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Abstract. Natural language understanding tasks require a comprehensive under-
standing of natural language and further reasoning about it, on the basis of holistic
information at different levels to gain comprehensive knowledge. In recent years,
pre-trained language models (PrLMs) have shown impressive performance in nat-
ural language understanding. However, they rely mainly on extracting context-
sensitive statistical patterns without explicitly modeling linguistic information,
such as semantic relationships entailed in natural language. In this work, we
propose EventBERT, an event-based semantic representation model that takes
BERT as the backbone and refines with event-based structural semantics in terms
of graph convolution networks. EventBERT benefits simultaneously from rich
event-based structures embodied in the graph and contextual semantics learned
in pre-trained model BERT. Experimental results on the GLUE benchmark show
that the proposed model consistently outperforms the baseline model.

Keywords: Event-based semantics · Graph convolution networks · Natural
language understanding

1 Introduction

Recent years have witnessed deep pre-trained language models (PrLM) such as
ELMo [28], BERT [8], XLNet [45] and ERNIE [38] significantly prospering the perfor-
mance of a wide range of natural language understanding (NLU) tasks. The remarkable
advancements brought by PrLM have shown the effectiveness of leveraging contextual-
ized representation. However, they mainly rest on extracting context-sensitive statistical
patterns without explicitly modeling linguistic information such as semantic relation-
ships in natural language.

It is clear that natural language itself abounds with ample, multi-level linguis-
tic information. Although PrLMs like BERT implicitly represent linguistic knowl-
edge more or less [33], studies disclose that linguistic knowledge is far from fully
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absorbed [10,33]. Therefore, there emerges a series of derivatives of PrLM intending
to fuse explicit linguistic knowledge so as to acquire better language representation,
including syntactic [1,44,47] and semantic information [14,17,46].

Fig. 1. An example showing how SRL parses sentences and the intuition of constructing event-
based graph.

In cognition practice, human needs to distill semantics of different levels to gain
a comprehensive understanding, whereas neural language models learn semantic rep-
resentation to deal with downstream tasks [13]. Thus, effective learning of semantic
knowledge plays a crucial role in NLU tasks and has gained growing attention recently.
For instance, SemBERT [46] directly connects multiple predicate-argument structures
acquired by semantic role labeler (SRL) to get the joint representation.

The essence of SRL [36] lies in that every sentence possesses multiple predicate-
specific structures which can represent different frames of events, while semantic roles
express the abstract role that arguments of a predicate can take in the event. Besides, the
events inside a sentence have interactions with each other that serve together to present
the overall semantic knowledge. As shown in Fig. 1, SRL parses every sentence with
multiple predicate-specific structures which can serve as events inferring who did what
to whom, when and why. Each event has an inner structure centered on the predicate to
which several arguments are associated such as Hoy[ARG0], the woman’s age[ARG1]
and Tuesday[ARGM-TMP] connected to confirmed[V]. Meanwhile, the multiple events
work together to give a comprehensive meaning of a sentence, like the events centered
on said, confirmed and left. With regard to delving into the inner interactions between
the events and effectively capturing multiple objects, we are motivated to build a graph
to reveal the intrinsic structures between and inside the events.

Inspired by the above ideas, we propose EventBERT: an event-based semantic rep-
resentation model which takes BERT as the backbone and refines with event-based
structural semantics. Our EventBERT benefits simultaneously from rich event-based
structures embodied in the graph and contextual semantics learned in the pre-trained
BERT.
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Our proposed model works in three steps: it first applies an off-the-shelf SRL toolkit
to parse every sentence with semantic role labels; then it constructs event-based graphs
and employs Graph Convolutional Networks (GCNs) [35] to propagate and aggregate
information from neighboring nodes on the graph; at last, it combines the contextualized
representation acquired by BERT encoder together with the graph-level representation
to obtain an event-based contextualized representation.

The key contributions of our work are summarized as follows:

1) We extract event-based semantic knowledge from SRL to enrich language represen-
tation.

2) We employ GCNs to construct sentence-level graphs which better reveal interactions
inside and between the events in a sentence.

2 Related Work

2.1 Semantics in Language Representation

Recent studies show that current prominent pre-trained language models have already
incorporated semantic information to some extent [6], yet such implicit semantic infor-
mation is far from enough for comprehensive natural language understanding [10]. Thus
there emerges a research line that focuses on fusing semantic information into contex-
tualized language representation. ERNIE2.0 [38] adopts three-stage masking in which
entity-level masking helps to obtain a word representation containing richer semantic
information. SemBERT [46] makes use of PropBank [27] to fuse semantic role tags
into language representation. FMSR [16] utilizes FrameNet [2] to extract multi-level
semantic information within sentences. SS-MRC [15] takes advantage of syntax and
frame semantics in an attempt to carve out information from two complementary per-
spectives to obtain richer language representation.

Besides simply employing semantic knowledge, other recent works shift the focus
to exploring deeper structural semantics. For instance, frame semantics and graph neu-
ral networks are leveraged to model sentences from both intra-sentence level and inter-
sentence level [14]. SIFT is introduced to inject predicate-argument semantic depen-
dencies into pre-trained language models via R-GCNs [42]. Structured knowledge is
introduced through multi-tasking to get a unified model, which inspires the potential of
leveraging structural information [43]. Unlike previous works that attempt to capture
shallow semantic structures by semantic tags, our model digs deeper into semantics
itself and aims to find the structured event-based information behind semantics, thus
unveiling richer structural-semantic information inside the sentence.

2.2 Graph Modeling for Language Understanding

As natural language itself abounds with dependencies and intricate relations between
different levels of language units, graph neural networks (GNNs), which model the units
as nodes in the graph and learn the weight via the message passing between nodes of the
graph [18,34,39], stand out by explicitly and intuitively capturing the relations. Besides,
a number of extensions to the original graph neural networks have been developed,
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the most notable of which include graph convolutional networks (GCNs) [18], graph
attention networks (GANs) [39] and the models from [22] and [29] utilizing gating
mechanisms to facilitate optimization.

In response to the outstanding performance of GCNs, several efforts have been made
in recent years to improve performance on natural language understanding using GCNs,
including GraphRel [12] which considers the interaction between named entities and
relations via relation-weighted GCNs to better extract relations, NumNet [32] which
utilizes a numerically-aware graph to perform numerical reasoning, DFGN [30] which
dynamically builds the entity graph by adding the edges with co-occurrence relations,
HGN [11] which creates a hierarchical graph by constructing nodes on different levels
of granularity and social information reasoning [21] which uses GCNs to capture the
documents’ social context.

Moreover, R-GCNs [35] have shown effectiveness in relational graph modeling. For
example, Entity-GCN [7] employs R-GCNs to link mentions of candidate answers for
multi-document question answering. DFGN [30] dynamically builds the entity graph by
adding the edges with co-occurrence relations and softly masking out irrelevant entities.
DGM [26] constructs two discourse graphs and uses R-GCNs to fully capture interac-
tions among the elements. R-GCNs are employed to enhance reference dependencies
for dialogue disentanglement [23]. In contrast with previous works, our work proposes
a sentence-level graph that is finely designed to mine the relationships between multiple
elements in a sentence, extract rich structural semantics and facilitate information flow
over the graph as well.

3 Model

Figure 2 gives an overview of our proposed EventBERT, which consists of two major
components:

1. Context Encoder which acquires deep and contextualized representations for raw
input sequences by following BERT architecture;

2. Event-based Encoder which obtains richer structural-semantic representation by
modeling event-based intra-sentence graphs.

We omit the details of BERT which is widely used and ubiquitous and leave readers to
resort to [8] for more information.

3.1 Context Encoder

The raw input sentence X = {x1, . . . , xn} is a sequence of words in length n.
It is first tokenized to a sequence of sub-words with [SEP] inserted at the end as
the end marker and [CLS] inserted at the beginning to get a sentence-level rep-
resentation: X ′ = {token1, . . . , tokenm}. Then we pass it through the embedding
block and encoder block of BERT to produce a context-informed representation C =
{c1, . . . , cm} ∈ R

m×dhs using the equation below:

C = BERT (X ′), (1)

wherem denotes the length of sentence on sub-word level and dhs stands for the dimen-
sion of hidden states.
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Fig. 2. The overall structure of EventBERT.

3.2 Event-Based Encoder

Semantic Role Labeler. The raw input sentence is simultaneously fed into Semantic
Role Labeler [36] to fetch multiple predicate-specific structures tagged by PropBank
semantic roles:

T = {t1, . . . , td}, (2)

where d is the number of semantic structures for one sentence. Notably, ti can be repre-
sented under the format {tagi1, tagi2, ..., tagin} and every tag span in ti is recorded with
its corresponding index in the context for further alignment.

Graph Construction. Figure 3 shows the process of graph construction: the predicates
in the original input text are firstly extracted and an event subgraph is constructed with
each predicate as the center; then a super event node (SEN) is applied to link all the
predicates to collect the integral event information within the aggregated sentence; the
Levi graph is finally constructed with reference to the method of [20], which is used to
prepare the next stage of further computational operations on the graph.

For each sentence with the argument-predicate roles, we construct an event-based
graph G = (V, E ,R) with span-level nodes vi ∈ V and labeled edges (vi, r, vj) ∈ E ,
where r ∈ R a relation type. Since every sentence has several semantic structures, here
we take one structure as example and show the modeling method. Given Seqtag =
{tag1, tag2, ..., tagn} a word-level tag sequence,

1. We first transform it to a span-level sequence Seq′
tag = {tag′

1, tag
′
2, ..., tag

′
l} by

aggregating the same neighboring tags with l ≤ n representing the length of tags on
span-level;

2. Then, we add a Super Event Node (v = SEN ) to seize global graph information;
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Fig. 3. The process of graph construction: from raw sentence text to event-based graph and cor-
responding Levi graph.

3. After that, we add other nodes and edges to G based on the following process:
(a) we first find tag′

p which corresponds to predicate (Verb in e′),
(b) we add a node v = np and a directed edge e = (np, V erb, SEN) with r =

V erb,
(c) for the rest tags referring to arguments of the predicate, tag′

q for example, we add
a node v = nq and a directed edge linking to the predicate e = (nq, tag

′
q, np)

with relation r = tagq;
4. Finally, the corresponding Levi graph [20] is extended from G to GL =

(VL, EL,RL). For nodes VL, we add the nodes representing relations to the orig-
inal: VL = V ∪ R. For edges EL, we transform each edge e = (nq, tag

′
q, np) in

G into two corresponding edges: e1 = (nq, tag
′
q) and e2 = (tag′

q, np) in GL. For
RL, we follow the setting of [26] and refine it to five types: default-in, default-out,
reverse-in, reverse-out, self according to the direction of edges towards the relation
vertices, as is shown in Table 1.

Table 1. Relation types in our extended Levi graph

RL in Levi graph Illustration

default-in The propagation path pointing to the node as the end point

default-out The propagation path pointing to the node as the starting point

reverse-in The propagation path in the opposite direction of default-in

reverse-out The propagation path in the opposite direction of default-out

self The propagation paths pointing to the node itself
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Event-Based Contextualized Representation. We adopt Relational Graph Convolu-
tional Networks (R-GCNs) [35] to implement explicit event graphs since traditional
Graph Convolutional Networks (GCNs) cannot handle graphs containing edge features
with multiple relations. For predicate and argument nodes, we inject the corresponding
span-level encoding results obtained from Context Encoder in Sect. 3.1. For relation
nodes, we regard the relations as embeddings and use a lookup table to get the initial
representation. Given that the initial representation of each node vi is h0

i , the propaga-
tion process can be written as:

h
(l+1)
i = ReLU

⎛
⎝ ∑

r∈RL

∑
vj∈Nr(vi)

1

ci,r
w(l)

r h
(l)
j

⎞
⎠ , (3)

where h(l)
i ∈ R

d(l)
is the hidden state of node vi in layer l with d(l) being the dimen-

sionality of this layer’s representations, Nr (vi) denotes the set of neighbor indices of
node vi under the relation r, ci,r is a problem-specific normalization constant equal to

|N r
i |, w(l)

r is the learnable parameters of layer l.
Since the importance of these relations cannot be treated the same, for example, the

relation Verb is much more important than the relation ARG2, we introduce the gating
mechanism [24]. The basic idea is to compute a value between 0 and 1 for message
passing control as is shown in Eq. 4. Finally, the propagation process of R-GCNs under
the gating mechanism is as follows:

g
(l)
j = Sigmoid

(
h
(l)
j W (l)

r,g

)
(4)

h
(l+1)
i = ReLU

⎛
⎝ ∑

r∈RL

∑
vj∈Nr(vi)

g
(l)
j

1

ci,r
w(l)

r h
(l)
j

⎞
⎠ , (5)

where W (l)
r,g is the learnable parameter under the l-th level relation type r.

With R-GCNs model, we obtain a graph-level semantic representation:

R = {r1, . . . , rf} ∈ R
f×dhs (6)

where f is the number of nodes in the graph and dhs is the same dimension as the
representation C in Eq. 1 obtained from the context encoder.

At last, we concatenate R with the contextual sub-word-level representation C pro-
vided by Context Encoder and generate an event-based contextualized representation
taking the mean value of both sub-word-level and graph-level information, which is
then used as the new sequence representation for downstream tasks following the same
way of [8].

4 Experiments

4.1 Setup

Datasets. We build EventBERT on the BERT backbone and fine-tune the model on
GLUE (General Language Understanding Evaluation) benchmark [40] to evaluate the
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Table 2. Comparisons between our models and baseline models on GLUE dev set.

Model CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg

(mc) (acc) (acc) (acc) (acc) (acc) (acc) (pc) -

Base-size

BERTBASE 58.4 92.8 83.2 88.6 68.5 86.0 86.5 87.8 81.5

EventBERTBASE 59.6 93.3 83.9 91.8 69.7 89.7 89.8 88.9 83.3(↑1.8)
Large-size

BERTLARGE 60.3 93.1 85.2 91.5 70.3 88.5 90.2 89.3 83.6

EventBERTLARGE 63.1 94.0 85.3 92.6 71.4 89.5 90.6 89.5 84.5(↑0.9)

performance, which includes two single-sentence tasks CoLA [41], SST-2 [37]), three
similarity and paraphrase tasks MRPC [9], STS-B [4], QQP [5], three inference tasks
MNLI [25], QNLI [31], RTE [3]. We exclude the controversial and problematic dataset
WNLI [19].

Evaluation Metrics. According to [40], different datasets in GLUE correspond to dif-
ferent evaluation metrics, which include accuracy (acc), Matthew’s correlation (mc) and
Pearson correlation (pc). Among the eight datasets, STS-B is reported by Pearson cor-
relation, CoLA is reported by Matthew’s correlation, and other tasks are reported by
accuracy.

Implementation Details. For the experiments, we use an initial learning rate in {1e−5,
2e−5, 3e−5} with warm-up rate of 0.1 and L2 weight decay of 0.01. The batch size
is selected in {16, 32}. The maximum number of epochs is set in [2, 5] depending on
tasks. Texts are tokenized with maximum length of 256 for the tasks. We use 2 layers
of R-GCNs in our model.

4.2 Results

Table 2 presents the results on the GLUE benchmark, which show that EventBERT
achieves consistent gains over all the subtasks under both base and large models.

The results indicate that our model performs better on longer sentences as shown
in Sect. 5.3. Furthermore, our analysis shows that EventBERT can effectively benefit
from the fine-grained graph-like event-based structures, as illustrated in case studies in
Sect. 5.4. The results also disclose that modeling intrinsic structures between and inside
events is crucial for language understanding.

In addition, the experimental results show that EventBERT has a significant perfor-
mance gain on small datasets such as CoLA and MRPC, which indicates that semantic
information involving event modeling is more advantageous and competitive in smaller
datasets. In practice or industry, large-scale annotated data is rare and scarce due to the
high cost and required expensive human resources, so language models that dominate
in small-scale datasets are more valuable and important for most NLP tasks.
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5 Analysis

5.1 Ablation Study

We conduct the ablation study to investigate the effects of the gating mechanism and
the addition of global nodes in the event-based encoder module. Results in Table 3 show
that both the gating mechanism and global nodes are non-trivial.

5.2 Methods of Aggregation

During the period of concatenating and aggregating the graph level semantic repre-
sentation R and the contextual representation C, we further analyze the influence of
different methods of aggregation such as max-pooling and mean-pooling by comparing
the models with the same hyper-parameters on three datasets CoLA, MRPC and RTE
respectively. Results in Table 3 demonstrate that employing mean-pooling presents bet-
ter performance.

5.3 Effectiveness of Semantic Structures

Table 3. Ablation study and comparison of
aggregation methods on three datasets.

Model CoLA MRPC RTE

(mc) (acc) (acc)

Ablation study

EventBERTbase 59.6 89.7 69.7

w/o gating 58.6 86.8 69.0

w/o global node 58.4 87.0 67.9

Aggregation methods

BERTbase 58.4 86.0 68.5

w/ max-pooling 59.1 86.8 68.2

w/ mean-pooling 59.6 89.7 69.7

In order to dig deeper into the rationale
behind the effectiveness of the model, we
select two datasets QNLI and MRPC, repre-
senting large-scale and small-scale datasets
respectively. We statistically calculate the
accuracy of the corresponding models on
different word-level sequence length inter-
vals for EventBERT and baseline. Figure 4
shows that our model outperforms the base-
line especially when the sequence is rela-
tively long and our model performs better
on longer sentences compared with shorter
ones, which implies that modeling intrinsic
semantic structures is potential to guide the
model to learn richer structural semantics
more than contextualized information. Thus,
the analysis of word sequence lengths shows that EventBERT performs better on data
with longer sequence lengths, which indicates that event-level modeling is promising
and competitive for understanding long texts. Under many practical situations where
available data are long texts, the idea of extracting event-level structural-semantic infor-
mation is promising in many NLP tasks.
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Fig. 4. Accuracy of different sequence word lengths on QNLI and MRPC.

5.4 Interpretability: Case Study

We select three cases in Classification, Sentence Similarity and Language Inference
from SST-2, MRPC and QNLI respectively which are shown in Fig. 5, aiming to further
explore the mechanism. It can be seen that our model can perceive explicit structural
meaning to better understand the language. We will analyze each of the three cases in
detail so as to analyze the advantages of EventBERT more intuitively.

Fig. 5. Examples selected from the dev set of SST-2, MRPC and QNLI where baseline fails but
our model succeeds.

Classification. In the case from SST-2, our model succeeds in capturing and under-
standing the event Friel and william’s exceptional performances[ARG0] anchored[V]
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the film’s power[ARG1], whereas the baseline does not manage to capture this meaning,
thus leading to the failure.

Sentence Similarity. The case from MRPC demonstrates that our model grabs the
distinct semantic structures centered on is and has and thus gives the right answer not
equivalent. The event centered on the predicate donate belongs to the same structure,
which contains the arguments ARG0, ARG1 and ARGM-TMP having the same contents
(i.e., the woman donated blood). Nevertheless, the remaining events which center on
the predicate is and the predicate has in the sentence pair are semantically different as
one structure includes the arguments ARG1 and ARG2 while the other contains only
ARG0 and ARG1.

In Sentence Similarity tasks, two sentences in a sentence pair are likely to have one
or several events in common, such as the event centered donate in this case. However,
a subtle difference in a key element in the semantic structure of the sentence may also
lead to a very different semantics of the whole sentence, such as the events centered on
is and has. Our proposed model EventBERT precisely appreciates the value of abstract-
ing structural semantics, benefiting from capturing event-based semantic knowledge to
perceive the differences between sentences and thus make more accurate judgments.

Language Inference. Referring to the case from QNLI, as can be seen from Fig. 5, the
question and paragraph texts are broadly similar in terms of sell-centered structure, both
containing the arguments labeled ARG0, ARG1, and ARGM-TMP. However, by means
of graph modeling, it can be clearly and explicitly observed that the structures centered
on force are distinct, with the structure in the interrogative sentence containing the argu-
ment ARGM-CAU and the corresponding structure in the paragraph texts containing the
argument ARGM-LOC instead. It is worth noting that one of the most crucial steps in
determining whether a paragraph entails the correct answer to a question is whether
the corresponding semantic structure in paragraph texts has the span labeled with the
semantic role referring to the interrogative in the question. For example, in this case,
the interrogative Why is exactly the ARGM-CAU of the predicate force; whereas the
structure centered on force in the paragraph lacks the corresponding argument content
and is replaced by ARGM-LOC instead. Therefore, it can be easily inferred that the
paragraph focuses on the location (i.e., in Japan and Latin America) while the question
concentrates on the cause (i.e., Why), which exactly reflects that there is no answer span
for the interrogative of the question.

It is known that interrogative in the question and corresponding answer span
should belong to the same semantic role. EventBERT takes full advantage of extract-
ing abstracted semantics based on predicates, thus conducting language inference tasks
more efficiently.

5.5 Error Analysis

We select bad cases of the baseline model and further investigate the ones of which our
EventBERT also fails to predict the correct answers. We study two cases respectively
fromMRPC and QNLI as is shown in Table 4. The first error is caused by EventBERT’s
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identification of the argument in a written statement of the predicate said in the first sen-
tence, which is not entailed in the second sentence. However, the lack of this argument
does not affect the main semantic information. The second error is due to argument
reference confusion for the special predicate is. For instance, the interrogative What is
labeled as ARG2 whereas the correct answer Hypersensitivity is labeled as ARG1. From
the above error cases, it may suggest that our model needs to have a more accurate
perception of semantic relationships, which is left for future studies.

Table 4. Errors in predictions for cases in MRPC and QNLI dev set. The words in magenta
indicate the key predicate. The words in blue indicate the key arguments referred to the predicate.

Example EventBERT Golden answer

This decision is clearly incorrect, FTC
Chairman Timothy Muris said in a written
statement. The decision is clearly incorrect,
FTC Chairman Tim Muris said

Not equivalent Equivalent

What is the name for a response of the immune
system that damages the body’s native tissues?
Hypersensitivity is an immune response that
damages the body’s own tissues

Not entailment Entailment

6 Conclusion

In this work, we propose EventBERT, an event-based semantic representation model
that builds on BERT architecture and incorporates event-based structural semantics in
terms of graph network modeling for fine-grained language representation. Experiments
on a wide range of NLU tasks show the effectiveness of our model by consistently sur-
passing the baseline. While most existing works focus on fusing accurate semantic sig-
nals to enhance semantic information, we open up a novel perspective to model intrinsic
structural semantics for deeper comprehension and inference in an intuitive and explicit
way.
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