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Abstract. Scholars have highlighted the importance of decarbonizing manufac-
turing industries for several years already. Industry accounts for about 20% of the
EU’s greenhouse gas emissions. In order to meet the targets set in the Paris Agree-
ment, industry must reduce emissions to almost zero by 2050. A wide range of
measures can be taken to achieve climate neutrality consisting of three categories:
reducing greenhouse gases by adapting business models, substituting products or
offsetting the emitted greenhouse gases. Companies have to determine the optimal
set of measures taking into account their individual situation as well as available
resources. From this, a complex optimization problem arises and the proposed
decision model offers significant sup-port for the selection of decarbonization
measures. By using the decision model, companies can achieve the greatest pos-
sible emissions reduction with a minimal set of resources according to their target
system, thus taking into account net present value, benefits, and risks. This paper
introduces a novel modeling of measures that incorporates relevant evaluation
criteria. The arising decision model is solved by using Mixed-Integer Program-
ming. The presented approach was validated in a case study with an industrial
corporation.
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1 Motivation

Rising energy and CO2 prices increase the financial pressure on companies to reduce
their emissions [1]. One of the most relevant groups in the energy transition is the indus-
trial sector. Not only does it account for a large proportion of most countries’ energy
consumption, but also for associated energy- and process-related emissions [2]. Bauer
et al. [26] present pathways for decarbonising different emission-intensive sectors such
as production and end-use optimization. Available measures to reduce CO2-emissions in
industrial companies include [3]. Reduction of energy consumption through energy effi-
ciencymeasures, reduction of process-related or process-induced emissions, for instance
by substituting (metallurgical) coke with green hydrogen in steel production as well as
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the self-generation of renewable energies and their storage. Making decisions to decar-
bonize goes along with the need to identify an optimal mix of measures for a company.
For stakeholders in general, but also for a company in particular, it makes sense to pursue
pathways to achieve what is needed in an optimal way.

The ideal mix cannot be taken off the shelf, as each company’s situation varies, even
if the difference appears marginal [4].

Despite the importance of decarbonization, companies still face a lack of decision
support methods to help identify the optimal mix of measures. By developing a decision
support system, barriers can be lowered and the decarbonization of the industry can be
advanced.

Therefore, the research question arises, how companies can identify their optimal
selection of decarbonization measures. The focus of this paper is to present an approach
using mixed-integer optimization to determine a company’s ideal set of decarbonization
measures on the basis of strategic priorities, predefined measures and boundaries. The
paper is structured as follows: First, the related work is presented. This is followed by a
definition of the problem, the measures and the mathematical formulation. Then, a case
study is presented followed by a conclusion.

2 Related Work

Buettner et al. [2] focusses on questions that need to be answered to determine one’s
ideal decarbonization strategy and present a literature review that is condensed here-
after [2]. A number of studies explore pathways for decarbonization. Many of them
focused much on the technological pathways and less on organizational frameworks
[5]. Bataille et al. [6] present an “integrated [policy] strategy for a managed transi-
tion” in energy intensive industries, also including technology options. Rissman et al.
[7] review policy options, sociological, technological, and practical solutions in detail.
These studies address decarbonization of industry from either a policy, a supply-side,
or technology perspective but are short of giving corporate concrete advice on how to
get started from an individual company’s perspective. Similarly, studies such as the one
by Johnson et al. [8] analyze and compare national roadmaps for decarbonizing the
heavy industry on a global scale, alongside factors such as ambition, financial effort,
and mitigation measures. Nevertheless, this approach again leaves a gap when it comes
to company-tailored advice. One effective way to develop decarbonization roadmaps
involves applying approaches from the backcasting framework literature. This concept,
established by Robinson [9], refers to a strategy where stakeholders/policymakers set
up a target (energy consumption/emissions) and work backwards from this target to
reach it in the future. This framework is widely applied in designing emission-reduction
pathways.

Despite the importance of decarbonizing manufacturing industry, the optimal selec-
tion of decarbonizationmeasures is an area of research that has received little attention to
date. However, approaches from the field of energy efficiency provide valuable informa-
tion and can be generalized to other decarbonizationmeasures. Bayata et al. [10] develop
a model for energy efficiency optimization in the design process of buildings using multi
objective optimization. There are three objective functions to be minimized: building
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energy consumption, investment level, and CO2 emissions. Bre et al. [11] present an
optimization model for the optimal determination of building design parameters. For
example, window type, roof type, and wall type are considered and variants with three
to eight different states are modeled for individual parameters. The solution is based
on the evolutionary algorithm for multi-objective optimization NSGA-2. Diakaki et al.
[12] utilize multi-criteria optimization for increasing the energy efficiency of buildings
including but not only focused on the design phase compared to Bayata et al. [10].
The model consists of different decision variables related to the building envelope and
technologies. Energy demand, investment costs and CO2 emissions are the objective
functions. Eskander et al. [13] focus on the optimization of energy efficiency measures
in Portuguese households. The optimization model identifies optimal retrofit solutions
in different regions of Portugal. Six different energy efficiency measures are considered.
The optimal energy efficiency measures are selected using a genetic algorithm with the
inclusion of a constrained investment budget. The investment budget can only take the
forms low, medium and high. Kontogirgos et al. [14] present a model for mixed-integer
evaluation of residential energy conservation measures under uncertainty.

In addition to approaches in energy efficiency there are other optimization approaches
focusing on decarbonization in industry. Maigret et al. [15] present a multi objec-
tive optimization using an evolutionary algorithm to minimize annual costs and CO2-
emissions in a refinery. Hu et al. [16] develop a multi-objective decision-making method
to evaluate correlated decarbonization measures using a pareto optimal and marginal
cost-effectiveness criterion.

In summary, it can be seen that approaches for the optimized selection of decarboniza-
tion measures in industry are still an understudied field of research. The formulation of
the selection of decarbonization measures in the form of a decision model has not yet
been carried out. However, preliminary work in the field of energy efficiency provides
valuable information for the development of a solution procedure.

3 Methodology

3.1 Problem Definition

The following chapter describes the optimization problem that companies face when
selecting decarbonization measures.

Choosing what measures must be prioritized requires determining the target criteria.
Targets are the foundation to allow assessing which states or results are desirable and
how their quality is to be measured [17]. For the development of a decision model, it is
therefore crucial to determine the relevant dimensions of these preferences and to derive
how these are to be measured. Cooreman [18] examines strategic dimensions of energy
efficiency measures and concludes that the three strategic competitive advantages are
cost, risk, and value of the measure. Adapting this approach, the goal criteria used for
the optimization problem are cost, risks, and avoided CO2 emissions.

With regard to the available measures Buettner et al. [3] describe measure categories
that can be pursued by companies on site (internal measures).
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• reductionof energy consumption (andof the connected load) through energy efficiency
measures, including utilizing waste energy and passive resources such as passive
ventilation;

• reduction of process-related or process-induced emissions, for instance, by substitut-
ing coke by green hydrogen in steel production or emissions released by the process
itself;

• self-generation of renewable energies and their storage, for instance, solar-, wind-,
hydro- or geothermal energy, including means for flexibilising the energy demand.

In addition to the optimized selection of decarbonization measures, constraints may
exist that need to be incorporated into the optimization problem in the form of equations
and inequalities. Constraints mentioned in the literature for the selection of measures
include the investment budget [19–21] and emission targets [19, 22]. Based on these
literature, the investment budget and CO2 emission targets are used in the optimization
problem in the form of constraints.

3.2 Assessment of Decarbonization Measures

In order to derive relevant evaluation criteria and thereby create an evaluation system,
it is first necessary to define what characterizes the relevance of the evaluation sys-
tem. Based on the research of Cooreman [18] referenced in the previous chapter, three
strategic dimensions, cost, risk, and avoided CO2 emissions, are to be used to assess a
decarbonization measure.

With regard to the costs, three methods are most frequently used to assess the prof-
itability of an investment [23]: Payback period, net present value (NPV), and internal
rate of return (IRR). For the cost evaluation of decarbonization measures, the NPV is
selected in the context of this work because it is described as an important lever for
energy efficiency, which again can be generalized to decarbonization measures [24].

The second dimension is based on the avoided CO2 emissions represented by
tonesCO2eq. avoided. Due to the importance of other greenhouse gases, the assessment
is based on CO2 equivalents.

Using the previously defined target system, a method for assessing risks in imple-
menting decarbonization measures utilizing an approach presented by Schneider et al.
[25] is used. Using the method, each measure is assigned a risk value representing the
risk assigned connected to the measure’s implementation. Thus, there is a ranking for
the risk of all considered decarbonization measures.

3.3 Mathematical Formulation

The following section describes the previously defined problem in a mathematical form.
The decision variables of the optimization problem in this case represent the decision
for a set of certain decarbonization measures, which can be represented in a form where
1 stands for a selection of the measure and 0 for a non-selection.

Ai = {
ai,0, ai,1

}
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where:

ai,0 = Do not implement decarbonization measure i

ai,1 = Implement decarbonization measure i

The basic decision to select a set of decarbonization measures is reduced to a series
of individual decisions on whether or not to implement an available measure. Since a
measure can be selected or not selected in binary form, it is a mixed integer problem.
Integer constraints are, for example, compliance with the available investment budget.

The set of available action plans (1) of the decision maker is corresponding to the
measures previously given as input variables and is formed by the cross product of the
individualmeasures. Thismeans that each combination ofmeasures represents a possible
investment plan.

A =
n∏

i=1

Ai = A1 × . . . × An

n = Number of decarbonization measures

(1)

A preference function is used to order given alternatives based on their relative utility
for the user. Within the optimization problem the function consists of the weighted sum
of the individual factors presented in the chapter above. These consist of the tons of CO2
emissions avoided, the net present value associated with the measure and represented
by the NPV and the risks of implementation. The individual preference functions are
first transposed to the interval [0, 1]. U represents the value function, while � is used
to describe the sum of the individual value functions.

UCO2avoided(A) := CO2emissions avoided
[
tCO2eq

]

UNPV (A) := Net present value [$]

URisk(A) := Risk value [dimensionless]

The value �(A) present in (2) represents the valuation of an alternative accord-
ing to the preference of the decision maker. The individual preference dimensions are
summarized to the overall weighted preference function.

φ(A) = UCO2avoided(A) ∗ qCO2avoided

+ UNPV (A) ∗ qNPV − URisk(A) ∗ qRisk (2)

withqCO2savings + qCost + qRisk = 1

The weighting can be set directly by the decision-maker in a simple form. However,
this method, which is often used in practice, is criticized from a scientific point of view
and alternative methods are recommended [26]. Alternatively, the determination of the
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weights can follow the pairwise comparison of the Analytic Hierarchy Process by Saaty
[27].

Constraints of the problem arise from the limitations of the investment budget and
possible requirements on the CO2 savings achieved.

gBudget(A) ≤ 0

gCO2 savings (A) ≤ 0

Equations can occur when exact savings (possibly with deviations) are to be fulfilled.
Next, the individual components are combined to form an optimization problem re-
presented in a maximization form. The following optimization problem (3) arises, where
hi(A) and gi(A) and represent constraints in the form of equations and inequalities.

max φ(A)subject to

{
hi(A) = 0, i ∈ {1, . . .m}
gj(A) ≤ 0, i ∈ {1, . . .m} (3)

For the solution of the defined problem under the selected conditions, different opti-
mization algorithms can be used fulfilling the requirements of the problem class of the
optimization problem.

Figure 1 summarizes the process of determining the optimal investment plans. The
starting point is a set of decarbonization measures that are already available in evaluated
form, i.e. the criteria necessary for decision-making have been evaluated. For the risk
assessment for example a separate risk assessment method was presented by Schneider
[25]. For the optimization, it is furthermore necessary to determine the relevant con-
straints and the weighting of the target dimensions. Once this is done, the mixed-integer
problem can be solved and the optimal set of measures can be determined.

Fig. 1. Flow chart of optimization

4 Case Study

In the following, the presented optimization is applied in a case study. The aim is to
identify the optimal action plans for selected investment budgets, i.e. to decide which
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of the available measures should be implemented. By determining relevant economic
evaluation criteria for the action plans, this represents a key decision-making tool for
management. The implementation of the case study requires a data set of measures. The
case presented below is founded on a database of proposed decarbonization measures
from a large industrial company in Germany. The dataset includes 32 decarbonization
measures, most of which relate to energy efficiency measures. Individual measures also
include the self-generation of renewable energy.

The measures included have already been evaluated by the company’s experts in
terms of cost, annual energy saved, the measures’ service life, and other parameters.
Due to the confidentiality of the data, only excerpts of selected measures are presented
as examples in Table 1.

Table 1. Exemplary measures of the data set

Measure category Investment (e) Service life (years) CO2 avoidance (tCO2e/a)

Energy efficiency 20000 10 39.8

Self generation of
renewable energy

294492 20 196.0

Energy efficiency 125000 15 13

Anumber of algorithms are available for solvingmixed-integer optimization problem
with most of those based on the branch-and-bound method [28]. Within the selected
programming environmentMatlab the branch-and-bound algorithm intlinprog is applied
due to the already available implementation.

To calculate avoided CO2 emissions from energy efficiency measures, the specific
greenhouse gas emissions were estimated at 200 g/kWh in CO2equivalents per kilowatt-
hour of electricity. The number used is based on assumptions taking into account numbers
published by the German Umweltbundesamt [29] specifying greenhouse gas emissions
in CO2equivalents (CO2eq) per kilowatt hour of electricity with 428 g/kWh as well as
estimated reductions by around 50% compared to today’s level to meet the ambition
level of the Climate Protection Plan by 2030 [30]. For energy efficiency measures, the
amount of avoided CO2equivalents is calculated by multiplying the saved energy per
year with the lifetime of the measure and the CO2equivalent.

Avoiding CO2 emissions from self-generation of energy with the aid of PV systems
is based on the assumptions made above and on figures from Fraunhofer ISE [31] and
the Umweltbundesamt, who assume a greenhouse gas potential for PV electricity of 56 g
CO2 eq./kWh for system operation in Germany. The limitations of the estimation have
to be pointed out.

An exact calculation on a yearly level and the company-specific emission data was
not carried out because the data was not made available by the company the case study is
based on. Therefore the presented case study is based on data derived from the sources
stated above. This represents a weakness of the results. Moreover, no reliable range can
be given because the specific CO2 savings vary so much from company to company. For
example, a company with a 100% self-supply of renewable energy would represent one
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extreme value, while a company that is supplied with electricity from coal power would
represent another extreme value.

The calculation of the net present value is based on a discount rate of 6%. The
discount rate used for the calculation of the NPV is based on numbers given by the
company the case study is based on and represents the value and represents the rate
at which future cash flows are discounted. The discount rate, represents the return that
could be earned per unit of time on an investment with similar risk.

The following illustration in Fig. 1 represents a central result of the optimization
algorithm. The best possible selection of decarbonization measures was calculated for
available investment budgets in steps of fifty thousand euros each. Accordingly, each
data point represents an iteration of the optimization algorithm. In a figurative sense, the
performed mixed-integer optimization corresponds to the so-called knapsack problem.

A single data point represents an optimal investment programme for decarbonization
measures. I.e. for all available measures it is decided whether to implement the measures
or not. The curve flattens out at the end as the investment budget is fully utilized.
Accordingly, no further measures can be integrated as there are no more available.

The objective function is based on a weighting in which the avoided CO2 emissions
areweightedwith 0.4, the present valuewith 0.4 and the riskwith 0.2. The figure supports
a decision-maker on which savings are possible depending on the investment budget.

Fig. 2. Possible avoided CO2 emissions depending on the available investment budget.

Amore in-depth examination of the objective function’s influence is shown in Fig. 2.
In this figure, a design of experiment was carried out using differently weighted objective
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functions and the maximum CO2 emissions that can be avoided. The used objective
functionwas evaluated in each case. The aim of this presentation is to gain amore precise
understanding of how the weighting of the target dimensions by the decision-maker
influences the achievable CO2 savings.

The achievable CO2 reduction clearly depends on how the risk is evaluated. Themore
a decision-maker weights the importance of the risk of decarbonization measures, the
lower the achievable savings. In the extreme case of weighting it 1, i.e., a decision based
exclusively on the risk associated with the implementation of measures, the achievable
savings converge towards 0. On the other hand, there is a high correlation between NPV
and avoided emissions. This is particularly due to the cost savings associated with energy
efficiency measures (Fig. 3).

Fig. 3. Design of Experiment using different weights for the goal function

5 Conclusion

Due to the increasing importance of reducing CO2 emissions in the industrial sector,
companies must decide on measures and determine the optimal quantity of measures.
Especially for large companies, there is a great variety of possible measures and the
decision is correspondingly complex. Using the presented mixed-integer optimization
approach, companies can determine the set of optimal decarbonization measures in
their individual situation. Decision-makers are faced with the complex challenge of
determining the optimal mix of measures for their company. Yet, due to the individual
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situation of each company, optimal action plans cannot be determined generically and
each case must be considered individually.

For the user, the proposed decision model provides the benefit of scientifically sound
decision support that determines the best possible actions for the selected preference.

The approach is based on the assumption of individually characterized utility func-
tions, which are represented by an objective function individually weighted by the deci-
sion maker. The presented investigation of the objective function with the help of an
experiment design illustrates the high dependence of the achievable CO2 savings on the
target weighting, in particular the weighting of the risk.

Further research on the approach focuses on amore precise determination of avoided
CO2 emissions, since at the company level, there is a complex interaction between, for
example, energy efficiency measures and the company’s own generation of renewable
energies. This leads to a complex determination of the actually achieved CO2 avoidance
with an individual measure because the implementation of for example renewable ener-
gies leads to lower avoidance of CO2 emissions in energy efficiency measures. Possible
further research can be in this consideration of interactions between decarbonization
measures.
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