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Abstract. Machine translation quality estimation (QE) aims to evalu-
ate the quality of machine translation automatically without relying on
any reference. One common practice is applying the translation model as
a feature extractor. However, there exist several discrepancies between
the translation model and the QE model. The translation model is
trained in an autoregressive manner, while the QE model is performed in
a non-autoregressive manner. Besides, the translation model only learns
to model human-crafted parallel data, while the QE model needs to
model machine-translated noisy data. In order to bridge these discrep-
ancies, we propose two strategies to post-train the translation model,
namely Conditional Masked Language Modeling (CMLM) and Denoising
Restoration (DR). Specifically, CMLM learns to predict masked tokens
at the target side conditioned on the source sentence. DR firstly intro-
duces noise to the target side of parallel data, and the model is trained to
detect and recover the introduced noise. Both strategies can adapt the
pre-trained translation model to the QE-style prediction task. Experi-
mental results show that our model achieves impressive results, signif-
icantly outperforming the baseline model, verifying the effectiveness of
our proposed methods.

Keywords: Quality estimation - Machine translation - Denoising
restoration

1 Introduction

Machine translation has always been the hotspot and focus of research. Com-
pared with traditional methods, neural machine translation (NMT) has achieved
great success. However, current translation systems are still not perfect to meet
the real-world applications without human post-editing. Therefore, to carry out
risk assessment and quality control for machine translation, how to evaluate the
quality of machine translation is also an important problem.
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Quality Estimation (QE) aims to predict the quality of machine transla-
tion automatically without relying on reference. Compared with commonly used
machine translation metrics such as BLEU [18] and METEOR [13], QE can be
applicable to the case where reference translations are unavailable. It has a wide
range of applications in post-editing and quality control for machine translation.
The biggest challenge for QE is data scarcity. Since QE data is often limited in
size, it is natural to transfer bilingual knowledge from parallel data to the QE
task.

One well-known framework for this knowledge transfer is the predictor-
estimator framework, in which the predictor is trained on large parallel data
and used to extract features, and the estimator will make quality estimation
based on features provided by the predictor. The predictor is usually a machine
translation model, which can hopefully capture the alignment or semantic infor-
mation of the source and the target in a pair. Kim et al. [11] first proposed to use
an RNN-based machine translation model as the feature extractor, to leverage
massive parallel data to alleviate the sparsity of annotated QE data. Wang et
al. [23] employed a pre-trained translation model as the predictor and added
pseudo-PE information to predict translation quality.

However, there are two discrepancies between machine translation and qual-
ity prediction, which impedes the NMT model to be directly adopted for feature
extraction. i) Translation task is usually a language generation task trained in an
autoregressive manner, where each token is only conditioned on previous tokens
unidirectionally. But QE is a language understanding task performed in a non-
autoregressive manner, therefore each token could attend to the whole context
bidirectionally. ii) The predictor is trained on human-crafted parallel data and
only learns to model the alignment between correct translation pairs. However,
the QE task needs to model machine-translated, imperfect translation pairs.
Both discrepancies may hinder the adaptation of the pre-trained NMT model to
the downstream QE task, leading a degradation of model performance [25].

In this paper, we propose two strategies to alleviate the discrepancies, named
as Conditional Mask Language Modeling (CMLM) and Denoising Restoration
(DR). Both strategies are applied to the pre-trained NMT model and can be
deemed as a post-training phase. The CMLM is to train the NMT model to
recover the masked tokens at the target side in a non-autoregressive manner,
where each token can attend to the whole target sequence bidirectionally. Fur-
thermore, the DR first generates erroneous translation by performing condition-
ally masked language modeling, and then trains the NMT model to detect the
introduced noise and recover the target sequence, which is also performed in a
non-autoregressive manner. Both methods can adapt the autoregressive NMT
model to non-autoregressive QE prediction. Moreover, compared with CMLM,
DR removes the introduction of [MASK] token (which may also cause the dis-
crepancy between pre-training and QE prediction). Besides, adversarially using
another model with knowledge distillation to generate noise could provide more
natural and harder training samples, thereby pushing the translation model bet-
ter model the semantic alignment between the imperfect translation and source
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sequence. After the post-training phase, the NMT model is better adapted to
the quality prediction task, and can serve as a better feature extractor.
Our contributions can be summarized as follows:

— We propose two strategies for post-training the NMT model to bridge the
gaps between machine translation and quality estimation, which can make
the NMT model more suitable to act as the feature extractor for the QE
task.

— We conduct experiments on the WMT21 QE tasks for En-Zh and En-De
directions, and our methods outperform the baseline model by a large margin,
proving its effectiveness. We also perform in-depth analysis to dig into the
discrepancies between translation and quality prediction.

2 Background

2.1 Task Description

Quality Estimation aims to predict the translation quality of an MT system
without relying on any reference. In this task, the dataset is expressed in the
format of triplet (s,m, q), where s represents the source sentence, m is the trans-
lation output from a machine translation system, and ¢ is the quality score of
machine translation.

Generally, Quality Estimation task includes both word-level and sentence-
level tasks. In word-level task, the prediction is done both on source side (to
detect which words caused errors) and target side (to detect mistranslated or
missing words). In sentence-level task, it will mark each sentence with a score,
which can be calculated based on different standards, consists of Human-targeted
Translation Edit Rate (HTER) [21], Direct Assessment (DA) [8], Multidimen-
sional Quality Metrics (MQM) [15], etc. In this work, we mainly focus on sentence
level post-editing effort prediction, which is measured by:

HTER = (I+ D+ R)/L, (1)

where I, D and R are the number of Insertions, Deletions and Replacement
operations required for post-editing, and L is the reference length. However,
labeling the data requires post-editing for the machine translations by experts,
leading the label of QFE data too expensive to obtain, which makes QE highly
data-sparse.

2.2 Previous Work

Generally, sentence-level QE is fomulated as a regression task. Early approaches
were based on features fed into a traditional machine learning method, such as
QuEst++ [22] and MARMOT [14] system. These model usually has two mod-
ules: the feature extraction module and the classification module. But they relied
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on heuristic artificial feature designing, which limits their development and appli-
cation [10]. With the increasing popularity of deep learning methods, researchers
resort to distributed representations and recurrent networks to encode transla-
tion pairs. However, the limited size of training samples impedes the learning
of deep networks [16]. To solve this problem, a lot of research has been done
to use additional resource (both bilingual and monolingual) to strengthen the
representation [11]. After the emergence of BERT [5], some work attempts to use
the pre-trained language model as a predictor directly and add a simple linear
on top of the model to obtain the predictions [1,2]|, which has led to significant
improvements.

Among all the deep learning-based methods, one commonly used framework
for QE is the predictor-estimator framework, where the predictor is used as a
feature extractor and the estimator uses the features to make predictions. The
predictor is usually a translation model, which can alleviate the problem of data
sparsity by transferring bilingual knowledge from parallel data. Kim et al. [11]
firstly proposed the predictor-estimator framework to leverage massive parallel
data to improve QE results, they applied an RNN-based machine translation
model as the predictor and added a bidirectional RNN as estimator to predict
QE scores, which achieved excellent performance especially in sentence-level QE.
Fan et al. [6] used Transformer-based NMT model as the predictor to extract
high-quality features, and used 4-dimensional mis-matching features from this
model to improve performance. Wang et al. [24] pre-trained left-to-right and
right-to-left deep Transformer models as the predictor and introduced a multi-
layer bidirectional Gated Recurrent Unit (Bi-GRU) as the estimator to make
prediction. Wu et al. [26] reformed Transformer-based predictor-estimator by
using multidecoding during the machine translation module, then implemented
LSTM-based and Transformer-based estimator with top-K and multi-head atten-
tion strategy to enhance the sentence feature representation. Wang et al. [23]
employed a pre-trained translation model as the predictor and added pseudo-PE
information to predict translation quality, which obtained the best result in the
English-German direction of WMT20. However, despite various of improvement
has been made on the predictor-estimator framework, the discrepancy prob-
lem between machine translation and quality estimation is not systematically
investigated.

3 Approach

In this section, we first describe the NMT-based QE architecture, and then
describe our proposed post-training strategies.

3.1 QE Architecture

The QE architecture is shown in Fig. 1. Our work follows the predictor-estimator
framework. The predictor is a translation model trained with the transformer
architecture on parallel data, which has learned the feature extraction ability of
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Fig. 1. The illustration of the QE model. The source and mt sentence are fed into
encoder and decoder respectively. The BAL is integrated after the self-attention layer
and the FFN layer, respectively. In order to better adapt to QE task, the causal mask
in decoder is removed.

bilingual inputs after a long-term and large-scale pre-training. Therefore, adding
only a linear layer on the top of translation model and fine-tuning with a small
amount of QE data can achieve promising results.

As shown in Fig. 1, the final hidden vector of the neural machine translation
model corresponding to the first input token is fed into a simple linear layer to
make quality prediction, which is given by:

HTERpeq = WIR® + by, (2)

where h(9) € RH is the hidden vector of the first input token, W € R¥ represents
a weight matrix, H is the dimension of hidden states, by € R! is the bias. The
loss function is the mean squared error between HTER,..q and HTER¢pye,
which can be written as:

Lop = MSE(HTERyyeq, HTER..) (3)
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Since the size of training dataset is relatively small, the model is easy to
be over-fitted when all parameters are updated. Incorporating the insights from
Wang et al. [23], the Bottleneck Adapter Layers (BAL) [9] are integrated into the
neural machine translation model, which alleviates the problem of overfitting by
freezing the parameters of the original model. The BAL is implemented with two
simple fully-connected layers, a non-linear activation and residual connections,
where the hidden representations are first expanded two times and then reduced
back to the original dimension.

3.2 Conditional Masked Language Modeling

The Conditional Masked Language Modeling is illustrated in Fig.2. Despite
using the same architecture as the machine translation model, the CMLM utilizes
a mask language modeling objective at the target side [7]. The source sentence
is sent to the encoder, while some tokens are corrupted at the target side. Then
the CMLM is trained to recover the corrupted target sentence.

1 1 “F 1 } 1

[ Encoder Decoder ]

r 1 [ T T ot r ot f 1

| | | | | | | | I
Contemporary ~ youth  should  study hard - L [mask] [z [mask]  FE3

Fig. 2. The illustration of the CMLM. At the target side, some tokens are replaced
with [mask| symbol or random token. Note that it also needs to remove the casual
mask in decoder.

In terms of implementation, given a parallel sentence pair <x,y>, we gen-
erate a corrupted sentence y with a 25% mask ratio. When the i-th token is
chosen to be masked, it may be replaced with the [MASK]| token 20% of the
time or a random token 80% of the time. The training objective for CMLM is to
maximize: P(y;|z,y’), where y; is the i-th token, 2 and y’ represent the source
sentence and the corrupted target sentence, respectively. More specifically, we
reuse the parameters of the neural machine translation model instead of training
the model from scratch, and the model is trained with data in the same domain
as the QE data.

Translation model is a natural language generation model trained in an
autoregressive manner, where each token can only pay attention to the tokens
before it, and the tokens after it are masked out. On the contrary, QE task is a
natural language understanding task in which each token needs to be concerned
with the whole context. Through this mask-prediction task focusing on bidirec-
tional information, the model can learn the context-based representation of the
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token at the target side, thereby adapting the unidirectional NMT decoder to
the bidirectional prediction task.

3.3 Denoising Restoration

Inspired by Electra [3], to further mitigate the discrepancy of data quality, we
apply the Denoising Restoration strategy to post-train the neural machine trans-
lation model. The model architecture is illustrated in Fig. 3, which can be divided
into the Noiser and the Restorer. The Noiser is used to create noisy samples, and
the restorer is used to recover the noisy samples. After that, only the Restorer
would be used as the predictor and the Noiser would be dropped.

Restorer \

Encoder Decoder }

71 1 1 1 7
AT k=2 fs  wEY @EE

Iy 4 Iy Iy + Iy
Noiser \ \ \ \ \ \

Encoder Decoder }
1 1 1 1 f 1 f 1 1 1 1 1 1
F----- F----- F----- i------- 1------ {------ b= | | | | | [
1 He put on a mask for  safety . i AT [mask] 1t wLET  [mask]

Fig. 3. The Noiser-Restorer architecture.

The Noiser is first trained to introduce noise at the target side. It has the
same architecture as the CMLM, the difference is that we utilize the decoding
results of the to-be-evaluated NMT model as the training objective of the Noiser,
where the to-be-evaluate NMT model is used to generate QE data. Specifically,
given a parallel sentence pair <z,y>, we use the to-be-evaluted NMT model
to generate the translation g of x. Then the Noiser is trained with the new
parallel sentence pair <z, 7>. After the training of the Noiser, we put the Noiser
and the Restorer together for training with parallel data<z,y>. Moreover, it
is performed by dynamic mask strategy with the masked positions decided on-
the-fly, where the mask ratio is same as that of the CMLM. The loss function is
defined as follows:

L

Lpr=—Y logP(l =1z, §)l; € {1,2,...,V}, (4)
=1

where L is the length of sentence, § is the sentence generated by the Noiser, V'
is the size of vocabulary.

The reason for introducing Noiser is that in the CMLM strategy, there is a
large deviation between the sentences generated by randomly adding noise and
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real machine translation, which is easily detected and may limit the performance.
Limited by the performance of the Noiser, it is certain that not all tokens can
be recovered completely and correctly. Therefore, the target sequence generated
by the Noiser is noisy compared with reference translation. Meanwhile, since
the Noiser utilizes a decoder with language modeling capabilities for generation,
the generated sentences are more natural without obvious lexical and syntactic
errors. Similarly, real machine translation noise is also natural and does not have
significant lexical and syntactic errors, so the noise generated by the Noiser is
closer to the real noise distribution than the noise generated by random replace-
ment. A possible example is shown in the Fig. 3.

In addition, we utilize knowledge distillation technique [12] in the Noiser,
which is used to transfer specific patterns and knowledge among different
sequence generation models. In our scenario, the decoding process of the to-be-
evaluated NMT model has a fixed pattern, so the translation results obtained by
decoding the source sentences with this NMT model contains the noise distri-
bution of the to-be-evaluated NMT model. When the Noiser learns to recover a
corrupted token, both training objectives and context are generated by this NMT
model. Hence, the obtained Noiser would have a similar decoding space with the
to-be-evaluated NMT model. Note that the Noiser could produce pseudo trans-
lations with the same length as the reference translation, which is convenient for
later training.

Despite both adopting non-autoregressive training objective, the difference
between CMLM and Restorer lies in the source of noise. The noise of CMLM
comes from random masking, while the noise of Restorer comes from language
model generation. On the one hand, the noise generated by the Noiser is more
consistent with the noise distribution of the to-be-evaluated NMT model, so
during the training, the Restorer can learn the modeling ability for noise data
with specific distribution. On the other hand, since the noise generated by the
Noiser is more natural and more difficult to identify, the obtained Restorer would
have a better feature extraction ability and can identify trivial translation errors.
In cases where QE needs to model machine-translated noisy data, the Restorer
is more suitable for QE task.

4 Experiments

4.1 Settings

Dataset. Our experiments focus on the WMT21 QE tasks for English-to-
Chinese (En-Zh) and English -to-German (En-De) directions. The QE data in
each direction contains a training set of 7000, a validation set of 1000, and a
test set of 1000. Besides, we also use the test set of WMT20. To train our own
NMT model, we use the En-Zh and En-De parallel data released by the organiz-
ers', which contains roughly 20M sentence pairs for each direction after cleaning.
For the CMLM and DR, We first trained a BERT-based domain classifier and

! https://www.statmt.org/wmt21/quality-estimation-task.html.
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then screened 200K in-domain data from WikiMatrix for each direction®. The
validation set we use is the training set of the QE task.

Implementation Details. All our programs are implemented with Fairseq [17].
For the NMT model, we use Transformer-base architecture. We apply byte-pair-
encoding (BPE) [20] tokenization to reduce the number of unknown tokens and
set BPE steps to 32000. The learning rate is set to 5e—4. This setting is adopted
in both En-Zh and En-De directions.

For the CMLM, the casual mask is removed and learning rate is set to 5e-5.
For the Noiser-Restorer model, the parameters of the Noiser are frozen and the
learning rate for the Restorer is 5e—5. For the Noiser, we use the decoding results
of the to-be-evaluated NMT model as the training objective. We use inverse-
square-root scheduler in above three models. For the QE model, it trained for 30
epochs and the hyperparameter patience is set to 5. The activation function in
the BAL is ReLU. We batch sentence pairs with 4096 tokens and use the Adam
optimizer with 51 = 0.9, B2 = 0.98 and ¢ = 10~8 . The learning rate is le-4
without any scheduler.

The training data for all models is preprocessed by Fairseq based on the
vocabulary and BPE vocabulary of the NMT model. For fair comparison, we
tune all the hyper-parameters of our model on the validation data, and report
the corresponding results for the testing set. The main metric we use is Pearson’s
Correlation Coefficient. We also calculate Spearman Coefficient, but it is not a
ranking reference in the QE task.

4.2 Main Results

We compare our models with the following methods:

PLM-Baseline: Pre-training language models (PLM) are directly used as the
predictor without integrating the BAL layer. In our experiments, DistilBert [19]
and XLM-RoBERTa [4] were selected, and the baseline of organisers is also
implemented by XLM-RoBERTa.

NMT-Baseline: An NMT model pre-trained on parallel data is used as the
predictor, where NMT(finetune) is obtained by continuing to finetune on the
in-domain data used by CMLM and DR.

The experimental results in both En-Zh and En-De directions are reported
in Table 1. The Test20 is officially corrected, so there are no up-to-date results.
As can be seen, the performance of the baseline model is relatively poor. By
leveraging MLM training strategies, the CMLM can better focus on contextual
information and achieves much better performance than NMT model. Moreover,
the denoising restoration strategy further enhances the feature extraction ability
of Restorer by introducing noise that is consistent with the distribution of NMT
and outperforms the CMLM in two language pairs. This illustrates that our
approaches alleviate the discrepancy between the NMT model and the QE model,

2 http://data.statmt.org/wmt21 /translation-task /WikiMatrix.
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Table 1. Experiment results on both En-Zh and En-De directions. ‘XLM-R’ and ‘Dis-
tilIBERT’ are implemented by us based on XLM-RoBERTa and DistilBERT. ‘Avg’
represents the average value of the pearson over two datasets. ‘-’ indicates missing

results.
Direction | System Test21 Test20 Avg
Pearson | Spearman? | Pearson] | Spearman?

En-Zh XLM-R (WMT-baseline) | 0.282 - - - 0.282
DistilBert 0.257 0.223 0.340 0.334 0.299
XLM-R 0.265 0.219 0.323 0.318 0.294
NMT 0.286 0.242 0.322 0.312 0.304
NMT (finetune) 0.294 0.243 0.322 0.311 0.308
CMLM 0.334 0.273 0.355 0.345 0.345
DR 0.342 0.275 0.362 0.353 0.352

En-De XLM-R (WMT-baseline) | 0.529 - - - 0.529
DistilBert 0.466 0.433 0.432 0.427 0.449
XLM-R 0.537 0.492 0.469 0.464 0.503
NMT 0.528 0.491 0.427 0.424 0.478
NMT (finetune) 0.532 0.491 0.438 0.430 0.485
CMLM 0.569 0.518 0.450 0.437 0.509
DR 0.577 0.521 0.460 0.424 0.519

thereby making the NMT model better adapted to the QE task. Combined
with the official ranking, in En-Zh direction, our single model outperforms other
systems except the first place (which adapt multiple ensemble techniques and
data-augmentation).

The CMLM and DR also perform better than the fine-tuned NMT model,
which indicates the performance gains of them are not due to the introduction
of additional datasets. Besides, the NMT-based models are more effective than
PLM-Baseline in most of the comparisons, we consider that the NMT model is
naturally fit for machine translation related tasks, benefiting from the knowledge
of bilingual alignment.

5 Analysis

5.1 The Impact of Mask Ratio and [MASK] Symbol

During the training stage, the number of corrupted tokens may affect the perfor-
mance of the model, which is related to the mask ratio. We conduct experiments
to study the impact of different mask ratio and the results are illustrated in
Fig. 4.
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Fig. 4. The illustration of the CMLM. At the target side, some tokens are replaced
with [mask| symbol or random token. Note that it also needs to remove the casual
mask in decoder.

We find that the two diagrams exhibit roughly the same pattern. The QE
performance first improves, but when the mask ratio is too high, the results
start to decline. This is because as the mask ratio increases, the quality of the
pseudo data is gradually approaching the real machine translation, therefore the
model can better model semantic alignment between the imperfect translation
and source. However, when the mask ratio is too high, most of the input sen-
tence is covered and it is too difficult for the model to restore them, thus the
model can barely learn anything useful and the performance is degraded. We
also observe that the performance peak of the Noiser-Restorer model in En-Zh
direction comes later than that in the En-De direction. One possible reason is
that the Noiser in the En-Zh direction performs better than that in the En-De
direction, we will explain this in the next subsection.
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In the CMLM strategy, among the corrupted tokens, some will be replaced
with [MASK] symbol, and the others will be replaced with random tokens. We
fix the mask ratio and then gradually increase the proportion of corrupted tokens
replaced with [MASK]| symbol to study the impact of introducing [MASK]| sym-
bol. The results are presented in Fig.5. We can observe that performance get
worse as the introduced [MASK] symbol increases. It may be caused by the
mismatch between pre-training and fine-tuning when too many [MASK] tokens
are introduced, as they never appear during the fine-tuning stage. Furthermore,
using only random replacement does not give the best results, which proves that
the performance improvement brought by DR is not only due to the removal of
[MASK] symbol but also benefits from the introduction of natural noise close to
the real machine translation.

5.2 The Impact of Knowledge Distillation

In the implementation of the Noiser, we use the decoding results of the to-be-
evaluated NMT model as the training objective of the Noiser. Our motivation
is to make the Noiser learn the knowledge implied by to-be-evaluated model, so
as to generate sentences that is closer to the noise of real machine translation.
We conduct experiments to verify the effective of this scheme, and the results
are shown in Table 2.

Table 2. The comparison results of Noiser-Restorer under two strategies. ‘w/ kd” and
‘w/0 kd’ denote with or without knowledge distillation, respectively. The ‘MAE’ is the
Mean Absolute Error.

Direction | System Test21 Test20 Avg
Pearson] | MAE| | Pearson| | MAE|
En-Zh Noiser-Restorer w/o kd | 0.328 0.240 1 0.346 0.226 | 0.337
Noiser-Restorer w/kd |0.334 0.202 | 0.360 0.233 |0.347
En-De Noiser-Restorer w/o kd | 0.546 0.125  0.449 0.144 |0.498
Noiser-Restorer w/ kd |0.549 0.128 1 0.436 0.133 | 0.493

For a fair comparison, we extracted another dataset from WikiMatrix instead
of the one used to train the Noiser for experiments. According to the experimen-
tal results, we find that the scheme plays an obvious role in the En-Zh direc-
tion, which shows that the Noiser generates pseudo data consistent with the
noise distribution of the to-be-evaluated NMT model, thereby improving the
performance. However, the situation is different for the En-De direction, where
the results are not improved or even slightly decreased as a whole. We specu-
late that it may be affected by the performance of the to-be-evaluated neural
machine translation model. We studied the QE dataset and came up with the
results shown in the Table 3.
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Table 3. The statistical results of translation quality for QE dataset in En-Zh and
En-De directions. The values in the table represent the average value of hter label.

Direction | train | valid |test21 | test20
En-Zh 0.4412|0.2839 | 0.2283 | 0.3329
En-De 0.1784 1 0.1830 | 0.1754 | 0.1667

HTER indicates human-targeted translation edit rate, and the higher HTER
is, the worse the translation quality is. As can be seen in Table 3, the average
value of HTER in the En-Zh direction is generally higher than that in the En-
De direction. This shows that the to-be-evaluated NMT model has a better
translation effect in the En-De direction, thus the machine translation is not
much different from the reference translation. It is difficult for Noiser to learn
the pattern contained in the NMT model, so the knowledge distillation does not
play a significant role.

5.3 Different Loss Calculation Methods

Base on previous researches, there are two ways to calculate the loss:

i. Following BERT, calculating the loss only on the small subset that was
masked out.
ii. Calculating the loss over all input tokens at the target side.

Table 4. Experimental results of different loss calculation methods in En-Zh and En-
De directions. ‘Only-Corrupted’ and ‘All-Tokens’ mean the loss is calculated on the
corrupted tokens and all input tokens, respectively.

Direction | System Test21 Test20 Avg
Pearson] | MAE| | Pearson| | MAE]

En-Zh Only-Corrupted | 0.328 0.217 1 0.348 0.227 | 0.338

All-Tokens 0.334 0.202  0.355 0.233 |0.345
En-De Only-Corrupted | 0.574 0.125 | 0.445 0.136 |0.510
All-Tokens 0.568 0.126 |0.450 0.132 | 0.509

We compare these two methods on the CMLM strategy and the results are
shown in Table 4. In the En-Zh direction, the method of calculating the loss on all
tokens is better than that only on the corrupted tokens. However, the situation is
a little different in the En-De direction. We speculate that English and German
belong to the same family of languages, and the prediction is relatively simple,
so adding this additional information has little effect. Overall, the performance
of the two methods is roughly equivalent.



210 C. Li et al.

6 Conclusion

When applying the pre-trained machine translation model to feature extraction
for QE, there are two discrepancies between the NMT model and the QE model.
One is the difference in data quality, the other is the regressive behavior of the
decoder. In this paper, we propose two strategies to adapt the neural machine
translation model to QE task, namely Conditional Masked Language Modeling
and Denoising Restoration. The CMLM adopts a mask-prediction task at the
target side, which allows the model to learn context-based representations. More-
over, the DR employs a Noiser-Restorer architecture, where the Noiser is used
to generate sentences with the same noise distribution as machine translation,
then the Restorer will detect and recover the introduced noise. Compared with
the original NMT model, our methods bridge the gaps between the NMT model
and the QE model, making it more suitable for the QE task. The experimental
results verify the effectiveness of our methods.

The main work in this paper focuses on sentence-level task. Intuitively, the
discrepancy also exists on word-level quality estimation when applying the pre-
trained NMT model, and our strategies could function without any adaptation.
Besides, enhancing the estimator can also improve QE performance, and we will
leave this as our future work.
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