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Preface

 Nikita Fedorovich Morozov

Nikita Fedorovich Morozov, a full member
of the Russian Academy of Sciences, an out-
standing Russian scientist who has enriched
the science with many achievements in the
field of mechanics of deformable solids, a re-
markable teacher, who created the country’s
authoritative scientific school of mechanics,
celebrated his 90th birthday.

Nikita Morozov was born on July 28, 1932
in Leningrad. His childhood coincided with
the hard times for the country. During the
Second World War, he remained in besieged
Leningrad. At the age of 11 he received his
first government award: the medal ”For De-
fense of Leningrad” - for active participation
in the work of fire brigades.

In 1949, he entered the Faculty of Mathe-
matics and Mechanics of the Leningrad State University (now St. Petersburg State
University - the oldest Russian university established in 1724), where he was taught
by the world-wide known scientists like Y.V. Linnik, S.G. Mikhlin, V.V. Novozhilov,
D.K. Faddeev and others. After getting his diploma, he continued his postgraduate
course at the Leningrad University. In 1958, he defended his PhD thesis and was
awarded “Candidate of physico-mathematical sciences”. After successful comple-
tion of the postgraduate course in 1958, he started working as a senior engineer at the
Krylov Central Research Institute, and a year later began teaching at the Leningrad
Technology Institute of Pulp and Paper Industry, where he was appointed as an as-
sistant professor and became head of the department for 13 years.

During those years, N.F. Morozov successfully combines teaching with scientific
work. The main direction of his scientific interests was the study of nonlinear prob-
lems in the theory of thin plates. He proved the existence, uniqueness and solvability
of the boundary and initial boundary problems of the theory of plates and shells us-

v



vi Preface

ing the rigorous mathematical approach. He solved the problem of the existence of
asymmetric solutions in the symmetrically loaded circular plate and formulated the
sufficient conditions of instability of symmetric solutions [1, 2, 3]. The results ob-
tained by N.F. Morozov on the qualitative research of nonlinear problems of the thin
plate theory are classical and formed a basis of his doctoral (DSc) thesis ”Nonlinear
problems of the theory of thin plates and shells” defended in 1967 at the Leningrad
State University.

In 1971, N.F. Morozov was invited to Leningrad State University to head the
laboratory of mathematical physics at the Leningrad State Research Institute of
Mathematics and Mechanics named after academician V.I. Smirnov. In 1973 he was
elected professor of the department of mathematical physics of the Faculty of Math-
ematics and Mechanics, and in 1976 he became head of the department of theory of
elasticity of Leningrad State University, one of the oldest departments of the univer-
sity, which he heads to date. At different times, the students, postgraduate students
and employees of the department were well-known scientists. Among them there
are, for example, the later President of the Academy of Sciences of USSR academi-
cian G.I. Marchuk, academicians A.S. Alekseev, E.I. Shemyakin, S.L. Sobolev and
N.I. Muskhelishvili, professors V.M. Babich, K.F. Chernikh, V.A. Likhachev, and
others.

The organizational work of N.F. Morozov as the head of the famous department
and the combination of his bright scientific and teaching activity led to the develop-
ment and growth of the scientific school of mechanics of St. Petersburg State Uni-
versity (SPbSU), which now rightfully occupies one of the leading positions among
the Russian schools in this field. Among the graduates of the department and N.F.
Morozov’s students there are many well-known scientists who have made a signif-
icant contribution to mechanics and mathematical physics: Corresponding Member
of the Russian Academy od Sciences Y.V. Petrov, Prof. S.A. Nazarov, Prof. M.V.
Paukshto, Prof. A.E. Volkov, Prof. A.I. Razov, Prof. A.A. Utkin, and also many spe-
cialists working in the field of high technologies. Even in the most difficult times, the
department under the leadership of N.F. Morozov continued its research activities,
and exploited new opportunities for growth. So, thanks to his energy and organiza-
tional talent, in difficult transitional period of 1990s the department could success-
fully begin carrying out of both theoretical and experimental researches in a number
of new essentially important directions, in particular, in the field of optimization of
elastic mechanical systems, dynamic problems and problems of biomechanics.

Nikita Morozov was one of the initiators of the application of strict mathemati-
cal methods in the theory of elasticity and nonlinear mechanics. The new results he
obtained in a number of scientific branches of the mathematical theory of elasticity
and nonlinear problems of mechanics put N.F. Morozov among the most famous
specialists in the country and abroad. N.F. Morozov and his pupils and colleagues
made significant progress in the strict mathematical formulation and investigation of
the strength and fracture problems, suggested by academician V.V. Novozhilov. N.F.
Morozov made a significant contribution to the development of crack theory. He
made a significant contribution to the development of crack theory. The application
of rigorous mathematical analysis tools allowed him and his students to develop ef-
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fective methods for analyzing the singular fields of elasticity theory arising in static
problems with sharp stress concentrators such as cracks and sharp notches. This, in
turn, led to the necessity of constructing new criteria of brittle fracture that could
correctly predict the ultimate loads in cases where traditional approaches based on
the classical Griffith-Irwin model do not work. One of the main achievements of
N.F. Morozov and his collaborators in this field was the development of nonlocal
strength criteria. In particular, it was proved that the integral fracture criterion -
mean stress fracture criterion - offered earlier for special problems by H. Neuber
and V. V. Novozhilov can be modified for the problems of continuum mechanics so
that a very wide class of problems could be considered - from the problems for re-
gions with cracks and sharp notches (jointly with B.N. Semenov and S.A. Nazarov)
to the problems with small crack-like defects (jointly with Yu.V. Petrov). The key
notion that was introduced in these studies was the notion of linear fracture size.
The physical treatment and the method of determination of this parameter proposed
in these works opened up the possibility for further generalizations of the theory to
other fields of mechanics. This led to the formation of the SPbSU school of frac-
ture mechanics, which is still the leading school in this field. The monograph [4]
became a significant contribution to the science of fracture, which was intensively
developing in many scientific centers world-wide during those years.

At the end of 1980s, N.F. Morozov together with Yu.V. Petrov turned to dynamic
problems of mechanics. The then prevailing conceptions of fracture came into con-
flict with the latest experimental research on extreme high-speed effects in materials,
which revealed a number of fundamental effects that did not fit into the traditional
models. To resolve these contradictions, new ideas were required, which were de-
veloped in a number of works of the St. Petersburg School of Mechanics. The joint
works [5, 6] with Yu. Petrov and A. Utkin generated a set of ideas that later served
as a basis for formulating a general structural-time approach to solving dynamical
problems and studying the critical extreme states of continuous media under dy-
namic actions. Using this approach, it was possible to formulate a number of new
criteria or limit conditions for transient processes in the theory of fracture, plas-
tic deformation, electro-physics (pulse breakdown), cavitation, the theory of phase
transformations. Based on this approach and new fracture criteria, new material test-
ing methods were proposed to meet the needs of modern industry.

Problems of free vibrations and stability of compressed transverse isotropic
space, half-space and transverse isotropic compressed plate were solved jointly with
P.E. Tovstik. Special attention is paid to the analysis of the forms of stability loss of
both the elastic foundation itself and the plate resting on it. Using the equations
of geometrically nonlinear elasticity theory, the surface stability of a transverse
anisotropic elastic half-space under the action of compressive stresses is studied
[7, 8]. An analysis of the loss of stability in the supercritical stage showed that the
dents near the free surface of the half-space are arranged in a “staggered” manner,
which corresponds to the experimental results.

N.F. Morozov is distinguished by his constant interest in new topical problems
of deformable solid mechanics, in the application of solid mechanics methods to re-
lated disciplines, and in the solution of practical problems. Since 1994, he has been
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active in the field of applying the methods of deformable solid mechanics to the
problems of nanomechanics and theoretical material science and the relationship
between deformation, stability, and fracture, and the diffusion processes of phase
transformations. Together with E.A. Ivanova and A.M. Krivtsov, the dependence
of elastic moduli on nanocrystal size is theoretically investigated. The scale effects
that arise when the continuum theory of elasticity is applied to nanoobjects were
estimated and also the influence of scale effects when the method of molecular dy-
namics is used for modeling macroscopic objects [9, 10]. Together with I.A. Ovidko,
the processes of deformation and fracture of graphene sheets with different types of
structural defects are studied [11, 12].

N.F. Morozov and his co-authors modified the equilibrium equations and consti-
tutive relations of linear theory of plates and shells with consideration of transverse
shear deformations by reducing the relations of spatial elasticity theory with sur-
face stresses to two-dimensional equations given on the middle surface of the shell
and analyzing the effect of surface elastic moduli on the effective stiffness of plates
and shells [13, 18, 14, 15, 16, 17]. N.F. Morozov and co-authors I.A. Ovidko, A.G.
Sheynerman, and S.V. Bobylev studied the mechanisms of deformation and frac-
ture of nanocrystalline bodies. A theoretical model describing the effect of special
rotational deformation on crack growth in deformed nanocrystalline ceramics and
metals was proposed and its effect on the growth of pre-existing relatively large
cracks in nanocrystalline metals and ceramics was evaluated [19].

A special physical mode of plastic deformation in nanocrystalline, ultrafine-
grained and polycrystalline bodies caused by grain boundary slip and nucleation
of nanosized grains (resulting from grain boundary splitting and migration under
stress) was proposed and theoretically described. It was shown that the special defor-
mation mode enhanced the plasticity of nanocrystalline and ultrafine-grained solids
and this enhancement effect was more pronounced compared to the effect of co-
operative grain boundary slip and migration [20]. The micromechanics of plastic
deformation by grain boundary migration in metal-graphene nanocomposites was
also studied [21].

N.F. Morozov together with L.V. Shtukin, I.E. Berinskii, D.A. Indeitsev and
D.Yu. Skubov studied the effect of nanoscale on the performance of electromechan-
ical structures. In particular, the electromechanical model of the graphene nanores-
onator was considered, taking into account the capacitor’s capacity change due to
the deformation of the graphene layer (one of the plates) and taking into account the
nonlinear-elastic properties of the graphene sheet at a small initial stretching. Two
new schemes of the graphene nanoresonators were proposed, namely the differential
and parametric ones [22].

The well-known Kirsch problem and its various modifications in nanomechani-
cal formulation was considered: a plate stretched by diametrically opposite forces
with a circular or elliptical hole or inclusion made of another material, a plate weak-
ened by various combinations of parallel cracks. The features of deformation and
destruction of both defect-free and defect-containing graphene sheets were consid-
ered [23, 24, 25].
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Together with A.K. Belyaev and P.E. Tovstik, N.F. Morozov conducted a series
of studies on the dynamic stability of rods under longitudinal loading, known in me-
chanics as the Lavrent’ev-Ishlinsky problem [26, 27]. Among others, an interesting
result was obtained about the loss of stability of a rod under a stepwise applica-
tion of a longitudinal load smaller than the Eulerian load. In 2016, N.F. Morozov,
A.K. Belyaev, and P.E. Tovstik were awarded the M.A. Lavrentyev Prize of the
Russian Academy of Sciences for their series of papers ”The Dynamics of a Rod in
Longitudinal Compression. Development of the Idea of M.A. Lavrent’ev and A.Yu.
Ishlinsky”.

N.F. Morozov left his mark not only as an author. He had also acted as editor
in the Springer book series “Advanced Structured Materials” [28, 29], the last book
was devoted to his friend and colleague Prof. P.E. Tovstik, who passed away in
December 2020.

Under the leadership of N.F. Morozov at the Institute for Problems of Mechan-
ical Engineering of the Russian Academy of Sciences (RAS) a creative team was
formed that works fruitfully on the solution of urgent problems of deformable solid
mechanics and includes many talented young people. Continuing the best traditions
of A.I. Lurie and V.V. Novozhilov, N.F. Morozov organized a permanent city semi-
nar at the Institute for Problems of Mechanical Engineering RAS, where scientists
from leading Russian and foreign scientific centers discuss topical problems of me-
chanics and physics and present their achievements. Thanks to the efforts of N.F.
Morozov at the Institute for Problems of Mechanical Engineering of the Russian
Academy of Sciences, the following directions were created and are actively de-
veloped: micromechanics of materials, creation and application of carbon nanos-
tructures, methods of molecular dynamics, mechanics of nanomaterials and defect
theory, and dynamics of extreme states and structural transformations.

For more than 50 years, the outstanding scientist and talented teacher has been
teaching at St. Petersburg State University. The scientific school of strength mechan-
ics that he created enjoys great authority in Russia and abroad. By the decisions of
the Grants Council under the President of the Russian Federation, the Academician
N.F. Morozov’s Scientific School has been repeatedly recognized as a leading sci-
entific school of Russia. The pupils of N.F. Morozov defended 8 doctoral theses and
more than 50 PhD theses.

N.F. Morozov is the author of more than 450 scientific works, including 8 mono-
graphs and 3 textbooks. Since 1994 he was a corresponding member of the Russian
Academy of Sciences and in 2000 he was elected as full member (academician)
of the Russian Academy of Sciences. He is the chairman of the Scientific Council
on mechanics of deformable solids of the Russian Academy of Sciences. In 2000,
N.F. Morozov was awarded the State Prize of the Russian Federation in the field of
science and technology for a cycle of papers on nonlinear problems of mechanics
of deformable solids. In 2006, N.F. Morozov was awarded the “A.F. Ioffe Prize” of
the Government of St. Petersburg in Physics and Mathematics for his outstanding
contribution to the dynamic theory of fracture of materials. In 2017 N.F. Morozov
was awarded the “Blaise Pascal Medal”, established by the European Academy of
Sciences in 2003, in recognition of his outstanding personal contribution to science
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and technology in the development of research skills in education. The decision to
award was made by the Scientific Committee of the European Academy of Sciences
specially created for this purpose. In 2009, N.F. Morozov was elected a member of
the European Academy of Sciences.

N.F. Morozov’s social and scientific activities are vast and multifaceted. He is
the vice-chairman of the Russian National Committee for Theoretical and Applied
Mechanics, a member of the General Assembly of IUTAM, a member of the ed-
itorial boards of leading Russian and foreign journals on mechanics. With the ac-
tive participation of N.F. Morozov, the scientific journal “Advances in Mechanics”
was created, of which he is the co-editor. For several decades, he has been an ac-
tive member of the Editorial Board of the journal “Vestnik Sankt-Peterburgskogo
Universiteta: Mathematics, Mechanics, Astronomy”, which English version is pub-
lished as “Vestnik St. Petersburg University, Mathematics” by Pleiades Publishing,
Ltd., in cooperation with Springer Nature. He was and is an active participant of the
“Advanced Problems of Mechanics” conferences and this year celebrated together
with the organizers the 50th anniversary of this conference series.

N.F. Morozov’s active scientific-pedagogical activity was marked with govern-
mental awards: “Order of Honour” (1999), “Order for Merit to the Fatherland” IV
degree (2003), “Order of Friendship” (2010). In 1995, N.F. Morozov was awarded
a title “Honored Scientist of the Russian Federation”.

Nikita Fedorovich Morozov is distinguished by his energy, enthusiasm for sci-
ence, civic responsibility, ability to selflessly work and organize others, availability
in communication and willingness to always come to the rescue. He meets his an-
niversary in the prime of his creative powers. We wish him health, further scientific
successes and happiness in his personal life!
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Chapter 1
On Forced Vibrations of Orthotropic Plates in
the Presence of Internal Friction

Lenser A. Aghalovyan, Mher L. Aghalovyan, and Tatevik V. Zakaryan

Abstract The forced vibrations of orthotropic plates are considered with the taking
into account the internal friction, which is proportionally to the points velocity. The
plate is lying on the absolutely rigid base and on its facial surface are acting normal
and tangential loads, which are harmonically changing in time. By the asymptotic
method of solving singularly perturbed differential equations the solution of 3D dy-
namic outer problem of the elasticity theory is found. It is shown that the asymptotic
solution becomes mathematically exact, when the outer actions depend on the tan-
gential coordinates polynomially.

Key words: 3D elasticity problems, Plates, Forced vibration, Friction, Asymptotic
method

1.1 Introduction

For the solution of the dynamic problems of the elasticity theory Fourier’s method,
the method of integral transformations, Wiener-Hopf’s, Smirnova-Sobolev’s method
were used [24]. Until recently, there was a relatively small number of works devoted
to the spatial dynamics problems of plates and shells. For solving similar static and
dynamic problems, an effective turned out the asymptotic method of solving sin-
gularly perturbed differential equations. Mathematicians began to pay attention to
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singularly perturbed differential equations from the middle of the 20th century (K.O.
Friedrichs, A.N. Tikhonov, V. Vazov, M.I. Vishik and L.A. Lyusternik, A.H. Nayfeh
and others). Then it was followed by a rapid development of this direction and oc-
curred many first-class monographs [17, 18, 22, 27, 28] et al.). However in these
monographs there was not discussed the type of singularly perturbed differential
equations, which were occurred in the elasticity theory for thin bodies (the small
parameter is the coefficient not for the entire higher operator, but only for its part).
For solving similar equations and systems an effective turned out the asymptotic
method. The first works on the application of the asymptotic method for solving 3D
problems for plates and shells are [10, 11, 13, 14]. It was proved that by one expan-
sion by the small parameter, as in the regularly perturbed by the small parameter
equations, the problem is impossible to solve. The solution of singularly perturbed
equations and systems is consist of two qualitatively different addends: the solution
of outer problem (𝐼𝑜𝑢𝑡 ) and the solution of boundary layer (𝐼𝑏)

𝐼 = 𝐼𝑜𝑢𝑡 + 𝐼𝑏 (1.1)

Applicable to the 3D problem of the elasticity theory, by solving the outer prob-
lem, beside satisfying equilibrium equations (movements) and relations of elasticity,
also are satisfying the boundary conditions on the facial surfaces of plate and shell
(outer conditions). The same solution in Russian-language publications is usual to
call the solution of the internal problem (𝐼𝑜𝑢𝑡 ) in the sense that it is valid starting
from the some distance from the side surface, i.e. inside the plate or the shell. The
solution (𝐼𝑏) is localized near the side surface and, as a rule, all its values decrease
exponentially with receding from the side surface into the inside of the plate or the
shell. These solutions can be built separately [2, 11].

The solution of the outer problem is found in the form

𝐼𝑜𝑢𝑡 = Y𝑞𝐼+𝑠 𝐼 (𝑠) , 𝑠 = 0, 𝑁 (1.2)

In the case of a regular perturbation 𝑞𝐼 = 0. In singularly perturbed equations,
the value of 𝑞𝐼 depends on desired functions and on type of boundary conditions
on facial surfaces. For example, if values of the corresponding components of the
stress tensor are given on facial surfaces of the plate (𝜎±

𝑥𝑧 ,𝜎
±
𝑦𝑧 ,𝜎

±
𝑧𝑧), i.e. conditions

of the first boundary value problem of the elasticity theory, then we have [2, 11]

𝑞𝐼 = −2 for 𝜎𝑥𝑥 ,𝜎𝑥𝑦 ,𝜎𝑦𝑦; 𝑞𝐼 = −1 for 𝜎𝑥𝑧 ,𝜎𝑦𝑧; (1.3)
𝑞𝐼 = 0 for 𝜎𝑧𝑧 ; 𝑞𝐼 = −2 for 𝑢, 𝑣; 𝑞𝐼 = −3 for 𝑤

In the case of the second or mixed boundary value problems, we have established
[1, 2, 6]

𝑞𝐼 = −1 ∀ 𝜎𝑖 𝑗 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (1.4)
𝑞𝐼 = 0 for 𝑢, 𝑣,𝑤

The asymptotics (1.4) is valid also for solving 3D dynamic problems.
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The asymptotic theory of isotropic plates and shells was constructed by Gol’den-
veizer [11, 12], and for anisotropic plates and shells by Agalovyan [2], for layered
plates and shells [4]. The great contribution into the development of the asymptotic
theory of plates and shells was made by A.L. Gol’denveizer’s students and associates
[9, 15, 16, 19, 20, 21, 25, 25, 29]. Some classes of dynamic problems of anisotropic
plates were solved in [3, 5, 6, 8], and for shells in [7]. In this paper, an asymptotic
solution of the 3D problem of forced vibrations of orthotropic plates in the presence
of internal friction is found.

1.2 The Formulation of the Problem and Basic Equations

Let we have a plate, which occupies the area 𝐷 = {(𝑥, 𝑦, 𝑧) : 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏,
|𝑧 | ≤ ℎ, ℎ << 𝑙, 𝑙 = 𝑚𝑖𝑛(𝑎, 𝑏)}. The plate is orthotropic, there is an internal friction,
which is proportional to the velocity of the points [23]. The plate leans against on
an absolutely rigid base. There is the Coulomb friction between the base and plate
sole. On the facial surface of the plate normal and tangential loads, which change
harmonically in time, are acting.

It is required to find the solution to the corresponding three-dimensional problem
of the elasticity theory. For this, it is necessary to find in the region 𝐷 the solution
to equations of motion, taking into account the internal friction:

𝜕𝜎𝑥𝑥

𝜕𝑥
+ 𝜕𝜎𝑥𝑦

𝜕𝑦
+ 𝜕𝜎𝑥𝑧

𝜕𝑧
− 𝑘 𝜕𝑢

𝜕𝑡
= 𝜌

𝜕2𝑢

𝜕2𝑡
(𝑥, 𝑦, 𝑧;𝑢, 𝑣,𝑤), (1.5)

relations of the elasticity for the orthotropic body:

𝜕𝑢

𝜕𝑥
= 𝑎11𝜎𝑥𝑥 + 𝑎12𝜎𝑦𝑦 + 𝑎13𝜎𝑧𝑧 , (𝑥, 𝑦, 𝑧;𝑢, 𝑣,𝑤;1,2,3)

𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

= 𝑎66𝜎𝑥𝑦 ,
𝜕𝑤

𝜕𝑥
+ 𝜕𝑢
𝜕𝑧

= 𝑎55𝜎𝑥𝑧 ,
𝜕𝑤

𝜕𝑦
+ 𝜕𝑣
𝜕𝑧

= 𝑎44𝜎𝑦𝑧 (1.6)

where 𝜎𝑖 𝑗 - components of stress tensor , 𝑢, 𝑣,𝑤 - components of displacement vec-
tor, 𝑎𝑖 𝑗 - constants of elasticity, 𝜌 - density, 𝑘 - coefficient of the internal friction.
Notation (𝑥, 𝑦, 𝑧;𝑢, 𝑣,𝑤) means that there are two more equations that are obtained
from the written by cyclic permutation. The found solution must satisfy to the fol-
lowing boundary conditions:

𝜎𝛼𝑧 (𝑥, 𝑦, ℎ, 𝑡) = −𝜎+
𝛼𝑧 (𝜉,[) cosΩ𝑡, 𝛼 = 𝑥, 𝑦, 𝑧 when 𝑧 = ℎ (1.7)

𝑤(𝑥, 𝑦,−ℎ, 𝑡) = 0, when 𝑧 = −ℎ
𝜎𝑥𝑧 (𝑥, 𝑦,−ℎ, 𝑡) = 𝑓1𝜎𝑧𝑧 (𝑥, 𝑦,−ℎ, 𝑡), (1.8)
𝜎𝑦𝑧 (𝑥, 𝑦,−ℎ, 𝑡) = 𝑓2𝜎𝑧𝑧 (𝑥, 𝑦,−ℎ, 𝑡)
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𝜉 = 𝑥/𝑙, [ = 𝑦/𝑙, 𝑙 = min(𝑎, 𝑏), Ω - frequency of external influence. The found solu-
tion must also satisfy to conditions on the side surface. They stipulate the appearance
of the boundary layer. The corresponding solution can be built separately [2, 6, 11].
The values of the boundary layer, as a rule, exponentially decrease with removing
from the side surface into the inside of the plate.

1.3 The Solution to the External Problem

The solution to the problem formulated above (1.1)-(1.4) will be sought in the form

𝜎𝛼𝛽 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝑗𝑘𝐼 (𝑥, 𝑦, 𝑧) sinΩ𝑡 +𝜎𝑗𝑘𝐼 𝐼 (𝑥, 𝑦, 𝑧) cosΩ𝑡, (1.9)
𝛼, 𝛽 = 𝑥, 𝑦, 𝑧, 𝑗 , 𝑘 = 1,2,3

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝐼 (𝑥, 𝑦, 𝑧) sinΩ𝑡 +𝑢𝐼 𝐼 (𝑥, 𝑦, 𝑧) cosΩ𝑡, (𝑢, 𝑣,𝑤)

Then we pass in Eqs. (1.5) and relations (1.6) to dimensionless coordinates and
dimensionless displacements:

𝜉 = 𝑥/𝑙, [ = 𝑦/𝑙, Z = 𝑧/ℎ, 𝑈𝐼 = 𝑢𝐼/𝑙, 𝑈𝐼 𝐼 = 𝑢𝐼 𝐼/𝑙, (𝑢, 𝑣,𝑤) (1.10)

As a result, we will obtain the system, singularly perturbed by the small parameter
Y = ℎ/𝑙:

𝜕𝜎11𝐼
𝜕𝜉

+ 𝜕𝜎12𝐼
𝜕[

+ Y−1 𝜕𝜎13𝐼
𝜕Z

+ 𝑘𝑙2Ω𝑈𝐼 𝐼 = −𝜌Ω2𝑙2𝑈𝐼 , (𝜉,[;1,2;𝑈,𝑉)
𝜕𝜎11𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎12𝐼 𝐼
𝜕[

+ Y−1 𝜕𝜎13𝐼 𝐼
𝜕Z

− 𝑘𝑙2Ω𝑈𝐼 = −𝜌Ω2𝑙2𝑈𝐼 𝐼 , (𝜉,[;1,2;𝑈,𝑉)
𝜕𝜎13𝐼
𝜕𝜉

+ 𝜕𝜎23𝐼
𝜕[

+ Y−1 𝜕𝜎33𝐼
𝜕Z

+ 𝑘𝑙2Ω𝑊𝐼 𝐼 = −𝜌Ω2𝑙2𝑊𝐼 , (𝐼, 𝐼 𝐼) (1.11)

Y−1 𝜕𝑈𝐼

𝜕𝜉
= 𝑎11𝜎11𝐼 + 𝑎12𝜎22𝐼 + 𝑎13𝜎33𝐼 , (𝜉,[, Z ;𝑈,𝑉,𝑊 ;1,2,3), (𝐼, 𝐼 𝐼)

𝜕𝑈𝐼

𝜕[
+ 𝜕𝑉𝐼
𝜕𝜉

= 𝑎66𝜎12𝐼 ,
𝜕𝑊𝐼

𝜕𝜉
+ Y−1 𝜕𝑈𝐼

𝜕Z
= 𝑎55𝜎13𝐼 , (𝐼, 𝐼 𝐼)

𝜕𝑊𝐼

𝜕[
+ Y−1 𝜕𝑉𝐼

𝜕Z
= 𝑎44𝜎23𝐼 , (𝐼, 𝐼 𝐼)

The solution 𝐼 to the singularly perturbed system according to (1.1) consists of so-
lutions to the external problem (𝐼𝑜𝑢𝑡 ) and the boundary layer (𝐼𝑏).

The solution to the external problem we will seek in the form

𝜎𝑜𝑢𝑡
𝑗𝑘𝛾 = Y−1+𝑠𝜎 (𝑠)

𝑗𝑘𝐼 , 𝑗 , 𝑘 = 1,2,3, 𝛾 = 𝐼, 𝐼 𝐼, 𝑠 = 0, 𝑁 (1.12)

(𝑈𝑜𝑢𝑡
𝛾 ,𝑉𝑜𝑢𝑡

𝛾 ,𝑊𝑜𝑢𝑡
𝛾 ) = Y𝑠 (𝑈 (𝑠)

𝛾 ,𝑉 (𝑠)
𝛾 ,𝑊 (𝑠)

𝛾 ), 𝛾 = 𝐼, 𝐼 𝐼
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The notation 𝑠 = 0, 𝑁 means, that by umbral (repeating) index 𝑠 is taken place
summed over all integer values from 0 to number of approximations 𝑁 . By substitut-
ing (1.12) in (1.11), for determining unknown coefficients (𝜎 (𝑠)

𝑗𝑘𝐼 ,𝑈
(𝑠)
𝛾 ,𝑉 (𝑠)

𝛾 ,𝑊 (𝑠)
𝛾 )

we will obtain the system:

𝜕𝜎 (𝑠−1)
11𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
12𝐼
𝜕[

+ 𝜕𝜎
(𝑠)
13𝐼
𝜕Z

+2𝐻Ω𝑈 (𝑠)
𝐼 𝐼 + 𝜌2

1Ω
2𝑈 (𝑠)

𝐼 = 0, (𝜉,[;1,2;𝑈,𝑉)

𝜕𝜎 (𝑠−1)
11𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
12𝐼 𝐼
𝜕[

+ 𝜕𝜎
(𝑠)
13𝐼 𝐼
𝜕Z

−2𝐻Ω𝑈 (𝑠)
𝐼 + 𝜌2

1Ω
2𝑈 (𝑠)

𝐼 𝐼 = 0, (𝜉,[;1,2;𝑈,𝑉)

𝜕𝜎 (𝑠−1)
13𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
23𝐼
𝜕[

+ 𝜕𝜎
(𝑠)
33𝐼
𝜕Z

+2𝐻Ω𝑊 (𝑠)
𝐼 𝐼 + 𝜌2

1Ω
2𝑊 (𝑠)

𝐼 = 0,

𝜕𝜎 (𝑠−1)
13𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
23𝐼 𝐼
𝜕[

+ 𝜕𝜎
(𝑠)
33𝐼 𝐼
𝜕Z

−2𝐻Ω𝑊 (𝑠)
𝐼 + 𝜌2

1Ω
2𝑊 (𝑠)

𝐼 𝐼 = 0, (1.13)

𝜕𝑈 (𝑠−1)
𝐼

𝜕𝜉
= 𝑎11𝜎

(𝑠)
11𝐼 + 𝑎12𝜎

(𝑠)
22𝐼 + 𝑎13𝜎

(𝑠)
33𝐼 , (𝜉,[, Z ;𝑈,𝑉,𝑊 ;1,2,3), (𝐼, 𝐼 𝐼)

𝜕𝑈 (𝑠−1)
𝐼

𝜕[
+ 𝜕𝑉

(𝑠−1)
𝐼

𝜕𝜉
= 𝑎66𝜎

(𝑠)
12𝐼 ,

𝜕𝑊 (𝑠−1)
𝐼

𝜕𝜉
+ 𝜕𝑈

(𝑠)
𝐼

𝜕Z
= 𝑎55𝜎

(𝑠)
13𝐼 , (𝐼, 𝐼 𝐼)

𝜕𝑊 (𝑠−1)
𝐼

𝜕[
+ 𝜕𝑉

(𝑠)
𝐼

𝜕Z
= 𝑎44𝜎

(𝑠)
23𝐼 , (𝐼, 𝐼 𝐼)

2𝐻 = 𝑘ℎ2, 𝜌2
1 = 𝜌ℎ

2

From system (1.13), all components of the stress tensor can be expressed through
the components of the displacement vector by formulas

𝜎 (𝑠)
13𝛾 =

1
𝑎55

( 𝜕𝑈
(𝑠)
𝛾

𝜕Z
+ 𝜕𝑊

(𝑠−1)
𝛾

𝜕𝜉
) , 𝜎 (𝑠)

23𝛾 =
1
𝑎44

( 𝜕𝑉
(𝑠)
𝛾

𝜕Z
+ 𝜕𝑊

(𝑠−1)
𝛾

𝜕[
) ,

𝜎 (𝑠)
12𝛾 =

1
𝑎66

( 𝜕𝑈
(𝑠−1)
𝛾

𝜕[
+ 𝜕𝑉

(𝑠−1)
𝛾

𝜕𝜉
) ,

𝜎 (𝑠)
11𝛾 =

1
Δ
( −𝐴23

𝜕𝑊 (𝑠)
𝛾

𝜕Z
+ 𝐴22

𝜕𝑈 (𝑠−1)
𝛾

𝜕𝜉
− 𝐴12

𝜕𝑉 (𝑠−1)
𝛾

𝜕[
) , (1.14)

𝜎 (𝑠)
22𝛾 =

1
Δ
( −𝐴13

𝜕𝑊 (𝑠)
𝛾

𝜕Z
− 𝐴12

𝜕𝑈 (𝑠−1)
𝛾

𝜕𝜉
+ 𝐴33

𝜕𝑉 (𝑠−1)
𝛾

𝜕[
) ,

𝜎 (𝑠)
33𝛾 =

1
Δ
( 𝐴11

𝜕𝑊 (𝑠)
𝛾

𝜕Z
− 𝐴23

𝜕𝑈 (𝑠−1)
𝛾

𝜕𝜉
− 𝐴13

𝜕𝑉 (𝑠−1)
𝛾

𝜕[
) , 𝛾 = 𝐼, 𝐼 𝐼

where
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𝐴11 = 𝑎11𝑎22 − (𝑎12)2, 𝐴22 = 𝑎22𝑎33 − (𝑎23)2, 𝐴33 = 𝑎11𝑎33 − (𝑎13)2,

𝐴12 = 𝑎12𝑎33 − 𝑎23𝑎13, 𝐴13 = 𝑎11𝑎23 − 𝑎13𝑎12, 𝐴23 = 𝑎13𝑎22 − 𝑎12𝑎23, (1.15)
Δ = 𝑎11𝐴22 − 𝑎12𝐴12 − 𝑎13𝐴23

For determining components of the displacement vector, we will obtain equations:

𝜕4𝑈 (𝑠)
𝐼

𝜕Z4 +2𝜌2
1Ω

2𝑎55
𝜕2𝑈 (𝑠)

𝐼

𝜕Z2 + (4𝐻2 + 𝜌4
1Ω

2)Ω2𝑎2
55𝑈

(𝑠)
𝐼 = 𝑅 (𝑠)

𝑢 (𝑈,𝑉 ;𝑎55, 𝑎44),

𝑅 (𝑠)
𝑢 = 𝑎𝑎𝑎 [2𝐻Ω𝑎55

(
𝜕𝜎 (𝑠−1)

11𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
12𝐼 𝐼
𝜕[

)
− 𝜕

2𝑈 (𝑠)
𝐼∗

𝜕Z2 +2𝐻Ω
𝜕2𝑊 (𝑠−1)

𝐼 𝐼

𝜕𝜉𝜕Z

−𝜌2
1Ω

2𝑎55𝑈
(𝑠)
𝐼∗ ],

𝑈 (𝑠)
𝐼∗ =

𝜕𝜎 (𝑠−1)
11𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
12𝐼 𝐼
𝜕[

+ 1
𝑎55

𝜕2𝑊 (𝑠−1)
𝐼

𝜕𝜉𝜕Z
(𝑈,𝑉 ;𝑎55, 𝑎44;𝜉,[;1,2)

(1.16)
𝜕4𝑊 (𝑠)

𝐼

𝜕Z4 + 2𝜌2
1Ω

2Δ

𝐴11

𝜕2𝑊 (𝑠)
𝐼

𝜕Z2 + (4𝐻2 + 𝜌4
1Ω

2)Ω2Δ2

𝐴2
11

𝑊 (𝑠)
𝐼 = 𝑅 (𝑠)

𝑤

𝑅 (𝑠)
𝑤 =

2𝐻ΩΔ2

𝐴2
11

[
𝜕𝜎 (𝑠−1)

13𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
23𝐼 𝐼
𝜕[

− 1
Δ

(
𝐴23

𝜕2𝑈 (𝑠−1)
𝐼 𝐼

𝜕𝜉𝜕Z
+ 𝐴13

𝜕2𝑉 (𝑠−1)
𝐼 𝐼

𝜕[𝜕Z

)]
−

Δ
𝐴11

𝜕2𝑊 (𝑠)
𝐼∗

𝜕Z2 − 𝜌
2
1Ω

2Δ2

𝐴2
11

𝑊 (𝑠)
𝐼∗ ,𝑟

𝑊 (𝑠)
𝐼∗ =

𝜕𝜎 (𝑠−1)
13𝐼 𝐼
𝜕𝜉

+ 𝜕𝜎
(𝑠−1)
23𝐼 𝐼
𝜕[

+ 1
Δ

(
𝐴23

𝜕2𝑈 (𝑠−1)
𝐼

𝜕𝜉𝜕Z
+ 𝐴13

𝜕2𝑉 (𝑠−1)
𝐼

𝜕[𝜕Z

)
,

(1.17)
The other components of the vector of displacement are determined by formulas:

𝑈 (𝑠)
𝐼 𝐼 = − 1

2𝐻Ω

[
1
𝑎55

𝜕2𝑈 (𝑠)
𝐼

𝜕Z2 + 𝜌2
1Ω

2𝑈 (𝑠)
𝐼 +𝑈 (𝑠)

𝐼∗

]
,

𝑉 (𝑠)
𝐼 𝐼 = − 1

2𝐻Ω

[
1
𝑎44

𝜕2𝑉 (𝑠)
𝐼

𝜕Z2 + 𝜌2
1Ω

2𝑉 (𝑠)
𝐼 +𝑉 (𝑠)

𝐼∗

]
, (1.18)

𝑊 (𝑠)
𝐼 𝐼 = − 1

2𝐻Ω

[
𝐴11
Δ

𝜕2𝑊 (𝑠)
𝐼

𝜕Z2 + 𝜌2
1Ω

2𝑊 (𝑠)
𝐼 +𝑊 (𝑠)

𝐼∗

]
.

The solution to equation (1.16) is

𝑈 (𝑠)
𝐼 = 𝐷 (𝑠)

1 (𝜉,[)𝜑1𝑢 (Z) +𝐷 (𝑠)
2 (𝜉,[)𝜑2𝑢 (Z)+ (1.19)

𝐷 (𝑠)
3 (𝜉,[)𝜑3𝑢 (Z) +𝐷 (𝑠)

4 (𝜉,[)𝜑4𝑢 (Z) +𝑈 (𝑠)
𝐼

where𝑈
(𝑠)
𝐼 − particular solution to the Eq. (1.16), and
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𝜑1𝑢 = sinh𝑐𝑢Z sin𝑑𝑢Z, 𝜑2𝑢 = sinh𝑐𝑢Z cos𝑑𝑢Z,
𝜑3𝑢 = cosh𝑐𝑢Z sin𝑑𝑢Z, 𝜑4𝑢 = cosh𝑐𝑢Z cos𝑑𝑢Z, (1.20)

𝑐𝑢 =

√︂
Ω𝑎55

2

√︂
−𝜌2Ω+

√︃
𝜌4Ω2 +4𝐻4,

𝑑𝑢 =

√︂
Ω𝑎55

2

√︂
𝜌2Ω+

√︃
𝜌4Ω2 +4𝐻4

Then according to formulas (1.14), (1.18)

𝑈 (𝑠)
𝐼 𝐼 = −𝐷 (𝑠)

1 (𝜉,[)𝜑4𝑢 (Z) +𝐷 (𝑠)
2 (𝜉,[)𝜑3𝑢 (Z)−

𝐷 (𝑠)
3 (𝜉,[)𝜑2𝑢 (Z) +𝐷 (𝑠)

4 (𝜉,[)𝜑1𝑢 (Z) +𝑈 (𝑠)
𝐼 𝐼

𝜎 (𝑠)
13𝐼 =

1
𝑎55

[(𝑐𝑢𝜑3𝑢 + 𝑑𝑢𝜑2𝑢)𝐷 (𝑠)
1 + (𝑐𝑢𝜑4𝑢 − 𝑑𝑢𝜑1𝑢)𝐷 (𝑠)

2 +

(𝑐𝑢𝜑1𝑢 + 𝑑𝑢𝜑4𝑢)𝐷 (𝑠)
3 + (𝑐𝑢𝜑2𝑢 − 𝑑𝑢𝜑3𝑢)𝐷 (𝑠)

4 ] +𝜎 (𝑠)
13𝐼 (𝜉,[, Z) (1.21)

𝜎 (𝑠)
13𝐼 𝐼 =

1
𝑎55

[−(𝑐𝑢𝜑2𝑢 − 𝑑𝑢𝜑3𝑢)𝐷 (𝑠)
1 + (𝑐𝑢𝜑1𝑢 + 𝑑𝑢𝜑4𝑢)𝐷 (𝑠)

2 −

(𝑐𝑢𝜑4𝑢 − 𝑑𝑢𝜑1𝑢)𝐷 (𝑠)
3 + (𝑐𝑢𝜑3𝑢 + 𝑑𝑢𝜑2𝑢)𝐷 (𝑠)

4 ] +𝜎 (𝑠)
13𝐼 𝐼 (𝜉,[, Z)

𝑈
(𝑠)
𝐼 𝐼 = − 1

2𝐻Ω
[ 1
𝑎55

𝜕2𝑈
(𝑠)
𝐼

𝜕Z2 + 𝜌2
1Ω

2𝑈
(𝑠)
𝐼 +𝑈 (𝑠)

𝐼∗ ],

𝜎 (𝑠)
13𝑛 =

1
𝑎55

( 𝜕𝑈
(𝑠)
𝑛

𝜕Z
+ 𝜕𝑊

(𝑠−1)
𝑛

𝜕𝜉
), 𝑛 = 𝐼, 𝐼 𝐼

The solution to Eq. (1.16) for the displacement 𝑉 is

𝑉 (𝑠)
𝐼 = 𝐹 (𝑠)

1 (𝜉,[)𝜑1𝑣 (Z) +𝐹 (𝑠)
2 (𝜉,[)𝜑2𝑣 (Z)+ (1.22)

𝐹 (𝑠)
3 (𝜉,[)𝜑3𝑣 (Z) +𝐹 (𝑠)

4 (𝜉,[)𝜑4𝑣 (Z) +𝑉 (𝑠)
𝐼

where functions 𝜑 𝑗𝑣 are determined by formulas (1.20) with the difference that, it
needs to replace𝑈,𝑎55 with 𝑉,𝑎44.

For Eq. (1.17), we similarly have

𝑊 (𝑠)
𝐼 = 𝐵 (𝑠)

1 (𝜉,[)𝜑1𝑤(Z) +𝐵 (𝑠)
2 (𝜉,[)𝜑2𝑤(Z)+ (1.23)

𝐵 (𝑠)
3 (𝜉,[)𝜑3𝑤(Z) +𝐵 (𝑠)

4 (𝜉,[)𝜑4𝑤(Z) +𝑊 (𝑠)
𝐼

where 𝜑 𝑗𝑤(Z), 𝑐𝑤 are calculated by formulas (1.20) by replacing 𝜑 𝑗𝑢 (Z), 𝑐𝑢, 𝑎55
with 𝜑 𝑗𝑤(Z), 𝑐𝑤,Δ/𝐴11.

By satisfying to the boundary conditions (1.7), (1.8) we will obtain the algebraic
system
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𝜎 (𝑠)
𝑗3𝐼 (𝜉,[,1) = 0 𝜎 (𝑠)

𝑗3𝐼 𝐼 (𝜉,[,1) = −𝜎+(𝑠)
𝛼𝑧 (𝜉,[), 𝑗 = 1,2,3, 𝛼 = 𝑥, 𝑦, 𝑧

𝜎+(0)
𝑗𝑧 = Y𝜎+

𝑗𝑧 , 𝜎
+(𝑠)
𝑗𝑧 = 0, 𝑠 ≠ 0 (1.24)

𝑤𝐼 (𝜉,[,−1) = 0, 𝜎 (𝑠)
𝑗3𝐼 (𝜉,[,−1) = 𝑓 𝑗𝜎

(𝑠)
33𝐼 (𝜉,[,−1), (𝐼, 𝐼 𝐼), 𝑗 = 1,2

Which is decomposing into three systems. The first system corresponds to con-
ditions.

𝜎 (𝑠)
33𝐼 (𝜉,[,1) = 0, 𝜎 (𝑠)

33𝐼 𝐼 (𝜉,[,1) = −𝜎+(𝑠)
𝑧𝑧 (𝜉,[), (1.25)

𝑤𝐼 (𝜉,[,−1) = 0, 𝑤𝐼 𝐼 (𝜉,[,−1) = 0

and looks like

𝐶1𝑤𝐵
(𝑠)
1 +𝐶2𝑤𝐵

(𝑠)
2 +𝐶3𝑤𝐵

(𝑠)
3 +𝐶4𝑤𝐵

(𝑠)
4 = 𝑝 (𝑠)1𝑤

−𝐶4𝑤𝐵
(𝑠)
1 +𝐶3𝑤𝐵

(𝑠)
2 −𝐶2𝑤𝐵

(𝑠)
3 +𝐶1𝑤𝐵

(𝑠)
4 = 𝑝 (𝑠)2𝑤

𝜓1𝑤𝐵
(𝑠)
1 −𝜓2𝑤𝐵

(𝑠)
2 −𝜓3𝑤𝐵

(𝑠)
3 +𝜓4𝑤𝐵

(𝑠)
4 = 𝑝 (𝑠)3𝑤 (1.26)

−𝜓4𝑤𝐵
(𝑠)
1 +𝜓3𝑤𝐵

(𝑠)
2 −𝜓2𝑤𝐵

(𝑠)
3 +𝜓1𝑤𝐵

(𝑠)
4 = 𝑝 (𝑠)4𝑤

where

𝐶1𝑤 = 𝑐𝑤𝜓3𝑤 + 𝑑𝑤𝜓2𝑤, 𝐶2𝑤 = 𝑐𝑤𝜓4𝑤− 𝑑𝑤𝜓1𝑤

𝐶3𝑤 = 𝑐𝑤𝜓1𝑤 + 𝑑𝑤𝜓4𝑤, 𝐶4𝑤 = 𝑐𝑤𝜓2𝑤− 𝑑𝑤𝜓3𝑤, 𝜓𝑖𝑤 = 𝜑𝑖𝑤(Z = 1) (1.27)

𝑝 (𝑠)1𝑤 = − 𝐴11
Δ
𝜎 (𝑠)

33𝐼 (𝜉,[,1), 𝑝
(𝑠)
2𝑤 = − 𝐴11

Δ
(𝜎+(𝑠)

𝑧𝑧 +𝜎 (𝑠)
33𝐼 𝐼 (𝜉,[,1),

𝑝 (𝑠)3𝑤 = −𝑤 (𝑠)
𝐼 , 𝑝 (𝑠)4𝑤 = −𝑤 (𝑠)

𝐼 𝐼

By Cramer’s formula from system (1.26), we determine 𝐵 (𝑠)
𝑖

𝐵 (𝑠)
𝑖 =

Δ(𝑠)
𝑖𝑤

Δ𝑤

Δ𝑤 =

��������
𝐶1𝑤 𝐶2𝑤 𝐶3𝑤 𝐶4𝑤
−𝐶4𝑤 𝐶3𝑤 −𝐶2𝑤 𝐶1𝑤
𝜓1𝑤 −𝜓2𝑤 −𝜓3𝑤 𝜓4𝑤
−𝜓4𝑤 𝜓3𝑤 −𝜓2𝑤 𝜓1𝑤

��������
, 𝑃 (𝑠)

𝑤 =

���������

𝑝 (𝑠)1𝑤
𝑝 (𝑠)2𝑤
𝑝 (𝑠)3𝑤
𝑝 (𝑠)4𝑤

���������
(1.28)

Δ(𝑠)
𝑖𝑤 cofactor corresponding to the 𝑖th column, i.e. it is obtained from Δ𝑤 by

replacing 𝑖th column with a column of free terms.
According to conditions

𝜎 (𝑠)
13𝐼 (𝜉,[,1) = 0 𝜎 (𝑠)

13𝐼 𝐼 (𝜉,[,1) = −𝜎+(𝑠)
𝑥𝑧 (𝜉,[), (1.29)

𝜎 (𝑠)
13𝐼 (𝜉,[,−1) = 𝑓1𝜎

(𝑠)
33𝐼 (𝜉,[,−1), (𝐼, 𝐼 𝐼)
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we have

𝐶1𝑢𝐷
(𝑠)
1 +𝐶2𝑢𝐷

(𝑠)
2 +𝐶3𝑢𝐷

(𝑠)
3 +𝐶4𝑢𝐷

(𝑠)
4 = 𝑝 (𝑠)1𝑢

−𝐶4𝑢𝐷
(𝑠)
1 +𝐶3𝑢𝐷

(𝑠)
2 −𝐶2𝑢𝐷

(𝑠)
3 +𝐶1𝑢𝐷

(𝑠)
4 = 𝑝 (𝑠)2𝑢

−𝐶1𝑢𝐷
(𝑠)
1 +𝐶2𝑢𝐷

(𝑠)
2 +𝐶3𝑢𝐷

(𝑠)
3 −𝐶4𝑢𝐷

(𝑠)
4 = 𝑝 (𝑠)3𝑢 (1.30)

𝐶4𝑢𝐷
(𝑠)
1 +𝐶3𝑢𝐷

(𝑠)
2 −𝐶2𝑢𝐷

(𝑠)
3 −𝐶1𝑢𝐷

(𝑠)
4 = 𝑝 (𝑠)4𝑢

where

𝑝 (𝑠)1𝑢 = −𝑎55𝜎
(𝑠)
13𝐼 (𝜉,[,1), 𝑝

(𝑠)
2𝑢 = −𝑎55 (𝜎+(𝑠)

𝑥𝑧 +𝜎 (𝑠)
13𝐼 𝐼 (𝜉,[,1)

𝑝 (𝑠)3𝑢 = 𝑎𝑎𝑎 [ 𝑓1 Δ
𝐴11

(−𝐶1𝑤𝐵
(𝑠)
1 +𝐶2𝑤𝐵

(𝑠)
2 +𝐶3𝑤𝐵

(𝑠)
3 −𝐶4𝑤𝐵

(𝑠)
4 )+

𝑓1𝜎
(𝑠)
33𝐼 (𝜉,[,−1) −𝜎 (𝑠)

13𝐼 (𝜉,[,−1)], (1.31)

𝑝 (𝑠)4𝑢 = 𝑎𝑎𝑎 [ 𝑓1 Δ
𝐴11

(𝐶4𝑤𝐵
(𝑠)
1 +𝐶3𝑤𝐵

(𝑠)
2 −𝐶2𝑤𝐵

(𝑠)
3 −𝐶1𝑤𝐵

(𝑠)
4 )+

𝑓1𝜎
(𝑠)
33𝐼 𝐼 (𝜉,[,−1) −𝜎 (𝑠)

13𝐼 𝐼 (𝜉,[,−1)],

consequently

𝐷 (𝑠)
𝑖 =

Δ(𝑠)
𝑖𝑢

Δ𝑢

Δ𝑢 =

��������
𝐶1𝑢 𝐶2𝑢 𝐶3𝑢 𝐶4𝑢
−𝐶4𝑢 𝐶3𝑢 −𝐶2𝑢 𝐶1𝑢
−𝐶1𝑢 𝐶2𝑢 𝐶3𝑢 −𝐶4𝑢
𝐶4𝑢 𝐶3𝑢 −𝐶2𝑢 −𝐶1𝑢

��������
, 𝑃 (𝑠)

𝑢 =

���������

𝑝 (𝑠)1𝑢
𝑝 (𝑠)2𝑢
𝑝 (𝑠)3𝑢
𝑝 (𝑠)4𝑢

���������
(1.32)

Data corresponding to conditions

𝜎 (𝑠)
23𝐼 (𝜉,[,1) = 0, 𝜎 (𝑠)

23𝐼 𝐼 (𝜉,[,1) = −𝜎+(𝑠)
𝑦𝑧 (𝜉,[), (1.33)

𝜎 (𝑠)
23𝐼 (𝜉,[,−1) = 𝑓2𝜎

(𝑠)
33𝐼 (𝜉,[,−1), (𝐼, 𝐼 𝐼)

can be obtained from (1.30) - (1.32) by the cyclic permutation

(𝑢, 𝑣;𝑎55, 𝑎44; 𝑓1, 𝑓2;𝜎 (𝑠)
13 ,𝜎

(𝑠)
23 ).

1.4 On Mathematically Precise Solutions

If functions 𝜎+
𝑗𝑧 included in boundary conditions are polynomials from 𝜉,[, the

iteration breaks at the certain approximation, as a result we will obtain the math-
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ematically precise solution. For illustrating the above mentioned, let consider the
case when 𝜎+

𝑗𝑧 = 𝑎1 𝑗𝜉 +𝑎2 𝑗[+𝑎3 𝑗 , 𝑗 = 𝑥, 𝑦, 𝑧. When 𝑠 = 0 for determining𝑊 (0) it is
necessary to substitute into formulas (23), (28)

𝑝 (0)1𝑤 = 𝑝 (0)3𝑤 = 𝑝 (0)4𝑤 = 0, 𝑝 (0)2𝑤 = − 𝐴11
Δ
𝜎+

𝑧𝑧 , 𝑊
(0)
𝐼 = 0 (1.34)

as a result we will obtain

𝑊 (0)
𝐼 = 𝐵 (0)

1 (𝜉,[)𝜑1𝑤(Z) +𝐵 (0)
2 (𝜉,[)𝜑2𝑤(Z)

+ 𝐵 (0)
3 (𝜉,[)𝜑3𝑤(Z) +𝐵 (0)

4 (𝜉,[)𝜑4𝑤(Z)
(1.35)

with

𝐵 (0)
1 =

−𝑃 (0)
2𝑤 𝑀

2
1

Δ𝑤
, 𝐵 (0)

2 =
−𝑃 (0)

2𝑤 𝑀
2
2

Δ𝑤
, 𝐵 (0)

3 =
−𝑃 (0)

2𝑤 𝑀
2
3

Δ𝑤
, 𝐵 (0)

4 =
−𝑃 (0)

2𝑤 𝑀
2
4

Δ𝑤
,

where 𝑀 𝐽
𝑖 - is the minor of the determinant element Δ𝑤 at the intersection of the 𝑖th

column and the 𝑗 th row.

𝑊 (0)
𝐼 𝐼 = − 𝐴11

2𝐻ΩΔ
𝜕2𝑊 (0)

𝐼

𝜕Z2 ,

𝜎 (0)
11𝛾 = −−𝐴23

Δ

𝜕𝑊 (0)
𝛾

𝜕Z
, 𝜎 (0)

22𝛾 =
−𝐴13
Δ

𝜕𝑊 (0)
𝛾

𝜕Z
, 𝜎 (0)

33𝛾 =
𝐴11
Δ

𝜕𝑊 (0)
𝛾

𝜕Z
, 𝛾 = 𝐼, 𝐼 𝐼

𝑈 (0)
𝑗 ,𝜎 (0)

13 𝑗 are calculated by formulas (1.19), (1.21), (1.32) when

𝑝 (0)1𝑢 = 0, 𝑝 (0)2𝑢 = −𝑎55𝜎
+
𝑥𝑧 ,

𝑃 (0)
3𝑢 =

Δ𝑎55 𝑓1
𝐴11

(−𝐶1𝑤𝐵
(0)
1 +𝐶2𝑤𝐵

(0)
2 +𝐶3𝑤𝐵

(0)
3 −𝐶4𝑤𝐵

(0)
4 )

𝑃 (0)
4𝑢 =

Δ𝑎55 𝑓1
𝐴11

(𝐶4𝑤𝐵
(0)
1 +𝐶3𝑤𝐵

(0)
2 −𝐶2𝑤𝐵

(0)
3 −𝐶1𝑤𝐵

(0)
4 ) (1.36)

𝜎 (0)
13𝐼𝜎

(0)
13𝐼𝜎

(0)
13𝐼 = 𝜎

(0)
13𝐼 = 𝜎

(0)
13𝐼 = 𝜎

(0)
13𝐼 𝐼 = 𝜎

(0)
23𝐼 = 𝜎

(0)
33𝐼 𝐼 = 𝜎

(0)
33𝐼 𝐼 = 0,

𝑈 (0)
𝐼 = 𝐷 (0)

1 (𝜉,[)𝜑1𝑢 (Z) +𝐷 (0)
2 (𝜉,[)𝜑2𝑢 (Z)+

𝐷 (0)
3 (𝜉,[)𝜑3𝑢 (Z) +𝐷 (0)

4 (𝜉,[)𝜑4𝑢 (Z)
𝐷 (0)

1 = 1/Δ𝑤(−𝑃 (0)
2𝑢 𝑀

2
1 +𝑃 (0)

3𝑢 𝑀
3
1 −𝑃 (0)

4𝑢 𝑀
4
1 ),

𝐷 (0)
2 = 1/Δ𝑤(𝑃 (0)

2𝑢 𝑀
2
2 −𝑃 (0)

3𝑢 𝑀
3
2 +𝑃 (0)

4𝑢 𝑀
4
2 ),

𝐷 (0)
3 = 1/Δ𝑤(−𝑃 (0)

2𝑢 𝑀
2
3 +𝑃 (0)

3𝑢 𝑀
3
3 −𝑃 (0)

4𝑢 𝑀
4
3 ),

𝐷 (0)
4 = 1/Δ𝑤(𝑃 (0)

2𝑢 𝑀
2
4 −𝑃 (0)

3𝑢 𝑀
3
4 +𝑃 (0)

4𝑢 𝑀
4
4 ),

𝑈 (0)
𝐼 𝐼 = − 1

2𝐻Ω𝑎55

𝜕2𝑈 (0)
𝐼

𝜕Z2 , 𝜎 (0)
13𝛾 =

1
𝑎55

𝜕𝑈 (0)
𝛾

𝜕Z
, 𝛾 = 𝐼, 𝐼 𝐼
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𝑉 (0)
𝛾 ,𝜎 (0)

13𝛾 , 𝛾 = 𝐼, 𝐼 𝐼are calculated by Eqs. (1.14), (1.18), (1.22), (1.31), (1.32) by

cyclic replacement (𝑢, 𝑣;𝑎55, 𝑎44; 𝑓1, 𝑓2). When 𝑠 = 1 for 𝑊 (1) 𝑝 (1)𝑖𝑤 ≠ 0, 𝑖 = 1,2,3,4
and calculated by formulas (1.27). Are different from zero also 𝑝 (1)𝑖𝑢 , 𝑝

(1)
𝑖𝑣 which

are calculated by Eqs. (1.31). When 𝑠 = 2 the iteration breaks i.e. the corresponding
magnitudes are equal to zero. As a result we will obtain the mathematically precise
solution to the outer problem.

𝑢 = 𝑙 (𝑈 (0) + Y𝑈 (1) ), (𝑢, 𝑣,𝑤) (1.37)

𝜎𝛼,𝛽 = Y−1𝜎 (0)
𝛼,𝛽 +𝜎

(1)
𝛼,𝛽 , 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧

1.5 Conclusions

It is known that if the plate is isolated, then oscillations informed to it, are damping
with time anyway. This is explained by the presence of friction among the particles
of the plate (the internal friction). In the paper forced 3D vibrations of orthotropic
plates were considered in the presence of internal friction, proportional to the veloc-
ity of points. The plate is lying on an absolutely rigid base, the facial surface of the
plate is loaded with normal and tangential loads, which are harmonically changing
in time. It is obtained the asymptotic solution of the corresponding 3D problem of
the elasticity theory. Are indicated cases, when the found solution becomes mathe-
matically precise.
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Chapter 2
Asymmetric Buckling of Orthortropic Plates
Under Normal Pressure

Svetlana M. Bauer, Dmitry A. Indeitsev, Boris N. Semenov, and Eva B. Voronkova

Abstract The work is concerned with asymmetric buckling of clamped orthotropic
circular plates under normal pressure. The effect of degree of orthotropy on the
buckling load and buckling modes is examined. The problem is solved analytically
and using the finite element method in the ANSYS package. It is shown that the
critical load increases as the ratio of the circumferential to radial elastic modulus
increases. The number of waves in the circumferential direction also increases.

Key words: Circular plate, Orthotropy, Buckling, Finite element modelling

2.1 Introduction

The question of the existence of asymmetric solutions for a symmetrically loaded
circular isotropic plate first was considered by Panov and Feodos’ev in 1948 [1].
Authors used the Galerkin method to solve the problem, and estimated the axisym-
metric deflection prior to buckling by a function with one unknown parameter. Later,
Cheo and Reiss emphasized that approximation functions with one unknown param-
eter was “too inaccurate” to adequately describe the large axisymmetric deformation
of plate before wrinkling [2]. It was supposed that Panov and Feodos’ev had found
unstable unsymmetric state in [1]. The value of the critical load obtained by Cheo
and Reiss [2] for a plate uniformly loaded with normal pressure is much larger than
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the load determined by Panov and Feodos’ev [1]. The form of buckling is also dif-
ferent: 14 waves are formed along the edge of the plate, and not 8, as in [1]. It should
be noted that back in 1958–1962 N.F. Morozov proved rigorously the existence and
the uniqueness of an asymmetric solution in this case [3, 4, 5].

The problems of the loss of the axisymmetric form of equilibrium of circular
plates under the normal pressure and shallow spherical shells under the action of
internal pressure were solved by asymptotic methods by Coman [6, 7]. In [8, 9, 10],
similar problems were considered for plates and shells with spatial inhomogeneous
in the radial direction. It has been found that when the rigidity of a plate or a spher-
ical shallow shells decreases towards the edge, the loss of stability occurs at a lower
load and with the formation of a larger number of waves. The asymmetrical buck-
ling of the circular steel plates subjected to uniformly distributed uniform normal or
concentrated load was investigated by the finite element method in NASTRAN and
ANSYS software packages in [11, 12, 13].

In this paper we consider the problem of loss of stability of the axisymmetric
equilibrium of orthotropic circular plate under the action of normal pressure. The
problem is solved analytically and using the finite element method in the ANSYS
package.

2.2 Problem Formulation

Let us consider a thin plate of outer radius 𝑅 and uniform thickness ℎ > 0 (ℎ/𝑅≪ 1),
subjected to uniformly distributed normal pressure 𝑝. We introduce the orthogonal
coordinate system (𝑟, \, 𝑧), in which 𝑟 and \ are polar coordinates in the plate plane
and 𝑧 is the distance along the normal to the mid-surface.

The stress–strain relations for the orthotropic plate under the assumption of the
classical theory are given by

𝑒𝑟𝑟 =
𝜎𝑟
𝐸𝑟

− 𝜈𝑟
𝐸𝑟
𝜎\ , 𝑒\ \ = − 𝜈\

𝐸\
𝜎𝑟 + 𝜎\

𝐸\
, 𝑒𝑟 \ =

𝜎𝑟 \
𝐺𝑟 \

, (2.1)

with Young’s moduli in the 𝑟- and \-directions 𝐸𝑟 , 𝐸\ , respectively, the Poisson
ratios 𝜈𝑟 , 𝜈\ , the shear modulus in 𝑟-\ direction 𝐺𝑟 \ . The equality 𝐸𝑟 𝜈\ = 𝐸\𝜈𝑟
must be satisfied due to the symmetry.

The fundamental equations can be written in the form [14]

𝐷𝑟𝐿𝑤(𝑤) = 𝑃+ 𝐿 (𝑤,𝐹),
(2.2)

𝐿𝐹 (𝐹)/(ℎ𝐸\ ) = −𝐿 (𝑤,𝑤)/2,

where 𝑤(𝑟, \) is the displacement in the 𝑧 direction, 𝐹 (𝑟, \) is the Airy stress func-
tion, 𝐷𝑟 = 𝐸𝑟 ℎ

3/12(1− 𝜈𝑟 𝜈\ ) is the bending stiffness. The Laplacian and differen-
tial operators 𝐿𝑤, 𝐿𝐹 , 𝐿 are defined as
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Δ = ( )′′ + 1
𝑟
( )′ + 1

𝑟2
¥( ),

𝐿𝑤(𝑦) = 𝑦′′′′ +2
𝑦′′′

𝑟
+2
𝜆𝑟 \
𝑟2

(
¥𝑦′′ − ¥𝑦′

𝑟
+ ¥𝑦
𝑟2

)
− 𝜆

𝑟2

[
𝑦′′ − 𝑦

′

𝑟
−

(
2
𝑦

𝑟2 +
¥𝑦
𝑟2

) ..]
,

𝐿𝐹 (𝑦) = 𝑦′′′′ +2
𝑦′′′

𝑟
+ 𝜅

𝑟2

(
¥𝑦′′ − ¥𝑦′

𝑟
+ ¥𝑦
𝑟2

)
− 𝜆

𝑟2

[
𝑦′′ − 𝑦

′

𝑟
−

(
2
𝑦

𝑟2 +
¥𝑦
𝑟2

) ..]
,

𝐿 (𝑥, 𝑦) = 𝑥′′
(
𝑦′

𝑟
+ ¥𝑦
𝑟2

)
+ 𝑦′′

(
𝑥′

𝑟
+ ¥𝑥
𝑟2

)
−2

( ¤𝑥
𝑟

) ′ ( ¤𝑦
𝑟

) ′
,

with the short-hand notations ( )′ ≡ 𝜕 ( )/𝜕𝑟, ¤( ) ≡ 𝜕 ( )/𝜕\ and

𝜆 =
𝐷 \

𝐷𝑟
=
𝐸\

𝐸𝑟
, 𝜆𝑟 \ =

𝐷𝑟 \

𝐷𝑟
, 𝜅 =

𝐸\

𝐺𝑟 \
−2𝜈\ = 2

𝜆−𝜆𝑟 \𝜈\
𝜆𝑟 \ − 𝜈\ ,

𝐷𝑖 =
ℎ3𝐸𝑖

12(1− 𝜈𝑟 𝜈\ ) , (𝑖 = 𝑟, \), 𝐷𝑘 =
ℎ3

12
𝐺𝑟 \ , 𝐷𝑟 \ = 𝐷𝑟 𝜈\ +2𝐷𝑘 .

For an isotropic plate we have

𝐸𝑟 = 𝐸\ , 𝜈𝑟 = 𝜈\ ,𝐺𝑟 \ = 𝐸𝑟/2(1+ 𝜈\ ),𝜆 = 𝜆𝑟 \ = 1, 𝜅 = 2,

and the operators 𝐿𝑤, 𝐿𝐹 are

𝐿𝑤(𝑦) = 𝐿𝐹 (𝑦) = ΔΔ𝑦.

We rescale Eqs. (2.2) by introducing dimensionless quantities as

𝑟∗ =
𝑟

𝑅
, 𝑤∗ = 𝛽

𝑤

ℎ
, 𝑃∗ = 𝛽3 𝑃𝑅

4

𝐸𝑟 ℎ4 , 𝐹
∗ = 𝛽2 𝐹

𝐸𝑟 ℎ3 , 𝛽
2 = 12(1− 𝜈𝑟 𝜈\ ). (2.3)

Dropping asterisks for notational simplicity, we obtain the dimensionless forms of
Eqs. (2.2)

𝐿𝑤(𝑤) = 𝑃+ 𝐿 (𝑤,𝐹),
(2.4)

𝐿𝐹 (𝐹)/𝜆 = −𝐿 (𝑤,𝑤)/2.

We assume that the outer edge of the plate is clamped but can move freely in the
radial direction without rotation. To avoid singularity in the center of the plate we
consider an annular plate with a small inner radius 𝑟 = 𝛿 = 𝑅in/𝑅. The inner edge
of the plate is assumed to be supported by a roller which can slide along a vertical
wall. For numerical simulations we adjust the 𝛿 parameter so that, in the case of an
isotropic plate, the magnitudes of the buckling load of an annular and solid plates
are closed, and the annular isotropic plate buckles into the asymmetric state with the
same number of waves in the circumferential direction as a solid isotropic plate.

The constrains on the inner and outer edges of the plate can be written as
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𝑤 = 𝑤′ = 𝑁𝑟𝑟 = 𝑁𝑟 \ = 0 for 𝑟 = 1,
(2.5)

𝑢 = 𝑤′ = 𝑁𝑟 \ =𝑄
∗
𝑟 = 0 for 𝑟 = 𝛿.

Here 𝑢 denotes the horizontal radial components of displacement, 𝑁𝑟𝑟 , 𝑁𝑟 \ are
stress resultants, 𝑄∗

𝑟 is the generalized shear force, that can be expressed via the
shear force 𝑄𝑟 , the bending 𝑀𝑟 , 𝑀\ and twisting 𝑀𝑟 \ moments as is stated below:

𝑄∗
𝑟 =𝑄𝑟 + ¤𝑀𝑟 \/𝑟 = 𝑀 ′

𝑟 + (𝑀𝑟 −𝑀\ )/𝑟 +2 ¤𝑀𝑟 \/𝑟.

In the terms of the displacement component 𝑤 and stress function 𝐹, the bound-
ary conditions (2.5) are equivalent to

for 𝑟 = 1 𝑤 = 𝑤′ = 𝐹′/𝑟 + ¥𝐹/𝑟2 = − ( ¤𝐹/𝑟 ) ′ = 0,

for 𝑟 = 𝛿 𝑤′ = 0, ¤𝐹/𝑟2 − ¤𝐹′/𝑟 = 0,
(2.6)

𝑤′′′ + 𝑤
′′

𝑟
− 𝜆

𝑟2

(
𝑤′′ + ¥𝑤

𝑟

)
− 2𝜆𝑟 \ − 𝜈\

𝑟2

( ¥𝑤
𝑟
− ¥𝑤′

)
= 0,

𝐹′′′ +2
𝐹′′

𝑟
− 𝜆

𝑟2

(
𝐹′ +

¥𝐹
𝑟

)
− 𝜈\
𝑟2

(
𝐹 + ¥𝐹) ′ = 0.

For the axisymmetrical problem Eqs. (2.2) are reduced to

Θ′′
0 + Θ′

0
𝑟

−𝜆Θ0

𝑟2 =
𝑃𝑟

2

(
1− 𝛿

2

𝑟2

)
+ Θ0Φ0

𝑟
,

(2.7)

Φ′′
0 + Φ′

0
𝑟

−𝜆Φ0

𝑟2 = −Θ2
0

2𝑟
,

where Θ0 (𝑟) = 𝑤′ (𝑟), Φ0 (𝑟) = 𝐹′ (𝑟). The system (2.7) needs to be solved together
with the boundary conditions

Θ0 (1) = Φ0 (1) = 0, Φ′ (𝛿) − 𝜈\Φ(𝛿) = Θ(𝛿) = 0. (2.8)

2.3 Equations for Buckling

Asymmetrical solutions of problem (2.2) with appropriate boundary conditions
branch from a solution of axisymmetric states [2]. To detect the occurrence of wrin-
kling we seek for a solution of Eqs. (2.2) in the form

𝑤(𝑟, \) = 𝑤𝑠 (𝑟) + Y𝑤𝑛𝑠 cos(𝑛\), 𝐹 (𝑟, \) = 𝐹𝑠 (𝑟) + Y𝐹𝑛𝑠 cos(𝑛\), (2.9)

where 𝑤𝑠 (𝑟), 𝐹𝑠 (𝑟) describe prebuckling axisymmetric state, Y is infinitesimal pa-
rameter, 𝑛 is a mode number and 𝑤𝑛 (𝑟), 𝐹𝑛 (𝑟) are the non-symmetrical components.
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After substitution of (2.9) in (2.2), using Eqs. (2.7) and linearization with respect
to Y we obtain

𝐿𝑛𝑤(𝑤𝑛) =
𝑤′′
𝑛

𝑟
Φ0 +

𝐹′′
𝑛

𝑟
Θ0 +Θ′

0

(
𝐹′
𝑛

𝑟
− 𝑛

2

𝑟2 𝐹𝑛

)
−Φ′

0

(
𝑤′
𝑛

𝑟
− 𝑛

2

𝑟2 𝑤𝑛

)
,

(2.10)

𝐿𝑛𝐹 (𝐹𝑛) = −𝜆2
(
𝑤′′
𝑛

𝑟
Θ0 +Θ′

0

(
𝑤′
𝑛

𝑟
− 𝑛

2

𝑟2 𝑤𝑛

))
,

where the operators 𝐿𝑛𝑤, 𝐿
𝑛
𝐹 are

𝐿𝑛𝑤(𝑦) = 𝑦′′′′ +2
𝑦′′′

𝑟
−2𝜆𝑟 \

𝑛2

𝑟2

(
𝑦′′ − 𝑦

′

𝑟
+ 𝑦

𝑟2

)
− 𝜆

𝑟2

(
𝑦′′ − 𝑦

′

𝑟
− 𝑛

4 −2𝑛2

𝑟2 𝑦

)
,

𝐿𝑛𝐹 (𝑦) = 𝑦′′′′ +2
𝑦′′′

𝑟
− 𝜅 𝑛

2

𝑟2

(
𝑦′′ − 𝑦

′

𝑟
+ 𝑦

𝑟2

)
− 𝜆

𝑟2

(
𝑦′′ − 𝑦

′

𝑟
− 𝑛

4 −2𝑛2

𝑟2 𝑦

)
.

Boundary conditions (2.6) are reduced to

for 𝑟 = 0 𝑤𝑛 = 𝑤
′
𝑛 = 𝐹𝑛 = 𝐹

′
𝑛 = 0

for 𝑟 = 𝛿 𝑤′
𝑛 = 0, 𝐹′

𝑛 − 𝑟𝐹𝑛 = 0,
(2.11)

𝑤′′′
𝑛 + 𝑤

′′
𝑛

𝑟
− 𝜆

𝑟2

(
𝑤′
𝑛 −𝑛2𝑤𝑛

𝑟

)
+ (2𝜆𝑟 \ − 𝜈\ ) 𝑛

2

𝑟2

(𝑤𝑛

𝑟
−𝑤′

𝑛

)
= 0,

𝐹′′′
𝑛 +2

𝐹′′
𝑛

𝑟
− 𝜆

𝑟2

(
𝐹′
𝑛 −𝑛2 𝐹𝑛

𝑟

)
+ 𝜈\ (𝑛2 −1) 𝐹

′
𝑛

𝑟2 +𝜆𝐴𝑤𝑛 = 0,

Buckling equations (2.10) with boundary conditions (2.11) constitute an eigen-
value problem, in which the parameter 𝑃 is implicit and appears in the equations
through the functions Θ0 and Φ0. The axisymmetric problem (2.7)-(2.8) was solved
by standard MATLAB functions. The value of 𝑃, for which (2.10) with (2.11) have
nontrivial solution, was found by using the finite difference method [2]. We regard
the smallest of these eigenvalues as the buckling load.

2.4 Numerical Results

As described in [1, 2], a ring of large circumferential compressive stress, developed
near the edge of the shell or the plate, indicates the possibility of buckling about the
axisymmetric state into an unsymmetric equilibrium state. Figure 2.1 depicts the
dimensionless normal displacement (left) and circumferential stress (right) prior to
buckling for different values the elastic moduli ratio 𝜆 = 𝐸\/𝐸𝑟 . The intensity of the
compressive stress near the plate’s edge increases and the width of the compressive
ring decreases with the growth of the parameter 𝜆 (see Fig. 2.1, right).

Figure 2.2 (left and right) illustrates dependence of the normalized critical load
𝑃n on the critical mode number 𝑛 for different values of the orthotropy ratio 𝜆
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Fig. 2.1 Dimensionless axisymmetrical normal displacement 𝑤 (left) and circumferential stress
resultant 𝑁𝜃 𝜃 (right) for different values of 𝜆 = 𝐸𝜃/𝐸𝑟 ; here 𝑃 = 30000, 𝛿 = 0.01, 𝜈𝜃 = 0.4,
𝜆𝑟 𝜃 = 𝜆. The value of 𝜆 = 1 corresponds to an isotropic plate.

(Fig. 2.2 (left) for 𝜆 ∈ [0.5,2], Fig. 2.2 (right) for 𝜆 ∈ {1,5,10}). The lines with
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Fig. 2.2 Dependence of the normalized critical load 𝑃n on the mode number 𝑛 for different values
of the orthotropy degree 𝜆 (left: 𝜆 ∈ [0.5, 2], right: 𝜆 ∈ {1, 5, 10}) . The lines with square markers
correspond to the isotropic plate. Here 𝜈𝜃 = 0.4, 𝜆𝑟 𝜃 = 𝜆; 𝑃0

cr denotes the buckling pressure for an
isotropic circular plate.

square markers correspond to the isotropic plate. The illustrations of asymmet-
ric wrinkling experienced by an isotropic and orthotropic plates are presented in
Fig. 2.3.

The values of the buckling pressure 𝑃cr increase by a factor of 2 when the degree
of orthotropic 𝜆 increases to 2 and by a factor of 16 when 𝜆 increases to 10. When
the radial modulus 𝐸𝑟 becomes larger than the circumferential one 𝐸\ i.e. 𝜆 < 1,
the plate buckle to asymmetrical state under twice smaller load, comparing to the
isotropic plate (see Fig. 2.4 and Table 2.1). The buckling mode 𝑛 decreases has the
same behavior as the buckling pressure 𝑃cr: it increases when 𝜆 increases.

We employed the finite element package ANSYS to study the stability of the
symmetric equilibrium state of a circular plate with a radius of 50 cm and a thick-
ness of 0.5 cm. The plate was partitioned into 5994 quadrangular elements of the
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Fig. 2.3 Wrinking of an isotropic plate with 14 waves (top) and orthotropic plate (bottom) obtained
by during finite element simulations
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Fig. 2.4 Normalized buckling
load for different values of
the orthotropy degree 𝜆.
Here 𝜈𝜃 = 0.4, 𝜆𝑟 𝜃 = 𝜆; 𝑃0

cr
denotes the buckling pressure
for an isotropic circular plate.
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Table 2.1 The buckling load and buckling mode for different values of the orthotropy degree

𝜆 = 𝐸𝜃/𝐸𝑟 𝜆 = 0.5 𝜆 = 1 𝜆 = 2 𝜆 = 5 𝜆 = 10

𝑃cr/𝑃0
cr 0.51 1 2.06 6.15 16.31

Mode number, 𝑛 13 14 15 17 20

The buckling load for an isotropic plate is 𝑃0
cr = 64956.

SHELL281 type. To study the nonlinear stability of the plate we randomly apply
minor imperfections to a set of nodes, which means that the nodes can go out of the
plate plane. These random deviations of the nodes from the 𝑧 = 0 plane do not ex-
ceed 2% of the plate thickness. Then the plate was subjected to uniformly distributed
normal load, and a nonlinear problem of large deformations of the plate was solved
with a linear increase in the load. We detected loss of stability and determined the
buckling load when a rapid localized increase in deflections was observed with a
slight increase in a pressure load.

For a steel plate we obtain the dimensional critical load of 3.6 MPa with 14
waves the plate edge. The buckling load corresponds to the dimensionless load of
63370 (see Fig. 2.3 (top)). The buckling load value, determined in [11], coincides
with the one obtained in the present paper, however, the buckling mode number is
less and equal to 13. Difference in buckling mode number, obtained by [11] and
numerically and asymptotically in [6, 8, 9, 10] can be explained by the fact that
the critical load values corresponding to the wave numbers 𝑛 = 13 and 𝑛 = 15 differ
from the load for 𝑛 = 14 by 0.7% and 1.8%, respectively. As it was mentioned in
[11] the finite element discretization of the plate could impact on the magnitude
of the buckling load. For an isotropic plate with 𝐸 = 10 MPa, 𝜈 = 0.4 we get the
dimensional wrinkling load of 200 Pa, which corresponds to the dimensionless load
of 64006. For an orthotropic plate with 𝐸𝑟 = 10 MPa, 𝐸\ = 20 MPa, 𝜈\ = 0.1 we
get the dimensional wrinkling load of 490 Pa with formation of 17 waves near the
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plate edge, which corresponds to the dimensionless load of 191591 (see Fig. 2.3
(bottom)).

2.5 Conclusion

The wrinkling of the orthotropic circular plate under normal pressure has been stud-
ied in this work. It is shown that the degree anisotropy has a strong impact on the
magnitude of buckling load and corresponding mode number. Analytical results and
finite elements simulations show that the critical load increases as the ratio of the
circumferential to radial elastic modulus increases. The number of waves in the cir-
cumferential direction also increases. The buckling load corresponds to sufficiently
large deflections in the center of the plate and it means that this effect take place for
soft materials.
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Chapter 3
On Ladyzhenskaya’s Inequality and its
Applications

Michael J. Cloud, Victor A. Eremeyev, and Leonid P. Lebedev

Abstract The term Ladyzhenskaya’s inequality refers to any of a class of related
functional inequalities that have played important roles in the theory of the Navier–
Stokes equations. Here we present their detailed derivation and discuss potential
applications beyond Navier–Stokes hydrodynamics.

Key words: Inequalities, Fluid dynamics, Nonlinear problems, Sobolev spaces

3.1 Introduction

Inequalities play important roles in mathematical physics. One might even say they
are more important than equations. In the theory of Sobolev spaces, for example,
the famous Sobolev embedding theorems are formulated in terms of inequalities [1,
15]. These theorems are widely used to study well-posedness of the boundary-value
problems of mathematical physics; see, e.g., [2, 10, 12, 13]. In particular, one can
prove certain properties of nonlinear operators which can establish the existence of
solutions to nonlinear problems. Typical examples of nonlinear systems are Navier–
Stokes hydrodynamics [11] and the nonlinear theory of plates and shells [3, 27].
Worthy of mention are the early papers by Morozov [17, 18, 19, 21], devoted to the
mathematical studies of nonlinear plates.
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e-mail: llebedev@unal.edu.co

23
H. Altenbach et al. (eds.), Advances in Solid and Fracture Mechanics,
Advanced Structured Materials 180,
https://doi.org/10.1007/978-3-031-18393-5_3

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18393-5_3&domain=pdf


24 Michael J. Cloud, Victor A. Eremeyev, and Leonid P. Lebedev

The chapter is organized as follows. After mathematical preliminaries in Sect. 3.2,
we present the derivations of Ladyzhenskaya’s inequality in two- and three-dimen-
sional space in Sects. 3.3 and 3.4, respectively. This inequality relates the norm of a
function 𝑢 in 𝐿𝑝 , with a certain 𝑝, to the norm of its gradient ∇𝑢. Finally, in Sect. 3.5
we briefly discuss some potential applications for inequalities of this type.

3.2 Preliminaries

3.2.1 Some Standard Inequalities

A few classic results are needed to follow the development of Ladyzhenskaya’s
inequalities. They are merely listed here; further background is available, e.g., in
[4]. First is the inequality for integrals:������

𝑏∫
𝑎

𝑓 (𝑥) d𝑥

������ ≤
𝑏∫

𝑎

| 𝑓 (𝑥) | d𝑥 .

Next is the Schwarz inequality for integrals:������
𝑏∫

𝑎

𝑓 (𝑥)𝑔(𝑥) d𝑥

������ ≤
( 𝑏∫
𝑎

𝑓 2 (𝑥) d𝑥
)1/2 ( 𝑏∫

𝑎

𝑔2 (𝑥) d𝑥
)1/2

.

These two inequalities hold not only in the one-dimensional forms as stated, but also
with multiple integrals (over domains in R2 and R3, for instance). They also hold for
improper integrals provided the terms in the right members all exist as finite values.
In its discrete version, the inequality between the arithmetic and geometric means is

( 𝑛∏
𝑘=1

𝑎𝑘

)1/𝑛
≤ 1
𝑛

𝑛∑︁
𝑘=1

𝑎𝑘 (𝑎𝑘 ≥ 0) .

Finally, simple observations of the types

𝑏∫
𝑎

| 𝑓 (𝑥)𝑔(𝑥) | d𝑥 ≤ max
𝑥

| 𝑓 (𝑥) |
𝑏∫

𝑎

|𝑔(𝑥) | d𝑥,

max
𝑥

𝑏∫
𝑎

𝑑∫
𝑐

𝑓 (𝑥, 𝑦, 𝑧) d𝑦d𝑧 ≤
𝑏∫

𝑎

𝑑∫
𝑐

max
𝑥
𝑓 (𝑥, 𝑦, 𝑧) d𝑦d𝑧

will be used. The second of these can be obtained by integrating both sides of the
obvious inequality 𝑓 (𝑥, 𝑦, 𝑧) ≤ max𝑥 𝑓 (𝑥, 𝑦, 𝑧) over 𝑦 and 𝑧 to get a relation
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𝑏∫
𝑎

𝑑∫
𝑐

𝑓 (𝑥, 𝑦, 𝑧) d𝑦d𝑧 ≤
𝑏∫

𝑎

𝑑∫
𝑐

max
𝑥
𝑓 (𝑥, 𝑦, 𝑧) d𝑦d𝑧

that holds for all 𝑥; since the right-hand side is a constant, the result follows from
taking the maximum of both sides over 𝑥.

3.2.2 Functions of Compact Support

Let 𝑢 = 𝑢(𝑥1, . . . , 𝑥𝑛) be a function defined on a domain Ω in R𝑛. Denote the bound-
ary of Ω by 𝜕Ω. It is said that 𝑢 has compact support in Ω if it is nonzero only on
a bounded subdomain Ω′ of Ω with Ω′ lying at some positive distance from 𝜕Ω.
Figure 3.1 illustrates this idea for the cases 𝑛 = 1 and 𝑛 = 2.

Lemma 3.1. Let 𝑢 = 𝑢(𝑥1, . . . , 𝑥𝑛) be a smooth function of 𝑛 variables having com-
pact support in some bounded domain Ω of R𝑛. Fix a positive integer 𝑚. Then by
the chain rule for partial differentiation,

𝜕𝑢𝑚 (𝑥1, . . . , 𝑥𝑛)
𝜕𝑥𝑘

= 𝑚𝑢𝑚−1 (𝑥1, . . . , 𝑥𝑛) 𝜕𝑢(𝑥1, . . . , 𝑥𝑛)
𝜕𝑥𝑘

(𝑘 = 1, . . . , 𝑛) .

Both sides can be integrated w.r.t. the 𝑘th argument over the interval (−∞, 𝑥𝑘):

𝑢𝑚 (𝑥1, . . . , 𝜉, . . . , 𝑥𝑛)
��𝑥𝑘
−∞ = 𝑚

𝑥𝑘∫
−∞

𝑢𝑚−1 (𝑥1, . . . , 𝜉, . . . , 𝑥𝑛) 𝜕𝑢(𝑥1, . . . , 𝜉, . . . , 𝑥𝑛)
𝜕𝜉

d𝜉 .

Since 𝑢 has compact support however, lim𝜉→−∞ 𝑢𝑚 (𝑥1, . . . , 𝜉, . . . , 𝑥𝑛) = 0 and

𝑢𝑚 (𝑥1, . . . , 𝑥𝑘 , . . . , 𝑥𝑛) = 𝑚
𝑥𝑘∫

−∞
𝑢𝑚−1 (𝑥1, . . . , 𝜉, . . . , 𝑥𝑛) 𝜕𝑢(𝑥1, . . . , 𝜉, . . . , 𝑥𝑛)

𝜕𝜉
d𝜉

(a) (b)

x

u=u(x)

x1

x2

u=u(x1,x2)

Ω
Ω'= [a,b]

Ω

Ω'
a b

∂Ω

Fig. 3.1 Functions of compact support. (a) One-variable case. (b) Two-variable case.
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which henceforth will be written more concisely as

𝑢𝑚 = 𝑚

𝑥𝑘∫
−∞

𝑢𝑚−1𝑢𝑥𝑘 d𝑥𝑘 .

An application of the triangle inequality gives

|𝑢𝑚 | ≤ 𝑚
𝑥𝑘∫

−∞
|𝑢𝑚−1𝑢𝑥𝑘 | d𝑥𝑘 ≤ 𝑚

∞∫
−∞

|𝑢𝑚−1𝑢𝑥𝑘 | d𝑥𝑘

and therefore

max
𝑥𝑘

|𝑢𝑚 | ≤ 𝑚
∞∫

−∞
|𝑢𝑚−1𝑢𝑥𝑘 | d𝑥𝑘 (𝑘 = 1, . . . , 𝑛) . (3.1)

3.3 Ladyzhenskaya’s Inequality in Two Dimensions

Let
𝑢 = 𝑢(𝑥1, 𝑥2)

be a smooth function with compact support in some domain Ω ⊂ R2. Writing
𝑑𝐴 = d𝑥1 d𝑥2, one has

∞∬
−∞

𝑢4 d𝐴 =

∞∬
−∞

𝑢2𝑢2 d𝐴≤
∞∬

−∞
max
𝑥1
𝑢2 max

𝑥2
𝑢2 d𝑥1 d𝑥2

=

∞∫
−∞

max
𝑥1

|𝑢 |2 d𝑥2

∞∫
−∞

max
𝑥2

|𝑢 |2 d𝑥1

≤ 4
∞∬

−∞
|𝑢𝑢𝑥1 | d𝑥1 d𝑥2

∞∬
−∞

|𝑢𝑢𝑥2 | d𝑥1 d𝑥2 = 4
2∏

𝑘=1

∞∬
−∞

|𝑢𝑢𝑥𝑘 | d𝐴

by (3.1) with 𝑚 = 2. Application of the Schwarz inequality gives

∞∬
−∞

𝑢4 d𝐴 ≤ 4
2∏

𝑘=1

( ∞∬
−∞

𝑢2 d𝐴
)1/2 ( ∞∬

−∞
𝑢2
𝑥𝑘 d𝐴

)1/2

= 4
∞∬

−∞
𝑢2 d𝐴

( 2∏
𝑘=1

∞∬
−∞

𝑢2
𝑥𝑘 d𝐴

)1/2
.
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Finally, by the AM–GM inequality,

∞∬
−∞

𝑢4 d𝐴 ≤ 4
∞∬

−∞
𝑢2 d𝐴 · 1

2

2∑︁
𝑘=1

∞∬
−∞

𝑢2
𝑥𝑘 d𝐴

and one has Ladyzhenskaya’s inequality in two dimensions:

∞∬
−∞

𝑢4 d𝐴 ≤ 2
∞∬

−∞
𝑢2 d𝐴

∞∬
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝐴 . (3.2)

It can also be expressed as

∥𝑢∥𝐿4 (Ω) ≤ 21/4∥𝑢∥1/2
𝐿2 (Ω) ∥∇𝑢∥

1/2
𝐿2 (Ω) (3.3)

where
∥𝑢∥𝐿𝑝 (Ω)

denotes the Lebesgue 𝑝-norm of the function 𝑢,

∥𝑢∥𝐿𝑝 (Ω) =
(∬
Ω

|𝑢 |𝑝 d𝐴
)1/𝑝

,

and in this case ∇ is the nabla operator in two space dimensions.

3.4 Ladyzhenskaya’s Inequalities in Three Dimensions

In this section the results

∥𝑢∥𝐿4 (Ω) ≤ 21/2∥𝑢∥1/4
𝐿2 (Ω) ∥∇𝑢∥

3/4
𝐿2 (Ω) , (3.4)

∥𝑢∥𝐿6 (Ω) ≤ 481/6 ∥∇𝑢∥𝐿2 (Ω) , (3.5)

are derived for a smooth function

𝑢 = 𝑢(𝑥1, 𝑥2, 𝑥3)

having compact support in some domain Ω ⊂ R3.

3.4.1 First Result

Writing d𝑉 = d𝑥1 d𝑥2 d𝑥3 one has by (3.2),
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∞∭
−∞

𝑢4 d𝑉 =

∞∫
−∞

( ∞∬
−∞

𝑢4 d𝑥1 d𝑥2

)
d𝑥3

≤ 2
∞∫

−∞

( ∞∬
−∞

𝑢2 d𝑥1 d𝑥2

∞∬
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑥1 d𝑥2

)
d𝑥3.

Next the maximum value of the integral

∞∬
−∞

𝑢2 d𝑥1 d𝑥2

over 𝑥3 is withdrawn from the integral with respect to 𝑥3:

∞∭
−∞

𝑢4 d𝑉 ≤ 2
(
max
𝑥3

∞∬
−∞

𝑢2 d𝑥1 d𝑥2

) ∞∭
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉 .

But the maximum value of an integral cannot exceed the integral of the maximum
value, and this provides an opportunity to use (3.1):

∞∭
−∞

𝑢4 d𝑉 ≤ 2
( ∞∬
−∞

max
𝑥3
𝑢2 d𝑥1 d𝑥2

) ∞∭
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

≤ 2
[ ∞∬
−∞

(
2

∞∫
−∞

|𝑢𝑢𝑥3 | d𝑥3

)
d𝑥1 d𝑥2

] ∞∭
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

= 4
∞∭

−∞
|𝑢𝑢𝑥3 | d𝑉

∞∭
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉 .

Now the Schwarz inequality is applied to the first factor on the right:

∞∭
−∞

𝑢4 d𝑉 ≤ 4
( ∞∭
−∞

𝑢2 d𝑉
)1/2 ( ∞∭

−∞
𝑢2
𝑥3 d𝑉

)1/2 ∞∭
−∞

2∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉 .

Finally, the two last factors on the right may be increased through the inclusion of
additional terms:

∞∭
−∞

𝑢4 d𝑉 ≤ 4
( ∞∭
−∞

𝑢2 d𝑉
)1/2 ( ∞∭

−∞

3∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

)1/2 ∞∭
−∞

3∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉 .

The result is Ladyzhenskaya’s inequality
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∞∭
−∞

𝑢4 d𝑉 ≤ 4
( ∞∭
−∞

𝑢2 d𝑉
)1/2 ( ∞∭

−∞

3∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

)3/2
(3.6)

which can also be expressed as (3.4).

3.4.2 Second Result

This time it is temporarily assumed that 𝑢 is nonnegative (a restriction that will be
removed after the final result has been stated). The development starts by writing

∞∭
−∞

𝑢6 d𝑉 =

∞∫
−∞

[ ∞∬
−∞

𝑢3𝑢3 d𝑥2 d𝑥3

]
d𝑥1 ,

replacing the integrand functions on the right by their respective maxima over 𝑥2
and 𝑥3,

∞∭
−∞

𝑢6 d𝑉 ≤
∞∫

−∞

[ ∞∬
−∞

max
𝑥2
𝑢3 max

𝑥3
𝑢3 d𝑥2 d𝑥3

]
d𝑥1

=

∞∫
−∞

[ ∞∫
−∞

(
max
𝑥2
𝑢3

)
d𝑥3

∞∫
−∞

(
max
𝑥3
𝑢3

)
d𝑥2

]
d𝑥1 ,

and using (3.1) with 𝑚 = 3:

∞∭
−∞

𝑢6 d𝑉 ≤
∞∫

−∞

[ ∞∫
−∞

(
3

∞∫
−∞

𝑢2 |𝑢𝑥2 | d𝑥2

)
d𝑥3

∞∫
−∞

(
3

∞∫
−∞

𝑢2 |𝑢𝑥3 | d𝑥3

)
d𝑥2

]
d𝑥1

= 9
∞∫

−∞

( 3∏
𝑘=2

∞∬
−∞

𝑢2 |𝑢𝑥𝑘 | d𝑥2 d𝑥3

)
d𝑥1 .

By the Schwarz inequality,

∞∭
−∞

𝑢6 d𝑉 ≤ 9
∞∫

−∞

[ 3∏
𝑘=2

( ∞∬
−∞

𝑢4 d𝑥2 d𝑥3

)1/2 ( ∞∬
−∞

𝑢2
𝑥𝑘 d𝑥2 d𝑥3

)1/2]
d𝑥1

= 9
∞∫

−∞

[ ∞∬
−∞

𝑢4 d𝑥2 d𝑥3

3∏
𝑘=2

( ∞∬
−∞

𝑢2
𝑥𝑘 d𝑥2 d𝑥3

)1/2]
d𝑥1

and one can withdraw the maximum over 𝑥1 of the quantity
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∞∬
−∞

𝑢4 d𝑥2 d𝑥3

from the integral with respect to 𝑥1 and apply the Schwarz inequality again:

∞∭
−∞

𝑢6 d𝑉 ≤ 9
(
max
𝑥1

∞∬
−∞

𝑢4 d𝑥2 d𝑥3

) ∞∫
−∞

3∏
𝑘=2

( ∞∬
−∞

𝑢2
𝑥𝑘 d𝑥2 d𝑥3

)1/2
d𝑥1

≤ 9max
𝑥1

∞∬
−∞

𝑢4 d𝑥2 d𝑥3

3∏
𝑘=2

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2
.

By now-familiar techniques,

∞∭
−∞

𝑢6 d𝑉 ≤ 9
∞∬

−∞
max
𝑥1
𝑢4 d𝑥2 d𝑥3

3∏
𝑘=2

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2

≤ 9
∞∬

−∞
4

∞∫
−∞

|𝑢3𝑢𝑥1 | d𝑥1 d𝑥2 d𝑥3

3∏
𝑘=2

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2

= 36
∞∭

−∞
|𝑢3𝑢𝑥1 | d𝑉

3∏
𝑘=2

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2

so that ∞∭
−∞

𝑢6 d𝑉 ≤ 36
( ∞∭
−∞

𝑢6 d𝑉
)1/2 3∏

𝑘=1

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2
.

Division through by the quantity

( ∞∭
−∞

𝑢6 d𝑉
)1/2

gives

( ∞∭
−∞

𝑢6 d𝑉
)1/2

≤ 36
3∏

𝑘=1

( ∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2

= 36
( 3∏
𝑘=1

∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)1/2
.

Finally, by the AM–GM inequality
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( ∞∭
−∞

𝑢6 d𝑉
)1/2

≤ 36
[(

1
3

3∑︁
𝑘=1

∞∭
−∞

𝑢2
𝑥𝑘 d𝑉

)3]1/2

= 36 ·3−3/2
( ∞∭
−∞

3∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

)3/2

and both sides may be squared:

∞∭
−∞

𝑢6 d𝑉 ≤ 48
( ∞∭
−∞

3∑︁
𝑘=1

𝑢2
𝑥𝑘 d𝑉

)3
, (3.7)

which is (3.5). Although this inequality of Ladyzhenskaya was proved under the
assumption that 𝑢 is nonnegative, it clearly holds without this restriction.

3.5 Further Possible Applications

The inequalities presented above were developed for application to the boundary-
value problems of hydrodynamics. Nevertheless one can use them in other prob-
lems. Let us briefly consider some of these.

– The first is the theory of elastic membranes and plates with nonlinear elastic sup-
port. These problems can be described by the following dimensionless equations:

Δ𝑤−𝑤𝑝 = 𝑞,
Δ2𝑤+𝑤𝑝 = 𝑞,

(3.8)

where 𝑤 is a deflection, 𝑞 is an external transverse load, and Δ is the two-
dimensional Laplace operator. A number 𝑝 can describe an elastic support non-
linearity of power-law type. The value 𝑝 = 1 applies to the Winkler foundation.
Obviously, Eqs. (3.8) could be easily generalized for nonlinear plates and shells.

– Another example relates to Korteweg or Cahn–Hilliard fluids, also known as
strain gradient fluids (see [9, 26]). The statics of these fluids can be described
through the equation

Δ𝜌− 𝜕𝑊 (𝜌)
𝜕𝜌

+Ω = 0, (3.9)

where 𝜌 is a mass density, 𝑊 is a function of 𝜌, and Ω is a given potential of
mass forces [25]. For 𝑊 a polynomial (e.g., cubic) approximation is used. Note
that in (3.9), Δ is the 3D Laplace operator. This model bears a close relation to
the recently proposed dilatational strain gradient elasticity [8].

– Within the dilatational strain gradient elasticity under small deformations [7, 8,
14] there exists a strain energy density𝑈 defined as follows
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𝑈 =𝑈 (YYY,∇∇ ·u), YYY =
1
2

[∇u+ (∇u)T] , (3.10)

where u = (𝑢1, 𝑢2, 𝑢3) is a displacement vector and ∇ is the 3D nabla operator
[6]. As an example of an isotropic material, the following dependence could be
proposed

𝑈 =
𝛼

2
devYYY : YYY + 𝛽

2𝑚
(∇ ·u)𝑚 + 𝛾

2
|∇∇ ·u|2, (3.11)

where 𝛼, 𝛽, and 𝛾 are elastic moduli, 𝑚 is an exponent, and dev is the deviatoric
part of a second-order tensor [6]. Equation (3.11) has similar to (3.9) power-
law nonlinearity with respect to the dilatation 𝑒 = ∇ · u. In order to analyze the
well-posedness of the corresponding boundary-value problem one can use La-
dyzhenskaya’s inequality comparing norms of 𝑒𝑚 and ∇𝑒.

– Strain gradient fluids provide examples of so-called strain gradient continua.
Within this model there exists a strain energy density dependent on the first- and
higher-order gradients of the displacements. Recently the model was used to de-
scribe beam-lattice metamaterials; see [5]. For such materials one can also expect
power-law type nonlinearities as in the case of plates and shells. Ladyzhenskaya’s
inequality could be useful in studying the well-posedness of these models.

In general, Ladyzhenskaya’s inequality could prove useful in any nonlinear prob-
lem where a nonlinearity is described by a power-law-type dependence involving an
unknown function 𝑢 where higher-order derivatives of 𝑢 constitute linear terms in
the governing equations. In other words it could be useful for quasilinear systems.
Despite the apparent simplicity of these problems, let us note the complexity of the
Navier–Stokes equations, whose nonlinearity seems to be rather simple but produces
many interesting phenomena such as turbulence, chaos, cascades of instabilities, and
so forth.

3.6 Conclusions

The inequalities discussed in this article were published by their originator O.A.
Ladyzhenskaya in 1958 and included in her classic book [11]. Olga Ladyzhenskaya
belongs to the St. Petersburg school of mechanics and mathematics originated by the
famous Leonhard Euler and later by Pafnuty Chebyshev. A characteristic of many
Russian mathematicians has been the application of pure mathematics to problems
of mechanics and physics. Ladyszenskaya is known not only for her achievements
in mathematics, notably in the theory of linear and nonlinear partial differential
equations, but also for her results in hydromechanics. Nikita F. Morozov, professor
and member of the Russian Academy of Sciences, belongs to the same school and
represents an outstanding example of a Russian scientist in the field of mathematical
elasticity. For a summary of his most important results, see the following references
[16, 21, 22, 23, 24].
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Chapter 4
Mechanical Behaviour of Nonwovens:
Continuous Approach with Parametric
Finite-element Modelling

Vincenzo Cucumazzo and Vadim V. Silberschmidt

Abstract In the last decade, various numerical models, continuous and discontinu-
ous, were proposed in the literature with an aim to simulate deformation and damage
behaviour of nonwoven materials. However, these models offer only partial solu-
tions as they are mostly limited to specific problems and neglect important design
parameters. Due to their broad use, hot-calendered nonwovens were considered in
this study. These materials have a complex heterogeneous microstructure that com-
prises three mechanically distinct domains – a fibrous matrix, bond areas and inter-
face regions. Variability in design parameters such as type of polymer, fabric planar
density, type of fibre, orientation distribution of fibres and bond pattern makes it
difficult to develop a universal model that can accommodate them. So, a paramet-
ric numerical tool (FabricGEN) was developed to model and simulate deformation
and damage behaviours of calendered nonwovens. Various experimental techniques
were employed to assess the deformation, damage and failure mechanisms as well
as the microstructural properties of the selected calendered fabrics. The numerical
framework was based on the experimental observations using a continuous mod-
elling approach. The numerical tool enabled to compute effective elastic-plastic
properties of fabric domains along the fabric’s three principal directions, based on
the fabric’s microstructure. The numerical models demonstrated good predictive ca-
pabilities in simulating deformation and damage behaviours under tensile loading
of medium- and high-density fabrics. Finally, a parametric study was conducted to
gain insight into the effects design parameters had on the mechanical response of
the fabrics.
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4.1 Introduction

It may be argued whether or not nonwoven materials can be traced back to ancient
times. If felt is considered a nonwoven material, it would have been the case. Indeed,
felt is known as the oldest textile material, first used around 6000 B.C. [1]. However,
Millman et al. [2] reported that the term nonwoven can be found in a British patent
issued in 1853; further confirmation was also provided by Tanchis [3]. Today, non-
wovens have a well-defined identity. They are engineered materials made of fibres
that are randomly-oriented or aligned in preferential directions, consolidated with
thermal, mechanical or chemical bonding techniques [4]. The definition excludes
paper, woven, knitted, tufted or felted products. Due to their high versatility as well
as cheaper and faster manufacturing processes (compared to woven materials), non-
wovens have experienced a rapid growing demand in various sectors. They cover a
large spectrum of applications [5]. According to EDANA [4], the nonwoven mar-
ket is largely dominated by the hygiene sector, followed by the personal-care and
construction ones. At the current stage of technological advancement, the strongest
materials are manufactured as structures made of fibres with a high aspect ratio and
small diameter (in the range of nm to µm). Nonwoven manufacturing companies
also have a great interest to produce lighter products with high resistance.

Mechanical properties and, therefore, mechanical performance of nonwoven fab-
rics is strongly influenced by two main factors. The first one is the raw material used
to manufacture their constituent fibres. In fact, the material, structure and composi-
tion of fibres affect the dimensions, structure and properties of the final fabric. The
second one is the manufacturing process employed to produce them, with spun-
bonding being the most widely used one (Fig. 4.1a). Spun-bonding is a one-step
process starting from the raw polymer (or a blend of polymers), in the form of gran-
ules/chips, to the final product [6]. The melted polymer is extruded through tiny
nozzles (10–25 µm in diameter) and then through a stretching channel to increase
the degree of crystallinity [7]. The produced filaments are laid onto a conveyor belt
and partially re-oriented along a preferential direction called machine direction –
MD.

Fig. 4.1 Spun-bonding process (a) and hot-calendering bonding (b) [8]
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At this stage, the resulting fibrous structure has poor mechanical strength as it is
composed of loose filaments. Enhancement of the mechanical properties of the web
is obtained through the bonding process, such as hot calendering (Fig. 4.1b). In the
process, the fibrous mat passes through two rolls (calenders), one or both heated up
to about the melting temperature of the polymer used, termed calendering tempera-
ture. One roll has a customised embossed bonding pattern, with raised parts having
the desired shape (e.g., diamond, elliptical, rectangular, etc.), size and pattern, which
is pressed at a certain pressure against the loose and disordered fibrous mat. The re-
sulting nonwoven fabric – calendered nonwoven – is a heterogeneous material, com-
posed of three mechanically and microstructurally distinct regions: a fibrous matrix
(FM), bond areas (BAs) and interface regions (IRs). The first is a set of fibres par-
tially oriented along MD. This allows to define two additional orthogonal directions
in the three-dimensional space; that is, cross and through-thickness direction – CD
and TD, respectively. The bond areas, formed by the pressed raised parts of the roll,
are strong and well-consolidated regions, made of highly-compressed fibres, impart
strength to the fabric. Finally, the interface regions are transitional zones between
the bond areas and the fibrous matrix, which are well known in the literature for
being potential locations of damage initiation [9, 10, 11, 12].

Nonwovens are engineered to provide specific functions to ensure their fitness-
for-purpose, with a life span ranging from seconds to years, depending on the ap-
plication. It is clear that the development of a numerical tool can enable to predict
the mechanical behaviour of these materials, while accounting for a number of de-
sign parameters, would streamline the design and verification stages of the product
development process.

With this aim, this chapter is structured as follows. Initially, the background for
modelling of mechanics of nonwovens using a continuous approach is provided.
Then, the proposed parametric finite-element (FE) modelling strategy is explained,
with the developed numerical scheme and tool implemented based on experimental
observations and findings. Information about micro-structure and design variables
of the selected analysed nonwoven fabrics is provided. Computation and assessment
of effective local material properties is carried out. A round-up of case studies, each
with a specific FE model, is presented and discussed to investigate the effects of
design variables on mechanical response of fabrics. These include the loading di-
rection, planar density, fabric size and bond pattern. Finally, the results obtained
from FE simulations are compared with experimental data to evaluate the reliability
and efficiency of the proposed numerical modelling approach.

4.2 Background

Before the advent of computers, the study of mechanical behaviour of fibrous net-
works in the continuous domain relied entirely on the development of analytical
formulations. General analytical solutions were obtained to predict the mechanical
behaviour of generic fibrous networks, with a major focus on paper.
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Pioneering work was conducted by Cox [13], who developed the first analytical
set of equations to describe the deformation behaviour of fibrous networks based
on the theory of elasticity. Cox presented a network model, in which fibres were
assumed to extend from one side of the network to the other and carry only an axial
load, neglecting their mutual interaction. The concept of orientation distribution of
fibres was introduced for the first time. Based on this notion, the elastic stiffnesses
of the fibrous mat were derived. From the knowledge of the force acting on the fibre,
the fabric’s stiffness matrix was determined.

The first example of the application of continuum mechanics to nonwovens goes
back to Backer and Petterson [14], who developed the first continuum model for
nonwovens based on the theory of orthotropic elasticity in fibrous materials (Cox’s
model). Interest in fibrous materials proceeded with the development of discrete
numerical models, while the use of a continuous approach remained rather stagnant.

Curiskis and Carnaby [15] questioned the extent, to which the continuum theory
was applicable to fibrous networks. They treated bundles of fibres as homogeneous
continuum medium, assuming them as an untwisted assembly of fibres, exhibiting
a preferential direction. The authors highlighted that the limitations associated with
any continuum idealisation were dictated by the statistical reproducibility of the ini-
tial fibre geometry and associated packing arrangements as well as strain gradients.

A similar approach was used by Bais-Singh and Goswami [16] to predict the bi-
axial tensile behaviour of spun-bond nonwovens based on the mechanical behaviour
of its constituent fibres, in particular, their orientation distribution. Analytical solu-
tions were obtained employing the theory of laminated composites. The nonwoven
fabric was idealised as a number of layers of fibres. Fibres within one layer were
assumed to be straight and oriented along a fixed direction. Moreover, they were ca-
pable of carrying only the axial load. The elastic response was fairly captured both in
MD and CD. To the best of our knowledge, continuum models tend to provide more
accurate predictions along directions with higher stiffness (e.g., MD) compared to
their counterparts (e.g., CD).

Development of analytical solutions progressed, moving from 2D to 3D fabrics.
Narter et al. [17] extended Cox’s model to 3D anisotropic fibrous fabrics (applicable
to through-air bonded nonwovens). The resulting simulations were able to predict
the elastic moduli in various directions of the fibrous webs and 15 spherical har-
monic coefficients of the orientation distribution function (ODF). Furthermore, a
direct dependence between the Young’s moduli, 𝐸𝑖 , and the fibre orientation dis-
tribution density (FODD) along the same axis was found. Some assumptions were
made in this framework, i.e., the bonds were considered as rigid.

Kim and Pourdeyhimi [18] adopted a unit-cell approach to study structural pa-
rameters such as the ODF of fibres, the bond area strain and shear deformation of
the unit cell, occurring during controlled-displacement tests. The role of the bonding
temperature on the fabric’s deformation behaviour was assessed in this study.

Rawal [19], based on the work of Adanur and Liao [20], proposed a theoretical
micromechanical model for predicting the in-plane tensile mechanical response of
thermally-bonded and needle-punched nonwovens, based on the geometric and me-
chanical properties of their constituent fibres. Fibre orientation and curliness were
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incorporated into the model and investigated. In the case of thermally-bonded non-
wovens, bonds were modelled as rigid links between fibres.

Later, the author extended his work to through-air bonded nonwovens, propos-
ing a detailed analytical study on the extension, compression, bending and shear
responses of fabrics [21]. In this work, a realistic ODF was obtained using digital
image processing. In a more recent study, the author analysed the Poisson’s effect
in needle-punched nonwovens [22].

Hou et al. [23] developed one of the first 2D-continuous FE models of a low-
density (20 g/m2) calendered nonwoven to predict its deformation behaviour under
uniaxial tension. The classical composite-based theory was employed to generate
the continuous FE model at macroscopic level. The material was modelled as or-
thotropic. Due to difficulties in obtaining the local mechanical properties of the bond
area, their stiffness was assumed to be three times that of the fibrous matrix, taking
the stiffness in TD identical to that in CD.

In a similar fashion, Demirci et al. [24] developed a continuous shell-based FE
model to simulate the tensile response of various calendered nonwovens composed
of (core/sheath) bi-component fibres. The numerical model attempted to predict
the viscous-elastic-plastic behaviour of the material undergoing in-plane uniaxial-
tensile loading first, and, later, out-of-plane loading [25]. A fair agreement was ob-
served between the numerical and experimental results, although the model was not
able to predict damage and failure behaviour due to the absence of a failure crite-
rion. The numerical scheme also required the use of two separated pieces of software
(MATLAB® and MSC Marc®) and could not generate automatic simulations in the
same way this research aims to.

Silberstein et al. [26] developed a constitutive material model capable of cap-
turing the elastic-plastic behaviour of electrospun nonwovens, stretched uniaxially
under monotonic and cyclic loadings. The constitutive model captured the mem-
brane stress-strain behaviour as a function of the properties of fibres and fabric.
The behaviour of a single fibre was incorporated into the macroscopic membrane
model of the fabric. The effect of the fibre alignment and bending as well as net-
work’s consolidation was also modelled. The proposed model was idealised as a
layered network using an RVE approach. The FE model was composed of several
RVEs, each characterised by a different initial orientation. The elastic-plastic re-
sponse of the material, including loading and unloading, was predicted with a fair
agreement with the experimental data. However, the model could not predict dam-
age and failure behaviour of the nonwoven fabric. Additionally, the size effect was
not investigated (the maximum fabric width was 3 mm).

A constitutive material model was developed by Ridruejo et al. [27] to account
for deformation, damage and failure behaviour of nonwoven fabrics. The model pro-
vided the constitutive response of the fabric in the meso-domain and could account
for damage localisation. The constitutive behaviour of the nonwoven fabric was ex-
pressed in terms of fibre volume fraction, stress carried by the fibres as a function
of the fibre stretch and fraction of fibres forming an angle with the reference di-
rection. Additionally, an “orientation index”, quantifying the degree of orientation
of fibres within the fabric, was also included in the model. The damage model was
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implemented in such a way that the load carried by damaged fibres could increase at
later stages of the deformation process, accounting for the re-loading of fibres once
they are aligned to the loading direction. A Weibull probability function was used to
account for the stochastic nature of damage in bonds. The model reproduced rather
accurately the main deformation and fracture micromechanisms.

This numerical scheme was updated to implement a constitutive material model
for simulation of mechanical behaviour of thick needle-punched nonwovens [28].
The model incorporated non-affine deformation effects, anisotropic connectivity in-
duced by entanglement points, fibre uncurling and re-orientation as well as fibre dis-
entanglement and pull-out from the knots. Within the limits of a continuous model,
re-orientation of fibres, strain/stress non-uniformity and softening mechanisms were
accurately captured from the simulations. Numerical simulations showed very good
agreement with the experimental results.

More recent works carried out by the same authors focused on the ballistic per-
formance of hybrid laminates, made of a front layer of needle-punched nonwoven
and several layers of woven fabric. First, they demonstrated that the hybrid laminate
exhibited enhanced mechanical properties compared to those of the individual mate-
rial [29]. Second, the previously developed numerical model could also account for
high-strain-rate and out-of-plane loading. The obtained numerical results, expressed
in terms of residual vs. initial velocity of the spherical projectile, were in line with
the experimental observations.

The same model and approach were employed to simulate the impact behaviour
of a hybrid metal/nonwoven fabric [30]. Steel plates were modelled with a standard
elastic-plastic constitutive law at macroscale. The numerical model demonstrated
high predictive capabilities, also in this context. However, in their extensive work,
the authors did not provide any application to low-density fabrics, which would be
of great interest.

Damage and failure behaviours of nonwovens, specifically through-air bonded
ones, was also studied by Chen and Silberstein [31]. In their work, a micro-
mechanical damage model was presented based on the work conducted by Ridruejo
et al. [27]. The model was built by linking local damage events (bond failure) to
macroscopic behaviour of the fabric. In this model, a non-linear term was intro-
duced to describe the non-affine deformation of fibres at the bond level. A bond was
allowed to fail when its traction load exceeded a critical value. This local informa-
tion was used to update the global damage state employing a classical continuum-
damage-mechanics framework. The model could predict rather accurately the global
mechanical response of nonwoven fabrics with various planar densities.

Raina and Linder [32] developed a method starting from a modified affine net-
work model and incorporating fibre undulation and re-orientation phenomena typi-
cal for nonwoven materials. The developed model was able to capture a non-linear
and anisotropic response of the fabric, observed experimentally. The fibres’ unfold-
ing mechanism was captured by modifying the linear elastic response of individual
fibres in the lower stretch regime. Re-orientation of fibres, instead, was modelled as
a rigid-body rotation without producing any strain under the influence of external
loadings.
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A developed homogenisation technique was later combined with an enhanced
deformation gradient to model failure phenomena in nonwoven materials with a
random network microstructure at finite deformations [33]. This allowed capturing
the anisotropic and nonlinear bulk material responses with propagating cracks in the
failing nonwoven at finite strains. Failure, in the form of cracks, was incorporated
locally as displacement jumps, called strong discontinuities.

A stochastic approach was used to develop a constitutive model for predicting the
random mechanical response of isotropic thin fibre networks of arbitrary size [34].
The model was based on stochastic volume elements (SVEs) with the introduction
of stochastic constitutive-law parameters. An empirical relationship between the
equivalent stress and strain was used to describe the mechanical response of each
SVE forming the fibrous network. The softening part of the SVE’s mechanical re-
sponse was modelled with a quadratic expression as a function of the equivalent and
failure stresses and strains. The authors stated that the proposed continuous model
significantly reduced the computational cost compared to a discrete one. Simulation
of a 24 mm × 24 mm continuous fabric took 2 min on a modern 128 GB RAM
supercomputer, while a corresponding discontinuous fibrous network took 2 days
[34]. This conclusion confirms that although the discrete modelling approach allows
a detailed capture of complex mechanical behaviours of fabrics, it makes product
development prohibitive due to the overwhelming computational costs required to
simulate and design products of larger sizes.

Considering a period of 70 years, it can be asserted that few continuous numeri-
cal models are reported in the literature, and most of them do not account for dam-
age and failure behaviour. This is particularly true for hot-calendered nonwovens.
Furthermore, the traditional modelling approach used could not account for direct
changes in design parameters (material or geometric) as a parametric one would
do. The state-of-the-art offers only partial solutions to specific problems without
providing a more universal model.

This situation paves the way for the development and implementation of a para-
metric numerical scheme and tool that would enable prediction of mechanical be-
haviour of calendered nonwoven materials based on specified material and geo-
metric characteristics. The tool should allow designers and manufacturers of non-
wovens to design and assess a novel nonwoven fabric with minimal effort and cost,
by-passing experimental characterisation, which, sometimes, can be impractical and
insufficient for a comprehensive understanding of complex deformation and damage
phenomena.

4.3 Parametric Finite-element Modelling Strategy

A numerical scheme was developed to model, simulate and predict the deformation
and damage behaviours of mono- and bi-component fibre calendered nonwovens.
In order to be able to model different types of fabrics with various design vari-
ables (geometric and material properties), the formulation of a parametric approach
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was necessary. A stand-alone software, named FabricGEN, was developed and in-
terfaced through a graphical user interface (GUI) to the FE software MSC Marc®,
which functioned as solver. Implementation of the algorithm was performed using
an object-oriented programming approach in Python™ environment. FabricGEN
was interfaced to the FE environment via specific application programming inter-
face (API) functions suitably created. The parametric modelling strategy adopted is
illustrated in Fig. 4.2.

FabricGEN constitutes the core of the numerical scheme and is used to gener-
ate and transfer inputs to the FE package (Table 4.1). Gaining knowledge of local
mechanical properties of heterogeneous materials, such as calendered nonwovens,
is challenging and, in many cases, not viable. Therefore, the numerical tool was de-
veloped to compute local mechanical properties of fibrous matrix, bond areas and
interface regions based on some properties (physical, material and geometric) of fi-
bres and fabric that can be either found in the literature, obtained experimentally or
from manufacturers. Generation of the FE model and simulation of a specified cal-
endered fabric necessitate the knowledge of geometric properties of each domain,
boundary conditions and selection of a suitable mesh. The result of this process is
a shell-based FE model simulating a calendered nonwoven under uniaxial tension.
The model is able to predict the mechanical performance of the specified fabric and
provide information (e.g., distribution of stresses, strains and damage) not accessi-

Fig. 4.2 Parametric modelling scheme [8]
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Table 4.1 Inputs and outputs of numerical scheme

Input
(FabricGEN)

Output
(FabricGEN)

Output
(MSC Marc®)

Fabric and fibre properties

Elastic-plastic
properties of

fibrous matrix,
bond areas and

interface regions

Elastic-plastic
response

up to failure

Fabric planar density,
𝛾fab

Sheath
material in fibre, 𝑠%

3D-shell-based
FE model

Stress and
strain

distributions

Ratios of orthotropy,
ZMD and ZCD

Fibre diameter,
𝑑fib

Damage
distribution

Elastic properties
Fibre density,
𝜌core and 𝜌sheath

Young’s modulus,
𝐸core and 𝐸sheath

Poisson’s ratio,
𝜈core and 𝜈sheath

Shear modulus,
𝐺core and 𝐺sheath

Elastic-plastic properties of fibre

Young’s modulus of fibre,
𝐸fib

Plastic flow
curve of fibre,

𝜎fib

Geometric properties
Fibrous
matrix

Bond
pattern

Interface
region

Width, 𝑊 Shape Thickness, 𝑡INT

Height, 𝐻 Bond width, 𝑎
Centre

𝑥-coordinate, 𝑥𝐶

Thickness, 𝑡FM Bond height, 𝑏
Centre

𝑦-coordinate, 𝑦𝐶
Thickness, 𝑡BA Width, 𝑐𝑥
Orientation, \ Height, 𝑐𝑦

Horizontal
bond spacing, 𝑠𝑥

Vertical
bond spacing, 𝑠𝑦

Bond
mutual angle, Δ\

Meshing
Fibrous
matrix

Bond
pattern

Interface
region

FE size and type

Simulation parameters
Deformation

rate, ¤𝑢
Simulation

time, 𝑡
Loading

direction, 𝜗
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ble through experimentation. All the parameters are explained and illustrated in the
next sections.

FabricGEN is composed of two sections, one dedicated to material properties
and another to model and simulation parameters (see Figs. 4.3a and 4.3b, respec-
tively). In the first section, fibre and fabric properties of a specific nonwoven are
required. Elastic constants and physical properties of the polymeric materials, used
in core and sheath parts of bi-component fibres, are also a necessary input of the
numerical scheme. The second section deals with geometric and simulation param-
eters required to generate the FE model and simulation. The size of the fabric, bond

Fig. 4.3 Sections of FabricGEN: (a) materials properties; (b) model and simulation properties [8]
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area pattern (bond area shape, size, orientation, spacing in 𝑥 and 𝑦 direction and
orientation angle between two consecutive rows of bonds) as well as the interface
region’s width and thickness of each domain are used to create the model. Finally,
information about meshing, deformation rate (according to the fabric length and the
strain rate of the plastic flow curve chosen) and loading direction must be provided.

4.4 Multiscale Experimental Characterisation

4.4.1 Calendered Fabrics

Due to their popularity, the nonwoven materials considered in this work were pro-
duced with spun-bonding and bonded with the hot-calendering technique. Variabil-
ity in material and structural parameters such as polymeric resin, fabric’s planar den-
sity, type and orientation distribution of fibres as well as bond pattern were consid-
ered. With this in mind, three types of calendered nonwoven fabrics were selected.
The low-density fabrics, with a planar density of 25 g/m2, was manufactured with
bi-component core-sheath fibres made of 70% polypropylene (PP) and 30% high-
density polyethylene (HDPE). The medium- and high-density ones, with a planar
density of 40 and 100 g/m2, respectively, were produced with mono-component fi-
bres made of 100% PP. The 100 g/m2 fabric was a bi-layer nonwoven. Based on their
planar density, the selected fabrics are designated as F25, F40 and F100 throughout
this study. The properties of fabrics and fibres of the nonwovens studied are reported
in Table 4.2.

4.4.2 Experimental Methods

Development of a numerical model to simulate and predict mechanical behaviour of
calendered fabrics requires information about their microstructural and mechanical
characteristics. A number of experimental methods were employed to characterise
the selected nonwoven fabrics at various scales. Each method provided specific out-
puts, which not only served as inputs for the developed numerical scheme but also
helped improve and validate the obtained numerical models (Tables 4.3 and 4.4).
Detailed analysis and results can be found in [35].

Microstructural characterisation provided fundamental input parameters of the
selected fabrics. These are reported in Table 4.5 and used to generate FE models be-
low. A schematic view of a generic model of calendered fabric, including geometric
parameters, is illustrated in Fig. 4.4.
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Table 4.2 Fabric and fibre properties of F25, F40 and F100 fabrics

Properties of fabric and fibre

Fabric planar density,

𝛾fab (g/m2)

Sheath material of fibre,

𝑠% (%)

F25

(70/30 PP/PE)
25 30

F40

(PP)
40 0

F100

(PP)
100 0

Elastic properties of polymers

Fibre density,

𝜌fib
core and 𝜌fib

core

(g/cm3)

Young’s modulus,

𝐸core and 𝐸sheath

(MPa)

Poisson’s ratio,

𝜈core and

𝜈sheath

Shear modulus,

𝐺core and 𝐺sheath

(MPa)

F25

(70/30 PP/PE)
0.905 / 0.955 1200 / 1000 0.42 / 046 425 / 340

F40

(PP)
0.905 1200 0.42 425

F100

(PP)
0.905 1200 0.42 425

4.5 Generation of Calendered-fabric Model

Considering the fabric’s structure (Fig. 4.4), the development of the model begins
with the generation of the fabric itself (see algorithm in Table 4.6). The fabric is
represented by a rectangular region defined by its sides (straight lines) with its ini-
tial point, A, coinciding with the origin of coordinates. In this context, the fabric
implicitly represents the fibrous matrix. The model lies in the x–y plane, with the
width and height of the fabric defining its size. Thicknesses, instead, impart three-
dimensionality to the model. Then, the bond pattern is generated as needed, includ-
ing interface regions. Depending on the loading direction and, therefore, rotation of
the bond pattern, the algorithm trims elements of the model outside the fabric’s do-
main. Finally, once the three material domains are defined, boundary conditions and
materials properties are suitably applied to the model. It is clear that the parametric
nature of the algorithm allows the generation of various models that, for instance,
have different bond patterns (Fig. 4.5).
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Fig. 4.4 General scheme of model with notation of geometric parameters

Fig. 4.5 Examples of models for various bond patterns
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Table 4.3 Experimental methods: microstructural characterisation [35]

4.5.1 Computation of Local Mechanical Properties

As discussed, calendered nonwovens are heterogeneous materials composed of
three mechanically differently domains – fibrous matrix, bond areas and interface
regions. According to the experimental results, bond areas are stiffer than the fibrous
matrix. Therefore, it was appropriate to assume that the material properties of the
nonwoven could be described using the classic theory of mechanics of composites.

The BAs could be treated as the reinforcement of the composite, whereas the
FM as its matrix. The latter is porous and compressible in TD, but stiff in MD.
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Table 4.4 Experimental methods: mechanical characterisation [35]

The latter are solid and continuous regions, almost incompressible. By contrast,
the interface region, where most imperfections take place, exhibits an intermediate
behaviour between those of the fibrous matrix and bond areas. So, the mechanical
properties of the material should be computed individually for each region (domain).
Besides, due to the orthotropic nature of the material, these properties are direction-
dependent and, therefore, should be considered in three directions.

An attempt was made to compute the local elastic-plastic properties of the fi-
brous matrix, bond area and interface region based on the properties of the fabric
and its constituent fibres. Mechanical properties were obtained under the assump-
tion that the material was orthotropic, defined its three principal directions.



50 Vincenzo Cucumazzo and Vadim V. Silberschmidt

Table 4.5 Geometric properties of F25, F40 and F100 fabrics

Geometric properties F25 F40 F100

𝑊 (mm) 25 25 25

𝐻 (mm) 40 40 40

𝑡FM (mm) 0.35 0.4 0.512

𝑎 (mm) 0.70 0.78 0.70

𝑏 (mm) 0.50 0.42 0.46

𝜗 (◦) ±60◦ ±60◦ ±60◦

𝑡BA (mm) 0.023 0.056 0.097

𝑐𝑥 (mm) 0.05 0.05 0.05

𝑐𝑦 (mm) 0.05 0.05 0.05

𝑡INT (mm) 0.186 0.228 0.304

𝑥𝐶 (mm) 1.0 0.85 0.95

𝑦𝐶 (mm) 0.75 0.875 0.825

𝑠𝑥 (mm) 2.3 2.2 2.1

𝑠𝑦 (mm) 1.4 1.3 1.3

Ratio of orthotropy, ZMD and ZCD 0.63 / 0.37 0.54 / 0.46 0.57 / 0.43

Fibre diameter, 𝑑fib (mm) 0.017 0.0145 0.015

After the acquisition of the parameters needed, the algorithm started with cal-
culating the number of fibres per 1 mm2 of the fabric area, using the orthotropic
parameters and the nonwoven’s planar density. Since fibres acted as trusses, and
ZMD and ZCD quantify the level of orthotropy of the fabric, randomly-oriented fi-
bres could be represented with truss elements oriented along MD and CD. In other
words, the anisotropic microstructure was converted into an orthotropic one.

As observed in the experiments, the deformation behaviour of fibres and fabrics
was characterised by two main stages: elastic and plastic with strain hardening. The
first stage of the deformation process was elastic. Therefore, elastic constants of
the fibrous matrix and bond areas were first calculated. The properties of the third
domain, the interface region, were obtained by averaging those of the other two re-
gions. In order to develop a continuum model, effective mechanical properties must
be considered. The Young’s modulus of fibrous matrix and bond areas (indicated
with 𝑖) for a given loading direction, 𝐸 \

𝑖 , was computed as a function of the Young’s
modulus of the fibre (𝐸fib), the number of fibres in 1 mm2 (𝑁fib), the cross-sectional
area of the fibre (𝐴fib), the orthotropy ratio in MD (ZMD), the anisotropy coefficient
applied to the elastic domain (Λ\

𝐸) for the specified loading direction, and the thick-
ness of the domain considered (𝑡𝑖):

𝐸 \
𝑖 =

𝐸fib𝑁fibZMD𝐴fibΛ\
𝐸

𝑡𝑖
. (4.1)
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Table 4.6 Steps for generation of model based on input parameters

Algorithm 1 Generation of fabric with elliptical bonds

Parameters Step

1: 𝑓 = 𝑓 (𝑊,𝐻, 𝑡FM ) ▷ Generate fabric

2: BA shape = elliptical ▷ Select shape of bond/interface

3: 𝑓 = 𝑓 (\) ▷ Set bond/interface orientation (clockwise) about MD

4: BA mutual angle = True

▷ Consider ’shift angle’ between two consecutive bond rows

and alternately place bonds/interfaces belonging to even rows

at half 𝑠𝑥

5: 𝑓 = 𝑓 (Δ\)

𝑓 = 𝑓 (Δ\ + 𝜗)

▷ Set ’shift angle’

▷ Set ’shift angle’ considering loading direction

6: 𝑓 = 𝑓 (𝑥𝐶 , 𝑦𝐶 ) ▷ Define centre of 1st bond/interface in relation to point A

7: 𝑓 = 𝑓 (𝑎, 𝑏, 𝑡BA) ▷ Define bond size

8: 𝑓 = 𝑓 (𝑎, 𝑏, 𝑐𝑥 , 𝑐𝑦 , 𝑡INT)
▷ Expand bond in x and y directions to create interfaces

based on specified offset

9: 𝑓 = 𝑓 (𝑊,𝐻, 𝑠𝑥 , 𝑠𝑦)
▷ Create bond pattern by copying bonds/interfaces spaced in

x and y directions based on specified fabric size

10: ▷ Trim bond pattern outside fabric’s domain

11: ▷Mesh fibrous matrix, bond areas and interface regions

12: 𝑓 = 𝑓 (𝐸𝑖 ,𝐺𝑖 , 𝜈𝑖 , 𝜎𝑖) ▷ Assign computed material properties to each domain

13: 𝑓 = 𝑓 ( ¤𝑢, 𝑢, 𝑡) ▷ Apply boundary conditions (strain rate, fixed fabric’s

bottom edge and simulation time)

Differently, the Young’s modulus of the fibrous matrix in TD is given by 𝐸TD
FM =

𝐸MD
FM /𝑅𝑇 , where 𝑅𝑇 is a large number (around 120) that relates the mechanical

stress in MD to that in TD. This was found by Demirci [24] from compression
tests and, basically, indicates negligible compressive behaviour of the matrix in TD.
Transversal elastic constants, such as the Young’s modulus in TD of bond areas
(𝐸TD

BA), were calculated using Halpin-Tsai equations [36]

𝐸TD
BA =

1+2[1𝐶core𝐸sheath
1−[1𝐶core

, (4.2)

where [1 is given as

[1 =
𝐸core/𝐸sheath −1
𝐸core/𝐸sheath +2

, (4.3)
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where 𝐶core, 𝐶sheath, 𝐸core and 𝐸sheath are the volumetric fractions and the Young’s
moduli of core and sheath materials, respectively. These formulations indicate that
bonds were modelled as composite materials, in which the core material represents
the fibre, and the sheath the matrix. The shear modulus in MD of the bond area,
𝐺MD

BA , was calculated with a formula similar to (4.2):

𝐺MD
BA =

1+2[2𝐶core𝐺sheath
1−[2𝐶core

, (4.4)

[2 =
𝐺core/𝐺sheath −1
𝐺core/𝐺sheath +1

, (4.5)

𝐺core and𝐺sheath are the shear moduli of core and sheath materials, respectively. The
shear moduli of the fibrous matrix along the direction \ were calculated assuming
a linear proportionality between the Young’s and shear moduli of bond areas (𝐸MD

BA
and 𝐺MD

BA , respectively) and the Young’s modulus of the matrix (𝐸 \
FM)

𝐺 \
FM =

𝐺MD
BA 𝐸

\
FM

𝐸MD
BA

, (4.6)

Due to its porous nature, the fibrous matrix is characterised by low flexural stiffness,
which can reasonably be assumed negligible. Therefore, the in-plane Poisson’s ratio
of the fibrous matrix and bond areas, 𝜈𝑀𝐷/𝐶𝐷 , was assumed to be equivalent to that
of the fibre. This latter was computed using by applying the rule of mixtures (RoM)

𝜈fib = 𝜈core𝐶core + 𝜈sheath𝐶sheath, (4.7)

where 𝜈core and 𝜈sheath are the Poisson’s ratios of the core and sheath materials,
respectively. The out-of-plane Poisson’s ratios were assumed to be zero as a result
of compressibility of the fibrous matrix.

Finally, the thickness of the bond area was obtained assuming it as solid without
voids with the following relationship:

𝑡BA =
𝑚1mm2

𝜌fib
, (4.8)

where 𝑚1mm2 is the mass per 1 mm2 of the fabric and 𝜌fib is given by the RoM in
the form 𝜌fib = 𝜌sheath𝐶sheath + 𝜌core𝐶core. Here, 𝜌sheath and 𝜌core are the sheath and
core densities, respectively.

The local elastic constants in MD, CD and TD for the selected nonwoven fabrics
were computed (Table 4.7). From the results, it is possible to note that the bond
area was characterised by high values of Young’s moduli as compared to the other
regions. This effect was more marked in TD, due to their high stiffness along that
direction. Similarly, shear moduli were found to be rather high in the bond-area
domain as it can sustain shear stresses.

In order to define the material’s plastic behaviour in the FE environment, plastic-
flow curves of the fibrous matrix, bond areas and interface regions (𝜎\

𝑖 ) are required.
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Table 4.7 Computed orthotropic elastic constants of selected fabrics

Elastic

constants
Fibrous matrix Bond area Interface region

F25 F40 F100 F25 F40 F100 F25 F40 F100

𝐸MD

(MPa)
29.18 46.36 100.04 375.84 420.19 463.54 202.51 233.21 563.58

𝐸CD

(MPa)
16.41 39.55 75.46 211.41 357.94 349.68 113.91 198.74 212.57

𝐸TD

(MPa)
0.24 0.38 0.83 568.62 1200 1200 284.43 600.19 600.41

𝜈MD,CD 0.432 0.42 0.42 0.432 0.42 0.42 0.432 0.42 0.42

𝜈CD,TD 0 0 0 0.432 0.42 0.42 0.21 0.21 0.21

𝜈TD,MD 0 0 0 0.432 0.42 0.42 0.21 0.21 0.21

𝐺MD,CD

(MPa)
15.42 46.96 91.72 198.67 425.00 425.00 107.04 235.98 258.36

𝐺CD,TD

(MPa)
8.67 40.00 69.19 111.75 362.03 320.61 60.21 201.01 389.80

𝐺TD,MD

(MPa)
0.13 0.39 0.76 300.58 1213.73 1100.23 150.35 607.06 550.50

The following expression was used to compute a flow curve in the direction \:

𝜎\
𝑖 =

𝜎fib𝑁fibZMD𝐴fibΛ\
𝜎𝑢

𝑡𝑖
, (4.9)

where 𝜎fib is the plastic flow stress of fibre and Λ\
𝜎𝑢

is the anisotropy coefficient
applied to plastic domain for the loading direction considered. The plastic flow stress
of bond areas in TD was assumed to be linearly proportional to that in MD according
to the following relation:

𝜎TD
BA =

𝜎MD
BA 𝐸TD

BA

𝐸MD
BA

, (4.10)

where 𝜎TD
BA and 𝜎MD

BA are the plastic flow stresses; 𝐸MD
BA and 𝐸TD

BA are the Young’s
moduli in MD and TD, respectively.

A material database containing plastic-flow curves for several types of fibres was
implemented. For instance, the nomenclature “PP PE 70 30 25gsm E SR0.1” de-
notes a fibre extracted from the F25 fabric made of 70% polypropylene and 30%
polyethylene with elliptical bond areas tested at a strain rate of 0.1 s–1 (Fig. 4.6).
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Fig. 4.6 Database of plastic-
flow curves of fibres

The definition of plasticity in the FE software required only one plastic-flow
curve for each region of the fabric. In order to achieve this, average flow curves were
computed using FabricGEN (Fig. 4.7). In this way, it was possible to assign these
plastic properties directly to the domains in the FE environment. The magnitude of
the curves reflects the mechanical behaviour of each material’s domain observed
in the experiments. It should be recalled that the plastic-flow curve of the interface
region was an average between that of the fibrous matrix and bond area.

It can be noted that the level of flow stress in the fibrous matrix was significantly
lower compared to that in the bond area. In particular, the stress was significantly
higher along TD as the material is nearly incompressible. Poor mechanical perfor-
mance was exhibited by the fibrous matrix in TD. These curves are employed to
define the von Mises yield criterion in the numerical scheme.

Fig. 4.7 Computed average
plastic-flow curves of fibrous
matrix, bond areas and inter-
face regions for F100 fabric at
strain rate 0.1 s–1
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4.5.2 Meshing

Realistic simulations of complex deformation and damage behaviours of a nonwo-
ven fabric require appropriate implementation of a FE type to reproduce mechanical
characteristics of the three domains. Due to geometric (large region to discretise)
and computational (reduction in number of elements) reasons, the fibrous matrix
was modelled with quadrilateral shell elements (element type 139 in MSC Marc®),
characterised by six nodal displacement variables. Due to their complex curvilinear
shape and small surface area, bond areas and interface regions were modelled using
three-node thin-triangular shell elements (element type 138 in MSC Marc®), with
characteristics of element type 139.

To assess mesh independence, a mesh-sensitivity analysis was carried out. Due to
its larger size (as compared to bond areas and interface regions), the fibrous matrix
was discretised with a larger element size. The bond areas and interface regions
were discretised with a finer mesh to better approximate these small regions.

Tensile behaviour of an F100 fabric of size 25 mm × 40 mm was simulated
using a 3.60 GHz (RAM 128 GB) Intel Xeon CPU PC with 6 cores. Levels of
ultimate strength and computational time were used as reference variables to deter-
mine an appropriate mesh size for the model while maintaining a satisfactory level
of accuracy and reasonable computational effort. The obtained results (Fig. 4.8),
demonstrated that the ultimate strength converged asymptotically to the experimen-
tal value, providing a good approximation in Case B with the computational cost
roughly three times lower than that in Case C. Thus, it could be concluded that the
mesh size of Case B was sufficiently dense and not overly demanding in terms of
computing resources; therefore, it was used in subsequent simulations.

Fig. 4.8 Mesh-convergence
analysis
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4.5.3 Failure Criterion

Experimental observations showed that calendered fabrics are more sensitive to
strain rather than stress. Therefore, a maximum-strain-based failure criterion was
chosen to model the failure behaviour. The criterion is formulated in 6 failure in-
dices as follows (

Y1
𝑒𝑥𝑡

)
,

(
Y2
𝑒𝑦𝑡

)
,

(
Y3
𝑒𝑧𝑡

)
= 1, 𝑑Y = 1 (4.11)

Y1, Y2, Y3 are the components of strain at any integration point of an element. 𝑒𝑥𝑡 ,
𝑒𝑦𝑡 , 𝑒𝑧𝑡 are the maximum allowable longitudinal tensile strains in 3 directions (as-
sumed to be the same) and 𝑑Y = 1 is the damage variable associated with the failure
mode of an element, depending upon the strains applied. An element-deletion ap-
proach was used to remove the elements from the model based on the value of
damage variables as calculated with (4.11). An element was assumed to fail and
then removed from the model when the damage condition, 𝑑Y = 1, was satisfied at
a given integration point.

With the presence of a three-domain microstructure, the failure behaviour varied
with the domain in question. A reverse-engineering approach was used to identify
the local maximum allowable failure strains of each phase. A number of simulations
were run until a fair match was attained between numerical and experimental results,
while still retaining the physics observed in the experiments. The magnitude of the
maximum allowable failure strains was assigned in the following ascending order:
interface regions, fibrous matrix and bond areas (Table 4.8). In other words, damage
initiated at interfaces then propagated through the fibrous matrix with failure of
fibres, and, finally, bond area started failing.

Table 4.8 Maximum allowable strains for each domain in various loading directions in F40 and
F100 models

0◦ 30◦ 45◦ 60◦ 90◦

F40 F100 F40 F100 F40 F100 F40 F100 F40 F100

Fibrous matrix 0.15 0.08 0.23 0.09 0.22 0.08 0.17 0.10 0.18 0.08

Bond area 0.20 0.15 0.25 0.10 0.25 0.10 0.25 0.15 0.20 0.15

Interface region 0.08 0.08 0.10 0.05 0.08 0.08 0.08 0.08 0.08 0.08
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4.6 Results and Discussion

4.6.1 Developed Models and Validation

In this section, the developed FE models and simulations are introduced and vali-
dated with experimental observations. The full model of F100 fabric and a detailed
view of it is shown in Fig. 4.9. The model was generated to simulate uniaxial tensile
loading along MD. Due to the negligible role of the strain rate in the mechanical
response of the fabric, all the simulations were performed keeping the strain rate at
0.1 s–1.
The simulation results (Fig. 4.10a) present the true-strain distribution at 25% ex-
tension. As mentioned, it is more meaningful to assess strain distributions in the
material rather than those of stress. A qualitative comparison with the experiment
(Fig. 4.10b) indicates the evident similarity with the numerical output (e.g., necking
behaviour and model’s deformed configuration), although damage occurred some-
what prematurely in simulations. It should be noted that the experimental evidence
chosen is one of several obtained and, therefore, not directly comparable to the nu-
merical results. The latter indicate that a higher level of strain was localised at the
model’s mid-height, spreading within the fabric declining at the top and bottom of
the fabric. The strain tended to reach a peak value at interfaces, causing localised
damage of the structure with consequent failure. This damage mechanism was ob-
served in the experimental studies. In the models, failure occurred near the fixed
boundary conditions (top right end and bottom left end) due to the specific config-
uration of the bond pattern (symmetry), in particular, near the bonds located close
to the boundaries. In these areas, where there was no bond, damage initiated prema-
turely, leading to failure of the fibrous matrix.

A more in-depth study was conducted to investigate the effect of each phase
on the Cauchy stress. A nodal path was designed by considering nodes in the fi-
brous matrix, the interface region and the bond area. Based on the node arrange-

Fig. 4.9 FE model of F100
fabric in MD: (a) full model;
(b) detailed view
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Fig. 4.10 Computed distribution of total true strain (a) and experimental test (b) of F100 fabric
stretched in MD (0°) at 25% extension

ment, an attempt was made to position the path orthogonally to the loading direc-
tion (Fig. 4.11a). For the selected nodes, axial stress values were extracted at 20%
extension of the fabric and plotted against their distance along the selected path
(Fig. 4.11b). A low stress level was observed in the fibrous matrix, with a sudden

Fig. 4.11 Nodal path in F100 fabric (a) and Cauchy-stress distribution (b) at 20% extension of
fabric in MD
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rise at the bond periphery, indicating a geometric discontinuity. As expected, the
stress reached its peak value in the middle of the bond area as this region is char-
acterised by high stiffness. A bell-shaped function was identified, which resembles
that of fibre stress distribution in a pull-out test of a fibre embedded into a ma-
trix [37]. Typically, the interface region is hard to clearly define geometrically and
measure in calendered nonwovens. Perhaps, a definition could be given in terms of
other parameters, for instance, stress. Two simulations were performed, one with
the interface region and one without it. The presence of the interface region seems
to relieve the stress inside the bond area and smoothen the transition between the
interface and the fibrous matrix. It appears that the interface region had little effect
on the overall mechanical performance of the nonwoven fabric, even locally. How-
ever, the presence of the interface is important for damage initiation in continuous
models of calendered fabrics.

Similar simulations were performed to predict the mechanical performance of
F40 and F25 fabrics. In these cases, distributions of true strains and stresses were
computed. The results showed that, despite the F40 fabric was made of the same
polymer as F100, it exhibited a different behaviour, even locally (Fig. 4.12). This

Fig. 4.12 Distributions of total true strains (a) and stresses (b) for F40 fabric stretched in MD (0◦)
at 25% extension
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effect proved a considerable importance of an account for various parameters for
prediction of mechanical behaviour of a nonwoven material. In the F40 fabric, the
strain was more uniformly distributed as compared to F100. The reason may be
linked to the ratio between the fibre-matrix thickness, 𝑡FM, and that of bond areas,
𝑡BA: this ratio was higher in the F40 and F25 fabrics than that in F100. This hy-
pothesis was supported by the character of the strain distribution in the F25 fabric
(Fig. 4.13). As expected, stress localised at bond areas, which acted as stress con-
centration zones due to their high stiffness. The F25 fabric exhibited a more marked
necking effect as compared to its counterparts.

In order to compare the numerical results with experimental observations, the
force-extension graphs were used (Fig. 4.14); the force was normalised with the
specimen width. The obtained results revealed that the model could successfully
simulate the mechanical behaviour of the F40 and F100 fabrics. The elastic part
was appreciably captured for these fabrics together with the plastic one. However,
as the fabric density decreased (F25 fabric), the model could not mimic the be-
haviour of the material realistically. In particular, the numerical model could de-
scribe adequately neither the elastic nor the plastic response of the material. Fur-
thermore, simulations of the F25 fabric were affected by severe convergence issues
due to large material deformations. It is well known that continuous models, used in
the literature, have limitations in simulating the realistic behaviour of low-density

Fig. 4.13 Distributions of total true strains (a) and stresses (b) for F25 fabric stretched in MD (0◦)
at 25% extension
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Fig. 4.14 Experimental and
numerical normalised force
vs. engineering strain curves
of F25, F40 and F100 fabrics
stretched in MD at strain rate
0.1 s–1

nonwovens. The structure of these fibrous networks greatly differs from that of tra-
ditional solids, and porosity, for instance, becomes an important factor that is not
accounted for in this research framework. However, an attempt was made to in-
clude these fabrics in this study and try to elucidate the limitations of a continuous
modelling approach. The fibre-re-orientation mechanism is more prominent in these
fabrics due to a lower fibre content as compared to the high-density ones. In light of
this result, the next sections deal only with the F40 and F100 fabrics.

4.6.2 Effect of Load Direction

As demonstrated in [35], the mechanical performance of nonwoven materials highly
depends on the distribution and orientation of their fibres. Hence, the loading direc-
tion is a key factor to consider. This phenomenon was partially studied experimen-
tally by testing fabrics in MD and CD, but not numerically. Numerical simulations
were performed to assess the reliability of the developed numerical scheme in pre-
dicting the mechanical response of fabrics stretched in various loading directions
(0◦, 30◦, 45◦, 60◦ and 90◦ with respect to MD), see Fig. 4.15. The results demon-
strated a good agreement with the experimental data. The elastic-plastic response
was well captured in all the cases, while ultimate strength was slightly overes-
timated. A higher level of error was observed in the mechanical response in CD
(𝜗 = 90◦). This discrepancy could be attributed to a lower stiffness exhibited by the
material in CD as compared to the other directions – recalling the case of the F25
fabric. Difficulties in capturing the mechanical response in CD were also reported
in other works [24], [38].

The effect of the loading direction was also analysed in the F40 fabric. The results
reported in Fig. 4.15b depict a fair agreement with the experimental data, marked
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Fig. 4.15 Experimental and
numerical normalised force
vs. engineering strain curves
of F40 (a) and F100 (b)
fabrics stretched in various
loading directions at strain
rate 0.1 s–1

by some underestimation of the latter. The elastic-plastic response was reasonably
captured. It is evident that a decrease in planar density led to a decrease in the
accuracy of the predictive capability of the numerical scheme.

4.6.3 Effect of Fabric Size

Hou [39] demonstrated experimentally that the size of a nonwoven fabric can affect
its mechanical behaviour. In order to account for this effect, three case studies are
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proposed in this section. The width and height of the generated FE models were
changed while maintaining the width-to-height aspect ratio at 0.625 (Table 4.9).
The deformation speed was adjusted according to the gauge length (model height)
in order to simulate the tensile behaviour of fabrics at the same strain rate of 0.1 s–1.

Results illustrated in Fig. 4.16 indicate an increase in toughness as the fabric
size grew. This expected result is important from a structural perspective, especially
for the design of nonwovens for ballistic applications or, in general, in cases where
high resistance is required. Less obvious was the relation between the ultimate force
initiating the fabric failure, 𝐹𝑢, and the area of the fabric 𝐴fab. One reason for size-
induced strengthening, especially prominent in the F40 fabric, is the reduction of
the effect of areas near the specimen vertices. In these areas, the type of specimen’s
fixture (reflected in the respective boundary condition) caused a loss of uniaxiality
and, subsequently, higher total deformations. As a result (see above), the damage
initiated in these areas. Finally, the stiffness was observed to increase with an in-
crease in the fabric size, confirming Hou’s findings, [39].

Table 4.9 Geometric parameters in various models of F40 and F100 fabrics

Model
Fabric size,

𝑊 ×𝐻 (mm)

Fabric area,

𝐴fab (mm2)

Centre coordinates of

first bond area, (𝑥𝐶 , 𝑦𝐶 ) (mm)

Deformation rate,

¤𝑢 (mm/s)

A 6.25× 10 62.5 (0.925, 0.755) 1.0

B 12.5× 10 250 (0.75, 0.90) 2.0

C 25× 40 1000 (0.95, 0.825) 4.0

Fig. 4.16 Force-displacement curves of F40 (b) and F100 (b) in MD for various models (fabric
sizes)
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4.6.4 Effect of Bond Pattern

With the confirmed predictive capability of the developed numerical scheme, this
section aims to simulate and assess the effect of bond pattern on the mechanical per-
formance of calendered nonwovens. A bond pattern can be defined by four main pa-
rameters: bond-pattern orientation, spacing between bond areas, bond area’s shape
and orientation. The FE models of the F40 and F100 fabrics were identical to those
presented in Sect. 4.6.1 but had a variation in bond area spacing, shape and orienta-
tion. Below, three case studies are proposed for each parameter studied.

The spacing between bond areas can affect stiffness along a specific direction.
Spacings between bond areas in the 𝑥 and 𝑦 directions, 𝑠𝑥 and 𝑠𝑦 , respectively, were
varied according to Table 4.10. The reference case, Sp-B, was analysed earlier. It
should be noted that a variation in spacing entails a variation in the centre coordi-
nates of the first bond area generated in the model. As a result, the bond pattern is
defined by a unique arrangement for a given fabric size. Contrary to expectations,
the obtained results shown in Fig. 4.17 indicate that an increase or decrease in bond
spacing had no effect on the mechanical performance of the F100 fabric. In the case
of the F40 fabric, in contrast, the mechanical response was greatly affected by the
bond spacing. In particular, a smaller bond spacing led to a higher fabric strength
and lower stretchability. This behaviour developed progressively as the bond spac-
ing decreased. The discrepancy in the mechanical behaviour between the two fabrics
could be attributed to different ratios between thicknesses of the fibrous matrix and
bond areas. In fact, the higher the ratio, the higher the freedom of movement offered
to bond areas within the fibrous matrix thickness. These differences in the mechan-
ical behaviour of (an apparently similar) nonwoven reflect the complex nature of
these materials.

The second factor defining the bond pattern is the bond area shape. Three bond
shapes were studied, elliptical, rectangular and diamond-like with their area kept at
0.28 mm2 (Fig. 4.18). The orientation of bond areas was set to 90◦ with respect to
the machine and loading directions.

The reference case here is Sh-A, the F100 fabric generated with all the geometric
and material properties identical to the reference case introduced in Sect. 4.6.1. Two
other cases are identical to Sh-A, but with the bond areas having a different shape.

Table 4.10 Case studies for variation of bond area spacing

Case study
Spacing in 𝑥–direction,

𝑠𝑥 (mm)

Spacing in 𝑦–direction,

𝑠𝑦 (mm)

Bond area

centre coordinates,

(𝑥𝐶 , 𝑦𝐶 ) (mm)

Sp-A 1.5 0.7 (0.875, 0.75)

Sp-B 2.2 1.3 (0.95, 0.825)

Sp-C 4.4 2.6 (1.5, 1.15)
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Fig. 4.17 Normalised force
vs. engineering strain curves
of F40 and F100 fabrics with
various bond area spacings

Fig. 4.18 Bond area shapes in different case studies

No evidence about the influence of the bond area shape on the mechanical response
of the material was found (Fig. 4.19). In fact, only the bonded-area fraction should
matter in this respect.
Since the variation in the bond area shape had no effect on the global response of the
material, an attempt was made to analyse its local mechanical response, in particular
the stress distributions around the bond area and inside it. The selected bond areas
were located roughly in the middle of the specimen, specifically at the 34th row and
7th column of the bond pattern. The F100 fabrics were stretched in MD, and with re-
sults collected at 20% fabric extension, as shown in Fig. 4.20. As expected, the peak
stress was observed in the central part of the bond area. In Sh-A, the elliptical bond
deformed into a circle and some elements at interface failed and were deleted as
the failure condition was met. Among the three cases, this one displayed the lowest
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Fig. 4.19 Normalised force
vs. engineering strain curves
of F40 and F100 fabrics with
various bond area shapes

Fig. 4.20 Cauchy-stress distribution in various bond areas of F100 fabrics at 20% extension

stress-bearing capacity. Rectangular bond areas seem to withstand a higher level of
stress as compared to the other two cases. Therefore, according to the results, it can
be concluded that in terms of stress the most suitable bond shape is the rectangular
one. The diamond-like bond shape provided an intermediate scenario.
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The roundup of case studies completes with the investigation of the effect of the
orientation of bond areas on mechanical performance of F40 and F100 fabrics.
Three case studies were formulated with the bond areas rotated by 0◦, 45◦ and 60◦
with respect to MD. The models were generated under the same conditions as in Sh-
A. The fabrics were stretched uniaxially up to failure and then results were collected.

The computed normalised force vs. engineering strain curves of the F40 and
F100 fabrics for various orientations of bond areas (Fig. 4.21) revealed that the
difference in the mechanical response among the models was rather marginal in this
case. A reasonable explanation could be that the shapes of bonds were symmetric
along all directions and, therefore, there was no predominant direction that acted as
a lever to generate moments and/or forces.

4.7 Conclusions

This work attempted to advance the knowledge in the field of mechanics of nonwo-
ven materials, particularly the spun-bonded ones, produced with the hot-calendering
technique. Its contribution in relation to the current state-of-the-art can be sum-
marised as follows:

• Characterisation, modelling and prediction of deformation and damage behaviours
of calendered nonwovens at macroscopic level through multiscale mechanical
testing and introduction of a third domain – interface region – zone of damage
localisation and initiation

• Extension of the study to low-density nonwovens and verification of the limita-
tions of the developed numerical scheme in this context.

Fig. 4.21 Normalised force
vs. engineering strain curves
of F40 and F100 fabrics with
various bond area orientations



68 Vincenzo Cucumazzo and Vadim V. Silberschmidt

• Development of an algorithm to accurately assess and quantify the level of
anisotropy if fabrics’ microstructure, also accounting for curliness of fibres.

• Development of a stand-alone software with a graphical user interface that facil-
itates its use and links the numerical scheme to the FE environment. In addition,
it allows automatic and efficient generation of shell-based FE models based on
user-defined material and geometric properties of calendered fabrics (e.g., bond
pattern, fabric size, interface-region size, fibre diameter, etc.), including studies
of the effects of design parameters and estimation of local distributions of strains,
stresses and damage as well as mechanical anisotropy. The tool can facilitate the
design and optimisation of nonwoven products by reducing trial-and-error stages
of product development. It can help manufacturers to lower the cost and time of
bringing new products to the market, and potentially be extended to model other
materials, thanks to its general nature.

• Identification of maximum allowable strains in various loading directions for
each fabric domain and development of a local damage criterion based on exper-
imental observations.
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29. F. Martı́nez-Hergueta, A. Ridruejo, C. González, J. Llorca. Numerical simulation of the ballis-
tic response of needle-punched nonwoven fabrics. International Journal of Solids and Struc-
tures 106-107:56–67, 2017.

30. J. Vila-Ortega, A. Ridruejo, F. Martı́nez-Hergueta. Multiscale numerical optimisation of hy-
brid metal/nonwoven shields for ballistic protection. International Journal of Impact Engi-
neering 138:103478, 2020.

31. N. Chen, M.N. Silberstein. A micromechanics-based damage model for non-woven fiber net-
works. International Journal of Solids and Structures 160:18-31, 2020.

32. A. Raina, C. Linder. A homogenization approach for nonwoven materials based on fiber un-
dulations and reorientation. Journal of the Mechanics and Physics of Solids 65:12-34, 2014.

33. A. Raina, C. Linder. A micromechanical model with strong discontinuities for failure in non-
wovens at finite deformations. International Journal of Solids and Structures 75-76:247-259,
2015.

34. R. Mansour, A. Kulachenko, W. Chen, M. Olsson. Stochastic constitutive model of isotropic
thin fiber networks based on stochastic volume elements. Materials 12(3):538, 2019.



70 Vincenzo Cucumazzo and Vadim V. Silberschmidt

35. V. Cucumazzo, E. Demirci, B. Pourdeyhimi, V.V. Silberschmidt. Anisotropic mechanical be-
haviour of calendered nonwoven fabrics: Strain-rate dependency. Journal of Composite Ma-
terials 55(13):1783–1798,2020

36. T.W. Chou. Microstructural Design of Fiber Composites. Cambridge University Press, 1992.
37. J.K. Kim, Y.W. Mai. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998.
38. F. Farukh. E. Demirci, M. Acar, B. Pourdeyhimi, V.V. Silberschmidt. Large deformation of

thermally bonded random fibrous networks: Microstructural changes and damage. Journal of
Materials Science 49(11):4081-4092, 2014.

39. X. Hou. Experimental and Numerical Analysis of Deformation of Low-density Thermally
Bonded Nonwovens. Loughborough University, 2010.



Chapter 5
Free Vibrations of a Cylindrical Shell Closed
with the Cap

Sergei B. Filippov, Grigory A. Nesterchuk, and Andrei L. Smirnov

Abstract Low-frequencies and vibration modes of the construction consisted of a
closed circular cylindrical shell joined with the circular plate are obtained by means
of numerical and asymptotic methods. Three types of vibrations are analyzed. The
frequencies of vibrations of the first type are close to plate frequencies. The fre-
quencies of the second type vibrations slightly differ from the frequencies of the
cylindrical shell. Two different asymptotic approaches are used to get approximate
asymptotic formulas for plate-like and shell-like vibration frequencies. In the ap-
proximate analysis the third type vibrations of the structure may be considered as
beam vibrations with circular cross-sectional area. The optimal ratio of the plate and
shell thicknesses that provides the maximum value of the fundamental frequency of
the structure with the given mass is evaluated. The asymptotic and numerical results
obtained with FEA are in good agreement.

Key words: Plate/shell coupled structure, Free vibrations, Asymptotic method, Op-
timal thickness

5.1 Introduction

The equations of the theory of thin shells contain the dimensionless shell thickness
ℎ𝑠 as a small parameter. Hence, asymptotic methods [1, 8, 9, 12] may be applied
to solve these equations, in particular, approximate solutions may be obtained by
means of Vishik-Lyusternik algorithm [1, 13], when solutions are represented in
the form of a sum of slowly varying functions and edge effect integrals. In such a
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way the initial singularly perturbed system of differential equations is reduced to an
approximate system of the smaller order [12].

Vibrations of joined shells are analyzed in many papers, including [2]. Asymp-
totic approach was used in [3, 4, 5], but the low-frequency vibrations of a shell
closed with the plate essentially differ from low-frequency vibrations of joined
shells. The reason for this is as follows. The non-dimensional fundamental fre-
quency of the plate joined with the shell 𝑓∗ is of the order of ℎ𝑝 , where ℎ𝑝 ≪ 1
is the non-dimensional plate thickness and the fundamental mode is axisymmetric.
On the other hand, the non-dimensional lowest frequency of axisymmetric vibra-
tions of joined shells of revolution, 𝑓∗ ∼ 1 [1]. Therefore, the asymptotic analysis of
joined shells of revolution cannot be transferred to structures containing thin plates.

In [6, 7] new asymptotic technique was developed to find low-frequencies and
vibration modes of a cylindrical shell joined with annular plates. In the current re-
search the same asymptotic method is applied to find approximate solution of the
eigenvalue problem describing free vibrations of a cylindrical shell stiffened by a
circular plate at the end. The analysis of vibrations of joined thin-walled elements
of such kind is of particular interest since they are often used in actual designs (see
Fig. 5.1).

5.2 Numerical Results

A numerical study of the lowest natural vibration frequencies of a structure consist-
ing of a circular cylindrical thin shell, rigidly clamped at one end and joined with
a circular thin plate at the other, was carried out in the COMSOL Multiphysics®

Version 5.6 finite element package. We considered a copper shell of medium length
with the following parameters: 𝐸 = 110 GPa — the Young modulus, 𝜈 = 0.35 —
Poisson’s ratio, 𝜌 = 8960 kg/m3 — density, 𝑅 = 1 m, 𝑙 = 𝐿/𝑅 = 4 — shell length,
ℎ = 𝐻/𝑅 = 0.01 — characteristic thickness of the structure.

Fig. 5.1 Actual structures: cylindrical shell with the attached end plate.
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The convergence of the method on different grids was considered. The best con-
vergence is provided by mapping into rectangular elements (mapped mesh) with
characteristic element sizes in the interval [0.008,0.08]. A further decrease in the
size of the element has little effect on the results, since the relative change in the
knowledge of frequencies does not exceed 1%. As a result, the lower part of the
spectrum of natural dimensionless frequencies Ω = (𝜔2 · 12𝜌𝜎𝑅2/(𝐸ℎ2))1/4 of the
structure under consideration, where 𝜎 = 1− 𝜈2, and 𝑓 , 𝜔 = 2𝜋 𝑓 are the frequency
and cyclic frequency of vibrations, respectively, is shown in Fig. 5.2

Natural vibration frequencies may be divided into three groups of shell-like,
plate-like and beam-like frequencies. The corresponding eigenmodes are shown in
Fig. 5.3.

Fig. 5.2 Lower natural frequencies of a cylindrical shell with the attached end plate. Dimensionless
shell-like frequencies are marked in blue, plate-like frequencies — in red, and beam-like frequen-
cies — in green.

a) b) c)

Fig. 5.3 Vibration modes: a) shell-like, b) plate-like, c) beam-like.
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5.3 Basic Equations

We consider small free low-frequency vibrations of a thin cylindrical shell stiffened
by the circular plate. The plate is located on the parallel 𝑠 = 𝑙 of the shell, where 𝑠
is the dimensionless axial coordinate on the shell middle surface. The radius of the
cylindrical shell 𝑅 is taken as the characteristic length (Fig. 5.4).

After the separation of variables non-dimensional differential equations describ-
ing free vibrations of a cylindrical shell [6, 10] are written in the form

𝑇 ′
1 +𝑚𝑆 +𝜆𝑢 = 0, 𝑆′ −𝑚𝑇2 +𝑄2 +2𝐻′ +𝜆v = 0,
𝑄′

1 +𝑚𝑄2 −𝑇2 +𝜆𝑤 = 0, 𝑄1 = 𝑀 ′
1 +2𝑚𝐻, 𝑄2 = −𝑚𝑀2,

𝑀1 = 𝜇4 (𝜗′1 + 𝜈𝑚𝜗2), 𝑀2 = 𝜇4 (𝑚𝜗2 + 𝜈𝜗′1), 𝐻 = 𝜇4 (1− 𝜈)𝜗′2,
𝑇1 = 𝑢′ + 𝜈(𝑤+𝑚v), 𝑇2 = 𝑤+𝑚v+ 𝜈𝑢′, 2𝑆 = (1− 𝜈) (v′ −𝑚𝑢),
𝜗1 = −𝑤′, 𝜗2 = 𝑚𝑤+ v,

(5.1)

where (′) denotes the derivative with respect to the coordinate 𝑠 ∈ [0, 𝑙], 𝑚 is the
circumferential wave number, 𝑢, 𝑣 and 𝑤 are components of the displacement vector,
𝑇1, 𝑇2, 𝑆, 𝑄1, 𝑄2, 𝑀1, 𝑀2, 𝐻 are the dimensionless stress-resultants, 𝜗1 and 𝜗2 are
the angles of rotation of the normal, 𝜆 = 𝜔2𝜎𝜌𝑅2𝐸−1 is the frequency parameter,
𝜇4 = ℎ2

𝑠/12 is a small parameter, ℎ𝑠 is the dimensionless shell thickness
The plate bending equations [6, 10] are

(𝑠𝑝𝑄1𝑝)′ +𝑚𝑄2𝑝 +𝜆𝑠𝑝𝑤𝑝 = 0,
𝑠𝑝𝑄1𝑝 = (𝑠𝑝𝑀1𝑝)′ −𝑀2𝑝 +2𝑚𝐻𝑝 , 𝑠𝑝𝑄2𝑝 = −𝑚𝑀2𝑝 +2𝐻𝑝 ,
𝑠𝑝𝑀1𝑝 = 𝜇4

𝑝 [𝑠𝑝𝜗′1𝑝 + 𝜈(𝑚𝜗2𝑝 +𝜗1𝑝)], 𝑠𝑝𝑀2𝑝 = 𝜇4
𝑝 (𝑚𝜗2𝑝 +𝜗1𝑝 + 𝜈𝑠𝑝𝜗′1𝑝),

𝐻𝑝 = 𝜇4
𝑝𝑠𝑝 (1− 𝜈)𝜗′2𝑝 , 𝜗1𝑝 = −𝑤′

𝑝 , 𝑠𝑝𝜗2𝑝 = 𝑚𝑤𝑝 .

(5.2)
Here (′) denotes the derivative with respect to the radial coordinate, 𝑠𝑝 ∈ [0,1],
𝑤𝑝 is the transverse deflection, 𝑄1𝑝 , 𝑄2𝑝 , 𝑀1𝑝 , 𝑀2𝑝 , 𝐻𝑝 are the dimensionless
stress-resultants, 𝜗1𝑝 and 𝜗2𝑝 are the angles of rotation of the normal, ℎ𝑝 is the
dimensionless plate thickness, 𝜇4

𝑝 = ℎ2
𝑝/12 is a small parameter.

From the following equations [6] one can find the tangential (in plane) deforma-
tion of the plate

Fig. 5.4 Shell with the at-
tached end plate
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(𝑠𝑝𝑇1𝑝)′ −𝑇2𝑝 +𝑚𝑆𝑝 +𝜆𝑠𝑝𝑢𝑝 = 0, 𝑠𝑝𝑆
′
𝑝 +2𝑆𝑝 −𝑚𝑇2𝑝 +𝜆𝑣𝑝 = 0,

𝑠𝑝𝑇1𝑝 = 𝑠𝑝𝑢′𝑝 + 𝜈(𝑚𝑣𝑝 +𝑢𝑝), 𝑠𝑝𝑇2𝑝 = 𝑢𝑝 +𝑚𝑣𝑝 + 𝜈𝑠𝑝𝑢′𝑝 ,
2𝑠𝑝𝑆𝑝 = (1− 𝜈) (𝑠𝑝𝑣′𝑝 −𝑚𝑢𝑝 − 𝑣𝑝),

(5.3)

where 𝑢𝑝 and 𝑣𝑝 are the tangential components of the displacement, 𝑇1𝑝 , 𝑇2𝑝 , 𝑆𝑝
are the dimensionless stress-resultants.

If the shell and plate made of the same material, then the following 8 continuity
conditions at the circumference 𝑠 = 𝑙, 𝑠𝑝 = 1 are to be satisfied

𝑤 = 𝑢𝑝 , 𝑢 = −𝑤𝑝 , 𝑣 = 𝑣𝑝 , 𝜗1 = 𝜗1𝑝 ,
ℎ𝑠𝑄1 = −ℎ𝑝𝑇1𝑝 , ℎ𝑠𝑇1 = ℎ𝑝𝑄1𝑝 , ℎ𝑠𝑆 = −ℎ𝑝𝑆𝑝 , ℎ𝑠𝑀1 = −ℎ𝑝𝑀1𝑝 .

(5.4)

At the shell edge 𝑠 = 0 four homogeneous boundary conditions should be introduced.
As an example, we consider a shell with the clamped edge, i.e.

𝑢 = 𝑤 = 𝑣 = 𝜗1 = 0 for 𝑠 = 0. (5.5)

If for 𝜆 = 𝜆𝑘 Eqs. (5.1)-(5.3) have a nontrivial solution satisfying boundary con-
ditions (5.4)-(5.5) then 𝜆𝑘 is an eigenvalue of the boundary eigenvalue problem
(5.1)-(5.5). The minimal positive eigenvalue 𝜆1 corresponds to the fundamental fre-
quency 𝑓1.

5.4 Asymptotic Solution for the Plate-like Vibrations

Let us assume that 𝜇𝑝 ∼ 𝜇, 𝜆 ∼ 𝜇4 and seek the approximate solution of system (5.1)
as a sum of the membrane solutions and the edge effect functions:

𝑦 = 𝜇𝐼0 (𝑦) 𝑦0 + 𝜇𝐼1 (𝑦)+1𝑦1 + 𝜇𝐼1 (𝑦) 𝑦2, (5.6)

Here 𝑦 denotes any unknown function, 𝐼 (𝑦) and 𝐼1 (𝑦) are the intensity indices. The
appropriate choice of the intensity indices permits to satisfy the boundary conditions
in the first and subsequent approximations, and assures the existence of nontrivial
solutions of the corresponding eigenvalue problems. Usually, the evaluation of the
intensity indices is based on one of the exhaustive search methods and/or intuitive
reasons.

Functions 𝑢0, 𝑣0, 𝑇10 and 𝑆0 satisfy plane stress equations derived from Eqs. (5.1)
assuming 𝜇 = 0 and neglecting the small terms 𝜆𝑢, 𝜆𝑣 and 𝜆𝑤:

𝑇 ′
10 +𝑚𝑆0 = 0, 𝑆′0 = 0, 2𝑆0 = (1− 𝜈) (𝑣′0 −𝑚𝑢0), 𝑇10 = 𝜎𝑢

′
0. (5.7)

The edge effect functions 𝑦1 and 𝑦2 have the form

𝑦1 =
2∑︁
𝑗=1
𝐷 𝑗 �̂� 𝑗 exp(𝑟 𝑗 𝑠/𝜇), 𝑦2 =

4∑︁
𝑗=3
𝐷 𝑗 �̂� 𝑗 exp[𝑟 𝑗 (𝑠− 𝑙)/𝜇] . (5.8)
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Here 𝐷 𝑗 ∼ 1 are arbitrary constants,

𝑟1,2 = 𝑔(−1± 𝑖), 𝑟3,4 = 𝑔(1± 𝑖), 𝑔 = 𝜎1/4/
√

2, 𝑖2 = −1.

In particular, �̂� 𝑗 = 1, 𝑗 = 1,2,3,4. Functions 𝑦1 decreases rapidly as 𝑠 increases from
0 up to 𝑙 and function 𝑦2 decreases as 𝑠 decreases from 𝑙 to 0. Assuming 𝑙 ≫ 𝜇, it
follows that 𝑦1 (𝑙) ≪ 1 and 𝑦2 (0) ≪ 1. The intensity indices are given in Table 5.1.

We suppose that

𝑤𝑝 ∼ 𝜗1𝑝 ∼ 1, 𝑀1𝑝 ∼𝑄1𝑝 ∼ 𝜇4, 𝑢𝑝 ∼ 𝑣𝑝 ∼ 𝑇1𝑝 ∼ 𝑆𝑝 ∼ 𝜇3. (5.9)

Substituting solutions (5.6) and (5.9) into Eqs. (5.1)-(5.3), continuity conditions
(5.4) and boundary conditions (5.5) the eigenvalue problem (5.1)-(5.5) in the first
approximation may be split into five separated problems:

1. The eigenvalue problem for equations (5.2), describing the transverse bending
deformation of the plate with boundary conditions

𝑤𝑝 = 𝜗1𝑝 = 0, 𝑠𝑝 = 1. (5.10)

2. The linear algebraic equations

𝑤2 (𝑙) = 0, ℎ𝑠𝑀12 (𝑙) = −ℎ𝑝𝑀1𝑝 (1) (5.11)

for the unknown constants 𝐷3, 𝐷4. Solving these equations we obtain the edge
effect functions at the parallel 𝑠 = 𝑙.

3. Non-homogeneous boundary value problem for membrane shell equations (5.7)
with boundary conditions

𝑢0 (0) = 𝑣0 (0) = 0, 𝑇10 (𝑙) = 0, ℎ𝑠 [𝑆0 (𝑙) + 𝑆2 (𝑙)] = −ℎ𝑝𝑆𝑝 (1). (5.12)

4. The linear algebraic equations

𝑤1 (0) = −𝑤0 (0), 𝜗11 (0) = 0. (5.13)

for the unknown constants 𝐷1 and 𝐷2.
5. Non-homogeneous boundary value problem for plate equations (5.3) with bound-

ary conditions
𝑣𝑝 (1) = 𝑣0 (𝑙), ℎ𝑝𝑇1𝑝 (1) = −ℎ𝑠𝑄12 (𝑙).

Table 5.1 Intensity indices for the vibration mode of the first (plate-like) type

Functions

Indices 𝑢 𝑣 𝑤 𝜗 𝑇1 𝑆 𝑀1 𝑄1

𝐼0 3 3 3 3 3 3 7 7

𝐼1 3 4 2 1 4 3 4 3
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Thus, the approximate solution of the eigenvalue problem (5.1)-(5.5) is reduced to
the solution of five more simple problems.

First, one has to solve eigenvalue problem 1 for the plate bending deformation.
Then, solution of Eqs. (5.11) is used to find edge effect functions at the parallel
𝑠 = 𝑠𝑘 . Further, one can obtain solution of plane stress problem 3, using boundary
conditions (5.12) and find the edge effect integrals at parallels 𝑠 = 0 and 𝑠 = 𝑙 with
the help of Eqs. (5.13). Finally, boundary value problem 5, describing tangential
displacements of the plate, may be solved.

We consider only problem 1, since solving it one finds frequency parameter 𝜆 and
the main term of the vibration mode. Displacements of the cylindrical shell and the
tangential displacement of the plate are very small compared to the plate deflection
(see relation (5.9) and Table 5.1).

To obtain the improved first approximation solution, problem 1 may be refined by
replacing boundary condition (5.10) with more accurate condition. From relations

𝑤2 (𝑙) = 0, 𝜗1𝑝 (1) = 𝜗12 (𝑙), ℎ𝑠𝑀12 (𝑙) = −ℎ𝑝𝑀1𝑝 (1)

we find

𝐷3 +𝐷4 = 0, 𝜗1𝑝 (1) = −𝜇(𝑟3𝐷3 + 𝑟4𝐷4), ℎ𝑝𝑀1𝑝 (1) = 𝜇4ℎ(𝑟2
3𝐷3 + 𝑟2

4𝐷4).
(5.14)

It follows from (5.14) that

𝑀1𝑝 (1) = −
√

2𝑔𝜇3 ℎ𝑠
ℎ𝑝
𝜗1𝑝 (1).

The refined value of frequency parameter 𝜆 is obtained using the following condition

𝑤𝑝 (1) = 0, 𝑀1𝑝 (1) = −
√

2𝑔𝜇3 ℎ𝑠
ℎ𝑝
𝜗1𝑝 (1) (5.15)

instead of the boundary condition (5.10).
Equations (5.2) describing free transverse vibrations of a circular plate are re-

duced to the following equation

Δ2𝑤− 𝛽4𝑤 = 0, 𝛽4 =
𝜆

𝜇4
𝑝

, (5.16)

where

Δ =
1
𝑠𝑝

𝑑

𝑑𝑠𝑝

(
𝑠𝑝

𝑑

𝑑𝑠𝑝

)
− 𝑚

2

𝑠2𝑝
.

The exact solution of Eq. (5.16) has the form

𝑤 = 𝐶1𝐽𝑚 (𝛽𝑠𝑝) +𝐶2𝐼𝑚 (𝛽𝑠𝑝), (5.17)

where 𝐶1 and 𝐶2 are the arbitrary constants, 𝐽𝑚 is the Bessel function and 𝐼𝑚 is the
modified Bessel function. The substitution of solution (5.17) into boundary condi-
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tions (5.15) provides a system of linear algebraic equations for the unknowns 𝐶1
and 𝐶2. The system has nontrivial solutions if its determinant vanishes:

𝐽𝑚 (𝛽)𝐼𝑚−1 (𝛽) − 𝐽𝑚−1 (𝛽)𝐼𝑚 (𝛽) − 2𝛽𝐽𝑚 (𝛽)𝐼𝑚 (𝛽)
1− 𝜈− 𝑘 = 0, (5.18)

where

𝑘 =

√
2𝜎1/4

𝜇𝛿3 , 𝛿 =
ℎ𝑝

ℎ𝑠
.

For the plate joined with the shell the roots 𝛽(𝑚,𝑛), 𝑚 = 0,1,2, . . ., 𝑛 = 1,2, . . . of
Eq. (5.18) are in the improved first approximation the plate vibration frequency
parameters. Vibrations are axisymmetric for 𝑚 = 0. The case 𝑘 = 0 corresponds to
vibrations of a plate with the simply supported edge. If 𝑘 →∞ then the roots of Eq.
(5.18) tend to the roots of equation

𝐽𝑚 (𝛽)𝐼𝑚−1 (𝛽) − 𝐽𝑚−1 (𝛽)𝐼𝑚 (𝛽) = 0, (5.19)

and the roots of Eq. (5.19) for the plate with the clamped edge are in the first ap-
proximation the plate vibration frequency parameters.

Consider the structure with the following parameters ℎ𝑝 = ℎ𝑠 = ℎ = 0.01, 𝜈 = 0.35.
The first roots of Eqs. (5.19) and (5.18) and values for frequency parameter obtained
by Finite Elements Analysis (FEA) for the plate joined with the cylindrical shell are
given in Table 5.2. The last column contains values of 𝛽 for a plate with the simply
supported edge. The dependence of angular frequency on the frequency parameter
is given by formula

𝜔2 = 𝛽4 ℎ2𝐸

12𝜎𝜌𝑅2 . (5.20)

Table 5.2 Lower plate vibrations frequency parameters 𝛽

𝑚 𝑛 Eq. (5.19) Eq. (5.18) FEA 𝑘 = 0

0 1 3.196 3.086 3.070 2.238

1 1 4.611 4.460 4.422 3.736

2 1 5.906 5.722 5.658 5.067

0 2 6.306 6.111 6.058 5.457

3 1 7.144 6.932 6.835 6.326

1 2 7.799 7.570 7.480 6.967

4 1 8.347 8.111 7.978 7.543

2 2 9.197 8.939 8.805 8.377

0 3 9.439 9.176 9.002 8.615
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5.5 Asymptotic Solution for the Shell-like Vibrations

The transverse flexural stiffness of the plate is essentially smaller than its tangential
(in plane) stiffness. Neglecting the flexural stiffness of the plate we obtain 𝑄1𝑝 =
𝑀1𝑝 = 0. Then from (5.4) two boundary conditions at the shell edge 𝑠 = 𝑙 are found
as:

𝑇1 = 0, 𝑀1 = 0 for 𝑠 = 𝑙. (5.21)

If the tangential stiffness of the plate in plane is infinitely large, then 𝑢𝑝 = 𝑣𝑝 = 0
and

𝑣 = 0, 𝑤 = 0 for 𝑠 = 𝑙. (5.22)

Conditions (5.21) and (5.22), corresponding to the simply supported shell edge, are
the simplest join conditions between a shell and a plate.

If the ratio 𝛿 = ℎ𝑝/ℎ𝑠 is large then the flexural stiffness of the plate cannot be
ignored and conditions (5.21) need to be revised. On the other hand, for small values
of 𝛿 it is unjustified to suppose that the tangential plate stiffness is very large and
use conditions (5.22). The comparison of frequencies obtained by asymptotic and
numerical methods shows, that in the case 𝛿 ∼ 1 the use of conditions (5.21) and
(5.22) in the asymptotic analysis provides good results.

For the low-frequency second (shell-like) type vibrations the vibration mode of
cylindrical shell stiffened by the circular plate is similar to the vibration mode of
the non-stiffened shell. In both cases the circumferential wave number 𝑚 is large.
We seek approximate solution of the eigenvalue problem (5.1)-(5.5) as a sum of the
semi-membrane solution and edge effect functions [6]:

𝑦 = 𝑚𝐼0 (𝑦) 𝑦0 +𝑚𝐼1 (𝑦) (𝑦1 + 𝑦2), 𝑘 = 1,2, . . . , 𝑛+1. (5.23)

Here 𝑦 denotes any unknown function, 𝐼 (𝑦) and 𝐼1 (𝑦) are the intensity indices. Table
5.3 lists values of the intensity indices for the problem under consideration

The function 𝑣0 satisfy the semi-membrane equation

d4𝑣0
d𝑠4

−𝛼4
𝑠𝑣0 = 0, (5.24)

where

𝛼4
𝑠 =

𝜆𝑚4 − 𝜇4𝑚8

𝜎
,

Table 5.3 Intensity indices for the vibration mode of the first (plate-like) type

Functions

Indices 𝑢 𝑣 𝑤 𝜗 𝑇1 𝑆 𝑀1 𝑄1

𝐼0 -2 -1 0 0 -2 -3 -6 -6

𝐼1 -4 -5 -2 0 -4 -3 -6 -4
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and

𝑤0 = −𝑣0, 𝑢0 =
d𝑣0
d𝑠
, 𝑇10 =

d2𝑣0
d𝑠2

, 𝑆0 = −𝜎 d3𝑣0
d𝑠3

. (5.25)

The edge effect functions have the form (5.8).
Boundary conditions for Eqs. (5.24) may be obtained by splitting boundary con-

ditions into main and additional conditions [12]. Neglecting the small terms in the
main conditions we obtain the boundary conditions for Eqs. (5.24).

At the edge 𝑠 = 0 the main conditions are

𝑣 = 𝑢 = 0.

The separation of the boundary conditions (5.21) and (5.22) gives the following
main conditions at the edge 𝑠 = 𝑙

𝑣 = 𝑇1 = 0.

Taking into account intensity indices and formulas (5.25) we obtain boundary
conditions for Eq. (5.24):

𝑣0 (0) = d𝑣0
d𝑠

(0) = 0, 𝑣0 (𝑙) = d2𝑣0
d𝑠2

(𝑙) = 0. (5.26)

The boundary value problem (5.24), (5.26) also describes the vibrations of a beam
with the clamped edge 𝑠 = 0 and the simply supported edge 𝑠 = 𝑙. The solution of
this problem is well known (see [11]). The eigenvalues for problem (5.24), (5.26)
are given by formula 𝛼𝑠𝑛 = 𝜅𝑛/𝑙, where 𝜅𝑛 are the roots of the equation

tan 𝜅 = tanh 𝜅. (5.27)

The minimal positive root of Eq. (5.27) is 𝜅1 = 3.927.
The frequency parameter

𝜆(𝑚,𝑛) = 𝜎𝜅4
𝑛

𝑚4𝑙4
+ 𝜇4𝑚4 (5.28)

attains its minimal value, corresponding to the fundamental frequency, if 𝑛 = 1 and
𝑚 is close to 𝑚0 where

𝑚4
0 =

√
𝜎𝜅2

1
𝜇2𝑙2

.

Consider the cylindrical shell with the length 𝑙 = 4 and thickness ℎ𝑠 = 0.01, which is
joined with the plate of same thickness ℎ𝑝 = ℎ𝑠 . In Table 5.4 the values of parameter

[ = (12𝜆)1/4/
√
ℎ (5.29)

are given for 𝜈 = 0.35. The third and fourth columns list the results of FEA obtained
for the shell-plate structure and for the shell with simply supported edge respec-
tively. The last column contains values of [ due to (5.28).
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Table 5.4 Frequency parameters for the shell-like vibrations.

𝑛 𝑚 FEA, constr. FEA, shell Eq. (5.28)

1 4 4.770 4.746 5.026

1 5 5.173 5.166 5.287

1 3 5.315 5.218 5.991

1 6 6.010 6.007 6.086

2 5 6.508 6.465 6.901

2 6 6.669 6.652 6.760

1 2 6.872 6.388 8.848

2 4 7.089 6.962 8.083

1 7 6.968 6.965 7.030

2 7 7.311 7.302 7.293

1 8 7.956 7.955 8.012

The attached plate makes the boundary condition more rigid, than the simply
supported edge. However, for large wave number 𝑚 the influence of a plate on shell
frequencies quickly decreases from 7.8% at 𝑚 = 2 up to fractions of a percent. For
fixed 𝑚 the plate influence slightly increases with 𝑛. The asymptotic formula gives
a good approximation for frequencies at 𝑚 ≥ 𝑚0.

5.6 Vibrations of the Third (Beam-like) Type

Among the lower eigenfrequencies of the shell, there may also be frequencies of
beam-like vibrations, at which the structure vibrates like a cantilever beam with a
load at the end (see Fig. 5.3). The equation of transverse vibrations of a beam with
one end clamped and loaded by a concentrated mass on the other end has the form

𝑤′′′′ (𝑠/𝑙) −𝛼4𝑤(𝑠/𝑙) = 0, 𝛼4 =
𝜌𝑆𝑙4𝑅4

𝐸𝐽
𝜔2, 0 ≤ 𝑠 ≤ 𝑙, (5.30)

and the boundary conditions are

𝑤(0) = 𝑤′ (0) = 0, 𝑤′′ (1) = 0, 𝐸𝐽𝑤′′′ (1)/𝑙3 = −𝑚𝜔2𝑤(1).

Here 𝐽 is the moment of inertia of the shell section about its diameter, 𝑚 = 𝜋𝑅2ℎ𝑝𝜌
is the plate mass, 𝑆 = 2𝜋𝑅ℎ𝑠 is the shell cross-sectional area. Substituting the solu-
tion of Eq. (5.30)

𝑤(𝑠/𝑙) = 𝐶1 sin(𝛼𝑠/𝑙) +𝐶2 cos(𝛼𝑠/𝑙) +𝐶3 sinh(𝛼𝑠/𝑙) +𝐶4 cosh(𝛼𝑠/𝑙)
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into the boundary conditions and equating the determinant of the homogeneous lin-
ear system to zero, we obtain an equation to find the parameter 𝛼

𝛾𝛼(cos(𝛼) sinh(𝛼) − cosh(𝛼) sin(𝛼)) + cosh(𝛼) cos(𝛼) +1 = 0, (5.31)

where 𝛾 = ℎ𝑝

2𝑙ℎ𝑠
Results of analytical and finite element analysis for different shell lengths are

given in Table 5.5. For shells of small relative length, Eq. (5.31) gives strongly
overestimated frequencies, but the accuracy of the analytical formula increases with
increasing shell length. Note that as the shell length increases, the beam frequency
rapidly decreases and at relative lengths shell over 8.4 (FEM) (8.7 (analytical)) it
becomes the lowest natural frequency of the structure.

5.7 Spectrum Optimization by Thickness Variation

The results obtained for the spectrum may be used in solving optimization problems.
The most common optimization problem for a spectrum is the maximization the
value of the lowest natural frequency of vibrations when changing parameters of the
system, either geometric or physical.

We confine ourselves to considering the effect of the wall thickness on natural
frequencies, provided that the mass of the structure is preserved. Since the lowest
eigenfrequencies of the structure are plate frequencies, we will try to increase the
thickness of the plate so that its lowest frequency would coincide with the lowest
shell frequency.

For the shell and the plate with thicknesses ℎ and ℎ𝑝 = 𝛿ℎ relatively, for angular
frequency 𝜔 formula similar to (5.20) is valid

𝜔2 = 𝛽4
𝛿

ℎ2𝐸

12𝜎𝜌𝑅2 , 𝛽4
𝛿 = (𝛽

√
𝛿)4. (5.32)

The second line of Table 5.6 shows the first root 𝛽 of Eq. (5.8), and the third line —
the value of 𝛽𝛿 . The fourth line contains 𝛽𝛿 values corresponding to the fundamen-

Table 5.5 Frequency parameter 𝛼 vs shell length 𝑙 for beam-like vibrations of a shell

𝑙 Analytical FEA Error

4 6.411 5.561 15.3%

8 3.357 3.203 4.8%

12 2.277 2.223 2.4%

16 1.723 1.701 1.3%

20 1.387 1.375 0.9%
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Table 5.6 Frequency parameter for the fundamental frequency vs. plate thickness.

𝛿 1.0 1.5 2 2.5 3 3.5 4

𝛽 3.086 2.906 2.715 2.565 2.461 2.393 2.348

𝛽𝛿 3.086 3.560 3.840 4.055 4.263 4.477 4.697

FEA 3.069 3.537 3.815 4.028 4.231 4.439 4.648

tal frequency found by means of FEA. The difference between the asymptotic and
numerical results is less than 1.1%.

The condition of conservation of mass of the structure allows us to determine
the shell thickness ℎ𝑠 , which decreases with increasing the plate thickness. Indeed,
from the condition of the preservation of the volume

2𝜋ℎ𝑙 + 𝜋ℎ = 2𝜋ℎ𝑠𝑙 + 𝜋ℎ𝛿

the shell thickness ℎ𝑠 = (1+ (1− 𝛿)/2/𝑙)ℎ = 𝛿𝑠ℎ is determined. For 𝛿 = 1, the plate
and shell thicknesses are equal ℎ𝑠 = ℎ𝑝 = ℎ.

Figure 5.5 on the left shows the 𝛿 dependences of the frequency parameter Ω for
the lowest plate frequency (at 𝑚 = 0), two lowest shell frequencies (at 𝑚 = 4 and
𝑚 = 5) and the first beam frequency for ℎ = 0.01. The frequency parameter Ω is
related to parameters 𝛼, 𝛽 and [ as follows:

Ω =



𝛽𝛿 for plate-like vibrations (see (5.32))
[ for shell-like vibrations (see (5.29))
𝛼/𝑙 (3𝜎(4/ℎ2

𝑠 +1)1/4 for beam-like vibrations (see (5.30))

For 𝛿 = 1, the plate frequency turns out to be lower. As 𝛿 increases, ℎ𝑠 decreases
and the plate mass increases, hence, both shell frequencies and beam frequencies de-
crease. As the length 𝐿 of the shell increases, the lowest beam frequency decreases
and for 𝐿 > 8 it becomes the lowest frequency of the structure.

When changing parameter 𝛿, the frequencies may become multiples. If plate-like
and shell-like frequencies collide, then the distortions of the corresponding vibration
modes are negligible. When the plate-like and beam-like frequencies are close the
vibration mode is a superposition of beam and plate modes, which prevents the
determination of the vibration type. The collision of the first beam and second plate
frequencies explains the nonmonotonicity of the green line in Fig. 5.5.

Table 5.7 shows the values of the optimal thicknesses of structural elements and
the corresponding frequency parameter found analytically and with the finite ele-
ment method.
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Fig. 5.5 Dependence of the frequency parameter for the lowest natural frequencies on the thickness
of the plate while maintaining the total mass of the structure. Plate frequency — red line, shell
frequencies for 𝑚 = 4 — dark blue line and for 𝑚 = 5 — light blue line, beam frequency — green
line. Analytical results on the top of figure, numerical (FEM) — on the bottom.
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Table 5.7 Optimal thicknesses of structural elements and the corresponding frequency parameter

Analytical FEA

Ω 4.50 4.43

ℎ𝑝 3.90 3.83

ℎ𝑠 0.64 0.65

5.8 Conclusions

Natural frequencies and vibration modes of the structure consisting of a circular
cylindrical thin shell joined with a circular thin plate were studied numerically using
FEM. The application of asymptotic methods to the analysis of the low-frequency
vibrations of the structure permits to obtain simple approximate formulas for natural
frequencies and vibration modes.

The comparison of numerical and asymptotic results shows that for the 9 first
plate-like frequencies the relative error of asymptotic formula is less than 2%. In
the case of shell-like vibrations for the lowest 6 frequencies the maximal difference
between numerical and asymptotic values does not exceed 11% and decreases with
the shell thickness. Analytical formula for beam-like vibrations of a shell with the
length 𝑙 = 4 has approximately the same accuracy that increases with the shell length.
Hence, before starting the design approximate formulas may be used to estimate
optimal parameters of the structure.
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Chapter 6
Indentation of an Absolutely Rigid Thin
Inclusion into One of the Crack Faces in an
Elastic Plane Under Slippage at the Ends

Vahram N. Hakobyan, Harutyun A. Amirjanyan, Lilit L. Dashtoyan, and Avetik V.
Sahakyan

Abstract The article considers the stress state of an elastic plane with a crack of
finite length, when an absolutely rigid thin inclusion of the same length is pressed
into one of edges, under the action of a concentrated force. For the contacting side of
the inclusion, it is assumed that in its middle part, there is adhesion to the matrix, and
slippage occurs along the edges, which is described by the law of dry friction. The
problem is mathematically formulated as a system of singular integral equations, the
behavior of the unknown functions in the vicinity of the ends of the inclusion-crack
and at the separation points of the adhesion and slip zones is studied. The governing
system of integral equations is solved by the method of mechanical quadratures. The
laws of distribution of contact stresses, as well as the lengths of the adhesion and
slip zones, depending on the coefficient of friction, Poisson’s ratio of the half-plane
material, and the angle of inclination of the external force, are found.

Key words: Elasticity, Mixed boundary value problem, Thin inclusion, Crack,
Contact model, Adhesion and slip zones, Quadrature rules

6.1 Introduction

The study of the stress-strain state in the vicinity of the ends of stress concentrators
of various types and the development of methods for reducing the level of their
harmful effect on the performance and reliability of structures and their parts has
always been and remains one of the most important areas of contact and mixed
problems of the theory of elasticity and fracture mechanics. A lot of work has been
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fulfilled in this direction, among which we note the well-known monographs [1,
2, 3, 4, 5], which contain quite a lot of fundamental results. We also point to the
monograph [6] and works [7, 8], where exact solutions were obtained for a number
of problems for a composite plane and space with interfacial cracks on one of the
faces of which an absolutely rigid stamp is pressed under various contact conditions.
In [9, 10], closed solutions were obtained for a number of contact problems for an
elastic homogeneous and orthotropic plane with finite cracks, on one or both sides
of which absolutely rigid stamps act simultaneously, the base length of which is less
than the length of the crack. In these works, it was assumed that either the stamp is
fully coupled with the crack edge, or there is a smooth contact between them.

It is known that in 1945, L.A. Galin proposed a model of contact between a stamp
and an elastic half-plane, which assumed adhesion in the middle part of the contact
zone and slippage, according to the Coulomb dry friction law, along its edges [1, 11].
Using a conformal mapping, L.A. Galin constructed an approximate solution in a
closed form. Many researchers were interested in this model. The solution of the
Galin problem with the use of the Fuchs-class equation [12], as well as its reduc-
tion to the vector Riemann problem [13], is known. In [14], using the Wiener-Hopf
method, the solution of this problem is reduced to an infinite system of algebraic
equations. The work [15] is devoted to solving the Galin problem by the method
of discrete singularities (method of mechanical quadratures), the numerical results
obtained in [14] and [15] coincide.

This paper, within the framework of the model of the Galin problem, consid-
ers the stress state of an elastic homogeneous plane with a crack of finite length,
into one of the edges of which an absolutely rigid thin stamp of the same length
is pressed into. The same problem in a symmetrical formulation was presented at
the conference and published in [16]. However, there are only descriptions of the
governing equations and no solution.

6.2 Statement of the Problem and Derivation of the Governing
System of Integral Equation

Let a homogeneous elastic plane related to the Cartesian coordinate system 𝑥𝑦, on
the interval (−𝑎, 𝑎) of the abscissa axis contains an absolutely rigid thin inclusion,
which is not previously coupled to the matrix, and is deformed under the action of
a concentrated force 𝑃0 applied to the midpoint of the upper face. It is assumed
that the contact of the inclusion with the matrix is described by the model of the
contact problem by Galin [1], i.e. it is considered that on a certain interval (𝑏, 𝑐) of
the middle part of the lower side of the inclusion there is adhesion with the matrix,
and on the end intervals (−𝑎, 𝑏, ) and (𝑐, 𝑎) slippage occurs, obeying the law of dry
friction (Fig. 6.1). The problem is to determine the dimensions of the adhesion and
sliding zones, the contact stresses under the inclusion, and the concentration factors
of destructive stresses at the endpoints of the stress concentrator of the mixed type
inclusion-crack.
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Fig. 6.1 A rigid thin inclusion
inside a crack

Dividing the plane along the𝑂𝑥 axis into two half-planes and providing the stress
and displacement components related to the points of the upper and lower half-
planes with superscripts (1) and (2), respectively, at the intervals (−𝑎, 𝑎) of each
half-plane the following conditions have occurred:{

𝜎 (1)
𝑦 (𝑥,0) = 0

𝜏 (1)𝑥𝑦 (𝑥,0) = 0
(−𝑎 < 𝑥 < 𝑎) (6.1)

{
𝑢′2 (𝑥,0) = 0 (𝑏 < 𝑥 < 𝑐)
𝑣′2 (𝑥,0) = 0 (−𝑎 < 𝑥 < 𝑎) (6.2)

𝜏 (2)𝑥𝑦 (𝑥,0) = − 𝑓 sgn (𝑥)𝜎 (2)
𝑦 (𝑥,0) 𝑥 ∈ (−𝑎, 𝑏)

⋃
(𝑐, 𝑎) . (6.3)

Here, 𝑢 𝑗 (𝑥, 𝑦) and 𝑣 𝑗 (𝑥, 𝑦) ( 𝑗 = 1,2) are the components of displacement, which
satisfy the Lamé equations in the half-planes 𝑦 ≥ 0 and 𝑦 ≤ 0, and 𝑓 is the friction
coefficient.

Using discontinuous solutions for an elastic plane with a cut [6], which allow us
to express all components of the displacement vector and the stress tensor in terms of
stress and displacement jumps on the interval (−𝑎, 𝑎), we write out the expressions
necessary to satisfy (6.1) and (6.2),

𝜎 (1)
𝑦 (𝑥,0) = 1

2



𝜎 (𝑥) + \

𝜋

𝑎∫
−𝑎

𝜏 (𝑠) d𝑠
𝑠− 𝑥 + 𝜆

𝜋

𝑎∫
−𝑎

𝑉 ′ (𝑠) d𝑠
𝑠− 𝑥



,

𝜏 (1)𝑥𝑦 (𝑥,0) =
1
2



𝜏 (𝑥) − \

𝜋

𝑎∫
−𝑎

𝜎 (𝑠) d𝑠
𝑠− 𝑥 + 𝜆

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠) d𝑠
𝑠− 𝑥



,
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𝑢′2 (𝑥,0) = −1
2



𝑈′ (𝑥) + 1

2𝜋\0

𝑎∫
−𝑎

𝜏(𝑠)
𝑠− 𝑥 d𝑠− \

𝜋

𝑎∫
−𝑎

𝑉 ′ (𝑠)
𝑠− 𝑥 d𝑠



,

𝑣′2 (𝑥,0) = −1
2



𝑉 ′ (𝑥) + 1

2𝜋\0

𝑎∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+ \

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠)
𝑠− 𝑥 d𝑠



.

The following notations are introduced here:

𝜎 (𝑥) = 𝜎 (1)
𝑦 (𝑥,0) −𝜎 (2)

𝑦 (𝑥,0) , 𝜏 (𝑥) = 𝜏 (1)𝑥𝑦 (𝑥,0) − 𝜏 (2)𝑥𝑦 (𝑥,0) ,
𝑈′ (𝑥) = 𝑢′1 (𝑥,0) −𝑢′2 (𝑥,0) , 𝑉 ′ (𝑥) = 𝑣′1 (𝑥,0) − 𝑣′2 (𝑥,0) ,

(6.4)

\ =
1−2𝜈

2 (1− 𝜈) , \0 =
2 (1− 𝜈)
3−4𝜈

𝜇, 𝜆 =
𝜇

1− 𝜈 ,

𝜇 is the shear modulus, and 𝜈 is the Poisson’s ratio of the plane material.
Satisfying the conditions of the boundary problem (6.1)-(6.2), taking into ac-

count condition (6.3), we come to the following system of singular integral equa-
tions:

𝜎(𝑥) + \
𝜋


𝑓

𝑏∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+

𝑐∫
𝑏

𝜏(𝑠)
𝑠− 𝑥 d𝑠− 𝑓

𝑎∫
𝑐

𝜎(𝑠)
𝑠− 𝑥 d𝑠


+ 𝜆
𝜋

𝑎∫
−𝑎

𝑉 ′ (𝑠)
𝑠− 𝑥 d𝑠 = 0;

( |𝑥 | < 𝑎),

𝑓 𝜎(𝑥) − \
𝜋

𝑎∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+ 𝜆

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠)
𝑠− 𝑥 d𝑠 = 0; (−𝑎 < 𝑥 < 𝑏),

𝜏(𝑥) − \
𝜋

𝑎∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+ 𝜆

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠)
𝑠− 𝑥 d𝑠 = 0; (𝑏 < 𝑥 < 𝑐),

− 𝑓 𝜎(𝑥) − \
𝜋

𝑎∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+ 𝜆

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠)
𝑠− 𝑥 d𝑠 = 0; (𝑐 < 𝑥 < 𝑎),

𝑈′ (𝑥) + 1
2𝜋\0


𝑓

𝑏∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+

𝑐∫
𝑏

𝜏(𝑠)
𝑠− 𝑥 d𝑠− 𝑓

𝑎∫
𝑐

𝜎(𝑠)
𝑠− 𝑥 d𝑠


− \
𝜋

𝑎∫
−𝑎

𝑉 ′ (𝑠)
𝑠− 𝑥 d𝑠 = 0;

(𝑏 < 𝑥 < 𝑐),

𝑉 ′ (𝑥) + 1
2𝜋\0

𝑎∫
−𝑎

𝜎(𝑠)
𝑠− 𝑥 d𝑠+ \

𝜋

𝑎∫
−𝑎

𝑈′ (𝑠)
𝑠− 𝑥 d𝑠 = 0; ( |𝑥 | < 𝑎).

(6.5)
The obtained system should be considered under the conditions of closing of the
ends of the crack and equilibrium of the stamp, which in the notation (6.4) have the
form:
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𝑎∫
−𝑎

𝑉 ′ (𝑠)d𝑠 = 0;
𝑎∫

−𝑎
𝑈′ (𝑠)d𝑠 = 0;

𝑎∫
−𝑎

𝜎(𝑠)d𝑠 = 𝑃 cos𝛼 ;
𝑎∫

−𝑎
𝜏(𝑠)d𝑠 = 𝑃 sin𝛼 .

(6.6)
The presence in the resulting system (6.5) of equations with different definition
domains enforces us on each of the intervals (−𝑎, 𝑏), (𝑏, 𝑐), and (𝑐, 𝑎) consider the
unknown functions as independent unknowns, thereby tripling their number.

However, due to conditions (6.3), the number of unknown functions is reduced
to ten. Dividing the domains of definition of the first and last equations of system
(6.5) into three subdomains and considering them as separate equations, we bring
the number of equations of system (6.5) to ten. As a result, we obtain a system of
ten singular integral equations with respect to the functions

{𝜑1, 𝜑2, 𝜑3} (𝑜𝑙,𝑖,𝑜𝑟 ) = {𝑈′,𝑉 ′,𝜎} ; 𝜑 (𝑖)
4 = 𝜏, (6.7)

defined on the intervals (−𝑎, 𝑏), (𝑏, 𝑐) and (𝑐, 𝑎) and, in accordance with the interval
of definition, marked with superscripts 𝑜𝑙 (outer-left), 𝑖 (internal) and 𝑜𝑟 (outer-
right) . Four of the equations will be defined on the interval (𝑏, 𝑐) and three each on
the outer intervals (−𝑎, 𝑏) and (𝑐, 𝑎).

Dividing the stress components by the shear modulus and reducing each of the
intervals for determining the equations to the interval (-1,1), we pass to dimension-
less quantities, while retaining their designations. As a result, we obtain a system of
ten singular integral equations having a form similar to the following:

𝜑𝑜𝑙3 ([) + \
𝜋


𝑓

1∫
−1

𝜑𝑜𝑙3 (𝜉)
𝜉 −[ d𝜉 +

1∫
−1

𝜑𝑖4 (𝜉)
𝜉 − 𝑧0 d𝜉 − 𝑓

1∫
−1

𝜑𝑜𝑟3 (𝜉)
𝜉 − 𝑧1 d𝜉


+ 1

2𝜋 (1− 𝜈)


1∫

−1

𝜑𝑜𝑙2 (𝜉)
𝜉 −[ d𝜉 +

1∫
−1

𝜑𝑖2 (𝜉)
𝜉 − 𝑧0 d𝜉 +

1∫
−1

𝜑𝑜𝑟2 (𝜉)
𝜉 − 𝑧1 d𝜉


= 0,

(−1 < [ < 1)

(6.8)

where
𝑏∗ =

𝑏

𝑎
< 1 , 𝑐∗ =

𝑐

𝑎
< 1,

𝑧0 =
𝑏∗ +1
𝑐∗− 𝑏∗ [−

1+ 𝑐∗
𝑐∗− 𝑏∗ ,

𝑧1 =
𝑏∗ +1
1− 𝑐∗ [−

2+ 𝑐∗− 𝑏∗
1− 𝑐∗ .

The solution to the obtained system we will seek in the class of functions that have
power-law behavior in the vicinity of the ends of the integration interval. Using the
well-known results of N. Muskhelishvili on the behavior of the Cauchy-type integral
at the ends of the integration line [17], we investigate the behavior of equations in
the vicinity of the points ±1. In a result we obtain the equations to determine the
singularity exponents. The corresponding equations for external intervals don’t have
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a unique solution and the singularity exponents will have three various values. Based
on this, we represent the functions 𝜑 (𝑜𝑙)

𝑖 , 𝜑 (𝑜𝑟 )
𝑖 (𝑖 = 1,2,3) as linear combinations of

new six unknowns 𝜓 (𝑜𝑙)
𝑖 , 𝜓 (𝑜𝑟 )

𝑖 (𝑖 = 1,2,3), whose behavior at the ends is uniquely
determined:

𝜑 (𝑜𝑙)
1 (𝑠) = 𝜓 (𝑜𝑙)

1 (𝑠) + − 𝑓
√︁

1− 𝑓 2\2 + (1+ 𝑓 2)\
2(1− \) 𝜓 (𝑜𝑙)

2 (𝑠)

+ 𝑓
√︁

1− 𝑓 2\2 + (
1+ 𝑓 2) \

2 (1− \) 𝜓 (𝑜𝑙)
3 (𝑠),

𝜑 (𝑜𝑙)
2 (𝑠) = −

√︁
1− 𝑓 2\2

2 (1− \) 𝜓
(𝑜𝑙)
2 (𝑠) +

√︁
1− 𝑓 2\2

2 (1− \) 𝜓
(𝑜𝑙)
3 (𝑠) ,

𝜑 (𝑜𝑙)
3 (𝑠) = 𝜓 (𝑜𝑙)

2 (𝑠) +𝜓 (𝑜𝑙)
3 (𝑠) ,

𝜑 (𝑜𝑟 )
1 (𝑠) = 𝜓 (𝑜𝑟 )

1 (𝑠) + 𝑓
√︁

1− 𝑓 2\2 + (
1+ 𝑓 2) \

2 (1− \) 𝜓 (𝑜𝑟 )
2 (𝑠)

+ − 𝑓
√︁

1− 𝑓 2\2 + (
1+ 𝑓 2) \

2 (1− \) 𝜓 (𝑜𝑟 )
3 (𝑠) ,

𝜑 (𝑜𝑟 )
2 (𝑠) = −

√︁
1− 𝑓 2\2

2 (1− \) 𝜓
(𝑜𝑟 )
2 (𝑠) +

√︁
1− 𝑓 2\2

2 (1− \) 𝜓
(𝑜𝑟 )
3 (𝑠) ,

𝜑 (𝑜𝑟 )
3 (𝑠) = 𝜓 (𝑜𝑟 )

2 (𝑠) +𝜓 (𝑜𝑟 )
3 (𝑠) .

Taking into account that all unknown functions at the points of separation of the
adhesion and slip zones take finite values, we consider them as unknown constants,
and the solution of the governing system should be looking for in the following
form:
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𝜑 (𝑖)
𝑗 (𝑠) =

1− 𝑠
2
𝐶 𝑗1 + 1+ 𝑠

2
𝐶 𝑗2 +𝜑 (𝑖)

𝑗∗ (𝑠)
(
1− 𝑠2

)
( 𝑗 = 1,2,3) ,

𝜑 (𝑖)
4 (𝑠) =

1− 𝑠
2

𝑓 𝐶31 + 1+ 𝑠
2

𝑓 𝐶32 +𝜑 (𝑖)
4∗ (𝑠)

(
1− 𝑠2

)0.5−𝛾1
,

𝜓 (𝑜𝑙)
1 (𝑠) = 20.5 (1+ 𝑠)−0.5

(
𝐶11 − 𝑓 𝐶21 −

\
(
1+ 𝑓 2)

2 (1− \) 𝐶31

)

+ 𝜓 (𝑜𝑙)
1∗ (𝑠) (1− 𝑠)0.5−𝛾1 (1+ 𝑠)−0.5,

𝜓 (𝑜𝑙)
2 (𝑠) = 20.5−𝛾2 (1+ 𝑠)−0.5+𝛾2

(
1
2
𝐶31 − (1− \)√︁

1+ 𝑓 2\2
𝐶21

)

+ 𝜓 (𝑜𝑙)
2∗ (𝑠) (1− 𝑠)0.5−𝛾1 (1+ 𝑠)−0.5+𝛾2 ,

𝜓 (𝑜𝑙)
3 (𝑠) = 20.5−𝛾3 (1+ 𝑠)−0.5+𝛾3

(
1
2
𝐶31 + (1− \)√︁

1+ 𝑓 2\2
𝐶21

)

+ 𝜓 (𝑜𝑙)
3∗ (𝑠) (1− 𝑠)0.5−𝛾1 (1+ 𝑠)−0.5+𝛾3 ,

(6.9)

𝜓 (𝑜𝑟 )
1 (𝑠) = 20.5 (1− 𝑠)−0.5

(
𝐶12 + 𝑓 𝐶22 −

\
(
1+ 𝑓 2)

2 (1− \) 𝐶32

)

+ 𝜓 (𝑜𝑟 )
1∗ (𝑠) (1− 𝑠)−0.5 (1+ 𝑠)0.5−𝛾1 ,

𝜓 (𝑜𝑟 )
2 (𝑠) = 20.5+𝛾3 (1− 𝑠)−0.5−𝛾3

(
1
2
𝐶32 − (1− \)√︁

1+ 𝑓 2\2
𝐶22

)

+ 𝜓 (𝑜𝑟 )
2∗ (𝑠) (1− 𝑠)−0.5−𝛾3 (1+ 𝑠)−0.5+𝛾3 ,

𝜓 (𝑜𝑟 )
3 (𝑠) = 20.5−𝛾2 (1− 𝑠)−0.5+𝛾2

(
1
2
𝐶32 + (1− \)√︁

1+ 𝑓 2\2
𝐶22

)

+ 𝜓 (𝑜𝑟 )
3∗ (𝑠) (1− 𝑠)−0.5+𝛾2 (1+ 𝑠)0.5−𝛾2

where
𝛾1 = arctan 𝑓 \ ,

𝛾2 = arctan
(
𝑓 \ +

√︁
1+ 𝑓 2\2

)
,

𝛾3 = arctan
(
𝑓 \ −

√︁
1+ 𝑓 2\2

)
.

(6.10)

Here, 𝐶𝑖 𝑗 (𝑖 = 1,2,3; 𝑗 = 1,2) are the unknown constants representing the values
of the function 𝜑 (𝑖)

𝑗 ( 𝑗 = 1,2,3) at the ends of the domain, and the functions with
asterisks satisfy the Hölder condition on the segment [−1,1] and take finite (non-
zero) values at the ends ±1.

Thus, the solution of the stated problem is reduced to a system of ten singular
integral equations for ten functions with asterisks with appropriate weight functions
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and six constants. The presence of determined and different weight functions im-
plies the use of the mechanical quadrature method [18] with different nodes and a
different number of collocation points, depending on whether the weight function
under the singular integral tends to infinity at both ends, at one end, or at none.
As a result, the solution of the problem is reduced to a system of linear algebraic
equations. Obviously, it is not expedient to write down here the system of linear
algebraic equations, to which the system (6.8) of ten singular integral equations and
four integral conditions (6.6) is reduced. It should also be noted that in the case un-
der consideration, the expression for normal stresses contains two terms tending to
infinity and, therefore, there is no stress intensity factor in the traditional sense.

6.3 Numerical Analysis

Having obtained representation (6.9), where all the unknown functions act with their
weight functions, the solution of the resolving system can be constructed by the
method of mechanical quadrature [18]. With the order of approximation 𝑛 from
representations (19), we will have 10𝑛+ 6 unknowns: 10𝑛 values of functions with
asterisks at the corresponding nodal points and six constants. According to (19), six
weight functions corresponding to the slip zones turn to infinity at one of the ends,
and four functions corresponding to the adhesion zone turn to zero at both ends.
Therefore, choosing 𝑛 collocation points for six equations, and 𝑛 + 1 collocation
points for four, we obtain 10𝑛+4 equations. To close the resulting system of linear
algebraic equations, two of the discretized conditions (6.6) should be added to it.
Moreover, one of them should be the third condition, because only it can ensure
the heterogeneity of the resulting system of linear equations and the possibility of
obtaining a solution. The other two conditions (6.6) are necessary to determine the
coordinates of the interface points of the adhesion and slip zones 𝑏∗ and 𝑐∗, which
are non-linearly included in the matrix of singular integral algebraic equations.

An analysis of the results obtained for different approximation orders showed
that 𝑛 = 5 for the functions 𝜓 (𝑜𝑙)

𝑘∗ and 𝜓 (𝑜𝑟 )
𝑘∗ (𝑘 = 1,2,3), and 𝑛 = 10 for the functions

𝜑 (𝑖)
𝑘∗ (𝑘 = 1,2,3,4), an accuracy of order 10−3 is obtained. Such an accuracy is quite

sufficient for the graphical presentation of the results, therefore, further calculations
were carried out at these values of the approximation orders. Figures 6.2 and 6.3
shows typical curves representing the distribution of normal and tangential contact
stresses related to the shear modulus. These curves are qualitatively repeated for
various values of the variable parameters of the problem: the friction coefficient,
Poisson’s ratio, and the angle of inclination of the applied force.

If the curves of the distribution of contact stresses at different values of the pa-
rameters of the problem are not very informative in themselves, then the dependence
of the values 𝑏∗ and 𝑐∗ on the indicated parameters can also tell a lot about the distri-
bution of contact stresses. Figure 6.4 shows the dependence curves of 𝑏∗ and 𝑐∗ on
the friction coefficient for two values of Poisson’s ratio. The solid lines correspond
to the value 𝜈 = 0.1, and the dotted lines correspond to the value 𝜈 = 0.2. As we can



6 Indentation of an Absolutely Rigid Thin Inclusion into One of the Edge of a Crack 95

Fig. 6.2 Distribution
of dimensionless nor-
mal contact stresses
(𝛼 = 0.01, 𝜈 = 0.2, 𝑓 = 0.1)

Fig. 6.3 Distribution
of dimensionless tan-
gential contact stresses
(𝛼 = 0.01, 𝜈 = 0.2, 𝑓 = 0.1)

Fig. 6.4 Dependence of 𝑏∗

and 𝑐∗ on the coefficient of
friction 𝑓 .

see from the graphs in Fig. 6.4, at very low values of the friction coefficient, there
is no adhesion zone. The adhesion zone appears at a certain, “critical” value of the
friction coefficient, and it is the larger, the greater this coefficient. In addition, the
location of pairs of curves corresponding to different values of the Poisson’s ratio
indicates that a larger value of the Poisson’s ratio corresponds to a smaller ”criti-
cal” value of the friction coefficient. A study of the last dependence showed that for
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possible, but different from the extreme, values of the Poisson’s ratio, the “critical”
value changes approximately in the interval (0.2,0.5).

Figure 6.5 shows the dependence curves of 𝑏∗ and 𝑐∗ on Poisson’s ratio 𝜈 for
𝛼 = 0.02 and 𝑓 = 0.01. According to Fig. 6.5, for materials with a large Poisson’s
ratio, the adhesion zone is larger.

The dependence of these quantities on the angle of inclination 𝛼 of the applied
force 𝑃 is also interesting. Figure 6.6 shows the curves of these dependencies for
𝜈 = 0.2 and 𝑓 = 0.1. Obviously, for 𝛼 = 0, i.e. under normal external force, the
adhesion zone is symmetrical. The same can be seen in Fig. 6.6: when 𝛼 = 0 we
have 𝑏∗ = −𝑐∗ = −0.528. The gradual deviation of the force to the right leads to a
displacement of the adhesion zone to the right and to a fairly rapid decrease in its
length.

6.4 Conclusion

A system of governing equations is derived for a rather complex contact problem
on the indentation of a thin rigid inclusion of finite length into a crack edge of the
same length located in an elastic plane. The problem is considered in the frame-

Fig. 6.5 Dependence of 𝑏∗

and 𝑐∗ on Poisson’s ratio 𝜈.

Fig. 6.6 Dependence 𝑏∗ and
𝑐∗ on the angle of inclination
𝛼.
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work of the Galin’s contact problem, i.e. in the presence of zones of adhesion and
slippage. The governing system of equations consists of ten singular integral equa-
tions under four additional conditions. The features of the behavior of the unknown
functions at the ends of the integration interval are revealed. Based on the mechan-
ical quadrature method, a calculation program has been developed in the Wolfram
Mathematica package environment, which allows you to find both the laws of distri-
bution of contact stresses and construct the form of crack opening over an inclusion.
With the help of this program, a detailed numerical analysis of the dependence of
the coordinates of the ends of the adhesion zone on all parameters of the problem
was carried out.
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Chapter 7
Biomechanics as a Basis for Clinical Decision
Support Systems in the Surgery of the
Spine-pelvic Complex

Dmitriy V. Ivanov, Irina V. Kirillova, and Leonid Yu. Kossovich

Abstract The scientific problem considered in this paper consists in the develop-
ment, testing and introduction into clinical practice of biomechanical methods for
preoperative evaluation of treatment options and diagnosis of pathologies of the
vertebral-pelvic complex. The objectives of the study were to develop a technique
for noninvasive determination of mineral density and Young’s modulus of spongy
bone tissue according to computer tomography, to develop quantitative criteria for
evaluating the success of surgical treatment, to develop generalizing formulas for
calculating the theoretical values of the parameters of sagittal balance, as well as
to carry out a pilot implementation of biomechanical modeling in the process of
preoperative planning.

Key words: Preoperative planning, Biomechanical modeling, Clinical decision
support systems, Equivalent stress, Stress-strain state, Criteria for the success of
surgical treatment, Finite-element method, Vertebral-pelvic complex

7.1 Introduction

In the structure of the Russia population general morbidity, cardiovascular and
musculoskeletal system diseases have not changed their positions for more than
15 years: 13.3-15.2% and 7.5-8.2%, respectively. Despite the fact that in the last
decade, according to Rosstat (Federal State Statistic Service), the level of injuries
has been steadily decreasing, it remains one of the leading causes of disability and
mortality of the population. Degenerative-dystrophic diseases of the musculoskele-
tal system also often lead to a serious deterioration in the quality of life and disability
of the population. Especially noteworthy is such a combined pathology as coxover-
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tebral syndrome, which consists in the presence of pathology in the patient both in
the lumbosacral segment of the spine and in the hip joint. The danger of this disease
is not only in its high incidence (up to 95% of patients with degenerative changes
of the hip joint), but also in the fact that doctors’ experience serious difficulties in
diagnosis and treatment [1].

The complexity of the diagnosis and complexity of the above diseases, as well
as the fact that different treatment options are possible for each of them, poses the
task of developing modern quantitative methods and tools for their research in order
to select and justify a successful treatment option in each case. One of the modern
tools for helping surgeon and evaluating treatment options are preoperative planning
systems or clinical decision support systems (CDSS).

The issues of developing preoperative planning systems, including biomechani-
cal support for choosing an operation option for each individual patient, have been
raised in the scientific literature since the end of the 20th century [2]. However, at the
moment, preoperative planning systems with biomechanical support for choosing
the optimal treatment option have not been developed anywhere in the world. The
development and implementation of quantitative methods for assessing the sever-
ity of the disease and its treatment options based on biomechanical modeling can
significantly improve the quality of treatment, as well as improve the postoperative
prognosis and quality of patient’s life.

The purpose of this study is to create the biomechanical foundations necessary
for the development and introduction into preoperative diagnostics and planning of
clinical decision support systems with biomechanical support. The research objec-
tive are:

• To develop and test a technique for noninvasive determination of mineral density
and Young’s modulus of spongy bone tissue according to computer tomography.

• To investigate the relationship between the sagittal balance parameters and stress-
strain state of the vertebral-pelvic complex elements (VPC).

• To develop generalizing formulas for calculating the theoretical values of the
sagittal balance parameters.

• To develop and test quantitative criteria for evaluating the success of surgical
treatment.

• To perform a pilot implementation of biomechanical modeling into preoperative
planning process and demonstrate the effectiveness of biomechanical modeling
when choosing a treatment option within the framework of preoperative planning
in musculoskeletal surgery.

• To develop the concept of clinical decision support systems with biomechanical
support.
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7.2 Noninvasive Method of Obtaining Bone Tissues Mechanical
Properties by Computer Tomography

7.2.1 Results of Experiments on Scanning Samples of the Femoral
Heads Spongy Bone in a Computer Tomograph

To assess the effect of convolutional kernel, the ”beam hardening” effect and other
characteristics of a computed tomograph (CT), samples of spongy bone tissue of 150
patients were scanned (of which 5 patients were in the phantom, the rest were ”in the
air”), as well as samples of an aqueous solution of potassium hydroorthophosphate
imitating a certain bone mineral density (BMD). Of these, 4 cylindrical samples
with BMD of 50 mg/cm3, 100 mg/cm3, 150 mg/cm3 and 200 mg/cm3 imitating
spongy bone, and 4 hexahedral samples with BMD of 250 mg/cm3, 350 mg/cm3,
450 mg/cm3 and 550 mg/cm3 imitating cortical bone. Samples were placed in the
center of phantom, deionized water was poured into phantom. Figure 7.1 shows
samples on CT scanner table and in phantom.

The samples were scanned in various modes (Table 7.1) three times. CT table was
fixed in such a position that the samples were located in the center of its aperture.
Convolutional kernels FC17 and FC03 were investigated, since they are used for
postprocessing of CT images on this tomograph. The thickness of the slice during
scanning was 1 mm. When analyzing Hounsfield units, 2-3 mm retreated from the
end edges of each sample.

It was revealed that an increase in density does not always entail an increase in
Hounsfield units for calibrated samples with BMD corresponding to spongy bone

Fig. 7.1 Samples before
scanning in CT: a - on CT
table; b - in the holding frame
of the phantom; c - on the CT
table inside the phantom filled
with water

Table 7.1 Examined CT scan modes and settings

in air/in phantom

Voltage 120 kV

Tube current 40 mA / 300 mA

Convolutional kernel FC17 / FC03

FOV 400 mm
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(Fig. 7.2). In the phantom (with both FC03 and FC17 kernels), this effect was ab-
sent in the same way as “in the air” with FC17 kernel. To convert the Hounsfield
units of K2HPO4 samples from experiments “in the air” into Hounsfield units “in
phantom”, regression dependencies were selected (Fig. 7.3) for FC17 kernel. It is
revealed that the current has practically no effect on the Hounsfield units. Different
convolutional kernels give significantly different Hounsfield units when scanning
the same samples “in the air”. It is shown that there are no differences in measure-
ments “in the air” and in the phantom at a significance level of 5% for the FC03
kernel, which confirms the fact that it is intended to correct the “beam-hardening”
effect. It is shown that the effect of strengthening the rigidity of X-ray radiation
”beam hardening” significantly affects the Hounsfield units and should be consid-
ered when evaluating BMD. The difference in Hounsfield units for FC03 and FC17

Fig. 7.2 Dependence of
Hounsfield units (vertically)
of K2HPO4 samples on their
BMD (horizontally mg/cm3).
Scanning “in air”, 300 mA
current

Fig. 7.3 Regression dependencies of recalculation of HU from “in the air” (horizontal axis) to “in
phantom” (vertical axis) for calibrated samples K2HPO4 and trabecular bone samples for FC17
kernel (solid line 𝑦 = 0.7𝑥 − 40.8, 𝑅2 = 0.99 – linear regression for K2HPO4 samples, dotted line
𝑦 = 0.7𝑥 − 33.9, 𝑅2 = 0.97 – linear regression for trabecular bone samples)
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kernels for the same samples when scanning ”in the air” reached up to 130% (about
56% on average) for calibrated samples and up to 128% (about 81% on average) for
spongy bone. An almost “ideal” regression dependence was obtained for the FC17
kernel when comparing scans in the “in-air” and in the phantom modes (Fig. 7.3),
which allows scanning bone tissue samples in the “air” with subsequent recalcula-
tion of the data obtained into BMD values, or into Hounsfield units in a phantom
simulating the patient’s body.

7.2.2 Results of Uniaxial Compression Mechanical Experiments of
Femoral Heads Spongy Bone Samples

The samples were prepared using a hand-held metal hacksaw with the initial frag-
ments fixed in a vise. From one fragment of the femoral head, from 1 to 4 samples
were prepared (Fig. 7.4 a, b) in the form of rectangular parallelepipeds with a rib size
of at least 5 and not more than 10 mm. The prepared fragments of the spongy bone
were delivered within one or two hours to the Research Institute of Traumatology,
Orthopedics and Neurosurgery of the Saratov State Medical University (NIITON
SSMU), where they were scanned on a Toshiba Aquilion 64 CT. FC17 kernel was
selected as CT settings, tube current was 40 mA, slice thickness was 1 mm. Samples
were scanned “in the air”, the resulting Hounsfield units were recalculated, for this
the dependence shown in Fig. 7.3 was used. Samples of femoral heads of 150 pa-
tients were examined on CT. For each head the first letter of the surname, age (year
of birth), gender, sample volume and the average value of Hounsfield units were
fixed.

After CT, fragments of femoral heads were subjected to uniaxial compression ex-
periments in order to determine the Young’s modulus on Instron 5944 test machine.
Preload value was 10 N, loading speed was 30 mm/min. Table 7.2 shows the results
of the study for three randomly selected patients.

Regression analysis was used to identify the dependence that allows calculat-
ing the Young’s modulus of spongy bone tissue through Hounsfield units. Models
of linear multiple regression (additive model) and linear regression in logarithms
(multiplicative model) were constructed and analyzed. For all models, the effect of
the patient’s age was statistically insignificant. The level of statistical significance
of the coefficients was less than 5%.

Fig. 7.4 Samples of bone tis-
sue of the femoral heads: a –
bone tissue sample before the
experiment; b – bone tissue
samples on CT table; c – bone
tissue sample during uniaxial
compression experiment



104 Dmitriy V. Ivanov, Irina V. Kirillova, and Leonid Yu. Kossovich

Table 7.2 Young’s moduli of femoral head fragments determined from mechanical experiments

No. ID ICD-10 code
Young’s module, MPa

Experimental value Weighted average harmonic value

1 B., 1951, male M 16.0

48,2

42,6
37,7

40,2

45,7

2 B., 1954, female M 16.0
116,7

133,5
150,3

3 T., 1953, female M 16.1 74,6 73,1

The specified model of linear multiple regression, presented in Fig. 7.5, has the
form:

𝐸 = 0,20HU+5,98; 𝑅2 = 0,67, (7.1)

where 𝐸 is Young’s modulus, HU are Hounsfield units. 𝑅2 is the coefficient of de-
termination. Multiplicative model was also obtained:

𝐸 = e1,17ln(HU)−2,55, 𝑅2 = 0,68. (7.2)

Model (7.2) explains more than 68% of the variation of the dependent variable. The
advantage of this model can be the high (at a level of less than 0.001%) significance
of the coefficients.

The predicted values of the Young’s modulus for the studied tissues and their
errors were calculated. The difference between the values of Young’s modules de-
termined by the data from mechanical experiment and predicted using the model
(7.1) averaged 19%, and when using the model (7.2) – 20%.

To improve the result of the prediction of the Young’s module, an analysis of
its dependence on Hounsfield units was carried out, considering the code of the
International Classification of Diseases (ICD-10). In the experiment, fragments of
bone tissue of patients with ICD-10 codes were studied: M 16.0, 16.1, 16.2, 16.3,

Fig. 7.5 Dot diagram:
Hounsfield units (HU) –
along abscissa axis, Young’s
modulus 𝐸 – along ordinate
axis
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16.5, 16.6, 16.7, M17.0, M21.9, M84.1, M87.0, M87.2, M95.8 and M95.9. For these
data were generalized models were obtained, predictive values of Young’s modulus
and their errors for the studied tissues were determined (Table 7.3).

It can be seen from Table 7.3 that when considering the data separately for each
ICD-10 code, the difference in values between the Young’s modulus determined
from the mechanical experiment and the predicted one does not exceed 16% on
average. The exception is linear regression models for the M16.0 code and the last
line, which contains codes with studies of less than 5 dimensions. Multiplicative
model for the M16.0 code gives results with an average error of no more than 16%.

The revealed dependencies between the Young module and Hounsfield units can
be applied to the processing of CT studies conducted on the Toshiba Aquilion 64
tomograph, since different models of scanning devices can give different HU values
[3]. The study of the influence of the manufacturer and the model of the tomograph
on the reliability of the results obtained using the proposed formulas seems relevant.
To determine the correction coefficients, calibrated samples of an aqueous solution
of potassium hydroorthophosphate [4] with a known mineral density can be scanned
in each tomograph, after which it will be possible to obtain similar regression de-
pendencies and final models.

Table 7.3 Linear multiple regression models and multiplicative models considering ICD-10 code

ICD-10 code Regression models

Average
difference

M16.0
𝐸 = 0, 19HU+14, 46; 𝑅2 = 0, 64 (3) 27%

𝐸 = e1,05ln(HU)−1,77; 𝑅2 = 0, 74 (4) 16%

M16.1
𝐸 = 0, 24HU− 5, 79; 𝑅2 = 0, 71 (5) 14%

𝐸 = e1,08ln(HU)−2,02; 𝑅2 = 0, 75 (6) 16%

M16.2
𝐸 = 0, 18HU+50, 10; 𝑅2 = 0, 67 (7) 16%

𝐸 = e0,64ln(HU)+0,95; 𝑅2 = 0, 61 (8) 14%

M84.1
𝐸 = 0, 18HU+13, 67; 𝑅2 = 0, 75 (9) 11%

𝐸 = e0,79ln(HU)−0,28; 𝑅2 = 0, 78 (10) 12%

M87.0
𝐸 = 0, 17HU+12, 20; 𝑅2 = 0, 80 (11) 16%

𝐸 = 𝑒0,82ln(HU)−0,49; 𝑅2 = 0, 78 (12) 16%
M16.3, M16.5, M16.6, M16.7,
M17.0, M21.9, M87.2, M95.8,
M95.9

𝐸 = 0, 20HU+4, 55; 𝑅2 = 0, 60 (13) 20%

𝐸 = e1,56ln(HU)−4,96; 𝑅2 = 0, 66 (14) 27%
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7.3 Sagittal Balance and its Relation to Vertebral-pelvic
Complex Biomechanics

For the first time, the term “vertebral-pelvic balance” (or sagittal balance) is men-
tioned by Duval-Beaupere [5]. The static sagittal balance of the normal spine (or op-
timal balance) is its physiological alignment in the most effective way with the help
of muscle forces [6]. Optimal vertebral-pelvic relationships make it possible to form
a biomechanically effective sagittal profile of the spine, reduce energy consumption
and the risk of degeneration of adjacent vertebral motion segments (VMS) [7]. From
the standpoint of biomechanics, the necessity of correction of the patient’s sagittal
profile during VPC operations was justified [7, 8]. It is believed [9] that maintaining
sagittal balance or neutral vertical alignment of the spine in the sagittal plane is the
main goal of surgical, ergonomic and physiotherapy procedures.

Sagittal balance can be described using angular vertebral-pelvic parameters:
pelvic index (PI), lumbar lordosis (LL), pelvic tilt (PT) and sacral tilt (SS) [10]
(Fig. 7.6). PI is the angle between the line drawn through the center of the femoral
head and the middle of the closure plate of the vertebra S1. PI is anatomically fixed,
does not change after adolescence and is individual for each person [11]. The angle
of inclination of the sacrum SS is the compensation angle PT, characterizes the po-
sition of the end plate of the vertebra S1. PT,PI and SS are mathematically related
by the following formula: PI = PT+SS.

To calculate the theoretical (or optimal) values of the sagittal balance parame-
ters, the authors attempt to develop mathematical formulas [11]. The development
of formulas will allow for each patient at the stage of preoperative planning to cal-
culate the optimal values of the parameters of his sagittal balance and assess the
necessary level and degree of correction of deformation. We present the results of
the development of original generalizing formulas for calculating the parameters of
the sagittal balance based on the analysis of scientific literature and the results of
our own research presented in [12] (Table 7.4). Figure 7.7 shows, for example, the
dependencies of LL on PI according to literature data and measurement results.

Fig. 7.6 Sagittal balance main parameters
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Table 7.4 Literature sources found and used in this study, as well as data from our own research

Reference Sample characteristics Formulas

J.C. Le Huec, K. Hasegawa [13]
268 humans (117 male and 161
female), average age 37,2 (18-76),
without symptomes

LL = 0, 54PI+27, 6
PT = 0, 4429PI− 11.389
SS = 0, 54PI+11.90

S.J. Hyun, S. Han, Y.B. Kim,
Y.J. Kim, G.B. Kang, J.Y.
Cheong [14]

150 males at age of 64,1 ± 6,4,
without symptomes

LL = 0, 62PI+27, 61

T.B. Sullivan, N. Marino, F.G.
Reighard, P.O. Newton [11]

125 teenagers (47 boys, 78 girls),
average age 13 ± 2, without
symptomes

LL = 0, 66PI+24.2

F. Tanguay, J.M. Mac-Thiong,
J.A. de Guise, H. Labelle [15]

60 children (57 girls and 3 boys)
diagnosed with adolescent idio-
pathic scoliosis who underwent
PSIF surgery

LL = 0, 56PI+33, 43

J. Legaye, G. Duval-Beaupère
[16]

49 people (28 men and 21
women), from 19 to 30 years old
without symptomes

SS = 0, 5481PI+12, 7

D.V. Ivanov, I.V. Kirillova,
L.Yu. Kossovich et al. [17]

52 patients, average age 46 (32-
57), 28 female and 24 mail after
spine trauma and spondylolistesis

−

Fig. 7.7 Dependencies of Lumbar Lordosis on Pelvic Incident proposed in [11, 13, 14, 15, 16] and
measurement results

Relationship Between LL and PI The relationship between LL and PI was stud-
ied on the basis of measurement results [12] supplemented with data from the
works [11, 13, 14, 15, 16]. According to 638 results of pairwise measurements,
including those presented in the literature [11, 13, 14, 15, 16], as well as the data
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of patients of NIITON SSMU, a linear regression relationship was constructed

LL = 0,502PI+33,90. (7.3)

Relationship Between SS and PI The dependence of SS on PI was studied on
the basis of measurement results [12] supplemented by data from [13, 16]. A
linear regression dependence was constructed based on 191 results of pairwise
measurements

SS = 0,476PI+15,62. (7.4)

Relationship Between SS and PI, LL For practical application, a formula link-
ing three parameters – SS, PI and LL may be of great interest. Since PI changes
little both with age and in the case of most diseases and injuries, it can be as-
sumed that SS compensates for the changing LL over time, considering PI value
that is individual for each person and changes little during life. For statistical
analysis, the results of studies of patients of NIITON SSMU were supplemented
with data from League [16] and Le Huec [13]. Based on the results of SS,PI,LL
measurements in 52 patients of NIITON SSMU supplemented with data [13, 16]
– a total of 171 data sets – a linear regression relationship was constructed

SS = 0,32PI+0,37LL+2,4. (7.5)

Despite the fact that many formulas linking the main angular parameters of sagit-
tal balance have been published in the modern scientific literature, their application
in clinical practice is difficult. This is due to the fact that different authors publish
different formulas obtained from their own limited samples. There is a problem of
generalizing the experience accumulated in science and obtaining generalizing for-
mulas covering all the most well-known dependencies to date. Such a generalization
at this stage is formulas (7.3) and (7.4) that satisfactorily describe the data of differ-
ent researchers for patients of different genders, ages and the presence or absence
of pathologies [17]. The analysis showed that the dependencies between PI,LL and
SS in patients with pathologies of VPC on average can be described by the same de-
pendencies as in healthy people. The advantage of the fundamentally new formula
(7.5), which establishes the relationship between SS, PI and LL, is also confirmed
by the value of the average relative approximation error, which was 9.6% for this
dependence, while for formulas (7.3) and (7.4) (dependencies LL(PI) and 𝑆𝑆(PI)) it
was 14.6% and 13.2%, respectively. Considering the average values of SS and their
variation, a decrease in the approximation error by 3.6-5% can have a significant
impact on the practical application of the developed dependence. It should be noted
that the geometric relationship between the main parameters of the sagittal balance
is not accidental and is confirmed by biomechanical calculations [8].
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7.4 Quantitative Criteria for Assessing the Success of Surgical
Treatment

In traumatology practice, the main goal of traditional preoperative planning is the
selection of implants, modes and techniques of their installation, ensuring the sta-
bility of the structure and reposition of bone fragments. In orthopedics, traditional
preoperative planning should ensure the selection of implants to recreate the optimal
biomechanics of the operated segment.

In this regard, at the stage of treatment planning, it is necessary not only to de-
scribe qualitatively, but also quantitatively, the optimal anatomy and biomechanics
of the operated segment. In particular, when planning hip replacement, the length
of the limbs should be the same, the center of rotation of the femoral component of
the implant should correspond to the center of rotation of a healthy joint, etc. When
planning the treatment of spinal injuries, the sagittal balance (hereinafter referred to
as SB) should be observed, or, in other words, the SB parameters should be optimal.
Therefore, it is necessary to develop a set of numerical parameters with which it
would be possible to distinguish a successful operation from an unsuccessful one
from the point of view of the anatomy (or geometry) of the VPC segment and to
ensure adequate geometric preoperative planning.

7.5 Geometric Criteria for Evaluating the Success of Spinal
Surgery

Vertical alignment of the spine in the sagittal plane is considered the main goal of
surgical, ergonomic and physiotherapeutic procedures [9] and is described by the
parameters of sagittal balance. Previously, we justified [7] the need to correct the
sagittal profile of the patient when performing operations on VPC. It was shown
[28] that the sagittal profile of the spine is strictly correlated with the quality of life,
and VPC plays a key role in compensatory mechanisms of spine imbalance. It is
especially important that in surgical correction of deformity, the impact on the SB
and lumbo-pelvic parameters significantly improves the quality of life of patients.

The intervals of changes in the main parameters of the SB have been studied [18],
and many authors are trying to develop formulas for calculating optimal balance pa-
rameters for a particular patient. The PI parameter is individual for each person and
remains unchanged throughout life. It was shown [11, 16] that there is a relation-
ship between PI and other basic angular parameters of SB, the values of which can
change with the development of degenerative-dystrophic diseases and injuries of
VPC.

In connection with the above, the geometric criteria for evaluating success should
include the optimal parameters (parameter intervals) of the SB, which can be calcu-
lated individually from a radiograph performed in a standing position. Here are the
formulas [17] for calculating PT, SS, LL through PI, derived from the indicators of
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healthy patients.
LL = 0,502PI+33,90◦,
SS = 0,476PI+15,62◦,
PT = PI−SS.

(7.6)

Formulas (7.6) allow one to calculate optimal angular parameters of the SB for a
particular patient through the parameter PI.

SVA (sagittal vertical alignment) parameter is measured as the distance from the
plumb line passing through the center of the seventh cervical vertebra (C7PL) to the
posterior edge of the surface of the upper end plate of the sacrum. It is believed [19]
that a balanced spine has SVA < 5 cm. It was shown [20] that poor functional results
of surgical treatment of degenerative injuries of the thoracolumbar spine correlate
well with insufficient sagittal alignment (SVA > 5 cm). The authors [21] recommend
restoring the SVA value < 5 cm and achieving optimal lordosis (ratio of PI and
LL angles) to achieve the best quality of life after treatment. It was revealed [22]
that patients with compression fractures of the vertebrae and balanced vertebral-
pelvic parameters, as well as sagittal alignment (SVA < 5 cm) are more likely not
to require surgical intervention than patients with suboptimal SB parameters. Thus,
the values of SVA, together with the angular parameters of SB described above, will
be considered criteria for evaluating the success of surgical reconstructive treatment
of diseases and injuries of the spine.

7.6 Geometric Criteria for Assessing the Success of Hip
Replacement

When planning treatment, the position of the endoprosthesis components should be
evaluated, as well as the geometric characteristics of the operated limb based on the
results of X-ray examination. Based on anatomical considerations, it is logical to
attribute the values of the parameters of the position of the center of rotation of the
acetabulum component, offset (distance from the center of rotation to the axis of the
leg of the endoprosthesis), as well as the length of the operated lower limb to the
geometric criteria for assessing the success of hip replacement.

Studies of the wear of the acetabulum component liner allow us to formulate
another criterion, which is that the angle of inclination of the acetabulum component
in the frontal plane should be from 40 to 50 degrees [23]. The substantiations of
these and other criteria values of radiological parameters are given in the literature,
and the criteria themselves are summarized in Table 7.5.
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Table 7.5 Geometric criteria for evaluating the success of hip replacement

No. Criteria description
Criteria value

Satisfactory Unsatisfactory

1 Vertical rotation center of the
acetabulum component

Matching a healthy hip joint1. Inconsistency with a healthy
hip joint.

2 Horizontal rotation center of
the acetabulum component

Matching a healthy hip joint2. Inconsistency with a healthy
hip joint.

3 Angle of inclination (in the
frontal plane) of the acetabu-
lum component

40− 50◦ (neutral position). < 40◦, > 50◦

4 Anteversion angle (slope in
the sagittal plane) of the ac-
etabulum component

10− 15◦3. < 10◦ and > 15◦.

5 Undercovering of the acetab-
ulum component

< 30%. > 30%.

6 Endoprosthesis leg position
in medullar channel

Endoprosthesis leg location
is central (central axis of
endoprosthesis leg coincides
with central axis of medullar
canal).

Significant valgus or varus
deviation of the leg from the
central axis of femur – more
than 5◦.

7 Filling of medullar canal On the X-ray in the straight
anterior–posterior projection,
the leg of the endoprosthe-
sis fills the canal by 80% or
more, in the lateral projection
by 70% or more4.

On the X-ray in the straight
anterior-posterior projection,
the leg of the endoprosthe-
sis fills the channel less than
80%, in the lateral projection
– less than 70%. The size
of the structure is not large
enough.

8 Offset Is equal to the offset of a
healthy hip joint.

More or less offset of a
healthy hip joint.

9 Lower limb length The length of the lower limbs
is the same.

The length of the lower limbs
is different5.

1 When endoprosthetics in difficult cases, it is allowed to shift the center of rotation up to 2.5 cm.
2 When endoprosthetics in difficult cases, medialization of the acetabulum component is allowed
(it’s going beyond the Kohler line).
3 When using rear access, the angle of the anteversion should be 20− 25◦.
4 It matters for cementless legs.
5 In the case of rigid compensated frontal deformity in senile persons, a slight (up to 1 cm) elon-
gation of the lower limb is allowed in order to preserve the usual vertebral-pelvic relations.

7.7 Biomechanical Criteria for Evaluating the Success of
Treatment: Assessment of Mechanical Strength, Fixation
Stability, Implant Life

Biomechanical criteria for evaluating the success of treatment should allow assess-
ing the stability of fixation, the strength of implantable structures, the risk of dam-
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age to bone and soft tissues, as well as the strength of the bone-implant system as
a whole. The stability of fixation can be estimated by the relative movements of the
fixed elements of the VPC based on the values of the amplitude of motion (range of
motion, ROM) in vertebral motion segment (VMS) [24, 25]. Under bending loads
(torso tilts forward and backward), ROM parameter is calculated as follows. In the
sagittal plane in the spine model, the angle between the upper closure plates of ad-
jacent vertebrae is measured before the load is applied. After applying the load and
changing the position of the vertebrae relative to each other, this angle is measured
again. ROM represents the difference in absolute values of two measured angles
(before and after deformation).

At loads corresponding to the tilt of the torso to the side, ROM is measured sim-
ilarly, but measurements are carried out in the frontal plane [26]. Under twisting
loads, ROM is calculated as the angle by which the vertebrae of the studied VMS
turned relative to each other during rotation in the axial plane [26]. At critical ROM
values, damage to the intervertebral disc occurs. In the case of rotational loading,
based on the study of VMS with healthy disks and VMS with disks subject to de-
generative changes [27], it was shown that ROM in 16◦ for healthy and in 14.5◦ for
diseased disks is critical, leading to damage (averaged values for the sample from
the experiment are indicated). Thus, the ROM parameter can be considered as a cri-
terion for evaluating the success of surgical treatment, the critical values of which
for different types of loads are summarized in Table 7.6.

If we talk about the relative movements of the fixed elements of the VPC, then
in this case, during the operation, the surgeon achieves the best stability, that is,
minimal relative movements. There is evidence in the literature that when a person
moves, the VMS is considered unstable if the relative movements of the vertebrae of
one VMS exceed 3 mm [28]. Among several treatment options, the most successful
is the one in which the displacement within the VMS [29, 30] are minimal.

The strength of the “bone-implant” system as a whole and its individual elements
is determined by the mechanical stresses arising in it under typical loads simulat-
ing the state of rest and human movement. Internal stresses in implants are com-
pared with their strength characteristics: endurance limit (under cyclic loads), yield
strength and strength limits [31, 32] with a certain safety margin factor (Table 7.7).
The allowable stresses for metals can be calculated based on their properties. As a
rule, for steels, the yield strength with a margin factor equal to 1.5 is taken as the
allowable stress. For titanium alloys, the tensile strength with a margin factor of 3
is taken.

Table 7.6 Criteria (threshold) ROM values (in degrees)

Disk condition
Loads

Leaning forward/backward Leaning to the sides Body rotations (twisting)

Healthy disk 15 15 16.0 (20)

Degenerative disk 15 15 14.5 (20)
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Table 7.7 Strength characteristics of bone tissues and implants

Material Tensile strength, MPa

Stainless steel (316LS/316LVM) up to 1241 (yield strength up to 945)

Ti6Al4V ELI Titanium Alloy up to 970

Cortical bone up to 161

Trabecular bone up to 15

From the point of view of structural strength, the operation option for which the
strength conditions for the allowable stresses are met will be considered successful.
If two or more variants of the operation satisfy the strength conditions for the al-
lowable stresses, then the most successful among them will be the one for which the
stresses in the implants and bone tissues will be the least.

7.8 Results of the Pilot Implementation of Biomechanical
Modeling in the Process of Preoperative Planning

7.8.1 Development of the Accord Software Platform

The results of this study were used in the development of a prototype (platform) of a
clinical decision support system with biomechanical support for a doctor’s decision
in surgery of the vertebral-pelvic complex (hereinafter referred to as the Accord
platform). For the first time in the world, the Accord platform provides not only a
stage of geometric planning of the operation, but also biomechanical modeling of
treatment options. The Accord platform is a base and ecosystem for the development
of systems to support clinical solutions in surgery of the musculoskeletal system and
other areas of medicine.

The development of the Accord platform was based on the following scientific
results:

• method of noninvasive determination of Young’s modulus of spongy bone tissue
according to CT data;

• original formulas for calculating the optimal values of the main parameters of the
sagittal balance according to radiography data;

• criteria for evaluating the success of surgical treatment of the consequences of
diseases and injuries of VPC.

The main functional capabilities of the developed platform (in relation to biome-
chanical modeling of treatment options) include the following:

• automated construction of solid-state models of vertebrae based on CT data;
• calculation of the Young’s modulus of bone tissue by CT;
• setting typical loads (forces and moments) and anchors;
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• calculation of strength (stability, service life);
• justification of the optimal operation option.

The central component of the platform is the “Biomechanical Modeling Control
Module”. The “Biomechanical modeling control module” numerically solves the
spatial static problem of elasticity theory for VPC elements together with the in-
stalled implants using the finite element method. The developed biomechanical cri-
teria for evaluating the success of treatment are implemented in the “Biomechanical
Modeling Control Module”.

7.8.2 Substantiation of the Effectiveness of Biomechanical
Modeling in Preoperative Planning

The effectiveness of biomechanical modeling implemented in the Accord platform
during preoperative planning has been confirmed in the framework of demonstration
experiments (DE). DE are devoted to geometric planning and biomechanical mod-
eling of the results of surgical reconstructive treatment of a particular patient: on
planned treatment for lumbar spine spondylolisthesis (first DE); on planned treat-
ment for degenerative-dystrophic hip joint disease (second DE); on routine treat-
ment for lumbar spine spondylolisthesis (third DE).

The purpose of the DE was to show the possibilities and effectiveness of biome-
chanical modeling when choosing a successful option for surgical reconstructive
treatment of spinal pathology (first and third DE) and hip joint (second DE). Within
the framework of each DE, a mathematical biomechanics problem was solved to
determine the stress-strain state of the simulated VPC segment with installed im-
plant models under the action of typical external surface forces and moments [35].
Simulated VPC segments, as well as implants, were considered to be isotropic elas-
tic bodies. To simplify the formulation of the problem, such elements of the VPC
as the ligamentous apparatus were modeled by one-dimensional elastic elements of
the spring type. The elastic modulus of spongy bone tissue was calculated based on
the patient’s CT data [33]. The initial data for modeling were the results of radiation
examination (computed tomogram and radiograph) of the VPC segment.

DE were performed jointly with specialists of the Research Institute of Trau-
matology, Orthopedics and Neurosurgery of the Saratov State Medical University
(NIITON SSMU).

First DE A group of experts from NIITON SSMU selected a patient K., born in
1985, with a diagnosis of lumbar spine spondylolisthesis. The attending physi-
cian planned the following treatment options:

a transpedicular fixation (TPF) with 4 screws, ALIF fusion, Seohan Care Adinis
cage;

b TPF with 6 screws, TLIF fusion, Unilif cage;
c TPF with 4 screws, TLIF fusion, Unilift cage.
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Solid models of operation options are shown in Fig. 7.8.
The loading of the simulated segment of the spine was determined by the weight
of the human body and was carried out by a tracking load of 100 N for each
vertebra and twisting, as well as bending moment of 7.5 Nm [34, 35]. Results
of biomechanical modeling are presented in Figs. 7.9 and 7.10. Maximum total
displacements and equivalent stresses for each planned treatment and loading
option are presented in Tables 7.8-7.10.
The consultation of doctors of the NIITON SSMU, based on the planning and
modeling carried out, patient K., born in 1985, chose the third treatment option:
TPF, TLIF fusion, Stryker’s Unilif cage. NIITON SSMU staff performed surgi-
cal reconstructive treatment considering the recommendations for the selected
option. Treatment results are shown in Fig. 7.11.

Second DE Experts from NIITON SSMU selected a patient I.T.R. born in 1953
with a diagnosis M16.0 ”Primary bilateral coxarthrosis” according to ICD-10.
The following options of surgical reconstructive treatment are offered for the
patient: total endoprosthetics of the right hip joint with the installation of the
acetabulum component (press fit) at an angle of inclination a - 35 degrees, b - 45
degrees and c - 55 degrees. The femoral component was cementless fixation. 2D
solid models of hip joint and pelvic bones with implants installed are shown in
Fig. 7.12.
Biomechanical modeling of each treatment option was carried out. Loading of
the simulated segment of the vertebral-pelvic complex (VPC) was carried out
with a load of 450 N, corresponding to the patient’s weight of 90 kg. Results of
biomechanical modeling are presented in Figs. 7.13 and 7.14.

Fig. 7.8 3D solid models
of the spine segment with
implants installed: a – TPF
with 4 screws and an Adonis
cage, b – TPF with 6 screws
and a Unilif cage, c – TPF
with 4 screws and a Unilif
cage

Fig. 7.9 Displacement fields
(following load loading and
bending moment – forward
tilt): a – TPF with 4 screws
and Adonis cage, b – TPF
with 6 screws and Unilif cage,
c – TPF with 4 screws and
Unilif cage
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Fig. 7.10 Equivalent stress
fields (following load load-
ing and bending moment –
forward tilt): a – TPF with 4
screws and Adonis cage, b –
TPF with 6 screws and Unilif
cage, c – TPF with 4 screws
and Unilif cage

Fig. 7.11 Treatment results.
Postoperative CT

Maximum total displacements and equivalent stresses for each proposed treat-
ment and loading option are presented in Table 7.11. Based on the performed

Table 7.8 Maximum total displacement, mm

Treatment option Tilt forward Tilt back Tilt to
the right

Tilt to
the left

Counterclockwise
rotation

Clockwise
rotation

TPF with 4 screws
and Adonis cage

0,7 1 0,8 0,8 0,8 0,9

TPF with 6 screws
and Unilif cage

1,1 0,2 0,6 0,7 0,7 0,8

TPF with 4 screws
and Unilif cage

1,1 0,1 0,6 0,5 0,7 0,5

Table 7.9 Maximum equivalent stresses in implants, MPa

Treatment option Tilt forward Tilt back Tilt to
the right

Tilt to
the left

Counterclockwise
rotation

Clockwise
rotation

TPF with 4 screws
and Adonis cage

274 84 193,5 205,3 242 225

TPF with 6 screws
and Unilif cage

535 52,2 225,2 219,4 207,6 240,3

TPF with 4 screws
and Unilif cage

167 52,1 170,2 201,4 195 216,5
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Table 7.10 Maximum equivalent stresses in spongy/cortical bone, MPa

Treatment option Tilt forward Tilt back Tilt to
the right

Tilt to
the left

Counterclockwise
rotation

Clockwise
rotation

TPF with 4 screws
and Adonis cage

15,5 / 66,1 28,2 /
20,1

8,8 /
37,6

11,5 /
45,7

21,1 / 51,9 17,8 / 38,1

TPF with 6 screws
and Unilif cage

18,2 / 95,5 7,5 /
17,3

9,5 /
35,8

10,7 /
41,1

16 / 49,2 16,6 / 39,7

TPF with 4 screws
and Unilif cage

10,9 / 30 4,5 / 5,2 8,3 / 34 7,2 /
32,6

13,5 / 37,7 14,2 / 36,5

Fig. 7.12 2D solid models
with installed implants: a – 35
degrees inclination angle, b –
45 degrees inclination angle, c
– 55 degrees inclination angle

Fig. 7.13 Displacement field
in pelvic bones and endopros-
thesis for three inclination
angles: a – 35 degrees incli-
nation angle, b – 45 degrees
inclination angle, c – 55 de-
grees inclination angle

Fig. 7.14 Equivalent stresses
(MPa) in endoprosthesis for
three inclination angles: a –
35 degrees inclination angle, b
– 45 degrees inclination angle,
c – 55 degrees inclination
angle
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Table 7.11 Stress-strain state parameters of the studied treatment options

Treatment option Maximum
total displa-
cement, m

Maximum equiv-
alent stresses in
pelvic bones, MPa

Maximum equiv-
alent stresses in
implants, MPa

Maximum equivalent
stresses in polyethylene
liner, MPa

35◦ inclination angle 1, 41 · 10−5 16,9 103 40

45◦ inclination angle 1, 34 · 10−5 19,3 100 29

55◦ inclination angle 1, 20 · 10−5 20,1 99 60

geometric planning, biomechanical modeling, the optimal – the second treatment
option was selected.

Third DE The experts of NIITON SSMU selected patient A. born in 1976 with a
diagnosis of unstable spondylolisthesis of the L3 vertebra. The attending physi-
cian has planned the following treatment options: a transcutaneous TPF of the
L3-L4 segment with reduction of the L4 vertebra, anterior interbody fusion ac-
cording to the OLIF technique is delayed and is planned during the 2nd stage of
the operation; b open TPF of the L3-L4 segment with reduction of the L4 ver-
tebra and simultaneous interbody fusion L3-L4 according to the TLIF method;
c transcutaneous TPF of the L3-L4 segment with reduction of the L4 vertebra
and simultaneous interbody fusion using the DLIF technique. Solid-state mod-
els of the L2-L5 segment with implants are shown in Fig. 7.15. The results of
biomechanical modeling are presented in Fig. 7.16 and 7.17. The maximum to-
tal displacements and equivalent stresses for each proposed treatment option are
presented in Table 7.12. The analysis of the maximum values of displacements
and equivalent stresses allowed us to determine that the first treatment option is
successful.

Fig. 7.15 3D solid models of the L2-L5 spine segment with installed implants: a – transcutaneous
transpedicular fixation L3-L4 with reduction of the L4 vertebra; b - open transpedicular fixation
L3-L4 with reduction of the L4 vertebra and simultaneous interbody fusion L3-L4 by the TLIF
method; c – transcutaneous transpedicular fixation L3-L4 with reduction of the L4 vertebra and
simultaneous interbody fusion using the DLIF technique
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Fig. 7.16 Total displacements (in mm) in spine L2-L5 segment calculated using the Accord plat-
form in the L2-L5 segment of the spine and implants: a – transcutaneous TPF L3-L4 with reduction
of the L4 vertebra; b – open TPF L3-L4 with reduction of the L4 vertebra and simultaneous inter-
body fusion L3-L4 by the TLIF method; c – transcutaneous TPF L3-L4 with reduction of the L4
vertebra and simultaneous interbody fusion by the DLIF method

Fig. 7.17 Equivalent stresses (in Pa) in implants calculated using the Accord platform: a – tran-
scutaneous TPF L3-L4 with reduction of the L4 vertebra; b – open TPF L3-L4 with reduction of
the L4 vertebra and simultaneous interbody fusion L3-L4 by the TLIF method; c – transcutaneous
TPF L3-L4 with reduction of the L4 vertebra and simultaneous interbody MIS fusion by the DLIF
method

Based on the performed biomechanical modeling, the council of experts of NIITON
SSMU decided to choose the following option of surgical reconstructive treatment
and its recommendations to the surgeon: transcutaneous TPF L3-L4 with reduction
of the L4 vertebra, anterior interbody fusion according to the OLIF technique is
postponed and is planned during the 2nd stage of the operation. The staff of NIITON
SSMU performed treatment considering the recommendations. Treatment results
are shown in Fig. 7.18.

Let us analyze the results of DE from the standpoint of biomechanics. All the
variants of surgical reconstructive treatment considered in the framework of DE pro-
vide the necessary stability of fixation under the studied loads (Tables 7.8, 7.11 and
7.12). Analysis of the maximum values of displacements and equivalent stresses al-
lowed us to determine that in the first DE the third variant of surgical reconstructive
treatment is the most successful (Tables 7.9 and 7.10), in the second DE successful
the second treatment option is recognized (Table 7.11), and in the third DE – the
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Table 7.12 Stress-strain state parameters of the studied treatment options

Treatment option Maximum total dis-
placement, mm

Maximum equivalent
stresses in vertebrae
fixed with implants, MPa

Maximum equivalent
stresses in implants,
MPa

transcutaneous TPF
L3-L4 with reduction
of the L4 vertebra

0.96 48.5 43.9

open TPF L3-L4 with
reduction of the L4 ver-
tebra and simultaneous
interbody fusion L3-L4
by the TLIF method

1.05 31.1 31.0

transcutaneous TPF
L3-L4 with reduction
of the L4 vertebra and
simultaneous interbody
MIS fusion by the
DLIF method

1.04 71.8 60.1

Fig. 7.18 Results of treatment
in the third DE

first (Table 7.12). The results of the operation performed in accordance with the rec-
ommendations for choosing the optimal treatment option in the first TE are shown
in Fig. 7.11. In the second DE, a group of experts from NIITON SSMU confirmed
the clinical validity of the conclusions from biomechanical modeling and concluded
that the selected treatment option corresponded to the option implemented in prac-
tice. As part of the third DE, the staff of NIITON SSMU treated the patient on April
21, 2021, considering the recommendations for the selected option (Fig. 7.19).

7.8.3 The Concept of Clinical Decision Support Systems with
Biomechanical Support

High-quality personalized preoperative planning (PP) is impossible without the use
of high-precision implant templates, the storage and use of which in the CDSS is
carried out through databases (DB). For this purpose, the Implants database was de-
veloped, which contains high-precision templates (for geometric planning) and flat,
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Fig. 7.19 A snapshot during
the treatment of patient A.,
born in 1976

as well as spatial solid-state models (for biomechanical modeling) of implants reg-
istered in Russia. Within the framework of the developed platform, geometric plan-
ning (GP) can be carried out on a desktop computer, as well as using the SpinoMeter
mobile application [12]. Both versions of GP programs calculate their optimal (the-
oretical) values for the basic geometric parameters of VPC measured by the surgeon.
Thus, the doctor sees which parameters need to be adjusted during surgery, which
at the PP stage allows to assess the level and degree of correction. For noninva-
sive measurement of the Young’s modulus of spongy bone tissue, a technique has
been developed and implemented in the platform [1]. The mechanical properties of
bone tissues, intervertebral discs, ligaments, and implants are stored in ”Mechan-
ical” database and can be used in personalized biomechanical modeling (BM) of
treatment options [37]. In order to automate the BM process and simplify working
with the platform, a neural network was developed that implements automated seg-
mentation of CT images and builds solid models of vertebral bodies based on them
[38].

When working with the platform, the doctor can perform BM treatment options,
solving the problem of static mechanics of a deformable solid [31, 35]: he has access
to a tool for assessing the strength of the bone-implant system under the influence
of external typical loads that simulate the static position of the human body, as well
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as its various rotations and rotations [39, 40]. To make an individual postopera-
tive prognosis within the framework of the PP, the results of pre- and postoperative
surveys of patients about their quality of life are stored and analyzed using the de-
veloped platform using ”Medical” database. ”Medical” database is also used for the
formation of register uploads underlying medical registers of patients with patholo-
gies of VPC.

A number of clinical cases (for example, combined pathologies, congenital defor-
mities, and others) require high-precision and three-dimensional GP and BM nec-
essary to justify the choice of a successful treatment option. At the same time, in
their practice, doctors, as a rule, face ”standard” clinical cases, in the treatment of
which ”standard” treatment algorithms can be dispensed with. To solve the tasks of
PP and ”complex” and ”standard” clinical cases, the Accord platform can be used
in two modes: personal virtual operating room (PVO) and regional center (RC). In
the air defense mode, the doctor independently plans the treatment of ”standard”
clinical cases and uses a desktop computer in the clinic. In the air defense mode,
the basic version of the CDSS software is used with limitations in the formulation
of the biomechanics problem. In the RC mode, an extended version of the platform
software is used, which implies the use of powerful computers and allows solving
the biomechanics problem in the most complete formulation. In this mode, biome-
chanics engineers are supposed to be involved to perform BM. The operating modes
of the platform allow us to solve the problem of PP for all clinical cases arising in
the practice of surgeons, traumatologists and orthopedists.

In the database of the platform, the central entity is the patient with whom his
clinical cases are associated (described cases of diseases and damage to VPC ele-
ments), the results of PP treatment (including GP and BM), implants planned to be
installed during surgery, as well as pre- and postoperative quality of life surveys. All
medical data in the database of the platform is stored in an impersonal form. The
concept of CDSS in VPC surgery was formulated. The concept includes require-
ments for the development of CDSS, providing PP options for the treatment of the
consequences of diseases and injuries of VPC and operating on the basis of the PP
method ”planning-modeling-forecast”. Modern CDSS in VPC surgery should:

• Be based on the ”planning-modeling-prognosis” method.
• Have a database with implants templates and solid models, mechanical properties

of VPC elements and patient’s medical data.
• Have a modular structure and operate with depersonalized patient data, as well

as data in DICOM format.
• Provide a full cycle of preoperative planning, including geometric planning,

biomechanical modeling and prediction of treatment results.
• Calculate the optimal (theoretical) values of the main VPC sagittal balance geo-

metric parameters.
• Noninvasively determine the mechanical properties of VPC bone tissues.
• Have as part a register of patients with pathologies of VPC.
• Store in the database all the results of preoperative planning (including the results

of geometric planning and biomechanical modeling, forecasting).
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• Automatically segment CT images and create solid-state models of VPC ele-
ments based on them.

• Operate in two modes and cover all possible PP tasks for ”standard” and ”com-
plex” clinical cases of diseases and injuries of VPC.

7.9 Conclusion

In the diagnosis and preoperative planning of surgical treatment in traumatology
and orthopedics, doctors use the technology of traditional geometric planning. This
involves using the results of computed tomography, magnetic resonance imaging or
radiography and performing various kinds of measurements on them (angles, dis-
tances, areas, volumes), as well as positioning implants and/or fixation systems on
them. In some clinical cases, especially with combined pathologies, only geomet-
ric planning may not be enough to choose a successful treatment option. There is a
problem of developing and introducing into preoperative planning additional meth-
ods for quantifying treatment options and choosing a successful one among them.

For the first time in the world, the basics and technology for the implementa-
tion of biomechanical modeling as one of the stages of preoperative planning in
surgery have been developed and tested. It is shown that for the elements of the
musculoskeletal system, quantitative criteria for evaluating the success of treatment
(geometric and biomechanical) can be developed, with the help of which it is possi-
ble to evaluate treatment options and choose a successful one among them. On the
example of pathologies of the vertebral-pelvic complex, criteria for assessing the
strength, stability of implantable structures and the service life of implants, the risk
of bone damage are proposed. Developed and tested: methods for calculating the
Young’s modulus of spongy bone by CT; operating modes of the software platform
(preoperative planning with biomechanical support can be performed by a doctor at
his automated workplace or when working with a biomechanical engineer using a
high-performance computer), implementing preoperative planning with biomechan-
ical support.

There are no analogues of the completed developments underlying the Accord
software platform in the world. There are known attempts to introduce biomechan-
ical modeling into the process of teaching doctors, made by representatives of the
organization AO (AO Foundation). However, colleagues offer a tool only for quali-
tative assessment of the biomechanics of osteosynthesis of fractures of long tubular
bones by plates.

It should also be noted that the results of this work, namely biomechanical sup-
port of the doctor’s decision, were introduced into routine preoperative planning on
the basis of NIITON SSMU and showed their effectiveness and reliability in choos-
ing a successful treatment option for injuries and degenerative-dystrophic diseases
of the spine of NIITON SSMU patients.
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Chapter 8
Dispersion of the Bending Wave in a
Fluid-loaded Elastic Layer

Julius Kaplunov, Ludmila Prikazchikova, and Sheeru Shamsi

Abstract A plane strain problem is considered for an elastic layer immersed into a
compressible fluid. The dispersion relation for anti-symmetric waves is studied. The
associated three-term long-wave low-frequency expansion for a fluid-borne bend-
ing wave is derived, along with similar expansions corresponding to Kirchhoff and
Timoshenko-Reissner type fluid-loaded plates. The results of comparative asymp-
totic analysis are presented. The role of plate inertia and fluid compressibility are
discussed.

Key words: Fluid-loaded elastic layer, Plate theories, Dispersion, Asymptotic

8.1 Introduction

Fluid-structure interaction problems for elastic plates have been investigated since
long ago. However, asymptotic considerations in this area were usually restricted
to the classical Kirchhoff theory, e.g. see [2, 3]. Only a few publications has ap-
proached the subject using original equations in dynamic elasticity, e.g. see [5, 6, 9].
Until now to the best of authors’ knowledge there is no direct comparisons of the
asymptotic (not just numerical) results, obtained from linear elasticity and approx-
imate plate models. At the same time, nowadays there is a significant demand of
more rigorous and accurate predictions inspired by advanced industrial applications,
including soft robotics, e.g. see [8].

In this paper we study a plane strain problem for an elastic layer, governed by
2D equations in elasticity, in contact with a compressible non-viscous fluid. The
related dispersion equation for anti-symmetric waves is analysed at the long-wave
low-frequency limit. The ratio between dimensionless wavelength and frequency is
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not taken to be the same as for a bending wave on a free plate and corresponds to a
specific fluid-borne bending wave, e.g. see [10]. A three-term asymptotic expansion
of the aforementioned dispersion relation is derived and implemented for testing
the approximate dispersion relations for two simplified fluid-structure interaction
models based on thin plate asymptotic theories including the classical Kirchhoff
theory as well as Timoshenko-Reissner type theory, e.g. see [1, 7] and references
therein. The roles of fluid compressibility and plate inertia are also addressed.

It is shown in particular that the leading order term in the derived expansion of the
”exact” dispersion relation also follows from the dispersion relation for a Kirchhoff
plate immersed into incompressible fluid, neglecting the plate inertia. Moreover,
fluid compressibility appears to be outside the range of validity of both classical and
refined plate based formulations studied in the paper. It is also established that the
adapted refined theory has a higher asymptotic accuracy than the classical one. This
observation is far from being obvious, since consideration starts from the assump-
tion that fluid loading may be considered as a prescribed external stress field. The
latter assumption has been proved to be justified even at a higher order, although it
formally supports the asymptotic scaling characteristic of a bending wave on a plate
with traction free faces not incorporating accurately enough the effect of the fluid.

The paper is organised as follows. The linear equations in plane elasticity and
fluid dynamics are presented in Sect. 8.2, along with the approximate formulations
based on the Kirchhoff and Timoshenko-Reissner types plate theories. All associ-
ated dispersion relations are derived in Sect. 8.3. The Sect. 8.4 is concerned with a
comparative analysis of asymptotic expansions.

8.2 Basic Equations

Consider free in-plane vibrations of an elastic layer of thickness 2ℎ immersed in a
non-viscous compressible fluid. Let the mid-line of the layer be the 𝑥2 = 0 axis of the
Cartesian coordinate system (−∞ < 𝑥1, 𝑥2 <∞), see Fig. 8.1. Throughout the paper
we use the following notation: 𝜌 and 𝜌0 are solid and fluid densities, respectively;
𝐸 is Young’s modulus, 𝜈 is the Poisson ratio, 𝜆 and 𝜇 are Lamé elastic constants, 𝑐1
and 𝑐2 are the longitudinal and transverse wave speeds in solid, 𝑐0 is the wave speed
in fluid.

The equations of motion in terms of the elastic potentials 𝜙 and 𝜓 and the fluid
potential 𝜑 can be written as

Δ𝜙− 1
𝑐2

1

𝜕2𝜙

𝜕𝑡2
= 0, Δ𝜓− 1

𝑐2
2

𝜕2𝜓

𝜕𝑡2
= 0, (8.1)

and

Δ𝜑− 1
𝑐2

0

𝜕2𝜑

𝜕𝑡2
= 0, (8.2)

where
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Fig. 8.1 Fluid-loaded elastic
layer.

Δ =
𝜕2

𝜕𝑥2
1
+ 𝜕2

𝜕𝑥2
2
, 𝑐1 =

√︄
𝜆+2𝜇
𝜌

and 𝑐2 =
√︂
𝜇

𝜌
,

with 𝑐0 staying for the fluid compressibility, e.g. see [4] for more detail.
The contact conditions along the interfaces 𝑥2 = ±ℎ are given by

𝜎21 = 0, 𝜎22 = 𝜌0
𝜕2𝜑

𝜕𝑡2
, 𝑣2 =

𝜕𝜑

𝜕𝑥2
, (8.3)

where the stresses 𝜎21 and 𝜎22 and the vertical displacement 𝑣2 are expressed as

𝜎21 = 𝜇

(
2
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𝜕𝑥1
.

(8.4)
The set of 2D equations above may be considered as a benchmark formulation.

Its refined long-wave low-frequency approximation, e.g. see [1, 7], is governed by
the 1D equation

2𝐸ℎ3

3(1− 𝜈2)
𝜕4𝑢

𝜕𝑥4
1
+ 2𝜌ℎ

[
1+ ℎ2 7𝜈−17

15(1− 𝜈)
𝜕2

𝜕𝑥2
1

]
𝜕2𝑢

𝜕𝑡2

− 2𝜌0

[
1− ℎ2 8−3𝜈

10(1− 𝜈)
𝜕2

𝜕𝑥2
1

]
𝜕2𝜑

𝜕𝑡2
= 0,

(8.5)

and the impenetrability conditions at 𝑥2 = ±ℎ
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𝑢 + 𝜈ℎ2

2(1− 𝜈)
𝜕2𝑢

𝜕𝑥2
1
=
𝜕𝜑

𝜕𝑥2
. (8.6)

Here 𝑢 is an approximate mid-line vertical displacement, i.e. 𝑣2 (𝑥1,0, 𝑡) ≈ 𝑢(𝑥1, 𝑡);
the fluid potential 𝜑 satisfies equation (8.2).

Neglecting the terms with the factor ℎ2 inside the brackets in (8.5) as well as in
(8.6) we arrive at the most popular approximation of the original model above given
by

2𝐸ℎ3

3(1− 𝜈2)
𝜕4𝑢

𝜕𝑥4
1
+2𝜌ℎ

𝜕2𝑢

𝜕𝑡2
−2𝜌0

𝜕2𝜑

𝜕𝑡2
= 0, (8.7)

and
𝑢 =

𝜕𝜑

𝜕𝑥2
at 𝑥2 = ±ℎ. (8.8)

The latter corresponds to the classical Kirchhoff theory for plate bending, while the
refined equations (8.5)-(8.6) originate from Timoshenko-Reissner type asymptotic
version of plate bending theory. The goal of the paper is to evaluate the accuracy of
the dispersion relations associated with both long-wave low-frequency approxima-
tions above for a fluid-borne bending wave using the ”exact” solution, in which the
motion of the layer is governed by the 2D equations in plane elasticity.

8.3 Dispersion Relations

Begin with travelling wave solutions of 2D hyperbolic equations (8.1)-(8.2). For the
anti-symmetric in the vertical coordinate 𝑥2 harmonic motion we obtain at |𝑥2 | ⩽ ℎ

𝜙 = 𝐶1 sinh(𝑘𝛼𝑥2)𝑒𝑖 (𝑘𝑥1−𝜔𝑡 ) ,

𝜓 = 𝐶2 cosh(𝑘𝛽𝑥2)𝑒𝑖 (𝑘𝑥1−𝜔𝑡 ) ,
(8.9)

and at |𝑥2 | ⩾ ℎ

𝜑 = 𝐶3𝑒
−𝑘[ ( |𝑥2 |−ℎ)𝑒𝑖 (𝑘𝑥1−𝜔𝑡 ) , (8.10)

where 𝑘 is wave number, 𝜔 is angular frequency, 𝑖 =
√
−1, 𝐶 𝑗 ( 𝑗 = 1,2,3) are arbi-

trary constants and

𝛼 =

√︄
1− 𝜔2

𝑘2𝑐2
1
, 𝛽 =

√︄
1− 𝜔2

𝑘2𝑐2
2
, [ =

√︄
1− 𝜔2

𝑘2𝑐2
0
. (8.11)

Then, on substituting the formulae above into contact conditions (8.3), we arrive
at the set of three linear algebraic equations
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2𝑖𝛼 cosh(𝑘ℎ𝛼)𝐶1 + (1+ 𝛽2) cosh(𝑘ℎ𝛽)𝐶2 = 0,
𝜇(1+ 𝛽2) sinh(𝑘ℎ𝛼)𝐶1 −2𝑖𝛽𝜇 sinh(𝑘ℎ𝛽)𝐶2 + 𝜌0𝜔

2𝑘−2𝐶3 = 0,
𝛼 cosh(𝑘ℎ𝛼)𝐶1 − 𝑖 cosh(𝑘ℎ𝛽)𝐶2 +[𝐶3 = 0.

(8.12)

Now, equating to zero the determinant of the associated 3x3 matrix we obtain the
sought for dispersion relation

(2𝐾2 −Ω2)2 tanh 𝐴−4𝐾2𝐴𝐵 tanh𝐵+ Ω4𝐴𝑟

𝐻
= 0, (8.13)

where 𝑟 =
𝜌0
𝜌

denotes a relative density, 𝐾 = 𝑘ℎ and Ω=
𝜔ℎ

𝑐2
stand for dimensionless

wavenumber and frequency, whereas

𝐴 =
√︁
𝐾2 −Ω2𝜅2, 𝐵 =

√︁
𝐾2 −Ω2, 𝐻 =

√︁
𝐾2 −Ω2𝛿2, (8.14)

with

𝛿 =
𝑐2
𝑐0

and 𝜅 =
𝑐2
𝑐1

=

√︂
1−2𝜈
2−2𝜈

denoting wave speed ratios.
Next, consider the 1D refined equation (8.5) together with the impenetrability

condition (8.6). Setting 𝑢 = 𝐶4𝑒
𝑖 (𝑘𝑥1−𝜔𝑡 ) , where 𝐶4 is another arbitrary constant

and using the same solution (8.10) for the fluid potential we derive a dispersion
relation for the bending wave on a fluid-loaded Timoshenko-Reissner type plate. It
is given by

Ω2

(
3𝑟

(
𝜈(8−3𝜈)𝐾4 −16(1− 𝜈)2𝐾2 −20(1− 𝜈)2)

+4𝐻 (1− 𝜈) ((7𝜈−17)𝐾2 −15(1− 𝜈))
)
+40(1− 𝜈)𝐻𝐾4 = 0.

(8.15)

Finally, we write down the dispersion equation for fluid-loaded Kirchhoff plate,
starting from the formula (8.7) along with the solution (8.10). The result is

3(1− 𝜈) (𝑟 +𝐻)Ω2 −2𝐻𝐾4 = 0. (8.16)

As might be expected the last dispersion relation follows from the previous one by
neglecting the terms 𝑂 (𝐾2) inside the coefficient at Ω2.

8.4 Asymptotic Expansions

Consider the exact dispersion relation (8.13) over the long-wave low-frequency do-
main
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Ω≪ 1, 𝐾 ≪ 1, (8.17)

assuming Ω ∼ 𝐾5/2 instead of the canonical scaling Ω ∼ 𝐾2 underlying the bend-
ing wave on an elastic plate in absence of fluid loading [7]. Let us substitute the
polynomial

Ω2 = Ω0𝐾
5 +Ω1𝐾

6 +Ω2𝐾
7 + ... (8.18)

into (8.13) and expand there all the square roots and hyperbolic functions into
asymptotic series. After straightforward but lengthy algebraic manipulations we de-
rive

Ω0 =
2

3𝑟 (1− 𝜈) ,

Ω1 = − 2
3𝑟2 (1− 𝜈) ,

Ω2 = − 8
15𝑟 (1− 𝜈) +

2
3𝑟3 (1− 𝜈) .

(8.19)

The substitution of the formula (8.18) into the shortened dispersion relation (8.15)
gives the same expressions (8.19) for all three coefficients. As might be expected, for
the dispersion relation (8.16) the first two coefficients in expansion (8.18) coincide
with those in (8.19), while the third one is given by

Ω2 =
2

3𝑟3 (1− 𝜈) . (8.20)

It is worth noting that the leading order term in (8.18) corresponds even to a sim-
pler fluid-structure interaction model than that based on the full Kirchhoff dynamic
plate theory. In this case one may start from the equations

2𝐸ℎ3

3(1− 𝜈2)
𝜕4𝑢

𝜕𝑥4
1
−2𝜌0

𝜕2𝜑

𝜕𝑡2
= 0, (8.21)

and
Δ𝜑 = 0. (8.22)

Thus, plate inertia is neglected in the first of these equations, while the second one
is for incompressible fluid. It can be also easily verified that the two term expan-
sion, neglecting the term with Ω2 in (8.13), follows from the full dynamic equation
(8.7). A weak compressibility of the fluid appears outside the range of validity of the
three-term expansion (8.18), where both of the studied approximate fluid-structure
interaction formulations are also not applicable. Indeed, the formulae for the coef-
ficients (8.19) do not involve the fluid wave speed 𝑐0. It is worth noting that the
classical and refined models predict the correct values for the first two and three
coefficients, respectively, in the asymptotic expansion (8.18), in spite of originating
from the asymptotic analysis of thin-walled structures not in contact with the fluid
assuming Ω ∼ 𝐾2 rather than Ω ∼ 𝐾5/2, see [1, 7] for more detail.
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Numerical results for a steel layer immersed in water are presented in Figs. 8.2
and 8.3. The problem parameters are 𝑐0 = 1480ms−1, 𝜈 = 0.2, 𝑐2 = 3189ms−1, 𝜌 =
7800kgm−3, 𝜌0 = 1000kgm−3. The dispersion curves for fluid-borne bending wave
calculated from the exact dispersion relation (8.13) and its one, two and three-term
asymptotic expansions, associated with formula (8.18) with the coefficients given
by (8.19), are displayed in Figure 8.2.

Figure 8.3 shows comparison of three-term expansion (8.18) with the coefficient
Ω2 from (8.19) and (8.20). The proximity of the dispersion curves is due to relatively
small value of the density ratio (𝑟 ≈ 0.13). In this case the same term with 𝑟−3

dominates in the expressions for Ω2 in formulae (8.19) and (8.20). In fact, the range
𝑟 ≪ 1 corresponds to a light fluid loading, assuming a special asymptotic analysis
and is not tackled in the paper.

Fig. 8.2 Comparison of the
solution of the dispersion
relation (8.13) (solid line)
with its asymptotic expansion
(8.18) with the coefficients
(8.19) at leading (dashed
line), first (dotted line) and
second (dashdot line) order.

Fig. 8.3 Comparison of three-
term expansions (8.18) with
the coefficient Ω2 from (8.19)
(solid line) and (8.20) (dotted
line).
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8.5 Concluding Remarks

The three-term asymptotic expansion (8.18) with (8.19) of the exact dispersion re-
lation (8.13) corresponds to a fluid-borne bending wave governed by the scaling
Ω ∼ 𝐾5/2. At leading order, this wave is affected by the plate stiffness and fluid in-
ertia, see also equations (8.21)-(8.22). The plate inertia arises only at the next order.
The effect of fluid compressibility does not enter the coefficients of the expansion
(8.18) through the fluid wave speed 𝑐0, i.e. it is negligible in comparison with the
transverse shear deformation and other phenomena of the second order characteris-
tic of a Timoshenko-Reissner type plate, see [7] for more detail. It is remarkable that
the adapted formulation (8.5)-(8.6), based on the asymptotic Timoshenko-Reissner
type theory (see [1, 7]) results in a correct coefficient Ω2, although this is origi-
nally deduced for a plate under prescribed surface loading for the scaling Ω ∼ 𝐾2.
This observation also motivates establishment of a refined asymptotic model start-
ing from the initial coupled fluid-structure interaction problem, e.g. see (8.1)-(8.4)
within a plane strain setup. In the paper we do not make further assumptions on the
problem parameters such as that on a light fluid loading. In the latter case some of
the obtained results need to be amended. The developed asymptotic framework also
may be adapted for a practically important setup of an elastic layer lying on a fluid
half-space, e.g. see [6].

Acknowledgements Sponsorship by Keele University for S.Shamsi’s PhD is gratefully acknowl-
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Chapter 9
Mathematical Models of Local Ice Strength and
Problems Elastic-plastic Bending of Hydraulic
Structures Supports

Sergei M. Kovalev and Galina V. Pavilaynen

Abstract The modern science of strength and plasticity of building provides am-
ple opportunities for the design and constructions of cost-effective structures while
ensuring their high reliability under extreme operating conditions. Such structures
include drilling platforms for offshore hydrocarbon production and helipads. Stud-
ies by glaciologists document the anisotropy and plasticity of ice and the huge loads
that ice fields can exert on the vertical supports of drilling platforms.The method
for determining the compression ice strength in the boreholes without extraction of
the ice samples using a borehole jack is being developed at the Laboratory of Ice
Physics of the Arctic and Antarctic Research Institute and considered in this article.

Key words: Compression ice strength, Plasticity, Vertical beam, Bending, Bore-
hole jack

9.1 Introduction

Many studies, for example [1, 2], confirm the anisotropy and plasticity of ice and
the huge loads that ice fields can exert on the vertical supports of drilling platforms
[14, 16]. Physical-mechanical ice properties are traditionally studied on the basis of
cores and samples drilled from level ice floes, ice ridges, stamukhas and icebergs.
What is the main difficulty in determination of the strength of ice samples at uniaxial
compression? For calculation of ice loads on engineering structures one uses the
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strength of samples drilled parallel to the ice freezing surface. In order to prepare
such samples first, an ice block is cut in the ice cover. Then this block is extracted
to the surface. The required horizons are identified on the block, specific places
are marked and then ice cores are drilled out. However, studies show a significant
anisotropy of ice and the fibrous structure [3, 4]. Production of samples in the field
requires a lot of time, as a result, the properties of ice change significantly. Therefore
one should develop new methods for determination of mechanical ice properties
without extraction of ice samples.

As part of the Research and Technological Works (NITR) of Roskomhydromet
in 2020-24 the Arctic and Antarctic Research Institute develops the topic “Study of
large-scale dynamics, physical processes. Mechanics of deformation and destruction
of sea ice with the aim of improvement of short-range prediction of compression and
ridging”. For successful implementation of this topic it is necessary to know the true
compression and flexural ice strength values [5, 6, 7]. It is supposed to determine
the compression ice strength under full-scale conditions by means of the borehole
jack.

The method for determining the compression ice strength in the boreholes with-
out extraction of the ice samples using a borehole jack is being developed at the
Laboratory of Ice Physics of the Arctic and Antarctic Research Institute from the be-
ginning of the XXI century. At this time already the third “borehole jack” generation
was developed. The complex was used for compression ice strength determination
during numerous expeditions. A large amount of experimental data was obtained
proving the possibilities of the methodology to determine the local ice strength for
different ice-covered seas of Russia.

The methodology for determining the compression ice strength by means of the
borehole jack is included into the international and national normative documents
[8]. The technique and equipment for determining the strength of ice in natural con-
ditions has long been known. The downhole probe-indenter is used in numerous
studies of ice strength. Currently, this technique and equipment are used at the re-
search station “Ice base Cape Baranov” (Severnaya Zemlya, Russian Federation).

9.2 Complex System “Borehole Jack”

A downhole probe-indenter (borehole jack) is a complex technical device of a hy-
draulic type that provides force measurement when an indenter (stamp) of a certain
area is introduced into the borehole wall with ice destruction [9]. The development
of this device has been carried out since 2000 and several modifications have already
been carried out. In 2012, together with CJSC AVA Hydrosystems and NK Rosneft,
a third-generation borehole probe-indenter was developed and manufactured.

The modern layout of the device is schematically shown in Fig. 9.1, where
presents a diagram of the complex system for determination of ice strength char-
acteristics under the full-scale conditions (in boreholes). On the ice floe 1 there is a
hydraulic station 2 with the flow regulator 3 for setting the prescribed pullout rate
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Fig. 9.1 Diagram of the complex system for determination of ice strength.

of the jack rod 5 and hydraulic distributor 4. The hydraulic station 2 by hoses via
the measurement block 6, including the measurement cylinder 7 and manometer 8
(pressure sensor and hydraulic valves of the initial position and filling with oil of
the measurement cylinder are not indicated in Fig. 9.1 and multiplier 9, is connected
with the jack 5. Above the jack a tripod is installed 10) with an electrical winch 11
and a hand winch 12, which provide for jack lowering and rise 5 to the borehole
in the mechanical or manual modes. The measurement block 6 is connected to the
registration device and the hydraulic station 2 to electrical generator.

Now we will list the main parameters of the measuring complex for performing
ice strength trials under the full-scale conditions and on ice samples. Hydraulic jack
has piston diameter 95 mm and piston run 50 mm. The maximum working pressure
in the piston cavity is 50 MPa. The maximum rate of piston motion is 4.5 mm/s.
Removable indenter has diameter 65, 90 and 120 mm. Mass without indenter is
33.0 kg. Hydraulic station has maximum working pressure equal 27.0 MPa, nominal
capacity of the pump (consumption) is 5.7 l/min, power and revolution frequency of
electrical engine is 3/1500 kW/(rev/min). Mass of hydraulic station (without oil) is
62.5 kg. Measurement block has nominal working pressure equal 50.0 MPa. Supply
voltage of the sensor of position of the measurement hydraulic cylinder is 24 V DC,
input signal of the sensor of position of the measurement hydraulic cylinder equal
4-20 mA, mass is 28 kg.

The diagram in Fig. 9.2 shows a record of test results. It is shown the result of the
work on loading ice with indenter, the process of destruction begins at 25 seconds.
At this point, the local strength is fixed.

Figure 9.3 presents a block-diagram of jack operation in the borehole [9]. Here
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Fig. 9.2 The test results.

Fig. 9.3 Block-diagram for
ice strength determination in
the borehole.
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are:

1 - hydraulic station,
2 - reference manometer,
3 - pressure sensor,
4 - hose for oil feed to the working chamber of the jack hydraulic cylinder,
5 - hose for oil feed of the return piston run of the jack hydraulic cylinder,
6 - indenter,
7 - hydraulic cylinder,
8 - base plate,
9 - accelerometer.

Figure 9.4 shows photos of the probe-indenter and the press for testing ice sam-
ples. The integrated system makes it possible to determine the strength of both flat
ice and of the ice in hummocks and stamukhas.

9.3 Methodology for Determination of the Local Ice Strength at
Compression in Boreholes by a Borehole Jack

To determine the local ice strength in boreholes under the full-scale conditions (in
situ) one applies a complex “Hydraulic jack” with electrical drives with a hand
pump. Figure 9.5 presents a complex system for the determination of ice strength
characteristics under the full-scale conditions in boreholes, deployed in the field.
The work of devices is performed as follows. In the ice cover (level, rafted or in

a) b)

Fig. 9.4 Ice strength indenter probe and sample press. a) Indenter with a working diameter of 9
cm; b) press for the study of uniaxial compression of ice samples.
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Fig. 9.5 Complex system for determination of ice strength characteristics in boreholes under the
full-scale conditions.

ridged features) using a motor drill with an auger 25 cm in diameter, a borehole is
drilled through the entire ice thickness if possible. The drilling chips are extracted
by a special device for cleaning the boreholes. A tripod is set above the borehole on
which by means of a pulley block a jack is hoisted with the indenter on the pulling
out rod. Depending on the physical ice state, indenters with a diameter of 6.5 - 9.0
or 12.0 cm are used.

At the indenter’s diameter of 9 cm the first test is made at a depth of 30-40 cm
from the ice surface to the indenter’s middle (Fig. 9.4). Such deepening is necessary
to avoid ice chipping in the surface direction. The other tests are made with a step
of 30 cm over the entire borehole depth. Loading is made by means of a hydraulic
cylinder at its bursting impact on the borehole side and restriction of the hydraulic
cylinder motion from the opposite to indenter side due to the base plate. The area
of the base plate exceeds the indenter’s area by more than ten times. At the pressure
feed to the hydraulic cylinder this provides indenter’s penetration without penetra-
tion of the base plate.

The penetration stress in ice 𝜎𝑢 can be calculated from ratio

𝜎𝑢 =
𝐹

𝑆𝑢
=
𝑃𝑆𝑛
𝑆𝑢

(9.1)
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where: 𝐹 - force of indenter’s penetration (N), 𝑆𝑢 - indenter’s cross-section area
(m2), 𝑃 - pressure in the hydraulic system (Pa), 𝑆𝑛 - piston working area in the jack
(m2). After carrying out the experiment and processing the results, it is possible to
build a stress diagram and determine the local ice strength (Fig. 9.6).

The process of jack interaction with ice occurs as follows. Loading of the bore-
hole occurs in three stages.

• The first stage ends with appearance of the first crack and characterizes the initial
moment of indenter penetration.

• The second stage of loading ends with destruction of some ice volume (local
strength), leading to formation of the zone of crushing and radial cracks (Fig.
9.7). This process has an avalanche-like character and its duration is not greater
than several seconds.

• At the third stage of loading one mainly observes three types of indenter/ice in-
teraction. The first type is characterized by indenter penetration through the zone
of crushing at the practically constant stress, which is less than the destruction
by 20-40 % (post-destruction stress).

The second type of interaction is characterized by the fact that the post-destruction
stress is not less than the local strength. At the third type of interaction one of the
radial cracks transforms into the main one immediately after achieving the destruc-
tion stresses. Figure is a photo of the ice section and its structure in polarized light
[10].

The ice strength is determined in a three-dimensional stress state of the local
volume, therefore the term “local ice strength” is used [7, 8, 9]. When breaking
stresses are reached, a certain volume of ice is chipped in the direction of the upper
or lower surface of the ice with insufficient penetration of the probe in the well
(Fig. 9.8). Based on the measurements of breaking stresses along the ice thickness,

Fig. 9.6 Records of stress
and indenter’s motion at
penetration into the ice to the
borehole side. 1 - stress in the
ice, 2 - indenter’s motion,
3 - destruction stress,
4 - post-destruction stress.
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Fig. 9.7 Zone of crushing of
ice of fibrous structure after
indenter penetration.
1 - recess from the introduc-
tion of the indenter, 2 - zone
of complete destruction of
primary crystals, 3 - zone of
predominant destruction of
primary crystals, 4 - zone of
partial destruction of primary
crystals, 5 - primary fibrous
crystals.

Fig. 9.8 Example of indenter penetration into the borehole side with ice chipping towards its sur-
face: a) - imprint from indenter in the borehole side and crack of ice chipping (view from aside);
b) - imprint from indenter and chipping of the surface ice part (view from above).

a diagram of the local ice strength along the vertical is plotted (Fig. 9.9).

9.4 Anisotropy of Ice

As an example, Fig. 9.10 [13] presents the results of the trials in situ by means of the
borehole jack on the polygon 20×45 m in size in the northeastern part of the Kara
Sea at the May 2014. The measurement step was 5 m. As can be seen from Fig.
9.10, there are two pronounced sites with the high local strength and several sites
with a low strength in the area of 20×45 m. The work was carried out on the floe of
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Fig. 9.9 Vertical distribution
of the local ice strength in an
ice ridge (𝐻𝑤 - water level in
the borehole).

Fig. 9.10 Spatial non-
uniformity of average by
thickness local ice strength
values (MPa) on the polygon
of 20×45 m. Northeastern
part of the Kara Sea,
2.-4.05.2014.

deformed level ice near ice ridges. During determination of the ice local strength,
its main physical characteristics (temperature, salinity and density) are derived, the
texture is described and if technical possibilities are available, the ice structure is
determined.

The mechanical ice characteristics in addition to ice temperatures also depend
on the other physical parameters such as salinity, density, porosity, etc. The liquid
phase volume contained in the ice combines the temperature and salinity. The liquid
phase volume is calculated by formula

𝑉𝑏 = 𝑆𝑖10−3
(
0,532− 49,185

𝑇𝑖

)
(9.2)

where: 𝑉𝑏 - liquid phase volume in relative units (dimensionless), 𝑆𝑖 - ice salinity in
per mil.

Figure 9.11 uses numerous experimental results and their functional approxima-
tion:
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Fig. 9.11 Dependence of the
local ice strength on the ice
temperature.

1 - linear approximation based on data at the station “Ice Base Cape Baranov”
(2017-19);

2 - approximation by the polynomial to the power of 2 based on data at station
“Ice Base Cape Baranov” (2017-19);

3 - approximation by the Johnston’s polynomial to the power of 2 [4];
4-7 - average local ice strength value at the station “Ice Base Cape Baranov” in

2019, 2018, 2017 and 2016, respectively;
8 - average local ice strength value in Anadyr’ estuary in 2008;
9 - average local ice strength value of Nevelskoy Strait (“Sakhalin-2010” Ex-

pedition);
10-11 - average local ice strength value in Baidaratskaya Bay in 2007 and 2010,

respectively;
12 - from [4];
13 - from (Sinha) [4];
14-16 - average local ice strength value in the Caspian Sea in 2001-03, 2004-08

and 2013, respectively;
17 - average local ice strength value in the “Transarctic - 2019” Expedition;
18 - average local ice strength value in the MOSAIC Expedition.

The analysis of the destructions of fibrous ice structures under the indenter action
showed significant differences in ice destruction at the indenter impact parallel and
perpendicular to the prevailing direction of ice growth. Figure 9.12 presents pho-
tos of the ice structure after the indenter penetration in horizon of 65 cm. The ice
temperature is -6.3◦C, salinity - 5.25%, indenter diameter of 9 cm. The photos of
the vertical thin ice cuts (sections) in the polarized light are given. The thickness of
sections is about 1 mm [12].

The size of the zones and tension at their boundaries are determined by formulas:

𝜎𝑟1 = 𝜎𝑢 +4𝐶 ln
𝑟0
𝑟1

; (9.3)
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a) b) c)

Fig. 9.12 Ice destruction after the indenter impact parallel - a) and perpendicular - b) to the pre-
vailing direction of ice growth; c) - structure in the horizontal ice sections after indenter penetration
at an angle of 45◦ to the prevailing direction of ice growth.

𝑟1 = 𝑟0e
𝜎𝑐−𝜎𝑢

4𝐶 ; (9.4)

𝜎𝑟𝑒 =
2𝜎𝑐

𝑛
= 𝜎𝑐

(
𝑟1
𝑟𝑒

)2
; (9.5)

𝑟𝑒 = 𝑟1

√︂
𝑛

2
; (9.6)

where: 𝑟0, 𝑟1 and 𝑟𝑒 - distances to the zones of crushing, radial cracks and elastic
deformation, respectively; 𝜎𝑢 - tension created by the jack; 𝐶 - ice cover strength
at shear under the conditions of comprehensive pressure or cohesion at the internal
friction angle, equal to 0; 𝜎𝑐 - ice strength under the conditions of uniaxial pressure;
𝜎𝑡 - tensile ice strength. Parameter 𝑛 characterizes the plastic anisotropy of ice and
is equal to

𝑛 =
𝜎𝑐

𝜎𝑡
. (9.7)

9.5 Estimation of Ice Pressure on the Vertical Supports of
Hydraulic Structures, Taking into Account the Local Ice
Strength

Work on the scale effect of ice strength is given special attention in connection with
the increased tasks of designing and building engineering structures on the Arctic
shelf. Traditionally, the physical and mechanical properties of ice are studied on the
basis of cores drilled from even ice fields, hummocks, stamukhas and icebergs.

Determination of ice strength using a downhole probe-indenter is recommended
in [8] and the international standard ISO 19906. The probe-indenter can be used to
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identify the profile of heterogeneity in the strength of ice roads and the consolida-
tion of hummocks. The capabilities of the downhole probe-indenter make it possible
to adequately interpret the measurement results and significantly improve the accu-
racy of calculating ice loads on a structure, as well as more correctly compare ice
properties in different regions.

Assessment of the local strength of ice is directly related to the calculation of
the pressure of ice fields, hummocks, broken ice on vertical supports. The range of
changes in the local strength of ice is quite wide and ranges from 12 to 40 MPa,
which is associated with the influence of such parameters as temperature, salinity,
ice age and season. To assess the magnitude of the ice load on the supports of hy-
draulic structures, we will use the results of the work [14] given in Table 9.1.

There is also a known case of a catastrophe with the leading signs of the port of
Ust-Luga, which occurred on March 6, 2013 due to an incorrect assessment of the
ice pressure of hummocks 2.5 m high, formed around the supports due to the move-
ment of an ice field 0.6 m thick under the action of a surge wind from speed 20 m/s.
The results of the disaster are shown in Fig. 9.13. Underestimation of the strength of
the supports led to their elastic-plastic bending with subsequent destruction [14]. To
calculate the ice pressure during the bending of the supports, we will consider the
possibility of the transition of the structure to the area of nonlinear deformation with
an estimate of the ultimate loads of elastic bending. Two models are proposed for
research - pure bending, which can simulate the impact of an ice field, and bending
by a transverse concentrated force, which can simulate the pressure of an iceberg

Table 9.1 Estimation of ice load values

Estimation of ice load values Support diameter Support displacement Ice load

Lighthouse Tainio, 1967 3.5 m 14 m (without tilt) 2.3–4.7 MN

Lighthouse Bjornlaken, 1969 2.9 m 17 m, tilt 12% 10.9 MN

a) b)

Fig. 9.13 Ust-Luga’s catastrophe. a) Displacement of supports in the direction of maximum ice
pressure; b) formation of a “bunch” due to all-round compression by ice.
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or hummock. Schemes of elastic-plastic bending of vertical supports are shown in
Fig. 9.14.

It was shown in [14, 15] that the solution of the problems under consideration
can be reduced to the differentiation of ODEs of different orders, followed by the
solution of boundary value problems. The bending moment at which a vertical beam
of rectangular section 2ℎ by 𝑏 with length 𝐿 passes to a nonlinear deformation is
determined by the formula

𝑀𝑡 =
2
3
𝑏ℎ2𝜎𝑡 . (9.8)

The critical moment when the entire beam goes into a plastic state or a “plastic
hinge” is formed near the lower clamped end of the support

𝑀𝑘 =
2𝑏ℎ2𝑛𝜎𝑡
𝑛+1

, (9.9)

where the plastic anisotropy parameter 𝑛 was defined in (9.3) - (9.6).

a) b)

Fig. 9.14 Mathematical models of the bending of vertical supports, taking into account the weight
of the support and hydrostatic compression. a) Model of pure bending, b) model of bending with a
concentrated constant force, the plastic regions are shaded.
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The lateral pressure load 𝑃 at which plastic deformations appear in the support
is equal to

𝑃𝑡 =
𝑀𝑡

𝐿
.

In the case of taking into account the own weight of the beam,

𝑀 = 𝑃(𝐿− 𝑥) +4𝑤𝑏ℎ(𝐿− 𝑥)𝛾1,

where 𝛾1 is the specific weight of the beam material, 𝑤 - is the deflection of vertical
beam at its free end. That problem has an analytical solution in the form of special
Airy functions, but only in the elastic stage of bending [14]. In Fig. 9.15 shows
the results of the analytical solution [16] for the case of pure moment (𝑀 = const)
without own wight and the case of bending by load 𝑃.

Let us compare the values of the moments in Fig. 9.14 and the values of loads
from ice pressure in Table 9.1. The comparison shows that the ice pressure was so
strong that the lighthouse supports could not remain in an elastic state and went into
a nonlinear stage of deformation.

a) b)

Fig. 9.15 The functions “moment - deflection” (a) and “load-deflection” (b) when solving the
problem of bending vertical supports in the elastic-plastic state of deformation.
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9.6 Conclusions

To calculate the ice pressure during the bending of the supports, we will consider the
possibility of the transition of the structure to the area of nonlinear deformation with
an estimate of the ultimate loads of elastic bending. Two models are proposed for
research - pure bending, which can simulate the impact of an ice field, and bending
by a transverse concentrated force, which can simulate the pressure of an iceberg or
hummock. The ice pressure was so strong that the lighthouse supports could not re-
main in an elastic state and went into a nonlinear stage of deformation. We consider
that the problem of elastic-plastic vertical beams bending may be loused analyti-
cally. It is possible to define the critical moment or critical load when the beam is
crash. Analytical results can be useful as approximate when solving problems by
numerical methods, for example, FEM.
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Chapter 10
Stress Distribution at the Wavy Surface of a
Solid Incorporating Surface Stresses and
Surface Tension

Sergey Kostyrko, Mikhail Grekov, and Holm Altenbach

Abstract Employing the original Gurtin-Murdoch model of surface elasticity, we
investigate the stress field near the curved surface of isotropic elastic solid jointly
induced by surface stresses and external tensile loading. Due to the plane strain con-
ditions, the two-dimensional boundary value problem for half-plane with a curved
boundary is formulated in terms of the complex variables. Based on the Goursat-
Kolosov complex potentials and boundary perturbation method whereby the un-
known functions are sought in the form of a power series in the small parameter
represented by an amplitude-to-wavelength ratio of the surface undulation, the for-
mulated boundary value problem is reduced to the recurrent sequence of the integral
equations for any-order approximation. Considering the cosine-shaped surface, the
first-order approximation of the stress tensor components is derived in the closed-
form. The effect of the surface elasticity and surface tension on the stress field at the
surface is numerically investigated.

Key words: Surface undulation, Surface elasticity, Surface tension, Complete Gur-
tin-Murdoch model, Complex potentials, Boundary perturbation method

10.1 Introduction

Since the failure and fracture commonly appears at the surface of a material, it is
well-established that the surface properties have a tremendous effect on the material
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strength [8, 13, 26, 28, 29, 38, 55, 57]. The failure mechanism is traditionally as-
sociated with the local stress concentrations resulting from geometrical features of
surface roughness [14, 15, 18, 19, 21, 22, 25, 43, 65]. However, surface energy come
to play an increasingly important role when the size of surface asperities reduces to
the nanoscale [24, 30, 44, 45, 60, 64, 68]. The interest in new theoretical models,
which can accurately describe the behaviour of nanostructured materials from a per-
spective of surface elasticity, has considerably increased in recent decades with the
rapid advances in nanoscience and -technology [11, 12, 27, 36, 37, 67]. Perhaps the
most used model in the field of nanomechanics was formulated by Gurtin and Mur-
doch (GM) [33, 34]. They proposed to consider the surface domain as a negligibly
thin layer ideally adhering to the bulk material and differing from it by the elastic
moduli. The stress resultants acting in a surface layer were considered as surface
stresses. As a consequence, the constitutive relations and equilibrium equations of
the surface have been derived in a general form taking into account the effect of sur-
face elasticity and surface tension. The existence and uniqueness of linear elasticity
solutions considering Gurtin–Murdoch model was carefully studied in [2, 3].

It should be pointed out that the GM model has been widely applied in the analy-
sis of the size-dependent behaviour of nanosized particles, inclusions, wires, beams,
plates, and film coatings [1, 5, 7, 9, 10, 48, 49, 51, 66]. However, the majority of the
studies have been concentrated on the nanostructures having perfect surfaces with-
out any topological defects, although it is almost impossible to avoid them during
production. Another simplification, that could be quite often found in the litera-
ture, is related to neglecting the effects of the surface tension on the mechanical
response of nanostructures. In some papers, the surface tension was totally ignored
[4, 16, 41, 42, 61]. In others, only the normal component of the surface gradient of
the displacement field has been omitted [23, 31, 40]. In [35, 52, 62, 66], the gradient
of the surface displacement was completely avoided. The discussion of the simpli-
fied GM models can be found in [20, 47, 56]. As a result of such simplifications,
the effect of bulk traction induced by surface tension was not fully taken into con-
sideration. Nevertheless, the importance of surface tension in elastic deformation of
nanomaterials is increasingly recognized [20, 47, 53, 54, 59, 69, 70]. Therefore, in
this study, we extend our previous model [23] and carefully analyse the influence of
the surface tension on the stress field near surface asperities. For this purpose, we
developed a general approach based on the solution of the constitutive and equilib-
rium equations of the GM model which were derived in the Lagrangian description
for an arbitrary surface shape of solid under plane strain conditions. In order to de-
termine the semi-analytical expressions for the components of the stress and strain
tensors, we employ the complex variable method and boundary perturbation tech-
nique whereby the unknown functions are sought in the form of a power series in
the small parameter represented by an amplitude-to-wavelength ratio of the surface
undulation. Subsequent numerical analysis based on the first-order approximation
investigates the distribution of elastic stresses along the cosine-shaped surface in-
duced by surface stresses and remote tensile loading.



10 Stress Distribution at the Wavy Surface of a Solid 153

10.2 Problem Formulation

In this study, we consider a semi-infinite elastic solid with a roughened surface
slightly deviated from the planar one as shown in Fig. 10.1. The surface has elastic
properties differing from the same properties of the volume and, according to the
theory of surface elasticity [33, 34], is represented as a very thin film which adheres
to the bulk material without slipping. The plane strain conditions are assumed to be
satisfied and the solid is subjected to the remote tensile loading 𝑇 and the surface
traction 𝑞𝑠 induced by surface stress and surface tension.

So, we come to the two-dimensional boundary value problem for the elastic half-
plane Ω= {𝑧 : 𝑥2 < Y 𝑓 (𝑥1), 𝑥1 ∈ (−∞,+∞)} of the complex variable 𝑧 = 𝑥1+ 𝑖𝑥2 (𝑖 is
the imagine unit) with the curved boundary Γ defined by the equation

𝑧 ≡ Z = 𝑥1 + 𝑖Y 𝑓 (𝑥1). (10.1)

Function 𝑓 can describe the periodic undulation of surface profile as in [22, 23,
42, 66], i.e. 𝑓 (𝑥1) = 𝑓 (𝑥1+𝑎), or the local surface defect as in [19, 25], i.e. 𝑓 (𝑥1) = 0
if |𝑥1 | ≥ 𝑎. In both cases, max | 𝑓 (𝑥1) | = 𝑎, Y | 𝑓 ′ (𝑥1) | < 1, 0 < Y ≪ 1, and 𝐴 = Y𝑎
is the maximum deviation of the surface from a flat configuration, i.e plane 𝑥2 = 0.

In the presence of surface tension and elasticity, the traction boundary condition
on free from an external loading surface Γ takes the form:

𝜎𝑛𝑛 (Z) + 𝑖𝜎𝑛𝑡 (Z) = 𝑞𝑠 (Z), Z ∈ Γ, (10.2)

where 𝜎𝑛𝑛 and 𝜎𝑛𝑡 are the components of the bulk stress tensor defined in the local
Cartesian coordinates (𝑛, 𝑡).

The additional equation determines the continuity of displacements across the
surface region:

𝑢𝑠 (Z) = 𝑢(Z), (10.3)

where 𝑢𝑠 = 𝑢𝑠1 + 𝑖𝑢𝑠2 and 𝑢 = 𝑢1 + 𝑖𝑢2, (𝑢𝑠1, 𝑢𝑠2) and (𝑢1, 𝑢2) are the displacements of
the surface and bulk phases along the corresponding coordinate axes 𝑥1 and 𝑥2.

According to [20], function 𝑞𝑠 corresponding to the original GM model is written
as

Fig. 10.1 The model of a
semi-infinite elastic solid with
a nanosized surface asperities.
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𝑞𝑠 (Z) = 𝜎𝑠
0
𝑅

+
[
𝑀𝑠

𝑅
Re

𝜕𝑢

𝜕Z
+𝜎𝑠

0 Im
(
𝜕2𝑢

𝜕Z2 𝑒
𝑖𝛼0

)]

− 𝑖
[
𝑀𝑠Re

(
𝜕2𝑢

𝜕Z2 𝑒
𝑖𝛼0

)
− 𝜎

𝑠
0
𝑅

Im
𝜕𝑢

𝜕Z

]
,

(10.4)

where 𝑅 is the curvature radius of the boundary Γ; 𝛼0 is the angle between the
tangent to Γ and 𝑥1-axis at the point Z ; 𝜎𝑠

0 is the surface tension (residual surface
stress); 𝑀𝑠 = 𝜆𝑠 +2𝜇𝑠 , 𝜆𝑠 and 𝜇𝑠 are the surface elastic constants similar to the Láme
constants 𝜆 and 𝜇 of the bulk material.

Taking into account that

𝑒𝑖𝛼0 =
1+ 𝑖Y 𝑓 ′ (𝑥1)
ℎ(𝑥1) , ℎ(𝑥1) =

√︃
1+ Y2 𝑓 ′2 (𝑥1), (10.5)

Eq. (10.4) can be reduced to the following one

𝑞𝑠 (Z) = 𝜅𝜎𝑠
0 +

𝜅

2

[
𝑝𝑠
𝜕𝑢

𝜕Z
+𝑚𝑠

𝜕𝑢

𝜕Z

]

− 1
2ℎ

[
𝑝𝑠 (𝑖− Y 𝑓 ′) 𝜕

2𝑢

𝜕Z2 +𝑚𝑠 (𝑖 + Y 𝑓 ′) 𝜕
2𝑢

𝜕Z2

]
,

(10.6)

where 𝑝𝑠 =𝑀𝑠 +𝜎𝑠
0 , 𝑚𝑠 =𝑀𝑠−𝜎𝑠

0 , and the local principal curvature 𝜅 of the bound-
ary Γ is defined by the equation

𝜅(𝑥1) = Y 𝑓
′′ (𝑥1)

ℎ3 (𝑥1)
. (10.7)

In Eqs. (10.5)–(10.7) and hereafter, the prime denotes the derivative with respect to
the argument, and the bar over a symbol denotes the complex conjugation.

The condition (10.2) with the expression (10.4) describes the generalized Young–
Laplace law [11, 53, 54] in terms of the complex variables for the general case of
the plane strain problem. It is worth noting that Eq. (10.4) is valid for any value of
the parameter Y, not only for a small one. Assuming 𝜎𝑠

0 = 0 in the square brackets
of Eq. (10.4) that corresponds to the equality 𝑚𝑠 = 𝑝𝑠 = 𝑀𝑠 in Eq. (10.6), one can
come to the simplified form of Eq. (10.4) considered in [23, 31, 40] when the normal
component of the surface gradient of the displacement field is omitted [47]. If the
surface is flat, i.e. Y = 0 and 𝑓 ′ (𝑥1) ≡ 0, Eq. (10.4) is transformed into the simplest
one used in [28, 29, 66].

At infinity, the stresses 𝜎𝑖 𝑗 (𝑖, 𝑗 = {1,2}) in coordinates (𝑥1, 𝑥2) and the rotation
angle 𝜔 are specified as

lim
𝑥2→−∞𝜎22 = lim

𝑥2→−∞𝜎12 = lim
𝑥2→−∞𝜔 = 0, lim

𝑥2→−∞𝜎11 = 𝑇. (10.8)
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10.3 Boundary Equation for Complex Potentials

According to [17, 50], the traction 𝜎 = 𝜎𝑛𝑛 + 𝑖𝜎𝑛𝑡 at the area with the normal n
and complex displacement 𝑢 in the point 𝑧 ∈ Ω are related to the Goursat–Kolosov
functions Φ and Υ holomorphic in the regions Ω and Ω̃ = {𝑧 : 𝑧 ∈ Ω}, respectively:

𝜎(𝑧) = Φ(𝑧) +Φ(𝑧) −
(
Υ(𝑧) +Φ(𝑧) − (𝑧− 𝑧)Φ′ (𝑧)

)
𝑒−2𝑖𝛼, 𝑧 ∈ Ω, (10.9)

2𝜇
𝑑𝑢

𝑑𝑧
= 𝜘Φ(𝑧) −Φ(𝑧) +

(
Υ(𝑧) +Φ(𝑧) − (𝑧− 𝑧)Φ′ (𝑧)

)
𝑒−2𝑖𝛼, 𝑧 ∈ Ω, (10.10)

where 𝛼 is the angle between axes 𝑡 and 𝑥1.
Assuming 𝛼 = 0 and 𝛼 = 𝜋/2 in Eq. (10.9) when 𝑥2 tends to −∞, one can obtain

lim
𝑥2→−∞Φ(𝑧) = lim

𝑥2→+∞Υ(𝑧) = 𝑇/4. (10.11)

In Eqs. (10.9) and (10.10), we pass to the limit when 𝑧→ Z ∈ Γ and 𝛼 = 𝛼0. Taking
into account the boundary equation (10.2) and inseparability condition (10.3), we
get the following boundary equations for complex potentials Φ and Υ and derivative
of the complex displacement 𝑢′:

Φ(Z) +Φ(Z) −
(
Υ(Z) +Φ(Z) −

(
Z − Z

)
Φ′ (Z)

)
𝑒−2𝑖𝛼0 = 𝑞𝑠 (Z), (10.12)

2𝜇𝑢′ (Z) = (𝜘+1)Φ(Z) − 𝑞𝑠 (Z), Z ∈ Γ, (10.13)

where Φ(Z) = lim
𝑧→Z −𝑖0

Φ(𝑧), Υ(Z) = lim
𝑧→Z −𝑖0

Υ(𝑧).

10.4 Boundary Perturbation Method

In the case of a flat solid surface, i.e. Y = 0, Eq. (10.12) is reduced to Riemann-
Hilbert problem on piecewise holomorphic function, similar to that derived in [28].
Otherwise, when the surface profile is undulated, i.e Y ≠ 0 and 𝑓 ′ ≠ 0, it is impossible
to find the closed-form expressions for complex potentials Φ(𝑧) and Υ(𝑧) from Eq.
(10.12). Assuming that the surface is slightly undulated, i.e. Y≪ 1 and | 𝑓 ′ | < 1/Y),
we obtain the asymptotic expressions for Φ(𝑧) and Υ(𝑧) using the boundary pertur-
bation method which has been applied recently to a number of problems consider-
ing deformation of solids at the macro- [6, 18, 19, 21, 22, 25, 26, 65] and nanoscale
[23, 24, 30, 40, 41, 42, 63].

According to this method, we seek the unknown functions Φ, Υ and 𝑢′ as power
series in the small parameter Y:

Ψ(𝑧) =
∞∑︁
𝑛=0

Y𝑛

𝑛!
Ψ(𝑛) (𝑧), Ψ(𝑧) ≡ {Φ(𝑧), Υ(𝑧), 𝑢′ (𝑧)} (10.14)
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The boundary values of expansion coefficients Φ(𝑛) , Υ(𝑛) and 𝑢′(𝑛) are repre-
sented in the form of Taylor series in the vicinity of the line 𝑥2 = 0 treating 𝑥1 as a
parameter:

Φ(𝑛) (Z) =
∞∑︁

𝑚=0

[𝑖Y 𝑓 (𝑥1)]𝑚
𝑚!

Φ(𝑚)
(𝑛) (𝑥1), (10.15)

Υ(𝑛) (Z) =
∞∑︁

𝑚=0

[−𝑖Y 𝑓 (𝑥1)]𝑚
𝑚!

Υ(𝑚)
(𝑛) (𝑥1),

𝑢′(𝑛) (Z) =
∞∑︁

𝑚=0

[𝑖Y 𝑓 (𝑥1)]𝑚
(𝑚)! 𝑢 (𝑚+1)

(𝑛) (𝑥1).

In view of the condition Y | 𝑓 ′ (𝑥1) | < 1, one can write the following power series for
known functions 𝜅 and ℎ−1 describing local principal curvature and metric coeffi-
cient, respectively:

𝜅(𝑥1) = Y 𝑓 ′′ (𝑥1)
[
1+

∞∑︁
𝑚=1

(−1)𝑚
𝑚!

(2𝑚 +1)!!
2𝑚

(Y 𝑓 ′ (𝑥1))2𝑚

]
, (10.16)

ℎ−1 (𝑥1) =
∞∑︁

𝑚=0

(−1)𝑚
𝑚!

(2𝑚−1)!!
2𝑚

(Y 𝑓 ′ (𝑥1))2𝑚 .

Substituting series (10.14)–(10.16) into Eqs. (10.12) and equating the coefficients at
Y𝑛 (𝑛 = 0,1, . . . ), we come to the recurrent sequence of Riemann-Hilbert problems:

Ξ+
(𝑛) (𝑥1) −Ξ−

(𝑛) (𝑥1) = −𝑞𝑠(𝑛) (𝑥1) +𝐹(𝑛) (𝑥1), (10.17)

where
Ξ±
(𝑛) (𝑥1) = lim

𝑧→𝑥1±𝑖0
Ξ(𝑛) (𝑧)

and 𝑞𝑠(𝑛) are the coefficients of the power series expansion of right-hand side of Eq.
(10.12), 𝑞𝑠(0) = 0; 𝐹(𝑛) are the functions coming from expansion of left-hand side
of Eq. (10.12) and depending on the complex potentials of the previous approx-
imations, i.e. Φ(𝑚) and Υ(𝑚) (𝑚 = 0,1, . . . , 𝑛 − 1) and their derivatives, 𝐹(0) = 0;
piecewise functions Ξ(𝑛) are defined as

Ξ(𝑛) (𝑧) =


Υ(𝑛) (𝑧), Im 𝑧 > 0

Φ(𝑛) (𝑧), Im 𝑧 < 0
(10.18)

The solution of the problem (10.17) can be written in terms of Cauchy type inte-
grals [50]:

Ξ(𝑛) (𝑧) = 𝐼𝑛 (𝑧) + 𝐽𝑛 (𝑧) +𝐶𝑛, (10.19)
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where

𝐼𝑛 (𝑧) = − 1
2𝜋𝑖

+∞∫
−∞

𝑞𝑠(𝑛) (𝑡)
𝑧− 𝑡 d𝑡, 𝐽𝑛 (𝑧) = 1

2𝜋𝑖

+∞∫
−∞

𝐹(𝑛) (𝑡)
𝑧− 𝑡 d𝑡 (10.20)

and 𝐶0 = 𝑇/4, 𝐶𝑛 = 0 (𝑛 = 1,2, . . . ). It should be noted that integral 𝐽𝑛 is the known
function at the current 𝑛-th step of the approximation.

As a result, the boundary equation (10.13) can be presented as the recurrent se-
quence of the integral equations:

2𝜇𝑢′(𝑛) (𝑥1) − (𝜘+1)𝐼−𝑛 (𝑥1) + 𝑞𝑠(𝑛) (𝑥1) = (𝜘+1)𝐽−𝑛 (𝑥1) +𝑄𝑛, (10.21)

where 𝑄0 = (𝜘+1)𝑇/4, 𝑄𝑛 = 0 (𝑛 = 1,2, . . . ).
Following to the Sokhotski–Plemelj formulas [50], the boundary values 𝐼−𝑛 and

𝐽−𝑛 of the Cauchy type integrals 𝐼𝑛 and 𝐽𝑛 can be written as

𝐼−𝑛 (𝑥1) = 1
2
𝑞𝑠(𝑛) (𝑥1) − 1

2𝜋𝑖

∞∫
−∞

𝑞𝑠(𝑛) (𝑡)
𝑥1 − 𝑡 d𝑡, (10.22)

𝐽−𝑛 (𝑥1) = −1
2
𝐹(𝑛) (𝑥1) + 1

2𝜋𝑖

∞∫
−∞

𝐹(𝑛) (𝑡)
𝑥1 − 𝑡 𝑑𝑡.

For the zero-order approximation, we arrive at the following relation

𝑢′(0) =
(𝜘+1)𝑇

8𝜇
, (10.23)

and the corresponding complex potentials can be found from Eq. (10.19):

Φ(0) = Υ(0) = 𝑇/4. (10.24)

After that, we can obtain functions 𝑞𝑠(1) and 𝐹(1) :

𝑞𝑠(1) (𝑥1) = 𝜎𝑠
0 𝑓

′′ (𝑥1) − 𝑖

2
[𝑝𝑠 +𝑚𝑠]𝑢′′(1) (𝑥1), 𝐹(1) (𝑥1) = 𝑖𝑇 𝑓 ′ (𝑥1), (10.25)

When the surface profile is described by the periodic function 𝑓 , the solution of the
integral equation (10.21) can be found in terms of a trigonometric series:

𝑢′(1) (𝑥1) =
∞∑︁
𝑘=1

[
𝐴1
𝑘 sin(𝑏𝑘𝑥1) +𝐵1

𝑘 cos(𝑏𝑘𝑥1)
]
, 𝑏𝑘 = 2𝜋𝑘/𝑎. (10.26)

When the surface undulation is presented by the cosine function, i.e.

𝑓 (𝑥1) = −𝑎 cos(2𝜋𝑥1/𝑎),



158 Sergey Kostyrko, Mikhail Grekov, and Holm Altenbach

the unknown coefficients in Eq. (10.26) can be easily derived from Eq. (10.21) as
follows

𝐴1
1 = 0, 𝐵1

1 = − 𝑎𝑏2
1

32𝜇2

[
𝑇 (𝜅 +1) (𝑝𝑠 +𝑚𝑠) +16𝜎𝑠

0 𝜇
]
. (10.27)

As a consequence, the corresponding complex potentials are obtained from Eq.
(10.19) taking into account Eq. (10.25):

Υ(1) (𝑧) =

[
𝑎𝑏1
2
𝑇 − 𝑎𝑏

2
1

2
𝜎𝑠

0 +
{
− 𝑎𝑏

2
1

32𝜇
(𝜅 +1) − 𝐵1𝑏1

4

}
(𝑝𝑠 +𝑚𝑠)

]
e𝑖𝑏1𝑧 ,

Φ(1) (𝑧) =
[
−𝑎𝑏1

2
𝑇 − 𝑎𝑏

2
1

2
𝜎𝑠

0 +
{
− 𝑎𝑏

2
1

32𝜇
(𝜅 +1) + 𝐵1𝑏1

4

}
(𝑝𝑠 +𝑚𝑠)

]
e−𝑖𝑏1𝑧 .

(10.28)
According to Eq. (10.12), the components of the stress tensor in the local coordi-
nates (𝑛, 𝑡) can be written for the first-order approximation as it follows

𝜎𝑛𝑛 (𝑧) + 𝑖𝜎𝑛𝑡 (𝑧) = 2YReΦ(1) (𝑧) − Y
[
Υ(1) (𝑧) +Φ(1) (𝑧) − (𝑧− 𝑧)Φ′

(1) (𝑧)
]
,

𝜎𝑡𝑡 (𝑧) +𝜎𝑛𝑛 (𝑧) = 𝑇 +4YReΦ(1) (𝑧), 𝑧 ∈ Ω.
(10.29)

Thus, the stress field near nanosized surface asperities with geometrical fea-
tures described by cosine function can be evaluated for the first-order approxima-
tion using Eqs. (10.27)–(10.29). As one can see from these equations, the original
GM model leads to the same results as the simplified one taking into account the
surface tension only in the first term of Eq. (10.6). This follows since 𝑝𝑠 +𝑚𝑠 =
𝑀𝑠 +𝜎𝑠

0 +𝑀𝑠 −𝜎𝑠
0 = 2𝑀𝑠 for the original GM model, and 𝑝𝑠 +𝑚𝑠 = 𝑀𝑠 +𝑀𝑠 = 2𝑀𝑠

for the simplified one. In the next section, we will analyse the effect of surface
elastic parameters and surface tension on the stress distributions along the cosine
surface patterns considering several numerical examples. The analysis of more com-
plex structures of the surface relief based on the high-order approximations of the
boundary perturbation method will be conducted in our further studies.

10.5 Numerical Results

In the following numerical analysis, we assume that the surface properties are de-
scribed by the surface parameters derived in [46, 58] for aluminium by molecu-
lar dynamics simulations, which are 𝜆𝑠 = 6.851 N/m and 𝜇𝑠 = −0.376 N/m, as a
consequence, 𝑀𝑠 = 6.099 N/m. The bulk elastic constants for aluminium are taken
𝜆 = 58.17 GPa and 𝜇 = 26.13 GPa. The surface relief is described by the cosine
function, i.e. 𝑓 (𝑥1) = −𝑎 cos(2𝜋𝑥1/𝑎), and its wavelength is set as 𝑎 = 10 nm. The
small parameter is taken equal to Y = 0.1 that corresponds to the relief amplitude
equal to 𝐴 = 1 nm.
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Fig. 10.2 The distribution of
the hoop stress 𝜎𝑡𝑡 along the
slightly undulated surface Γ
with 𝑀𝑠 = 6.099 N/m.

Fig. 10.3 The distribution of
the normal stress 𝜎𝑛𝑛 along
the slightly undulated surface
Γ with 𝑀𝑠 = 6.099 N/m.

Fig. 10.4 The distribu-
tion of the tangential stress
𝜎𝑛𝑡 along the slightly un-
dulated surface Γ with
𝑀𝑠 = 6.099 N/m.

Figures 10.2, 10.3 and 10.4 illustrate the influence of the remote loading 𝑇 and
surface tension 𝜎𝑠

0 on the distribution of hoop 𝜎𝑡𝑡 , normal 𝜎𝑛𝑛 and tangential 𝜎𝑛𝑡

stresses, respectively, along the surface Γ with cosine undulated profile, and stiffness
𝑀𝑠 = 6.099 N/m. From Fig. 10.2, it is seen that the maximum hoop stresses appears
under the joint influence of surface tension 𝜎𝑠

0 = 1 N/m and remote tensile loading
𝑇 = 0.1 GPa (blue line). Also, we can conclude that surface tension alone without
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remote loading, i.e. 𝜎𝑠
0 = 1 N/m and 𝑇 = 0 (green line), has a greater impact on

the hoop stress field than remote loading without surface tension, i.e. 𝜎𝑠
0 = 0 and

𝑇 = 0.1 GPa (red line). Figure 10.3 shows that surface tension is responsible for
appearance of normal stresses: their maximum level increases to 0.4 GPa if we take
𝜎𝑠

0 = 1 N/m, and an increase in tensile loading does not affect it (green and blue lines
overlap). In contrast, the tangential stresses depend on tensile loading and does not
depend on the surface tension (see Fig. 10.4 – red and blue lines corresponding to
the cases 𝜎𝑠

0 = {0;1} N/m, respectively, overlap). However, their level induced by
tensile loading is much lower than the level of normal stresses induced by surface
tension.

Figures 10.5, 10.6 and 10.7 show the same dependencies as in the previous ex-
amples but for the increased stiffness of the surface layer 𝑀𝑠 = 60.99 N/m. As
one can see, an increase in parameter 𝑀𝑠 leads to increase in the hoop stresses 𝜎𝑡𝑡 .
This is particularly the case for the hoop stresses induced by surface tension alone
(Fig. 10.5, green line) or jointly with external loading 𝑇 (Fig. 10.5, blue line). For
normal 𝜎𝑛𝑛 and tangential 𝜎𝑛𝑡 stresses, the increase in surface stiffness 𝑀𝑠 yields
no visible results.

Fig. 10.5 The distribution of
the hoop stress 𝜎𝑡𝑡 along the
slightly undulated surface Γ
with 𝑀𝑠 = 60.99 N/m.

Fig. 10.6 The distribution of
the normal stress 𝜎𝑛𝑛 along
the slightly undulated surface
Γ with 𝑀𝑠 = 60.99 N/m.
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Fig. 10.7 The distribution
of the tangential stress 𝜎𝑛𝑡

along the slightly undulated
surface Γ with 𝑀𝑠 = 60.99
N/m.

Fig. 10.8 The distribution
of the hoop stress 𝜎𝑡𝑡 along
the slightly undulated surface
Γ with vanishing surface
stiffness, i.e. 𝑀𝑠 = 0.

Fig. 10.9 The distribution of
the normal stress 𝜎𝑛𝑛 along
the slightly undulated surface
Γ with vanishing surface
stiffness, i.e. 𝑀𝑠 = 0.

In some studies [32, 39], authors take into account only surface tension 𝜎𝑠
0 ne-

glecting the effect of surface elasticity, i.e. 𝑀𝑠 = 0. Our solution allows investigating
this case as well in the context of a curved solid surface. Figures 10.8, 10.9 and 10.10
give the distribution of stresses along the slightly undulated surface Γ with vanishing
surface stiffness, i.e. 𝑀𝑠 = 0 in Eq. (10.4) or 𝑝𝑠 = −𝑚𝑠 = 𝜎𝑠

0 in Eq. (10.6). Compar-
ing the presented results, we notice that the level of the hoop stresses 𝜎𝑡𝑡 decreases
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Fig. 10.10 The distribution
of the tangential stress 𝜎𝑛𝑡

along the slightly undulated
surface Γ with vanishing
surface stiffness, i.e. 𝑀𝑠 = 0.

in contrast to the cases when 𝑀𝑠 ≠ 0. The level of other stresses doesn’t change. It
should be noted that the red lines correspond to the classical solution obtained in
[14] when 𝑀𝑠 = 0 and 𝜎𝑠

0 = 0.

10.6 Conclusions

Employing the complete Gurtin-Murdoch model of surface elasticity, the stress dis-
tribution along the perturbed solid surface has been investigated taking into ac-
count the coupled effect of surface elasticity and surface tension. Due to the plane
strain conditions, the two-dimensional boundary value problem for half-plane with
a curved boundary was formulated in terms of the complex variables. Based on the
Goursat-Kolosov complex potentials and boundary perturbation method whereby
the unknown functions are sought in the form of a power series in the small param-
eter represented by an amplitude-to-wavelength ratio of the surface undulation, the
formulated boundary value problem was reduced to the recurrent sequence of the
integral equations for any-order approximation. For the cosine-shaped surface, the
first-order approximation of the stress tensor components was derived in the closed-
form. Analysing the corresponding numerical results, we come to the following
conclusions:

• The original GM model gives the same results for the slightly undulated sur-
face analysed within the first-order approximation of the boundary perturbation
method as the simplified one, which corresponds to omitting the normal com-
ponent of the surface gradient of the displacement vector in GM constitutive
equation.

• The maximum level of the hoop stresses appears under the joint influence of
surface tension and remote tensile loading.

• The surface tension alone without remote loading has a greater impact on the
hoop stress field than remote loading without surface tension.



10 Stress Distribution at the Wavy Surface of a Solid 163

• The increase in the surface stiffness leads to the increase in the hoop stresses.
This effect is more significant for the surface tension-induced hoop stresses, and
less significant for hoop stresses induced by the remote tensile loading.

• The surface tension induces the normal stresses the level of which is little affected
by the remote tensile loading and surface stiffness.

• The surface elasticity and surface tension have a little effect on the level of tan-
gential stresses.
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modeling mechanical processes in composites with two-dimensional reinforcements. Com-
posites Science and Technology, 210:108751, 2021.

50. N.I. Muskhelishvili. Some Basic Problems of the Mathematical Theory of Elasticity. Springer,
Netherlands, 1977.

51. L. Nazarenko, S. Bargmann, H. Stolarski. Closed-form formulas for the effective properties
of random particulate nanocomposites with complete Gurtin–Murdoch model of material sur-
faces. Continuum Mechanics and Thermodynamics, 29:77–96, 2017.

52. L. Nazarenko, H. Stolarski, H. Altenbach. Effective properties of short-fiber composites with
Gurtin–Murdoch model of interphase. International Journal of Solids and Structures, 97:75–
88, 2016.

53. Y.S. Podstrigach, Y.Z. Povstenko. An Introduction to the Mechanics of Surface Phenomena
in Deformable Solids. Naukova Dumka, Kiev, 1985.

54. Yu.Z. Povstenko. Theoretical investigation of phenomena caused by heterogeneous surface
tension in solids. Journal of the Mechanics and Physics of Solids, 41:1499–1514, 1993.

55. Y. Pronina, A. Maksimov, M. Kachanov. Crack approaching a domain having the same elas-
tic properties but different fracture toughness: Crack deflection vs penetration. International
Journal of Engineering Science, 156:103374, 2020.

56. C.Q. Ru. Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity
with clarification of its related versions. Science China Physics, Mechanics and Astronomy,
53:536–544, 2010.

57. O. Sedova, Y. Pronina. The thermoelasticity problem for pressure vessels with protective
coatings, operating under conditions of mechanochemical corrosion. International Journal of
Engineering Science, 170: 103589, 2022.

58. V.B. Shenoy. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys-
ical Review B, 71:094104, 2005.

59. R. Shuttleworth. The surface tension of solids. Proceedings of the Physical Society. Section
A, 63(5):444–457, 1950.



166 Sergey Kostyrko, Mikhail Grekov, and Holm Altenbach

60. G. Shuvalov, S. Kostyrko. On the role of interfacial elasticity in morphological instability of a
heteroepitaxial interface. Continuum Mechanics and Thermodynamics, 33:2095–2107, 2021.

61. G.M. Shuvalov, A.B. Vakaeva, D.A. Shamsutdinov, S.A. Kostyrko. The effect of nonlinear
terms in boundary perturbation method on stress concentration near the nanopatterned bi-
material interface. Vestnik of Saint Petersburg University. Applied Mathematics. Computer
Sciences. Control Processes, 16:165–176, 2020.

62. L. Tian, R.K.N.D. Rajapakse. Analytical solution for size-dependent elastic field of a
nanoscale circular inhomogeneity. Journal of Applied Mechanics, 74:568–574, 2007.

63. A.B. Vakaeva, M.A. Grekov. Effect of interfacial stresses in an elastic body with a nanoinclu-
sion. AIP Conference Proceedings, 1959:070036, 2018.

64. A.B. Vakaeva, G.M. Shuvalov, S.A. Kostyrko. Evolution of the cylindrical nanopore mor-
phology under diffusion processes. Materials Physics and Mechanics, 47:423–430, 2021.

65. Yu.I. Vikulina, M.A. Grekov, S.A. Kostyrko. Model of film coating with weakly curved sur-
face. Mechanics of Solids, 45:778–788, 2010.

66. Yu.I. Vikulina, M.A. Grekov. The stress state of planar surface of a nanometer-sized elastic
body under periodic loading. Vestnik St. Petersburg University: Mathematics, 45:174–180,
2012.

67. J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, T. Wang. Surface stress
effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 24:52–82,
2011.

68. H.B. Yang, M. Dai. Influence of surface roughness on the stress field around a nanosized hole
with surface elasticity. Zeitschrift für Angewandte Mathematik und Physik, 69:1–9, 2018.

69. H.B. Yang, M. Dai, C.F. Gao. Stress field in a porous material containing periodic arbitrarily-
shaped holes with surface tension. Mathematics and Mechanics of Solids, 23:120–130, 2018.

70. G. Yang, C.F. Gao, C.Q. Ru. A study on the Gurtin–Murdoch model for spherical solids with
surface tension. Zeitschrift für Angewandte Mathematik und Mechanik, 72:1–15, 2021.



Chapter 11
Analytical and Numerical Methods for Analysis
of Stress Singularity in Three-Dimensional
Problems of Elasticity Theory

Valerii P. Matveenko, Andrey Yu. Fedorov, Tatiana O. Korepanova, Natalja V.
Sevodina, and Igor N. Shardakov

Abstract Different variants of stress singularity analysis in three-dimensional prob-
lems of elasticity theory are considered. A complete system of eigensolutions is
developed for different variants of circular conical bodies: solid cone, hollow cone,
a composite cone under different variants of boundary conditions on the lateral sur-
faces. The applicability of the constructed eigensolutions for estimating the charac-
ter of stress singularity at the vertices of conical bodies is considered. The numerical
results presented in the study provide insight into the character of stress singularity
at the vertices of solid and hollow cones under different variants of boundary condi-
tions on the lateral surfaces. A method for constructing singular solutions for coni-
cal bodies is suggested and variants of its numerical realization based on the finite
element method are considered. The results of conducted numerical experiments
demonstrate the efficiency and reliability of the proposed method. The computation
of eigenvalues allows us to determine the character of stress singularity in homo-
geneous and composite, circular and non-circular cones under different boundary
conditions. The work presents an algorithm for the finite-element analysis of sin-
gular solutions to three-dimensional problems of elasticity theory for elastic bodies
of isotropic, anisotropic, and functionally graded materials. The algorithm is based
on determination of a power law relationship for stresses in the vicinity of singular
points. The algorithm was verified by solving two- and three-dimensional problems
and comparing the obtained results with those available in the literature.
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11.1 Introduction

One of the important results of classical elasticity theory is that it provides the ex-
istence of singular solutions associated with the occurrence of infinite stresses at
points (called singular) where smoothness of the body surface is violated, the type
of boundary conditions is changed, or contact of different materials takes place, as
well as inside the body, at points where the condition for smoothness of the interface
between different materials is violated. An example of theoretical justification of the
concept that the existence of singular solutions is possible under certain conditions
can be found in work [12], where it is shown that in the vicinity of angular points
the equations of linear elasticity theory have a solution in the following form

𝜎 ∼
∑︁
𝑛=1

𝐾𝑛 𝑓𝑛𝑟
𝜆𝑛−1, 𝑟 → 0, 𝑐 < Re𝜆1 < Re𝜆2 < . . . < Re𝜆𝑛 < . . . , (11.1)

or a more complex solution with logarithmic components in the case of multiple
points of the spectrum 𝜆𝑛. Here, 𝑟 is the distance to the angular point, 𝐾𝑛 are con-
stants (called the stress intensity coefficients); 𝑓𝑛 are the functions of angular distri-
bution of the stress field 𝜎 in the vicinity of the angular point, which in the planar
case depend on a single polar angular variable 𝜑 at 𝑐 = 0, whereas in the spatial
case — on two spherical coordinates 𝜑, \ at 𝑐 = −0.5. The form of solution (11.1)
suggests that if there are 𝜆𝑛, satisfying the condition Re𝜆n < 1, the stresses tend to
infinity at 𝑟 tending to zero.

Singular points of different types are often found in computational models con-
structed for solving various applied problems of the theory of elasticity. The exis-
tence of singular solutions suggests that in general the vicinities of singular points
are the zones of strong stress concentration that triggers the fracture process in a
body. The stress behavior in the vicinity of singular points has long been the focus
of many studies. For two- and three-dimensional problems of linear elasticity the-
ory, different variants of singular points have been considered. The results obtained
in this field are presented in sufficient detail in review papers [5, 25, 28, 31, 32].
Among the variety of problems with singular points, one of the first and most stud-
ied is the problem for the crack tip, which is one of the main objects of study in
fracture mechanics. The distinguishing features of problems in fracture mechan-
ics for bodies with acute-angle notches are specified in works by N. F. Morozov
[21, 22]: the stress field in the vicinity of a angular notch consists of regular and
singular components, and the singularity exponent depends on the opening angle of
the notch.

One of the approaches to the construction of solutions of the form (11.1) is based
on studying singular regions. In two-dimensional problems, the objects of investi-
gation are the neighborhoods of vertices of wedge-shaped regions: homogeneous or
composite plane wedges with boundary conditions specified on their faces (in terms
of stresses or displacements). Over a more than half-century history of studies on
this topic almost all possible variants of wedge-shaped bodies have been considered:
homogeneous and composite, isotropic and anisotropic, functionally gradient [7, 8],
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etc. For three-dimensional problems, two classes of regions can be distinguished:
vicinities of points on the edge of a spatial wedge and vicinities of vertices of homo-
geneous and composite conical regions, such as vertices of circular and non-circular
cones, triangular and polyhedral wedges. Here it should be noted that mechanical
characteristics of such regions may correspond to those of isotropic, anisotropic,
and even functionally graded materials. Interest in three-dimensional problems of
the first class has considerably diminished due to the results of some works, includ-
ing [9, 20], where it is shown that solutions to the plane and antiplane problems
for wedges located in the planes perpendicular to the edge of a spatial wedge de-
termine the type of stress singularity at the points of the edge through which the
corresponding plane passes.

In the last few decades, the number of works devoted to the study of stress
singularity at the vertex of a polyhedral wedge and a cone has considerably in-
creased. Most of these problems were solved using different variants of numerical
methods, mainly finite and boundary element methods. Among the works using
the ideas of various numerical methods worthy of note are the studies, which are
based on the finite element method [1, 6, 13, 16, 19, 23, 24], on the boundary ele-
ment method [11, 30], and on the application of the Mellin transformation to initial
two-dimensional boundary integral equations [2]. In [16], a numerical method was
developed to estimate the nature of the stress singularity at the vertex of a cone with
elliptic base and homogeneous boundary conditions. In continuation to these stud-
ies, [19] presents a series of numerical methods, which makes it possible to obtain
new results for different variants of cones, in particular, for homogeneous and com-
posite, circular and non-circular cones under homogeneous and mixed boundary
conditions.

As in other sections of the theory of elasticity, the analytical methods play an im-
portant role in the construction of singular solutions, and are still considered as an
effective instrument both for obtaining specific numerical results and testing numer-
ical methods. In three-dimensional problems, analytical methods are mainly applied
to circular cones (axisymmetric conical regions: homogeneous [3, 14, 15, 33] and
composite [14, 26, 27]). One of the first examples of analytical treatment of these
problems is [3], which considers a solid cone under axisymmetric deformation and
rotation with boundary conditions specified in terms of displacements and stresses.
In further studies, the analytical solutions of some particular problems were ob-
tained. For example, works [26, 27] present the results for a composite cone under
axisymmetric deformation. In this case, a composite cone is a structure consisting of
two nested cones, which have a common contact area. The solutions were obtained
for ideal contact and ideal sliding conditions. In [33], an axisymmetric problem for
a circular cone of transversally isotropic material is considered. A fairly complete
review of works dealing with the study of circular cones by analytical methods is
given in [32]. Among the cited works, [15] is the most comprehensive study on
the subject. Here, an analytical solution for a solid circular cone was constructed
and numerical results, disclosing the nature of the stress singularity at the vertex
of a solid circular cone with the stress and displacement boundary conditions on
the lateral surface, were obtained. In [14], a full spectrum of analytical eigenvalues
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for different variants of cones (solid, hollow, composite) is specified and evaluation
of stress singularity exponents for solid and hollow cones under different boundary
conditions on the lateral surfaces is illustrated by some numerical simulations.

11.2 Analysis of Stress Singularity Based on the Constructed
Analytical Eigensolutions for Semi-infinite Circular Conical
Bodies

Let us consider a homogeneous circular cone (Fig. 11.1a) whose vertex coincides
with the center of spherical coordinates 𝑟, \, 𝜑 and its base is perpendicular to the
axis \ = 0. The cone occupies a volume 0 ≤ 𝑟 <∞, \1 ≤ \ ≤ \0, 0 ≤ 𝜑 ≤ 2𝜋, and its
boundary is defined by coordinate surfaces \ = \1, \ = \0. The variant corresponds
to a solid cone.

We need to construct eigensolutions satisfying the homogeneous equilibrium
equations

(1+ 𝑆)graddivU− rot rotU = 0 (11.2)

and one of the homogeneous boundary conditions on the surfaces \ = \1, \ = \0 for
displacements

𝑢𝑟 = 0, 𝑢\ = 0, 𝑢𝜑 = 0, (11.3)

and stresses
𝜎𝑟 \ = 0, 𝜎\ \ = 0, 𝜎\𝜑 = 0, (11.4)

or mixed boundary conditions, which in terms of mechanics, correspond to ideal
sliding on the lateral surface

𝑢\ = 0, 𝜎𝑟 \ = 0, 𝜎\𝜑 = 0. (11.5)

For the examined body of rotation and boundary conditions (11.3)–(11.5), the
eigen solutions can be represented as a Fourier series in the circular coordinate 𝜑

Fig. 11.1 Variants of conical
bodies: hollow cone (a);
hollow composite cone (b)
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𝑢𝑟 (𝑟, \, 𝜑) = 𝑢0 (\) 𝑟𝛼 +
∞∑︁
𝑘=1

[𝑢𝑘 (\) 𝑟𝛼 sin(𝑘𝜑)],

𝑢\ (𝑟, \, 𝜑) = v0 (\) 𝑟𝛼 +
∞∑︁
𝑘=1

[v𝑘 (\) 𝑟𝛼 sin(𝑘𝜑)],

𝑢𝜑 (𝑟, \, 𝜑) = 𝑤0 (\) 𝑟𝛼 +
∞∑︁
𝑘=1

[𝑤𝑘 (\) 𝑟𝛼 cos(𝑘𝜑)] .

(11.6)

Here, the dependence on the radius is represented according to (11.1) 𝑆 = 1/(1−2𝜈);
𝜈 is Poisson’s ratio; U is the displacement vector, 𝑢𝑟 , 𝑢\ , 𝑢𝜑 are the components of
the vector of displacements along the axes 𝑟 , \, 𝜑; 𝜎𝑟 \ , 𝜎\ \ , 𝜎\𝜑 are the compo-
nents of the stress tensor, 𝛼 is the characteristic exponent.

If \1 = 0, then the examined region is bounded by only one coordinate surface
\ = \0, and at \ = 0 the regularity conditions must be satisfied

𝜕𝑢𝑟/𝜕\ = 0, 𝑢\ = 0, 𝑢𝜑 = 0. (11.7)

Within the framework of the suggested problem formulation we can also con-
sider a composite cone occupying the domain 𝑉 =𝑉 (1) +𝑉 (2) , where the subdomain
𝑉 (1) (subdomain 𝑉 (2) ) represents the cone segment made of the material with shear
modulus 𝜇 (1) (𝜇 (2) ) and Poisson’s ratio 𝜈 (1) (𝜈 (2) ) and its geometry is determined
by the relations 0 ≤ 𝑟 ≤∞, 0 ≤ 𝜑 ≤ 2𝜋, \2 ≤ \ ≤ \0 (\1 ≤ \ ≤ \2). In particular cases,
\1 and \0 can be equal to 0 and 𝜋, respectively.

For a composite cone (Fig. 11.1b), the eigensolutions (11.6) are constructed for
each of the subdomains, and at the contact boundary \ = \2 one can set ideal bonding
conditions

𝑢 (1)𝑟 = 𝑢 (2)𝑟 , 𝑢 (1)𝜑 = 𝑢 (2)𝜑 , 𝑢 (1)\ = 𝑢 (2)\ ,

𝜎 (1)
\ = 𝜎 (2)

\ , 𝜏 (1)𝑟 \ = 𝜏 (2)𝑟 \ , 𝜏 (1)𝜑\ = 𝜏 (2)𝜑\ ,
(11.8)

or ideal sliding conditions

𝑢 (1)\ = 𝑢 (2)\ , 𝜎 (1)
\ = 𝜎 (2)

\ , 𝜏 (1)𝑟 \ = 𝜏 (2)𝑟 \ = 𝜏 (1)𝜑\ = 𝜏 (2)𝜑\ = 0. (11.9)

After substituting equations (11.6) into equilibrium equations (11.2) and chang-
ing to a new independent variable 𝑥 = (1− cos\)/2, we obtain for each of the har-
monics of the Fourier series the following equations:

𝑥(1− 𝑥) 𝑑
2𝑢𝑘 (𝑥)
𝑑𝑥2 + (1−2𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
+

[
4𝑥𝑅1 (𝑥−1) + 𝑘2]

4𝑥 (𝑥−1) 𝑢𝑘 (𝑥) +

+𝑥 (1− 𝑥) 𝑅2√︁
𝑥 (1− 𝑥)

𝑑v𝑘 (𝑥)
𝑑𝑥

+ 𝑅2√︁
𝑥 (1− 𝑥)

[(
1
2
− 𝑥

)
v𝑘 (𝑥) − 𝑘𝑤𝑘 (𝑥)

2

]
= 0,

(11.10a)
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𝐺1𝑥 (1− 𝑥) 𝑑
2𝑣𝑘 (𝑥)
𝑑𝑥2 +𝐺1 (1−2𝑥) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+

[
4𝑥𝐺2 (𝑥−1) + 𝑘2 +𝐺1

]
4𝑥 (𝑥−1) 𝑣𝑘 (𝑥) +

+𝐺3
√︁
𝑥 (1− 𝑥) 𝑑

𝑑𝑥
𝑢𝑘 (𝑥) +

[
𝑘 (1−𝐺1)

2
𝑑𝑤𝑘 (𝑥)
𝑑𝑥

+ (𝐺1 +1) 𝑘 (2𝑥−1)
4𝑥 (𝑥−1) 𝑤𝑘 (𝑥)

]
= 0,

(11.10b)

𝑥(1− 𝑥) 𝑑
2𝑤𝑘 (𝑥)
𝑑𝑥2 + (1−2𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
+

[
4𝑥𝐺2 (𝑥−1) +𝐺1𝑘

2 +1
]

4𝑥 (𝑥−1) 𝑤𝑘 (𝑥) +

+ 𝑘𝐺3

2
√︁
𝑥 (1− 𝑥)

𝑢𝑘 (𝑥) +
[ (𝐺1 −1) 𝑘

2
𝑑𝑣𝑘 (𝑥)
𝑑𝑥

+ (𝐺1 +1) 𝑘 (2𝑥−1)
4𝑥 (𝑥−1) · 𝑣𝑘 (𝑥)

]
= 0.

(11.10c)

Here, the following representations are used

𝑅1 =
2(1− 𝜈) (1−𝛼) (𝛼+2)

(2𝜈−1) ; 𝑅2 =
(3−𝛼−4𝜈)
(−1+2𝜈) ;

𝐺1 =
2 (1− 𝜈)
(1−2𝜈) ; 𝐺2 = 𝛼 (1+𝛼) ; 𝐺3 =

2 (𝛼+4−4𝜈)
(1−2𝜈) .

In view of equation (11.6), the boundary conditions (11.3)–(11.5) and the regu-
larity condition (11.7) are transformed exactly in the same way:

𝑢𝑘 (𝑥) = 0; 𝑣𝑘 (𝑥) = 0; w𝑘 (𝑥) = 0; (11.11)

𝜇

[√︁
𝑥 (1− 𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
+ (𝛼−1) 𝑣𝑘 (𝑥)

]
= 0; (11.12a)

𝜇

[
(2𝑆−𝛼+𝛼𝑆) 𝑢𝑘 (𝑥) + (1+ 𝑆)

√︁
𝑥 (1− 𝑥) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+

+
(
1
2
− 𝑥

) (𝑆−1)√︁
𝑥 (1− 𝑥)

𝑣𝑘 (𝑥) + 𝑘 (1− 𝑆)
2
√︁
𝑥 (1− 𝑥)

𝑤𝑘 (𝑥)
]
= 0;

(11.12b)

𝜇

[√︁
𝑥 (1− 𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
− (1−2𝑥)

2
√︁
𝑥 (1− 𝑥)

𝑤𝑘 (𝑥) + 𝑘

2
√︁
𝑥 (1− 𝑥)

𝑣𝑘 (𝑥)
]
= 0; (11.12c)

√︁
𝑥 (1− 𝑥) 𝑑𝑢𝑘 (𝑥)

𝑑𝑥
= 0; 𝑣𝑘 (𝑥) = 0; w𝑘 (𝑥) = 0. (11.13)

The variant for the zero harmonic of the Fourier series is considered separately,
since it does not explicitly follow from the algorithm for constructing partial solu-
tions of the system of differential equations (11.10) for any value of 𝑘 ≠ 0. At 𝑘 = 0
there are two problems: axisymmetric rotation and axisymmetric deformation. In
the first problem, the component of the displacement vector 𝑤0 is determined by
equation (11.10c). In the axisymmetric deformation problem, the displacement vec-
tor components 𝑢0, 𝑣0 are defined by equations (11.10a), (11.10b).
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Solutions for the function 𝑤0 are derived in the form of a generalized power series

𝑤0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴𝑚𝑥

(𝑚+𝛽)
]
, (11.14)

where 𝐴𝑚 are the coefficients of the power series; 𝛽 is the characteristic exponent.
The possibility of constructing a solution in the form (11.14) is substantiated in

[18]. The point 𝑥 = 0 for equation (11.10c) is a regular singular point. In this case,
one of the partial solutions is written in the form of series (11.14), for which the
region of convergence is the range of the variable 0 ≤ 𝑥 ≤ 1, since the value 𝑥 = 1 is
a zero of the function nearest to the point 𝑥 = 0 for a higher derivative.

To find the coefficients of the series 𝐴𝑚 and the characteristic exponent 𝛽, equa-
tion (11.14) is substituted into (11.10c). By equating the expressions with similar
powers of 𝑥 to zero, we obtain the recurrence relation for 𝐴𝑚:

(2𝛽+2𝑚 +1) (2𝛽+2𝑚−1) 𝐴𝑚+
+4 [𝛼 (𝛼+1) − (2𝛽+2𝑚−1) (𝛽+𝑚−1)] 𝐴𝑚−1−
−4 (𝛼+2−𝑚− 𝛽) (𝛼−1+𝑚 + 𝛽) 𝐴𝑚−2 = 0, (𝑚 = 0,1,2, ...)

(11.15)

From the condition for the existence of a nonzero solution with respect to 𝐴0 we
get the characteristic equation

(2𝛽+1) (2𝛽−1) = 0, (11.16)

where 𝛽1 = 0.5 and 𝛽1 = −0.5 are its roots.
According to the theory of ordinary differential equations [18], there is always

a solution in the form of a generalized power series (11.14) that corresponds to the
largest root 𝛽1. Substituting the value of root 𝛽1 into (11.15), we obtain a recurrence
relation for 𝐴(1)

𝑚 :

𝐴(1)
𝑚 =

(
2𝑚2 −𝛼−𝛼2 −𝑚)

𝑚 (1+𝑚) 𝐴(1)
𝑚−1 +

(2𝛼−1+2𝑚) (2𝛼+3−2𝑚)
4𝑚 (1+𝑚) 𝐴(1)

𝑚−2,

(𝑚 > 0, 𝐴(1)
0 = 1).

(11.17)

Here and hereafter, the upper index defines the number of the partial solution.
The transformations performed allow us to obtain the first partial solution, which

has the form of a generalized power series for equation (11.10c):

𝑤 (1)
0 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(1)
𝑚 𝑥(𝑚+ 1

2 )
]
. (11.18)

The difference in roots of the characteristic equation [10], i.e. 𝛾 = 𝛽1 − 𝛽2, is
crucial for constructing a second linearly independent partial solution in the form
of a generalized power series. If 𝛾 is not a positive integer, there exists a second
linearly independent solution in the form of a generalized power series (11.14). If
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𝛾 is a positive integer, then in the general case the existence of a second partial
solution in the form of generalized power series (11.14) is not guaranteed.

To exclude this uncertainty, we applied an approach, which is based on a sequen-
tial reduction of the original differential equation by making use of the first partial
solution and keeping a fixed number of terms in the series. A series segment for
the second partial solution of the original differential equation is obtained as fol-
lows. After reduction, the resulting series segment is integrated and the result of the
integration is multiplied by the generalized power series corresponding to the first
partial solution. The form of the obtained series segment for the second partial solu-
tion determines the characteristic exponent of the generalized power series and the
terms including the logarithmic functions. It should be noted that partial solutions
subsequent to the second partial solution [10] include the logarithmic functions of
higher degree (compared to the first function).

Thus, the proposed method makes it possible to successively determine the types
of generalized power series of all partial solutions of the original differential equa-
tion and to single out from all partial solutions the regular and irregular ones, in
our case, at value 𝑥 = 0. These capabilities of the method hold much promise for
constructing solutions to particular problems, for example, that of a hollow cone.

Using the proposed method, a second partial solution 𝜔 (2)
0 is obtained :

𝜔 (2)
0 (𝑥) =

∞∑︁
𝑚=0

{[
𝐴(2)
𝑚 +𝐵 (2)

𝑚 · ln (𝑥)
]
𝑥 (𝑚−1/2)

}
, (11.19)

where the coefficients 𝐴(2)
𝑚 , 𝐵 (2)

𝑚 are determined from the recurrence relations

𝐵 (2)
𝑚 =

[(𝑚−1) (2𝑚−3) −𝛼2 −𝛼]
𝑚 (𝑚−1) 𝐵 (2)

𝑚−1 −
(2𝑚−3+2𝛼) (2𝑚−5−2𝛼)

4𝑚 (𝑚−1) 𝐵 (2)
𝑚−2,

𝐴(2)
𝑚 =

(1−2𝑚)
𝑚 (𝑚−1) 𝐵

2
𝑚 +

[(𝑚−1) (2𝑚−3) −𝛼2 −𝛼]
𝑚 (𝑚−1) 𝐴(2)

𝑚−1 +
(4𝑚−5)
𝑚 (𝑚−1) 𝐵

(2)
𝑚−1−

− (2𝑚−3+2𝛼) (2𝑚−5−2𝛼)
4𝑚 (𝑚−1) 𝐴(2)

𝑚−2 −
2 (𝑚−2)
𝑚 (𝑚−1) 𝐵

(2)
𝑚−2.

(11.20)
From the form of the obtained solutions 𝑤 (1)

0 , 𝑤 (2)
0 it follows that 𝑤 (1)

0 is a regular
solution, and 𝑤 (2)

0 is an irregular solution at 𝑥 = 0.
The general solution of the differential equation (11.10c) can be written as

𝑤0 (𝑥) = 𝐶1 ·𝑤0
(1) (𝑥) +𝐶2 ·𝑤0

(2) (𝑥) , (11.21)

where 𝐶1, 𝐶2 are the constants determined from a preset combination of boundary
conditions (11.3)–(11.5). To construct partial solutions to equations (11.10a) and
(11.10b) corresponding to the axisymmetric deformation variant, we solve this sys-
tem for 𝑣0 [18]:
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𝑣0 (𝑥) =
√︁
𝑥 (1− 𝑥)

(1−𝛼) 𝑆 +2
×

×
{ (𝑆 +1)(
𝛼+𝛼2)

[(
𝑥2 − 𝑥

) 𝑑3𝑢0 (𝑥)
𝑑𝑥3 + (4𝑥−2) 𝑑

2𝑢0 (𝑥)
𝑑𝑥2

]
− (2𝑆 +1) 𝑑𝑢0 (𝑥)

𝑑𝑥

} (11.22)

and obtain for the function 𝑢0 the fourth-order differential equation.

𝑥2 (𝑥−1)2 𝑑
4𝑢0 (𝑥)
𝑑𝑥4 − 𝑥 (𝑥−1) (4−8𝑥) 𝑑

3𝑢0 (𝑥)
𝑑𝑥3 +

+ [2−2𝑥 (𝛼+3) (𝛼−2) (−1+ 𝑥)] 𝑑
2𝑢0 (𝑥)
𝑑𝑥2 −

−𝛼 (2+2𝛼) (2𝑥−1) 𝑑𝑢0 (𝑥)
𝑑𝑥

−
(
𝛼+𝛼2

)
(1−𝛼) (2+𝛼) 𝑢0 (𝑥) = 0.

(11.23)

This equation is a differential equation with a regular singular point, so that lin-
early independent partial solutions can be represented in the form of convergent
generalized power series. Using the above approach for constructing such series,
we obtain four partial solutions 𝑢 (1)0 , 𝑢 (2)0 , 𝑢 (3)0 , 𝑢 (4)0 in the following form:

𝑢 (1)0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴(1)
𝑚 𝑥 (𝑚+1)

]
;

𝑢 (2)0 (𝑥) =
∞∑︁

𝑚=0

[
𝐴(2)
𝑚 𝑥𝑚

]
;

𝑢 (3)0 (𝑥) =
∞∑︁

𝑚=0

{[
𝐴(3)
𝑚 +𝐵 (3)

𝑚 ln (𝑥)
]
𝑥 (𝑚+1)

}

𝑢 (4)0 (𝑥) =
∞∑︁

𝑚=0

{[
𝐴(4)
𝑚 +𝐵 (4)

𝑚 ln (𝑥)
]
𝑥𝑚

}
,

(11.24)

where the coefficients 𝐴(1)
𝑚 , 𝐴(2)

𝑚 , 𝐴(3)
𝑚 , 𝐴(4)

𝑚 , 𝐵 (3)
𝑚 , 𝐵 (4)

𝑚 , are determined from the
recurrence relations available on https://www.icmm.ru/compcoeff/.

Substituting (11.24) into expression (11.22), we obtain partial solutions 𝑣 (1)0 , 𝑣 (2)0 ,
𝑣 (3)0 , 𝑣 (4)0 for the function 𝑣0:

𝑣 (1)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
∞∑︁

𝑚=0

[
𝑃 (1)
𝑚 𝑥𝑚

]
,

𝑣 (2)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
∞∑︁

𝑚=0

[
𝑃 (2)
𝑚 𝑥𝑚

]
,

𝑣 (3)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
{
(1+ 𝑆)
𝑥

+
∞∑︁

𝑚=0

[(
𝑃 (3)
𝑚 +𝐷 (3)

𝑚 ln (𝑥)
)
𝑥𝑚

]}
,

𝑣 (4)0 (𝑥) =
√︁
𝑥 (1− 𝑥)

[(𝛼−1) 𝑆−2] (𝛼+𝛼2)
{ ∞∑︁
𝑚=0

[(
𝑃 (4)
𝑚 +𝐷 (4)

𝑚 · ln (𝑥)
)
𝑥 (𝑚−1)

]}
,

(11.25)
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where the coefficients 𝑃 (1)
𝑚 , 𝑃 (2)

𝑚 , 𝑃 (3)
𝑚 , 𝑃 (4)

𝑚 , 𝐷 (3)
𝑚 , 𝐷 (4)

𝑚 are determined by the ex-
pressions posted on https://www.icmm.ru/compcoeff/.

The general solution for 𝑢0 and 𝑣0 are as follows:

𝑢0 (𝑥) = 𝐶1 ·𝑢 (1)0 (𝑥) +𝐶2 ·𝑢 (2)0 (𝑥) +𝐶3 ·𝑢 (3)0 (𝑥) +𝐶4 ·𝑢 (4)0 (𝑥),
𝑣0 (𝑥) = 𝐶1 · 𝑣 (1)0 (𝑥) +𝐶2 · 𝑣 (2)0 (𝑥) +𝐶3 · 𝑣 (3)0 (𝑥) +𝐶4 · 𝑣 (4)0 (𝑥),

(11.26)

where 𝐶1,𝐶2,𝐶3,𝐶4 are the constants determined from a preset combination of
boundary conditions (11.3)–(11.5).

To construct partial solutions to the system of equations (11.10), we perform a
series of transformations [18], and obtain, as a result, a system of two differential
equations with respect to 𝑤𝑘 , 𝑣𝑙:

𝑓4 (𝑥) 𝑑
4𝑤𝑘 (𝑥)
𝑑𝑥4 + 𝑓3 (𝑥) 𝑑

3𝑤𝑘 (𝑥)
𝑑𝑥3 + 𝑓2 (𝑥) 𝑑

2𝑤𝑘 (𝑥)
𝑑𝑥2 +

+ 𝑓1 (𝑥) 𝑑𝑤𝑘 (𝑥)
𝑑𝑥

+ 𝑓0 (𝑥)𝑤𝑘 (𝑥) = 0,
(11.27a)

𝜓2 (𝑥) 𝑑
2 𝑣𝑘 (𝑥)
𝑑𝑥2 +𝜓0 (𝑥) 𝑣𝑘 (𝑥) = 𝜙3 (𝑥) 𝑑

3𝑤𝑘 (𝑥)
𝑑𝑥3 +

+𝜙2 (𝑥) 𝑑
2𝑤𝑘 (𝑥)
𝑑𝑥2 +𝜙1 (𝑥) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
+𝜙0 (𝑥)𝑤𝑘 (𝑥),

(11.27b)

where 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4,𝜓0,𝜓2, 𝜙0, 𝜙1, 𝜙2, 𝜙3 are written as:

𝑓0 (𝑥) =
1
2
𝑥𝛼 (𝛼+1) (𝑥−1) [2𝑥 (𝛼+3) (𝛼−2) (𝑥−1) + 𝑘2 −1

] +
+ 1

16
(𝑘 −1)2 (𝑘 +1)2,

𝑓1 (𝑥) = 𝑥 (1− 𝑥) (2𝑥−1)
[
4𝑥

(
𝛼2 +𝛼−3

)
(𝑥−1) + 1

2
𝑘2 − 1

2

]
,

𝑓2 (𝑥) = −1
2
𝑥2 (𝑥−1)2

[
4𝑥

(
𝛼2 +𝛼−18

)
(𝑥−1) + 1

2
𝑘2 −13

]
,

𝑓3 (𝑥) = 6𝑥3 (𝑥−1)3 (2𝑥−1),
𝑓4 (𝑥) = 𝑥4 (𝑥−1)4,

𝜓0 (𝑥) = 𝑥𝛼(𝛼+1) (𝑥−1) + 1
4
(1− 𝑘2),

𝜓2 (𝑥) = 𝑥2 (𝑥−1)2,

𝜙0 (𝑥) = −1
2
𝑥
[
4𝑥𝛼 (𝛼+1) (𝑥−1) − 𝑘2 +1

] (2𝑥−1)
𝑘

,

𝜙1 (𝑥) = 1
2
𝑥
[
4𝑥

(
𝛼2 +𝛼−4

)
(𝑥−1) − 𝑘2 +1

] (𝑥−1)
𝑘

,

𝜙2 (𝑥) = −5𝑥2 (2𝑥−1) (𝑥−1)2

𝑘
,

𝜙3 (𝑥) = 2𝑥3 (𝑥−1)3

𝑘
.

(11.28)
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Furthermore, the performed transformations results in the relation that establishes
the dependence of the function 𝑢𝑘 on the functions 𝑤𝑘 , 𝑣𝑘 and their derivatives:

𝑢𝑘 (𝑥) =
√︁
𝑥 (1− 𝑥)

2𝑥(𝑥−1)𝑘 (𝑆𝛼+2𝑆 +2)

{
4𝑥2 (𝑥−1) 𝑑

2𝑤𝑘 (𝑥)
𝑑𝑥2 +4𝑥 (2𝑥−1) 𝑑𝑤𝑘 (𝑥)

𝑑𝑥
−

− [
4𝛼𝑥(𝑥−1) (1+𝛼) + 𝑘2 (𝑆 +1) +1

] ·𝑤𝑘 (𝑥) −

−
[
2𝑘𝑆𝑥(𝑥−1) 𝑑𝑣𝑘 (𝑥)

𝑑𝑥
+ 𝑘 (2𝑥−1) (𝑆 +2) 𝑣𝑘 (𝑥)

]}
.

(11.29)
Equation (11.27a) is independent of equation (11.27b) and is a fourth-order lin-

ear differential equation with respect to the function 𝑤𝑘 . Equation (11.27b) can be
considered as a second-order differential equation with respect to 𝑣k with the right-
hand side depending on 𝑤𝑘 . This specific feature of differential equations (11.27)
and the resulting relation (11.29) allow us to define a sequence of partial solu-
tions for the functions 𝜔𝑘 , 𝑣𝑘 , 𝑢𝑘 . The concept of this sequence is as follows. At
the first stage, from the solution of equation (11.27a) we get four partial solutions
𝑤 (1)
𝑘 , 𝑤 (2)

𝑘 , 𝑤 (3)
𝑘 , 𝑤 (4)

𝑘 written in the following form

𝜔 (1)
𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] , 𝜔 (2)
𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝐴(2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝜔 (3)

𝑘 (𝑥) =
∞∑︁

𝑚=0

[(
𝐴(3)
𝑚 +𝐵 (3)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,
𝜔 (4)

𝑘 (𝑥) =
∞∑︁

𝑚=0

[(
𝐴(4)
𝑚 +𝐵 (4)

𝑚 ln(𝑥)
)
𝑥(𝑚− 𝑘+1

2 ) ] ,
(11.30)

where the coefficients 𝐴(1)
𝑚 , 𝐴(2)

𝑚 , 𝐴(3)
𝑚 , 𝐴(4)

𝑚 , 𝐵 (3)
𝑚 , 𝐵 (4)

𝑚 are determined by the rela-
tions posted on https://www.icmm.ru/compcoeff/.

Sequentially substituting the obtained partial solutions into the right-hand side
of equation (11.27b) and solving it as the inhomogeneous equation, we find four
partial solutions 𝑣 (1)𝑘 , 𝑣 (2)𝑘 , 𝑣 (3)𝑘 , 𝑣 (4)𝑘 written as

𝑣 (1)𝑘 (𝑥) =
∞∑︁

𝑚=0

[
𝑃 (1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑣 (2)𝑘 (𝑥) =

∞∑︁
𝑚=0

[
𝑃 (2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝑣 (3)𝑘 (𝑥) =

∞∑︁
𝑚=0

{[
𝑃 (3)
𝑚 +𝐷 (3)

𝑚 ln(𝑥)
]
𝑥(𝑚− 𝑘−1

2 )},
𝑣 (4)𝑘 (𝑥) =

∞∑︁
𝑚=0

{[
𝑃 (4)
𝑚 +𝐷 (4)

𝑚 ln(𝑥)
]
𝑥(𝑚− 𝑘+1

2 )},

(11.31)
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where the coefficients 𝑃 (1)
𝑚 , 𝑃 (2)

𝑚 , 𝑃 (3)
𝑚 , 𝑃 (4)

𝑚 , 𝐷 (3)
𝑚 , 𝐷 (4)

𝑚 are determined by the rela-
tions available on https://www.icmm.ru/compcoeff/.

Then, solving equation (11.27b) as a homogeneous one, we find two more partial
solutions 𝑣 (5)𝑘 , 𝑣 (6)𝑘 . The form of this differential equation indicates that the point
𝑥 = 0 is a regular singular point. The construction of partial solutions in the form of
generalized power series is accomplished in the framework of the above approach.
These partial solutions are written as

𝑣 (5)𝑘
(𝑥) =

∞∑︁
𝑚=0

[
𝑃 (5)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑣 (6)𝑘

(𝑥) =
∞∑︁

𝑚=0

[(
𝑃 (6)
𝑚 +𝐷 (6)

𝑚 ln (𝑥)
)
𝑥(𝑚+ 𝑘−1

2 ) ] , (11.32)

where 𝑃 (5)
𝑚 , 𝑃 (6)

𝑚 , 𝐷 (6)
𝑚 are defined on https://www.icmm.ru/compcoeff/.

Then, using partial solutions 𝑤 (1)
𝑘 , 𝑤 (2)

𝑘 , 𝑤 (3)
𝑘 , 𝑤 (4)

𝑘 , 𝑣 (1)𝑘 , 𝑣 (2)𝑘 , 𝑣 (3)𝑘 , 𝑣 (4)𝑘 , 𝑣 (5)𝑘 , 𝑣 (6)𝑘 ,
and the obtained relation (30), we determine six partial solutions 𝑢 (1)𝑘 , 𝑢 (2)𝑘 , 𝑢 (3)𝑘 ,
𝑢 (4)𝑘 , 𝑢 (5)𝑘 , 𝑢 (6)𝑘 , represented as

𝑢 (1)𝑘 =
2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (1)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑢 (2)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (2)
𝑚 𝑥(𝑚+ 𝑘−1

2 ) ] ,
𝑢 (3)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (3)
𝑚 +𝐺 (3)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,
𝑢 (4)𝑘 =

2
√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (4)
𝑚 +𝐺 (4)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘+1

2 ) ] ,
𝑢 (5)𝑘 =

√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[
𝐸 (5)
𝑚 𝑥(𝑚+ 𝑘+1

2 ) ] ,
𝑢 (6)𝑘 =

√︁
𝑥 (1− 𝑥)

𝑘𝑥 (𝑥−1) (𝑆 (𝛼+2) +2)
∞∑︁

𝑚=0

[(
𝐸 (6)
𝑚 +𝐺 (6)

𝑚 ln (𝑥)
)
𝑥(𝑚− 𝑘−1

2 ) ] ,

(11.33)

where the coefficients 𝐸 (1)
𝑚 , 𝐸 (2)

𝑚 , 𝐸 (3)
𝑚 , 𝐸 (4)

𝑚 , 𝐸 (5)
𝑚 , 𝐸 (6)

𝑚 , 𝐺 (3)
𝑚 , 𝐺 (4)

𝑚 , 𝐺 (6)
𝑚 for any

value of 𝑚 ≥ 0 are determined on https://www.icmm.ru/compcoeff/index2.html.
General solutions for 𝑢𝑘 , 𝑣𝑘 , 𝑤𝑘 take the following form

𝑢𝑘 (𝑥) = 𝐶1 ·𝑢 (1)𝑘
(𝑥) +𝐶2 ·𝑢 (2)𝑘

(𝑥) +𝐶3 ·𝑢 (3)𝑘
(𝑥) +

+𝐶4 ·𝑢 (4)𝑘
(𝑥) +𝐶5 ·𝑢 (5)𝑘

(𝑥) +𝐶6 ·𝑢 (6)𝑘
(𝑥) ,

𝑣𝑘 (𝑥) = 𝐶1 · 𝑣 (1)𝑘
(𝑥) +𝐶2 · 𝑣 (2)𝑘 (𝑥) +𝐶3 · 𝑣 (3)𝑘 (𝑥)+

+𝐶4 · 𝑣 (4)𝑘 (𝑥) +𝐶5 · 𝑣 (5)𝑘 (𝑥) +𝐶6 · 𝑣 (6)𝑘 (𝑥),
𝑤𝑘 (𝑥) = 𝐶1 ·𝑤 (1)

𝑘
(𝑥) +𝐶2 ·𝑤 (2)

𝑘
(𝑥) +𝐶3 ·𝑤 (3)

𝑘
(𝑥) +𝐶4 ·𝑤 (4)

𝑘
(𝑥) ,

(11.34)
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where𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6 are the constants determined from a preset combination
of boundary conditions (11.3)–(11.5).

For the examined variant of a conical body, the constructed general solutions
for 𝑘 = 0, 𝑘 ≥ 1 and the preset combination of boundary conditions are used to
derive a homogeneous system of linear algebraic equations for the constants 𝐶𝑖 .
The coefficients of this system of equations depend on the vertex angles of conical
bodies, elastic characteristics of materials, and the characteristic exponent 𝛼. From
the condition of existence of a nonzero solution to the system of linear algebraic
equations we find the exponents 𝛼, determining the nature of stress singularity at
the vertices of conical bodies.

Let us consider numerical results for a solid cone (0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋,
0 ≤ \ ≤ \0). Here we use partial solutions, for which the regularity condition is iden-
tically fulfilled at 𝑥 = 0 (or \ = 0): 𝑤 (1)

0 is used for axisymmetric rotation; 𝑢 (1)0 , 𝜈 (1)0 ,
𝑢 (2)0 , 𝜈 (2)0 — for axisymmetric deformation without rotation; 𝑢 (1)𝑘 , 𝜈 (1)𝑘 , 𝑤 (1)

𝑘 , 𝑢 (2)𝑘 ,
𝜈 (2)𝑘 , 𝑤 (2)

𝑘 , 𝑢 (5)𝑘 , 𝜈 (5)𝑘 — for nonaxisymmetric deformation. All results in this work
were obtained for Poisson’s ratio 𝜈 = 0.3. Figure 11.2 presents the values Re𝛼𝑛 < 1,
determining singular solutions for a solid cone with stress and displacement bound-
ary conditions. These values are identical to the results of [19, 15]. It should be noted
that for a solid cone with stress boundary conditions, the singular solutions appear
at the zero, first and second harmonics of the Fourier series, whereas for a cone with
displacement boundary conditions — at the zero and first harmonics of the Fourier
series. Figure 11.3 shows new results disclosing the nature of stress singularity at
the vertex of a solid cone with boundary conditions of ideal sliding prescribed on
its lateral surface. Here, singular solutions are possible at the zero, first and second
harmonics of the Fourier series and at the angle \0 smaller than 𝜋.

The proposed method has proved to be effective in determining the region of
singular solutions for a hollow cone with two conical boundary surfaces \ = \0 and

Fig. 11.2 Dependence of Re𝛼𝑛 on the vertex angle of the solid cone with boundary conditions on
the lateral surface for displacements (a) and stresses (b) (▲— 𝑘 = 0, • — 𝑘 = 1, ■— 𝑘 = 2)
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Fig. 11.3 Dependence of
Re𝛼𝑛 on the vertex angle
of the cone with boundary
conditions on the lateral
surface corresponding to an
ideal sliding (▲— 𝑘 = 0,
• — 𝑘 = 1, ■— 𝑘 = 2)

\ = \1 (hollow cone) under different variants of boundary conditions. In this case,
it is necessary to use all partial solutions (11.18), (11.19), (11.24), (11.25), (11.30),
(11.31), (11.32) to ensure the fulfillment of boundary conditions on the two conical
surfaces. As an example, Fig. 11.4 shows the dependence of eigenvalues Re𝛼𝑛 < 1
on the angle of the outer conical surface \0 for different internal cone angles \1. Zero
stress boundary conditions are prescribed on the conical surfaces. Here, the solid
line corresponds to the actual eigenvalues and the dashed line — to the complex
ones.

In the case of a hollow cone, different combinations of boundary conditions on
the inner and outer conical surfaces can be used. Here we consider two variants. In
the first variant, zero stresses are specified on the inner surface and zero displace-
ments — on the outer surface. In the second variant, zero displacements are preset
on the inner surface and zero stresses — on the outer surface. The variation of the
stress singularity exponent Re𝛼𝑛 < 1 as a function of the outer conical surface angle
\0 at different values of the inner surface angle is shown in Fig. 11.5 for the first
variant of boundary conditions. The eigenvalues, leading to the occurrence of stress
singularity, appear at the values of \0 higher than 80◦. For the second variant of the
boundary conditions the dependence of eigenvalues Re𝛼𝑛 < 1 is shown in Fig. 11.6.

11.3 Numerical-analytical Method of Stress Singularity Analysis
at the Vertices of Circular and Non-circular Conical Bodies

We consider a semi-infinite circular or non-circular cone, whose vertex coincides
with the center of spherical coordinates 𝑟, \, 𝜑, and the base is perpendicular to the
axis \ = 0. To analyze the character of the stress singularity, we need to construct
eigensolutions, which will be similar in form to the asymptotic representation of
solution [12],

𝑢𝑘 (𝑟, \, 𝜑) = 𝑟𝜆 𝜉𝑘 (\, 𝜑), 𝑘 = 1,2,3 (11.35)
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Fig. 11.4 Dependence of Re𝛼𝑛 on the angle \0 at fixed angles \1 of the hollow cone and zero
stresses on the lateral surfaces for different values of 𝑘 (▲— 𝑘 = 0, • — 𝑘 = 1, ■— 𝑘 = 2)

Fig. 11.5 Dependence of
Re𝛼𝑛 on the angle \0 for
different values of \1 at zero
stresses on the inner sur-
face and zero displacements
on the outer lateral surface
(▲— 𝑘 = 0, • — 𝑘 = 1,
■— 𝑘 = 2)
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Fig. 11.6 Dependence of Re𝛼𝑛 on the angle \0 for different values of \1 of the hollow cone with
zero displacements on the inner surface and zero stresses on the outer lateral surface (▲— 𝑘 = 0,
• — 𝑘 = 1, ■— 𝑘 = 2)

and satisfy in the examined domain the equilibrium equations

1
1−2𝜈

graddivu+∇2u = 0 (11.36)

and uniform boundary conditions prescribed on the lateral surface of the cone,
namely, zero displacements

u = 0 (11.37)

or zero stresses
𝜈

1−2𝜈
ndivu+n · ∇u+ 1

2
n× rotu = 0. (11.38)

Here u is the displacement vector, n is the unit vector of the external normal, 𝜈 is
Poisson’s ratio.

A variant of boundary conditions corresponding to the ideal sliding conditions
on the lateral surface may be also of interest. These conditions are as follows:

𝑢\ = 0, 𝜏𝑟 \ = 0, 𝜏𝜑\ = 0. (11.39)

On the lateral surface of the cone, mixed boundary conditions can be prescribed,
that is, conditions (11.38) are set at 0 ≤ 𝜑 ≤ 𝜑1 and conditions (11.39) are specified
at 𝜑1 ≤ 𝜑 ≤ 2𝜋.

In addition to a solid cone, the study can be conducted for a hollow cone with two
lateral surfaces. For a circular cone, the domain occupied by this body is defined as
follows: 0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, \1 ≤ \ ≤ \2 ( \1 = 0 corresponds to a solid cone). In
this case, one of the variants of boundary conditions (11.37)–(11.39) can be imposed
on the lateral surfaces.
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To construct eigenvalues, we substitute expressions (11.35) into Eqs. (11.36), to
obtain a system of partial differential equations with respect to functions 𝜉𝑘 (\, 𝜑)
and parameter 𝜆

𝐿1 (𝜆, 𝜉𝑘) = 2(1− 𝜈) (𝑘1 −2)𝜉1 + 𝑘2 (𝜉2 ctg\ + 𝜉2\ + 1
sin\

𝜉3𝜑) +

+ (1−2𝜈) (ctg\ 𝜉1\ + 𝜉1\ \ + 1
sin2 \

) = 0,

𝐿2 (𝜆, 𝜉𝑘) =
[
(1−2𝜈)𝑘1 − 2(1− 𝜈)

sin2 \

]
𝜉2 + 𝑘3 𝜉1\ − (3−4𝜈) ctg\

sin\
𝜉3𝜑 +

+ (1−2𝜈)
sin2 \

𝜉2𝜑𝜑 + 1
sin\

𝜉3\𝜑 +2(1− 𝜈) (ctg\ 𝜉2\ + 𝜉2\ \ ) = 0,

𝐿3 (𝜆, 𝜉𝑘) = (1−2𝜈) (𝑘1 − 1
sin2 \

) 𝜉3 + 𝑘3
1

sin\
𝜉1𝜑 − (3−4𝜈) ctg\

sin\
𝜉2𝜑 +

+ 2(1− 𝜈)
sin2 \

𝜉3𝜑𝜑 + 1
sin\

𝜉2\𝜑 + (1−2𝜈) (ctg\ 𝜉3\ + 𝜉3\ \ ) = 0.

(11.40)

Here, 𝑘1 = 𝜆2 + 𝜆, 𝑘2 = 𝜆 − 3 + 4𝜈, 𝑘3 = 𝜆 + 4− 4𝜈, 𝜉𝑘\ = 𝜕𝜉𝑘/𝜕\, 𝜉𝑘𝜑 = 𝜕𝜉𝑘/𝜕𝜑,
𝜉𝑘\ \ = 𝜕2𝜉𝑘/𝜕\2, etc.

Based on the asymptotic expression (11.35), boundary conditions (11.37), (11.38)
are transformed to the following form:

𝑀1 (𝜆, 𝜉𝑘) ≡ 𝜉1 = 0, 𝑀2 (𝜆, 𝜉𝑘) ≡ 𝜉2 = 0, 𝑀3 (𝜆, 𝜉𝑘) ≡ 𝜉3 = 0. (11.41)

𝑀1 (𝜆, 𝜉𝑘) ≡ 𝜉1\ + 𝜉2 (𝜆−1) = 0,

𝑀2 (𝜆, 𝜉𝑘) ≡ (1− 𝜈) 𝜉2\ + (1+ 𝜈𝜆) 𝜉1 + 𝜈 ctg\ 𝜉2 + 𝜈

sin\
𝜉3𝜑 = 0,

𝑀3 (𝜆, 𝜉𝑘) ≡ 𝜉3\ + 1
sin\

𝜉2𝜑 − ctg\ 𝜉3 = 0.

(11.42)

Here 𝐿𝑘 and 𝑀𝑘 are the differential operators.
In addition to a homogeneous cone, as an object of study we can also consider

a composite cone, e.g., a circular cone occupying the domain 𝑉 = 𝑉1 +𝑉2, where
the subdomain 𝑉1 (subdomain 𝑉2) is a segment of the cone made of the material
with shear modulus 𝐺1 (𝐺2) and Poisson’s ratio 𝜈1 (𝜈2). The subdomain geometry
is defined by the relations 0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, \1 ≤ \ ≤ \2 (\2 ≤ \ ≤ \3). In
particular cases, \1 and \3 can be respectively equal to 0 and 𝜋.

For a composite cone, eigensolutions (11.35) in each of the subdomains 𝑉1 and
𝑉2, must satisfy the equations of equilibrium (11.36), which will differ only in the
values of the elastic material constants. In this case, one of the three variants of
boundary conditions (11.37), (11.38) and (11.39) can be used for the surfaces \ = \1
(\ ≠ 0) and \ = \3 (\ ≠ 𝜋), while the condition on a contact surface is that of ideal
bonding of layers
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𝑢 (1)𝑟 = 𝑢 (2)𝑟 , 𝑢 (1)𝜑 = 𝑢 (2)𝜑 , 𝑢 (1)\ = 𝑢 (2)\ ,

𝜎 (1)
\ = 𝜎 (2)

\ , 𝜏 (1)𝑟 \ = 𝜏 (2)𝑟 \ , 𝜏 (1)𝜑\ = 𝜏 (2)𝜑\ ,
(11.43)

or ideal sliding

𝑢 (1)\ = 𝑢 (2)\ , 𝜎 (1)
\ = 𝜎 (2)

\ , 𝜏 (1)𝑟 \ = 𝜏 (2)𝑟 \ = 𝜏 (1)𝜑\ = 𝜏 (2)𝜑\ = 0. (11.44)

We propose the following scheme of problem solution. Let us represent Eqs.
(11.40) in a weak form [34], for which purpose we multiply them by the appropriate
variations 𝛿𝜉𝑘 (\, 𝜑) and integrate over the region 𝑆 cut by the cone from the sphere.
As a result we get

∫
𝑆

[ 3∑︁
𝑘=1

𝐿𝑘 (𝜆, 𝜉1, 𝜉2, 𝜉3) 𝛿𝜉𝑘 (\, 𝜑)
]
𝑑𝑆 = 0. (11.45)

Equations (11.45) are solved using the finite element method (FEM). The finite-
element implementation of these equations is a rather complicated procedure, since
it requires the use of two-dimensional elements to ensure the continuity of the func-
tions 𝜉𝑘 , as well as the continuity of their first derivatives. Without going into details,
we simply note that in FEM, there are no effective procedures for constructing such
elements. In this regard, after performing identity transformations with the aim to
reduce the order of derivatives of functions in the solutions of Eq. (11.45) and con-
sidering boundary conditions (11.42), we obtain the following equation∬

𝑆

{[
2(1− 𝜈) (𝑘1 −2) sin\𝜉1 + 𝑘1 (cos\𝜉2 + sin\𝜉2\ + 𝜉3𝜑)

]
𝛿𝜉1−

−(1−2𝜈) (sin\ 𝜉1\ 𝛿 𝜉1\ + 1
sin\

𝜉1𝜑 𝛿𝜉1𝜑) − 2(1− 𝜈)
sin\

𝜉3𝜑 𝛿 𝜉3𝜑 +

+
[
(1−2𝜈)𝑘1 sin\ 𝜉2 − 2(1− 𝜈)

sin\
𝜉2 + 𝑘3 sin\ 𝜉1\ − (3−4𝜈)ctg\ 𝜉3𝜑

]
𝛿𝜉2−

−2 (1− 𝜈) sin \ 𝜉2\ 𝛿 𝜉2\ −2𝜈 𝜉3𝜑 𝛿 𝜉2\ −
− (1−2𝜈)

(
1

sin \
𝜉2𝜑 𝛿 𝜉2𝜑 + 𝜉3\ 𝛿𝜉2𝜑

)
+

+
[
(1−2𝜈)𝑘1 sin\ 𝜉3 − 1−2𝜈

sin\
𝜉3 + 𝑘3 𝜉1𝜑 + (3−4𝜈) ctg\ 𝜉2𝜑

]
𝛿𝜉3−

−2𝜈 𝜉2\ 𝛿 𝜉3𝜑 − (1−2𝜈) (sin \ 𝜉3\ 𝛿 𝜉3\ + 𝜉2𝜑 𝛿 𝜉3\
)}
𝑑\𝑑𝜑+

+
∫
𝑙

{(1−2𝜈) (1−𝜆) sin\ 𝜉2 𝛿𝜉1 −2[(1+ 𝜈𝜆) sin\ 𝜉1 + 𝜈 cos\ 𝜉2]𝛿𝜉2+

+ (1−2𝜈) cos\𝜉3 𝛿𝜉3 − (1−2𝜈)} 𝑑𝑙 = 0,

(11.46)

where 𝑙 is the boundary of the surface 𝑆 with prescribed stresses.
Reduction of the order of derivatives allows us to use such finite elements that

ensure only the continuity of the functions 𝜉𝑘 . In our simulation we used finite ele-
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ments in the form of triangles and the Lagrangian linear polynomial approximation
of the functions 𝜉𝑘 .

In the numerical analysis of circular conical bodies with unmixed boundary con-
ditions imposed on the lateral conical surfaces, the functions 𝜉𝑘 (\, 𝜑) can be repre-
sented as a Fourier series in the circumferential coordinate 𝜑

𝜉1 =
∞∑︁
𝑛=0

𝛽 (𝑛)1 (\) cos𝑛𝜑,

𝜉2 =
∞∑︁
𝑛=0

𝛽 (𝑛)2 (\) cos𝑛𝜑,

𝜉3 =
∞∑︁
𝑛=0

𝛽 (𝑛)3 (\) sin𝑛𝜑.

(11.47)

In view of expansion (11.47), Eqs. (11.45) and boundary conditions (11.41), (11.42)
for each of the harmonics of the Fourier series can be written in the following
form (dashed line indicates the derivative with respect to \, the upper index (𝑛)
for 𝛽1, 𝛽2, 𝛽3 is omitted):

\2∫
\1

{[
2(1− 𝜈) (𝑘1 −2) sin2\ 𝛽1 + 𝑘2 (cos\ sin\ 𝛽2 + sin2\ 𝛽′2 +𝑛 sin\ 𝛽3) +

+ (1−2𝜈) (cos\ sin\ 𝛽′1 + sin2\ 𝛽′′1 −𝑛2𝛽1)
]
𝛿𝜉1 +

[(1−2𝜈)𝑘1sin2\ 𝛽2+
+ 𝑘3 sin2\ 𝛽′1 −2(1− 𝜈)𝛽2 − (1−2𝜈)𝑛2𝛽2 +𝑛 sin\ 𝛽′3−

− (3−4𝜈)𝑛cos\ 𝛽3 +2(1− 𝜈) (cos\ sin\ 𝛽′2 + sin2\ 𝛽′′2 )
]
𝛿𝜉2+

+ [(1−2𝜈) (𝑘1sin2\ 𝛽3 − 𝛽3 + cos\ sin\ 𝛽′3 + sin2\ 𝛽′′3 ) − 𝑘3𝑛 sin\ 𝛽1−
− (3−4𝜈)𝑛cos\ 𝛽2 − 𝑛 sin\ 𝛽′2 −2(1− 𝜈)𝑛2𝛽3

]
𝛿𝜉3

}
𝑑\ = 0.

(11.48)

𝑀1 (𝜆, 𝛽𝑘) ≡ 𝛽′1 + 𝛽2 (𝜆−1) = 0,

𝑀2 (𝜆, 𝛽𝑘) ≡ (1− 𝜈) 𝛽′2 + (1+ 𝜈𝜆) 𝛽1 + 𝜈 ctg\ 𝛽2 + 𝜈n
sin\

𝛽3 = 0,

𝑀3 (𝜆, 𝛽𝑘) ≡ 𝛽′3 +
𝑛

sin\
𝛽2 − ctg\ 𝛽3 = 0.

(11.49)

In the numerical implementation, the use of expansion (11.47) allows us to
change from a two-dimensional problem to a set of separate one-dimensional prob-
lems for each of the harmonics of the Fourier series. In the finite element implemen-
tation of one-dimensional problems, in contrast to that of two-dimensional prob-
lems, the presence of well-tried finite elements ensures continuity of approximating
functions and their first derivatives between two adjacent elements. It means that in
this case we can directly carry out the finite element implementation of Eqs. (11.48).
As finite elements, we used one-dimensional two-node elements, in which the func-
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tions 𝛽 (𝑛)𝑖 (\) are approximated with a cubic polynomial defined by the values of the
function and its derivatives 𝑑𝛽 (𝑛)𝑖 /𝑑\ at the ends of the segment (one-dimensional
element).

As in a two-dimensional version, we can employ the procedure of reducing the
order of derivatives in Eq. (11.48). Then, in the case of applying the finite element
method of solution to these equations, it becomes possible to use one-dimensional
elements ensuring continuity of only approximated functions, in particular, one-
dimensional two-node elements with linear approximation of functions 𝛽 (𝑛)𝑖 (\).

The application of the Bubnov procedure together with the finite element method
reduces the formulated problem to a search for eigenvalues (EV) and eigenvectors of
an algebraic asymmetric band matrix. To find complex eigenvalues, the obtained al-
gebraic problem is solved using the algorithm based on the application of the Muller
method and the argument principle [17], which allowed us to obtain acceptable nu-
merical results.

The reliability and efficiency of the proposed method and the algorithm for its
numerical implementation can be substantiated by the results of two numerical ex-
periments. The first experiment is designed to realize the possibility of comparing
the numerical and analytical results for a homogeneous continuous circular cone
(0 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜑 ≤ 2𝜋, 0 ≤ \ ≤ \2) [15]. In a two-dimensional variant with the
number of nodal variables equal to ∼ 103, the difference between the numerical and
analytical results is less than one percent. The second computational experiment is
based on the analysis of the convergence of the numerical method depending on the
degree of discretization of the computational domain. As an example, Fig. 11.7a
shows a numerical solution (solid curve) depending on the number of nodal vari-
ables N and analytical results (dashed curve) at \2 = 2𝜋/3, 𝜈 = 0.3. The results of
such experiments demonstrate not only the convergence of the numerical procedure,
but also make it possible to choose a variant of discretization of the computational
domain, which can provide acceptable accuracy.

Let us consider the results of solving a number of new problems. Figure 11.7b
presents the eigenvalues calculated for a solid circular cone (𝜈 = 0.3) at bound-
ary conditions (11.39) corresponding to the ideal sliding conditions. Figure 11.7c
displays the eigenvalues for one of the variants of a continuous circular cone
(\2 = 2𝜋/3, 𝜈 = 0.3) at mixed boundary conditions prescribed on the lateral sur-
face: zero displacements at and zero stresses at 𝜑1 ≤ 𝜑 ≤ 2𝜋. It should be noted that
in this problem, the representation of the desired solution as a Fourier series in the
angular coordinate 𝜑 is not allowed. Hereinafter, the solid curve corresponds to real
eigenvalues, while the dashed curve corresponds to the complex eigenvalues.

Calculations were performed for a composite cone which allowed us to evaluate
the effect of ratios of mechanical characteristic on the stress singularity exponents.
In Fig. 11.8, for the composite cone under boundary conditions (11.43) and \1 = 0,
\2 = 𝜋/3, \3 = 2𝜋/3, 𝜈1 = 𝜈2 = 0.3 the values of Re𝜆k < 1 are plotted against the
ratio 𝐺1/𝐺2.

The method under consideration allows us to obtain numerical results for dif-
ferent cone shapes, including a cone whose base is an ellipse. The geometry of the
boundary of the surface (11.46), which is cut by a cone from a sphere, is defined by
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Fig. 11.7 Dependence of Re𝜆𝑘 on the value of 𝑁 (a). Dependences of Re𝜆𝑘 on the angle \2 (b)
and on the angle 𝜑1 (c)

Fig. 11.8 Dependence of
Re𝜆𝑘 on the ratio 𝐺1/𝐺2

the relation

tg\ = tg\2
©«

1(
cos2 𝜑+æ−2 sin2 𝜑

)−/2 ª®®¬
, æ =

a
b
. (11.50)

Here 𝑎 and 𝑏 are the semi-axes of the ellipse, 2\2 is the vertex angle of the cone in
the plane passing through the cone vertex and the semi-axis 𝑎. Figure 11.9 shows
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Fig. 11.9 Dependence of Re𝜆𝑘 on the value of æ at zero stress (a) and at zero displacement (b)

the results of calculations of eigenvalues at zero stress (a) and at zero displacement
(b) specified on the lateral surface of the cone.

The proposed method has proved to be effective in calculating all eigenvalues of
interest. Furthermore, within the error of the numerical method, it allows one to cal-
culate multiple eigenvalues. For example, in [15] analytical results on the multiplic-
ity of the eigenvalue 𝜆 = 1 were presented. In particular, at \2 = 𝜋/2 the multiplicity
is found to be 6 and at \2 = 𝜋 the multiplicity is 9. The method under consideration
can be used to find all multiple eigenvalues within the accuracy of the third place
with the number of finite elements being equal to about three thousand.

11.4 Finite Element Analysis of Stress Singularity in
Three-dimensional Problems of Elasticity Theory

To determine the power law relationship of stresses in the vicinity of singular points,
a numerical technique [29] is proposed. It is based on the statement that the stress
distribution along the radial line, originating from a singular point, can be expressed
as [4, 35]

𝜎 = 𝐴1𝑟
𝜆−1 +𝑂 (𝑟𝜆), (11.51)

where 𝑟 is the distance from the singular point, 𝐴1 is some constant, 𝜆 is the param-
eter, characterizing the degree of stress singularity, and 𝑂 (𝑟𝜆) represents all terms
of the order 𝑟𝜆 and higher. For small distances 𝑟 , the singular term dominates and
equation (11.51) can be approximated by

𝜎 ≃ 𝐴1𝑟
𝜆−1,

or
log𝜎 = log 𝐴1 + (𝜆−1) log𝑟, (11.52)
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where 𝜆 is the smallest eigenvalue [4]. The parameter 𝜆 is determined using the
FEM procedure with finite element meshes refined towards the singular points
(Fig. 11.10). To establish the relationship (11.52) via numerical experiments, it is
necessary to find the discretization, such that in the vicinity of a singular point at
a number of nodal points on the radial line originating from the singular point the
following relations will be fulfilled with sufficient accuracy:

𝜆−1 ≈
log

(
𝜎1
𝜎2

)
log

(
𝑟1
𝑟2

) ≈
log

(
𝜎2
𝜎3

)
log

(
𝑟2
𝑟3

) ≈ . . . ≈
log

(
𝜎𝑛−1
𝜎𝑛

)
log

(
𝑟𝑛−1
𝑟𝑛

) , (11.53)

where 𝑟1, 𝑟2, . . . , 𝑟𝑛 are the distances from the singular point, 𝜎1,𝜎2, . . . ,𝜎𝑛 are
stresses at the corresponding nodal points 𝑟1, 𝑟2, . . . , 𝑟𝑛, respectively. 𝜆 is the re-
quired stress singularity exponent. The derivation of this relationship makes it pos-
sible to calculate the value of 𝜆, which determines the stress behavior (including
that of stress singularity) in the vicinity of a singular point.

The algorithm is tested by solving two- and three-dimensional problems of elas-
ticity theory and comparing the stress singularity exponents found by the pro-
posed numerical algorithm with those obtained from the known analytical and
numerical solutions. As two-dimensional problems, we considered a plate with
notches (Fig. 11.11a), a plate with a fixed edge (Fig. 11.11b), and a composite
plate (Fig. 11.11c), which contained singular points associated, respectively, with
breaking of surface smoothness, a change in the type of boundary conditions, and
a contact of dissimilar materials. For all problems, the obtained numerical results
agree with the analytical results up to the third decimal place.

The proposed numerical algorithm for computing the stress singularity exponents
in the vicinity of singular points is of considerable independent significance for
problems, which cannot be solved analytically in the vicinity of singular points. To
problem of crack propagation, whose front is perpendicular to the surface 𝑥𝑂𝑦 of an

Fig. 11.10 The example of
finite-element mesh with
gradual refinement near sin-
gular point
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Fig. 11.11 Plate with V-notches on lateral edges (a); plate with a fixed edge (b); composite plate
(c)

elastic half-space (Fig. 11.12a). The stress singularity exponent is evaluated at the
tip of the crack with coordinates 𝑥 = 𝑦 = 𝑧 = 0. For this problem, work [23] presents
the results of numerical calculation of stress singularity exponents for an isotropic
material (𝜈 = 0.3) and an orthotropic material, the elastic characteristics of which
are summarized in Table 11.1.

As a computational scheme for this problem, we use a cube (Fig. 11.12b). The
conditions of opening mode (the mode I) are simulated by the normal displacements
applied parallel to the 𝑥𝑂𝑧-plane, and the conditions of sliding mode (the mode II)
are simulated by the tangential displacements applied parallel to the 𝑥-axis and in
the opposite directions.

Table 11.2 presents the values of stress singularity exponents for a crack tip under
loads of mode I and II obtained in [23] and calculated with the proposed numerical

Fig. 11.12 Crack, the front of which is perpendicular to the surface of an elastic half-space (a); its
computational scheme (b)
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Table 11.1 Elastic characteristics of carbon fiber reinforced plastic [23]

Material 𝐸𝑖 , GPa 𝐺𝑖 𝑗 , GPa 𝜈𝑖 𝑗

𝐸𝑥 = 130.3 𝐺𝑥𝑦 = 4.502 𝜈𝑥𝑦 = 0.33

Carbon fiber reinforced plastic 𝐸𝑦 = 9.377 𝐺𝑥𝑧 = 4.502 𝜈𝑥𝑧 = 0.33

𝐸𝑧 = 9.377 𝐺𝑦𝑧 = 2.865 𝜈𝑦𝑧 = 0.33

Table 11.2 Comparison between stress singularity exponents calculated by formula (11.53) and
obtained in [23] for a crack whose front is perpendicular to the surface of an elastic half-space
(three-dimensional problem)

Isotropic (𝜈 = 0.3) Anisotropic (Table 11.1)

𝜆1 (mode II) 𝜆2 (mode I) 𝜆1 (mode II) 𝜆2 (mode I)

Numerical algorithm 0.40 0.55 0.46 0.52

Numerical result from [23] 0.3929 0.5483 0.4543 0.5227

algorithm, which uses the finite element method to determine the stress asymptotics
based on relations (11.53). In this case, the difference between the stress singularity
exponents calculated by formula (11.53) and those presented in [23] is less than
1.8%.

Hence, the effectiveness and high accuracy of the proposed numerical algorithm
for calculating the stress singularity exponents in the vicinity of singular points for
homogeneous and piecewise homogeneous bodies, including those with anisotropic
properties have been substantiated by the results of solution of two- and three-
dimensional problems of elasticity theory.

11.5 Conclusion

The analytical method for constructing eigenvalues for circular cones has been con-
sidered. The relations developed in this study can be used to construct solutions,
and estimate the character of stress singularity for different variants of conical bod-
ies (solid, hollow, composite cones) under different types of boundary conditions
set on the lateral surfaces and contact surfaces of different materials. Numerical re-
sults have been presented on the nature of stress singularity at the vertex of a solid
cone under boundary conditions specified in terms of displacements, stresses, mixed
type boundary conditions and at the vertex of a hollow cone under different variants
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of boundary conditions specified on the lateral surfaces. A numerical algorithm for
evaluating the nature of stress singularity in the vicinity of singular points of elastic
bodies has been considered. It is based on the derivation of a power law relationship
for stresses from the numerically determined stress-strain state in the vicinity of
a singular point. The efficiency and high accuracy of the proposed numerical algo-
rithm for calculating stress singularity exponents in the vicinity of singular points for
homogeneous and piecewise homogeneous bodies, including those with anisotropic
properties, have been demonstrated.
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Chapter 12
On Estimating Prestress State in an Elastic
Cylinder

Rostislav D. Nedin, Alexander O. Vatulyan, and Victor O. Yurov

Abstract There is a lack of studies devoted to modeling and identification of a
complex prestress-strain state in cylindrical bodies. We consider a problem for a fi-
nite cylinder in the presence of prestress fields of an inhomogeneous structure. The
prestress tensor is given by four nonzero components that are functions of the coor-
dinates; the cases of initial inflation, pre-torsion and pre-tension are considered. The
influence of the three considered prestress types on the field of small superimposed
displacements was analyzed. The inverse problem on recovering the intensities of
the prestress types is studied, given the additional data on the measured displace-
ments in the entire region.

Key words: Cylinder, Prestress, Torsion, Inflation, Tension, Inhomogeneous, Weak
Statement, Inverse Problem, Sensitivity Analysis

12.1 Intro

One of the urgent and promising tasks of modern mechanics of deformable solid
body is the development of theoretical and numerical models of objects made of
modern functionally graded materials (FGM) with complex inhomogeneous physi-
cal and mechanical properties, which are characterized by the presence of prestress
state. Present-day FGM manufacturing technologies, such as 3D printing, make it
possible to design objects of complex geometry without employing standard tech-
nologies, including casting, which requires additional production of molds. For the
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manufacture of FGM, high-temperature technologies are usually used (e.g., surfac-
ing, sintering, work hardening, etc.), due to which, after cooling, prestress fields
are formed in the samples, reaching levels of significant effect on their dynamic
characteristics [1].

As in the case of material inhomogeneity, there is a lack of studies devoted to
the identification of significantly inhomogeneous factors of prestress state in the lit-
erature. This is mainly due to the complexity of the mathematical apparatus and
computational difficulties that arise at the stage of formulating and solving the ac-
companying inverse problems. As for the studies of a homogeneous prestress state,
in the literature they often use an approach to solving problems of restoring the pre-
stress field in various structures based on a priori information that the prestress state
is formed as a result of subjecting to some mechanical load. For instance, in [2],
the authors investigate waves propagation in double cylindrical rods in the presence
of prestress. The interaction between two rods is modeled within the framework of
the Hertzian contact problem under the action of a static load; subsequently, this
state is interpreted as the initial stress state and is used further when considering the
analysis of wave propagation in a double cylindrical structure.

[3] presents a multiscale model for studying hollow cylinders with an arbitrary
functional gradient, with fibers, particles or disc-shaped reinforcing elements sub-
jected to harmonic loads. Stress analysis is performed by dividing the cylinders
into several layers, each with uniform properties, which functionally differ in the
thickness. To describe the effective properties of each layer reinforced with fibers,
particles or disk-shaped inclusions, averaging is used in the framework of the Mori-
Tanaka approach.

In [4], a prestress state in the welded joint of an annular structure modeled by a
cylindrical hoop was studied. The blind hole method was used to check the distribu-
tion of residual stress in the ring structure, and the test results, in order to check the
validity, were compared with the results of the finite element method (FEM) calcu-
lation. This made it possible to formulate recommendations on the optimal mode of
welding ring structures.

Currently, dental implants are often cylindrical or conical with a screw struc-
ture, and most screw-retained implants have a uniform solid structure [5]. In this
case, the Young modulus of the implants is significantly higher than that of the sur-
rounding tissues, and the implants fail due to the stress shielding effect. Thus, dental
implants with a porous FGM structure distribute stress to surrounding tissues and
provide long-term stability. Such materials have attracted considerable interest from
researchers due to their light weight, excellent energy absorption capacity, and fine
thermal stability properties.

It should be noted that the approaches used in practice to determine a homoge-
neous prestress state and homogeneous material parameters in most situations are
inapplicable to modern composite and FGM materials in which a prestress state
with a clearly inhomogeneous structure is usually formed. To study cylinders and
plates made of such materials, it is necessary to use full-fledged two-dimensional
and three-dimensional models with variable mechanical characteristics and prestress
state factors. In turn, to study the corresponding inverse reconstruction problems,
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new methods are required that allow one to qualitatively estimate not only the level,
but also the nature of the distribution of field characteristics that depend on three
variables. Currently, one can find many works devoted to the development of al-
gebraization methods, including projection methods, aimed at solving multidimen-
sional direct and inverse problems for elastic bodies in the presence of coupled
fields. We also note the importance of using variational interpretations and weak
formulations of direct and inverse problems for deriving operator relations and ob-
taining efficient numerical solutions. In [6], a new numerical technique for solving
problems of the linear elasticity theory based on a combination of the Galerkin
method and the FEM is presented, based on the use of weak formulations for the
corresponding differential operators.

There is still a lack of research devoted to the identification of planar or volu-
metric distributions of prestress fields in solids based on a number of surface mea-
surements within the nondestructive concepts. As such measurements, one can use
the displacements amplitudes measured in a set of points of some part of the body’s
surface for several vibration frequencies; in such a statement, the inverse problem
is nonlinear and essentially ill-posed. In contrast to that, sometimes it is possible
to consider a simpler, linear, inverse problem on prestress reconstruction based on
the measured displacement data inside the entire region. In [7] a few techniques for
solving such inverse problem were proposed, and some solution uniqueness aspects
were discussed.

Nowadays several approaches to modeling prestress in solids are used in litera-
ture; some of them are based on the linearization of nonlinear relations in contin-
uum mechanics, for instance, in [8, 9, 10, 11]. A number of linearized approaches
to prestress modelling are reviewed in [12]. On the basis of such theoretical mod-
eling approaches, in [13, 14, 15, 16, 17, 18], the methodologies for determining
inhomogeneous prestress fields in elastic bodies (including those made of function-
ally graded composites) were proposed. The methods are mainly based on iterative-
regularization schemes for solving the corresponding ill-posed coefficient inverse
problems. Such approaches can be useful when dealing with incomplete measure-
ment data.

In this paper, we study the problem for a finite cylinder in the presence of pre-
stress fields of an inhomogeneous structure. A study of the influence of several pre-
stress types on the displacement field under the action of an external load was made.
The inverse problem of finding the intensities of three types of prestress states is
studied in the presence of additional information on the displacement field mea-
sured in the region.

12.2 Linearized Deformation Model for a Prestressed Body

To formulate the problems on vibrations of prestressed cylindrical bodies, we will
start with the approach of linearizing the original nonlinear continuum mechanics
motion equations and boundary conditions by perturbing the original body’s con-
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figuration (taken as the reference one) and superimposing small deformations on it
[8, 11, 12, 19].

We shall proceed from the standard nonlinear dynamic problem statement written
for the 1st Piola-Kirchhoff stress tensor T′ [8]:

∇ ·T′ = 𝜌 ¥u′, (12.1)

n ·T′ |𝑆𝜎 = P′, u′ |𝑆𝑢 = 0, (12.2)

Here, the body is rigidly clamped on the surface part 𝑆𝑢 and subjected to the load
P′ on 𝑆𝜎 , 𝜌 is the body density, n — unit vector of the outer normal to the body’s
surface, a dash corresponds to the total nonlinearized components (e.g., u′ is the
total displacement vector); the nabla-operator ∇ is defined in the metrics of the
natural undeformed configuration of the body. Representing T′ in terms of the
symmetric total 2nd Piola–Kirchhoff stress tensor 𝝈′, we get T′ = 𝝈′ · F, where
F = ∇R = ∇(r+u′) = E+∇u′ – material deformation gradient; r, R – radius-vectors
referred to the undeformed and perturbed (actual) configurations, respectively; E –
identity tensor.

Now let us use the classical linearization approach (corresponding to superim-
posing small deformation on the finite one) and decompose all the total components
(displacements, stress, strain, loads, etc.) by those from the initially-stressed and
perturbed states: u′ = u0 +u, 𝝈′ = 𝝈0 +𝝈, 𝜺′ = 𝜺0 +𝜺, P′ = P0 +P, etc.

For instance, the linearization of the total 1st Piola-Kirchhoff stress tensor T′

(omitting detailed tensor transformations) will result in

T′ = 𝝈′ · (E+∇u′) = (𝝈0 +𝝈) · (E+∇u0 +∇u) = T0 +T,

T0 = 𝝈0 +𝝈0 · ∇u0, T = 𝝈 + 𝝈0 · ∇u + 𝝈 · ∇u0 (12.3)

Here, in view of smallness of the superimposed deformation, we have also neglected
the term 𝝈 · ∇u; T0 and T represent initial and perturbed components of the tensor
T′, respectively. In the same way, the linearized initial and incremental strain tensors
take forms

𝜺0 =
1
2
(∇u0 +∇u0T +∇u0 · ∇u0T), 𝜺 =

1
2
(∇u+∇uT +∇u0 · ∇uT +∇u · ∇u0T),

respectively (note that both components contain the initial displacement gradients
explicitly).

Let us consider perturbing the initially-stressed state in the form of small steady-
state vibrations and represent P(𝑡) = Pe−𝑖𝜔𝑡 , u(𝑡) = ue−𝑖𝜔𝑡 , and then eliminate the
time factor from the governing equations in the common way. After linearizing
the motion equations (12.1) and boundary conditions (12.2), we get two boundary-
problem statements: for the initial, self-balanced, state (also neglecting the differ-
ence between the normal vectors in the initial and actual configurations) in the form

∇ ·T0 = 0, u0��
𝑆𝑢

= 0, 𝑛 · T0��
𝑆𝜎

= P0. (12.4)
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and for the perturbed configuration, written for small incremental values, as follows:

∇ ·T+ 𝜌𝜔2u = 0, u|𝑆𝑢 = 0, 𝑛 · T|𝑆𝜎
= P. (12.5)

where T0 and T were introduced in (12.3). In such a formulation, the statements
(12.4) and (12.5) can be found, for instance, in the works of A.N. Guz [11] (the
review with an extensive list of names of scientists who contributed to the develop-
ment of this theory may be found in [12])). As it was done in most of the works in
literature, we shall consider a particular case of the described statement (12.5), when
the changes of volumes and areas can be neglected, and the initial deformed state
can be determined by geometrically linear theory, ignoring the initial displacement
gradient: ∇u0 ≈ 0. In this case, one may set the incremental objective stress tensor 𝝈
in the most standard way, satisfying, for example, Hooke’s law for the linear elastic
material. For an isotropic material, we take 𝝈 = 𝜆E tr𝜺 + 2𝜇𝜺 for the infinitesimal
linear strain tensor 𝜺 = 1

2
(∇u+∇uT) , where 𝜆 and 𝜇 are the Lamé coefficients. In

this way, the incremental 1st Piola-Kirchhoff stress tensor T gets the simplified form
T = 𝝈 + 𝝈0 · ∇u.

More details on the technique of deriving such linearized models of prestress
elastic and electroelastic bodies can be found in [12, 20]. The model described above
makes it possible to simulate inhomogeneous prestress fields of various nature with-
out taking into account initial deformation explicitly and is of certain convenience
when treating inverse problems on prestress identification.

The general weak statement of the described problem has the form [12, 19]:∫
𝑉

T⊙∇vd𝑉 −𝜔2
∫
𝑉

𝜌u ·vd𝑉 −
∫
𝑆𝜎

P ·vd𝑆 = 0, (12.6)

where v — test vector function that satisfies the main boundary conditions from
Eq. (12.6), 𝑉 — volume occupied by the body.

12.3 Weak Problem Statement for Prestressed Cylinder

Consider the problem of vibrations of an inhomogeneous cylinder in the presence
of four nonzero components of the prestress tensor: 𝜎0

𝑟𝑟 , 𝜎0
𝜙𝜙 , 𝜎0

𝑧𝑧 , 𝜎0
𝑟 𝜙 in the cylin-

drical coordinate system 𝑟, 𝜙, 𝑧. The cylinder volume is defined as

𝑉 = {𝑟 ∈ [𝑅1, 𝑅2] , 𝜙 ∈ [0,2𝜋) , 𝑧 ∈ [0, 𝐿]} .

We will consider an axisymmetric problem, assuming that the test vector function
and the displacement vector have the form v = 𝑣𝑟 (𝑟, 𝑧)e𝑟 +𝑣𝜙 (𝑟, 𝑧)e𝜙 +𝑣𝑧 (𝑟, 𝑧)e𝑧 and
u = 𝑢𝑟 (𝑟, 𝑧)e𝑟 +𝑢𝜙 (𝑟, 𝑧)e𝜙 +𝑢𝑧 (𝑟, 𝑧)e𝑧 , respectively, and

𝜕𝑢𝑟
𝜕𝜙

=
𝜕𝑢𝜙

𝜕𝜙
=
𝜕𝑢𝑧
𝜕𝜙

= 0.
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To formulate a weak statement in the considered particular case, we shall write
down the components of the tensor T based on the constitutive relations from (12.5),
assuming the cylinder’s material be isotropic with variable properties:

𝑇𝑟 = 𝜆

(
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑟
𝑟
+ 𝜕𝑢𝑧
𝜕𝑧

)
+2𝜇

𝜕𝑢𝑟
𝜕𝑟

+𝜎0
𝑟𝑟

𝜕𝑢𝑟
𝜕𝑟

−𝜎0
𝑟 𝜙

𝑢𝜙

𝑟
,

𝑇𝜙 = 𝜆

(
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑟
𝑟
+ 𝜕𝑢𝑧
𝜕𝑧

)
+2𝜇

𝑢𝑟
𝑟
+𝜎0

𝜙𝜙

𝑢𝑟
𝑟
+𝜎0

𝑟 𝜙

𝜕𝑢𝜙

𝜕𝑟
,

𝑇𝑧 = 𝜆

(
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑟
𝑟
+ 𝜕𝑢𝑧
𝜕𝑧

)
+2𝜇

𝜕𝑢𝑧
𝜕𝑧

+𝜎0
𝑧𝑧

𝜕𝑢𝑧
𝜕𝑧

,

𝑇𝑟 𝑧 = 𝜇

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
+𝜎0

𝑟𝑟

𝜕𝑢𝑧
𝜕𝑟

,

𝑇𝑧𝑟 = 𝜇

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
+𝜎0

𝑧𝑧

𝜕𝑢𝑟
𝜕𝑧

,

𝑇𝑟 𝜙 = 𝜇

(
𝜕𝑢𝜙

𝜕𝑟
− 𝑢𝜙
𝑟

)
+𝜎0

𝑟𝑟

𝜕𝑢𝜙

𝜕𝑟
+𝜎0

𝑟 𝜙

𝑢𝑟
𝑟
,

𝑇𝑧𝜙 = 𝜇
𝜕𝑢𝜙

𝜕𝑧
+𝜎0

𝑧𝑧

𝜕𝑢𝜙

𝜕𝑧
,

𝑇𝜙𝑧 = 𝜇
𝜕𝑢𝜙

𝜕𝑧
+𝜎0

𝑟 𝜙

𝜕𝑢𝑧
𝜕𝑟

,

𝑇𝜙𝑟 = 𝜇

(
𝜕𝑢𝜙

𝜕𝑟
− 𝑢𝜙
𝑟

)
−𝜎0

𝜙𝜙

𝑢𝜙

𝑟
+𝜎0

𝑟 𝜙

𝜕𝑢𝑟
𝜕𝑟

.

(12.7)

Let, for the sake of generality, be 𝑆𝜎 = 𝜕𝑉 = 𝑆− ∪ 𝑆+∪ 𝑆1 ∪ 𝑆2, were

𝑆− = {𝑟 ∈ [𝑅1, 𝑅2] , 𝜙 ∈ [0,2𝜋) , 𝑧 = 0} ,
𝑆+ = {𝑟 ∈ [𝑅1, 𝑅2] , 𝜙 ∈ [0,2𝜋) , 𝑧 = 𝐿} ,
𝑆1 = {𝑟 = 𝑅1, 𝜙 ∈ [0,2𝜋) , 𝑧 ∈ [0, 𝐿]} ,
𝑆2 = {𝑟 = 𝑅2, 𝜙 ∈ [0,2𝜋) , 𝑧 ∈ [0, 𝐿]} .

By integrating over volume and surface in (12.6) and performing standard tensor
transformations, taking into account the boundary conditions from Eq. (12.5) and
the independence of all the considered functions from the circumferential coordinate
𝜙, we get



12 On Estimating Prestress State in an Elastic Cylinder 201∫
Ω

(
𝜆𝐾𝑢𝑣

𝜆 + 𝜇𝐾𝑢𝑣
𝜇 +𝜎0

𝑟 𝜙𝐾
𝑢𝑣
𝑟 𝜙 +𝜎0

𝑟𝑟𝐾
𝑢𝑣
𝑟𝑟 +𝜎0

𝜙𝜙𝐾
𝑢𝑣
𝜙𝜙 +𝜎0

𝑧𝑧𝐾
𝑢𝑣
𝑧𝑧

)
dΩ

−𝜔2
∫
Ω

𝜌
(
𝑢𝑟 𝑣𝑟 +𝑢𝜙𝑣𝜙 +𝑢𝑧𝑣𝑧

)
dΩ

−
𝑅2∫

𝑅1

(
𝑇𝑧𝑟 𝑣𝑟 +𝑇𝑧𝜙𝑣𝜙 +𝑇𝑧𝑧𝑣𝑧

) ��
𝑧={0;𝐿} 𝑟d𝑟

−
𝐿∫

0

(
𝑇𝑟𝑟 𝑣𝑟 +𝑇𝑟 𝜙𝑣𝜙 +𝑇𝑟 𝑧𝑣𝑧

)
𝑟
��
𝑟={𝑅1;𝑅2 } d𝑧 = 0

(12.8)

where the following functions are introduced

𝐾𝑢𝑣
𝜆 =

(
𝑢𝑟 ,𝑟 + 𝑢𝑟

𝑟
+𝑢𝑧,𝑧

) (
𝑣𝑟 ,𝑟 + 𝑣𝑟

𝑟
+ 𝑣𝑧,𝑧

)
,

𝐾𝑢𝑣
𝜇 = 2

(
𝑢𝑟 ,𝑟 𝑣𝑟 ,𝑟 + 𝑢𝑟

𝑟

𝑣𝑟
𝑟
+𝑢𝑧,𝑧𝑣𝑧,𝑧

)
+ (
𝑢𝑟 ,𝑧 +𝑢𝑧,𝑟

) (
𝑣𝑟 ,𝑧 + 𝑣𝑧,𝑟

)

+
(
𝑢𝜙,𝑟 −

𝑢𝜙

𝑟

) (
𝑣𝜙,𝑟 −

𝑣𝜙

𝑟

)
+𝑢𝜙,𝑧𝑣𝜙,𝑧 ,

𝐾𝑢𝑣
𝑟 𝜙 =

(
𝑢𝜙,𝑟 𝑣𝑟 +𝑢𝑟 𝑣𝜙,𝑟 −𝑢𝜙𝑣𝑟 ,𝑟 −𝑢𝑟 ,𝑟 𝑣𝜙

)
𝑟−1,

𝐾𝑢𝑣
𝑟𝑟 = 𝑢𝑟 ,𝑟 𝑣𝑟 ,𝑟 +𝑢𝜙,𝑟 𝑣𝜙,𝑟 +𝑢𝑧,𝑟 𝑣𝑧,𝑟 ,

𝐾𝑢𝑣
𝜙𝜙 = (𝑢𝑟 𝑣𝑟 ) 𝑟−2 + (

𝑢𝜙𝑣𝜙
)
𝑟−2,

𝐾𝑢𝑣
𝑧𝑧 = 𝑢𝑟 ,𝑧𝑣𝑟 ,𝑧 +𝑢𝜙,𝑧𝑣𝜙,𝑧 +𝑢𝑧,𝑧𝑣𝑧,𝑧 .

In this case, the region of a flat longitudinal section of the cylinder is considered:

Ω = {𝑟 ∈ [𝑅1, 𝑅2] , 𝑧 ∈ [0, 𝐿]} ,dΩ = 𝑟d𝑟d𝑧.

Note that the test vector function v satisfies the same essential boundary conditions
as the displacement vector u.

Remark 12.1. To verify the computational FE scheme based on the proposed weak
statement (12.8), a series of computational experiments was carried out: FE solu-
tions were compared with Saint-Venant solutions for the cases of axial tension and
torsion; a comparison was also made with the solution for an annular region with
a uniformly distributed internal pressure. Verification within steady oscillations is
carried out for a special case for which a semi-analytical solution exists; at both
cylinder’s ends, the sliding boundary conditions are set
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𝑢𝑧 = 0, 𝜇
(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
= 𝜇

𝜕𝑢𝜙

𝜕𝑧
= 0,

on the outer side 𝑆2 the normal load is distributed according to the law cos
(
𝜋𝑧𝐿−1) .

In this case, the problem is reduced to the one-dimensional one (by separating the
axial coordinate) and investigated using the shooting method. The results obtained
quite accurately repeat the results of calculations published in the work [18] (the
relative error when comparing the solutions was no more than 1%).

12.4 Sensitivity Analysis

Consider the deformation of the hollow cylinder with the parameters

𝑅1 = 0.5𝑅2, 𝐿 = 10𝑅2, 𝑅2 = 1 m, 𝜇 = 70 GPa,𝜆 = 105 GPa, 𝜌 = 7950
kg
m3

(steel #10X17H13M2T), in case of cantilever conditions (𝑢𝑟 = 𝑢𝜙 = 𝑢𝑧 = 0, 𝑣𝑟 =
𝑣𝜙 = 𝑣𝑧 = 0 on 𝑆−) under the action of an external load of three following types (a
unit load is indicated in each type):

1. Torsion of the cylinder by a tangential load applied to the free end 𝑧 = 𝐿:
𝑇𝑧𝑟 = 0,𝑇𝑧𝜙 = 𝑟,𝑇𝑧𝑧 = 0.

2. Inflation by internal pressure for 𝑟 = 𝑅1:
𝑇𝑟𝑟 = 1,𝑇𝑟 𝜙 = 0,𝑇𝑟 𝑧 = 0.

3. Stretching by axial load applied to the end 𝑧 = 𝐿:
𝑇𝑧𝑟 = 0,𝑇𝑧𝜙 = 0,𝑇𝑧𝑧 = 1.

For each type of loading, the deformation characteristics of the cylinder are stud-
ied in the presence and absence of inhomogeneous prestress fields. The sensitivity
of cylinder displacements under the action of the considered static loads to three
prestress types is analyzed (similar prestress laws for an infinite cylinder may be
found in [18]):

• Prestress state I (torsion):

𝜎I
𝑟 𝜙 = YI

𝑅2
2
𝑟2 , 𝜎I

𝑟𝑟 = 0, 𝜎I
𝜙𝜙 = 0, 𝜎I

𝑧𝑧 = 0 (12.9)

• Prestress state II (inflation):

𝜎II
𝑟 𝜙 = 0, 𝜎II

𝑟𝑟 = YII
𝑅2

1
(
𝑟2 −𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) , 𝜎II

𝜙𝜙 = YII
𝑅2

1
(
𝑟2 +𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) , 𝜎II

𝑧𝑧 = 0 (12.10)

• Prestress state III (tension):

𝜎III
𝑟 𝜙 = 0, 𝜎III

𝑟𝑟 = 0, 𝜎III
𝜙𝜙 = 0, 𝜎III

𝑧𝑧 = YIII (12.11)
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Here the constant values YI, YII, YIII represent prestress amplitudes. Below in the
paper, we present the results of assessing the possibility of using fields of analytical
type (12.9)-(12.11) in the finite cylinder problem. Let us represent the prestress
tensor in the general case as 𝝈0 = 𝝈I +𝝈II +𝝈III.

We studied the problems in the presence of prestress of the three described types
and without it, with the corresponding solutions

u =
(
𝑢𝑟 , 𝑢𝜙 , 𝑢𝑧

)
and

u0 =
(
𝑢𝑟0, 𝑢𝜙0, 𝑢𝑧0

)
,

respectively. We built 2D graphs (Fig. 12.1) showing the function of the prestress
”influence” on the deformation of the cylinder – the relative change in the length of
the displacement vector

𝛿 =
|u−u0 |
𝑑

100%,

where

𝑑 = max
𝑟 ,𝑧

|u0 | = max
𝑟 ,𝑧

√︃
(𝑢𝑟0)2 + (

𝑢𝜙0
)2 + (𝑢𝑧0)2

is the largest characteristic length of the displacement vector for the problem without
prestress. The figure also shows the respective maximum influence values

𝛿max = max
𝑟 ,𝑧

𝛿

in each case considered.

Fig. 12.1 Influences of 3 prestress types on the cylinder displacement vector u under 3 modes of
static loading
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Remark 12.2. Further, everywhere in the work on the images of 2D fields, the longi-
tudinal coordinate 𝑧 ∈ [0, 𝐿] is plotted along the abscissa axis, and the radial coordi-
nate 𝑟 ∈ [𝑅1, 𝑅2] – along the ordinate axis. FE calculations were carried out on the
grid [200×20] (with FE providing quadratic approximation); in some cases local
FE mesh refinement was used in the vicinity of the clamped end 𝑧 = 0.

In this case, we considered the prestress of the maximum level 0.001𝜇 (where 𝜇
is the shear modulus), for example, the prestress proportionality coefficients of the
first type have the form YI = 0.001𝜇, YII = YIII = 0.

Based on the results of studying the influence of prestress, some recommenda-
tions are formulated below for their restoration in the course of solving the inverse
problem with additional information about the measured deformation characteris-
tics of the cylinder. For efficient level reconstruction YI (for prestress state I) it
is rational to implement the cylinder inflation mode (loading of the second type
𝑇𝑟𝑟 = 1,𝑇𝑟 𝜙 = 0,𝑇𝑟 𝑧 = 0 for 𝑟 = 𝑅1); to recover YII (prestress II) it is advisable to im-
plement the loading of the first type (𝑇𝑧𝑟 = 0,𝑇𝑧𝜙 = 𝑟,𝑇𝑧𝑧 = 0 for 𝑧 = 𝐿). The level YIII
has the same maximum effect under loadings of both second and third types. Note
that under loading of the first type (torsion), for prestress states II-III, it is character-
istic 𝑢𝑟 = 𝑢𝑧 ≡ 0. When considering loading of the second and third types (inflation,
tension) and prestress states II-III, there is 𝑢𝜙 ≡ 0. Prestress I is characterized by the
presence of all three components of the displacement vector.

Remark 12.3. Note that the laws of change in prestress (12.9)-(12.11) do not satisfy
the boundary conditions at the ends of the cylinder, since they are solutions to some
model problems for an infinite cylinder and a ring. However, as shown below, laws
(12.9)-(12.11) can nevertheless be used as prestress when considering small defor-
mations of an elongated prestressed cylinder; the greatest difference takes place in
the area of the cantilever-pinched edge.

Below we present the results of comparing the given prestress laws with the prestress
fields calculated by the FE in the course of solving an auxiliary statics problem for
a cylinder under the influence of the corresponding initial mechanical loads.

12.5 Comparison of Analytical and FE Prestress Fields

This section presents the results of analyzing the proximity of the analytical pre-
stress laws (12.9)-(12.11) to the corresponding numerical FE solutions for a finite
cantilever-clamped cylinder under similar loading modes. Everywhere below, the
prestress obtained as a result of FE calculations will be denoted as �̂�𝛼

𝑖 𝑗 , 𝛼 = I, II, III.
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12.5.1 Initial Inflation

A numerical FE solution is constructed for the auxiliary statics problem on initial
inflation by internal pressure of a final cantilever-clamped cylinder that satisfies the
following boundary conditions:

𝑢𝑟 = 𝑢𝜙 = 𝑢𝑧 = 0 on 𝑆− , 𝑇𝑧𝑟 = 0,𝑇𝑧𝜙 = 0,𝑇𝑧𝑧 = 0 on 𝑆+,
𝑇𝑟𝑟 = 𝑞0

𝑟 ,𝑇𝑟 𝜙 = 0,𝑇𝑟 𝑧 = 0 on 𝑆1, 𝑇𝑟𝑟 = 0,𝑇𝑟 𝜙 = 0,𝑇𝑟 𝑧 = 0 on 𝑆2.

Figure 12.2 presents some characteristic distributions of the calculated stress com-
ponents for the internal pressure value 𝑞0

𝑟 = 0.001𝜇. At that, the two components
�̂�II
𝑟 𝜙 = �̂�II

𝜙𝑧 = 0, and the stresses �̂�II
𝑟 𝑧 , �̂�II

𝑧𝑧 are localized in the clamp vicinity; the
stresses �̂�II

𝑟𝑟 , �̂�II
𝜙𝜙 for 𝑧 = [0.2𝐿, 𝐿] are practically indistinguishable from 𝜎II

𝑟𝑟 , 𝜎II
𝜙𝜙 .

The maximum and minimum values in the color gradient are hereinafter indicated
below the field images.

In Fig. 12.3 section graphs �̂�II
𝑧𝑧 (for the component �̂�II

𝑟 𝑧 we got similar tendencies)
are given in the vicinity of the cylinder’s clamped end. The figure reflects the pres-
ence of stress concentration in the vicinity of the end 𝑆− . In the point (𝑟 = 𝑅1, 𝑧 = 0)
on the edge, it is most pronounced (which follows from the analysis of the solution
by means of distinguishing regular parts). Let us further consider the relative differ-
ence between the analytical and FE fields of the prestresses 𝜎II

𝑟𝑟 , 𝜎II
𝜙𝜙 and �̂�II

𝑟𝑟 , �̂�II
𝜙𝜙 ,

respectively (as the most characteristic components). To do this, we introduce into
consideration the functions

𝛿𝑟 =

��𝜎II
𝑟𝑟 − �̂�II

𝑟𝑟

��
max

��𝜎II
𝑟𝑟

�� 100%, 𝛿𝜙 =

���𝜎II
𝜙𝜙 − �̂�II

𝜙𝜙

���
max

���𝜎II
𝜙𝜙

��� 100%, 𝛿𝑧 =
��𝜎III

𝑧𝑧 − �̂�III
𝑧𝑧

��
max

��𝜎III
𝑧𝑧

�� 100%,

Fig. 12.2 On the left: 𝜎II
𝑟𝑟

for 𝑧 = [0, 0.1𝐿 ]. On the
right: 𝜎II

𝜙𝜙 for 𝑧 = [0, 0.2𝐿 ];
𝑟 ∈ [𝑅1, 𝑅2 ].

Fig. 12.3 The stress �̂�II
𝑧𝑧/𝑞0

𝑟

in two sections: 𝑟 = 0.75𝑅2
– dotted line, 𝑟 = 0.55𝑅2 –
solid line; 𝑧 ∈ [0, 0.15𝐿 ].
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see Figs. 12.4-12.6.

12.5.2 Initial Axial Tension

Similarly, we consider the problem of axial pretensioning of the finite cantilever-
clamped cylinder by means of the load of magnitude 𝑞0

𝑧 = 0.001𝜇, applied to the
free end 𝑆+. In this case, we obtain that �̂�III

𝑟 𝜙 = �̂�III
𝜙𝑧 = 0, the stresses �̂�III

𝑟𝑟 , �̂�III
𝜙𝜙 , �̂�III

𝑟 𝑧

are localized in the clamp vicinity, the stress �̂�III
𝑧𝑧 for 𝑧 = [0.2𝐿, 𝐿] is close to the

corresponding analytical law 𝜎III
𝑧𝑧 (Figs. 12.5-12.6). Relative difference in the FE

approximation of the function �̂�III
𝑧𝑧 and its analytical representation (12.11) is shown

in Fig. 12.6.

12.5.3 Initial Torsion

Let us consider the problem of initial torsion of the finite cylinder subjected to the
tangential load 𝜏0

𝜙 = 0.001𝜇, applied to the inner and outer boundaries. The calcu-
lations show that �̂�I

𝑟𝑟 = �̂�
I
𝜙𝜙 = �̂�I

𝑧𝑧 = �̂�
I
𝑟 𝑧 = 0, the stress component �̂�I

𝜙𝑧 is localized

in the clamp vicinity, and the stress �̂�I
𝑟 𝜙 for 𝑧 = [0.2𝐿, 𝐿] coincides with 𝜎I

𝑧𝑧 = YI
𝑅2

2
𝑟2

with 0.05% precision (see Fig. 12.7).

Fig. 12.4 On the left: 𝛿𝑟 for 𝑧 ∈ [0, 0.1𝐿 ]. To the right: 𝛿𝜙 for 𝑧 ∈ [0, 0.2𝐿 ] in section 𝑟 =
0.75𝑅2.

Fig. 12.5 From left to right: �̂�III
𝑟𝑟 , �̂�III

𝜙𝜙 ,
���̂�III

𝑟𝑧

�� for 𝑧 ∈ [0, 0.1𝐿 ].
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Fig. 12.6 Function 𝛿𝑧 for
𝑧 ∈ [0, 0.1𝐿 ]

Fig. 12.7 On the left: �̂�I
𝑟𝜙 . On the right: �̂�I

𝜙𝑧 ; 𝑧 ∈ [0, 0.1𝐿 ].

The comparison results provided reveal that significant differences in the consid-
ered analytical and FE stresses are observed in the clamp vicinity; in the working
area of the cylinder, the difference does not exceed 1%. This makes it possible to use
the analytical prestress laws of change as a model simplification instead of providing
additional calculation of FE solutions.

12.6 Inverse Problem of Prestress Identification

12.6.1 Problem Statement

Let us consider the inverse problem of restoring the prestress amplitudes in a cylin-
der in the presence of additional data on the displacements measured in the cylinder
region Ω. Within such a formulation, the inverse problem is linear and does not re-
quire the use of special iterative-regularization approaches [19]. To investigate it,
we shall use the weak statement (12.8), replacing the test functions with the compo-
nents of the displacement field: 𝑣 𝑗 = 𝑢 𝑗 , 𝑗 = 𝑟, 𝜙, 𝑧; we also put 𝜔 = 0 and rearrange
the equation terms:∫

Ω

(
𝜎0
𝑟 𝜙𝐾

𝑢𝑢
𝑟 𝜙 +𝜎0

𝑟𝑟𝐾
𝑢𝑢
𝑟𝑟 +𝜎0

𝜙𝜙𝐾
𝑢𝑢
𝜙𝜙 +𝜎0

𝑧𝑧𝐾
𝑢𝑢
𝑧𝑧

)
dΩ = 𝐵𝑢 (12.12)

where we denote
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𝐵𝑢 = 𝐹𝑢 −
∫
Ω

𝐾𝑢𝑢
𝜆𝜇dΩ, 𝐾𝑢𝑢

𝜆𝜇 = 𝜆𝐾𝑢𝑢
𝜆 + 𝜇𝐾𝑢𝑢

𝜇 ,

𝐹𝑢 =

𝑅2∫
𝑅1

(
𝑇𝑧𝑟𝑢𝑟 +𝑇𝑧𝜙𝑢𝜙 +𝑇𝑧𝑧𝑢𝑧

) ��
𝑧=𝐿 𝑟d𝑟 +𝑅1

𝐿∫
0

(
𝑇𝑟𝑟𝑢𝑟 +𝑇𝑟 𝜙𝑢𝜙 +𝑇𝑟 𝑧𝑢𝑧

) ��
𝑟=𝑅1

d𝑧

12.6.2 Problem Solution

After substituting the prestress in the form

𝜎I
𝑟 𝜙 = YI

𝑅2
2
𝑟2 ,𝜎

II
𝑟𝑟 = YII

𝑅2
1
(
𝑟2 −𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) ,𝜎II

𝜙𝜙 = YII
𝑅2

1
(
𝑟2 +𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) ,𝜎III

𝑧𝑧 = YIII

(on the basis of the laws (12.9)-(12.11)) into (12.12), we get the system of linear
algebraic equations 𝑎 𝑗𝑖Y𝑖 = 𝑏 𝑗 , 𝑖, 𝑗 = 1,3, whose coefficients are calculated ac-
cording to

𝑎 𝑗1 =
∫
Ω

𝑅2
2
𝑟2 𝐾

𝑢𝑢
𝑟 𝜙

(
𝑢
( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)
dΩ,

𝑎 𝑗2 =
∫
Ω

[
𝑅2

1
(
𝑟2 −𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) 𝐾𝑢𝑢

𝑟𝑟

(
𝑢
( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)
+ 𝑅

2
1
(
𝑟2 +𝑅2

2
)

𝑟2 (
𝑅2

2 −𝑅2
1
) 𝐾𝑢𝑢

𝜙𝜙

(
𝑢
( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)]
dΩ,

𝑎 𝑗3 =
∫
Ω

𝐾𝑢𝑢
𝑧𝑧

(
𝑢
( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)
dΩ,

𝑏 𝑗 = 𝐹𝑢
(
𝑢
( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)
−

∫
Ω

𝐾𝑢𝑢
𝜆𝜇

(
𝜆, 𝜇,𝑢

( 𝑗 )
𝑟 , 𝑢

( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧

)
dΩ,

where 𝑢 ( 𝑗 )𝑟 , 𝑢
( 𝑗 )
𝜙 , 𝑢

( 𝑗 )
𝑧 – the corresponding solutions of the direct problem (simulat-

ing the measurements data) for the 𝑗 th loading type.

12.6.3 Computational Experiments

In Table 12.1 we present the results of identification of various combinations of
values YI, YII, YIII, characterizing the amplitudes of the considered types of inhomo-
geneous prestress in the cylinder. From the table it can be seen that the described
procedure for identifying prestress with amplitudes not lower than 10−5 with re-
spect to the shear modulus gives a sufficiently high recovery accuracy. In this case,
the restored amplitudes can also be used to judge the type of prestressed state in the
cylinder.
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Table 12.1 Reconstruction of the inhomogeneous prestress amplitudes (tilde means an approxi-
mate value calculated with an accuracy of at least 10−6)

Test Original prestress amplitudes ×10−3 Reconstruction ×10−3

YI YII YIII ỸI ỸII ỸIII

1 1 1 1 ∼ 1 ∼ 1 ∼ 1

2 0.1 1 1 ∼ 0.1 ∼ 1 ∼ 1

3 10−2 1 1 0.96 · 10−2 ∼ 1 ∼ 1

4 10−3 1 1 0.61 · 10−3 ∼ 1 ∼ 1

5 1 10−6 1 ∼ 1 0.96 · 10−6 ∼ 1

6 1 1 10−6 ∼ 1 ∼ 1 1.07 · 10−6

12.7 Conclusion

• A weak problem statement is formulated for a finite prestressed cylinder. The
prestress tensor is given by four non-zero components depending on the coordi-
nates.

• There are two ways to set prestress fields for a cylinder clamped by one end. The
first one is based on constructing the prestress field as a finite element solution of
the corresponding initial statics problem on the deformation of a cylinder under
some preload; the cases of initial inflation, torsion and tension are considered.
The second way is based on using the analytical solutions for a ring section and
infinite cylinder. A significant difference between the analytical and finite ele-
ment solutions is observed in a fairly small neighborhood of the clamped end
of the cylinder. The possibility of using the analytical solutions instead of nu-
merical ones is demonstrated by analyzing the prestress effect on the cylinder’s
deformation characteristics. The calculated displacement fields in the problems
with analytical and numerical prestress differ insignificantly due to the cylinder
fixation conditions.

• The influence of the considered prestress types on the field of small superim-
posed displacements is studied; sensitivity analysis was carried out for tensile,
inflating and twisting load regimes. The computational experiments performed
have shown that the highest prestress sensitivity is observed mainly in the vicin-
ity of the free edge.

• The inverse problem on the reconstruction of the intensities of the three consid-
ered prestress types is studied, when the additional data on the displacements in
the entire area is provided. The system of linear equations for finding the prestress
amplitudes is obtained based on the weak formulation equations. In the absence
of input noise, a sufficiently high accuracy of the inverse solution is observed.

Acknowledgements The study was supported by the Russian Science Foundation, grant #18-71-
10045, https://rscf.ru/project/18-71-10045/.
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Chapter 13
A Method of the JR-curve Determination Using
Linear Normalization

Oxana G. Rybakina and Olga A. Strogonova

Abstract An analytical method for the JR-curve determination is proposed. The
method is based on the principle of load normalization by J. Landes and the linear
relationship between the normalized load gradient and the crack length increment
established in the paper by E. Reese and K. Schwalbe. As long as the final values of
the load and the crack length increment are known, the method makes it possible to
calculate the crack length increment for each load value throughout the entire load-
ing process. Further, using the experimental relationship between the load and the
displacement of the point of application of the load, the JR–curve is determined. An
example of calculation and comparison with the results obtained by other methods
is given.

Key words: Crack, JR-curve, Load normalization, Load gradient

13.1 Introduction

Crack extension conditions based on the concepts of linear fracture mechanics and
related structural requirements should be applied when the behavior of the material
is predominantly elastic and the fracture is brittle. In cases where the material is
capable of large plastic deformations, the use of linear fracture mechanics provides
a conservative calculation, as a result of which the performance of the material is
not fully exploited. Quantification of various stages of the ductile fracture process
can be based on the use of the J–integral, which is a characteristic parameter of the
crack front. At present, methods have been developed for calculating this parameter,
which is a function of the applied load, crack geometry, and mechanical properties
of the material. To assess the critical state of a structural element containing a crack,
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as in conventional strength calculations, the value of this parameter is compared
with the critical value characterizing a specific material. In the presence of large
plastic deformations, critical situations become more diverse, namely, we can talk
about crack initiation, its stable growth, and unstable propagation.

The JR–curve is the dependence of the values of the J–integral on the values
of the increment of the crack length, obtained as a result of testing the samples
and is a characteristic of the crack resistance of the material. Standards have been
developed with the help of which JR–curves are constructed [1]. The simplest, but
time-consuming method is to test a series of samples. Each sample of the series with
the initial crack length 𝑎0 is loaded once and then unloaded in order to obtain, after
testing the entire series, two data arrays: an array of load values 𝑃 corresponding to
the beginning of unloading, and an array of values of the plastic displacement com-
ponent 𝑣pl . After unloading, the length of the crack 𝑎 is fixed on each sample (using
heat treatment or some other method), and then the sample is loaded again until the
final failure. Thus, the third data array is obtained — an array of crack length incre-
ment values Δ𝑎 = 𝑎− 𝑎0 . These arrays contain as many points as there are samples
tested; according to these data, a JR–curve is constructed. A less laborious method
uses a single sample that is repeatedly partially unloaded and reloaded to continue
the test. The ”load–crack opening” diagram in the elastic section of unloading and
subsequent loading makes it possible to determine the length of the crack using the
relations of linear fracture mechanics (this method is called the elastic compliance
method). However, as practice shows, this method gives reliable results for moder-
ately ductile metals, in which the region of plastic deformations in the vicinity of
the crack front is small. For highly plastic materials, this method cannot be used to
determine the length of the crack with the required accuracy.

To assess the crack resistance of highly plastic materials, the efforts of re-
searchers were directed to the creation of other methods for determining the crack
length increment when testing samples of various geometries. The papers [2, 3]
introduced the load separation principle. The load 𝑃 applied to the sample is repre-
sented as a product of two functions, one of which depends only on the geometry
of the sample and the size of the crack, and the other only on the plastic compo-
nent of the displacement of the point of application of the load. The form of these
functions, based on experimental studies, is specified for the most common sample
geometries. In [4], the concept of a normalized load gradient was introduced and,
based on experimental data, it was shown that there is a linear relationship between
the normalized load gradient and the crack length increment. Based on these re-
sults, a graphical procedure was proposed that allows plotting the dependence of
the normalized load on the crack length increment. To determine it, it is necessary
to have a diagram ”𝑃− 𝑣pl”, obtained on one sample, and unloading is carried out
after the load reaches the maximum value 𝑃 = 𝑃max and some decrease to the value
𝑃 = 𝑃f < 𝑃max occurred. The corresponding values 𝑃 = 𝑃f and 𝑎 = 𝑎f should be
recorded.

In this paper, analytical dependencies have been obtained that make it possible
to determine the JR-curve in the presence of the above diagram ”𝑃− 𝑣pl ”, obtained
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on one standard sample, and the values of the load and crack length corresponding
to the moment of unloading.

13.2 Statement of the Problem

We assume that the load applied to the sample can be represented as:

𝑃(𝑎, 𝑣pl) = 𝐺 (𝑎/𝑊)𝐻 (𝑣pl/𝑊) (𝑊 is the sample width).

Based on numerous experimental studies carried out on standard samples used to
construct the JR–curve, in [2] the form of the function was proposed:

𝐺 (𝑎/𝑊) = 𝐵𝑊
(
1− 𝑎

𝑊

) [pl (𝐵 is the sample thickness),

where the parameter [pl depends on the sample geometry and does not depend on
the crack size. In [3], specific numerical values [pl were obtained for various sample
geometries: [pl = 2,13 for tensile tests, [pl = 1,94 for three-point bending tests,
[pl = 0,96 for tests of a compact sample. Following [2], we introduce the concept of
normalized load 𝑃N:

𝑃N =
𝑃

𝐵𝑊
(
1− 𝑎

𝑊

) [pl
.

Obviously, if the normalized load 𝑃N = 𝐻 (𝑣pl) is known, then the initial load
𝑃(𝑎, 𝑣pl) is also known. Let us introduce the gradient of the normalized load Δ𝑃N,
corresponding to a fixed level of load 𝑃 and due to the increment of the crack length
Δ𝑎 , [4]:

Δ𝑃N (Δ𝑎) = 𝑃N (𝑎0 +Δ𝑎) −𝑃N (𝑎0) = 𝑃

𝐵𝑊

©
«

1(
1− 𝑎0+Δ𝑎

𝑊

) [pl
− 1(

1− 𝑎0
𝑊

) [pl

ª®®
¬
. (13.1)

For fixed values of 𝑎0, based on this formula a series of curves Δ𝑃N= Δ𝑃N (Δ𝑎) can
be obtained. In [4], based on a large amount of experimental data obtained on vari-
ous materials, it was shown that the dependence Δ𝑃N= Δ𝑃N (Δ𝑎) is linear over the
entire range of 𝑃 and Δ𝑎 . The corresponding straight line on the plane (Δ𝑎,Δ𝑃N)
passes through the point (Δ𝑎f ,Δ𝑃N (Δ𝑎f)) and touches the curve Δ𝑃N= Δ𝑃N (Δ𝑎)
corresponding to the load 𝑃 = 𝑃max . This graphical construction completely deter-
mines the parameters of the linear dependence. With a known dependence Δ𝑃N=
Δ𝑃N (Δ𝑎), using formula (13.1), for any value of the crack length increment Δ𝑎, the
load value 𝑃 is determined. In this paper, the JR- curve is determined analytically on
the basis of the experimental diagram ”𝑃− 𝑣pl” and the values 𝑃f and 𝑎f obtained on
one standard sample.



214 Oxana G. Rybakina and Olga A. Strogonova

13.3 Obtaining the Solution

The dependence of the normalized load gradient on the crack increment has the
form:

Δ𝑃N (Δ𝑎) = Δ𝑃N (Δ𝑎f) + (Δ𝑃N)′ |𝑃=𝑃max (Δ𝑎−Δ𝑎f). (13.2)

For (Δ𝑃N)′ |𝑃=𝑃max; Δ𝑎 (𝑃=𝑃max ) from (13.1) we get:

(Δ𝑃N)′ |𝑃=𝑃max; Δ𝑎 (𝑃=𝑃max ) =
[pl𝑃max

𝐵𝑊2
(
1− 𝑎0+Δ𝑎 |𝑃=𝑃max

𝑊

) [pl+1 . (13.3)

Relations (13.1) and (13.2) are satisfied at the point corresponding to the maximum
load

Δ𝑎 |𝑃=𝑃max ,Δ𝑃N (Δ𝑎 |𝑃=𝑃max ),
which leads to the equations:

Δ𝑃N (Δ𝑎 |𝑃=𝑃max ) =
𝑃max
𝐵𝑊

©«
1(

1− Δ𝑎 |𝑃=𝑃max
𝑊

) [pl
− 1(

1− 𝑎0
𝑊

) [pl

ª®®¬
; (13.4)

Δ𝑃N (Δ𝑎 |𝑃=𝑃max ) = Δ𝑃N (Δ𝑎f) + (Δ𝑃N)′ |𝑃=𝑃max; Δ𝑎 (𝑃=𝑃max ) (Δ𝑎 |𝑃=𝑃max −Δ𝑎f)
(13.5)

Substituting (13.3) into (13.5) leads to a system of equations for determining
Δ𝑎 |𝑃=𝑃max and Δ𝑃N (Δ𝑎 |𝑃=𝑃max ). After transformations, we obtain a transcendental
equation for Δ𝑎 |𝑃=𝑃max ; then from relation (13.3) we find (Δ𝑃N)′ |𝑃=𝑃max; Δ𝑎 (𝑃=𝑃max ) .
For an arbitrary value of the crack length increment Δ𝑎 ≤ Δ𝑎f from (13.2) we deter-
mine Δ𝑃N (Δ𝑎) and from (13.1) the value of the load 𝑃 on the experimental diagram
”𝑃− 𝑣pl”.

Further in this section, to simplify the notation, we will use the following:

𝑎0
𝑊

∼ 𝑎0;
𝑎0 +Δ𝑎f
𝑊

∼ 𝑎f ;
𝑎0 +Δ𝑎 |𝑃=𝑃max

𝑊
∼ 𝑎m;

Δ𝑎
𝑊

∼ Δ𝑎;
Δ𝑎 |𝑃=𝑃max

𝑊
∼ Δ𝑎m;

Δ𝑎f
𝑊

∼ Δ𝑎f .

The transcendental equation for the crack length increment at maximum load Δ𝑎m
is written as:

𝑃max
𝐵𝑊 (1− (𝑎0 +Δ𝑎m))[pl

− 𝑃max
𝐵𝑊 (1− 𝑎0)[pl

=

=
𝑃f

𝐵𝑊 (1− 𝑎f)[pl
− 𝑃f
𝐵𝑊 (1− 𝑎0)[pl

+ [pl𝑃max

𝐵𝑊2 (1− (𝑎0 +Δ𝑎m))[pl+1 (Δ𝑎m −Δ𝑎f)

or after transformations and simplifications
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1
(1− (𝑎0 +Δ𝑎m))[pl+1 −

[pl +1
[pl (1− 𝑎f) (1− (𝑎0 +Δ𝑎m))[pl

+

+
(
1− 𝑃f

𝑃max

)
1

[pl (1− 𝑎f) (1− 𝑎0)[pl
+ 𝑃f/𝑃max

[pl (1− 𝑎f)[pl+1 = 0

(13.6)

and solved numerically.
Next, we consider the determination of a JR–curve using tests of a standard sam-

ple for a three-point bend; this type of test is one of the most common. As mentioned
earlier, in this case [pl = 1,94. However, taking into account the scatter of experi-
mental data, we round off the value of the coefficient [pl and then take [pl = 2.
Then Eq. (13.6) reduces to an algebraic equation of the 3rd degree with respect to
𝑧 = 1

1−(𝑎0+Δ𝑎m ) :
𝑧3 + 𝑎𝑧2 + 𝑏𝑧+ 𝑐 = 0, (13.7)

where

𝑎 = − 3
2(1− 𝑎f) ; 𝑏 = 0; 𝑐 =

(
1− 𝑃f

𝑃max

)
1

2(1− 𝑎f) (1− 𝑎0)2 +
𝑃f/𝑃max

2(1− 𝑎f)3 .

The solution of Eq. (13.7) in accordance with [5], taking into account 𝑐 > 0, 𝑎 < 0,
gives:

cos𝛼 = 2
(
1− 𝑃f

𝑃max

) [
1−

(
1− 𝑎f
1− 𝑎0

)2
]
−1.

Given the expression for 𝑧, we get three roots:

1
1− (𝑎0 +Δ𝑎m) =

1
1− 𝑎f

(
1
2
+ cos

𝛼

3

)
,

1
1− (𝑎0 +Δ𝑎m) =

1
1− 𝑎f

(
1
2
− cos

(𝛼
3
± 𝜋

3

))
.

From the condition Δ𝑎m < Δ𝑎f we have

1
1− (𝑎0 +Δ𝑎m) <

1
1− 𝑎f

.

The solution that satisfies the indicated inequality is written as:

1
1− (𝑎0 +Δ𝑎m) =

1
1− 𝑎f

(
1
2
+ cos 𝛽

)
,

where

cos 𝛽 = cos

{
2𝜋
3

− 1
3

arccos

[
2
(
1− 𝑃f

𝑃max

) [
1−

(
1− 𝑎f
1− 𝑎0

)2
]
−1

]}
.



216 Oxana G. Rybakina and Olga A. Strogonova

Finally,

Δ𝑎m = 1− 𝑎0 − 1− 𝑎f
1
2 + cos 𝛽

.

Note that from the condition

−1
2
+ 1− 𝑎f

1− 𝑎0
< cos 𝛽 <

1
2

follows the inequality

𝑃f
𝑃max

>
2
(

1−𝑎f
1−𝑎0

)2

1+ 1−𝑎f
1−𝑎0

that is equivalent to

𝑎f > 1− (1− 𝑎0)
𝑃f

𝑃max
+
√︂(

𝑃f
𝑃max

)2
+ 8𝑃f

𝑃max

4
,

imposing some restrictions on the values 𝑃f/𝑃max, 𝑎0 and 𝑎f . Before starting the
processing of experimental data, it is necessary to make sure that these conditions
are met. Otherwise, the proposed method cannot be used.

Let us return to consideration of relation (13.2). It is easy to see that the plot of
dependence Δ𝑃N (Δ𝑎), generally speaking, does not pass through the origin of the
coordinates, which does not allow using the results obtained for small values of Δ𝑎.
Let us represent the dependence Δ𝑃N (Δ𝑎) on the section 0 ≤ Δ𝑎 ≤ Δ𝑎m in the form

Δ𝑃N (Δ𝑎) = 𝐴1Δ𝑎 + 𝐴2 (Δ𝑎)𝑛, (13.8)

moreover, the coefficients 𝐴1 and 𝐴2 are determined from the condition that at the
transition point from dependence (13.8) to linear (Δ𝑎 = Δ𝑎m) the function Δ𝑃N (Δ𝑎)
and its derivative with respect Δ𝑎 are continuous, 𝑛 satisfies the condition 1 < 𝑛 ≤ 2.

From these conditions we get:

𝐴1 = (Δ𝑃N)′ |𝑃=𝑃max +
𝑛
(
Δ𝑃N (Δ𝑎f) − (Δ𝑃N)′ |𝑃=𝑃maxΔ𝑎f

)
(𝑛−1)Δ𝑎m

,

𝐴2 = −𝑛
(
Δ𝑃N (Δ𝑎f) − (Δ𝑃N)′ |𝑃=𝑃maxΔ𝑎f

)
(𝑛−1)Δ𝑎2

m
.

At Δ𝑎→ 0,

𝐴1 =
𝑑𝑃N
𝑑 (Δ𝑎) =

2𝑃0

𝐵𝑊2 (1− 𝑎0)3 ,

where 𝑃0 is the load at which the crack starts to move. From here we get the expres-
sion for 𝑃0:
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2𝑃0

𝐵𝑊2 (1− 𝑎0)3 = (Δ𝑃N)′ |𝑃=𝑃max +
𝑛
(
Δ𝑃N (Δ𝑎f) − (Δ𝑃N)′ |𝑃=𝑃maxΔ𝑎f

)
(𝑛−1)Δ𝑎m

(13.9)

The value 𝑃0 is obtained experimentally, for example, using the acoustic emission
method, after which the value of 𝑛 is determined from relation (13.9).

Now the dependence Δ𝑃N (Δ𝑎) is built on the entire range 0 ≤ Δ𝑎 ≤ Δ𝑎f . Next,
from (13.3) (Δ𝑃N)′ |𝑃=𝑃max; Δ𝑎 (𝑃=𝑃max ) is determined. For an arbitrary Δ𝑎 from
(13.2) and (13.8) we find Δ𝑃N (Δ𝑎), then using (13.1) the load 𝑃.

13.4 Examples of Application of the Method and Analysis of
Results

An experimental study was carried out on a steel sample of the SENB type (single
edge notch bending) [1], yield strength 𝜎0,2 = 560 MPa. The characteristics of the
sample required for the calculation are given in Table 13.1, the results of calculating
the parameters that determine the normalized load and its gradient are presented in
Table 13.2.

Figures 13.1 and 13.2 show the dependencies Δ𝑃N (Δ𝑎) and 𝑃N (Δ𝑎), and the
dotted lines in the range 0 ≤ Δ𝑎 ≤ Δ𝑎m correspond to dependence (13.8) at 𝑛 = 1.5,
and the solid lines in the range Δ𝑎m ≤ Δ𝑎 ≤ Δ𝑎f correspond to the linear dependence
of the normalized load gradient on the crack length increment. In Fig. 13.2, the
dashdotted line shows the dependence of the reduced load

�̄� =
𝑃

𝐵𝑊
(
1− 𝑎0

𝑊

)2

on the increment in the length of the crack.

Table 13.1 The characteristics of the sample required for the calculation

𝑎0, 𝑊, 𝐵, 𝑎f , 𝑃f , Δ𝑎f , 𝑃N (Δ𝑎f ) , Δ𝑃N (Δ𝑎f ) , 𝑃max, 𝑃f/𝑃max

mm mm mm mm N mm N/mm2 N/mm2 N

24.73 50.1 22.85 29.71 65377 4.98 344.8 122.1 78409 0.83

Table 13.2 The results of calculating the parameters that determine the normalized load and its
gradient

Δ𝑎m, Δ𝑃′
N 𝐴1 𝐴2 𝑃0/𝑃max

mm N/mm3 N/mm3 N/mm3.5

1.45 25.13 18.78 3.51 0.89
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Fig. 13.1 Dependence of the
normalized load gradient on
the crack length increment

Fig. 13.2 Dependence of
the normalized load and the
reduced load on the crack
length increment.

Another six specimens made from the same steel were tested to different load
levels and after unloading, the crack length 𝑎f was measured on them. The relevant
data are presented in Table 13.3.

Table 13.3 Test data for different load levels

No. 𝑎0, 𝑊, 𝐵, 𝑎f , Δ𝑎, 𝑃, 𝑃N (Δ𝑎) , Δ𝑃N (Δ𝑎) , �̄� (Δ𝑎) ,
mm mm mm mm mm N N/mm2 N/mm2 N/mm2

1 24.90 50.10 22.85 25.70 0.80 77324 284.8 17.79 267.0

2 25.20 50.00 22.85 26.10 0.90 75268 288.3 20.5 267.8

3 25.70 50.10 22.90 27.40 1.70 70821 300.9 40.4 260.2

4 25.80 50.10 22.90 27.60 1.80 73404 317.2 45.3 272.0

5 24.90 50.10 22.85 28.60 3.70 69142 328.0 89.2 238.7

6 25.70 50.10 22.90 30.50 4.80 59008 336.0 119.2 216.8
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In Figs. 13.1 and 13.2, dots show the results obtained on samples 1–6. The ex-
perimental data obtained on samples 1–6 correlate well with the calculated curves.
Good agreement between the results obtained by methods that differ significantly
from each other indicates the applicability of the load separation principle, the pos-
sibility of using the parameter value [pl = 2 and confirms the presence of a linear
relationship between the normalized load gradient Δ𝑃N (Δ𝑎) and the crack length
increment Δ𝑎.

After the dependence between the load and the increment of the crack length is
established, it is not difficult to calculate the values of the J-integral along the entire
path of loading the sample. At the point with the number 𝑖, which corresponds to
the values of the load 𝑃(𝑖) , the plastic component of the displacement 𝑣pl(𝑖) and the
length of the crack 𝑎 (𝑖) , the value of the J-integral 𝐽(𝑖) is determined as:

𝐽(𝑖) =
𝐾2

I(𝑖)
𝐸 ′ + 𝐽pl(𝑖) ,

𝐽pl(𝑖) =


𝐽pl(𝑖−1) +

2
(𝑊 − 𝑎 (𝑖−1) )𝐵

𝑣pl(𝑖)∫
𝑣pl(𝑖−1)

𝑃(𝑣pl)𝑑𝑣pl


𝑊 − 𝑎 (𝑖)
𝑊 − 𝑎 (𝑖−1)

,

where 𝐾I(𝑖) is the stress intensity factor and 𝐸 ′ is the modulus of normal elastic-
ity. The results are presented in Fig. 13.3. The resulting JR–curve is a convenient
tool in the calculation of crack extension and evaluation of the stability of crack
propagation.

Fig. 13.3 JR–curve.
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13.5 Conclusion

The presented results make it possible to determine the JR–curve with the mini-
mum amount of necessary experimental data using analytical methods for process-
ing these data. To obtain a fracture curve, it is sufficient to test one sample while
recording the load and the displacement of the load application point and evalu-
ate the final load and crack length at the stage after the load reaches its maximum
value. The method is based on experimental facts (the load separation principle, the
numerical value of the parameter [pl, linear dependence Δ𝑃N (Δ𝑎)), the limits of
applicability of which are subject to further research.
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Chapter 14
Application of Galerkin’s Method to Buckling of
Functionally Graded or Stepped Columns

Joel Storch and Isaac Elishakoff

Abstract We address several buckling problems for nonuniform columns obtain-
ing exact solutions as well as approximate solutions based on Galerkin’s method.
It is shown that faster convergence is obtained using the higher order self-adjoint
form of the governing differential equation. A detailed derivation is given for the
buckling of heavy nonuniform columns. For the case of a heavy stepped column, in
which the classical Galerkin method fails, we present a modified method employing
generalized functions which displays excellent convergence to the exact solution.

Key words: Buckling, Galerkin method, Stepped columns, Functionally graded
columns, Generalized functions

14.1 Introduction

The exact solutions for buckling loads of a homogenous uniform beam can be found
in most textbooks about the mechanics of solids. The number of closed form solu-
tions for non-uniform columns are extremely limited. In the 18th century, Leonhard
Euler (1759) [1] gave the first closed-form solution in which the flexural rigidity
is given as a polynomial: (𝑎 + 𝑏𝑥/𝐿)𝑚, where 𝑎, 𝑏 are constants, L is the column’s
length, 𝑚 is a positive integer, and 𝑥 is an axial coordinate. The next closed form
solution was provided by Engesser (1899) [2]. In the 20th century, Duncan (1937)
[3] and Elishakoff (2000) [4] contributed additional closed-form solutions. Novel
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solutions were reported in the monographs by Elishakoff (2005) [5] and Elishakoff,
Pentaras and Gentilini (2010) [6] devoted to mechanics of functionally graded ma-
terial structures. Associated works inspired by [5, 6] are those by Elishakoff, Eisen-
berger and Delmas (2016) [7], Ayadoglu (2008) [8], Li (2009) [9], Maalavi (2009)
[10], Singh and Li (2009) [11], Coskun (2009) [12], Darbandi, Firouz-Abadi and
Haddapour (2010) [13], Huang and Li (2011) [14], Huang and Luo (2011) [15],
Babilio (2013) [16], Shan and Chen (2013) [17], Krutyi (2016) [18] and Ioakimidis
(2017) [19], inter alia.

This study is committed to attain new closed form solutions for a column that
is simply supported-clamped for inhomogeneous, functionally graded, or stepped
columns. An assumption was made that the column has a uniform cross sectional
area throughout its length, but the modulus of elasticity varies along the column.
Papers by Byskov [20], Fox and Kapoor [21], Vinogradov [22], Bert et al [23], Livne
[24], Canfield [25], Elishakoff et al. [26], Storch and Elishakoff [27], Elishakoff and
Boutur [28] all deal with different aspects of associated eigenvalue problems.

Carroll [29] writes in his paper on foundations of solid mechanics, “. . . there has
been a considerable shift in emphasis from analytical solutions toward numerical
solutions of initial and boundary value problems. Nevertheless, closed form analyt-
ical solutions are still of considerable utility and should be pursued.” In view of this
remark, this study is committed to attain new closed form solutions for the buckling
of nonuniform columns in addition to approximate solutions based on the Galerkin
method.

14.2 The Clamped-Free Column

In the paper by Elishakoff and Boutur [28], the problem of determining the first criti-
cal buckling load of a clamped-free column is addressed using the Galerkin method.
Three sets of trial functions (Eqs.(3)-(5)) are considered and all fail to converge to
the true solution even though they satisfy all the boundary conditions. For reference,
we resolve this problem after reducing the original 4th order equation to 2nd order.

The governing equation for the buckling mode 𝑣(𝑥, 𝑡) of a column with bending
stiffness 𝐸𝐼 under an axial load 𝑃 is given by

𝐸𝐼
d4𝑣

d𝑥4 +𝑃
d2𝑣

d𝑥2 = 0 (14.1)

If the beam is clamped at 𝑥 = 0 and free at 𝑥 = 𝐿, then the corresponding boundary
conditions are: 𝑣(0) = 𝑣′ (0) = 0, 𝑣′′ (𝐿) = 0 and 𝑃𝑣′ (𝐿) +𝐸𝐼𝑣′′′ (𝐿) = 0. Due to the
last boundary condition, Eq. (14.1) can be replaced with the third order equation

d3𝑣

d𝜉3 +𝜆
d𝑣
d𝜉

= 0 (14.2)
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where we have introduced the non-dimensional coordinate 𝜉 = 𝑥/𝐿 and buckling
load 𝜆 = 𝑃𝐿2/𝐸𝐼. A further reduction in order can be made by setting 𝑤 = d𝑣/d𝜉
resulting in the eigenvalue problem

d2𝑤

d𝜉2 +𝜆𝑤 = 0, 𝑤(0) = 0,
d𝑤
d𝜉

(1) = 0. (14.3)

To apply Galerkin’s method, we set

𝑤 �
𝑁∑︁
𝑗=1
𝑎 𝑗𝜑 𝑗 (𝜉)

and choose
𝜑 𝑗 (𝜉) = sin [(2 𝑗 −1)𝜋𝜉/2] .

Rendering the error residual orthogonal to each of the comparison functions, we
arrive at the generalized algebraic eigenvalue problem

(K+𝜆M) a = 0 (14.4)

where K and M are diagonal matrices given by

𝑘𝑖𝑖 = −𝜋
2

8
(2𝑖−1)2 , 𝑚𝑖𝑖 =

1
2

(𝑖 = 1,2, ...) (14.5)

Setting the determinant of K +𝜆M to zero, we find an explicit expression for the
critical buckling loads

𝑃𝑛 =
𝜋2𝐸𝐼

4𝐿2 (2𝑛−1)2 (14.6)

Note that these values agree with those given on pp. 47-48 of Timoshenko and Gere
[30]. The reason we recover the exact eigenvalues is due to the fact that our trial
solution is a linear combination of the exact mode shapes.

14.3 Buckling of a Heavy Simply Supported-Sliding Column

Consider now a uniform column of length L, bending stiffness EI and weight per
unit length p which is simply supported at its base and free to slide at its tip (see
Fig. 2 in Elishakoff and Boutur [28]). This problem was previously studied by
Bürgermeister and Steup [31], pp.195-197. The governing differential equation is

𝐸𝐼
d3𝑣

d𝑥3 + 𝑝𝑥
d𝑣
d𝑥

= 0 (14.7)

with boundary conditions
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𝑣′ (0) = 𝑣(𝐿) = 𝑣′′ (𝐿) = 0 (14.8)

We first provide an exact solution. Following Timoshenko and Gere [30], we let

𝑧 =
2
3

√︂
𝑝

𝐸𝐼
𝑥3

so that
d
d𝑥

() =
(

3𝑝𝑧
2𝐸𝐼

)1/3 d
d𝑧

() .

The differential equation (14.7) is transformed to

d2𝑢

d𝑧2
+ 1
𝑧

d𝑢
d𝑧

+
(
1− 1

9𝑧2

)
𝑢 = 0 (14.9)

where 𝑢 = d𝑣/d𝑧. The general solution to the differential equation (14.9) can be
expressed in the form

𝑢 = 𝑐1𝐽1/3 (𝑧) + 𝑐2𝐽−1/3 (𝑧) (14.10)

where 𝐽𝜈 (𝑧) denotes the Bessel function of the first kind of order 𝜈 while 𝑐1 and 𝑐2
are arbitrary constants. The first boundary condition in (14.8) requires that 𝑧1/3𝑢 = 0
at 𝑧 = 0 from which we find 𝑐2 = 0. The third boundary condition in (14.8) requires
that

3𝑧
d𝑢
d𝑧

+𝑢 = 0

at 𝑧 = 2
3

√︃
𝑝𝐿3

𝐸𝐼 from which we obtain the characteristic equation for the critical loads.

𝐽−2/3

(
2
3

√︂
𝑝𝐿3

𝐸𝐼

)
= 0 (14.11)

The first critical value of 𝑝 is approximately 3.4766𝐸𝐼/𝐿3.
The buckling mode is given by 𝑢 =

∫
𝐽1/3 (𝑧)d𝑧 where the constant of integration

is obtained from the second boundary condition in (14.8) i.e. 𝑣 = 0 at 𝑧 = 2
3

√︁
𝑝𝐿3/𝐸𝐼.

Introducing the parameter 𝜆 = 𝑝𝐿3/𝐸𝐼 and expressing 𝑧 in terms of 𝑥, we obtain

𝑣 =1 𝐹2

(
2
3

;
4
3

;
5
3

;−𝜆
9

)
− 𝜉2

1𝐹2

(
2
3

;
4
3

;
5
3

;−𝜆𝜉
3

9

)
(14.12)

where 𝜉 = 𝑥/𝐿 and 1𝐹2 denotes the generalized hypergeometric function (see
Rainville [32]). Figure 14.1 shows a plot of the first buckling mode.

We now proceed to solve for the critical values of p using the Galerkin method.
First note that Eq. (14.7) can be written in the form

d3𝑣

d𝜉3 +𝜆𝜉
d𝑣
d𝜉

= 0 (14.13)
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Fig. 14.1 First buckling mode
of simply supported-sliding
heavy column
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We choose as comparison functions 𝜑𝑖 (𝜉) = cos [(2𝑖−1) 𝜋𝜉/2] which satisfy all
the boundary condition (14.8). Inserting the trial solution 𝑣 =

∑𝑁
𝑗=1 𝑎 𝑗𝜑 𝑗 (𝜉) into Eq.

(14.13) and demanding that the error residual be orthogonal to 𝜑𝑖 (𝜉), 𝑖 = 1,2, . . . , 𝑁 ,
we obtain the generalized eigenvalue problem

(M+𝜆K)a = 0 (14.14)

where

𝑚𝑖 𝑗 =

1∫
0

𝜑𝑖𝜑
′′′
𝑗 𝑑𝜉 =

𝜋2 (2 𝑗 −1)3 [(2𝑖−1) (−1)𝑖+ 𝑗 −2 𝑗 +1
]

16 (𝑖− 𝑗) (𝑖 + 𝑗 −1) (𝑖 ≠ 𝑗)

𝑚𝑖𝑖 =

1∫
0

𝜑𝑖𝜑
′′′
𝑖 𝑑𝜉 =

𝜋2

8
(2𝑖−1)2

𝑘𝑖 𝑗 =

1∫
0

𝜉𝜑𝑖𝜑
′
𝑗𝑑𝜉 =

(−1)𝑖+ 𝑗+1 (2𝑖−1) (2 𝑗 −1)
4 (𝑖− 𝑗) (𝑖 + 𝑗 −1) (𝑖 ≠ 𝑗)

𝑘𝑖𝑖 =

1∫
0

𝜉𝜑𝑖𝜑
′
𝑖 𝑑𝜉 = −1/4

(14.15)

The second column in Table 14.1 shows the estimates for the first critical value of 𝜆
for several values of 𝑁 . We see that retaining only the first term in the trial solution
results if a 42% relative error and 25 terms are needed to match the exact result to 4
significant digits.

It is interesting to compare the above solution to that based on the fourth order
equation obtained by differentiating Eq. (14.13) (constituting Eq.(7) in Elishakoff
and Boutur [28])

d4𝑣

d𝜉4 +𝜆
d
d𝜉

(
𝜉

d𝑣
d𝜉

)
= 0 (14.16)
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Table 14.1 Convergence of Galerkin method to first critical buckling load for a simply supported-
sliding heavy column

N 3rd Order 4th Order

1 4.9348 3.5116

2 3.5786 3.4770

3 3.5554 3.4767

4 3.5041 3.4766

10 3.4815

15 3.4791

20 3.4779

25 3.4775

60 3.4768

100 3.4767

exact 3.4766 3.4766

The eigenvalue problem defined by the above differential equation and homoge-
neous boundary conditions (14.8) along with the additional boundary condition
𝑣′′′ (0) = 0, is self-adjoint, so we expect better convergence to the eigenvalue 𝜆 than
in the previous solution. The same choice of comparison functions will again satisfy
all boundary conditions. Again, we obtain the eigenvalue problem (14.14), where
now

𝑚𝑖 𝑗 =

1∫
0

𝜑𝑖
d4𝜑 𝑗

d𝜉4 = 0 (𝑖 ≠ 𝑗)

𝑚𝑖𝑖 =
𝜋4

32
(2𝑖−1)4

𝑘𝑖 𝑗 =

1∫
0

𝜑𝑖

(
𝜉𝜑′𝑗

) ′
d𝜉

= − (2𝑖−1) (2 𝑗 −1)𝑖(2−4 𝑗) + (−1)𝑖+ 𝑗 (2(𝑖−1)𝑖 +2( 𝑗 −1) 𝑗 +1) +2 𝑗 −1
8(𝑖− 𝑗)2 (𝑖 + 𝑗 −1)2 (𝑖 ≠ 𝑗)

𝑘𝑖𝑖 = − 1
16

[
4+ (2𝑖−1)2𝜋2]

(14.17)
Based on the 3rd column in Table 14.1, we see that retaining only the first term in
the trial solution results if a 1% relative error and only 4 terms are needed to match
the exact result to 5 significant digits.
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14.4 Buckling of a Stepped Column Under Axial Load

We investigate the bucking of a stepped column fixed at its base and free at its tip
(see Fig. 4 in Elishakoff and Boutur [29]). The analytical solution can be found in
Timoshenko and Gere [30], pp. 113-114, in which the critical buckling load 𝑃 is
shown to satisfy the transcendental equation

tan (𝑘1𝐿1) tan (𝑘2𝐿2) = 𝑘1/𝑘2 (14.18)

where 𝑘1 =
√︁
𝑃/𝐸𝐼1 and 𝑘2 =

√︁
𝑃/𝐸𝐼2. Numerical solutions can be computed once

the two ratios 𝐿1/𝐿2 and 𝐼1/𝐼2 are specified. To make this transparent, we define the
dimensionless buckling load 𝜆2 by

𝜆2 =
𝑃𝐿2

2
𝐸𝐼2

(14.19)

after which Eq. (14.18) assumes the form

tan𝜆 tan
(
𝐿∗√
𝐼∗
𝜆

)
=

1√
𝐼∗

(14.20)

where
𝐿∗ = 𝐿1/𝐿2, 𝐼

∗ = 𝐼1/𝐼2 (14.21)

In order to solve Eq. (14.20), we need an approximation for the desired root. An
approximate value for the first critical buckling load can be obtained by the method
of virtual work in which we assume the following form for the first buckling mode

𝑣 = 𝛿(1− cos
𝜋𝑥

2𝐿
) (14.22)

where 𝛿 denotes the tip deflection. Note that this form satisfies both boundary con-
ditions at the fixed end (𝑣(0) = 0, 𝑣′ (0) = 0) and the natural boundary condition at
the free end (𝑣′′ (𝐿) = 0). The bending moment 𝑀 at any point along the column
is given by 𝑀 (𝑥) = 𝑃 (𝛿− 𝑣) while the increment in strain energy due to bending is
given by the expression

Δ𝑈 =
1
2

𝐿∫
0

𝑀2 (𝑥)
𝐸𝐼 (𝑥) d𝑥 (14.23)

Splitting the integral over the two sections of the column and employing Eq. (14.22),
we obtain

Δ𝑈 =
𝑃2𝛿2

2𝐸


1
𝐼2

𝐿2∫
0

cos2 𝜋𝑥

2𝐿
d𝑥 + 1

𝐼1

𝐿∫
𝐿2

cos2 𝜋𝑥

2𝐿
d𝑥


(14.24)

Performing the integrations and simplifying, we find
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Δ𝑈 =
𝑃2𝛿2

[
𝜋 (𝐼1𝐿2 + 𝐼2𝐿1) + 𝐿 (𝐼1 − 𝐼2) sin 𝜋𝐿2

𝐿

]
4𝜋𝐸𝐼1𝐼2

(14.25)

The virtual work done by the applied axial load 𝑃 is given by the expression

Δ𝑊 =
𝑃

2

𝐿∫
0

(d𝑣/d𝑥)2 d𝑥 =
𝜋2𝛿2𝑃

16𝐿
(14.26)

Equating Δ𝑊 to Δ𝑈 and employing Eq. (14.19), we obtain the following expression
for the dimensionless buckling load.

𝜆2 =
𝜋3𝐼∗

4 (𝐿∗ +1) [𝜋 (𝐼∗ + 𝐿∗) + (𝐼∗−1) (𝐿∗ +1) sin 𝜋
𝐿∗+1

] (14.27)

Figure 14.2 shows the variation of the first critical buckling load as a function of the
inertia ratio 𝐼∗ for several values if the length ratio 𝐿∗. The solid curves are based
on the approximate formula (14.27) while the dashed curves were obtained from the
exact formulation (14.20).

14.4.1 Galerkin Solution: First Version

The governing differential equation for the buckling of the fixed-free stepped col-
umn is given by

d
d𝑥

[
𝐸𝐼 (𝑥) d2𝑣

d𝑥2

]
+𝑃 d𝑣

d𝑥
= 0 (14.28)

where 𝐸𝐼 (𝑥) = 𝐸𝐼2 for 0 ≤ 𝑥 < 𝐿2 and 𝐸𝐼 (𝑥) = 𝐸𝐼1 for 𝐿2 < 𝑥 ≤ 𝐿 The associated
boundary conditions read: 𝑣(0) = 𝑣′ (0) = 0, 𝑣′′ (𝐿) = 0. We assume a trial function
of the form 𝑣 =

∑𝑁
𝑗=1 𝑎 𝑗𝜑 𝑗 (𝑥) with 𝜑 𝑗 (𝑥) = 1−cos (2 𝑗−1) 𝜋𝑥

2𝐿 . Multiplying Eq. (14.28)

Fig. 14.2 First critical buck-
ling load of a stepped column
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by 𝜑𝑖 (𝑥) and integrating over the interval(0, 𝐿), we obtain

𝑃
𝑁∑︁
𝑗=1
𝑎 𝑗

𝐿∫
0

𝜑𝑖 (𝑥)𝜑 𝑗
′ (𝑥) 𝑑𝑥−

𝑁∑︁
𝑗=1
𝑎 𝑗

𝐿∫
0

𝐸𝐼 (𝑥)𝜑𝑖 ′ (𝑥)𝜑 𝑗
′′ (𝑥) 𝑑𝑥 = 0 (14.29)

where we have used integration by parts (observing the boundary conditions) to
simplify the second term. Multiplying Eq. (14.29) by 𝐿2

2
/
𝐸𝐼2 and recalling Eq.

(14.19), we arrive at the generalized eigenvalue problem

Ma = 𝜆2Ka (14.30)

where

𝑘𝑖 𝑗 =

𝐿∫
0

𝜑𝑖 (𝑥)𝜑 𝑗
′ (𝑥)d𝑥 = (2𝑖−1) [(2 𝑗 −1) (−1)𝑖+ 𝑗+1 +2𝑖−1

]
4 (𝑖− 𝑗) (𝑖 + 𝑗 −1) (𝑖 ≠ 𝑗)

𝑘𝑖𝑖 =
1
2

𝑚𝑖 𝑗 =
𝐿2

2
𝐸𝐼2

∫ 𝐿

0
𝐸𝐼 (𝑥)𝜑𝑖 ′ (𝑥)𝜑 𝑗

′′ (𝑥)d𝑥

= 𝛼𝑖 𝑗
𝐼∗ (2 𝑗 −1) (−1)𝑖+ 𝑗+1 +2𝑖−1+ (𝐼∗−1)𝛽𝑖 𝑗

16(𝐿∗ +1)2 (𝑖− 𝑗) (𝑖 + 𝑗 −1) (𝑖 ≠ 𝑗)

𝑚𝑖𝑖 =
(2𝑖−1)2𝜋2

[
(𝐼∗−1) cos

[
𝜋 (2𝑖−1)
𝐿∗+1

]
+ 𝐼∗ +1

]
16 (𝐿∗ +1)2

(14.31)
where

𝛼𝑖 𝑗 = (2𝑖−1) (2 𝑗 −1)2 𝜋2

𝛽𝑖 𝑗 = (𝑖 + 𝑗 −1) cos
[
𝜋(𝑖− 𝑗)
𝐿∗ +1

]
+ (𝑖− 𝑗) cos

[
𝜋(𝑖 + 𝑗 −1)
𝐿∗ +1

]
(14.32)

Table 14.2 (second column) shows the estimates to the first nondimensional buck-
ling load for L∗=1 and I∗=0.25. Retaining two terms in the trial function, yields an
error of 31%, while retaining the first 20 terms brings the error down to below 1%.

14.4.2 Galerkin Solution: Second Version

Differentiating Eq. (14.28) with respect to x we obtain the self-adjoint form

d2

d𝑥2

[
𝐸𝐼 (𝑥) d2𝑣

d𝑥2

]
+𝑃 d2𝑣

d𝑥2 = 0 (14.33)

In addition to the three boundary conditions following Eq. (14.28) we have
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Table 14.2 Convergence of Galerkin method to first critical buckling load for a clamped—free
stepped column (L∗=1, I∗=0.25)

N 𝑃𝐿2/𝐸𝐼2 3rd Order 𝑃𝐿2/𝐸𝐼2 4th Order

2 1.9805 1.8275

3 1.7153 1.6440

5 1.5963 1.5946

10 1.5800 1.5606

20 1.5300 1.5371

exact 1.5153 1.5153

𝐸𝐼1𝑣
′′′ (𝐿) +𝑃𝑣′ (𝐿) = 0 (14.34)

reflecting the zero shear force condition at the column tip. Employing the same set
of basis functions 𝜑𝑖 (𝑥) as in the previous section we find (integrating by parts)

𝐿∫
0

𝜑𝑖𝑣
′′d𝑥 = 𝑣′ (𝐿) −

𝐿∫
0

𝑣′𝜑𝑖
′
d𝑥

𝐿∫
0

𝜑𝑖
𝑑2

d𝑥2

[
𝐸𝐼 (𝑥) d2𝑣

d𝑥2

]
d𝑥 = 𝐸𝐼1𝑣′′′ (𝐿) −

𝐿∫
0

d
d𝑥

[𝐸𝐼 (𝑥)𝑣′′] 𝜑𝑖 ′d𝑥
(14.35)

Multiplying Eq. (14.33) by 𝜑𝑖 (𝑥), integrating over (0, 𝐿) and employing Eqs.
(14.34)-(14.35), we obtain

𝑃

𝐿∫
0

𝜑𝑖
′
𝑣′d𝑥 +

𝐿∫
0

𝜑𝑖
′ d
d𝑥

[𝐸𝐼 (𝑥)𝑣′′] d𝑥 = 0 (14.36)

Integrating the second term by parts and observing the boundary conditions, we
finally obtain

𝑃

𝐿∫
0

𝜑𝑖
′
𝑣′d𝑥−

𝐿∫
0

𝐸𝐼 (𝑥)𝑣′′𝜑𝑖 ′′d𝑥 = 0 (14.37)

Inserting the expansion

𝑣(𝑥) =
𝑁∑︁
𝑗=1
𝑎 𝑗𝜑 𝑗 (𝑥)

into Eq. (14.37) and multiplying thru by 𝐿𝐿2
2
/
𝐸𝐼2,we obtain the generalized eigen-

value problem Ma = 𝜆2Ka where
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𝑘𝑖 𝑗 = 𝐿

𝐿∫
0

𝜑𝑖
′ (𝑥)𝜑 𝑗

′ (𝑥)d𝑥

𝑚𝑖 𝑗 =
𝐿𝐿2

2
𝐼2

𝐿∫
0

𝐼 (𝑥)𝜑𝑖 ′′ (𝑥)𝜑 𝑗
′′ (𝑥)d𝑥

(14.38)

Performing the integrations, we find

𝑘𝑖 𝑗 = 0 (𝑖 ≠ 𝑗)
𝑘𝑖𝑖 =

𝜋2

8
(2𝑖−1)2

𝑚𝑖 𝑗 =
𝜋3 (1−2𝑖)2 (1− 𝐼∗) (1−2 𝑗)2 [(𝑖 + 𝑗 −1)𝛼𝑖 𝑗 + (𝑖− 𝑗) 𝛽𝑖 𝑗

]
32 (𝐿∗ +1)2 (𝑖− 𝑗) (𝑖 + 𝑗 −1)

(𝑖 ≠ 𝑗)

𝑚𝑖𝑖 =
𝜋3 (2𝑖−1)3 [

𝜋 (2𝑖−1) (𝐼∗𝐿∗ +1) + (𝐼∗−1) (𝐿∗ +1) sin 𝜋−2𝜋𝑖
𝐿∗+1

]
32 (𝐿∗ +1)3

(14.39)

where 𝛼𝑖 𝑗 = sin 𝜋 (𝑖− 𝑗 )
𝐿∗+1 and 𝛽𝑖 𝑗 = sin 𝜋 (𝑖+ 𝑗−1)

𝐿∗+1
Table 14.2 (column 3) shows the estimates to the first nondimensional buckling

load for 𝐿∗=1 and 𝐼∗=0.25. Retaining two terms in the trial function, yields an error
of 21% (compared with 31% for the previous solution), while retaining the first 20
terms brings the error down to slightly above 1%.

14.5 Buckling of a Heavy Stepped Column

It should be noted that one must be careful in deriving the governing equation for
buckling of a heavy nonuniform column; indeed, several authors have made errors
in this regard. For example, Eq. (14.29) in Elishakoff and Boutur [28] is clearly in-
correct as can be seen by physical considerations. If we consider the loading in the
lower column, there is the contribution from the weight of the entire upper column
as well as from a portion of the lower column. Hence Eq. (14.29) must show depen-
dence on the parameter 𝑝1 in addition to 𝑝2. Below we derive the buckling equation
from fundamental principles.

Figure 14.3 shown an internal element AB of a column with variable bending
stiffness 𝐸𝐼 (𝑥) and weight per unit length 𝑝(𝑥). We denote the internal bending
moment and shear force at A by 𝑀 (𝑥) and 𝑆(𝑥) respectively. The vertical force
𝑄(𝑥) is due to the column weight from point A to the column tip at C. A similar
situation holds at point B. The external load W represents the weight of the segment
AB

𝑄(𝑥) =
𝐿∫

𝑥

𝑝(𝑋)d𝑋, 𝑊 =

𝑥+Δ𝑥∫
𝑥

𝑝(𝑋)d𝑋 (14.40)
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Fig. 14.3 Free body diagram
of a heavy beam segment

Summing forces along the horizontal direction (𝑣), we conclude that S is constant
along the column. Moment balance about point A requires

𝑀 (𝑥)−𝑀 (𝑥+Δ𝑥)−𝑆Δ𝑥−𝑄(𝑥+Δ𝑥) [𝑣(𝑥 +Δ𝑥) − 𝑣(𝑥)]−
𝑥+Δ𝑥∫
𝑥

𝑝(𝑋) [𝑣(𝑋) − 𝑣(𝑥)] d𝑋

(14.41)
By the mean value theorem for integrals,

𝑥+Δ𝑥∫
𝑥

𝑝(𝑋) [𝑣(𝑋) − 𝑣(𝑥)] d𝑋 = 𝑝( �̄�) [𝑣( �̄�) − 𝑣(𝑥)] Δ𝑥 where 𝑥 < �̄� < 𝑥 +Δ𝑥

Dividing Eq. (14.41) by Δ𝑥 and taking the limit as Δ𝑥→ 0, we obtain

d
d𝑥

[
𝐸𝐼

d2𝑣

d𝑥2

]
+ 𝑆 +𝑄(𝑥) d𝑣

d𝑥
= 0 (14.42)

where we have employed the standard relation expressing the bending moment in
terms of the bending stiffness and curvature.

14.5.1 Exact Solution

Figure 14.4 shows a two-segment heavy column where each segment is uniform.
The base of the column at 𝑥 = 0 is fixed and the tip at 𝑥 = 𝐿 is free. The bottom seg-
ment is of length 𝑎𝐿 with bending stiffness 𝐸𝐼1 and weight per unit length 𝑝1 while
the top segment is of length 𝐿 (1−𝑎) with bending stiffness 𝐸𝐼2 and weight per unit
length 𝑝2. Since the column is free at 𝑥 = 𝐿, 𝑆 vanishes identically. It follows from
Eq. (14.40) that 𝑄(𝑥) = 𝑝2 (𝐿 − 𝑥) in the top segment. Hence for the top segment,
Eq. (14.42) assumes the form
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Fig. 14.4 A two-segment
heavy stepped column

 

 

x 
 aL

L 

𝐸𝐼2
d3𝑣2
d𝑥3 + 𝑝2 (𝐿− 𝑥) d𝑣2

d𝑥
= 0 (14.43)

Denoting the slope 𝑑𝑣2/𝑑𝑥 by 𝑤2 (𝑥) and introducing the dimensionless axial coor-
dinate 𝜉 = 𝑥/𝐿, the above equation assumes the form

d2𝑤2

d𝜉2 +𝜆 (1− 𝜉)𝑤2 = 0, 𝑎 < 𝜉 < 1 (14.44)

where we have introduced the nondimensional buckling load

𝜆 =
𝑝2𝐿

3

𝐸𝐼2
(14.45)

Making the change of independent variable [ = 𝜆1/3 (𝜉 −1) , the differential equation
(14.44) assumes the form

d2𝑤2

d[2 −[𝑤2 = 0 (14.46)

which we recognize as Airy’s equation (see Lebedev [33]). Thus, the general solu-
tion to Eq. (14.44) is given by

𝑤2 (𝜉) = c1Ai
[
𝜆1/3 (𝜉 −1)

]
+ c2Bi

[
𝜆1/3 (𝜉 −1)

]
(14.47)

where Ai, Bi denote the Airy functions of the first and second kind and c1,c2 are
arbitrary constants. Care must be taken in evaluating 𝑄(𝑥) in the bottom segment
since p has a discontinuity at 𝑥 = 𝑎𝐿. Splitting the integral into two parts, we find
𝑄(𝑥) = 𝑝2𝐿 (1− 𝑎) + 𝑝1 (𝑎𝐿 − 𝑥) for 0 < 𝑥 < 𝑎𝐿. Thus for the bottom segment, Eq.
(14.42) can be written in the form

𝐸𝐼1
d3𝑣1
d𝑥3 + [𝑝2𝐿 (1− 𝑎) + 𝑝1 (𝑎𝐿− 𝑥))] d𝑣1

d𝑥
= 0. (14.48)
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With 𝑤1 (𝑥) = d𝑣1/d𝑥 the above equation can be expressed in the form

d2𝑤1

d𝜉2 + 𝑝2𝐿
3

𝐸𝐼1

[
1− 𝑎 + 𝑝1

𝑝2
(𝑎− 𝜉)

]
𝑤1 = 0 (14.49)

Assuming that both segments are made of the same material and are of circular cross
section but have different cross-sectional area, we can find a relation between the
inertia ratio and weight density ratio. Specifically, if 𝐸𝐼1/𝐸𝐼2 = 𝑐, then 𝑝1/𝑝2 =

√
𝑐.

This relation allows us to express Eq. (14.49) in the form

d2𝑤1

d𝜉2 + 𝜆
𝑐

[
1− 𝑎 +√𝑐 (𝑎− 𝜉)] 𝑤1 = 0. 0 < 𝜉 < 𝑎 (14.50)

The general solution to this equation is given by

𝑤1 (𝜉) = c3Ai [𝑞 (𝜉)] + c4Bi [𝑞 (𝜉)] (14.51)

where
𝑞 (𝜉) = 𝜆

(𝑐𝜆)2/3
(
𝑎− 𝑎√𝑐+√𝑐 𝜉 −1

)
(14.52)

At the interface of the two column sections, we enforce continuity of slope and
bending moment

𝑤1 (𝑎) = 𝑤2 (𝑎), 𝑐
d𝑤1
d𝜉

(𝑎) = d𝑤2
d𝜉

(𝑎) (14.53)

Since the column is fixed at its base and free at its tip, then 𝑤1 (0) = 0 and 𝑤′
2 (1) = 0

so Eqs. (14.51) &(14.47) assume the forms

𝑤1 (𝜉) = c3

{
Ai [𝑞 (𝜉)] − Ai [𝑞 (0)]

Bi [𝑞 (0)] Bi [𝑞 (𝜉)]
}

(14.54)

𝑤2 (𝜉) = c1

{
Ai

[
𝜆1/3 (𝜉 −1)

]
+ 1√

3
Bi

[
𝜆1/3 (𝜉 −1)

]}
(14.55)

Applying the continuity conditions Eqs. (14.53), we arrive at the system of homoge-
neous equations Mc= 0 where c= (c1,c3)T and the elements of the matrix M(𝜆, 𝑐;𝑎)
are given by

𝑚11 = Ai
[
(𝑎−1)𝜆1/3

]
+ 1√

3
Bi

[
(𝑎−1)𝜆1/3

]
,

𝑚12 =
Ai [𝑞 (0)]
Bi [𝑞 (0)] Bi [𝑞 (𝑎)] −Ai [𝑞 (𝑎)] ,

𝑚21 = −𝜆1/3
{
Ai′

[
(𝑎−1)𝜆1/3

]
+ 1√

3
Bi′

[
(𝑎−1)𝜆1/3

]}
,

𝑚22 = 𝑐5/6𝜆1/3
{
Ai′ [𝑞 (𝑎)] − Ai [𝑞 (0)]

Bi [𝑞 (0)] Bi′ [𝑞 (𝑎)]
}

(14.56)
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Given the inertia and length ratios of the two segments of the column, we can com-
pute the dimensionless critical buckling load 𝜆by setting the determinant of M to
zero. Figure 14.5 shows the variation in the dimensionless buckling load 𝜆 as a
function of a for several values of the inertia ratio c. In the limit as c approaches
unity (uniform column), the plot approaches the straight line 𝜆 = 7.3874 as expected
(see Timoshenko and Gere [30]).

14.5.2 Galerkin Solution

We now attempt to solve the problem by the Galerkin method with

𝑤 �
𝑁∑︁
𝑗=1
𝑎 𝑗𝜑 𝑗 (𝜉)

where 𝜑 𝑗 (𝜉) = sin [(2 𝑗 −1) 𝜋𝜉/2], thus satisfying the two boundary conditions:
𝑤(0) = 0 and d𝑤/d𝜉 (1) = 0. Utilizing Eqs. (14.44) and (14.50) and rendering the
error residual orthogonal to {𝜑𝑖 (𝜉)}, we arrive at the eigenvalue problem

Ra = 𝜆(P+Q)a (14.57)

where

Fig. 14.5 Variation in buckling load for a heavy stepped column
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𝑟𝑖 𝑗 =

1∫
0

𝜑′𝑖 (𝜉)𝜑′𝑗 (𝜉)d𝜉,

𝑝𝑖 𝑗 =

1∫
𝑎

(1− 𝜉)𝜑𝑖 (𝜉)𝜑 𝑗 (𝜉)d𝜉,

𝑞𝑖 𝑗 =
1
𝑐

𝑎∫
0

[1− 𝑎 +√𝑐(𝑎− 𝜉)]𝜑𝑖 (𝜉)𝜑 𝑗 (𝜉)d𝜉 𝑗

(14.58)

Once the inertia and length ratios of the two segments of the column are specified,
we can solve the above eigenvalue problem for the critical buckling loads. Perform-
ing the integrations, the matrix elements are given by

𝑟𝑖 𝑗 =
𝜋2

8
(2𝑖−1)2 𝛿𝑖 𝑗 ,

𝑝𝑖𝑖 =
𝜇𝑖 [2sin(𝜋𝑎(1−2𝑖)) + 𝜇𝑖] −2cos(𝜋𝑎(1−2𝑖)) −2

4𝜋2 (2𝑖−1)2 ,

𝑝𝑖 𝑗 =
1

2𝜋2 (𝑖− 𝑗)2

[
cos(𝜋𝑎(𝑖− 𝑗)) + 𝛾𝑖 𝑗 + 𝜇𝑖 𝑗 (𝑖− 𝑗)(𝑖 + 𝑗 −1)2

]
(𝑖 ≠ 𝑗),

𝑞𝑖𝑖 =
𝜋2𝑎(2𝑖−1)2 [𝑎(√𝑐−2) +2] −𝜎𝑖 − 𝜏𝑖

4𝑐𝜋2 (2𝑖−1)2 ,

𝑞𝑖 𝑗 =
1

2𝜋2𝑐

[
𝜋(𝑎−1)𝑆𝑖 𝑗 +

√
𝑐

(
1

(𝑖− 𝑗)2 −
1

(𝑖 + 𝑗 −1)2

)
+𝐶𝑖 𝑗

]
(𝑖 ≠ 𝑗)

(14.59)

where 𝛿𝑖 𝑗 is the Kronecker delta symbol and

𝜇𝑖 = 𝜋(𝑎−1) (2𝑖−1),
𝛾𝑖 𝑗 = ( −1)𝑖+ 𝑗+1 [2𝑖(𝑖−1) +2 𝑗 ( 𝑗 −1) +1] ,
𝜎𝑖 𝑗 = (𝑖 + 𝑗 −1) sin(𝜋𝑎(𝑖− 𝑗)) + ( 𝑗 − 𝑖) sin(𝜋𝑎(𝑖 + 𝑗 −1),
𝜇𝑖 𝑗 = 𝜋 (𝑎−1) (𝑖 + 𝑗 −1)𝜎𝑖 𝑗 + ( 𝑗 − 𝑖) cos(𝜋𝑎(𝑖 + 𝑗 −1)),
𝜎𝑖 = 2𝜋 (𝑎−1) (2𝑖−1) sin(𝜋𝑎(1−2𝑖)),
𝜏𝑖 = 2

√
𝑐 [1− cos(𝜋𝑎(1−2𝑖))] ,

𝑆𝑖 𝑗 =
sin(𝜋𝑎(𝑖 + 𝑗 −1))

𝑖 + 𝑗 −1
− sin(𝜋𝑎(𝑖− 𝑗))

𝑖− 𝑗 ,

𝐶𝑖 𝑗 =

√
𝑐 cos(𝜋𝑎(𝑖 + 𝑗 −1))

(𝑖 + 𝑗 −1)2 −
√
𝑐 cos(𝜋𝑎(𝑖− 𝑗))

(𝑖− 𝑗)2 .

(14.60)

Numerical estimates of the first non-dimensional critical buckling load 𝜆 based
on this classical application of Galerkins method is shown in Table 14.3 (columns
labeled Class) for selected values of a and c where N denotes the number of terms
retained in the trial function. It is clear that the solution does not converge to the
known exact value. This behavior of the classical Galerkin method for columns
with discontinuous material properties has been observed by previous investigators
(see for example Elishakoff and Boutur [28], Elishakoff, Arvan and Marzani [3],
Elishakoff, Amato, Arvan and Marzani [35]).
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Table 14.3 Convergence of Bubnov-Galerkin method to first critical buckling load for a clamped-
free heavy stepped column

𝑐 = 2, 𝑎 = 0.25 𝑐 = 2, 𝑎 = 0.75 𝑐 = 0.5, 𝑎 = 0.25 𝑐 = 0.5, 𝑎 = 0.75

𝑁 Class. Mod. Class. Mod. Class. Mod. Class. Mod.

10 8.18 11.53 11.859 13.399 7.17 4.76 4.860 4.447

20 8.18 11.48 11.859 13.398 7.17 4.73 4.860 4.447

30 8.18 11.46 11.859 13.398 7.17 4.73 4.860 4.447

40 8.18 11.45 11.859 13.398 7.17 4.72 4.860 4.446

60 8.18 11.44 11.859 13.397 7.17 4.72 4.860 4.446

exact 11.43 11.43 13.397 13.397 4.71 4.71 4.446 4.446

To improve the estimates of the critical buckling loads as provided by the
Galerkin method, we modify the governing equations by the use of generalized
functions as suggested in Bastatsky and Khvoles [36] (see also Vainberg and Roit-
farb [37]). The governing differential equation is Eq. (14.42) with 𝑆 = 0 where 𝑄(𝑥)
is given by Eq. (14.40). The bending stiffness and loading per unit length are now
expressed in the form

𝐸𝐼 (𝑥) = 𝐸𝐼1 + (𝐸𝐼2 −𝐸𝐼1)𝐻 (𝑥− 𝑎𝐿),
𝑝(𝑥) = 𝑝1 + (𝑝2 − 𝑝1)𝐻 (𝑥− 𝑎𝐿) (14.61)

where𝐻 (𝑥) is the Heaviside step function. Performing the integration in Eq. (14.42),
we obtain

𝑄(𝑥) = (𝑝2 − 𝑝1) (𝑎𝐿− 𝑥)𝐻 (𝑥− 𝑎𝐿) + 𝑎𝐿 (𝑝1 − 𝑝2) + 𝑝2𝐿− 𝑝1𝑥 (14.62)

Expanding the derivative appearing in the first term of Eq. (14.45) and setting
d𝑣/d𝑥 = 𝑤, we obtain

𝐸𝐼 (𝑥) d2𝑤

d𝑥2 + (𝐸𝐼2 −𝐸𝐼1) 𝛿(𝑥− 𝑎𝐿) d𝑤
d𝑥

+𝑄(𝑥)𝑤 = 0 (14.63)

where 𝛿(𝑥)denotes the Dirac delta function. Introducing the dimensionless axial co-
ordinate 𝜉 = 𝑥/𝐿, and recalling Eq. (14.45) and the definition of c following Eq.
(14.49), we find after a bit of algebra, that Eq. (14.63) transforms into the dimen-
sionless form

[𝑐+ (1− 𝑐)𝐻 (𝜉 − 𝑎)] d2𝑤

d𝜉2 + (1− 𝑐) 𝛿 (𝜉 − 𝑎) d𝑤
d𝜉

+
𝜆
[ (

1−√
𝑐
) (𝑎− 𝜉)𝐻 (𝜉 − 𝑎) + 𝑎 (√

𝑐−1
) +1−√

𝑐 𝜉
]
𝑤 = 0

(14.64)

As before, we adopt the approximation
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𝑤 =
𝑁∑︁
𝑗=1
𝑎 𝑗𝜑 𝑗 (𝜉)

where
𝜑 𝑗 (𝜉) = sin [(2 𝑗 −1)𝜋𝜉/2] .

Rendering the error residual orthogonal to {𝜑𝑖 (𝜉)}, we arrive at the generalized
eigenvalue problem

[P+Q] a+𝜆 [R+S] a = 0 (14.65)

where

𝑝𝑖 𝑗 =

1∫
0

𝜑𝑖 (𝜉)𝜑 𝑗
′′ (𝜉) [𝑐+ (1− 𝑐)𝐻 (𝜉 − 𝑎)] d𝜉,

𝑞𝑖 𝑗 = (1− 𝑐)
∫ 1

0
𝜑𝑖 (𝜉)𝜑 𝑗

′ (𝜉)𝛿 (𝜉 − 𝑎) d𝜉,

𝑟𝑖 𝑗 = (1−√
𝑐)

1∫
0

𝜑𝑖 (𝜉)𝜑 𝑗 (𝜉) (𝑎− 𝜉)𝐻 (𝜉 − 𝑎) d𝜉,

𝑠𝑖 𝑗 =

1∫
0

𝜑𝑖 (𝜉)𝜑 𝑗 (𝜉)
[
𝑎
(√
𝑐−1

) +1−√
𝑐𝜉

]
d𝜉

(14.66)

Performing the integrations, the matrix elements are given by

𝑝𝑖𝑖 = −𝜋/8 (2𝑖−1) (𝜋(2𝑖−1) (𝑎(𝑐−1) +1) + (𝑐−1) sin(𝜋𝑎(1−2𝑖))),
𝑝𝑖 𝑗 =

𝑐−1
8

𝜋(2 𝑗 −1)2
(
sin(𝜋𝑎(𝑖 + 𝑗 −1))

𝑖 + 𝑗 −1
− sin(𝜋𝑎(𝑖− 𝑗))

𝑖− 𝑗

)
(𝑖 ≠ 𝑗),

𝑞𝑖 𝑗 =
𝜋

4
(1− 𝑐) (2 𝑗 −1) [sin(𝜋𝑎(𝑖− 𝑗)) + sin(𝜋𝑎(𝑖 + 𝑗 −1))] ,

𝑟𝑖𝑖 =
(√𝑐−1) [𝜋2 (𝑎−1)2 (2𝑖−1)2 +2cos(𝜋𝑎(1−2𝑖)) +2

]
4𝜋2 (2𝑖−1)2 ,

𝑟𝑖 𝑗 =
(√𝑐−1) [−𝑎𝑖 𝑗 + (𝑖− 𝑗)2𝑏𝑖 𝑗 + (−1)𝑖+ 𝑗 (𝑖 + 𝑗 −1)2]

2𝜋2 (𝑖− 𝑗)2 (𝑖 + 𝑗 −1)2 (𝑖 ≠ 𝑗),

(14.67)

where

𝑎𝑖 𝑗 = (𝑖 + 𝑗 −1)2 cos(𝜋𝑎(𝑖− 𝑗)),
𝑏𝑖 𝑗 = (−1)𝑖+ 𝑗 + cos(𝜋𝑎(𝑖 + 𝑗 −1)),
𝑠𝑖𝑖 =

1
4

[
2𝑎(√𝑐−1) −√

𝑐

(
4

𝜋2 (2𝑖−1)2 +1
)
+2

]
,

𝑠𝑖 𝑗 =

√
𝑐
[(2𝑖−1) (2 𝑗 −1) + (−1)𝑖+ 𝑗+1 (2𝑖(𝑖−1) +2 𝑗 ( 𝑗 −1) +1)]

2𝜋2 (𝑖− 𝑗)2 (𝑖 + 𝑗 −1)2 (𝑖 ≠ 𝑗)

Numerical results for this modified version of the Galerkin method are shown in
Table 14.3 (column labeled mod). We see that excellent results are obtained in all
cases even with relatively few terms in the trial function.
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14.6 Conclusion

We provide exact and approximate solutions for heavy simply supported-sliding
column as well as for the heavy stepped column. To improve the estimates of the
critical buckling loads as provided by the Galerkin method, modification of the gov-
erning equations by the use of generalized functions as suggested in Bastatsky and
Khvoles [36] is conducted with attendant excellent results in all cases even with
relatively few terms in the trial function. In a general sense this paper falls into the
category of high-precision methods in eigenvalue problems, as discussed by Aku-
lenko and Nesterov [38].

Acknowledgements The Authors express deep gratitude to prof. Dr. Holm Altenbach for making
available portions of Ref. [31], namely the excellent textbook by G. Bürgermeister and H. Steup.
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Chapter 15
Inter-laminar Delamination in Composite
Laminates: Role of Buckling in its Growth

Jianxiang Wang and Bhushan L. Karihaloo

Abstract The Rayleigh-Ritz method is used to investigate the buckling of a thin de-
laminated sub-laminate from a thick substrate under axial compression representing
an inter-laminar two-dimensional delamination near the surface of a composite lam-
inate. An anti-interpenetration model is introduced to prevent potential non-physical
interpenetration of material during buckling. The post-buckling response of a sim-
pler one-dimensional strip delamination from a thick substrate is reported next with-
out details. This response depends on the exerted compressive stress, the thickness
of the sub-laminate and the inter-laminar critical energy release rate of the material.

Key words: Composite laminate, Delamination, Buckling

15.1 Introduction

The study of delamination buckling and propagation has attracted widespread at-
tention for two reasons. Firstly, because composite laminates are most widely
used structural elements in aeronautical engineering and wind-turbine blades where
structural integrity is vital. Secondly, because layered structures are very prone to
inter-laminar delamination under out-of-plane loading or under stress concentra-
tion caused by intra-laminar cracks [1] which makes them susceptible to trans-
verse impact damage with a resulting drastic reduction of their in-plane compressive
strength. As low-velocity impact usually causes inter-laminar delamination in com-
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posite laminates, a delamination model has been used to predict their post-impact
compressive strength. The rationality of this and other models has been discussed
by Wang [2].

The analysis of the buckling of a thin sub-laminate from a thick substrate has
many useful applications such as in coatings (e.g. [3]), and in fibre-reinforced com-
posite laminates when a manufacturing or a service-induced delamination is close
to the surface.

Two-dimensional delamination buckling of a sub-laminate on a substrate or a
thick plate has been studied both numerically (mostly by finite element method,
e.g. [4, 5], among others) and analytically (usually the Rayleigh-Ritz method, e.g.
[6, 7, 8, 9, 10], among others), although some other methods have also been used
(e.g. [11, 12]).

The Rayleigh-Ritz method is inexpensive, simple to use, and accurate except
for highly anisotropic delaminated sub-laminates. Therefore, it has been widely
used to predict the buckling load/strain. Yin and Jane [9], and Jane and Yin [10]
used a refined Rayleigh-Ritz method based on the von Kármán non-linear plate
theory and high-order polynomial approximations of the displacement functions to
study the buckling of a delaminated sub-laminate of circular/elliptic shapes with
isotropic/anisotropic properties. They found that the low-order polynomial approxi-
mations of the displacement functions give estimates of the deflection and buckling
strain that are close to those given by high-order approximations. Guided by this ob-
servation, in this paper we shall first use a low-order four-term polynomial approxi-
mation for the deflection to predict the buckling strain of a thin elliptic delaminated
sub-laminate. It is found that for some aspect ratios of the ellipse, the sub-laminate
penetrates into the substrate. An ‘anti-interpenetration model’ is introduced to pre-
vent this non-physical interpenetration of material.

The post-buckling behaviour of laminates containing an interior delamination
is then considered for which it is necessary to use a non-linear analysis (see, e.g.
[13, 14]). For brevity, the main results of analysis are given without details for the
pre- and post-buckling response of the simpler one-dimensional strip delamination
in a laminate. The aim of this analysis is to check whether such a delamination
threatens the operation of the laminate. No attempt is made to investigate other
more complicated delamination-induced buckling responses (see, e.g. [15]). In a real
composite laminate such as that used for wind-turbine blades, an inter-laminar strip
delamination near the surface of the laminate may or may not buckle. That depends
on many factors, such as the size of the delamination, its location from the surface
of the laminate, the level of the local compressive stress field, and its eccentricity
relative to the substrate. The strip delamination is unlikely to buckle if it is very
small in size and situated well below the surface of the laminate. However, it may
buckle because it is large in size, is located close to the surface, and is subjected to
high in-plane compressive stress. The response will then depend on an additional
fracture property of the composite material, viz. its inter-laminar critical energy
release rate.
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15.2 Mathematical Preliminaries

Consider the buckling of an elliptic delaminated sub-laminate on a thick substrate,
as shown in Fig. 15.1. The delaminated sub-laminate of thickness ℎ is relatively thin
compared to the substrate, so that the small non-uniformity of the in-plane deforma-
tion in the substrate due to the buckling of the sub-laminate can be neglected.

To calculate the buckling strain and to examine the buckling mode for various
shapes (aspect ratios) and anisotropic properties of the sub-laminate, the Rayleigh-
Ritz method and the linear thin plate theory is used. For this, a kinematically ad-
missible function for the deflection of the sub-laminate in the 𝑧-direction is chosen,
following Jane and Yin [10]:

𝑤(𝑥, 𝑦) =
(
1− 𝑥

2

𝑎2 −
𝑦2

𝑏2

) (
𝐶0 +𝐶1

𝑥2

𝑎2 +𝐶2
𝑥𝑦

𝑎𝑏
+𝐶3

𝑦2

𝑏2

)
(15.1)

where 𝑥 and 𝑦 are the coordinates in the local coordinate system 𝑥𝑜𝑦 (Fig. 15.1).
The extra term 𝐶2 allows for the asymmetric buckling mode.

The total potential energy of the delaminated sub-laminate is

Π =𝑈 +𝑉 (15.2)

where 𝑈 is the strain energy of the sub-laminate and 𝑉 the potential energy of the
applied loads which can be expressed in the usual manner through the bending stiff-
ness coefficients 𝐷𝑖 𝑗 (𝑖, 𝑗 = 1,2,6) of the sub-laminate, and in-plane stress resultants
𝑁𝑥 , 𝑁𝑦 and 𝑁𝑥𝑦 , respectively. If the delaminated sub-laminate is a general com-
posite laminate, the stress resultants are related to the strain and curvature by the
relation

{𝑁𝑥,𝑦,𝑥𝑦} = [𝐴]{Y𝑥,𝑦,𝑥𝑦} + [𝐵]{𝜅𝑥,𝑦,𝑥𝑦} (15.3)

where
{𝑁𝑥,𝑦,𝑥𝑦} = {𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦}T,

{Y𝑥,𝑦,𝑥𝑦} = {Y𝑥 , Y𝑦 , Y𝑥𝑦}T,

{𝜅𝑥,𝑦,𝑥𝑦} = {𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥𝑦}T

(a) (b)

Fig. 15.1 A thick substrate with a thin delaminated sub-laminate under uniaxial compression.
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[𝐴] and [𝐵] are the in-plane stiffness matrix and the bending-stretching (stretching-
bending) coupling matrix, respectively. Note that [𝐵] vanishes for a symmetric sub-
laminate. Assume that the strain components in the global coordinate system are
related to each other by YY = 𝜌YYX and YXY = 𝜌XYYY. The strain components in
the local coordinate system can be easily related to those in the global coordinate
system (see Fig. 15.1). The coefficients 𝜌Y and 𝜌XY depend on the global loading
form and the stiffness of the substrate. We consider the case \ = 0 and express the
stress resultants via the global strains and the components of the in-plane stiffness
matrix [𝐴]. For expediency, we introduce two coefficients 𝛼𝑦 and 𝛼𝑥𝑦 such that
𝑁𝑦 = 𝛼𝑦𝑁𝑥 , 𝑁𝑥𝑦 = 𝛼𝑥𝑦𝑁𝑥 . The strain energy of the sub-laminate𝑈 and the potential
energy of the loads 𝑉 can now be formally written as

𝑈 = {𝐶}[𝐾𝑈]{𝐶}T (15.4)

where {𝐶} = {𝐶0,𝐶1,𝐶2,𝐶3}. [𝐾𝑈] is the stiffness matrix, and

𝑉 = −𝑁𝑥{𝐶}[𝐾𝑉 ]{𝐶}T (15.5)

where [𝐾𝑉 ] is the geometric stiffness matrix. The buckling load 𝑁𝑥 is calculated
from the eigenvalue problem [16]

Det( [𝐾𝑈)] −𝑁𝑥 [𝐾𝑉 ]) = 0 (15.6)

The corresponding buckling mode can be calculated after obtaining the buckling
load 𝑁𝑥 , which can be converted into the global strain YX.

15.3 Numerical Results

Typical results of the buckling analysis of the delaminated sub-laminate are given
below. Although this problem has been studied before (e.g. [7, 17, 18], etc.), we
highlight here the possible interpenetration of the two surfaces besides the delami-
nation in some cases, and propose an anti-interpenetration model for the solution of
this problem. We assume throughout that the delaminated sub-laminate is a uni- or
multidirectional laminate composed of unidirectional fibre-reinforced laminae with
the following properties [7]: 𝐸L = 131 GPa, 𝐸T = 13 GPa,𝐺LT = 6.4 GPa, 𝜇LT = 0.34.
Figure 15.2(a) shows the variation of the buckling strain YXcr of a quasi-isotropic
sub-laminate with 𝑏 for a constant 𝑎 = 25.4 mm and a thickness ℎ = 0.5 mm. The
elastic constants of the quasi-isotropic sub-laminate were calculated from the above
properties of the unidirectional lamina using the classical lamination theory. The
value of YXcr shown in this figure is the absolute value of the global compressive
strain in the X-direction. As 𝑏/𝑎 → ∞, the buckling strain approaches that for a
strip YXcr = 0.00032.

We found that for some values of 𝑏, the fundamental buckling mode may in-
volve positive and negative deflections. Figure 15.2b shows the fundamental buck-
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Fig. 15.2 (a) Variation of buckling strain with 𝑏 of a quasi-isotropic elliptic delaminated sub-
laminate under global uniaxial compression. (b) Deflection at 𝑦 = 0 and 𝑥 ∈ [−𝑎, 𝑎] of a quasi-
isotropic elliptic delaminated sub-laminate under global uniaxial compression.

ling mode at 𝑦 = 0 and 𝑥 ∈ [−𝑎, 𝑎] for 𝑎 = 25.4 mm and 𝑏 = 12.7 mm. The values
of the ordinate (deflection) in Fig. 15.2b are calculated based upon the normal-
ized eigenvector {𝐶}T. It is seen that close to 𝑥 = ±𝑎, there is interpenetration of
surfaces, which is physically impossible. A remedy to the non-physical interpen-
etration of surfaces is to use the ‘anti-interpenetration model’ proposed by Wang
and Tong [19]. The difficulty in all contact-separation problems is that the con-
tact/separation regions are unknown a priori. Therefore, although some schemes
have been proposed to prevent the interpenetration (e.g. [18, 20], etc.), they usually
result in an iterative procedure for determining the final boundary between the con-
tact and separation regions. The model proposed by Wang and Tong [19] overcomes
this difficulty by introducing a novel unified constraint function.

For two surfaces that can come in contact, assume that the contact force per unit
area is

𝑞(𝑥, 𝑦) =
{
𝑓1 = 0, for 𝑤 > 0
𝑓2 [𝑤(𝑥, 𝑦)], for 𝑤 < 0 (15.7)

The function 𝑓2 (𝑤) can be chosen as a linear spring function or a nonlinear Hertz-
type contact function [22]

𝑓2 [𝑤(𝑥, 𝑦)] =
{−𝑘𝑤
−𝑘ℎsign(𝑤) ( |𝑤 |)3/2 (15.8)

where sign(𝑤) is equal to +1 for 𝑤 > 0, and −1 for 𝑤 < 0. 𝑘 and 𝑘ℎ are two positive
numbers which can be obtained by experiment (cf. Wang and Tong [19]). The piece-
wise function 𝑞(𝑥, 𝑦) in Eq. (15.7) can be approximated to any desired accuracy by
a weighted expression, first proposed by Wang and Karihaloo [21]

𝑞∗ (𝑥, 𝑦) = 1
2
[1+ tanh(𝐴 𝑓2)] 𝑓2, ∀𝑤 (15.9)
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where, 𝐴 is a judiciously chosen large positive number whose value depends on the
desired accuracy, say, 𝐴 = 20000 when 𝑓2 is in the order of 1. It can be easily verified
that the function 𝑞∗ in Eq. (15.9) will approach zero for 𝑤 > 0 and approach 𝑓2 in
Eq. (15.8) for 𝑤 < 0. Obviously, when the anti-interpenetration model is imposed,
the problem will become highly nonlinear but it can be easily solved. We have also
calculated the buckling strains and the buckling modes for other lamination config-
urations of the delaminated sub-laminate, where the fibres in the sub-laminate are
oriented at 0◦, 45◦ and 90◦ with respect to the local 𝑥-axis in Fig. 15.1a. For these
fibre orientations and the values of 𝑎 = 25.4 mm, 𝑏 ∈ [12.5,50] mm, no interpene-
tration was found. Therefore, it appears that the quasi-isotropic sub-laminate is the
only one in which interpenetration is likely.

The growth of an inter-laminar delamination under an in-plane compressive
stress may be dangerous for the safe operation of a composite laminate. This prob-
lem was investigated in detail by Karihaloo and Stang [14] who were interested in
understanding whether a strip-like delamination left accidentally undetected during
the manufacture of a long wind turbine blade (these blades are usually handmade
and it is quite conceivable that a short length of tape protecting the fibres is acciden-
tally not peeled off before resin penetration) or detected during its service poses a
serious threat to the safe operation of the blade. They considered a strip delamina-
tion of length 2𝑎 across the width 2𝑏 of a long isotropic composite laminate (that is,
the delamination in Fig. 15.1(b) is a rectangular area 2𝑎×2𝑏, instead of an ellipse).
They regarded the delamination as an interface crack between the thin (ℎ) and thick
(𝐻) (Fig. 15.1b) parts of the laminate under plane strain conditions and therefore
examined only a longitudinal section of unit width.

They studied the equilibrium of one-half of the homogeneous, isotropic and lin-
ear elastic laminate before the buckling of the strip delamination and after its buck-
ling. They used the von Kármán non-linear plate theory for pre-buckling analysis
and the bi-layer solution of [22] to characterize the interface plane-strain crack tip
field after buckling. They indicated several ways of calculating the energy release
rate, and used the simplest one which involved equating the difference of the strain
energies per unit area in the edges far behind and far ahead of the crack front. They
then invoked the criterion for an interface crack to grow, viz. when the energy release
rate reaches a critical value for the composite material which in turn depends on the
fracture mode mixity at the crack front. They produced guidelines and a series of
nomograms to assess how dangerous a strip delamination is to the safe operation of
a composite laminate. For this assessment, it is only necessary to know the location
and size of the delamination and the intensity of the local compressive stress field.

15.4 Conclusions

A thin delaminated sub-laminate may buckle away from its thick base laminate un-
der compression. Its role in the failure of the composite is discussed. However, the
buckling modes may involve non-physical interpenetration of the two surfaces on
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the sides of the delamination. It is shown how to avoid the non-physical interpen-
etration in the theoretical analysis work via a novel “anti-interpenetration model”.
A strip delamination may or may not grow post-buckling. That will depend upon
the applied compressive stress level and its eccentricity, the thickness of the delam-
inated sub-laminate and the inter-laminar critical energy release rate for the fracture
mode mixity at the delamination front.
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5. K.F. Nilsson, L.E. Asp, A. Sjögren. On transition of delamination growth behaviour for com-
pression loaded composite panels. International Journal of Solids and Structures, 38(46-
47):8407-8440, 2001.

6. H. Chai, C. Babcock. Two-dimensional modelling of compressive failure in delami-nated
laminates. Journal of Composite Materials, 19(1):67-98, 1985.

7. K. Shivakumar, J. Whitcomb. Buckling of a sublaminate in a quasi-isotropic compo-site lam-
inate. Journal of Composite Materials, 19(1):2-18, 1985.

8. B.D. Davidson. Delamination buckling: theory and experiment. Journal of Composite Mate-
rials, 25(10):1351-1378, 1991.

9. W.L. Yin, K.C. Jane. Refined buckling and postbuckling analysis of two-dimensional de-
laminations — I. Analysis and validation. International Journal of Solids and Structures,
29(5):591-610, 1992.

10. K.C. Jane, W.L. Yin. Refined buckling and postbuckling analysis of two-dimensional de-
laminations — II. Results for anisotropic laminates and conclusion. International Journal of
Solids and Structures, 29(5):611-639, 1992.

11. X. Zhang, S. Yu. The growth simulation of circular buckling-driven delamination. Interna-
tional Journal of Solids and Structures, 36(12):1899-1821, 1999.

12. S. Moradi, F. Taheri. Postbuckling analysis of delaminated composite beams by differential
quadrature method. Composite Structures, 46(1):33-39, 1999.
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Chapter 16
Suppression of Oscillations of a Loaded Flexible
Robotic “Arm” as a Generalized Chebyshev
Problem

Mikhail P. Yushkov and Sergei O. Bondarenko

Abstract We consider the problem of suppression of oscillations of a loaded flexi-
ble robotic “arm” that carries a load in the horizontal plane. It is required to find an
optimal control force applied to the massive load of the “arm” that moves a mechan-
ical system, within a given time period, from the initial state of rest to the new state
of rest. A flexible robotic arm is considered, in an approximate model, as a set of
three sequentially linked rods connected with each other and with the base by three
spiral springs. First, the problem is solved via the Pontryagin maximum principle
with minimization of the functional of the squared control force. Next, we pose the
generalized Chebyshev problem based on the generalized Gauss principle. Calcu-
lations by these two methods are compared. The second method is shown as being
superior to the first one.

Key words: Control, Suppression of oscillations, Generalized Gauss principle,
Pontryagin maximum principle, Generalized Chebyshev problem

16.1 Statement of the Problem and Motion Equations of the
Mechanical System

Let us consider suppression of oscillation of a flexible robotic “arm” that transfers
a load in the horizontal plane𝑂𝑥𝑦. The problem is to find an optimal control force 𝐹
applied to the massive base of the “arm” along the 𝑂𝑥-axis and that moves a me-
chanical system within a given time period 𝑇 from the initial state of rest to the new
required state of rest. Here, a flexible robotic “arm” in the approximative model is
considered as a tuple of three sequentially linked rods with masses 𝑚𝑖 and lengths
𝐿𝑖 (𝑖 = 1,3), which are connected with each other and with the base by three spiral
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springs of stiffness 𝜘𝑖 (see Fig. 16.1). We assume that the mass of the base, which
has to be moved by a distance 𝑆, is 𝑚0, and the transferred mass is a material point
of mass 𝑚4. The 𝑂𝑧-axis points up.

To compose the Lagrange equations of the second kind it is convenient to intro-
duce the coordinates of centers of mass of the rods and the load. Denote them by 𝑥𝑖
and 𝑦𝑖 , (𝑖 = 1,4). Now, for small oscillations of the system, the kinetic and potential
energies are as follows

T =
𝑚0 ¤𝑥2

2
+

4∑︁
𝑖=1

(1
2
𝑚𝑖

( ¤𝑥2
𝑖 + ¤𝑦2

𝑖

) ) + 3∑︁
𝑖=1

1
2
𝐽𝑧𝑖 ¤𝜑2

𝑖 ,

Π =
1
2

(
𝜘1𝜑

2
1 +𝜘2 (𝜑2 −𝜑1)2 +𝜘3 (𝜑3 −𝜑2)2

)
with

𝐽𝑧𝑖 =
𝐿2
𝑖𝑚𝑖

12
, 𝑖 = 1,3.

Small oscillations of the system are described by the differential equations

𝑀 ¥𝑥 − 𝐿1

(𝑚1
2

+𝑚2 +𝑚3 +𝑚4

)
¥𝜑1 − 𝐿2

(𝑚2
2

+𝑚3 +𝑚4

)
¥𝜑2

− 𝐿3

(𝑚3
2

+𝑚4

)
¥𝜑3 = 𝐹;

𝐷 𝑗0 ¥𝑥 +
3∑︁
𝑖=1

(
𝐷 𝑗𝑖 ¥𝜑𝑖 +𝐷 𝑗𝑖𝜑𝑖

)
= 0, 𝑗 = 1,3. (16.1)

Here, 𝐷 𝑗0, 𝐷 𝑗𝑖 , 𝐷 𝑗𝑖 are the known functions of geometrical and mass characteristics
of the system. The system of differential equations (16.1) should be solved under
the boundary conditions

Fig. 16.1 Approximate model
of a loaded flexible robotic
“arm” in the 𝑂𝑥𝑦 plane



16 Suppression of Oscillations of a Loaded Flexible Robotic “Arm” 251

𝑥(0) = 0; ¤𝑥(0) = 0; 𝜑𝑖 (0) = 0; ¤𝜑𝑖 (0) = 0;
𝑥(𝑇) = 𝑆; ¤𝑥(𝑇) = 0; 𝜑𝑖 (𝑇) = 0; ¤𝜑𝑖 (𝑇) = 0, 𝑖 = 1,3. (16.2)

In what follows, the control force 𝐹 will be sought via the Pontryagin maximum
principle [1]. Note that the system of four equations (16.1) contains five unknowns,
and hence it can be augmented with the requirement that some functional be min-
imal. According to [2], as such functional in our problem one can take the definite
integral of the minus squared required control force

𝐼 [𝐹] = −
𝑇∫

0

𝐹2 d𝑡. (16.3)

For convenience of further analysis, we rewrite the last three equations of sys-
tem (16.1) so that only the rods rotation angles would be preserved. To this end,
we find the expression for ¥𝑥 from the first equation of this system and substitute it
into the next three equations. Another thing is worth pointing out: the first equation
itself expresses the theorem on the center mass motion of the entire system in the
projection to the𝑂𝑥-axis. So it is appropriate to denote that projection by 𝑥𝑐. Hence,
finally, system (16.1) assumes the form

𝑀 ¥𝑥𝑐 = 𝐹;
3∑︁
𝑖=1

(
𝐵 𝑗𝑖 ¥𝜑𝑖 +𝐵 𝑗𝑖𝜑𝑖

)
= 𝛽 𝑗𝐹, 𝑗 = 1,3. (16.4)

Here, the coefficients 𝐵𝑖 𝑗 , 𝐵𝑖 𝑗 , 𝛽𝑖 depend, in the known way, on geometrical and
mass properties of the system.

Let us change to the principal coordinates in the system of differential equa-
tions (16.4). Note that 𝑥𝑐 can be taken as one of the principal coordinates, because
it is not involved in the three remaining equations. Next, in these three equations
we change from the 𝜑𝑖-coordinates to the principal coordinates \𝑖 (𝑖 = 1,3). To this
end, we find three nonzero frequencies Ω𝑖 , and from them we define three principal
forms of oscillations, which define the relation between the principal coordinates
and the original angular ones. In addition, we change by scaling from \𝑖 to the 𝜉𝑖-
coordinates so that these equations would contain equal inhomogeneities in their
right-hand sides. As a result, system (16.4) can be written as four independent equa-
tions

¥𝑥𝑐
𝐿1

=
𝐹

𝑀𝐿1
, ¥𝜉𝑖 +Ω2

𝑖 𝜉𝑖 =
𝐹

𝑀𝐿1
, 𝑖 = 1,3.

To write these equations in the dimensionless form, we make the following
changes:

𝜉0 =
𝑥𝑐
𝐿1
, 𝜏 = Ω1𝑡, 𝜔𝑖 =

Ω𝑖

Ω1
, 𝑢 =

𝐹

𝑀𝐿1Ω2
1
, T = Ω1𝑇.
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Now we have the system of dimensionless differential equations in the principal co-
ordinates (the primes denotes derivatives with respect to the dimensionless time 𝜏):

𝜉′′0 = 𝑢, 𝜉′′𝑖 +𝜔2
𝑖 𝜉𝑖 = 𝑢, 𝑖 = 1,3. (16.5)

The boundary conditions (16.2) now assume the form

𝜉𝑖 (0) = 0; 𝜉′𝑖 (0) = 0, 𝑖 = 0,3;
𝜉0 (T) = 𝑎; 𝜉′0 (T) = 0; 𝜉𝑖 (T) = 0; 𝜉′𝑖 (T) = 0, 𝑖 = 1,3. (16.6)

16.2 Application of the Pontryagin Maximum Principle. Relation
to the Nonholonomic Problem

In the case of dimensionless variables, the functional (16.3) takes the form

�̃� [𝑢] = −
T∫

0

𝑢2 d𝜏. (16.7)

Solving the above boundary-value problem of control theory (16.5), (16.6) by
the classical approach with the help of the Pontryagin maximum principle for func-
tional (16.7), we get the required dimensionless optimal control in the form [1]

𝑢(𝜏) = 𝐶1 +𝐶2𝜏 +
3∑︁
𝑖=1

(
𝐶2𝑖+1 sin(𝜔𝑖𝜏) +𝐶2𝑖+2 cos(𝜔𝑖𝜏)

)
. (16.8)

This expression is substituted in the right-hand sides of Eqs. (16.5). Taking into ac-
count the four conditions from (16.6), one can write the solutions of these equations
via the Duhamel integrals

𝜉0 (𝜏) =
𝜏∫

0

𝑢(𝜏0) (𝜏− 𝜏0) d𝜏0;

𝜉𝑖 (𝜏) = 1
𝜔𝑖

𝜏∫
0

𝑢(𝜏0) sin[𝜔𝑖 (𝜏− 𝜏0)] d𝜏0, 𝑖 = 1,2,3. (16.9)

Substituting functions (16.9) in the second group of boundary conditions (16.6),
we find the eight arbitrary constants in the expression for the dimensionless control
(16.8). Now we completely know the control force (16.8) and the motion of the
system (16.9). The results of calculations via these formulas are shown below in
figures by solid lines.
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Let us now dwell on the interesting phenomenon, which is characteristic of
the motion of a mechanical system obtained via the Pontryagin maximum princi-
ple. Note that the resulting control (16.8) is a solution of a tenth-order differential
equation, which in the dimensional form can be written as [5]

d2

d𝑡2
( d2

d𝑡2
+Ω2

1

) ( d2

d𝑡2
+Ω2

2

) ( d2

d𝑡2
+Ω2

3

)
𝐹 = 0. (16.10)

Inserting in (16.10) the expression for 𝐹 taken from the first equation of system
(16.1), we get the following differential equation with known constant coefficients
(which are not presented due to their bulkiness):

5∑︁
𝑖=2

(
𝑎2𝑖,𝑥

d2𝑖𝑥

d𝑡2𝑖
+ 𝑎2𝑖,𝜑1

d2𝑖𝜑1

d𝑡2𝑖
+ 𝑎2𝑖,𝜑2

d2𝑖𝜑2

d𝑡2𝑖
+ 𝑎2𝑖,𝜑3

d2𝑖𝜑3

d𝑡2𝑖
)
= 0. (16.11)

But the differential equation (16.11) thus obtained can be considered as a tenth-
order (!) linear nonholonomic constraint, which is continuously satisfied in the
motion of a mechanical system obtained by application of the Pontryagin maxi-
mum principle. This suggests the following generalized Chebyshev problem [3, 4] in
place of the original statement of the problem: find the controlled motion of a guide
with three rods bearing a given load, provided that the motion program is specified
as some additional differential equation with constant tenth-order coefficients. In
this statement of the problem, the differential equation in question is considered as
a tenth-order linear nonholonomic constraint, whose reaction is the required control
force.

16.3 Application of the Generalized Gauss Principle for Solving
the Above Generalized Chebyshev Problem

Let us now examine the above generalized Chebyshev problem, which will be
solved as the corresponding problem of nonholonomic mechanics under a tenth-
order nonholonomic constraint. For theoretical background of solutions of similar
problems, see, for example, [3, 4, 5, 6, 7], in which the generalized Gauss princi-
ple plays a central role. This principle was proposed already in 1983 in [8]. When
dealing with a problem involving a tenth-order linear nonholonomic constraint, one
should apply the eights-order generalized Gauss principle, according to which the
requirement

𝛿 (10) (R(8)
)2 = 0 (16.12)

should be satisfied. In other words, one varies the tenths derivatives in the expres-
sion for the squared eights derivatives of the reaction R of the applied high-order
constraint. As noted above, in the generalized Chebyshev problem, the constraint
reaction is considered as the sought-for control force 𝑢(𝜏), and hence from (16.12)
we find that
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𝑑8𝑢

𝑑𝜏8 = 0 (16.13)

resulting in

𝑢(𝜏) =
8∑︁
𝑖=1
𝐶𝑖𝜏

𝑖−1. (16.14)

As in the case of the Pontryagin maximum principle, the arbitrary constants
in control (16.14) can be found from the second group of boundary-value condi-
tions (16.6), after which we evaluate the motion of the system via the Duhamel
integrals (16.9). The resulting solutions are shown in figures by dashed lines.

Note that in the case of a short-time motion with T = 𝜋
4 , all the graphs (not pro-

vided in the paper) differ insignificantly and tend to each other as the dimensionless
motion time decreases. In other words, for short-time motion, the results of the new
method are close to those obtained by the classical method of control theory.

However, results become to differ significantly if one considers more extensive
motions (see Figs. 16.2 and 16.3). This can be explained by the fact that, under the
first method, the resulting control (16.8) contains harmonics with eigenfrequencies
of the system, and consequently, the resulting control force tends to bring the system
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Fig. 16.2 The control force 𝑢. Solutions are gained with both first (solid line) and second (dashed
line) principals and with the extended boundary-value problem dotted line). a T = 4𝜋
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Fig. 16.3 The dimensionless coordinate 𝜉0. a the time T = 4𝜋
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into resonance. In contrast, in the second method, the control is found in the form
of polynomial (16.14), which ensures a relatively smooth motion of the system.

16.4 Statement and Solution of the Extended (Generalized)
Boundary-value Problem

Note that the application of the Pontryagin maximum principle always involves
jumps in the control force at the beginning and end of the motion of the system
(see Fig. 16.2). At the same time, the solution of the generalized Chebyshev prob-
lem has jumps on the left panel of Fig. 16.2 (the case of “short” motion), while
on the right panel (the case of “long” motion) they disappear. This leads us to the
problem of removal of jumps in the solution of the generalized Chebyshev problem
also in the case of a “short-time” motion. To this end, we augment the available
dimensional boundary conditions (16.2) with the conditions that the acceleration of
the base should be zero at the beginning and end of motion:

¥𝑥(0) = 0, ¥𝑥(𝑇) = 0.

We rewrite these conditions in the dimensionless form:

𝜉′′0 (0) = 0, 𝜉′′0 (T) = 0. (16.15)

Let us now solve the boundary-value problem of control theory (16.5), (16.6),
(16.15). We call this problem the first-order extended (generalized) boundary-value
problem. Note that this problem is not amenable to the Pontryagin maximum prin-
ciple, because the resulting control would have an insufficient number of arbi-
trary constants for satisfaction of all applicable boundary-value conditions (16.6),
(16.15). At the same time, the solution can be found by the generalized Gauss prin-
ciple by using the two orders higher principle. The resulting solutions are shown in
figures by dotted lines. The left panel in Fig. 16.2 shows that, for “short-time” mo-
tion, it indeed proved possible to eliminate the jumps of the control force. Note that
by posing higher-orders generalized boundary-value problems (it is required that
higher-order derivatives would also vanish) one may achieve an additional smooth-
ness of the control force at the beginning and end of motion.

16.5 Calculation Results

The dimensionless parameters of the system are related to the dimensional ones as
follows:
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𝜇𝑖 =
𝑚𝑖

𝑀
, 𝑖 = 0,4,

𝛼𝑖 =
𝐿𝑖
𝐿1
, 𝛾𝑖 =

𝜘𝑖

𝐿2
1𝑀Ω2

1
, 𝑖 = 1,3.

For calculations, we used the following values of the dimensionless parameters:

𝜇0 =
5
13
, 𝜇1 =

2
13
, 𝜇2 =

3
26
, 𝜇3 =

1
26
, 𝜇4 =

4
13
,

𝛼2 = 0.7, 𝛼3 = 0.5, 𝛾1 = 1.69, 𝛾2 = 0.63, 𝛾3 = 0.25.

The time T during which the base travels the distance 𝑎 = 1 will be increased
for comparison of the resulting solutions. The calculations results depicted in
Figs. 16.2 – 16.6 were discussed above.

16.6 Conclusions

Two completely different methods are used for solution of one practical problem of
finding an optimal control force that transfers a mechanical system, within a given
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Fig. 16.4 The dimensionless coordinate 𝜉1. a the time T = 4𝜋
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Fig. 16.6 The dimensionless coordinate 𝜉3. a the time T = 4𝜋
3 . b the time T = 20𝜋

time period, from a given phase state to a given finial phase state. The first approach
is a classical method of control theory depending on the Pontryagin maximum prin-
ciple for minimization of some functional. It was found that, during the entire mo-
tion time, a high-order linear nonholonomic constraint applies. This enabled us to
formulate the original problem of control theory as a generalized Chebyshev prob-
lem, in which this constraint is considered as a motion program of the system, and
its reaction is the sought-for control force. This problem is solved via the gener-
alized Gauss principle. Numerous calculations via these two methods have shown
that the results are practically equal for short-time motions, but they were found
to be drastically different for long-time motions. This is explained by the fact that,
under the first method, the evaluated control force contains harmonics with eigen-
frequencies of system (which, for long-time motion, this tends to bring the system
into resonance), while in the second method the control is constructed in the form
of a polynomial of time, which ensures a relatively smooth motion of the system.
Moreover, by formalizing and solving the generalized boundary-value problem of
control theory, it is possible to achieve that the system moves arbitrarily smoothly
at the beginning and end of the motion. It is worth also pointing out that the control
force via the first method always has jumps at these time instants.
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Chapter 17
Theory of Cosserat-type Elastic Shells with
Distributed Dislocations and Disclinations

Leonid M. Zubov and Mikhail I. Karyakin

Abstract A mathematical model is constructed for Cosserat elastic shells containing
continuously distributed dislocations and disclinations. Displacements, rotations,
and strains are assumed to be small, i.e., the geometrically linear 6-parameter the-
ory of shells is used. The system of equations describing the static deformations
of the shells is derived by passing to the limit from a discrete set of isolated dislo-
cations and disclinations to their continuous distribution. Deformational boundary
conditions are derived, and a boundary value problem is formulated for the equilib-
rium of an elastic shell with given dislocation and disclination densities. With the
help of stress functions, a variational statement of the boundary value problem of
the statics of shells with distributed defects is given. A static-geometry analogy of
the Cosserat shells theory considering distributed dislocations and disclinations is
established. The dual boundary value problems of shell statics are formulated. The
dual problems are mathematically equivalent, but completely different in their phys-
ical formulation. The problem of the stress state of a spherical shell with uniformly
distributed dislocations and disclinations is solved.

Key words: Dislocation and disclination densities, Deformational boundary con-
ditions, Stress functions, Static-geometry analogy, Dual boundary value problems

17.1 Introduction

Since the first exfoliation of single-layer graphene, two-dimensional (2D) materi-
als have attracted worldwide attention due to their unique structures and remark-
able applications. The large family of discovered two-dimensional materials cov-
ers an extremely wide range of properties, allowing the exploration of new physi-
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cal effects and the fabrication of new devices with novel capabilities. In particular,
2D atomically-thick materials, graphene and graphene-like layered transition metal
dichalcogenides, have showed vast potential as novel energy materials due to their
unique physicochemical properties [24].

Defects in the crystal structure of bulk materials have been studied extensively
and in detail since the middle of the last century, due to their decisive role in the
formation of the most important physical and mechanical properties of these ma-
terials. Structural defects in 2D materials have attracted much attention since the
era of graphene has arisen. During the synthesis of 2D materials, various types of
defects are inevitably generated. A wide variety of dislocations was observed in
two-dimensional crystals of different nature [4, 6]. Experimental studies show that
these defects significantly affect physical, chemical, and mechanical properties of
2D materials [26]. Dislocation-type defects play an essential role in the mechani-
cal behavior of surface crystals, nanotubes, nanofilms, and other two-dimensional
physical systems [14].

The design based on topological defects in 2D materials has become a hot topic
in the field of mechanics and material sciences [5, 20]. Defect engineering, among
others, is known as a promising technique to manipulate and tune the properties of
available and yet undiscovered 2D materials [3].

2D nanomaterials are an emerging class of biomaterials with remarkable poten-
tial for biomedical applications [19]. Lattice defects affect the theranostic perfor-
mance of 2D nanomaterials significantly by altering their electronic properties and
chemical binding. Recent investigations have shown that defect-rich 2D nanomate-
rials are capable of enhancing treatment techniques and improving diagnostics [22].

Recent interest in defects in thin sheets comes from the modeling of biological
growth processes [7]. A detailed theoretical perspective of the interplay between
symmetry, topological defects, and mechanical properties of virus shells (capsids)
is provided in [27]. Various aspects of the biological relevance of geometric defects
in the virus shell are described in [25]. Icosahedral alphaviruses and flaviviruses,
among others, have capsids with geometric defects that may facilitate assembly,
dissociation, or accessibility of cellular proteins to virion components. The studies
of viral capsids within the framework of the nonlinear theory of elastic shells [15,
23, 21] demonstrated good fits to experimentally determined virus shapes.

In this paper, we apply the geometrically linear theory of elastic shells of the
Cosserat type. Based on the concept of an isolated defect (Volterra dislocation) in a
multiply connected two-dimensional elastic body, we construct a model of Cosserat
elastic shell with distributed dislocations and disclinations by passing to the limit
from a discrete set of isolated defects to their continuous distribution. Previously,
the theory of continuously distributed dislocations and disclinations was developed
in[30] within the framework of the classical Kirchhoff-Love shell model.
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17.2 Initial Relations of the Geometrically Linear Theory of the
Cosserat-type Shells

The system of equations describing the static deformations of an elastic shell of
the Cosserat type [28, 1, 10, 2] consists of equilibrium equations for forces and
moments

divT+ 𝒇 = 0, (17.1)

divM+T× + 𝒍 = 0, (17.2)

divF △= 𝒓𝛾 · 𝜕F
𝜕𝑦𝛾

, 𝒓𝛾 · 𝒓𝜘 = 𝛿𝛾𝜘 , 𝒓𝛾 · 𝒏 = 0,

𝒓𝜘 =
𝜕𝒓

𝜕𝑦𝜘
, 𝛾,𝜘 = 1,2,

constitutive relations (equations of state)

T =
𝜕𝑊

𝜕E , M =
𝜕𝑊

𝜕K , 𝑊 =𝑊 (E,K), (17.3)

and geometric relationships

E = grad𝒖 +g×𝝎, K = grad𝝎, (17.4)

gradF △= 𝒓𝛾 ⊗ 𝜕F
𝜕𝑦𝛾

, g = I− 𝒏⊗ 𝒏.

In (17.1)–(17.4) T is the stress tensor, M is the couple stress tensor, 𝒇 is the
vector intensity of the external forces distributed over shell surface 𝜎, 𝒍 is the vector
intensity of the external couples distributed over shell surface 𝜎, E is the linear strain
tensor of the shell, K is the tensor of curvature changes, 𝑊 is specific (per surface
𝜎 area unit) strain energy, 𝑦1, 𝑦2 are Gaussian coordinates on the surface 𝜎, I is
three-dimensional unit tensor, 𝒏 is the unit normal to 𝜎, g is the first fundamental
(metric) tensor of the surface, 𝒓 (𝑦1, 𝑦2) is the radius vector of a surface point, 𝒓𝜘
and 𝒓𝛾 are the main and reciprocal vector bases on 𝜎, F(𝑦1, 𝑦2) is a differentiable
field of arbitrary rank, grad and div are gradient and divergence operations on the
surface, 𝛿𝛾𝜘 is the Kronecker symbol, 𝒖(𝑦1, 𝑦2) is the displacement vector field of the
shell 𝜎, 𝝎(𝑦1, 𝑦2) is the linear vector of shell particles rotations. The vector field 𝝎
is kinematically independent of the displacement field 𝒖. The symbol T× means the
vector invariant of the second rank tensor T. In particular, for a dyad of vectors, we
have (𝒂 ⊗ 𝒃)× = 𝒂× 𝒃. The tensors E and K vanish during rigid motion of the shell,
when 𝒖 = 𝒖0 +𝝎0 × 𝒓, 𝝎 = 𝝎0, 𝒖0 and 𝝎0 are constant vectors.

The tensors of strains, curvature changes, stress, and couple stress satisfy the
relations

𝒏 ·E = 𝒏 ·K = 𝒏 ·T = 𝒏 ·M = 0.

The vector E · 𝒏 is a quantitative characteristic of the transverse shear in an elastic
shell, and the vector T · 𝒏 characterizes shear forces.
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The most common types of boundary conditions for a shell are kinematic bound-
ary conditions, when displacements and rotations are specified on some part of the
boundary contour

𝒖 = 𝒖∗ (𝑠), 𝝎 = 𝝎∗ (𝑠), (17.5)

and dynamic boundary conditions, when force load 𝝉 and couple load 𝝁 distributed
along the curve are stated on a part of the boundary

𝒎 ·T = 𝝉(𝑠), 𝒎 ·M = 𝝁(𝑠). (17.6)

Here 𝒎 is the unit normal to the boundary contour satisfying the condition 𝒎 · 𝒏 = 0
and directed to the side external to the surface 𝜎, 𝒖∗, 𝝎∗, 𝝉 and 𝝁 are given functions
of the current arc length 𝑠.

Although the fields of displacements, rotations, and strains are assumed to be
small, the dependencies of the stress and couple stress tensors T and M on the strain
tensors E and K can be nonlinear, i.e., the physical nonlinearity of the shell material
is allowed.

17.3 Continuously Distributed Dislocations and Disclinations in
an Elastic Shell

To introduce the concept of dislocations in an elastic shell, consider the problem of
determining the displacement field 𝒖 from given single-valued differentiable fields
of the strain tensor E and the rotation vector 𝝎. Based on (17.4) we have

grad𝒖 = E−g×𝝎. (17.7)

The solution of the equation (17.7) is written as a curvilinear integral

𝒖(𝒓) =
𝒓∫

𝒓0

𝑑𝒓 · (E−g×𝝎) +𝒖(𝒓0). (17.8)

If the condition
div (d ·E−d×𝝎) = 0, d = −I× 𝒏 (17.9)

holds, then the integral (17.8) in the case of a simply connected domain does not
depend on the choice of the curve connecting the points 𝒓 and 𝒓0 on the surface
𝜎. This means that for a given initial value 𝒖(𝒓0), the expression (17.8) defines a
single-valued function 𝒖(𝒓). The tensor d in (17.9) is called the surface discriminant
tensor [29, 31].

Let us now consider some section 𝜎0 of the shell surface and assume that the
domain 𝜎0 is multiply connected and homeomorphic to a circle with 𝑁 circular
holes, and the functions E(𝒓) and 𝝎(𝒓) are single-valued in a multiply connected
domain. In this case, the property of displacement single-valuedness is, generally,
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lost. The multivaluedness can be eliminated by turning the domain 𝜎0 into a simply
connected one by drawing the necessary number of cuts (partitions). In this case, the
values of the function 𝒖(𝒓) will differ on different sides of the cut. It follows from
(17.8) that the displacement jump at the intersection of each cut is described by the
formula

𝒖+−𝒖− = 𝒃𝑘 , (17.10)

where 𝒃𝑘 (𝑘 = 1,2, . . . , 𝑁) are vectors constant for each cut, called Burgers vectors.
These vectors do not depend on the choice of the cut system and, according to (17.8),
are expressed in terms of the fields E(𝒓) and 𝝎(𝒓) by contour integrals

𝒃𝑘 =
∮
Γ𝑘

𝑑𝒓 · (E−g×𝝎), (17.11)

where Γ𝑘 is any simple closed contour enveloping only one 𝑘-th hole. Nonzero
values of 𝒃𝑘 mean that the shell contains isolated dislocations.

If the number of dislocations in a limited part of the shell is very large, it is
expedient to pass to a continuous distribution of defects. The total Burgers vector of
a discrete set of 𝑁 isolated dislocations contained in the subdomain 𝜎0, according
to (17.11), is given by

𝑩 =
𝑁∑︁
𝑘=1

𝒃𝑘 =
𝑁∑︁
𝑘=1

∮
Γ𝑘

𝑑𝒓 · (E−g×𝝎). (17.12)

Due to the well-known properties of curvilinear integrals and the uniqueness of the
integrand, the sum of the integrals in (17.12) can be replaced by a single integral
over the closed contour Γ0, which encloses all holes in the region 𝜎0

𝑩 =
∮
Γ0

𝑑𝒓 · (E−g×𝝎). (17.13)

To go from a discrete set of dislocations to their continuous distribution, we tend
the hole diameters to zero and transform the contour integral by the divergence
theorem [29, 31] into a surface integral over the region 𝜎0 bounded by the contour
Γ0

𝑩 =
∬
𝜎0

𝜶 𝑑𝜎, 𝜶 = div(d ·E) + (d ·K)× . (17.14)

Here we use the easily verified identity

div(d×𝝎) = −(d ·grad𝝎)× ,

and the geometric relation (17.4).
Since 𝑩 is the total Burgers vector of all dislocations contained in an arbitrary

region 𝜎0, the vector field 𝜶 should be called the dislocation density.



264 Leonid M. Zubov and Mikhail I. Karyakin

Further, we assume that a part of the shell containing continuously distributed
dislocations occupies a multiply connected region and set the problem of deter-
mining the field of rotations 𝝎 in this multiply connected region from the given
single-valued and differentiable fields of the strain tensor E and the tensor of cur-
vature changes K. We now abandon the requirement that rotations be single-valued.
Integrating the relationship (17.4)2, we get

𝝎(𝒓) =
𝒓∫

𝒓0

𝑑𝒓 ·K+𝝎(𝒓0). (17.15)

In a multiply connected domain, the rotation field given by (17.15) is, gener-
ally, non-unique. When traversing a closed contour enveloping one of the holes, the
vector 𝝎 receives an increment called the Frank vector

𝒒𝑠 =
∮
Γ𝑠

𝑑𝒓 ·K, 𝑠 = 1,2, . . . , 𝑀. (17.16)

Non-zero constants 𝒒𝑠 mean the existence of isolated disclinations in a multiply
connected shell with continuously distributed dislocations. The total Frank vector
for a discrete set of disclinations is expressed as

𝑸 =
𝑀∑︁
𝑠=1

𝒒𝑠 =
𝑀∑︁
𝑠=1

∮
Γ𝑠

𝑑𝒓 ·K =
∮
Γ0

𝑑𝒓 ·K. (17.17)

Arguing similarly to the previous one, we pass from a discrete set of disclinations
to their continuous distribution. We get

𝑸 =
∬
𝜎0

div (d ·K) 𝑑𝜎. (17.18)

The integrand in (17.18) should be called the disclination density

𝜷 = div(d ·K).

In what follows, the dislocation and disclination densities, 𝜶 and 𝜷, will be consid-
ered as given functions of the Gaussian coordinates 𝑦1, 𝑦2, similarly to the external
loads 𝒇 and 𝒍 distributed over the shell surface.

In the presence of distributed defects in the form of dislocations and disclinations,
the fields of displacements 𝒖 and rotations 𝝎 do not exist, so the geometric relations
(17.4) do not make sense. Instead, one should use the equations following from the
definition of the densities 𝜶 and 𝜷, called the incompatibility equations

div(d ·E) + (d ·K)× = 𝜶, (17.19)
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div(d ·K) = 𝜷. (17.20)

For 𝜶 = 𝜷 = 0, the equations (17.19), (17.20) take the form

div(d ·E) + (d ·K)× = 0, div(d ·K) = 0 (17.21)

and are called the compatibility equations. They can be easily obtained by eliminat-
ing the vectors 𝒖 and 𝝎 from the relations (17.4). When the expressions (17.4) are
substituted into the compatibility equations (17.21), the latter turn into identities.

The dislocation and disclination densities, as well as the surface load intensities,
can be generalized functions. This allows us to consider the case of concentrated
defects. The density 𝜶 corresponding to a dislocation concentrated at the point 𝒓∗
has the form 𝜶 = 𝒃𝛿(𝒓− 𝒓∗), where 𝛿(𝒓) is the Dirac delta function, and the density 𝜷
for a localized disclination is described by the formula 𝜷 = 𝒒𝛿(𝒓− 𝒓∗). Here 𝒃 and 𝒒
are the Burgers and Frank vectors of concentrated defects. The axis of a dislocation
or disclination concentrated at a given point on the shell surface should be thought
of as a straight line orthogonal to the surface at that point. Therefore, following the
terminology of the theory of linear defects in a three-dimensional medium [8, 9], a
concentrated dislocation whose Burgers vector is directed along the normal to the
surface will be called a screw dislocation, and a dislocation with a Burgers vector
lying in the tangent plane will be called an edge dislocation. A disclination with the
Frank vector directed along the normal to the surface is called a wedge disclination,
a disclination whose Frank vector is orthogonal to the normal 𝒏 is called a torsional
disclination.

This terminology extends to continuously distributed dislocations and disclina-
tions. So, if the dislocation density has the form 𝜶 = 𝑎(𝑦1, 𝑦2)𝒏, then we can talk
about screw dislocations distributed in the shell with a scalar density 𝑎(𝑦1, 𝑦2).

Note that the shell models of the Cosserat and Kirchhoff-Love types differ, in par-
ticular, in that the latter cannot consider continuously distributed screw dislocations
[30]. In addition, the theory of Kirchhoff-Love shells does not allow the application
of distributed over the surface couple load, the vector of which is directed along the
normal to the surface.

17.4 Boundary-value Problem of Equilibrium of a Shell with
Distributed Dislocations and Disclinations

The kinematic boundary conditions (17.5) can be replaced by constraints on the
contour values of the strain tensors E and K. If the equation of a curve that is part
of the shell boundary is given as 𝒓 = 𝒓 (𝑠), where 𝑠 is the current arc length, then
the unit vector of the tangent to this curve is 𝒕 = 𝜕𝒓/𝜕𝑠. Therefore, based on (17.4),
(17.5) we have

𝒕 ·E = 𝒗(𝑠), 𝒕 ·K = 𝒘(𝑠), (17.22)

𝒗(𝑠) = 𝑑𝒖∗

𝑑𝑠
+ 𝒕×𝝎∗, 𝒘(𝑠) = 𝑑𝝎∗

𝑑𝑠
. (17.23)
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Boundary conditions (17.22) are called deformational conditions [10]. In the gen-
eral case, they are not equivalent to kinematic ones. Indeed, let us find the functions
𝒖∗ (𝑠) and 𝝎∗ (𝑠) from the differential equations (17.23), assuming the functions 𝒗(𝑠)
and 𝒘(𝑠) are known. Integrating the (17.23) equations, we obtain

𝝎∗ (𝑠) = 𝝎∗
0 +

𝑠∫
𝑠0

𝒘(𝑠′)𝑑𝑠′,

𝒖∗ (𝑠) = 𝒖∗
0 +𝝎∗

0 × (𝒓 − 𝒓0) +
𝑠∫

𝑠0

𝒗(𝑠′)𝑑𝑠′ +
𝑠∫

𝑠0

𝒘(𝑠′) × (𝒓 − 𝒓′)𝑑𝑠′, (17.24)

𝒓 = 𝒓 (𝑠), 𝒓0 = 𝒓 (𝑠0), 𝒖∗
0 = 𝒖∗ (𝑠0), 𝝎∗

0 = 𝝎∗ (𝑠0).
Here 𝒖∗

0 and 𝝎∗
0 are arbitrary vector constants, and the integration variable is marked

with a prime.
The expression (17.24) shows that the kinematic boundary conditions are re-

stored from the deformational ones within the accuracy up to the motion of an ab-
solutely rigid body. If the deformational conditions are set on a connected (solid)
segment of the shell boundary, then we can put 𝒖∗

0 = 𝝎∗
0 = 0, because the rigid mo-

tion of the entire shell does not affect its stressed state. Thus, if the part of the shell
boundary on which the deformation conditions are satisfied is connected, then they
are equivalent to the kinematic boundary conditions (17.5).

If there are distributed defects in the shell, the kinematic boundary conditions do
not make sense. Their role shifts to deformational conditions. The functions 𝒗(𝑠) and
𝒘(𝑠) can be specified arbitrarily, and the part of the boundary where these functions
are specified does not necessarily consist of a single connected segment.

The complete system of equations describing the state of an elastic shell with
distributed defects consists of equilibrium equations for forces and moments (17.1),
(17.2), the incompatibility equations (17.19), (17.20) and constitutive relations
(17.3). If the tensors T and M are expressed in terms of E and K using (17.3), then
the equilibrium equations (17.1), (17.2) will be written in terms of strain tensors.
Since, in the general case, each of the tensors E and K has six independent compo-
nents, the equilibrium equations, together with the incompatibility equations, form
a system of twelve equations with twelve unknown functions 𝒓𝛾 ·E · 𝒓𝜘, 𝒓𝛾 ·E · 𝒏,
𝒓𝛾 ·K · 𝒓𝜘, 𝒓𝛾 ·K · 𝒏 (𝛾,𝜘 = 1,2).

Assume that the shell surface 𝜎 is simply connected and homeomorphic to a cir-
cle, and the boundary of this surface 𝜒 consists of two non-intersecting connected
parts: 𝜒 = 𝜒1 ∪ 𝜒2. One of the possible formulations of the boundary value problem
of the equilibrium of a shell with continuously distributed dislocations and disclina-
tions is that the unknown functions E and K must satisfy the equilibrium equations,
incompatibility equations, deformational boundary conditions (17.22) on 𝜒1 and
dynamic boundary conditions (17.6) on 𝜒2 written in terms of tensors E and K.

It is possible to formulate the boundary value problem with another choice of
unknown functions. Let T′ and M′ be some particular solution of the equilibrium
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equations (17.1), (17.2). Then the tensors T∧ = T−T′ and M∧ = M−M′ satisfy
homogeneous equilibrium equations

divT∧ = 0, divM∧ +T∧
× = 0. (17.25)

There is an analogy between the equilibrium equations (17.25) and the strain
compatibility equations (17.21). The systems (17.21) and (17.25) pass one into the
other during the following mutual substitutions

T∧⇄ d ·K, M∧⇄ d ·E.

From this, by analogy with (17.4), we can conclude that the equations (17.25) are
identically satisfied by substitution [28]

T∧ = d ·grad𝜼, M∧ = d ·grad𝝀+d×𝜼, (17.26)

where 𝜼 and 𝝀 are arbitrary twice continuously differentiable functions of coordi-
nates on the surface 𝜎.

It is known in the theory of elasticity [18], the functions by which the general so-
lution of the equilibrium equations is expressed are usually called stress functions.
An example is the Airy stress function in a plane problem of elasticity theory, the
Prandtl stress function in the theory of torsion of prismatic bodies, the Finzi’s gen-
eral tensor of stress functions [18]. Therefore, the functions 𝜼 and 𝝀 will be referred
to as stress functions. Note that stress functions were first introduced in shell theory
by Lurie and Goldenweiser [16, 11] within the Kirchhoff-Love shell model.

The strain tensors E and K can be expressed using the constitutive relations
(17.3) and the formulas (17.26) in terms of stress functions 𝜼 and 𝝀. Consequently,
the incompatibility equations (17.19), (17.20) will be written regarding the stress
functions and form a system of six scalar equations with six unknown functions –
components of the vectors 𝜼 and 𝝀. The deformational boundary conditions (17.22)
are also formulated in terms of the functions 𝜼 and 𝝀. Let’s write the dynamic bound-
ary conditions (17.6) in the modified form,

𝒎 ·T∧ = 𝝉∧ (𝑠), 𝒎 ·M∧ = 𝝁∧ (𝑠), (17.27)

where the functions 𝝉∧ and 𝝁∧ are expressed in terms of the known vectors 𝝉 and 𝝁
and the tensors T′ and M′. Based on (17.26) and the equality d = 𝒎 ⊗ 𝒕− 𝒕 ⊗𝒎, the
boundary conditions (17.27) become

𝑑𝜼

𝑑𝑠
= 𝝉∧ (𝑠), 𝑑𝝀

𝑑𝑠
+ 𝒕×𝜼 = 𝝁∧ (𝑠). (17.28)

These boundary conditions can be converted to a form that does not contain deriva-
tives of stress functions. For this, it is necessary to integrate the system of differential
equations (17.28). The result will be following
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𝜼(𝑠) = 𝜼0 +
𝑠∫

𝑠0

𝝉(𝑠′)𝑑𝑠′,

𝝀(𝑠) = 𝝀0 +𝜼0 × (𝒓 − 𝒓0) +
𝑠∫

𝑠0

𝝁∧ (𝑠′)𝑑𝑠′

+
𝑠∫

𝑠0

𝝉∧ (𝑠′) × (𝒓 − 𝒓′)𝑑𝑠′,
(17.29)

𝒓 = 𝒓 (𝑠), 𝒓0 = 𝒓 (𝑠0).
Here 𝜼0, 𝝀0 are arbitrary vector constants. With the help of (17.26), it is easy to
verify that adding the terms 𝜼0 and 𝝀0 + 𝜼0 × 𝒓 to the stress functions 𝜼 and 𝝀,
respectively, does not affect the stress tensor fields T∧ and M∧. Therefore, in the
case of a connected section of the boundary 𝜒2, we can put 𝜼0 = 𝝀0 = 0. Thus, due
to (17.29), the dynamic boundary conditions are reduced to specifying the values of
the stress functions 𝜼 and 𝝀 on a part of the shell boundary.

17.5 Variational Formulation of the Equilibrium Problem for an
Elastic Shell with Distributed Dislocations and Disclinations

Let us consider a shell whose surface 𝜎 is simply connected and homeomorphic to
a circle. The shell boundary 𝜒 consists of two non-intersecting parts: 𝜒 = 𝜒1 ∪ 𝜒2.
On the curve 𝜒1, the deformational boundary conditions (17.22) are satisfied. The
dynamic boundary conditions on 𝜒2, as shown above, are reduced to setting the
boundary values of the stress functions

𝜼��𝜒2
= 𝜼∗ (𝑠), 𝝀��𝜒2

= 𝝀∗ (𝑠) (17.30)

where 𝜼∗ and 𝝀∗ are known functions. Next, suppose that the constitutive relations of
the shell, i.e., the dependencies T=T(E,K), M=M(E,K), admit a unique inversion
regarding the tensors E and K, i.e., there are single-valued dependencies

E = E(T,M), K = K(T,M).

Let us introduce the specific complementary energy of the shell 𝑉 (T,M) as a
function related to the specific strain energy by the Legendre transformation,

𝑉 = T⊙E+M⊙K−𝑊. (17.31)

Here the symbol A ⊙ B = tr (A ·BT) means the full multiplication of second rank
tensors [31]. By the property of the Legendre transformation, we have
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E =
𝜕𝑉

𝜕T , K =
𝜕𝑉

𝜕M . (17.32)

Let us express stresses and couple stresses in terms of the stress functions by the
formulas

T = d ·grad𝜼+T′, M = d · (grad𝝀+g×𝜼) +M′ (17.33)

and consider the functional

Π [𝜼,𝝀] =
∬
𝜎

𝑉𝑑𝜎−
∬
𝜎

(𝜶 ·𝜼+ 𝜷 ·𝝀)𝑑𝜎 +
∫
𝜒1

(𝒗 ·𝜼+𝒘 ·𝝀)𝑑𝑠, (17.34)

which is defined on the set of twice differentiable stress functions satisfying the dy-
namic boundary conditions (17.30) on 𝜒2. Let us show that the requirement of sta-
tionarity of the functional Π is equivalent to the incompatibility equations (17.19),
(17.20) and deformational boundary conditions (17.22).

Let us calculate the variation of the functional (17.34), considering that the func-
tions 𝜶, 𝜷, 𝒗, 𝒘, T′ and M′ are given and hence do not vary:

𝛿Π =
∬
𝜎

𝛿𝑉𝑑𝜎−
∬
𝜎

(𝜶 · 𝛿𝜼+ 𝜷 · 𝛿𝝀)𝑑𝜎 +
∫
𝜒1

(𝒗 · 𝛿𝜼+𝒘 · 𝛿𝝀)𝑑𝑠. (17.35)

Based on (17.32), (17.33) we have

𝛿𝑉 = E⊙ 𝛿T+K⊙ 𝛿M = E⊙ (d ·grad𝛿𝜼) +K⊙ (d ·grad𝛿𝝀) +K⊙ (d · 𝛿𝜼). (17.36)

Applying the standard technique of the calculus of variations, we transform the
expression (17.36) to the following form

𝛿𝑉 = [div (d ·E)] · 𝛿𝜼−div (d ·E · 𝛿𝜼) +
+ [div (d ·K)] · 𝛿𝝀−div (d ·K · 𝛿𝝀) + (d ·K)× · 𝛿𝜼.

(17.37)

Substituting (17.37) into (17.35) and using the surface divergence theorem, we get

𝛿Π =
∬
𝜎

[div (d ·E) + (d ·K)× −𝜶] · 𝛿𝜼 𝑑𝜎 +

+
∬
𝜎

[div (d ·K) − 𝜷] · 𝛿𝝀 𝑑𝜎 +

+
∫
𝜒1

(𝒗− 𝒕 ·E) · 𝛿𝜼 𝑑𝑠+
∫
𝜒1

(𝒘− 𝒕 ·K) · 𝛿𝝀 𝑑𝑠.

(17.38)

Since the functions 𝛿𝜼 and 𝛿𝝀 are arbitrary on 𝜒1 and on 𝜎, the requirement
𝛿Π = 0 implies incompatibility equations and deformational boundary conditions.
Conversely, if these equations and boundary conditions are satisfied, then 𝛿Π = 0.
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17.6 Static-geometry Analogy

In the theory of elastic shells of the Kirchhoff-Love type, the static-geometric anal-
ogy is well known [12, 17]. It consists in the identity of the equilibrium equations for
forces and moments and the compatibility equations for metric strains and strains,
related to the curvature changes. The extension of the static-geometric analogy to
Kirchhoff-Love shells with distributed dislocations and disclinations is given in
[30]. In this section, we will study the static-geometric analogy for Cosserat shells,
taking into account distributed dislocations and disclinations.

There is an analogy between the equilibrium equations (17.1), (17.2) and the
incompatibility equations (17.19), (17.20). Namely, these systems of equations go
over to one another under the following mutual replacements:

T⇄ d ·K, M⇄ d ·E, 𝒇 ⇄ −𝜷, 𝒍 ⇄ −𝜶. (17.39)

In the absence of external loads distributed over 𝜎, i.e., for 𝒇 = 𝒍 = 0, the stress
and couple stress tensors are expressed in terms of the stress functions by the for-
mulas

T = d ·grad𝜼, M = d ·grad𝝀+d×𝜼, (17.40)

and in the absence of distributed dislocations and disclinations, i.e., for 𝜶 = 𝜷 = 0, the
strain tensors are expressed in terms of displacement and rotation fields as follows:

d ·K = d ·grad𝝎, d ·E = d ·grad𝒖 +d×𝝎. (17.41)

The expressions (17.40) and (17.41) are similar, with the correspondence

𝜼⇄ 𝝎, 𝝀⇄ 𝒖. (17.42)

There is also an analogy between different boundary conditions. Indeed, the kine-
matic boundary conditions

𝒖��𝜒1
= 𝒖∗ (𝑠), 𝝎��𝜒1

= 𝝎∗ (𝑠),

are identical to the dynamic boundary conditions formulated in terms of stress func-
tions

𝝀��𝜒2
= 𝝀∗ (𝑠), 𝜼��𝜒2

= 𝜼∗ (𝑠),

Deformational boundary conditions

m ·d ·E = 𝒗(𝑠), m ·d ·K = 𝒘(𝑠)

are similar to dynamic boundary conditions

m ·M = 𝝁(𝑠), m ·T = 𝝉(𝑠),

with the correspondence 𝒗⇄ 𝝁, 𝒘⇄ 𝝉.
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Let us assume that dislocations, disclinations, surface force and couple loads are
distributed in a simply connected shell, and the deformational boundary conditions
𝒕 · E = 𝒗(𝑠), 𝒕 · K = 𝒘(𝑠) are satisfied on the entire closed curve 𝜒 bounding the
surface 𝜎. It turns out that functions 𝜶(𝑦1, 𝑦2), 𝜷(𝑦1, 𝑦2), 𝒗(𝑠), and 𝒘(𝑠) cannot be
set completely arbitrarily, but must satisfy certain relations, the derivation of which
follows.

Integrating the incompatibility equations (17.19), (17.20) over the area of the
shell and using the divergence theorem, we obtain the equalities∮

𝜒

𝑑𝒓 ·E+
∬
𝜎

(d ·K)×𝑑𝜎 =
∬
𝜎

𝜶 𝑑𝜎, (17.43)

∮
𝜒

𝑑𝒓 ·K =
∬
𝜎

𝜷 𝑑𝜎. (17.44)

The second integral on the left-hand side of (17.43) can be expressed in terms of the
given known functions 𝜶, 𝜷, 𝒗, 𝒘. To do this, consider the relation following from
(17.20) ∬

𝜎

[div(d ·K)] × 𝒓 𝑑𝜎 =
∬
𝜎

𝜷× 𝒓 𝑑𝜎. (17.45)

We transform the integrand in (17.45) as follows

[div(d ·K)] × 𝒓 = div(d ·K× 𝒓) − 𝒓𝛾 ·d ·K× 𝒓𝛾 . (17.46)

Using a directly verifiable identity

−𝒓𝛾 ·d ·K× 𝒓𝛾 = (d ·K)×
and substituting (17.46) into (17.45), taking (17.22) into account, we get∬

𝜎

(d ·K)× 𝑑𝜎 =
∬
𝜎

𝜷× 𝒓 𝑑𝜎−
∮
𝜒

𝒘× 𝒓 𝑑𝑠. (17.47)

Due to (17.22), (17.47), the equalities (17.43), (17.44) become∬
𝜎

(𝜶+ 𝒓 × 𝜷)𝑑𝜎 =
∮
𝜒

(𝒗 + 𝒓 ×𝒘)𝑑𝑠, (17.48)

∬
𝜎

𝜷 𝑑𝜎 =
∮
𝜒

𝒘 𝑑𝑠. (17.49)

The relations (17.48), (17.49), which are the necessary conditions for the solv-
ability of the boundary value problem of shell equilibrium, can be called the defects
balance equations. If the dislocation and disclination densities are equal to zero, then
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the conditions of the defects balance reduce to the equalities∮
𝜒

𝒘 𝑑𝑠 = 0,
∮
𝜒

(𝒗 + 𝒓 ×𝒘)𝑑𝑠 = 0.

This result can be obtained in a different way. In the absence of dislocations and
disclinations, there exist the fields 𝒖(𝒓) and 𝝎(𝒓) and the functions 𝒗 and 𝒘 are
expressed through the boundary values of displacements and rotations according to
the formulas (17.23). Therefore, we have∮

𝜒

𝒘(𝑠) 𝑑𝑠 =
∮
𝜒

𝑑𝝎∗

𝑑𝑠
𝑑𝑠 = 0,

∮
𝜒

[𝒗(𝑠) + 𝒓 (𝑠) ×𝒘(𝑠)] 𝑑𝑠 =
∮
𝜒

𝑑𝒖∗

𝑑𝑠
𝑑𝑠+

∮
𝜒

(
𝒕×𝝎∗ + 𝒓 × 𝑑𝝎

∗

𝑑𝑠

)
𝑑𝑠 =

=
∮
𝜒

(
𝑑𝒓

𝑑𝑠
×𝝎∗ + 𝒓 × 𝑑𝝎

∗

𝑑𝑠

)
𝑑𝑠 =

∮
𝜒

𝑑

𝑑𝑠
(𝒓 ×𝝎∗) 𝑑𝑠 = 0.

If the shell surface is closed, i.e., has no boundary, then the defects balance equa-
tions are reduced to the equalities∬

𝜎

𝜷 𝑑𝜎 = 0,
∬
𝜎

(𝜶+ 𝒓 × 𝜷) 𝑑𝜎 = 0. (17.50)

Next, consider another problem for the same shell, which differs from the pre-
vious one by boundary conditions. Now the dynamical boundary conditions (17.6)
are satisfied on the entire boundary 𝜒. We integrate the equilibrium equations (17.1),
(17.2) over the surface area 𝜎 and, after performing simple transformations, we ar-
rive at the necessary conditions for the solvability of this problem∬

𝜎

𝒇 𝑑𝜎 +
∮
𝜒

𝝉 𝑑𝑠 = 0. (17.51)

∬
𝜎

( 𝒍 + 𝒓 × 𝒇 ) 𝑑𝜎 +
∮
𝜒

(𝝁+ 𝒓 ×𝝉) 𝑑𝑠 = 0. (17.52)

The relations (17.51) and (17.52) have a clear physical meaning. They imply the
requirement of self-balance of external loads, i.e., the equality to zero, correspond-
ingly, of the resultant vector and the resultant moment of all loads. There is an
analogy between the defects balance equations (17.48), (17.49) and the self-balance
conditions (17.51), (17.52). The former go into the latter and vice versa with the
following mutual substitutions:
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𝒇 ⇄ −𝜷, 𝒍 ⇄ −𝜶, 𝝉⇄ 𝒘, 𝝁⇄ 𝒗.

Thus, the static-geometry analogy in the theory of Cosserat-type shells with de-
fects extends not only to differential equations in the domain 𝜎, but also to boundary
conditions, and to necessary conditions for the solvability of boundary value prob-
lems of equilibrium.

The established static-geometric analogy entails the existence of dual bound-
ary value problems in the theory of shells. The dual problems are mathematically
equivalent, but different in their physical formulation. As before, suppose that the
boundary of a simply connected shell consists of two connected non-intersecting
curves: 𝜒 = 𝜒1∪ 𝜒2. Let us introduce the notation E◦ = d ·E, K◦ = d ·K and consider
two boundary-value problems of the shell equilibrium.

In the first problem, there are no distributed dislocations and disclinations and
the surface loads 𝒇 and 𝒍 are given. The kinematic boundary conditions are satis-
fied on the curve 𝜒1, while the dynamic boundary conditions are satisfied on 𝜒2
with the given contour loads 𝝉(𝑠) and 𝝁(𝑠). The equations of this problem consist
of equilibrium equations for forces and moments, constitutive relations expressing
stresses and couple stresses in terms of strains, and geometric relations expressing
strain tensors in terms of displacements and rotations.

In the second problem, there are no external loads distributed over the shell sur-
face, but the densities of distributed dislocations and disclinations are specified. The
values of the stress function are given on the curve 𝜒1, i.e., the dynamic boundary
conditions are satisfied. Deformational boundary conditions are set on the part of the
boundary 𝜒2. The equations of the second problem comprise incompatibility equa-
tions, constitutive relations expressing strain tensors in terms of stress and couple
stress tensors, and representations of the latter in terms of stress functions.

We will assume that all equations and boundary conditions are reduced to a di-
mensionless form, i.e., they represent relationships between dimensionless quanti-
ties. Let us write out the complete systems of equations and boundary conditions
for these two problems in the form of a table with two columns. The left column
corresponds to the first task, the right – to the second task.

divT+ 𝒇 = 0,
divM+T× + 𝒍 = 0;

divK◦− 𝜷 = 0,
divE◦ +K◦

× −𝜶 = 0;
(17.53)

T = G (K◦,E◦) ,
M = H (K◦,E◦) ;

K◦ = G1 (T,M) ,
E◦ = H1 (T,M) ;

(17.54)

K◦ = d ·grad𝝎,
E◦ = d · (grad𝒖 +g×𝝎) ;

T = d ·grad𝜼,
M = d · (grad𝝀+g×𝜼) ;

(17.55)

𝒖 = 𝒖∗, 𝝎 = 𝝎∗ on 𝜒1,

𝒎 ·T = 𝝉, 𝒎 ·M = 𝝁 on 𝜒2;
𝝀 = 𝝀∗, 𝜼 = 𝜼∗ on 𝜒1,

𝒎 ·K◦ = 𝒘, 𝒎 ·E◦ = 𝒗 on 𝜒2.
(17.56)
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Two elastic shells with the same surface 𝜎 are called conjugate if the functions
G and H in the constitutive relations (17.54) of the first shell coincide respectively
with the functions G1 and H1 of the second shell. Conjugate shells generally have
different physical properties, i.e., they are made from different materials.

The relation (17.53)–(17.56) implies the following duality theorem for the theory
of Cosserat-type elastic shells:

Theorem 17.1. The boundary value problem of the equilibrium of a shell with given
densities of dislocations and disclinations in the absence of surface loads with stress
functions specified on the part of the boundary 𝜒1 and with deformational boundary
conditions on the part of the boundary 𝜒2 is mathematically equivalent to the bound-
ary value problem of the equilibrium of a conjugate shell with given surface loads in
the absence of dislocations and disclinations, with kinematic boundary conditions
on 𝜒1 and with contour loads specified on 𝜒2.

17.7 Spherical Shell with Uniformly Distributed Dislocations and
Disclinations

In a closed spherical shell of radius 𝑟0, we take the geographic coordinates 0 ⩽ 𝜑 ⩽
2𝜋 (longitude) and −𝜋/2 ⩽ \ ⩽ 𝜋/2 (latitude) as Gaussian coordinates. The position
of the sphere point in space is determined by the formulas

𝑥1 = 𝑟0 cos𝜑cos\, 𝑥2 = 𝑟0 sin𝜑cos\, 𝑥3 = 𝑟0 sin\,

where 𝑥1, 𝑥2, 𝑥3 are Cartesian coordinates. Let us introduce an orthonormal vector
basis 𝒆𝑟 , 𝒆𝜑 , 𝒆\ , related to the vectors of the Cartesian coordinates 𝒊𝑘 by the relations

𝒆𝑟 = (𝒊1 cos𝜑+ 𝒊2 sin𝜑) cos\ + 𝒊3 sin\,
𝒆𝜑 = −𝒊1 sin𝜑+ 𝒊2 cos𝜑,
𝒆\ = − (𝒊1 cos𝜑+ 𝒊2 sin𝜑) sin\ + 𝒊3 cos\.

(17.57)

The vector 𝒆𝑟 is the normal to the surface of the shell, and the vectors 𝒆𝜑 and 𝒆\
are directed along the tangents to the coordinate lines. The metric g and discriminant
d tensors on the sphere have the form

g = I− 𝒆𝑟 ⊗ 𝒆𝑟 = 𝒆𝜑 ⊗ 𝒆𝜑 + 𝒆\ ⊗ 𝒆\ ,
d = −I× 𝒆𝑟 = 𝒆𝜑 ⊗ 𝒆\ − 𝒆\ ⊗ 𝒆𝜑 ,

(17.58)

and the gradient operation is given by the relations

grad =
1

𝑟0 cos\
𝒆𝜑

𝜕

𝜕𝜑
+ 1
𝑟0
𝒆\

𝜕

𝜕\
. (17.59)

The dislocation and disclination densities, as well as external loads, will be taken
as spherically symmetric vector fields
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𝜶 = 𝛼0𝒆𝑟 , 𝜷 = 𝛽0𝒆𝑟 , 𝒇 = 𝑓0𝒆𝑟 , 𝒍 = 𝑙0𝒆𝑟 , (17.60)

where 𝛼0, 𝛽0, 𝑓0, 𝑙0 are constants. These formulas mean that screw dislocations and
wedge disclinations are uniformly distributed in the shell, and the load is reduced to
the hydrostatic pressure 𝑓0 and the uniform drilling moment 𝑙0.

We will search for strain tensors in the form of spherically symmetric tensor
fields [13]

E = 𝐸1g+𝐸2d, K = 𝐾1g+𝐾2d. (17.61)

Here 𝐸𝛾 and 𝐾𝛾 (𝛾 = 1,2) are constants. In what follows, we will use the linear
constitutive relations of the isotropic elastic Cosserat shell [10]

T = 𝑎1 (trE)g+ 𝑎2 (E ·g)T + 𝑎3E ·g+ 𝑎4E · 𝒏⊗ 𝒏,
M = 𝑏1 (trK)g+ 𝑏2 (K ·g)T + 𝑏3K ·g+ 𝑏4K · 𝒏⊗ 𝒏,

(17.62)

where 𝑎𝑠 , 𝑏𝑠 (𝑠 = 1,2,3,4) are the material constants.
The equations of state (17.62) correspond to a quadratic form of the specific

strain energy

2𝑊 = 𝑎1tr2E+ 𝑎2tr (E ·g)2 + 𝑎3tr
(
E ·g ·ET

)
+ 𝑎4𝒏 ·ET ·E · 𝒏

+ 𝑏1tr2K+ 𝑏2tr (K ·g)2 + 𝑏3tr
(
K ·g ·KT

)
+ 𝑏4𝒏 ·KT ·K · 𝒏.

In the spherically symmetric problem considered here, the tensors E and K ac-
cording to (17.61) have the property E · 𝒏 = K · 𝒏 = 0, so the constants 𝑎4, 𝑏4 do not
participate in the constitutive relations. Based on (17.61), (17.62) we get (𝑇𝛾 and
𝑀𝛾 are constants):

T = 𝑇1g+𝑇2d, M = 𝑀1g+𝑀2d. (17.63)

Using (17.61)–(17.63) we obtain the constitutive relations in the scalar form

𝑇1 = 𝐴1𝐸1, 𝑇2 = 𝐴2𝐸2, 𝑀1 = 𝐵1𝐾1, 𝑀2 = 𝐵2𝐾2,

𝐴1 = 2𝑎1 + 𝑎2 + 𝑎3, 𝐴2 = 𝑎3 − 𝑎2, 𝐵1 = 2𝑏1 + 𝑏2 + 𝑏3, 𝐵2 = 𝑏3 − 𝑏2.
(17.64)

Using formulas for the basis vectors differentiating

𝜕𝒆𝜑

𝜕𝜑
= sin\𝒆\ − cos\𝒆𝑟 ,

𝜕𝒆𝜑

𝜕\
= 0,

𝜕𝒆\
𝜕𝜑

= −sin\𝒆𝜑 ,
𝜕𝒆\
𝜕\

= −𝒆𝑟 , 𝜕𝒆𝑟
𝜕𝜑

= cos\𝒆𝜑 ,
𝜕𝒆𝑟
𝜕\

= 𝒆\ ,

we obtain the relations

divg = −2𝑟−1
0 𝒆𝑟 , divd = 0,

div (d ·E) + (d ·K)× = 2
(
𝑟−1

0 𝐸2 +𝐾1

)
𝒆𝑟 , div (d ·K) = 2𝑟−1

0 𝐾2𝒆𝑟 .
(17.65)

Based on (17.60), (17.61), (17.65), the incompatibility equations (17.19), (17.20)
are reduced to two scalar equations
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2
(
𝑟−1

0 𝐸2 +𝐾1

)
= 𝛼0, 2𝑟−1

0 𝐾2 = 𝛽0. (17.66)

The equilibrium equations (17.1), (17.2), considering (17.60), are reduced to two
relations

𝑇1 =
1
2
𝑟0 𝑓0, 𝑀1 = 𝑟0

(
𝑇2 + 1

2
𝑙0

)
. (17.67)

Let us expand the stress and couple stress tensors in terms of the basis of spherical
coordinates

T = 𝑡𝜑𝜑𝒆𝜑 ⊗ 𝒆𝜑 + 𝑡𝜑\ 𝒆𝜑 ⊗ 𝒆\ + 𝑡\𝜑𝒆\ ⊗ 𝒆𝜑 + 𝑡\ \ 𝒆\ ⊗ 𝒆\ ,

M = 𝑚𝜑𝜑𝒆𝜑 ⊗ 𝒆𝜑 +𝑚𝜑\ 𝒆𝜑 ⊗ 𝒆\ +𝑚\𝜑𝒆\ ⊗ 𝒆𝜑 +𝑚\ \ 𝒆\ ⊗ 𝒆\ .

The components 𝑚𝜑𝜑 and 𝑚\ \ are torques, and 𝑚𝜑\ and 𝑚\𝜑 are bending mo-
ments. From the system of equations (17.64), (17.66), (17.67), considering (17.58),
(17.63) we find the components of stress tensors

𝑡𝜑𝜑 = 𝑡\ \ =
1
2
𝑟0 𝑓0, 𝑡𝜑\ = −𝑡\𝜑 =

𝑟0𝐴2 (𝐵1𝛼0 − 𝑟0𝑙0)
2
(
𝑟2

0𝐴2 +𝐵1

) ,

𝑚𝜑𝜑 = 𝑚\ \ =
𝑟0𝐵1 (𝑟0𝐴2𝛼0 + 𝑙0)

2
(
𝑟2

0𝐴2 +𝐵1

) , 𝑚𝜑\ = −𝑚\𝜑 =
1
2
𝐵2𝑟0𝛽0.

(17.68)

Note some properties of the spherically symmetric stress state of the elastic shell,
following from the formulas (17.68).

1. If no external loads present, only 𝑡𝜑𝜑 and 𝑡\ \ stresses are absent. The remaining
components of the stress and couple stress tensors are nonzero, i.e., they are
generated by distributed defects.

2. Distributed disclinations with density 𝛽0 generate only bending moments 𝑚𝜑\

and 𝑚\𝜑 .
3. When 𝛽0 = 0 and 𝛼0 = −𝑙0/(𝑟0𝐴2), a momentless stress state of the shell occurs,

in which

M = 0, T =
1
2
𝑟0 𝑓0

(
𝒆𝜑 ⊗ 𝒆𝜑 + 𝒆\ ⊗ 𝒆\

) − 1
2
𝑙0

(
𝒆𝜑 ⊗ 𝒆\ − 𝒆\ ⊗ 𝒆𝜑

)
.

At zero hydrostatic pressure, the stress tensor is antisymmetric.
4. In the absence of hydrostatic load ( 𝑓0 = 0) and 𝛼0 = 𝑟0𝑙0/𝐵1, a pure moment state

of the shell takes place

T = 0, M =
1
2
𝑟0𝑙0

(
𝒆𝜑 ⊗ 𝒆𝜑 + 𝒆\ ⊗ 𝒆\

) + 1
2
𝐵2𝑟0𝛽0

(
𝒆𝜑 ⊗ 𝒆\ − 𝒆\ ⊗ 𝒆𝜑

)
.

If there are no dislocations and disclinations in the shell, then a pure moment state
is impossible. Indeed, (17.68)1 and (17.68)2 implies that if 𝛼0 = 0 then 𝑡𝜑\ = 0
only if 𝑙0 = 0. But then, due to (17.68)3 and (17.68)4 and the condition 𝛽0 = 0, it
follows that M = 0.
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5. Let us consider the case when distributed defects are reduced to dislocations, i.e.,
𝛽0 = 0. Then according to (17.65), (17.66) 𝐾2 = 0, and the second compatibility
equation in (17.21) holds. This means there is a rotation vector 𝝎 such that K =
grad𝝎. This vector is easy to find and is equal to

𝝎 = Ω𝒆𝑟 , Ω = 𝑟0𝐾1 =
𝑟0𝑀1
𝐵1

=
𝑟2

0 (𝑟0𝐴2𝛼0 + 𝑙0)
2
(
𝑟2

0𝐴2 +𝐵1

) . (17.69)

Thus, distributed screw dislocations cause the elementary areas of the sphere to
rotate around the radial axes 𝒆𝑟 by an angle Ω.

17.8 Conclusion

This article develops the theory of continuously distributed dislocations and discli-
nations in elastic shells, described by the Cosserat model with kinematically inde-
pendent fields of displacements and rotations. Various formulations of the bound-
ary value problem of the equilibrium of an elastic shell with given dislocation and
disclination densities are specified. With the use of stress functions and the concept
of complementary energy, a variational statement of the static problem is given,
considering distributed dislocations and disclinations. A static-geometry analogy
between the incompatibility equations and the equilibrium equations for forces and
moments is established. The dislocation density in this analogy corresponds to the
intensity of the couple load distributed over the surface of the shell, and the discli-
nation density corresponds to the intensity of the distributed force load. An analogy
is also found between the deformational and dynamic boundary conditions and the
necessary conditions for the solvability of two shell theory boundary value prob-
lems. Statements of mathematically equivalent, but distinctive in physical formu-
lation, boundary value problems of the Cosserat-type shells statics are given. The
general theory is illustrated by determining the stress state of a spherical shell with
a spherically symmetric distribution of dislocations and disclinations.
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23. A. Šiber. Buckling transition in icosahedral shells subjected to volume conservation constraint

and pressure: Relations to virus maturation. Phys. Rev. E, 73:061915, 2006.
24. H. Wang, H. Feng, and J. Li. Graphene and graphene-like layered transition metal dichalco-

genides in energy conversion and storage. Small, 10(11):2165–2181, 2014.
25. J.C. Wang, S. Mukhopadhyay, and A. Zlotnick. Geometric defects and icosahedral viruses.

Viruses, 10(1):25, 2018.
26. Z. Xiong, L. Zhong, H. Wang, and X. Li. Structural defects, mechanical behaviors, and prop-

erties of two-dimensional materials. Materials, 14(5):1192, 2021.
27. R. Zandi, B. Dragnea, A. Travesset, and R. Podgornik. On virus growth and form. Physics

Reports, 847:1–102, 2020.
28. P.A. Zhilin. Mechanics of deformable directed surfaces. International Journal of Solids and

Structures, 12(9):635–648, 1976.
29. L.M. Zubov. Methods of Nonlinear Theory of Elasticity in the Theory of Shells (in Russ.).

Rostov Univ. Press., Rostov-on-Don, 1982.
30. L.M. Zubov. The linear theory of dislocations and disclinations in elastic shells. Journal of

Applied Mathematics and Mechanics, 74(6):663–672, 2010.
31. L.M. Zubov and M.I. Karyakin. Tensor Calculus (in Russ.). Vuzovskaya Kniga, Moscow,

2006.


	Preface
	Contents
	List of Contributors
	Chapter 1 On Forced Vibrations of Orthotropic Plates in the Presence of Internal Friction
	1.1 Introduction
	1.2 The Formulation of the Problem and Basic Equations
	1.3 The Solution to the External Problem
	1.4 On Mathematically Precise Solutions
	1.5 Conclusions
	References

	Chapter 2 Asymmetric Buckling of Orthortropic Plates Under Normal Pressure
	2.1 Introduction
	2.2 Problem Formulation
	2.3 Equations for Buckling
	2.4 Numerical Results
	2.5 Conclusion
	References

	Chapter 3 On Ladyzhenskaya’s Inequality and its Applications
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Some Standard Inequalities
	3.2.2 Functions of Compact Support

	3.3 Ladyzhenskaya’s Inequality in Two Dimensions
	3.4 Ladyzhenskaya’s Inequalities in Three Dimensions
	3.4.1 First Result
	3.4.2 Second Result

	3.5 Further Possible Applications
	3.6 Conclusions
	References

	Chapter 4 Mechanical Behaviour of Nonwovens: Continuous Approach with Parametric Finite-element Modelling
	4.1 Introduction
	4.2 Background
	4.3 Parametric Finite-element Modelling Strategy
	4.4 Multiscale Experimental Characterisation
	4.4.1 Calendered Fabrics
	4.4.2 Experimental Methods

	4.5 Generation of Calendered-fabric Model
	4.5.1 Computation of Local Mechanical Properties
	4.5.2 Meshing
	4.5.3 Failure Criterion

	4.6 Results and Discussion
	4.6.1 Developed Models and Validation
	4.6.2 Effect of Load Direction
	4.6.3 Effect of Fabric Size
	4.6.4 Effect of Bond Pattern

	4.7 Conclusions
	References

	Chapter 5 Free Vibrations of a Cylindrical Shell Closed with the Cap
	5.1 Introduction
	5.2 Numerical Results
	5.3 Basic Equations
	5.4 Asymptotic Solution for the Plate-like Vibrations
	5.5 Asymptotic Solution for the Shell-like Vibrations
	5.6 Vibrations of the Third (Beam-like) Type
	5.7 Spectrum Optimization by Thickness Variation
	5.8 Conclusions
	References

	Chapter 6 Indentation of an Absolutely Rigid Thin Inclusion into One of the Crack Faces in an Elastic Plane Under Slippage at the Ends
	6.1 Introduction
	6.2 Statement of the Problem and Derivation of the Governing System of Integral Equation
	6.3 Numerical Analysis
	6.4 Conclusion
	References

	Chapter 7 Biomechanics as a Basis for Clinical Decision Support Systems in the Surgery of the Spine-pelvic Complex
	7.1 Introduction
	7.2 Noninvasive Method of Obtaining Bone Tissues Mechanical Properties by Computer Tomography
	7.2.1 Results of Experiments on Scanning Samples of the Femoral Heads Spongy Bone in a Computer Tomograph
	7.2.2 Results of Uniaxial Compression Mechanical Experiments of Femoral Heads Spongy Bone Samples

	7.3 Sagittal Balance and its Relation to Vertebral-pelvic Complex Biomechanics
	7.4 Quantitative Criteria for Assessing the Success of Surgical Treatment
	7.5 Geometric Criteria for Evaluating the Success of Spinal Surgery
	7.6 Geometric Criteria for Assessing the Success of Hip Replacement
	7.7 Biomechanical Criteria for Evaluating the Success of Treatment: Assessment of Mechanical Strength, Fixation Stability, Implant Life
	7.8 Results of the Pilot Implementation of Biomechanical Modeling in the Process of Preoperative Planning
	7.8.1 Development of the Accord Software Platform
	7.8.2 Substantiation of the Effectiveness of Biomechanical Modeling in Preoperative Planning
	7.8.3 The Concept of Clinical Decision Support Systems with Biomechanical Support

	7.9 Conclusion
	References

	Chapter 8 Dispersion of the Bending Wave in a Fluid-loaded Elastic Layer
	8.1 Introduction
	8.2 Basic Equations
	8.3 Dispersion Relations
	8.4 Asymptotic Expansions
	8.5 Concluding Remarks
	References

	Chapter 9 Mathematical Models of Local Ice Strength and Problems Elastic-plastic Bending of Hydraulic Structures Supports
	9.1 Introduction
	9.2 Complex System “Borehole Jack”
	9.3 Methodology for Determination of the Local Ice Strength at Compression in Boreholes by a Borehole Jack
	9.4 Anisotropy of Ice
	9.5 Estimation of Ice Pressure on the Vertical Supports of Hydraulic Structures, Taking into Account the Local Ice Strength
	9.6 Conclusions
	References

	Chapter 10 Stress Distribution at the Wavy Surface of a Solid Incorporating Surface Stresses and Surface Tension
	10.1 Introduction
	10.2 Problem Formulation
	10.3 Boundary Equation for Complex Potentials
	10.4 Boundary Perturbation Method
	10.5 Numerical Results
	10.6 Conclusions
	References

	Chapter 11 Analytical and Numerical Methods for Analysis of Stress Singularity in Three-Dimensional Problems of Elasticity Theory
	11.1 Introduction
	11.2 Analysis of Stress Singularity Based on the Constructed Analytical Eigensolutions for Semi-infinite Circular Conical Bodies
	11.3 Numerical-analytical Method of Stress Singularity Analysis at the Vertices of Circular and Non-circular Conical Bodies
	11.4 Finite Element Analysis of Stress Singularity in Three-dimensional Problems of Elasticity Theory
	11.5 Conclusion
	References

	Chapter 12 On Estimating Prestress State in an Elastic Cylinder
	12.1 Intro
	12.2 Linearized Deformation Model for a Prestressed Body
	12.3 Weak Problem Statement for Prestressed Cylinder
	12.4 Sensitivity Analysis
	12.5 Comparison of Analytical and FE Prestress Fields
	12.5.1 Initial Inflation
	12.5.2 Initial Axial Tension
	12.5.3 Initial Torsion

	12.6 Inverse Problem of Prestress Identification
	12.6.1 Problem Statement
	12.6.2 Problem Solution
	12.6.3 Computational Experiments

	12.7 Conclusion
	References

	Chapter 13 A Method of the JR-curve Determination Using Linear Normalization
	13.1 Introduction
	13.2 Statement of the Problem
	13.3 Obtaining the Solution
	13.4 Examples of Application of the Method and Analysis of Results
	13.5 Conclusion
	References

	Chapter 14 Application of Galerkin’s Method to Buckling of Functionally Graded or Stepped Columns
	14.1 Introduction
	14.2 The Clamped-Free Column
	14.3 Buckling of a Heavy Simply Supported-Sliding Column
	14.4 Buckling of a Stepped Column Under Axial Load
	14.4.1 Galerkin Solution: First Version
	14.4.2 Galerkin Solution: Second Version

	14.5 Buckling of a Heavy Stepped Column
	14.5.1 Exact Solution
	14.5.2 Galerkin Solution

	14.6 Conclusion
	References

	Chapter 15 Inter-laminar Delamination in Composite Laminates: Role of Buckling in its Growth
	15.1 Introduction
	15.2 Mathematical Preliminaries
	15.3 Numerical Results
	15.4 Conclusions
	References

	Chapter 16 Suppression of Oscillations of a Loaded Flexible Robotic “Arm” as a Generalized Chebyshev Problem
	16.1 Statement of the Problem and Motion Equations of the Mechanical System
	16.2 Application of the Pontryagin Maximum Principle. Relation to the Nonholonomic Problem
	16.3 Application of the Generalized Gauss Principle for Solving the Above Generalized Chebyshev Problem
	16.4 Statement and Solution of the Extended (Generalized) Boundary-value Problem
	16.5 Calculation Results
	16.6 Conclusions
	References

	Chapter 17 Theory of Cosserat-type Elastic Shells with Distributed Dislocations and Disclinations
	17.1 Introduction
	17.2 Initial Relations of the Geometrically Linear Theory of the Cosserat-type Shells
	17.3 Continuously Distributed Dislocations and Disclinations in an Elastic Shell
	17.4 Boundary-value Problem of Equilibrium of a Shell with Distributed Dislocations and Disclinations
	17.5 Variational Formulation of the Equilibrium Problem for an Elastic Shell with Distributed Dislocations and Disclinations
	17.6 Static-geometry Analogy
	17.7 Spherical Shell with Uniformly Distributed Dislocations and Disclinations
	17.8 Conclusion
	References




