by extracting the
quantity of Mel-frequency cepstral coefficients (MFCC) features [7], clustering it,
and thus obtaining the feature value of the item. Then, the metadata is put together
with their feature value into the database. For recommendation, the feature value of
the item is extracted. Next, the existing items in the database are used to compare the
distance; the lesser the absolute value, the more significant the similarity of items.

Different researchers propose various systems based on a content-based
approach. Zhong et al. [8] and Schedl [9] combined deep convolution neural
networks (DCNN) with content-based music recommendation as MusicCNNs.
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Fig. 2 Content-based filtering model

First, each song is split into 20 music segments and converted to images with the
help of Fourier transformation to feed them easily into MusicCNNs. The set of
audio descriptors are used to represent the content of each song [10–12]. Each
song’s acoustic features such as melody, tempo, loudness, rhythm, and timbre are
analyzed for the recommendation

Current challenges in the content-based model are:

1. Terms automatically assigned to the items must be first extracted from them.
Hence, a method must be chosen for this operation.

2. The term representations should compare items and user profiles meaningfully.
3. A learning algorithm learns the user profile based on seen items to make

recommendations.

The inability of the systems to deal with items that have no ratings is a significant
drawback according to [13, 14]. Various content-based approaches for feature
identification in music analytics covered by Velankar et al. [4] provide more music
features useful for the content-based approach. However, computational cost and
scalability issues, considering the enormous speed of data increase, are significant
challenges in effectively implementing a content-based approach.

2.2 Collaborative Approach

The collaborative filtering method produces automated predictions regarding users’
interests by considering preferences and taste information from multiple users. The
overall model is depicted in Fig. 3. Once a sufficient user history is generated, the
system matures and provides recommendations based on similar user profiles. This
approach assumes that users (considered as user clusters) with similar histories have
similar song tastes.

The two crucial types of collaborative filtering are memory-based and model-
based. Memory-based approach is further classified into item-item filtering and
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Fig. 3 Collaborative filtering model

user-item filtering [15, 16]. In the memory-based collaborative filtering method
[17], user-item filtering predicts the result based on the previous rating collection.
Grouping of users is done based on similar interests. Many user votes are used
to find the nearest neighbor and thus produce a new item. Whereas, [18] suggests
item-item filtering is independent of the number of items in the item inventory and
the number of users. It targets finding items identical to those that the user bought
instead of matching other identical users.

In model-based recommendations, the item attributes and users are represented
as latent feature vectors. Then, based on predicted rating, items are recommended.
Model-based collaborative filtering trains the system and models user’s preferences
using machine learning and data mining algorithms.

Sharma and Gera [19] and Sánchez-Moreno et al. [20] studied the problems
faced by the personalized recommendation systems using collaborative filtering.
The main problems faced are the prediction accuracy, cold start, and data sparsity
problem. Another issue was that the user-item matrix would keep growing, so the
computations could also increase exponentially. Cold start can be solved using
deep multi-modal approach [21, 22]. For automatic playlist generation, a significant
challenge is to deduce the purpose of the current playlist precisely. Another
challenge is to rank songs in response to a user-selected metadata query to keep
the user engaged for a longer time for the specific instance.
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2.3 Hybrid Approach

The shortcomings of content-based as well as collaborative models are addressed in
the hybrid model [23]. Furthermore, the recommendations based on hybrid models
can adopt different weight strategies in different situations. As per findings in [24],
the recommendation systems are majorly based on the two-dimension user vs item
matrix.

Hybrid perspective is accomplished in the following ways:

1. Separately implement the content-based method as well as collaborative method
and then merge their predictions.

2. Characteristics of the content-based method merged into a collaborative execu-
tion.

3. Collaborative characteristics merged into the execution of content-based. They
built a consolidated model with a fusion of collaborative and content-based
characteristics.

Figure 4 exhibits the general blocks in the hybrid model. Hybrid recommendation
systems are becoming increasingly popular in various fields such as online news
reading [25] and Netflix [26]. YouTube recommendation is of the top-N recom-
mendations type. It makes use of the association rule mining technique, where
algorithms such as personalized video ranker, top-N video ranker, and video-video
similarity are used[27]. Furthermore, a systematic review of near-duplicate video
retrieval techniques [28] provides new dimensions in video recommendation, which
applies to music considering the uploads of the same song by different artists.
Furthermore, context-based decision-making for emotion recognition for images

Fig. 4 Hybrid model
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[29] can be extended further to music videos for identifying emotional cues in a
hybrid approach. According to [30], the personalized TV recommendation system
(RS) based on user perspective takes into account user activity, mood, demographic
information, experience, and interest based on a hybrid technique. As the viewing
information is gathered, the recommendation accuracy will keep on increasing.

Hybrid models are extensively used in music recommendation [31]. As per [32,
33], a music recommendation system, which gives emotion-aware recommendations
and provides similarities between user information and music, is extracted. It can be
achieved by a combination of the outputs from different approaches. Fessahaye et al.
[34] proposed a hybrid algorithm using a deep learning classification model to result
in error-free recommendations with real-time prediction. It scores every song based
on hybridization and recommends k songs. Similarly, for Spotify recommendations,
two visualization [35, 36] hybrid techniques radar chart and sliders are used.

2.4 Context-Aware Approach

The substantial rise in the data generated from automated and electronic devices
has caused the need for intelligent applications and techniques, that can store
information, access, process, and analyze it to maximize the benefit of the users.
Context-aware recommendation systems (CARS) solve these data problems, which
act as tools to help the information seeking process. Context-based approach
explored by Khatavkar and Kulkarni [37], Kulkarni et al. [38], and Vidhate and
Kulkarni [39] provided the utility of the approach for document retrieval and recom-
mendation. CARS leverage contextual information as well as the two-dimensional
search processes, which results in better recommendations [40]. According to [41],
the dominant approach in CARS involves pre-filtering to integrate and represent the
contextual information of the user. However, sizable research is needed to compare
the results of various filtering methods. As a matter of fact, due to degrading
performance, pre-filtering does not dominate other filtering approaches. Verbert et
al. [42] suggests an example of a context-aware system for learning which takes
into account the noise level and location of the user in order to recommend learning
resources. Therefore, a contextual recommendation would suggest that learning
activities examine users’ knowledge of formerly learned topics. In this view, new
challenges arise to capture and understand the context and exploit the information
to create intelligent recommendations and consider the user’s current needs. In
conclusion, there is still no generalization in the algorithmic approaches being used
in CARS. Partially, this can be because of the undeveloped knowledge of contextual
preferences, nature of the data exploited in these studies, and lack of objective
validation methods. The further investigation by Adomavicius and Tuzhilin [43]
in this area identified challenges such as:

1. Building a generalized CARS framework
2. Developing standardized context-aware recommendation approaches
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3. Including context identification and incorporation
4. Incorporating dimensionality reduction techniques
5. Standardizing user modelling
6. Bench-marking data sets and evaluation mechanisms.

2.5 Business Aspects

Recommendation systems have certainly played a crucial role in ensuring cus-
tomer satisfaction and increasing revenue for online businesses. However, adopting
a suitable architecture that can handle complex algorithms and result in new
recommendations is essential for large-scale recommendation systems [44]. For
giant retailers like Amazon, a decent recommendation algorithm is scalable over
exceptionally massive client bases. Item lists require just sub-second handling time
to generate online suggestions, can answer promptly to changes in a customer’s
information in real time, and thus make persuasive suggestions for clients irrespec-
tive of the number of buys as well as ratings.

Bauer et al. [45] suggests business in the music industry has a theory of long tail
and short tail. Sales are pivoted on the hit songs, which form the head, and lesser-
known items from a long tail behind it. Therefore, selling small numbers of the long
tail is more profitable than substantial quantities of a small number of hits.

Business revenues and sales conversions rate can be significantly improved by
incorporating personalized conversational recommendation agents [46]. Traditional
conversation agents only make use of the present session information. Personalized
dialogue systems use current as well as past user choices to optimize each user
session. Information can be collected by asking questions, and deep reinforcement
learning algorithms do learning. Understanding user behavior from historical data
helps businesses overcome challenges like keeping appropriate stocks, managing
website traffic, and providing effective deliveries during shopping festivals.

2.6 Summary

Business aspects dominate the current recommendation system, with revenues
from advertisements as one of the significant sources of revenue. However, hybrid
approaches are becoming increasingly popular, and technology advancements will
lead to more mature and user-oriented recommendation systems in the coming
years. User orientation is the need for a recommendation system; moreover, it plays
a significant role in music recommendation due to enhancing or changing user
mood.
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3 User Orientation

The accuracy of recommendations majorly depends on the underlying filtering
algorithm. The significant factors go beyond the quality of the algorithm when
deciding the effectiveness of the recommendation system. Swearingen and Sinha
[47] suggests a theory that from a user’s point of view, an efficient system has logic
that is a little transparent and directs the user to a new and not yet recommended
item. It thus gives different ways to improve recommendations by considering or
removing particular items. For practical recommendations, users can give more
input to the system. Simply presenting the recommendation results is not sufficient.
It is more of making it clear whether the item is a good choice or not for the user by
giving a detailed description of the qualities of the recommended item. A variety of
factors influence the effectiveness of music recommendations, including the user’s
specific intent, personality, how much novelty users seek, and the user’s context.
Initially, it should provide recommendations that will build the trust of the new
users in the system [48]. Then, the familiar users may be provided diverse and novel
suggestions. It is observed that the success of recommendation systems is more
for low-risk items like movies, books, and music and less for high-risk fields such
as cars. The cause for this is the reluctance of the user to trust recommendations
they do not understand. Hence, detailed recommendations are required in high-
risk domains. From [44] perspective, to increase the user’s credibility over the
system, explanations for recommendations like the predicted ratings and related
items watched are provided. In music recommendation, the system should model
the user profile and present needs for an effective recommendation.

3.1 User Profiling

In various phases of a customer session, their inclination toward a suggestion can
change extensively. When a user logs in, the system has to know their inclination
and preference. When the user begins centering on a specific set of items, the
system can suggest comparative items. After a choice is made, a similar item
proposal turns out to be less significant. For instance, the kind of music users
listen to depends on their mood and emotions [49]. The general mood and the
emotional aspect of a user can be considered at a particular time of day. In
psychological studies, user personality is considered the main reason for variable
user behavior and preferences. Strong and direct correlations between user models
and user personality exist in recommendation systems. The Big Five Model helps to
measure a user’s personality quantitatively in terms of OCEAN known as Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism are the main user
personality traits. For generating group recommendations and the creation of diverse
recommendations, personality has proved to help solve the cold start problem.
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User profile modelling can be categorized into three domains—demographic,
psychographic, and geographic. According to user listening experience modelling
[50], user choices differ depending on their level of music expertise. It is observed
that user psychology helps to build user profiles and helps determine recommenda-
tions.

3.2 Psychology and Cognitive Aspects

The data generated by social recommendation systems are heterogeneous, volatile,
and massive in volume. Semantic technologies are used to overcome challenges
faced by classical and social recommendation systems. For instance, personalized
advertisements are recommended to users by dynamic semantic profiling, under-
standing their activities and links in the social ontology model [51]. It enhances
recommendation systems’ content and visual appearance by building user-oriented
knowledge networks primarily based on user cognition. The field of user cognition
has found substantial application in the music industry. A system having context as
emotions is based on the fusion of user history and current emotions such as pleasure
or displeasure [52]. It can be achieved by using a novel human-computer interaction
in the form of wearable computing devices. It recognizes the emotions the user
is feeling and sends signals to the system. Situation-aware music recommendation
[53, 54] considers situational signals such as time of the day, ongoing activities and
mood of the user, weather conditions, and the day of the week. For example, the song
choices of a user would be different according to places like the gym and libraries.
Furthermore, the cultural pattern analysis in music usage is studied and scrutinized
under culture-aware music recommendations. It includes building models based
on different cultural music. Their amalgamation into a recommendation system is
crucial to upgrade the personalization and robustness of recommendations.

3.3 Summary

In the beginning, recommendation systems only used explicit ratings, collaborative
and content-based approaches, and demographic information. Later, they became
more intelligent and started using social data, moods, and emotions of users. Now,
recommendation systems are moving toward extracting context-aware information
from the Internet of Things, such as geographical and data like time and location.
Incorporating various data types leads recommendation systems to apply a hybrid
approach that gives better accuracy. Extracting and utilizing implicit user feedback
is becoming a critical factor in improving the accuracy and precision of the
recommendations. In addition, the user interface plays a crucial role in user
interaction with the system. These factors help in providing better business insights.
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4 Current Challenges and Trends in Music Recommendation

Listener emotions and song perception play a crucial role in music recommendation.
Individual likes/dislikes, musical and cultural background, and mood contribute to
the effectiveness of recommendation. Music consumption patterns have changed
drastically in recent years, and online music consumption is becoming more popular
among users. Frequent recommendation of popular songs is another challenge as it
leads to popularity bias in the recommendation systems.

4.1 Music Consumption

The kind of music we listen to depends on our mood and emotions. The general
mood and the emotional aspect of a user can be considered at a particular time
of day. In psychological studies, user personality is considered the main reason
for user behavior and variable preferences. The model named MUSIC [55] is one
approach—Mellow, Unpretentious, Sophisticated, Intense, and Contemporary. The
MUSIC preference attributes are calculated using attribute learning based on its
acoustic content whenever a new song is encountered. Then from user ratings, the
model gets to know the five factors of their personal preferences. Then taking the
estimated factors of music and user, the model rates the songs and recommends
them.

The arrival of streaming platforms is a significant change in the music industry.
They generate the most considerable recorded music revenue [56]. Streaming
services help users in music discovery with various tools. The tools are available for
text searching for song playlist, artist, release-related metadata, grouping albums by
themes or highlighting latest releases; song and album playlists created by various
theme, genre, mood, region-wise popularity charts and different hyperlinks for artist
and album name which can be clicked and divert the user to different parts of
catalogue. In general, subscriptions provided by the music streaming companies
contain ad-supported recommendations. The prior sequence of songs/ads needs
matters when deciding the correct time for exploration or exploitation. For example,
the AD-Song-AD sequence is likely to impact the user to change the station when
an explored song is recommended after the sequence. The recent proposal by Lex et
al. [57] uses the BLL equation from the cognitive architecture ACT-R approach for
modelling popularity and temporal drift of music genre preferences. Furthermore,
evaluate BLL on three groups of Last.fm users, separated based on their listening
behavior to the mainstream LowMS, MedMS, and HighMS.
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4.2 Popularity Bias

Implicit feedback to a recommendation system for a particular artist [58], can be
improved by taking into consideration the number of days an artists song and the
variety of songs heard by the user. The implicit matrix factorization can be trained
with these signals to increase the artist’s music consumption. [59] predicts the
preference of a target user for a target artist and defines the preference by scaling
the listening count in the range of [0, 1000]. It is done using four personalized
recommendations factors as UserItemAvg, UserKNN, UserKNNAvg, and NMF.
Further, it recommends the top 10 artists with the highest predicted preferences.

A similar study about music recommendation impacts the phenomenon of gender
bias [60] by introducing bias in data, boosting the existing biases, and strengthening
stereotypes. For the non popular artists [45], the factors that affect include (1)
popularity bias when popular songs tend to get more and more attention and
the rating system reinforces the popularity of the popular items and (2) superstar
economy speculations: Music recommendation is biased on popular items because
of their profits.

4.3 Trends in Music Recommendation

The future scope lies in advanced recommendation systems like context-awareness
systems, group recommendation systems, systems based on social networks, and
recommendation techniques based on computational intelligence, as displayed in
Fig. 5. Computational intelligence-based recommendation techniques consist of
approaches such as genetic algorithms, fuzzy logic, and Bayesian method. Social
network-based recommendation systems are built upon the social engagement of
one user with other users. Context-awareness recommendation systems use features
such as geographical locations and times.

Future research directions for technology perspective are:

1. Full page optimization algorithm understands the user behavior. It thus per-
sonalizes how user experience is blended with a different component for the
recommendation.

2. Personalizing how one recommends by thinking about pictures, depictions,
metadata, associations with different factors, and so forth as components that
can be customized.

3. Connecting indirect feedback or input to tons of contextual information.
4. Value-aware recommendations are where algorithms take the long haul value of

the recommended item into consideration so that algorithm can move toward
greater gains [61].

Another perspective, according to [62], is big data analytics. The users can
gain cognizance from big data, retrieve fruitful information, and suggest user-
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Fig. 5 Future directions of
research

centric recommendations. Cui et al. [63] suggests IoT service system involves
large-volume, complex, high-dimensional, sparse, rich-in-content data which can be
integrated with the novel intelligent optimization algorithm. As per [64, 65], future
systems can gather data, analyze attributes attached with the music in order to extract
significant features, and pre-process the metadata. First, a hidden Markov model is
used to learn and then advance and estimate the parameters using the Baum-Welch
algorithm. Next, the system generates random samples using the transition and
emission probability distribution. Finally, evaluation is done by selecting the sample
that has the highest likelihood. Several recommendation systems use single ratings
in predictions. It is considered a limitation since the user’s choice might consider
several aspects, so the accuracy of the prediction can increase due to additional
aspects. The future system can implement a deep learning-based collaborative
filtering model with multi-criteria [66].

The design of computer technology should include the user’s preference so
that the interaction between the user and system is enhanced. A personalized and
context-aware approach is likely to provide better recommendations. At present, the
recommendation system evaluation focuses on evaluating the list of recommenda-
tions given by the system as a whole rather than an individual user. In addition, there
is also a demand for recommendation systems for a group of users together. The
latest trend in personalization is based on recognition of human activity. It intends
to define and try new methods that automatically recognize human activities that
exploit signals recorded by worn and environmental devices. Instead of segmenting
users based on personalization rules, algorithms can be applied to deliver individual
experiences. It is done by providing content or product recommendations. High
customer demand and industrial competition have encouraged most businesses
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to look beyond mass production. As expected, affordable products are tailored
according to their unique requirements, and thus, the demand has turned to mass
personalization. So users want personalized appearances and functionalities along
with it being affordable. In mass personalization, a significant challenge is designing
the highest personalization at a low cost. A fuzzy-based system [67] provides intelli-
gent and personalized recommendations for electronic products by considering the
needs of the consumer in the form of features, their domain knowledge, and all
temporary information provided by them. These factors compute the optimality and
the quality of the product for the recommendation. Various domains of personalized
recommendation systems face a variety of challenges. Some challenges faced by
video streaming platforms such as YouTube mainly are the content uploaded by
users have below par or non-existent metadata, tracking user engagement with the
videos, and incorporating freshness in recommendations.

4.4 Summary

Specific challenges of the music recommendation systems are:

1. Catalogue aspects: New tracks are getting released constantly and are added to
the catalogue. An important quality factor to consider for some musical genres
might be the freshness of recommendations.

2. Preference information: Along with the challenge of correctly interpreting the
vast amounts of implicit feedback, the additional problem is that the preferences
can change over time.

3. Repeated recommendations: Repeatedly tuning to the same songs is, however,
expected. Suppose such repeated use is to be supported. In that case, algorithmic
approaches have to decide which tracks to recommend repeatedly and when to
recommend these tracks.

4. Immediate consumption and feedback: The recommendations provided on a
music streaming service are immediately consumed by the listeners. Many
musical genres (like jazz, classical music, or pop) have specific audiences, and
recommending trending popular items might easily lead to a bad user experience.

5. Context dependence and time variance: The ability to retrieve and include the
contextual factors can be important for a recommender’s quality perception and
acceptance.

6. Purposes and taste of music listening: The recommended items, along with
aligning to the current context, also need to satisfy the user’s purpose.

The music users prefer and stream to is affected by their mood, social envi-
ronment, or trends in the community. A significant number of recommendation
systems depend on acquiring user evaluations to foresee unknown ratings. A hidden
supposition in this methodology is that the user ratings majorly define user taste.
Furthermore, user ratings are more predictable when items with the same ratings
are gathered. Thus, extreme feedback is more reliable than mellow feedback.
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5 Conclusion and Future Directions

This chapter provides an overview of different approaches used in the evolving
recommendation systems. The different perspectives in technology, such as col-
laborative, content-based, and hybrid filtering models, help to identify the existing
advantages and shortcomings. It is concluded that hybrid models are the best fit.
In recommendation systems, user interface design is also very crucial. The user
feedback and interactions with the interface designed considering implicit cognitive
processes, helps boost business profits.

The hybrid models are likely to be used extensively soon, using benefits
from individual models and overcoming the current limitations. Moreover, the
hybrid model can be further enhanced by its amalgamation with future technology
trends. New models are likely to emerge with changing needs, usage patterns, and
improvements in the technologies. Specializing models for a customer segment with
specific needs can lead to better business opportunities than a generalized model.
The specialized, focused models can address the specific issues and need more
effectively.

Future research must incorporate various advanced technologies such as big
data analysis, IoT, machine learning, and artificial intelligence in recommendation
systems, resulting in better personalization. Also, attempts should be made to
counter the drawbacks of the current systems and improve their accuracy. As a
result, new solutions will emerge in the coming years with a more personalized
experience for the end users. In addition, it will be helpful to music and other
industries such as e-business to improve the recommendation’s effectiveness.
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Music Recommender Systems: A Review
Centered on Biases

Yesid Ospitia-Medina, Sandra Baldassarri, Cecilia Sanz,
and José Ramón Beltrán

1 Introduction

The music market has undergone significant changes in recent years, mainly as a
result of the digitization of sound and the emergence of new strategies adopted by
the music distribution process, which has shown a transition from physical media to
resources available through streaming services hosted in the cloud. The impact of
this transition can be evidenced in the 2021 Global Music Report which summarizes
statistical data from 2020: the global recorded music market grew by 7.4%, and
global streaming revenues increased by 18.5% [22]. From the point of view of
the challenges in the music market, this transition has generated new conditions
in the business model, especially for artists and listeners, creating a much closer
relationship for both, as well as new consumption possibilities [17, 40].

This evolution in the music market allows artist to skip many of the steps in
music production and distribution processes, since nowadays musical productions
can be made in a home studio and then distributed directly through the various
digital platforms without any intermediaries such as distributors, aggregators, or
retailers [17]. However, some musical pieces that are not produced through a
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professional recording studio under the supervision of experienced producers could
reveal musical deficiencies, as well as low sound quality; consequently, the artist’s
chances of success in the music industry could be negatively impacted. In addition,
although artists have several platforms with worldwide exposure on which to publish
their songs, the fact that millions of artists have access to these platforms results in
a high volume of musical content that grows constantly, generating a very high level
of competition among artists to be known and heard by the public. For listeners,
the current music market provides countless possibilities of consumption offered
by huge music databases. This creates a major challenge in terms of how the user
interacts with the platform, searches for songs, and successfully discovers songs that
are to his or her liking [28].

Given the challenges explained above, music recommender systems (MRS)
have emerged with the main objective of facilitating the user’s navigation through
large song repositories by providing suggestions for songs that are unknown to
the user and that he/she will probably like [36]. Several strategies are currently
available to achieve this objective, each one with its strengths and weaknesses.
Some MRS implement only one strategy, while others implement various as a result
of a hybrid design. The different strategies and the way they are used determine,
to a certain extent, the success of the recommendation of musical pieces, so a
thorough knowledge of their main characteristics and limits is very relevant. It
is also important to note that, despite the significant development of MRS today,
many artists, especially those who are not superstars, are dissatisfied with the actual
chances of their songs being recommended in a way that can boost their commercial
artistic career [4]. Similarly, in many cases, listeners express dissatisfaction with the
MRS, mainly because the recommended songs do not appeal to them or because the
MRS usually recommends the same group of songs, preventing the listener from
discovering new musical content. This unsatisfactory treatment of data and users’
preferences revealed by some recommender systems constitutes a novel research
topic known as biases, which is of great interest to the current MRS research
community.

In view of the above, the aim of this chapter is to analyze the current problems
of bias that contribute to inappropriate recommendations in MRS, as well as to
propose some guidelines to produce fair and unbiased systems. For this purpose,
recent papers related to MRS have been selected, and for each of them, the
recommendation strategies used, as well as the potential for generating biases,
have been identified and analyzed. The analysis of biases is mainly focused
on recommendation strategies involving a machine learning approach, such as
content-based filtering, emotion-based filtering, and user-centric models, because
the success of machine learning models is often highly dependent on the quantity,
quality, and diversity of the data available in the datasets on which these models
are trained, as well as on the strategies selected to cope with the cold-start problem.
The case of non-superstar artists is one of the most interesting ones related to unfair
treatment in MRS and is therefore reviewed in detail.

The main contributions of this chapter are listed below:
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– An overview of the biases discussed in MRS literature, including preexisting,
technical, and emergent biases.

– An analysis of MRS as a multi-objective problem with a multi-stakeholder
perspective.

– A classification of related works by recommendation strategies and the kind of
bias identified in each one.

– A review and analysis of the datasets available for the MIR scientific community.
– A very thorough discussion focused on understanding how biases impact MRS,

taking into account the relationship among external factors, technical factors,
classes of biases, and weaknesses on datasets.

– A proposal of a set of guidelines to handle biases in MRS.

This chapter is organized as follows. Section 2 presents the methodology fol-
lowed in this research. Section 3 introduces music recommender systems, detailing
the theoretical background of the most important recommendation strategies used
nowadays, as well as providing an analysis of related works. Section 4 presents
the theoretical background for biases and an analysis of related works. Section 5
analyzes some musical datasets available for the scientific community, considering
a set of features that could be affected by technical biases. Section 6 proposes
some guidelines to handle biases in MRS. Finally, Sect. 7 highlights the conclusions
obtained from this chapter and some lines of future work.

2 Methodology

The problem studied in this chapter is related to the quality of the recommendations
provided by MRS to users, which leaves a high degree of dissatisfaction among
some artists who publish their songs and expect to be heard and listeners interested
in accessing music content they like. To achieve a detailed analysis of this
problem and propose some guidelines to mitigate its consequences, this chapter
has considered five research questions which have been studied through three steps
defined in the methodology: first, a literature review related to the questions; second,
a discussion of the research problem based on the answers to each question; and
third, the formulation of some guidelines for handling biases in MRS. So, the five
research questions are:

1. What are the main characteristics of MRS?
2. How do MRS recommend new songs to users?
3. What are the principal biases in MRS?
4. What is the relationship between biases and recommendation strategies?
5. What is the relationship between biases and musical datasets?

For questions 1, 2, 3, and 4, the review process has considered papers published
since 2018, although a few items outside this period have also been included because
of their important contribution. The review process includes titles and abstracts over
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the whole literature explored, and the strings used to carry out the paper selections
are bias in computer science, music recommender systems, music recommender
systems strategies, and bias in music recommender systems.

For question 5, the review process has considered papers published since
2002, especially in ISMIR proceedings, taking into account the relevance of this
community in providing novelty datasets. The strings used for the review process
are musical dataset, song dataset, sound dataset, emotion in music dataset, and
audio dataset. In this case, the review process also includes titles and abstracts over
the whole literature explored.

In general, the literature review has allowed us to classify the articles into three
categories: first, articles that explain the functionality, objectives, and strategies of
MRS, which involves questions 1 and 2, in Sect. 3; second, articles that focus on
explaining and discussing what kind of biases exist and how they affect MRS,
which involves questions 3 and 4, in Sect. 4; and third, articles that present musical
datasets, which involves question 5, in Sect. 5.

3 Music Recommender Systems

The main objective of an MRS is to suggest new songs to the user, and its
effectiveness is measured according to the degree of acceptance (likes/dislikes) of
the recommended song expressed by the user [44]. Although the majority of MRS
literature is focused on the user’s perspective, there are some works that highlight
the importance of analyzing the point of view of the artists, which in general is
determined by the real possibilities they have of promoting a commercial career
[4]. Section 3.1 provides a theoretical background for MRS, and Sect. 3.2 presents a
discussion of the state of the art after reviewing related works and classifying each
one according to its implemented strategy.

3.1 Theoretical Background for MRS

In general, MRS combine the following elements: artists, listeners, items (songs),
and recommendation strategies. Artists publish their songs on a music digital
platform with the purpose of furthering their commercial careers. Listeners use the
music digital platform to find specific songs that they want to listen to. They are
also interested in discovering new songs that they might like. To accomplish this
discovery process, MRS generate a match between a song and a specific listener
through recommendation strategies [12]. The functionality and the possibilities
of success in MRS are defined, in most cases, by the different recommendation
strategies, which have been evolving in recent years [4, 23, 36, 50]. The strategies
presented below do not define a taxonomy in the field of MRS. They are presented
taking into account the different approaches found through a literature review
process.
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– Collaborative filtering (CF): CF generates automatic predictions according to
a user’s interests by collecting information about the preferences of a large set of
users, in most cases from social networks [44].

– Demographic filtering (DF): DF is based on classifying the user profiles by
criteria such as age, marital status, gender, etc. [50].

– Content-based filtering (CBF): CBF recommends songs based on their internal
features, which can be low (signal-level sound features) or high level (musical
features). There should be a relationship between the values of these features and
the degree of acceptance by the user [36].

– Hybrid filtering (HF): HF works by combining the different types of filtering. In
general, this approach provides better results compared to the implementation of
a single type of filtering; however, it requires a detailed tuning and optimization
process [12].

– User context (UC): UC includes any information that can be used to characterize
the user’s situation; this information can be obtained from different sources
(personal information, information from sensors, information from the user’s
activity) [44].

– Metadata (MD): MD includes a group of data that describes the song [36].
This data can be classified by categories, for example, in [12], three groups of
metadata are proposed: editorial, cultural, and acoustic.

– Emotion-based filtering (EBF): EBF considers the relationship between human
emotions and the intrinsic features of music; based on this relationship, EBF aims
to identify the values of features that generate an interest in the user and evoke a
particular emotion [3, 23].

– Personalized approach (PA): PA consists of the design and implementation of
user-centric models that allow the creation of highly effective recommendation
experiences. Some authors recognize PA as a paradigm, so it could include
strategies based on user interaction and context [12].

– Playlist-based (PLB): Playlists designed by the user include songs that are more
relevant than those recommended by the system. From these lists, it is possible to
study the features of the songs contained and then make recommendations based
on similarity [19].

– Popularity-based (PB): This strategy generates a tendency to recommend songs
that are commercially more famous or that have a highlighted presence in the
music market through large investments in marketing strategies [14], creating a
bias that affects non-superstar artists in the same market because their probability
of being recommended is very low [5].

– Similarity-based (SB): Similarity-based systems calculate the degree of close-
ness between the features of one song and another; this degree of closeness is
used to generate the recommendations [3].

– Interaction-based (IB): Interaction-based systems focus on analyzing the user’s
behavior in relation to the use of the system, considering aspects such as when
the user generates a playback, which song is played and how many times, and the
relationship between the song and particular days of the week, among others [26].
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Generally, different types of logs are used to store the diverse events generated
by the user in the system.

It should be emphasized that defining a taxonomy for recommendation strategies
in the MRS field would be a challenge because in many of the reviewed papers,
some strategies with the same goals are presented with different names. In addition,
some authors present some higher-level strategies as a paradigm, for example, PA,
but others simply refer to them as strategies.

3.2 Related Work on Recommendation Strategies

This section provides a review of a group of 18 MRS papers resulting from a search
process in Google Scholar and a previous discussion with experts in music, affective
computing, and music information retrieval to determine the search strings. For each
paper, the recommendation strategies implemented or described are detailed, and
the relation between each paper and the recommendation strategy implemented or
analyzed is shown in Table 1.

Before analyzing in detail each work and its strategies, it is very important to
highlight how the selection of the recommendation strategies varies from one work
to another. This is a first finding that motivates the need to discuss and understand
the convenience or suitability of each strategy in the field of MRS.

Among the different recommendation strategies, collaborative filtering (CF)
is probably one of the most widely used, maybe due to its technical simplicity
compared to other more sophisticated models. However, it is imperative to have
a digital community and a representative flow of reliable information to deliver
a minimally optimal performance. In contrast, metadata is one of the least used
strategies in the reviewed works, and this occurs fundamentally when such metadata
is not built automatically. There are some cases in which metadata is generated
through a content-based filtering process in which, for example, sound features are
automatically extracted from a song after which, using previously trained models,
musical genre or evoked emotions, among others, are determined. Such cases really
represent a hybrid filtering strategy and not a purely metadata strategy. Although
CF are still discussed in recent papers [10, 15, 26, 44], all of them involve additional
strategies so that hybrid filtering strategies are implemented.

It is very interesting that the most recent works [15, 36, 44, 51] explore strategies
of personalized approaches, emotion-based filtering, content-based filtering, and
user context. There is a tendency toward implementing a personalized approach
to improve MRS, which is usually based on machine learning techniques since they
allow the design of more dynamic strategies to generate recommendations through
a learning process. This learning process is maybe the most important advantage of
the machine learning approach in contrast with traditional systems that implement
static rules, and it could be used to recognize emotions and make predictions based
on the user’s context. However, in spite of the contributions of the machine learning
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Table 1 MRS literature review. CF collaborative filtering, DF demographic filtering, CBF
content-based filtering, HF hybrid filtering, UC user context, MD metadata, EBF emotion-based
filtering, PA personalized approach, PLB playlist-based, PB popularity-based, SB similarity-
based, IB interaction-based

MRS strategies

Year Article CF DF CBF HF UC MD EBF PA PLB PB SB IB

2020 Shah et al. [44] � – – – � – – – – – – –

Paul et al. [36] – – � – � � � � – – – –
2019 Zheng et al. [51] – – – – – – – � � – – –

Fessahaye et al. [15] � – � – – � – – � – – –

Yucheng et al. [23] – – – – � – � – – – – –

Bauer et al. [5] – � – – – – – – – � – –

Andjelkovic et al. [3] – – – – – – � – – – � �
Chen et al. [10] � – – – – – – – – – – –

Ferraro et al. [14] – – – – – – – – – – – �
Katarya et al. [26] � – – � � – – – – – – �

2018 Garcia-Gathright et al. [19] – – – – – – – – � – – �
Deshmukh et al. [12] � – � � � � � � – – – –

Schedl et al. [43] – � – – � – � � � � – �
2017 Bauer et al. [4] – – � – – � – – – � – –
2016 Cheng et al. [11] – – – � – – – � – – – –

Vigliensoni et al. [50] – � – – � – – – – – – �
Katarya et al. [25] – – – – � – � – – – – –

2013 Bobadilla et al. [7] � � � � – – – – – – – –

approach to the most recent strategies, there is evidence of dissatisfaction from the
point of view of listeners and artists [1], and the reason for this dissatisfaction is
related to biases. This finding motivates an in-depth examination of the impact of
biases in MRS described in the next section.

The importance of achieving an objective comparison between the different
MRS has raised a great deal of interest in identifying the most appropriate
evaluation process. However, the evaluation of music recommender systems is very
difficult to define, since in most cases it will depend on the particular interests
of the stakeholders involved in the music industry, the recommendation strategies
implemented, and several other issues [43]. Moreover, considering the tendency
of using recommendation strategies based on the machine learning field, many
of the MRS metrics related to novelty, or serendipity of an item, are defined
in terms of evaluation metrics commonly used in that field, such as accuracy,
precision, recall, and root-mean-square error. In recent years, some novel metrics for
the recommendation problem have emerged, and these so-called beyond-accuracy
measures handle particularities of the MRS such as the utility, novelty, or serendipity
of an item [24].
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4 Biases in Music Recommender Systems

In its most general sense, the term bias refers to a subjective prejudice or inclination
toward a particular person, thing, or idea. Bias is often unfair because, for example,
it can benefit some stakeholders at the expense of others. This can even lead to
discussions of morality [18]. This section about bias in MRS is divided into two
subsections: Sect. 4.1 provides a theoretical background for biases, and Sect. 4.2
presents a discussion of the current state of bias in MRS.

4.1 Theoretical Background for Biases

A computer system with bias problems discriminates unfairly between some specific
items by denying or decreasing the possibility of such items appearing in an
interaction process between the end-user and a system [18]. In the case of MRS,
a particular music recommender system that always recommends the most popular
songs, and never or very rarely recommends songs produced by non-superstar
artists, is a clear example of bias. It is also important to highlight the economic
impact that biases can generate in a particular business model. In the case of the
music industry, the problem is not only about the fame of the artist; the problem
is also about the earnings that an artist can receive since the majority of music
streaming services pay the artist according to the number of times his/her songs are
played [4, 9]. According to Friedman and Nissenbaum, biases in computer science
can be classified into three categories [18]: preexisting, technical, and emergent.
These are briefly described below:

– Preexisting biases: Biases generated by social institutions, practices, and atti-
tudes. This kind of bias is promoted by society, it has a direct relationship with
culture, and it can be exercised explicitly or implicitly way by customers, system
designers, and other stakeholders.

– Technical biases: Biases which have their roots in technical constraints or
technical considerations. This kind of bias arises from technical limitations,
which may be present in hardware, software, and peripherals. In the case
of software, it is very important to analyze and deal with decontextualized
algorithms, which promote unfair data processing.

– Emergent biases: Biases which can only be detected in a real context of use. This
kind of bias appears sometimes after a design phase is completed, as a result of
changing societal knowledge, population, or cultural values.

In most cases, computer systems, and science in general, try to help and improve
different aspects of our life such as business models, entertainment services, health
services, social policies, etc. Nevertheless, preexisting biases can produce a negative
perception of computer systems from the end-user perspective because it is not clear
to the end-user where and why he or she is subjected to unfair treatment. As regards
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technical biases, there are two relevant scenarios to analyze: first, the case in which
computer systems promote biases due to several weaknesses in the design process
of their algorithms and second, the case in which although technical staff have
identified preexisting biases, they do not implement any technical improvement to
mitigate them. Both scenarios have been considered in the works analyzed in the
next section.

4.2 Related Work on Biases

This section analyzes and discusses nine papers selected for their novel contribu-
tions relevant to the discussion of biases in MRS.

The kind of bias and its relationship with each recommendation strategy
addressed in each paper is shown in Table 2, revealing the following findings:

– In general, the recommendation strategies most affected by biases are collabora-
tive (CF) and popularity-based filtering (PB).

– Seven out of nine works discuss preexisting biases, which suggests the impor-
tance of this kind of bias.

– Only one work discusses emergent bias, this being the least studied bias.

Table 2 MRS literature review focused on biases. CF collaborative filtering, DF demographic
filtering, CBF content-based filtering, MD metadata, PA personalized approach, PB popularity-
based, SB similarity-based

MRS strategies

Year Article Bias CF DF CBF MD PA PB SB

2020 Perera et al. [37] Preexisting – – – – – � –

Melchiorre et al. [30] Preexisting � � – � – – –

Emergent � – – – – – –

Abdollahpouri et al. [1] Preexisting – – – – – � –

Technical – – – – – � –

Sánchez-Moreno et al. [48] Preexisting � – – – – � –

Technical � – – – – � –

Patil et al. [35] Technical – – � – – – –

Abdollahpouri et al. [2] Preexisting � – – – – � –

Technical � – – – – � –

Shakespeare et al. [45] Preexisting � – – – – � –

Technical � – – – – � –

2019 Ferraro et al. [13] Preexisting – – – – � � –

Technical – – – – � � –

2018 Flexer et al. [16] Technical – – � – – – �
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It is important to highlight some individual findings of each work included
in Table 2, because they help to understand better how biases operate over
recommendation strategies in some specific cases. A preexisting bias is identified in
[37] related to the popularity-based (PB) strategy. Despite the rating of songs being
influenced by marketing strategies, the rating data of the songs are used to deal with
the cold-start1 problem. In [30], both demographic filtering (DF) and collaborative
filtering (CF) strategies with preexisting bias are found. In this case, the preexisting
bias is generated due to a data mining process, in which the social network Twitter
is the main source. In most cases, these data are incomplete and unreliable due
to the inconsistency between the user’s personality deduced from Twitter and the
user’s real behavior. There is a very close relationship between the behavior of
society and Twitter, any change in society will also change the Twitter data, and
any system that depends on this data will be affected in real time, which is the main
feature of an emergent bias. In [1], a preexisting bias is highlighted in the popularity-
based filtering (PB) strategy because the rating of songs is influenced by marketing
strategies and, as a result, the number of times songs are played (play counters)
by the listeners tends to rise. The recommender algorithms implemented by MRS
use play counters as the main input. These algorithms do not implement any action
to mitigate the popularity effect, so they also promote a technical bias. Exploiting
social information from social networks is a key issue identified in [48] in the
implementation of a collaborative filtering (CF) strategy based on a neighborhood
similarity algorithm, which promotes a preexisting bias. The neighbors are found
according to the similarity of user ratings considering only the same songs rated for
both neighbors, usually the most well-known, and this reveals that the popularity-
based (PB) strategy is also applied. Any other song that is not common between
users is discarded by the neighborhood similarity algorithm, although there is a
possibility that both users may like these songs. This discarding process generates a
technical bias.

The analysis presented in [35] is focused on technical biases, especially on
algorithms based on mathematical models such as singular value decomposition,
Bayesian personalized ranking, autoencoders, and machine learning. These algo-
rithms, typically implemented with content-based filtering (CBF), include a certain
level of noise in their internal layers, which impacts their accuracy rates and, in
most cases, negatively impacts user expectations. This paper does not analyze any
preexisting bias or possible relations between preexisting bias and technical bias;
this fact could be a weakness from the point of view of many stakeholders such
as artists, listeners, software developers, and others, because there is not a more
detailed vision of the problem that allows an understanding of the real impacts in
the business model of the music industry.

According to [2], in recommender systems, a small number of items appear
frequently in user’s profiles, while, in contrast, a much larger number of less popular

1 The cold-start problem occurs when it is not possible to make reliable recommendations due to
an initial lack of ratings.
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items appear very rarely. This bias has its roots in two different sources: data and
algorithms. In the case of data, the rating process is based on the degree of fame of
each artist (preexisting bias), which generates an imbalance property in the rating
data. The algorithms are not designed to treat the imbalance property in the rating
data, and they therefore over-recommend the popular items (technical bias) while
at the same time reducing the chances of increasing the popularity of less popular
items.

Gender discrimination, with roots in socio-cultural factors, is the main focus of
the study of biases presented in [45]. There is a highly imbalanced distribution by
gender according to the analysis of LFM-1b and LFM-360k datasets [8, 42], such
that artists of the male gender constitute the majority (82%) of artists for whom
gender can be identified.

Ferraro [13] explains how the cold-start problem in many cases is treated with
strategies based on popularity ratings. This rating information depends fundamen-
tally on data extracted from social networks, which amplify a preexisting bias.
Also, Ferraro proposes to carry out a deeper analysis on the user perspective,
implementing a user-centric evaluation that allows optimizing a multi-objective
problem with a multi-stakeholder perspective, which will help to mitigate possible
technical biases.

In [16], the ethical responsibility to produce fair and unbiased systems is
proposed as a new challenge for the data mining community, highlighting the
importance of reviewing and improving the conditions of datasets, as well as
the design of algorithms in the machine learning field. In this paper, the most
recommended songs are called hub songs, and the less recommended or never
recommended songs are called anti-hubs. This classification of songs is a conse-
quence of a weakness promoted by clustering strategies through a non-supervised
machine learning approach, in which the most recommended songs are the nearest
to a specific cluster center, while the less recommended songs are those farther away
from the same center of the cluster.

5 Bias Analysis in Datasets

One of the most important causes of biases in MRS is related to datasets [2]. In view
of this fact, this section presents a review of a group of nine datasets available for
conducting research in MIR with the main purpose of understanding in-depth how
biases are involved. The datasets have been analyzed taking into account the findings
obtained in Sect. 4.2, which suggest that popularity is one of the most important
causes of preexisting and technical biases in MRS, which not only affects listeners
but also has a crucial impact on artists, especially in the case of non-superstars. This
analysis of musical datasets is a novelty compared to other previous similar analyses
for the following reasons: clips are evaluated to identify if they are complete songs
with labeled musical structure, artists are included as relevant stakeholders, artists
can emotionally label their songs, and non-superstar artists are identified. Moreover,
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emotional labeling of datasets is also included in this analysis, basically for two
reasons: the relevance that emotion-based filtering showed in the most recent works
studied in Sect. 3.2 and the strong relationship between emotion and music [46],
which suggests the relevance of emotions in the design of novel musical descriptors
that allow improving MRS performance.

The following is a detailed explanation of each criterion shown in Table 3:

– Clips: The number of audio files whose metadata has been included in the
dataset.

– Clip length: The average duration of audio files.
– Audio: If the dataset is included the audio files or not.
– Musical structure: If the dataset includes or not metadata related to the complete

identification of the musical structure of a song, the most typical structure being
introduction, verse, chorus, and solo. The musical structure allows performing
experiments based on the similarity of the parts of the structure, which is very
useful considering that a song is an emotional experience that happens over time.

– Affective model: The kind of affective model used, which can be categorical or
dimensional.

– Non-superstar artist: If the dataset includes songs produced by non-superstar
artists or not.

– Emotional labeling by artist: If the artist has emotionally labeled their own
songs or not.

– Emotional labeling by listener: If the listener has emotionally labeled songs or
not.

A very important finding to highlight is that in seven of the nine reviewed
datasets, GTZAN [49], Ballroom [21], MagnaTagATune [27], AudioSet [20],
TUT Acoustic Scene [31], UrbanSound8k [41], and ESC-50 [38], the duration
of the sound files varies between 1 and 30 seconds, limiting the possibilities for
experimentation. In most cases, audio files with real songs are not available; instead,
the audio files correspond to ambient sounds or perhaps small sound fragments
with a little bit of musical content. In the case of the Million Song Dataset [6],
the average length of the files is not very clear, and although it is a dataset of songs,
these correspond to covers of famous songs and not original songs of non-superstar
artists. In addition, the audio files are not available. The Mediaeval dataset [47]
is very complete due to a large number of emotional annotations. However, there
are no annotations for the different parts of the song structure (introduction, verse,
chorus), and there is no data referring to a deeper analysis of the artist’s perspective.
The emotional recognition is performed over time by giving valence and arousal
coordinates in a dimensional affective model every 500 milliseconds in [29]. Then,
these coordinates are used in [34] to achieve an emotional classification in four
quadrants, finding that the dataset is unbalanced with respect to the distribution
of songs by quadrants. This represents a problem when implementing machine
learning algorithms because these kinds of algorithms tend to recognize with more
accuracy the majority class data, whereas they have a low accuracy rate with the
minority classes. Another interesting point is that none of the datasets include songs
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with a real artistic intention and with an interest on the part of the artist in joining
the music industry, so there is no annotation of any kind by artists/composers that
would allow a deeper analysis from a musical artist perspective.

Taking into account the above considerations for the case of musical recom-
mender systems, the following particular limitations are identified in the existing
datasets:

– In most cases, they include very short audio clips which are not really songs and
consequently do not have a complete musical structure.

– There is no in-depth analysis from the point of view of the music involving the
composer in order to understand his/her emotional intention and techniques when
composing.

– The analyses are not focused on original songs by non-superstar artists, which
generates a popularity bias and is nowadays one of the main objections of non-
superstar artists regarding the performance of many music streaming services
[4].

– There is no information available about the degree of balance of the data for the
different classes defined through labeling processes.

6 Guidelines for Handling Biases in MRS

This section presents a set of guidelines for handling biases in MRS. These
guidelines have been proposed taking into account the findings reported in the
previous sections and could be considered for studying and mitigating the impact
of biases in MER.

The guidelines detailed below have been discussed and formulated for each type
of bias (preexisting, technical, and emergent).

For preexisting biases, it is important to highlight that in a traditional software
development process, the functional requirements are based on a specific business
model, in this case that of the music industry. The business model defines the busi-
ness rules which take into account the interests and objectives of the stakeholders
invited to participate in the interviews conducted by functional engineers [39]. In
general, any final product will address the expectations of the stakeholders, so if
some of them are not invited to participate in the product development process
or are not considered relevant for the business model from the sponsors’ point of
view, they and their interests may not be taken into account, and this will generate a
preexisting bias. According to the discussion and findings presented in the previous
sections, artists who are not superstars should be considered as stakeholders for any
project related to MRS. Unfortunately, the findings of this chapter suggest that there
is no real interest in understanding their needs. Consequently, they are negatively
affected by the popularity effect promoted by the current business models of the
music industry.



Music Recommender Systems: A Review Centered on Biases 85

In view of the above, the following guidelines are important for the handling of
preexisting bias:

– Identify all the stakeholders involved in the business case and evaluate their
interests.

– Analyze how the requirements and constraints defined by the business model
impact each one of the stakeholders.

– Take into account the needs of all the stakeholders in the product development
process.

– Maintain close communication with all stakeholders that allow making decisions
focused on improving a fair treatment for all.

There are two ways of analyzing the roots of technical biases. On the one hand,
there is the case where the technical bias is unavoidable because it is a consequence
of a preexisting bias. The technical staff of the project follow orders and implement
the business rules defined by stakeholders. On the other hand, there is the case where
the conditions of the datasets, recommendation strategies, and algorithms present
technical weaknesses. Considering the case of technical weaknesses, the following
guidelines are important for the handling of technical bias:

– Understand in detail the business model and the data involved, as well as the
point of view of each stakeholder.

– Apply a rigorous evaluation process to identify the most appropriate recommen-
dation strategies taking into account the specific needs of the business model.

– Avoid the recommendation strategy based on popularity, especially if the busi-
ness case includes non-superstar artists.

– Be careful with the information extracted from social networks to implement
a recommendation strategy based on collaborative filtering. The quality of this
information and the way it will be integrated into the MRS must be evaluated.

– Design metrics, or select some available metrics, to evaluate the quality of data
according to the definitions of the business model and the recommendation
strategies selected to implement in MRS.

– Design musical descriptors closer to the reality indicated by the artists, suggest-
ing the importance of marking the different parts of the structure of the song and
implementing recommendation strategies for each of these parts.

– Consider the emotion-based filtering strategy in MRS. To achieve better results,
the music emotion recognition should be over time, taking into account that
listening to music is a dynamic emotional experience given by the structure of
the song [32].

– Be careful with unbalanced datasets, especially when they are involved in
strategies based on the machine learning approach, because the learning process
favors the majority class and consequently the predictions will show a big bias
by classes. There are different ways to treat unbalanced data. One of them is
implementing binary classifiers (one per class), although this does not produce
a great improvement. Another way is implementing balancing strategies which
could be over-sampling, under-sampling, and a combination of both [34].
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– Analyze how to deal with the subjective information provided by human per-
ception through labeling processes, especially in the case of emotional labeling,
which directly impacts any future data analytic process for musical datasets [33].

– Consider always that music is an art and should be treated as such. Although
music can be studied as a digital signal, there are some high-level features such
as emotions and musical terms that should be understood in depth and included
in any design process for recommendation strategies.

Emergent biases can only be detected in a real context of use, so a continuous
monitoring process will be the key to manage them. The implementation of feedback
strategies could be a good way to reveal new perceptions of unfair treatment from the
point of view of each stakeholder identified in the past, as well as new stakeholders
that might appear in a near future. This feedback information would serve as input
for proposals for new changes in MRS to mitigate current emergent biases.

7 Conclusions and Future Work

This chapter has focused on identifying and analyzing the most typical biases in
MRS. For that purpose, a literature review was carried out addressing different
approaches to the study of recommendation strategies, biases, and audio datasets.
The analysis identified the most recent recommendation strategies used in MRS, the
kind of biases (preexisting, technical, emergent) present in each recommendation
strategy, as well as the most common biases involved in musical datasets. The
analysis also revealed important findings that help us to understand how and why
biases are present in MRS, such as the fact that collaborative and popularity-based
filtering are two of the strategies most affected by preexisting biases and that
technical biases are more related to data conditions and algorithms. This detailed
literature review and its subsequent analysis allowed us to propose a set of guidelines
for handling biases in MRS, which will be useful for continuing improvements in
the research field in MRS.

In future work, these guidelines will be considered in the design of a new
recommender system for songs composed by non-superstar artists, providing a novel
musical dataset for the scientific community, as well as a recommendation algorithm
that mitigates the impact of biases. In addition, we will consider extending the state-
of-the-art analysis with a focus on identifying and discussing the evaluation metrics
available (or not available) in the articles selected for review, as well as conducting
some novel experiments to analyze the magnitude of each type of bias for each
dataset by applying each of the available recommendation strategies. An in-depth
understanding of the relationships between preexisting biases and technical biases
is considered very important and will therefore be the subject of future study.
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Computational Approaches for Indian
Classical Music: A Comprehensive
Review

Yeshwant Singh and Anupam Biswas

1 Introduction

Over the past two decades, we have witnessed many technological advances such
as improvements in data storage technology, the emergence of cloud storage, less
noisy transmission, etc. Our way of creating, storing, and teaching art has also been
affected by these changes. Nowadays, we have a tremendous amount of different
types of data. It has led to the necessity of developing novel tools and techniques to
analyze the data at scale.

Western music has been studied in research for quite a long time [50]. There
are many approaches for both symbolic and content-based analysis. Each year,
the number of contributions increases, as evident in Google Scholar search results
shown in Fig. 1. A similar trend is observed for Indian music, where researchers
in the past few years have also started focusing on and contributing approaches
for tasks related to ICM. Still, the research area of computational techniques for the
analysis of ICM is very young. There is a good scope of developing novel techniques
and tools pertaining to ICM by leveraging the domain knowledge and learning-
based methods. Over the last few years, several contributions in the low-level
analysis of audio signals have started emerging, considering domain knowledge of
ICM.

Extraction of helpful information, even low-level melodies like the predominant
pitch, from recorded music performances is unreliable. As a result, computational
methods mainly aim to retrieve the low-level melodic definitions in audio recordings
and cannot extract a higher melodic representation. A low-level melody interpre-
tation of audio data with the present state-of-the-art (SOTA) evaluation methods
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Fig. 1 Increasing trend in the research contribution in the field MIR. Source: http://scholar.google.
com based on MIR keyword

for predominant pitch is made possible by some heterophonic features extraction
of ICM data. The previous findings of the MIREX (international MIR evaluation
campaign)1 also suggest this by comparing the precision of different MIREX-2011
dataset algorithms obtained from INDIAN083, MIREX054, and MIREX09 0dB5.
A feasible extraction of a fair predominant melody pitch in music recordings helps
one concentrate on explaining the melodic aspects of musical performances to a
higher degree [34]. In doing so, ICM provides an opportunity to extend the reach
of melodic evaluation and interpretation by computational approaches beyond just
pitch contours of music performances for explaining melodic aspects.

While obtaining the predominant pitch in ICM recordings is less challenging,
getting a symbolic representation of its abstract form constitutes a difficult chal-
lenge. Transcription of melody is one way to get an abstract form by processing
continuous pitch contour. It is still a complicated and unspecified task for ICM,
mainly because of its meandering melodic characters. In addition, the process
of discretization may lead to a loss of relevant information for defining and
characterizing melodies and present challenges in its processing. Challenges arise
from the absence of standard reference frequency in ICM for tuning instruments
and vocals. The lead artist selects a comfortable Tonic frequency (Shadja) as
the reference for all other accompanying artists and their instruments during a
performance. Therefore, the Tonic differs between artists and may differ among
artists’ performances. These aspects make it difficult to process melodies explicitly
through various musicians and performances.

1 http://www.music-ir.org/mirex/wiki/MIREX_HOME.
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Analysis of recurring melodic patterns has been influential in defining melodies
and thus utilized in various algorithmic approaches for music information retrieval
(MIR). Raag, the melodic framework of ICM, contains repeating melodic patterns.
They serve as building blocks for melodies in the grammar of a Raag. ICM has
numerous forms of melodic patterns with their well-defined functionality. Some
patterns are melodic decorations, and some create opening stanzas of compositions
that are musically related to Raags. Thus, ICM offers a fascinating chance to
establish computer-based approaches for finding melodic patterns from audio
collections and characterizing them. However, this task is daunting because of the
changes in this artistic tradition.

We have considered the most fundamental task in ICM for our survey in this
chapter. Tonic identification, melodic pattern/motif processing, and Raag identi-
fication/recognition are the essential tasks considered in this survey work. This
survey aims to discover the challenge in the present techniques and motivate the
upcoming researcher to focus on these research areas. The organization of this
chapter is as follows: Sect. 1.1 introduces basic concept and terminology of ICM
followed by some Indian regional music in Sect. 1.2. We present the literature survey
in Sect. 2, which goes deep into three tasks of ICM as mentioned earlier. Tonic
identification presented in Sect. 2.1 along with subdivision of methods by feature
extraction, feature distribution, and Tonic selection. Then we present the works on
melodic pattern processing in Sect. 2.2, breaking methods for pattern processing
into melody segmentation, melody similarity, and melody representation. Finally,
the works on Raag recognition are presented in Sect. 2.3), dividing each method
for Raag recognition by their feature extraction and recognition method. Following
the literature survey in Sect. 3, we present some of the datasets used in research for
studying ICM. Evaluation matrices are another vital area of study which is essential
to assess the performance of developed systems. Section 4 presents an overview of
evaluation metrics used in music followed by open challenges and conclusion in
Sects. 5 and 6, respectively.

1.1 Indian Classical Music

Indian classical music (ICM) refers to the classical form of music in India and
neighboring countries. Majorly, there are two traditions in ICM. The tradition
predominantly practiced in the northern part is called Hindustani classical music. In
contrast, the tradition practiced in the southern part is known as Carnatic classical
music. The Carnatic traditional style comprises short compositions, whereas the
Hindustani style focuses on improvisation and exploration of Raags, making the
performances quite long. However, there are more similarities than differences
between the two traditions. Until the sixteenth century, these traditions were not
separate. Both forms of ICM refer to singing the Swaras (called Sargam) instead of
composition words with various ornamentations such as Meend, Gamak, Kan, and
Khatka, as part of a Khayal style of music composition.
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Raag and Taal are the two fundamental components of ICM. The Raag forms
the fabric of a profoundly complicated melodic structure, built on a vast repertory
of Swara and Shruti (notes and microtones). A Raag provides a palette for creating
melodies from sounds, whereas the Taal provides an artistic structure for rhythmic
improvisation utilizing time. The range between the Swaras in ICM is generally
more significant than the Swaras themselves. Generally, ICM avoids Western
classical notions and musical concepts like modulation, chords, counterpoint, and
harmony.

As stated earlier, ICM is a highly developed and productive music tradition, with
roots back in 1500 BC. It is a very well-explored music tradition with advanced
and evolved music principles. The literature is full of theoretical text written for
the musical principles of ICM. However, from a computational research standpoint,
ICM is not thoroughly investigated. The current musicological work’s developed
music theories provide a rooted foundation for formulating MIR tasks.

Raag It is a key idea in ICM that is expressed in various ways. Despite being a
notable and significant aspect of ICM, a definition of Raag, according to Walter
Kaufmann [40], cannot be provided in one or two lines. Raag is a melodic structure
that comprises Swara intonation, relative duration, and sequence of Swaras; in the
same way, words can create expressions by creating an environment of expression.
Specific regulations are mandatory in certain circumstances and optional in others.
A Raag provides versatility, allowing the artist to use the primary expression or add
ornamentation while still expressing the same core message but evoking a distinct
emotional intensity.

A Raag is composed of Swaras on a scale (called thaat) organized into melodies
with musical themes. The performance delivers a Rasa (mood, atmosphere, essence,
and inner emotion) by following the distinct rules of a specific Raag. Each Raag has
distinct musical characteristics like Vadi-Samvadi Swaras (the two most essential
Swaras in a Raag), Aaroh-Avroh (ascending and descending sequence of Swaras),
Chalan (melodic phrase), and many more. A Raag prescribes a particular sequence
of the musician’s progress (Pakad) from Swara to Swara. Thousands of Raags are
theoretically feasible given five or more Swaras, but the ICM tradition has honed
and generally relies on a few hundred in practice. The basic refined repertory of
most performers consists of 40 to 50 Raags.

1.2 Forms of ICM

Regional music is mainly played and produced in specific regions and evolved
through regional cultures and traditions. The audience of these regional forms of
music is mostly its native people or neighboring regions. Regional music, therefore,
encompasses regional folk music and traditional high culture or art music from a
specific region. Regional music varies from prehistoric, sophisticated old, traditional
folk to contemporary creations that strongly borrow ideas from ICM.
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The context and intent are everything in regional music. Regional music is
usually played at local events and brings together communities. Although it has a
long history, the classical forms are highly disciplined, standardized, researched,
and refined. Folk melodies and forms inspire ICM, but greater discipline and
profound training are necessary for most repertories. Bollywood music has been
inspired by ICM and has created numerous film songs based on various Raags
and other popular modern styles of Indian music. It is intended mainly for
amusement and entertainment, whereas many classical artists declare their music
is for enlightenment.

2 Literature Survey

2.1 Tonic Identification

The primary step in analyzing ICM is to find out the Tonic of music performance.
By looking at the tonal structure created by the Tonic, one may reasonably compare
melodies between various artists and their recordings. This section examines the
available Tonic identification approaches in ICM audio recordings. There were
several efforts to identify a Tonic pitch automatically [4, 14, 31, 55, 66, 67]. These
techniques differ primarily in the musical cues used for the Tonic identification and
the style of music they focus on (Carnatic or Hindustani music, instrumental or vocal
music). These techniques can be split into three basic processing blocks despite
the differences. The first part is extracting tonal features, then performing feature
distribution estimation, and, finally, selecting the Tonic. The single exclusion to this
division of techniques is the method suggested by Sengupta et al. [67].

Tonic identification entails a tonal analysis of the music content, and the
features derived by almost all techniques invariably pertain to pitch. Then in the
second block, the feature distributions are evaluated by either estimating the Parzen
window-based density or creating a variant of a histogram. The distribution of the
feature is then utilized to detect the Tonic in the third block. The peaks in the
distribution are usually the Raag Swaras or their harmonics; one of them correlates
to the pitch of the Tonic. It is not always guaranteed that Tonic will be the highest
peak of the distribution; thus, several approaches are used to select the peak related
to the Tonic. A brief review of each of these processing block techniques is given in
Table 1.

Feature Extraction Pitch-related information is extracted by all techniques from
the music recordings for subsequent processing in the feature extraction. All
techniques employ only one feature, the predominant pitch in the music, except
Salamon et al. [66], Gulati et al. [31], and Karakurt et al. [39]. In order to utilize
the tonal data of the Tonic enforcing drone instrument, Salamon et al. [66] utilize
a multi-pitch salience feature. Furthermore, the multi-pitch salience feature and
predominant melody are used by Gulati et al. [31].
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Table 1 Survey of techniques on Tonic Identification in the context of ICM

Technique Feature Feature distribution Tonic selection

Sengupta et al. [67] Pitch [16] NA Error minimization

Ranjani et al. [55] Pitch [5] Parzen window PDE GMM fitting

Gulati et al. [31] Multi-pitch salience
[65]

Multi-pitch
histogram

Decision tree

Predominant melody
[64]

Pitch histogram Decision tree

Bellur et al. [4] Pitch [18] Pitch histogram Decision tree

Salamon et al. [66] Multi-pitch salience
[65]

Multi-pitch
histogram

Decision tree

Bellur et al. [4] Pitch [18] GD histogram Highest peak

Bellur et al. [4] Pitch [18] GD histogram Template matching

Chordia and Senturk
[14]

Pitch [18] PCD variant k-NN and Stat
classifier

Karakurt et al. [39] Predominant melody
[64]

PD, PCD k-NN

Manjabhat et al. [49] Pitch [18] PDF of pitch profile Feedforward NN

Gaikwad et al. [25] Pitch [5] Pitch histogram Highest peak

Pawar et al. [52] Pitch [18] Pitch histogram Decision tree

Sinith et al. [71] Pitch [9] Harmonic ratio Hardware
implementation

Chapparband et al.
[12]

Feature ensemble NA Neural network

Abbreviations: NA, not applicable; GD, group delay; PCD, pitch-class distribution; PD, pitch
distribution; PDE, probability density estimate; Stat, statistical

We now present a picture of the algorithms for extracting f0 from music
recordings using the several techniques discussed before. The pitch contours are
obtained by Ranjani et al. [55] with Praat software14 [5]. The program uses the
Boersma [6] method, which was mainly suggested for speech signals and utilized in
the past for monophonic recordings. Bellur et al. [4] used the YIN pitch estimation
algorithm devised by Cheveigné and Kawahara [18], which is based on the average
magnitude difference function (AMDF). The automatic method for extracting the
fundamental frequency f0 from a monophonic audio signal called the phase space
analysis method (PSA) developed by Datta [16] is used by Sengupta et al. [67].
Similarly, Chordia and Senturk [14], Manjabhat et al. [49], Gaikwad et al. [25], and
Pawar et al. [52] use various methods to extract pitch-related features.

One of the possible errors of the above estimating techniques for pitch esti-
mation (strictly speaking f0) is that they are designed primarily for single-source
monophonic sounds. It indicates that we might increase estimating errors by adding
additional instruments to the mix. The predominant pitch estimation algorithm is
one approach to overcome this difficulty. For the estimation of the predominant
melody pitch sequence from the music recording, Gulati et al. [31] use melody’s
pitch information to determine the particular octave of the Tonic pitch. It is the same
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as in Salamon et al. [66], during the second step of their method (the first stage of
the algorithm is used for identifying the Tonic pitch class).

Some approaches use a multi-pitch technique for Tonic identification. The
approaches use pitch salience across time by calculating a multi-pitch time-
frequency representation rather than extracting the predominant melodic part from
the audio signal [65]. The reason for choosing multi-pitch analysis is twofold: firstly,
the content under study is non-monophonic, and secondly, the drone instrument
reinforces the Tonic constantly, which cannot be used by extracting one pitch value
for each music recording.

Salamon et al. [66] and Gulati et al. [31] used the salience function that shows
prominent tops in the pitch histogram, as the drone instrument is continuously rein-
forcing the Tonic in the performance of ICM and present in the music recordings. In
Salamon et al. [66], the principal difference is to use the pitch histogram to recognize
the Tonic. However, Gulati et al. [31] divide the work into two phases: firstly, with
Salamon et al. [66] extension, the Tonic pitch class is identified, and then the correct
Tonic octave is distinguished using predominant melody representation [31].

Feature Distribution Estimation A cumulative analysis is performed for the tonal
feature by deriving different methods for Tonic identification. The pitch distribution
function aggregates the pitch values from all analytical frames (a single value or
multiple values per frame) and the occurrence rate (potentially weighted) of distinct
pitch values in the audio extracts. The lone exception is Sengupta et al. [67], which
computes the aggregate error function to pick the Tonic instead of examining the
distribution of the features. Salamon et al. [66] and Gulati et al. [31] used the
aggregates of the peaks’ pitch value from the salience function for all frames into
a histogram. The top ten peaks are used in each frame. The Tonic selection also
considers the pitch content of the other accompanying instruments, notably Swaras
played on the drone instrument. The selection of the frequency range of the salience
peaks is limited to 100–370 Hz in the histogram (the standard frequency range is
100–260 Hz).

In some situations, the techniques mentioned above can utilize a peak of the
fourth/fifth (Ma/Pa) Swaras above the Tonic to recognize the Tonic pitch. Therefore,
the computation of histogram is above 260 Hz as the lead voice/instrument is,
in many cases, significantly louder than the Tonic frequency reinforced by drone
instruments. So while calculating the histogram, the weights of salience peaks
are neglected, and only their counts are considered. As previously mentioned, the
pitches created by the drone instrument (harmonics of the Tonic: Ma, Pa, or Ni) are
evident by the histogram in the form of high peaks. The sound of the drone controls
the accuracy of the results.

A histogram is built with a resolution of 1 Hz for 40,800 Hz frequency range
and afterward post-processed with the group delay (GD) function by Bellur et al.
[4]. The authors show that if the squared magnitude of the resonators is represented
simultaneously by the pitch histogram, then GD functions can be used such that
the peaks of the resultant histogram are better resolved. The delay function is also
observed to accentuate the peaks with smaller bandwidth. It boosts the accuracy of
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the Tonic identifier, as the Shadja (Sa) and Pancham (Pa) are present without any
pitch variations. The histograms processed are called GD histograms. The notion
of segmented histograms is also proposed by Bellur et al. [4]. The authors suggest
computing smaller parts of pitch contour and generating a GD histogram for each
of these parts to utilize the omnipresence of Tonic. Since Tonic is present in every
unit, the GD histograms improve the corresponding peak. The bins of individual
histograms are then multiplied. It also helps reduce non-Tonic peaks that may not
be available in all segments. The resultant histogram called the segmented GD
histogram then selects the Tonic.

Parzen window estimator is utilized to calculate a pitch density function by
Ranjani et al. [55] contrary to a histogram. This estimator is a non-parametric
density estimator (or kernel density estimator). Kernel function regulates the
regularity of the estimated density. It is commonly used to help in reducing the
false discontinuities at the edges of the histogram bins and therefore help in the
peak selection process. Furthermore, the separation of data into separate bins is
not necessary. For the density of the retrieved pitch frequencies, the authors utilize
Parzen window estimators with Gaussian kernels. Chordia and Senturk used various
variants of pitch-class distribution over pitch tonal features. Similarly, Manjabhat et
al. [49], Gaikwad et al. [25], and Pawar et al. [52] have used pitch tonal feature
and analyzed the distribution using various distribution techniques like probability
density function of pitch profiles or histogram of pitch classes. Karakurt et al. [39]
have used predominant melody contours as a feature for Tonic identification and
analyzed it over two distributions: pitch distribution and pitch-class distribution.

Tonic Selection Tonic selection considers the peaks extracted from the pitch
distribution function that match the more frequent (or remarkable) audio signal
pitches. Based on how the pitch is calculated, peaks will correspond to the Swaras
of a given Raag or their harmonics. Thus, the selection of distribution peaks
corresponding to the Tonic of the leading artist is reduced during the process.
As previously stated, it is not necessarily the highest point in distribution that
corresponds to the Tonic pitch.

Motivated by two musical indications in ICM, first, the relative Swara positions
regarding the Tonic float nearby the mean ratio [44] and second, the Shadja and
the Pancham are the immovable (Achal) Swaras, which signifies that they do not
have any sharp or flat version [44], Ranjana et al. [55] approached the modeling of
the pitch distribution using semi-continuous Gaussian mixtures [36]. Possible Tonic
candidates are picked from the peaks of pitch density within an acceptable pitch
field. The variation of the pitch distribution function around the peak is obtained
by modeling each peak (Tonic candidate) using the Gaussian distribution. Tonic
candidates have an output range of 100–250 Hz in the literature. If the editorial
information of the audio sample is known prior, the size of the pitch depends further
on the gender of the leading artist. 100–195 Hz is used for males and 135–250 Hz
for female singers.

The identification technique used by Salamon et al. [66] is to find the peak of
the multi-pitch histogram corresponding to the Tonic pitch class or Tonic pitch (in
the former case). Since the Tonic is inherently related to all the prominent peaks, a
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collection of features are extracted to develop a classification model to identify the
peak concerning the Tonic is used to compute the connections among the histogram
peaks (height and distance). The authors derive distance and height features from
the top ten peaks in the multi-pitch histogram. The authors show that the decision
tree classifier C4.5 [54] provides the most excellent classification accuracy for the
Tonic identification challenge.

In order to determine the histogram peak corresponding to the Tonic pitch class,
Gulati et al. [31] utilize a similar classification-based technique. The proper Tonic
octave is identified at the second step of processing and similarly classified. For
each Tonic pitch candidate, 25 features are calculated (candidates with the same
pitch class but different octaves). The features are the melody histogram values
at a distance of 25 equally spaced places covering the Tonic pitch candidate.
Whether a Tonic candidate is correct and on the proper octave, the categorization
procedure represents a double problem. Using Weka’s cluster software for data
mining, Salamon et al. [66] trained the C4.5 decision tree for classification. Pawar
et al. [52] also utilized a decision tree version and feature distribution for Tonic
selection.

Error reduction approach is used by Sengupta et al. [67] to find a Tonic. It is a
brute force technique in which many pitch values are examined as candidates for
the Tonic pitch within a predefined frequency range. The cumulative deviation is
calculated by employing three distinct tuning schemes supplied by a Tonic candidate
between the pitch contour’s steady-state regions and the pitch values from the
nearest notes in these areas. The Tonic candidate is chosen as the Tonic for the
musical extract, which results in the smallest divergence. Karakurt et al. [39] applied
k-NN classifier for Tonic selection. Chordia and Senturk [13] also evaluated several
Bayesian classifiers. The neural feedback network is employed by Manjabhat et al.
[49] for Tonic selection from likely candidates.

The methods proposed by Bellur et al. [4] and Gaikwad et al. [25] are straight-
forward, and the pitch distribution is used for getting the highest peak for the Tonic
selection. The bin value of the highest point of the segmented GD pitch histogram
is chosen as the Tonic pitch for two out of three recommended models of their
technique. The histogram’s frequency range is 100–250 Hz. This range is further
limited when the sex information of the leading artist is provided for an audio record.
Bellur et al. [4] offer a template matching technique to find Tonic in addition to the
simple highest peak strategy. It is similar to Ranjani et al. [55], who used GMM
fitting, which makes use of minor variations in the pitch around the Shadja and the
Pancham. The author’s template for the tone candidate employs three octaves and
considers Tonic pitch values and its fifth (Pa) in various octaves.

The literature proposes several approaches to Tonic identification, which vary
significantly between each processing block. Many of these studies demonstrate
successful results (above 90%). However, they cannot be directly compared as they
are tested on diverse datasets with various measurement metrics and assessment
configurations. None of these studies tried to compare the results with other
research. If various approaches to musical material are to be fully understood, they
have to be contrasted under one experimental setting and the same collection of
music.
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2.2 Melodic Pattern Processing

Processing melodic patterns in ICM audio data is another crucial task. Multiple tasks
involving the calculation of melodic patterns/motifs, such as similarity matching of
melodic patterns/motifs, recognition, and identification of new patterns, are meant
by melodic pattern processing. Analysis of melodic patterns is a widely researched
MIR and computer musicology research task. For ICM, however, this task has
received attention just lately, despite the importance of melody motifs in the Raag
grammar. Summarizing essential facts for comparing these techniques to current
pattern processing techniques in ICM, it is observed that the following techniques
deal with three closely related but separate pattern processing problems.

1. Pattern detection where the aim is to obtain other occurrences in audio test
recordings when a melodic query pattern is supplied [22, 26, 28, 37, 61, 62].

2. Pattern distinction, where the goal is to find other cases from a pool of annotated
melodic patterns in a query pattern [3, 56, 57].

3. Pattern discovery, where the aim is to find melodic patterns when there is a lack
of ground truth melodic pattern annotations given for the collection of music
recordings [21].

Pattern distinction may be seen as a sub-task to detect patterns in which the differ-
ence is the usage of melodic patterns per segment and the lack of unrelated melodic
patterns in the search space. These two tasks need to be distinguished since they
differ significantly in their difficulty. Furthermore, the techniques suggested that
pattern distinction does not address computational complexity problems, frequently
challenging pattern discovery and detection. Most of the current techniques are
supervised approaches and concentrate on pattern detection or distinction. That can
be ascribed particularly to the computational complexity of the problems involved
in the process of pattern discovery.

By examining the current techniques for the three processing units, representing
melody, segmenting melody, and computing similarities (or dissimilarities), it is
observed that all techniques use a fine-grained continuous melody representation,
with just a few exceptions [28, 61]. In the calculation of melodic similarities
that are lost in the simple transcription of melodies, the transient melodic areas
between the Swaras in the melody are discovered to be essential [17, 35]. By
utilizing approaches such as symbolic approximation aggregate (SAX) [48] and
behavioral symbol sequence (BSS) [77], Ross et al. [62] and Ganguli et al. [28]
explore the abstraction melody’s representation. Also, Ganguli et al. [28] propose
a discrete melody representation that is based on a heuristic technique for quasi-
melody transcription. These abstract representations have been shown to lower
computing costs by an important factor. However, its precision is lower than a
continuous representation of melody (taking best distance measure for both melody
representation) [28, 62].

In addition, these discrete representations are assessed using a limited dataset
that includes a particular singing style within the Hindustani ICM tradition.
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Consequently, the usefulness of such abstract melody representation in Carnatic
and Hindustani ICM traditions is dubious. Ishwar et al. [37] and Dutta and
Murthy [21, 22] employ specific melodic characteristics of Carnatic music for
abstract melodic representation. The authors only examine the stationary points
of a continuous representation of a song (when the slope is zero). However, such
a melody representation is too crude to compute a reliable melodic similarity
and is thus used merely to reduce the search space and computation costs. A
continuous melodic representation makes the final calculation. Overall, it is a stiff
challenge for ICM to develop a melody depiction that can contain abstract melody
properties that help calculate the melodic similarity. It is also noted that the most
adaptable representation is the continuous melody representation, making minimum
constraints on the melodic style. A brief review of each of the techniques for melody
pattern processing is given in Table 2.

Melody Segmentation As previously stated, melody segmentation is a crucial
part of pattern detection. In the symbolic representation of the music, many well-
examined models for melody segmentation are available [8, 10, 60]. In contrast,
segmentation models are not available in our awareness for ICM that work on audio
directly. It leads to brute force segmentation or locally based distance alignment
measures for the pattern detection in ICM, which do not need intentional melodic
segmentation. For the audio recording, Ross and Rao [61] and Ross et al. [62]
identify rhythmic or melodic sites to assess the position of prospective candidates
to melodic patterns (Sama locations and Nyas Swara onsets). However, these
techniques are unique to musical style, melodic design, and slow rhythm (Vilambit
laya). For example, in a recording of Hindustani music, Sama placement can
approximately identify the start of a Mukhda. However, the typical melodic phrases
of Raags do not have any specific link to them.

Similarly, the method for the segmentation of Pa Nyas adopted by Ross and Rao
[61] can only function with the melodic motif phrases that finish in Pa Swara and
particularly in compositions with a slow tempo, which have a significant presence
of the notion of Nyas Swara. Ganguli et al. [26] used a heuristic threshold-based
Swara baseline for segmentation. Furthermore, it is a difficult task to recognize
these markers in itself [33, 75]. Such techniques may thus not generalize and
extend to various melodic patterns and vast collections of music. We note that the
segmentation models for melodies in ICM lack phrase levels.

Melodic Similarity Another essential element in melodic pattern processing is
the measurement of melodic similarity (or dissimilarity). Most techniques utilize a
similarity measure based on dynamic programming. Ganguli et al. [28] use Smith-
Waterman algorithm [72] to compute melodic similarity. Many researchers use
various versions of dynamic programming-based dynamic time warping (DTW)
algorithm for similarity measure [56, 57, 61, 62]. Ishwar et al. [37] and Dutta and
Murthy [21, 22] employ similarity measure based on rough longest common sub-
sequence (RLCS). The dynamic programming dominance for calculating similarity
measures can be linked to the melodic patterns of ICM having significant numbers
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of non-linear changes in timing, which can be further attributed to this musical
tradition’s improvisational nature. The computing sequence similarity (Euclidean
distance) without time alignment is not significant for ICM [61].

However, there is no comprehensive comparison of the Euclidean distance with
the dynamic programmatic similarity measurement for the exact music representa-
tion in the literature. Some of the current research also offers improved distance
measurements. Dutta and Murthy [22] proposed to alter the intermediate stages
involved in RLCS distance computation in order to make them more adaptable
for melodic sequences. These changes have been claimed to enhance the system’s
accuracy while retaining the same reminder. However, only 59 pattern instances in
16 extracts from only 1 Raag are included in the study. Rao et al. [57] propose to
learn an optimum form of the comprehensive restricted path in DTW-based distance
measurement. However, as the authors describe, the learned global limitation has
reduced the technique’s performance. Furthermore, while limiting learning for a
particular pattern category is done, this approach does not apply to unseen data,
which is the case in discovering patterns.

Contrary to these time series techniques focused on matching, some approaches
employ models matching statistical patterns. This task is considered comparable to
the task of detecting the keyword in words by Ishwar et al. [37] and using hidden
Markov models (HMMs) to conduct mainly the pattern classification. Promising
outcomes are shown in the evaluations of the HMM system. However, it is relatively
easy for the authors to distinguish patterns with no irrelevant pattern applicants
in the search space. In addition, because the assessments have not considered a
baseline system, it is left to a comparative evaluation of the HMM method to the
other techniques.

Melody Representation We compare the available methods in terms of the other
essential elements of melodic pattern processing. Computational complexity is a
significant issue in identifying and discovering patterns for large datasets. Since,
as mentioned above, similarities are mainly dependent on dynamic programming,
computational complexity is also critical. The fact that these systems are not
computationally impervious is owing to limited datasets utilized to test methods.
The use of a narrow abstracted discrete melody representation improves the
calculation efficiency of the technique by Ganguli et al. [28].

As previously noted, the performance of such a system is worse than that of
a continuous representation of melody, and the scalability of such a method is
doubtful to various musical materials. In addition, the performance of the melody
transcription system is restricted to the correctness of such an approach. Another
sort of optimization is to carry out the pattern identification task in two steps as
recommended by Dutta and Murthy [22] and Ishwar et al. [37]. A rough melody
representation can be utilized in the first step to determine areas in the audio
recordings that most likely have the appropriate patterns. Such a crude depiction
of melody dramatically decreases computation costs. After the search is separated,
the second step is utilized to identify the pattern in a reliable way using a fine-
grained continuous melody representation. Ishwar et al. [37] used a coarse melody
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representation, which uses the existence of Gamakas, that applies mainly to Carnatic
music (and not Hindustani music). In addition, this approach does not theoretically
calculate a lower limit, and the trimming is based on a threshold of empiric
determination. This implies it is not ideal for applications like pattern detection,
where it is a problem determining a musically appropriate threshold. In addition, a
perfect (100%) recall cannot go to the first stage in that approach, and therefore, it
might create a system bottleneck.

Other ideas to reduce computational complexity include top-down segments that
use particular types of melodic and rhythmic features such as Sama and Nyas onsets
[61, 62]. These events characterize the occurrences of specific sorts of musical
phrases. However, as already mentioned, the method is adapted to specific melodic
patterns and musical shapes in Hindustani music. In general, it is noted that there
are no generalizable methods used in previous approaches to minimize the task’s
computing cost.

2.3 Raag Recognition

One of the essential tasks in the computational approaches for ICM is automatically
recognizing the Raag of a given audio recording. The available computational
techniques for automated Raag recognition in ICM audio datasets in this task depend
on the test datasets’ size (concerning the number of Raags). The set of Raags picked
has a significant impact on the accuracy of a Raag recognition system. When the
selected set of Raags in the dataset has a similar set of Swaras and are allied Raags,
the task gets more complicated. Comparing absolute Raag recognition accuracies
across research is not feasible since the techniques are tested on separate datasets
(usually produced for a particular study and not publicly available). A brief review
of the latest Raag recognition techniques is given in Table 3.

A look at some of the existing Raags recognition methods based on observing
Swara set, Swara salience, Swara intonation, Aaroh-Avroh, and melodic phrases as
melodic characteristics gives insights about each component of the techniques. Each
technique can be analyzed in terms of standard processing blocks, including Tonic
identification, feature extraction, the learning algorithm used to detect Raags, and
other key dataset characteristics.

Feature Extraction It is observed that the set of Swaras is the most commonly
used melodic attribute in a Raag. The Swara set is also one of the most basic features
to extract (computationally). In both the implicit and explicit ways, many different
approaches considered the Swara set as a feature for Raag recognition. In an audio
recording, Ranjani et al. [55] and Chakraborty and De [11] explicitly extract the
constituent set of Swaras. The Raag from the recordings is determined by comparing
the estimated Swara set to the stored set for each Raag. The papers do not specify
the specific technique to map the predicted Swara set to a unique Raag label. As one
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might expect, this is a naive method because numerous Raags share the same set of
Swaras but differ in more complex melodic and temporal aspects.

One method to distinguish between Raags that share a standard set of Swaras is
to examine the importance of the Swaras that make up the Raags in the analysis.
The Swara set feature is implicitly included when computing Swara salience for all
potential Swara frequencies. Therefore, this characteristic is virtually included in
all of the methods. Chordia and Rae [13] offer a feature for identifying Raags that
combines the salience of distinct Swaras in song. The authors use a 12-bin pitch-
class distribution (PCD) calculated as a histogram of the pitch sequence to describe
Swara saliences. This global feature has been demonstrated to work effectively on a
large dataset and is resistant to pitch octave errors. For computing PCD, Chordia and
Rae [13] implicitly consider the duration of the Swaras in a melody for estimating
their salience. Koduri et al. [41] investigate two distinct ways to calculate PCD, each
with a different interpretation of Swara salience. Chordia and Rae [13] use one of
their recommended techniques to weigh the salience by the duration of the Swaras.
The alternative method evaluates the salience of Swaras based on their frequency of
recurrence, regardless of their length. According to observation, the earlier method
yielded more accuracy.

The pitch distribution utilizing a finely seeded bin boundary expands the 12-bin
PCD feature above. The intonation elements of the Swaras additionally include a
high-resolution PCD with the Swara saliences. Such a fine-grained PCD is utilized
in Kumar et al. [45], Belle et al. [2], Koduri et al. [42], and Chordia and Şentürk [14].
Through high-resolution PCD, these studies claim improved performance compared
to a 12-bin PCD. The pitch distribution using the kernel density estimation approach
(KDE), a version of the PCD feature, was utilized by Ranjani et al. [55], and it
further increases the accuracy of Raag recognition. Chordia and Şentürk [14] and
Ranjani et al. [55] refer to these variations as probability density estimates (PDE)
and kernel density pitch distribution (KPD). Some of the techniques [32, 71] skip
Tonic identification and develop Tonic invariant methods for feature extraction.

The above-stated high-resolution PCD feature inherently captures some features
of the Swara intonation in a song. However, it is not easy to regulate the prominence
of the particular intonation characteristics in the PCD feature space. In order to solve
this issue, Koduri et al. [43] and Belle et al. [2] proposed to utilize a parametrized
PCD version for each Swara in the melody. The following characteristics are
extracted by Belle et al. [2] for each Swara: top position, mean position, variance,
and overall probability. Similarly, Koduri et al.[43] extract six characteristics for
each Swara: the peak location, peak amplitude, mean, variance, skewness, and
kurtosis for Swara distribution. Manjabhat et al. [49] have used pitch histogram of
probability density function’s values for pitch profiles. Gulati et al. [32] developed
a time delay melodic surface (TDMS) novel feature with capturing both tonal
and temporal characteristics of melody contours. Similarly, Sinith et al. [71] have
developed Fibonacci series-based pitch distribution for feature representation.

Carnatic music melodies feature Gamakas, where a pitch variation can reach up
to 200 cents, even when presenting a single Swara. It is necessary to determine
which Swara is played in a melody at a particular stage to capture the intonation
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features in such situations. Koduri et al.[43] also proposed an alternative technique
to categorize the pitch contours depending on the melodic context for the calculation
of a context-based Swara distribution. Subsequently, parametrization is done in
this context-based Swara distribution to extract six characteristics. Koduri et al.
[43] claim, in the Raag recognition challenge, features derived using context-based
Swara distribution achieve higher performance. However, a disadvantage of the
techniques mentioned is that the temporal aspects of the melody are not considered,
which are essential for the characterization of Raag.

Recognition Method Many techniques exist that capture the temporal characteris-
tics of melody statistically, mainly through modelling the Raags [13, 19, 45, 51, 74].
There is also the Aaroh-Avroh progression. Some of them calculate Swara sequence
and apply HMM and n-gram approaches to represent time aspects [19, 45, 51, 71].
Some techniques calculate a Swara transition representation capturing temporal
aspects, such as Chordia and Rae [13] using pitch-class dyad distribution (PCDD)
with a SVM classifier. Shetty and Achary [70] use the Swara combination feature
with neural network classifier for Raag recognition. Few of the techniques men-
tioned also include characteristic melodic phrases of Raags [51, 74]. For each Raag,
they maintain a dictionary containing patterns of predefined melodic and detect
events in a Swara sequence derived from the tests. However, the scalability of these
techniques is unclear as the dataset of just two to three Raags has been analyzed.

The above approaches generally employ a discrete melody representation by
simply measuring the predicted pitch contours at the level of Swara or utilizing
more advanced melodic transcription techniques slightly [51]. Ranjani et al. [55]
and Chakraborty and De [11] extract the constituent set of Swaras and use a set
matching algorithm for recognition explicitly. As automated melodic transcription
in ICM remains a challenge and a relatively unspecified process [79], this phase
may bring mistakes that further propagate the final precise techniques and affect
them. However, the impact of the mistakes in the steps of melody transcription
on absolute correctness still has to be formally assessed quantitatively. Besides
the problems associated with the transcript of melodies, the methods mentioned
above are further restricted. There is a lack of features capturing the continual
melodic transitions across the Swaras. Chalan of Raag describes the development
of the melody from Swara to Swara (continual melodic changes) and is a distinctive
feature. In the techniques that employ a continuous melody representation and use
melody patterns to recognize Raags, these tiny seeds of the temporal elements of
melody are examined. However, not many techniques follow this methodology due
to the difficulty of identifying melodic patterns in continuous melody representation.
The Raag is verified by Dutta et al. [23] utilizing the automatically found melodic
patterns from certain parts (Pallavi lines) of the Carnatic music. Several methods
use k-NN as an algorithm for classification [2, 14, 23, 32, 41]. A Raag verification
system presupposes that a certain Raag is identified and examines whether the
identified Raag is valid or not by the system. Thus, Raag testing may be seen as
a subset of recognition of Raag with reduced task complexity.
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All other techniques utilize pitch as a key to Raag recognition, except for
the methods proposed by Dighe et al. [19, 20] and Chowdhuri [15]. There are
several pitch estimate techniques in existing approaches for Raag recognition. Some
algorithms [64] are mainly intended to operate with polyphonic audio material,
although some are mostly suited for [5] monophonic speech signal. Therefore, a
mistake in the system might result in an erroneous estimate of the pitch of the
audio signals. However, as some of the approaches are assessed using monophonic
content of audio, and the remaining approaches have polyphonic content, the results
provided in the research are hard to conclude. A comparative assessment of a shared
dataset will be necessary to verify this notion. As mentioned above, Dighe et al.
[19, 20] techniques are the two exceptions for utilizing the pitch feature for Raag
recognition and utilizing a 12-bin chroma feature along with HMM and RF classifier
to complete the task. The chroma feature is commonly utilized for identifying key
and mode tasks. All the audio signals’ tonal components are included in the chroma
calculation. For ICM, the sound of Tabla and Tanpura, which are typically in the
backdrop, would mean strengthening the essential Swara Sa. Thus, the technique’s
performance can be reduced if the tonal components are disconnected from the
underlying Raag. However, since none of the experiments are compared with a
Raag recognition system which is pitch-based [19, 20], we cannot conclude without
comparative evaluation.

An important step in recognizing Raag is to make the technique invariant to
the Tonic pitch of an audio recording main artist. Many studies in recognition of
Raag are either do a Tonic normalization by identifying their values manually or
consider the performance that is set in a predetermined Tonic pitch [2, 13, 51, 70].
These approaches cannot be scaled to actual collections in real circumstances or
another. According to the artists and their recordings, the Tonic pitch changes,
making it cumbersome to extract information manually. Several techniques either
use an external automated Tonic identification module [38, 42, 43] to overcome
this restriction, or they explicitly identify a Tonic pitch before Raag is recognized
[11, 55].

Another way of estimating the Tonic pitch and Raag of a recording together
requires following a brute force technique [14, 41, 45], where distinct feature
candidates that correspond to all potential Tonic values are examined (generally
measured against the prominent Swara pitch values of the melody). The candidate
with the best match is utilized to deduce both the label of Raag and Tonic. However,
the knowledge of a trustworthy Tonic pitch in advance leads to considerably
superior performance compared to a brute force joint estimate as demonstrated by
Chordia and Şentürk [14]). It shows that an additional module that can consistently
detect Tonic pitch may significantly enhance the Raag recognition performance.
It might be beneficial for Tonic identification to utilize an external module as the
corresponding acoustic characteristics might differ in assessing Tonic pitch and
Raag. For example, the drone background Tanpura does not directly comply with
the Raag recognition, but information may be used in recording [30] to accurately
identify the pitch of the Tanpura. Some new methods take advanced architectured
classifiers from deep learning and use them for recognition. Chowdhuri [15] used
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bi-directional long short-term memory (Bi-LSTM) classifier, while John et al. [38]
used a convolution neural network-based classifier for recognition. Manjabhat et al.
[49] used several classifiers over the pitch histogram for the recognition task.

A broad and sizeable music dataset generally lacking in the previous works
on recognition of Raag is a crucial component of any data-driven research. For
the recognition of Raag, several techniques are offered that employ several tonal
characteristics and education methods. As observed, the number of Raags selected,
the duration taken, and the numbers of the recordings of the audio content and
its type vary considerably by existing techniques (monophonic or polyphonic). It
is not easy to make definite conclusions with such heterogeneous datasets on the
performance of the techniques in various research. In the same dataset and the
same experimental configuration, even those datasets in the survey studies like
in the Koduri et al. [41] did not conduct an extensive comparison. Therefore, it
is possible to create various, large, and sharable datasets indicative of musical
tradition. Another common factor in several current studies is the insufficient
description of implementation details, in addition to the datasets. This issue gets
much more challenging because no technique has provided code to the public to
ensure that the research outcomes are reproducible.

3 Datasets

3.1 CompMusic Research Corpora

Dunya music corpus has been collected as a part of the CompMusic project by the
Music Technology Group (MTG) [69]. The audio music files are collected from
commercial quality audio compact discs (CDs) and stored in the mp3 format of
160 kbps. The metadata for each recording is stored at MusicBrainz [24]. This
dataset contains approximately 400 CDs and 3500 tracks. The total time is roughly
800 hrs, which comprises Carnatic, Hindustani, and three other forms of music.
The editorial metadata accompanying the datasets is carefully curated and verified
labels. This dataset comprises approximately 600 male and female artists, with all
the popular instruments. Parts of the corpus are open-sourced under a Creative
Commons license. The recording has been done with the stereo channel with a
sampling rate of 22.05 kHz with 16 bit PCM.

– Carnatic Raag Dataset The Carnatic test dataset is a part of the Dunya collection
that focuses on the Carnatic style of ICM. The dataset contains 124.5 hrs of
recording of 40 different Raags. Each Raag category has 12 music samples.

– Hindustani Raag Dataset Another test dataset from the collection is the
Hindustani dataset. It focuses on the northern and middle parts of the ICM style.
It has 116.2 hrs of recording of 30 Raags. Each Raag has ten recording samples.

– Indian Music Tonic Dataset The dataset comprises six small Tonic datasets and
contains audio samples and annotations made manually of the leading artist’s
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Tonic pitch for each audio sample. Every sample accompanies the corresponding
editorial metadata. A bulk of these datasets originate from the CompMusic
corpora of Indian art music, which has an MBID for each recording. Other data
may be accessed using the MBID with the Dunya API.2

– Saraga: Research Datasets of Indian Art Music This collection [7] is currently
the most extensive annotated open data collection available for computational
research on Indian art music. They comprise audio, editorial metadata, manual,
and automatically extracted annotations for different aspects of melody, rhythm,
and structure. The dataset can be accessed through the PyCompMusic API.3

4 Evaluation Metrics

Performance evaluation of the music-based systems is performed from two perspec-
tives that are objective evaluation and subjective evaluation. Objective evaluation
measures the performance of a system based on a chosen metric or set of metrics. At
the same time, subjective evaluation is based on human subjectivity and preferences.
This type of evaluation is very easy to be biased, and utmost caution is needed to
perform them. They are rarely observed in available approaches for ICM.

4.1 Objective Evaluation

The following performance assessment measures are used in the literature to
evaluate the effectiveness of the different approaches:

Let vector g and t be the one-dimensional estimated frequency sequence of
melodic pitches and the sequence for the ground truth. Let b be a voicing indicator
vector of which ith element is bi = 1 when the frame is determined to be voiced
(where the melody is present) with a matching ground truth c. The b̂i = 1 − bi
represents un-voicing.

1. Voice Recall (VR): The ratio of the frames is described as a voiced frame with
the melodic frame of ground truth.

V R =
∑

i

bici
/ ∑

i

bi

2. Voicing False Alarm (VFA): The percentage of incorrectly computed frames as
melodic frames with the non-melodic frames is called voicing false alarm.

2 https://dunya.compmusic.upf.edu/.
3 https://github.com/MTG/pycompmusic.


 -1446 57047 a -1446 57047
a
 
https://dunya.compmusic.upf.edu/

 -1446 58376 a -1446 58376 a
 
https://github.com/MTG/pycompmusic


112 Y. Singh and A. Biswas

V FA =
∑

i

bib̂i
/ ∑

i

b̂i

3. Raw Pitch Accuracy (RPA):
Part of the correct pitch of frames is correctly identified as melodic frames
and pitch-correct but un-pitched with the frames that are melodic frames of the
ground truth.

RPA = {∑

i

biτ [ζ(gi) − ζ(ti)]
}/∑

i

b̂i

where the τ describes the threshold feature:

τ [a] =
{

1 if |a| 50

0 if |a| > 50

Moreover, ζ maps a motivated frequency value axis where every semitone is
divided into 100 cents. Frequency can be defined as a significant number of cents
above the reference frequency gref .

ζ(g) = log2 g
/
gref

4. Overall Accuracy (OA):
Overall accuracy is nothing, except that melody and pitch are accurately marked
with the frames. If L is the total frame number, the OA is

OA = 1

L

∑

i

ciτ [ζ(gi) − ζ(ti)] + b̂iĉi

4.2 Subjective Evaluation

Users listen to and assess the whole impression based on their feeling of the existing
music system, i.e., the subjectivity of the user toward music. Some subjective
assessment metrics [53] are:

1. Scoring
A click is deemed “hit” if it took place inside a specified time of the expert-
defined boundary region (EDBR). We suppose that each “hit” is the response
of the listener to the EDBR rather than an early or later EDBR getting a late
response. In addition, if clicks fall shortly before or after the EDBR, they may be
construed as anticipated or delayed reactions; they are not considered “hits.” A
“false alarm” was instead regarded as a click when it occurred in the “interstitial”
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space, i.e., the off-boundary area between EDBRs. For hits, it was quantified and
evaluated as a “promptness” of reaction concerning the start of the EDBR.

2. Signal detection theory measures
The hit and false alarm rates (HR, FAR) (as defined by their number of hits
and false alarms, divided by the total number of “signal present” or “absent”
trials (EDBR and non-EDBR)) are calculated to compare the ability of the
listener to identify the diverse hierarchical grouping levels. Participant-specific
computations for HR and FAR were performed independently for level 1
(section-level) and level 2 (phrase-level) EDBRs throughout the two hearings.
Based on these rates, they also measured the general capacity of the participant to
detect phrase boundaries throughout the Alap using a sensitivity index, described
traditionally as

d ′ = z(HR) − z(FAR)

3. Promptness
Each participant’s assessment is performed based on how quickly they recog-
nized the ending of the current phrase for every hit in each repeat. To do this, a
“promptness” score is created for every particular hit that varied from 1 (if the
click happened early at the EDBR, i.e., prompt answer) to 0 (if it occurred at the
very end, a delayed response). They calculated either a (a ∗ x + b) linear score
or a (c/x) reciprocal function with 0-1 values. These findings were comparable;
therefore, they maintained the linear definition. For promptness measurement,
just the initial click inside each EDBR was employed. The speed ratings were
calibrated individually throughout the hits of EDBRs at each of the levels in
order for the participants to determine if they replied more quickly to level 1 than
level 2 or vice versa. For each participant in levels 1 and 2, the cumulative results
for section and phrase awareness are reported.

4. Repetition (listening) number
All the analyses (average or total) of sample 1 and sample 2 were carried out
because the discrepancies in the answers of the two listen in all crucial steps were
modest. Due to its resilience to outliers, they have chosen the medium instead of
the mean as a measure of central tendency (using means yielded similar results
in this case) for the relationships of participant-wise performance (HR, FAR, d ′,
and promptness) over hearings.

5 Open Challenges

Based on the literature survey of current approaches for computational analysis for
ICM, we have found the following issues present in the research that are needed to
be addressed:
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– Most of the approaches for various tasks work on a few data samples that are not
conclusive. Furthermore, those approaches that work on the sizable dataset are
not publicly available most of the time. Sizable standard open-licensed datasets
need to be prepared to increase models’ quality and performances.

– The approaches focus heavily on extracting various features to solve a problem
at hand. The extracted feature may or may not comprise the necessary latent
patterns in its representation of the music samples. Low-level spectral represen-
tations of music need to be explored along with advances in deep learning for
developing end-to-end automated systems.

– Current Swara (note) transcription systems are very raw and perform poorly over
live concert recordings. The systems need to be improved by incorporating music
segmentation and melodic pattern detection advances.

– None of the current approaches focus on performing multiple tasks concerning
ICM simultaneously, and they only focus on a single task at hand. Advances in
hardware and pattern learning have allowed the researcher to build systems that
perform multiple operations simultaneously. So, multi-task learning needs to be
explored in the ICM domain.

6 Conclusion

In this chapter, we performed a comprehensive survey of the current approaches for
ICM computational analysis. All the approaches are analyzed from the perspective
of three major tasks in ICM: Tonic identification, melodic pattern processing, and
the most studied task, Raag recognition. In each task, approaches are broken down
into logical processing blocks, and their techniques are elaborated for each block.
In the end, we discussed the challenges still present in the research and future
directions to improve the overall computational analysis field for ICM.
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1 Introduction

The five fundamental senses, i.e., hearing, sight, smell, taste, and touch, perceive the
information from the environment, and the human brain processes this information
to create a precise response. Sound acts as an information provider to these
senses. The information that is transmitted has to be free of noises to get a better
understanding of the external environment. Noise can be described as any unwanted
information which hinders the ability of the human body to process the valuable
sensory information. Hence, an uncorrupted sound becomes essential for proper
interaction of humans with their external world. The primary focus is on speech
signals which are information providers in various communication systems. During
the transfer of signals, distortion by some unwanted signals causes loss of useful
data and information stored in the signals. There are many real-world noise signals
such as the noise of a mixer grinder, washing machine, and vehicles which have
to be reduced to retrieve the wanted information. The frequency of speech signals
ranges from 85 to 255 Hz. Typical male voice ranges in between 85 and 180 Hz,
whereas the female voice ranges in between 165 and 255 Hz. Babies have even
higher ranges of frequency reaching up to 1000Hz in a few cases [1].

Speech denoising refers to the removal of background content from speech
signals. The goal of speech denoising is to produce noise-free speech signals from
noisy recordings while improving the perceived quality of the speech component
and increasing its intelligibility [2]. Speech denoising can be utilized in various
applications where we experience the presence of background noise in communica-
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tions, e.g., hearing aids, telecommunications, speech recognition applications, etc.
[3].

A number of techniques have been proposed based on different assumptions on
the signal and noise characteristics in the past, but in this chapter, we shall compare
two main methods, Wiener filtering technique and neural network method. For
neural network technique, we will consider two types of networks, fully connected
network and convolutional neural network. We compute PSNR and SNR values for
these three techniques to compare the denoised signal quality.

2 Background

2.1 Wiener Filtering Technique

One of the notable techniques of filtering that is widely used in signal enhancement
methods is Wiener filtering. The key principle of Wiener filtering, essentially, is to
take a noisy signal and acquire an estimate of clean signal from it. The approximate
clean signal is acquired by reducing the mean square error (MSE) between the
estimated signal and desired clean signal [4].

The transfer function of the Wiener system in frequency domain is

H(w) = Ps(w)

Ps(w) + Pv(w)
. (1)

where

Ps(w) = power spectral density of clean signal. (2)

Pv(w) = power spectral density of noise signal. (3)

Here, the signal s and noise v are considered to be uncorrelated and stationary.
The signal-to-noise ratio (SNR), which is used to detect the quality of a signal,

is defined as

SNR = Ps(w)

Pv(w)
. (2)

Substituting SNR in the above transfer function, we obtain

H(w) =
(

1 + 1

SNR

)−1
. (3)

One of the popular applications of the Wiener filtering technique is the Global
Positioning System (GPS) and inertial navigation system. Wiener filter, which is
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also used in geodesy to denoise gravity records, is used in GPS to model only those
time variabilities that are significant when adapted to noise level of data [5].

Signal coding applications is a field where Wiener filter is widely used in.
In signal processing and broadly engineering applications too, Wiener filter is
considered to be a great tool for speech applications due to its accurate estimation
characteristic. This filter can further be adapted to serve different purposes like
satellite telephone communication [6].

If we dive into the world of electronics and communication more, the Wiener
filter has a range of applications in signal processing, image processing, digital
communication, etc. like system identification, deconvolution, noise reduction, and
signal detection [7].

Specifically in image processing, Wiener filter is a quite popular technique used
for deblurring, attributed to its least-mean-squares technique. The blurriness in
images that is caused as a result of motion or unfocused lens is removed using this
filter. Additionally, since it returns mathematically and theoretically the best results,
it also has applications in other engineering fields [8].

2.1.1 Algorithm

To denoise a speech signal using the Wiener filtering technique, we first fetch a clean
audio signal file and a noise signal file from the audio datastore in MATLAB. We
then extract a segment from the noisy signal and add it to the clean signal to make it
a noisy speech signal which is given as input to the Wiener filter. The Wiener filter
performs denoising of the speech signal, and then we visualize the output signal.
Flowchart for the algorithm can be seen in Fig. 1.

In order to compute peak SNR and SNR values, the output and input signals are
given to PSNR function which is a built-in function in MATLAB. The frequency
response of the Wiener filter is such that, at frequencies where SNR is low, that is,
noise power is high, the gain of the filter decreases, and the output is limited, causing

Fig. 1 Wiener method
flowchart



124 V. K. Padarti et al.

noise reduction. Correspondingly, for high SNR, that is, when signal power is high,
the gain becomes nearly one (∼1), and output sought is very close to input. Another
drawback is that at all given frequencies, the Wiener filter requires a fixed frequency
response. One more shortcoming in the Wiener filter is that before filtering, the
power spectral density of both clean and noise signals has to be estimated. Noise
amplification is also a problem [6, 9–11].

2.2 Deep Neural Networks

Deep learning is part of machine learning with an algorithm inspired by the structure
and function of the brain, which is called an artificial neural network. Artificial
neural networks are the statistical model inspired by the functioning of human brain
cells called neurons. Deep learning is used in many fields such as computer vision,
speech recognition, natural language processing, etc. [12].

A neural network mimics the human brain and consists of artificial neurons, also
known as nodes. Group of nodes make a layer. There are three types of layers: the
input layer, the hidden layer(s), and the output layer. There can be multiple hidden
layers and it depends on the model. All the nodes are provided with information in
the form of input. At each node, the inputs are multiplied with some random weights
and are computed, and then a bias value is added to it. Finally, activation functions,
such as rectified linear unit (ReLU) function, are applied to determine which neuron
to eliminate.

While deep learning algorithms feature self-learning representations, they
depend upon neural networks that mimic the way the brain processes the
information. During the training process, algorithms use random unknown elements
in the input to extract features, segregate objects, and find useful data patterns.
Much like training machines for self-learning, this occurs at multiple levels,
using the algorithms to build the models. Deep learning models utilize several
algorithms. Although none of the networks is considered perfect, some algorithms
are preferred to perform specific tasks. Some commonly used artificial neural
networks are feedforward neural network, convolutional neural network, recurrent
neural network, and autoencoders [13].

There are also some disadvantages of deep learning. Very large amount of time
is required to execute a deep learning model. Depending upon the complexity,
sometimes, it may take several days to execute one model. Also, for small
datasets, the deep learning model is not suitable. There are various applications
of deep learning such as computer vision, natural language processing and pattern
recognition, image recognition and processing, machine translation, sentiment
analysis, question answering system, object classification and detection, automatic
handwriting generation, automatic text generation, etc.
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Fig. 2 Neural network block diagram

2.2.1 Algorithm

We first fetch clean and noisy audio files from the audio datastore in MATLAB, and
then we extract a segment from the noisy audio and add it to the clean audio signal.
This will be the input given to the deep learning network. Neural network block
diagram is shown in Fig. 2.

We utilize short-time Fourier transform (STFT) to transform the audio signals
from time domain to frequency domain. The magnitudes are extracted and then fed
to the neural network. Then the output signal which is the denoised and enhanced
version of the input noisy signal is converted back into the time domain using the
inverse STFT.

An exemplary speech signal is shown in Fig. 3. Clearly, it can be seen that the
amplitudes vary significantly with time, i.e., there will be huge variations frequently
in the signals like music and speech. This is the reason we utilize the short-time
Fourier transform technique.

We have utilized two models of deep learning networks: fully connected and
convolutional neural network. For any model, the network first needs to be trained
so that it learns its function to segregate the noise segments from the audio segments.
For training the model, we consider a sample signal and then set the required
parameters such as learning rate, number of epochs, batch size, etc. Once the model
completes its training, it has to be tested. For the testing phase, we feed the model
with another set of samples which were not given in the training phase and observe
the outputs. The flowchart for the artificial neural network is depicted in Fig. 4.

To compare the efficiency of the two models, we compute PSNR and SNR values
using psnr function which is a built-in function in MATLAB. We also use another in-
built function, sound(), to listen to the audio signals. Besides this, we also represent
the signals with timing plots and spectrogram.
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Fig. 5 Fully connected
network

2.2.2 Fully Connected Network

A fully connected neural network consists of a series of fully connected layers that
connect every neuron in one layer to every neuron in the next layer. For any network,
there are three types of layers: input, hidden, and output layers. The information
received from the input is given to the model, and then the model is trained using
this data [14]. A fully connected network model is shown in Fig. 5.

We define the number of hidden layers in the model. For our model, we have 2
hidden layers with 1024 neurons each. The model is trained on the training dataset.
Each of the hidden layers is followed by ReLU layers and batch normalization
layers.

A clean audio file fetched from the audio datastore is corrupted with a noisy
segment extracted from the noise signal. These signals are plotted in Fig. 6. Then
these signals are passed to the network model, and the model is trained. The training
process involves learning the model function by passing the model through the given
dataset for 3 epochs (in order to avoid overfitting, we have limited to 3 epochs) with
a batch size of 128 at an initial learn rate of 10−5, and for every epoch, the learning
rate decreases by a factor of 0.9.

2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks can be differentiated from other neural networks by
their superior performance with image, speech, or audio signal inputs. They have
three main types of layers: convolutional layer, pooling layer, and fully connected
layer.

The first layer of a convolutional network is the convolutional layer. After the
convolutional layer, we can have the additional convolutional layers or the pooling
layers. The final layer is the fully connected layer. The CNN complexity increases
with each layer, but the model gets more accurate outputs. Therefore, there should
be some optimality.
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The convolutional layer is the core building block of a CNN. It is where the major
part of the computation occurs. It requires a few components: input data, a filter, and
a feature map. Pooling layers, also known as downsampling, conduct dimensionality
reduction, reducing the number of parameters in the input. It is similar to the
convolutional layer in processing and filtering the input, but the difference is that
this filter does not have any weights. Instead, the kernel applies an aggregation
function to the values within the receptive field, populating the output array. A basic
convolutional layer model is shown in Fig. 7.

There are two main types of pooling: max pooling which selects the maximum
value and average pooling which computes the average value of data. A lot of
information is lost in the pooling layer, but it also has a number of advantages to
the CNN. They help to reduce complexity, improve efficiency, and limit risk of
overfitting.

In the fully connected layer, each node in the output layer connects directly to a
node in the previous layer. This layer performs the task of classification based on
the features extracted through the previous layers and their different filters. While
convolutional and pooling layers tend to use ReLU functions, FC layers usually
use a SoftMax activation function to classify inputs appropriately, producing a
probability from 0 to 1 [15].
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Fig. 7 Convolutional layer Input
Hidden

Output

For our convolutional network model, we have defined 16 layers. Similar to
the fully connected network, convolutional layers are followed by ReLU and batch
normalization layers.

3 Results

3.1 Wiener Filtering Technique

The Wiener model is provided with a clean and a noisy signal, and it yielded
the output as shown in Fig. 8. We can clearly see that a lot of high-frequency
components in the original audio signal are lost when denoised. This leads to
reduced quality. Also, the model resulted in a PSNR 20.0589 dB and SNR of 2.4825
dB which are considered to be low compared to standards. Results for different
samples are shown in Table 1.

3.2 Fully Connected Network

3.2.1 Training Stage

In the training stage, our model is provided with training dataset and is made to
learn its function. The training progress is visualized in Fig. 9, where we can see the
internal approximation process.

After the training is complete, the time and frequency plots are visualized as in
Fig. 10. We can see that the denoised version is almost approximately equal to the
original clean signal.
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Fig. 8 Wiener method results

Table 1 Wiener method
results

Sample PSNR [dB] SNR [dB]

1 20.0589 2.4825

2 20.7663 3.1900

3 20.4732 2.8969

4 20.8320 3.2557

5 21.2536 3.6772

6 20.6340 3.0577

7 20.2921 2.7157

8 20.6636 3.0872

3.2.2 Testing Stage

Once the model is trained, we test the model with a dataset which is not given
in the training stage. When our fully connected model is tested, it resulted in a
PSNR of 23.5416 dB and an SNR of 6.5651 dB, which are greater than those of
the Wiener method, but yet they are lower than the acceptable standard values. The
output time and spectrogram plots are visualized as in Fig. 11. The original and
enhanced versions are nearly equal but not exactly equal, but when compared to the
Wiener filtering technique, it can be seen that the fully connected network method
yielded better results. Results for different samples are shown in Table 2.
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Fig. 9 Fully connected network training progress
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Fig. 10 Fully connected network result in the training stage

3.3 Convolutional Neural Network

3.3.1 Training Stage

Similar to that of the fully connected model, our convolutional model is first trained
with a dataset. The training progress window is visualized in Fig. 12. It should
be noted that the training process took longer time compared to fully connected
model due to the number of layers and the complexity of the layers. Once training
is completed, the time and frequency plots are visualized as in Fig. 13.
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Fig. 11 Fully connected network result in the testing stage

Table 2 FC model results Sample PSNR [dB] SNR [dB]

1 23.5416 6.5651

2 24.1829 7.2064

3 24.0188 7.0423

4 26.5571 7.7258

5 23.7959 6.8194

6 23.8697 6.8932

7 23.9390 6.9625

8 23.8521 6.8756

3.3.2 Testing Stage

After successfully training the model, we test the model with a testing dataset. The
testing dataset is a dataset which is not provided in the training dataset. This helps
in the evaluation of the model.

In the testing stage, the time and frequency plots are visualized as in Fig. 14
where the original clean audio signal, the corrupted noisy signal, and the enhanced
speech signals are plotted. It can be clearly seen that our model effectively
denoises the noisy signal and enhances its quality. When compared to the previous
technique, i.e., Wiener filtering technique, where we have removed all the high-
frequency components, we have removed only the noisy components and retained
the original high-frequency components in the output signal. So, this model is
effective compared to the Wiener method.

The convolutional model resulted in a SNR of 7.6137 dB and a PSNR of
26.4451 dB. When compared to Wiener and fully connected models, these values
are higher. However, they are still lower than the acceptable standard values. Results
for different samples are shown in Table 3.
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Fig. 12 Convolutional model training progress
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Fig. 13 Convolutional model result in the training stage

4 Conclusion

We have built three models to apply the Wiener filtering technique and neural
networks for speech enhancement. The results from models for different samples
are shown in Tables 1, 2, and 3. From the results obtained, we can clearly see that
convolutional network performs better when compared to the other two models,
but it requires very large amount of time for training and computation. We know
that the resources are very limited and expensive to process such models. Besides
this, requiring a very large computational time is a big disadvantage when it comes
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Fig. 14 Convolutional model result in the testing stage

Table 3 CNN model results Sample PSNR [dB] SNR [dB]

1 26.4451 7.6137

2 25.9861 7.1547

3 26.1930 7.3617

4 26.3692 7.5378

5 26.3822 7.5508

6 25.9799 7.1485

7 26.2276 7.3962

8 26.5732 7.7461

to real-time applications. Also, when the model requires such huge resources, the
model must also be very efficient, but the results obtained from the convolutional
network model are not highly satisfactory. Therefore, we still need to optimize the
model for better results.
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Video Soundtrack Evaluation with
Machine Learning: Data Availability,
Feature Extraction, and Classification

Georgios Touros and Theodoros Giannakopoulos

1 Introduction

In recent years, there has been a multitude of attempts to create models that touch
upon domains of artistic creativity. Such a domain is that of creating, or choosing,
music that accompanies visual content, i.e., video soundtracks. This is a type of
artistic task that is usually taken up by dedicated professionals. Especially in the
film industry, a typical film would have a composer and a music supervisor working
separately to create and select the musical content that best accentuates the themes,
energy, and emotion of a particular scene. Their works are interconnected, but a
close collaboration between them is not always the case.

In this chapter, we focus on methods that combine music and video, in order to
approach the task of choosing satisfactory accompaniment music for video content.
To that end, we extract a selection of handcrafted features from three different
content modalities: audio, video, and symbolic representations of music. In our
research, we could not find other works that combined all three of these. Our
experimentation suggests that there is potential in this approach, as it combines
high-level with low-level information: features from sound timbre and audio spectra
are combined with features from song structure and composition; color histograms
are combined with object and optical flow features. Given the complexity of the task,
and the lack of available open data, our main focus was creating a large enough
data-set that contains data from all the necessary modalities and forms (songs in
raw audio form, transcriptions of these songs in MIDI form, and video excerpts
containing these songs). Our contribution is not only to gather and clean the data but
also to develop an open-source scalable process to create and manage such data-sets,
which could potentially be given to the research community for further expansion.
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We also proceed to extract features from this data-set and examine their suitability
using a rudimentary classifier, which matches the different modalities with each
other. We experiment with tuning the model, but the lack of large-scale data in our
proof of concept prevents us from reaching high levels of accuracy.

Our work could potentially help in many use cases in the field. An improved
version of our classifier could be used to create a platform for video soundtrack
selection. The end-users could be video editors that need temporary music while
they wait for the music supervisor to provide them with a fitting, licensed piece of
music or music supervisors who want to validate their choice of music or let the
algorithm help them decide between some options. Such a system could also serve
as a platform for artists that want to expose their music to such an audience (video
editors or film producers), by providing an evaluation of the goodness of fit of their
music, with regard to the visual content. Further to this, such a model could be used
in order to create a soundtrack recommendation system from a database of existing
tracks, which in turn could be used either as a plug-in on video editing software or
as a stand-alone application.

Furthermore, there is much literature around video processing, audio processing,
and classification. To our knowledge, there are not as many papers when it comes to
video soundtrack generation or classification. A common thread in similar research
is music retrieval for user-generated videos (UGV). In [1], a system for creating
automatic generation of soundtracks for outdoor videos of users is proposed. The
system is built on contextual data based on the geo-location in which the video was
shot. This contextual data contains geographic tags, and mood tags, collected from
OpenStreetMap and Foursquare. In [2], a system for recommending soundtracks for
user outdoor videos is proposed, based on geographic, visual, and audio features.
The visual features are based on color only and are combined with tags of the mood
of the specific area. These are then combined with music, combining the user’s
previous listening history with mood tags and audio features of the track. A similar
approach is followed in [3]. In [4], the authors propose a process that recommends
the soundtrack and edits the video simultaneously. Their approach uses a multi-task
deep neural network to predict the characteristics of an ideal song for the video and
then retrieves the closest match from a database. The track is then aligned to the
video using a dynamic time warping algorithm and concatenates the video given a
cost function, trained on an annotated corpus.

Another research thread tries to create music recommendation systems that could
be used as plug-ins in video editing software or in order to create music videos. In
[5], a method and a system are proposed for the recommendation of soundtracks by
video editing software. The proposed system is based on emotional and contextual
tags given by the end-user and then retrieves and combines relevant loops of
preexisting content. In [6], a music video generation system is developed, which
utilizes the emotional temporal phase sequence of the multimedia content to connect
music and video. It is trained on annotated data that is mapped to an arousal-valence
scale that is tracking the shifts in emotion along the content of the medium. The
multimedia are then matched according to the time series of the emotional shifts,
using string matching techniques. In [7], a model that synchronizes the climax of a
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video clip and a music clip is proposed. The model is trained on annotated data
for the audience perception of climax in music and video and applies dynamic
programming to synchronize the climax in both modalities. In [8], a deep learning
approach is introduced for cross-modal content retrieval. The features are extracted
from audio and video, and a system for cross-modal queries is developed, relying
on content rather than tags or metadata.

The rest of this chapter is organized as follows: In Sect. 2, we describe in detail
our attempt to address the data availability issue. We propose a method of acquiring,
cleaning, and managing the data of all three relevant modalities, and we report on
the specifics and challenges of implementing this method. In Sect. 3, we discuss
issues of representation and encoding of data for music and video, and we describe
in depth the feature extraction process based on various alternative representations
and modalities. In Sect. 4, we experiment with the creation of a classifier that
could discriminate between real and fake examples of soundtracks, given data and
features that were collected in the previous chapters. We present the results of our
experiments, and we highlight some promising directions. In Sect. 5, we discuss
future work, focusing on how our data collection pipeline could be improved for
building a more robust model. In Sect. 6, we sum up and conclude our work.

2 Data Collection Pipeline

The main challenge we faced was data availability. We could not find any open
data-set that includes all three necessary modalities or that was appropriately
scalable. We therefore proceeded to create our own data collection pipeline, which
can be found in our GitHub repository,1 along with a detailed description of
each module. All code is written in Python 3, Bash, and SQL, run and tested in
Ubuntu Linux 20.04. There are some dependencies with third-party software beyond
those that were mentioned in the requirements document in the repo. These are
FFmpeg, MySQL, CUDA Toolkit (optional), MuseScore 3, FluidSynth,
QjackCtl, Qsynth, and LilyPond.

2.1 Collection, Cleanups, and Storage

The MIDI data was downloaded from composing.ai[9], containing 124,470
files. The main problem of this data-set is its lack of structure. The files come
from different data sources, each with their own naming conventions and directory
structures, making it hard to determine which songs are included in the collection.
We used regular expressions to keep valid MIDI files and perform a cleanup of the

1 https://github.com/GeorgeTouros/video-soundtrack-evaluation.
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names. As ground truth for name legitimacy, we chose the popular music streaming
platform Spotify. The platform provides a web-based API, which we access
using the relevant library spotipy[10]. We used that to get a proper name of each
MIDI filename, as well as relevant artist and URL information. The match rate is
currently at 61%, resulting in a MIDI data-set of 43,567 MIDI files. The collection
consists mostly of pop and rock songs, which is a big limitation for the task at hand.
While a lot of films use these as background music for film montages, productions
usually avoid them, given that obtaining usage rights is expensive. This limits the
pool of films and scenes we can draw from. Each film usually also has its own
unique score, which in most cases carries the bulk of the scenes and the emotional
core of the film.

The audio data is based on a personal collection of MP3 files. This provides
some challenges, as will be explained later. The collection has an initial catalog of
55,800 files from different genres and of varying audio quality. They are arranged
in directories according to genre, country, and artist. As was the case with the MIDI
files, the files do not follow strict naming conventions for the song titles, and the
sampling rates and bit rates vary.

Video data is based on a personal film collection. The collection includes 106
films and 37 episodes from television series. The files are in various types: avi, mp4,
and mkv. As was the case with the other two modalities, the naming conventions and
image quality of the raw data are inconsistent.

Matching MIDI to Audio Data In order to match the audio and MIDI files, we
utilized a rule-based method to connect our MIDI with our audio data, via our
external knowledge base, Spotify. The matching resulted in 3109 audio-MIDI
matches. While the number of results seems adequate, there are some concerns.
The most prominent for the feature extraction process was that MIDI data is often
corrupt or otherwise inappropriate for further processing.

An important performance indicator is the recall of the Spotify search API. This
depends on the level of cleanliness of the original file names, as well as how well our
custom regex-based cleaner works. This is evident by the fact that in the audio files
(which had much cleaner initial file names), recall is considerably higher than in
the (much “dirtier”) MIDI files. More specifically, in the audio files, recall reaches
83.3%, whereas in the MIDI catalog, it’s only 65.2%. This means that we lose a lot
of MIDI data when we apply the matching process.

On the other hand, the precision of the Spotify search API depends on the level of
accuracy of the original files, i.e., whether the file name reflects the actual content
of the file. Due to the size of the data-set, we weren’t able to precisely compute
the precision of the method. Nevertheless, while performing manual curation of
the matched files, in order to create fake examples for our classifier, we came across
plenty of files that were wrongly matched. This has a few implications. Firstly, there
were plenty of audio files that weren’t the original versions of the songs (most often
being covers in other genres or live versions). Furthermore, there were cases where
the MIDI and audio files had the same song title, but were referring to different
songs with the same name. Since the Spotify search API yields the most popular
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result, one of them (or both) was falsely identified. Finally, a lot of jazz songs have
titles that closely resemble other popular songs; therefore, there were cases where
the audio was falsely identified as a more popular song by the Spotify API.

2.2 Finding Music Within Videos

The ultimate goal in our data collection pipeline is finding combinations of videos
and songs, in both audio and symbolic formats. We decided to follow an approach
that would allow expanding to videos that aren’t necessarily listed in external film
knowledge bases; we created a script which, given a database of song fingerprints
(implemented in a Python library called pyDejavu [11]), breaks the video in
chunks and compares the audio against the said fingerprints, using the same
parameters as the ones that were used to build the fingerprint database. If a match
is found with the same song in more than three consecutive video chunks, the clip
is stored in our catalog. Our experimental setup used the following settings: video
chunk size, 5 s; audio sample rate, 16 KHz; and audio channels, 1.

In order to increase the recall of the method, we apply the following rule: For
every three video chunks, if the first and third are matched with the same song, then
the match is imposed on the middle one, too. Given our objective, we also impose
a minimum size of three chunks to each extracted video clip, in order to maintain a
balance between keeping irrelevant minuscule clips and missing the opportunity to
get larger clips by combining chunks together.

Ideally, we would also want to maximize precision. To that end, we use the song
fingerprint offsets per video chunk, which are calculated by pyDejavu. These
offsets demonstrate which part of the song corresponds to the matched video chunk.
We then calculate the mode (most frequent value) of these offsets for each clip
(which is a collection of at least three chunks) and flag those clips that have no
mode. In a perfect match scenario, the mode of these offsets would be equal to the
chunk length. Overall, the method yields 68 video clips.

On Fingerprinting As explained in [12], an audio fingerprint is a compact
content-based signature that summarizes an audio recording. Audio fingerprinting
technologies extract acoustic relevant characteristics of a piece of audio content
and store them in a database. When presented with an unidentified piece of audio
content, characteristics of that piece are calculated and matched against those stored
in the database. Using fingerprints and matching algorithms, distorted versions of a
single recording can be identified as the same music title.

The implementation of audio fingerprints in pyDejavu uses the spectrogram
as the basis for creating the fingerprint. As described by the creator of the library
[13], the algorithm finds peaks in the spectrogram, which are defined as time-
frequency pairs that correspond to an amplitude value which is the greatest in a local
“neighborhood” around it. Other such pairs around the peak are lower in amplitude
and thus less likely to survive noise. To find the peaks, pyDejavu is implementing
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a combination of a high-pass filter and local maxima structs from the Python library
SciPy. The spectrogram peak frequencies along with the time difference between
them are then passed through a hash function (SHA-1), representing a unique
fingerprint for this song. In order to save space, the SHA-1 hash is cut down to
half its size (just the first 20 characters) and then converted to binary, reducing the
fingerprint’s size from 320 bits down to 80 bits. After the database is filled with
the fingerprints of the available songs, a new audio can be matched using the same
hashing method.

An important factor in the success of the matching process is hash alignment.
When doing the original fingerprinting of a sample, the absolute offset, with regard
to the beginning of the song, is stored. When the captured sound that is to be
compared with the database is fingerprinted, the offset is relative to the start of the
sample playback. If we make the assumption that the playback speed and sample
rates are identical between the songs in our database and the input, then it follows
that the relative offset should be the same distance apart. Under this assumption, for
each match, the difference between the offsets is calculated as

D = O − S, (1)

where O is the offset from the original track and S is the sample offset from the
recording. This always yields a positive integer since the database track will always
be at least the length of the sample. All of the true matches will have this same
difference. The system then looks over all of the matches and predicts the song ID
that has the largest count of a particular difference.

We used the following settings when importing pyDejavu: the sampling rate
is 44,100 samples per second; the FFT window size is 4096 samples; the FFT
overlap ratio was 0.5; the fan value2 was set to 15; the minimum amplitude of peaks
was 10; and the minimum number of cells around an amplitude peak was 10. As
these settings are not exposed in the library’s API, we had to apply the changes
locally. Prior to initializing the fingerprint database, we applied pre-processing in
the original data, in order to bring the audio files in the same sample rate and number
of channels as the videos.

Challenges and Considerations While the proof of concept for utilizing
pyDejavu was initially promising, we came across some issues that should
be taken into consideration in the future. The most evident was execution time.
Filling in the database takes a lot of time, especially when using settings that
favor high accuracy. We have identified the main bottleneck is the data input in
the MySQL database. Using the settings described above, we calculate an average
of 104,882 fingerprints per song, and the total running time to parse 3109 songs
was approximately 210 h, even though we had 3 instances of the script working in
parallel. We determined that it takes almost 45 min to calculate fingerprints for a

2 Degree to which a fingerprint can be paired with its neighbors.
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batch of 200 songs, but it takes 12 h to perform the database insert for each batch.
This translates to 3 min per song insert, which makes sense, if each song insert
translates to 100 thousand row inserts. Each experiment would take approximately
a whole week to run, making it very hard to experiment on the whole pipeline end
to end.

Another concern that arises is the alignment of samples between the audio signal
that is being searched and the fingerprint database. The assumption is made that the
playback speed and sample rates are identical between the songs in our database
and the input; however, this is not always the case. While running the pipeline, we
encountered cases where the song that was used in the video would not be matched,
even if it existed within the database. The algorithm did surprisingly well in very
noisy scenes, whereas it would miss quite obvious and prominent clips. We realized
that the song in the film was in fact played at a different speed to the original, which
also resulted in a slightly different pitch. This goes against the assumption that was
made above, and it leads to a failure to match songs in a lot of films.

An additional issue is that due to the nature of the data-set, it is often the case that
music is used in an inconsequential way. Such would be the cases when the song
is so far in the background of the audio mix or is so generic that virtually any song
could be used in its place. Furthermore, it is possible that the song is only used in
the end credits of a film or TV episode. In these cases, when taken out of context,
the visual content wouldn’t really carry enough information to be easily classifiable.
Due to the data-set size, we decided to keep such clips. Furthermore, we needed to
intervene manually in two situations: once after the audio-video matching process
is completed, in order to ensure a correct match, and once before extracting the
features, in order to create the examples for the negative class of the classifier. We
chose to handcraft fake examples for the negative class to ensure that the resulting
data would be balanced and that the visual content would indeed not match the song.

Finally, reflection on our design choices reveals a few sources of bias. As
the raw content is based on our privately owned collection, it is limited by our
own taste. This could be problematic when trying to train a general-purpose
classifier, introducing an element of cultural bias. The data-set is comprised almost
exclusively of Hollywood films and series, and the songs that were available in both
formats were mostly Western pop and rock ranging from the 1960s to the 2000s.
Additionally, the notion of a song being a good fit for a video or not is inherently
subjective. In our work, we have implicitly assumed that the choices of the original
music directors were good fits, even though some other music director could have
chosen something else. The same is true for the manufactured “bad” examples which
are only bad because we judged them as such.

3 Data Representation and Feature Extraction

This section focuses on the issue of data representation, i.e., how musical and
visual content is represented. We briefly discuss the issues that need attention when



144 G. Touros and T. Giannakopoulos

choosing representation, encoding, and feature extraction strategies for each of the
relevant modalities. Especially for the sound domain, given that our task concerns
music and not just audio signals, we have the choice of representing it either as
raw audio or as some higher-level symbolic representation. The techniques for
processing and transforming each one of these are quite different, with the former
leaning more toward the realm of signal processing and the latter being closer to the
domain of knowledge representation. For an in-depth explanation of the different
uses of both types of features in deep architectures, we recommend the work of
[14].

This choice is particularly important as each type of representation reveals
different aspects of the content. Audio features based on signal processing might
reveal more about timbre and texture of a piece (such as the energy of the signal or
frequencies present), while symbolic representations allow us to extract elements
that belong to musicology, such as the flow of harmony, cadence, and melodic
structures. Furthermore, if the resulting classifier was to be used as a method
of evaluation, or an objective function for an architecture that generates music
for videos, it should be able to handle both types of representations. Therefore,
including the musical content in both modalities is very important.

3.1 Audio Representations and Feature Extraction

We will first examine raw audio representations. For an in-depth analysis of how
physical audio signals are captured, represented, and transformed within the digital
domain, we recommend the works of [15] and [16]. The collection of handcrafted
features are extracted using the modules provided in the pyAudioAnalysis library in
Python [18]. The features are based on various representations of the audio signal,
from both the time and spectral domain and Mel-frequency cepstrum coefficients
(MFCCs) and chroma vectors. Also a there is a beat detection feature based on
time distances between successive local maxima of the waveform. An in-depth
explanation is given in [19].

In order to extract features from audio files, we apply mid-term windowing. The
audio signal is initially split into mid-term segments (windows), typically 1 to 10
seconds long (depending on the application). Subsequently, a short-term processing
stage is carried out. In this process, the audio signal is broken into short-term
windows (a.k.a. frames) which can be overlapping. The analysis is then done on a
frame-by-frame basis, which is a practical way of dealing with the non-stationarity
of the audio signal, which usually has abrupt changes over time. The product of this
step is a sequence of features, which is then used for computing feature statistics,
e.g., the mean zero crossing rate of the window. In the end, each mid-term segment
is represented by a set of statistics. Our implicit assumption in this process is that the
mid-term windows exhibit uniform behavior with respect to audio type; therefore,
extracting these statistics is reasonable. After the short-term and mid-term steps
produce a vector of feature statistics per segment (e.g., 2 s long), these statistics
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are then long-term averaged, in order to provide a single vector representation of
the whole signal. Through this process, temporal evolution details are sacrificed
in order to obtain the most notable features of the music signal. Based on this
method, we extract a selection of 134 handcrafted features. We decided to follow
the recommendations of [17] and adopt a 2 s mid-term window with a 50% overlap,
combined with a short-term window of 0.05 s and 50% overlap. After calculating the
mid-term features, we store long-term averaging statistics for each feature, which
include the mean, standard deviation, and average delta between frames.

3.2 Symbolic Representations of Music and Feature Extraction

We will now shift our focus to symbolic representations of music. These types of
representations are not concerned with the audio as a signal, but instead are focused
on higher-level information concerning musical concepts (such as notes, chords,
etc.) which we will briefly describe in the following section. Our overview of the
symbolic representations draws mainly from the work of [14]. Before we move to
the feature extraction process, we provide some brief definitions of basic aspects of
music, in order to establish a common terminology.

Notes are symbolic units of musical notation, which is defined by pitch, duration,
and dynamics. Rests are representations of intervals of silence in a musical score.
They behave much like notes; only they do not have pitch or dynamics components.
Interval between two notes is their relative distance in terms of pitch, as quantized
in semitones. For example, the major third interval means that two notes are four
semitones apart. Intervals are the building blocks to create chords, which are sets
of at least three notes. Conceptually, they are built by combining intervals (e.g., the
major chord is a combination of a major triad and a perfect fifth). In this context,
there are two possible representations, either implicit and extensional, enumerating
the exact notes composing it, or explicit and intensional, by using a chord symbol
that combines the pitch class of the root note and the type of the chord (e.g., major,
minor, diminished, etc.). In our process, we use both in order to extract statistics
about each song.

Rhythm is an indispensable aspect of music and its execution, though it is quite
hard to define in pragmatic terms. The basic unit of rhythm, or musical pulsation,
is the beat. Groups of beats are called measures. The number of beats per measure
and the duration between successive beats constitute the rhythmic signature of the
measure, a.k.a. time signature or meter. Usually, it is expressed as the fraction of the
number of beats within the measure to the beat duration. Some frequent meters are
2/4, 3/4, and 4/4.

Using the MIDI protocol, up to 16 channels of information can be carried through
a single link, between multiple instruments and computers. The two most important
messages for our concern (i.e., the expression and storing of music) are Note on
which indicates that a note is played and Note off which indicates that a note ends.
The note events are embedded into track chunks, which are data structures that
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contain a delta-time value specifying the timing information and the event itself.
The delta-time value is usually a relative metrical time, which is the number of ticks
from the beginning. The number of ticks per quarter note is defined in a reference
in the file header.

As explained in [14], while transcribing music to a symbolic representation, it is
important to make some considerations on the aspect of time. The most fundamental
is temporal scope, i.e., the way data will be interpreted by the model with respect
to time: global, wherein the temporal scope is the whole musical piece; time step,
wherein the temporal scope is a local time slice of the musical piece, corresponding
to a specific temporal moment; and note step, wherein there is no fixed time step and
the granularity of the model is the note. When either a global or time step temporal
scope is used, the granularity of the time step must be defined. Usually, the time step
is set to a relative duration, which typically is the smallest duration of a note in the
corpus. This ensures that all notes will be represented at their proper duration, with
a whole number of time steps. On the other hand, this also increases the number
of time steps that need to be processed, regardless of the duration of actual notes.
As we identify later, the feature extraction library that we used has some difficulty
parsing the time step granularity.

Symbolic Feature Extraction and Concerns In our feature extraction process,
we use the music21 Python library [20], as found in [21], to parse and translate
MIDI files to MusicXML. This parsing process often results in errors, mostly in
regard to temporal synchronization and part instrumentation.3 It is often the case
that the MIDI files found freely on the Web contain corrupt sections or do not
have the proper numbering system for instrument selection. Given that we are using
music21 in conjunction with MuseScore 3 [22] for MusicXML compiling, we
realized that in order to resolve this error, we had to make considerable changes to
the way that the library is handling multi-track MIDI files. At the time of writing
this, the issue had not been resolved; therefore, the feature extraction process is
designed in order to work around it. We have decided to do our best to minimize
these shortcomings from our end, without altering any code from the library itself,
and let the models decide which features carried meaningful information. We
enhanced the process by doing some pre-processing using the mido [23] library. We
identified that the main library had an issue with percussion instruments, interpreting
them as regular tuned instruments, and their messages were decoded as regular
pitches, essentially destroying all the melodic interval features. We removed them
from each MIDI file by parsing the track names with mido. Another issue with the
library is that it is not optimized for speed, making the extraction process take a lot
of time. We have calculated that it took around 6 min per MIDI file in our machine,
which made the feature extraction process quite expensive in terms of computational
time.

3 We would like to thank Cuthbert Labs for collaborating on navigating these issues.
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The music21 library has two main groups of feature extractors. One is based
on jSymbolic [24], a Java-based program for computational musicology. The
other group is native feature extractors, developed in Python for music21. The
categories of features of jSymbolic are described in the following paragraphs,
drawing from the original publication in [25]. The native group of feature extractors
contains a small collection of handcrafted features that mostly fall into the same
categories as jSymbolic. Some of them, like Quality Feature, improve upon
jSymbolic’s implementation of the same concept. In these cases, we accept the
native class by default and skip the jSymbolic version of the feature.

Pitch statistics are features that describe the amount of co-occurrence between
various pitches, in terms of both absolute pitches and pitch classes. These are used to
also flag the amount of tonality in a piece (how much it follows rules of tonal music),
the range of pitches in the piece, as well as pitch variety. Melodies and horizontal
intervals examine the kinds of melodic intervals that are present, as well as the
amount of melodic variation of the piece. Furthermore, the melodic contours are
measured, as well as common phrases. Chords and vertical intervals concentrate on
vertical intervals, the types of chords they represent, and the presence and velocity
of harmonic movement.

Rhythm features are calculated based on the time intervals between note attacks
and the duration of individual notes, in order to identify rhythmic patterns and
variations. It contains features about rhythm measure, both on a musical piece level
and on a bar-by-bar level, for more complex pieces. Instrumentation features are, in
theory, relevant to the types of instruments that are present and the emphasis that
is given to each instrument. In our implementation, we found these features to be
weaker, as they are dependent on accurately parsing track metadata from the MIDI
files, which we have already identified as problematic. We have therefore chosen to
exclude them from the feature extraction process.

Texture features compute the level of polyphony within the piece. They also mea-
sure the amount of interaction between those voices, identifying voice independence
or equality. Miscellaneous features are based on the metadata of the musical piece,
such as composer popularity and language feature, as well as a few features specific
to classical music, such as Landini cadence.

3.3 Video Representation and Feature Extraction

The third and final modality of interest for the task at hand is video. Getting into
details of video processing and defining the relevant nomenclature is beyond the
scope of this chapter, but we recommend [26] and [27] for an in-depth explanation.
Based on the aspects described in the following paragraphs, we have used the
modules found in the multimodal_movie_analysis [28] library in Python,
which in turn is based on OpenCV and PyTorch, to extract a selection of features.
The library is an extension of the work that was done in [29] and [30].
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Color Features For the purposes of data acquisition and feature extraction, it
suffices to understand the two common ways of representing color (color models):
The RGB color model is based on a Cartesian coordinate system, whose axes
represent the three primary colors of light (red, green, and blue), normalized to
the [0,1] range. The HSV color model is based on the human perception of color. Its
foundation is the psychophysics of color and is obtained by looking at the RGB color
cube along its main diagonal. The advantage of this way of representing color is that
it is closer to the human perception. We extract statistics for each color histogram
from both color models.

Flow Features and Shot Detection The pattern of apparent motion of the objects in
an image between two consecutive frames is named optical flow. This perception of
motion can stem either from the movement of the object itself within the 2D frame
or from the movement of the camera. To extract the features, the implementation of
OpenCV that was used is based on the Lucas-Kanade method of solving the above
equation. The method, proposed in [31], is using a 3x3 area around the point and
makes the assumption that neighboring pixels will have the same motion. Further to
these features, we also utilize a threshold on frame transformations, such as gray-
scale versions of the frames, optical flow, and color value changes, to detect large-
scale changes between frames. The changes are interpreted as changes of the shot
and kept as shot detection features.

Face Detection A pre-trained machine learning model called Haar cascade classi-
fier is used to detect faces. It is based on a method proposed in [32] and extracts Haar
features by subtracting the sum of pixels for areas of the image. The classification
algorithm is based on Adaptive Boosting (AdaBoost), which calculates the weighted
sum of many weak classifiers. The “cascading” part of the model’s name is owed
to the fact that features are extracted in groups and the classification is applied in
sequence, only if the first classifier fails.

Single Shot MultiBox Detector In order to detect objects within frames, we made
use of a pre-trained deep learning model. Based on the method described in [33],
a pre-trained convolutional neural network is used to detect objects of 92 classes.
The implementation that we used is derived from a ResNet-50 model (instead of the
VGG applied in the paper), which is trained on the COCO data-set, a popular data-
set for object detection, containing photos of multiple objects from multiple angles.
The code for applying the model, as well as an explanation on the specifics of the
model, is found in PyTorch Hub [34].
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4 Building a Classifier

4.1 Exploring the Data-Set

Dimensions The data-set is comprised of 136 data points in total. These points are
split in two classes “match” and “no-match,” depending on whether they are real
examples of video soundtracks that come from the process described in Sect. 2.2
or hand-picked mismatched examples. The goal of the classifier is to discriminate
the matching soundtracks from the mismatched, constructed examples. Overall, the
data-set is balanced, as there are 68 matches and 68 fake examples. We notice that,
while the unweighted mean in the data-set is exactly 50%, if we group the clips by
originating film, the baseline is slightly increased. The median number of clips per
film is 3, and the mean rate of positive clips per film is 52%. Therefore, the method
of cross-validation by leaving one film out each time seems to make sense, and our
baseline threshold against pure chance (within the sample of data that is available) is
52%. The feature extraction process described in the previous section results in 455
attributes per data point. More specifically, there are 138 features from the audio
content, 73 features from the symbolic content (MIDI), and 244 features from the
visual content.

Attribute Completeness and Scaling In order to be able to apply further statistical
tests, we first test the completeness of the features. It seems that there is no serious
issue with data completeness, as there are no columns with more than 10% empty
values and only three features that had 5% of empty values, which originate from
the symbolic modality. The completeness issue is mild enough that we will only use
a simple imputation technique, using the mean value of the column. We wouldn’t
expect to greatly affect the classification results by using more complex imputation
techniques. There are ten features whose values are all zero. They come mostly
from the set of object detection features; therefore, we expect that to depend on
the diversity of the visual content (e.g., no sport scenes included, no outdoor
backgrounds detected, etc.). As expected, features concerning MIDI file metadata
are included, which is probably connected to the issues we identified with how
music21 parses them. We decided to remove all ten features from further tests.

The maximum value in the data-set is 8105.14, while the minimum value is
-28.58. The mean value in the data-set is 10.0. This shows us that there are
big outliers and potential scaling issues in our data-set. We address this issue
by applying simple scaling methods, either MinMax scaling (in most cases) or
standardization (when applying PCA for dimensionality reduction).

Attribute Relevance We ran a Spearman correlation test, a non-parametric test for
statistical dependence between two variables, between all the features and the class.
We sort that list based on the absolute value of the correlation and collect the ten
features which rank the highest, displayed in Table 1. It is evident that there is no
strong monotonic correlation between a feature and the class. It is worth noting
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Table 1 Features with the highest absolute value of Spearman’s correlation coefficient with the
target variable

Feature name Absolute Spearman correlation

chroma_7_std 0.26

delta chroma_7_std 0.24

RelativeStrengthOfTopPitchClassesFeature 0.24

chroma_7_mean 0.23

delta energy_entropy_mean 0.22

delta chroma_std_std 0.20

delta chroma_10_std 0.19

VariabilityOfNoteDurationFeature 0.18

RelativeStrengthOfTopPitchesFeature 0.18

mfcc_3_mean 0.18

that although the number of visual features is larger than the sum of the other
two modalities combined, none of them belong in the top 5% of features with the
highest monotonic correlation with the target variable. While this is not a definitive
measure of feature importance, this observation could perhaps lead to further future
improvements in the data extraction process.

We also performed a mutual information test between each (scaled) feature and
the target variable, using a non-parametric method based on entropy estimation from
k-nearest neighbors distances. This test yielded 162 features with non-zero mutual
information with the target. Out of these, only nine are from the visual modality,
and they all come from the object detection group. This is a bit worrying, as these
features are very specific to the videos that were used, and we would expect them
to be volatile to the types of video clips that were extracted during our collection
process. If in the future a larger and more diverse data-set is collected, we would
expect the lower-level visual features (such as color histograms) or flow features to
also become more important.

Train-Test Split Methodology Given the length of our data-set, we would need
some form of cross-validation in order to get the best possible results from this
small set of data. To avoid the danger of overfitting, we created splits that always
include all clips that come from the same film in either the training set or the test
set. Ideally, we would hold out videos from a few movies, in order to create a final
held-out test set. As the video clips originate from only 33 films, there were only
33 possible folds that we could create; therefore, holding some of these films for a
final test set was not possible. Knowing that this is not the best solution, we decided
to create the folds and store the predicted class, the probability of the prediction,
and the real value. We then computed the metrics of interest using all the validation
set predictions. Scaling, imputation, and decomposition techniques were fitted to
the training set of each fold. An issue that we identified with this method is that
whenever the held-out film has a lot of relevant clips, the results are significantly
affected. We would expect this volatility to decrease as the data-set size increases.
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Table 2 Baseline results

DT LR kNN SVM RandF BTr AdaBoost XGBoost GradB ExTr NB

Accuracy 0.5 0.43 0.53 0.41 0.46 0.42 0.56 0.49 0.53 0.51 0.57
Precision 0 0.5 0.43 0.53 0.43 0.47 0.43 0.56 0.49 0.52 0.51 0.65

1 0.5 0.43 0.53 0.38 0.46 0.41 0.56 0.48 0.54 0.53 0.55

Recall 0 0.6 0.43 0.54 0.56 0.53 0.49 0.56 0.60 0.66 0.72 0.32

1 0.4 0.44 0.51 0.26 0.40 0.35 0.56 0.37 0.40 0.31 0.82
f1 measure 0 0.55 0.43 0.54 0.49 0.50 0.46 0.56 0.54 0.58 0.60 0.43

1 0.44 0.44 0.52 0.31 0.43 0.38 0.56 0.42 0.46 0.39 0.66

Bold values represents the highest result for each metric (rows)
Note: rows are metric and columns are algorithms

In order to perform hyper-parameter tuning, we took the most promising settings
and compared them against each other, using the Leave-One-Film-Out method on
the whole data.

Models Tested We tested a few classification algorithms, from various model fam-
ilies. Given the length of the data-set, neural networks were deemed inappropriate.
Before any optimization, we tested the algorithms in their default settings. The
algorithms used are decision tree (DT), logistic regression (LR), k-nearest neighbors
(kNN), support vector machines (SVM), random forest (RandF), bagged trees (BTr),
AdaBoost (AdaB), XGBoost (XGB), Naïve Bayes (NB), Extra Trees (ExTrees), and
gradient boosting ensemble (GradBoost). The Naïve Bayes classifier is the winner
with 57% mean average and 66% f1 measure. The results are summed up in Table 2.

Model Selection We performed various experiments in order to create candidate
pipelines. These include a scaling stage, a dimensionality reduction stage, and
an estimator stage. Dimensionality reduction was crucial, given the high number
of features available. Apart from PCA, we tried excluding features based on
mutual information, as well as using a Pearson correlation test for cross-correlation
between features. We present here the three candidate pipelines, which belong
to different families of classifiers. The parameters checked as well as the results
are demonstrated in Table 3. The winning pipeline is standard scaling, PCA, and
Extra Trees, with an accuracy of 60% and macro-average f1 measure of 58%. The
complete classification report is given in Table 4.

Results Discussion We attempted to approach our methodology in a way that
would reduce bias while taking advantage of the limited data-set as much as
possible. This latter constraint stopped us from using a held-out set of films in
order to estimate how well the models generalize. Given that we only had samples
from 33 films, removing any of them from the set would have a big impact in the
learning process. The limitations of the data-set also stopped us from testing deep
architectures.
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Table 3 Estimator pipeline selection

Pipeline Parameter Values Accuracy Macro f1

Standard scaling, PCA, Extra
Trees

Number of
estimators

50 0.49 0.48

100 0.54 0.54

150 0.60 0.58
200 0.58 0.56

MinMax scaling, mutual
information dimensionality
reduction, Naïve Bayes

Number of features
kept

50 0.43 0.42

100 0.48 0.45

150 0.54 0.49

200 0.51 0.47

MinMax scaling, Pearson
correlation dimensionality
reduction, kNN

Number of
neighbors

1 0.53 0.53

2 0.51 0.49

3 0.53 0.53

4 0.48 0.46

Bold values represents the highest result for each metric (columns)
Note: rows are alternative data pipelines and columns are metric

Table 4 Classification report
for winning estimator

0 1 Macro Avg

Precision 0.64 0.57 0.61

Recall 0.43 0.76 0.60

F1 measure 0.51 0.65 0.58

Accuracy 0.60

Furthermore, the mediocre results of algorithms, such as SVM, that usually
perform well indicate that probably more data is needed for the classifier to learn
the relationships between so many variables. This makes sense, given the original
dimensions that we are working with. It is also worth noting that the mutual
information and Spearman correlation tests performed in Sect. 4.1 scored the visual
features quite low. Perhaps this is an indication that the model doesn’t have enough
data yet, in order to determine the association between visual features and music.
To determine if this is a valid assumption, we would need to perform some tests by
isolating pairs of modalities, but time would not allow for this to happen.

Despite those challenges, a fine-tuned pipeline including a scaling, a dimen-
sionality reduction, and a classification step achieved results that were better than
chance. We believe that this is a promising indication that more data would allow a
future researcher to build a much more robust model. This being a proof of concept,
we consider the results adequate enough to conclude our own research. While,
overall, the model would not be suitable for cases where high precision matters,
at this stage, it could serve as an initial filtering classifier for a soundtrack retrieval
system.



Video Soundtrack Evaluation with Machine Learning: Data Availability,. . . 153

5 Extensions and Future Work

Expanding the Data Collection Pipeline Despite our best efforts, the issues that
we identified in Sects. 2.1 and 2.2 made it hard to gather a large enough data-set in
terms of data points. One solution could be crowdsourcing. The way that the pipeline
is built allows for bootstrapping more data from the community, without sharing any
of the raw underlying content. The robustness of the process in different computer
setups needs further testing.

Scaling is hindered by efficiency and speed issues. The most time-consuming
element during our own experiments was the bottleneck of inserting hundreds of
thousands of lines per song in the fingerprint table. Optimizing the database for
inserts would probably solve this issue. Further to that, song detection in videos also
took a lot of time. The process can be modified to run in a distributed way, which
would probably be an easy win to reduce the time between experiments. Another
time-consuming task was feature extraction, especially for the symbolic features.
We have identified a few problems with the underlying library that we used, but it
should not be too hard to modify our extractor class so that it runs more than one
feature extraction processes at the same time.

Finally, adding additional modalities for the participating content such as text,
in the form of lyrics or subtitles, could be interesting. Research on whether there
are semantic or topic-related similarities between the lyrics of a song and the lines
of dialogue that are uttered during the scene seems to have potential. Another
interesting direction would be to add metadata about the scene using the results
of a classifier that labels scene content as features, as done in [35].

Data Quality Another issue that we identified was that often the actual content of
a file was not the same as what the filename would suggest. This problem is very
important, as slight errors in labelling can lead to errors in matching and essentially
create severe issues in later stages of the pipeline. We address data corruption for
each file type in the following paragraphs.

Audio Files suffered from the existence of live performances or covers of songs in
the data-set. Even though we tried to impose some filtering in the initial parsing and
cataloging of the data, when we were reviewing the final catalog, we came across
plenty of mislabeled files. One solution could be to filter out whole subsets of songs,
based on metadata filtering either from the audio files themselves or from external
metadata sources such as Spotify.

MIDI Files were a particularly problematic data source in this pipeline. The
files that are freely available on the Web often suffer from erroneous choice of
instruments, incorrect notes, or overall file corruption. Furthermore, the naming
conventions are inconsistent, and the existence of metadata, like artist name or song
name, within the file, is very rare. One approach could be adding the “Lakh MIDI
Dataset” by [36]. Furthermore, one could try parsing the files with a library like
mido to identify the instrument names and the playback duration of each file and
storing those in the appropriate table. This would allow running some diagnostics
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on the health of the file and throwing away corrupt files at an early stage. Improving
the text cleaning rules that are applied on the names of the files before performing a
query in an external knowledge base, or trying different knowledge bases to retrieve
a proper ID for the file, could also help.

Video Files were mostly consistent, in terms of quality. The biggest improvement
would be to use a more sophisticated cleanup method to get better file names and
compare that to an external knowledge base in order to get more metadata or lists of
soundtracks.

Reducing Bias The lack of diversity in our data manifests itself in a number of
ways. A crucial one is better handling of UTF-8 characters in our script, so that
audio and MIDI files that have non-ASCII characters in their title can be fed to the
knowledge base query in a robust way. Further to that, we could use an external
knowledge base that has song names in their original language. Furthermore,
crowdsourcing the data would mean that people of more diverse aesthetic and
cultural background bring their own taste in film and music into the raw data-set.
Finally, dropping the manual creation of fake examples in favor of some automated
or semi-automated process, could reduce bias. Some kind of bootstrapping method
could be applied, but the specifics of such a method could be the object of another
study.

Song Detection in Videos Increasing the precision and recall of our method could
be achieved using an external knowledge base in order to get the names of the songs
that are present in each film. This could serve as ground truth for a process that
accepts or rejects what the song detection script yields as result. Furthermore, the
common practice in films of altering the playback speed (and therefore the pitch) of
a song is detrimental to the success of the fingerprint algorithm which is based on the
spectrogram of the sound and therefore the relationship between frequency and time.
When these are altered, the peaks of the spectrogram are in different frequencies
and at different timestamps. Solving this problem could be the object of a future
study, as it would probably mean that other, more robust algorithms, compared to
the implementation of pyDejavu, should be tested. Other proposed algorithms
exist, such as [37] which uses auto-correlation, [38] that uses wavelets, and more
recently [39].

Algorithm Improvements Given the dimensionality of the data-set, we would
argue that the acquisition of more and better data is much more important than
building more sophisticated algorithms. Nevertheless, our experiments led to three
classification settings which could, potentially, be combined into a voting ensemble.
Moreover, acquiring more data might make deep architectures a suitable setting for
experimentation, due to the large number of features extracted. Finally, one of our
biggest concerns around the classifier’s performance is what exactly it is learning.
The mutual information tests that we applied in Sect. 4 show that the visual content
features have significantly lower mutual information with the target variable than
the features of the other modalities. We have hypothesized that this is due to the
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lack of diversity in the visual content and the small size of the data-set. If more data
were collected, this hypothesis should be put to the test in future work.

6 Conclusion

In this chapter, we got involved with the task of video soundtrack evaluation. We
proposed an end-to-end data collection and feature extraction pipeline, which takes
raw video, audio, and MIDI files as its input, matches them using text processing and
audio fingerprinting, and creates a multimodal feature library. To our knowledge,
this is the first attempt to combine these three modalities.

We managed to create a small proof of concept using some limited data and
built a classifier with the task of discriminating between real and fake soundtracks.
The results of this classifier were adequate, as the resulting accuracy is better than
random choice, though we believe that the performance could be improved by
assembling a larger data-set. Overall, the model would not be suitable for cases
where high precision matters, but at this stage could serve as an initial filtering
classifier for a soundtrack retrieval system.

Finally, we explored some solutions to the various challenges and problems of
both the data collection process and of the resulting classifier and presented some
interesting directions for future research.
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Deep Learning Approach to Joint
Identification of Instrument Pitch and
Raga for Indian Classical Music

Ashwini Bhat, Karrthik Gopi Krishnan, Vishal Mahesh, and Vijaya
Krishna Ananthapadmanabha

1 Introduction

Indian classical music consists of two basic genres, namely, Hindustani and
Carnatic, and is known to have unique raga structures. As a result of this, the
standard computer-based analysis used in Western music has to be modified to
incorporate the salient features of these genres.

Though the two genres developed along different lines, the Indian classical
instruments such as bansuri and sitar (Hindustani) are known to share a lot of
similarities with flute and veena (Carnatic), respectively [1]. The instruments have
evolved over the years to suit contemporary needs as well as the growing demand
for their revival in response to the market demands of generation Z. Despite this
recent development, instruments with similar characteristics still pose a challenge
and make identification difficult. The pitch which is also known as “shruthi” is one
of the most complex concepts of Indian music and is often considered the backbone
of Indian music [2].

In the case of Indian classical music, the rhythmic instruments such as mridan-
gam, tabla, ghatam (earthen pot), etc. are also tonic in nature. Thus, melodic analysis
and rhythmic analysis are heavily dependent on the pitch, which in turn is difficult
to identify via conventional music information retrieval (MIR).

Raga is a sequence of notes known as “swaras” which produce a melody. Each
raga consists of a characteristic sequence of notes unique to it which helps express
various moods. Conventional techniques for raga identification involve extracting
the sequence of swaras and comparing it with pre-existing templates for the raga.
This is a tedious process as it involves pitch detection before note extraction.
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2 Related Work

Identification of pitch, especially for Indian classical music, is a herculean task.
Tonic identification is hence pivotal for swara and raga identification. Ragas are
unique features that help identify songs and are broadly classified as Hindustani
raga and Carnatic raga. The basic component of raga can be broken down into scales
with a given set of swaras/notes. The pattern of recurring swaras is used to identify
the raga.

The classical signal processing method involves spectrogram analysis followed
by frequency selective extraction using fast Fourier transform (FFT) [3]. Sinusoidal
extraction is applied to extract the spectral peaks which represent the pitches of the
voice. The salience function is employed to construct a pitch histogram. Using the
tonic selection technique, the pitch is identified from the most frequently occurring
frequencies in the histogram.

FFT is used to identify the frequency content among the noise in the audio tracks
prior to peak identification. Following this, the dominant frequency is identified as
the pitch of the audio track [4]. Another unique method in pitch extraction is the
extraction of tonal features such as the fundamental frequency. Pitch distribution is
performed using probability density functions or pitch histograms, and the following
pitch is cited [4]. After pitch identification, swaras are identified by finding the onset
frequencies and comparing them to the pitch frequencies of the song.

Several classical approaches are explored to pitch identification [5–10], which is
very tedious and requires very careful analysis. The pitch and the swara must also be
determined in order to identify the raga. Classical approaches put a huge emphasis
on the preprocessing and quality of audio samples used [11, 12]. It is difficult to
extend the work for the increased dataset. Traditional methods are therefore too
restrictive and complex.

We also explore various machine learning methods which have been imple-
mented for the above complex tasks. There is a direct connection between the tasks
and musical features. Bhat et al. [13] provide a comparative study comparing the
performance of different deep learning models such as ANN, CNN, Bi-LSTMs,
and XGboost for raga identification. XGboost was found to give the highest
performance. The chapter also gives a visual representation of feature importance
for the XGboost model.

3 Preprocessing

Data is at the heart of neural networks. For optimal results, it is essential to
have an ensemble of different genres to make our models as diverse as possible.
Before feature extraction, audio clips are segmented into 30-second-long samples.
Segmentation was performed with PyAudio library. Audio clips were obtained from
the Dunya dataset and consisted of Hindustani and Carnatic instrumental audio
tracks.
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Table 1 Music features which are extracted in preprocessing. NSS refers to non-source separated
and SS to source separated

Features, formulae, and range with source separated and non-source separated(NSS)

Feature Formulae Range NSS Range SS

Zero
crossing rate

zrc = 1

L − 1

t−1∑

L−1

1R<0(st st−1) [0.0315–
0.2351]

[0.0236–
0.1937]

Chroma stft X(m, k) =
N−1∑

n=0

z(n + mH)u(n)exp

(
−2Πkn

N

)
[0.1359–
0.4947]

[0.412–
0.5032]

RMSE RMSE =
√∑i=1

n (Pi − Oi)2

n
S [0.00024–

0.4453]
[0.0001–
0.452]

Spectral
centroid

centroid =
∑N=1

n=0 f (n)k(n)
∑N=1

n=0 k(n)
[842.0582–
2852.8195]

[830.2313–
2421.1343]

Spectral
bandwidth

BW =
(

∑

k

S(k)(f (k) − fc)
p

)1/p

[945.3606–
3223.2640]

[463.8354–
2390.8166]

Roll-off rolloff = 0.8
i=1∑

n

St (n)) [1373.3750–
7280.0413]

[568.3632–
5481.1585]

Mel-
frequency
spectral
coefficients
(1–20)

mf cc =
N∑

n=0

X[hτ + n]W [n]e−j 2πkn
N [−718.5999–

117.53577]
[−855.6945–
218.9529]

3.1 Feature Extraction

For the purpose of dataset creation, 26 standard audio features (shown in Table 1)
were extracted via the Librosa library [14]. The class labels corresponding to the
tasks are encoded as integers. Audio songs are visually represented via spectro-
grams, and songs are linked to tasks through features. Pitch classes of chroma shift
resemble the swara notes of Indian classical music.

3.2 Top Feature Identification

XGboost is a decision tree-based gradient boosting machine learning algorithm.
These models automatically provide an estimate of feature importance [13]. This
was used to identify the top ten features. These features which play the most
significant role in the identification process are grouped to form an optimized
comma-separated values (CSV) file (shown in Table 2).
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Table 2 Top 10 features for instrument and pitch based on results from XGboost

Top 10 features

Feature for pitch and

Sl. no. instrument Feature for raga

1 Chroma stft Chroma stft

2 RMSE Spectral centroid

3 Spectral centroid Zero crossing rate

4 Zero crossing rate Mfcc0

5 Mfcc1 Mfcc3

6 Mfcc4 Mfcc6

7 Mfcc8 Mfcc7

8 Mfcc10 Mfcc9

9 Mfcc13 Mfcc12

10 Mfcc14 Mfcc13

3.3 Feature Extraction

For the purpose of dataset creation, 26 standard audio features (shown in Table 1)
were extracted via the Librosa library [14]. The class labels corresponding to the
tasks are encoded as integers. Audio songs are visually represented via spectro-
grams, and songs are linked to tasks through features. Pitch classes of chroma shift
resemble the swara notes of Indian classical music.

3.4 Top Feature Identification

XGboost is a decision tree-based gradient boosting machine learning algorithm.
These models automatically provide an estimate of feature importance [13]. This
was used to identify the top ten features. These features which play the most
significant role in the identification process are grouped to form an optimized
comma-separated values (CSV) file (shown in Table 2).

3.5 Source Separation

– Melodic source separation refers to the process where the instrumental pitch
component of the audio tracks is carefully separated from the clippings [15]. This
gives us a purer version of the songs whose melodic features are more distinct.
This technique was applied to all the audio samples, and the corresponding
features were extracted to create a new set of CSV file.
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4 Methodology

The instrument, pitch, and raga classification is performed using four different
models, namely, recurrent neural network (RNN), one-dimensional convolution
neural network (CNN), and XGboost.

All the models were trained for three different datasets, the original dataset with
26 features, the top 10 optimized features, and a source-separated dataset. The
performance of the models is then evaluated for all three tasks (instrument, pitch,
and raga identification) for all three datasets.

4.1 Convolution Neural Network (CNN)

A conventional neural network is a deep learning algorithm that classically takes
images as input and assigns weights and bias to different objects in the image for
differentiation, classification, etc. They are commonly used in image processing and
computer vision applications. The same training idea can however be extended to
CSV datasets for classification.

A one-dimensional CNN was employed for the same. Kernel size is set to 3. The
model hence iterates over three features at an instance till all features are covered
(for each epoch). This allows the model to learn from the input features.

4.1.1 Model Details

ReLu activation function is used for the input and hidden layers and SoftMax
activation for the output layer.

ADAM optimizer has been used with pre-set values for beta1, beta2, and epsilon
and a learning rate of 0.0001. Instrument models were trained for 50 epochs, pitch
for 60 epochs, and raga for a hundred epochs. Model parameters were changed
several times to maximize accuracy and minimize losses.

The sparse categorical cross-entropy loss function has been utilized, as the output
is in the form of a singular integer (prediction gives a single output) and not in the
form of arrays.

Categorical cross-entropy is commonly used for multi-class classifications. The
labels are mutually exclusive (each data point belongs to only one class). Hence, a
sparse categorical cross-entropy loss function has been utilized as it saves memory
and improves speed. This loss function compares the predicted and true label classes
to calculate the loss.
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Fig. 1 CNN model flow for instrument identification

4.1.2 Customization of Models

Instrument Identification

The model consists of an input layer, an output layer, and six hidden layers.
There are 2 Conv-1D layers with filter sizes of 32 and 64, 3 flattening layers, 0.5
probability dropout layers, and dense layers with 64 and 20 neurons, respectively.
The output layer consists of six neurons corresponding to the six instruments
(Fig. 1).

Pitch Detection

The model consists of an input layer, an output layer, and seven hidden layers.
Hidden layers consist of 3 Conv-1D layers with filter sizes of 32, 64, and 128,
followed by flattening layers, dropout layers with 0.5 probability, and dense layers
containing 64 neurons and 20 neurons, respectively. In the output layer, there are 12
neurons corresponding to the 12 classes of pitch.

Raga Recognition

The model consists of an input layer, an output layer, and eight hidden layers. The
hidden layer consists of 3 1D convolution layers having filter sizes 32, 64, and 128,
respectively, and a kernel size of 3. These layers are followed by flattening layers,
dropout layers (probability of 0.5), and dense layers containing 64 neurons, 32
neurons, and 20 neurons, respectively. The output layer is composed of 15 neurons
corresponding to 15 raga classes.
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4.2 Recurrent Neural Networks (RNN)

A recurrent neural network or RNN for short is a feedforward neural network that
has internal memory. RNN uses sequential or time series data as input. It is mainly
used for applications such as natural language processing, speech recognition,
language modeling and generation of images from text, etc. RNNs have very high
processing capabilities due to the presence of internal memory. This allows them
to remember the previous state and draw relations between the different data points
and share parameters such as bias and weights across the different layers.

LSTM (long short-term memory) forms the basic building block of RNN. They
are used in many configurations, one to many, many to one, and many to many to
name a few. In our models, we have utilized the many-to-many configurations.

4.2.1 Model Details

Tanh activation function has been used for the LSTM layers and SoftMax activation
for the dense layers. Tanh or the hyperbolic tangent function is a non-linear function
with a range from -1 to 1. It is similar to a sigmoid in shape but has a larger range.

ADAM optimizer has been used with pre-set values for beta1, beta2, and epsilon
and a learning rate of 0.0001. Instrument models were trained for 100 epochs, pitch
for 150 epochs, and raga for 200 epochs. Model parameters were changed several
times to maximize accuracy and minimize losses.

Categorical cross-entropy is commonly used for multi-class classifications. The
labels are mutually exclusive (each data point belongs to only one class). Hence, a
sparse categorical cross-entropy loss function has been utilized as it saves memory
and improves speed. This loss function compares the predicted and true label classes
to calculate the loss.

4.2.2 Customization of Models

Instrument Identification

The model consists of an input layer, an output layer, and three hidden layers. Unlike
the previous models, the input was directly fed to the RNN network. Hence, the
input layer also functions as the first RNN layer with an output shape of tensor
(26,560). There are 300, 100, and 50 LSTM units in the following hidden layers.
The output layer is a dense layer consisting of six neurons corresponding to the six
instruments (Fig. 2).
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Fig. 2 RNN model flow for instrument identification

Pitch Detection

The model consists of an input layer, an output layer, and seven hidden layers.
Hidden layers consist of 3 Conv-1D layers with filter sizes of 32, 64, and 128,
followed by flattening layers, dropout layers with 0.5 probability, and dense layers
containing 64 neurons and 20 neurons, respectively. In the output layer, there are 12
neurons corresponding to the 12 classes of pitch.

Raga Recognition

The model consists of an input layer, an output layer, and eight hidden layers. The
hidden layer consists of 3 1D convolution layers having filter sizes 32, 64, and 128,
respectively, and a kernel size of 3. These layers are followed by flattening layers,
dropout layers (probability of 0.5), and dense layers containing 64 neurons, 32
neurons, and 20 neurons, respectively. The output layer is composed of 15 neurons
corresponding to 15 raga classes.

4.3 Extreme Gradient Boosting (XGboost)

XGboost is a decision tree algorithm based on gradient boosted decision trees. Due
to its excellent performance in analyzing small structured data, it is widely used
in machine learning applications. In contrast, neural networks perform better than
XGboost when it comes to the analysis of unstructured data and the visualization of
the data.

A significant benefit of XGboost is that it is exceptionally fast and consumes
less computational resources. It also has several optimizations and enhancement
algorithms. As a result, the data can be visualized and analyzed more easily. There
are several hyperparameters that play a role in the functioning of the model. Tuning
of these hyperparameters depends on the task at hand and the size of the dataset. It
is necessary to choose a range of values before discretizing them in order to achieve
optimal results when tuning these hyperparameters. The tuned hyperparameters can
be found in Table 3.
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Table 3 XGboost model
parameters

Parameter Optimized feature’s value

Eta 0.04

Max depth 3

Min child weight 1

Gamma 0.0

Colsample_bytree 0.7

Fig. 3 Flow diagram for combined model

4.4 Combined Model

A combined neural network model was created for the three tasks. In the combined
model, one input is taken into account, and three different predictions are given
corresponding to instrument, pitch, and raga. The model flow is shown in Fig. 3.

4.4.1 Model Details

Similar to RNN, tanh activation function is being utilized in the LSTM layers and
SoftMax for dense output layers. ADAM optimizer is used with a learning rate of
0.0001.
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5 Results

For each task, three datasets containing an equal number of samples were created.
There are 6 instruments, 12 pitch classes, and 16 raga classes considered. In order
to extract features, audio samples were obtained from the Dunya dataset [11] and
segmented into 30-second samples.

For the combined model, 864 train samples and 216 test samples were used.
Figure 4 provides a detailed description of the training and test samples used.

5.1 Instrument Identification

Table 4 lays out the mapping of the above integers and the results are as in Fig. 5.
It is observed that there is a slight overlap for violin (5) and veena (4). Since they

are both string-based instruments, their sound qualities and features overlap, and
hence, RNN, XGboost, and the combined model identify the instrument accurately

Fig. 4 Datasets for the three tasks

Table 4 Instrument
identification model output
labels

Output number Instrument

0 Flute

1 Mandolin

2 Nadaswaram

3 Saxophone

4 Veena

5 Violin
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Fig. 5 Confusion matrix for instrument identification: (a) CNN, (b) RNN, (c) XGboost, and (d)
combined model

without much overlap between the different classes. CNN however performs poorly
for instrument recognition.

5.2 Pitch Detection

Table 5 lays out the mapping of the above integers and the results are as in Fig. 6.
In Indian classical music, it is particularly difficult to identify pitch, especially for
D and D#. Due to their similar frequency and sound, they are difficult to identify
even by professionals. A clear indication of this behavior can be observed in the
overlap observed between classes 5 and 6 (corresponding to D and D#). RNN and
the combined model however are able to identify them more accurately compared
to CNN and XGboost. The models are able to distinctly identify the other classes
without much overlap (Fig. 6).
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Table 5 Pitch detection
model output labels

Output number Pitch

0 A

1 A#

2 B

3 C

4 C#

5 D

6 D#

7 E

8 F

9 F#

10 G

11 G#

Fig. 6 Confusion matrix for pitch detection: (a) CNN, (b) RNN, (c) XGboost, and (d) combined
model
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5.3 Raga Detection

Table 6 lays out the mapping of the above integers and the results are as in Fig. 7.
The models are able to distinctly identify all raga classes. In comparison with the

other models, CNN performs very poorly. Other models, however, do not exhibit the
same behavior. There is no doubt that raga detection is the most complex task among
the three considered. There are similarities between the characteristics of a specific
instrument and those of pitch. A raga may, however, be performed on more than one
instrument and have a different pitch, making its identification more challenging.

The combined model was tested with recorded songs of artists such as N.
Ramani Fig. 8a and Lalgudi Vijayalakshmi Fig. 8b.

Loss and accuracy of the three different models for the three different tasks for
the three datasets have been tabulated in Table 7.

By evaluating accuracy and loss, we can evaluate the performance of the models.
Models with higher accuracy and a lower loss typically perform better. We observe
that the RNN model performs well across all datasets, while CNN’s performance is
unsatisfactory, particularly when it comes to identifying ragas.

The above table shows that RNN exhibits the highest accuracy and low losses for
all three datasets.

In all models, performance drops significantly for datasets containing the top ten
features. This poor performance is observed as the remaining features also play a
significant role in detection in addition to the top ten identified features. Despite the
additional operation of source separation, source-separated datasets display slightly
poor performance.

Table 6 Raga recognition
model output labels

Number Raga

0 Bahudari

1 Bauli

2 Behag

3 Brindavana Saranga

4 Gambira Nata

5 Hamsadhvani

6 Kalyani

7 Kapi

8 Madymavati

9 Nata Kurinji

10 Purvikalyani

11 Riti Gaula

12 Saramathi

13 Sindhu Bhairavi

14 Yamuna Kalyani
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Fig. 7 Confusion matrix for raga recognition: (a) CNN, (b) RNN, (c) XGboost, and (d) combined
model

Fig. 8 Output of the combined model

6 Conclusion

A tedious task of music analysis is the identification of pitch, raga, and instruments
in Indian classical music. This chapter has proposed three different models to
achieve the desired results, viz., the identification of the music attributes. We
compare CNN, RNN, and XGboost models based on their performance when
random music is to be preprocessed as an input. Further, with the help of XGboost
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Table 7 Model performance comparison with 26 features, top 10 features, and source-separated
features

Instrument Tone Raga

Model Dataset Accuracy Loss Accuracy Loss Accuracy Loss

CNN 26 87.8% 0.113 76% 0.453 70% 1.540

10 68% 0.382 65% 1.334 52% 2.502

SS 74% 0.421 72% 0.64 70% 1.75

RNN 26 98.56% 0.011 99% 0.010 98.1% 0.009

10 85% 0.289 83% 0.210 82% 0.320

SS 96% 0.0251 95% 0.012 94% 0.056

XGboost 26 92% 0.760 90.54% 0.84 87% 0.96

10 79% 1.558 74% 1.378 70% 1.960

SS 89% 0.996 86% 0.910 78% 1.2

feature importance, the ten best features are identified, and models are trained for the
same. Source separation is also performed, and the model performance is compared.

RNN model clearly outperforms all models with high accuracy over varied test
cases. All three tasks were simultaneously performed by the combined model. This
model had an accuracy of 97.2Out of the three datasets, datasets containing only
ten features were seen to have compromising accuracy values. In contrast, the
original dataset containing all 26 features had a higher level of accuracy than the
source-separated dataset. According to this theory, the tonic nature of the rhythmic
section of Indian classical music also contributes to the melodic analysis. Thus, the
cumbersome task of source separation required by most of the signal processing
techniques can be totally avoided in the process of melodic analysis. Further, the
sequential stages such as tonic detection, swara generation, and mapping of phrases
involved in recognizing a particular raga can be performed parallelly which reduces
the time complexity.

When considering studio-recorded audio tracks, models trained with source-
separated datasets might perform well, while in real-life concert tracks, their
performance might be questionable. This aspect can be explored in the future.
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Comparison of Convolutional Neural
Networks and K-Nearest Neighbors for
Music Instrument Recognition

S. Dhivya and Prabu Mohandas

1 Introduction

Music is one of the most popular forms of art that is practiced and listened to
by billions of people all over the world. Music can improve mood, can decrease
pain and anxiety, and can benefit our physical and mental health in numerous ways.
Musical instrument recognition is the task of instrument identification by virtue of
its audio [2]. Automatic recognition of musical instruments forms the basis of more
complex tasks like melody extraction, music information retrieval, recognizing the
dominant instruments from polyphonic audio [1], and so on. The task of efficient
automatic music classification is of vital importance and forms the basis for various
advanced applications of AI in the musical domain like music genre classification,
automatic music transcription, and recommender systems.

Music instrument recognition enhances the performance of other MIR tasks. It
helps to find the type of musical instrument used which would significantly improve
the performance of other MIR tasks like automatic music transcription, music genre
identification, and source separation. It will be very helpful for the people who
are working on music data, and also for the present-day music companies, it can
assist them on music recommendations for their users. Music information retrieval
(MIR) is about retrieving information from music. MIR systems add significant
value to existing music libraries and make them more easily accessible. They help
in automatic music classification, indexing, searching, and organization [3].
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Machine learning helps systems to learn from data, identify patterns, and make
decisions with minimal human interaction. Machine learning for audio signal
processing has attracted a large amount of attention recently for its uses in speech
recognition. Machine learning techniques provide numerous ways to perform music
categorization as per need. Music instrument classification can be done easily
on monophonic sounds than polyphonic ones, where multiple instruments played
together. Classifying instances into three or more classes is called multi-class
classification. A multi-class classifier is implemented which takes an audio stream
as the input and outputs the class of the musical instrument present in the stream.
Most work is done on monophonic music which is less challenging. The timbre
of the instruments is studied which in turn gives patterns for classification. The
methods for music instrument recognition can be classified as traditional machine
learning techniques and deep learning techniques. Deep learning techniques for
music instrument recognition have been evolving rapidly in the last decade.

The primary goal is to classify six instruments from the given music data. A
convolutional neural network (CNN) and a κ-nearest neighbor (KNN) classifier
are implemented to perform the classification. In the convolutional neural network
classifier, the input audio stream is pre-processed to extract the Mel spectrogram.
The features for the Mel spectrogram are used to perform the classification. The
input of the model is the Mel spectrogram, and the output is an index corresponding
to the predicted class. For the κ-nearest neighbor classifier, the MFCC feature
vectors are calculated, the number of neighbors is set, and the classification process
is done.

1.1 Motivation

Music instrument recognition can help in finding what kinds of instruments are
present in a music clip and can distinguish the instruments with one another. The
motivation behind this work is to come up with a system that can help musicians
extract a particular instrument sound. It can help people who are working on
music in music data transcription and identification. It can help present-day music
companies with recommendations for their users. It allows us to perform various
music information retrieval tasks like pitch, timbre separation, genre classification,
automatic music transcription, and source signal separation. It assists people
involved in musicology, psycho acoustics, signal processing, and optical music
recognition.

1.2 Objective

• In the development of a model to train different audio files, the model should
classify what instruments are used in the audio.

• A method to label unlabelled audio files to avoid manual annotation.
• Training of CNN and KNN models to perform music instrument recognition.
• Performance analysis of both the models to get better understanding
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1.3 Organization

The proposed work analyzes the performance of CNN and k-nearest neighbor
classifier. The entire chapter is organized as follows. Section 2 reviews the most
popular existing works. The proposed methodology is explained in detail in Sect. 3.
The experimental setup of the work is explained in Sect. 4. Section 5 discusses the
results of the experiments. Finally, the chapter concludes with Sect. 6.

2 Literature Review

In musical instrument recognition using CNN and SVM [4], the classification
task was performed on the IRMAS dataset [5]. The IRMAS dataset consists of
musical audio excerpts with annotations of predominant instruments present in the
file. The music and instrument classification using deep learning techniques [6]
implemented a multi-class classifier that identifies instruments in music streams.
They use Google’s AudioSet which provides human-labelled data. It has a set of
10-second clips from YouTube, labelled with the audio instruments and any other
sound label it contains. The musical instrument classification using neural networks
[3] implemented an automatic classification of musical instrument sounds with
a dataset of 4548 files from 19 instruments of MIS database—the University of
Iowa Musical Instrument Samples [7]. In deep convolutional neural networks for
predominant instrument recognition in polyphonic music [8], the music instrument
classification in polyphonic music is accomplished. They also used the IRMAS
dataset. An artificial neural network is implemented for classification in [9]. They
use the full London Philharmonic Orchestra dataset which contains 20 classes of
instruments belonging to the 4 families—woodwinds, brass, percussion, and strings.
Kratimenos et al. [16] explored a variety of data augmentation techniques focusing
on different sonic aspects, such as overlaying audio segments of the same genre,
as well as pitch- and tempo-based synchronization. Eronen et al. [17] set up a
system for pitch-independent musical instrument recognition. A wide set of features
covering both spectral and temporal properties of sounds was investigated, and
their extraction algorithms were designed. Patil S.R. [18] has described a system
for musical instrument recognition in monophonic audio signals where the single
sound source is active at a time using a Gaussian mixture model (GMM). Ghosh
et al. [19] proposed a decision tree-based model for the automatic recognition of
musical instruments.

Singh et al. [4] used a combination of convolutional neural network and support
vector machine. The SVM uses MFCC for feature extraction. The audio excerpts
used for training will be pre-processed into images (visual representation of
frequencies in sound). The results obtained from both the CNN and SVM are
added to get the weighted average, which gave better performance in terms of
instrument identification. Lara Haidar-Ahmad [6] implemented a model which
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consists of a CNN which takes input as an audio stream that is pre-processed to
extract the Mel spectrogram and outputs the class of pre-selected instruments. They
focus on 3 instruments and classify audio streams into 1 of 4 classes: “Piano,”
“Drums,” “Flute,” or “Other”; around 8000 samples were trained. Lara Haider-
Ahmed [6] obtained a precision of 70%, a recall of 65%, and a F1 score of 64%.
In [3], probabilistic neural networks were used for classification for its flexibility
and the straightforward design. The dataset used consists of 4548 tunes from
19 instruments of the MIS database. Probabilistic neural networks were used as
classifiers. Mel-frequency cepstral coefficients (MFCCs) were used as features.
Multi-level quantization was applied to the features before doing the classification.
The accuracy of 92% was achieved. Kratimenos et al. [16] utilized convolutional
neural networks for the classification task, comparing shallow to deep network
architectures and an ensemble of VGG-like classifiers, achieving slightly above
80% in terms of label ranking average precision (LRAP) in the IRMAS test set.
Eronen et al. [17] validated the usefulness of the features test data that consisted
of 1498 samples covering the full pitch ranges of 30 orchestral instruments from
the string, brass, and woodwind families, played with different techniques. The
correct instrument family was recognized with 94% accuracy and in 80% of cases
for individual instruments. Patil S.R. [18] obtained an accuracy of 93.18% for a
combination of MFCC as a feature and GMM as a classifier. Ghosh et al. [19]
obtained an accuracy of 84.02% by decision tree (DT) for a set of nine instruments
belonging to different families. The accuracy for predicting the correct string
instrument family is 96.07% and for wind instrument the overall prediction accuracy
is 90.78%.

Han et al. [8] use a convolution neural network for the predominant instrument
recognition. The model is trained on the single labelled predominant instrument.
They used dataset of 10k audio files. It consisted of 11 instruments. Convolutional
neural networks were found to be more robust than conventional methods and
thus obtained an F1 measure of 0.602 for micro achieving 19.6% performance
improvement compared with other algorithms. Mahanta et al. [9] achieved an
accuracy of 97% on the full dataset containing all 20 classes of different musical
instruments. Table 1 shows the comparison of performance for different models
implemented for music instrument recognition.

2.1 Performance Issues

Mahanta et al. [9] proposed a deep artificial neural network model that efficiently
distinguishes and recognizes 20 different classes of musical instruments, even across
instruments belonging to the same family. The model trains on the full London
Philharmonic Orchestra dataset which contains 20 classes of instruments belonging
to the 4 families, viz., woodwinds, brass, percussion, and strings. They use only the
Mel-frequency cepstral coefficients (MFCCs) of the audio data.
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Table 1 Comparison of models

Authors and Accuracy/
year Model Objective Dataset F1 score

Hing, Dominick
Sovana, and
Connor
Settle[10] 2020

CNN A multi-class
instrument classifier
using CNN

6705 training samples
and 1400 test samples
from IRMAS [5]

70.3%

Yun, Mingqing,
and Jing Bi[11]
2018

LSTM A music instrument
classifier using RNN
with log Mel
spectrogram

A dataset of 14
instruments with 200
training samples

81%

J. Liu and L.
Xie[12] 2010

SVM SVM-based classifier of
musical instruments
using MFCC features

2177 clips of 13
Chinese instruments and
13 Western instruments

95.44%

S. Prabavathy et
al. [13] 2020

KNN Proposed a KNN model
for music instrument
classification

1284 samples were used
from 16 musical
instruments

98.22%

Anhari, Amir
Kenarsari[14]
2020

RNN Multi-instrument
classifier using an
attention-based
bi-directional LSTM

20k audio clips from the
OpenMic dataset

F1 score of 0.83

Kingkor
Mahanta et al.
[9], 2021

ANN An ANN model was
trained to perform
classification on 20
classes of musical
instruments

13,679 examples
divided among 20
classes of musical
instruments

99.7%

The dataset was divided into training and validation or testing sets in the ratio
8:2 using stratified splitting, such that the number of examples from each of the 20
classes split proportionally into 2 sets. The training and test sets contained 10,943
training examples and 2736 test examples, respectively, after the split. MFCC
features are extracted, from the constant length examples and feeding them into
an ANN model to make predictions. The model uses an ANN architecture with
1690 input neurons which are connected to the first dense hidden layer having 512
neurons followed by ReLU activation function. The second and third hidden layers
contain 1024 and 512 neurons, respectively, both followed by the ReLU activation
function. A dropout layer with a rate of 0.3 is then added to induce regularization
and avoid overfitting. After the dropout layer, the values pass through 2 more hidden
layers containing 128 and 64 neurons, respectively, and a dropout layer with a 0.2
rate. The final output layer has 20 neurons for each class. They use the rectified
linear unit (ReLU) activation function for all the hidden layers. It simply activates
the neurons containing a positive value after the aforementioned computations.

y = max(0, x) (1)

The softmax function is used in the output layer. It provides the confidence scores
of each class using
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Σ(zi) = ezi /ΣK
j=1e

zj (2)

The scores add up to 1. The class having the highest confidence score is the
model’s predicted class for a particular set of input features. The model achieved
an accuracy of 97%. During model training, the training accuracy peaked 0.9913
and validation accuracy 0.9726. The dataset is quite imbalanced as most instruments
belong to a particular family, so data augmentation measures may be adopted to deal
with the imbalance problem. Different learning rates and optimizers can be tried to
produce different results. Expanding the target space by supporting the recognition
of even more instruments including the piano or the ukulele would be a notable
improvement.

2.2 Problem Statement

• MFCCs and Mel spectrograms provide excellent visual perceptions of sound;
thus, CNNs may prove to be quite efficient than ANN.

• The dataset may be imbalanced, and most of the instruments belonged to one
particular class of the family.

• Other optimizers and activation functions can give better results.
• Lots of variables in the pre-processing stage can be tweaked to provide better

results

3 Proposed Methodology

The identification of instruments present in an audio track plays a vital role in
music information retrieval as it provides information about the composition of
music. Music instrument recognition in polyphonic music is a challenging task. The
proposed work employs a CNN and k-nearest neighbor classifier to identify the
musical instrument present in a monophonic audio file. This section gives a detailed
description of the proposed methodology.

3.1 Proposed Block Diagram

Figures 1 and 2 depict the block diagram of the proposed work. The input audio
file is loaded to the processing module, and the output is the class of the musical
instrument it belongs to. In the CNN model, the audio file is converted to a Mel
spectrogram, and the extracted features are sent to the CNN training module. Inside
the training module, the features go through the convolutional layer gets convoluted,
then through the dropout layer and then the ReLU activation function. In the KNN
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Fig. 1 Block diagram for CNN model

model, the audio file is resampled, and the audio features are calculated. The audio
files are normalized, and the MFCC feature vectors are calculated using the Librosa
module and are inputted into the KNN classifier for classification.

3.2 CNN-Based Approach

Figure 3 depicts the CNN model architecture. It consists of three convolutional
layers followed by a pooling layer, an activation function, and a fully connected
layer. The CNN model takes an image as the input. The audio files undergo some
transformations so that they can be inputted as an image in the CNN model. In
deep learning, a convolutional neural network (CNN/ConvNet) is a class of deep
neural networks, which is most commonly used on images. It is composed of
many layers of neurons. The first layer extracts basic features such as horizontal
or diagonal edges which are passed on to the next layer. The next layer then detects
more complex features like corners or combinational edges. It identifies even more
complex features as we move deep into the network. CNN is patterned to process
multidimensional array data in which the convolutional layer takes a stack of feature
maps, like the pixels of those color channels, and convolves each feature map with
a set of learnable filters to obtain a new stack of output feature maps as input. Based
on the activation map of the final convolution layer, the classification layer outputs a
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Fig. 2 Block diagram for KNN model

Fig. 3 CNN model architecture

set of numerical values between 0 and 1 that predicts which class the image belongs
to. Figure 4 represents the two-dimensional representation of an audio file.

The Mel scale is the logarithmic transformation of the frequency of a given
signal. It is difficult for humans to differentiate higher frequencies than lower
frequencies. Even if the distances between the differences of the two sounds are
the same, the human perception of the difference is not the same. Hence, the Mel
scale is fundamental in machine learning applications of audio.

Transformation from Hertz scale to Mel scale:
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Fig. 4 Two-dimensional representation of an audio file

Fig. 5 Mel spectrograms of each musical instrument—cello, flute, oboe, saxophone, trumpet, and
viola

m = 1127 ∗ log(1 + f/700) (3)

Equation 3 is a formula to transform Hertz scale to Mel scale from O’Shaughnessy’s
book. The Mel-frequency cepstral coefficients (MFCCs) of a signal are used to
describe the overall shape of a spectral envelope.

Mel spectrogram is a spectrogram that is converted to a Mel scale. A spectrogram
is a visualization of the frequency spectrum of a signal, where the frequency
spectrum of a signal is the frequency range that is contained by the signal. Each
audio file in the dataset is converted into a spectrogram to perform the classification.
Figure 5 depicts the Mel spectrogram generated for each class of musical instrument
present in the dataset.

In a CNN, the input of a shape (number of inputs) × (input height) × (input
width) × (input channels) becomes a feature map of shape (number of inputs) ×
(feature map height) × (feature map width) × (feature map channels), after passing
through a convolutional layer.
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Convolutional layer generally has the following attributes:

• The number of filters the convolutional layers will learn from.
• The dimensions of the kernel and the size of the input
• The activation function to be applied after performing convolution

The model uses 32 filters, has a kernel size of 3*3, and uses ReLU activation
function.

The pooling layer is responsible for reducing the spatial size of the convolved
feature. The pooling layer resizes the input spatially, using the MAX operation.
The MaxPool operation downsamples the input along its dimensions by taking the
maximum value over an input window which is defined by the pool size for each
channel of the input. The model uses a pool size of 3*3. Fully connected layers are
responsible for connecting all neurons in one layer to neurons of another layer.

After uploading and reprocessing all the audio files, the labels of each sample
are appended. The dataset is split into training, testing, and validation sets. The
input convolutional layer followed by the second and the third convolutional layers
is initialized. After the image is passed into the input convolutional layer, it
gets convoluted to a different size. The feature map passes through the pooling
layer which reduces the size of the convolved feature. Finally, the output layer is
initialized, and the model is compiled. The dense layer or the fully connected layer
connects every other neuron and all the extracted feature maps together. The model
is trained for the given number of epochs.

The input is the mp3 audio file, and the output is the class of the musical
instrument in the monophonic audio file. The musical instrument classes are
initialized. All the audio files are loaded and the labels of each file are initialized.
The dataset is split into training set, validation set, and test set. The CNN model is
initialized and compiled. The model is trained for the specified number of epochs.

3.3 KNN-Based Approach

K-nearest neighbors (KNN) is one of the simplest algorithms used for both
classification and regression problems. Classification is done by a majority vote to
its neighbors. Figure 6 depicts the KNN model architecture. The feature extraction
process is done from the input audio file, and the features are sent to the KNN
classifier. All the audio files are normalized, and the MFCC features are calculated
for each audio clip using the Librosa module. In the KNN classifier, the value of κ

is initialized to the selected number of neighbors. The distance between the feature
vectors of each pair of the audio clip is calculated and sorted. For κ entries from
the sorted data, the mode of κ labels will be returned for classification problems.
All the audio samples are loaded and pre-processed, and their respective labels
are appended. The value of κ is initialized, and the Euclidean distances between
the κ number of nearest neighbors are calculated. The distances of the inputs are
sorted. For the κ-nearest neighbors, simple majority is applied. The process is first
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Fig. 6 KNN model architecture

performed for κ = 1; after finding the best value of κ from the error vs κ value
graph, the process is repeated for that value of κ .

The input is the mp3 audio file, and the output is the class of the musical
instrument in the monophonic audio file. The musical instrument classes are
initialized. All the audio files are loaded, and the labels of each file are initialized.
All the labels are encoded to numerical values to normalize the labels. The dataset
is split into training set and test set. The KNN model is initialized and compiled.
The best value of κ is found out for the model based on the error vs κ value graph,
and the model is compiled again for that value of κ .

4 Experimental Setup and Analysis

4.1 Dataset and Annotations

The dataset consists of musical instrument samples from the Philharmonic website
[15]. It is a balanced dataset and it consists of six different classes. The dataset con-
sists of 600 files. The classes are “cello,” “flute,” “oboe,” “saxophone,” “trumpet,”
and “viola.” Each class consists of 100 recordings of each instrument. All audio
files are in .mp3 format. The size of the dataset is 8.16 MB. Dataset is divided into
testing and training set. We pre-process the data before using it. To process, we use
a sample rate of 44,100 Hz, an fft size of 2048, and a hop length of 512. The dataset
includes musical audio excerpts with annotations of the musical instrument present.
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4.2 Model Training and Testing

The given dataset [15] is split into training, validation, and testing set. The train set
has 60% of the data, and the test set and validation set have 20% each. The model is
trained on the training set. The CNN model requires an image as the input. The audio
files have to be visualized using some transformations. The audio is pre-processed
to extract the Mel spectrograms. Mel spectrogram is used as input of the model. The
Mel spectrograms of all the audio files are stored separately. These files are then
trained in the CNN model. Three convolutional layers which consist of 32, 64, and
128 filters, respectively, are used to produce feature maps. ReLU activation function
was implemented after each convolutional layer. Three max pooling layers are used
to reduce dimensionality without padding. A dropout rate of 0.25 was applied to
reduce overfitting. ADAM optimizer with a 0.0001 learning rate was used, and the
CNN model was trained up to 30 epochs. Categorical cross-entropy was used as
a loss function to optimize results. After the model is trained, the accuracy and
loss of the model are calculated. For the KNN algorithm, the dataset is loaded,
and the features and feature vectors are calculated. The features are scaled using
StandardScaler function. The data is then split into train (75%) and test data (25%).
The KNN classifier is first trained for κ = 1, and the performance is evaluated. The
best value of κ is calculated from the error rate vs κ value plot, and the model is
trained for that value of κ . The performance is analyzed, and the confusion matrix
is plotted.

5 Results and Discussion

5.1 Performance Evaluation of CNN Model

The proposed work is evaluated using different parameters. The training data of the
Philharmonic dataset has 360 audio samples, and the validation and testing data
have 120 each. We calculate the loss, accuracy, val_loss, and val_accuracy for the
CNN model as shown in Table 2. The loss function keeps decreasing with every
epoch, and the accuracy keeps increasing. The training set gave an accuracy of 97%
at the end of the 30th epoch. From the plot of accuracy in Fig. 7a, it can be seen
that the model has not over-learned the training dataset, showing comparable skill
on both the training and validation datasets. From the plot of loss in Fig. 7b, it can
be seen that the model has comparable performance on both training and validation
datasets.

The test dataset gave an accuracy of 99.1% and a loss value of 0.24.
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Table 2 Performance
evaluation of CNN model

Epoch Loss Accuracy val_loss val_accuracy

1 2.2948 0.1787 1.7985 0.1417

2 1.7934 0.1892 1.7900 0.1500

3 1.7808 0.2036 1.7166 0.3000

4 1.7390 0.2792 1.5918 0.4917

5 1.5956 0.3752 1.3686 0.5333

6 1.3288 0.4498 1.1500 0.5750

7 1.2465 0.4992 1.0673 0.6333

8 1.0706 0.6139 0.8537 0.7083

9 0.7975 0.7186 0.6244 0.7583

10 0.5712 0.7933 0.3536 0.8750

11 0.4287 0.8451 0.3099 0.9000

12 0.3388 0.8715 0.3042 0.9000

13 0.3661 0.8762 0.1645 0.9500

14 0.2531 0.9180 0.1773 0.9500

15 0.1930 0.9466 0.2428 0.9083

16 0.2002 0.9299 0.0947 0.9583

17 0.2264 0.9185 0.0600 0.9917

18 0.1820 0.9325 0.1194 0.9500

19 0.1623 0.9268 0.0621 0.9667

20 0.1998 0.9333 0.0518 0.9750

21 0.2379 0.9225 0.1336 0.9500

22 0.2067 0.9251 0.0831 0.9750

23 0.1224 0.9632 0.0312 0.9833

24 0.1788 0.9502 0.1110 0.9500

25 0.1674 0.9580 0.0418 0.9917

26 0.0936 0.9716 0.0357 0.9917

27 0.1142 0.9529 0.0956 0.9750

28 0.1053 0.9649 0.0589 0.9750

29 0.0628 0.9862 0.0687 0.9833

30 0.0637 0.9763 0.1009 0.9667

5.2 Performance Evaluation of KNN Model

The KNN model is evaluated using different metrics. Precision, F1 score, recall,
accuracy, and support are calculated. Table 3 shows the classification report for κ =
1. The error vs κ value plot is plotted to find the best value of κ so that the model is
not overfitted.

From the plot in Fig. 8, it can be seen that the least stable error rate occurs around
κ = 7; hence, κ = 7 gives the best model. The classification report for κ = 7
is shown in Table 4. Table 5 shows the comparison of F1 score, accuracy, recall,
precision, and the number of wrong predictions for 150 samples.



188 S. Dhivya and P. Mohandas

1.0

0.8

0.6

Train

0.4

0.2

0 5 10 15 20 25 30

Valid

Train

Valid

Model accuracya

b

Epoch

Model loss

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0 5 10 15 20 25 30
Epoch

Lo
ss

A
cc

ur
ac

y

Fig. 7 Performance plots for CNN. (a)Model accuracy plot. (b) Model loss plot

A confusion matrix is a table that is often used to describe the performance of a
classification model (or “classifier”) on a set of test data for which the true values
are known. Figures 9 and 10 show the confusion matrix for κ = 1 and κ = 7,
respectively. Table 6 shows the comparison of accuracy for the CNN and KNN
models for the 150 test audio samples.
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Table 3 Classification report
for κ = 1

Index Precision Recall F1 score Support

0 1.00 0.96 0.98 25

1 1.00 1.00 1.00 25

2 1.00 0.96 0.98 25

3 1.00 1.00 1.00 25

4 0.96 1.00 0.98 25

5 0.96 1.00 0.98 25

Fig. 8 Error vs κ value plot for KNN

Table 4 Classification report
for κ = 7

Index Precision Recall F1 score Support

0 0.96 1.00 0.98 25

1 0.96 0.96 0.96 25

2 1.00 0.96 0.98 25

3 1.00 0.96 0.98 25

4 0.93 1.00 0.96 25

5 0.96 0.92 0.94 25

Table 5 Comparison of results for κ = 1 and κ = 7

K value Accuracy Recall Precision F1 score No. of samples Wrong predictions

1 0.99 0.99 0.99 0.99 150 2

7 0.97 0.97 0.97 0.97 150 5
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Fig. 9 Confusion matrix for κ = 1

Table 6 Comparison of
results

Model Accuracy Number of samples

KNN (κ=1) 0.99 150

KNN(κ = 7) 0.97 150

CNN 0.9917 120

The CNN algorithm gave an accuracy of 99.17% on 120 test samples, while the
KNN algorithm (κ = 7) gave an accuracy of 97% on 150 test samples. Both the
algorithms performed well for the unknown test samples.

6 Conclusion

After all the explanatory analysis of the result given, it is clear that both the models
provided a satisfactory result. Both classification models performed with high
accuracy. The performance of both the models has been analyzed carefully. The Mel
spectrogram representation of music provided sufficient features and information for
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Fig. 10 Confusion matrix for κ = 7

the convolutional neural network model to accurately differentiate between musical
instruments with very different timbres. After the 30 epochs, the research found the
excellent result with 99.17% accuracy for the 120 samples used in the CNN model.
The KNN model showed 97% accuracy for κ = 7, for the 150 test samples.
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Emotion Recognition in Music Using
Deep Neural Networks

Angelos Geroulanos and Theodoros Giannakopoulos

1 Introduction

Nowadays, accessing music content online is extremely easy as the volume of this
content is growing exponentially and is readily available to everyone. Various digital
music streaming services (e.g., Spotify, Apple Music, etc.) are available on our
computers, mobile phones, smart speakers, recommender systems, etc. However,
as much as the streaming of music is continuous, it often does not match the
emotional state of the listener at the moment. In such cases, playing a suggested
list based on a musical genre is not the best choice, as the variations in the evoked
emotions received by the listener can be large, even in tracks of the same genre
or even by the same artist. The main problem, before we even get to talking
about machine listening algorithms, is that emotions have great difficulty in their
classification due to the lack of universal definitions. So this “emotional confusion”
[1–4] that is prevalent in various scientific fields is expected to be transferred to
machine learning. For example, extracting handcrafted features from audio signals
and driving them into a classical classifier, e.g., SVM, can give good results in the
general classification of musical genres (e.g., jazz, classical music, rock, etc.). It is
far from certain that it will be equally successful if asked to match the corresponding
happy, sad, tender, angry, etc. parts of the same samples, since the properly defined
or, otherwise, commonly accepted ground truth is missing. Concretizing the above
general concern about emotion recognition, in this study, we created deep learning
models, tested techniques, and compared them by having as ground truth a small set
of just 360 movie music samples. The unique feature of the ground truth is that it
is fully labeled and classified into musical emotions, as identified by experts in the
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field of music in the context of psychological-musicological study experiments by
Eerola and Vuoskoski [5].

1.1 Related Works

1.1.1 Emotion Recognition, Using the 360-set

The study [6] used as ground truth the second smallest set of the Eerola and
Vuoskoski study which contains only 110 samples and is part of the 360-set. By
analyzing the audio signals, they extracted features and used SVM to classify them.
From the results, among other things, they confirmed the findings of the psycholog-
ical experiments, such as the high overlap between the anger-fear emotions. In the
study [7] once again with the 360-set as a reference, they tried to extract a model
from a neural network in the style of the VGG architecture which can musically
justify its predictions by the so-called mid-level perceptual features. These features
such as rhythmic complexity or harmonic character (major-happy, minor-sad) have
musical meaning and can be detected by listeners without musical knowledge. The
study [8] is the last one we identified to make use of the 360-set. It presents a
new method for music emotion recognition that involves chroma spectrograms with
VGG16 and AlexNet architectures.

1.1.2 Emotion Recognition

In the textbook Music Emotion Recognition [9], among others, a new method is
mentioned which focuses on personalized music emotion recognition. This means,
instead of modeling any objectivity, it asks the user to annotate (via a user interface)
part of his music collection so that the algorithm (regression) can be trained on
his collection. In the experiment of the paper [10], volunteers were subjected
to an electroencephalogram while listening to 16 songs selected from a specific
song database. Once they were finished, they re-listened to the songs and labeled
them based on the dimensional model of emotions. The data along with that of
the electroencephalogram were fed into a convolutional neural network (CNN)
whose ability to recognize musical emotion (valence and Arousal) was measured
by comparing it to a traditional machine learning classifier, an SVM, which was
outperformed by the CNN. In the paper [11], two problems were investigated
simultaneously: the similarity of some musical compositions to a specific one and
the classification of the musical emotion. Emotion recognition albeit a multi-class
problem, here, was deconstructed into a multi-binary classification problem that
was addressed by an SVM classifier trained from handcrafted features previously
extracted from the audio samples. In the paper [12], a CNN was used for music
emotion recognition using as input the spectrograms of the previously extracted
music fragments to be classified with quite good results in the two sets tested. In the
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paper [13] on a set of 1000 songs labeled with the attributes of valence and arousal,
classifications were performed with a CNN that had as input the spectrograms of
the songs.

1.1.3 Transfer Learning

In [14], a CNN model pre-trained on ImageNet [15] is used in order to test it on
music classification. Although ImageNet is an ”unfamiliar” set in terms of song
spectrograms, the study showed that transfer learning worked in this case. In the
paper [16], a pre-trained ConvNet feature (as it was named) was proposed as a
transfer learning method. It is a combined feature vector from the activations of
the feature maps of the multiple levels of a trained convolutional and is used as a
pre-trained model for classification tests (speech-music separation, music emotion
prediction, music genre separation) or regression tests on other similar sets. The
study [17] analyzed pre-trained models used for Devanagari handwritten alphabets
recognition using learning transfer from CNNs, namely, AlexNet, DenseNet, VGG,
and Inception, where they were used as feature extractors. The most efficient
(in terms of accuracy) appeared to be Inception v3 with AlexNet trained faster
and with 1% lower accuracy. In the paper [18], transfer learning was used to
classify emotion through photographs of people extracted from movies. They
used deep convolutional network models pre-trained in ImageNet using the fine-
tuning technique. In study [19] to identify objects passing through X-ray baggage
screening, a CNN pre-trained on a large and general image set was used to
compensate for the lack of data (images through X-rays). The result of the transfer
learning was to identify a pistol in baggage with 98.92% accuracy.

1.1.4 Data Augmentation (via GANs)

The study [20] addressed the problem of missing data, in a speech emotion
recognition problem, using generative adversarial networks (GANs). Specifically,
they improved a conditional GAN architecture to produce spectrograms for the
minority class. Results on two large datasets showed an improvement of 5–10%
when this method was used. The paper [21] suggests using CycleGAN as an image
generator of the sample-deficient class to test (multi-class) emotion classification
with sufficient sample presence. A CNN was used as the classifier. A 5–10%
increase in classification performance was confirmed when using augmentation with
CycleGAN. In [22], a mix-up data augmentation technique is used to augment
GAN in both representation learning and synthetic feature vector creation. The
proposed framework can learn compressed emotional representations as well as
generate synthetic examples that aid in within-corpus and cross-corpus evaluation.
This could improve the training size of speech emotion recognition for performance
improvement.
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1.2 Chapter Contribution

In this chapter, we use deep learning techniques to identify musical emotion and
to classify accordingly the musical fragments. We emphasize the data availability
issue, and we adopt two datasets: the first contains 17,000 pop rock song excerpts
which are divided into feature classes as classified by Spotify’s API (“big-set”),
and the second set is the ground truth of our work as it is annotated by music
experts in the context of a large psychological-musicological research by Eerola
and Vuoskoski. For classifying the audio samples into musical emotional classes,
we extracted handcrafted features from the audio signals and classified them with
traditional classifiers such as SVM, k-NN, random forest, and Extra Trees. We then
converted all samples of both sets to Mel scale spectrograms to make inputs to the
deep convolutional networks of the tests. Six architectures (AlexNet, VGG16bn,
Inception v3, DenseNet121, SqueezeNet1.0, ResNeXt101-32x8d) with an equal
number of ImageNet pre-trained models were used in the first round of experiments
for classifications via two transfer learning scenarios: in the first scenario, we
“freeze” the weights of the network layers except for the classifier layer, and in
the second scenario, we fine-tune the network and update the weights of all network
layers. This was followed by a second round of experiments where we pre-trained
our models on the “big-set” and perform iterative classification tests with the same
architectures. Finally, in the third experiment, we create artificial data to augment
the “360-set” using generative adversarial networks, specifically StyleGAN2-ADA.
From the resulting new set, we re-train models and test them on a series of emotion
classifications. We evaluate the performance of all the above rounds of experiments
with the macro-avg f1-score obtained by the classifications on the test set of the
reference set.

This chapter is organized as follows: In Sect. 2, we describe the features used
in both traditional machine learning and deep learning methods used in this
chapter to recognize musical emotions. The adopted deep learning architectures
for training the emotional classifiers and for augmenting artificial samples are
presented in Sect. 3. The experimental setup, the datasets used for training and
validation, and the experimental results are presented in Sect. 4, while conclusions
are provided in Sect. 5. Note that all results presented in this chapter are also
available in the open-source form in this repository: https://github.com/ageroul/
music_emotion_recognition_cnn.

2 Feature Extraction

Feature extraction is essential in music information retrieval applications since its
goal is to extract features that must be informative concerning the task under study.
Features are extracted through audio signal processing, and they result in a feature
representation that is then used by the core machine learning algorithms (in our case,
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music emotion classifiers). In general, there are two categories of feature extraction
techniques used in music emotion recognition:

(a) Handcrafted features focus on achieving a certain discrimination ability with
regard to the particular classification task, so we could say that usually, they
carry some higher level of information. They are used in the context of the
“traditional” machine learning pipeline where the feature representations have
the role of carrying some “prior” knowledge (provided during the feature
engineering process).

(b) Low-level representations that are directly used by the machine learning
algorithms. These representations (e.g., the raw audio signal or the spectrogram)
are used as input in deep neural networks which act as “learnable” feature
extractors.

2.1 Handcrafted Features

In order to extract audio features, the sound signal must first be converted from
continuous (analog) to discrete (digital). Audio features are then extracted, and they
can be classified into three main categories [23] as follows:

Low level: Low-level features can be extracted either directly from the sound
signal or through its transformation, e.g., through Fourier transform. They are
not particularly meaningful at the listener level, but their extraction is easy and
widely used.

Medium level: They consist of features whose representation has more musical
meaning than those of the low level. Such representations relate to the melodic,
harmonic, and timbral aspects of music.

High level: This category refers to musical features that cannot be directly
produced by the audio-musical signal. It is more concerned with symbolic
representations of music, such as a music score that describes all the parts of
musical composition in notes. Another such representation is the one generated
by the MIDI (Musical Instrument Digital Interface) protocol.

In this chapter, we focus on extracting features directly from the audio signal
itself, so we will focus on the low-level audio features case. The extraction process
starts with the so-called short-term windowing of the original signal. The length
of each such frame ranges from 10 to 100 ms depending on the application and
signal type. Frames may also overlap sometimes. In our experiments, we use a non-
overlapping framing with equal frame length and frame step values of 50 ms. Then,
and for each such frame, we extract a set of features, which derives from either time,
frequency, or cepstral domain [24]:

– Time Domain: When the features are derived directly from the signal, we say that
they are related to the time domain like the ZCR (zero-crossing rate), energy,
and energy entropy. The ease of signal analysis they offer is important, but very
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often, it is required to combine them with more sophisticated features from the
frequency domain.

– Frequency Domain: When we perform a discrete Fourier transform (DFT) on an
audio signal, we project it into the Fourier spectral (or frequency) domain, and
so we get a representation of the frequency content of the sound. Some features
of this type are the spectral centroid, spread, entropy, and spectral rolloff.

– Cepstral Domain: The so-called cepstral features, for example, the group of Mel-
frequency cepstral coefficients (MFCCs) and the chroma vector, are derived from
the cepstrum, an anagram of the spectrum and defined as the inverted Fourier
metric of the logarithm of the spectrum.

The results presented in this chapter use the low-level features extracted by
pyAudioAnalysis [25] which is an open-source Python library for audio signal
analysis.

2.2 Mel Spectrograms

The core methodology presented in this chapter uses CNNs to classify music
signals to emotional classes. CNNs can function on feature matrices from the
handcrafted features described above. However, it is more common in the field of
audio and speech analytics to use spectrograms or Mel spectrograms as input images
in CNNs when classifying sounds [26]. Spectrograms are simply time-frequency
representations of the audio signal, extracted using short-term Fourier transform
calculation. Mel scale is a logarithmic conversion of the signal frequency whose
representation is closer to the human way of perceiving sound than the linear one.
Thus, the Mel spectrogram represents the frequency domain of a signal as a function
of time except that the frequencies are expressed in the Mel scale, instead of the
linear one of the “simple” spectrogram. In the results presented in this chapter,
converting the sound samples of the sets into Mel spectrograms was done using
Librosa [27], a Python package for audio and music signal analysis.

3 Music Emotion Recognition Using Deep Learning

The practical difference between machine learning and deep learning in audio
classification lies in the fact that machine learning algorithms use some handcrafted
features which are sometimes quite sensitive when deployed. For example, one
could extract MFCCs from the audio signal [28], as such, assuming they provide
sufficient information for a particular classification and train a classifier (e.g., SVM)
to label a dataset based on them alone. On the contrary, the basic idea of deep
learning is that it hierarchically learns all features through multiple layers of a neural
network trained directly from the data. Through the nonlinearity of the activation
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functions of the multi-layer neural network, the connections are fully “trainable”
which is not the case in a single-layer network.

3.1 CNN Architectures Used for Music Emotion Recognition

This study investigates, through deep learning techniques, the ability of well-
known CNN architectures (AlexNet, VGG16bn, Inception v3, ResNeXt101-32x8d,
SqueezeNet1.0, DenseNet121) to recognize music emotion when the set has a small
amount of data, with sets of different distributions and sometimes unbalanced.
The techniques used are transfer learning and data augmentation via generative
adversarial networks (GANs).

AlexNet In 2012, AlexNet [29] won the ILSVRC (ImageNet Large Scale Visual
Recognition Challenge) image classification competition. Its architecture is made
up of eight layers, the first five of which are convolutional and the last three of
which are fully connected, and the last is a softmax activation function. The kernel
sizes of the convolutional layers are 11×11, 5×5, and 3×3, with max pooling
layers for image downsampling and dropout layers to avoid overfitting. Some
features that had not previously been used in CNN, such as in LeNet, were used
in AlexNet. Thus, AlexNet employs the ReLU activation function for the nonlinear
part (nonlinearities), as opposed to the tanh and sigmoid activation functions used
in more traditional neural networks. ReLU was used in the network’s hidden layers,
which resulted in faster training because its derivative is not as small as tanh and
sigmoid, and thus the updated weights (during backpropagation) do not disappear.
The dropout technique was used in the network’s two fully connected layers for
the first time on a large scale in AlexNet. The neurons in the layer that have
been dropped out do not participate in training during either forward or backward
propagation. As a result, each neuron is forced to learn more useful features in
relation to a large number of other random groups of neurons.

VGG16 (Batch Normalization) The Visual Geometry Group at Oxford University
created VGG [30] in 2014 (where it placed second at the ILSVRC the same
year). Its basic components are identical to those of LeNet and AlexNet, with the
exception that VGG is a deeper network with additional convolutional, pooling,
and fully connected layers. VGG appears to be superior to AlexNet since it has
replaced the big filters (11x11 and 5x5 in the first two convolutional layers) with
several 3x3 dropout filters. The VGGs are a family of similar architectures, with
the numbers next to VGG representing the number of layers (VGG11, VGG13,
VGG16, and VGG19). We employed VGG16 in its batch norm version in this
work’s experiments.

Batch Normalization is the process that reduces the internal covariance shift. The
change in the distributions of the internal nodes in a deep network during training
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is referred to as the internal covariate shift. Eliminating it will result in speedier
training. This is accomplished by normalizing the means and variances of the
layer inputs. It also lessens the derivatives’ dependence on the magnitude of the
parameters or their initial values. This enables us to work at larger training rates
without concerns of divergence. Furthermore, batch norm smoothes the model,
decreasing the need for dropout.

Inception v3 The Inception network architecture was first introduced by Szegedy
et al. with GoogLeNet [46] (Inception v1), and other versions followed in the
following years. In this work, we used the Inception v3 version [31] (Szegedy et
al.). Inception v3 through the segmentation of the large convolutions of the previous
versions tries to reduce the computational cost without affecting the generalization
of the model. Thus, an n×n convolution is factorized into a combination of 1×n
and n×1 convolutions (for example 1×7 and 7×1 filters replacing a 7×7) and 1×1
convolutions are used before them as bottlenecks. The bottlenecks through the split-
transform-merge procedure drive the input to three to four different feature maps of
smaller or equal dimensions to the input and then drive them through 3×3 or 5×5
convolutions to smaller three-dimensional maps. Although the network eventually
has a depth of 48 layers, the computational cost is only 2.5 higher than Inception v1
and much more efficient than VGG.

ResNeXt101-32x8d ResNeXt [32] was presented in 2017 at the CVPR (Computer
Vision and Pattern Recognition) Conference by Saining Xie et al. and is a state-of-
the-art model in the field of ImageNet classification. It performs better than ResNet
as it is an upgraded version of ResNet and it combines the convolutional layer stacks
of VGG and the split-transform-merge idea used by inception models. In ResNeXt,
there are four levels, and each level has a few residual blocks. Each such residual
block has increased width where more filters create multiple parallel paths and the
set of these paths was called cardinality. Essentially, we take a residual block with
narrowing and make it less deep but wider. While ResNeXt has the same number of
parameters as a ResNet counterpart, the features extracted by ResNeXt have better
performance in the ImageNet classification task than those of ResNet meaning that
they have a much stronger capability. In addition, ResNeXt101-32x8d (i.e., 101
layers; cardinality, 32; bottleneck width, 8), which we also use in the experiments in
this work, achieves top performance in ImageNet without fine-tuning and without
extra training data.

SqueezeNet 1.0 The SqueezeNet architecture [33] was presented in the 2016 paper
by F. Iandola et al. who proposed a small network that achieved the performance
of AlexNet on ImageNet but with 50x fewer parameters. Also, with compression
techniques of the model, they managed to compress it to less than 0.5 MB which is
510x smaller than AlexNet. The main building block of SqueezeNet is the so-called
Fire module. The Fire module consists of a squeeze convolutional layer that has
only 1×1 filters that are driven by an extended layer that has a mix of 1×1 and 3×3
filters. The Fire module has three hyperparameters where their adjustment helps
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the squeeze layer to reduce the number of inputs to the 3×3 filters based on three
strategies. The architecture of SqueezeNet starts with a standalone convolutional
layer, is followed by eight Fire modules, and ends with a final convolutional. The
number of filters is increased gradually per Fire module and from the beginning to
the end.

DenseNet 121 The DenseNet architecture [34] was presented in 2018 by G. Huang
et al., and it is based on the assumption that CNNs can be even deeper, more
accurate, and more efficient at training if they have shorter connections between
nearby input and output layers. Thus, in the DenseNet architecture, each layer is
connected to every other layer. For every L levels, there are L(L + 1)/2 direct
connections. At each layer, the features of all the previous layers become its input,
and its features become input to the subsequent layers. To make this feature merging
work, the corresponding feature maps must also be of the same dimensions or
undergo downsampling to achieve it. Thus, the creators of DenseNet created and
placed so-called dense blocks within which the size of the feature map remains
the same. Each dense block consists of a series of convolutional 1×1 and 3×3
layers, the conv blocks. The convolution and pooling are done on different layers
located between the dense blocks called transition layers and include a batch norm,
a 1×1 conv, and a 2×2 average pooling layer. The DenseNet model we used in the
experiments of this work is DenseNet121.

3.2 Transfer Learning

To properly train a deep neural network, we need large amounts of data, much larger
than that needed by machine learning algorithms. However, very often, neither
the retrieval of massive data sets is feasible, nor is the required computing power
available. The basic idea behind the transfer learning technique [35–37] is: “Store
knowledge gained by solving one problem and use it to solve another similar
problem in a shorter time and at a lower cost.” More specifically, let us assume
that for an image classification problem, it is common practice to use a pre-trained
model derived from training a deep CNN on a very large dataset (e.g., ImageNet
of 1.2 million images, 1000 classes). The pre-trained model can then be used in
other classification projects adapted appropriately for specific projects. What is
transferred through the pre-trained model are the weights of the original network
after it has been trained.
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3.2.1 Transfer Learning Scenarios

The following transfer learning strategies are possible and tested in this chapter:

– Use source model as feature extractor: the last layer (the classifier layer at most
cases) is removed from the pre-trained (source) model, adapted to the needs of
the current classification task (target), and the weights of the remaining layers are
“frozen.” For example, the ImageNet classes are 1000, while the ongoing task
requires 5 classes, so we correct accordingly. This technique is most useful when
the datasets (pre-training and training/testing sets) are similar. One can even use
a machine learning classifier, e.g., SVM, instead of the last layer of the model.

– Fine-tuning: in this scenario, the classifier layer is corrected as well, but the
weights of the previous layers are also fine-tuned during backpropagation. Either
all or some of the layers can be updated, and the rest can be left “frozen” (with
the pre-training weights). This works as the first few layers of a CNN identify the
general features of an image (e.g., image edge detection) that are most likely to
be common even in completely unrelated sets of images.

– Classifier: without any additional training or changes to any of its layers, the
model is used as a classifier. This scenario assumes enough similarity of the sets
of both the pre-training and the test on the new classification.

3.2.2 Choosing a Scenario

Deciding which of the above scenarios to adopt on a case-by-case basis depends
mainly on two factors: the size of the set and its similarity to the pre-training set. In
general, we follow the following guidelines:

– The new set is small and similar to the original: If fine-tuning occurs, there is a
risk of overfitting, so the feature extractor scenario is preferred.

– the new set is large and similar to the original: having many samples almost
eliminates the risk of overfitting so the scenario of fine-tuning all (or most) of the
layers of the model prevails.

– the new set is small and very different from the original: from one side, we have
a small set so overfitting is quite possible in the case of fine-tuning the whole
network, and on the other side, due to the diversity of the sets, freezing the last
layers is not a good idea as they contain weights adapted to the details of the
original set. A halfway solution is to train the classifier (maybe an SVM) with
the weights of only some initial layers of the model.

– The new set is large and very different from the original set: the scenario of
fine-tuning the whole network over the initial weights of the pre-trained one
is preferred. If the set is too large, then the weights can be trained from the
beginning with random initial values. A valuable point to note concerning the
choice of learning rate when fine-tuning weights is choosing a value small
enough to avoid disturbing the already well-initialized weights from pre-training.
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3.3 Data Augmentation Using GANs

The dataset used as “golden” ground truth for evaluating the proposed music
emotion recognition classifiers, named (360-set), when tested in the five-class clas-
sification task (discrete emotions), and after its segmentation into train, validation,
and test sets, left very few samples for training. The number of samples left is very
few even for transfer learning and fine-tuning; therefore, a major effort of the work
presented in this chapter focuses on the data augmentation technique to enlarge the
train-validation sets. In particular, we adopted the StyleGAN2-ADA (SG2A) which
we trained with the set of train+val samples of each class (i.e., anger, fear, happy,
sad, tender) of the 360-set. SG2A was trained using the transfer learning method
from a pre-trained NVIDIA model.

StyleGAN2-ADA (2020) [38] is the latest generative adversarial network (GAN)
created by Teo Karras and the NVIDIA research team after Progressive GAN [39]
(2017), StyleGAN (2018), and StyleGAN2(2019). StyleGAN [40] is an extension
of the basic GAN architecture but can split over the individual features of the
generated image. They are the evolution of Progressive GANs that were already
capable of synthesizing high-resolution images with the gradual development of
the discriminator and the generator networks during the training process. SG2A
achieves the production of very-high-resolution images from short training sets
without overfitting problems through a new method called adaptive discriminator
augmentation (ADA).

Figure 1 shows the concept of the ADA method [38] where the augmentation
processes are shown in blue, the network being trained in green, the loss functions
are in orange, and the effect of probability (p) is on the transformations on the right.

As can be seen, all images received by the discriminator (D) are augmented with
a default probability (p) for each augmentation which occurs randomly, and the
performance of the discriminator is estimated from these images. On the other hand,
the generator (G) is trained to produce only clean images as long as the probability
(p) remains below the threshold of safety. The authors’ experiments on StyleGAN2-
ADA showed that leakage in G starts to occur when p is very close to one with
the safety threshold being when p < 0.8. That is, the higher the probability, the
more augmentations and the more variant set we get. However, manually adjusting
the hyperparameter p is a difficult process so the creators set out to automate the
ideal value of the hyperparameter. This process of controlling the augmentation
intensity was called ADA and is an adaptive method based on correcting the value
of a heuristic rt .

As we can see in Fig. 2, the more there is sufficient overlap of the distributions
(real—generated) of the images in the output of the discriminator (D), the better it
will be and the better the predictions will be. The heuristic based on this overlap
(easily measured throughout the training) computes the percentage of real images
for which D(x) > 0. If the average is very high (meaning that the distributions no
longer overlap), then the value of p is adjusted for more image augmentation; if it
is too low, p is adjusted for less augmentation.
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Fig. 1 ADA flowchart and the augmentation probability (p)

Fig. 2 ADA method

4 Experiments

For evaluating all classification, transfer, and augmentation techniques described
above, we have used two datasets, namely, “big-set” and “360-set” (see the next
subsection). The first was used to generate pre-trained models and the second as a
golden ground truth for testing and tuning the pre-trained models.

The data generated by StyleGAN2-ADA were used as inputs for the 360-set emo-
tion classification tests (anger, fear, happy, sad, tender) as the initial number of sam-
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ples was too small for deep learning and benchmark tests were performed. All mod-
els used (ResNeXt101-32x8d, AlexNet, VGG16bn, SqueezeNet1.0, DenseNet121,
Inception v3) are pre-trained on the ImageNet dataset and are derived from the
torchvision.models [41] machine learning library model package of PyTorch. In
summary, the classification tests for the 360-set are valence, energy, tension, and
emotion (anger, fear, happy, sad, tender) in six different architectures and two
scenarios, i.e., 4 × 6 × 2 = 48 tests. Similarly, the classification tests for the
big-set are valence and energy in six different architectures and two scenarios, i.e.,
2 × 6 × 2 = 24 tests.

The abovementioned series of tests were then repeated; only this time, the models
were pre-trained on the big-set spectrograms. Finally, a comparison of their results
was made. The code of the experiments is written in Python and was executed
in the Google Colaboratory [42] platform environment in the form of a Jupyter
Notebook as the use of the GPUs offered by Colab, albeit with some limitations,
was considered necessary for training the models and generating artificial samples
with StyleGAN2-ADA.

4.1 Dataset Origin

For the experiments of this study, two sets of musical data were used, which for
convenience we will call big-set and 360-set.

4.1.1 Big-Set

Big-set includes 17,000 audio clips from songs in rock and pop styles, each
lasting 10 seconds, from a random part of each song. The format of the files is
wav, mono, with a sample rate of 8 kHz. The entire big-set belongs to a private
collection (not publicly available) with their metadata coming from Spotify API,
which allows users to explore and extract music features from music databases
by choosing from the platform’s millions of tracks. The feature categories are as
follows and are specific to each musical excerpt: acousticness (whether the track
is acoustic), danceability (whether it is danceable), energy (intensity of energy
activity), instrumentalness (whether it contains vocals), liveness (whether there is
an audience in the recording), loudness (the average volume in dB), speechiness
(speech detection), valence (musical vigor), and tempo (rhythmic character estima-
tion). Of these attributes, useful to us were energy and valence. In the Spotify API,
energy and valence are broken down as follows: Energy: Energy is measured on a
scale of 0.0 to 1.0 and represents a measure of the perceived intensity and activity
of the music. Energetic pieces are mostly perceived as fast, loud, and noisy. For
example, a death metal piece has high energy, but a Bach prelude has very low
energy. Perceived features that characterize energy include dynamic range, volume,
timbre, the rate of musical events per second, and overall entropy. Valence: Valence
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is measured on a scale of 0.0–1.0 and expresses the positivity derived from the
musical piece. Segments with high valence sound more positive (joy, euphoria),
while pieces with low valence sound more negative (sadness, anger, melancholy).
All music excerpts in the big-set are fully tagged with the aforementioned Spotify
API features.

4.1.2 360-Set

The 360 set consists of music clips in mp3 format, stereo, sampled at 44.1 KHz,
lasting between 15 and 30 seconds and are exclusively instrumental i.e. they do not
contain singing or recitation of lyrics. The 360-set excerpts are film soundtracks
from 110 films selected from and used by Eerola and Vuoskoski [5] on their
study on the discrete and dimensional model of musical emotion classification.
The original name of the set is “Stimulus Set 1” and it is freely accessible. The
selection of excerpts was made by experts (professional musicians, professors, and
students of music university faculties) who classified-ranked them in five categories
of the discrete model (happy, sad, tender, fear, angry) and three categories of the
dimensional model (valence, energy, tension) of emotion classification in music.
The 360-set was chosen as the ground truth for this research because it is fully
annotated by experts in the music field, which is rare for publicly available sets.

4.2 Dataset Pre-processing

Sound samples must be converted into Mel spectrograms in order to be used as
inputs for CNNs. In addition, the following steps were taken in order to ensure the
uniformity of the experiments: (a) “big-set” remained unchanged (i.e., wav, mono,
8 kHz, 10 sec) (b) “360-set” had a reduced sampling rate, the sample duration,
and the audio was changed to mono (mp3, mono, 8 kHz, 10sec). In Eerola and
Vuoskoski’s study, “Stimulus Set 1” (360-set) was the predecessor of their main
experiment which resulted in an even smaller set of 110 tracks called “Stimulus Set
2” from which they removed one class, the so-called surprise that was present in
“Stimulus Set 1.” This happened as the experts failed to identify it as a standalone
emotion which was shown by the very low scores they gave to the extracts that
(supposedly) should have been dominated by surprise over the other emotions. The
ratings and the ranking of the extracts are published in the file “mean ratings set1.”
Thus, the 30 “surprise” parts were classified by us in the other emotion classes
according to the highest expert rating they obtained in the auditory test. Another
issue that had to be addressed was the reduction of the duration of the excerpts so
that they all had a duration of, as mentioned above, 10 seconds. So, we kept the first
10 seconds of each track.
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4.2.1 Splitting the Datasets into Training, Validation, and Test

Having converted all sound samples into Mel spectrograms, the big-set and 360-
set were separated into training, validation, and test sets as shown in Tables 1 and 2:
training set which is used to train the model, validation set which is used to estimate
the generalization of the model where, according to the losses, fine-tuning of the
model is performed, and test set which is used after the training and contains only
samples unknown to the model.

4.3 Hyperparameter Selection and Settings

The most important hyperparameter is the learning rate of the optimization function:
a small learning rate means more reliable training, but convergence is achieved after
a long time. On the other hand, a high rate can mean fast training but usually fails
as the changes in weights are so large that the algorithm eventually is not able to
discover a good minimum of the cost function. Finding the ideal training rate is a
difficult task that usually requires many trials, and there are some techniques (such
as annealing and scheduling) that help in this direction, of course. In this work,
two of such techniques were used since the number of tests, limited computational
resources, and lack of time did not allow a thorough and separate tuning of each
architecture tested (stochastic gradient descent (SGD) with momentum = 0.9 was
used as the optimization function in all tests, which has generally performed well
on the networks we selected):

Table 1 Splitting the 360-set into train, val, and test sets

Train, validation and test sets of 360-set

Valence Train Val Test Tension Train Val Test Energy Train Val Test Emotions Train Val Test

Positive 62 26 50 High 64 28 50 High 61 27 50 Anger 6 5 40

Neutral 47 21 50 Medium 33 15 50 Medium 48 20 50 Fear 32 21 40

Negative 38 16 50 Low 49 21 50 Low 37 17 50 Happy 15 10 40

Sad 21 14 40

Tender 22 14 40

Table 2 Splitting the big-set into train, val, and test sets

Train, validation, and test sets of big-set

Valence Train Val Test Energy Train Val Test

Positive 3752 938 513 High 5739 1435 780

Neutral 4762 1191 661 Medium 4416 1104 628

Negative 3882 971 541 Low 2192 548 308
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– PyTorch learning rate finder. This is a PyTorch implementation [43] of the
“learning range test” as described in Leslie N. Smith [44]. During this test,
the learning rate increases linearly or exponentially between two thresholds.
The lower bound lets the network start convergence, and eventually as the rate
increases, at some point, it will become too high, and then the network will
diverge. Training with cyclic training rates instead of fixed values achieves
improved accuracy without the need for tuning and often with fewer iterations.

– ReduceLROnPlateau. The torch.optim is a PyTorch package that includes various
optimization algorithms. One of them is the ReduceLROnPlateau [45] which
reduces the training rate when a metric stops improving. The algorithm reads
a selected metric, and if no progress is made for a certain number of epochs, then
the training rate is reduced.

4.4 Experiment Summary and Aggregated Results

We will summarize the process of the three experiments involving the techniques of
transfer learning and the generation of artificial samples to understand the elements
of Table 3.

Experiment X This is used as baseline experimentation to evaluate the ability of
handcrafted features and traditional ML algorithms to recognize music emotions. It
was entirely executed, as mentioned earlier, using the pyAudioAnalysis library [25]
which has, among others, several machine learning classifiers (SVM, SVM_RBF,

Table 3 The best results (macro-avg f1-score) of the experiments are shown; the colors correspond
to the different test sets

ENERGY
Experiment Type Model Pretrained on Tested on macro avg f1-score

A DL VGG16bn(whole) ImageNet Big-set 0.7
A DL VGG16bn(whole) ImageNet 360-set 0.62
B DL VGG16bn(whole) Big-set 360-set 0.65
X ML SVM 360-set (train&val) 0.52

VALENCE
Experiment Type Model Pretrained on Tested on macro avg f1-score

A DL VGG16bn(whole) ImageNet Big-set 0.64
A DL ResNeXt-101 32x8d (whole) ImageNet 360-set 0.63
B DL AlexNet (whole) Big-set 360-set 0.62
X ML SVM 360-set (train&val) 0.56

TENSION
Experiment Type Model Pretrained on Tested on macro avg f1-score

A DL ResNeXt-101 32x8d (whole) ImageNet test-set 360-set 0.65
X ML Random Forest 360-set (train&val) 0.53

EMOTIONS
Experiment Type Model Pretrained on Tested on macro avg f1-score

A DL Densenet121(whole) ImageNet test-set 360-set 0.55
C DL SqueezeNet1.0 (whole) StyleGAN2-ADA test-set 360-set 0.58
X ML SVM 360-set (train&val) 0.4
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k-NN, Extra Trees, random forest) where we carried out ground truth classifications
of the 360-set, for comparison reasons.

Experiment A We performed four feature classification tasks belonging to the
two main types of music emotion classification (discrete and dimensional). The
discrete model is a five-class classification task of emotions (anger, fear, happy,
sad, tender), and the dimensional model is a three-class classification task of
three classes: energy (high, medium, low), valence (positive, neutral, negative),
and tension (high, medium, low). The six used architectures (ResNeXt101-32x8d,
AlexNet, VGG16bn, SqueezeNet1.0, DenseNet121, Inception v3) and their pre-
trained models were taken from the torchvision library. The classifications were
performed in both sets with two variations of each model: either by updating the
weights of all its layers (whole) or by “freezing” everything except the classifier
layer (freeze). Algorithms were used to find an optimal learning rate and to optimize
the initially selected one during training. Max number of epochs was 20 in each
training.

Experiment B Same scenario as Experiment A, but this time we pre-trained the
models on the big-set instead of ImageNet and performed two classifications on the
energy and valence features since they are common to both sets. Table 3 shows those
that gave the best result in the macro-avg f1-score.

Experiment C The five-class feature emotions had the characteristic of having the
smallest number of samples per class. Thus, we used the very recently published
StyleGAN2-ADA to create artificial samples (Mel scale spectrograms) to classify
and compare them with the best model from Experiment A. Transfer learning was
also used in StyleGAN2-ADA and specifically pre-trained model on the FFHQ
image set. Table 3 shows their best performance on each feature.

F1-score was chosen because it is a metric that gives more emphasis to minor
classes and, due to the calculation of the harmonic mean, it rewards models that
have similar values in the precision and recall or sensitivity metrics. This property
is especially useful in the emotions feature, which was divided into five classes
of only a few dozen samples each. Note that in all DL experiments (A, B, C),
we used transfer learning methods and discovered that the most prevalent models
were the ones we called “whole,” i.e., those that were fine-tuning the weights of
all layers on top of the already existing pre-trained network-derived weights. More
specifically, with this transfer learning method, the parameters of a pre-trained
model are adjusted to the data of the new set which may have come from a different
distribution. This is the case, e.g., in Experiment A when VGG is trained on the
big-set containing only spectrogram images, while the model was pre-trained on the
ImageNet of 1000 classes and millions of images but not including spectrograms.
Of course, at the classifier layer, we performed changes to adjust it to the three
classes of energy and valence. The following conclusions are directly drawn from
the results shown in Table 3:
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1. Energy: The pre-trained (on ImageNet) model VGG16bn when trained on the
360-set and then tested on the test set of the 360-set gave an f1-score of 0.62
while when pre-trained on the big-set, trained on the 360-set, and tested on the
test-set of the 360-set gave an f1 of 0.65. That is, the transfer learning worked
more efficiently in the second case where the pre-training has been done on a
much smaller number of samples but with higher relativity compared to the test
set. In addition, the execution time of the training was significantly faster.

2. Valence: ResNeXt101-32x8d pre-trained on ImageNet, when trained on 360-set
and tested on the 360-set test set, gave an f1-score of 0.63. With the same training
and test, AlexNet pre-trained on the big-set gave an f1-score of 0.62, i.e., lower
by only 0.01. We can see that the architecture of just 8 layers performed almost
similarly to a 101-layer network with much more modern architecture. The Colab
training time for AlexNet was 1/3 that of ResNeXt.

3. Tension: The tension feature was only present in the 360-set; therefore, no
benchmarking was performed with another deep learning (DL) model other than
the pre-trained (in ImageNet) ResNeXt101-32x8d which we trained and tested
on the 360-set. However, based on the f1-score of 0.65 that we obtained from the
model, we can relatively safely assume that if the tension feature was present in
the big-set, it would give a similar result as it gave in valence.

4. Emotions: A first observation is that the emotions is the only feature of our tests
that has five classes and the fewest samples per class as it is only found in the
360-set (of 360 samples). From Experiment A, the model with the highest f1-
score (0.55) was DenseNet121 in its “whole” form. Motivated by the lack of
samples commented above, we proceeded to perform Experiment C, i.e., the
generation of artificial samples (spectrograms) using NVIDIA’s state-of-the-art
GAN StyleGAN2-ADA. The SG2A model was also pre-trained on the FFHQ
image set. So, from the 160 total samples of the train+validation part of the
360-set, after several days of training, 5000 samples (1000/class) were produced.
The newly generated set was then trained and tested on classification projects
as in Experiment A. SqueezeNet1.0 in its “whole” version was selected as the
best model (pre-trained on ImageNet) where it yielded an f1-score of 0.58.
That is, its performance was slightly better (by 0.03) than DenseNet trained
with the real samples. This difference may not seem big enough to be worth
that much training time (which is shorter if run on a modern GPU or array).
However, if we consider that the anger class, for example, fed SG2A with only 11
samples while the smallest image set on which SG2A was tested by its creators
contained 1336 images (MetFaces set), we can see the potential if applied to sets
whose samples are really rare to find. We believe that if we subjected the model
(SqueezeNet) to further tuning of its hyperparameters, the results would be even
better. This was not possible as the experiments were numerous and their purpose
was comparative.
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5 Conclusion

In this study, we investigated deep learning techniques to achieve music emotion
classification. We adopted 2 music sets, one with 17,000 samples annotated “in-the-
wild” (big-set) and a “golden ground truth” dataset of 360 samples annotated by
expert participants in a musicological-psychological experiment (360-set), which
we converted into Mel scale spectrograms.

We first used ImageNet pre-trained models of deep convolutional neural net-
works ResNeXt101-32x8d, AlexNet, VGG16bn, SqueezeNet1.0, DenseNet121,
and Inception v3 and showed that although pre-trained on an unfamiliar image
set from the requested image set, they can perform well in classification if the
weights of all their layers are updated, not just those of the classifier. Also,
by doing our pre-training from the samples of big-set, we created models and
showed that they yielded better (for energy +3%) or slightly worse (valence −1%)
results in classifications to those of the original ones, with the difference that
the performance was achieved either with light-weight architectures, e.g., AlexNet
instead of ResNeXt, or in a shorter training time of the same neural.

Finally, in the five-class classification of the 360-set where the samples for
training were dramatically reduced, we augmented them by generating new artificial
spectrograms using a pre-trained model of StyleGAN2-ADA. With the artificially
augmented samples, we trained all CNNs of the experiments and extracted the
corresponding models. In the classification which followed using the new models,
we kept the best one, and the results were superior (emotions +3%) to those of
the original model, showing that in the similar case of classification of sparse data,
which can be converted to image, transfer learning together with the generation
of artificial samples gives satisfactory results. In a future extension of this work,
we would like to attempt a reduction of the emotion classification problem to a
multi-class and multi-label problem. Also, another possibility would be to try to
incorporate sequential deep learning techniques.
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Part III
Perception, Health and Emotion



Music to Ears in Hearing Impaired:
Signal Processing Advancements in
Hearing Amplification Devices

Kavassery Venkateswaran Nisha, Neelamegarajan Devi,
and Sampath Sridhar

1 Introduction

The human auditory system is engineered to process complex acoustic signals such
as speech and music. But when the hair cells in the cochlea (sensory end organ of
hearing) are damaged, the coding of sound signals gets adversely affected resulting
in perceptual deficits. The perceptual deficits in hearing due to hair cell loss (a condi-
tion called sensorineural hearing loss—SNHL) are often compensated using hearing
aids. Hearing aids are auditory prostheses, which aid in speech and music perception
in individuals with SNHL. Both speech and music are complex acoustic signals [1].
Music is a composition of sounds in time possessing melody, harmony, rhythm, and
timbre [2]. Music is characterized by its physical and psychological characteristics.
Frequency, intensity, duration, growth, decay, and vibrato contribute to its physical
characteristics. The psychological elements such as pitch, timbre, melody, and
harmony contribute to the tonality and quality of music. Tempo and rhythm are
the temporal aspects of the music attributed to its psychological characteristics
[3]. Apart from acoustical and psychological aspects of music perception, music
also impacts emotional state, and listening to music is a motivating activity. Music
influences mood and behaviors. Music effectively stimulates the auditory cortex
and other areas related to attention, semantic processing, memory, motor functions,
and emotional processing. Music was found to have positive effects on human
cortical plasticity, moods, and quality of life. This chapter briefly highlights that
perception of music is different from speech and elaborates the impact of hearing
loss on music perception and then discusses the drawbacks of digital amplification
devices in providing quality percept of music, by accounting for the engineering
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limitations about digital signal processing in such devices. The chapter also throws
light on cochlear implants, a popularly successful rehabilitation option for the
hearing impaired, which provides limited benefits in music perception with certain
recent advancements. The sections of this chapter have been organized similarly so
that it spotlights the perception of music in the hearing impaired and then how it is
intervened with hearing aids and cochlear implants.

Hearing aids, being more promising management for SNHL, are engineered to
improve the intelligibility of speech. However, the same engineering strategies in
hearing aids are also supposed to help SNHL enjoy music. This places the hearing
impaired at a great disadvantage as there are several differences in the acoustic
features of speech and music. The fundamental frequency of music helps to perceive
the pitch of a melody component in music. However, in speech, it contributes
to prosody perception. In nontonal languages (including Indian languages like
Hindi, Kannada, and Tamil), the contribution of fundamental frequency in speech
perception is minimal [4]. Spectral regularities in music are more than that of
speech. The fundamental frequency does not vary within a note in music but changes
rapidly within an articulation in speech [5]. Temporal regularities of a complex
sound help in rhythm perception. Rhythm is well characterized and precise in
musical notes, but not in speech [6]. Speech is often from a single source, usually
from the speaker. In contrast, music often involves multiple sources depending
on the instruments used and type of music [7]. So, source segregation and scene
analysis carried out by the human auditory system for music is much more complex
than speech. The dynamic range of intensity for music falls around 100 dB, and
for speech, it’s between 30 and 35 dB. The dynamic range of frequency for music
perception is large (in the order of 4/5 Hz to 31 kHz) compared to speech (which
falls between 0.1 and 16 kHz) [4]. Music has a slower modulation rate of 12 Hz than
speech, which has a rate of 45 Hz [8, 9]. The crest factor, which is defined as the
difference in dB between the peak in a spectrum and the root mean square (RMS)
value, is 12 dB in speech and 18 to 20 dB in music [10]. These differences in spectral
and temporal characteristics of music from speech challenge the efficiency of digital
hearing aids in processing music.

2 Music Perception in Hearing Impaired

The human cochlea and auditory neural structures (starting from auditory nerve
till auditory cortex in the brain) are dynamic in perceiving speech and music with
its highly variable psychoacoustic properties. Frequency, intensity, and duration,
the essential components of sounds, are encoded at different levels of the auditory
system. Every acoustic signal is represented along the length of the cochlea, with
different frequencies of the signal encoded at different locations of the cochlea.
This specific frequency coding for perceiving pitch is known as the tonotopic
organization, shown in Fig. 1 [11]. These representations are then converted into
a pattern of neural signals in auditory neurons, where the frequency and duration of



Music Processing in Hearing Aids 219

Fig. 1 Tonotopic organization of cochlea

the signal are coded in the form of the signal transmission rate. Finally, perceptual
representations of pitch and timbre are extracted and interpreted from these central
auditory system patterns. Hearing loss caused by damage to the cochlea (sensory or
cochlear hearing loss) and auditory nerve (neural hearing loss), commonly known
as SNHL, can result in deficits in pitch coding and poor perception of rhythm and
timber leading to poor music perception. SNHL results in poor audibility, reduced
frequency resolution, affected temporal resolution, impaired pitch perception, and
impaired nonlinear effects [12]. Lack of audibility caused by SNHL loss affects
music perception by impairing the ability of the listener to hear softer notes and
melodies those well beyond the audible range of the listener. This is known as
reduced dynamic range. On the other hand, reduced frequency resolution caused
by the broadening of auditory filters in the cochlea results in impaired pitch
perception. The frequency resolution of the auditory filters decides the resolution
of the fundamental frequency, which in turn denotes the pitch of a complex tone
such as music [13]. In addition, SNHL has a more detrimental effect on melody
perception due to poorer frequency resolution and pitch discrimination caused by
broader cochlear filters. Pitch discrimination is based on pitch contours (succession
of tones), which along with musical intervals, form the bases for melody and
harmony perception in music. Sequential musical interval contributes to melody,
and simultaneous interval contributes to harmony. Pitch contours may be falling
or rising, but their recognition depends on the perceptual distance between the
pitches for which pitch discrimination is essential. Individuals with SNHL tend
to have pitch distortions when listening to the melody, whether or not the timbre
changes [14]. Meter, in music, is perceived based on the rhythmic patterns of strong
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and weak beats. These patterns are characterized by the number of beats in a
group (two betas as in duple or three beats in triple). To recognize meter, level,
pitch, and duration discrimination is vital, which is affected in individuals with
SNHL[14]. A survey by Madsen and Moore [21] reported that hearing aid users
complained about distortion, acoustic feedback, inappropriate gain, unbalanced
weightage for frequency, and reduced tonality while listening to music. This results
from the impaired perception of pitch, timbre, rhythm, and other psychoacoustic
characteristics of music with hearing aids. Reduced frequency resolution affects
pitch perception and other aspects of music, such as timbre. Timbre is often defined
as “the attribute of auditory sensation in terms of which listener can judge those two
sounds having the same loudness and pitch are dissimilar” [12]. Timbre in music
helps to differentiate if the same notes are played in different instruments based on
the quality of the notes. Timbre depends on the spectral shape of the music, which is
represented as resolved frequencies in the cochlea. So, reduced frequency resolution
alters the perception of the long-term spectral shape of music, thus impairing the
timbre perception [16]. Timbre discrimination is poorer in individuals with sloping
SNHL when compared to individuals with flat SNHL because the just noticeable
difference for frequency in individuals with sloping hearing loss is high than in
individuals with flat hearing loss [17]. Perception of sharpness is a timbre attribute
for sensitivity to energy in high frequency harmonics of music. It is compromised
in individuals with SNHL resulting from poor frequency resolution, especially at a
higher frequency region, which is essential to perceive higher harmonics [18].

3 Music Perception with Hearing Aids

Hearing aids are electroacoustic devices that amplify sounds by converting acoustic
signals into electrical signals and thus altering them according to the needs of
individuals. It applies complex digital signal processing techniques to achieve it.
After which, the signal will be converted back to its acoustic form and delivered
to the individual’s ear. Permanent hearing loss such as SNHL is not treatable but
can be managed with conventional hearing aids. Hearing aids amplify sound and
compensate for the loss of audibility in such individuals [19]. Most modern hearing
aids contain single or multiple microphones to receive external sound inputs, a
preamplifier with a low-pass filter for each microphone, an analog to digital signal
converter for each microphone, a digital signal processor, a receiver, and a battery
housed in a case. There are various styles of hearing aids, the one worn behind the
ear to the one that confines to the ear canal, as shown in Fig. 2. Smaller the hearing
aid, limited is the output level of the aid. But recently, even smaller hearing aids have
got advanced signal processing circuits [19]. Fitting the hearing aid closed (using an
ear mold or dome) or open also alters its output characteristics [20]. But recently, the
open fitting has been outdated by in the ear hearing aids such as completely in the
canal (CIC) and invisible in the canal (IIC). Hearing aids are primarily designed for
speech perception. But many hearing aid users are professional musicians, whose
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Fig. 2 Styles of hearing aids

livelihood depends on the hearing aid’s ability to process music. Also, nonmusicians
need to listen to the various non-speech sounds around them in day-to-day life. As
described in the previous section, music is very much different from speech. Hearing
aids should provide undistorted, high-fidelity, and noise-free music perception for
hearing aid users. Considering the characteristics of microphones, amplifiers, signal
processors, and receivers used in current hearing aids, the capability of hearing
aids is compromised when it is being presented with the music signal [21]. About
30% of the participants in the study on hearing aid users reported that hearing aids
hinder their music perception and half of them reported that music was either too
loud or too soft [22]. Listening to live music is much more difficult than recorded
music for hearing aid users [21]. The benefits of hearing aid in music appreciation
also depend on the degree of hearing loss. The higher the degree of hearing loss,
the poorer the music enjoyment and the music was less melodic [23]. Musicians
exhibit superior perceptual abilities for music than nonmusicians. A musician who
is a hearing aid user also experiences challenges while participating in music
activities. Though the music perception is not completely restored with hearing aid,
some musicians, especially instrumentalists, tend to use a hearing aid to hear the
conductor’s instruction, which is mostly speech [24]
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3.1 Music Perception Difficulties in Hearing Aid Users

Individual with varying degrees of hearing loss (moderate to severe or moderately
severe to profound) using hearing aids can perceive rhythm like normal hearing
individuals when the stimuli sequence is made of simple musical tone. However,
they perform poorer than normal hearing individuals when the stimuli are complex
with a sequence of multiple pitch tones and musical instruments [25]. One sixth of
individuals using hearing aid face troubles in the melody perception in music [22].
Perception of melody in orchestral music is more difficult than in solo instrumental
music for hearing aid users [21]. Melody is perceived with rhythm and pitch.
Hearing aid users with moderately severe to profound hearing loss can perceive
pitch differences if the vowel sung differs in f0 by one octave but cannot appreciate
the difference when the f0 differs by three fourth of an octave [26]. Identification of
pitch was found to be better in hearing aids than in cochlear implants [27]. Timbre
helps to deferentially perceive musical instruments playing the same notes in the
same pitch. Closed-set musical instrument identification and ensemble identification
in hearing aid users with moderately severe to profound hearing loss were poorer
than normal hearing individuals, also worse for multiple instruments than single
instrument test. Hearing aid users have poorer timbre perception than their normal
hearing peers and are relatively equivalent to cochlear implant users [25, 27].
Hearing aid users have difficulty perceiving rhythm in complex musical notes, pitch
differences if they differ by half of an octave or less, and timbre in simple and
complex ensembles.

3.2 Signal Processing Approaches for Music Perception in
Hearing Aid

In the modern digital hearing aids with multiple memories, individuals can choose
to have a separate program for music perception. Such programs can have different
signal processing algorithms, set particularly for music processing. This might help
with differences in the way hearing aids handle speech and music. But, only 40%
of hearing aid users prefer a separate music program. Firstly, such programs do not
yield benefits in loudness, clarity, tonality, and less distortion [21]. Different signal
processing approaches have different effects on music understanding.

3.2.1 Front-End Processing to Increase Input Dynamic Range

The unpleasant experiences of hearing aid users, such as reduced tonality and
distortion with music, result from limitations of hearing aid components such
as a microphone, preamplifier, analog to digital (A/D) converters, digital signal
processors, and receivers. The front-end processing of the signal in a hearing aid
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occurs at the level of microphone and A/D converter. Due to several engineering
factors, the dynamic input range of this front-end circuit is compromised to a level
of about 96 dB SPL, which is sufficient for speech but not for music perception
(as the dynamic range of music is up to 110 dB SPL) [28]. The dynamic range in
hearing aids is usually regulated using the peak clipping strategy (a strategy to limit
the input when the level of incoming sounds exceeds the saturation sound pressure
level of the hearing aid). This strategy which occurs at the front-end processing
cannot be rectified or improved with any software intervention in later stages of
hearing aid signal processing. The decreased input dynamic range can be managed
technologically by the use of a range of microphones like those using electret
material [29].

Another way of reducing the peak clipping caused by the A/D converter is
by reducing its load. It can be achieved by introducing a microphone that is less
sensitive to a low frequency signal. A microphone with a 6 dB low frequency roll-
off would serve this purpose. This approach aims to reduce the low frequency energy
load in the A/D converter. In such a case, the unamplified low frequency sound can
be heard through an open fit. But this method might cause increased gain in low
frequency as the compression system tries to compensate for the reduction in the
low frequency energy caused by the front-end processing. This in turn increases the
hearing aid’s noise floor. A low level expansion with a higher threshold point for the
low frequency band alone can be used to counteract it [30]. Also, if compression
and expansion of the music signal in the front-end processing, especially on either
end of the A/D converter, are feasible, this issue can be avoided completely. For this
purpose, input limiting, automatic gain control can be used in the front end to avoid
peak clipping of the music signal in the A/D converter.

3.2.2 Digital Signal Processing to Improve Power Consumption

After the front-end processing, the pre-processed signal will be ready to undergo
acoustic modifications based on the program set for the user. It is carried out by a
digital signal processor (DSP), which is the seat for major signal modifications. DSP
in hearing aids runs in megahertz, whereas personal computers run in gigahertz.
The lower processing limits the number of DSP computations that a hearing aid can
perform on a speech sample. Reduced processing speed results in fewer algorithms
to improve the signal, which may not be sufficient for amplifying the required
quality of the music signal [31]. Power consumption is the main contributing factor
for this reduced processing speed. In modern digital hearing aids, class D amplifiers
are used for low-power consumption. They are better than class A and class B
amplifiers used in analog hearing aids, but they may cause output circuit noise,
which the DSP cannot suppress. This might cause distortion.
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3.2.3 Receiver Characteristics to Reduce Distortion

Fitting a hearing aid suitable for hearing loss without much distortion is very
much crucial for music perception. A vast majority of the input circuit noise is
caused when the D/A converter in the receiver tries to demodulate the analog
signal of the DSP to fit its range [31]. Ideally, a receiver is a transducer with
linear and distortionless output up to the maximum level measured in the real ear.
Still, sometimes it may face soft saturation approximately around 5 dB below the
saturation SPL with a pure tone. The bandwidth of the receiver is also important.
Higher bandwidth helps in better music perception as it accommodates higher
harmonics without causing distortion [29]. Recent advancement in the hearing
aid uses infrared signal-based technology to overcome the receiver saturation and
increase the input dynamic range. This hearing device, called a tympanic contact
activator (TCA), is a custom mold light-based contact device placed in the ear canal.
It receives the amplified signal from behind the ear processor as an infrared signal
(see Fig. 3) and converts the infrared signal into vibratory patterns in the tympanic
membrane. As the infrared signals directly translate into vibrations, this device is
an ideal solution for receiver saturation in hearing aids. It was reported to be safe
and can stay up to 122 days in the patient’s ear without causing inflammation or

Fig. 3 Tympanic contact actuator (TCA), a custom mold light-based contact hearing device.
Source: (Source: Reproduced with permission; Fay et al. [32])
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infection. It was measured that TCA is capable of providing a maximum output
of 110 dB SPL within the frequency range 0.25 kHz and 10 kHz. The average
maximum gain (without causing feedback) produced was 40 dB with a functional
gain through 10 kHz in extended bandwidth [32]. The increased dynamic range can
have advantages in music perception (see 3.2. front-end processing).

3.3 Parameters of Digital Signal Processing in Hearing Aids
for Music Perception

3.3.1 Bandwidth

Digital hearing aids can process signals up to 6 kHz, which is sufficient for good
speech perception. But music perception requires extended bandwidth beyond 6 kHz
to amplify music without distortion in higher harmonics, which is essential for
sound quality and timbre. Simulated studies have shown that extended bandwidth up
to 9 kHz is preferred by individuals with normal hearing and individuals with mild
to moderate degree of hearing loss when listening to music processed with wide
dynamic range compression (WDRC). But individuals with high frequency hearing
loss and mild to severe hearing loss do not prefer extended bandwidth [33]. High
frequency cutoff also depends on the prescriptive formula. While the Cambridge
Method for Loudness Equalization 2 (CAM2) prescribes gain consistently up to
10 kHz, the National Acoustic Laboratories—NonLinear (NAL NL 1) and Desired
Sensation Level Version 5 (DSL V.5) prescribes gain up to 6 kHz, with additional
choices in programs with a high frequency cutoff at 8, 10, and 12 kHz [33–35].
Individuals with high frequency hearing loss prefer CAM 2 prescriptive formula
with reduced high frequency gain rather than increased high frequency gain [34].

3.3.2 Compression

Time constants (attack and release time) of a compression circuit in a DSP may
alter the timbre perception. Linear amplification produces the best sound quality
because it does not cause temporal distortion. Slow-acting automatic gain control
(AGC) will not distort the short-term changes in the spectral pattern of music
because gains across frequencies change slowly [35]. On the other hand, WDRC
can cause temporal distortion based on whether it is a fast-acting or slow-acting
compression circuit [36]. Hearing aid users prefer linear amplification and slow-
acting WDRC for classical music, whereas fast-acting WDRC is preferred for rock
music. Schematic representation of WDRC is depicted in Fig. 4. More channels with
different compression thresholds and ratios (CR) may cause temporal smearing of
music stimuli. When listening to classical music, there is no effect of the channel,
whereas for listening to rock music three channels were preferred over 18 channels
[37]. Adaptive dynamic range optimization (ADRO) usually has 32 or 64 channels,
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Fig. 4 Schematic representation of the wide dynamic range compression algorithm. The gray
blocks are bypassed if the CR is set to 1. (Source: Reproduced with permission; Rhebergen,
Maalderink & Dreschler [38])

Fig. 5 Sound processing stages for a typical 64-channel implementation of ADRO in a hearing
aid. ADC-analog to digital converter; DAC-digital to analog converter; FFT-fast Fourier transform

with slow-acting compression. A schematic representation of how ADRO works is
depicted in Fig. 5. It helps to perceive soft sounds as soft and reduces low levels of
noise. Because of the slower time constants, it minimizes the temporal distortion.
Unlike WDRC, it does not compress the short-time dynamics of the music. Music
quality ratings were higher for ADRO when compared to WDRC. ADRO aid users
commented that music sounded sharp, brighter, and detailed, while WDRC aid users
commented it was warm and had more bass.

3.3.3 Circuit Delays

Signal delays in hearing aids are also a concern when studying aided speech
perception. Groth and Søndergaard studied the effect of circuit delays on music
perception [39]. They reported that a delay of 2, 4, and 10 msec in an open-fit
hearing aid does not cause perceived differences in music by the listeners [39].
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3.3.4 Frequency Lowering

A frequency lowering algorithm is used when the high frequency hearing loss
(specifically steeply sloping) prevents hearing aid users from perceiving high
frequency information of the stimuli. This algorithm aids in music perception
as it helps to preserve the high frequency harmonics, which are important for
timbre and pitch perception. Among various frequency lowering algorithms, linear
frequency transposition (LFT) and nonlinear frequency compression (NLFC) are
studied using music stimuli. The difference between frequency transposition and
frequency compression is illustrated in Fig. 6. Children with severe to profound
high frequency hearing loss prefer to use a program LFT rather than a program
with no LFT when listening to music stimuli. Adults with a moderately severe
degree of high frequency hearing loss couldn’t appreciate the difference with LFT
when listening to music stimuli [40, 41]. An individual with a moderate to severe
degree of hearing impairment, when provided with NLFC, could appreciate more
musical instruments with very varying timbres. Still, with NLFC identification of
simultaneous instruments, melodies and songs were likely to be performed [25].
These frequency lowering algorithms are ineffective in improving music perception
because LFT confuses with unresolved higher harmonics transposed to lower
frequency region and NLFC results in inharmonicity resulting in the poor perception
of timbre. Harmonic frequency lowering (HFL), a frequency lowering algorithm

Fig. 6 Schematic representation of frequency transposition (FT, bottom left) and frequency
compression (FC, bottom right). For FT, the source band (SB) and the destination band (DB)
have the same width. For FC, the destination band is narrower than the source band. FT=frequency
transposition; FC=frequency compression. (Source: reproduced with permission; SalorioCorbetto,
Baer & Moore [43] )
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developed for music, combines frequency transposition and frequency compression.
It applies a cutoff frequency to separate the high frequency components from the
low frequency components. Following this, the high frequency components are
linearly compressed by a factor of 2, weighed and mixed with the original signal,
maintaining the harmonic ratio. HFL was found to give better music details than
NLFC. Also, HFL did not have any detrimental effect on the music processing and
provided audibility of higher harmonics which compression algorithm was used [42]

3.3.5 Feedback Canceller

Acoustic feedback hinders music listening in more than one third of individuals
using hearing aid [21]. This is because of intense higher harmonics in the music
signal. These intense higher harmonics get misclassified as feedback by the acoustic
feedback suppression algorithms in hearing aids. They may reduce the gain in higher
harmonics of the music (see Fig. 7). Acoustic feedback cancellation algorithms
may cancel some of the harmonics in music and add some extraneous spectral
components. Hearing aids are equipped with a special feature named “music mode”
to overcome these feedback issues where the feedback algorithm adapts to the
feedback path [44]. However, the music mode was proven ineffective as it adapts
to the feedback path slowly, and it may be also compromised when the feedback
path changes. Even with a constant feedback path, hearing aids, when presented
with opera music, cause feedback [45, 46]. Other promising technology involves

Fig. 7 Picture describing reduction in high frequency harmonics (circled region) by acoustic
feedback cancellation
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decorrelating the input and output music signal by introducing a frequency or
phase shift, which in turn reduces adaptation of feedback canceller. However, this
technology potentially affects the pitch and timbre of the music [44, 45]

3.3.6 Directional Microphone

Directional microphones help to improve the signal to noise ratio when listening to
speech in noisy situations. But music can be treated as noise by such algorithms.
Omni-directional and fixed directionality were beneficial for music perception. In
contrast, adaptive directionality hauls music since it considers music as noise [28].

3.3.7 Noise Reduction Algorithms

The noise reduction algorithm works on modulation depth and rates of the incoming
signal. It identifies signals with high modulation depth and speech like modula-
tion rate as the wanted signal. In contrast, signals like music, usually with less
modulation depth and other rates, are treated unwanted. These algorithms suppress
music from instruments like guitar, saxophone, and piano [46]. Also, an algorithm
based on modulation depth could cause temporal smearing in the signal’s envelope,
affecting source segregation, pitch, and timbre perception in music [29, 47]. Digital
noise reduction (DNR) algorithms also reduce low frequency gains when it detects
nonspeech signal like music, causing impaired pitch perception for hearing aid
users. When music perception was assessed in hearing aid users using the Korean
version of the clinical assessment of music perception test in DNR on and DNR off
conditions, pitch discrimination at 226 Hz was poorer in DNR on condition than in
DNR off condition. So, it was concluded in the study that music perception or sound
quality did not improve with the activation of DNR in hearing aids [48]

3.3.8 Environmental Classifier

Environmental classifier (EC) algorithms are built to automatically change the
hearing aid’s DSP characteristics based on the signal input from the environment
and the hearing aid user experience. Modern hearing aid classifies the acoustic
environment whether it has only speech, speech in the presence of background noise,
only noise, and music. For this purpose, the EC algorithm will be trained with a vast
catalogue of stimuli by the manufacturer. 80–90% of the time, it classifies music
correctly. Classical music is classified better than pop/rock music. But sometimes,
certain types of music, like pop music, are misclassified as noise or speech in noise.
Similarly, reverberant or amplitude compressed speech are misclassified as music
[49]. In a situation where speech and music occur together, automatic environmental
classifiers may not work properly. In such situations, whether music is considered as
noise or a wanted signal depends on individual preferences. So, in such a situation,
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manually switching to music or speech in a noise program is recommended than
using an automatic environmental classifier. Also, when these algorithms are trained
individually, it works more efficiently than when trained with a database of stimuli.
This is because when an individual listens to a particular genre of music and the
algorithm is trained with that particular music, it easily classifies other stimuli
as noise. Also, among the various manufacturers, the technicality behind their
algorithm and choice of DSP feature engaged when a particular scene is being
classified varies [50]. Hence, it becomes difficult in practice to use a manufacturer
trained algorithm.

4 Music Perception by Individuals with Cochlear Implants

According to Graeme Clark [51], “the multiple channel cochlear implant (bionic
ear) is a device that restores useful hearing in severe to profoundly deaf people when
the organ of hearing situated in the inner ear has not developed or is destroyed by
disease or injury. It bypasses the inner ear and provides information to the hearing
centres through direct stimulation of the hearing nerve.” Every cochlear implant
comprises an external sound processor and an internal implant. The external sound
processor is similar to a hearing aid in front-end sound processing. It picks the sound
through a microphone, processes with a digital signal processing circuit, converts
the output of DSP into electromagnetic signals, and delivers it to the internal implant
through a transmitting coil, which will be placed over the scalp. The internal implant
unit receives those electromagnetic signals through a receiving coil and codes the
signals into electrical stimulation, which will be delivered to the auditory nerve
through an electrode inserted in the cochlea (Fig. 8). When the microphone picks
up a sound, it is converted into an electrical signal and converted into power
spectrum by the DSP. The signal’s power spectrum is calculated with Fourier
transformation and bank of band-pass filters. The power of the signal at every band
in every millisecond is analyzed. The number of bands usually corresponds to the
number of intra-cochlear electrodes in the implant. Each intra-cochlear electrode
represents a stimulating channel, and hence the number of channels in a cochlear
implant corresponds to the number of intra-cochlear electrodes. The signal level
at each frequency band is converted to an appropriate level of electrical current
to be delivered to the respective electrode. The current is delivered in the form
of brief, temporally nonoverlapping electrical pulses. The scheme in which these
pulses are delivered depends on the coding strategy. Coding strategies help to
represent the incoming sound in an intra-cochlear electrode array. The rate at which
these pulses were delivered used to be constant earlier in generic cochlear implant
coding strategies. A more recent strategy like continuous interleaved sampling (CIS)
stimulates all available intra-cochlear electrodes together. In contrast, an advanced
strategy like advanced combination encoder (ACE) stimulates a particular number
of electrodes depending on the number of spectral maxima occurring in the signal
[52].
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Fig. 8 Picture representing various component of a cochlear implant with a behind the ear (BTE)
processor

Unlike CIS and ACE, which use an endless number of channels, HiRes120 is
a coding strategy based on the virtual channel technique [53]. This technique uses
current steering to create stimulations through virtual channels between two fixed
electrodes. It helps to resolve frequencies between two fixed channels in a more
precise way. The current steering technique used in HiRes120 is the Two-Electrode
Current Steering Strategy (TECSS), which controls only two adjacent electrodes.
Four-Electrode Current Steering Strategy (FECSS) is a step ahead by controlling
four electrodes to narrow down the stimulating region and increase precision [54].
A flexible hybrid stimulating strategy has been proposed by Choi et al. combining
both TECSS and FECSS techniques [55].

The coding strategy and the engineering aspects of cochlear implants have
improved over decades, facilitating higher fidelity and improved contact between
the electrode and soft tissues in the cochlea. The rate of stimulation or the rate at
which the electrical pulse train is delivered is also exceeded with advancement in
the power backup of the implant. An increase in the number of channels has also
been a great advantage in cochlear implant benefits. Though these changes were
intended for improving speech perception, recent research has turned its concern on
perceived sound quality. Cochlear implant users can discriminate rhythm patterns
with 93% accuracy, which is equivalent to hearing aid users who score 94% in the
same task. Similarly, the rhythm perception score was close to 95% when tested with
a hearing aid before and tested with cochlear implants after implantation [23, 26].
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The cochlear implant users scores around 75% in melody recognition when the
melody has rhythm, lyrics, and harmony cues. The score declined to 34% when
the lyrics were removed from the melody [56]. When adult cochlear implant users
were asked to discriminate musical sounds in three different conditions, single
(solo) instruments, solo instruments with background accompaniment, and musical
ensembles, the scores obtained were 61%, 45%, and 43% correct, respectively.
Cochlear implant users find it easier to process simple acoustic properties of sound
from a single instrument rather than a complex musical piece [26].

Envelope-based sound coding strategy such as CIS transforms only envelope
information in the signal into electrical stimulation, wherein precise fine structure
information is missed. The envelope is important for speech perception, whereas
fine structure is important for pitch and timbre in music [57]. In a study using
multidimensional scaling for the perception of timbre space in music, cochlear
implant users gave more weightage to the spectral envelope, which is similar to
a normal hearing individual perceiving vocoded music. However, when a normal
hearing individuals perceive unprocessed natural music, they do not give more
weightage to the spectral envelope. This difference has been attributed to the lack of
precise spectral information by the temporal fine structure cues [58]. Fine structure
processing (FSP) is an advanced coding strategy that encodes signal’s detailed
frequency information, helping to perceive temporal pitch and timbre. Individuals
using FSP were able to perceive rhythm and discriminate instruments better than
individuals using CIS [59]. Magnusson [60] reported that music perception with
FSP and high-definition CIS (HDCIS, a strategy advanced than CIS, reported to
provide better spectral information than CIS) were not statistically significant. Still,
four out of twenty subjects preferred FSP for music experience [60]. When cochlear
implant users rate music quality in pleasantness, naturalness, richness, fullness,
sharpness, and roughness, FSP helps them perceive music as exactly as they want it
to sound HDCIS. But acclimatization also plays an important role [61]. Emotion
is an aspect of music, important for the perception of its meaning. It requires
various acoustic features of music. An auditory prosthesis like cochlear implants
should convey these cues for the perception of emotion in music. The cochlear
implant users could detect different levels of emotional arousal conveyed by music,
especially with a music program in which the currents levels (determined by the
electrical pulse magnitude, sometimes even by the pulse width) are manipulated to
increase the dynamic range of low frequency channels.

Bimodal listening in cochlear implant users refers to an individual with a cochlear
implant fitted with an acoustic hearing aid for low frequency hearing. Lack of low
frequency pitch and temporal fine structure sensitivity is attributed to poorer music
perception in cochlear implant users. A web-based music reengineering study where
cochlear implant users themselves adjusted treble frequencies, bass frequencies,
percussion emphasis, and reverberation then rated on enjoyment. They preferred
heightened bass, reverberation, and treble across musical genres [62]. Post-lingual
deaf adults with bimodal cochlear implant users have been shown to perceive music
significantly better than individuals using cochlear implants alone [63]. Melody
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identification was significantly better in bimodal cochlear implant users than in
individuals using only cochlear implants [64].

Tactile aids are prosthetic devices that transmit information in signals through
touch sensations. Though it cannot transmit complex information, it successfully
conveys low frequency information such as the pitch of a signal such as music.
After the emergence of the multichannel cochlear implant, the use of tactile devices
in auditory rehabilitation ceased. But recently, few experiments demonstrated that
new-generation tactile aids can augment music perception in cochlear implants. It
improves pitch perception and thus provides better music quality [65].

5 Conclusions

Hearing aids fitted with a larger input dynamic range, lower input noise floor,
minimal peak clipping or limiting, extended bandwidth at low frequency end,
and prescription formulas specific for music will help in providing better music
perception for hearing aid users. Auditory prosthesis like cochlear implants with
better spectral resolution capacity such as the one capable of encoding fine structure
information in music may improve music experience in cochlear implantees.
Bimodal hearing with a cochlear implant and hearing aid has shown little hope
as a promising future direction for improving music appreciation. Hearing aid
technology, best suitable for music perception in individuals with a higher degree of
hearing loss coupled with a cochlear implant, might provide encouraging outcomes.
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Music Therapy: A Best Way to Solve
Anxiety and Depression in Diabetes
Mellitus Patients

Anchana P. Belmon and Jeraldin Auxillia

1 Introduction

A group of disease characterized by a high glucose level causing high impairment
in insulin production and insulin action is known as diabetes mellitus. There are
mainly two types of diabetes mellitus. They are (i) type 1 diabetes mellitus and
(ii) type 2 diabetes mellitus. Type 1 diabetes is a type of diabetes with no insulin
production. Lack of insulin resistance causes type 2 diabetes mellitus, which is
mainly observed in 90–95% of diabetes mellitus patients. The other comorbidity
disorders mainly characterized by retinopathy, neuropathy, and cardiovascular prob-
lems are the main symptoms of type 2 diabetes mellitus. Also, the other problems
include psychological disorders, anxiety, and even dermatological disorders. The
neurochemical changes accompanied with diabetes are the significant reason for
depression with adverse health conditions. To avoid mood and mental health
problems, an effective methodology used is called music therapy. Beck Anxiety
Method and Beck Inventory methods are used as the methods for analyzing music
therapy results. Mean, standard deviation, and covariance are used as a measurement
for the level of depression and anxiety. Diabetes mellitus and depression together
constitute lack of functioning abilities.
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2 Relationship Between Depression and Anxiety

The global prevalent disorder that affects majority of human population is depres-
sion.

Depression and anxiety are related to the metabolic disorder in children and
adults. HbA1c known as glycosylated hemoglobin is the common factor reflecting
metabolic control at the earlier stage of diabetes. According to Maronian et al. [3, 4,
23] based on DSM-IV criteria children and adolescents with diabetes have 28 severe
mental disorders than other diabetic patients. They also have poor metabolic control
and needs psychiatric consultation. Thus, the patients with higher HbA1c have the
poor metabolic control consisting of severe eating disorders, behavior change, and
other affective malfunctions as shown in Fig. 1. But the value of HbA1c varies
significantly for anxiety conditions.

Depression levels in diabetic patients are due to the non-modifiable diabetic
factors, modifiable diabetic factors, and other risk factors. Non-modifiable diabetic
factors are due to longtime disease or due to history of diabetes. Modifiable diabetes
risk factors cause comorbidity of depression. Modifiable risk factors have a poor
value of HbA1c. Other risk factors involve smoking and poor education status.

The book chapter is organized as follows: existing work, music therapy in
diabetes patients with two basic methods, results, and discussions.

3 Existing Work

Depression [8, 15] is the main psychological factor affecting 25% of the population.
According to the effective study of Anderson et al. [2, 10], depression causes
psychological impacts to diabetic patients rather than nondiabetic ones. There is
a correlation between diabetes and depression [9, 13, 14] complications. Studies in
diabetes patients revealed a clear idea about the depression and pathological self-
impacts in the history of diabetic patients by WHO in 2000. The possibility of
diabetes with a high intensity of depression is found to be 44% with anxiety and
depression symptoms. Timidity, aggression, anxiety, depression in adolescents are

Non-modifiable Diabetic Factors 

Other Risk Conditions 

Modifiable Diabetic factors 

Depression 
levels in 
Diabetic 
Patients

Fig. 1 Depression levels in different diabetic patients
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serious problems encountered in their family. According to Conley and Graham [7],
many patients encounter problems in anxiety, fear, and troubles. The pharmacologic
treatments are available nowadays to decrease the level of anxiety with associated
complications. Music therapy and relaxation and patients training are the main
nonpharmacological methods. However, feelings, emotions, and human cognitions
without speech and language is named as music. Melody and rhythm are the two
crucial factors of music for human utilization.

Music as an art is highly intervening and soothing. The effect of music [5] in
human body is unbelievable. The format of nonwordly explanations is expanded by
means of the music therapy [12, 33, 34]. According to Choi [6], the person’s mental,
physical, and emotional health are strengthened by music therapy. Loneliness effects
[6, 11] can easily reduce in sadist, guilty, and depressed peoples. The positive effects
of mood and cognition are the two basic music backgrounds. The music selection
accuracy predicts the nature of depression reduction. Anger, sadness, and frustrated
effects are smoothened by music rhythm [1, 31, 32]. Tension in old persons can be
reduced with a positive spirit of confidence [21]. Studies revealed that [16, 17, 18,
19, 20, 22] music therapy outperforms compared to psychotherapy.

Poor health and worse adhesion causes depression in adult population. Another
review findings assess the significance of low-dose music therapy. Less than 20-
minute music therapy does not cause any significant impact. However, only [24]
medium- and high-dose variants are effective. Musical training causes [25] changes
in human brain. Composing and listening music suppresses unrelated emotional
connectivities. Music also reviews neuroplasticity [26, 27, 28, 29, 30] in the brain.
The underlying positive effects of music are the only reason for neuroplasticity in
the brain. Thus, music therapy causes a sense like improved depression, loneliness,
and emotional aspects in health.

4 Music Therapy in Diabetic Patients

Music therapy involves mainly two types, namely, passive music therapy and active
music therapy [24, 35, 36]. Passive music therapy involves listening to selected
songs for half an hour three times a day. The active music therapy includes listening
to music at least about 1 hour a day [37, 38, 39, 40] with active discussion and debate
on selected songs as a group discussion. The active music therapy includes mime-
like performances, and the researcher can question to the physical and emotional
experience to experienced persons. Test-based evaluation methods can also be
included. The test evaluation methodologies are (Dementia et al. 2012) (i) Beck
Anxiety Inventory and (ii) Beck Depression Inventory methods.
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4.1 Beck Anxiety Method

Anxiety is an emotional and unpleasant awareness in a feared condition. It is
also a feel of discomfort, illness, and anticipated condition. Anxiety as a basis of
neurophysical approach can be treated as a feeling of numbness and hypervigilance
with increased sweating and heart rate. The biological terms “diaphoresis” and
“tachycardia” are associated with higher sweating and heart rate. For an adaptive
survival, the mind and body prepare itself for any anxiety treat. When the anxiety
persists for a long duration, it leads to lots of medical and psychological disorders
to mankind. The Beck Anxiety Inventory methods is a self-evaluated anxiety
measurement test. It involves mainly 21 items as in Table 2. The score pattern is
described in Table 1.

The entire score is obtained as a sum of 21 particulars. The score between 0–21
indicates low anxiety, 22–35 indicates moderate anxiety, and 36 above indicates a
higher potential anxiety. The commonly noticed anxiety symptoms are hot feelings,
numbness, unable to relax, nervousness, heart pounding, worst happening fear, etc.
The Beck Anxiety Inventory is checked for almost a month to effectively evaluate
the performance in persons. A sample Beck Anxiety in Korean adults is in Table 2.
High mean score is the significance of anxiety disorder in diabetic patients. High
score is also an impact of several panic disorder and phobic neurosis. There are
almost similar mean scores for depressed and anxious patients.

4.2 Beck Depression Inventory (BDI)

The second method is the Beck Depression Inventory method. This is a very
common and psychological method. This method not depends on the dominancy
of societal changes, but it is applicable to all strategies of the society.

The BDI total score evaluate the amount of depression. The emotional, motiva-
tional, and cognitive measure of depression is the worldwide BDI score.

The test evaluates about 21 areas of depression and their various aspects. As the
Beck Anxiety Inventory, this also consists of test with score ranging from 0 to 3.
The entire evaluation score involves values from 0 to 63. The test reported a good
reliability score of 0.67 with a concurrency of 0.79. The score variation in different
situations is depicted in Table 3.

The pleasurable, energizing, and sad elements are checked in each sessions to
evoke the spirit of memories and solace. A sample Beck Depression Inventory

Table 1 Score pattern in Beck Anxiety Inventory

Not bothered Mildly bothered Moderately bothered Severely bothered

All questions 0 1 2 3
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Table 3 Levels of
depression in Beck
Depression Inventory

Score Levels of depression

1–10 Normal
11–16 Mild
17–20 Borderline
21–30 Moderate
31–40 Severe
Over 40 Extreme

Table 4 Beck Depression Inventory sample discussion

Sl. no Criteria Mean Standard deviation

1 Sorrowful 0.04 0.21
2 Melancholy 0.26 0.47
3 Past failure 0.29 0.62
4 Reduced satisfaction 0.16 0.37
5 Feelings of guilty 0.27 0.51
6 Feelings of punishment 0.13 0.56
7 Self-abasement 0.02 0.09
8 Self-reproach 0.13 0.42
9 Suicidal thoughts 0.02 0.17
10 Sobbing 0.07 0.32
11 Anxiety 0.17 0.38
12 Loss of interest 0.06 0.24
13 Irresolution 0.11 0.31
14 Feelings of worthlessness 0.11 0.31
15 Energy loss 0.11 0.31
16 Sleeping pattern change 0.14 0.35
17 Touchiness 0.41 0.78
18 Changes in food 0.07 0.26
19 Concentration 0.11 0.36
20 Tiredness 0.11 0.36
21 Lack of sexual interest 0.29 0.53

is displayed in Table 4. The criteria for mapping the basic human emotions are
calculated based on the mean and standard deviation methods.

Beck Depression Inventory measures 21 items, namely, sorrowful, melan-
choly, past failure, reduced satisfaction, guilty feelings, punishment feelings, self-
abasement, energy loss, sobbing, etc.

5 Results and Discussion

Anxiety problems will lead to depression, enuresis, lack of behavioral control, social
developmental skills, poor human interactions, etc. Anxiety development in the
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early childhood stages creates a negative impact in adolescence. Negative thoughts
also create a distorted condition in the near future. Simple anxiety measurements
like BAI (Beck Anxiety Inventory) gives a psychophysical safety to childhood.
Also, it paved a way to manage anxiety for all emotional circumstances. The
participation with social activities is reduced by means of depression. It also has
a greater impact on the daily activities and results in diseases. Music can be used
as a good mood recoverer. Experimental groups are the treatment groups, which are
useful for research. The evaluation process is carried on among 50 diabetic patients
by using mean and standard deviation measurements with Beck Inventory and
Beck Depression Inventory methods. The evaluated results of each control group
and the experimental group are discussed in Table 5. The anxiety and depression
measures are evaluated in each stages of evaluation, namely, the pre-evaluation,
post-evaluation, and follow-up stages.

The research effectively examines all the depression and anxiety measurements
in the people. The main hypothesis is the evaluation of music therapeutic effects in
the diabetic people (Tables 6).

The results indicated a significant impact on the level of depression in diabetic
patients. The sad themes always promote a negative energy, while the desirable
rhythms of depletion and melodies provide a strong feeling with a positive energy.
An ability to reduce the weakness, lethargy, and depression is converted to a feeling
of delight and pleasant. Stress effects and the soul relaxation can be improved in
each circumstances by listening music and employing communications. In pre-
evaluation stage, the covariance measurement is found to be 0.57 for depression.
This is the higher value of severity. The post-evaluation depression value is 0.35,
which is a reduced value. In follow-up stage, also the significant impact shows
reduced level of depression and anxiety conditions with 0.28 and 0.48, respectively.

6 Conclusion

Music is an effective tool to accelerate the recovery time of patients. The people
admitted in the surgical ward have anxiety and stress. The presence of music can
effectively change the anxiety subjects with a faster recovery rate. The future work
can be extended to find a quick evaluation method for diabetic patients. The music
therapy can also be used to strengthen the mental and emotional health of patients
with diabetes. The main merits of this current methods are the improved quality of
life with reduced hospital charges.
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Table 6 Covariance measurement in each stages

Pre-evaluation stage Post-evaluation stage Follow-up stage
Measurement strategies Covariance Covariance Covariance

Depression 0.56 0.35 0.28
Anxiety 0.67 0.51 0.48
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Music and Stress During COVID-19
Lockdown: Influence of Locus of Control
and Coping Styles on Musical Preferences

Junmoni Borgohain, Rashmi Ranjan Behera, Chirashree Srabani Rath,
and Priyadarshi Patnaik

1 Introduction

The ongoing COVID-19 pandemic has incapacitated the entire world. Until now,
the pandemic has claimed millions of lives worldwide, and the death toll is rising
with each passing hour. The astronomical rise in cases and deaths around the
globe initially shattered the global health infrastructure resulting in unprecedented
measures like complete lockdown of nations, quarantines, isolations, restriction
on movement, and social distancing for months. Countries’ economies have been
shattered [1], dismantling the social fabric of human cultures by forcing people to
adhere to the “new social norms” of social distancing and staying isolated in homes
[2]. Enforcement of stern measures by administrations, duration of lockdown,
fear of infections/contamination, feelings of loneliness, boredom and frustration,
inadequate supplies, and insufficient information [3, 4], along with deaths of loved
ones [5, 6], loss of livelihood and jobs, and financial difficulties [4], all taken
together, have adversely affected the psychological and mental health of people
globally. Even though many studies worldwide suggest that lockdowns have had
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profound effects on everyday life worldwide, most people are psychologically
resilient to their impact [7]. People with different coping styles and exhibiting
different locus of control (LOC) have found ways and strategies to cope with
psychological stress during lockdowns [8–13].

Music has been one of the most effective strategies to cope with psychological
stress during COVID-19 lockdowns [11, 14–17]. During the lockdown, people
listened to music to feel emotionally better with the situation, to feel comfort, to
forget problems, to be energetic, to decrease sad feelings, to relax, to cheer up, to
forget concerns, to express feelings, to reduce anxiety, to remember better times,
to relieve boredom, to mentally stimulate themselves, and to ward off stressful
thoughts [53]. Music has helped people deal with stress and relax, improving
overall well-being and life satisfaction, reducing loneliness, and creating a sense
of togetherness [15, 18–20]. Previous studies have shown that music reduces stress.
However, in unprecedented and challenging times like the COVID-19 period, the
ways people deal with stress are influenced by individual traits or locus of control
that people possess. There is less information regarding how people’s musical tastes
are influenced by different coping styles and locus of control. Furthermore, not
much is known regarding the musical preferences that people have during the
lockdown. Thus, this chapter attempts to identify people’s musical preferences
with different coping styles and locus of control during COVID-19 lockdown in
India. Therefore, the novelty of the work resides in analyzing the individual traits
and their use of music in difficult times. In the rest of Sect. 1, we document the
study variables and related work. In Sect. 2, the method followed is described, the
participants’ demographic details, psychological measures used, and how they were
recruited. Section 3 provides details of the different statistical tests used to analyze
the obtained data. The results obtained and discussion of the results are reported in
Sects. 4 and 5, respectively. The final sections of this study, 6 and 7, deal with the
limitations and conclusion of the work.

1.1 Coping Styles

A coping style combines conscious and unconscious cognitive and behavioral
strategies to master, minimize, or tolerate stress and conflict [21, 22]. Even though
numerous coping styles have been identified and studied, coping styles are generally
categorized into three basic types: problem-focused (PFC), emotion-focused (EFC),
and avoidant coping (AC) styles [23]. While PFC consists of efforts aimed at solving
the problem, EFC involves emotional reactions. On the other hand, AC involves
activities and cognitions to avoid stressful situations and seek distraction or social
diversion [23]. The use of specific coping styles, however, may vary throughout
a stressful experience [24], as “goodness of fit” has to be achieved between
one’s appraisal of the situation and the selected coping strategy to maximize its
effectiveness [22]. Studies on coping styles during lockdown from around the
globe suggest that people used a range of styles and strategies depending on one’s
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appraisal of the situation to cope with psychological stress and experience well-
being [25–28].

1.2 Locus of Control

Locus of control is an individual’s belief system regarding the extent of control that
he/she has over things that happen to him/her and the factors to which that person
attributes success or failure [29]. While individuals with an internal locus of control
(ILC) believe life outcomes result from their actions and personal characteristics,
individuals with an external locus of control (ELC) believe life outcomes are
determined by external forces such as fate, luck, or chance [29]. People who believe
they have control over situations and surroundings are less vulnerable to stress in
managing one’s stress. However, people who have an ELC are more likely to suffer
from stress than people who exhibit an ILC [30]. It is all the more relevant to
the current pandemic scenario. Although the scope of personal control is low as
the spread of the disease depends on the behaviors of other people, individuals
exhibiting ILC can engage in preventative behaviors like using masks, washing
hands, and maintaining social distance to protect themselves from contracting the
disease [31], and adopting strategies to deal with stress. Studies also suggest that
people demonstrating ILC reported low levels of psychological distress during
lockdown [31, 32].

1.3 Music and Lockdown

Literature is replete with studies suggesting the relevance of music in generating
and regulating a wide range of basic and complex emotions [33–36] either through
increasing positive emotionality, using negative emotions to achieve certain goals,
decreasing negative emotions emotionality, or increasing emotional intensity or
arousal [33, 37]. Music activities (listening, singing, playing instruments, and
music-making) are also associated with positive outcomes in health and well-
being [38]. Music also helps in reducing stress, anxiety, nervousness, tension,
and fear [38–40]. It also acts like medicine [41], as many therapists use it to
reduce depressive symptoms and pain [42–44] and for motor and neurological
rehabilitation [45, 46]. There is little consensus in literature when it comes to the
effectiveness of music type on psychological stress. For example, classical and
soothing music are assumed to positively affect relaxation and stress reduction than
hard or heavy music [47, 48]. At the same time, extreme metal fans experience
positive emotions when listening to death metal [49] and extreme music [50].
Also, people experiencing pain tend to choose music that is higher in energy and
danceability [51]. Similarly, people often listen to sad when sad, as sad music
can help individuals cope with negative emotions [52]. However, literature on sad
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music is also conflicting, and evidence is mixed on whether sad music is beneficial
for listeners [52–54]. Although there is little consensus in the literature on the
effectiveness of music type on psychological stress, self-chosen music listening for
regulating negative emotions cannot be repudiated [55, 56].

2 Method

2.1 Participants

One hundred thirty-eight Indians participated in the study. Their age ranged from17
to 35 years (M= 23.7; SD= 5.14); 51 (36.9%) were female; 86 (62.3%) percent
were male; and 1 (0.72%) preferred not to reveal his/her gender. Among the
participants, 134 reported they worked from home, and four participants worked
from the office during the lockdown. Thirty-one of them lived in a joint family,
90 lived in a nuclear family, and 17 resided alone. Of musical activities, 113
reported listening to music, two were composing, 20 were engaged in learning
(vocal/instrumental music), and three watched online concerts. Among the occu-
pation categories, 102 participants were students; eighteen were private employees,
six were government employees, six worked in multinational corporations, three
were businessmen, two were homemakers, and one was a professional practicing
privately. 33.8% of participants reported listening to their preferred music mostly
during the night, and 31.6% preferred the evening. The time of the day preferred
least to listen to music was morning, as agreed by 14.9% of the participants, and
19.6% preferred afternoon. During the first lockdown, 61.5% reported listening to
music, whereas 38.4% listened to music during the second lockdown. We also asked
them about engagements and activities that kept them busy during the lockdown
period. An analysis of the same revealed that 23% relied on OTT1 (over the top),
11.1% engaged in social interactions with friends over the phone, 10.2% invested
their time acquiring new/technical skills, online gaming accounted for 6.84%,
and 5.98% involved in academic/career pursuits and practiced indoor games and
musical activities. Other engagements included household chores, physical exercise,
drawing/painting, working from home, outdoor games, reading books, relief work,
and pursuing hobbies.

2.2 Measures Used

Brief-COPE Inventory [57] is an abbreviated version of the COPE (Coping Ori-
entation to Problems Experienced) Inventory. It is a self-report questionnaire

1 OTT stands for “over the top” referring to media services (TV and film content) available through
the Internet or cable connection.



Music and Stress During COVID-19 Lockdown: Influence of Locus of Control. . . 253

with 28 items developed to assess a broad range of coping responses. The scale
consists of 14 domains/sub-scales (self-distraction, active coping, denial, substance
use, emotional support, instrumental support, behavioral disengagement, venting,
positive reframing, planning, humor, acceptance, religion, self-blame) of two items
each. Domains such as active coping, instrumental support, positive reframing, and
planning fall under PFC. Emotional support, venting, humor, acceptance, religion,
and self-blame are subsumed under EFC. Self-distraction, denial, substance use,
and behavioral disengagement are characterized by AC. Participants were asked to
respond to each item on a four-point Likert scale, indicating what they generally
do and feel when they experience lockdown-related stressful events (1 = I have not
been doing this at all −4 = I have been doing this a lot). A higher score on each
coping style indicates the greater the use of the specific coping strategy. These three
coping styles have shown adequate internal structure and consistency [58].

Perceived Stress Scale [59] is a ten-item scale used for measuring the perception of
stress. It is a measure of the degree to which situations in one’s life are appraised
as stressful. The scale was adopted for the context of our study in which we asked
them how lockdown induced stress in the lives of the participants (0 = Never - 4
= Very often). The psychometric properties of this scale were found to be superior
to those of the 14-item Perceived Stress Scale in populations of college students or
workers [60].

The Cantril Ladder [61] is a single-item measure that asks the participants to place
themselves on an 11-step ladder. The worst possible life represents the lowest step,
and the best possible life represents the top step. In our study, we asked them to
evaluate their happiness in their life in general during the pandemic on the 11-step
ladder, 0–6 (unhappy), 7–8 (average), and 9-10 (high).

Brief Locus of Control Scale [62] consists of six items in a Likert scale format, three
questions for each dimension. Participants were asked to respond to the statements
indicating their feelings (1 = Strongly disagree - 5 = Strongly agree). The six-item
scale shows a good internal consistency of 0.68, indicating a good homogeneity
among the test items measuring this construct.

2.3 Procedure

The survey for this study was conducted online through the Crowdsignal Polldaddy
platform. This platform allows the researcher to create online surveys, quizzes, and
polls. The participants gave their informed consent before proceeding to complete
the survey. Demographic data were collected from the participants, which includes
their age, gender, and occupation. They were also asked questions on their musical
engagement such as listening, composing, or watching online concerts, hours spent
in a week listening to music, lockdown in which music was heard, time of the day
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preferred to listen to music (morning, afternoon, evening, night) if music helped
them cope with COVID-induced stress (1 = Not at all - 5 = To a large extent),
and importance of music in their life (1 = Not at all important - 5 = Very important).
Psychological scales such as BRIEF-COPE Inventory, Brief Locus of Control Scale,
Perceived Stress Scale, and Cantril ladder were used. The list of music genres was
made by a group of experts working extensively in the field of musicology. Indian
authors developed the 23-music genre list which was also referred to [63]. Genres
like Korean pop and Japanese pop were also added to the list. Participants had to
rate them on a Likert-type scale (0 = Never listened - 4 = Almost always) to show
the extent to which they listened to these genres during the lockdown.

3 Data Analysis

Descriptive statistics (mean, standard deviation, and percentage) were utilized to
measure the study’s variables. Principal component analysis (PCA) was conducted
to analyze the factor structure of the participants’ music genres during the lockdown.
This analysis method increases the interpretability of large datasets by uncovering
dimensions that link together unrelated variables providing insight into the under-
lying structure of the data. Correlation analysis, denoted by the symbol “r,” was
also carried out to see the relationship between the study variables: locus of control
and coping styles, stress, happiness, use of music, and music preferred during the
lockdown.

Inferential statistics such as t-test and ANOVA was also employed. A t-test is
used to determine if there is a significant difference between the means of the two
groups. It yields a t-score, and a higher t-score denotes a higher difference between
and within the groups. A p-value in an inferential statistic measures the probability
that an observed difference could have occurred just by random chance. The lower
the p-value, the greater the statistical significance of the observed difference. A t-
test was employed to examine the difference between the two LOCs (internal and
external).

Analysis of variance (ANOVA) test, which analyzes the difference among means
of three or more groups, was employed to test whether the means of the three coping
styles were different. The “F” in ANOVA stands for the variation between/within the
sample means. A higher F value in the test denotes a higher chance of difference
between the groups and vice versa. The post hoc test in ANOVA is conducted
after a statistical significance is found among the variables. Games-Howell post hoc
test was conducted to examine which coping style significantly differed from the
others. The data analysis was carried out using the Statistical Package for the Social
Sciences (SPSS 20.0) software.
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4 Results

4.1 Descriptive Statistics

The mean (M) values and standard deviations (SD) are given in Table 1. The results
indicate that the use of ILC was more than ELC. A t-test was done to examine if
any significant difference existed between the two traits. It was found that both the
traits were significantly different from each other, t (137) = 4.51, p < 0.001. The
participants’ stress levels were average as indicated by the mean (M= 20.91, SD=
5.7) with a happiness level of (M = 6.51; SD = 2.0), indicating average happiness.
The means from the two coping styles (EFC, PFC) showed average scores except
for AC which was low as 15.26. Results from the ANOVA suggest that a significant
difference exists between the three coping styles (EFC, PFC, and AC), F (2, 414)
= 252.17, p < 0.001. Games-Howell post hoc test was conducted to examine how
different coping styles were adopted/preferred by the participants. EFC (M = 27.02)
was the most adopted/preferred style followed by PFC (M = 21.72) and AC (M =
15.26) (p < 0.001). Participants rated the importance of music in their lives (M =
4.14; SD = 0.83), suggesting that music occupied an important position. The mean
hours of music listening in a week was (M = 9.27 hours; SD = 10.29). Among the
participants, 76.09% reported listening to music within the range of 0–10 hours,
12.32% within the range of 11–20 hours, 6.52% within the range of 21–30 hours,
and 5.07% within the range of 31–40 hours. According to 97.1% of the participants,
music helped them cope with stress. At the same time, the extent to which music
helped them cope with stress was (M = 3.79, SD = 0.92).

4.2 Relationships Among Locus of Control, Coping Styles,
Stress, Happiness, and Music

The correlation analysis showed that ILC was not significantly correlated with any
of the variables except music assisting in coping with stress, as shown in Table 2.

Table 1 Means and standard
deviations of variables

Variables Mean SD

1. Internal locus of control 10.93 1.9

2. External locus of control 9.88 1.9

3. Problem-focused coping 21.72 4.2

4. Emotion-focused coping 27.02 5.2

5. Avoidant coping 15.26 3.4

6. Perceived Stress Scale 20.91 5.7

7. Happiness 6.51 2.0

8. Importance of music 4.14 0.8

9. Music listened in a week (hrs) 9.27 10.2

10. Music helped cope with stress 3.79 0.9
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Higher ELC was significantly correlated with EFC (r = 0.233, p < 0.01) and AC
(r = 0.267, p < 0.01). It also held a positive and significant association with stress
(r = 0.257, p < 0.01) and a negative association with happiness (r = −192, p <

0.01). Participants who scored high on PFC had higher correlations with EFC (r =
0.573, p < 0.01) and AC (r =0.236, p < 0.01). EFC also showed high correlations
with AC (r = .538, p < 0.01), and an increase in this use of coping style was
related to perceived stress (r = .229, p < 0.01). Avoidant coping similarly increased
perceived stress (r =0.359, p < 0.01) and negatively linked with lower happiness (r
= −0.202, p < 0.01). The table below suggests the increased importance of music
in participants’ lives, and it showed significant correlations with PFC (r = 0.229;
p < 0.01) and EFC (r =0.258, p < 0.01). Additionally, it heightened spending more
time listening to music (r = 0.397, p < 0.01) and assisting in coping with stress (r =
0.524, p < 0.01). Time (hrs) spent in music listening in a week was strongly linked
with EFC (r = 0.245; p < 0.01). The greater the EFC style spent time listening to
music, it helped them cope with stress (r = 0.309, p < 0.01). Similar was the case for
both PFC (r = 0.237, p < 0.01) and ILC (r = 0.243, p < 0.01). It can be summarized
that irrespective of copying styles, more listening time was associated with less
stress. The other parameters did not show any significant correlations (Table 2).

4.3 Preference of Music

Preference of music was assessed using a 0–4 scale, and it was observed that new
film (M = 2.23; SD = 1.16) and old film Bollywood music (M = 2.09; SD = 1.1) were
preferably listened to during the lockdown. Regional film music (M = 1.80; SD =
1.1), indie pop (M = 1.78; SD = 1.1), and regional film music (old songs) (M = 1.72;
SD = 1.1) and western pop (M = 1.7; SD = 1.3) were also indicated as preferred and
were close to mean. Music genres that were least preferred were Korean pop (M =
0.53; SD = 1.03), Japanese pop (M = 0.44; SD = 0.9), heavy metal (M = 0.86; SD
= 1.01), and slokas and chants (M = 0.97; SD = 1.07). This shows the preference as
well as the popularity of music genres in difficult times (Fig. 1).

4.4 Factor Structure of Music Preferences

Previous studies on music preference have shown a structure/dimensions, and some
genres were similarly rated. While understanding the music preferences during the
pandemic, the dimensions would be helpful to make assertions. Some earlier studies
revealed that music preferences could fall under four dimensions [64]. However,
there were arguments regarding inconsistencies in the number of dimensions or the
appearance of single musical styles in these dimensions [64–66]. Hence, a principal
component analysis (PCA) was conducted to look at the factor structure of the music
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preferred. Bartlett’s test for sphericity was performed to determine if all the variables
in the sample were uncorrelated. The same confirmed the uncorrelatedness of the
variables (X2=1112.199, df=171, p < 0.001). Kaiser’s measure of psychometric
sampling adequacy was also analyzed to see whether the correlation matrix could
be used for factor analysis. The sampling adequacy was 0.784, indicating the
usefulness of the dataset for the PCA. We extracted four dimensions from the
analysis with an overall explained variance of 57.3%. Out of the 23 genres, three
(Japanese pop, Korean pop, and Western classical music) were eliminated from the
analysis as they showed cross-loadings on the dimensions extracted.

The four dimensions from the PCA were a mixture of genres, and they were
named after the formal characteristics of music. As shown in Table 3, the first
dimension is intense and electronic (I&E): consists of western music with upbeat
and a conventional genre like jazz. The second dimension, cultural, emotional,
and melodious (CE&M), comprises classical melodies and emotional melodies
from the early 1970s and genres belonging to different cultural traditions. The
third dimension, Indian contemporary and popular music (IC&P), also forms from
the upbeat music of the Indian subcontinent, consisting of fusion and rhythmic
elements. The last dimension, devotional music (DM), centers around religious
and spiritual themes listened to by the participants, such as slokas/chants and
prayer/devotional songs. Our music preference structure is somewhat similar to the

Fig. 1 Mean preferences for the 23 musical genres listened during the lockdown (n=138)
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Table 3 Factor loadings of the 23 musical genres on the four dimensions of music preferred during
lockdown

Preference dimensions I&E CE&M IC&P DM

1. Rock 0.79

2. Heavy metal 0.78

3. Rap/hip-hop 0.76

4. EDM 0.76

5. Western pop 0.73

6. Jazz 0.68

7. Indie pop 0.64

8. Ghazal 0.75

9. Indian classical music (instrumental) 0.73

10. Regional film music (old songs) 0.68

11. Old film music (Bollywood) 0.68

12. Indian classical music (vocal) 0.62

13. Regional folk music 0.58

14. Regional film music (new songs) 0.78

15. New film music (Bollywood) 0.68

16. Songs in other Indian languages 0.49

17. Punjabi pop 0.47

18. Slokas/chants 0.84

19. Prayer/devotional/bhajan 0.80

Note. I&E = intense and electronic; CE&M = cultural, emotional, and melodious; IC&P= Indian
contemporary and popular music; DM = devotional

structure found by an earlier Indian study on music genre preference [53]. However,
the last dimension (devotional) loaded separately in our study.

4.5 Music Preferred by Coping Styles and Locus of Control

Results indicated that ELC had a strong correlation with intense and electronic
music (r = 0.195, p < 0.022) and Indian contemporary and popular music (r =
184, p < 0.031). PFC showed strong correlations with all the dimensions of music
genres. In contrast, EFC showed a high correlation with intense and electronic
music (r = 0.262, p < 0.002), cultural emotional and melodious music (r = 0.170,
p < 0.046), and devotional music (r = 0.312, p < 001). Lastly, AC correlated with
intense and electronic music (r = 0.276, p < 0.001) (Table 4).
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Table 4 Table showing correlation between coping styles, locus of control, and music dimensions

LOC and coping styles I&E CE&M IC&P DM

1. External locus of control 0.195* 0.036 0.184* −0.004

2. Internal locus of control 0.047 0.148 0.004 −0.049

3. Problem-focused coping 0.197* 0.219** 0.191* 0.251**

4. Emotion-focused coping 0.262** 0.170* 0.102 0.312**

5. Avoidant coping 0.276** 0.031 0.109 0.141

Note. *p < .05,**p < .01,
I&E = intense and electronic; CE&M = cultural, emotional, and melodious; IC&P= Indian
contemporary and popular music; DM = devotional

5 Discussion

The purpose of this study was to investigate if different coping styles and LOC influ-
enced music preference during the COVID-19 lockdown period. It also examined
the relationship between the use of music by different coping styles and LOC and if
they benefitted from it to cope with stress

5.1 Stress, Coping Styles, and Locus of Control

The values of ILC were high, and PFC was used more than EFC and AC styles.
However, higher ILC did not show any significant correlations with either of the
coping styles. On the other hand, ELC was correlated with EFC, AC, and stress. It
means that the higher the ELC, participants showed increased EFC and AC. These
findings support earlier research showing that ELCs see these events or stressors as
uncontrollable and hence will engage more in these coping behaviors and increased
stress [67]. Externals believe that events and outcomes in their lives are out of their
control and attribute them to some other cause. This might prompt them to engage in
more EFC and avoid the stressors that came their way as preparedness is less for this
type. This finding is supported by studies where participants with a high ELC are
indicated to have high levels of stress when facing negative life events [68]. It might
also be that people high in this domain might look for less information and develop
readiness for events. Even they sometimes fail to look at the problem objectively
and set goals to resolve them.

5.2 Music Helped Cope with Stress

The importance of music shown by the participants had links with hours of listening
and coping with stress. These findings support the recent research results revealing
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that individuals use music mostly to combat stressors such as social, work-related,
and performance [56]. However, the duration of music listened to in a week was not
associated with coping stress. It may be that the participants were browsing different
genres of music, and earlier studies had shown that participants had higher stress
levels when they reported music listening for less than 5 min [69]. Nonetheless, the
greater number of hours was devoted by the EFC style. This finding is consistent
with the previous literature showing that it is one of the approach-type strategies
used by this coping style to regulate emotions [16].

Participants who scored high in PFC and EFC style and ILC used music to cope
with stress. The PFC style is characterized by threat devaluation (deactivating the
stressor by directly dealing with it) and positive reappraisal (attempts to change
the meaning of the stressor). This style might draw inspiration from music and
themes that help them keep engaged with their own lives and eliminate stressors
that are harmful to their well-being. The use of music to reduce stress is considered
a palliative coping approach in that individuals’ internal psychological strategies are
enhanced to manage tension and minimize distress [70].

Participants adopted the EFC style mostly observed during the pandemic [71],
among the other coping styles. When the stressor remains unchanged, some coping
strategies are listening to music or talking on the radio [71]. Emotion-focused coping
depends on the environmental aspects of the stressful encounter: if the person can do
nothing to change the situation as done by the PFC styles, then it may be effective
in emotional regulation and stress reduction [55, 71]. In particular, the COVID-19
pandemic pushed off-limits of individuals where they could not change the source
of the problem, or problem-solving mechanisms were ineffective. Hence, EFC was
adopted as a viable mechanism to deal with stressful encounters. Additionally, this
coping style is renowned for the use of music for emotional regulation [56].

The EFC styles’ inclination toward music shows that despite the presence of
social presence (kinship: family), music helped them cope with stress. Recent
studies also showed that people used music for solitary emotional regulation,
whereas people experiencing increased positive emotions used music as a proxy for
social interaction [55]. Music paves the way for self-determination and distraction,
which may benefit those who scored high on this coping style.

Furthermore, ILC engaged in good behaviors (wearing masks, maintaining social
distancing) for their physical well-being [72]. This points to their use of music as
a resource for coping with stress. A body of research also suggests that individuals
with internal attribution styles may experience greater psychological distress due
to feeling little control over the outcome of an event [67]. These significant results
show that a pandemic like COVID can strip off personal resources like ILC and
induce individuals to use external resources like music. Furthermore, personality
variables (LOC) sometimes have weaker effects when the situational variables are
strong [73].

The AC style does not show music-related correlations. We believe that people
who score high in this domain socially divert themselves by involving in various
other activities to avoid the stressors [74].
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5.3 Music Preferences

When music preferences were examined closely in the context of use during the
lockdown, results revealed that new film music and old film music charted the top.
Our findings are supported by a survey study where film music (Bollywood) was
one of the most preferred musical genres [75]. 60% listened to the new Bollywood
music, 53% listened to old Bollywood songs, and regional film music (oldies)
topped the list in consumption.

The nature of new Bollywood music is faster, rhythmic, romantic, and joyful,
and old film music that portrays romance and nostalgia has cathartic benefits on
the participants. Previous research has also observed that the end goal of music
was not to derive positive emotions but instead to ruminate and induce melancholy
or nostalgic feelings [76]. Emotions in this genre are portrayed musically in a
“monopathic” form or through a narrative or song-dance routine [77]. “Emotional
experience is seen not as a secondary, individual state, but as the level at which
reception takes place as a social experience” [78]. Overall, this genre heightens the
emotional experiences of audiences [79], which is rewarding and often listened to
by the participants [80].

5.4 Music Preferred by Locus of Control and Coping Styles

The PFC style showed significant positive correlations with all the music genres.
Previous research has found strong associations of this coping style with the
personality trait of openness to experience [81]. It includes traits such as creativity,
insightfulness, and originality [64, 82]. It has been found in studies that this trait
prefers and values different kinds of music, such as folk, ethnic music, rock, and
heavy metal. [83, 84]. The explanation for this might be that people who possess
this style might be willing to try new approaches in their coping strategies [85].

On the other hand, the EFC style preferred intense and electronic music; cultural,
emotional, and melodious music; and devotional music. Studies also show that
emotion-focused coping style is closely related to neuroticism, which uses music
as a medium for emotion regulation [86, 87]. Emotion-focused coping styles are
quite varied, but they all diminish the negative emotions associated with stressors;
thus, this coping is action-orientated [88]. Neuroticism correlated positively with
emotional use of music, an association explained in terms of the higher emotional
sensitivity of neurotics to music with their emotionally stable counterparts [87].
Recent studies on COVID-19 and the pandemic have brought into limelight findings
that helped them cope emotionally with positive and negative emotions. It also
gave them a spiritual experience and drew inspiration [55]. Avoidant coping styles
showed an inclination toward rebellious and intense music.

Internals showed no correlation with the different music genres, and a nonsignif-
icant and negative relationship was found with devotional music. This signifies
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that people with a high ILC are goal-oriented and individually believe in the
outcomes [89]. At the same time, since their perceived stress was low, they did not
choose music consistent with their mood [90]. Externals showed a preference for
upbeat music, including western as well as Indian. The results showed that stress
was significantly high for externals; they might use the choice for upbeat music
to augment emotional arousal. Externals perhaps have felt in control and could
internalize more the threat of the pandemic, which may lead to negative feelings
[91], and used music as a tool for mood regulation.

6 Limitations

The study is not without limitations. Due to lockdown and strict protocols, face-to-
face interviews could not be conducted, and an online survey was conducted. Owing
to the length of the survey questionnaire, we could not assess the music functions
used by different coping styles and locus of control which could have added a
new dimension to this study. Furthermore, the emotions and semantics preferred
in the songs were also not gauged, which could be focused on later. Apart from that,
this study is novel in assessing the use of music in socio-emotional coping during
COVID-19 imposed lockdowns.

7 Conclusion

The study’s objective was to investigate music and music preferences of different
coping styles and LOC. The observations of the study are summarized below:

(i) Correlation analysis between LOC and coping styles showed that a significant
relationship between ILC and coping styles was not observed. ELC had
positive correlations with EFC and AC style demonstrating higher use of these
coping styles during the lockdown by those possessing this trait.

(ii) The mean of the coping styles indicated that most participants used the EFC
style during the lockdown.

(iii) This study also highlighted the different music genres preferred during the
lockdown. The most preferred genre was new film music (Bollywood).
Furthermore, participants with higher ILC, EFC, and PFC utilized music more
to cope with stress except for ELC. However, ILC did not show any specific
preference to the music dimensions extracted in the analysis. ELC had a strong
correlation with intense and electronic music and Indian contemporary and
popular music. Participants endorsing high PFC showed a preference for all
the dimensions of music genres. Similarly, EFC showed a high correlation with
intense and electronic music; cultural, emotional, and melodious music; and
devotional music. Finally, the AC style preferred intense and electronic music.
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This study has implications of how music can become a tool for socio-emotional
management during stressful times. Identification of coping styles can help future
researchers to make tailor-made music therapy programs as an intervention to deal
with psychological needs. This could also help machine learning experts to make
music-recommendation systems based on preferences catering to different coping
styles and LOCs.
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Biophysics of Brain Plasticity and Its
Correlation to Music Learning

Sandipan Talukdar and Subhendu Ghosh

1 Introduction

A musician not only entices us with beauteous and calming melodies, the musician
also provides an excellent model system to study plasticity of the human brain. In
fact, it is now believed that a musician’s brain is an ideal model for studying activity-
related plasticity of the brain [1–3]. This pertains to changes in brain function and
structure in response to activities performed by a musician. A sound wave traveling
in the air finds its way through the ears to the brain, and by interfering with the neural
dynamics, it can give rise to structural and functional changes in the brain. It is a
gargantuan task to unveil how experience or training causes the changes in the brain.
We are still far and far behind from an elaborate knowledge about the mechanism of
such plasticity. Training with music comprises of learning how to play an instrument
with all the complex patterns involved in it and learning of a myriad of complex
musical notes. These involve several components of the sensory and the motor
systems of the brain, thus demanding a wide variety of cognitive processes of the
higher order. The complexities involved in music training pose manifold challenges,
but at the same time, it also provides opportunity to study how sensory and motor
systems interact in giving rise to cognition and how different paradigms of training
influence the interactions. Music training and its relation to the brain function can
broadly be understood in two categories: firstly, how training influences the auditory
and sensory-motor systems, and secondly, how the influences of training on auditory
and sensory motor systems drive brain plasticity. Again, from the perspective of
plasticity, the multi-paradigm nature of music training is of much importance as it
enhances plasticity in the brain. The auditory system, which comprises of various
parts starting from the ear, cochlea, auditory cortices, and brain stem to other brain
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areas involved in the process of higher auditory cognition, is of critical importance.
The auditory system is such a system that is most altered by musical training.
Structural and functional changes in response to musical training take place at
various levels of the auditory system. For example, changes take place in the brain
stem [4], auditory cortices [5], and areas [6] that are involved in higher levels of
auditory cognition. Zatorre et al. [7] have reviewed how musical training can be
considered as a framework of studying brain plasticity. Exposure to specific music
stimuli or pattern can lead to long-term changes in the auditory cortex. The changes
in the auditory system can also take different forms depending on the behavioral
paradigms that are used for training. For example, classical conditioning, perceptual
learning, or stimulus-response learning will bring out different kinds of changes in
the auditory system. All these hints toward the remarkable capacity of the brain
plasticity in response to music stimuli.

Not only the auditory system that exhibits plasticity in music learning or training
but also the motor system is incredibly plastic in this aspect. In learning an
instrument like violin or keyboard, a distributed motor network is engaged in the
process. A plethora of studies has shown that in acquisition of a new motor skill
in case of music, different parts of the motor network contribute deferentially
in various phases of learning. Models of learning motor skills have shown [8]
that the M1 and the premotor cortices are important parts as far as storing and
representing a specific motor sequence is concerned. Again, basal ganglia are
more involved in case of stimulus-response association, whereas the cerebellum
is involved in the mechanism of error corrections. Interestingly, these features are
also found to be fit well in musical training effects. In a study [9] about pianists
who are highly trained, anatomical plasticity in motor pathways were observed
in white matter. It was also found that the greater the musical practice during
childhood, the greater was the integrity in the corticospinal tracts. Most of the
auditory and motor changes that have been observed in music learning are based
on imaging techniques combined with EEG (electroencephalography) and MEG
(magnetoencephalography). Apart from those mentioned above, there are a large
swathe of studies representing extraordinary plasticity of the brain arising as a
response to music learning. Moreover, music’s ability to reorganize the brain has
now crept in the realm of clinical applications.

In this chapter, we will focus on the biophysical mechanisms involving in brain
plasticity, both at the level of synapses (synaptic plasticity) and single neurons
(Intrinsic plasticity). The importance of intrinsic plasticity in learning will be
highlighted with the help of experimental evidences. The ways intrinsic plasticity
is involved in music learning will also be discussed taking account of experimental
evidences. Mostly, the evidences showing the involvement of intrinsic plasticity in
music learning have been found in species other than humans, for example, singing
birds. This pertains to the fact that the experiments involved in these kinds of studies
are highly invasive, making it difficult to use them straightly on human subjects.
Nevertheless, the current state of the art in this domain will be discussed considering
the information gathered by non- or less invasive biophysical techniques.
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2 Brain Plasticity and Learning

Within the realm of physiology, plasticity denotes changeability. With changes in
environmental inputs and conditions, the physiology changes in order to adapt
itself in a changing environment. When it comes to the brain, plasticity becomes
extremely important as it can give rise to changes in behavior, apart from mitigating
diseased conditions. Coming straight to humans, we learn and unlearn myriads of
tasks and skills throughout our life. Learning and for that matter unlearning are
pertained to the extraordinary plasticity ingrained in our brain. In fact, the brain
remains plastic up to an advanced age of our life. Brain plasticity or neuroplasticity
is an idea having its root at least a century back. Modern neuroscience resourced
with sensitive imaging techniques, state-of-the-art molecular equipment, and labo-
ratory techniques has unveiled how neurons, the basic entity of the brain, send out
spikes or action potentials and how they can change their activities in response to
change in both external and internal inputs.

Synapses, the connections among neurons, form complex networks. The net-
works are the architecture of memory and learning driven by experience or change
in environmental conditions, and they are also the architecture subjected to be
reorganized and giving rise to brain plasticity. The idea of neuroplasticity can be
dated back to centuries. It was in 1890 when William James, a psychologist and
philosopher, postulated [10] the idea that brain and its functions are not fixed
entities in his book “The Principles of Psychology”. James’s book was a landmark
in the field and quite aptly could suggest that human brain is remarkably capable of
reorganizing itself. James’s idea remained neglected for quite some time. However,
the idea kept on enriching over time. By 1948, a Polish neuroscientist, Jerzy
Konorski, first officially coined the term neural plasticity [11]. Konorski suggested
that neurons getting activated due to spiking of other neurons in close vicinity
together lead to plastic changes in the brain. Konorski’s idea of neural plasticity
reverberated shortly in the postulates of another psychologist, Donald Hebb. Famous
as Hebbian plasticity, Hebb’s postulates are considered as one of the founding
ideas of the phenomenon known as synaptic plasticity. The synaptic plasticity is
the changeability of synaptic strength. The synapses become stronger or weaker in
response to stimuli. Hebb’s most revered work, the book named “The Organization
of Behavior” [12], scripted the Hebbian plasticity postulate, which says “When an
axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.” This
famous para of Hebb’s idea is often paraphrased as “Neurons that fire together wire
together.”

Although the great ideas of neuroplasticity were profoundly postulated by some
of the great minds of the time, the brain was believed to be a nonrenewable organ
for centuries. It was believed before the great leaders of neuroscience came out with
their incredible ideas of neuroplasticity that only within a critical period during
childhood connections among the neurons (synapses) are formed and once the
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critical period is crossed, they remain fixed for the rest of the life. As such, the
common belief was that only young brains are plastic. A profound impact of this
belief was also reflected in clinical aspect. As the adult brain does not undergo
plasticity, if a brain area of an adult is damaged, then there would be no further
growth of the neuronal connections and the damaged area would remain damaged
permanently. In contrast to this idea, we can take a common and nascent example;
we can site the experience of forgetting something that has not been practiced for
a long time which is common among many of us. We often tend to forget what
we don’t practice for a long time and on the other hand practicing makes it easier
to learn or remember something. There are molecular and cellular underpinnings
of these common aspects. Cornerstones of learning and memory lie in plasticity
both at synaptic level and beyond. Besides synaptic plasticity, neurons themselves
also possess incredible capacity of changing themselves in response to external
stimuli, which is termed as the intrinsic plasticity. The intrinsic plasticity provides
neurons to change their propensity of firing action potentials and thus changing their
excitability.

2.1 Synaptic Plasticity

Let us have a quick overview of the phenomenon of synaptic plasticity. Any
information in the brain is transmitted from one neuron to another through a
connection known as the synapse. A synapse contains presynaptic and postsynaptic
neurons, separated by the space called the synaptic cleft (see Fig. 1). The presynaptic
neuron sends chemical or electrical signals and the postsynaptic neuron receives it.
In case of a chemical synapse, the presynaptic neuron releases a chemical known
as the neurotransmitter and the postsynaptic neuron’s receptors receive it. The
neurotransmitters are released from the presynaptic neuron as it fires an action
potential in response to stimuli. The action potential travels down the axon of the
presynaptic neuron after being initiated at the soma or the cell body. At the end
of the axon of the presynaptic neuron, the neurotransmitters are released which
is a voltage-dependent phenomenon. The neurotransmitters in turn can cause the
postsynaptic neuron to get excited and fire an action potential, provided the process
can depolarize the postsynaptic neuron beyond the threshold for firing of action
potential.

Notably, a (postsynaptic) neuron can receive synapses from many other presy-
naptic cells. All the signals combined can make the neuron to fire an action
potential. The Hebbian principle saying neurons that fire together wire together
can thus be understood in the molecular and cellular underpinnings of forming
a synapse. Neuroplasticity denotes the ability of neurons to modify the strength
between synapses along with formation of newer ones. Visualizing in this way,
neuroplasticity encompasses changes in the strength of mature synapses and the
formation and elimination of synapses in both adult and developing brains.
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Fig. 1 Chemical synapse between two neurons. Image source Wikimedia commons (with creative
common license)

2.2 Intrinsic Plasticity

A synapse involves at least two neurons. The synaptic connections’ weakening or
strengthening in response to stimuli forms the basis of synaptic plasticity. However,
synaptic plasticity is not the only way that the neurons can modify themselves as
a way of responding to changing stimuli or environmental conditions. Neurons
possess another remarkable level of plasticity which does not require a synapse.
This plasticity arises within a neuron and signifies the intrinsic excitability. Such
kind of plasticity is termed as the “intrinsic plasticity” of neurons. The intrinsic
plasticity, in turn, can also influence synaptic plasticity and vice versa.

The excitability of a neuron primarily denotes its ability to fire action potentials in
response to stimuli. To fire an action potential, a neuron has to be stimulated beyond
the threshold of firing. The threshold of action potential signifies the voltage that a
neuron needs to be depolarized up to. If any stimulus, such as one coming from a
synapse, can depolarize a neuron to its firing threshold, then the neuron will generate
an action potential. Again, how does a neuron integrate synaptic inputs to fire an
action potential is primarily determined by voltage- and calcium-gated ion channels.
The number, type, and distribution of the ion channels determine a neuron’s firing
ability. Intrinsic plasticity is mediated by changes in the ion channels [13], changes
in their expression levels or biophysical properties. Speaking broadly, ion channels
in the dendritic part of a neuron are responsible for integrating synaptic signals,
and ion channels near soma and axon hillock are responsible for the generation of
action potential. Experiments, mainly in vitro, suggest that all of these features are
plastic, which are subjected to be modified by different neural activities. Although
most of the researches on neural plasticity have given main focus on synaptic
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plasticity, findings on various aspects of intrinsic plasticity have gained pace in
the last two decades. Evidences are now plenty which show the important role
of intrinsic plasticity in learning and memory as well. The evidences are obtained
from studies conducted on both invertebrates and mammals. Zhang and Linden [14]
have reviewed some of the best studied evidences about the involvement of intrinsic
plasticity in learning and memory.

3 Biophysical Basis of Plasticity

3.1 Synaptic Plasticity

Two of the most widely studied phenomena that are established as evidential
representation of synaptic plasticity are the long-term potentiation (LTP) and the
long-term depression (LTD). The LTP is the persistent strengthening of synaptic
connections, while the LTD signifies the opposite, that is, the long-lasting weaken-
ing of synaptic strength. Both LTP and LTD are dependent upon the recent patterns
of activity.

LTP: It took almost two decades to get experimental evidence after Hebb’s theory
first appeared. It was Terje Lømo who first observed the phenomenon of LTP [15] in
the hippocampal dentate gyrus of rabbit. Lømo conducted series of experiments on
anesthetized rabbits in his attempt to explore the role of hippocampus in producing
short-term memory. Lømo’s experiments were designed with focus on specific
synapses that connect neurons from the perforant pathway to the neurons in the
dentate gyrus of the rabbit hippocampus. Lømo’s experiments were designed in
such a way that presynaptic neurons in the perforant pathway were stimulated
while recording the responses from postsynaptic neurons of the dentate gyrus. A
single pulse of electrical stimuli applied on the presynaptic neurons caused EPSP
(excitatory postsynaptic potential) in the postsynaptic neurons in the dentate gyrus.
Lømo could observe a fascinating finding in his experiments; he found that the
postsynaptic neurons’ response to the single pulse electrical stimuli can be enhanced
for a long period of time. However, there is a condition which lies in the nature of
the stimuli. The electrical stimuli to the presynaptic neurons need to be of high
frequency and applied for a short duration. When such high frequency train of
stimuli were applied to the presynaptic neurons, then the EPSPs elicited in the
postsynaptic neurons tend to be stronger and long lasting. Here it needs to be
mentioned that EPSP is a postsynaptic potential that can make the postsynaptic
neurons to fire action potentials. Application of the high frequency stimuli to the
presynaptic neurons could result in long-lasting enhancement of the postsynaptic
neurons’ response, which is what Hebb’s theory portrays. The experiments leading
to the validation of Hebb’s theory of neuroplasticity were possible due to key
technological developments of using brain slices [16]. The technique of brain slices
combined with the development of the patch clamp technique where it is possible
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Fig. 2 The LTP mechanism

to conduct intracellular recordings on brain slices has been useful in identifying
different plasticity at different synapses across the brain [17].

Well, going deep to the biophysical basis of LTP, we land up in complex
interactions among various ions, receptors, and channels. As mentioned earlier,
formation of LTP requires high frequency (over 100 Hz) stimuli applied for a short
duration (ideally less than a second) in the presynaptic neurons. This procedure
causes enough depolarization in the postsynaptic neurons to remove the Mg2+ ions
that block the NMDA receptor in the dendrites of the postsynaptic neurons. This
results in a large influx of calcium ions to enter (Fig. 2).

Calcium ions are extremely important in cell communications; they can activate
many enzymes by means of changing their conformations. Calmodulin is one of
such enzymes and it becomes active when four calcium ions bind to it becoming
Ca2+/calmodulin. This Ca2+/calmodulin complex is the primary second messenger
for LTP. The complex in turn activates other enzymes of importance such as
adenylate cyclase and the CaM kinase II. These kinases alter spatial conformations
of other molecules by means of phosphorylation, which is adding phosphate ion
to a substrate. The adenylate cyclase and cAMP again activate another kinase,
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the PKA (protein kinase A). The PKA phosphorylates the AMPA (?-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) receptors making them remain open
for longer time after binding of glutamate. This makes the postsynaptic neuron
getting further depolarized and contributing to LTP. It is worth mentioning at this
point that glutamate is the neurotransmitter that is released when a neuron fires
an action potential. The glutamate released from a presynaptic neuron binds to the
AMPA receptor of the postsynaptic neuron. This makes the AMPA receptor to open,
resulting in the large influx of sodium ion into the postsynaptic neuron. The sodium
ions depolarize the postsynaptic neuron and make it more likely to fire further action
potential. Thus, in LTP, the presynaptic and postsynaptic neurons become prone to
fire together as they get wired together. This is an example of the NMDA-dependent
LTP with a brief overview of the underlying mechanism. However, there are other
examples of LTP in other types of synapses with some differences in the mechanism.

In their seminal work [15], Lømo and Bliss performed their experiment in a set of
18 adult rabbits including both sexes. The rabbits were anesthetized with urethane.
The experiments used the synapses formed between neurons of the perforant
pathway and the neurons from the dentate gyrus. Here, the perforant pathway
neurons were the presynaptic neurons and the dentate gyrus neurons acted like
postsynaptic neurons. The presynaptic neurons were stimulated with high frequency
stimulation of about 4 hertz, and the responses it created in the postsynaptic neurons
were recorded.

The experiments found, as expected, that single pulse of electrical stimulation
to the presynaptic neurons could generate EPSPs in the postsynaptic neurons.
However, when the presynaptic stimulation was of high frequency, then the EPSPs
generated were stronger and prolonged as well. Lømo and Bliss reported to have
found 14 out of the 18 rabbits showing potentiation for periods ranging from 30 min
to 10 h. The prolonged potentiation depended upon the nature of the stimuli applied
to the presynaptic neurons. Higher frequency stimuli applied for a shorter time were
found to have elicited prolonged potentiation. In the experiment, two paradigms of
stimulus input were applied at 10–20/s for 10–15 s and 100/s for 3–4 s.

LTD: The LTD arises as an opposite to LTP and serves to weaken selective
synapses. For LTD to take place, presynaptic neuron is stimulated for a longer
period of time with low frequency stimuli (nearly 1 Hz) [18]. The LTD depends upon
calcium ion to a great extent similar to the case of LTP. Calcium ions’ magnitude
in the postsynaptic neuron largely determines the direction of a synapse, that is,
whether there will be LTP or LTD. In the case of NMDA receptor-dependent LTD,
there is a moderate rise in the postsynaptic calcium level, in CA1 hippocampal
neurons [19]. The level of calcium below the threshold point leads to LTD, while
large influx of the ion leads to formation of LTP. LTD is also associated with
phosphatases, the enzymes that dephosphorylate its substrates, just opposite to what
the kinases do. A subthreshold level calcium in the postsynaptic neuron leads to
the activation of calcium-dependent phosphatases. Apart from hippocampus, LTD
can take place in several other brain areas weakening synaptic strength. Both
LTP and LTD have significant contributions in learning and memory. These two
mechanisms represent the plasticity of synapses in response to external stimuli.



Biophysics of Brain Plasticity and Its Correlation to Music Learning 277

They also represent the phenomenon of brain plasticity with respect to changing
nature of environmental stimuli, which is the cornerstone of learning and memory.

3.2 Mechanism of Intrinsic Plasticity and Its Importance in
Learning

Acquisition of learning and for that matter memory involves neural correlates that
go beyond synaptic plasticity. Evidences have been increasing which relate intrinsic
plasticity as having equally important role in learning and memory [14, 20, 21].
Before going in details about how exactly intrinsic plasticity influences learning and
memory, it is important to have some basic idea about intrinsic plasticity, especially
how neuroscientists detect it and what is the underlying mechanism. As have
mentioned earlier, intrinsic plasticity is involved in single neurons. With respect
to stimuli, neurons’ propensity of firing action potential changes. The figure below
shows the classical action potential curve. The figure also signifies the biophysical
bases of giving rise to an action potential. When a stimulus (either as a synaptic
input or an electrical stimulus in patch clamp) can sufficiently depolarize a neuron,
meaning the depolarization is above the threshold of firing, then sodium channels
open up. This event leads to large influx of sodium ions and thus further depolarizes
the cell. Notably, a typical neuron has a resting potential of around −70 mV and
the threshold is about −55 mV. Depolarizing event continues till the membrane
potential reaches about 40 mV. At this voltage, sodium channels begin to close and
potassium channels start to open. Through the potassium channels, rapid outflux
of potassium ions occurs, and in this process, the cell membrane gets back to the
polarized state. However, in a typical action potential, potassium channel-mediated
repolarization makes the cell hyperpolarized, which is shown as the refractory
phase, where the membrane voltage goes up to −90 mV. The refractory phase is
called the after-hyperpolarization (AHP) as well. During the AHP phase, no further
action potential can be fired by a neuron (Fig. 3).

One of the hallmarks of intrinsic plasticity is the reduction of the AHP in
response to repeated stimuli [22]. When subjected to repetitive stimuli, neurons’
AHP gradually reduces, and this increases the propensity of firing action potentials
and thus increasing the excitability of neurons. One of the first evidences of
reduction in AHP depending upon repeated activity came from the experiments of
Alkon et al. on the phototaxis of Hermissenda [23]. Here they showed in brain
slices that Hermissenda exposed to repetitive learning paradigm showed reduction
in AHP while learning a task. Since then there have been plethora of studies [22, 24–
27] which have shown activity-dependent reduction in AHP involved in learning and
memory. Moreover, the AHP-mediated intrinsic plasticity can interfere with synapse
by lowering the synaptic threshold. Sehgal et al. [28, 29] argued that intrinsic
plasticity can act as a metaplasticity mechanism in the formation of memory and
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Fig. 3 The action potential. Image source Wikimedia commons

acquisition of learning. The intrinsic plasticity and its contribution to learning have
also been elaborated in a recent review [30].

In our previous work [32], we attempted to decipher the mechanism of how
neurons give rise to activity-dependent reduction in AHP, which has significant
contribution in learning and memory. We adopted the approach of biophysical
modeling starting from the Hodgkin-Huxley (HH) model for action potential. It is
noteworthy at this point that Hodgkin and Huxley were the first to bring out a model
that encompasses the biophysical basis of action potential generation. Their seminal
work [31] brought them Nobel Prize in Physiology in 1963. Moreover, the HH
model rightly predicted the existence of ion channels on the membrane of neurons.
Ion channels were not discovered at that time. They not only predicted the existence
of ion channels but also rightly predicted through their biophysical modeling how
the ion channels may function. They mentioned about gating variables in the HH
model, which are today’s ion channels. In our work, we showed that in the context
of repetitive stimuli, the threshold of action potential is reduced concomitantly with
the reduction in AHP involved in learning. We also brought in a new paradigm in
our model, that the potassium reversal potential, which is considered as a constant
in the classical HH model, is a variable entity and it modulates the AHP in several
types of neurons.
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4 Intrinsic Plasticity and Music Learning

Acquiring music skills, whether playing an instrument or learning musical patterns
or a combination of both, involves intensive practice, which ought to have neural
underpinnings, at synaptic, intrinsic, and network levels. However, deciphering the
mechanisms in human subjects is a huge challenge as invasive recording of human
brain tissues is a highly ethical issue. In most of the animal studies on learning-
related intrinsic plasticity, the animals are subjected to learning experiments, for
example, the Morris water maze. After the acquisition of learning was shown in
their behavior, slices are made from the brains of the animal subjects, and then
recordings were done to enumerate the biophysical changes in the neurons. This
pipeline of experiments is not readily possible in human subjects. Nevertheless,
there have been instances of studying human brain slices and recording on single
neuron. Most of these studies on human subjects are limited to disease conditions,
such as epilepsy. Quiroga highlighted single neuron recording in the hippocampal
formation in human [33]. In addition to single neuron recording in human brains
in diseased conditions, there has also been the use of EEG (electroencephalogram)
recording. The EEG recording has seen extensive use in unveiling neural dynamics
involved in music perception and learning. Sanyal et al. showed the brain dynamics
while experiencing Indian music (raga) through EEG recordings [34]. They showed
an arousal activity in the alpha frequency band of EEG when the subjects were
exposed to Indian ragas. Again, the alpha and theta band are found to be involved
in memory and cognitive performance [35]. There has been a plethora of studies on
musical perception and learning conducted with EEG where the underlying neural
mechanisms are tried to understand. These studies combined with fMRI (functional
magnetic resonance imaging) studies on human brains have brought to us many
interesting revealings. However, studies on molecular and cellular patterns involved
in neural plasticity in music cognition in human subjects are hugely lacking.

Nevertheless, intrinsic plasticity in song learning and other paradigms of music
has been studied through brain slice preparation and electrophysiological recording
on other animals. In a study [36] on zebra finch song birds, the role of intrinsic
plasticity of the cortical neurons (in the caudal mesopallium area of the zebra finch
brain) was deciphered, and interestingly, this plasticity was found to be required
for memorizing songs in the bird species. Again, on zebra finch itself, another
important study [37] showed that intrinsic properties of neurons could influence
network properties and eventually can give rise to behavioral plasticity. Not only
on song birds but also in mouse model, researches have been carried out to reveal
how learning complex sound pattern changes the intrinsic neuronal properties. In
the study [38] by Chen et al., it was found that specific cortical neurons exhibit
prolonged firing in the mice that were trained to learn complex sound pattern, which
was not discernible in untrained counterparts.

Music learning in humans is also ought to show similar intrinsic neuronal plastic
properties. However, single neuron recordings from human brain still remains a
difficult task. Nonetheless, with advancement of more sophistications in EEG,
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fMRI, or other such noninvasive tools, this might get possible in the near future.
Being able to do so will enhance our understanding on myriads of aspects of brain
plasticity involved in music learning. This will have clinical implications as well,
where music has been used in providing therapies in various neurological and
cognitive issues. Notably, music has also been found in reducing racial prejudices.
In the landmark study [39] conducted by Neto et al. on school-going children
in Portugal, children trained with special musical patterns were found to be less
prejudiced toward Cape Verdean people.

5 Conclusion

Plasticity is the remarkable feature of the brain involved in learning and memory
driven by experiences. The complex biophysical mechanisms involved in both
synaptic and intrinsic plasticity have been worked out to a great extent, with new
realities pouring in with time. Music is a complex subject to learn and involves
cognitive activity of the higher order, which in turn is related to plasticity in the
brain. However, how music gives rise to plastic changes in the brain is still elusive
for neuroscience community, even after ongoing extensive and active researches
across the world. With the development of noninvasive techniques and their ever-
sophisticated ways of applying on human subjects, they are expected to bring
new lights in understanding how sound waves bring about changes in the neurons,
synapses, and brain networks. Efforts in revealing cellular plasticity paradigms, both
intrinsic and synaptic, will surely enhance in knowledge building in this direction.
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Analyzing Emotional Speech and Text: A
Special Focus on Bengali Language

Krishanu Majumder and Dipankar Das

1 Introduction

With the advancement of technologies, machines have become intelligent enough
to ease several human problems and tasks. This requires input, perception, and
processing of information. In present world, the most basic input for communication
is speech. Now, researchers are aiming to build machines that are capable of
processing such standard inputs in the form of natural language. One of the main
objectives is to build machines that will have the same capability of processing
natural languages at a level equal or greater to that of a native speaker.

It is always observed that communication involves two-way interaction: one is
perception and the other is reaction. While the first one can be achieved in machines
with respect to speech recognition, the second one aims to grasp the insights
through speech synthesis. Artificial speech synthesis is the technique of producing
humanlike speech directly from the machines. These types of system are called
text-to-speech models or TTS. These models take textual language representations
as input with some other conditional parameters, if required, and turn them into
respective humanlike speech.

Text-to-speech can be seen as a part of a bigger system. It is mainly used as
a communication channel to convey responses of a system to the end user. Many
applications nowadays use TTS as an output medium of their system. We mainly use
visual screens as output mediums and the possibilities have not been explored to a
great extent. However, with the rising need of intelligent systems, major technology
companies are vigorously working to integrate TTS as a part of their products to
ease interaction with end users. Some real-world uses are given below.
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• One of the most popular use of TTS can be seen in personal assistants like Apple
Siri, Google Assistant, Alexa, etc. which require frequent communications with
their end users. This not only simplifies communication but also eases it by
allowing the end users to communicate with the system on the go instead of
reading it from a fixed output screen.

• TTS plays a very important channel for communication for visually challenged
users. These users cannot depend on the screen output and rely on speech output.
Screen readers are one such examples where TTS helps to communicate with
visually impaired users.

• E-Book Reader, PDF Reader, etc. are some categories of systems that use TTS
as the heart of their system.

• Google Maps are another very popular application that uses TTS to give direction
and navigational instructions to the user while driving. During driving, it is not
possible to always look into the screen for finding routes and it is actually very
dangerous. Google Maps avoids this problem by allowing the driver to keep his
or her eye on the road and listen to the navigation instructions at the same time.

• We can see the use of TTS in Smart Homes where all the appliances in the house
are connected together by preparing a synchronized ecosystem. Here, everything
in the house can be controlled with voice commands and in turn, the house can
also respond back in its own voice.

Text-to-speech is considered as a generic application which can be integrated with
any existing system to establish a natural human-computer interaction medium.
Beyond existing systems, TTS can be used with the upcoming new age and future
technologies to increase their applicability and incorporate machine intelligence.
For instance, self-driving vehicles, autonomous cars, and driving assistant are some
of the cutting-edge developments that are planning to have TTS as a part of their
systems. Another prospective application implements TTS in our existing ATM
machines and other interactive devices in day-to-day life.

Nowadays, man-machine interaction has become very common in this world of
emerging technologies. There are a number of state-of-the-art TTS models but most
of them lacks natural features and sounds artificial.

The first thing that the existing TTS lacks is the multilingual features. Most of
them are trained only for popular languages like English, Chinese, etc. Moreover,
very limited work has been carried out on regional languages like Bengali where
the resources are limited. Even while working on this topic, we came to know that
very limited data is available in these regional languages to carry out any study. This
made us realize the need of a proper dataset in Bengali.

Secondly, TTS systems are mainly trained on a single language. This made us
think about exploring the possibility of training a TTS on more than one language.
Lastly, very limited work has been done for incorporating emotion with synthetic
speech. Speech emulating proper contextual emotion can open up new avenues and
applications of TTS systems.

The main objective of our present work is to develop a TTS system in Bengali
language and incorporate as much naturalistic features as possible. We also intend to
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explore the emotional aspects in the generated speech and the ways also to enhance
it. Lastly, we aim to test our model on bilingual training and find the observations
on extending our target language set. We also intend to develop an emotion-specific
dataset from scratch and use it to train our model.

2 Literature Survey

A number of interesting works have been going on in the domain of speech synthesis
in recent times, and this field is attracting the interest of some of the best scientists
in the world. Numerous researches are still going on across the globe to increase the
accuracy of the existing systems in natural speech production. Some of the standard
and remarked existing models and approaches that are widely accepted are discussed
below.

A. Concatenation model [2]: Concatenative approach for text-to-speech is one
of the oldest methods of speech synthesis that was proposed in late 1990s. This
algorithm uses a very large database for storing pre-recorded voices clips, broken
into phoneme level chunks and rearrange them to produce new speeches.

B. Parametric model [3]: Parametric text-to-speech is a statistical model for
generation of speech. Though it adds flexibility to the produced speech conditioned
on the given input, the generated speech still lacks the natural qualities of human
voice as it cannot alter the natural features like pauses, durations, nonspeech sounds,
mean energy, etc.

C. Modification of voice features: It was found that emotional speech differs
from neutral speech with respect to various features like phoneme duration, pause
duration, mean energy level, etc. Researchers at IIIT Hyderabad [4] tried to convert a
neutral speech into an anger-oriented speech by modulating the nonuniform duration
and other features.

Not only researchers and academicians from universities but also the world
leading technology giants Google, Facebook, IBM, Apple, Amazon, Adobe, Baidu,
etc. are also conducting their researches in the field of speech synthesis. Some of
the state-of-the-art systems came out from these organizations like Adobe’s Voco
[5] and Facebook’s VoiceLoop [6], to name a few. Some state-of-the-art systems are
discussed below.

D. WaveNet [7]: Google’s DeepMind research group came up with WaveNet that
exploits the idea to create amplitude value for one timestep at a time and repeat
the process to create a series of amplitudes defining the speech. They took this
inspiration when they successfully implemented pixel wise image generation [8, 9]
and found that the results were also impressive. They used CNN with dilation to
capture the time information over a long period. The residual and skip connections
are also used for fast convergence of the training and to propagate the gradient
deeper into the network. Though WaveNet is capable of producing high-quality
standard speeches, it is time consuming. This problem is solved to a great extent
by a better version of the model known as Fast WaveNet [10]. In the upgraded
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model, the redundant convolutional layers are replaced with convolutional queues
from which the sample can be directly drawn from one end and the produced sample
is again fed at the end of the queue.

In Parallel WaveNet [11], the researchers tried to train a new WaveNet using
a pretrained WaveNet using teacher-student model with a new method a called
probability density distillation. The resultant model is claimed to be 20 times faster
and supports parallel processing.

WaveGlow [12] is another modification made to WaveNet by researchers from
NVIDIA that conditions WaveNet on spectrograms without auto-regression as in
Tacotron. This is basically a combined model of GLOW [13] and WaveNet and is
claimed to produce fast, efficient, and high-quality audio.

Deep voice [14–16] is speech generative model developed by Chinese technical
giant Baidu by using additional conditions to WaveNet. Deep Voice came in
three versions. In the first version, the duration and fundamental frequency are
predicted from the phonemes, and then they are conditioned on WaveNet to produce
waveform. In the second version, duration is predicted first and then it is used
to predict the fundamental frequency, and WaveNet is conditioned on them for
multi-speaker speech generation. The third installment used an attention-based fully
convolutional sequence learning architecture for faster learning with fewer training
to create intermediate feature vectors, and final waveforms were created using three
different output models, viz., WaveNet, WORLD, and Griffin-Lim.

E. MelNet [17]: Researchers from Facebook came up with MelNet that tries
to learn voice synthesis unconditionally from the frequency domain. By doing so,
the audio that spans hundreds of thousands of timesteps are scaled down to a few
hundred or thousands of timesteps. The constituent frequencies are extracted from
the signal. Then the local structures were learned by autoregressive modeling in
which one pixel is predicted at a time in time major order (or frequency major
order). A spectrogram of low resolution is generated and is continuously unsampled
to produce a high-resolution spectrogram. This spectrogram is then converted into
time domain to produce naturalistic sound.

F. Tacotron [18]: Tacotron was developed by researchers from Google Brain
which also works on the frequency features for voice generation. Their basic
architecture trains a neural network to predict spectrogram from encoded text and
then sample it to time domain. Since construction of frequency dimension by
short-time Fourier transform (STFT) leads to loss of essential information, they
introduced a new algorithm called Griffin-Lim reconstruction that can compensate
for the loss of phase information during construction of spectrogram. Griffin-
Lim algorithm basically tries to find the best suited waveform from the generated
spectrogram.

G. Tacotron 2 [19]: Tacotron 2 was a combinational implementation of Tacotron
and WaveNet where the WaveNet model is conditioned on the spectrogram pro-
duced by the Tacotron to generate waveforms. This new model was reported to have
enhanced the capabilities of Tacotron and WaveNet by exploiting their individual
capabilities and reduced the reconstruction loss from spectrogram to waveform.
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In contrary to the models and architectures, datasets are equally the most
valuable component when we plan to develop models using machine learning. The
performance of our models solely depends on the datasets used to train the model.
There are a number of audiovisual databases for emotion analysis. Some of them are
discussed below. Apart from the below mentioned database, HUMAINE database
[43] is also an emotional database worth mentioning which contains speeches that
are considered to be “pervasive emotion.” This is a multimodal database whose
speeches are actually taken from nine different emotional databases of different
characteristics and different languages.

A. SAVEE [20]: This audiovisual database was developed by the University of
Surrey. This is a British English database prepared by four actors aged between 27
and 31 years expressing six different emotions, viz., anger, disgust, fear, happiness,
sadness, and surprise. It consists of audio and video recordings of the actors for
multimodal systems.

B. RAVDESS [21]: Ryerson Audio-Visual Database for Emotional Speech and
Song consists of 7356 files in audio only, video only, and both audio and video. A
total of 12 male and 12 female speakers recorded their utterances in 60 trials per
speaker for speech and 44 trials per speaker for song in calm, happy, sad, angry,
fearful, surprise, and disgust expressions for speech and song contains calm, happy,
sad, angry, and fearful emotions.

C. IITKGP-SEHSC [22]: Indian Institute of Technology Kharagpur Simulated
Emotion Hindi Speech Corpus is a simulated emotion Hindi speech corpus that was
recorded using professional artists from FM radio station in eight emotions, viz.,
anger, disgust, fear, happy, neutral, sad, sarcastic and surprise.

D. IITKGP-SESC [23]: Indian Institute of Technology Kharagpur Simulated
Emotion Speech Corpus is an emotional speech corpus in Telugu similar to IITKGP-
SEHSC.

E. MANHOB: MANHOB is a collection of the following three databases
developed at the Imperial College London:

• Laughter Database [24]: Here, 12 male and 10 female subjects are recorded in
four sessions. In the first session, they were shown funny clips and the reactions
were recorded. In the second session, they were asked to give a smile and in
the third session, they were asked to give an acted laughter. Finally, they were
asked to speak their native language and then English. There are 180 sessions
available with a total duration of 3h 49m with 563 instances of laughter, 849
speech utterances, 51 instances of acted laughter, 50 instances of posed smiles,
and 167 other vocalizations. It contains audiovisual and thermal recordings.

• MHI-Mimicry Database [25]: Recordings were made of two experiments, viz., a
discussion on a political topic and a role-playing game. There are 54 recordings,
out of which 34 are of the discussions and 20 are of the role-playing game.
Among the participants, 28 were male and 12 female, aged between18 and 40
years.

• HCI Tagging Database [26]: This mainly aims at multimedia content tagging.
Thirty subjects were shown small clips. In the first part, a participant was asked
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to annotate their own emotive state after each clip on a scale of valence and
arousal. In the second part, clips were shown together with a tag at the bottom of
the screen, and the subjects are asked if they agree with the tag via a red and a
green button.

F. RECOLA [27]—RECOLA is a multimodal database developed at the University
of Fribourg containing 9.5 hours of real-time audio, video, electrocardiogram, and
electrodermal activity recordings of 46 French-speaking participants who were
trying to collaborate to solve a problem.

G. BELFAST [28]—BELFAST was developed at the Queen’s University,
Belfast, where 650 video clips of naturalistic responses to a series of laboratory-
based tasks were recorded from the 82 participants.

H. IEMOCAP [29]—Interactive Emotional Dyadic Motion Capture is a multi-
modal audiovisual database collected at the SAIL lab of University of Southern
California with motion capture face information, speech, videos, head movement
and head angle information, dialog transcriptions, word level, syllable level, and
phoneme level alignment as the available modalities. The emotions include anger,
happiness, excitement, sadness, frustration, fear, surprise, other, and neutral state
spoken by five male and five female actors in English and contain about 12 hours of
data.

I. VCTK [30]—Voice Cloning Toolkit database was developed by the University
of Edinburgh with the aim of voice cloning. Here, 109 speakers recorded about 400
English sentences in their (different) native accents. The sentences were taken from
selected newspapers, the Rainbow Passage, and an elicitation paragraph intended to
identify the speaker’s accent.

J. Berlin Database of Emotional Speech [31]: This is an emotional speech
database in German developed by the University of Berlin, Germany. Ten subjects,
five males and five females, are recorded in seven emotions, viz., happy, angry,
anxious, fearful, bored, disgusted, and neutral, on ten different texts. In total, it
contains more than 5500 utterances.

K. TESS [44]—Toronto Emotional Speech Set was developed by the University
of Toronto in which two female speakers (age 26 and 64 years) utter 200 targeted
words within a carrier sentence “Say the word ____” in seven different emotions,
viz., anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral.

3 Dataset

The first challenge that we faced during this study is the scarcity of open speech
dataset in Bengali. We find some speech data in Bengali which are multi-speaker or
raw speech without transcription. Such type of data would not have been a good fit
for our purpose. Also, we did not find any speech dataset in Bengali that are emotion
specific and can be used for emotion analysis. So, we decided to develop our own
dataset from scratch according to our needs.
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During this study, we have developed a novel emotional database in Bengali
consisting of 120 sentences in six different emotions. Each of the emotions contains
both emotion-specific sentences and neutral sentences to include variety. Emotion-
specific sentences contain emotion-specific words relative to the emotion to reflect
the emotion in the sentence and also spoken in that emotion, while the neutral
sentences do not have any explicit emotion-specific words but spoken in the
said emotion. During the recording, the speaker was suggested to read the given
sentences for expressing the particular given emotion. To enhance the emotion
trigger, the speaker was asked to imagine a situation relative to the sentence and
the emotion and speak the sentence in his natural response.

In doing this, we have assumed that the recorded sentences resemble its natural
emotional counterpart. We also believe that the associated emotions are in the right
quantity, i.e., the utterances have neither been exaggerated nor been understated
with respect to the emotion association. Also, it was assumed that the right emotion
is associated with the utterances as was expected from it.

3.1 Data Recording

For the training purpose, we developed a novel database in Bengali language. The
database consisted of 120 recordings of short sentences. Twenty sentences were
prepared for each of the six emotions out of which 15 are emotion-specific and five
are neutral sentences common to all emotions. All the 15 emotion-specific sentences
contain emotion-specific words relative to the emotion to trigger the respective
emotion in the utterances, while the five neutral sentences do not have any explicit
emotion-specific words.

The speaker was a native Bengali male of 24 years of age. The dataset was
recorded in six parts for Ekman’s six basic emotions [1], viz., happy, sad, fear,
disgust, surprise, and anger. Each emotion set is recorded in one go, without any
long break, to ensure regularity within the dataset. There was a 2-day gap between
the recording sessions of two consecutive emotion-specific sets to ensure diversity
and independence between each other. The recordings were made under identical
recording circumstances. The voice is recorded at 22 kHz in a silent environment
to facilitate noise-free recording. All the recordings were made on a mobile set
with Easy Voice Recorder app in Android OS in the same studio-like room.
Situation given to speaker prior. While recording the sentences, the speaker was
given imaginary situations relative to the given sentence to amplify his emotional
responses and to give the utterance a more naturalistic emotional conscience.
Table 1. shows examples of sentences belonging to each type of emotion-specific
including one of the five neutral sentences common to all the emotions.
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Table 1 Examples of emotion-specific sentences used

English
Emotion Sentence translation Transliteration

Happy Today is my
birthday

Aaj aamar
jonmodin

Sad I lost my bag today Aaj aamar bag ta
hariye geche

Fear I might not get the
job

Aamar hoeto r
chakri ta hobe na

Surprise You are getting
married

Tumi biye korcho

Disgust Do not throw
garbage here

Ekhane nongra
felo na

Angry Have you gone
mad

Tomar ki matha
kharap

Neutral (common) My name is Amit Amar naam amit

Fig. 1 Quantitative analysis of the recordings. (a) Pitch analysis. (b) Zero-crossing rate. (c) Tempo
analysis

3.2 Data Analysis

After the recording, we conducted a visualization and quantitative analysis on the
speech data for each emotion class, separately. Some features that we studied are
pitch, zero-crossing rate, and tempo. The graphical representation of the findings
is given in Fig. 1a–c for better visualization and comparison of the characteristics
among different classes.

We also carried out an emotion-wise analysis of the spectrogram and waveform
for the six emotions to see the difference in the graph for different emotions. The
output spectrogram and waveform of the emotion-specific sentences are given in
Figs. 2, 3, 4, 5, 6 and 7.

Lastly, we used the waveform and the spectrogram for the common neutral
sentences that are spoken in all the six emotions. This gave us a contrasting
comparison among the emotions in terms of waveform and spectrogram. The
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Fig. 2 (a) Spectrogram and (b) waveform for the sentence “ ” in anger
emotion

Fig. 3 (a) Spectrogram and (b) waveform for the sentence

“ ” in disgust emotion

Fig. 4 (a) Spectrogram and (b) waveform for the sentence “ ” in fear
emotion

Fig. 5 (a) Spectrogram and (b) waveform for the sentence

“ ” in happy emotion

spectrograms and waveforms of one such neutral sentence are given in Figs. 8, 9,
10, 11, 12 and 13 for all the six emotions.
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Fig. 6 (a) Spectrogram and (b) waveform for the sentence “ ” in sad emotion

Fig. 7 (a) Spectrogram and (b) waveform for the sentence “ ” in surprise
emotion

Fig. 8 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in anger emotion

Fig. 9 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in disgust emotion
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Fig. 10 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in fear emotion

Fig. 11 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in happy emotion

Fig. 12 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in sad emotion

Fig. 13 (a) Spectrogram and (b) waveform for the emphcommon neutral sentence

“ ” in surprise emotion

4 TTS Architecture

4.1 System Framework

We tried to implement a TTS end-to-end model on Bengali language and study its
performance on the same. We have chosen convolutional neural networks because
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they are faster, and recent study has shown that they can outperform traditional
sequence learners like RNN or LSTM when implemented carefully. Even the
state-of-the-art models like Tacotron or WaveNet also use CNN as their basic
architecture. Another important reason is that CNN models are faster to train than
sequence models due to its parallelization capability when implemented properly
with supporting hardware like GPUs.

For all our experiments, we have considered DCTTS [32] as the baseline. DCTTS
is an established state-of-the-art model for English TTS. The proposed network
consists mainly of convolutional neural networks due to its speedy trainability. The
network is divided into two parts. One part is called Text2Mel which predicts the
basic spectrogram from the text encoding. The second part called SSRN produces a
high-resolution spectrogram from the basic spectrogram using deconvolution neural
nets and upscaling. The Text2Mel module has four subparts, viz., a text encoder to
encode the text, an audio encoder to encode the seed spectrogram, a guided attention
[33] layer to find the dependencies, and an audio decoder to decode the generated
coarse spectrogram. An illustration of the architecture is given in Fig. 14.

We vectorize the text using dictionary positions of the Bengali letters. Then
we feed it to a text encoding network which is a stack of CNN with highway
connections between layers.

The outputs are two vectors which are text embeddings and represented as K

and V . Another network encodes the mel spectrogram from the given audio file into
corresponding vectors and it is represented by Q. This K , V , and Q tuples are then
fed into an attention layer to find the proper alignment of the encoded text with the
encoded spectrogram. Attention is calculated as

R = sof tmax(KT Q/
√

d).V (1)

The dot product of K and Q represents the mutual attention of the source and
the target vectors. When it is multiplied with V , give the corresponding output as
an encoded spectrogram. It is then fed into an audio decoder module which then
decodes the tensor into coarse spectrogram. This spectrogram is then fed into SSRN
network which then upscales the spectrogram by using deconvolutional neural nets
and outputs a higher-resolution spectrogram. This then converted into corresponding
waveform using Griffin-Lim algorithm to get the final wave form in .wav format. We
have changed the English dictionary as used in the original version of the DCTTS
with a Bengali dictionary containing all the characters and numbers from Bengali
alphabet set only. Text2Mel and SSRN networks are to be trained separately to get
better results.
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Fig. 14 System architecture

4.2 Basic Layout Features

1. Only convolutional neural networks are used to facilitate faster computation.
2. Training is done on two separate networks, one for generating the coarse

spectrograms through attention layer, and the other is SSRN network which is
trained to upscale the coarse spectrogram.

3. For training the first network, the input was the encoded Bengali text and the
target was downscaled spectrogram from the pre-recorded text.

4. For training the SSRN, the input was downscaled spectrogram and the target was
full-scaled spectrogram from the pre-recorded text.

5. Guided self-attention is used to locate proper dependencies.
6. Griffin-Lim [34] algorithm is used to convert the spectrograms into waveforms

instead of inverse SRFT to reduce approximation error.
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Fig. 15 Highway connection

7. Exclusively tested on Bengali dataset.
8. A new indigenous native Bengali dataset is recorded to facilitate proper training.

4.3 Highway Network [35]

When training deep neural networks, it was observed that increasing the layers
might not always give better results. To ensure that the deep network does not
perform worse than its shallow counterpart, it was suggested to add bypass
connections so that the flow have the option to take the best path and utilize the
layers efficiently to give optimal result. If y = L(x) where y is the output of the
layer L whose input is x, then y must be the best of x or L(x) whichever gives the
better result. If y = x, then it chose to bypass the intermediate L. As described in
the Highway network paper, we take an additional transform T (x) such that

y = T (x) ∗ L(x) + (1 − T (x)) ∗ x (2)

where * means element-wise multiplication operation. This transform T can be
thought as the part of the original input that passes through the layer L and
implemented with sigmoid function. A high-level illustration of highway connection
with CNN layer is shown in Fig. 15.

4.4 Attention

Attention is a very well-known mechanism specifically for encoder-decoder archi-
tecture. It was first proposed in the field of machine translation. It works on the fact
that while translation, all the output sequence does not depend equally on all the
input sequence. Rather, each of the output sequences gives a specific weightage or
“attention” to each of the inputs. It is more likely that the present output depends
more on its immediate neighbors than the distant neighbors. Attention mechanism
is basically based on probability of occurrence of nth term by Markov’s assumption.
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Mathematically,

P(w1w2n3 . . . wn) ≈
∏

i

P (wi |w(i−k) . . . w(i−1)) (3)

Here, the input text is embedded into two vectors V and K (values and keys). The
spectrogram produced till that point of time is encoded in a vector Q (queries). By
multiplying K and Q, we find the mutual dependencies between the text encoding
and the spectrogram seed encodings. We then divide it by d where d is the size of
that dimension and uses a softmax function to convert them into probabilistic form.
The result is then multiplied with the vector V to get the final embedded vector for
the spectrogram to be generated. Mathematically,

A = sof tmax(KT .Q/d) (4)

R = A.V (5)

This R is then concatenated with Q and given to audio-decoder as input.

4.5 Text2Mel

Text2Mel basically converts the raw text encoding inputs into coarse low-resolution
spectrogram. It contains the following three parts:

(a) Text Encoder: It takes the character embeddings as input and produces two
vectors. It contains 14 layers of convolutional neural networks with highway
connections to produce a vector which is then split into two equal halves and
returned as K and V .

(b) Audio Encoder: It encodes the seed spectrogram into a single vector Q. It
consists of 13 layers of convolutional networks with highway connections.

(c) Attention layer: It takes input from text encoder and audio encoder. It produces a
single vector which is then concatenated with Q and given to the audio decoder
module.

(d) Audio Decoder: It takes a vector as input and produces a coarse spectrogram
of low resolution. It uses 11 convolutional layers with highway connection.
The expansion of the frequency domain is done by increasing the number of
channels in the CNN layer. For training the Text2Mel model, we compute the L1
loss as the difference of the generated spectrogram and the temporally shifted
ground truth spectrogram and back-propagated.
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4.6 SSRN

SSRN, known as the Spectrogram Super Resolution Network, increases the res-
olution of the produced coarse spectrogram. It is trained as a different network
independent of Text2Mel as proposed in the original paper as it decreases the burden
of training. It uses increased channel CNN layers to upscale the frequency domain
and deconvolutional neural networks of stride 2 to upscale the temporal domain
from T to 4*T. SSRN is a serial combination of convolution and deconvolution
neural networks with highway connections.

4.7 Griffin-Lim Algorithm

Spectrograms are constructed from waveforms by using short-term Fourier trans-
form (STFT) to find out the constituent frequencies at the given point of time.
Similarly, it is possible to generate waveforms from spectrograms by using inverse
STFT. But this has received its own disadvantages. Since this is an approximation
formula, the quality gets deteriorated. Thus, instead of using inverse STFT, the
proposed model uses Griffin-Lim algorithm to produce the waveform from the
generated spectrogram. Griffin-Lim algorithm is a phase reconstruction method
used for recreating wave phases from a given spectrogram. It has been used in
Tacotron and has proved to be very efficient. This algorithm is expected to recover
a consistent, complex valued spectrogram maintaining a given amplitude A. It is
calculated with the formula

X[m + 1] = Pc(PA(X[m])) (6)

Pc(X) = GGT X (7)

PA(X) = A • X 
 |X| (8)

where X is a complex valued spectrogram updated through iterations, G is the
STFT and GT is the pseudo-inverse STFT, A is the amplitude, • is the element-
wise multiplication operation, and 
 is the element-wise division operation.

5 Language Independence and English-Bengali TTS Model

5.1 Role of Language in Speech

In earlier days of evolution, people started living in groups called tribes, and
each such tribe developed their own language for communication among the tribe.
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Language is a cultural as well as a social aspect of human groups. Language gives a
sense of oneness within the group and conveys a feeling of attachment. Some widely
spoken languages include English, Chinese, German, French, Italian, etc. But there
are also languages that might not be as familiar to populations in other continents
but are equally important in its place of origin. Some examples of such languages
are Hindi, Marathi, Bengali, Tamil, etc. which are some of the well-established
Indian languages. To communicate with humans, the machine should be capable
of generating the information in a language with which the end user is familiar. But
a system is generally devised to be global and cater all types of people. For this, the
multilingual capability is a necessary feature for a TTS system. This means that the
system must be capable of reproducing the same information in different languages
and convey the information in a preferred language of the user.

5.2 Bengali TTS Model

Bengali is subcontinental Asian language mainly native to the regions around Bay
of Bengal. Bengali is the national language of Bangladesh. It is also widely spoken
in the eastern region of India including the states of West Bengal, Assam, Tripura,
Andaman and Nicobar Islands, etc. Due to globalization and international migration,
Bengali community also have a significant presence in the Middle East and western
part of the world including the USA, Canada, the UK, UAE, etc. Bengali is the fifth
most spoken native language and the sixth most spoken language by total number of
speakers in the world with more than 250 million Bengali speakers around the globe
[42]. According to an UNESCO survey, Bengali was voted the sweetest language in
the world.

In this section, we first tried to train the proposed TTS model for Bengali
language and study the performance of the same. We have trained the model on the
newly developed dataset and reported the output. We did not make much changes in
the core architecture except for the preprocessing and postprocessing part.

5.2.1 Preprocessing

As a part of preprocessing, we process the sentence to keep only the Bengali
characters and discard all other characters including punctuations and special
characters. Initially when the model was trained, we found out it was unable
to produce proper speech for big numerical figures in hundreds and thousands
as we would read them. So, we mapped all the numerical figures to their word
equivalent to compensate for this loss. Next, we made a character-level dictionary
and transformed the character sequence into positional encodings according to this
dictionary to facilitate computation. We have followed the same preprocessing for
all the subsequent experiments.



300 K. Majumder and D. Das

Fig. 16 Spectrogram comparison for the sentence ‘ ’. (a) TTS output.
(b) Ground truth

5.2.2 Postprocessing

After the speech signals were generated, we tried to increase the quality a bit more.
As we know the signals are nothing but amplitude values, we interpolate the value
between two consecutive amplitudes by taking their simple average and inserting it
in between them. This resulted in a 2× sampling frequency for the same duration of
time. We have followed the same postprocessing for all the subsequent experiments.

5.2.3 Experiments and Results

We trained the DCTTS model on our newly developed Bengali dataset for 100
epochs. The two networks, Text2Mel and SSRN, were trained separately as directed
in the main paper of DCTTS. We used a personal laptop with AMD A6 processor
with clock speed of 2.5 GHz, 1 GB of integrated Graphics Card, 8 GB RAM,
1 TB HDD, and Windows 10 OS. We have used this system for executing all of
our experiments including the subsequent experiments. To get quicker results and
parallel training, the model was also partially trained on Google Colab [36] and
Kaggle [37] to get GPU support. The trained model was able to produce satisfactory
results. The spectrogram comparison and waveform comparison of a produced
sound and corresponding ground truth are shown in Figs. 16 and 17. It took 334.22
seconds for the model to produce the sound in our local machine.

During initial training stage, the output indicated that the model was not learning
the digits or numbers very well. Hence, we had to preprocess the inputs to map
all the numbers to their respective word representations and confine the training to
Bengali character set only excluding Bengali numbers.

We have experimented on generating sentences with the trained model of variable
length, and we subjectively found out that the model works more efficiently on
medium-length sentences (>15 characters) than very short sentences. This was
probably because the attention layer, which is the heart of the system, was very
much dependent on the context which is better available for considerably longer
sentences. It was also observed that the quality of the generated speech increases
with more training.
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Fig. 17 Waveform comparison for the sentence ‘ ’. (a) TTS output.
(b) Ground truth

5.3 English-Bengali TTS Model

5.3.1 Language Independence in TTS

In human-computer interaction, language plays a very important role in determining
its usability and userbase. The usability will be more if the machine is capable of
interacting in multiple languages, hence reaching a larger audience. In this study,
we tried to find out if a TTS model can be made multilingual without using multiple
language models or language classifiers. If this feature can be incorporated, it will
not only make the model multilingual, but also make it lightweight and faster as it
will not need any extra classification or separate processing for different language.

5.3.2 Problems in Multilingual Learning and Ambiguity in Pronunciation

Our main motivation for this implementation came about that in TTS; we do not
need to find the internal meaning of the text as we do in summarization, translation,
or QA systems. Rather, the system just needs to map the letter to its corresponding
frequencies to produce the final amplitudes. If each letter produces a specific set
of frequencies, the machine can be made to learn the mapping function, and it will
be a one-to-one or many-to-one mapping. Problems arise when a single character
has different pronunciations and hence different frequencies at different point of
time. This needs one-to-many mapping depending on the usage. Fortunately, this
case does not arise when working with a one language set as each character
in a language dictionary has a specific pronunciation. The problem arises when
dealing with multiple languages having common dictionary characters but they
differ in pronunciation. For instance, both English and German alphabet set have
the character “j” but in German, “j” is pronounced as English “y.” This might create
an ambiguity during frequency mapping.

During the incorporation of multilingual aspects, we assumed that during
transformation from text-to-speech, the phonemes are mapped to their respective
amplitudes to produce sound, and if the model can learn this transformation
function, it will be able to generate the waveform. When adding more than one
language in the training, we assumed that phoneme sequence for each distinct letter
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is different and there is no ambiguity in the transformation. In simple words, each
character will have the same pronunciation every time it is used.

5.3.3 Model Architecture

For experimental purpose, we intend to develop a bilingual system in Bengali and
English. For the bilingual TTS, we use the same DCTTS as the baseline system.
The only change that we added was a new dictionary to accommodate the English
characters alongside the Bengali characters. So, the new dictionary contains English
alphabets and Bengali alphabets. Since there are no common characters in English
and Bengali alphabet set, there would be no ambiguity in frequency mapping, and
hence, it should produce expected results. As a preprocessing part, we have replaced
all the English and Bengali numbers to their equivalent wordings to keep it only
to the characters as we have seen in the earlier experiment that it produces better
results. Then we kept the letters from the dictionary and remove the rest of the
outlying characters.

5.3.4 Experiments and Results

From the initial experience with the Bengali model, we preprocessed the inputs to
map all the numbers to their respective word representations and confine the training
to Bengali and English character set only excluding numbers.

An aggregated dataset was developed by combining our newly developed Bengali
dataset and LJ Speech dataset [38]. The DCTTS model was trained on this aggre-
gated dataset for 100 epochs. The two networks, Text2Mel and SSRN, were trained
separately as directed in the main paper of DCTTS. The spectrogram comparison
and waveform comparison of a produced Bengali speech and corresponding ground
truth are shown in Figs. 18 and 19. It took 311.24 seconds for the model to
produce the sound in our local machine. The spectrogram comparison and waveform
comparison of a produced English speech and corresponding ground truth are shown
in Figs. 20 and 21. It took 392.45 seconds for the model to produce the sound in our
local machine.

Fig. 18 Spectrogram comparison for the sentence ‘ ’. (a) TTS
output. (b) Ground truth
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Fig. 19 Waveform comparison for the sentence ‘ ’. (a) TTS output.
(b) Ground truth

Fig. 20 Spectrogram comparison for the sentence “Many animals of even complex structure which
live parasitically within others are wholly devoid of an alimentary cavity”. (a) TTS output. (b)
Ground truth

Fig. 21 Waveform comparison for the sentence “Many animals of even complex structure which
live parasitically within others are wholly devoid of an alimentary cavity”. (a) TTS output. (b)
Ground truth

6 Emotion Incorporation in TTS

6.1 Role of Emotions in Speech

Emotion is an important part of the human communication. It not only gives
a special sense to a speech but also adds an extra dimension for conveying
information. The intention or the meaning partially depends on the emotions of the
context. The same sentence can be spoken in two different emotions giving in two
different meanings or intentions. For instance, “My sister is getting married” may
have different emotion. If spoken in a happy state, this signifies that the person is
excited about the event. But when said in a sad way, it shows the worry of the person
which might be regarding separation or anything else related to the event. Though
machines have become intelligent enough to produce humanlike speech, it has not
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been possible yet to incorporate proper emotions aligned with the given context.
The addition of emotion to speech synthesis will take the machine intelligence one
step closer toward achieving natural humanlike capabilities.

6.2 Types of Emotions

Emotions are state of minds that a person experience and are more subjective that
varies from person to person depending on their perception. Many psychologists
proposed various classifications of emotions based on different criteria. The most
acceptable among them was given by Paul Ekman. Ekman [1] classified emotions
in six different classes, viz., happy, sad, anger, disgust, surprise, and fear. Most of
the experts considered them to be the primary emotional states and all other states
are combination of these states.

6.3 Experiments and Results

In this work, will have tried to find whether the TTS model is capable of capturing
and reproducing human emotions through the produced speech. The language
was chosen to be English and not Bengali because of the lack of emotional
dataset available in Bengali language. From the initial experience with the Bengali
model, we preprocessed the inputs to map all the numbers to their respective word
representations and confine the training to English character set only excluding
numbers. An aggregated dataset was developed by combining happy collections of
SAVEE and RAVDESS dataset. The DCTTS model was trained on this aggregated
dataset for 1̃00 epochs. The spectrogram comparison and waveform comparison of
a produced happy speech and corresponding ground truth are shown in Figs. 22 and
23. It took 258 seconds for the model to produce the sound in our local machine.

Fig. 22 Spectrogram comparison for the sentence “She had my dark suit in greasy wash water all
year”. (a) TTS output. (b) Ground truth
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Fig. 23 Waveform comparison for the sentence “She had my dark suit in greasy wash water all
year”. (a) TTS output. (b) Ground truth

7 Conclusion and Future Work

Our work mainly focuses on speech synthesis and the possibility of going further
than just producing a robotic speech. Not only we tried to explore the speech produc-
tion capability across different language but also tried to study the incorporation of
natural features to it to make the speech more natural and closer to human-produced
speech. In this time, we have explored only a part of the larger picture and there is
much more to explore in this area.

Though we tried to contribute in terms of a new dataset, this is still not enough for
study at a larger scale. As the new-generation researches are data hungry, this dataset
can be extended later on into a multi-speaker, multi-gender dataset in Bengali. Also,
we noticed that as of now, no open-sourced multimodal database exist in Bengali to
study emotion aspects. It will be a great thrust to the future emotion researches if we
can contribute in terms of a multimodal database for emotion studies. It will not only
be useful for emotion researches in the field of Computer Science and Engineering
but also in fields like Psychology and interdisciplinary fields like Linguistics.

In this work, we have done all the experiments with a single model which was
already well established. But experimenting with other available models of different
categories or coming up with new models might improve the performance in terms
of both quality and time. New algorithms like GAN [39], Transformer and Reformer
[40], Autoencoders, [41], etc. can be tried in the field of speech generation. Once
the best model is found in terms of quality and time, then the experiments of
multilingual features and emotion incorporation can be done on the model.

As our experiment of developing bilingual TTS showed satisfactory results with
Bengali and English, the next step will be to extend it to more languages. Special
care must be taken that the chosen languages do not share any common alphabet in
their dictionary or else there might be ambiguity in pronunciation and hence low-
quality speech production. For languages that share common alphabet set, multiple
models can be trained separately. For that, nonoverlapping disjoint sets of all the
target languages must be identified and corresponding models should be trained.

For emotion incorporation, we only experimented with happy emotion. It needs
to be done for all the emotional states and results need to be assessed. If we can
successfully amplify the emotion associated with the sentence, we can aim to make
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Fig. 24 Hypothetical multi-emotion TTS system architecture

Text Encoder

Context Emotion
Extractor

Emotion1

Emotion specific

Emotion_2

Emotion_k

Components

<Text Input>
Speech

output

Language
Information Extractor
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a system that will be capable of identifying and triggering the right emotion for the
right sentence depending on the intent. A high-level representation of our proposed
idea is shown in Fig. 24.

Once all the above objectives are met, then research needs to be done on how to
put all the things together in one box. The ultimate objective will be to build a system
that will be multilingual and properly emotional oriented without moving from our
main feature, that is, lightweight and time efficient. A high-level representation of
our hypothetical concept is shown in Fig. 25.
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Part IV
Case Studies



Duplicate Detection for for Digital Audio
Archive Management: Two Case Studies

Joren Six, Federica Bressan, and Koen Renders

1 Introduction

Many music information retrieval (MIR) technologies have untapped potential.
With every passing year, the MIR field presents promising technology and research
prototypes [9, 16]. Unfortunately, these academic advances do not translate well to
practical use. For digital music archive management especially, MIR techniques are
underexploited [5]. We see several reasons for this. One is that MIR technologies are
simply not well known by archivists. Another reason is that it is often unclear how
MIR technology can be applied in a digital music archive setting. MIR researches
see applications as ‘self-evident’, while a translation step is needed to enthuse end
users. A third reason is that considerable effort is needed to transform a potentially
promising MIR research prototype into a working, documented, maintained solution
for archivists.

In this chapter, we focus on duplicate detection. It is an MIR technology
that has matured over the last two decades [8, 11, 23, 26, 29]. It is telling that
an overview paper [3] of about 15 years ago is still relevant today. Duplicate
detection is regarded as a solved problem and the focus of the MIR community
shifted from active research to refinement. A broader impact and application of the
technology, however, remains marginal outside big tech. Some of the applications
of duplicate detection might not be immediately obvious since it is used indirectly
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to complement meta-data, link or merge archives and improve listening experiences
and synchronization[24], and it has opportunities for segmentation.

The aim of the chapter is threefold. The first aim is to be explicit about the use of
duplicate detection for music archive management. The second aim is to present two
case studies using duplicate detection: one determines the amount of unique material
in an archive, and the other case study is on reuse of meta-data. The third aim of this
chapter is to present and evaluate the improved duplicate detection system that was
used for the case studies. Let’s first define duplicate detection.

1.1 Duplicate Detection

The definition of duplicate detection in music is less straightforward than it seems
at first due to many types of reuse. In [17] there is a distinction made between
exact, near and far duplicates. For an exact duplicate, the duplicate contains
exactly the same audio as the original. Near duplicates are different only due to
technical processing, e.g. by using another lossy encoding format, remastering or
compression. Different recordings of the same live concert are also in the near
duplicate category. Far duplicates span a whole range of reuse of audio material:
samples, loops, instrumental versions, mash-ups, edits, translations and so forth.

Going even further, covers of songs reuse musical material of the original. In
all cases, a musical concept is shared between the original and the cover, but only
in some cases audio is reused. There is a whole range of different types of covers:
live performances, acoustic versions, demo versions, medleys and remixes are only
a few examples. A more complete overview can be found in [19]. In this work,
we focus on duplicates which contain the same audio material as the original. This
includes samples or mash-ups but excludes live versions which do not share audio
with the original version, although they might sound similar.

The duplicates of interest share audio material; however, duplicates should still
be identifiable even when the audio is slightly changed. Evidently, a match should
still be found if volume has changed. Other modifications such as compression,
filtering, speed changes, pitch-shifting, time-stretching and similar modifications
should be allowed as well. We end up at the following definition:

Duplicate detection allows to compare an audio fragment to other audio to determine if the
fragment is either unique or appears multiple times in the complete set. The comparison
should be robust against various modifications.

Assuming a duplicate detection system is available, several applications become
possible [17, 21]. Such system is used in the following case studies. After the case
studies, a more technical part and evaluation follows which shows the limitations
and strengths of the system actually used.
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2 Case 1: Duplicates in the VRT Shellac Disc Music Archive

2.1 The VRT Shellac Disc Archive

The VRT shellac disc archive is part of the vast music archive of the Belgian
public broadcasting institute. The archive contains popular music, jazz and classical
music released between 1920 and 1960 when the public broadcaster was called
INR/NIR (Institut National de Radiodiffusion, Nationaal Instituut voor de Radio-
Omroep). The total shellac disc archive contains about 100,000 discs of which a
selection was digitized. Unique material and material with a strong link to Belgium
was prioritized. Basic meta-data is available (title, performer, label) but, notably, a
release date is often missing.

The digitized archive contains 15,243 shellac discs. Each disc has a front and
backside, which are often not clearly labelled. Both sides of each disc are digitized
at 96 Khz/24bit with a chosen EQ curve without further post-processing. The
digitization effort was led by Meemoo1 which also provides long-term storage.

2.2 Determine Unique Material in an Archive

The meta-data suggests that the shellac disc archive contains a significant portion of
duplicate material. However, due to nature of meta-data, it is often unclear whether
the meta-data describe the exact same audio material or it describes a different
rendition of the same song. The main problem is to conclusively determine the
amount of unique audio material in the archive, or conversely the amount of
duplicate material.

There are two opportunities by linking duplicate material. The first deals with
sound quality. Some discs are better preserved (and digitized) than others. Linking
duplicate material makes it possible to a potentially redirect archivists and listeners
to a better preserved duplicate.

A second opportunity relates to meta-data quality. It is of interest to identify when
meta-data is inconsistent and how the current meta-data standards for this archive
could be improved.

1 From the http://meemoo.be website: ‘Meemoo is a non-profit organisation that, with help from
the Flemish Government, is committed to supporting the digital archive operations of cultural,
media and government organisations’.
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2.3 Detecting Duplicates

The archive consists of 30,661 digital files with an average length of 168±5s.
Duplicate detection found 11,829 files or 38.6% contain at least 10s of duplicate
material. Most are exact duplicates but some are translations (see below).

The meta-data quality is quite high. If the title of a duplicate is compared with the
original, 93% match using a fuzzy matching algorithm. To allow slight variations—
differences in case use, additional white space, accents and word order—a Sørensen-
Dice coefficient is determined between the original and duplicate title. Only if the
coefficient is above a threshold the match is accepted. The performer meta-data field
fuzzily matches for 83% of the cases: it is sometimes left blank.

One notable meta-data inconsistency results from the fact that the side of each
disc was not clearly labelled. The concept of an ‘A’ side and a ‘B’ side was not
yet established. During digitization and meta-data notation, this is problematic. The
cover gives the title of two works but it is unclear on which side the work is located.
The meta-data often assigns both titles to each digital file. Since the order is not
clear, for a duplicate, the order of the titles can reversed (the sides are switched).

Another more specific finding is that popular orchestral songs were released for
multiple markets. The orchestral backing is the same but the sung part is translated,
sometimes by the same singer. The practice of dubbing and re-releasing popular hits
in another language is much less common now. An example is file CS-00069022-
01 by Jean Walter. One contains Rêve d’un Soir/Toi Toujours, the Dutch version is
titled Hou van Mij (Loving You)/Ik Had Een Droom (I Kissed A Dream). Note that
the order is reversed and that the titles are translated freely. The Dutch version also
refers to an English original. Discrimination between a noisy exact duplicate and a
translated version is not possible by taking only into account the duplicate detection
results.

Meta-data and classical music is generally problematic. Unfortunately, this is
also the case for the shellac disc collection, which contains some classical works.
It is clear that shoehorning classical composers, performers, soloists, works and
parts into a title and performer framework is a source of many of the identified
inconsistencies.

One of the opportunities of linking duplicates is shown in Fig. 1. It shows two
discs with the same audio material. One disc deteriorated much more than the other.
The amount of pops, cracks and hiss on the digitized version of the deteriorated
disc makes it hard to listen to. The much better preserved disc resulted in more
ear-friendly digital audio. To listen to the noisy and cleaner version, consult the
supplementary material.2 Going one step further is active denoising. There are
techniques which use duplicate material to interpolate samples from several sources

2 Supplementary material can be found at http://0110.be/l/duplicates. It contains audio examples,
software and raw data on duplicates.
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Fig. 1 A fragment from two digitized discs with the same audio material. The one below is clearly
less affected by pops and cracks. Identifying and linking duplicates allows listeners to find the best
preserved copy

with the aim to reconstruct and denoise gramophone discs [27]. Modern deep-
learning techniques to denoise historic recordings [10] also show a lot of promise.

2.4 Some Observations

This case study shows clear advantages of duplicate detection within an archive,
especially if the archive is expected to contain many duplicates. It is possible to link
audio with others that contain the same recorded material. By post-processing these
lists of duplicates, it becomes possible to:

– Identify the amount of unique material within the archive;
– Link low-quality recordings to better preserved duplicates;
– Confront meta-data fields from a recording and its duplicates to get insights into

meta-data quality;
– Find surprising links between recordings that share the same recorded material

but are clearly different, e.g. a shared orchestral backing of a which the sung part
is translated.

The case study also showed a limitation of duplicate detection technology. Dis-
criminating between a near-exact noisy duplicate and a translated version of a song
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with the same orchestral backing is not possible using only the results of duplicate
detection. Additional techniques, meta-data analysis and song-to-text conversion
with language recognition, might be employed to solve this automatically.

3 Case 2: Meta-Data Reuse for the IPEM Electronic Music
Archive

3.1 The IPEM Music Archive

The Institute for Psychoacoustics and Electronic Music (IPEM) has an archive of
tapes originating from 1960 to 1980. IPEM is part of Ghent University in Belgium.
To get an idea about the contents of this archive, it helps to sketch a short history of
IPEM and the broader context.

After the Second World War, several European broadcasting cooperations started
electroacoustic music production studios. In these studios, composers and engineers
collaborated to create new instruments and sounds. One of the main drivers behind
these investments was the belief that avant-garde music was the logical next step
in the western art-music tradition. Two early examples are the ‘Colonge Studio
für elektronische Musik des Westdeutschen Rundfunks’, Germany (1951), and
the ‘Studio di Fonologia Musicale RAI di Milano’, Italy (1955). The insight that
avant-garde music studios were not commercially viable warranted institutional
backing. In this context, BRT (Belgische Radio en Televisie) and Ghent University
(‘Rijksuniversiteit Gent’ at the time) jointly started IPEM in 1963.

The IPEM production studio was active between 1963 and 1987 [15]. It produced
about 450 works of around 100 composers which ended up on about 1000 magnetic
tapes [14]. A typical tape cover can be seen in Fig. 2. In the late 1980s, electronic
music production became more and more accessible, thanks to the introduction of
cheap electronic instruments. The need for institutional backing started to appear
anachronistic. After a difficult transition, IPEM established itself as a research centre
in systematic musicology and is now part of Ghent University.

3.2 Merging Two Digitized Archives

The archive has been digitized twice. The first digitization campaign was around
2001 [14]. This resulted in a database with high-quality meta-data and set of audio
CDs. Unfortunately, the sound cards used at the time (SEK’D ARC 88, 16bit,
48kHz) yielded audio not up to standard for long-term preservation. The choice of
writable CDs as long-term storage media was also questionable, due to their limited
shelf life. The meta-data, however, that was organized in a relational database is still
relevant today.
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Fig. 2 The cover of a typical magnetic tape in the IPEM archive. The meta-data includes work
titles, composers, additional comments and technical meta-data about the tape

The second digitization campaign was organized in 2016 by Meemo. Much better
sound cards were available and digitization was done at 96 kHz and 24bit. Long-
term storage is done on redundant LTO8 magnetic tapes. However, less effort was
spent on detailed meta-data. Complete magnetic tapes were stored in a single audio
file together with a list of works on each tape. Each work has a title and a composer.
Rough estimates of the duration of the work and additional meta-data (performers,
context of the recording) are often missing. Notably, it is unclear where each work
starts and stops in the unsegmented digital audio file.

Segmentation of the tapes with avant-garde electroacoustic works is not always
trivial. A large part of the tapes do have clear boundaries between works but for
others, expert listeners and contextual information is required. This is the case, for
example, for works with different parts without a shared sound language. Another
example is where silences on tape should be filled by an acoustic instrument during
performance (which is not recorded on tape). The meta-data on the duration of the
work and the duration of audio on tape can differ widely in such cases.

The problem in the case of the IPEM music archive is to connect high-
quality meta-data and segmentation of a previous digitization to high-quality
unsegmented audio of a second digitization.
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3.3 Meta-Data and Segmentation Reuse

With duplicate detection, a link can be found between the low-quality audio and
the high-quality audio. The detailed meta-data from the low-quality audio can
then be attached to the high-quality audio. The segmentation timestamps for the
unsegmented high-quality audio are derived from the recognized parts, as depicted
in Fig. 3.

For most works, meta-dating and segmentation is straightforward after a link
is found between the low- and high-quality audio archives. There are, however,
issues which complicate matters in some cases. The first is the unclear definition of
work. Many tapes have been recorded during live concerts. These recordings contain
spoken introductions and have an applause at the end. An intro and applause give
meaningful context and might be relevant but are not consequently included. A work
consisting of many parts might be divided up into its constituent parts or segmented
as a single entity. See, for example, IPEM tape number 1076 in the supplementary
material.2

Another problem is that identical audio is reused within the archive in different
contexts. Some tapes contain educational material: interviews, talks, lectures and
radio shows often contain parts of works but they need not to be segmented as such
(see IPEM tape number 1100). Some works also have multiple versions: they share
much audio material but have slightly different meta-data. Composers also sampled
material created for earlier works in new works: this reuse of material is revealing
links between works. However the meta-data and segmentation information should
not be simply copied. For example, the works ‘Difonium (cadenza, mix)’ and
‘Difonium (C, mix)’ by Lucien Goethals share most audio. Many more can be found
in the supplementary material.2

A third problem is specific to the IPEM archive: different selection criteria have
been used for the two digitization campaigns. The material in both collections
overlaps for a very large part but both also contain material not present in the other
collection. So it is unclear when a link should be found but is lacking due to a flaw
in the duplicate detection system. However, the synthetic evaluation below shows a
very high reliability of the system used.

To evaluate the automatic segmentation approach, we need two sets of record-
ings. Both sets need meta-data and segmentation info to check whether the

Fig. 3 Three works are found in a long, unsegmented recording. The meta-data of the works can
be copied or compared. Segmentation timestamps can be derived from the recognized parts
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Fig. 4 A web interface to segment tapes manually. The segmentation boundaries (coloured
sections above) can be modified on the waveform

matches are correct. Counter-intuitively, we need to manually segment a part of the
unsegmented collection simply to be able to evaluate the segmentation timestamps
found by duplicate detection. This manual segmentation was done using a custom-
build web interface as seen in Fig. 4: the interface allows users to quickly modify
segmentation boundaries.

For the 970 tapes in the archive, 2790 segments were annotated. 1158 segmented
works were matched with the low-quality archive originating from CDs. Of these
1158, the start and stop location is correct (within 10 seconds) for 348 segments or
30%. The score is mainly due to the consistently higher granularity of segmentation
(applause, introduction, parts) for the low-quality audio compared with the anno-
tated segments (works) of the high-quality audio. With the audio correctly linked,
a human expert is needed to evaluate whether the higher granularity matches are of
interest and may be copied over to generate a definitive segmentation and meta-data
set.

3.4 Key Observations: Meta-Data Reuse

The IPEM archive case effectively attaches meta-data and segmentation data from
low-quality audio to high-quality audio. For most works, this is a straightforward
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matter of copying meta-data to the matched high-quality audio. There are, however,
caveats which make some cases more difficult: reuse of audio (sampling other
works, several similar versions of works) and semantics around segmentation
behaviour (including or excluding applause?). It is good practice to keep an expert
listener in the loop to verify, confirm or modify meta-data.

4 Duplicate Detection Deep Dive

In order to better grasp the strengths and limitations of the technology used in the
case studies, the underlying algorithm is explained in this section. An efficient
duplicate detection system is able to sort through millions of seconds of audio
and come up with a relevant match, almost instantaneously, for a query containing
only a handful of seconds of audio. This efficiency and level of accuracy made the
previously discussed case studies possible.

The umbrella term for duplicate detection in large archives is known as acoustic
fingerprinting. The general idea is depicted in Fig. 5. Some feature is extracted from
audio and combined into a fingerprint. These fingerprints are then matched to other
fingerprints stored in a reference database. If a match is found, it is reported.

An audio feature with attractive properties for acoustic fingerprinting purposes
is local peaks in a spectral representation. They have been used in many systems
[23, 26, 29]. An alternative feature is, for example, energy change in spectral bands
[7, 11]. However, there are not many systems which are both freely available and
easy to use on larger datasets. One of the few open-source systems is Panako[23],
the system used here.

Fig. 5 General acoustic fingerprinting system
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Fig. 6 The effect of speed modification on a fingerprint. The figure shows a single fingerprint
extracted from reference audio ( ) and the same fingerprint extracted from audio after recording
speed modification ( )

4.1 Panako: An Acoustic Fingerprinting System

Panako3 [23] is an acoustic fingerprinting system. It is available under an AGPL
license. Panako is based on TarsosDSP [22], a popular Java DSP library. Panako
implements a baseline algorithm [29] and the Panako algorithm [23]. The Panako
algorithm is able to match queries which are time-stretched, pitch-shifted or sped
up with respect to the indexed audio. This is required for monitoring DJ mixes
[13, 18, 25] and to match music from analogue media digitized at different speeds.
The original Panako paper [23] describes the system in detail.

The key insight used in Panako is that an information of three local peaks in a
spectral representation can be combined in a single hash robust against time/pitch
modifications. In Fig. 6, each peak has a time t , frequency f and magnitude m

component and, for example, Δt1/Δt2 of the reference fingerprint equals Δt ′1/Δt ′2
after speed-up. Combining only such relative information in hashes allows to match
the reference audio with modified audio from the same recorded event even after
speed-up, time-stretching or pitch-shifting. More details can be found in the original
Panako paper [23].

Panako received updates in 2021 after close inspection of an efficient imple-
mentation of a similar algorithm [20] for embedded systems. The underlying

3 http://panako.be: the Panako website (last visited December 19, 2022).
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concepts from the original paper still stand but two changes improve the system
considerably.4

The first change replaces the frequency transform from a classical constant-Q
transform [1, 2] to a constant-Q non-stationary Gabor transform [12]. The latter
is more efficient and allows a finer frequency resolution at equal computational
cost. See [28] for a detailed comparison. The spectral peak detection in Panako
improves by the use of this finer frequency resolution. In Panako, JGaborator5 is
used: a wrapper around the Gaborator6 library which implements a constant-Q non-
stationary Gabor transform in C++11.

The second change replaces an exact hash matching technique by a near-
exact hash matching approach. Some background helps understand this change. As
mentioned before, the first step in the algorithm is a transform a one-dimensional
time series into a two-dimensional time/frequency grid. Each bin in this grid has a
very short duration and a small frequency dimension. The exact dimensions of these
bins are determined by the spectral transform parameters and can be small but they
remain discrete. This means that when a query and a match differ by about half the
duration of a bin, energy is spread over neighbouring bins. Since time-frequency
coordinates of peak magnitude bins are used in fingerprints, off-by-one errors are to
be expected, both in time and frequency. Off-by-one errors are handled by the hash
in the 2021 version of Panako.

For indexing and matching, a hash is constructed from the components men-
tioned below. A hash combines fingerprint information into a single integer. The
additional information contains an audio identifier used to tally matches. Below,
the components are ordered from most to least significant. By only including
approximate frequency information and having the time ratio in the least significant
bytes, range queries become possible. The last couple of bits can be ignored during
a search in ordered hashes: effectively dealing with off-by-one errors.

|f3 − f2|/4 ; |f2 − f1|/4 ; f̃1

|t3 − t2| > |t2 − t1|
m3 > m2 ; m3 > m1 ; m1 > m2

f3 > f1 ; f3 > f2 ; f1 > f2

(t2 − t1)/(t3 − t1)

This idea of gracefully handling off-by-one errors needs to be reflected in the
matching scheme as well. The fingerprints extracted from a query are matched with
the index. A list of matching prints is returned and needs to be filtered: hashes

4 Note that this text describes and evaluates Panako as is in the following commit found on GitHub:
6cf936730131d71c94c562a06a1a791e09b4c520.
5 https://github.com/JorenSix/JGaborator The JGaborator GitHub repository.
6 http://gaborator.com/ The Gaborator website.

https://github.com/JorenSix/Panako/tree/6cf936730131d71c94c562a06a1a791e09b4c520

 -1446 57047 a -1446 57047 a
 
https://github.com/JorenSix/JGaborator

 -1446 58376 a -1446 58376
a
 
http://gaborator.com/


Duplicate Detection for for Digital Audio Archive Management 323

Fig. 7 To discriminate true from false positives, a thresholded matching strategy is used. The first
few and last few matches (blue background) are used to calculate a median Δt . Accepted matches
(green background) fall in a small range around a linear regression from the first to last median Δt .
Some random matches (red dots) are dismissed

might randomly collide or short fragments might match for a very short duration. To
filter true positive matches from false positives, the difference in time (Δt) between
each reference and query hash. For a true match Δt , is either a constant or changes
linearly over time. In the original paper[29], a true positive is only accepted if Δt is
a fixed constant. Here, we calculate a linear regression from the first matches (blue
in Fig. 7) to the last and allow some small margin in which matches are accepted. In
this manner, off-by-one matches and time-stretching/speed-up are supported.

When larger archives are indexed, the characteristics of the key-value store
become more and more important. The key-value store stores hashes together
with some additional information. A hash combines fingerprint information into a
single number. The additional information contains an audio identifier used to tally
matches. The 2021 Panako version stores ordered fingerprints using a persistent,
compact, high-performance B-Tree7 [4]. The speed, small storage overhead and per-
formance allow more beneficial trade-offs between query performance: it facilitates
storing more fingerprints per second of audio and larger datasets for equal or better
query performance.

4.2 Panako Evaluation

To show the strengths and weaknesses of the Panako system, an evaluation is done
on the free music archive [6] medium dataset.8 In total 25,000 music fragments of
30 seconds were used in the evaluation. One fifth of the data set was not indexed
to check for true negatives. Readers are encouraged to repeat the evaluation as it is
completely reproducible with the evaluation script provided as part of the Panako

7 LMDB: Lightning Memory-Mapped Database Manager, http://lmdb.tech (last visited December
19, 2022).
8 The data can be downloaded at https://github.com/mdeff/fma (last visited December 19, 2022).
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Fig. 8 Comparison of the top one true positive rate after several modifications for 20 second query
fragments for Wang [29], Panako [23] and Panako [30]

software distribution. Details on the exact parameters for the modifications can be
found there as well.

Panako is evaluated for various modifications (Fig. 8), playback speed modi-
fication (Fig. 11), time-stretching Fig. 10 and pitch-shifting Fig. 9. The evaluation
follows a straightforward method: a random fragment is selected, a modification is
applied and the modified fragment is used to query the index for matches. Only the
best match is considered and counted as a true positive, false positive, true negative
or false negative. The sensitivity or true positive rate is reported (T P/(T P +FN)).

For all modifications in Fig. 8, the query performance from the 2014–2021
version of Panako is clear. The chorus effect impacts the spectrogram the most: the
performance increases from about 25–80%. The baseline algorithm (which is also
implemented in Panako) is, however, always better but does not support pitch-shift
or time-stretch. It shows that there is still headroom for further refinement.

The pitch-shift and time-stretch modifications (Figs. 10 and 9) are calculated
from −16% to +16% to reflect a common maximum modification on DJ equipment.
Again it is clear that the upgrades drastically improve the performance especially in
higher modification factors. The baseline algorithm [29] normally does not support
time-stretch modification. The Panako implementation of [29] uses the matching
strategy described above which allows time-stretch: Δt is not a fixed constant but is
allowed to change linearly.
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Fig. 9 Comparison of the top one true positive rate after pitch-shifting for 20s query fragments
for Wang [29], Panako [23] and Panako [30]

Fig. 10 Comparison of the top one true positive rate after time-stretching for 20s query fragments
for Wang [29], Panako [23] and Panako [30]
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Fig. 11 Comparison of the top one true positive rate after speed-up/slow down for 20s query
fragments for Wang [29], Panako [23] and Panako [30]. The audio playback speed is modified
from 84 to 116% with respect to the indexed reference audio. If the query is slowed down by 10%,
the duration ends up being 22s. For the 2021 Panako algorithm, audio recognition performance
suffers (below 80%) when playback speed is changed more than 10%

The speed-up modification (Fig. 11) can be seen as a combination of both
time-stretching and pitch-shifting with the same factors. Query performance is,
in other words, limited by the time-stretch and pitch-shift performance. For the
larger modification factors, the performance drops below 80% but is still much
above Panako 2014.9 More extreme playback speed modification is supported by
Sonnleitner and Widmer [26], but their reported query speed is much slower and the
system is not freely available.

The query speed of Panako varies with the size of the database and properties of
the audio: acoustically dense audio generates more fingerprints. On an Early 2015
MacBook Pro with a 2.9 GHz Dual-Core Intel Core i5, storage and query is 38
times faster than real-time per processor core. This means that 38 seconds of audio
is handled in 1 second for each processor core.

9 For Panako, time-stretch and pitch-shift factors do not need to be the same: a fragment pitch-
shifted 104% followed by a 92% time-stretch will match the original.
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5 Conclusion

In this chapter, a mature MIR technology of duplicate detection was described and
put to the test in two case studies. In the first case study, duplicates were detected
for a part of the music archive of a public broadcaster. This allowed to identify the
unique material in the archive and had additional benefits to check meta-data quality
and redirect listeners to higher-quality duplicates. In the second case study, meta-
data and segmentation information of low-quality audio was attached to higher-
quality duplicates.

The main takeaway from both case studies is that duplicates can be found reliably
and easily even in larger archives. For the most part, duplicates are straightforward
but some surprising and interesting cases of audio-reuse (sampling, translations,
versions) might warrant the need for a human expert in the loop.

The chapter concluded with a technical description and evaluation of Panako—an
acoustic fingerprinting system. This was done in order to better understand strengths
and weaknesses of the technology. The evaluation of the 2021 version of Panako
shows much improved performance over previous versions.

With the case studies, we aimed to directly improve the quality of two collections
by showing how duplicate detection technology helps to offer better services to
end users. Evidently, we hope to accelerate the adoption of duplicate detection
technology by the community of audio archivists and indirectly improve many
digital audio archives.
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How a Song’s Section Order Affects Both
‘Refrein’ Perception and the Song’s
Perceived Meaning

Yke Paul Schotanus

1 Introduction

Several musicologists have assumed that specific musical features (such as unex-
pected notes, tempo and syncopation) can affect the interpretation of song lyrics in a
predictable way, i.e. that these features can be used intentionally to further a specific
interpretation of those lyrics [1, 4, 5, 8, 21]. However, testing such assumptions
experimentally requires the use of various versions of sung stimuli in which only
the target feature is different across versions, and recording such stimuli is very hard
to do. One would always expect performance-dependent differences to confound
the effect of the target features, because it is likely that changing specific musical
properties has an effect not only on the listener but also on the performer. Digital
technologies, by contrast, can be used to create various versions of musical stimuli
without changing the performance. In earlier research, Schotanus [27–32] already
has used such digitally manipulated versions of songs and sung sentences in various
experiments and has found clear effects of accompanied versus a cappella singing,
of out-of-key notes versus in-key notes, of syncopation and of song form on various
aspects of song cognition.

In the current study, the effect of formal structure, particularly of song section
order and repetition, on the way a song and its lyrics are perceived and interpreted
semantically, will be further investigated. Apart from section form (including stanza
form), section order also plays an important part in large-scale musical structure,
which is assumed to affect both liking and musical meaning and to be of historical
relevance [1, 5, 12, 21, 34, 35]; see Schotanus [27] for a brief review. Even in popular
music studies, several authors have stressed the significance of musical form and
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particularly of repetition and have fought the widespread idea that in popular song
musical form is too simple to be investigated [3, 10, 13, 16, 18].

Popular songs are usually classified as examples of one of four categories:
strophic songs, AABA songs, verse-chorus songs and verse-chorus-bridge songs
[6, 7, 35, 38]. However, it is questionable whether this is doing justice to the variety
and the nature of song forms. For example, Schotanus [27] has shown that many
songs do not belong to either of those categories and that in analyses of specific
songs, the chosen category often does not fit the song’s actual form. It is even
debatable whether, for example, verse-chorus songs and AABA songs are indeed
different categories. Apart from the fact that there are AABA songs in which the
AABA part functions as a chorus, there are also songs (e.g. ‘Yesterday’ by the
Beatles) in which the B part, the bridge, is repeated verbatim, as a result of which it
may be mistaken for a chorus. What is more, Schotanus, Koops and Reed Edworthy
[33] have shown that within a group of straightforward AAA songs such as the
Genevan psalms, there are important formal differences between one song and the
other which seem to affect song processing. At least they predict psalm popularity.

Therefore, it is necessary to investigate both the relevance of the traditional
categorization of popular songs and the possibility that there are other useful ways
to approach song form. Schotanus [24, 27], for example, has developed the RAS
hypothesis. The RAS hypothesis states that the appreciation and interpretation of a
song depends on a set of preference rules for ‘song section order’, which are based
on the assumption that listeners intuitively search for a balance between ‘repetition
and surprise’ (RAS). This hypothesis builds on the cognitive research undertaken
by Ollen and Huron [20], Huron [11] and others [15, 22, 23, 36]. According to
the RAS hypothesis, a violation of preference rules can cause feelings of tension
or boredom which, however, are ‘acceptable’ to the listener if the lyrics allow for
a ‘meaningful’ interpretation. For example, RAS rule 5 states that late repetitions
(either late repetitions of song sections within a song or of melodic phrases within
a song section) have a cumulative effect which is only acceptable if it is in line
with the lyrical content of the song, or if it is compensated for by other musical
features. Partial evidence for RAS rules can be found in several corpus studies
[14, 27, 35], and for RAS rule 5 specifically in the Genevan Psalter study [33] and a
study concerning Dylan songs [30].

In the current study, the question whether AABA songs and verse-chorus songs
are essentially different from each other is investigated by comparing listeners’
reactions to different versions of the same songs. Therefore, several experiments
were conducted. Two of them, reported on earlier [27], will be summarized below.
The last one, an online listening experiment that will be reported here, involved
two songs. Both songs consisted of a number of A sections containing at least one
refrain line, and one or two bridge sections. Both songs were digitally altered in
several alternative versions, one of which had a verse-chorus-like structure with the
B sections in a chorus position.

Participants were asked questions about their appreciation for the song, their
interpretation of the song and their ‘refrein’ perception. In Dutch ‘the’ ‘refrein’
can refer to either a chorus or a salient refrain line. Therefore, the question which
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part of the song people think is the ‘refrein’ is an easy way to determine whether a
song is perceived as an AABA song or as a verse-chorus song. For example, if an
AABA-like song is something essentially different from a verse-chorus song, the B
section is unlikely to be perceived as ‘the refrein’, even if it is put in a chorus-like
position.

However, it is questionable whether B sections in chorus positions will indeed
not be perceived as choruses, as both choruses and bridges are supposed to be
contrasting song sections. Summach [35] observes that bridges more often show
tonal unstability than choruses, but he also observes that such bridge-specific
and chorus-specific properties change over time. Moreover, a chorus does not
always have a contrastive melody [6]. On the other hand, Van Balen [37] found
that choruses in early twentieth-century Dutch popular songs could be retrieved
automatically by searching for specific distinctive sound properties. It is, however,
undocumented which songs Van Balen used and which song parts were deemed
choruses. Consequently, it is unclear whether his research did not involve AABA
songs containing highly contrastive B sections.

On the other hand, there may be other song properties that distinguish between
bridges and choruses, for example, the nature of the other sections within the song.
For example, Summach [35] observes that harmonic tension in A sections in AABA
songs tends to be resolved, whereas harmonic tension in verses tends to be left
unresolved. Furthermore, in AABA songs, the A sections often contain a refrain
line or word (e.g. ‘Yesterday’) representing the main message of the song, whereas
in verse-chorus songs, the main message is assumed to be represented by the chorus
[34]. Yet, it is not unusual for verses in verse-chorus songs to contain refrain lines as
well (e.g. Radiohead’s ‘Creep’). The difference may be that listeners will base their
interpretations of an AABA song on the refrain line within the A sections, whereas
their interpretations of a verse-chorus song are based on the chorus.

If ‘refrein’ perception would turn out to be dependent on position, either partly or
completely, this would call for a cognition-based approach of song form. It would be
evidence for both Pattison’s assumption that song structure creates certain ‘power
positions’ within the lyrics [21] and that music can be used as a foregrounding
device, for example, by accentuating specific song parts [24, 27]. Possibly, the set
of RAS rules could be extended with a few preference rules governing ‘refrein’
perception.

Concerning the existing RAS rules, in one song, RAS rule 5, regarding the
effect of late repetitions, was at stake. In one version of that song, there was an
accumulation of A sections towards the end of the song. This is a violation of that
fifth RAS rule and is assumed to negatively affect the appreciation of this song
version.

Although it is not the target issue of this paper, using song versions including
sections with verbatim repeated song lyrics, and asking questions about the appre-
ciation and the interpretation of these songs, will make that this study will also
contribute to the literature concerning verbatim repetitions of words. It will provide
either evidence or counter-evidence to the hypothesis that verbatim repetitions of
language are interpreted as more acceptable and more meaningful when presented
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with music (and in particular when sung) and that repetition can change the meaning
of the repeated language at its second occurrence [9, 27]. Apart from that, the study
will also contribute to the widespread hypothesis that verbatim repetitions increase
liking [19], if only the listeners do not become aware of the fact that their positive
feelings are caused by mere repetition [11].

1.1 Previous Experiments

The current experiment was preceded by an online listening experiment reported
on in the author’s dissertation [27] and a smaller live experiment reported on in
a conference poster [25]. In the online experiment, a total of 149 participants,
between 15 and 84 years old (M = 52.58; SD = 14.27), listened to one of four
versions of the same song and were asked a few questions about them. The order
of the original song was altered in such a way that in one version the B sections
were in the middle (the original AABAABAAcoda version), in one version they
were at the end (AAAABAABcoda, a verse-chorus-like version) and in one version
they occurred in the beginning of the song (ABABAAAAcoda, a version with a
cumulation of A sections at the end). Finally, an additional fourth version was
created by deleting the last A section from the original version, accentuating the
AABA structure (AABAABAcoda).

The hypotheses were that in the original and the fourth version, the content
of both A sections and B sections and coda would contribute to the overall
interpretation of the song; that in the second version, the contribution of the content
of B sections and coda to the overall interpretation would be more prominent; and
that in the third version, the content of the A sections would be more influential.

The first, second and fourth versions were hypothesized to be perceived as
relatively well formed, in contrast to the third version, which violates the fifth
RAS rule. The second version, on the other hand, was hypothesized to be the best
structured one in terms of RAS rules, as the first and fourth versions are slightly at
odds with RAS rule 5. In the first version, the number of A sections is not decreasing,
whereas in the fourth one, the decrease starts relatively late. Finally, the B section
was assumed to be mentioned more often as a ‘refrein’ than the last line of the A
section in the second version.

The results were largely in line with the hypotheses. The ABABAAAAc
version received the lowest ratings concerning musical quality and lyric quality
and showed an A-section-oriented bias in interpretation and refrain perception,
whereas the AAAABAABc version received the highest ratings concerning musical
and lyric quality and showed a less A-section-oriented bias in interpretation and
refrain perception. However, only the latter effect was significant, particularly in
comparison with the ABABAAAAc version.

Thus, section order indeed seemed to affect song appreciation, song interpreta-
tion and refrain perception in a predictable way. However, the study had several
limitations. First, sample size seemed to be too small to receive clear significant
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results concerning the disapproval of the ABABAAAAc version. Second, the song’s
formal structure may be too deviant to be perceived as either an AABA or a
verse-chorus song, which may have distorted refrain perception anyway. Third,
results for the AABAABAc version were difficult to be interpreted, because in
hindsight it did not have a clear AABABA pattern, and the deletion of the sixth
A creates an unresolved rhyme, because in the original version, the third lines of
the fifth and sixth A rhyme with each other. Fourth, after the results were published,
the second B section in the AAAABAABc version turned out to be a repetition
of the first B section, whereas it was meant to be the second B section of the
original. As a consequence, the B section was not only in a chorus position but
also repeated verbatim, which may have enhanced the section’s appearance as a
chorus. What is more, the extra repetition may also have positively affected the
appreciation of the song version [11, 19] and may have further enhanced a B-
section-oriented interpretation of its meaning. After all, verbatim repetition of words
supports processing fluency of those words [19].

In the live experiment [25], 40 participants listened to two AABA songs which
were performed as AABABA songs, just by repeating the B section and one of the A
sections. After the fourth, the fifth and the sixth song section, an assistant indicated
with a hand gesture that a song section was finished, and it was time to answer a few
questions. After the fourth section, the only question was whether the song could
have been finished by then. After the other two song sections, the same question
was asked, followed by the questions whether the last section has been an acceptable
addition, and whether it has been a meaningful addition. After listening to the whole
song, there were three extra questions: which section would make up the best song
ending, was there a ‘refrein’ and which was the ‘refrein’ (where participants could
choose either the B section or a refrain line taken from the A section)? Most of the
answers indicated that both songs are predominantly perceived as AABA(BA) songs
and not as verse-chorus songs. However, B sections of both songs were perceived
as the ‘refrein’ by thirty per cent of the participants, and 10 and 16 participants,
respectively, even thought that the B sections of song A and B would make up
the best song ending. Finally, the fact that most participants judged that either the
fifth or the sixth section would make up the best song ending indicates that these
song sections were perceived as acceptable and meaningful additions to the song,
although they were verbatim repetitions of earlier song sections.

Of course, several participants did not see the assistant’s gestures and were
not able to identify section divisions, so they did not answer the section-specific
questions. Furthermore, it may be hard to answer the question whether a section
makes up a good song ending when the song is already going on, and finally,
it cannot be excluded that the performers (the author and a guitar player) have
influenced the answers through specific accents or flaws in their performance.
Nevertheless, the results of this experiment show that the difference between AABA
songs and VC songs needs further investigation.
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1.2 Current Experiment

As a follow-up to the experiments summarized above, a listening experiment quite
similar to the one reported on in the author’s dissertation [27] was conducted, in
which several of the limitations mentioned above were resolved. This experiment
involved two songs.

Song 1 was the same song as the one used in the former online experiment, except
that in this case, the AABAABAc variant was not used and the second B section in
the AAAABAABc version was indeed the second B part of the original and not
a repetition of the first one. Thus, the differences between the ABABAAAAc and
the AAAABAABc version could become more clear, and the possible effect of just
putting the B sections of the song in ‘chorus positions’ could be compared with both
putting the B sections in chorus positions and replacing the second B section with a
verbatim repetition of the first one.

Song 2 was one of the songs used in the live experiment. As this was originally
created as an AABA song, it can be considered a straightforward AABA song. Thus,
the hypothesis that a B section will be perceived as a chorus if it is placed in a chorus
position could be assessed more effectively. Three versions were created: an AABA
version, an AABAB version and an AABABA version. The latter was added in order
to assess the effect of mere repetition. If the B section would change in a chorus
through mere repetition, this would hold in the AABABA version as well. However,
if the fact that a song ends with an A section, would turn it into an AABA song, no
matter the chorus quality of the B section, the B section will not be perceived as a
chorus in such a song version.

Regrettably, funding did not allow for large sample sizes; therefore, the negative
effect of late repetition in the ABABAAAAc version of song 1 was again unlikely to
be significant. However, if the same pattern would occur, this would at least indicate
a certain tendency.

In short, these were the hypotheses at stake:

1. A song section will be perceived as a chorus or a bridge dependent on its
position.

2. Chorus perception is different across song versions in which the same song
sections occur in different positions.

3. In the AAAABAABc version of song 1 and the AABAB version of song 2,
refrain or chorus perception will be more B oriented than in the other versions.

4. The interpretation of a song is different across song versions in which the same
song sections occur in different positions.

5. A participants’ interpretation of a song is mainly based on the participants’ idea
which song part is or contains the ‘refrein’.

6. The interpretation of the AAAABAABc version of song 1 is more B oriented
than the interpretation of the ABABAAAAc version of that song, and the
AABAB version of song 2 is more B oriented than both of the other versions of
that song.
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7. The appreciation for a song is different across song versions in which the same
song sections occur in different positions.

8. The interpretation of the AABA version of song 2 is different from the
interpretation of the other versions of song 2, although the only textual
difference is that parts of the lyrics are repeated.

9. Appreciation for the ABABAAAAc version of song 1 is relatively low.
10. Appreciation for song versions including verbatim repeated song sections is

equal to or higher than appreciation for song versions in which all song sections
are different from each other.

2 Method

2.1 Participants

A total of 111 participants recruited via Prolific Academic completed the survey
and were payed for their work. They were between 18 and 59 years old (M =
25.96; SD = 7.91), 65 female, 36 male. Most of them (84) were native speakers
of Dutch, 17 were not but claimed to be fluent speakers of it. All participants were
presented with two songs. Each individual heard one of three versions of each. The
version of song 1 was randomly assigned to them first, which was followed by a
random version of song 2. After each song, they were asked a few questions about
it. Between the songs, they answered a series of questions concerning their musical
and literary sophistication, i.e. the complete Gold-MSI questionnaire [2, 17], and
11 items concerning literary sophistication. A principal axis factoring analysis of
the latter, the details of which can be found online [26], yielded three factors with
an eigenvalue larger than 1, literary activity; 2, passive literary enjoyment; and 3,
nonliterary writing activity. Completing the whole survey took about 19 minutes on
average.

2.2 Stimuli

The participants all heard one of three versions of the same two songs, all of which
can be found online [26]. Both songs were pre-existing cabaret songs in Dutch,
composed and sung by the author and accompanied, recorded and digitally altered
by Christan Grotenbreg, using a keyboard, connected to ProTools 10 (desktop
recording), a Neumann TLM 103 microphone, an Avalon VT 737 SM amplifier
and an Apogee Rosetta converter, and in addition, Waves Tune, Renaissance Vox
compression and Oxford Eq. voice-treatment software.

The first song, ‘Hou’en zo’ (Keep it like that), was an AABAABAAcoda song,
which was changed and an ABABAAAAcoda song. This could be done without
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harming the rhetorical logic of the lyrics, because in this song, all A sections
mention examples of disasters that did not hit the singer, and in the B sections and
the coda, the singer wonders who he should thank for that. The B sections can
therefore follow any of the A sections.

Note that the B sections are bridges rather than choruses, as they are longer and
more complex than the A sections, have varying lyrics and neither start nor end on
the tonic. Moreover, the B sections end with a one-word refrain (‘geluk’, ‘luck’), and
have another one-word refrain (‘danken’, ‘say thanks’) at the end of the first line,
whereas the A sections start with a three-word refrain (‘alweer een dag’ ‘another
day’) and end with an immediately repeated catch frase catch phrase: ‘Hou’en zo’
(‘Keep it like that’). It is therefore unlikely that the B section will be perceived as
a chorus, although there is a clear musical contrast with the A sections because it
starts and ends on the dominant, and is partly in a different key (i.e. in B flat minor
instead of B flat major).

The second song ‘Mijn ogen’ (‘My eyes’) was originally written as an AABA
song but has developed over time to an AABABA song in which the second B
section is exactly the same as the first one, and the fourth A section is the same as
the first one, except for one or two minor changes in the wording. The song was
recorded at once as an AABABA song, and after that an AABA and an AABAB
version were created by deleting the final sections in such a way that there is a sense
of completeness because at least the accompaniment ends on the tonic.

All A sections start with ‘Mijn ogen’ (‘My eyes’) and end with a variation on the
refrain line ‘Maar dan kijk ik met mijn handen naar jou’ (‘But then I look at you
with my hands’). After the fourth A, this refrain line is repeated once. By contrast,
the B section is repeated integrally if it occurs twice, which can give it a certain
chorus quality. However, it begins and ends on the dominant pitch and is partly in a
different key (i.e., E major instead of A minor). In the AABAB version, harmonic
tension is resolved by a final A in the base at the moment where in the AABABA
version, the last A section begins.

By using pre-existing songs, written by the author, it was possible to work with
ecologically valid stimuli which where, nevertheless, very likely to be new to the
participants. It also allowed the author to create several alternative versions of them,
based on one recording, without copyright issues and such.

2.3 Questionnaire

Apart from the abovementioned general questions concerning, age, gender, musical
sophistication and literary experience, there were several song-specific questions.
There were two multiple-choice questions per song concerning ‘refrein’ perception,
one multiple-choice question concerning semantic interpretation and a series of
Likert-scale questions concerning appreciation and, in the case of song 2, ethic
valuation. Finally, there was also a six-item fill-in-the-blank recall test for each song,
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but this was used only to get an impression of the participants’ attitude towards the
survey. Therefore, these questions will not be reported on here.

Concerning ‘refrein’ perception, the participants were asked whether they
thought there was a ‘refrein’ (i.e. a refrain or a chorus), and after that they were
asked to choose from several options which part was the ‘refrein’, or which part
they would choose if someone would urge them to indicate a ‘refrein’ although in
the first instance they did not think there was one.

For song 1, the options were as follows: (1) ‘Hou’en zo’ (‘Keep it like that’,
i.e. the last line of the A section); (2) ‘the part that begins with “Alweer een dag”
[“another day”] and ends with “Hou’en zo”” (i.e. the entire A section); (3) ‘the
phrase “Het is geluk”’ (‘It’s all about luck’, i.e. the last line of the B section); (4) ‘the
part about feeling grateful and lucky’ (i.e. the entire B section); (5) a combination
of 1 and 3; and (6) a combination of 1 and 4.

For song 2, the options were as follows: (1) ‘The line “dan kijk ik met mijn
handen naar jou”’ (‘and then I look at you with my hands’, i.e. the last line of the A
section); (2) ‘The part that begins with ‘Mijn ogen’ (“my eyes”) and ends with ‘dan
kijk ik met mijn handen naar jou”’ (i.e. the entire A section); (3) ‘The words “Mijn
ogen”’; (4) ‘The part that begins with “Mijn vingers verkennen...” (“My fingers
explore...”) and ends with “Ik voel dat je mij echt voelt”’ (‘I can feel that you really
feel me’, i.e. the B part); (5) A combination of 1 and 4; and (6) A combination of 3
and 4.

Concerning (semantic) interpretation, the participants were asked to choose one
of five or six interpretations of the song’s content. For song 1, these were as follows:
(1) ‘The singer thinks life is full of difficulties and dangers’; (2) ‘The singer realizes
how fortunate he is, and enjoys this feeling’; (3) ‘The singer sees a lot of threats
which he hopes to escape’; (4) ‘The singer is grateful because he realizes how lucky
he is’; and (5) ‘The singer is careless, nothing will happen to him’. Interpretation 3 is
clearly A-section oriented; interpretation 1 is also more A-section oriented although
it does not refer to the repeated catch phrase at the end of it; interpretation 2 is
somewhat more B-section oriented; interpretation 4 is clearly B-section oriented;
and interpretation 5 is neither B nor A-section oriented; it may occur as a result of
overemphasizing the song’s ironic tone of voice.

For song 2, the options were as follows: (1) ‘The singer assumes that with his
hands he can see his partner just as good as with his eyes’; (2) ‘The singer thinks
bodily contact is at least as important as appearance’; (3) ‘The singer thinks beauty
can be experienced not only with the eyes but also with tactile sense’; (4) ‘The singer
is totally immersed in his fantasies about sex with the other’; (5) ‘The singer mainly
describes how intense contact can be if one does not look but feels’; and (6) ‘The
singer thinks his partner is so beautiful that he would love to touch her’. Options 1
and 3 are A-section oriented, because they focus on the comparison between looking
with eyes and looking with hands; for the same reason, option 2 is predominantly A-
section oriented, although it includes the B-section-oriented word ‘contact’; option
4 and 5 are clearly B-section oriented as they focus on the action of ‘looking with
hands’; and option 6 is neither A-section oriented nor B-section oriented as there is
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no reasoning in it, and it combines the notions of beauty and touching from the A
sections with the sense of lust or desire in the B section.

Finally, concerning valuation, there were questions at two instances. First, while
listening to the songs, the participants were asked to rate the statement ‘I think this is
a beautiful song’ on a seven-point scale from (1) ‘absolutely disagree’ to (7) ‘totally
agree’. Later on, a series of statements to rate on a similar scale followed.

For song 1, the statements were the same as those in the previous experiment
[27]: ‘The song was cheerful’; ‘The song was well structured’; ‘The melody was
dull’; ‘The lyrics were humorous’; ‘The lyrics were comprehensible’; ‘There were
unexpected twists and turns in the song’; and ‘I was captivated till the end’.

For song 2, the question about twists and turns was deleted, as it is not a
question about appreciation of either lyrics or music, and consequently in the earlier
experiment, it did not contribute to one of the factors emerging through a factor
analysis on all items. However, three statements were added: ‘The tone of voice is
light’; ‘The song is pornographic’; and ‘The song is respectful to women’. These
statements were added because the tone of voice in the bridge section is quite erotic
and may be perceived as less light, more pornographic and less respectful towards
women. In the A sections, the singer only tells his lover that he does not have to
look at her with his eyes, because he can also look at her with his hands, but in the
B section, he actually describes what looking at her with his hands is like. On the
other hand, the B section ends with the line ‘en ik voel dat je mij echt voelt’ (‘and I
can feel that you really feel me’), which makes it less male-‘gaze’ focused.

2.3.1 Analyses

The results were analysed in SPSS using principal axis factoring analyses with
oblique rotation (direct oblimin) for the ratings, generalized linear regressions
for the factors and both binomial generalized linear regressions and binomial
generalized estimating equations for interpretations and ‘refrein’ perception. In
order to run binomial regressions, the multinomial variables representing the choices
concerning interpretations and ‘refrein’ perception were reduced to binomial vari-
ables representing or not representing an A-section-oriented bias. In these variables,
the value ‘1’ was assigned to all interpretations that were described above as A-
oriented interpretations, and all answers referring to ‘refrein’ candidates from A
sections only, and the value ‘2’ to all other options.
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3 Results

3.1 ‘Refrein’ Perception

For both songs, the question whether there was a ‘refrein’ or not was answered
significantly different across song versions (Wald X(song1; df 2) = 7.22, p = 0.027;
Wald X(song2; df 2) = 8.92, p = 0.012). Binomial generalized linear regressions
on this variable showed a significant effect of song version, which is mainly due
to the AAAABAABc version of song 1 and the AABA version of song 2. As
Table 1 shows, these song versions were remarkably less often thought to have a
‘refrein’ than the other versions. The differences between the other song versions
were marginal, although it is striking that the AABABA version is even more often
thought to have a ‘refrein’ than the AABAB version.

For song 1, the answers to the question which part of the song is the ‘refrein’
if there must be one are not significantly different across song versions. For song
2, they are. However, a binomial generalized linear regression on the original
variable indicating an A-section-oriented bias could not be conducted because of
a quasi-complete separation within the data. As Table 2 shows, none of the answers
concerning the AABA version involved the B section or a part of it. However, after
extending the category of answers involving the B part with answer option 3 (an
option which was rarely chosen for all song versions), the effect of song version
was still significant (Wald X(song2; df 1) = 10.28, p = 0.006), indicating that the B
section is less likely to be perceived as a ‘refrein’ (i.e. as a chorus) in the AABA
version than in the other versions. The difference between the other versions was
not significant.

3.2 Interpretation

The question whether section order can change the (semantic) interpretation of a
song was assessed by a multiple-choice question in which participants had to choose
between several interpretations of the song, some of which were more or less A-
section oriented, while others were at least partly based on the content of the B
section. The results indicate that the interpretations of song 1 were not significantly
different across song versions, whereas those of song 2 are. A binomial generalized
linear regression on a variable indicating an A-section-oriented bias or not showed a

Table 1 ‘Refrein’ or not

Song 1 Song 2

AABAABAAc ABABAAAAc AAAABAABc AABA AABAB AABABA

Yes 29 20 12 13 20 24

No 12 10 18 22 12 9
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Table 2 Numbers of times a ‘refrein’ candidate is chosen per song version

Song Song part Version

Song 1 AABAABAAc ABABAAAAc AAAABAABc

Last line A section 16 13 15

A section 18 11 9

Last line B section 1 0 2

B section 0 2 0

Combination or 1 and 3 6 2 3

Combination or 1 and 4 0 2 1

Total A 34 24 24

Total B or A+B 7 6 6

Song 2 AABA AABAB AABABA

Last line A section 16 5 9

A section 13 9 10

First words A section 6 5 3

B section 0 10 6

Combination or 1 and 4 0 2 2

Combination or 3 and 4 0 1 3

Total A 35 19 22

Total B or A+B 0 13 11

significant effect of song version (Wald X(song2; df 2) = 8.23, p = 0.016), indicating
that the interpretation of the AABAB version was significantly more B oriented than
the other versions, particularly the AABA version. See Table 3 for more details.

Although the interpretations of song 1 were not significantly different across song
versions, those of song 2 were; a binomial regression using generalized estimating
equations with song as the within-subject variable, A-section bias in interpretation
as the target value and A-section bias in ‘refrein’ perception as predictor showed
that there is a significant relationship between ‘refrein’ perception and interpretation
across songs (Wald X(df 1) = 11.14, p = 0.001).

3.3 Appreciation

For each song, a principal axis factoring analysis was run on the Likert-scale
items concerning aesthetic valuation of the songs and their lyrics. For the second
song, the additional items related to ethical issues were also included in this factor
analysis. For both data sets, both the KMO statistic and the measurements of
sampling adequacy (MSA) were above 0.5 (KMO song 1 = 0.80; KMO song 2
+ 0.774), the determinants were larger than 0.0001, and Bartlett’s test of sphericity
was significant. However, in the analysis of the items concerning song 1, the item
regarding twists and turns was deleted, because MSA was relatively low, i.e. very
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Table 3 Numbers of times an interpretation is chosen per song version

Song Interpretation Version

Song 1 AABAABAA ABABAAAA AAAABAAB

Life full of difficulties and dangers 6 8 4

Fortunate and happy 7 3 5

Hope to escape threats 10 5 7

Grateful because of luck 18 13 13

Careless 0 1 1

Total A 16 13 11

Total A or A+B 25 17 19

Song 2 AABA AABAB AABABA

Hands as good as eyes 4 1 7

Bodily contact important 4 2 0

Beauty with tactile sense 18 10 15

Immersed in fantasies about sex 1 1 0

Intense contact when feeling 7 12 9

Beauty raises wish to touch 1 6 2

Total A 26 13 22

Total A or A+B 9 19 11

close to 0.5. For song 1, two factors with eigenvalues larger than 1 were retained:
positive value (PV) and comprehensible lyrics (CL); for song 2, three of those
factors were retained: good song (GS), pornographic song (PS) and good lyrics
(GL). As Table 4 shows, there are parallels between PV and PS on the one hand,
and CL and GL on the other, but there are striking differences as well, hence the
differences in naming.

Although the differences between factor means per song version were not likely
to be significant given the sample size, it is still interesting to explore the differences.
As Table 5 shows, PV is relatively high for AAAABAABc version compared
with the ABABAAAAc one, whereas CL is relatively high for the AAAABAABc
version compared with the AABAABAAc version. Furthermore, GS is relatively
high for the AABA version of song 2 compared with the AABAB version, PS is
relatively high for the AABAB version compared with the AABABA version, and
GL is relatively low for the AABAB version. However, none of these effects were
significant. Having said that, two covariates did show a significant effect. The Gold-
MSI Emotions scale turned out to be a significant predictor CL and GL, and the
factor Passive Literary Enjoyment a significant predictor of CL.
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Table 4 Factor analyses Likert-scale items, factor loadings and factor specifications

Song 1 Song 2

Item/Factor property PV CL GS PS GL

Song was beautiful 0.86 0.26 0.96 −0.12 0.32

Song was cheerful 0.57 0.35 0.59 −0.07 0.55

Song was well structured 0.75 0.14 0.74 −0.02 0.54

Melody was dull −0.64 −0.02 −0.67 −0.11 −0.29

Lyrics were humorous 0.37 0.28 0.29 0.41 0.41

Lyrics were comprehensible 0.25 0.89 0.34 −0.06 0.60

I was captivated till the end −0.71 0.26 0.78 0.02 0.52

The tone of voice was light 0.56 0.15 0.62

The song was pornographic −0.05 0.71 0.03

The song was respectful towards women 0.09 −0.40 0.23

Initial eigenvalue 3.25 1.11 3.99 1.48 1.06

Percentage of variance predicted 46.36 15.90 39.72 14.78 10.55

Rotated sum of squared loadings 2.74 1.11 3.36 0.88 2.01

PV = positive value; CL = comprehensible lyrics; GS = good song; PS = pornographic song;
GL = good lyrics

Table 5 Factor means per song version

Song Song version Mean (SD)

Song 1 PV CL

AABAABAAc 0.02 (0.93) −0.10 (1.03)

ABABAAAAc −0.13 (0.96) 0.02 (0.73)

AAAABAABc 0.11 (0.92) 0.12 (0.86

Song 2 GS PS GL

AABA 0.10 (1.09) 0.06 (0.86) 0.06 (0.86)

AABAB −0.09 (0.91) 0.15 (0.75) −0.10 (0.82)

AABABA −0.01 (0.95) −0.21 (0.71) 0.03 (0.84)

PV = positive value; CL = comprehensible lyrics; GS = good song; PS = pornographic song;
GL = good lyrics

4 Discussion

In a small two-part listening experiment, a series of hypotheses concerning the
effect of section order on ‘refrein’ perception semantic interpretation of a song and
appreciation of a song were tested. The latter, however, was assessed only in an
exploratory way.
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4.1 ‘Refrein’ Perception

Concerning ‘refrein’ perception, the results for both songs are in line with the main
hypotheses that section order affects ‘refrein’ perception and, consequently, that the
question whether a song part is perceived as a ‘chorus’ or a ‘refrein’ is at least
partly dependent on its position within the song. The results are also in line with
the hypothesis that the B section of song 2 is more likely to be perceived as a
chorus in the AABAB version than in the other versions of song 2, although many
listeners who have heard this version still think the ‘refrein’ is in the A sections.
This indicates that section order is an important factor in ‘refrein’ perception, but
that, nevertheless, there are essential differences between an AABAB song and a
verse-verse-chorus-verse-chorus song.

The results for song 1 are not in line with the third hypothesis. The B section
was not more likely to be perceived as a ‘chorus’ or as a song section containing the
‘refrein’ in the AAAABAABc version of that song. Conversely, many participants
turned out not to recognize a ‘refrein’ in this version at all. However, these results
do show that the AAAABAABc form has made it less likely that the A section
is or contains the ‘refrein’. The fact that in the second instance the B section was
not a good alternative to the A section or parts of it may be due to the fact that
the second B section was not a verbatim repetition of the first one. As mentioned
before, the second B section of the AAAABAABc version in the first experiment
was a verbatim repetition of the first one [27], and in that experiment, the B section
or a part of it turned out to be chosen more often as the ‘refrein’. Moreover, the fact
that in all song versions of song 1 have urged at least some participants to designate
the B section as a ‘refrein’, while this is not the case for the B section in the AABA
version of song 2 shows that the mere fact that there is some alternation between A
and B sections can ’turn’ the B section into the ’refrein’, at least for some persons.

These results indicate that both position and verbatim repetition are important
features of a ‘refrein’. Verbatim repetition of an entire song section can even
overrule the more frequent verbatim repetition of a refrain line, although the results
for both songs show that also song sections with varying lyrics but including one
or two refrain lines or words can be perceived as ‘refrein’ (in the sense of chorus).
This raises the question as to whether AABA songs in which the As and Bs represent
separate sections and not parts of a verse or a chorus should be considered chorus-
chorus-bridge-chorus songs. However, it seems to be more likely that A sections in
AABA songs or related songs such as the AABAABAAc song in this experiment
are neither verses nor choruses.

4.2 Interpretation

Concerning interpretation, only the results for song 2 are in line with the hypotheses
stated in the introduction. Not only is there a significant effect of section order
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on the interpretation of the song, but the interpretation of the AABAB version
is also more B oriented than the interpretation of the other two versions. What
is more, although the differences between the AABA version and the AABABA
version are not significantly different concerning A-section bias, the A-section bias
tends to be less strong in the AABABA version, and two interpretations are not
chosen for that version at all. So, it seems to be the case that this version is
interpreted slightly different than the AABA version, although there are no extra
lyrics involved. Remarkably, the two interpretations that were not chosen in reaction
to the AABABA version were interpretations which, according to the author, are at
odds with parts of the lyrics. So, in his eyes, the AABABA version is interpreted not
only slightly different but also slightly more correct.

The fact that the results for song 1 are not as predicted does not mean that they
are totally at odds with all hypotheses regarding the effect of presentation order on
interpretation. In fact, the hypothesis that the interpretation of the AAAABAABc
version would be more B-section oriented than the interpretation of the other
versions was based on the assumption that the B section of this song version or
a part of it was also more likely to be perceived as a ‘refrein’ of the song in that
version. As observed and explained above, this was not the case, so it would have
been rather puzzling if the interpretation was more B-section oriented. However, just
as the B section was designated to be the ‘refrein’ in all song versions of song 1 by
at least some participants, also several participants have chosen an interpretation of
the song which was more or less B-section oriented in reaction to all song versions.
In line with that, and with hypothesis 5, a multilevel repeated measure analysis
of the relationship between ‘refrein’ perception and interpretation showed that a
participant who thinks the A section or a part of it is the ‘refrein’ also tends to choose
for an A-section-oriented interpretation of the song, whereas participants who think
that the B section, or parts of it, can be considered to be a ‘refrein’, whether or not
in combination with the A section (or parts of it) tend to choose for a more or less
B-section-oriented interpretation.

Future research could investigate the relationship between ‘refrein’ perception
and interpretation in the data of the previous experiment with song 1 as well. Apart
from differences in the judgments concerning the AAAABAABc version, there are
also some other remarkable differences between the results of both experiments.
Possibly, these differences have something to do with the participants’ age (52
on average in the earlier study, versus 26 in the current one). Differences in life
experience and musical culture may have caused other interpretations and other
ideas of what a ‘refrein’ is.

4.3 Valuation

As expected, there were no significant differences in aesthetic and ethic evaluation,
probably due to sample size. However, as expected, just as in the earlier experiment,
appreciation for the ABABAAAAc was lower than for the AAAABAABc version,
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which is in line with RAS rules. Additional research with a much larger sample size
is required in order to investigate whether this is indeed an effect of late repetition.
Other interesting differences are those concerning GS and PS. The fact that GS is
higher but not significantly higher for the AABA version of song 2 than for the
other versions is in line with the hypothesis that the verbatim repetitions in the other
versions would not decrease the appreciation for these songs, but is at odds with
literature suggesting that verbatim repetition of song lyrics would increase liking
[19]. As other authors have argued before, it seems likely that the acceptability
of repetition is limited, particularly if song lyrics are involved [11, 15, 21, 27].
Therefore, additional research with a larger sample size and more songs is required
to investigate to what extent verbatim repetition of song sections is accepted. Finally,
the differences in PS are in line with the assumption that the B-section-oriented,
AABAB version is perceived as more pornographic and less respectful towards
women than the other versions of song 2. If these differences would turn out to
be significant in research with a larger sample size, this would show again that song
section order affects the interpretation of a song in a predictable way.

4.4 Covariates

As reported in the results section, some of the variables concerning musical and
literary sophistication, used as covariates, turned out to be significant predictors
of variables indicating appreciation for lyrics, i.e. the factor representing passive
literary enjoyment and the Gold-MSI Emotions scale. However, these effects did
not affect the effect of song version.

4.5 Limitations

Apart from the fact that sample size may have been too small to detect significant
differences in either aesthetic or ethic valuation, sample composition may have
affected the results as well. Differences between the results of the earlier experiment
with song 1 and the results of the current experiment with the same song cannot be
explained by the use of another AAAABAABc version only. Probably, the age of
the participants, which was twice as high in the earlier experiment, has caused a
different perception of the song.

Another limitation is that the results for the AAAABAABc versions with either
a varying or a verbatim repeated B section are difficult to compare because they are
in different studies with apparently very different participants. So, in hindsight, it
would have been better to include both AAAABAABc versions in this study. For
song 2, it would also have been helpful to include a fourth version, i.e. an AABABA
version in which the last A section was not exactly the same as the first one (except
for a few connectives) but in which it was really a new A section.



348 Y. P. Schotanus

Apart from that, the fact that this study involves only two specific songs makes
it impossible to detect general rules concerning the effect of song section order.
However, as far as it falsifies existing assumptions, its results are of general interest
in themselves. And as far as this study develops new hypotheses, it can give direction
for further research involving more songs and including a straightforward verse-
chorus song with a harmonically stable chorus turned into a VVCVCV song.

Another limitation may be that the effects of formal structure (particularly, of
section order and repetition) on ‘refrein’ perception, interpretation and valuation
can, or even should, be assessed in several other ways. Questions can be focused
more on emotional meaning [28], can be targeted more on the effect of specific
song sections (e.g. on the question whether a repeated song section is perceived as
meaningful or not) [25] or can be measured through bodily reactions such as skin
conducting and brain potentials [36].

Finally, one may argue that the results of this study are weakened by multiple
comparison. In the target sections concerning ‘refrein’ perception and interpretation,
there were seven regressions and only two of them showed a significant effect with
a p factor small enough to resist a Bonferroni-like correction through multiplying
it by 7. However, several of these analyses were conducted on strictly separated
data sets, i.e. data concerning song 1, and data concerning song 2. Moreover, the
insignificance of the regression regarding song version-dependent interpretations of
song 1 could have been expected, because of the insignificance of a possible section-
oriented bias ‘refrein’ perception. Finally, the results of the different analyses
strengthen each other. For example, if ‘refrein’ perception in song 2 is significant,
and the connection between ‘refrein’ perception and interpretation in both songs is
significant, it cannot be the case that the section-oriented bias in song 2 is completely
coincidental.

5 Conclusions

The results of a small listening experiment, following an experiment reported on
earlier, showed that section order (including the use of verbatim repeated sections)
affects ‘refrein’ perception and (semantic) meaning of a song. Several alternative
song versions of two songs were created digitally. The original version of the songs
consisted of several A sections containing several refrain lines or words and one or
two B sections. Participants were less sure that the refrain lines in the A section or
the A section as a whole was the ‘refrein’ of the song after hearing a song versions
in which the B section was put in a chorus position, or in which the B section was
repeated verbatim. Moreover, after hearing such a song version, they were less likely
to choose an A-section biased interpretation.

An exploratory inspection of the differences in appreciation for the different song
version showed some interesting tendencies, which require further investigation
using a larger sample size.
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These results show that formal structure in popular music is much more complex
than is often assumed and cannot simply be categorized in terms of strophic songs,
verse-chorus songs, AABA songs and verse-chorus-bridge songs. Refrain lines in A
sections and repeated B sections (either verbatim or not) both can be perceived as
the ‘refrein’ of the song and to contain its main message. As a result, the ‘refrein’
of a song cannot be detected on the basis of strict formal properties. For example,
not every section which is repeated verbatim is a chorus. Apparently, the ‘refrein’
is a song part that is repeated at least once and is perceived as the core of the song
semantically. These conclusions are strengthened by the fact that the stimuli were
created digitally, avoiding performance-dependent confounding factors.
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1 Introduction

Imagine a lightning without the thunder or a river without the ripple or a knock at
the door without someone arriving physically! Feels incomplete, right? In the world
around us, at any point of time, our eventual and emotional experiences are a post-
cognition composite of the data received from all five human senses—auditory and
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visual counterparts being the most involved among them. So, it is expected that the
emotional experience triggered by only a set of visual or auditory stimuli will be
significantly different from when they are experienced together by the audience.
The same is applicable for our memories also. Listening to a familiar song can
often bring back memories of the ambience where it was first heard, and revisiting
a painting in a museum or a home can evoke auditory memories of conversations or
an accidental tune from that occasion. Our aesthetic experience being multimodal,
these associations also influence the listening and viewing experiences. Such asso-
ciations, accidental or intentional, fall broadly into three categories—indifferent,
compatible, or incompatible. Not all sounds and visuals match with each other—
where in some cases, they complement each other (like the ripple sound and the
visual of a flowing river) to offer a more fulfilling emotional experience, and in other
cases, they may contradict each other (like mourning of people beside funeral pyres
burning against a scenic sunset at Varanasi riverbank). Depending on the inherent
characteristic features of the concerned audio and visual counterparts, the degree of
compatibility between the two varies. The same is applicable in the case of music-
visual arts intermediality also. Musical features like tempo, loudness, continuity or
visual features like dynamicity, orderliness, crowdedness, etc. primarily determine
the nature of emotions evoked through them individually. When they are associated
with each other, if the features and consequently the emotional expectation of the
music match with that of the visual artwork, they appear as compatible, whereas
if the features of the music and the artwork contradict each other, they appear as
incompatible to the audience. Where one does not necessarily see any assonance
or dissonance between the two can be called an indifferent association. Both music
and abstract paintings are very powerful tools capable of evoking a wide range of
emotions among the audience, and this work attempts to explore the variations in the
total emotional outcomes for a compatible and incompatible combination between
the two.

1.1 Musical and Visual Attributes

The primary three attributes which characterize any acoustic signal are its pitch,
loudness, and timbre [1]. According to Plack and Oxenham [2], pitch itself is a
very important attribute of any auditory stimulus as pitch enhances human ability to
perceptually identify different sound sources, depending upon differences in their
fundamental frequencies, and also helps us to group together the individual sound
components, or harmonics, that arise from the same vibrating source. Although
pitch primarily manifests the frequency-related information of the sound signal,
it also depends on the sound pressure and the waveform of the stimulus [3].
Frequency of sound is an objective physical quantity, scientifically measured in
Hertz (Hz), describing the periodic properties of the signal [4], but pitch is a
subjective perception that is measurable only by psychophysical investigation.
Most of the sounds that we hear every day, especially the musical ones, are
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superposition of many different simultaneous frequencies, but the human auditory
system combines them into a single percept of one overall pitch [4]. Another most
important component of sound is its loudness, which is the manifestation of the
intensity or square of amplitude of the vibrating particles, but loudness also has
some subjective perceptual component in it and is most commonly measured in
dB SPL unit. From a realistic perspective, it is often seen that when the intensity
of a natural sound source increases, its frequency also tends to increase, and vice
versa. We can observe the same during the acceleration of an engine and human
speech [5]. These positive correlations in nature and everyday experience have made
people form a mental link between loudness and pitch [5, 6]. Interestingly, Repp [7]
reported that during music listening, people expect that the melody lines that rise
in frequency will also rise in intensity. A number of studies on music psychology
explored a wide range of frequencies, intensities, and timbres and have concluded
that changes in any of these perceptual dimensions can influence perceptions of
the others [4–6]. The other most important musical features are tempo, pauses, and
finally the nature of complexity of the composition. Gabrielsson [8] suggested that
musical tempo has major influence on listeners’ emotional experiences. Researchers
found that audiences have a tendency to relate fast tempo and major modes with
joyful or exciting emotions, and slow tempo and minor modes with calmness or
sadness [9, 10]. The distribution and lengths of pauses within a musical piece, on the
other hand, influence the element of surprise or curiosity in the listeners’ minds [11].
Finally, compositional complexity-wise, music of chaotic, loud, and powerful nature
are often observed to evoke anger, excitement, anxiety, depression, social isolation,
and loneliness [12, 13]. In the domain of visual arts also, a number of previous
studies tried to analyze the emotional content related to a particular painting through
a number of basic visual features such as line, color, texture, shape, etc. Artists use
these features creatively to portray a variety of emotions, e.g., in color—saturation,
brightness, and hue are the three properties which play crucial role in determining
the valence of emotional expression [14–16]. In a similar manner, the use of lines
[14], texture [16], shape, form, and space [17] innovatively in the painting leads
to the variation of emotional affect in the observers. Painters use lines to indicate
movements and to characterize the changes in feelings, e.g., calmness or relaxation
is denoted by horizontal lines, while vertical lines indicate stability, diagonal lines
increase tension, and flow is characterized by curvatures [14]. Hough transform is
a special technique to describe the measures of static and dynamic lines. Shapes,
although having two dimensions, i.e., height and width, are also characterized by
features like angularity, roundness, or their simplicity and complexity [17]. Apart
from these, there are a number of methods which involve automated emotion
recognition from several abstract paintings using a variety of classification features
like SVM based on local image statistics [18]. Looking at the associations between
auditory and visual features, we observe that sounds can provide visual information
to the perceiver about their surroundings by helping them to visualize the position
and characteristics of the sound sources. The Doppler effect or Doppler illusion,
described by Christian Doppler in 1842, reveals that the pitch of a moving sound
source increases as the source approaches the observer, and vice versa. Neuhoff
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and McBeath [19] suggested that in a similar way, musical frequency can influence
the perceived distance between the listener and the sound source. Our everyday
experiences also suggest that lower-pitched sounds tend to be linked with larger
objects, while soft or low-volume sounds signify that the emitter is distant. These
audiovisual correlations which are frequently observed in nature and our everyday
experiences often lead the observers to form a mental link between them. These
types of mental links were exhaustively explored by the researchers in the domain of
consumer cognition and behavior [20]. Recent literature have given further emphasis
on investigating such sensory correspondences [21, 22]. Hagtvedt and Brasel [23]
explored how in the context of advertising and promotions understanding the effects
of musical frequencies on consumers’ perceptions and decision-making enhanced
the marketers’ trading ability. Although aesthetic objects are composites, they have
distinctive orientations in terms of the earlier mentioned visual and musical features.
In this work, we have chosen a few of them and studied the complementary or
contradictory quality among them in order to explore the nature of intermediality
between music and visual arts.

1.2 Intermediality Between Music and Visual Arts

Intermediality refers to the translation or connectivity of expressions between two
mediums—here music and visual arts. Music can capture and hold our attention
naturally, through its rhythmic and melodic tensions [24]. Theories related to
psychology of music suggest that music listening creates an associative connection
with personal memories and meanings [25]. Music helps us to disconnect from the
real world and reconnect to a virtual environment (immersion). From the desire to
hear the ancient musical sounds depicted through the poetic ekphrasis on a Greek
vase, Keats wrote “heard melodies are sweet ... those unheard are sweeter.” In these
two lines, Keats expressed the role of imagination in the aesthetic experience of
ancient Greek vase-painting [26]. Music-induced visual imageries play a big role
in the intermediality of emotions between the two mediums. Juslin and Västjfäll
[27] observed that listening to music clip often induces imageries in the audience’s
mind that can evoke emotions in the process. Cognitive neuroscientists identified
this phenomenological experience as the involuntary musical imagery (INMI)
which happens spontaneously and without conscious control of the audience while
she/he is listening to a music piece [28–30]. Musical features can induce episodic
memories triggering reminiscing of past incidents, but while experiencing emotions,
an audience can also be influenced by incidents and visual imageries not associated
with episodic memory. Such kind of visual imageries may be created by similarities
in structure [27] or other sociological and cultural associations. Particular musi-
cal components, namely, chronological reappearance; predictability in harmonic,
rhythmic, and melodic components; and tempo, are effective in stimulating various
imageries [31]. Tsang and Schloss [32] identified that color associations can change
with the change in musical tempo. Previous research has demonstrated that musical
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soundtracks can influence the emotional impact, interpretation, and memorization
of visual information [33]. On the other hand, Boltz et al. [34] explored the reverse
relationship, i.e., whether visual information influences the perception and memory
of music and concluded that visual information differentially influenced the per-
ceived emotion of the melody as well as distorted the melody recognition process.
In a more recent study, Campos-Bueno et al. [35] investigated whether the affective
value (valence and arousal) of paintings can be manipulated by pairing them up with
music of opposite affective values in an attempt to neutralize their valence. They
observed that when presented simultaneously, music exhibits a superior emotional
“power” over painting. Whereas the paintings caused stronger variability in valence
and arousal, the music featured stronger effects on valence. In another important
work, while studying the quality of experiences, emotionality, and associations
evoked by music, paintings, and odors, Herz [36] revealed that the subjective and
objective measures of emotional arousal can vary significantly irrespective of any
musical type. He concluded that although the quantitative results show that odors
caused higher emotional arousal compared to music and paintings, the participants
believed that music was able to affect their moods and emotions more than the other
two aesthetic sensory stimuli. Gaskill [37] investigated a performance-based art
involving color-music, where projections of moving luminous hues on a screen were
used to study the association between abstract colors and their cultural meanings.
In this context, the names of color-musician Alexander Wallace Rimington and
painter Wassily Kandinsky must be mentioned. Cuny et al. [38] investigated the
influence of music on e-behavioral intentions of 250 participants about revisiting
and recommending a virtual art gallery, which revealed that music promotes e-
behavioral intentions. They concluded that emotions and contemplation mediate this
intermedial effect. These findings have immense application potential in website
designing. Researches on sound design have further revealed that music can play a
complementary role on the consumers’ response to a product [39]. Additionally, the
congruent association between music and visual enhances positive emotions [40]
and can help in better memorization of the advertised message [41].

1.3 Background of the Present Study

The earlier review of literature suggest that there have been many attempts in
the domain of aesthetics, arts, and marketing research in order to academically
understand and commercially use the intermedial relationship between different
genres of music and visual arts. However, studies are probably nonexistent that use a
comprehensive methodology encompassing multi-approach analysis methods where
both the source characteristic features of the music and visual art as well as their
individual and combined emotional impact on human mind could be studied from a
rigorous scientific quantitative perspective. Another interesting fact is that none of
the previous studies used abstract paintings to study this emotional intermediality
while viewing them simultaneously with music. Our present study attempts to
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address all these inadequacies by investigating if (and how) instrumental music
integration of complementary and contradictory nature can influence the emotional
experience of viewing an abstract painting using feature, audience response, and
fractal analysis. The reason behind choosing abstract paintings for this study is their
capability of emotion communication only through the basic visual elements (like
lines, colors, shapes, orientation, etc.) used in the composition without introducing
the context of any objective meaning-making by associating them with realistic
objects or events [42]. Thus, through the elimination of semantic dominance,
abstract paintings, emotion expression-wise, match well with the abstract emotion
evoking nature of instrumental music (also refrained from the semantic influence of
lyrics). Hence, a study on the combination of these two will allow one to delve into
the intricacies of basic visual and musical features beyond the semantic objectivity
and search for the structural origin of intermediality between them.

1.4 Roles of Features, Audience Response, and Fractal
Analysis in Exploring Intermediality

Study on intermediality between music and visual arts involves two very strong
emotion evoking as well as technically well-explored aesthetic stimuli and demands
multi-approach understanding about the details of audiovisual integration from
its origination to its perception and cognition. Hence, detailed studies using the
available well-established content analysis methodologies, on the music pieces and
abstract paintings chosen for this study, are expected to give us significant informa-
tion about the musical and visual features of the individual paintings and music
clips as well as the feature-related similarities, dissimilarities, and compatibility
between them. Along with that, extensive audience response surveys can help us
to understand the emotional responses of the participants toward the individual
paintings and music clips as well as the changes in their emotional response
pattern when the two modes are integrated. Earlier researches have revealed that
music signals feature a very complex behavior as at every instant components
(both in micro- and macroscale) like pitch, timbre, accent, note sequence, melody,
etc. are closely linked to each other [43–45]. A number of studies have shown
the nonstationary and nonlinear nature of music signals [46, 47], but most of
the available linear feature extraction techniques for analyzing time series data
(like Fourier transform) are unable to capture the intricate details of the nonlinear
fluctuations present in the acoustical waveforms. Hence, a non-deterministic/chaos
based approach is needed in understanding the nonlinear and nonstationary music
signals [45, 48–50]. Chaos theory, one of the most fascinating discoveries of the
twentieth century, is the science of surprises. It is the science of the nonlinear
and the unpredictable. The nonlinear technique, which will be used in this work,
is detrended fluctuation analysis (DFA) (basically an offshoot of chaos theory)
and as a result yields fractal dimension (FD) with which the inherent symmetry
scaling present in the complex time series of music can be quantified. Similarly,
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fractal analysis of paintings was first reported in the seminal paper published in
Nature by Taylor, Micolich, and Jonas [51], who analyzed a number of the famous
artist Pollock’s drip paintings. With the help of the evaluated fractal dimension, D,
they provided an algorithm with which the authenticity of the paintings could be
corroborated. They also showed that the fractal dimension of the paintings created
by a particular artist changes over time. Later, there have been a number of criticisms
and counter-criticisms regarding this work [52–55], but the fact is, till date, fractal
techniques remain one of the most robust methodologies that can be used to quantify
the patterns used in a particular painting. The main criticism for Taylor’s seminal
claim was that “D” was too low to draw any plausible conclusion, while those
defending Taylor, including himself, claimed that physical fractals are studied under
limited magnification norms. Taylor et al. [55] also studied the interconnection
between neurobiology and fractals. Using various biosensors like MRI, EEG, and
skin conductance, he established that human stress levels are reduced simply while
looking at fractals, and thus the first evidence of physiological measurement of the
aesthetic appeal of fractals was proposed. Taylor says that in visual perception,
the most elemental abstraction is the deconstruction of an image in terms of just
lines and colors. The traditional DFA technique introduced by Peng et al. [56]
was extended to the two-dimensional surface by Gu and Zhou [57] to quantify the
scaling nature of images. Since then, it has been applied in a number of studies
including classification of MRI images [58], for generating music from photographs
[59] and also for retina image classification [60]. In this paper, we focused on
these basic abstractions of simple and complex paintings and instrumental music
clips in the form of various visual and musical features and tried to study their
intermediality in the emotional perception of viewers by audience response analysis
and source characteristics analysis by calculating the scaling exponents of each
abstract painting and instrumental music.

2 Experimental Details

Eight abstract paintings of varying complexity of composition, painted by famous
artists like Jackson Pollock, Wassily Kandinsky, and František Kupka, and eight
short piano clips (each of 1-minute duration) of different tempo and complexity were
chosen for this experiment. Based on their simplicity or complexity of composition,
the chosen paintings were named as SP1, SP2, SP3, SP4, CP1, CP2, CP3, and CP4,
whereas the chosen music clips were named as SM1, SM2, SM3, SM4, CM1, CM2,
CM3, and CM4. All the used abstract paintings and music clips are available at
https://bit.ly/3wLV2fp. Figure 1a and b show two of the abstract paintings chosen
for this study as sample images. The feature analysis for each of the paintings and
music clips was performed to identify the dominant visual and musical features.

Based on the results of feature analysis and review of previous literature, a
set of ten musical features (slow-fast, soft-loud, high pitch-low pitch, fragmented-
continuous, chaotic-ordered) and ten visual features (static-dynamic, cool-warm,
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Fig. 1 Two sample abstract paintings with (a) complex and (b) simple compositions

empty-crowded, fragmented-continuous, chaotic-ordered) were identified. Through
an online survey, 45 non-artist (who are untrained in both music and visual
arts) participants rated the individual paintings and music clips based on their
characteristic features from the given sets of visual and musical features. An
audience response survey was also conducted on the same group of 45 participants
where they were asked to mark the emotions (from a given set of 11 emotions—
happy, sad, anger, fear, calm, tensed, surprise, disgust, romantic, heroic, exciting)
for each of the abstract paintings as well as musical clips individually on a five-
point Likert scale (where 1 is lowest and 5 is highest intensity of a particular
emotion). Following a significant time gap they were asked to mark the emotions
for the same abstract paintings again, but this time, different complementary or
contradictory music clips were playing simultaneously in the background during the
image viewing task. While viewing the paintings along with music, the participants
also rated the compatibility between the specific painting and music for each video
clip in a similar five-point scale. Finally, an in-depth nonlinear DFA was performed
on the images and the music clips to understand their inherent symmetry scaling
behaviors, and the resulting scaling exponents were compared to identify a scientific
basis for the nature of intermediality between the two mediums.

3 Methodology

For the acoustic source characteristics analysis, the chosen eight piano clips
were normalized to 0 dB and digitized at a rate of 44.1 kHz at mono-channel
16-bit format. Using one-dimensional DFA, which is conventionally performed
following the algorithm of Peng et al. [56], and following the methodologies used in
[49, 61], the DFA scaling exponent or the long-range temporal correlation present
in the chosen music clips was calculated. For extracting the scaling exponents
corresponding to the eight abstract paintings, a novel 2D-DFA algorithm [62–64]
is used here:
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3.1 2D-Detrended Fluctuation Analysis

This section describes the steps for computing Hurst exponent using the two-
dimensional DFA algorithm for a grayscale image I . The steps are as follows:

(1) The profile xi,j is computed using:

xi,j =
i∑

n=1

j∑

m=1

(Ii,j − Ī ) (1)

where m = 1, 2, . . . ,M, n = 1, 2, . . . , N, In,m = 0, 1, . . . , 255 is the brightness of
the pixel at the coordinates (m, n) of the grayscale image and Ī represents the mean
value of In,m.

(2) The profile xi,j is divided into square segments of size s×s. We have considered
the total number of such small square regions as Ls . The value of s lies in the
following range:

smin ≈ 5 ≤ s ≤ smax ≈ min{M,N}/4.

We start the algorithm by setting the initial value of s as smin.

(3) Considering a small square region of size s × s denoted by l, an interpolating
curve (local trend) is computed using the formula:

Gi,j (l, s) = ali + blj + cl (2)

for the lth small square region, using a multiple regression procedure. Here, 1 ≤ i,
j ≤ s, and al , bl , and cl are the coefficients for the lth square which are to be
determined using the least squares regression method.

(4) The variance V in the lth small square region is computed for s as follows:

V (l, s) = 1

s2

s∑

i=1

s∑

j=1

(xi,j − Gi,j (l, s))
2 (3)

This variance should be minimized.

(5) The root mean square F(s) is computed as:

F(s) =
[

1

Ls

Ls∑

l=1

V (l, s)

]1/2

(4)
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where Ls denotes the total number of the small square regions of size s × s. After
that, the value of s is increased by unity and steps 2 to 5 are repeated until the
maximum value of s (i.e., smax) is reached.

(6) The values of F(s) for corresponding values of s are stored. If xi,j has a long-
range power-law correlation characteristic, then the fluctuation function F(s) is
observed as follows:

F(s) ∝ sα (5)

where α is the two-dimensional scaling exponent, a self-affinity parameter repre-
senting the long-range power-law correlation characteristics of the surface. We fit a
least squares regression line in a log(F(s)) vs log(s) plot to obtain the slope of the
line as the value of α.

For the three basic color coordinates red, blue, and green, α has been computed
for each chosen painting. The 1D analogue of this technique can be understood
as the first step of the method discussed above and used to calculate the 1D DFA
scaling exponents for all the chosen music clips. Similar to the 1D DFA scaling
exponent, in the case of 2D surfaces also, the α values stay around 0.5 for completely
uncorrelated series or white noise and α > 0.5 indicates that the data is long-range
correlated.

4 Results and Discussions

4.1 Results of Feature Analysis

Abstract Paintings Painting CP1 is a complex abstract composition with different
kinds of line patterns, mostly curved, and bright warm colors. The painting has
very little empty space and looks crowded. The abstract shapes are depicted
asymmetrically, but it has its own harmony. It seems like a very dynamic com-
position. Painting CP2 also has variety of forms, mostly curved line patterns along
with a few spiky straight lines and different color hues. The composition is very
complex, crowded, and dynamic. The colors are mostly dark and bright and there
are multiple tonal variations which create depth and multiple perspectives. It is an
asymmetric composition, but it is rhythmic. Painting CP3 is a complex composition
of continuous color strokes. At the background, this painting has black color strokes
and over that some brown, yellow, and white color strokes. This painting does not
have depth or perspective. It has almost no empty space. Painting CP4 (Fig. 1a)
also features a very complex composition with multiple continuous line patterns
and colors. There are almost no empty space and no perspective. The colors of this
painting are blue, yellow, red, black, white, and brown. The complex distributions of
lines and colors have created a dynamic space in this painting. Painting SP1 contains
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some linear rectangular forms which are dispersed over a white empty space. It does
not have any curve line. The discrete geometric forms of this painting are colored
with red, deep blue, and light blue and they appear as fixed or static. This painting
has a large amount of empty/negative space rather than positive/depicted space.
Painting SP2 again contains different discrete linear geometric forms which have
created a somewhat dynamic composition. This painting has multiple vanishing
points and multiple perspectives. A large amount of this painting is empty, but
the emptiness helps to create the depth in this painting. The geometric shapes
(rectangles) are colored in yellow ochre, purple, sap green, deep green, deep blue,
and light blue. There is no curved line. The empty space has a light grayish pink and
light purple tone. Painting SP3 has a well-balanced composition between colors
and shapes. The black, light red, and light blue colors have created a contrast
composition. There are some discrete rectangular and circular shapes which have
been created by straight lines and curve lines. At the background of these colored
shapes, there is a large amount of white empty space. Painting SP4 (Fig. 1b) mostly
contains straight lines along with some curved lines which creates simple circular
and rectangular shapes, mainly colored in light blue and pale red, on the backdrop
of a large white empty space.

Instrumental Music Clips Music SM1 is a very soft, slow, simple composition
with discrete low-pitched piano strokes being played at equally distributed time gaps
in a very ordered manner, with plenty of pauses throughout the clip duration. SM2
is another soft music clip, with a combination of high- and low-pitched discrete
piano strokes and chords playing at a slightly higher tempo than SM1, but in a
perfectly ordered rhythm cycle. Music SM3 is a composition of discrete single
piano strokes being played at gradually lowering pitches in a slow, soft manner with
long pauses in between. Music SM4, just like SM1, is a soft, slow composition
with discrete combinations of one or two piano strokes being played at equally
distributed time gaps in well-defined rhythm with plenty of pauses. Music CM1
is a very-fast-moving, chaotic piano composition with very little pause and sudden
fluctuations of loudness and a lot of unexpected pitch sequences and nonharmonic
chord progressions. Music CM2, being a typical jazz piano piece, again featured
a lot of unexpected pitch combinations with very short pauses, but the loudness
fluctuation and tempo were slightly lower than those of CM1. Music CM3, a very-
fast-moving piano piece, featured a lot of dramatic fluctuation in loudness, pitch,
and rhythmic patterns and very short pauses only at the rhythmic transitions. Music
CM4 is a very fast piano piece with a combination of soft and loud harmonic piano
pitch sequences and chords along with dramatic pauses and rhythmic changes at
a few places. Figure 2a and b show the pitch contours, power spectrum plots, and
waveforms of Music SM4 and CM1, respectively.
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Fig. 2 Pitch contour, power plot, and acoustical waveform of chosen music (a) SM4 and (b) CM1

4.2 Results of Audience Response Analysis for Exploring the
Music-Painting Intermediality

From the results of feature analysis and the review of earlier literature, ten musical
features—slow-fast (tempo related), high pitch-low pitch (pitch related), soft-
loud (loudness related), fragmented-continuous (pause related), and chaotic-ordered
(compositional complexity related)—were chosen for this study. On the other hand,
from the visual arts domain, ten visual features like static-dynamic (related to the
sense of motion or speed), warm-cool (color related), fragmented-continuous (line
related), empty-crowded (negative or empty space related), and chaotic-ordered
(compositional complexity related) were chosen. Among these features, some pairs
like fragmented-continuous and chaotic-ordered were common for both music and
visual arts, while slow-fast tempo of music could be compared indirectly with
visual features like static-dynamic. Although scientific theories suggest that most
of these features, ideally, will be independent of each other, realistically, a lot
of overlapping was expected among many of them because of the subjectivity
introduced in each of these parameters which can be measured only through
audience response analysis. To study the emotional responses and visual/musical
feature perception of the audience, a group of 45 musically and visually untrained
participants rated the emotions and the features (from the provided sets of emotions
and visual/musical features) corresponding to each individual painting and music
clip chosen for this study. Quantitative analysis was performed to calculate the
percentage of participants who associated any particular emotion or any specific
visual/musical feature with a particular painting/music as well as the weighted
average of their rating in terms of intensity of that particular emotion or dominance
of that specific feature corresponding to that painting/music. Tables 1 and 2 describe
the most associated and highest rated emotions and visual/musical features for the
chosen eight abstract paintings and eight music clips, respectively.

Emotion response of individual abstract paintings (Table 1) revealed that most
of the participants (75.56%) associated happy emotion with painting SP1, but the
highest average intensity (2.87) or intensity was observed for calmness. Paintings
SP2, SP3, and SP4 all exhibited calmness as both the most associated and highest
rated emotion, though among the three, SP4 was associated with calmness by high-
est share of participants (86.67%) with highest degree of average intensity (3.38,
i.e., between moderate and high). Paintings CP1, CP2, CP3, and CP4 all showed
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most associations with emotions like fear, exciting, and tensed, with CP2 being
associated with exciting emotion by largest proportion of participants (91.11%)
among the four. They also showed higher degree of intensity in general compared to
SP1, SP2, SP3, and SP4, with CP3 featuring the highest average intensity for tension
(3.64) among them. Feature analysis revealed that paintings SP1, SP2, SP3, and SP4
were most associated and highest rated with features like static, ordered, cool, and
fragmented with highest associations observed between SP3 and ordered as well as
SP4 and cool (91.11%), while dominance rating of specific features revealed that
SP4 featured highest average rating for ordered (3.70 or close to high). On the other
hand, paintings CP1, CP2, CP3, and CP4 were most associated and highest rated
with features like chaotic, dynamic, and crowded with highest associations observed
between CP3 and chaotic (88.89%), while dominance rating of specific features
revealed that CP1 featured highest average rating for chaotic (4.49, i.e., between
high and very high). Similarly, emotion response analysis of individual music clips
(Table 2) revealed that music pieces SM1, SM2, SM3, and SM4 all showed most
associations as well as highest intensity with calm emotion, with SM3 featuring both
highest association (93.33%) and highest average intensity (4.55) among the four.
Music CM1, CM2, CM3, and CM4 showed most associations as well as highest
intensity with exciting and happy emotions, with CM2 featuring highest association
(84.44%) with excitement among the four. In contrast to the case of paintings, music
CM1, CM2, CM3, and CM4, in general, showed lower degree of emotional intensity
compared to SM1, SM2, SM3, and SM4, with CM3 featuring the highest average
intensity for exciting emotion (4.06) among them. Feature analysis revealed that
music pieces SM1, SM2, SM3, and SM4 were most associated and highest rated
with features like soft and ordered, with highest associations observed between
SM3 and ordered (93.33%), while dominance rating of specific features revealed
that SM3 featured highest average rating for ordered (4.38) as well as SM4 for
soft (4.38). On the other hand, music CM1, CM2, CM3, and CM4 were most
associated and highest rated with features like fast and continuous with highest
associations observed between CM1 and fast (95.56%), while dominance rating of
specific features revealed that CM4 featured highest average rating for fast (4.40,
i.e., between high and very high). Combining the findings of Tables 1 and 2, it was
observed that soft, slow, smooth music clips SM1, SM2, SM3, and SM4 show great
similarity in emotion responses with the static, cool, ordered paintings SP1, SP2,
SP3, and SP4. On the other hand, the crowded, chaotic, dynamic paintings CP1,
CP2, CP3, and CP4 emotionally resembles with the fast, exciting music CM1, CM2,
CM3, and CM4.

Based on these findings, different video clips were made by pairing up each
of the chosen eight abstract paintings with two emotionally compatible and two
incompatible music pieces, and emotional responses to each video clip were
collected from the same 45 participants and again analyzed using the same method
of calculating the percentage of association as well as intensity of a specific
emotion with a particular video clip. Compatibility between the music and image
corresponding to each video was also marked by the participants simultaneously.
Figure 3a shows the variations in percentage of participants associating specific
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Fig. 3 (a) Percentage of association of 11 emotions while viewing painting CP4 without music,
with compatible music (CM3 and CM4), and with incompatible music (SM3 and SM4). (b)
Percentage of association of 11 emotions while viewing painting SP3 without music, with
compatible music (SM3 and SM4), and with incompatible music (CM3 and CM4)

emotions with a particular compatible or incompatible combination of music and
painting for SP3. Figure 3b shows the same for painting CP4. (Due to space
limitations, only a few combinations could be reported here.)

Figure 3a suggests that while viewing without music, emotions like calm and
happy were associated with painting SP3 by most participants. When the same
painting was viewed simultaneously with music SM3 (average compatibility 3.09,
i.e., moderate) and SM4 (average compatibility 3.25 or between moderate and high),
the percentage of association with calm, happy, and romantic emotions increased
compared to the without music viewing condition, whereas pairing up with music
CM3 (average compatibility 2.25, i.e., close to low) and CM4 (average compatibility
2.19 or low) caused clear decrement in percentage of participants who associated
calmness with these combinations while causing an increment in the percentages
of association with music embedded emotions like tension, excitement, anger, fear,
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surprise, etc. A very similar trend was observed in the case of all compatible and
incompatible music integrated combinations for paintings SP1, SP2, and SP4.

Figure 3b suggests that when painting CP4 was viewed without music, highest
percentage of association was observed for tension, followed by excitement, anger,
surprise, etc. When the same painting was viewed simultaneously with fast,
dynamic, chaotic music CM3 (average compatibility 3.50, i.e., between moderate
and high) and CM4 (average compatibility 3.63 or close to high), the percentage
of association with excitement slightly increased, compared to the without music
viewing condition, whereas pairing up with slow-soft music SM3 (average compat-
ibility 2.25, i.e., close to low) and SM4 (average compatibility 2.31, i.e., between
low and moderate) caused clear decrement in percentage of association with tension
and excitement, rather featuring a prominent increment in calmness over all other
emotions, introduced by the dominant contribution of music. All compatible and
incompatible music combinations with paintings CP1, CP2, and CP3 also exhibited
the exact same trend.

Next, looking at the average rating of emotional intensity, we observed a close
resemblance with the previous trends. Figure 4a and b show the average emotional
intensity ratings of 45 participants for 11 emotions corresponding to different
compatible or incompatible combinations of music with painting SP1 and painting
SP4, respectively. Figure 5a and b show the same for painting CP4.

Figure 4a suggests that while viewing painting SP1 in without music condition
(represented by the deep blue line), the average intensity of calmness was highest
among the given 11 emotions, followed by romantic and happy. When viewed
simultaneously with music SM1 (average compatibility 3.00, i.e., moderate, red
line) and SM2 (average compatibility 3.09 or moderate, violet line), the average

Fig. 4 (a) Average intensity rating of 11 emotions while viewing painting SP1 without music, with
compatible music (SM1 and SM2), and with incompatible music (CM1 and CM2). (b) Average
intensity rating of 11 emotions while viewing painting SP4 without music, with compatible music
(SM3 and SM4), and with incompatible music (CM1 and CM3)
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Fig. 5 (a) Average intensity rating of 11 emotions while viewing painting CP3 without music,
with compatible music (CM3 and CM4), and with incompatible music (SM3 and SM4). (b)
Average intensity rating of 11 emotions while viewing painting CP4 without music, with
compatible music (CM3 and CM4), and with incompatible music (SM3 and SM4)

intensity for calm and happy emotions increased compared to without music
viewing condition, and a slight decrement in negative emotions like sadness and
anger was observed. On the other hand, pairing up with music CM1 (average
compatibility 1.94, i.e., close to low, green line) and CM2 (average compatibility
1.78 or between very low and low, light blue line) caused clear decrement in average
intensity of calmness along with a significant increment in the average intensities of
tension, excitement, heroic, anger, fear, surprise, etc. under the dominant influence
of music.

Figure 4b shows that while viewing painting SP4 without music, the average
intensity of calmness was highest among the given 11 emotions, followed by
surprise and happy. When viewed simultaneously with music SM3 (average com-
patibility 3.69, i.e., nearly high) and SM4 (average compatibility 3.53 or between
moderate and high), the average intensity for calm, romantic, and happy emotions
increased compared to without music viewing condition, whereas pairing up with
music CM1 (average compatibility 2.66, i.e., between low and moderate, green line)
and CM3 (average compatibility 2.41 or between low and moderate, light blue line)
caused clear decrement in average intensity of calmness along with a significant
increment in the average intensities of music-induced emotions excitement, tension,
heroic, anger, fear, surprise, etc. A very similar trend was observed for paintings
SP2 and SP3.

Figure 5a suggests that while viewing painting CP3 in without music condition,
the average intensity rating of tension was highest among the given 11 emotions,
closely followed by excitement, anger, fear, and disgust. When viewed simulta-
neously with music CM3 (average compatibility 3.31, i.e., moderate) and CM4
(average compatibility 3.66 or close to high), the average intensity for all the
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inherent emotions of the painting remained unchanged except slight occasional
increment in excitement and some decrement in sadness, anger, fear, etc. On the
other hand, pairing up with music SM3 (average compatibility 2.28, i.e., low)
and SM4 (average compatibility 2.34 or low) caused a complete change in the
participants’ emotion arousal pattern with significant decrement in average intensity
of tension, excitement, heroic emotions, as well as anger, fear, surprise, etc., but
the positive valences like calm, romantic, and happy emotions dominate the overall
emotional arousal under the influence of calm soft music.

Figure 5b shows that just like painting CP3, while viewing painting CP4 without
music, the average intensity of excitement was highest among the given 11
emotions, followed by tension and surprise. When viewed simultaneously with
music CM3 and CM4, slight increment in the average intensity of tension and
excitement was observed, whereas combinations with music SM3 and SM4 again
caused a reversal in the emotional response pattern, with music-induced calmness
featuring the highest intensity in both cases. A very similar trend was observed for
paintings CP1 and CP2 also. Combining all these results, we can clearly observe
that in general, music was showing dominance over the paintings in determining the
total emotional outcome. When the compatibility between the music and the visuals
was higher, the music helped in projecting the inherent dominant emotions of the
paintings, but when the combinations had low compatibility among themselves,
the musical emotions mostly overruled the visual contributions both in terms
of associating a particular emotion with a video and the perceived intensity of
that emotion. Another interesting observation was that in the case of compatible
combinations, the influence of calm-soft-slow music on the static-ordered paintings
was prominently higher than the influence of fast-chaotic music on dynamic-chaotic
paintings.

4.3 Results of Fractal Analysis

1D DFA was used for calculating the monofractal scaling exponent for each of the
chosen eight piano music clips, and their values are reported in Fig. 6. An interesting
trend was observed in the symmetry scaling behavior of the music clips as for all the
chosen four fast, complex, chaotic music clips (CM1, CM2, CM3, CM4), the DFA
scaling exponent featured a lower value compared to those for soft, slow, ordered
music clips like SM1, SM2, SM3, and SM4, indicating a lower presence of long-
range temporal correlations in the case of fast-exciting music compared to slow-
calm music. Among the four fast-chaotic music clips, CM4 featured the lowest DFA
scaling exponent or long-range temporal correlation, and CM1 featured the highest
DFA scaling exponent, whereas among the four soft-slow music clips, SM2 featured
the highest long-range temporal correlation, and SM1 featured the lowest value of
DFA scaling exponent.

On the other hand, analyzing the chosen eight abstract paintings using 2D
DFA technique revealed that in the long-range correlations or the 2D DFA scaling
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Fig. 6 Variation in DFA scaling exponents for the chosen music clips

exponents along the red, blue, and green color coordinates, no such clear distinctive
pattern was observed for complex-chaotic-dynamic paintings and simple-static-
ordered paintings. Rather, both types of paintings featured a combination of high,
low, and moderate long-range correlations along red, green, and blue coordinates.
Among the four complex paintings (Fig. 7a), CP1 featured the highest long-range
correlations along all three fundamental color coordinates, whereas CP3 featured the
lowest values for the same. Overall, paintings CP1 and CP2 featured higher long-
range correlations along RGB axes compared to paintings CP3 and CP4. Among
the four static-ordered paintings (Fig. 7b), SP2 featured the highest long-range
correlations along all three fundamental color coordinates, whereas SP3 featured
the lowest scaling exponent value along red color coordinate and SP4 exhibited
the lowest long-range correlations along blue and green color coordinates. Overall,
SP2 and SP1 featured higher long-range correlations along RGB compared to SP3
and SP4. But the most interesting observation was that for each of the complex-
chaotic-dynamic paintings, the 2D DFA scaling exponents across the three primary
color coordinates yielded almost same values, indicating an equivalent presence of
long-range correlations along these three color axes, whereas for each of the static-
ordered paintings, a visibly higher variation among the long-range correlations
along the three color axes was observed.

This analysis gives us a comparative idea about the inner geometry or more
precisely, the inherent symmetry scaling nature of the eight chosen music clips and
eight chosen abstract paintings, which in the future can help in better understanding
of the origin and nature of intermediality between the two mediums from a scientific
quantitative approach.



Musical Influence on Visual Aesthetics 373

Fig. 7 Variation in the 2D DFA scaling exponents along the RGB coordinates of the chosen (a)
complex and (b) simple abstract paintings

Table 3 Chi-square results
for eight paintings with
different music integrated
combinations

Chi square df N p value

SP1 57.69* 30 1694 0.0017

SP2 56.98* 30 1708 0.0021

SP3 85.11* 30 1753 3.55E-07

SP4 74.15* 30 1753 0.00001

CP1 58.77* 30 1694 0.0013

CP2 50.24* 30 1751 0.0117

CP3 62.94* 30 1732 0.0004

CP4 69.49* 30 1708 0.00006

*p<.05

4.4 Statistical Analysis

To test the statistical significance of our findings, chi-square test of independence
was carried out by considering different compatible and incompatible music inte-
grated combinations for each of the chosen eight abstract paintings as independent
variables and the participants’ emotional responses toward them as dependent
variables. The null hypothesis in this case was that the emotional responses of
the participants were independent of the type of music associated with a specific
abstract painting. Table 3 gives the detailed chi-square results for frequency of
emotion association corresponding to each of the chosen eight abstract paintings
with compatible and incompatible music combinations.

There were four different musical pair ups for each painting, and corresponding
emotional responses from the participants were collected for a set of given 11
emotions; hence, the degrees of freedom were 30 in each case. To test the
hypothesis, we wanted to check if the frequency of association with specific
emotions corresponding to a particular abstract painting changes under the influence
of different types of musical integrations. The results of chi-square test of indepen-
dence revealed that at the previously decided 95% confidence level or p <.05, for
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painting SP1, when integrated with four different music clips SM1/SM2/CM1/CM2,
the frequency of association with 11 different emotions varied significantly [χ2 (30,
N = 1694) = 57.69, p <.05] for different music-painting combinations. Similarly,
for all the other abstract paintings also, irrespective of their level of compositional
complexity, significant associations were observed between the nature of music
integration and the frequency of specific emotion associations at 95% confidence
level. These findings again suggest that music has a very strong influence on the
overall emotional outcome when paired with an abstract painting and experienced
simultaneously by the audience.

5 Conclusion

The objective of this study was to investigate how music of complementary and
contradictory nature influences the emotional experience of viewing an abstract
painting. For this, eight short piano music clips of different tempo and complexity
and eight abstract paintings of varying complexity of composition were chosen. The
intermediality of music and visual arts (here, abstract paintings) was explored using
a three-way approach of feature analysis, audience response analysis, and nonlinear
fractal analysis. The main observations of this study are summarized below.

i. Feature analysis of the individual paintings and music clips suggested that
depending upon the variation in line, color, shape usages, and compositional
complexities in the chosen eight abstract paintings, ten visual features were
identified. Similarly, following the variation in musical components like pitch,
loudness, tempo, pause, and complexity of composition, ten musical features
were identified from the chosen eight music clips. Comparing the visual
and musical features, it was observed that some musical components like
fragmented-continuous, chaotic-ordered have direct resemblances in the domain
of visual arts also, whereas some other musical features like slow-fast have
an indirect correlation with visual features like static-dynamic. Also, there are
some features which are unique to the domain of music (soft-loud, high pitch-
low pitch) or visual arts (cool-warm, empty-crowded). A match or mismatch
in these characteristic features of a music clip and a painting lead to a
complementary or a contradictory relationship between the two.

ii. For audience response analysis, these chosen eight paintings and eight music
clips were used as stimuli for a group of musically and visually untrained
audience (N=45) where they viewed/listened to the paintings or music clips
both individually and after a time gap and experienced them simultaneously in
different compatible and incompatible combinations. The participants marked
their emotional responses corresponding to each painting/music/video clip
along with the compatibility between the painting and the music corresponding
to each video clip. Results of audience response indicated that while viewing
a painting, pairing up with a highly compatible music enhances the arousal
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of the inherent emotional valence of the painting, but the combination with a
contradictory music does the reverse. Rather our findings suggested that music
exhibited a more dominating influence on the entire emotional experience of
the participants over the visuals when they were presented simultaneously.
These results show some agreements with the findings of Campos-Bueno et al.
[35]. We also observed a greater influence of soft-calm music on static-ordered
paintings compared to that of fast-exciting music on dynamic-chaotic-complex
paintings, which suggests that abstract paintings are capable of communicating
high arousal emotions like tension, excitement, anger, and fear more strongly
than positive emotions like calmness, romantic, or happiness, whereas music
can communicate calm and romantic emotions very prominently.

iii. Results of nonlinear fractal analysis using detrended fluctuation analysis sug-
gested that soft, slow, and ordered music clips featured a prominently higher
range of long-range temporal correlations compared to the fast, loud, chaotic
music clips, whereas in the domain of visual arts, we observed that static,
ordered paintings featured a higher variance in the long-range correlations
along red, green, and blue coordinates compared to complex, dynamic, chaotic
paintings. In other words, a closer look upon the source characteristics of the
input music and visual arts stimuli using nonlinear DFA technique could reveal
a great deal of information about the inherent symmetry scaling nature or long-
range correlation present in the two mediums, which in turn is expected to open
a new dimension of scientific research on the origin of intermediality between
music and visual arts.

In the future, this study will be further elaborated to investigate the human brain
responses toward music-visual arts intermediality using neuro-biosensors (like
EEG), and the effects of musical training, visual arts training, and sociocultural
and gender bias on the same will be researched in depth. Nevertheless, the unique
findings of this study have immense importance in the domain of audiovisual
perception and cognition, and their future application in entertainment media
(movies, theatre) as well as in advertisement and marketing.
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1 Introduction

In the field of visual arts, graphic design is a significant area where constant changes
and experiments are noticed with changing time. Graphic designers always attempt
for making a design more attractive to the people with his/her maximum creative
endeavor. On the other side, there are many structural components identified by
researchers that are known and accessible to most of the designers. So, automatically
it became a competitive field. It is believed that an impactful design work is
something that is formal and situation dependent, and a reliable design work can
be created with the arrangements of certain design components as per design
rules (discovered by design researchers like [1] and [2]). It has been observed
that the fundamental strategies of design in the field of applied art have their
individual mechanism/rule and components. Such components and rules are shaped
by the design field, creation methods, purposes, and resources. Among different
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opinions about design principles, there are main six principles that are widely
acknowledged by designers, and the six main graphic design principles are such
as visual-harmony/visual-unity, visual-balance, order/hierarchy, proportion/size,
visual-dominance/specific-emphasis, as well as visual-similarity/visual-contrast [1,
2]. Similarly, if we talk about music, we would find that musical acoustics as a
form of aesthetic expression produced by silence and audible sound for a definite
time duration and has features like musical-pitch, musical-rhythm, dynamism, sonic
quality, timbre, and musical-texture [3, 4]. The crucial question raised here is that
what are the semiotic correspondences found between musical components and
design components, as well as what impact would occur if intermedial translation
is done between these two mediums. In search of an effective music album cover
design of Indian classical instrument music, we attempted these queries. In this
regard, Seker [5] analyzed the Western classical music album covers’ digital age
characteristics by comparing the usage of the main six graphic design principles
before and after 2000s. But there is no such study in context of Indian classical
music album cover so far. Most of the works on such themes have been done in
context of Western music.

Previous studies in this field suggested that musical acoustics and paintings
have certain associations. Both evoke visual imageries and emotion share similar
kind of aesthetic sensibility. For example, intermedial similarities between musical
acoustics and color hues used in paintings are profoundly connected by emotions
[6, 7]. Music can effectively impact on the assessment of figurative as well as
nonfigurative art [8]. Contrarily, music assessment is significantly influenced by
various kinds of visual elements [9]. In this regard, some researchers identified the
perception- and interpretation-related correspondences in the artistic construction of
musical acoustics and visual arts [10].

Musical acoustics induce visual imageries in the audiences’ brain that may evoke
emotional experiences during the procedure [11]. Neuroscientists suggested such
kind of experience as the “involuntary musical imagery” (INMI), which emerges
automatically and with no conscious control of the listener while he/she is listening
to a music clip [12–17]. Musical acoustic can evoke periodic memories triggering
reminiscing of earlier incidents, although while perceiving emotional experiences,
an audience may get regulated with different events as well as visuals that are not
associated with the periodic memory. These visuals could be regulated or formed
by correspondence in construction [11] or other sociocultural associations. Specific
musical features, like sequential repetition, expectedness in musical acoustics,
harmonic and rhythmic components, as well as slow tempo, are successful in
inducing a variety of visual imageries [18]. In this regard, tempo has significant
impact on emotional experience [19]. Many studies have similar observation that
listeners have a tendency to associate faster tempo and major modes with happiness
emotion and slower tempo and minor modes with sadness emotion [20–24]. It has
also been observed that to a great level, color relations depend on musical features.
For example, if the music is regulated in the direction of fast or slow, the audiences’
perception of color relation will change [25].
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1.1 Synesthesia: Music and Visual Arts

Synesthesia is a neurological trait where there is a matching or joining of senses that
are generally not connected. Any stimulation in one sense causes an involuntary
action in one or the other separate sensors. Synesthesia can occur among any
two senses and, in some rare cases, among all the five senses. One such trait –
the ability to visualize music – was a part of Indian traditional learning system
and is well documented in historical musical texts such as Raga Sagara and
Sangeeta Ratnavali, where we have instances of dhyanaslokas. Dhyanaslokas are
short descriptions of ragas or musical modes, which briefly describe the raga as a
male or female divinity or human form with specific personality traits and associated
emotions [26–28]. Interestingly, these dhyanaslokas, in Sanskrit and Hindi, were
written across four centuries and had a great deal of resemblance – for specific
ragas – to one another. Moreover, in visual arts tradition, they were represented
in miniature art across North India as ragamala paintings (with the dhyanasloka
inscribed within the paintings). It was believed that at the deepest level of musical
understanding, the ragas could be visualized as men, women, gods or goddesses
possessing certain traits, and these visualizations were documented as dhyanas –
meditation or contemplation on the embodiment of music as forms.

Experiments with synesthesia in the visual arts date back several centuries further
in time than scientific research into the subject. Since the seventeenth century,
artists have actually been dealing with the connections between various sensory
modalities. The Italian artist Arcimboldo, as an example, explored at the court of
Rudoph II in Prague by accompanying the hearing of music from a harpsichord
with the sight of corresponding images of strips of colored paper [29]. At the end of
the nineteenth century, scientific examinations into audition colorée (shade hearing)
began to come to be a substantial area of psychological research. Prior to that time,
artists, including painters, dramatists, and also composers, had established a body of
knowledge about how to utilize correspondences between the senses [30]. The focus
on synesthesia has actually transformed the aesthetic sensibilities and visual arts
across the last few centuries. The passion of visual artists in synesthetic sensations
and also communications in between aesthetic stimulations from various sense
modalities has formed the seeds for new art movements. As an example, ideas about
sensory correspondences representing a higher reality by the French poet Charles
Baudelaire had a substantial impact on the mystic paintings of the Symbolists. Ideas
regarding Gesamtkunstwerk (artworks that incorporate music, picture, dance, and
also various other disciplines) by the German composer Richard Wagner encouraged
artists like Wassily Kandinsky and also Piet Mondrian, who ended up being crucial
believer of abstraction in painting [29, 31]. In more modern-day times, the modern
digital arts are indebted to synesthetic experiments right into audiovisual perception
on very early computers in the 50s as well as 60s, by artists like Edgar Varèse in
France and also James Whitney in the United States [32, 33].

Since no tools were available to reveal synesthetic phenomena to audiences
(painters had their combination and artists their musical instruments), these early
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pioneers of synesthetic art were usually developers too. A great example is the
colossal color light organ that Alexander Rimmington constructed at the end of
the nineteenth century [34, 35]. As a result of this kind of engineering, synesthetic
experiments in the visual arts have not only added new concepts but also concrete
tools to the Western society. Scientific study has actually improved these artistic
devices in direct and also indirect ways. The manufacture of digital algorithms to
convert songs right into images appears to have inspired scientific experimental
study. Later, these algorithms located their method into popular culture by their
implementations in personal computers and also on the Internet (e.g., in the video
clip application of music players). The abovementioned evidences of literature
indicate that there is a lack of scientific exploration in context of the impact of
musical acoustics on graphic design, particularly how to create Indian classical
instrumental music album cover design with the help of this particular genre of
music.

1.2 The Present Study

The present study attempted to break the conventional design monotony and to
add some new creative strategies in the Indian classical instrumental music album
cover design. To explore this, we conducted an experimental study with a group
of 30 designers, where two preselected instrumental (sitar) Indian classical music
clips of contrast emotions (previously rated by the audiences as sad/calm and
happy/exciting music) were played at a gap of 1 hour and the designers were asked
to create a suitable album cover for each of the music pieces during listening to them
cautiously. We used semiotic analysis and Detrended Fluctuation Analysis (fractal
analysis) of the chosen music pieces as well as the corresponding cover designs
made by the designers to explore the impact of different musical acoustical features
on the graphic designs of the music album covers and the nature of intermediality
between these two mediums.

It has been observed that musical acoustics has a multifaceted character as
various music features are generally entangled at each moment, moreover in the
context of Indian classical instrumental musical acoustics where musical intensity,
music pitch, timbre, music tempo, and sequential repetition of these musical
components create the entire auditory waveform multifaceted as well as it is not
possible to investigate with the help of deterministic or linear procedures. Such
components bear a resemblance to that of a disorganized and self-similar nonlinear
structure. In the case of graphic design also, various image components, namely,
line features, color hues, different forms, grouping/synchronization, visual harmony,
compositional balance, arrangement order, size/ratio, supremacy/importance, as
well as resemblance/dissimilarity, remain present with some kind of intertwined
way. Therefore, the graphic art naturally creates some amount of complication.
Like musical acoustics, the experimentation on album cover design with simple
deterministic and linear procedure formulates a great level of lose regarding some
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crucial data information; thus, most recent state-of-the-art chaos-based nonlinear
equipment should be implicated to understand the entire structure of musical
acoustic as well as album cover design. In this regard, DFA (Detrended Fluctuation
Analysis) procedure predicts significant amount of connotation, because DFA is
able to scientifically calculate (using quantitative methods) the symmetry scaling
structures existing within the entrenched geometry of the musical acoustics as well
as in the graphic design. Consequently, in the concluding stage, DFA was implicated
on the musical acoustics of the two Indian classical instrumental music clips and the
corresponding music album cover designs to investigate potential correspondences
among these two mediums’ symmetry scaling.

2 Objective of the Study

(i) The objective of this study is to identify whether any intermedial correspon-
dence exists between the musical acoustics and the visual representations when
graphic designers create album cover designs while listening to Indian classical
instrumental music.

(ii) To discover novel methodologies for creating effective and aesthetically appeal-
ing album cover designs for Indian classical music

3 Experiment Details

3.1 Participants

Thirty undergraduate students, who were enrolled in the design program (at
the Architecture and Regional Planning) of the IIT Kharagpur, took part in the
experimentation. They have been taught visual communication in a course. The
participants’ ages were from 18 to 22 years (18 males and 12 females; mean age
20.5 years, SD 1.04 years). None of the participants reported any previous formal
training in music.

3.2 Stimuli Used in the Study

Two Indian instrumental (Hindustani Classical rāga) musical acoustics were used
in this study. The music clips are (a) Komal Rishav Asavari and (b) Jaunpuri drut.
These two musical acoustics had been rated earlier by 70 audiences as sad-peace
(Komal Rishav Asavari) and happy-exciting (Jaunpuri drut) in a self-report method
[36].
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3.3 Materials for the Study

The materials used in this experiment are, namely, white papers (12′′ × 18′′),
Camlin color crayons, and 4B pencils.

3.4 Experimental Process

This experimentation took place in separate experiment rooms (two rooms) where
15 respondents had to take seats (maintaining certain distance) in each experiment
room. The participating respondents were instructed that they would be listening to
an Indian classical instrumental audio piece in a cyclic mode. The audio piece (musi-
cal acoustics) may induce some visual imageries as well as emotional experiences
in their brains, and they had to represent or depict the musical experiences in the
form of a music album cover design of that particular music. The participants were
given the necessary equipment (pencil, paper, color, etc.) for the same. A group of
15 participants were engaged in listening to the Komal Rishav Asavari music piece,
and the other group listen to the Jaunpuri music clip. They were given 1 hour to
complete the task.

3.5 Analytical Strategy

The obtained album cover designs created by the participants were analyzed
using an inter-rater reliability method where four experts were involved in the
evaluation process. The analysis was done in terms of semiotic analysis between
the musical features and the design attributes, taking into consideration the “six
principles” of graphic design, namely, visual-harmony/visual-unity, visual-balance,
order/hierarchy, proportion/size, visual-dominance/specific-emphasis, as well as
visual-similarity/visual-contrast [1]. After that, DFA (fractal analysis) method was
implied to analyze possible correlation and effectiveness of the album cover design
of the corresponding music clips.

4 Methodologies

4.1 Analysis of Musical Acoustics

In the case of musical acoustical investigation, the authors (who are expert in the
field of music) decided specific six segments (every segment time ~ 5 seconds)
from the two Indian classical instrumental music clips. After that, both the musical
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pieces were standardized to 0 dB as well as digitized at a pace of 44.1 kHz at mono-
channel 16-bit form. The pitch contours and intensity contours for both the clips
were generated and illustrated with the help of WaveSurfer 1.8.8p4 software.

4.2 DFA Method for Understanding Musical Acoustics
and Album Cover Designs

Both the music pieces were analyzed with the help of one-dimensional DFA
(Detrended Fluctuation Analysis) method, which measures the degree of self-
symmetry inherently fixed in the musical acoustical time sequence. This technique
is usually implemented following the algorithm of Peng et al. [37]. For each audio
piece, DFA analysis yields a particular specification known as scaling exponent
(α), which is an exclusive quantitative parameter of the long-range temporal
correspondences present in the acoustical time sequence. The significance of α is
almost 0.5 for all uncorrelated sequences, 0 < α < 0.5 for anticorrelated sequences,
0.5 < α <1 for long-range temporal correspondences, as well as α > 1 for powerful
correlations that are not of power-law form. In the present study, we used the
same Detrended Fluctuation Analysis method for extracting the scaling exponent
matching to various album cover design. Novel 2D Detrended Fluctuation Analysis
algorithm is implemented for this reason following the algorithm as specified in Nag
et al. [38]:

4.3 2D DFA Method Details

This section describes the steps for computing Hurst exponent using the two-
dimensional DFA algorithm for an image I. The steps are as follows:

1. The profile xi,j is computed using:

xi,j =
i∑

n=1

j∑

m=1

(
Ii,j − I

)

where m = 1, 2, ···, M, n = 1, 2, ···, N, In,m = 0, 1, ···, 255 is the brightness of
the pixel at the coordinates (m, n) of the image and I represents the mean value
of In,m.

2. xi,j is divided into small regions of size s × s, where s is set as:

smin ≈ 5 ≤ s ≤ smax ≈ min {M,N} /4.
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3. An interpolating curve is computed of xi,j using:

Gi,j (l, s) = ali + blj + cl

in the lth small square region of size s × s, which can be given by using a
multiple regression procedure.

4. The variance in the lth small square region is computed for s = smin, smin + 1,
···, smax, which is given by:

F 2
i,j (l, s) = 1

s2

i+s∑

n=1

j+s∑

m=1

(
xi,j − Gi,j (l, s)

)2

5. The root mean square F(s) is computed as:

F(s) =
[

1

Ls

Ls∑

l=1

F 2
i,j (l, s)

]1/2

where Ls denotes the number of the small square regions of size s × s.
6. If xi,j has a long-range power-law correlation characteristic, then the fluctuation

function F(s) is observed as follows:

F(s) ∝ sα

where α is the two-dimensional scaling exponent, a self-affinity parameter
representing the long-range power-law correlation characteristics of the surface.
α has been computed for red/blue/green color coordinates.

Similar to the 1D DFA scaling exponent, in case of 2D surfaces also, the
measurements are almost similar. That is, when the 2D series is completely
uncorrelated (Gaussian or non-Gaussian probability distribution), the calculation of
the scaling exponent results to 0.5, also called white noise. If α < 0.5, the data is
anticorrelated, and if α > 0.5, the data is long-range correlated.

5 Results and Discussion

To understand the musical structure, we analyzed the acoustical features of the two
music clips in WaveSurfer 1.8.8p4 software. We observed that the Komal Rishav
Asavari has less oscillation in the pitch contour, and it has certain continuity (see
Fig. 1 top section). The intensity contour of the Komal Rishav Asavari indicates that
it has moderate level of fluctuation in the intensity contour, and it is continuous in
nature. The intensity contour of this music also indicates that there are continuous
gliding transitions that look like curve (see Fig. 1 middle section). In the case of
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Fig. 1 Komal Rishav Asavari musical structure (pitch contour, intensity contour, and musical
waveform)

Fig. 2 Jaunpuri drut musical structure (pitch contour, intensity contour, and musical waveform)

Jaunpuri drut, we observed that this music clip has high level of fluctuation in the
pitch contour, which is fragmented and discontinuous (see Fig. 2 top section). But in
the case of intensity contour of the Jaunpuri drut, we observed that this music clip
has less fluctuation between two gliding transitions, and it is continuous in nature
(see Fig. 2 middle section).

5.1 Semiotic Analysis

Semiotic analysis was done on the chosen music pieces (Komal Rishav Asavari
and Jaunpuri drut) and on the corresponding cover designs made by the designers
to understand the impact of different musical acoustical features on the graphic
designs of the music album covers and the nature of intermediality between these
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Table 1 Representation of different musical features through different visual features

Komal Rishav Asavari musical features
Album cover design features
corresponding to Komal Rishav Asavari

Slow gliding transition (meend) between two
notes, continuous transition, smooth
transition, less oscillation between high pitch
and low pitch, slow tempo

Curve line, wavy line, ornamental design,
smooth line, contentious line, dominant use of
light color, light yellow, light blue, light pink,
light orange

Jaunpuri drut musical features Album cover design features corresponding
to Jaunpuri drut

Fast gliding transition (meend) between two
notes, discrete transition, continuous, jumping
transition, sudden oscillation between high
pitch and low pitch, fast tempo

Spiky line, fragmented line, curve line, cross,
pointed line, shaky line, vertical line, scribble,
dominant use of light color, light yellow, light
blue, light pink, light orange

two mediums (music and visual representation). As we know that when direct
association is observed between different objects and the represented visuals, such
depictions are considered as “iconic representation.” When the represented visuals
are not found to be directly identifiable, such depictions are known as “symbolic
representation.” When the represented visuals elicit some other actions (cause and
effect relationship), commonly, they are known as “indexical representation” [6].

The results of semiotic analysis of Komal Rishav Asavari revealed that this
music clip has some distinctive musical features that are mainly slow gliding
transition (meend) between two notes, continuous transition and smooth transition,
less oscillation between high pitch and low pitch, and slow tempo (see Table 1). The
semiotic analysis of the album cover designs corresponding to the Komal Rishav
Asavari revealed that most of the album cover designs were done with curve lines,
wavy lines, ornamental motifs, smooth lines, contentious lines, and dominant use
of light colors like light yellow, light blue, light pink, and light orange (see Fig. 3a,
b). On the other hand, the results of semiotic analysis of Jaunpuri drut revealed that
this music clip has distinctive features like fast gliding transition (meend) between
two notes, discrete transition, continuous, jumping transition, sudden oscillation
between high pitch and low pitch, fast tempo, etc. The semiotic analysis of the
album cover designs corresponding to the Jaunpuri drut revealed that most of the
album cover designs were done with spiky lines, fragmented lines, curve lines, cross
lines, pointed lines, shaky lines, vertical lines, scribble, dominant use of light color,
light yellow, light blue, light pink, light orange, etc. (see Fig. 4a, b).

The semiotic analysis also revealed that while the designers represented their
musical experiences through the album covers, they mostly depicted the album
covers in three different ways, namely, (1) the designers directly represented the
moods and emotions of the music clips in their album cover designs. In this
case, the designers dominantly used symbolic representation followed by indexical
representation. (2) Some of the designers represented the visual imageries that
were evoked by the music clips. This type of album covers have dominant pattern
of indexical representation followed by iconic representation. (3) Some designers
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Fig. 3 (a) Album cover design for Komal Rishav Asavari. (b) Album cover design for Komal
Rishav Asavari

Fig. 4 (a) Album cover design for Jaunpuri drut. (b) Album cover design for Jaunpuri drut

represented the musical features in their album cover designs. This type of album
covers mostly comes under iconic representation (see Table 2).

During the analysis of the album cover designs, the experts observed that there is
significant amount of evidence of the “six principles of design” in the album covers
created by the designers, and the components are, namely, visual-harmony/visual-
unity, visual-balance, order/hierarchy, proportion/size, visual-dominance/specific-
emphasis, as well as visual-similarity/visual-contrast [1].
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Table 2 Different types of musical analogies used by the designers

Designers’ preferences of depiction of their
musical experiences in the album covers Dominant representational category

Musical moods and emotions
Symbolic representation (dominantly) and
indexical representation (subordinately)

Images evoked by the musical acoustics
Indexical representation (dominantly) and
iconic representation (subordinately)

Musical features Iconic representation
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Fig. 5 DFA scaling exponents of the two Raga clips – Komal Rishav Asavari and Jaunpuri Drut

5.2 Fractal Analysis of Music and Comparison with Semiotic

Each of the two chosen raga clips of 30 seconds duration were divided into six equal
parts, and using the conventional 1D DFA technique, the DFA scaling exponents
(or the amount of long-range correlations) for each part of the two input music
stimuli or the two Indian Raga clips (Komal Rishav Asavari and Jaunpuri drut)
were calculated and the detailed results are reported in Fig. 5.

Figure 5 revealed that when the average of the DFA scaling exponents for the
six parts of each raga clip was calculated, the fast tempo Jaunpuri Drut featured an
overall higher scaling exponent or greater long-range correlations compared to the
slow-tempo excerpt of Komal Rishav Asavari. Another interesting observation was
that the variance of DFA scaling exponent between the six parts of the Jaunpuri Drut
was much higher compared to that of Komal Rishav Asavari, which can be attributed
to a higher presence of pitch and amplitude change in the fast-tempo Jaunpuri Drut.
Next, using the two-dimensional extension of the conventional DFA method, that
is, the 2D DFA technique, the long-range correlations along the three primary color
coordinates – red, blue, and green – were calculated for each of the CD cover designs
corresponding to the two Raga clips. Figure 6a, b reported the same in details.
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Fig. 6 (a) DFA scaling exponents along red, green, and blue coordinates of the 15 individual
CD cover designs corresponding to Komal Rishav Asavari. (b) DFA scaling exponents along red,
green, and blue coordinates of the 15 individual CD cover designs corresponding to Jaunpuri Drut

The 2D DFA results of the 15 individual CD cover designs created by the 15
participants corresponding to the two chosen raga clips revealed that for clip A
or Komal Rishav Asavari, the “between subject” or individualistic variations in
the long-range correlations along the red, blue, and green coordinates of the 15
depicted paintings were much lower compared to those cover design corresponding
to Jaunpuri Drut. A detailed observation of Fig. 6a suggested that, among the 15
images corresponding to Komal Rishav Asavari, the long-range correlation along
red color was higher than that of blue and green in four paintings (1A, 5A, 6A,
11A); blue featured a higher correlation than red and green in three paintings (4A,
8A, 13A); green featured higher correlation than red and blue in two paintings (7A,
12A), while the long-range correlations along the three color coordinates or at least
two of them were very close to each other in six paintings (2A, 3A, 9A, 10A, 14A,
15A). Among all the images, highest DFA scaling exponent along red was observed
in 6A, whereas highest long-range correlations along blue and green were observed
in 7A. The lowest symmetry scaling along all three colors were observed in design
13A. Overall, for the CD cover designs related to Komal Rishav Asavari, the results
hint toward a higher possibility of getting equivalent DFA scaling exponents along
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red, blue, and green color coordinates compared to the dominance of long-range
correlation along one color over other two.

A closer look at Fig. 6b suggested that, among the 15 images corresponding to
Jaunpuri Drut, the long-range correlation along red color was higher than that of
blue and green in three paintings (2B, 5B, 7B); blue featured a higher correlation
than red and green in seven paintings (1B, 4B, 6B, 9B, 10B, 12B, 15B); green
featured higher correlation than red and blue in one paintings (3B), while the long-
range correlations along the three color coordinates or at least two of them were
very close to each other in four paintings (8B, 11B, 13B, 14B). Among all the
images, highest DFA scaling exponent along red was observed in 3B, whereas
highest long-range correlations along blue and green were observed in 12B and
3B, respectively. The lowest symmetry scaling along all three colors were observed
in design 7B. Overall, for the CD cover designs related to Jaunpuri Drut, the results
hint toward a greater possibility of getting higher DFA scaling exponent along blue,
compared to the red and green color coordinates. For generalization, we calculated
the average DFA scaling exponents along red, blue, and green coordinates for all the
15 paintings corresponding to each of the two raga clips used for this study. Figure
7a, b shows the results for Komal Rishav Asavari and Jaunpuri drut, respectively.

Figure 7a revealed that, indeed, the CD cover designs by the 15 participants
created after listening to the Komal Rishav Asavari clip exhibited nearly equal
amount of average long-range correlations along all three primary, that is, red, blue,
and green color coordinates, whereas Fig. 7b yielded a gradually increasing long-
range correlations from red to green to blue color coordinates for the 15 designs
created corresponding to Jaunpuri Drut. Figure 7b also featured a higher margin of
errors or higher individualistic variations among participants in the 2D DFA scaling
exponent values along red, blue, and green color coordinates.

Combining the findings of the fractal analysis of the input music clips and the
output images, we observed that for the fast tempo Jaunpuri Drut with higher
variance of long-range correlations throughout the clip, the designers were also
influenced to create designs with a higher subjective variances and their designs
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Fig. 7 (a, b) Average DFA scaling exponents along red, green, and blue coordinates of the CD
cover designs corresponding to (a) Komal Rishav Asavari and (b) Jaunpuri Drut
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featured a higher long-range correlation value along the blue color coordinate com-
pared to that of red and green, whereas the slow-tempo Komal Rishav Asavari with
low variance of long-range correlations throughout the clip inspired the designers to
create designs that featured lesser subjective variances and an equivalent amount of
long-range correlations along all three primary color coordinates of the designs in
most cases.

6 Conclusions

Findings revealed that while the designers represented their musical experiences
through the album covers, they mostly depicted the album covers in three different
ways, namely, (1) the designers directly represented the moods and emotions of the
music clips in their album cover designs. In this case, the designers dominantly
used symbolic representation followed by indexical representation. (2) Some of
the designers represented the visual imageries that were evoked by the music
clips. This type of album covers have dominant pattern of indexical representation
followed by iconic representation. (3) Some designers represented the musical
features in their album cover designs. This type of album covers mostly comes
under iconic representation. A comparative quantitative study on the symmetry
scaling behavior (using fractal analysis) of the acoustical waveforms of the two
music clips as well as the designers’ created images also indicated that there was
a clear correspondence between musical acoustical features and the depicted visual
features in the album cover designs. Moreover, the findings of this study provided
us a new innovative approach for creating music album cover design beyond the
conventional approaches. In the DFA technique, we observed that the fast-tempo
Jaunpuri Drut featured an overall higher scaling exponent or greater long-range
correlations compared to the slow tempo excerpt of Komal Rishav Asavari. Another
interesting observation was that the variance of DFA scaling exponent between the
six parts of the Jaunpuri Drut was much higher compared to that of Komal Rishav
Asavari, which can be attributed to a higher presence of pitch and amplitude change
in the fast-tempo Jaunpuri Drut. Overall, in the findings of the fractal analysis
of the input music clips and the output images, we observed that for the fast-
tempo Jaunpuri Drut with higher variance of long-range correlations throughout the
clip, the designers were also influenced to create designs with a higher subjective
variances and their designs featured a higher long-range correlation value along the
blue color coordinate compared to that of red and green, whereas the slow-tempo
Komal Rishav Asavari with low variance of long-range correlations throughout the
clip inspired the designers to create designs that featured lesser subjective variances
and an equivalent amount of long-range correlations along all three primary color
coordinates of the designs in most cases.
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A Fractal Approach to Characterize
Emotions in Audio and Visual Domain:
A Study on Cross-Modal Interaction

Shankha Sanyal, Archi Banerjee, Sayan Nag, Souparno Roy,
Ranjan Sengupta, and Dipak Ghosh

1 Introduction

Quantification and classification of emotions elicited in humans from different
modalities have intrigued researchers from various domains over the last few
decades. Most of these studies resort to various psychological parameters to measure
the variation of emotional appraisal from two different modalities – say, for
example, audio and visual stimulus. A few of them even try to look into how
the perceptual strength of emotions expressed in the two modalities differ from
one another [1–4]. It is already known that certain emotions (i.e., brief affective
states triggered by the appraisal of an event in relation to current goals; [5]) such
as awe and wonder [6] are frequently reported in relation to the contemplation
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of artworks. These emotions typically occur when the human brain perceives an
object or an event as highly complex and novel, and creates a sense of being
in the presence of something greater than oneself [7]. However, it has also been
recently emphasized that affective responses to art are more diverse and often
include emotions such as sadness [8] and nostalgia [9], which are also experienced
in other everyday situations that do not involve contemplation of artworks. If we try
to look into more basic features of a painting, i.e., the usage of basic colors (red,
green, and blue) along with their offshoots, earlier works [10–17] suggested that
warm colors – such as red, yellow, and orange – can spark a variety of emotions
ranging from comfort and warmth to hostility and anger. On the other hand, cool
colors – such as green, blue, and purple – often spark feelings of calmness as
well as sadness. A recent study [18] outlines the effect of variation of hue and
saturation on emotional perception. From the emotional ratings, they claim that
saturated and bright colors were associated with higher arousal, with the arousal-
based activities being significantly affected by the hue of the colors used, increasing
from blue and green to red. The ratings of valence were the highest for saturated
and bright colors and also depended on the hue. Strezoski et al. [15] provides a
new interface – ACE, the Art, Color and Emotion browser, which essentially is a
platform for exploring the visual sentiment and emotion in artistic paintings over
time. Regarding the association of the two modalities – color and music – with
emotion, a number of studies [18–20] look into the cross-modal interaction between
the two. While some studies posit that the emotional appraisal corresponding to
the two are similar in effect, others suggest differently. Palmer et al. [19] found
strong correlations (0.89 < r < 0.99) between emotional associations of music with
the colors chosen to go with the music in an experiment performed on US and
Mexican population, supporting an emotional mediation hypothesis in both cultures.
Barbiere et al. [17] report that brighter colors such as yellow, red, green, and blue
were usually assigned to the happy songs, and gray was usually assigned to the
sad songs concluding that music-color correspondences occur via the underlying
emotion common to the two stimuli. However, all these are psychological studies
based on analysis of behavioral response data. The correlation of the behavioral
response data with the computational data obtained from the mathematical analysis
of the source signal data has been attempted in this particular study.

To achieve our goal, we have tried to evaluate long-range temporal correlations
present in the three basic color components in paintings and compare them with
the emotional appraisal related to those paintings. That music is able to elicit a
variety of emotional arousal-based effects in humans has long been known. In
recent years, the use of musical stimuli as an important mean of emotional appraisal
is being developed with special focus on cross-modal transfer of emotions [21–
25]. Most of these studies look into the psychological and cognitive aspects of the
musical and visual stimulus, focusing mainly on how the musical priming affects the
emotional appraisal corresponding to the visual domain. Very few studies take into
consideration the source characteristics of the input audio and visual stimuli [20,
26] mainly due to the lack of robust features to quantify them. The development
of the International Affective Picture System (IAPS) has been followed by a similar
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collection of sounds, the International Affective Digitized Sounds (IADS) [27, 28] –
a series of naturally occurring human, nonhuman, animal, and environmental sounds
(e.g., bees buzzing; applause, explosions). In two experiments by Bradley and Lang
[29], it was shown that valence and arousal ratings of these sounds were comparable
to affective pictures from the IAPS. On a physiological level, emotionally arousing
sounds elicit large electrodermal activity, which is generally known to be sensitive
to the arousal of emotional stimuli.

In this paper, the main aim is to classify the emotional sound and visual stimuli
solely from their source characteristics, i.e., the time series generated from the
audio signal and the two-dimensional matrix of pixels generated from the affective
picture stimulus. The sample data consists of six audio signals of around 15 seconds
each and six affective pictures, of which three from each category belongs to
positive and negative valence, respectively. The emotional ratings corresponding
to the visual and audio stimulus were standardized a priori with the help of
different psychological tests and corroborated with standardized measures present in
literature. The present work aims to provide a comparative assessment of the results
of psychological tests in the perceptual domain with the mathematical quantitative
output obtained from the multimodal source signals itself. As a powerful mathe-
matical tool, fractal theory initiated by Mandelbrot [30] has been widely applied
to many areas of natural sciences ranging from DNA sequencing [31], economics
[32], and heart rate variability [33] to quantifying EEG signals [34–37]. Since the
simple iterative algorithm in the fractal theory can generate a variety of complex
images, fractal dimension is considered as an effective measure of the complexity
of the target object. A robust tool called Detrended Fluctuation Analysis (DFA)
have been applied here to calculate the long-range temporal correlations or the
Hurst exponent corresponding to the auditory signals [38–40]. A higher value of
the scaling exponent (α) implies greater complexity corresponding to the audio
signal in question. The 2D analogue of the DFA technique have been applied on
the array of pixels corresponding to affective pictures of contrast emotions, which
essentially gives the long-range spatial correlations of individual color components.
We have utilized the scaling exponent (or the Hurst exponent) obtained from the
audio clips and the visual images as a robust parameter to quantify their emotional
valence. Thus, we have a single unique scaling exponent corresponding to each 1D
audio signal and three scaling exponents corresponding to red/green/blue (RGB)
component in each of the visual images. The DFA scaling exponents obtained in
this manner have been used as a quantitative classification parameter for identifying
emotional cues in auditory and visual domain using the source signals itself. Further,
correlation features among the paintings and audio clips have been extracted
using the 2D/1D Detrended Cross-correlation (DCCA) technique [41, 42]. This
nonlinear correlation technique gives the degree of correlation between the two
individual domains (audio and visual) and highlights on the applicability of cross-
modal transfer of emotion between the two domains from a mathematical point of
view. Using the DFA scaling exponents from the audio and visual clips, Pearson
correlation coefficient was also calculated to further elucidate on the point of direct
correlation between the two modalities. To conclude, we propose a novel algorithm
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with which emotional arousal can be classified in cross-modal scenario using only
the source audio and visual signals while also attempting a correlation between
them. The study is expected to go a long way in research on multimodal interaction
of emotional cues across multiple domains. The results and implications have been
discussed in detail.

2 Experimental Details

2.1 Choice of Three Pairs of Audio and Visual Stimuli

Six clips of around 15 s each (three clips each belonging to the positive and negative
valence) were chosen from the IADS [29] database of musical clips and normalized
for acoustic analysis. In a similar manner, six famous paintings were chosen, of
which, conventionally, three belonged to the positive and negative valence each. All
the clips and paintings chosen were subjected to human response analysis of 50
participants to validate the emotional appraisal of each of the stimulus chosen. The
human response test was conducted in standard laboratory setting of Sir C.V. Raman
Centre for Physics and Music, Jadavpur University. Table 1 is the template that was
provided to the participants for the psychological response test on the paintings and
sound clips suggested by Eerola et al. [43, 44]. Tables 2 and 3 give the details of
audio clips and paintings that were chosen for analysis and used as a stimulus for
the psychological tests. The participants were asked to mark the emotions in a 10-
point Likert scale as per their choice, and they were free to rate the clips/images in
more than one checkboxes. The audio clips were presented to the participants in a
jumbled manner followed by the paintings after an interval of 5 min.

In the following sections, using novel nonlinear methodologies, a correlation
study is performed across the cross-modal domains to establish the degree of
emotional appraisal that is transferred corresponding to the type of stimulus used.

Table 1 Psychological
rating template of the audio
clips (along with details)
chosen for analysis

Clip no. Anger Fear Happy Sad

1
2
3
4
5
6
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Table 2 Details of the audio clips chosen for analysis

Clip no. Ground truth Album name Piece title Composer’s name

1 Happy Shallow Grave The Gardener John Carmichael Band
2 Happy Nostradamus Dawn of Creation Judas Priest
3 Happy Shine The Cranberries: “Salvation” Jesus Jones
4 Sad Psycho Marion Bernard Herrmann
5 Sad Big Fish Return to Spectre Danny Elfman
6 Sad Band of Brothers The Wall Willie Nelson

Table 3 Details of the paintings chosen for analysis

Image no. Ground truth Painting title Painter

1 Happy Sunflower Vincent Van Gogh
2 Happy Japanese Vase Vincent Van Gogh
3 Happy Almond Tree Vincent Van Gogh
4 Sad The Tragedy Pablo Picasso
5 Sad Starry Night Vincent Van Gogh
6 Sad Sailboats at Sunset Ferdinand du Puigaudeau

3 Methodology

One-dimensional Detrended Fluctuation Analysis (DFA) is conventionally done
following the algorithm of Peng et al. (1994) and using the methodologies used
in [37] and Sanyal et al. [35, 45]. In this work, for extracting the scaling exponent
corresponding to different paintings, we propose a novel 2D DFA algorithm here:

3.1 2D Detrended Fluctuation Analysis

This section describes the steps for computing Hurst exponent using the two-
dimensional DFA algorithm for a gray scale image I. The steps are as follows:

The profile x is computed using:

x =
M∑

i=1

N∑

j=1

(
Ii,j − I

)
(1)

where i = 1, 2, ···, M, j = 1, 2, ···, N, Ii,j ε {0, 1, ···, 255} is the brightness of the pixel
at the coordinates (i, j) of the gray scale image, and I represents the mean intensity
value of the image I. Here, the size of the image I is given by M × N.

The profile x is divided into square segments of size s× s. We have considered the
total number of such small square regions as Ls. The value of s lies in the following
range:
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smin ≈ 5 ≤ s ≤ smax ≈ min {M,N} /4. (2)

We start the algorithm by setting the initial value of s as smin.
Considering a small square region of size s × s denoted by l, an interpolating

curve Gi, j(l, s) (local trend) is computed using the formula:

Gi,j (l, s) = ali + blj + cl (3)

for the lth small square region, using a multiple regression procedure. Here, 1 ≤ i,
j ≤ s and al, bl and cl are the coefficients for the lth square that are to be determined
using the least-squares regression method.

The variance V in the lth small square region is computed for s as follows:

V (l, s) = 1

s2

s∑

i=1

s∑

j=1

(
xi,j − Gi,j (l, s)

)2 (4)

This variance should be minimized.
The root mean square F(s) is computed as:

F(s) =
[

1

Ls

Ls∑

l=1

V (l, s)

]1/2

(5)

where Ls denotes the total number of the small square regions of size s × s. After
that, the value of s is increased by unity, and steps 2 to 5 are repeated until the
maximum value of s (i.e., smax) is reached.

The values of F(s) for corresponding values of s are stored. If xi,j has a long-range
power-law correlation characteristic, then the fluctuation function F(s) is observed
as follows:

F(s) ∝ sα (6)

where “ ∝ ” means “is proportional to”, “α” is the two-dimensional scaling expo-
nent, a self-affinity parameter representing the long-range power-low correlation
characteristics of the surface. Thus, F(s) is proportional to sα , and we fit a least-
squares regression line in a log(F(s)) vs. log(s) plot to obtain the slope of the line as
the value of α.

The 1D analogue of this technique can be understood as a gross generalization
of the method discussed above.

For investigating power-law cross-correlations between different simultaneously
recorded time series in the presence of nonstationary signals, 1D Detrended Cross-
correlation Analysis (DCCA) [41] has been used in many cases. Here, we generalize
it in two-dimensional analogue to extract the degree of correlation present between
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different paintings. Additionally, 1D DCCA was also applied to assess the cross-
correlation parameters corresponding to the audio clips of contrast emotion.

3.2 2D Detrended Cross-Correlation Analysis (DCCA)

This section describes the steps for computing cross-correlation scaling exponent
using the two-dimensional DCCA algorithm for two gray scale images A and B.
The steps are as follows:

The profiles x and y are computed using:

x =
M∑

i=1

N∑

j=1

(
Ai,j − A

)

y =
M∑

i=1

N∑

j=1

(
Bi,j − B

)
(7)

where i = 1, 2, ···, M, j = 1, 2, ···, N, Ai,j ε {0, 1, ···, 255}, Bi,j ε {0, 1, ···, 255} are
the brightness of the pixel at the coordinates (i, j) of the gray scale images A and B,
respectively, and A and B represent the mean intensity values of the images A and
B, respectively. Here, the size of each image is given by M × N.

Both xi,j and yi,j are individually divided into small regions of size s × s, where s
is set as:

smin ≈ 5 ≤ s ≤ smax ≈ min {M,N} /4. (8)

1. Considering a small square region of size s × s denoted by l, interpolating curves
(local trends) for xi,j and yi,j are given by Gxi,j and Gyi,j that are computed using:

Gxi,j (l, s) = axli + bxlj + cxl

Gyi,j (l, s) = ayli + bylj + cyl

(9)

in the lth small square region of size s × s, which can be given by using a multiple
regression procedure. axl, ayl, bxl, byl, cxl, and cyl are the coefficients for the lth
square, which are to be determined using the least-squares regression method.

The variance in the lth small square region is computed for s = smin, smin + 1,
···, smax, which is given by:

V (l, s) = 1

s2

s∑

i=1

s∑

j=1

(
xi,j − Gxi,j (l, s)

) ∗ (
yi,j − Gyi,j (l, s)

)
(10)
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The root mean square F(s) is computed as:

F(s) =
[

1

Ls

Ls∑

l=1

V (l, s)

]1/2

(11)

where Ls denotes the number of the small square regions of size s × s.
If the profiles are long-range power-law correlated, then the fluctuation function

F(s) is observed as follows:

F(s) ∝ sλ (12)

Thus, F(s) is proportional to sλ as shown in the above equation with the help
of a proportionality sign “∝”, and “λ” is the two-dimensional scaling exponent
computed from the regression plot of log(F(s)) vs. log(s). The power-law relation
increases as λ increases or decreases. λ = 0.5 indicate the absence of any cross-
correlation, while λ >0.5 indicates persistent long-range cross-correlations and λ

<0.5 indicates anti-persistent cross-correlations, while λ >1.5 indicates long-range
cross-correlations of power-law form [41, 51, 52].

Thus, using the values of λ for different types of data, we compute the power-law
cross-correlations existing in the multimodal data consisting of musical clips and
paintings. Figure 1 shows a representative regression plot of log(F(s)) vs. log(s),
where the 2D DFA scaling exponent “α” (derived from Eq. (6)) of Images 1 and 2
is shown alongside their analogous 2D DCCA scaling exponent “λ” (derived from
Eq. (12)).

Fig. 1 Regression plot to compare the 2D DFA and DCCA scaling exponent for Images 1 and 2
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4 Results and Discussion

Tables 4 and 5 represent the weighted average normalized values of the emotional
ratings corresponding to the audio and visual clips used for the human response
test of 50 participants. The maximum value for each emotion was 10, while the
minimum value was 1.

For classifying the emotional ratings corresponding to the images and clips, we
took the help of the 2D circumplex model proposed by Russell [46] (Fig. 2), where
emotions are classified in a 2D circular plane along two axes, namely, valence and
arousal. These axes are expected to correspond to the internal human representations
of emotion.

Using Fig. 2 as our baseline, we have generated radar plots (Fig. 3a–f) comparing
the arousal-based effects generated from the clips and images. For this particular
study, we had only two target emotions, “Happy” and “Sad.” The other two
emotional axes, namely, “Anger” and “Sad,” were mainly used as distractors chosen
randomly. The maximum rating in each emotional axis was 10; hence, the arousal
ratings have a maximum rating of 9 corresponding to each emotional axis. The
scales have been standardized for all the figures. The emotional valence has been
shown using the four axes, and the arousal ratings have been plotted on each of the
axis.

As can be seen from Fig. 3a–f generated from human response analysis, the
emotional appraisal corresponding to the chosen clips almost matches with that of
the standardized measures, i.e., Clips 1–3 and Images 1–3 belong to the positive
valence axis, while Clips 4–6 and Images 4–6 belong to the negative valence axis
of the Russell’s emotional sphere. Corresponding to the cross-modal transfer, the
only difference found is in the arousal axis (here, we have represented the arousal
axis with the help of ratings 1–7), where it is seen that the arousal-based effects for

Table 4 Psychological
ratings of the audio clips
chosen for analysis

Clip no. Anger Fear Happy Sad Target

1 1.00 1.00 7.33 1.00 Happy
2 1.00 1.00 7.17 1.17 Happy
3 1.00 1.00 7.17 1.00 Happy
4 1.17 1.00 1.00 7.67 Sad
5 1.00 1.33 1.17 7.50 Sad
6 1.00 1.67 1.00 7.50 Sad

Table 5 Psychological
ratings of the paintings
chosen for analysis

Image no. Anger Fear Happy Sad Target

1 0.35 0.20 8.91 0.62 Happy
2 0.10 0.05 8.17 0.13 Happy
3 2.12 0.25 8.29 0.23 Happy
4 1.71 1.33 0.65 6.95 Sad
5 0.09 1.27 2.15 6.88 Sad
6 0.90 0.32 2.75 6.35 Sad
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Fig. 2 Russell’s 2D
circumplex model of
emotions [46]

Fig. 3 (a–f) Emotional rating of six audio clips and paintings

negative valence images, i.e., Images 4–6 (Fig. 3d–f) are on the lower side compared
to that of the audio clips. In this way, we have a standardized measure of each of
the stimulus corresponding to both auditory and visual domain using a behavioral
response test.

In the next part of our work, DFA exponent was computed for the six audio clips
and the six paintings that were put to analysis. In the case of the paintings, αred,
αgreen, and αblue were computed corresponding to the red, green, and blue color
component of the painting analyzed. In the following figures, the DFA exponent
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Fig. 4 DFA exponent of audio clips
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Fig. 5 DFA exponents (color-wise) of visual stimuli

corresponding to each clip and visual stimuli have been plotted. Figure 4 shows
the scaling exponents for the six audio clips, which have been classified a priori to
positive and negative valence using behavioral measures as described above, while
Fig. 5 denotes the scaling exponent for the paintings.

From Fig. 4, it is evident that the scaling exponents of Clips 1 to 3 are lower as
compared to the scaling exponents of Clips 4 to 6, i.e., the LRTC present in Clips
1 to 3 are lower than the temporal correlations present in Clips 4 to 6. This can
be attributed to various acoustic features of these clips like tempo, rhythm, etc., but
the mathematical manifestation here is the decrease/increase in long-range temporal
correlations. From Fig. 5, it is evident that the scaling exponents of blue and green
colors in Images 4 and 6 are marginally higher than Images 2 and 3. The case is
similar for correlations present in each of the three basic colors. Also, an interesting
observation is that αgreen and αblue, i.e., the scaling exponents corresponding to
green and blue color, show the maximum increase for Images 4 to 6 (which were
classified as evoking sad emotions). Thus, the manifestation of sad emotion can be
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Fig. 6 Cross-correlation scaling exponent (λ) for different clips

attributed to higher order of correlations present in the blue and green color of a
painting.

In the next part of our work, the amount of nonlinear cross-correlation existing
between the auditory and visual stimuli is evaluated individually using the DCCA
(1D and 2D) technique. A higher value of cross-correlation scaling exponent,
i.e., λ >0.5, indicates strong persistent long-range cross-correlations, while λ >1.5
indicates long-range cross-correlations of power-law form [40, 41, 47–52] among
the two signals chosen. Figures 6 and 7 represent the values of λ for different
combinations of auditory and visual stimuli, respectively.

It is to be noted that in Fig. 7, before calculating the cross-correlation scaling
exponent for the visual stimulus, we took an average of the three cross-correlation
exponents (i.e., an average of λred, λgreen, and λblue) obtained from the previous
analysis for the simplification of the obtained results.

In Fig. 6, it is seen that the cross-correlation scaling exponent for audio clips
belonging to the same valence is on the higher side as compared to the clips
belonging to opposite valence. The clips that have been rated as “sad” are the
ones that show highest order of long-range cross-correlation, while the clips rated
as “happy” also show strong cross-correlation but lower than the “sad” ones. The
inter-valence cross-correlations are however much lower than these, while for some
pairs, there is almost “no correlation,” which is evident from the cases where the
value of cross-correlation scaling exponent λ is almost 0.5. From Fig. 7, it is seen
that the amount of long-range cross-correlation among Images 4 to 6 is the highest
of all the combinations present here, while the correlation among the Clips 1 to 3
is the lowest. Thus, we have an indirect classification of emotional appraisal even
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while performing DCCA also. While the images that have been rated as “sad” have
higher order of cross-correlation among them, the “happy” rated images have lower
order of long-range cross-correlation. The inter-valence cross-correlation scaling
exponents (i.e., the order of cross-correlation among happy and sad images) lie
somewhere in between the two cross-correlation values.

5 Conclusions

In this work, we have presented a novel algorithm to automatically classify and
compare emotional appraisal from cross-modal stimuli based on the amount of
long-range temporal correlations present in the auditory and visual stimulus. This
particular methodology takes into consideration the inherent fluctuations, self-
similar patterns, and the nonstationary condition present in both audio and visual
clips and acts as a mathematical microscope to quantify the same in the form
of scaling exponents or degree of correlations. The study provides the following
interesting conclusions:

1. For both the auditory and visual stimulus, an averaged DFA scaling exponent
of anything greater than 1.5 denotes stimulus belonging to “sad” category. This
becomes more evident from Fig. 8 below:

2. The DFA scaling exponent corresponding to blue and green color is highest in
the case of “sad” images, while the DFA exponent for “happy” images is high
for red color. When we consider the averaged scaling exponent for the paintings,
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Fig. 8 Clustering of emotions in audio clips with DFA

Fig. 9 Clustering of emotions in paintings with 2D DFA

the difference between “happy” and “sad” is not that stark as opposed to that of
audio clips, which is evident from Fig. 9:

As is evident from the clustering pattern, the classification precision is higher for
the audio clips as compared to that of the images, though no overlap is observed
even in the averaged DFA values of visual clips. This result is somewhat similar to
what we have already found in the psychological response data, where the intensity
of the valence in the case of “sad” paintings was found to be lower as compared to
that of the audio clips.

3. The DCCA scaling exponent shows that the amount of cross-correlation is
strongest among the sad clips, while the amount of cross-correlation is lowest
for the inter-valence clips.

4. From Fig. 7, it is observed that the averaged cross-correlation scaling exponent
for happy images is very low (with values lying around “1.3”) while that for
sad images is considerably high (with values lying around “1.8”). On the other
hand, the amount of nonlinear cross-correlation between happy and sad images
interestingly lies between the two (with values ranging between “1.3” and “1.8”).
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Table 6 Pearson coefficient values of DFA exponents from two modalities

Happy (audio) vs.
happy (image)

Happy(audio) vs.
sad (image)

Sad (audio) vs.
happy (image)

Sad (audio) vs. sad
(image)

0.987 0.29 −0.493 0.96

5. To establish the cross-modality or the amount of emotional transfer from
one medium to another, Pearson correlation coefficient is computed from the
variation of DFA values belonging to the stimulus from two modalities. The
values of Pearson correlation have been reported in Table 6.

From the Pearson coefficient values shown in Table 6, it can be concluded that
correlation is highest across two modalities when the clips are from same valence,
while in the case of clips from opposite valence, degree of correlation is very low or
in some case negative. Thus, an indirect quantitative correlation is obtained between
the emotional appraisal of the cross-modal bias of auditory and visual stimuli.
Future applications of this novel methodology include emotion quantification from
two different domains and also quantification of cross-modal transfer of emotions.
This is a pilot study in that direction.
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Inharmonic Frequency Analysis of Tabla
Strokes in North Indian Classical Music

Shambhavi Shivraj Shete and Saurabh Harish Deshmukh

1 Introduction

Analyses of the sound of music and the frequencies associated with the musical
notes have been always a topic of great interest amongst the related researchers.
Typically, the sound is measured by its amplitude (dB), frequency (Hz) and duration
(sec). There exist a fourth dimension to the sound which itself is a multidimensional
called timbre [1]. This attribute of the sound is the one that differentiates the sound
of the same amplitude, frequency and duration. For example, the human ear can
clearly distinguish the difference between sound produced by a flute and a violin
playing C5 notes of the same amplitude, frequency and duration. Although Indian
classical music is melodious in contrast with Western music which is harmonious,
the musical instruments that are used exhibit harmonious behaviour. It is interesting
to analyse the sound production pattern of Indian musical instruments such as
Tanpura, Sitar, or percussion instruments like Tabla. The musical instruments are
broadly classified as string, woodwind, brass and percussion. These instruments
operate on the principle of acoustic resonance. An acoustic resonance occurs when a
musical instrument amplifies its sound frequency that matches with one of its natural
frequencies of vibration [2].

In recent years with the advancements in technology, and development in various
signal processing techniques, analysis of sound originated from various musical
instruments has become easy to some extent. An essential component of any music
is its rhythm and musical instruments producing rhythmic structure to assist the
vocalists or instrumentalists. Tabla is one of the majorly used accompanying rhythm
instruments for North Indian classical music (NICM).
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Some pitched musical instruments exhibit the harmonic behaviour of overtones.
Harmonics are the integer multiple of the fundamental frequency of a vibrating
object [3]. These harmonics are higher in frequency and lesser in magnitude than
that of the fundamental frequency. When a metallic string, fixed between two points
keeping sufficient tension, is plucked in the middle, several harmonics are generated
along with the fundamental frequency. If F is the fundamental frequency, then the
first harmonic is at 2×F frequency value. Similarly, all other upcoming harmonics
will be 3×F, 4×F, 5×F and so on. When a note A4 is played at 440 Hz, it has the
harmonics 880 Hz, 1320 Hz, 1760 Hz and so on. The musical instruments based on
metallic strings or air columns are harmonic [4].

There also exist some musical instruments that have a high degree of inharmonic-
ity to produce a musical tone. Inharmonicity is the degree to which the overtones
differ from their harmonic overtone locations [5]. In such kinds of instruments, the
peaks are not in the multiple integer ratios. When a note is played, the fundamental
frequency attains the highest magnitude of energy, and the overtone signal energies
exhibit diminishing behaviour. The overtones are the resonant frequencies that are
not whole multiples of the fundamental frequency [6]. The overtones are produced
from the musical instruments Sitar and Tanpura creating a sympathetic resonance
of the sound. When the Western string instrument violin is plucked, by applying the
different pressure on the bow, the overtones are generated [7].

The sound produced from the circular membrane of percussion instruments also
emits overtones. According to hyper-physics, the overtones produced by circular
drum membrane are 1, 1.59, 2.14, 2.30, 2.65 and 2.92 multiples of the fundamental
frequency [8]. The overtones of a drum membrane are not harmonic. This is due
to the physical quality of a drum that makes the drum inharmonic. A vibrating
circular membrane has an extra dimension that generates symmetric and asymmetric
vibrations [9]. In Timpani, inharmonic frequencies are produced with asymmetric
vibrations with integer multiples of 1, 1.35, 1.67, 1.99, 2.30 and 2.61 [10]. The
North Indian classical music percussion instrument Tabla is a single pitch musical
instrument. The Tabla membrane has a paste applied and dried on its surface, called
Syahi (ink). Due to the gradually reducing thickness of the ink from the centre
towards the edges, the instrument produces inharmonic overtones.

In this research, we have analysed the overtone patterns of basic Tabla strokes
and correlated the overtone frequencies with the musical notes. This research could
be useful to the Tabla players and musicians to design, tune and play the Tabla
instrument as per the requirements of the musical notes of the Raga of North
Indian classical music [11]. The research document is organized section-wise in
the following way. Section 2 elaborates the research conducted so far and focuses
on various basic Tabla strokes produced by left, right and both the Tabla drums
simultaneously. The Tabla stroke mode generation and progression with respect to
nodal diameter and nodal circle produced by Tabla drum membrane is explained
in Sect. 3. Section 4 explores the spectral analysis of eight overtones of each basic
Tabla strokes. Finally, Sect. 5 summarizes the results obtained from the spectral
analysis of the Tabla strokes and their corresponding musical notes.
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2 Literature Review

The Tabla is a single-sided drum that contains two drums: left and right drums.
The left drum also called Dayan is made up of steel or metal alloy. The drum is
spherical. This drum is used to emit base frequencies. Traditionally, in NICM the
left drum instrument is not tuned with any musical note. The Tabla player ensures
that the skin of the drum is not too loose nor too tight. If the skin is left loose, the left
drum stroke frequencies are very low and do not produce any harmonic overtone.
If the drum skin is too tight, then instead of giving a moderate bass frequency, the
drum produces multiple out-of-order frequency mixtures.

The left drum is played by resting 1/3rd of the hand over the membrane, and the
strokes are played by using the first or middle finger keeping the rest of the hand
touching the surface of the membrane. Most of the time, the Tabla player rests his
hand and wrist on the open surface of the membrane. The wrist and the fingers are
used such that the wrist touches the ink at one end and fingers hit the drum at the
exact opposite side of the ink.

The right drum Tabla is made up of wood, usually teak wood. The size of this
drum is smaller than the left drum. Its shape is spherical and narrow towards the
open end. The membrane is laced and tightened with animal skin hoops and is
tightened at the bottom of the drum [12]. The membrane of both the drums is made
up of goatskin with three layers. The first layer and third layer cover the entire
area of the open end of both the drums. The middle layer skin is cut with exact
dimensions of the ink that would be applied on the outermost layer. With this kind
of construction of the membrane, due to the ink weight, the membrane vibrates to a
larger extent than that of a drum without membrane ink. The location of the ink over
the left drum is asymmetric to its centre and symmetric for the right drum, applied
in circular form.

The ink is a mixture of iron particles, rice floor, catechu and gum. It is a fine art
to make the paste of these mixtures with consistency and strength. Ink is the most
important component for determining the tone of the Tabla. After applying the ink,
a polished stone of basalt is used to rub the ink repeatedly until it is spread with
reducing thickness. A drum without any such ink when stroked, the sound waves
travel from the centre of the drum towards its rim and return towards the centre
reinforcing and cancelling each other to form standing waves [13]. Due to harmonic
generation and phase cancellation, the sound becomes noisy. When a Tabla player
hits on the Tabla instrument that has ink, the sound is converted into a variety of
sound that generates melody. Also, the instrument generates modulations in it [14].

The Tabla is tuned with a specially designed steel hammer. The claw side is used
to hammer on the dowels and the face side to hammer on the rim of the surface of
the Tabla membrane. A high pitch clear sound is audible from the Tabla membrane
when stretched. So, the tightening of the surface is done by hammering over the
rim and dowels. To reduce the tension over the membrane, the hammer is used
in opposite direction. The circular-shaped cotton rings are kept below each drum
to prevent vibrations generated by Tabla strokes from reaching to the ground and
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back-propagating. It is also used to incline both the drums towards each other to
give comfort to the Tabla player to produce the strokes.

The art and science of Tabla is not a written theory, but the knowledge is
percolated orally from the teacher to the disciples since the inception of this
instrument. Therefore, the knowledge, the abbreviations, the terminologies, stroke
production techniques, etc. differed over the years. For example, strokes ‘Na and Ta’
are the same in some traditions, and in others, the stroke production method makes
them two different syllables.

Tabla strokes are classified as strokes originated from the left drum and from
the right drum and strokes produced by simultaneously hitting both the drums.
To analyse the frequency overtones originated from these drums, it is essential to
understand the stroke production technique for each drum. Small variation in the
location of a finger makes huge changes in frequency overtone production. The
following section elaborates Tabla stroke production method.

2.1 Right Drum Strokes

2.1.1 Stroke Na

The Tabla stroke Na is produced using the forefinger on the right drum. The stroke
is produced by keeping the ring finger on the diameter of the ink. The ring finger
is placed over the membrane in such a way that it does not completely damp the
overtones. This finger plays a prominent role in generating harmonic sound out of
the stroke Na. By touching the ring finger lightly, the Tabla instrument is hit by the
forefinger over the rim producing stroke Na.

2.1.2 Stroke Ta

Ta stroke is produced similar to the stroke Na except with the difference that the
forefinger strikes the Tabla membrane in the space between the ink boundary and
rim boundary called maidan. The ring finger position remains the same as that of
Na.

2.1.3 Stroke Te

The Te stroke is produced by hitting the ink using the forefinger and keeping it on
the ink tightly. This damps the resonating sound of the stroke. In some traditions,
the stroke Te is also produced using the ring finger and middle finger by striking the
ink and keeping the fingers tightly on the ink.
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2.1.4 Stroke Tun

Stroke Tun is produced, similar to the stroke Te, except that the forefinger striking
the ink is immediately lifted to keep the entire membrane resonating.

2.2 Left Drum Strokes

2.2.1 Stroke Ga

Ga stroke is played by using the middle finger at the centre of the left drum
membrane holding the wrist down. This is a resonant stroke and creates open
vibrations. Various pitch frequencies could be heard for different Ga strokes.
Majorly the wrist pressure applied over the membrane decides the pitch frequency
of stroke Ga.

2.2.2 Stroke Ka

Ka stroke is played by striking the left-hand palm sharply over the left drum
membrane and resting it there itself. Usually, the palm covers the entire region of
ink.

2.3 Both the Drum Strokes

2.3.1 Stroke Dha

The stroke Dha is produced by playing both Ga (on the left drum) and Na (on
the right drum) simultaneously. This stroke gives a loud and strong sound. Dha
is produced in various ways. In Delhi style, it is played by simultaneously hitting
both the strokes Ga and Na. In Purbi style Dha, the right stroke Na is played loudly
than the left drum stroke Ga [15].

2.3.2 Stroke Dhin

The left drum stroke Ga and right drum stroke Ta when hit together, a stroke Dhin
is produced. The stroke Dhin is an open stroke in which fingers of both hands are
lifted immediately after striking the membrane. This generates a ringing sound from
the drum.
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2.3.3 Stroke Tin

The Tabla stroke Tin is produced by keeping the left drum stroke membrane covered
by the entire left-hand palm, producing stroke Ka, and simultaneously hitting the
right drum using the forefinger to produce stroke, Tun.

3 Tabla Strokes and Mode Progression

Alike other membrane percussion instruments, Tabla, Mridangam, Pakhawaj,
Dholki, etc. come from a family of percussion instruments in which a special
ink is applied on the right drum membrane. In the research ‘The Indian Musical
Drum’, the author has experimentally proved the mode progression of Tabla strokes
[16]. The author claims that the loading of the drum-head greatly increases the
energy of vibration. The loaded membrane also is responsible for the emission of
sustained tone. The marginal leather ring influences the duration of the tone. It acts
as a damper for higher overtones without disturbing the lower tones.

Table 1 shows Tabla membrane vibration modes considered for overtone analysis
and frequency mapping with musical notes. The modes of a circular membrane of
Indian drum Tabla are labelled as ND and NC where ND is the number of nodal
diameters and NC is the number of nodal circles. In mode of the vibration, the
nodal diameter and nodal circles are the stable regions and they do not participate
in any oscillation [17]. F0 corresponds to the fundamental frequency of the Tabla
stroke exhibiting (0,1) mode, where 0 being the nodal diameter and 1 the nodal
circle produced at the rim representing no nodal diameters but one circular edge.
The sound produced from (0,1) mode radiates equally in all directions towards the
outer surface of the membrane which is called a mono-pole source. The membrane
transfers its vibration energy into sound energy where vibrations are removed away.
This mode does not contribute to the quality of the tone if the duration of the note is
short. This mode is represented by the fundamental frequency of the sound.

Table 1 Mode progression
of Tabla membrane [18]

Frequency Modes Multiplier

F0 0,1 1

F1 1,1 1.59

F2 2,1 2.14

F3 0,2 2.30

F4 3,1 2.65

F5 1,2 2.98

F6 4,1 3.16

F7 2,2 3.50

F8 0,3 3.60
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Similarly, the mode (1,1) represents 1 nodal diameter and 1 nodal circle. The
frequency of (1,1) mode is 1.59 times the fundamental frequency. The sound
produced from this mode oscillates in two directions representing a dipole source.
The half membrane is pushed up, and the half membrane is pushed down. This mode
contributes to the musical sound or pitch because it takes a longer duration to decay.
When Tabla is hit at the centre or the outer surface, the sound has a definite pitch and
is sustained for some time. In this way remaining all the modes could be analysed
with respect to the number of nodal diameters and nodal circles and corresponding
frequency multiplier to calculate the frequency of each overtone.

The frequency multipliers are the constants used to calculate the frequency of
the overtone. These overtone frequencies are mapped with piano scale frequencies.
We have tried to correlate the relationship between fundamental musical notes
produced by the Tabla instrument and the contribution of various other musical
notes generated from the harmonics following the fundamental frequency to give
different timbral perception for each basic Tabla stroke. A correlation of overtones
produced by resonating string instruments such as Tanpura is made here. Although
the harmonics produced by each of the Tanpura instrument strings has been termed
as ‘Shruti’. We could not find any term similar to Shruti for overtones produced
by the Tabla instrument. One of the basic reasons behind this could be that the
membrane skin does not vibrate to the extent to which a string resonates. Even
though we have identified the harmonic structure of the Tabla strokes, which may
not be distinctly audible like Tanpura, it could be sensed through the timbral
structure of the Tabla stroke.

4 Experimental Setup

The audio database is recorded and preprocessed in studio environments. A
professional Tabla instrument with standard size and shape was tuned to the scale
C5. The Ga stroke frequency was kept near to E1. The trained Tabla player was
asked to play nine basic Tabla strokes with a metronome tempo of 80 bits per min.
This ensured a sufficient gap between two successive strokes of the same type. Tabla
player was asked to play each basic Tabla stroke repeatedly for about 3 min.

In this way, nine Tabla stroke audio loops were recorded. Individual Tabla stroke
audio files were manually generated using audio editing software. Similarly, some
basic rhythms from NICM were recorded with a tempo of 80 bpm containing a
different combination of basic stroke. The final audio dataset was prepared by taking
five samples from the former recording and five samples from the latter recording.
Thus, a total of ten audio samples per Tabla strokes are separated. This procedure
was repeated for all nine basic Tabla strokes. Total 90 audio files of duration 1–2
sec with sampling frequency 44,100 Hz, 16-bit pulse code modulation, .wav format
constitutes the final database.

Each audio signal was analysed in the time and frequency domain. Fast Fourier
transform was applied to extract the frequency spectrum. The frequency component
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Fig. 1 Overtone frequency analysis of stroke ‘Na’

with the highest power spectral density (PSD) is treated as fundamental frequency
F0. By using the multipliers, overtone frequencies F1 to F8 were calculated. Based
on the higher power spectral density values of these overtones, prominent overtones
were separated, and corresponding musical notes of these frequencies were mapped.
These high-value overtones contributed to the timbral tonal quality of the stroke. A
common analysis of all the ten samples of each stroke with respect to their overtone
pattern was made. It is found that except for very few negligible noisy audio files,
the behaviour of overtones of all the samples of a single stroke was found to be
similar. Thus, it could be inferred that for all basic Tabla strokes, the pattern of the
inharmonic overtones is similar, and for each stroke, the amplitude of the overtones
also exhibits similar values. Figure 1 shows a graphical representation of eight
overtones of stroke Na for ten audio samples.

There exist different principles of music notations. Typically, the frequency for
equal-tempered scale A4 is 444 Hz; however, there exist various tuning choices such
as 432 Hz, 434 Hz, 436 Hz, etc. The Shruti that is discovered may not coincide with
the exact musical note, but for simplicity of the understanding, we have considered
the nearby musical note for each harmonic overtone. Many times, these frequencies
may minutely vary based on the exact speed of sound in the environment. Also,
the Tabla player may strike the Tabla membrane with different pressure each time
hitting the same stroke. Thus, the mode progression slightly differs due to minute
variations in fundamental frequency. Although all the audio samples are recorded
in the studio environment, Tabla is not an electronic instrument to reproduce each
stroke the same way but an acoustic instrument.

5 Results and Discussions

Frequency analysis of 90 audio excerpts containing ten strokes of each basic Tabla
stroke is analysed here. The purpose of considering multiple audio excerpts of the
same Tabla stroke is two-folded: first, to generalize the system, and the results’
multiple instances would clarify the signal analysis in generalized form, and second,
due to human error of the Tabla player to produce the same strokes multiple times
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including (a) slight change of the locations where the stroke is hit and (b) the
pressure difference applied on the membrane of the drum each time the stroke
is played and see simultaneous hitting of both the drums may vary each time.
The following section may have first analysed the harmonic structure and Shruti
(overtones) produced by right drum strokes, left drum strokes and both the drum
strokes simultaneously.

5.1 Right Drum Strokes

5.1.1 Stroke Na

Na is one of the frequently used Tabla strokes of the right drum. When multiple
samples of Na were analysed in the time and frequency domain, it is observed that
the single stroke Na gives the fundamental frequency of 528 Hz. This corresponds
to the C5 (Sa) musical note at which the Tabla was initially tuned. After fundamental
frequency, the partial modes up to 8th overtones are generated; however, the signal
energy and sustain duration is very low as compared to their signal energy and
sustain duration of the fundamental frequency, making them aurally less significant.
The position of ring finger and its light pressure over the membrane suppress
vibrations produced by (0,1), (1,1), (2,1), (0,2), (3,1), (1,2) and (4,1) modes. On the
other hand, the seventh overtone produced by mode (2,2) shows significant energy
over the other overtones. This can be observed from the magnitude of the power
spectral densities of the frequencies produced by the overtones as shown in Fig. 2.

Fig. 2 Overtone frequency
analysis of stroke ‘Na’
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Table 2 Shruti generated from Tabla stroke ‘Na’

Overtone number Frequency (Hz) Western musical note Indian musical note

F1 840 G#
6 Komal Dhaiwat

F3 1242 D#
6 Komal Gandhar

F5 1573 G6 Pancham

F7 1848 A#
6 Komal Nishaad

The seventh harmonic along with other low-energy harmonics and fundamental
frequency generates timber of the sound produced by stroke Na. It is observed
that the first harmonic F1 is produced due to 1 nodal diameter and 1 nodal circle
produced on the surface of the membrane of the Tabla drum. The third harmonic F3
is produced due to (0,2) mode. The fifth harmonic F5 with mode (1,2) is an additive
combination of harmonics F1 and F3.

The strongest overtone F7 with mode (2,2) is a combination of mode (2,1) (F2)
and mode (0,2) (F3) exhibiting the highest energy density. Mode (2,2) produces a
frequency of 1848 Hz that corresponds to the musical note A#

6. It is also observed
that the odd harmonics 1, 3, 5 and 7 possess more spectral energy than even number
of harmonics. Table 2 shows the frequency chart of the odd number of overtones
generated by stroke Na and their corresponding Western and Indian music notation
(in the Hindi language).

5.1.2 Stroke Ta

Out of majorly performed open Tabla strokes, Ta plays a vital role in the foundation
of any rhythmic cycle or rhythm. Out of ten Tabla strokes containing the stroke
Ta, eight strokes showed similar harmonic structure, and two strokes showed slight
variation in the behaviour of the overtones. The fundamental frequency obtained for
all these strokes was found to be 528 Hz producing musical note C5. A Tabla player
uses Ta stroke to ensure that the Tabla membrane is equally tightened from all over
the surface to produce the fundamental note at which the Tabla is tuned.

Figure 3 shows a graphical representation of all the overtones and their power
spectral density values. The mode (0,1) of the stroke Ta is obtained at fundamental
frequency F0 and subsequent harmonic overtones are calculated. From the power
spectral density obtained for each of these harmonic overtones, it is observed that
the magnitude of signal energy at overtones F1, F4 and F7 is higher than the rest
of all harmonic overtones. F1 harmonic overtone excites mode (1,1) with 1 nodal
diameter and 1 nodal circle. Similarly, the F4 and F7 harmonic overtones excite
modes (3,1) and (2,2), respectively.

The stroke Ta is produced at three locations based on the tradition of the Tabla
player. Some Tabla players produce Ta by exposing the forefinger half over the outer
rim edge and half over the maidan (area between ink and outer rim). Few Tabla
players play only at the maidan, and some Tabla players play stroke Ta such that
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Fig. 3 Overtone frequency
analysis of stroke ‘Ta’

Table 3 Shruti generated from Tabla stroke ‘Ta’

Overtone number Frequency (Hz) Western musical note Indian musical note

F1 840 G#
6 Komal Dhaiwat

F4 1399 F6 Madhyam

F7 1848 A#
6 Komal Nishad

the finger touches the outer area of the ink to damp its future overtones. The Tabla
strokes that we have used here for analysis are played by the Tabla player who
plays Tabla stroke Ta on the maidan. The two Tabla strokes of the same type exhibit
little variation in their harmonic frequency pattern due to the error introduced by the
Tabla player while playing the two strokes. The Tabla player may unknowingly hit
the Tabla membrane with little different pressure and may change the location of the
membrane where the figure is hitting at. Table 3 shows the Shruti that is generated
from overtones F1, F4 and F7.

5.1.3 Stroke Te

The fundamental frequency of the stroke Te was obtained as 50 Hz. It has the highest
amplitude with musical note G1. Although the amplitude of the 8th harmonic is next
highest to the fundamental frequency amplitude, it cannot be separately heard. The
reason behind this is the way with which the stroke is produced than other strokes.
While generating the stroke Te, it is played by hitting the finger on the centre of the
ink and abruptly stopping the vibrations. The attack value of the stroke generated
reaches its maximum value as soon as the Tabla is hit; however, decay, sustain and
release values of the stroke are abruptly made equal to 0 by holding the finger tightly
on the surface of the membrane. Due to this, multiple overtones are generated with
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Fig. 4 Overtone frequency analysis of stroke ‘Te’

Table 4 Shruti generated from Tabla stroke ‘Te’

Overtone number Frequency (Hz) Western musical note Indian musical note

F4 132 C3 Shadj

F6 158 D#
3 Komal Gandhar

F8 180 F3 Madhyam

prominent amplitudes that are not audible because of their short-living existence in
the time domain.

As shown in Fig. 4, the harmonic overtones F4, F6 and F8 show high power
spectral density. The F4 harmonic is generated through mode (3,1) where 3 nodal
diameters and 1 nodal circle are produced. Similarly, the harmonics F6 and F8 are
generated through modes (4,1) and (0,3), respectively. The rest of all harmonics are
damped producing spectral power near to zero. This is because the Tabla player
lightly holds his forefinger after striking the stroke ‘Te’. The pressure of the figure
is not that high to damp all the modes of progression but is sufficient to allow the
F4, F6 and F8 in-harmonic overtones. Table 4 shows Shruti generated from Tabla
stroke Te.

5.1.4 Stroke Tun

The Tabla stroke Tun is produced by hitting the forefinger over the centre of the ink.
The ink is uniformly distributed from the centre of the membrane. The thickness of
this ink is diluted towards the circumference of the membrane. Due to this structure
of the Tabla membrane surface, a very important observation is made. When the



Inharmonic Frequency Analysis of Tabla Strokes in North Indian Classical Music 427

Fig. 5 Overtone frequency
analysis of stroke ‘Tun’

Table 5 Shruti generated from Tabla stroke ‘Tun’

Overtone number Frequency (Hz) Western musical note Indian musical note

F8 1044 C6 Shadj

Tabla instrument is played with an open stroke by immediately lifting the striking
finger, it keeps the Tabla membrane resonating. It is observed that the musical note
octave for the Tabla stroke is one minus the octave in which the Tabla is originally
tuned. It is also important to note that the strokes Na and Ta when they are played
by keeping the ring finger lightly touched to the outer surface of the ink, it produces
a stroke with a musical note of the fifth octave, and the open resonating membrane
produces stroke musical note of exactly one lower octave. The ‘Tun’ stroke with the
fundamental frequency having the highest amplitude was found at frequency 290
Hz exhibiting musical note D4.

The primary power spectrum density of all the overtones except F8 is found to
be near 0 as shown in Fig. 5. The ADSR analysis of stroke ‘Tun’ shows that sustain
time of the audio signal is very high as compared with any other basic Tabla stroke.
This causes suppressed overtones from F1 to F7. However, as soon as the signal
releases it sustains, the prominent overtone F8 could be heard as shown in Table 5.
The 8th harmonic of stroke ‘Tun’ F8 has a mode (0,3) showing 0 nodal diameters
and 3 nodal circles. This generates the frequency of the overtones as 1044 Hz with
musical note C6. Tun is the only Tabla stroke played on the right drum without
keeping any other finger being touched to the membrane of the drum.
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5.2 Left Drum Strokes

In the construction of the Tabla instrument, the left drum membrane is asymmetric
due to its location of ink, while the right drum Tabla membrane is symmetric. The
mode progression of the drum stroke with respect to overtone is inharmonic [18]. We
have extended the mode progression of the membrane of the symmetric drum to the
membrane of the asymmetric drum. The reason behind this is although the left drum
membrane is asymmetric in contrast with the right drum, the Tabla player most of
the time rests his arm over the space while playing a stroke. Thus, it gives a similar
progression of overtones as the right drum. Also, in contrast with other Western
percussion instruments in Tabla, combined strokes of both the drums are also treated
as a type of stroke. To analyse such type of stroke, the overtone production must be
considered the same for both the drums.

5.2.1 Stroke Ga

The left drum has ink applied asymmetrically in contrast with the right drum Tabla.
There exist many ways with which the left drum ink is positioned while playing the
drum. In all positions, the wrist and the forefingers cover the ink such that the wrist
is placed at one end of the ink and the forefinger hits the drum at the other end. For
stroke Ga, the wrist is placed lightly touching the skin of the membrane such that it
does not attenuate all the overtones but also does not give freedom to the membrane
to resonate completely. The fundamental frequency obtained for the stroke Ga is
85 Hz. From the frequency spectrum of the Tabla stroke Ga shown in Fig. 6, it is
observed that the second overtone F2, fifth overtone F5 and seventh overtone F7
possess maximum power spectral densities.

Fig. 6 Overtone frequency
analysis of stroke ‘Ga’
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Table 6 Shruti generated from Tabla stroke ‘Ga’

Overtone number Frequency (Hz) Western musical note Indian musical note

F2 182 F3 Madhyam

F5 158 B3 Nishaad

F7 180 D4 Rishabh

In NICM, the musical note produced by the left drum is negligible. The purpose
of the left drum is just to produce rhythmic bass. However, we have tried to
standardize the frequency scale with which the left drum has to be tuned and the
overtone structure originated from the left drum for its basic strokes. The modes
of vibration for F2, F5 and F7 are the same as the modes prescribed for the Tabla
drum. However, an in-depth analysis of the location of the concentrated ink and its
effect on the production of its overtones is yet to be analysed and proved. The modes
that are excited out of these overtones are F2 (2,1), F5 (1,2) and F7 (2,2) exhibiting
frequencies, and the musical note is as shown in Table 6.

As mentioned earlier, on the membranes of both the Tabla drums, an ink is
applied and dried. This ink at one side produces inharmonic overtones and to the
other side when damped with specific figure at specific location can suppress the
power spectral density of the inharmonic overtones that are generated. Thus, in
Fig. 6, the inharmonic overtones F3, F4 and F6 produce almost zero PSD, while
F2, F5 and F7 show higher range of PSD values.

5.2.2 Stroke Ka

The stroke Ka is a closed stroke played on the left drum. The frequency spectral
analysis of Ka shows weird spectral values for different frequencies calculated based
on the fundamental frequency for ten audio samples. The left drum was originally
tuned to frequency 41 Hz (Gandhaar), and the fundamental frequency for the stroke
is obtained as 25 Hz (Pancham). Though the fundamental frequency was near 25
Hz, the remaining overtones exhibit haphazard values for each audio sample of the
Tabla stroke.

As shown in Fig. 7, the harmonic overtones F1, F4 and F6 show high power
spectral density. The first overtone of stroke Ka produces 1 nodal diameter and
1 nodal circle giving F1 (1,1) mode. This corresponds to frequency 40 Hz with
musical note E1. This overtone could be brightly heard along with fundamental
frequency. The next overtone F4 produces 3 nodal diameters and 1 nodal circle
giving frequency 66 Hz and corresponding musical note C2. Similarly, for F6
overtones, the frequency produced is 79 Hz with musical note D#

2 as shown in
Table 7.
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Fig. 7 Overtone frequency analysis of stroke ‘Ka’

Table 7 Shruti generated from Tabla stroke ‘Ka’

Overtone number Frequency (Hz) Western musical note Indian musical note

F1 40 E1 Gandhaar

F4 66 C2 Shadj

F6 79 D#
2 Komal Gandhaar

5.3 Both Drum Strokes

The strokes that are originated from both the drums simultaneously should be
analysed for mode progression as per individual left and right basic drum strokes.
Mode progression from these individual drum strokes will be similar as explained
in the above sections. In this section, we would prefer to analyse the homophonic
sound generated as a combined effect of sound from the drums. Hence, in
this section, only the fundamental frequencies obtained from combined stroke
and upcoming overtones are discussed which are calculated from the frequency
multipliers declared for drum membrane.

5.3.1 Stroke Dha

Stroke Dha is obtained by producing Ga stroke on the left drum and Na stroke on
the right drum simultaneously and keeping fingers hitting the right drum touched to
the rim. The combined effect of the Ga and Na is analysed here. From the spectral
analysis of the combined stroke Dha, it is observed that each time Dha is produced,
it exhibits a different overtone structure. The factors that cause this change in each
stroke produced are as follows. While playing Na on the right drum, the forefinger
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Fig. 8 Time and frequency domain analysis of stroke ‘Dha’

is kept stuck on the outer rim. The pressure applied to keep the finger stuck on the
drum membrane causes the upcoming overtones to be suppressed. Different pressure
applied by the forefinger produces different overtone behaviour of the stroke. It is
practically impossible even for a professional Tabla player to maintain the same
pressure each time the same stroke is played. The Tabla strokes Ga and Na are open
and closed strokes, respectively. Thus, from the frequency spectrum, it is found that
it contains frequencies of the stroke Ga and Na. It can be observed that the 7th
overtone of Na is prominent as compared with other overtone energies. The same
behaviour is observed in the frequency spectrum of the stroke Dha. The 7th overtone
frequency of the stroke Dha is found to be prominent over other overtones present.
To the normal human ear, the difference of time instance where left drum and right
drum stroke played is unnoticeable.

In the spectral analysis of the Tabla stroke Dha, two separate frequencies are
visible prominently with high-power spectral density values as shown in Fig. 8.
The first spike in the figure shows the fundamental frequency of the left drum (85
Hz) which represents the presence of left drum stroke Ga. The second spike in the
figure shows the fundamental frequency of the right-hand Tabla drum (528 Hz)
representing the presence of right drum stroke Na. The order of occurrence of left
and right drum stroke frequency may reverse based on the stroke that was played
slightly earlier than the other in the time domain. This comparison shows that both
the strokes are played on both drums simultaneously, and their frequency spectrum
for the combined effect of the stroke is analysed. With respect to the signal energy,
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Fig. 9 Overtone frequency
analysis of stroke ‘Dha’

Table 8 Shruti generated from Tabla stroke ‘Dha’

Overtone number Frequency (Hz) Western musical note Indian musical note

F3 193 G3 Pancham

F7 294 D4 Rishabh

the right-hand drum stroke Na and left-hand stroke Ga are merged to produce a
homophonic texture of the sound combinedly called Dha.

The overtone analysis of stroke Dha is as shown in Fig. 9. In the combined stroke
where frequencies from both the drums are merged, the overtone structure shows
that F3 and F7 contain maximum power spectral density values. The musical notes
that are generated from these overtones are F3 (193 Hz) musical note—(G3)—and
for F7 (294 Hz) musical note, (D4) as shown in Table 8.

5.3.2 Stroke Dhin

The Tabla stroke Dhin is one of the major strokes used in repetitive cycles of some
rhythms. The stroke Dhin is produced by hitting and lifting fingers from both the
drum membranes simultaneously. The combined effect of the stroke Ga produced on
the left drum and Ta produced on the right drum is analysed here. From the analysis
of the combined audio signal frequencies and overtones, it is found that the stroke
shows variations in its harmonic structure. The reasons behind these variations are
three-folded. (A) The pressure applied on the drum membrane by the fingers is
different each time the drums are hit. (B) Many times, the Tabla player unknowingly
hits the Tabla membrane at slightly different locations for each stroke. (C) Ga and
Ta both are played in open mode. It is also important to note that both the strokes
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Fig. 10 Time and frequency domain analysis of stroke ‘Dhin’

from the left and right drum should be produced at the same instance of time. This
difference is unnoticeable by the human ear and causes no effect on the overall
sound of the stroke but could be visualized clearly in the frequency spectrum.

With respect to the signal analysis and instance of a time when the stroke is hit, it
is found that very rarely both the fingers hit both the drums simultaneously. At times,
the left drum is hit earlier than the right drum giving a different harmonic structure
for the combined sound. While sometimes the right drum stroke is played earlier
than the left drum stroke. In all the cases, the former fundamental frequency and its
overtones dominate the later drum stroke fundamental frequency and its overtones.

As shown in Fig. 10, the time domain signal appears to be like the rest of the
strokes; however, in the frequency domain, two prominent frequencies are visible
with high-power spectral density values. Since the stroke Dhin is a combination
of strokes originated from left and right drum simultaneously, there exist two
fundamental frequencies, viz. from left drum stroke and right drum stroke. It is
observed that for stroke Ga, the overtones F3 and F7 hold nonzero signal energies,
while the rest of the overtones hold negligible signal energy.

Figure 11 shows frequency overtones generated by the stroke Dhin. For the
stroke Dhin, the curse of the order of left and right drum hit causes change in the
spectrogram for different instances of the stroke. Similar behaviour is observed for
stroke Dha. This comparison shows that, although both the strokes (Dha and Dhin)
are played on both drums (left and right) simultaneously, the pattern of overtone
structure for the combined stroke is different for each stroke instance.
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Fig. 11 Overtone frequency
analysis of stroke ‘Dhin’

Table 9 Shruti generated from Tabla stroke ‘Dhin’

Overtone number Frequency (Hz) Western musical note Indian musical note

F1 842 G#
5 Komal Dhaiwat

F4 1404 F6 Madhyam

F7 1855 A#
6 Komal Nishaad

For stroke Ta, frequency overtones F1, F4 and F7 contain the maximum energy
of the signal as shown in Table 9. Some of the left drum overtones and right drum
overtones overlap with each other. For the combined signal energy for the stroke
Dhin, overtones F1 as 842 Hz, F4 as 1404 Hz and F7 as 1855 Hz have the highest
signal energies generating musical note G#

5, F6 and A#
6, respectively.

5.3.3 Stroke Tin

Tin is the stroke played on the left and right drums simultaneously. It is similar to
the stroke Dhin except that on the left drum instead of Ga stroke Ka is played. The
right drum stroke Ta, when combined with stroke Ka, produces a resonating stroke
Tin. In this stroke, the left drum stroke is closed, and the right drum stroke is open.

As shown in Fig. 12 in the frequency domain, the left drum Tabla stroke Ka
has a very low frequency (∼25 Hz) G0, and the right drum Tabla stroke Ta has
a fundamental frequency (∼528 Hz) C5. Since the stroke Ka is a closed stroke,
its overtones are damped immediately, thus producing very low values of decay,
sustain and release. Thus, the overtones are negligible. On the other hand, the right
drum stroke Ta, being open stroke, produces its overtones independently. The signal
energy of the left drum is dominated by the signal energy of the right drum. The
location of the left-hand palm striking the left drum membrane makes different kinds
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Fig. 12 Time and frequency domain analysis of stroke ‘Tin’

Fig. 13 Overtone frequency
analysis of stroke ‘Tin’

of overtones. If the fingers of the left hand are striking the membrane on ink, then the
overtone structure slightly differs. However, in all cases, the power spectral density
of all the overtones is so small that it could be neglected.

Figure 13 shows overtone analysis of stroke Tin. It is observed that the combined
stroke produces fundamental frequency F0 as 529 Hz (C5). The prominent overtones
that are generated are at overtone F2 as 1134 Hz and F6 as 1675 Hz as shown in
Table 10.

The percussion instrument sound wave propagation theory works on non-integer
multipliers to the fundamental frequency to produce overtones. Due to the presence
of ink over the membrane of the Tabla instrument, the overtones produced by the
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Table 10 Shruti generated from Tabla stroke ‘Tin’

Overtone number Frequency (Hz) Western musical note Indian musical note

F2 1134 C#
6 Komal Rishabh

F6 1675 G#
6 Komal Dhaiwat

membrane are found out using nodal diameters and nodal circles. For each stroke,
the overtones are calculated and analysed concerning the magnitude of their power
spectral density. A combined analysis of all the ten samples of each of the nine
basic strokes is done to find out the pattern of the power spectral strength of all the
overtones across all the samples. Some important observations and conclusions are
as follows:

• It is observed that a slight change in the location, where the finger hits the
membrane, does not affect greatly to the fundamental frequency; however,
it affects the energy of the overtones. The Tabla player may apply different
pressures and decide to lift the finger each time when he plays the same
stroke. This causes a substantial difference in the overtone energies causing the
negligible yet observable change in the timbre of the sound.

• If the right drum Tabla is tuned to the Cx scale where C is the musical note
and x is the octave, then stroke ‘Tun’ produces fundamental frequency with note
D(x−1).

• It is observed that all the basic Tabla strokes exhibit high-power spectral density
magnitude at the 7th overtone (F7).

• The mode (1,1) is responsible for ringing sound and contributes to the musical
sound for percussion instruments such as timpani, which does not have a layer of
ink on the membrane. The application of the ink on the surface of the membrane
makes the Tabla instrument produce strokes that have larger sustain values than
other instruments.

• It is observed that mode (2,2) where 2 nodal diameters and 2 nodal circles give
larger sustain sound than other modes has a very high-power spectral density
as compared to other Tabla strokes. Mode (2,2) takes a long time to decay and
does not transfer the vibration energy into radiated sound energy. Thus, this mode
rings for a while and contributes to the sound or pitch of the stroke.

• Prominent overtones of the left drum have very little magnitude and frequency,
so they contribute negligibly to the timbre of the sound.

• The right drum stroke produces overtone which majorly contains sharp (#) notes
such as G#, D#, A#, etc. The Tabla instrument used in this research is a standard
Tabla set used professionally. However, the Tabla instrument is not scientifically
designed. For example, the Tabla player is unaware of the ingredient types of
the ink and their percentage of the components used. Thus, the instrument player
only focuses on fundamental frequencies and neglects the overtones.

• When a Tabla player tunes the right-hand drum with musical note C5, then the
seventh overtone (F7) could be musical note (G6). It is to be mentioned here that
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Table 11 Summary of nine basic Tabla strokes and their corresponding Shruti generated

Sr. no. Stroke Drum source
Fundamental
frequency

Musical
note

Prominent
overtones

Musical
notes

1 Na Right 528 C5 F1, F3, F5,
F7

G#
6, D#

6,
G6, A#

6

2 Ta Right 528 C5 F1, F4, F7 G#
6, F6,

A#
6

3 Te Right 50 G1 F4, F6, F8 C3, D#
3,

F3

4 Tun Right 290 D4 F8 C6

5 Ga Left 85 E2 F2, F5, F7 F3, B3,
D4

6 Ka Left 25 G0 F1, F4, F6 E1, C2,
D#

2

7 Dha (Na+Ga) Both 84 E2 F3, F7 G3, D4

8 Dhin
(Ta+Ga)

Both 529 C5 F1, F4, F7 G#
5, F6,

A#
6

9 Tin (Ta+Ka) Both 529 C5 F2, F6 C#
6, G#

6

the experiment is carried using only one set of Tabla instruments tuned at the
(C5) scale.

• Table 11 shows nine basic Tabla strokes with their fundamental frequencies,
prominent overtones and corresponding Western and Indian musical notes. The
mode progression and analysis of overtone structure of Tabla strokes originated
from both the drums can only be analysed by individually observing the right
drum stroke and left drum stroke.

• The Tabla sound contains the homophonic mixture of both the drums together;
hence, this research is kept limited to the theory of circular membrane mode
propagation as described by C. V. Raman [18]. Here, the constant multipliers are
used to calculate the overtones irrespective of the actual harmonic component
energy of the Tabla stroke.

• The frequency in which the right drum is tuned is usually the fundamental
frequency of the stroke originated from the right drum and both the drums
simultaneously.

6 Conclusion

North Indian classical music Tabla instrument is one of the majorly used accom-
panying rhythm instruments, which is also played as a solo performance. For
different vocal and musical instrument performances, the Tabla plays important role
in providing the base rhythm and tempo. The Tabla instrument is called an ‘Eksuri’
(single musical note) instrument. However, being an acoustic musical instrument,
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Tabla produces various inharmonic musical notes which contribute to the timbral
sound quality of the strokes originated from the instrument. In contrast with the
other Western rhythm membrane instruments, the Tabla instrument is a special of
its kind. The specialty of the Tabla instrument is in the ink applied over the surface
of the membrane.

A standard Tabla instrument with tuning scale C5 (528 Hz) is used here for
analysis. The audio database consists of studio-recorded and pre-processed audio
excerpts containing ten samples of nine basic Tabla strokes with sampling frequency
44,100 Hz, 16-bit pulse code modulation .wav format. The time domain sound
signal is analysed in the frequency domain using fast Fourier transform, and the
power spectral density of each frequency component present in the audio signal is
analysed. Based on the source of the sound, the basic Tabla strokes are categorized
into three classes, namely, strokes from the left drum, right drum and both the drums
simultaneously.

Almost negligible research has been done so far towards the sound produced
through the Tabla instrument for the timbral attribute and frequency components
present in the Tabla stroke sound other than the fundamental frequency. Most of the
Tabla instrument players are found to be unfamiliar with the technical aspects of
Tabla instrument construction. From generations together, the Tabla manufacturers
are illiterate and nontechnical, who hardly understand the frequency overtones
originated from a Tabla stroke. The art of Tabla making is solely based on the
Tabla maker’s capability to understand the timbral quality of the Tabla sound.
Similar to Tanpura makers, Tabla instrument manufacturing art is percolated from
one generation to the next generation. Due to the presence of the ink over the
membrane of the Tabla instrument, and due to the weight of the ink, the Tabla
stroke produces inharmonic overtones. These overtones are expressed in the form of
nodal diameter and nodal circles generated over the surface of the membrane of the
Tabla instrument when struck by bare fingers at some pre-decided locations. Based
on the location of the striking finger, different Tabla strokes are generated. Each
Tabla stroke uniquely generates a mixture of a different inharmonic component in
the form of overtones. These overtones are short-lived and hence usually neglected
by the musicians. Although the short-lived inharmonic components present in the
Tabla stroke produce low-power spectral density values, their presence contributes
to a great extent towards the timbral aspects of the Tabla strokes.

This research contributes towards the standardization of the manufacturing of
the Tabla instrument. Each Tabla stroke exhibits different inharmonic overtones.
These overtones are mapped onto the Indian and Western musical scales. Thus, for
the exact production of the desired musical note from each Tabla stroke, different
parameters could be set up during the manufacturing of the Tabla instrument. The
various parameters which could be calibrated in advance include the amount of ink
applied over the membrane, the density of the ink, the highest thickness at the centre
of the membrane, number of ink layers to be applied from the centre towards the
circumference of the membrane and the difference between the thickness of each
layer concerning the thickness at the centre. These all parameters are very crucial
and contribute to a great extent towards the musical notes generated from each basic
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Tabla stroke. The human Tabla player may not be able to apply same pressure while
producing same strokes repeatedly or may shift the location of the Tabla stroke
produced on the surface of the membrane; however, these errors would not matter
and could be neglected as far as the generation of basic Tabla strokes and their
corresponding musical notes produced due to the presence of inharmonic overtone.
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