
Scheduling with Machine Conflicts

Moritz Buchem1 , Linda Kleist2 ,
and Daniel Schmidt genannt Waldschmidt3(B)

1 School of Business and Economics, Maastricht University,
Maastricht, The Netherlands

m.buchem@maastrichtuniversity.nl
2 Department of Computer Science, TU Braunschweig, Braunschweig, Germany

kleist@ibr.cs.tu-bs.de
3 Institute for Mathematics, TU Berlin, Berlin, Germany

dschmidt@math.tu-berlin.de

Abstract. We study the scheduling problem of makespan minimiza-
tion with machine conflicts that arise in various settings, e.g., shared
resources for pre- and post-processing of tasks or spatial restrictions. In
this context, each job has a blocking time before and after its processing
time, i.e., three parameters. Given a set of jobs, a set of machines, and
a graph representing machine conflicts, the problem SchedulingWith-
MachineConflicts (smc), asks for a conflict-free schedule of minimum
makespan in which the blocking times of no two jobs intersect on con-
flicting machines.

We show that, unless P = NP, smc on m machines does not allow for
a O(m1−ε)-approximation algorithm for any ε > 0, even in the case of
identical jobs and every choice of fixed positive parameters, including the
unit case. Complementary, we provide approximation algorithms when a
suitable collection of independent sets is given. Finally, we present poly-
nomial time algorithms to solve the problem for the case of unit jobs
smc-Unit on special graph classes. As our main result, we solve smc-
Unit for bipartite graphs by using structural insights for conflict graphs
of star forests. As the set of active machines at each point in time induces
a bipartite graph, the insights yield a local optimality criterion.

Keywords: Scheduling · Machine conflict · Approximation
algorithm · NP-hard · Inapproximability · Star forest · Bipartite graph

1 Introduction

Distributing tasks smartly is a challenge we face in numerous settings, ranging
from every day life to optimization of industrial processes. Often these assign-
ments must satisfy additional requirements. In this work, we study a variant

D. Schmidt genannt Waldschmidt—was funded by the DFG under Germany’s Excel-
lence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 36–60, 2022.
https://doi.org/10.1007/978-3-031-18367-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_3&domain=pdf
http://orcid.org/0000-0002-1590-346X
http://orcid.org/0000-0002-3786-916X
http://orcid.org/0000-0002-9331-445X
https://doi.org/10.1007/978-3-031-18367-6_3

Scheduling with Machine Conflicts 37

of the well-studied scheduling problem of makespan minimization when machine
conflicts are present. These conflicts arise in various contexts as a result of shared
resources or spatial constraints which prohibit machines to complete certain
tasks simultaneously. We are particularly interested in situations when external
pre- and post-processing of jobs is necessary immediately before and after jobs
are internally processed by a machine.

Conflicts of pre- and post-processing may be due to shared resources or spa-
tial constraints. Examples of shared resources arise in manufacturing and logis-
tics, where a common server is used for loading and unloading jobs onto and from
machines immediately before or after jobs can be processed. Specific examples
mentioned in the literature include manufacturing systems served by a single
robot which can only serve one machine at a time [22,30] or steel production in
which furnaces must be served non-preemptively before and after heating pro-
cesses [41]. Another example of shared resources appears in computing problems,
in which different processors may share different databases or external proces-
sors that must be accessed before and after executing tasks on the processor
and can only be accessed by one processor at a time. An up-to-date example of
spatial conflicts occurs in pandemics when schedulers are faced with potentially
infectious jobs which should keep sufficient distance to each other, e.g., in test-
ing or vaccination centers. Similarly, spatial conflicts play a crucial role when
jobs may have private information or data that should not be shared; e.g., the
interrogation of suspects in multiple rooms.

The Problem. SchedulingWithMachineConflicts (smc) is a scheduling
problem in which jobs on conflicting machines are processed such that certain
blocking intervals of their processing time do not overlap. An instance of smc is
defined by a set of jobs J and a conflict graph G = (V,E) on a set of machines V
where two machines i and i′ are in conflict if and only if {i, i′} ∈ E. In contrast
to classical scheduling problems, each job j has three parameters (

↼

bj , pj ,
⇀

bj),
where

↼

bj and
⇀

bj denote the first and second blocking time of j, respectively,
and pj denotes its processing time. Together they constitute the system time
qj =

↼

bj + pj +
⇀

bj ; note that the order
↼

bj , pj ,
⇀

bj must be maintained. We seek
schedules in which the blocking times of no two jobs on conflicting machines
intersect. For an example consider Fig. 3. Formally, a (conflict-free) schedule Π
is an assignment of jobs to machines and starting times such that

– for each point in time, every machine executes at most one job,
– for every edge {i, i′} ∈ E and two jobs j, j′ ∈ J assigned to machines i and

i′, respectively, the intervals of the blocking times of j and j′ do not overlap
interiorly in time.

Moreover, jobs cannot be interrupted, i.e., the starting and completions times
of each job differ by the system time. In other words, all schedules are non-pre-
emptive. The makespan ‖Π‖ of a schedule Π is defined as the earliest point
in time when all jobs are completed. We seek for a schedule with minimum
makespan. Throughout this paper, we use n := |J | and m := |V | to refer to the
number of jobs and machines, respectively.

38 M. Buchem et al.

1.1 Our Contribution and Organization

We first consider the problem smc with identical jobs (smc-Id). Identifying
intrinsic connections to maximum independent sets, we show that even if (

↼

b , p,
⇀

b)
are fixed positive parameters for any ε > 0, there is no O(m1−ε)-approximation
for smc-Id, unless P = NP (Theorem 1). However, when a suitable collection
of maximum independent sets is given or can be found in polynomial time, we
present approximation algorithms with performance guarantee better than 2.5
(Theorem 2). An approximation algorithm can also be obtained when approxi-
mate maximum independent sets are at hand (Theorem 3).

In Sect. 3, we consider smc with unit jobs (smc-Unit), i.e.,
↼

b = p =
⇀

b = 1.
Motivated by the inapproximability result for smc-Unit on general graphs (The-
orem 1), we focus on special graph classes. As our main result, we present a
polynomial time algorithm to compute optimal schedules on bipartite graphs.
Bipartite graphs are of special interest, because for any conflict graph and for
every point in time, the set of active machines induces a bipartite graph. Hence,
our insights can be understood as local optimality criteria of schedules for all
graphs. To solve the problem to optimality we develop a divide-and-conquer
algorithm based on structural insights for stars. Moreover, we provide an effi-
cient representation of schedules so that the running time of our algorithm is
polynomial in the size of G and log(n).

Full details of all proofs are presented in the appendix (see Sect. 5 and Sect. 6).
A full version can be found at [11].

1.2 Related Work

The problem smc generalizes the classical scheduling problem of makespan min-
imization on parallel identical machines, also denoted by P ||Cmax in the three-
field notation [21]. In fact, P ||Cmax is equivalent to two special cases of smc:

– if the blocking times of all jobs vanish, i.e.,
↼

bj =
⇀

bj = 0 for all j ∈ J , and
– if the edge set of the conflict graph is the empty set.

For a constant number of machines, P ||Cmax is weakly NP-hard, while it is
strongly NP-hard when m is part of the input [18]. Graham [19,20] introduced
list scheduling algorithms to obtain the first constant approximation algorithms
for this problem. Improved approximation guarantees have been achieved by a
fully polynomial time approximation scheme (FPTAS) when m is constant [38]
and a polynomial time approximation scheme (PTAS) when m is part of the
input [26]. In subsequent work, the latter has been improved to efficient polyno-
mial time approximation schemes (EPTAS), we refer to [4,13,25,28,29].

Scheduling with pre- and post-processing has been considered in different
models in the literature. One such model was introduced by Hall et al. [22] in
which jobs must be scheduled non-preemptively on identical parallel machines
but have to be pre-processed by a common server immediately. This model cor-
responds to smc with

⇀

bj = 0 for all jobs j and a complete graph as the conflict
graph. The special cases of unit first blocking times

↼

bj = 1∀j and m = 2 [22]

Scheduling with Machine Conflicts 39

and the case of identical processing times pj = p ∀j and m = 2 [10] were shown
to be weakly NP-hard, while the cases of

↼

bj =
↼

b ∀j and m = 2 [22] and the
case of

↼

bj = 1∀j [35] were shown to be strongly NP-hard. On the positive
side, if

↼

bj = pj = 1∀j the problem can be solved in time O(n) [22]. Moreover,
Kravchenko and Werner [35] present a pseudo-poynomial algorithm for the case
of

↼

bj = 1∀j and m = 2. Xie et al. [41] extend this model to a single server
used for pre- and post-processing. This problem corresponds to smc with Km

as the conflict graph. Xie et al. [41] and Jiang et al. [30] analyze the worst case
performance of the list scheduling algorithms introduced by Graham [19,20]. Fur-
thermore, heuristics and mixed-integer programming techniques were developed
for several special cases [1–3,16,33]. Two other models are the master-and-slave
problem introduced by Kern and Nawijn [31] and termed by Sahni [39] and
the problem of scheduling jobs with segmented self-suspension introduced by
Rajkumar et al. [37]. Chen et al. [12] present an approximation algorithm for
the special case of a single suspension interval in which each job consists of three
components.

The concept of machine conflicts has previously also been considered in the
context of buffer minimization on multiprocessor systems. Chrobak et al. [14]
show that there is no polynomial approximation ratio unless P = NP. For the
online case, they present competitive algorithms for general graphs as well as
special graph classes. Höhne and van Stee [27] develop competitive algorithms
when the conflict graph is a path.

Scheduling with conflict graphs has also been investigated in presence of
job conflicts. While in one model, the conflicting jobs cannot be scheduled on
the same machine [7,9,15], in a second model, the conflicting jobs may not be
processed concurrently on different machines [5,6,8,17,23,40]. In these works,
the complexity and approximability has been investigated for special classes of
conflict graphs in both settings.

2 Identical Jobs

In this section, we consider smc with identical jobs, denoted by smc-Id. More
specifically, smc-Id(G,n, (

↼

b ,p,
⇀

b)) denotes an instance with a conflict graph G
and n identical jobs with parameters (

↼

b , p,
⇀

b). We present hardness and approx-
imation results for any fixed choice of

↼

b , p,
⇀

b . Using the fact that there exists no
O(mε−1)-approximation for computing maximum independent sets [24,36,42],
we obtain an inapproximability result for all fixed positive constants

↼

b , p,
⇀

b .

Theorem 1. For any ε > 0, there exists no O(m1−ε)-approximation for smc-
Id, unless P = NP. This even holds for any fixed positive parameters (

↼

b , p,
⇀

b).

Note that this result holds even for the case when the running time depends
polynomially on n (instead of log(n)).

Proof-Sketch. We distinguish the two cases when either all jobs have long block-
ing times, i.e., max{↼

b ,
⇀

b } > p (Theorem 5), or all jobs have short blocking times,
i.e., max{↼

b ,
⇀

b } ≤ p (Theorem 8). By symmetry, we may assume that
⇀

b ≤ ↼

b .

40 M. Buchem et al.

For long blocking times, we show that any schedule is basic, i.e., it uses only
an independent set of machines (Lemma 8). The inapproximability result follows
from the connection to the problem of finding a maximum independent set.

For short blocking times, we use a notion generalizing a maximum indepen-
dent set. For a graph G = (V,E) and c ∈ N≥1, a maximum induced c-colorable
subgraph, or short maximum c-IS, of G is a set of c disjoint independent sets
I1, . . . , Ic ⊆ V whose union has maximum cardinality. Clearly, a 1-IS is an inde-
pendent set. Any schedule induces a c-IS and it can be found in polynomial time
(Lemma 9). Because the length of a schedule is related to the size of its induced
c-IS (Lemma 12), an approximation algorithm yields an approximate maximum
c-IS with a performance guarantee of the same order. However, for any c ∈ N≥1,
a maximum c-ISs is inapproximable [36].

By the proof of Theorem 1, finding a maximum c-IS polynomially reduces
to smc-Id. One may wonder how the difficulty changes, when maximum c-ISs
of the graph are at hand. We show that if we are given a suitable collection
of maximum independent sets of the conflict graph, we obtain approximation
algorithms with performance guarantee better than 2.5. To this end, we define
a class of partial schedules using a collection of independent sets of machines.

c-Patterns. Consider an instance of smc-Id on a conflict graph G. Let c ∈ N≥1

with c ≤ �p/↼
b�+1 and let I = (I1, I2, . . . , Ic) be a c-tuple of disjoint independent

sets of G. A partial schedule of length q + (c − 1) · ↼

b starting at time t is called
a c-pattern on I if on each machine i in I� with � ∈ {1, . . . , c}, there is one job
starting at time t + (� − 1)

↼

b , see also Fig. 1.

Fig. 1. A 3-pattern on three disjoint independent sets I1, I2, I3.

Theorem 2. Let G be a graph and let q =
↼

b + p +
⇀

b be the system time.
If max{↼

b ,
⇀

b } > p and we are given a maximum 1-IS of G, then an optimal
schedule of smc-Id can be computed in polynomial time.

If 0 <
⇀

b ≤ ↼

b ≤ p and we are given a maximum (�p/↼
b� + 1)-IS of G, then smc-

Id allows for a (2+(�p/↼
b�+1)−1)-approximation, where (2+(�p/↼

b�+1)−1) ≤ 2.5.
If p/↼

b ∈ N, it even allows for an (1 + p/q)-approximation, where (1 + p/q) < 2.

Proof-Sketch. For long blocking times, any schedule is basic and hence, an opti-
mal schedule uses the provided maximum independent set and can thus be com-
puted in polynomial time (Theorem 6).

For short blocking times, we provide a lower bound on the optimal makespan.
Specifically, we bound the number of jobs starting within an interval of length
λ for some specific λ ≤ q. We then show that the number of jobs is bounded by
α, the size of a maximum (�p/↼

b� + 1)-IS. This yields a lower bound of λ · 	n/α

Scheduling with Machine Conflicts 41

on the optimal makespan. To obtain an upper bound, we construct a schedule
which repeatedly uses (k + 1)-patterns, where k = �p/↼

b�. ��
Similarly, if we are given an approximate c-IS of the conflict graph for some

suitable c, corresponding approximation results can be derived.

Theorem 3. Let G be a graph. If max{↼

b ,
⇀

b } > p and we are given a 1/γ-
approximate 1-IS of G, then smc-Id allows for a 	γ
-approximation.

If 0 <
⇀

b ≤ ↼

b ≤ p and we are given a 1/γ-approximate (�p/↼
b� + 1)-IS of G,

then smc-Id allows for a 5γ-approximation.

3 Unit Jobs

Now, we turn our attention to smc-Unit in which we are given n identical unit
jobs where

↼

b = p =
⇀

b = 1 for all jobs. On one hand, there exists no O(m1−ε)-
approximation for smc-Unit on general graphs with m vertices, unless P = NP
(Theorem 1). On the other hand, Theorem 2 yields a 4/3-approximation algo-
rithm for smc-Unit if we are given a maximum 2-IS. Therefore, to improve this
performance guarantee, we focus on special graph classes (for which maximum
1- and 2-IS can be computed in polynomial time).

Complete graphs play a special role in the context when machines share a
single resource. We show that smc-Unit on complete graphs can be reduced to
smc-Unit on a single edge and solved efficiently.

Lemma 1. For every n, an optimal schedule for smc-Unit(Km, n) can be com-
puted in time linear in log n. In particular, for m ≥ 2, it coincides with an
optimal schedule for K2 of makespan 4�n/2� + 3(n mod 2).

Bipartite graphs constitute the arguably most interesting graph class in this
context because for each schedule, the set of active machines at any point in time
induces a bipartite subgraph. Therefore, optimal schedules on bipartite graphs
can be understood as a local optimality criterion.

Observation 2. Consider an instance smc-Unit on a graph G and a feasible
schedule Π. For every point in time t, the set of machines processing a job at
time t in Π induces a bipartite subgraph of G.

Note that a maximum 1-IS of a bipartite graph can be computed in poly-
nomial time [34] and the maximum 2-IS is trivially the entire vertex set. In the
remainder, we present a polynomial time algorithm to compute optimal sched-
ules.

Theorem 4. For every bipartite graph G and every n, an optimal schedule for
smc-Unit(G,n) can be computed in polynomial time.

42 M. Buchem et al.

Our algorithm is based on a divide-and-conquer technique. In a first step,
we derive structural insights of optimal schedules on stars which allow to solve
smc-Unit on stars in polynomial time (Sect. 3.1). In a second step, we show how
to exploit these insights to find optimal schedules on general bipartite graphs
by considering a subgraph whose components are stars with special properties
(Sect. 3.2). Finally, we present a polynomial time algorithm to find an adequate
subgraph (Sect. 3.3).

3.1 Stars

An essential step towards our polynomial time algorithm for bipartite graphs is
to investigate the structure of optimal schedules on stars. A star is a complete
bipartite graph S� := K1,� on � + 1 ≥ 2 vertices. For � ≥ 2, S� has � leaves and
a unique center of degree �. For � = 1, either vertex can be seen as the center
of S1. We show that optimal schedules on stars can be obtained by using special
types of 1- and 2-patterns (see definition of c-pattern for c = 1, 2). We define the
special patterns as follows.

A/B-Patterns. An A-pattern on a graph H is a 1-pattern on some maximum
1-IS of H. A B-pattern on H is a 2-pattern on some maximum 2-IS of H. Note
that the difference to 1- and 2-patterns is that we do not specify the 1- and 2-ISs.
An AB-schedule on H consists of A- and B-patterns only. Consider Fig. 2 for an
example. Let n ∈ N. We say smc-Unit(H,n) admits an optimal AB-schedule if
there exists an optimal schedule that can be transformed into an AB-schedule
on H by possibly adding more jobs without increasing the makespan.

Using these patterns we derive a structural property of optimal schedules for
smc-Unit on stars that allows us to compute them in polynomial time.

Lemma 3. For every star S and every n, smc-Unit(S, n) admits an optimal
AB-schedule.

Proof. The statement is obvious for S1. For a star S� with � ≥ 2, consider an
optimal schedule and determine a leaf processing a maximum number of jobs.
Changing all leaves to this schedule may only increase the number of processed

Fig. 2. An AB-schedule on S3 consist-
ing of one A-pattern followed by one
B-pattern.

Fig. 3. Optimal schedule on a tree with 7
machines and 22 jobs with makespan 12.

Scheduling with Machine Conflicts 43

jobs and yields a valid schedule in which all � leaves have the same induced
schedule. Finally, for each job j processed on a leaf of S�, there exist two cases:
If no job is processed on the center vertex of the star during the system time (of
length 3) of j, we obtain an A-pattern. Otherwise, the job on the center and the
job on the leaves are shifted by exactly one time step and we obtain a B-pattern.

��
Corollary 1. For every star S and every n, an optimal schedule for smc-
Unit(S, n) can be computed in time linear in log n and |S|.

Specifically, for every S�, there exists X ∈ {A,B} such that an optimal sched-
ule has at most 2 X-patterns, i.e., an optimal schedule has makespan

min
k=0,1,2

{
4
⌈

n − k�

� + 1

⌉
+ 3k, 3

⌈
n − k(� + 1)

�

⌉
+ 4k

}
, (1)

where 	·
 denotes the usual ceiling function; however, for negative reals it eval-
uates to 0.

We later exploit the fact that for S3, there exist two optimal AB-schedules
which finish twelve jobs in time 12, namely 4 A-patterns as well as 3 B-patterns.
This fact provides some flexibility for designing optimal schedules for general
bipartite graphs.

3.2 Optimal Schedules for Bipartite Graphs for a Given Star Forest

While we can restrict our attention to AB-schedules for stars, this property does
not generalize to all bipartite graphs. In fact, it does not even hold for trees as
illustrated in Fig. 3.

Observation 4. There exists a tree T such that no optimal schedule for smc-
Unit(T, n) is an AB-schedule with respect to T .

Interestingly, the optimal schedule shown in Fig. 3 is comprised of two AB-
schedules on the two stars obtained by deleting the gray edge. Combining this
insight with the optimality of AB-schedules for stars is the basis of our divide-
and-conquer algorithm. The key idea is to find a spanning subgraph H of G for
which optimal AB-schedules with respect to H are among the optimal schedules
for G. In particular, we identify subgraphs consisting of stars for which feasibility
of AB-schedules can be encoded by certain vertex colorings of G. To do so, we
introduce the following notions.

Star Forests and I, II, III-Colorings. A subgraph H of a graph G is a star
forest of G if each component of H is a star and H contains all vertices of G.

We consider a star forest H of a bipartite graph G. In particular, we want to
use specific vertex subsets of H, denoted by Ai and Bi, to process the jobs. The
idea is to schedule A-patterns on the Ai’s and B-patterns on the Bi’s.

A vertex subset A1 is a I-coloring of (G,H) if it is a maximum independent
set of both G and H. A I-coloring allows to schedule an A-pattern on H (by

44 M. Buchem et al.

placing one job on each machine in A1), yielding a valid schedule for G, see Fig. 4
(left).

Two disjoint vertex subsets A2, B2 are a II-coloring of (G,H), if no vertex of
A2 is adjacent to another vertex from A2 ∪B2 in G and the following properties
hold: (i) for each S = S�, � ≥ 3, A2 ∩ S is a maximum independent set of S, (ii)
B2 contains the vertices of each S1, and (iii) for each S2, either A2 ∩ S2 is a
maximum independent set of S2 or B2 contains the vertices of S2. A II-coloring
allows to schedule 3 A-patterns on stars with leaves in A2 and 2 B-patterns on
stars with vertices in B2, see Fig. 4 (middle).

Two disjoint vertex subsets A3, B3 are a III-coloring of (G,H), if no vertex of
A3 is adjacent to another vertex from A3 ∪B3 in G and the following properties
hold: (i) for each S = S�, � ≥ 4, A3 ∩ S is a maximum independent set of S, (ii)
B3 contains the vertices of each S1 and each S2, and (iii) for each S3, A3∩S3 is a
maximum independent set of S3 or B3 contains the vertices of S3. A III-coloring
allows to schedule 4 A-patterns on stars with leaves in A3 and 3 B-patterns on
stars with vertices in B3, see Fig. 4 (right).

Star forests and I, II, III-colorings help us to extend the structural insights on
stars to general bipartite graphs. Particularly, we show that an optimal schedule
on a star forest admitting I, II, III-colorings also yields a feasible schedule with
respect to G and is, therefore, also optimal.

Lemma 5. Let H be a star forest of a connected bipartite graph G on at least
two vertices. Given a I-coloring A1, a II-coloring (A2, B2) and a III-coloring
(A3, B3) of (G,H), there exists a polynomial time algorithm to compute an opti-
mal schedule for smc-Unit(G,n).

Proof-Sketch. Let Π ′ be an optimal schedule for smc-Unit(G,n). By Lemma
3, there exists an optimal AB-schedule Π for smc-Unit(H,n). Because H is a
subgraph of G, we have ‖Π‖ ≤ ‖Π ′‖. We distinguish two cases.

If ‖Π‖ ≤ 20, we show that there exists an optimal AB-schedule Π∗ on H that
is feasible for G. The schedule Π∗ is constructed as follows: Each A-pattern is
scheduled on A1, each B-pattern on V , 3 A-patterns on A2, 2 B-patterns on B2,
4 A-patterns on A3, and 3 B-patterns on B3.

Fig. 4. A graph and a star forest with a I-, II-, and III-coloring and corresponding
schedules. Vertices in Ai are colored in asparagus and vertices in Bi in blue. (Color
figure online)

Scheduling with Machine Conflicts 45

If ‖Π‖ ≥ 21, we show that each star on H contains either 4 A or 3 B patterns.
Iteratively, shifting these to the front, we obtain a rest schedule of makespan at
most 20. We thus need to compare 20 schedules to compute the optimal schedule.

��
To complete the proof of Theorem 4, it remains to show how to find a star

forest and the corresponding colorings.

3.3 Computing a Star Forest with I, II, III-Colorings

We compute such a star forest and corresponding I, II, III-colorings in four
phases. First, we find an initial star forest H admitting a feasible I-coloring.
Then, we modify H in two phases to ensure the existence of a II- and III-coloring
of the star forest, respectively. Finally, we compute all colorings. Modifications
of the initial star forest are necessary because of the possible appearance of
so-called alternating paths.

Alternating Paths. Let H = (V,E′) be a star forest of a bipartite graph
G = (V,E). Let C1, . . . , Ck be distinct stars of H and P be a path in G on the
vertices v1, v2 . . . , v2k−1 with the following properties:

– for even i, vi is a leaf of star Ci/2+1,
– for odd i, vi is the center of star C(i+1)/2, and
– the edge {vi, vi+1} ∈ E′ if and only if i is even.

We say P is an alternating path of type II if C1 � S1, Ci � S2 for all i =
2, . . . , k − 1 and Ck � S� with � ≥ 3. For an illustration of an alternating path
of type II, see Fig. 5 (left).

Fig. 5. Alternating path of type II. Black edges belong to H, gray edges to G\H.
(Color figure online)

We say P is an alternating path of type III if C1 � S2, Ci � S3 for all
i = 2, . . . , k − 1 and Ck � S� with � ≥ 4, see also Fig. 6 (left).

Fig. 6. Alternating path of type III. Black edges belong to H, gray edges to G\H.
(Color figure online)

46 M. Buchem et al.

If an alternating path of type II (III) exists in the star forest, then there is
no feasible II-coloring (A2, B2) (III-coloring (A3, B3)), as B2 (B3) must contain
all nodes of the first star C1, and hence also the nodes of all intermediate stars
leading to adjacent vertices v2k−3 ∈ B2 (B3) and v2k−2 ∈ A2 (A3). However,
an alternating path can be removed by swapping edges along it; this operation
maintains the leaves of the star forest, see Figs. 5 and 6 (right).

Observation 6. Let H = (V,E′) be a star forest of G containing an alternating
path P of type II or III. Then, H ′ := (V,E′ΔP) is a star forest with the same
set of leaves as H, where Δ denotes the symmetric difference.

Algorithm 1 computes a star forest and I,II,III-colorings in polynomial time.

Lemma 7. Algorithm 1 returns a star forest H of G and I-,II- and III- colorings
A1, (A2, B2) and (A3, B3) of (G,H), respectively, in time polynomial in G.

Proof. We first show that Algorithm 1 is well-defined (specifically line 7) and
that the graph H, defined in line 16, is a star forest. Let M be a maximum
matching and I be a maximum independent set of G. Both can be found in
polynomial time using the maximum flow algorithm to find a maximum match-
ing in bipartite graphs [34, Theorem 10.5]. Observe that the complement of a
maximum independent set is a minimum vertex cover U := V \I. By Kőnig’s
Theorem [32], it holds that |U | = |M |. In particular, every edge in M contains
exactly one vertex of U and every vertex in V ′ := V \ ⋃

e∈M e is not contained in
U . Therefore, for every v ∈ V ′, there exists u ∈ U such that {u, v} ∈ E, i.e., line
7 in Phase 1 is well-defined. By Lemma 6, modifying the star forest (V,E′) along
an alternating path in Phase 2 and 3 results again in a star forest. It remains to
show that (V,E′) is a star forest at the end of Phase 1. To this end, note that
every edge of E′ is incident to exactly one vertex u ∈ U . Thus, every vertex in
U is the center of a star (on at least 2 vertices).

For the runtime, it is important to observe that in every iteration of Phase 2
(Phase 3), some S1 (S2) is removed and no new S1 (S2) is created. Therefore,
the number of iterations in Phase 2 (Phase 3) is bounded by the number of S1’s
(S2’s) before Phase 2 (Phase 3). An alternating path of type II (type III) can
also be found in polynomial time by using BFS starting from a fixed S1 (S2).
Because Phase 4 clearly runs in polynomial time, Algorithm 1 does as well.

Finally, we prove that Phase 4 computes valid colorings. Here, we exploit the
fact that no alternating path of type II is created in Phase 3 (Lemma 16). Thus,
after Phase 3, there exists no alternating path (of any type).

By definition, A1 := I is a maximum independent set of G. We argue that
A1 is also an maximum 1-IS of H. Note that while U constitutes the centers of
the stars, V \U = I = A1 are the leaves of the stars after Phase 1. Hence the
claim is true after Phase 1. Lemma 6 ensures that this property is maintained
in Phase 2 and 3. Hence, A1 is a I-coloring.

Scheduling with Machine Conflicts 47

For the type II-coloring, the algorithm ensures that A2 contains the leaves
of all S� with � ≥ 3 and that B2 contains all vertices of S1. Hence, we only need
to pay attention to S2’s. The algorithm inserts the leaves of stars S2 into A2 if
their center is adjacent to a vertex in A2, as long as it is possible. The vertices
of all remaining S2’s are inserted into B2. Thus, the properties (i), (ii) and (iii)
of a II-coloring are fulfilled by (A2, B2). It only remains to show that no vertex
of A2 is adjacent to another vertex of A2 ∪ B2 in G. Because A2 ⊂ I, no two
vertices in A2 are adjacent in G. Suppose there is a vertex a ∈ A2 adjacent in G
to a vertex b ∈ B2. Let Sa and Sb be the star containing a and b, respectively.
By construction a is a leaf of Sa. Moreover, b ∈ U ; otherwise a, b ∈ A1, a
contradiction to the fact that A1 is an independent set. If Sb � S2, then the
center b is adjacent to a ∈ A2, and the algorithm ensures that the leaves of Sb

are contained in A2, and hence, b /∈ B2. Thus, Sb � S1.
If Sa � S�, � ≥ 3, then there exists an alternating path of type II starting in

b and ending in the center of Sa, a contradiction.
If Sa � S2, the fact a ∈ A2 implies that there exists a star S�, � ≥ 2, with a

leaf adjacent to the center of Sa. If � = 2, there exists a further star whose leaf
is adjacent to the considered star. Repeating this argument, the containment of
a ∈ A2 can be traced back to a star S�, � ≥ 3, and yields an alternating path of
type II, a contradiction.

With arguments similar to the above, (A3, B3) is a III-coloring; otherwise
we find an alternating path of type III. Specifically, one can show that vertex a
belongs to a star S2 and b to a star S3. ��

Finally, Theorem 4 follows from Lemmas 1, 5 and 7.

4 Future Directions

Various interesting avenues remain open for future research. In particular, the
investigation of graph classes capturing geometric information is of special inter-
est for applications in which spatial proximity causes machines conflicts. Addi-
tionally, allowing for preemption constitutes an interesting direction.

48 M. Buchem et al.

Algorithm 1. Computing a star forest and I, II, III-colorings.
1: Input: Connected bipartite graph G = (V, E) with |V | ≥ 2.
2: Output: Star forest H and I,II,III-colorings A1, (A2, B2), (A3, B3).

Phase 1 – Initial star forest

3: Compute a maximum matching M and a maximum independent set I of G
4: Set U := V \I (vertex cover).
5: Set E′ := M and V ′ := V \ ⋃

e∈M e.
6: while ∃ v ∈ V ′ do
7: Find u ∈ U such that {u, v} ∈ E.
8: Add {u, v} to E′ and delete v from V ′.
9: end while

Phase 2 – Removing alternating paths of type II

10: while ∃ alternating path P of type II do
11: E′ = E′ΔP
12: end while

Phase 3 – Removing alternating paths of type III

13: while ∃ alternating path P of type III do
14: E′ = E′ΔP
15: end while

Phase 4 – Computing the colorings

16: H := (V, E′)
17: A1 := I
18: For each S� in H with � ≥ 3, add leaves of S� to A2.
19: For each S1 in H, add vertices of S1 to B2.
20: while ∃ S2 in H such that its center is adjacent to a vertex of A2 in G do
21: Add leaves of S2 to A2.
22: end while
23: For each S2 in H with V (S2) ∩ A2 = ∅, add vertices of S2 to B2.
24: For each S� in H with � ≥ 4, add leaves of S� to A3.
25: For each S� in H with � ∈ {1, 2}, add vertices of S� to B3.
26: while ∃ some S3 in H such that center v of S3 is adjacent to some w ∈ A3 in G

do
27: Add leaves of S3 to A3.
28: end while
29: For each S3 in H with V (S3) ∩ A3 = ∅, add vertices of all S3 to B3.
30: return H, A1, (A2, B2), (A3, B3)

5 Appendix I – Details for Sect. 2

All theorems in Sect. 2 are divided into two cases: either all jobs have long
blocking times (max{↼

b ,
⇀

b } > p) or short blocking times (max{↼

b ,
⇀

b } ≤ p). We
split the proofs up according to the relation between the parameters and present
the results in two subsections. Specifically, Theorem 1 follows from Theorem 5

Scheduling with Machine Conflicts 49

and Theorem 8. Theorem 2 follows from Theorem 6 and Theorem 9. Theorem 3
follows from Theorem 7 and Theorem 10. Throughout the remainder, we denote
the optimal makespan of a given instance by opt.

5.1 Long Blocking Times

In this subsection, we consider smc-Id where jobs have long blocking times,
i.e., it holds max{↼

b ,
⇀

b } > p. These long blocking times lead to so-called basic
schedules in which jobs on conflicting machines do not run in parallel.

Basic Schedules. A schedule Π is basic, if for every edge ii′ ∈ E and for every
pair of jobs j and j′ assigned to i and i′, respectively, their system times are
non-overlapping, i.e., SΠ

j ≤ SΠ
j′ implies CΠ

j ≤ SΠ
j′ .

The following lemma allows us to focus on basic schedules.

Lemma 8. For an instance of smc-Id, every schedule Π is basic if

(max{↼

b ,
⇀

b } > p).

Proof. Suppose for the sake of a contradiction that there exists two jobs j and j′

assigned to machines i and i′, respectively, with ii′ ∈ E such that j′ starts while
j is processed. Because their blocking times cannot overlap, we also know that
j′ starts after the first blocking time of j and the first blocking time of j′ ends
before the second blocking time of j starts, see Fig. 7. Consequently,

↼

bj′ ≤ pj .
Moreover, pj′ ≥ ⇀

bj if j′ ends after j.

pjj

j′ pj′

Fig. 7. Illustration of the proof of Lemma 8.

Because all jobs have the same parameters, we obtain the contradiction
↼

b =
↼

bj′ ≤ pj = p and p = pj′ ≥ ⇀

bj =
⇀

b . ��
In the following, we present the proof of Theorem 1 for the case of long block-

ing times. To this end, for instances of smc-Id we denote by α1 the cardinality
of a maximum independent set of G.

Theorem 5 [Theorem 1 for long blocking times]. Unless P = NP, smc-Id
where

↼

b , p,
⇀

b are fixed and max{↼

b ,
⇀

b } > p holds does not admit a O(m1−ε)-
approximation for any ε > 0.

Proof. We restrict our attention to instances consisting of n = α1 jobs and for
the sake of simplicity let q =

↼

b + p +
⇀

b = 1 by scaling. By Lemma 8, schedules
for smc-Id with max{↼

b ,
⇀

b } > p are basic. Clearly, the optimum makespan opt

50 M. Buchem et al.

is 1 because q = 1. Suppose for some constant κ > 0 there exists a (κm1−ε)-
approximation algorithm for ε > 0 and let Π denote its schedule. Moreover,
let β denote the maximum number of machines processing jobs in parallel in
Π at any point in time. As we have at most n distinct starting times in Π we
can compute β in polynomial time. Because Π is basic, we can transform Π
into a new schedule Π ′ that processes all jobs non-idling on β machines without
increasing the makespan. Hence, we obtain ‖Π‖ ≥ 	n/β
 ≥ n/β. This fact together
with the assumption ‖Π‖ ≤ κm1−ε ·opt = κm1−ε yields β ≥ n/‖Π‖ ≥ n/κm1−ε =
1/κm1−ε · α1. In other words, the (κm1−ε)-approximation algorithm implies an
(1/κ · mε−1)-approximation algorithm for computing a maximum 1-IS for every
graph G; a contradiction [24,42]. ��

We now present the proofs of Theorems 2 and 3 for long blocking times,
respectively.

Theorem 6 [Theorem 2 for long blocking times]. Let G be a graph. If
max{↼

b ,
⇀

b } > p and we are given a 1-IS of G, then an optimal schedule of
smc-Id can be computed in polynomial time.

Proof. Let Π be an optimal schedule for smc-Id with max{↼

b ,
⇀

b } > p. By Lemma
8, Π is basic, hence, at any point in time at most α1 jobs are running. Therefore,
we can modify the job-to-machine assignment of Π such that all jobs are pro-
cessed on a maximum 1-IS while maintaining the starting times of the jobs. As
we did not increase the makespan, we have an optimal schedule where all jobs are
assigned to a maximum 1-IS. Because all jobs are identical, evenly distributing
all jobs over the machines yields an optimal schedule. ��
Theorem 7 [Theorem 3 for long blocking times]. Let G be a graph. If
max{↼

b ,
⇀

b } > p and we are given a 1/γ-approximate 1-IS of G, then smc-Id
allows for a 	γ
-approximation.

Proof. Let I denote the given 1/γ-approximate 1-IS, i.e., |I| ≥ α1/γ. Without loss
of generality we assume q =

↼

b + p +
⇀

b = 1. An optimal schedule distributes all
jobs evenly over a maximum 1-IS, i.e., we have opt = 	n/α1
 as q = 1. Since each
system time is 1, we can find a schedule Π with makespan ‖Π‖ = 	n/|I|
 · q ≤
	γ·n/α1
 ≤ 	γ
 · 	n/α1
 = 	γ
 · opt by distributing all jobs evenly on I. ��

5.2 Short Blocking Times

In this subsection, we consider smc-Id where jobs have short blocking times,
i.e., it holds max{↼

b ,
⇀

b } ≤ p. By symmetry, we assume that
↼

b ≥ ⇀

b and hence,
we write 0 <

⇀

b ≤ ↼

b ≤ p. We first introduce a generalized notion of independent
sets.

(Maximum) Induced c-Colorable Subgraph. For a graph G = (V,E) and
c ∈ N≥1, a maximum induced c-colorable subgraph, or short maximum c-IS, of G
is a set of c disjoint independent sets I1, . . . , Ic ⊆ V whose union has maximum
cardinality. Clearly, a 1-IS is an independent set. Moreover, the cardinality of a

Scheduling with Machine Conflicts 51

maximum c-IS is defined as the cardinality of the union of I1, . . . , Ic. We denote
the cardinality of a maximum c-IS by αc. These c-ISs can be used to obtain
useful partial schedules.

c-Pattern. Let c ∈ N≥1 with c ≤ �p/↼
b� + 1 and let I = (I1, I2, . . . , Ic) be a

c-tuple of disjoint independent sets of G. Recall that q :=
↼

b + p +
⇀

b denotes
the system time. A partial schedule of length q + (c − 1) · ↼

b starting at time t is
called a c-pattern on I if on each machine i in Ik with k ∈ {1, . . . , c}, there is
one job starting at time t + (k − 1)

↼

b .
In order to show connections between conflict-free schedules and c-ISs,

we extract a c-IS from a conflict-free schedule. We say a job j blocks a
time t in schedule Π if one of its blocking times contains t, i.e., t ∈(
(SΠ

j , SΠ
j +

↼

b) ∪ (CΠ
j − ⇀

b , CΠ
j)

)
. For a schedule Π, we define the quantity

βΠ
c := max

t1<...<tc

{∣∣∣∣∣
c⋃

k=1

{i ∈ V : i processes a job in Π which blocks time tk}
∣∣∣∣∣
}

.

Observe that for each time t the machines which process a job blocking time t
form an 1-IS, because Π is conflict-free. Hence, βΠ

c corresponds to the cardinality
of a c-IS, since machines are not counted more than once. It is easy to see that
βΠ

c can be computed in polynomial time for a constant c.

Lemma 9. For a schedule Π with n jobs and a constant c, βΠ
c can be computed

in time polynomial in n.

Proof. The schedule has 4n event times, namely the starting time of the blocking
times and the processing time and its completion time for each job. For some
point in time t between every two consecutive event points, we count the number
of machines processing a blocking interval. By definition of βΠ

c , it suffices to check
O(nc) tuples. ��

The definition of βΠ
c helps us to bound the makespan of a schedule Π from

below stated in Lemma 12. To this end, we first give an upper bound on the
number of jobs starting within an interval of length λ which is defined as follows.
For instances of smc-Id with 0 <

⇀

b ≤ ↼

b ≤ p, we define

k := �p/↼
b� and λ := (k + 1)

↼

b +

{
⇀

b if p/↼
b ∈ N

0 otherwise.

Lemma 10. For every schedule Π of an instance smc-Id with 0 <
⇀

b ≤ ↼

b ≤ p
and every time t ≥ 0, the number of jobs starting within the interval I := [t, t+λ)
is at most βΠ

k+1.

Proof. Because I has length λ ≤ q and is half-open, at most one job starts on
each machine within I. We partition the interval I into an (possibly empty)
interval I0 (left-closed, right-open) of length λ − (k + 1)

⇀

b (evaluating to
⇀

b if
p/↼

b ∈ N and to 0 otherwise) and k + 1 disjoint (left-closed, right-open) intervals

52 M. Buchem et al.

I1, . . . , Ik+1, each of length
↼

b . Clearly, the length of the intervals I0, . . . , Ik+1

add to λ. By V� we denote the set of machines that have a job starting in I�. For
each �, the jobs processed on a machine in V� block a point in time arbitrarily
close to the right end of I�, see Fig. 8 (left). Thus, all V�’s are independent sets.

I0 I1 . . . Ik+1 I0 I1 . . . Ik+1

Fig. 8. Illustration for the proof of Lemma 10: (left) two jobs starting in I1 and (right)
a job starting in I0 and a job starting in Ik+1.

Additionally, we show that V0 ∪ Vk+1 is an independent set. If p/↼
b /∈ N, then

V0 = ∅. It thus remains to consider the case p/↼
b ∈ N. Let t′ be a point in time

arbitrarily close to the right end of interval I. The second blocking time of job j
processed on a machine in V0 starts in interval [t + q − ⇀

b , t + q), and thus starts
before t+ q and ends not before t+ q. Hence t′ is blocked by the second blocking
time of j. Additionally, observe that t′ is blocked by the first blocking time of
every job processed on a machine in Vk+1, see also Fig. 8 (right). Consequently,
each V� and V0 ∪Vk+1 are independent sets and thus, the number of jobs can be
bounded from above by βΠ

k+1. ��
Next, we show that an upper bound on the number of jobs starting within

an interval of a specific lengths implies a lower bound on the makespan.

Lemma 11. Let Π be a schedule for an instance smc-Id with 0 <
⇀

b ≤ ↼

b ≤ p
such that for some integer β, in every interval of length L ≤ q at most β jobs
start. Then, for system timeq :=

↼

b + p +
⇀

b , it holds that

‖Π‖ ≥ L�n/β� +

{
0 if β divides n

q otherwise.

Proof. We divide Π into intervals of length L starting with 0. By assumption, at
most β jobs start in each interval. Hence, the number of these intervals (where
some job is processed) is at least �n/β�. Moreover, if β does not divide n, then
at least some job (of length q) starts after time L�n/β� + q. ��

Lemma 10 and 11 immediately imply a lower bound on the makespan of any
schedule.

Lemma 12. For every schedule Π for an instance of smc-Id with 0 <
⇀

b ≤
↼

b ≤ p, the makespan is at least ‖Π‖ ≥ λ · 	n/βΠ
k+1
. In particular, the optimal

makespan is bounded from below by opt ≥ λ · 	n/αk+1
.

Scheduling with Machine Conflicts 53

Using Lemma 12, we prove Theorem 1 for short blocking times.

Theorem 8 [Theorem 1 for short blocking times]. Unless P = NP, smc-Id
where

↼

b , p,
⇀

b are fixed and max{↼

b ,
⇀

b } ≤ p holds does not admit a O(m1−ε)-
approximation for any ε > 0.

Proof. Suppose that for some κ > 0 and some ε > 0 there exists a (κm1−ε)-
approximation algorithm A. We assume

↼

b ≥ ⇀

b and define k := �p/↼
b� and λ

as above. For an instance of smc-Id with short blocking times and n ≥ αk+1,
we consider the schedule Π computed by A. On the one hand, because A is a
(κm1−ε)-approximation, Π has makespan

‖Π‖ ≤ (κm1−ε) · opt.

On the other hand, by Lemma 12, we have

‖Π‖ ≥ λ · 	n/βΠ
k+1
 ≥ λn · 1/βΠ

k+1.

Moreover, we obtain a feasible schedule by repeatedly using (k + 1)-patterns
on a maximum (k + 1)-IS, while leaving the other machines idle. Recall that a
(k + 1)-pattern has length (q + k

↼

b) and schedules αk+1 jobs. This yields the
upper bound

opt ≤ (q + k
↼

b) · 	n/αk+1
 ≤ 2(q + k
↼

b) · n/αk+1,

where the last inequality uses the fact n/αk+1 ≥ 1 and thus 	n/αk+1
 ≤ 2(n/αk+1).
Altogether, we obtain

βΠ
k+1 ≥ λn

‖Π‖ ≥ λn

κm1−ε · opt ≥ 1
κm1−ε

· λ

2(q + k
↼

b)
· αk+1,

where λ/q+k
↼
b is a constant ≤ 1 since λ ≤ q. By Lemma 9, we can compute a

(k+1)-IS from Π of size βΠ
k+1 in polynomial time and thus we obtain a O(mε−1)-

approximation for computing a maximum (k +1)-IS; a contradiction [24,36,42].
��

We now provide the proofs of Theorems 2 and 3 for short blocking times.

Theorem 9 [Theorem 2 for short blocking times]. If 0 <
⇀

b ≤ ↼

b ≤ p and we
are given a maximum (�p/↼

b� + 1)-IS of G, then smc-Id allows for a (q + k
↼

b)/λ-
approximation, with (q + k

↼

b)/λ < 2 + 1/(k+1) < 2.5 and if p/↼
b ∈ N, we even get

(q + k
↼

b)/λ < 1 + p/q < 2.

Proof. We define a schedule Π consisting of 	n/αk+1
 many (k+1)-patterns on a
maximum (k+1)-IS of G, while leaving all other machines idle. Π has makespan
‖Π‖ ≤ (q + k

↼

b) · 	n/αk+1
. By Lemma 12, it holds that opt ≥ λ · 	n/αk+1
. We
obtain

‖Π‖
opt

≤ q + k
↼
b

λ
=

⎧
⎨

⎩

q+p
q

= 1 + p
q

< 2 if p/
↼
b ∈ N,

(k+1)
↼
b+p+

⇀
b

(k+1)
↼
b

= 1 + p

(k+1)
↼
b
+

⇀
b

(k+1)
↼
b

< 2 + 1
k+1

≤ 2.5 if p/
↼
b /∈ N.

��

54 M. Buchem et al.

Theorem 10 [Theorem 3 for short blocking times]. If 0 <
⇀

b ≤ ↼

b ≤ p and
we are given a 1/γ-approximate (�p/↼

b� + 1)-IS of G, then smc-Id allows for a
2γ/λ · (q + k

↼

b)-approximation, with 2γ/λ · (q + k
↼

b) < 5γ. If p/↼
b ∈ N, we get

2γ/λ · (q + k
↼

b) < 4γ.

Proof. Let I be the given (k+1)-IS of size β ≥ αk+1/γ. We construct a schedule Π
by using 	n/β
 many (k+1)-patterns on I which has makespan ‖Π‖ ≤ (q+k

↼

b) ·
	n/β
. Moreover, Lemma 12 implies opt ≥ λ · 	n/αk+1
 ≥ λ · n/αk+1. If n ≤ β,
then also n ≤ αk+1, implying that	n/β
 = 	n/αk+1
 = 1. Thus, we obtain

‖Π‖
opt

≤ (q + k
↼

b) · 	n/β

λ · 	n/αk+1
 =

(q + k
↼

b)
λ

.

Hence, following the same steps as in the proof of Theorem 9, we obtain an
upper bound on the performance guarantee of 2 if p/↼

b ∈ N and 2.5 if p/↼
b /∈ N. If

n > β, we obtain 	n/β
 ≤ 2 · n/β ≤ 2γ · n/αk+1. Consequently, it holds

‖Π‖
opt

≤ (q + k
↼

b) · 2γ · n/αk+1

λ · n/αk+1

≤ 2γ · (q + k
↼

b)
λ

.

Again, following the same steps as in the proof of Theorem 9, we obtain an upper
bound on the performance guarantee of 4γ if p/↼

b ∈ N and 5γ if p/↼
b /∈ N. ��

6 Appendix II – Details for Sect. 3

In the following we provide omitted proofs of Sect. 3.

Lemma 1. For every n, an optimal schedule for smc-Unit(Km, n) can be com-
puted in time linear in log n. In particular, for m ≥ 2, it coincides with an
optimal schedule for K2 of makespan 4�n/2� + 3(n mod 2).

Proof. Let Π be an optimal schedule of smc-Unit(Km, n). Note that for each
point in time t, the set of machines processing a job at time t induces a K1 or
K2. Moreover, all vertices in Km, m ≥ 2, play the same role and hence we may
shift all jobs to the same two vertices. Thus, we may reduce our attention to
smc-Unit(K2, n). It is easy to check that two jobs are optimally processed in
time 4. This implies the claim. ��

The next lemma shows that we can restrict to schedules with integral starting
times.

Lemma 13. If
↼

bj, pj,
⇀

bj are integral for all j ∈ J , every feasible schedule Π
can be transformed into a feasible schedule Π∗ such that the starting time of each
job is intergral and the makespan does not increase, i.e., ‖Π∗‖ ≤ ‖Π‖.

Scheduling with Machine Conflicts 55

Proof. Let SΠ
j denote the starting time for each job j ∈ J . We define Π∗ by

SΠ∗
j := �SΠ

j � for each job j. It remains to show that Π∗ is feasible. Let j and
j′ be two jobs such that two of their blocking times b and b′ intersect in Π∗. By
integrality of Π∗ and the blocking times, they intersect in at least one time unit.

Without loss of generality, we assume that b′ does not start before b in Π.
With slight abuse of notation, SΠ

b denotes the starting time of the blocking
time b in Π. Then, SΠ

b′ − SΠ
b and SΠ∗

b′ − SΠ∗
b differ by strictly less than 1.

Hence, if they intersect in at least 1 time unit in Π∗, then they also intersect
in Π. Therefore, by feasibility of Π, j and j′ are scheduled on conflict-free
machines. ��
Corollary 1. For every star S and every n, an optimal schedule for smc-
Unit(S, n) can be computed in time linear in log n and |S|.

Specifically, for every S�, there exists X ∈ {A,B} such that an optimal sched-
ule has at most 2 X-patterns, i.e., an optimal schedule has makespan

min
k=0,1,2

{
4
⌈

n − k�

� + 1

⌉
+ 3k, 3

⌈
n − k(� + 1)

�

⌉
+ 4k

}
, (2)

where 	·
 denotes the usual ceiling function; however, for negative reals it eval-
uates to 0.

Proof. By Lemma 3, there exists an optimal AB-schedule. For a star S�, an A-
pattern processes � jobs in time 3 and a B-pattern processes (� + 1) jobs in time
4. An AB-schedule for at least n jobs with exactly k A-patterns has a makespan
of 4	n−k�

�+1
 + 3k. Similarly, an AB-schedule for at least n jobs with exactly k

B-patterns has a makespan of 3	n−k(�+1)
�
 + 4k.

For � ≤ 2, an optimal schedule contains at most 2 A-patterns. While 3 A-
patterns process 3� jobs in time 9, 2 B-pattern process 2(�+1) ≥ 3� jobs in time
8. Thus, any 3 A-patterns can be replaced by 2 B-patterns.

For � ≥ 3, an optimal schedule contains at most 2 B-patterns: While 3 B-
patterns process 3(� + 1) jobs in time 12, 4 A-patterns finish 4� ≥ 3(� + 1) jobs
in time 12. Thus, any 3 B-patterns can be replaced by 4 A patterns.

Therefore, for each star we only have to compare at most three different
schedules with k = 0, 1, 2 A- or B-patterns, respectively. Taking one with mini-
mum makespan induces an optimal solution. ��

We next present the full proof of Lemma 5.

Lemma 5. Let H be a star forest of a connected bipartite graph G on at least
two vertices. Given a I-coloring A1, a II-coloring (A2, B2) and a III-coloring
(A3, B3) of (G,H), there exists a polynomial time algorithm to compute an opti-
mal schedule for smc-Unit(G,n).

Proof. Let Π ′ be an optimal schedule for smc-Unit(G,n). By Lemma 3, there
exists an optimal AB-schedule Π for smc-Unit(H,n). Because H is a subgraph
of G, we have ‖Π‖ ≤ ‖Π ′‖. First, we show how to solve smc-Unit(G,n) for
small optimal makespan values.

56 M. Buchem et al.

Table 1. AB-schedules on the stars of H based on Corollary 1 and modification *. The
number before A and B indicates the number of A- and B-patterns.

‖Π‖ S1 S2 S3 S�, � ≥ 4

1 – – – –

2 – – – –

3 A A A A

4 B B B B

5 – – – –

6 2A* 2A 2A 2A

7 A, B A, B A, B A, B

8 2B 2B 2B 2B

9 2B 3A or 2B* 3A 3A

10 2A, B* 2A, B 2A, B 2A, B

11 A, 2B A, 2B A, 2B A, 2B

12 3B 3B 4A or 3B 4A

13 B, 2B B, (3A or 2B)* B, 3A B, 3A

14 2A, 2B* 2A, 2B 2A, 2B 2A, 2B

15 A, 3B A, 3B A, (4A or 3B) A, 4A

16 B, 3B B, 3B B, (4A or 3B) B, 4A

17 2B, 2B 2B, (3A or 2B)* 2B, 3A 2B, 3A

18 2A, 3B* 2A, 3B 2A, (4A or 3B) 2A, 4A

19 A, B, 3B A, B, 3B A, B, (4A or 3B) A, B, 4A

20 2B, 3B 2B, 3B 2B, (4A or 3B) 2B, 4A

Claim 14. If ‖Π‖ ≤ 20, then there exists an optimal AB-schedule Π∗ on H
that is feasible for G (according to Table 1).

To prove this claim, observe that ‖Π‖ ≥ q = 3 and that there is no AB-
schedule with ‖Π‖ = 5. We first show how to define a schedule Π∗ of makespan
‖Π‖ according to Table 1 that has as many jobs as Π. Afterwards, we show
that Π∗ is feasible with respect to G. To this end, we first concentrate on the
four types of components in H. For C ∈ {S1, S2, S3, S�≥4}, let LC denote the
set of all makespan (of at most 20) from schedules obtained by Corollary 1. For
C ∈ {S1, S2, S3, S�≥4} and ‖Π‖ ∈ [20]\{1, 2, 5}, we use the optimal AB-schedule
with makespan ‖Π‖ (or the maximum value in LC that is ≤ ‖Π‖). However, we
modify some schedules in order to guarantee feasibility later: modified entries
are marked by an asterisk in Table 1.

For S1 and for ‖Π‖ ≡ 2 (mod 4), we use 2 A-patterns and (�‖Π‖/4� − 1)
B-patterns instead of �‖Π‖/4� B-patterns. Since 2 A-patterns and 1 B-pattern
differ in length 2, the modified schedule finishes within ‖Π‖. It also schedules at
least as many jobs as Π, because 1 A-pattern contains one job while 1 B-pattern
contains two jobs.

Scheduling with Machine Conflicts 57

For S2 and for ‖Π‖ ≡ 1 (mod 4), we also allow to schedule 3 A-patterns and
�‖Π‖/4�−2 B-patterns besides the optimal schedule using �‖Π‖/4� B-patterns. As
3 A-patterns and 2 B-patterns differ in length 1, the modified schedule finishes
within ‖Π‖. Moreover, both 3 A-patterns and 2 B-patterns contain six jobs.

Table 1 displays the resulting patterns on the components. The schedule Π∗ is
constructed as follows: Each A-pattern is scheduled on A1, each B-pattern on V ,
3 A-patterns on A2, 2 B-patterns on B2, 4 A-patterns on A3, and 3 B-patterns
on B3. It remains to show that scheduling according to Table 1 is feasible with
respect to G.

By definition of A1, scheduling an A-pattern on A1 yields a feasible schedule
for smc-Unit(G,n). This is used for the A-patterns in the cases where ‖Π‖ ∈
{3, 6, 10, 11, 14, 15, 18, 19}.

Because G is bipartite, a B-pattern can be scheduled on V . This is used for
the B-patterns in the cases where ‖Π‖ ∈ {4, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20}.

Because (A2, B2) is a II-coloring, scheduling 3 A-patterns on A2 and 2 B-
patterns on B2 is feasible. This is used for the case where ‖Π‖ ∈ {9, 13, 17}.

Because (A3, B3) is a III-coloring, scheduling 4 A-patterns on A3 and 3 B-
patterns on B3 is feasible. We use this whenever ‖Π‖ ∈ {12, 15, 16, 18, 19, 20}.
This proves Claim 14.

Claim 15. There exists an optimal schedule that is comprised of blocks of length
12 following row 12 of Table 1 and one rest block of length at most 20 following
Table 1.

By Claim 14, we need to show Claim 15 for ‖Π‖ ≥ 21. We may assume
that for any two different components of H, their makespans in Π differ by at
most 3. Suppose there exists components C1 and C2 such that the makespan
of C1 exceeds the makespan of C2 by at least 4. Deleting a last job from C1

and inserting it after the last job of C2, the makespan difference decreases. As a
consequence, the makespan in Π on each component is at least 18. This implies
that Π schedules at least 4 A-patterns or 3 B-patterns both of length 12 on
each connected component: Let C be a component of H. If Π has at most 3
A-patterns and at most 2 B-patterns on C, then the makespan on C is at most
3 · 3 + 2 · 4 = 17. A contradiction. Therefore, if ‖Π‖ ≥ 21, we modify Π by
scheduling the 4 A-patterns on A3 and the 3 B-patterns on B3. By definition of
a III-coloring of (A3, B3) this yields a feasible subschedule with respect to G. We
repeat this procedure until the makespan of the remaining patterns is at most
20. This proves Claim 15.

We can compute the schedule obtained by Table 1 for each possible value r ∈
[20]\{1, 2, 5} on each connected component using the given I-,II- and III-colorings
and filling it up with blocks of 12 following row 12 of Table 1. By Lemma 15, the
schedule with minimum makespan is an optimal schedule. ��

In the following, we complete the proof of Lemma 7 by showing that modi-
fying a star forest which does not contain any alternating paths of type II along
an alternating path of type III will create a new star forest which also does not
contain any alternating path of type II.

58 M. Buchem et al.

Lemma 16. Let H = (V,E′) be a star forest of G without any alternating paths
of type II. Let P be an alternating path P of type III. Then the star forest
H ′ = (V,E′ΔP) contains no alternating paths of type II.

Proof. Let C1, . . . Ck be the stars of the alternating path P in H and let C ′
1, . . . C

′
k

denote the corresponding stars in H ′. Observe that C ′
i � Ci � S3 for all i ∈

{2, . . . , k − 1}. Moreover, C ′
1 = S3 and C ′

k = S� for some � ≥ 3. For the purpose
of a contradiction, suppose that H ′ contains an alternating path P2 of type II.
Clearly, P2 and P intersect; otherwise P2 is also contained in H. Specifically,
P2 ends in some C ′

i with i ∈ {1, . . . , k}. If i > 1, then P2 and P share exactly
the center of C ′

i and thus H contains P2 as well. A contradiction. If P2 ends in
C ′

1, then H contains an alternating path of type II ending in C2 that goes via
C1 � S2. Again, a contradiction. ��

References

1. Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server:
some solvable cases and heuristics. Comput. Oper. Res. 29(3), 295–315 (2002)

2. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Equal processing and equal setup time
cases of scheduling parallel machines with a single server. Comput. Oper. Res.
31(11), 1867–1889 (2004)

3. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Scheduling two parallel machines with
a single server: the general case. Comput. Oper. Res. 33(4), 994–1009 (2006)

4. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

5. Baker, B.S., Coffman, E.G., Jr.: Mutual exclusion scheduling. Theoret. Comput.
Sci. 162(2), 225–243 (1996)

6. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349(1), 22–30 (2005)

7. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs
with unit-times. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS,
vol. 711, pp. 291–300. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57182-5 21

8. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I.
Theor. Comput. Sci. 148(1), 93–109 (1995)

9. Bodlaender, H.L., Jansen, K., Woeginger, G.J.: Scheduling with incompatible jobs.
Discret. Appl. Math. 55(3), 219–232 (1994)

10. Brucker, P., Dhaenens-Flipo, C., Knust, S., Kravchenko, S.A., Werner, F.: Com-
plexity results for parallel machine problems with a single server. J. Sched. 5(6),
429–457 (2002)

11. Buchem, M., Kleist, L., Schmidt genannt Waldschmidt, D.: Scheduling with
machine conflicts. CoRR abs/2102.08231 (2021). https://arxiv.org/abs/2102.
08231

12. Chen, J.J., Hahn, T., Hoeksma, R., Megow, N., von der Brüggen, G.: Scheduling
self-suspending tasks: new and old results. In: Proceedings of the 31st Euromicro
Conference on Real-Time Systems (2019)

13. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for
the classical scheduling problem. In: Proceedings of the 25th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 657–668 (2013)

https://doi.org/10.1007/3-540-57182-5_21
https://doi.org/10.1007/3-540-57182-5_21
https://arxiv.org/abs/2102.08231
https://arxiv.org/abs/2102.08231

Scheduling with Machine Conflicts 59

14. Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer
minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 70

15. Das, S., Wiese, A.: On minimizing the makespan when some jobs cannot be
assigned on the same machine. In: Proceedings of the 25th Annual European Sym-
posium on Algorithms (2017)

16. Gan, H.S., Wirth, A., Abdekhodaee, A.H.: A branch-and-price algorithm for the
general case of scheduling parallel machines with a single server. Comput. Oper.
Res. 39(9), 2242–2247 (2012)

17. Gardi, F.: Mutual exclusion scheduling with interval graphs or related classes. Part
I. Discret. Appl. Math. 157(1), 19–35 (2009)

18. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness (1979)

19. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

20. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

21. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

22. Hall, N.G., Potts, C.N., Sriskandarajah, C.: Parallel machine scheduling with a
common server. Discret. Appl. Math. 102(3), 223–243 (2000)

23. Hansen, P., Hertz, A., Kuplinsky, J.: Bounded vertex colorings of graphs. Discret.
Math. 111(1–3), 305–312 (1993)

24. H̊astad, J.: Clique is hard to approximate within 1- ε. Acta Math. 182(1), 105–142
(1999)

25. Hochbaum, D.S.: Various notions of approximations: good, better, best and more.
Approx. Algorithms NP-Hard Probl., 346–398 (1997)

26. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

27. Höhne, F., van Stee, R.: Buffer minimization with conflicts on a line. Theoret.
Comput. Sci. 876, 25–33 (2021)

28. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discret. Math.
24(2), 457–485 (2010)

29. Jansen, K., Klein, K.M., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. Math. Oper. Res. 45(4), 1371–1392 (2020)

30. Jiang, Y., Zhang, Q., Hu, J., Dong, J., Ji, M.: Single-server parallel-machine
scheduling with loading and unloading times. J. Comb. Optim. 30(2), 201–213
(2014). https://doi.org/10.1007/s10878-014-9727-z

31. Kern, W., Nawijn, W.N.: Scheduling multi-operation jobs with time lags on a single
machine. In: Proceedings of the 2nd Twente Workshop on Graphs and Combina-
torial Optimization (1991)

32. Kőnig, D.: Gráfok és mátrixok. Mat. Fizikai Lapok 38, 116–119 (1931)
33. Kim, M.Y., Lee, Y.H.: MIP models and hybrid algorithm for minimizing the

makespan of parallel machines scheduling problem with a single server. Comput.
Oper. Res. 39(11), 2457–2468 (2012)

34. Korte, B.H., Vygen, J.: Combinatorial Optimization, vol. 6. Springer, Heidelberg
(2018)

https://doi.org/10.1007/3-540-48224-5_70
https://doi.org/10.1007/s10878-014-9727-z

60 M. Buchem et al.

35. Kravchenko, S.A., Werner, F.: Parallel machine scheduling problems with a single
server. Math. Comput. Model. 26(12), 1–11 (1997)

36. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems.
In: Lingas, A., Karlsson, R., Carlsson, S. (eds.) ICALP 1993. LNCS, vol. 700, pp.
40–51. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56939-1 60

37. Rajkumar, R., Sha, L., Lehoczky, J.P.: Real-time synchronization protocols for
multiprocessors. In: Proceedings of the 9th IEEE Real-Time Systems Symposium,
vol. 88, pp. 259–269 (1988)

38. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127
(1976)

39. Sahni, S.K.: Scheduling master-slave multiprocessor systems. IEEE Trans. Com-
put. 45(10), 1195–1199 (1996)

40. de Werra, D.: Restricted coloring models for timetabling. Discret. Math. 165, 161–
170 (1997)

41. Xie, X., Li, Y., Zhou, H., Zheng, Y.: Scheduling parallel machines with a single
server. In: Proceedings of 2012 International Conference on Measurement, Infor-
mation and Control, vol. 1, pp. 453–456. IEEE (2012)

42. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pp. 681–690 (2006)

https://doi.org/10.1007/3-540-56939-1_60

	Scheduling with Machine Conflicts
	1 Introduction
	1.1 Our Contribution and Organization
	1.2 Related Work

	2 Identical Jobs
	3 Unit Jobs
	3.1 Stars
	3.2 Optimal Schedules for Bipartite Graphs for a Given Star Forest
	3.3 Computing a Star Forest with I, II, III-Colorings

	4 Future Directions
	5 Appendix I – Details for Sect.2
	5.1 Long Blocking Times
	5.2 Short Blocking Times

	6 Appendix II – Details for Sect.3
	References

