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Abstract. About 95% of all steel products are rolled at least once during their
production. Thus, any further improvement of the already highly optimized rolling
process, for example reduction of energy consumption, has a significant impact.
Currently, most rolling processes are designed by experts based on their knowl-
edge and heuristics using fast analytical rolling models (FRM). However, due to
the complex interactions between the processing constraints e.g. machine limits,
the process parameters as well as the product properties, these manual process
designs often focus on a single optimization objective. Here, novel methods such
as reinforcement learning (RL) can detect complex correlations between chosen
parameters and achieved objectives by interacting with an environment i.e. FRM.
Therefore, this contribution demonstrates the potential of coupling RL and a FRM
for the design and multiple objective optimization of rolling processes. Using
FRM data e.g. the microstructure evolution, the coupled approach learns to map
the current state, such as the height, to process parameters in order to maximize
a numerical value and thereby optimize the process. For this, an objective func-
tion is presented that satisfies all (technical) constraints, leads to desired material
properties including microstructural aspects and reduces the energy consumption.
Here, two RL algorithms, DQN and DDPG, are used to design and optimize pass
schedules for two use cases (different starting and final heights). The resulting
pass schedules achieve the desired goals, for example, the desired grain size is
achieved within 4 µm on average. These meaningful solutions can prospectively
enable further improvements.
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1 Introduction

In recent years, increased efforts have been made to further optimize energy-intensive
processes such as hot rolling and thus make them more sustainable [1]. Hot rolling is
one of the most common forming processes for the production of flat metal products
with optimized dimensions and properties. About 95% of steel products are rolled at
least once during their production as noted by Allwood et al. [1].
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Consequently, even small optimizations have a major impact on global energy and
material consumption. One major influencing factor regarding the process efficiency in
the (hot) rolling process is the process design. Hot rolling processes generally consist of
several rolling steps, called passes. During each pass the material is moved through at
least one pair of rotating rolls and meanwhile deformed. The pass schedule defines all
the parameters for the whole process, e.g. the height-reduction of each pass.

The pass schedule has to guarantee the defined geometric dimensions such as the final
height and material properties such as a specific microstructure (grain size). Moreover,
it has to consider rolling mill limitations, e.g. maximum allowable rolling force and
torque, as well as economic aspects e.g. rolling time and ecological aspects e.g. the
energy consumption. Typically, experts design pass schedules based on their knowledge,
iterative heuristics and support of predictive models or simulations. However, these
approaches often do not optimize for multiple objectives.

Here objective approaches that enable multi-objective optimization can support the
experts to find optimized pass schedules. One possible solution is to combine methods
of Machine Learning (ML) with physical process models. Scheiderer et al. [2] showed
that ML methods, in form of Reinforcement Learning (RL), can design pass schedules
while accounting for multiple objectives.

Therefore, in this paper RL algorithms are coupled with a fast rolling model (FRM)
to design and optimize pass schedules for the hot rolling process. First, an overview
of fast rolling models, approaches for pass schedule design and ML respectively RL
is given in the state of the art. In this context, some application of RL for process
optimization is shown. Next, the coupling between the RL algorithms and the FRM is
detailed. In this paper, the reinforcement learning algorithms Deep Q-Network (DQN)
[3] and Deep Deterministic Policy Gradient (DDPG) [4], are used. Additionally, the
reward function for adhering to the specified tolerances, machine limits and total energy
consumption to enable objective evaluations of pass schedules is presented. Subsequent,
the results obtained for two trainings are presented and discussed. Finally, the results are
summarized and an outlook regarding the next steps is given.

2 State of the art

This chapter presents the background information and state of the art of the usedmethods
and approaches starting with fast rolling models and an overview of different design
approaches of hot rolling processes. Next, ML and more specifically the RL is briefly
introduced including current research on using RL for process optimization.

2.1 Fast Rolling Models

Here, conventional FE simulations, which take minutes or hours to run, are not suited
because the total computation time of the optimization task depends on the underlying
model that should compute as fast as possible. Hence, fast rolling models are used
that usually consist of semi-empirical equations derived via mechanical simplifications
or physical principles. Several fast rolling models have been developed in the past.
Beynon and Sellars [5] present a rolling model called SLIMMER that is able to describe
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the microstructure evolution and predicts roll force and torque during multi-pass hot
rolling. Inspired by their work, Seuren et al. [6] and Lohmar et al. [7] present a model
that allows the prediction of force, torque, recrystallized fraction and grain size, among
others, including a height resolution and the influence of shear. Another rolling model
was developed by Jonsson [8]. It calculates, inter alia, strain, precipitates and dynamic
recrystallization in order to predict the ferrite grain size after hot rolling.

2.2 Pass Schedule Design and Optimization

There are several different approaches to design a pass schedule in research and industry
[9]. Many researchers and companies developed and proposed approaches dealing with
these challenges. For instance, Svietlichnyi and Pietrzyk [10] suggest to set the height
reduction in each pass to the maximum value while Schmidtchen and Kawalla [11] pro-
pose to set aim for an even distribution of the rolling force. All these approaches are usu-
ally used to design a first version of a pass schedule, which then is further optimized with
regards to not more than two objectives simultaneously. Typical optimization objectives
are grain refinement [5], grain size uniformity [12] as well as maximizing yield strength
(YS) and ultimate tensile strength (UTS) [13]. A comprehensive literature review on
recent design and optimization approaches for rolling is described by Özgür et al. [14].

2.3 Machine Learning and Its Applications for Process Optimization

Machine learning (ML) describes the ability of algorithms to detect patterns (in data) and
learn from their inferences. Rosenblatt [15] proposed a probabilistic model that aims to
replicate the functions of biological neurons. These artificial neurons transform an input
vector into a scalar output by calculating aweighted sum out of all the input elements and
then feeding them through an activation or transfer function. By systematically adjusting
the weights, desired results are reproducible. Thus, multiple layers of these artificial
neurons, called Artificial Neural Networks (ANN), can learn non-linear interrelations.
These ANNs are used in different ML categories like supervised, unsupervised and
reinforcement learning. Supervised learning needs a training set of labeled data and is
used for classification and regression [16]. The goal of unsupervised learning is to find
hidden structures in unlabeled data by clustering and dimension reduction.

The third category, reinforcement learning (RL), is an interacting approach where
the algorithm learns by mapping state to actions to maximize a numerical reward [16].
One of the first ideas to use RL in manufacturing was published in 1998 [17]. However,
according to Wuest et al. [18], RL is not widely applied in manufacturing, yet.

For hot rolling, Scheiderer et al. [2] published a RL approach that can design pass
schedules while accounting for multiple objectives. The authors used a database with
simulation data to design and optimize pass schedules. Moreover, Gamal et al. [19]
demonstrated that RL in combination with process data identifies model parameters and
thus improve predictions for bar and wire hot rolling processes.
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2.4 Methodology: Coupling Reinforcement Learning and Fast Rolling Model

In this chapter, the coupling between a FRM and two RL algorithms is shown. For this
purpose, the necessary components are described individually. First the used FRM is
described, after which the RL algorithms and the optimization objectives are presented.

2.5 Fast Rolling Model

For the coupling with RL an already existing FRM is taken. The FRM, developed at the
Institute of Metal Forming (IBF), is described in detail by Seuren et al. [6] and Lohmar
et al. [7]. It is based on the slab method and consists of several modules, allowing the
prediction of the deformation, the temperature and microstructure evolution as well as
rolling forces and torques. In order to describe the material behavior, semi-empirical
equations are used. For instance, the microstructure evolution is modelled using static
recrystallization and grain growth equations from Beynon and Sellars [5].

The material used in this investigation is S355 since the model parameters are cali-
brated for this type of steel. S355 is a structure steel according to the European structural
steel standard EN 10025–2:2004. The chemical composition is given in Table 1 and was
determined using an optical emission spectrometer. The thermal boundary conditions
used in the model are in accordance with values typically found in technical literature
or were determined experimentally earlier.

Table 1. Chemical composition of S355

C Si Mn P S Cu Al

Weight in % 0,1 0,3 1,6 0,012 0,001 0,2 0,02

2.6 Reinforcement Learning Algorithms

RL is a trial-and-error interaction approach. It consists of an agent, an environment,
which represents the problem, and a set of actions. For each discrete time step, the agent
perceives the environmental state and carries out actions, resulting in changes of the
environment. Based on the resulting state a numerical value called reward is calculated.
The reward assesses the goodness of the performed actions. The value can either be
positive or negative, representing a reward or a punishment, respectively. The goal of
RL is to choose the actions such that a maximum reward is obtained.

There are numerous RL algorithms available and described in the literature [16].
In this paper, the focus is set on two well-known and established RL algorithms used
for process optimizations, Deep Q-Networks (DQN) [3] and Deep Deterministic Policy
Gradient (DDPG) [4]. Both algorithms use ANNs to learn the relationships between
actions, new states and the resulting rewards. Through interaction, it generates the data
samples for training itself. But the samples are correlated, they are stored in a so-called
experience buffer from which random samples, called a mini-batch, are taken.
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DQN uses one ANN as an approximator for the state-value function which indicates
how beneficial it is for an agent to perform a particular action in a state. This state-value
function, often referred to as Q function, describes the cumulative long-term reward.

DDPG is very similar to DQN, except for the fact that is uses two ANNs, the critic
and the actor network. The critic network has the same task as the DQN, but instead of
using just the Q-value to improve action selection, DDPG uses the Q-values to learn a
policy using the actor network. This allows to solve more complex problems with even
a continuous action space. The general structure of the coupling between the RL and the
FRM is exemplarily shown for DDPG in Fig. 1.

Fig. 1. Coupling of the DDPG algorithm with the FRM

In order to establish a better comparability between the two RL algorithms, the same
hyperparameters were used as far as possible. In both DQN and DDPG, the ANNs have
a similar structure. The critic networks in DQN and DDPG have four hidden layers with
200 neurons each while the actor network of the DDPG algorithm contains two hidden
layers with 200 neurons each. Table 2 shows the most relevant hyperparameters of the
two algorithms. They correspond to typical values from the literature and were chosen
equally for both algorithms as far as possible.

Table 2. Hyperparameters for the used DQN and DDPG

Hyper-
parameter

Discount
factor

Learning rate Experience buffer length Mini-
batch size

0.95 1e−3 1e5 64

2.7 Optimization Objectives

As mentioned before, the goal is to optimize hot rolling with respect to multiple objec-
tives. For this purpose, the optimization objectives are first defined and converted into
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a corresponding reward function R. The objectives should be based on real conditions
in production and take into account factors such as product properties (height, grain
size), limitations (rolling mill limits, final temperature) and process efficiency (energy
consumption, process time). Table 3 shows the objectives considered here.

Table 3. Optimization objectives considered in the reward function

Reward component Objective of optimization

Height RH Reward if htarget is reached, punish if hc < htarget

Grainsize Rd Reward when the target range of d is reached

Force, torque RF ,RM Exploit the rolling mill limit but not exceed it

Temperature Rϑ Maximizing final temperature

Energy consumption RE Minimizing total energy consumption

Height reduction RHR Minimizing the pass number

Interpass time RI Minimizing the process time

After defining the optimization objectives and thus individual reward components,
the actual reward function R is defined, see Eq. 1. An intuitive possibility is to set
up a weighted sum of the reward components. This allows easy prioritization so that
in the context of this publication, product properties such as the final height RH and
microstructure in terms of the grain size Rd are prioritized and accordingly weighted
stronger. The other components are weighted equally, as there is no further preference
here. Weighting is necessary otherwise the desired properties like the final height and
grain size are achieved within the tolerance. A simple sum of all reward components
resulted in pass schedules that did not simultaneously achieve the target height and the
target grain size. Through several trials, the weights for RH and Rd were adjusted so that
first the target height and then target grain size was reached.

R0 = 5 ∗ RH + 3 ∗ Rd + RE + RHR + RM + RF + RI + Rϑ (1)

In general, the reward components can be divided into three purposes. The first
purpose is to reach a certain target value or area. This applies to the reward components
of height RH , grain size Rd and rolling force RF as well as torque RM . In Fig. 2, the
definition of the RH is presented exemplarily. Rd ,RF and RM are defined similarly.

In addition to achieving certain targets within defined tolerances, there are also
objectives that need to beminimized (RE,RI ) ormaximized (RHR,Rϑ ).As in the previous
example, the reward components are defined in an uniform way as shown in Fig. 3.

3 Results and Discussion: Designed Pass Schedules

In this chapter, the final pass schedules for two use cases are described, discussed espe-
cially in the context of possible novel approaches to design pass schedules. The use cases
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Fig. 2. Reward component for the height

Fig. 3. Reward components for the energy consumption (left) and height reduction (right)

are selected allowing experimental rolling on the laboratory rolling mill at IBF. The ini-
tial and final parameters of the two cases can be found in Table 4. Both were trained in
20,000 iterations with the DQN and the DDPG algorithm. These trainings took about 24
h on an average computer (CPU: Intel Xeon E3-1270). If 20,000 FE simulations were
calculated instead of the FRM, the training would much longer. The agents could choose
the height reduction [3–18.45 mm] and inter-pass time [5–15 s]. The remaining process
parameters were held constant (for example the rolling velocity is fixed at 250 mm/s)
but can generally be included in the optimization, as well.

Table 4. Initial and target parameters for the two use cases

Use case Initial parameters Targets

h0 in mm b0 in mm l0 in mm ϑ0 in °C htarget in mm dtarget in µm

1 70 160 320 1100 20 ± 0.4 30 ± 5

2 140 180 500 1200 25 ± 0.5 30 ± 5

First, the resulting pass schedules of the first use case are presented and discussed,
see Fig. 4. The pass schedule laid out by DQN consists of a total of four passes, which
is the minimum number of passes possible. The most important targets regarding the
final properties were achieved only to a limited extent. The final height hfinal 19.4 mm



78 C. Idzik et al.

is slightly outside the desired tolerance, whereas the average grain size dfinal 30 µm
was perfectly achieved. The pass schedule laid out by DDPG consists of a total of four
passes and results in targets which are within the desired tolerances (hfinal 19.8mm, dfinal
28 µm). Otherwise, both pass schedules are very similar. In both cases, pass schedules
do not show a novel rolling strategy, e.g. the height reduction is reduced with each pass.
This practice is very similar to that of experts. Experts would also start with as few
passes as possible, starting with large height reductions at the beginning and decreasing
the height reduction with each pass. Therefore, the two automatically designed pass
schedules do not differ significantly from those designed by experts.

Fig. 4. Final pass schedules for the first use case trained by DQN (left) and DDPG (right)

Comparing the obtained pass schedules for the second use case, see Fig. 5, a lot of
similarities can be observed here as well. In both cases, the pass schedules consist of
eight passes (minimum number of passes possible), the target value for hfinal (24.7 and
24.9 mm) is reached while dfinal (26 and 23 µm) is not, although the results lie very
close to the tolerance area. In contrast to the first case, these two pass schedules with the
very small height reduction in the last pass show a conspicuousness compared to typical
pass schedule designed by experts. Such small height reductions in the last pass would
very probably not be suggested by an expert, as it has no added value in process terms.
Experts would reduce the height reduction as described above with each pass, but they
would distribute it more evenly and not just reduce it by a few mm.

All obtained results show that the concept of coupling a FRMwithRL is very promis-
ing. Rollable pass schedules were designed and the desired objectives were (almost)
reached. However, it is evident that despite stronger weighting in the reward, the final
heights are not hit perfectly. Currently, the final height needs to be adjusted slightly to
achieve the targets perfectly. Interestingly, there are no noticeable differences between
the two RL-algorithms (DQN, DDPG) in the final designed pass schedules for both use
cases. Both algorithms can be used for pass plan design.

4 Conclusion

In this paper, two hot rolling processes were designed automatically to demonstrate
the promising potential of coupling a process model, FRM and RL. Two different RL
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Fig. 5. Final pass schedules for the second use case trained by DQN (left) and DDPG (right)

algorithms, DQN and DDPG, were used for the training to test and compare them.
The designed pass schedules after training show that, regardless of the use case and
specific RL algorithm used, the coupled approach leads to rollable pass schedules that
successfully achieve goals for the most part. In both presented use cases DQN and
DDPG lay out similar final pass schedules. It is noticeable that for the first use case
(hfinal = 20 mm) presented, both algorithms achieve very good pass schedules in terms
of final height and grain size. The average deviation in the final height �h is 0.4 mm
and in the mean grain size �d is just 1 µm. In the second use case, requiring twice the
number of passes compared to the first one, �h was better (0.2 mm), but �d was worse
(5.5 µm). Comparing the designed pass schedules with typical pass schedules laid out
by experts, no novel rolling strategy can be identified. The pass schedules designed by
the RL algorithms apply high height reductions at the beginning and reduce them with
each pass. In the future, the approach will be extended for online process adaption.
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