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Abstract. Semantic parsing aims to convert natural language utterances to log-
ical forms. A critical challenge for constructing semantic parsers is the lack of
labeled data. In this paper, we propose a data synthesis and iterative refinement
framework for neural semantic parsing, which can build semantic parsers without
annotated logical forms. We first generate a naive corpus by sampling logic forms
from knowledge bases and synthesizing their canonical utterances. Then, we fur-
ther propose a bootstrapping algorithm to iteratively refine data and model, via
a denoising language model and knowledge-constrained decoding. Experimen-
tal results show that our approach achieves competitive performance on GEO,
ATIS and OVERNIGHT datasets in both unsupervised and semi-supervised data
settings.
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1 Introduction

Semantic parsing is the task of translating natural language (NL) utterances to their
formal meaning representations (MRs), such as lambda calculus [42,50], FunQL [23,
28], and SQL queries [5,8,16]. Currently, most neural semantic parsers [12,13] model
semantic parsing as a sequence translation task via a encoder-decoder framework. For
instance, given an utterance “What is the length of river traverses state0”, a SEQ2SEQ
parsing model obtains its FunQL representation by sequentially generating its tokens
answer(length(river(traverse 2(state0)))).

One of the key challenges in building a semantic parser is the scarcity of annotated
data. Since annotating utterances with MRs is time consuming and requires specialized
expert knowledge.Witnessed the data bottleneck problem, there are many learning algo-
rithms have been proposed, such as denotation-based weak supervised learning [29,30],
dual learning [6], transfer learning [18,37]. There are also many studies focus on the
quick construction of training data, such as OVERNIGHT [40]. However, these works
still require some degree of human efforts.
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In this paper, we propose a data synthesis and iterative refinement framework, which
can build semantic parsers without labeled data. Inspired by the idea that, a simple
and noise corpus can be synthesized by a grammar-lexicon method, like the one used
in OVERNIGHT, and can be refined by leveraging external knowledges, like language
models and knowledge base constraints. So, we first obtain a naive corpus based on
synchronous context-free grammars and a seed lexicon. Then we improve the corpus
with the knowledge of language models and knowledge base constraints by iteratively
refining data and model to obtain mature corpus. Finally, we use the refined corpus to
train the semantic parser. Figure 1 shows the overview of our method.

Specifically, to get the naive corpus, we sample logical forms from knowl-
edge bases, and then synthesize their corresponding canonical utterances using a
grammar-based synthesizing algorithm. For example, like in Overnight, we can
synthesize an unnatural utterance “what is length river traverse state0” from
answer(length(river(traverse 2(state0)))). Although the synthe-
sized utterance “what is length river traverse state0” is different from the real-world
utterance “what is the length of river traverse state0”, the naive corpus can provide a
start for unsupervised learning, and can be used to pretrain a base semantic parser.

Then, to improve the synthesized naive corpus, we iteratively refine the model and
the data via a bootstrapping process, using the knowledge of language models and
knowledge base constraints. Due to the limitation of grammars and seed lexicon, the
synthesized training instances in naive corpus are often noisy, differing from real-world
utterances, and with limited diversity, which hinder the model from generalizing to nat-
ural data. To address these issues, we propose to iteratively refine the model and the
synthesized data via a denoising language model and knowledge-constrained decoding.
Firstly, we view synthesized canonical utterances as an artificial version of utterances
which are often not as fluent as natural utterances, then leverage a denoising language
model to rewrite the canonical utterances to be closer to natural utterances. Secondly, to
address the noise problem, a knowledge-constrained decoding algorithm is employed
to exploit constraints from knowledge bases, therefore meaning representations can be
more accurately predicted even when semantic parser is not strong enough. Finally, the
data synthesization and semantic parsing are iteratively refined to bootstrap both the
corpus and the semantic parser: the refined corpus is used to train a better semantic
parser, and the better semantic parser in turn is used to refine training instances.

The main contributions of this paper are:

– We propose a data synthesis and iterative refinement framework to build neural
semantic parsers without labeled logical forms, in which we generate naive cor-
pus from scratch and improve them with the knowledge of language models and
knowledge base constraints via an iterative data-model refinement.

– Experimental results on GEO, ATIS and OVERNIGHT datasets show that our app-
roach achieves competitive performance without using annotated data.
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Fig. 1. The overview of our approach.

Fig. 2. The illustration of our approach. MRs denotes meaning representations, NLs denotes nat-
ural language sentences. The naive corpus is synthesized by seed lexicon. In each bootstrapping
iteration, the corpus is refined via denoising language model and knowledge-constrained decod-
ing. The data and the models are improved iteratively.

2 Background

2.1 Base Semantic Parsing Model

We employ the SEQ2SEQ semantic parser as our base model [12], which has shown
its simplicity and effectiveness. Notice that our method is not specialized to SEQ2SEQ
model and it can be used for any neural semantic parsers.

Encoder. Given a sentence x = w1, w2, ..., wn, the SEQ2SEQ model encodes x using
a bidirectional RNN. Each word wi is mapped to a fixed-dimensional vector by a word
embedding function φ(·) and then fed into a bidirectional LSTM [19]. The hidden states

in two directions are concatenated hi = [
−→
h i;

←−
h i], and the encoding of the whole sen-

tence is: h1,h2, ...,hn.
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Attention-Based Decoder. Given the sentence representation, the SEQ2SEQ model
sequentially generates the tokens of its logical form. Specifically, the decoder is first
initialized with the hidden states of encoder s0 = [

−→
h n;

←−
h 1]. Then at each step t, let

φ(yt−1) be the vector of the previous predicted logical form token, the current hidden
state st is obtained from φ(yt−1) and st−1. Then we calculate the attention weights for
the current step t, with the i-th hidden state in the encoder:

αi
t =

exp (st · hi)∑n
i=1 exp (st · hi)

(1)

and the next token is generalized from the vocabulary distribution:

ct =
n∑

i=1

αi
thi

P (yt|y<t,x) = softmax(Wo[st; ct] + bo)

(2)

where Wo ∈ R
|Vy|×3n, bo ∈ R

|Vy| and |Vy| is the output vocabulary size.

Learning. Given a training corpus consisting of <utterance, logical form> pairs, the
SEQ2SEQ model is trained by optimizing the objective function:

J = −
∑

(x,y)∈D

m∑

t=1

log p(yt|y<t,x) (3)

where D is the corpus, x is the utterance, y is its logical form label.

2.2 SCFG for Data Synthesization

Wang, Berant, and Liang [40] use a synchronous context-free grammar(SCFG) to gen-
erate logical forms paired with canonical utterances, and use crowdsourcing to para-
phrase these canonical utterances into natural utterances. The SCFG consists of a set
of production rules (lexicon): N → 〈α, β〉, where N is a non-terminal, and α and β
are sequence of terminal and non-terminal symbols. Any non-terminal symbol in α is
aligned to the same non-terminal symbol in β, and vice versa. Therefore, SCFGs define
a set of joint derivations of aligned pairs of strings. The seed lexicon in OVERNIGHT

is specified by the builder containing types, entities, and properties in databases. Type
checking is also performed to rule out some uninterpretable canonical utterances.

3 Approach

This section describes our data synthesis and iterative refinement method for semantic
parsing. Firstly, we generate a naive training corpus by sampling meaning representa-
tions from knowledge bases and synthesizing their utterances using a grammar-based
algorithm. Then, to reduce the noise and eliminate the gap with real corpus, we pro-
pose to iteratively refine the data and the model by rewriting synthesized utterances via
a denoising language model and generating meaning representations via knowledge-
constraint decoding. Figure 2 shows the overview of our approach and we describe all
components in detail as follows.
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3.1 Data Synthesis

In OVERNIGHT [40] and PARASEMPRE [3], they use simple grammars to generate
logical forms paired with canonical utterances. To generate corpus from scratch, we
also synthesize data via a grammar-based algorithm.

Specifically, we first sample MRs from knowledge bases via a graph sampling algo-
rithm, then we synthesize their utterances by mapping predicates to words from a seed
lexicon and composing these words using context free grammars. Different from the
corpus generation method in OVERNIGHT, our method starts from not only grammar
but also the knowledge base schema, and can be easier to extended to other datasets like
GEO and ATIS.

Generating MRs via Graph Sampling. The graph sampling algorithm aims to sam-
ple meaning representations from knowledge bases. Given a knowledge base, Graph
Sampling regards MRs as subgraphs of the knowledge base. To ensure the truthfulness
and integrality of generated meaning representations, we sample subgraph-based MRs
according to both the structure of MRs and the schemas of knowledge bases.

Specifically, to generate MRs, we start from the nonterminal token root and
then recursively expand all nonterminal tokens in current MRs. For general/functional
nonterminal tokens such as root, argmax and count, because they are domain-
independent, we expand them using hand-crafted general production rules. For nonter-
minal tokens about entities and relations such as river, state and city for GEO,
because they are domain dependent, we expand them by production rules sampled from
knowledge base schemas.

To utilize the schema to produce MRs, we extend the original schema by adding the
attribute value as value type nodes and the aggregation operations as self-loop edges.
We provide the extended schema and sampling examples in the Fig. 3.

Fig. 3. The extended schema of GEO (partial). To sample the subgraph from the dotted edges, the
root nonterminal token root is recursively extended by the production rules:
root → answer(length value)
length value → length(river set)
river set → river(river attri)
river attri → traverse 2(state set)
state set → state0,
generating the MR: answer(length(river(traverse 2 (state0))))
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Based on the schema graph, the meaning representations can be effectively sampled
by utilizing context-free grammar (i.e., the production rules) for grammatical correct-
ness and knowledge base schemas for semantic correctness.

Synthesizing Utterances via SCFG-Based Algorithm. Based on canonical composi-
tionality assumption in Wang, Berant, and Liang [40], we also use SCFG to generate
utterances. We extend the context-free grammar in Graph Sampling to synchronous
context-free grammar. For example in Fig. 2, based on the SCFG rules, we can synthe-
size the utterance “what is length river traverse state0” from the sampled MR:

root → 〈answer(FORM),what is FORM〉
FORM → 〈length(FORM), length FORM〉
FORM → 〈river(FORM), river FORM〉
FORM → 〈traverse 2(FORM), traverse FORM〉
FORM → 〈state0, state0〉

Seed Lexicon Construction. To synthesize utterances from sampled semantic repre-
sentations, a lexicon is further needed for SCFG, which maps logical tokens to their
natural language words. For OVERNIGHT, we simply use its original seed lexicon. For
other datasets, we use the following simple way to build an initial lexicon:

For domain-general logical tokens we manually write their natural language tem-
plates. The number of domain-general rules is usually very small. Some examples of
our domain-general rules are in Table 1.

Table 1. Examples of our domain-general rules on GEO (above) and ATIS (below). We write
seed lexicon of domain-general grammar manually, the number of which is usually very small
(only 5 needed in GEO and 12 in ATIS and 23 in OVERNIGHT).

Category Domain-general rules NL templates

Query answer (FORM) what is FORM

Count count (FORM) the number of FORM

Exclusion exclude (FORM1, FORM2) FORM1 do not FORM2

Superlative (max) largest one (VALUE (FORM)) FORM with largest VALUE

Filter (type) λtλs: ($t $s) $t $s

Filter (property) λpλvλs: ($p $v $s) $s whose $p is $v

Comparative (<) λpλvλs: (< ($p $v) $s) $s whose $p is smaller than $v

Superlative(max) λpλs: argmax $s ($p $s) $s with largest $p

For domain-dependent entity tokens and relation tokens, we simply use the words
in their logical tokens, with a simple preprocessing which removes numbers and under-
lines. For example, the area 1 denotes the words “area” and departure time
denotes the words “departure time”.

Using the above SCFG with seed lexicon, an initial training corpus can be syn-
thesized. Although, this seed lexicon is obviously with limited coverage and lack of
diversity. This naive corpus can still provide a helpful start for semantic parsing. Next,
we describe how to iterative refine the parsing mode and data.
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3.2 Iterative Data-Model Refining

Due to the limitation of grammar and lexicon, the synthesized training instances in naive
corpus are often noisy, differing from real-world sentences, and with limited diversity.
To address these issues, we refine the corpus with the knowledge of language models
and knowledge base constraints through a bootstrapping process: 1) we rewrite synthe-
sized utterances via a denoising language model, so the utterances will be more fluent
and closer to natural utterances; 2) we propose to exploit knowledge during decoding,
so that meaning representations can be more accurately predicted even when the model
is not strong enough; 3) we iteratively refine the data and the model via a bootstrapping
process. After several iterations of refinement, we obtain the mature corpus and the final
semantic parser.

Utterance Rewriting via Denoising Language Model. The synthesized utterances
are often not fluent, differing from real-world sentences. For example, the synthesized
utterance in Fig. 2: “what is length river traverse state” is very different to its natural
expression “what is the length of river traverses state0”. And this discrepancy misleads
models to learn incorrect patterns.

Thanks to the current powerful language models, we can use a denoising language
model to rewrite synthesized utterances to more natural sentences. Specifically, we
regard the synthesized utterances as a noisy version of natural expressions, and then
denoise them via neural language model-based language denoising techniques [26].

Specifically, we train a language model based on GPT2.0 [34], which is then used
to denoise by minimizing:

Llm = Ex∼X[− logP (x|C(x))] (4)

where C is a noise model with some words dropped and swapped as in Lample
et al. [26].

Generating High-Quality Lexicon via Knowledge-Constrained Decoding. To
obtain high-quality lexicon, which can be used to synthesize better 〈MR, canonical
utterance〉 pairs, we use the current parser to generate parallel data. Without manually
annotated corpus, the initial semantic parser is often not strong enough, therefore it
is difficult to find high-quality meaning representations. So we also apply knowledge-
constrained decoding.

Like previous work [25,44,47], we decode the meaning representations under the
grammar we mentioned in Graph Sampling. Only the grammatical logical forms are
generated during the decoding. Additionally, we leverage knowledge base schemas to
effectively filter out illegal logical forms. Given a semantic parser, we first obtain the top
K meaning representations for each sentence. Then if there exists an executing program
or search engine for logical forms, we will only keep the executable logical forms.
Otherwise, we verify whether the logical form is well-typed under the knowledge base
schema constraints, and only preserve the eligible logical forms.

After obtaining the higher quality parallel data, following Wong and Mooney [41],
we apply the GIZA++ on the parallel data to get the alignments between words and
grammar rules and induce a new SCFG lexicon.
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Table 2. Accuracies on OVERNIGHT. The previous methods with superscript ∗ means they use
different unsupervised settings.

Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Avg.

Supervised

SEQ2SEQ 84.3 57.9 78.1 69.9 76.2 80.7 78.0 80.5 75.7

RECOMBINATION [21] 85.2 58.1 78.0 71.4 76.4 79.6 76.2 81.4 75.8

CROSSDOMAIN [37] 86.2 60.2 79.8 71.4 78.9 84.7 81.6 82.9 78.2

SEQ2ACTION [9] 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0

DUAL [6] 87.5 63.7 79.8 73.0 81.4 81.5 81.6 83.0 78.9

Unsupervised (with nonparallel data)

Two-stage [7] 64.7 53.4 58.3 59.3 60.3 68.1 73.2 48.4 60.7

WmdSamples [7] 31.9 29.0 36.1 47.9 34.2 41.0 53.8 35.8 38.7

Mature Corpus + Samples 58.5 55.3 62.4 65.1 66.7 62.2 72.3 47.1 61.2

Unsupervised

Cross-domain Zero Shot∗ [18] - 28.3 53.6 52.4 55.3 60.2 61.7 - -

GENOVERNIGHT [40] 15.6 27.7 17.3 45.9 46.7 26.3 61.3 9.7 31.3

Naive Corpus EMBED BERT 15.9 24.6 18.6 44.1 46.9 27.0 62.2 9.7 31.1

Glove 16.2 23.6 16.2 30.3 36.9 27.0 43.2 9.2 25.3

Rand 13.8 21.1 15.6 28.2 21.9 27.0 31.1 8.2 20.9

Mature Corpus EMBED BERT 45.9 52.5 52.7 58.5 61.9 52.1 69.8 33.6 53.4

Glove 44.1 51.5 48.5 56.4 58.8 50.2 68.9 32.0 51.3

Rand 35.1 43.2 36.5 44.7 46.9 46.5 65.0 25.6 42.9

w/o Denoising 32.8 45.0 40.1 46.8 52.5 45.6 63.1 26.6 44.1

w/o Constraint 29.0 39.7 35.3 37.8 41.9 42.8 64.7 23.4 39.3

Iterative Learning. It is obviously that the model promotion and the data refining
can reinforce each other: better parsers can generate data of higher quality, and higher
quality data can be used to train stronger models. Based on this intuition, we propose to
iteratively refine model and data by leveraging the duality between them.

Specifically, in each data-model refining iteration, we: 1) first synthesize the utter-
ances X′ of the sampled MRs Y′ using the current lexicon and the denoising model;
2) train a new semantic parser using the synthesized data; 3) parse the unlabeled utter-
ances via knowledge-constrained decoding; 4) induce a new lexicon using both the
highly confident automatically labeled data and the synthesized data.

We gradually increase the proportion of parsing data at each iteration. In the k-th
iteration, we select the top δ × (k+1) confident parsing pairs for lexicon learning. The
confidence scores are calculated as the normalized likelihood:

Score(x, y) =
1

Ny
logP (y|x) (5)
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4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three standard datasets: GEO, and ATIS,
OVERNIGHT, which use different meaning representations and contain different
domains.

GEO. This is a semantic parsing benchmark about U.S. geography [49]. The variable-
free semantic representation FunQL [23] is used in this dataset. We follow the standard
600/280 train/test instance splits.

ATIS. This is a large dataset, which contains 5,410 queries to a flight booking system.
Each question is annotated with a lambda calculus query. Following Zettlemoyer and
Collins [51], we use the standard 4,473/448 train/test instance splits in our experiments.

OVERNIGHT. OVERNIGHT contains natural language paraphrases paired with lambda
DCS logical forms across eight domains. We evaluate on the standard train/test splits as
Jia and Liang [40].

In all our experiments, we only use the unlabeled sentences in each dataset. The
standard accuracy is used to evaluate different systems, which is obtained as the same
as Jia and Liang [21].

Synthesized Training Corpus. We generate training instances proportional to the orig-
inal dataset sizes (1500 for GEO, 5000 for ATIS, and 1500 for each domain in
OVERNIGHT). For OVERNIGHT, we use its original defined grammar and lexicon.

Denoising Language Model. We train an individual denoising language model for each
dataset (each domain for OVERNIGHT). For each utterance in unlabeled queries, we
sample 5 noisy sentences to construct the training pairs by dropping words randomly
or slightly shuffling the utterance as Lample et al. [26]. The pretrained language model
GPT2.0 is adapted on paraphrase generation dataset, then fine-tuned on denoising sen-
tences with 15 epochs and the learning rate of 1e-5.

System Settings. We train all our models with 5 data-model refining iterations. In each
iteration, the neural semantic parser is trained 15 epochs, with the initial learning rate
of 0.001. We use Adam algorithm [24] to update parameters, with batch size is 20. Our
model uses 200-dimensional hidden units and 200-dimensional word vectors for sen-
tence encoding. We initialize all parameters by uniformly sampling within [−0.1, 0.1].
BERTLARGE [11] is used to get word representations. The beam size K during decoding
is 5. The hyper-parameter δ is 0.1. Following Dong and Lapata [12], we handle entities
with a Replacing mechanism, which replaces identified entities with their types and IDs.

4.2 Experimental Results

Overall Results. We compare our model with different settings:

1) Naive Corpus – the semantic parser is trained from the naive corpus, which is gen-
erated by meaning representation sampling and utterance synthesizing;
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Fig. 4. Test accuracies on GEO with different size of synthesized data. The number of sampled
meaning representations has increased from 0.1 times the amount of original data to 10 times.
The dash line shows the accuracy of Golden MRs

2) Mature Corpus – the corpus is improved by iterative data-model refining;
3) Supervised – the model is trained using the original training corpus with the same

settings.

For Overnight, we further compare with the Cross-domain Zero Shot [18] which
is trained on other source domains and then generalized to new domains and GEN-
OVERNIGHT [40] in which all the canonical utterances are also generated without man-
ual annotation. With the nonparallel data: Two-stage [7] employs the cycle learning
framework. WmdSamples [7] labels each input sentences with the most possible out-
puts in the unparallel corpus and deals with these faked samples in a supervised way.
Our Mature Corpus + Samples method follows WmdSamples, using the parser built on
the refined data to label each input.

The results are shown in Table 2 and Table 3. We can see that:

1) Our learning framework is promising for resolving the training data bottleneck
problem of semantic parsing. In all datasets, our method outperforms other base-
lines in the same unsupervised settings. On OVERNIGHT, our method also surpasses
the previous approaches in unsupervised data settings. These results verify that data
synthesis and iterative data-model refinement is a promising method for semantic
parsing without annotated logical forms.

2) The iterative data-model refining is effective to bootstrap semantic parsers.
Compared with Naive Corpus, after corpus refinement our Mature Corpus gains
27.9 accuracy improvement in ATIS. This verifies the effectiveness of the data-
model refining. We believe it results from: i) denoising language model can improve
the quality of generated utterances and knowledge-constrained decoding can filter
out invalid meaning representations; ii) the bootstrapping can leverage the duality
between data and model for iterative refining.

Detailed Analysis

Effects of Utterance Denoising and Constrained Decoding. Table 2 and 3 show the
accuracies by removing denoising language model (–Denoising) and by removing
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Table 3. Accuracies on GEO and ATIS. The previous methods with superscript ∗ means they use
different unsupervised settings. Confidence-driven and Two-stage both use the nonparallel data.

GEO ATIS

Supervised

SEQ2SEQ 88.2 84.2

Dong and Lapata [12] 87.1 84.6

Jia and Liang [21] 89.3 83.3

Susanto and Lu [39] 90.0 -

Xu et al. [45] 88.1 85.9

Chen, Sun, and Han [9] 88.9 85.5

Jie and Lu [22] 89.3 -

Guo et al. [17] 87.1 83.1

Unsupervised

Confidence-driven∗ 66.4 -

Two-stage∗ 63.7 -

Naive Corpus 29.3 25.0

Mature Corpus

EMBED BERT 58.2 52.9

GloVe 55.0 52.5

Rand 44.6 43.3

w/o Denoising 45.0 39.5

w/o Constraint 38.9 37.1

Table 4. Evaluation Accuracies on GEO and ATIS with the increase of iterations.

GEO ATIS

Iterative updating

Iter.1 41.4 37.7

Iter.2 49.3 44.6

Iter.3 57.1 48.0

Iter.4 58.9 52.5

Iter.5 58.2 52.9

knowledge constraints during decoding (–Constraint). We can see that: 1) Both utter-
ance denoising and constrained decoding are effective. In average on all three datasets,
removing denoising results in 12.0 accuracy drop and removing constrained decoding
results in 16.4 accuracy drop. 2) Constrained decoding is more helpful than denoising.
We believe this is because the grammar and the knowledge-base can effectively improve
the quality of automatically generated parallel data, from which a new lexicon is built
and is further used to synthesize new parallel data.
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Fig. 5. Test accuracies on ATIS with different amounts of labeled data.

Effects of Word Embeddings. To analyze the effects of word embeddings settings, we
compare our method with different settings of word embeddings: BERT – word rep-
resentations are from the pretrained BERTLARGE [11]; GloVe – word embeddings are
initialized by GloVe [31]; Rand – the word embeddings are initialized by uniformly
sampling within the interval [-0.2, 0.2], and the unseen words are all presented as UNK
token. We can see that the pretrained word embeddings can effectively improve the
model. We believe this is because it empowers the model with better representation and
helps the model generalize to similar words.

Effect of Data Synthesis. To analyze the effectiveness of synthesized data, we: 1) com-
pare our models with Golden MRs – in which all utterances are synthesized from the
manually labeled meaning representations in original corpus; 2) increase the amount of
sampled meaning representations from ×0.1 to ×10 size of the original labeled data.
The results on GEO are shown on Fig. 4.

We can see that: 1) the graph sampling algorithm can effectively sample meaning
representations – compared with Golden-MRs, our method can achieve nearly the same
performance with ×1 dataset. 2) The data synthesis is useful, when the size of data
increases from ×0.1 to ×1, the performance gradually increases. We also noticed that
when the data size exceeds the original data, the performance of the model does not
improve much. We believe that this is because too much data generated with a certain
amount of noise can no longer provide useful supervision information.

Effect of Iterative Bootstrapping. Table 4 shows the accuracies by increasing the num-
ber of iterations. We can see that: 1) the iterative data-model refining is effective: when
we conduct more refining iterations, the performance gradually increases and stabilizes
at a reasonable level – from 41.4 accuracy in Iter 1 to 58.9 in Iter 4 in GEO; 2) The boot-
strapping process can reach its equilibrium within few iterations: for GEO in 5 iterations
and for ATIS in 4 iterations.

Semi-supervised Learning. To investigate the effectiveness of our method given some
additional labeled instances, we vary the amount of labeled data from 0 to all labeled
data. Our model can use the labeled data to train semantic parser and induce lexicon in
each iteration. Seq2Seq can only use the labeled data. Dual learning [6] forms a closed
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loop to learn unlabeled data in reinforcement learning. In Fig. 5, We can see that our
model enhances semantic parsing over most settings. Especially, our model has obvious
advantages when there is a small amount of labeled data.

5 Related Work

Neural Semantic Parsers. In recent years, neural semantic parsers have achieved sig-
nificant progress. Neural parsers model semantic parsing as a sentence to logical form
translation task [20–22,44], And many constrained decoding algorithms are also pro-
posed [9,20,25,27];

Data Scarcity in Semantic Parsing. Witnessed the labeled data bottleneck problem,
many techniques have been proposed to reduce the demand for labeled logical forms.
Many weakly supervised learning are proposed [1,2,4,35], such as denotation-base
learning [14,30], iterative searching [10]. Semi-supervised semantic parsing is also
proposed, such as variational auto-encoding [48], dual learning [6], dual information
maximization [46], and back-translation [38]. Constrained language models are also
proposed to resolve few-shot semantic parsing [36,43].

Unsupervised Semantic Parsers. There are also some unsupervised semantic parsers,
such as USP [32] proposes the first unsupervised semantic parse, and GUSP [33] builds
semantic parser by annotating the dependency-tree nodes and edges. Wang et al. [15]
select high confidence pairs for unsupervised learning. Two-stage [7] train unsupervised
paraphrasing model with non-parallel data for semantic parsing.

6 Conclusions

We propose a data synthesis and iterative data-model refining algorithm for neural
semantic parsing, which can build semantic parsers without labeled data. In our method,
the naive corpus is generated from scratch by grammar-based method and knowledge
base schemas, and the corpus is improved on bootstrapping to refine model and data
with the knowledge of language models and knowledge bases constraints. Experimental
results show our approach can achieve promising performance in unsupervised settings.
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