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Analytical and Numerical Methods for Analysis
of Stress Singularity in Three-Dimensional
Problems of Elasticity Theory

Valerii P. Matveenko, Andrey Yu. Fedorov, Tatiana O. Korepanova, Natalja V.
Sevodina, and Igor N. Shardakov

Abstract Different variants of stress singularity analysis in three-dimensional prob-
lems of elasticity theory are considered. A complete system of eigensolutions is
developed for different variants of circular conical bodies: solid cone, hollow cone,
a composite cone under different variants of boundary conditions on the lateral sur-
faces. The applicability of the constructed eigensolutions for estimating the charac-
ter of stress singularity at the vertices of conical bodies is considered. The numerical
results presented in the study provide insight into the character of stress singularity
at the vertices of solid and hollow cones under different variants of boundary condi-
tions on the lateral surfaces. A method for constructing singular solutions for coni-
cal bodies is suggested and variants of its numerical realization based on the finite
element method are considered. The results of conducted numerical experiments
demonstrate the efficiency and reliability of the proposed method. The computation
of eigenvalues allows us to determine the character of stress singularity in homo-
geneous and composite, circular and non-circular cones under different boundary
conditions. The work presents an algorithm for the finite-element analysis of sin-
gular solutions to three-dimensional problems of elasticity theory for elastic bodies
of isotropic, anisotropic, and functionally graded materials. The algorithm is based
on determination of a power law relationship for stresses in the vicinity of singular
points. The algorithm was verified by solving two- and three-dimensional problems
and comparing the obtained results with those available in the literature.
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11.1 Introduction

One of the important results of classical elasticity theory is that it provides the ex-
istence of singular solutions associated with the occurrence of infinite stresses at
points (called singular) where smoothness of the body surface is violated, the type
of boundary conditions is changed, or contact of different materials takes place, as
well as inside the body, at points where the condition for smoothness of the interface
between different materials is violated. An example of theoretical justification of the
concept that the existence of singular solutions is possible under certain conditions
can be found in work [12], where it is shown that in the vicinity of angular points
the equations of linear elasticity theory have a solution in the following form

𝜎 ∼
∑︁
𝑛=1

𝐾𝑛 𝑓𝑛𝑟
𝜆𝑛−1, 𝑟 → 0, 𝑐 < Re𝜆1 < Re𝜆2 < . . . < Re𝜆𝑛 < . . . , (11.1)

or a more complex solution with logarithmic components in the case of multiple
points of the spectrum 𝜆𝑛. Here, 𝑟 is the distance to the angular point, 𝐾𝑛 are con-
stants (called the stress intensity coefficients); 𝑓𝑛 are the functions of angular distri-
bution of the stress field 𝜎 in the vicinity of the angular point, which in the planar
case depend on a single polar angular variable 𝜑 at 𝑐 = 0, whereas in the spatial
case — on two spherical coordinates 𝜑, 𝜃 at 𝑐 = −0.5. The form of solution (11.1)
suggests that if there are 𝜆𝑛, satisfying the condition Re𝜆n < 1, the stresses tend to
infinity at 𝑟 tending to zero.

Singular points of different types are often found in computational models con-
structed for solving various applied problems of the theory of elasticity. The exis-
tence of singular solutions suggests that in general the vicinities of singular points
are the zones of strong stress concentration that triggers the fracture process in a
body. The stress behavior in the vicinity of singular points has long been the focus
of many studies. For two- and three-dimensional problems of linear elasticity the-
ory, different variants of singular points have been considered. The results obtained
in this field are presented in sufficient detail in review papers [5, 25, 28, 31, 32].
Among the variety of problems with singular points, one of the first and most stud-
ied is the problem for the crack tip, which is one of the main objects of study in
fracture mechanics. The distinguishing features of problems in fracture mechan-
ics for bodies with acute-angle notches are specified in works by N. F. Morozov
[21, 22]: the stress field in the vicinity of a angular notch consists of regular and
singular components, and the singularity exponent depends on the opening angle of
the notch.

One of the approaches to the construction of solutions of the form (11.1) is based
on studying singular regions. In two-dimensional problems, the objects of investi-
gation are the neighborhoods of vertices of wedge-shaped regions: homogeneous or
composite plane wedges with boundary conditions specified on their faces (in terms
of stresses or displacements). Over a more than half-century history of studies on
this topic almost all possible variants of wedge-shaped bodies have been considered:
homogeneous and composite, isotropic and anisotropic, functionally gradient [7, 8],



11 Analytical and Numerical Methods for Analysis of Stress Singularity 169

etc. For three-dimensional problems, two classes of regions can be distinguished:
vicinities of points on the edge of a spatial wedge and vicinities of vertices of homo-
geneous and composite conical regions, such as vertices of circular and non-circular
cones, triangular and polyhedral wedges. Here it should be noted that mechanical
characteristics of such regions may correspond to those of isotropic, anisotropic,
and even functionally graded materials. Interest in three-dimensional problems of
the first class has considerably diminished due to the results of some works, includ-
ing [9, 20], where it is shown that solutions to the plane and antiplane problems
for wedges located in the planes perpendicular to the edge of a spatial wedge de-
termine the type of stress singularity at the points of the edge through which the
corresponding plane passes.

In the last few decades, the number of works devoted to the study of stress
singularity at the vertex of a polyhedral wedge and a cone has considerably in-
creased. Most of these problems were solved using different variants of numerical
methods, mainly finite and boundary element methods. Among the works using
the ideas of various numerical methods worthy of note are the studies, which are
based on the finite element method [1, 6, 13, 16, 19, 23, 24], on the boundary ele-
ment method [11, 30], and on the application of the Mellin transformation to initial
two-dimensional boundary integral equations [2]. In [16], a numerical method was
developed to estimate the nature of the stress singularity at the vertex of a cone with
elliptic base and homogeneous boundary conditions. In continuation to these stud-
ies, [19] presents a series of numerical methods, which makes it possible to obtain
new results for different variants of cones, in particular, for homogeneous and com-
posite, circular and non-circular cones under homogeneous and mixed boundary
conditions.

As in other sections of the theory of elasticity, the analytical methods play an im-
portant role in the construction of singular solutions, and are still considered as an
effective instrument both for obtaining specific numerical results and testing numer-
ical methods. In three-dimensional problems, analytical methods are mainly applied
to circular cones (axisymmetric conical regions: homogeneous [3, 14, 15, 33] and
composite [14, 26, 27]). One of the first examples of analytical treatment of these
problems is [3], which considers a solid cone under axisymmetric deformation and
rotation with boundary conditions specified in terms of displacements and stresses.
In further studies, the analytical solutions of some particular problems were ob-
tained. For example, works [26, 27] present the results for a composite cone under
axisymmetric deformation. In this case, a composite cone is a structure consisting of
two nested cones, which have a common contact area. The solutions were obtained
for ideal contact and ideal sliding conditions. In [33], an axisymmetric problem for
a circular cone of transversally isotropic material is considered. A fairly complete
review of works dealing with the study of circular cones by analytical methods is
given in [32]. Among the cited works, [15] is the most comprehensive study on
the subject. Here, an analytical solution for a solid circular cone was constructed
and numerical results, disclosing the nature of the stress singularity at the vertex
of a solid circular cone with the stress and displacement boundary conditions on
the lateral surface, were obtained. In [14], a full spectrum of analytical eigenvalues
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for different variants of cones (solid, hollow, composite) is specified and evaluation
of stress singularity exponents for solid and hollow cones under different boundary
conditions on the lateral surfaces is illustrated by some numerical simulations.

11.2 Analysis of Stress Singularity Based on the Constructed
Analytical Eigensolutions for Semi-infinite Circular Conical
Bodies

Let us consider a homogeneous circular cone (Fig. 11.1a) whose vertex coincides
with the center of spherical coordinates 𝑟, 𝜃, 𝜑 and its base is perpendicular to the
axis 𝜃 = 0. The cone occupies a volume 0 ≤ 𝑟 <∞, 𝜃1 ≤ 𝜃 ≤ 𝜃0, 0 ≤ 𝜑 ≤ 2𝜋, and its
boundary is defined by coordinate surfaces 𝜃 = 𝜃1, 𝜃 = 𝜃0. The variant corresponds
to a solid cone.

We need to construct eigensolutions satisfying the homogeneous equilibrium
equations

(1+ 𝑆)graddivU− rot rotU = 0 (11.2)

and one of the homogeneous boundary conditions on the surfaces 𝜃 = 𝜃1, 𝜃 = 𝜃0 for
displacements

𝑢𝑟 = 0, 𝑢𝜃 = 0, 𝑢𝜑 = 0, (11.3)

and stresses
𝜎𝑟 𝜃 = 0, 𝜎𝜃 𝜃 = 0, 𝜎𝜃𝜑 = 0, (11.4)

or mixed boundary conditions, which in terms of mechanics, correspond to ideal
sliding on the lateral surface

𝑢𝜃 = 0, 𝜎𝑟 𝜃 = 0, 𝜎𝜃𝜑 = 0. (11.5)

For the examined body of rotation and boundary conditions (11.3)–(11.5), the
eigen solutions can be represented as a Fourier series in the circular coordinate 𝜑

Fig. 11.1 Variants of conical
bodies: hollow cone (a);
hollow composite cone (b)
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𝑢𝑟 (𝑟, 𝜃, 𝜑) = 𝑢0 (𝜃) 𝑟𝛼 +
∞∑︁
𝑘=1

[𝑢𝑘 (𝜃) 𝑟𝛼 sin(𝑘𝜑)],

𝑢𝜃 (𝑟, 𝜃, 𝜑) = v0 (𝜃) 𝑟𝛼 +
∞∑︁
𝑘=1

[v𝑘 (𝜃) 𝑟𝛼 sin(𝑘𝜑)],

𝑢𝜑 (𝑟, 𝜃, 𝜑) = 𝑤0 (𝜃) 𝑟𝛼 +
∞∑︁
𝑘=1

[𝑤𝑘 (𝜃) 𝑟𝛼 cos(𝑘𝜑)] .

(11.6)

Here, the dependence on the radius is represented according to (11.1) 𝑆 = 1/(1−2𝜈);
𝜈 is Poisson’s ratio; U is the displacement vector, 𝑢𝑟 , 𝑢𝜃 , 𝑢𝜑 are the components of
the vector of displacements along the axes 𝑟 , 𝜃, 𝜑; 𝜎𝑟 𝜃 , 𝜎𝜃 𝜃 , 𝜎𝜃𝜑 are the compo-
nents of the stress tensor, 𝛼 is the characteristic exponent.

If 𝜃1 = 0, then the examined region is bounded by only one coordinate surface
𝜃 = 𝜃0, and at 𝜃 = 0 the regularity conditions must be satisfied

𝜕𝑢𝑟/𝜕𝜃 = 0, 𝑢𝜃 = 0, 𝑢𝜑 = 0. (11.7)

Within the framework of the suggested problem formulation we can also con-
sider a composite cone occupying the domain 𝑉 =𝑉 (1) +𝑉 (2) , where the subdomain
𝑉 (1) (subdomain 𝑉 (2) ) represents the cone segment made of the material with shear
modulus 𝜇 (1) (𝜇 (2) ) and Poisson’s ratio 𝜈 (1) (𝜈 (2) ) and its geometry is determined
by the relations 0 ≤ 𝑟 ≤∞, 0 ≤ 𝜑 ≤ 2𝜋, 𝜃2 ≤ 𝜃 ≤ 𝜃0 (𝜃1 ≤ 𝜃 ≤ 𝜃2). In particular cases,
𝜃1 and 𝜃0 can be equal to 0 and 𝜋, respectively.

For a composite cone (Fig. 11.1b), the eigensolutions (11.6) are constructed for
each of the subdomains, and at the contact boundary 𝜃 = 𝜃2 one can set ideal bonding
conditions

𝑢 (1)𝑟 = 𝑢 (2)𝑟 , 𝑢 (1)𝜑 = 𝑢 (2)𝜑 , 𝑢 (1)𝜃 = 𝑢 (2)𝜃 ,

𝜎 (1)
𝜃 = 𝜎 (2)

𝜃 , 𝜏 (1)𝑟 𝜃 = 𝜏 (2)𝑟 𝜃 , 𝜏 (1)𝜑𝜃 = 𝜏 (2)𝜑𝜃 ,
(11.8)

or ideal sliding conditions

𝑢 (1)𝜃 = 𝑢 (2)𝜃 , 𝜎 (1)
𝜃 = 𝜎 (2)

𝜃 , 𝜏 (1)𝑟 𝜃 = 𝜏 (2)𝑟 𝜃 = 𝜏 (1)𝜑𝜃 = 𝜏 (2)𝜑𝜃 = 0. (11.9)

After substituting equations (11.6) into equilibrium equations (11.2) and chang-
ing to a new independent variable 𝑥 = (1− cos𝜃)/2, we obtain for each of the har-
monics of the Fourier series the following equations:

𝑥(1− 𝑥) 𝑑
2𝑢𝑘 (𝑥)
𝑑𝑥2 + (1−2𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
+
[
4𝑥𝑅1 (𝑥−1) + 𝑘2]

4𝑥 (𝑥−1) 𝑢𝑘 (𝑥) +

+𝑥 (1− 𝑥) 𝑅2√︁
𝑥 (1− 𝑥)

𝑑v𝑘 (𝑥)
𝑑𝑥

+ 𝑅2√︁
𝑥 (1− 𝑥)

[(
1
2
− 𝑥

)
v𝑘 (𝑥) − 𝑘𝑤𝑘 (𝑥)

2

]
= 0,

(11.10a)
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𝐺1𝑥 (1− 𝑥) 𝑑
2𝑣𝑘 (𝑥)
𝑑𝑥2 +𝐺1 (1−2𝑥) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+
[
4𝑥𝐺2 (𝑥−1) + 𝑘2 +𝐺1

]
4𝑥 (𝑥−1) 𝑣𝑘 (𝑥) +

+𝐺3
√︁
𝑥 (1− 𝑥) 𝑑

𝑑𝑥
𝑢𝑘 (𝑥) +

[
𝑘 (1−𝐺1)

2
𝑑𝑤𝑘 (𝑥)
𝑑𝑥

+ (𝐺1 +1) 𝑘 (2𝑥−1)
4𝑥 (𝑥−1) 𝑤𝑘 (𝑥)

]
= 0,

(11.10b)

𝑥(1− 𝑥) 𝑑
2𝑤𝑘 (𝑥)
𝑑𝑥2 + (1−2𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
+
[
4𝑥𝐺2 (𝑥−1) +𝐺1𝑘

2 +1
]

4𝑥 (𝑥−1) 𝑤𝑘 (𝑥) +

+ 𝑘𝐺3

2
√︁
𝑥 (1− 𝑥)

𝑢𝑘 (𝑥) +
[ (𝐺1 −1) 𝑘

2
𝑑𝑣𝑘 (𝑥)
𝑑𝑥

+ (𝐺1 +1) 𝑘 (2𝑥−1)
4𝑥 (𝑥−1) · 𝑣𝑘 (𝑥)

]
= 0.

(11.10c)

Here, the following representations are used

𝑅1 =
2(1− 𝜈) (1−𝛼) (𝛼+2)

(2𝜈−1) ; 𝑅2 =
(3−𝛼−4𝜈)
(−1+2𝜈) ;

𝐺1 =
2 (1− 𝜈)
(1−2𝜈) ; 𝐺2 = 𝛼 (1+𝛼) ; 𝐺3 =

2 (𝛼+4−4𝜈)
(1−2𝜈) .

In view of equation (11.6), the boundary conditions (11.3)–(11.5) and the regu-
larity condition (11.7) are transformed exactly in the same way:

𝑢𝑘 (𝑥) = 0; 𝑣𝑘 (𝑥) = 0; w𝑘 (𝑥) = 0; (11.11)

𝜇

[√︁
𝑥 (1− 𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
+ (𝛼−1) 𝑣𝑘 (𝑥)

]
= 0; (11.12a)

𝜇

[
(2𝑆−𝛼+𝛼𝑆) 𝑢𝑘 (𝑥) + (1+ 𝑆)

√︁
𝑥 (1− 𝑥) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+

+
(
1
2
− 𝑥

) (𝑆−1)√︁
𝑥 (1− 𝑥)

𝑣𝑘 (𝑥) + 𝑘 (1− 𝑆)
2
√︁
𝑥 (1− 𝑥)

𝑤𝑘 (𝑥)
]
= 0;

(11.12b)

𝜇

[√︁
𝑥 (1− 𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
− (1−2𝑥)

2
√︁
𝑥 (1− 𝑥)

𝑤𝑘 (𝑥) + 𝑘

2
√︁
𝑥 (1− 𝑥)

𝑣𝑘 (𝑥)
]
= 0; (11.12c)

√︁
𝑥 (1− 𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
= 0; 𝑣𝑘 (𝑥) = 0; w𝑘 (𝑥) = 0. (11.13)

The variant for the zero harmonic of the Fourier series is considered separately,
since it does not explicitly follow from the algorithm for constructing partial solu-
tions of the system of differential equations (11.10) for any value of 𝑘 ≠ 0. At 𝑘 = 0
there are two problems: axisymmetric rotation and axisymmetric deformation. In
the first problem, the component of the displacement vector 𝑤0 is determined by
equation (11.10c). In the axisymmetric deformation problem, the displacement vec-
tor components 𝑢0, 𝑣0 are defined by equations (11.10a), (11.10b).
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Solutions for the function 𝑤0 are derived in the form of a generalized power series

𝑤0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴𝑚𝑥

(𝑚+𝛽)
]
, (11.14)

where 𝐴𝑚 are the coefficients of the power series; 𝛽 is the characteristic exponent.
The possibility of constructing a solution in the form (11.14) is substantiated in

[18]. The point 𝑥 = 0 for equation (11.10c) is a regular singular point. In this case,
one of the partial solutions is written in the form of series (11.14), for which the
region of convergence is the range of the variable 0 ≤ 𝑥 ≤ 1, since the value 𝑥 = 1 is
a zero of the function nearest to the point 𝑥 = 0 for a higher derivative.

To find the coefficients of the series 𝐴𝑚 and the characteristic exponent 𝛽, equa-
tion (11.14) is substituted into (11.10c). By equating the expressions with similar
powers of 𝑥 to zero, we obtain the recurrence relation for 𝐴𝑚:

(2𝛽+2𝑚 +1) (2𝛽+2𝑚−1) 𝐴𝑚+
+4 [𝛼 (𝛼+1) − (2𝛽+2𝑚−1) (𝛽+𝑚−1)] 𝐴𝑚−1−
−4 (𝛼+2−𝑚− 𝛽) (𝛼−1+𝑚 + 𝛽) 𝐴𝑚−2 = 0, (𝑚 = 0,1,2, ...)

(11.15)

From the condition for the existence of a nonzero solution with respect to 𝐴0 we
get the characteristic equation

(2𝛽+1) (2𝛽−1) = 0, (11.16)

where 𝛽1 = 0.5 and 𝛽1 = −0.5 are its roots.
According to the theory of ordinary differential equations [18], there is always

a solution in the form of a generalized power series (11.14) that corresponds to the
largest root 𝛽1. Substituting the value of root 𝛽1 into (11.15), we obtain a recurrence
relation for 𝐴(1)

𝑚 :

𝐴(1)
𝑚 =

(
2𝑚2 −𝛼−𝛼2 −𝑚)

𝑚 (1+𝑚) 𝐴(1)
𝑚−1 +

(2𝛼−1+2𝑚) (2𝛼+3−2𝑚)
4𝑚 (1+𝑚) 𝐴(1)

𝑚−2,

(𝑚 > 0, 𝐴(1)
0 = 1).

(11.17)

Here and hereafter, the upper index defines the number of the partial solution.
The transformations performed allow us to obtain the first partial solution, which

has the form of a generalized power series for equation (11.10c):

𝑤 (1)
0 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(1)
𝑚 𝑥(𝑚+ 1

2 )
]
. (11.18)

The difference in roots of the characteristic equation [10], i.e. 𝛾 = 𝛽1 − 𝛽2, is
crucial for constructing a second linearly independent partial solution in the form
of a generalized power series. If 𝛾 is not a positive integer, there exists a second
linearly independent solution in the form of a generalized power series (11.14). If
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𝛾 is a positive integer, then in the general case the existence of a second partial
solution in the form of generalized power series (11.14) is not guaranteed.

To exclude this uncertainty, we applied an approach, which is based on a sequen-
tial reduction of the original differential equation by making use of the first partial
solution and keeping a fixed number of terms in the series. A series segment for
the second partial solution of the original differential equation is obtained as fol-
lows. After reduction, the resulting series segment is integrated and the result of the
integration is multiplied by the generalized power series corresponding to the first
partial solution. The form of the obtained series segment for the second partial solu-
tion determines the characteristic exponent of the generalized power series and the
terms including the logarithmic functions. It should be noted that partial solutions
subsequent to the second partial solution [10] include the logarithmic functions of
higher degree (compared to the first function).

Thus, the proposed method makes it possible to successively determine the types
of generalized power series of all partial solutions of the original differential equa-
tion and to single out from all partial solutions the regular and irregular ones, in
our case, at value 𝑥 = 0. These capabilities of the method hold much promise for
constructing solutions to particular problems, for example, that of a hollow cone.

Using the proposed method, a second partial solution 𝜔 (2)
0 is obtained :

𝜔 (2)
0 (𝑥) =

∞∑︁
𝑚=0

{[
𝐴(2)
𝑚 +𝐵 (2)

𝑚 · ln (𝑥)
]
𝑥 (𝑚−1/2)

}
, (11.19)

where the coefficients 𝐴(2)
𝑚 , 𝐵 (2)

𝑚 are determined from the recurrence relations

𝐵 (2)
𝑚 =

[(𝑚−1) (2𝑚−3) −𝛼2 −𝛼]
𝑚 (𝑚−1) 𝐵 (2)

𝑚−1 −
(2𝑚−3+2𝛼) (2𝑚−5−2𝛼)

4𝑚 (𝑚−1) 𝐵 (2)
𝑚−2,

𝐴(2)
𝑚 =

(1−2𝑚)
𝑚 (𝑚−1) 𝐵

2
𝑚 +

[(𝑚−1) (2𝑚−3) −𝛼2 −𝛼]
𝑚 (𝑚−1) 𝐴(2)

𝑚−1 +
(4𝑚−5)
𝑚 (𝑚−1) 𝐵

(2)
𝑚−1−

− (2𝑚−3+2𝛼) (2𝑚−5−2𝛼)
4𝑚 (𝑚−1) 𝐴(2)

𝑚−2 −
2 (𝑚−2)
𝑚 (𝑚−1) 𝐵

(2)
𝑚−2.

(11.20)
From the form of the obtained solutions 𝑤 (1)

0 , 𝑤 (2)
0 it follows that 𝑤 (1)

0 is a regular
solution, and 𝑤 (2)

0 is an irregular solution at 𝑥 = 0.
The general solution of the differential equation (11.10c) can be written as

𝑤0 (𝑥) = 𝐶1 ·𝑤0
(1) (𝑥) +𝐶2 ·𝑤0

(2) (𝑥) , (11.21)

where 𝐶1, 𝐶2 are the constants determined from a preset combination of boundary
conditions (11.3)–(11.5). To construct partial solutions to equations (11.10a) and
(11.10b) corresponding to the axisymmetric deformation variant, we solve this sys-
tem for 𝑣0 [18]:
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𝑣0 (𝑥) =
√︁
𝑥 (1− 𝑥)

(1−𝛼) 𝑆 +2
×

×
{ (𝑆 +1)(
𝛼+𝛼2)

[(
𝑥2 − 𝑥

) 𝑑3𝑢0 (𝑥)
𝑑𝑥3 + (4𝑥−2) 𝑑

2𝑢0 (𝑥)
𝑑𝑥2

]
− (2𝑆 +1) 𝑑𝑢0 (𝑥)

𝑑𝑥

} (11.22)

and obtain for the function 𝑢0 the fourth-order differential equation.

𝑥2 (𝑥−1)2 𝑑
4𝑢0 (𝑥)
𝑑𝑥4 − 𝑥 (𝑥−1) (4−8𝑥) 𝑑

3𝑢0 (𝑥)
𝑑𝑥3 +

+ [2−2𝑥 (𝛼+3) (𝛼−2) (−1+ 𝑥)] 𝑑
2𝑢0 (𝑥)
𝑑𝑥2 −

−𝛼 (2+2𝛼) (2𝑥−1) 𝑑𝑢0 (𝑥)
𝑑𝑥

−
(
𝛼+𝛼2

)
(1−𝛼) (2+𝛼) 𝑢0 (𝑥) = 0.

(11.23)

This equation is a differential equation with a regular singular point, so that lin-
early independent partial solutions can be represented in the form of convergent
generalized power series. Using the above approach for constructing such series,
we obtain four partial solutions 𝑢 (1)0 , 𝑢 (2)0 , 𝑢 (3)0 , 𝑢 (4)0 in the following form:

𝑢 (1)0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴(1)
𝑚 𝑥 (𝑚+1)

]
;

𝑢 (2)0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴(2)
𝑚 𝑥𝑚

]
;

𝑢 (3)0 (𝑥) =
∞∑︁

𝑚=0

{[
𝐴(3)
𝑚 +𝐵 (3)

𝑚 ln (𝑥)
]
𝑥 (𝑚+1)

}

𝑢 (4)0 (𝑥) =
∞∑︁

𝑚=0

{[
𝐴(4)
𝑚 +𝐵 (4)

𝑚 ln (𝑥)
]
𝑥𝑚

}
,

(11.24)

where the coefficients 𝐴(1)
𝑚 , 𝐴(2)

𝑚 , 𝐴(3)
𝑚 , 𝐴(4)

𝑚 , 𝐵 (3)
𝑚 , 𝐵 (4)

𝑚 , are determined from the
recurrence relations available on https://www.icmm.ru/compcoeff/.

Substituting (11.24) into expression (11.22), we obtain partial solutions 𝑣 (1)0 , 𝑣 (2)0 ,
𝑣 (3)0 , 𝑣 (4)0 for the function 𝑣0:

𝑣 (1)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
∞∑︁

𝑚=0

[
𝑃 (1)
𝑚 𝑥𝑚

]
,

𝑣 (2)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
∞∑︁

𝑚=0

[
𝑃 (2)
𝑚 𝑥𝑚

]
,

𝑣 (3)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
{
(1+ 𝑆)
𝑥

+
∞∑︁

𝑚=0

[(
𝑃 (3)
𝑚 +𝐷 (3)

𝑚 ln (𝑥)
)
𝑥𝑚

]}
,

𝑣 (4)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
{ ∞∑︁
𝑚=0

[(
𝑃 (4)
𝑚 +𝐷 (4)

𝑚 · ln (𝑥)
)
𝑥 (𝑚−1)

]}
,

(11.25)
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where the coefficients 𝑃 (1)
𝑚 , 𝑃 (2)

𝑚 , 𝑃 (3)
𝑚 , 𝑃 (4)

𝑚 , 𝐷 (3)
𝑚 , 𝐷 (4)

𝑚 are determined by the ex-
pressions posted on https://www.icmm.ru/compcoeff/.

The general solution for 𝑢0 and 𝑣0 are as follows:

𝑢0 (𝑥) = 𝐶1 ·𝑢 (1)0 (𝑥) +𝐶2 ·𝑢 (2)0 (𝑥) +𝐶3 ·𝑢 (3)0 (𝑥) +𝐶4 ·𝑢 (4)0 (𝑥),
𝑣0 (𝑥) = 𝐶1 · 𝑣 (1)0 (𝑥) +𝐶2 · 𝑣 (2)0 (𝑥) +𝐶3 · 𝑣 (3)0 (𝑥) +𝐶4 · 𝑣 (4)0 (𝑥),

(11.26)

where 𝐶1,𝐶2,𝐶3,𝐶4 are the constants determined from a preset combination of
boundary conditions (11.3)–(11.5).

To construct partial solutions to the system of equations (11.10), we perform a
series of transformations [18], and obtain, as a result, a system of two differential
equations with respect to 𝑤𝑘 , 𝑣𝑙:

𝑓4 (𝑥) 𝑑
4𝑤𝑘 (𝑥)
𝑑𝑥4 + 𝑓3 (𝑥) 𝑑

3𝑤𝑘 (𝑥)
𝑑𝑥3 + 𝑓2 (𝑥) 𝑑

2𝑤𝑘 (𝑥)
𝑑𝑥2 +

+ 𝑓1 (𝑥) 𝑑𝑤𝑘 (𝑥)
𝑑𝑥

+ 𝑓0 (𝑥)𝑤𝑘 (𝑥) = 0,
(11.27a)

𝜓2 (𝑥) 𝑑
2 𝑣𝑘 (𝑥)
𝑑𝑥2 +𝜓0 (𝑥) 𝑣𝑘 (𝑥) = 𝜙3 (𝑥) 𝑑

3𝑤𝑘 (𝑥)
𝑑𝑥3 +

+𝜙2 (𝑥) 𝑑
2𝑤𝑘 (𝑥)
𝑑𝑥2 +𝜙1 (𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
+𝜙0 (𝑥)𝑤𝑘 (𝑥),

(11.27b)

where 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4,𝜓0,𝜓2, 𝜙0, 𝜙1, 𝜙2, 𝜙3 are written as:

𝑓0 (𝑥) =
1
2
𝑥𝛼 (𝛼+1) (𝑥−1) [2𝑥 (𝛼+3) (𝛼−2) (𝑥−1) + 𝑘2 −1

] +
+ 1

16
(𝑘 −1)2 (𝑘 +1)2,

𝑓1 (𝑥) = 𝑥 (1− 𝑥) (2𝑥−1)
[
4𝑥

(
𝛼2 +𝛼−3

)
(𝑥−1) + 1

2
𝑘2 − 1

2

]
,

𝑓2 (𝑥) = −1
2
𝑥2 (𝑥−1)2

[
4𝑥

(
𝛼2 +𝛼−18

)
(𝑥−1) + 1

2
𝑘2 −13

]
,

𝑓3 (𝑥) = 6𝑥3 (𝑥−1)3 (2𝑥−1),
𝑓4 (𝑥) = 𝑥4 (𝑥−1)4,

𝜓0 (𝑥) = 𝑥𝛼(𝛼+1) (𝑥−1) + 1
4
(1− 𝑘2),

𝜓2 (𝑥) = 𝑥2 (𝑥−1)2,

𝜙0 (𝑥) = −1
2
𝑥
[
4𝑥𝛼 (𝛼+1) (𝑥−1) − 𝑘2 +1

] (2𝑥−1)
𝑘

,

𝜙1 (𝑥) = 1
2
𝑥
[
4𝑥

(
𝛼2 +𝛼−4

)
(𝑥−1) − 𝑘2 +1

] (𝑥−1)
𝑘

,

𝜙2 (𝑥) = −5𝑥2 (2𝑥−1) (𝑥−1)2

𝑘
,

𝜙3 (𝑥) = 2𝑥3 (𝑥−1)3

𝑘
.

(11.28)
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Furthermore, the performed transformations results in the relation that establishes
the dependence of the function 𝑢𝑘 on the functions 𝑤𝑘 , 𝑣𝑘 and their derivatives:

𝑢𝑘 (𝑥) =
√︁
𝑥 (1− 𝑥)

2𝑥(𝑥−1)𝑘 (𝑆𝛼+2𝑆 +2)

{
4𝑥2 (𝑥−1) 𝑑

2𝑤𝑘 (𝑥)
𝑑𝑥2 +4𝑥 (2𝑥−1) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
−

− [
4𝛼𝑥(𝑥−1) (1+𝛼) + 𝑘2 (𝑆 +1) +1

] ·𝑤𝑘 (𝑥) −

−
[
2𝑘𝑆𝑥(𝑥−1) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+ 𝑘 (2𝑥−1) (𝑆 +2) 𝑣𝑘 (𝑥)

]}
.

(11.29)
Equation (11.27a) is independent of equation (11.27b) and is a fourth-order lin-

ear differential equation with respect to the function 𝑤𝑘 . Equation (11.27b) can be
considered as a second-order differential equation with respect to 𝑣k with the right-
hand side depending on 𝑤𝑘 . This specific feature of differential equations (11.27)
and the resulting relation (11.29) allow us to define a sequence of partial solu-
tions for the functions 𝜔𝑘 , 𝑣𝑘 , 𝑢𝑘 . The concept of this sequence is as follows. At
the first stage, from the solution of equation (11.27a) we get four partial solutions
𝑤 (1)
𝑘 , 𝑤 (2)

𝑘 , 𝑤 (3)
𝑘 , 𝑤 (4)

𝑘 written in the following form

𝜔 (1)
𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] , 𝜔 (2)
𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝜔 (3)

𝑘 (𝑥) =
∞∑︁

𝑚=0

[(
𝐴(3)
𝑚 +𝐵 (3)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,
𝜔 (4)

𝑘 (𝑥) =
∞∑︁

𝑚=0

[(
𝐴(4)
𝑚 +𝐵 (4)

𝑚 ln(𝑥)
)
𝑥(𝑚− 𝑘+1

2 ) ] ,
(11.30)

where the coefficients 𝐴(1)
𝑚 , 𝐴(2)

𝑚 , 𝐴(3)
𝑚 , 𝐴(4)

𝑚 , 𝐵 (3)
𝑚 , 𝐵 (4)

𝑚 are determined by the rela-
tions posted on https://www.icmm.ru/compcoeff/.

Sequentially substituting the obtained partial solutions into the right-hand side
of equation (11.27b) and solving it as the inhomogeneous equation, we find four
partial solutions 𝑣 (1)𝑘 , 𝑣 (2)𝑘 , 𝑣 (3)𝑘 , 𝑣 (4)𝑘 written as

𝑣 (1)𝑘 (𝑥) =
∞∑︁

𝑚=0

[
𝑃 (1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑣 (2)𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝑃 (2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝑣 (3)𝑘 (𝑥) =

∞∑︁
𝑚=0

{[
𝑃 (3)
𝑚 +𝐷 (3)

𝑚 ln(𝑥)
]
𝑥(𝑚− 𝑘−1

2 )},
𝑣 (4)𝑘 (𝑥) =

∞∑︁
𝑚=0

{[
𝑃 (4)
𝑚 +𝐷 (4)

𝑚 ln(𝑥)
]
𝑥(𝑚− 𝑘+1

2 )},

(11.31)
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where the coefficients 𝑃 (1)
𝑚 , 𝑃 (2)

𝑚 , 𝑃 (3)
𝑚 , 𝑃 (4)

𝑚 , 𝐷 (3)
𝑚 , 𝐷 (4)

𝑚 are determined by the rela-
tions available on https://www.icmm.ru/compcoeff/.

Then, solving equation (11.27b) as a homogeneous one, we find two more partial
solutions 𝑣 (5)𝑘 , 𝑣 (6)𝑘 . The form of this differential equation indicates that the point
𝑥 = 0 is a regular singular point. The construction of partial solutions in the form of
generalized power series is accomplished in the framework of the above approach.
These partial solutions are written as

𝑣 (5)𝑘
(𝑥) =

∞∑︁
𝑚=0

[
𝑃 (5)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑣 (6)𝑘

(𝑥) =
∞∑︁

𝑚=0

[(
𝑃 (6)
𝑚 +𝐷 (6)

𝑚 ln (𝑥)
)
𝑥(𝑚+ 𝑘−1

2 ) ] , (11.32)

where 𝑃 (5)
𝑚 , 𝑃 (6)

𝑚 , 𝐷 (6)
𝑚 are defined on https://www.icmm.ru/compcoeff/.

Then, using partial solutions 𝑤 (1)
𝑘 , 𝑤 (2)

𝑘 , 𝑤 (3)
𝑘 , 𝑤 (4)

𝑘 , 𝑣 (1)𝑘 , 𝑣 (2)𝑘 , 𝑣 (3)𝑘 , 𝑣 (4)𝑘 , 𝑣 (5)𝑘 , 𝑣 (6)𝑘 ,
and the obtained relation (30), we determine six partial solutions 𝑢 (1)𝑘 , 𝑢 (2)𝑘 , 𝑢 (3)𝑘 ,
𝑢 (4)𝑘 , 𝑢 (5)𝑘 , 𝑢 (6)𝑘 , represented as

𝑢 (1)𝑘 =
2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑢 (2)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝑢 (3)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (3)
𝑚 +𝐺 (3)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,
𝑢 (4)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (4)
𝑚 +𝐺 (4)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘+1

2 ) ] ,
𝑢 (5)𝑘 =

√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (5)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑢 (6)𝑘 =

√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (6)
𝑚 +𝐺 (6)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,

(11.33)

where the coefficients 𝐸 (1)
𝑚 , 𝐸 (2)

𝑚 , 𝐸 (3)
𝑚 , 𝐸 (4)

𝑚 , 𝐸 (5)
𝑚 , 𝐸 (6)

𝑚 , 𝐺 (3)
𝑚 , 𝐺 (4)

𝑚 , 𝐺 (6)
𝑚 for any

value of 𝑚 ≥ 0 are determined on https://www.icmm.ru/compcoeff/index2.html.
General solutions for 𝑢𝑘 , 𝑣𝑘 , 𝑤𝑘 take the following form

𝑢𝑘 (𝑥) = 𝐶1 ·𝑢 (1)𝑘
(𝑥) +𝐶2 ·𝑢 (2)𝑘

(𝑥) +𝐶3 ·𝑢 (3)𝑘
(𝑥) +

+𝐶4 ·𝑢 (4)𝑘
(𝑥) +𝐶5 ·𝑢 (5)𝑘

(𝑥) +𝐶6 ·𝑢 (6)𝑘
(𝑥) ,

𝑣𝑘 (𝑥) = 𝐶1 · 𝑣 (1)𝑘
(𝑥) +𝐶2 · 𝑣 (2)𝑘 (𝑥) +𝐶3 · 𝑣 (3)𝑘 (𝑥)+

+𝐶4 · 𝑣 (4)𝑘 (𝑥) +𝐶5 · 𝑣 (5)𝑘 (𝑥) +𝐶6 · 𝑣 (6)𝑘 (𝑥),
𝑤𝑘 (𝑥) = 𝐶1 ·𝑤 (1)

𝑘
(𝑥) +𝐶2 ·𝑤 (2)

𝑘
(𝑥) +𝐶3 ·𝑤 (3)

𝑘
(𝑥) +𝐶4 ·𝑤 (4)

𝑘
(𝑥) ,

(11.34)
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where𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6 are the constants determined from a preset combination
of boundary conditions (11.3)–(11.5).

For the examined variant of a conical body, the constructed general solutions
for 𝑘 = 0, 𝑘 ≥ 1 and the preset combination of boundary conditions are used to
derive a homogeneous system of linear algebraic equations for the constants 𝐶𝑖 .
The coefficients of this system of equations depend on the vertex angles of conical
bodies, elastic characteristics of materials, and the characteristic exponent 𝛼. From
the condition of existence of a nonzero solution to the system of linear algebraic
equations we find the exponents 𝛼, determining the nature of stress singularity at
the vertices of conical bodies.

Let us consider numerical results for a solid cone (0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋,
0 ≤ 𝜃 ≤ 𝜃0). Here we use partial solutions, for which the regularity condition is iden-
tically fulfilled at 𝑥 = 0 (or 𝜃 = 0): 𝑤 (1)

0 is used for axisymmetric rotation; 𝑢 (1)0 , 𝜈 (1)0 ,
𝑢 (2)0 , 𝜈 (2)0 — for axisymmetric deformation without rotation; 𝑢 (1)𝑘 , 𝜈 (1)𝑘 , 𝑤 (1)

𝑘 , 𝑢 (2)𝑘 ,
𝜈 (2)𝑘 , 𝑤 (2)

𝑘 , 𝑢 (5)𝑘 , 𝜈 (5)𝑘 — for nonaxisymmetric deformation. All results in this work
were obtained for Poisson’s ratio 𝜈 = 0.3. Figure 11.2 presents the values Re𝛼𝑛 < 1,
determining singular solutions for a solid cone with stress and displacement bound-
ary conditions. These values are identical to the results of [19, 15]. It should be noted
that for a solid cone with stress boundary conditions, the singular solutions appear
at the zero, first and second harmonics of the Fourier series, whereas for a cone with
displacement boundary conditions — at the zero and first harmonics of the Fourier
series. Figure 11.3 shows new results disclosing the nature of stress singularity at
the vertex of a solid cone with boundary conditions of ideal sliding prescribed on
its lateral surface. Here, singular solutions are possible at the zero, first and second
harmonics of the Fourier series and at the angle 𝜃0 smaller than 𝜋.

The proposed method has proved to be effective in determining the region of
singular solutions for a hollow cone with two conical boundary surfaces 𝜃 = 𝜃0 and

Fig. 11.2 Dependence of Re𝛼𝑛 on the vertex angle of the solid cone with boundary conditions on
the lateral surface for displacements (a) and stresses (b) (▲— 𝑘 = 0, • — 𝑘 = 1, ■— 𝑘 = 2)
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Fig. 11.3 Dependence of
Re𝛼𝑛 on the vertex angle
of the cone with boundary
conditions on the lateral
surface corresponding to an
ideal sliding (▲— 𝑘 = 0,
• — 𝑘 = 1, ■— 𝑘 = 2)

𝜃 = 𝜃1 (hollow cone) under different variants of boundary conditions. In this case,
it is necessary to use all partial solutions (11.18), (11.19), (11.24), (11.25), (11.30),
(11.31), (11.32) to ensure the fulfillment of boundary conditions on the two conical
surfaces. As an example, Fig. 11.4 shows the dependence of eigenvalues Re𝛼𝑛 < 1
on the angle of the outer conical surface 𝜃0 for different internal cone angles 𝜃1. Zero
stress boundary conditions are prescribed on the conical surfaces. Here, the solid
line corresponds to the actual eigenvalues and the dashed line — to the complex
ones.

In the case of a hollow cone, different combinations of boundary conditions on
the inner and outer conical surfaces can be used. Here we consider two variants. In
the first variant, zero stresses are specified on the inner surface and zero displace-
ments — on the outer surface. In the second variant, zero displacements are preset
on the inner surface and zero stresses — on the outer surface. The variation of the
stress singularity exponent Re𝛼𝑛 < 1 as a function of the outer conical surface angle
𝜃0 at different values of the inner surface angle is shown in Fig. 11.5 for the first
variant of boundary conditions. The eigenvalues, leading to the occurrence of stress
singularity, appear at the values of 𝜃0 higher than 80◦. For the second variant of the
boundary conditions the dependence of eigenvalues Re𝛼𝑛 < 1 is shown in Fig. 11.6.

11.3 Numerical-analytical Method of Stress Singularity Analysis
at the Vertices of Circular and Non-circular Conical Bodies

We consider a semi-infinite circular or non-circular cone, whose vertex coincides
with the center of spherical coordinates 𝑟, 𝜃, 𝜑, and the base is perpendicular to the
axis 𝜃 = 0. To analyze the character of the stress singularity, we need to construct
eigensolutions, which will be similar in form to the asymptotic representation of
solution [12],

𝑢𝑘 (𝑟, 𝜃, 𝜑) = 𝑟𝜆 𝜉𝑘 (𝜃, 𝜑), 𝑘 = 1,2,3 (11.35)
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Fig. 11.4 Dependence of Re𝛼𝑛 on the angle 𝜃0 at fixed angles 𝜃1 of the hollow cone and zero
stresses on the lateral surfaces for different values of 𝑘 (▲— 𝑘 = 0, • — 𝑘 = 1, ■— 𝑘 = 2)

Fig. 11.5 Dependence of
Re𝛼𝑛 on the angle 𝜃0 for
different values of 𝜃1 at zero
stresses on the inner sur-
face and zero displacements
on the outer lateral surface
(▲— 𝑘 = 0, • — 𝑘 = 1,
■— 𝑘 = 2)
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Fig. 11.6 Dependence of Re𝛼𝑛 on the angle 𝜃0 for different values of 𝜃1 of the hollow cone with
zero displacements on the inner surface and zero stresses on the outer lateral surface (▲— 𝑘 = 0,
• — 𝑘 = 1, ■— 𝑘 = 2)

and satisfy in the examined domain the equilibrium equations

1
1−2𝜈

graddivu+∇2u = 0 (11.36)

and uniform boundary conditions prescribed on the lateral surface of the cone,
namely, zero displacements

u = 0 (11.37)

or zero stresses
𝜈

1−2𝜈
ndivu+n · ∇u+ 1

2
n× rotu = 0. (11.38)

Here u is the displacement vector, n is the unit vector of the external normal, 𝜈 is
Poisson’s ratio.

A variant of boundary conditions corresponding to the ideal sliding conditions
on the lateral surface may be also of interest. These conditions are as follows:

𝑢𝜃 = 0, 𝜏𝑟 𝜃 = 0, 𝜏𝜑𝜃 = 0. (11.39)

On the lateral surface of the cone, mixed boundary conditions can be prescribed,
that is, conditions (11.38) are set at 0 ≤ 𝜑 ≤ 𝜑1 and conditions (11.39) are specified
at 𝜑1 ≤ 𝜑 ≤ 2𝜋.

In addition to a solid cone, the study can be conducted for a hollow cone with two
lateral surfaces. For a circular cone, the domain occupied by this body is defined as
follows: 0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, 𝜃1 ≤ 𝜃 ≤ 𝜃2 ( 𝜃1 = 0 corresponds to a solid cone). In
this case, one of the variants of boundary conditions (11.37)–(11.39) can be imposed
on the lateral surfaces.
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To construct eigenvalues, we substitute expressions (11.35) into Eqs. (11.36), to
obtain a system of partial differential equations with respect to functions 𝜉𝑘 (𝜃, 𝜑)
and parameter 𝜆

𝐿1 (𝜆, 𝜉𝑘) = 2(1− 𝜈) (𝑘1 −2)𝜉1 + 𝑘2 (𝜉2 ctg𝜃 + 𝜉2𝜃 + 1
sin𝜃

𝜉3𝜑) +

+ (1−2𝜈) (ctg𝜃 𝜉1𝜃 + 𝜉1𝜃 𝜃 + 1
sin2 𝜃

) = 0,

𝐿2 (𝜆, 𝜉𝑘) =
[
(1−2𝜈)𝑘1 − 2(1− 𝜈)

sin2 𝜃

]
𝜉2 + 𝑘3 𝜉1𝜃 − (3−4𝜈) ctg𝜃

sin𝜃
𝜉3𝜑 +

+ (1−2𝜈)
sin2 𝜃

𝜉2𝜑𝜑 + 1
sin𝜃

𝜉3𝜃𝜑 +2(1− 𝜈) (ctg𝜃 𝜉2𝜃 + 𝜉2𝜃 𝜃 ) = 0,

𝐿3 (𝜆, 𝜉𝑘) = (1−2𝜈) (𝑘1 − 1
sin2 𝜃

) 𝜉3 + 𝑘3
1

sin𝜃
𝜉1𝜑 − (3−4𝜈) ctg𝜃

sin𝜃
𝜉2𝜑 +

+ 2(1− 𝜈)
sin2 𝜃

𝜉3𝜑𝜑 + 1
sin𝜃

𝜉2𝜃𝜑 + (1−2𝜈) (ctg𝜃 𝜉3𝜃 + 𝜉3𝜃 𝜃 ) = 0.

(11.40)

Here, 𝑘1 = 𝜆2 + 𝜆, 𝑘2 = 𝜆 − 3 + 4𝜈, 𝑘3 = 𝜆 + 4− 4𝜈, 𝜉𝑘𝜃 = 𝜕𝜉𝑘/𝜕𝜃, 𝜉𝑘𝜑 = 𝜕𝜉𝑘/𝜕𝜑,
𝜉𝑘𝜃 𝜃 = 𝜕2𝜉𝑘/𝜕𝜃2, etc.

Based on the asymptotic expression (11.35), boundary conditions (11.37), (11.38)
are transformed to the following form:

𝑀1 (𝜆, 𝜉𝑘) ≡ 𝜉1 = 0, 𝑀2 (𝜆, 𝜉𝑘) ≡ 𝜉2 = 0, 𝑀3 (𝜆, 𝜉𝑘) ≡ 𝜉3 = 0. (11.41)

𝑀1 (𝜆, 𝜉𝑘) ≡ 𝜉1𝜃 + 𝜉2 (𝜆−1) = 0,

𝑀2 (𝜆, 𝜉𝑘) ≡ (1− 𝜈) 𝜉2𝜃 + (1+ 𝜈𝜆) 𝜉1 + 𝜈 ctg𝜃 𝜉2 + 𝜈

sin𝜃
𝜉3𝜑 = 0,

𝑀3 (𝜆, 𝜉𝑘) ≡ 𝜉3𝜃 + 1
sin𝜃

𝜉2𝜑 − ctg𝜃 𝜉3 = 0.

(11.42)

Here 𝐿𝑘 and 𝑀𝑘 are the differential operators.
In addition to a homogeneous cone, as an object of study we can also consider

a composite cone, e.g., a circular cone occupying the domain 𝑉 = 𝑉1 +𝑉2, where
the subdomain 𝑉1 (subdomain 𝑉2) is a segment of the cone made of the material
with shear modulus 𝐺1 (𝐺2) and Poisson’s ratio 𝜈1 (𝜈2). The subdomain geometry
is defined by the relations 0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, 𝜃1 ≤ 𝜃 ≤ 𝜃2 (𝜃2 ≤ 𝜃 ≤ 𝜃3). In
particular cases, 𝜃1 and 𝜃3 can be respectively equal to 0 and 𝜋.

For a composite cone, eigensolutions (11.35) in each of the subdomains 𝑉1 and
𝑉2, must satisfy the equations of equilibrium (11.36), which will differ only in the
values of the elastic material constants. In this case, one of the three variants of
boundary conditions (11.37), (11.38) and (11.39) can be used for the surfaces 𝜃 = 𝜃1
(𝜃 ≠ 0) and 𝜃 = 𝜃3 (𝜃 ≠ 𝜋), while the condition on a contact surface is that of ideal
bonding of layers
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𝑢 (1)𝑟 = 𝑢 (2)𝑟 , 𝑢 (1)𝜑 = 𝑢 (2)𝜑 , 𝑢 (1)𝜃 = 𝑢 (2)𝜃 ,

𝜎 (1)
𝜃 = 𝜎 (2)

𝜃 , 𝜏 (1)𝑟 𝜃 = 𝜏 (2)𝑟 𝜃 , 𝜏 (1)𝜑𝜃 = 𝜏 (2)𝜑𝜃 ,
(11.43)

or ideal sliding

𝑢 (1)𝜃 = 𝑢 (2)𝜃 , 𝜎 (1)
𝜃 = 𝜎 (2)

𝜃 , 𝜏 (1)𝑟 𝜃 = 𝜏 (2)𝑟 𝜃 = 𝜏 (1)𝜑𝜃 = 𝜏 (2)𝜑𝜃 = 0. (11.44)

We propose the following scheme of problem solution. Let us represent Eqs.
(11.40) in a weak form [34], for which purpose we multiply them by the appropriate
variations 𝛿𝜉𝑘 (𝜃, 𝜑) and integrate over the region 𝑆 cut by the cone from the sphere.
As a result we get

∫
𝑆

[ 3∑︁
𝑘=1

𝐿𝑘 (𝜆, 𝜉1, 𝜉2, 𝜉3) 𝛿𝜉𝑘 (𝜃, 𝜑)
]
𝑑𝑆 = 0. (11.45)

Equations (11.45) are solved using the finite element method (FEM). The finite-
element implementation of these equations is a rather complicated procedure, since
it requires the use of two-dimensional elements to ensure the continuity of the func-
tions 𝜉𝑘 , as well as the continuity of their first derivatives. Without going into details,
we simply note that in FEM, there are no effective procedures for constructing such
elements. In this regard, after performing identity transformations with the aim to
reduce the order of derivatives of functions in the solutions of Eq. (11.45) and con-
sidering boundary conditions (11.42), we obtain the following equation∬

𝑆

{[
2(1− 𝜈) (𝑘1 −2) sin𝜃𝜉1 + 𝑘1 (cos𝜃𝜉2 + sin𝜃𝜉2𝜃 + 𝜉3𝜑)

]
𝛿𝜉1−

−(1−2𝜈) (sin𝜃 𝜉1𝜃 𝛿 𝜉1𝜃 + 1
sin𝜃

𝜉1𝜑 𝛿𝜉1𝜑) − 2(1− 𝜈)
sin𝜃

𝜉3𝜑 𝛿 𝜉3𝜑 +

+
[
(1−2𝜈)𝑘1 sin𝜃 𝜉2 − 2(1− 𝜈)

sin𝜃
𝜉2 + 𝑘3 sin𝜃 𝜉1𝜃 − (3−4𝜈)ctg𝜃 𝜉3𝜑

]
𝛿𝜉2−

−2 (1− 𝜈) sin 𝜃 𝜉2𝜃 𝛿 𝜉2𝜃 −2𝜈 𝜉3𝜑 𝛿 𝜉2𝜃 −
− (1−2𝜈)

(
1

sin 𝜃
𝜉2𝜑 𝛿 𝜉2𝜑 + 𝜉3𝜃 𝛿𝜉2𝜑

)
+

+
[
(1−2𝜈)𝑘1 sin𝜃 𝜉3 − 1−2𝜈

sin𝜃
𝜉3 + 𝑘3 𝜉1𝜑 + (3−4𝜈) ctg𝜃 𝜉2𝜑

]
𝛿𝜉3−

−2𝜈 𝜉2𝜃 𝛿 𝜉3𝜑 − (1−2𝜈) (sin 𝜃 𝜉3𝜃 𝛿 𝜉3𝜃 + 𝜉2𝜑 𝛿 𝜉3𝜃
)}
𝑑𝜃𝑑𝜑+

+
∫
𝑙

{(1−2𝜈) (1−𝜆) sin𝜃 𝜉2 𝛿𝜉1 −2[(1+ 𝜈𝜆) sin𝜃 𝜉1 + 𝜈 cos𝜃 𝜉2]𝛿𝜉2+

+ (1−2𝜈) cos𝜃𝜉3 𝛿𝜉3 − (1−2𝜈)} 𝑑𝑙 = 0,

(11.46)

where 𝑙 is the boundary of the surface 𝑆 with prescribed stresses.
Reduction of the order of derivatives allows us to use such finite elements that

ensure only the continuity of the functions 𝜉𝑘 . In our simulation we used finite ele-
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ments in the form of triangles and the Lagrangian linear polynomial approximation
of the functions 𝜉𝑘 .

In the numerical analysis of circular conical bodies with unmixed boundary con-
ditions imposed on the lateral conical surfaces, the functions 𝜉𝑘 (𝜃, 𝜑) can be repre-
sented as a Fourier series in the circumferential coordinate 𝜑

𝜉1 =
∞∑︁
𝑛=0

𝛽 (𝑛)1 (𝜃) cos𝑛𝜑,

𝜉2 =
∞∑︁
𝑛=0

𝛽 (𝑛)2 (𝜃) cos𝑛𝜑,

𝜉3 =
∞∑︁
𝑛=0

𝛽 (𝑛)3 (𝜃) sin𝑛𝜑.

(11.47)

In view of expansion (11.47), Eqs. (11.45) and boundary conditions (11.41), (11.42)
for each of the harmonics of the Fourier series can be written in the following
form (dashed line indicates the derivative with respect to 𝜃, the upper index (𝑛)
for 𝛽1, 𝛽2, 𝛽3 is omitted):

𝜃2∫
𝜃1

{[
2(1− 𝜈) (𝑘1 −2) sin2𝜃 𝛽1 + 𝑘2 (cos𝜃 sin𝜃 𝛽2 + sin2𝜃 𝛽′2 +𝑛 sin𝜃 𝛽3) +

+ (1−2𝜈) (cos𝜃 sin𝜃 𝛽′1 + sin2𝜃 𝛽′′1 −𝑛2𝛽1)
]
𝛿𝜉1 +

[(1−2𝜈)𝑘1sin2𝜃 𝛽2+
+ 𝑘3 sin2𝜃 𝛽′1 −2(1− 𝜈)𝛽2 − (1−2𝜈)𝑛2𝛽2 +𝑛 sin𝜃 𝛽′3−

− (3−4𝜈)𝑛cos𝜃 𝛽3 +2(1− 𝜈) (cos𝜃 sin𝜃 𝛽′2 + sin2𝜃 𝛽′′2 )
]
𝛿𝜉2+

+ [(1−2𝜈) (𝑘1sin2𝜃 𝛽3 − 𝛽3 + cos𝜃 sin𝜃 𝛽′3 + sin2𝜃 𝛽′′3 ) − 𝑘3𝑛 sin𝜃 𝛽1−
− (3−4𝜈)𝑛cos𝜃 𝛽2 − 𝑛 sin𝜃 𝛽′2 −2(1− 𝜈)𝑛2𝛽3

]
𝛿𝜉3

}
𝑑𝜃 = 0.

(11.48)

𝑀1 (𝜆, 𝛽𝑘) ≡ 𝛽′1 + 𝛽2 (𝜆−1) = 0,

𝑀2 (𝜆, 𝛽𝑘) ≡ (1− 𝜈) 𝛽′2 + (1+ 𝜈𝜆) 𝛽1 + 𝜈 ctg𝜃 𝛽2 + 𝜈n
sin𝜃

𝛽3 = 0,

𝑀3 (𝜆, 𝛽𝑘) ≡ 𝛽′3 +
𝑛

sin𝜃
𝛽2 − ctg𝜃 𝛽3 = 0.

(11.49)

In the numerical implementation, the use of expansion (11.47) allows us to
change from a two-dimensional problem to a set of separate one-dimensional prob-
lems for each of the harmonics of the Fourier series. In the finite element implemen-
tation of one-dimensional problems, in contrast to that of two-dimensional prob-
lems, the presence of well-tried finite elements ensures continuity of approximating
functions and their first derivatives between two adjacent elements. It means that in
this case we can directly carry out the finite element implementation of Eqs. (11.48).
As finite elements, we used one-dimensional two-node elements, in which the func-
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tions 𝛽 (𝑛)𝑖 (𝜃) are approximated with a cubic polynomial defined by the values of the
function and its derivatives 𝑑𝛽 (𝑛)𝑖 /𝑑𝜃 at the ends of the segment (one-dimensional
element).

As in a two-dimensional version, we can employ the procedure of reducing the
order of derivatives in Eq. (11.48). Then, in the case of applying the finite element
method of solution to these equations, it becomes possible to use one-dimensional
elements ensuring continuity of only approximated functions, in particular, one-
dimensional two-node elements with linear approximation of functions 𝛽 (𝑛)𝑖 (𝜃).

The application of the Bubnov procedure together with the finite element method
reduces the formulated problem to a search for eigenvalues (EV) and eigenvectors of
an algebraic asymmetric band matrix. To find complex eigenvalues, the obtained al-
gebraic problem is solved using the algorithm based on the application of the Muller
method and the argument principle [17], which allowed us to obtain acceptable nu-
merical results.

The reliability and efficiency of the proposed method and the algorithm for its
numerical implementation can be substantiated by the results of two numerical ex-
periments. The first experiment is designed to realize the possibility of comparing
the numerical and analytical results for a homogeneous continuous circular cone
(0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜃2) [15]. In a two-dimensional variant with the
number of nodal variables equal to ∼ 103, the difference between the numerical and
analytical results is less than one percent. The second computational experiment is
based on the analysis of the convergence of the numerical method depending on the
degree of discretization of the computational domain. As an example, Fig. 11.7a
shows a numerical solution (solid curve) depending on the number of nodal vari-
ables N and analytical results (dashed curve) at 𝜃2 = 2𝜋/3, 𝜈 = 0.3. The results of
such experiments demonstrate not only the convergence of the numerical procedure,
but also make it possible to choose a variant of discretization of the computational
domain, which can provide acceptable accuracy.

Let us consider the results of solving a number of new problems. Figure 11.7b
presents the eigenvalues calculated for a solid circular cone (𝜈 = 0.3) at bound-
ary conditions (11.39) corresponding to the ideal sliding conditions. Figure 11.7c
displays the eigenvalues for one of the variants of a continuous circular cone
(𝜃2 = 2𝜋/3, 𝜈 = 0.3) at mixed boundary conditions prescribed on the lateral sur-
face: zero displacements at and zero stresses at 𝜑1 ≤ 𝜑 ≤ 2𝜋. It should be noted that
in this problem, the representation of the desired solution as a Fourier series in the
angular coordinate 𝜑 is not allowed. Hereinafter, the solid curve corresponds to real
eigenvalues, while the dashed curve corresponds to the complex eigenvalues.

Calculations were performed for a composite cone which allowed us to evaluate
the effect of ratios of mechanical characteristic on the stress singularity exponents.
In Fig. 11.8, for the composite cone under boundary conditions (11.43) and 𝜃1 = 0,
𝜃2 = 𝜋/3, 𝜃3 = 2𝜋/3, 𝜈1 = 𝜈2 = 0.3 the values of Re𝜆k < 1 are plotted against the
ratio 𝐺1/𝐺2.

The method under consideration allows us to obtain numerical results for dif-
ferent cone shapes, including a cone whose base is an ellipse. The geometry of the
boundary of the surface (11.46), which is cut by a cone from a sphere, is defined by
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Fig. 11.7 Dependence of Re𝜆𝑘 on the value of 𝑁 (a). Dependences of Re𝜆𝑘 on the angle 𝜃2 (b)
and on the angle 𝜑1 (c)

Fig. 11.8 Dependence of
Re𝜆𝑘 on the ratio 𝐺1/𝐺2

the relation

tg𝜃 = tg𝜃2
©«

1(
cos2 𝜑+æ−2 sin2 𝜑

)−/2 ª®®¬
, æ =

a
b
. (11.50)

Here 𝑎 and 𝑏 are the semi-axes of the ellipse, 2𝜃2 is the vertex angle of the cone in
the plane passing through the cone vertex and the semi-axis 𝑎. Figure 11.9 shows
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Fig. 11.9 Dependence of Re𝜆𝑘 on the value of æ at zero stress (a) and at zero displacement (b)

the results of calculations of eigenvalues at zero stress (a) and at zero displacement
(b) specified on the lateral surface of the cone.

The proposed method has proved to be effective in calculating all eigenvalues of
interest. Furthermore, within the error of the numerical method, it allows one to cal-
culate multiple eigenvalues. For example, in [15] analytical results on the multiplic-
ity of the eigenvalue 𝜆 = 1 were presented. In particular, at 𝜃2 = 𝜋/2 the multiplicity
is found to be 6 and at 𝜃2 = 𝜋 the multiplicity is 9. The method under consideration
can be used to find all multiple eigenvalues within the accuracy of the third place
with the number of finite elements being equal to about three thousand.

11.4 Finite Element Analysis of Stress Singularity in
Three-dimensional Problems of Elasticity Theory

To determine the power law relationship of stresses in the vicinity of singular points,
a numerical technique [29] is proposed. It is based on the statement that the stress
distribution along the radial line, originating from a singular point, can be expressed
as [4, 35]

𝜎 = 𝐴1𝑟
𝜆−1 +𝑂 (𝑟𝜆), (11.51)

where 𝑟 is the distance from the singular point, 𝐴1 is some constant, 𝜆 is the param-
eter, characterizing the degree of stress singularity, and 𝑂 (𝑟𝜆) represents all terms
of the order 𝑟𝜆 and higher. For small distances 𝑟 , the singular term dominates and
equation (11.51) can be approximated by

𝜎 ≃ 𝐴1𝑟
𝜆−1,

or
log𝜎 = log 𝐴1 + (𝜆−1) log𝑟, (11.52)
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where 𝜆 is the smallest eigenvalue [4]. The parameter 𝜆 is determined using the
FEM procedure with finite element meshes refined towards the singular points
(Fig. 11.10). To establish the relationship (11.52) via numerical experiments, it is
necessary to find the discretization, such that in the vicinity of a singular point at
a number of nodal points on the radial line originating from the singular point the
following relations will be fulfilled with sufficient accuracy:

𝜆−1 ≈
log

(
𝜎1
𝜎2

)
log

(
𝑟1
𝑟2

) ≈
log

(
𝜎2
𝜎3

)
log

(
𝑟2
𝑟3

) ≈ . . . ≈
log

(
𝜎𝑛−1
𝜎𝑛

)
log

(
𝑟𝑛−1
𝑟𝑛

) , (11.53)

where 𝑟1, 𝑟2, . . . , 𝑟𝑛 are the distances from the singular point, 𝜎1,𝜎2, . . . ,𝜎𝑛 are
stresses at the corresponding nodal points 𝑟1, 𝑟2, . . . , 𝑟𝑛, respectively. 𝜆 is the re-
quired stress singularity exponent. The derivation of this relationship makes it pos-
sible to calculate the value of 𝜆, which determines the stress behavior (including
that of stress singularity) in the vicinity of a singular point.

The algorithm is tested by solving two- and three-dimensional problems of elas-
ticity theory and comparing the stress singularity exponents found by the pro-
posed numerical algorithm with those obtained from the known analytical and
numerical solutions. As two-dimensional problems, we considered a plate with
notches (Fig. 11.11a), a plate with a fixed edge (Fig. 11.11b), and a composite
plate (Fig. 11.11c), which contained singular points associated, respectively, with
breaking of surface smoothness, a change in the type of boundary conditions, and
a contact of dissimilar materials. For all problems, the obtained numerical results
agree with the analytical results up to the third decimal place.

The proposed numerical algorithm for computing the stress singularity exponents
in the vicinity of singular points is of considerable independent significance for
problems, which cannot be solved analytically in the vicinity of singular points. To
problem of crack propagation, whose front is perpendicular to the surface 𝑥𝑂𝑦 of an

Fig. 11.10 The example of
finite-element mesh with
gradual refinement near sin-
gular point
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Fig. 11.11 Plate with V-notches on lateral edges (a); plate with a fixed edge (b); composite plate
(c)

elastic half-space (Fig. 11.12a). The stress singularity exponent is evaluated at the
tip of the crack with coordinates 𝑥 = 𝑦 = 𝑧 = 0. For this problem, work [23] presents
the results of numerical calculation of stress singularity exponents for an isotropic
material (𝜈 = 0.3) and an orthotropic material, the elastic characteristics of which
are summarized in Table 11.1.

As a computational scheme for this problem, we use a cube (Fig. 11.12b). The
conditions of opening mode (the mode I) are simulated by the normal displacements
applied parallel to the 𝑥𝑂𝑧-plane, and the conditions of sliding mode (the mode II)
are simulated by the tangential displacements applied parallel to the 𝑥-axis and in
the opposite directions.

Table 11.2 presents the values of stress singularity exponents for a crack tip under
loads of mode I and II obtained in [23] and calculated with the proposed numerical

Fig. 11.12 Crack, the front of which is perpendicular to the surface of an elastic half-space (a); its
computational scheme (b)
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Table 11.1 Elastic characteristics of carbon fiber reinforced plastic [23]

Material 𝐸𝑖 , GPa 𝐺𝑖 𝑗 , GPa 𝜈𝑖 𝑗

𝐸𝑥 = 130.3 𝐺𝑥𝑦 = 4.502 𝜈𝑥𝑦 = 0.33

Carbon fiber reinforced plastic 𝐸𝑦 = 9.377 𝐺𝑥𝑧 = 4.502 𝜈𝑥𝑧 = 0.33

𝐸𝑧 = 9.377 𝐺𝑦𝑧 = 2.865 𝜈𝑦𝑧 = 0.33

Table 11.2 Comparison between stress singularity exponents calculated by formula (11.53) and
obtained in [23] for a crack whose front is perpendicular to the surface of an elastic half-space
(three-dimensional problem)

Isotropic (𝜈 = 0.3) Anisotropic (Table 11.1)

𝜆1 (mode II) 𝜆2 (mode I) 𝜆1 (mode II) 𝜆2 (mode I)

Numerical algorithm 0.40 0.55 0.46 0.52

Numerical result from [23] 0.3929 0.5483 0.4543 0.5227

algorithm, which uses the finite element method to determine the stress asymptotics
based on relations (11.53). In this case, the difference between the stress singularity
exponents calculated by formula (11.53) and those presented in [23] is less than
1.8%.

Hence, the effectiveness and high accuracy of the proposed numerical algorithm
for calculating the stress singularity exponents in the vicinity of singular points for
homogeneous and piecewise homogeneous bodies, including those with anisotropic
properties have been substantiated by the results of solution of two- and three-
dimensional problems of elasticity theory.

11.5 Conclusion

The analytical method for constructing eigenvalues for circular cones has been con-
sidered. The relations developed in this study can be used to construct solutions,
and estimate the character of stress singularity for different variants of conical bod-
ies (solid, hollow, composite cones) under different types of boundary conditions
set on the lateral surfaces and contact surfaces of different materials. Numerical re-
sults have been presented on the nature of stress singularity at the vertex of a solid
cone under boundary conditions specified in terms of displacements, stresses, mixed
type boundary conditions and at the vertex of a hollow cone under different variants
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of boundary conditions specified on the lateral surfaces. A numerical algorithm for
evaluating the nature of stress singularity in the vicinity of singular points of elastic
bodies has been considered. It is based on the derivation of a power law relationship
for stresses from the numerically determined stress-strain state in the vicinity of
a singular point. The efficiency and high accuracy of the proposed numerical algo-
rithm for calculating stress singularity exponents in the vicinity of singular points for
homogeneous and piecewise homogeneous bodies, including those with anisotropic
properties, have been demonstrated.
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