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Preface

Welcome to the proceedings of the 21st China National Conference on Computational
Linguistics (CCL 2022). The conference and symposium were hosted and co-organized
by Jiangxi Normal University, China.

CCL is an annual conference (bi-annual before 2013) that started in 1991. It is the
flagship conference of the Chinese Information Processing Society of China (CIPS),
which is the largest NLP academic and industrial community in China. CCL is a
premier nation-wide forum for disseminating new scholarly and technological work in
computational linguistics, with a major emphasis on computer processing of the lan-
guages in China such as Mandarin, Tibetan, Mongolian, Kazakh, Uyghur and their
dialects. The Program Committee selected 86 papers (64 Chinese papers and 22
English papers) out of 293 submissions for publication. The acceptance rate is 29.35%.
The 22 English papers cover the following topics:

– Linguistics and Cognitive Science (1)
– Fundamental Theory and Methods of Computational Linguistics (2)
– Information Retrieval, Dialogue and Question Answering (5)
– Text Generation and Summarization (1)
– Knowledge Graph and Information Extraction (3)
– Machine Translation and Multilingual Information Processing (2)
– Minority Language Information Processing (1)
– Language Resource and Evaluation (2)
– NLP Applications (5)

The final program for the 21st CCL was the result of intense work by many dedi-
cated colleagues. We want to thank, first of all, the authors who submitted their papers,
contributing to the creation of the high-quality program. We are deeply indebted to all
the Program Committee members for providing high-quality and insightful reviews
under a tight schedule, and extremely grateful to the sponsors of the conference.
Finally, we extend a special word of thanks to all the colleagues of the Organizing
Committee and secretariat for their hard work in organizing the conference, and to
Springer for their assistance in publishing the proceedings in due time.

We thank the Program and Organizing Committees for helping to make the con-
ference successful, and we hope all the participants enjoyed the CCL conference in
Nanchang.

October 2022 Maosong Sun
Yang Liu

Wanxiang Che
Yang Feng
Xipeng Qiu
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Discourse Markers as the Classificatory
Factors of Speech Acts

Da Qi1 , Chenliang Zhou1 , and Haitao Liu1,2(B)

1 Department of Linguistics, Zhejiang University, Hangzhou, China
{da.qi,cl.zhou,htliu}@zju.edu.cn

2 Center for Linguistics and Applied Linguistics, Guangdong University of Foreign
Studies, Guangzhou, China

Abstract. Since the debut of the speech act theory, the classification
standards of speech acts have been in dispute. Traditional abstract tax-
onomies seem insufficient to meet the needs of artificial intelligence for
identifying and even understanding speech acts. To facilitate the auto-
matic identification of the communicative intentions in human dialogs,
scholars have tried some data-driven methods based on speech-act anno-
tated corpora. However, few studies have objectively evaluated those
classification schemes. In this regard, the current study applied the fre-
quencies of the eleven discourse markers (oh, well, and, but, or, so,
because, now, then, I mean, and you know) proposed by Schiffrin [24]
to investigate whether they can be effective indicators of speech act vari-
ations. The results showed that the five speech acts of Agreement can
be well classified in terms of their functions by the frequencies of dis-
course markers. Moreover, it was found that the discourse markers well
and oh are rather efficacious in differentiating distinct speech acts. This
paper indicates that quantitative indexes can reflect the characteristics
of human speech acts, and more objective and data-based classification
schemes might be achieved based on these metrics.

Keywords: Speech act · Discourse marker · Hierarchical cluster
analysis

1 Discourse Markers and the (Dis)agreement Continuum

A discourse marker (DM) is a word or phrase that people often use in the process
of communication, and its main function is to coordinate and organize discourse
to ensure the smooth flow of conversation. In addition, as a carrier of pragmatic
information, it usually reflects speakers’ mental states and communicative inten-
tions, thus facilitating pragmatic inference [9]. In this regard, Fraser [8, p. 68]
defined DMs as “linguistically encoded clues which signal the speaker’s potential
communicative intentions”. Although scholars have never reached a consensus
on the definition of DMs, no one would doubt their diverse discursive functions
and the capability to transmit communicative intentions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-18315-7_1
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When analyzing the functions of DMs, scholars also differ considerably in
terms of their frameworks and research paradigms. Ariel [3] distinguished DMs
from a semantic perspective: a DM either possesses a semantic meaning, which
is interpreted in a particular context with some connection to its form (e.g., and
and I mean); or it does not contain any semantic information (e.g., well and oh).
However, Matei [17] pointed out that although some DMs contain rich semantic
information, there are particular contexts in which the communicative intention
it conveys is not related to the semantic information it carries. For example, in
some cases, the DM and can be used as a discourse continuative, filler word, and
buffer term, etc.

Some scholars analyzed the range of functions through the functional-
cognitive approach, which shows that DMs have a specific rather than a com-
pletely arbitrary range of functions [7,21]. Ariel [3, pp. 242–243] also expressed
support for the non-arbitrary nature of DM functions. She explicated this view in
terms of the correspondence between form and function and argued that there
are two probabilistically similar possibilities for the form-function correspon-
dence, one in which a form corresponds to multiple functions and the other in
which a function corresponds to multiple forms. She further claimed that these
two possible relationships do not indicate syntactic arbitrariness but are char-
acterized by unpredictability since the same form may evolve to express many
innovative meanings. In this sense, functionalists argue that the universality of
DM forms (as opposed to the uniformity of forms) is functionally driven.

The above investigations of DM functions have helped us to gain a deep
and broad understanding of DMs’ nature and their functional orientations in
various contexts. However, as Matei [17] mentioned, there is a great deal of
uncertainty in DMs’ functions, and even those with a relatively fixed semantic
meaning may produce new and rare uses in some contexts. In addition, the one
form - many functions and one function - many forms nature of DMs, as well as
the innovative nature of their functions, also make their functions perform in a
variety of ways. Thus, it is difficult to assess all the functions of DMs through an
in-depth analysis of the discourse material one by one (the workload is too large).
If we want to characterize all aspects of certain DMs and explore the patterns of
these linguistic units full of uncertainties and probabilities, it is better to apply
an approach that is suitable for approximating all the features possessed by the
DMs.

Another consideration in employing this approach is that human commu-
nicative intentions are themselves fraught with probabilities and uncertainties.
As pointed out by the Speech Act Theory, there is not always a clear correspon-
dence between the words people express and their functions, and speech acts
are also characteristic of one form - many functions and one function - many
forms as mentioned by Ariel [3,11]. A more extreme example, such as Kennst
du das Land wo die Zitronen blühen? (Knowest thou the land where the lemon
trees bloom?), can even express the communicative intention “I am a German
soldier” [25]. By the same token, the various DMs proposed by previous authors,
such as the eleven DMs by Schiffrin [24] (oh, well, and, but, or, so, because, now,
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then, I mean, and you know), may occur in various speech acts depending on
the specific speech context.

To address the function of DMs and the probability and uncertainty of human
communicative intentions, the present paper tries to introduce some basic proba-
bilistic and statistical methods, such as the hierarchical cluster analysis (HCA),
to quantitatively analyze the DMs contained in specific communicative inten-
tions. Our aim is to examine whether certain indicators of DM (e.g., their per-
centage of frequency of occurrence in different speech acts) can effectively distin-
guish the communicative functions embodied in differing speech acts to propose
a new research methodology for DM-related studies.

In the current study, the frequency of different DMs in differing speech acts
was investigated as a possible defining feature for the distinction of communica-
tive intentions. The reason for doing so is that DMs carry diverse pragmatic and
contextual information [21]. In this regard, the frequency of DMs may reflect
the pragmatic characteristics of different speech acts, which may help us better
explore the patterns of human communicative intentions.

Since we want to examine whether the frequency of DMs can effectively
distinguish different speech acts, these DMs should first be able to reflect the
differences between speech acts that differ significantly, e.g., agreement and dis-
agreement, thanks and apology, etc. Next, we may examine whether it can reflect
the slight differences between similar speech acts. Therefore, in the current paper,
we applied the continuum of (dis)agreement (accept, partially accept, hedge, par-
tially reject, and reject) as the object of study to explore whether the frequency
distribution of DMs can accurately capture the nuanced differences in speech
acts.

When analyzing the agreement-disagreement continuum, scholars have
mostly focused on the perception of agreement- and disagreement-like speech
acts by people in specific types of discourses. For example, Mulkay [19] found
that strong disagreement is easier to declare in writing than face to face after
examining the written letters by biochemists. When investigating the arguments
of mentally disabled people, Hewitt et al.’s [10] study showed that regarding con-
flict resolution as the primary goal of arguments detracts from the true nature
of verbal conflicts - they reflect a social continuum of agreement and disagree-
ment [12]. Trimboli and Walker [27] compared dyadic discussions following initial
agreement and disagreement and found that disagreement was more competi-
tive, characterized by high rates of verbalization, increased numbers of turns,
more frequent interruptions, and reduced back channels.

From the studies above, it can be seen that agreement and disagreement
are complex and influenced by various socio-cultural factors, but the specific
mechanisms of their intricacies have been seldom studied, and a more system-
atic and comprehensive understanding has yet to be developed. In the current
study, we attempted to employ the frequency of DMs as well as probabilistic and
statistical methods to examine the speech acts of agreement and disagreement,
complementing the existent findings in discourse analysis.

The research questions of this paper are as follows.
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1. How is the frequency distribution of different DMs under the differing speech
acts in the agreement-disagreement continuum?

2. Can the frequency of DMs effectively reflect the similarity and peculiarity of
the different speech acts?

2 Methods and Materials

2.1 The Hierarchical Cluster Analysis (HCA)

The HCA is an algorithm for clustering the given data. It regards all the data
input as a single cluster and then recursively divides each cluster into two sub-
classes. It enjoys a relatively long history in the study of communicative inten-
tions, including the Speech Act Theory. In the 1960s, scholars had already pro-
posed that human communicative behavior could be structured hierarchically
[22,23]. Some researchers then innovatively employed hierarchical organizations
for speech acts to analyze specific types of discourse, e.g., therapeutic discourse
[15] or interpersonal behavior [6].

Furthermore, some pragmaticians in recent years started to analyze the data
in their experiments with the HCA, especially when they probed into the rela-
tionship between existing classificatory schemes and people’s perception of a
given set of speech acts [11,16]. Though word frequency and other textual indices
were not applied in their studies, it can be revealed that the HCA may be effec-
tive in speech act-related research.

As DMs indicate contextual information and pragmatic relationship, their
frequency of use in utterances could be seen as an indicator of speech act. It is
then plausible to examine whether these objective indices can be hierarchically
clustered in a way that demonstrates the functional similarities and variations
between different speech acts.

2.2 The Switchboard Dialog Act Corpus (SwDA)

The SwDA consists of 1,155 five-minute conversations, including around 205,000
utterances and 1.4 million words from the Switchboard corpus of telephone con-
versations [14,20]. The dialogs in this corpus all happened between two indi-
viduals of different ages, genders, and education levels, and the speech acts of
speakers were annotated according to how participants might expect one sort of
conversational units to be responded to by another. One of the SwDA’s merits
is that there can be more than one speech act within each utterance. This anno-
tation scheme perfectly corresponds with the ideas of Labov and Fanshel, who
criticized the one-utterance-to-one-speech act method of identifying speech acts
in dialogs [15]. In this regard, the results obtained through the SwDA may be
an accurate reflection of the speech act patterns in human beings’ daily dialogs.

According to Jurafsky et al. [14], there are four sets of speech act hyper-
categories that have enough data and meaningful sub-categories - Agreement,
Understanding, Answer, and Information Request. With the 27 kinds of speech
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acts and the 11 DMs in the four hyper-categories, statistical tests can be con-
ducted to get reliable results. Moreover, traditional speech act classifications such
as Searle’s [26], though important, may have some defects, e.g., their abstract-
ness and the overemphasis on speakers. Thus, the SwDA can serve as an ideal
research material by virtue of the following attributes.

First, the corpus makes a more detailed and clear distinction between
the speech acts of agreement and disagreement. According to Jurafsky et
al.’s [14] classification criteria, speech acts expressing speakers’ attitudes are
distinguished into a continuum containing five subcategories - direct approval
(Agree/Accept), partial approval (Maybe/Accept-part), hold before positive
answers (Hedge), partial negation (Dispreferred Answers/Reject-part), and
direct negation (Reject). All of them were annotated based on Allen and
Core’s [1] decision tree (see Fig. 1), which helped control the subjectivity and
the disagreements of the annotators.

Fig. 1. The decision tree for annotating speech acts in the agreement-disagreement
continuum.

Second, the SwDA was annotated based on a shallow discourse tag set, which
can reduce the abstractness of the speech acts owing to the more direct descrip-
tion of human communicative intentions. In addition to that, eight labelers
involved in the project spent about half an hour on labeling each conversation
(the conversations lasted five minutes on average). The labeling accuracy and
the impact of labelers’ subjectivity was evaluated by the Kappa statistic [4,5,18],
and the average pair-wise Kappa was .80, which indicated that the annotating
results were acceptable [14].

We could thus explore not only whether the frequencies of DMs can effectively
distinguish speakers’ affective attitudes through the HCA, but also whether they
can distinguish properties such as the degree of indirectness in communicative
acts.
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3 Results and Discussions

In this paper, the DM system (oh, well, and, but, or, so, because, now, then,
I mean, and you know) proposed by Schiffrin [24] was employed to explore
whether the frequencies of DMs can reflect the affinity relationship between
different speech acts. This system, containing commonly occurring DMs and
widely accepted by the academic community, can capture how the diverse DMs
with distinctive functions demonstrate the similarities and peculiarities among
different communicative intentions. As mentioned in Sect. 2, the current study
analyzed the five speech acts in the SwDA that express agreement or disagree-
ment because they present a typical continuum, which facilitates a more detailed
examination of the results of data analysis.

The original text files of the five speech acts were firstly compiled. The
five speech acts of Agreement contain altogether 24,816 words, among which
Agree/Accept has 19,942 words, Maybe/Accept-part 528 words, Hedge 2,703
words, Dispreferred Answers 1,772 words, and Reject 942 words). Next, we
applied Antconc 4.0.5 [2] to automatically get the total word count in the five
speech acts, in which the frequency data of the eleven selected words/phrases
proposed by Schiffrin [24] were extracted. Since the automatic process could not
distinguish between the 11 words/phrases as DMs and other cases, the authors
manually checked the automatically collected data to obtain the exact DM fre-
quencies for follow-up analyses.

It should be noted here that the raw number of DM frequencies may affect the
results of the statistical analysis due to the large variation in the total number
of words in each speech act. In this regard, this paper calculated the percentages
of each DM’s frequency relative to the total word number to standardize the
data. When converting the numbers to percentages, the authors distinguished
two different kinds of DMs: one for single words (unigram), such as oh, well, etc.,
and the other for two consecutive words (bigram), I mean and you know. For
the former types of DMs, we counted the percentages of DM frequencies relative
to those of all unigrams in each speech act; for the latter, we calculated those of
all bigrams, with the aim of making the standard uniform.

After collation and calculation, the frequency data of the eleven DMs pro-
posed by Shiffrin [24] under each speech act were obtained, as shown in Table 1.

Table 1. The proportion of each DM to the total unigrams or bigrams under each
speech act.

Speech act oh well and but or so because now then I mean you know

Agree/Accept 0.0318 0.0117 0.0036 0.0015 0.0003 0.0011 0.0004 0.0004 0.0000 0.0031 0.0005

Maybe/Accept-part 0.0019 0.0455 0.0019 0.0019 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019

Hedge 0.0137 0.0396 0.0133 0.0074 0.0007 0.0067 0.0011 0.0037 0.0007 0.0033 0.0004

Dispreferred Answers 0.0045 0.0796 0.0034 0.0028 0.0000 0.0017 0.0000 0.0017 0.0006 0.0051 0.0006

Reject 0.0149 0.0658 0.0042 0.0138 0.0032 0.0011 0.0011 0.0021 0.0011 0.0053 0.0053



Discourse Markers as the Classificatory Factors of Speech Acts 9

As can be seen from Table 1, there are significant differences in the pro-
portion of DMs under each speech act, especially the difference between the
proportion of well in the speech act of agreement and that of disagreement, in
which the frequency of well is significantly higher than that in the speech act
of agreement. In addition, the frequency of well in indirect speech acts is higher
than that in the direct ones (Dispreferred Answers > Reject > Maybe/Accept-
part > Hedge > Agree/Accept). This pattern may indicate a face-saving strategy
at work in the politeness principle.

The following excerpts from the SwDA further illustrate the differences
between agreement and disagreement as well as those between direct and indirect
speech acts.

A. Dispreferred Answers
1) Well, I, I think, uh, my background is probably what absolutely turned
me off with sixty minutes.
2) Well, I heard tonight on the news that he is willing to come down.
3) Well, I, I, I come from kind of a biased opinion because I’m a, a therapist
and a drug and alcohol.
4) Well, that was, you know, with a, with a circular saw.

From the utterances containing well in the speech act of Dispreferred
Answers, we can see that well mainly serves to provide a buffer for the sub-
sequent words. In addition, since the speaker wants to express opposition to the
words spoken by the hearer without completely opposing them, he or she tends
to use the strategy of repetition (e.g., the repetition of I in A. 1) and A. 3)) or
continue to apply other DMs as filler words to further moderate the illocutionary
force of the speech act of opposition (e.g., you know in A. 4)). This phenomenon
shows that people would frequently resort to the buffer DM well along with
other means to minimize the force of opposition they are expressing.

B. Reject
1) Well, I don’t think you can mail thing, guns through the mail.
2) Well, I doubt that.
3) Well, yes.

When expressing direct opposition to another speaker’s opinions, the fre-
quency of well is also higher due to the principle of politeness and the consider-
ation of face-saving strategy. Although Reject and Agree/Accept are both direct
speech acts, the use of buffer words like well in direct disagreement is still sig-
nificantly higher than that in direct agreement (Reject: 0.0658 > Agree/Accept:
0.0117).

C. Maybe/Accept-part
1) Well, even if it’s not technical. If it’s, uh, some social thing or whatever.
It doesn’t matter.

D. Hedge
1) Well, uh, it’s funny, when I tried, to make the call the other days,
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E. Agree/Accept
1) Oh, well yeah.
2) Well, that’s true.

Among the three speech acts concerning agreement (Agree/Accept, Maybe/
Accept-part, and Hedge), the use of well is more convergent, serving as a simple
tone buffer, and does not involve a strategy of face protection for the other
interlocutor. According to previous studies on well, it is often employed as a
delay device and a pragmatic marker of insufficiency, indicating the problems
with the content of the current or the previous utterances, or as a face-threat
mitigator, showing the conflicts in the interpersonal level [13]. Although well
has a relatively fixed spectrum of discourse functions, its frequency of occurrence
varies across discourses expressing different communicative intentions, depending
on the specific context and the nature of probability within speakers’ language
use. Therefore, to accurately capture how the frequency of well in different speech
acts reflects their affinities, it is best to apply a more suitable method to study
these probabilistic linguistic units.

Moreover, from the above analysis, well is a DM that can effectively distin-
guish between agreement and disagreement; however, people cannot merely use
well when expressing these communicative functions; DMs such as you know and
and also frequently occur in these speech acts. In order to comprehensively and
systematically grasp how the frequency of DMs reflects the differences of each
speech act, we included in the present study a more comprehensive DM system
(that proposed by Schiffrin). Meanwhile, to avoid the overwhelming workload
caused by manual qualitative analysis, we adopted established statistical meth-
ods to grasp the characteristics embodied in DMs accurately. The factoextra and
cluster packages in R were applied to perform an HCA on the data in Table 1.
The results are shown in Fig. 2.

Figure 2a demonstrates that the clustering results based on the frequency of
the eleven DMs neatly reflect the functions of the five speech acts under the
Agreement hyper-category. The results show a tripartite classification, with Dis-
preferred Answers and Reject clustered together, Maybe/Accept-part and Hedge
in the same cluster, and Agree/Accept in a separate cluster out of the above four
speech acts. Hence, we can roughly get a “reject” cluster and an “accept” one in
Agreement. Nevertheless, this result still has some imperfections: Agree/Accept
is clustered out of the other four speech acts, while its function is similar to
the “accept” category. After trying different method-distance combinations of
the HCA, it was found that the aforementioned classification enjoys the highest
probability of occurrence.



Discourse Markers as the Classificatory Factors of Speech Acts 11

(a) (b)

Fig. 2. (a) The HCA results of the five speech acts in Agreement. (b) The HCA results
of speech acts (in rows) using the Manhattan distance and the Ward.D2 method. aa
is referred to as Agree/Accept, aap_am is Maybe/Accept-part, h is Hedge, arp_nd is
Dispreferred Answers, and ar is Reject.

We then further altered the combination of clustering methods and distances
and found that using the Manhattan distance together with the Ward.D2 method
produced a clustering result consistent with the functional division of the speech
acts in Agreement (see Fig. 2b)1. Moreover, the top panel in Fig. 2b displays the
clustering result of each DM based on their frequency of use. The cluster of well
and but further corroborates our previous analysis of well ’s frequent appearance
in the speech acts concerning disagreement.

After obtaining the above clustering results, we employed the cluster package
in R to get the proportion of each DM in each cluster for a more detailed analysis.
The distribution of DMs’ frequency proportions when there are two clusters
(henceforth Type A clustering) and three ones (henceforth Type B clustering)
are shown in Table 2 and Table 3, respectively.

Table 2. The percentages of DM frequencies in different clusters (Type A).

Cluster Oh Well And But Or So Because Now Then You know I mean

A 0.0158 0.0322 0.0063 0.0036 0.0016 0.0026 0.0005 0.0014 0.0002 0.0021 0.0009

B 0.0097 0.0727 0.0038 0.0083 0.0016 0.0014 0.0005 0.0019 0.0008 0.0052 0.0029

Note: Cluster A is the cluster of Agree/Accept, Maybe/Accept-part, and Hedge, and
Cluster B is Dispreferred Answers and Reject.

1 For all the clustering results using different methods and distance metrics, see
Appendix A.
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From the data in Table 2 and Table 3, the reason Agree/Accept is separated as
an individual cluster in Fig. 2a is probably because oh appears significantly more
frequently in it than in other speech acts. After analyzing the original corpus
data, it was found that oh usually appears in expressions such as “Oh yes” or
“Oh yeah”, which constitute a typical feature of Agree/Accept compared with
other speech acts. Also, the high frequency of oh indicates that most clustering
methods are influenced by individual salient values, which lead to the changes
in specific cluster branches. In addition, the results in Table 2 and Table 3 show
that the frequency of well is significantly higher when it expresses negative views
than when it expresses positive ones. Since the other DMs accounted for lower
frequencies and contributed less to the clustering results, the results obtained
in this study may indicate that the two DMs, well and oh, are more effective
in distinguishing between the speech acts of agreement and disagreement. This
result also further complements the previous studies on the principle of politeness
and the face theory, providing new perspectives for future systematic research
on pragmatic principles with large-scale corpus data.

Table 3. The percentages of DM frequencies in different clusters (Type B).

Cluster oh well and but or so because now then you know I mean

C 0.0318 0.0117 0.0036 0.0015 0.0003 0.0011 0.0004 0.0004 0.0000 0.0031 0.0005

D 0.0078 0.0425 0.0076 0.0046 0.0023 0.0033 0.0006 0.0018 0.0004 0.0017 0.0011

E 0.0097 0.0727 0.0038 0.0083 0.0016 0.0014 0.0005 0.0019 0.0008 0.0052 0.0029

Note: Cluster C is the cluster of Agree/Accept, Cluster D is Maybe/Accept-part and
Hedge, and Cluster E is Dispreferred Answers and Reject.

In summary, from the above analysis, it can be concluded that by employing
a method that can accurately grasp the statistical patterns of linguistic units,
we may be able to better capture the tendency of each speech act in using DMs
and establish the connection between the two important constructions (speech
acts and DMs) with the support from real data. This approach can comple-
ment well-developed qualitative analyses of DMs, provide more comprehensive
and theoretically supported results (e.g., the DM classification system proposed
by Schiffrin), and introduce the advantages of quantitative analysis (big data,
objectivity, and accuracy) into the research related to pragmatics and discourse
analysis.
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4 Conclusions and Implications

In this study, we adopted a quantitative approach to analyze whether DMs, the
discourse units that possess discursive and pragmatic information, can effectively
distinguish the speech acts of different communicative functions. After calculat-
ing the frequencies of the 11 DMs proposed in Schiffrin [24], we conducted an
HCA using R for the examination of such effects. The results showed that the fre-
quencies of DMs were efficacious in differentiating the speech acts of agreement
and disagreement. Moreover, the frequencies of DMs also well reflect the intrica-
cies within the indirectness of the five speech acts in the agreement-disagreement
continuum, corroborating that DMs are rather precise indicators of speech acts’
differences.

The results also indicated that the frequencies of well and oh might be the
key indicators to distinguish between the speech acts of agreement and disagree-
ment, especially well, the frequencies of which echo the previous findings in the
principle of politeness and the face theory. In this regard, the application of quan-
titative measures for testing and generalizing the existent theoretical framework
may help the research related to pragmatics and discourse analysis develop in a
scientific and precise direction. The deficiencies of traditional qualitative research
in terms of data size can thus be supplemented by conducting research on the
authentic data from large-scale corpus.

In addition, since the current study only examined the five speech acts under
the continuum of agreement and disagreement, the patterns found may not fully
reflect the patterns in all types of speech acts. Therefore, subsequent studies
can further collect the natural corpus data of human conversations and examine
more types of speech acts to further explore the effectiveness of DM frequency in
reflecting human conversational behaviors. In this way, we may establish a more
comprehensive framework for quantitative research in pragmatics and discourse
analysis.

Acknowledgements. The authors are grateful to the three anonymous reviewers for
providing helpful feedback on this paper.

Appendix A. The Clustering Results of the Frequencies of
Discourse Markers in the Speech Acts of Agreement

(See Fig. 3).
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(a) ward.D-euclidean (b) ward.D2-euclidean

(c) single-euclidean (d) complete-euclidean

(e) average-euclidean (f) ward.D2-manhattan

(g) single-manhattan (h) median-euclidean

(i) mcquitty-euclidean (j) complete-manhattan

(k) average-manhattan (l) ward.D2-maximum

Fig. 3. The clustering results of the frequencies of DMs in the speech acts of Agreement.
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Abstract. Natural language sentence matching is the task of comparing two sen-
tences and identifying the relationship between them. It has a wide range of
applications in natural language processing tasks such as reading comprehension,
question and answer systems. The main approach is to compute the interaction
between text representations and sentence pairs through an attention mechanism,
which can extract the semantic information between sentence pairs well. How-
ever, this kind of methods fail to capture deep semantic information and effec-
tively fuse the semantic information of the sentence. To solve this problem, we
propose a sentence matching method based on deep interaction and fusion. We
first use pre-trained word vectors Glove and character-level word vectors to obtain
word embedding representations of the two sentences. In the encoding layer, we
use bidirectional LSTM to encode the sentence pairs. In the interaction layer, we
initially fuse the information of the sentence pairs to obtain low-level semantic
information; at the same time, we use the bi-directional attention in the machine
reading comprehension model and self-attention to obtain the high-level seman-
tic information. We use a heuristic fusion function to fuse the low-level semantic
information and the high-level semantic information to obtain the final seman-
tic information, and finally we use the neural network to predict the answer. We
evaluate our model on two tasks: text implication recognition and paraphrase
recognition. We conducted experiments on the SNLI datasets for the recogniz-
ing textual entailment task, the Quora dataset for the paraphrase recognition task.
The experimental results show that the proposed algorithm can effectively fuse
different semantic information that verify the effectiveness of the algorithm on
sentence matching tasks.

Keywords: Natural language sentence matching · Bilateral attention
mechanism · Self-attention mechanism

1 Introduction

Natural language sentence matching is the task of comparing two sentences and iden-
tifying the relationship between them. It is a fundamental technique for a variety of
tasks. For example, in the paraphrase recognition task, it is used to determine whether
two sentences are paraphrased. In the text implication recognition task, it is possible to
determine whether a hypothetical sentence can be inferred from a predicate sentence.
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Recognizing Textual Entailment (RTE), proposed by Dagan [6], is a study of the
relationship between premises and assumptions. It mainly includes entailment, contra-
diction, and neutrality. The main methods for recognizing textual entailment include the
following: similarity-based methods [15], rule-based methods [11], alignment feature-
based machine learning methods [18], etc. However, These methods can’t perform well
in recognition because they didn’t extract the semantic information of the sentences
well. In recent years, deep learning-based methods have been effective in semantic
modeling, achieving good results in many tasks in NLP [12,13,23]. Therefore, on the
task of recognizing textual entailment, deep learning-based methods have outperformed
earlier approaches and become the dominant recognizing textual entailment method.
For example, Bowman et al. used recurrent neural networks to model premises and
hypotheses, which have the advantage of making full use of syntactic information [2].
After that, he first applied LSTM sentence models to the RTE domain by encoding
premises and hypotheses through LSTM to obtain sentence vectors [3]. WANG et al.
proposed mLSTM model on this basis, which focuses on splicing attention weights in
the hidden states of the LSTM, focusing on the part of the semantic match between the
premise and the hypothesis. The experimental results showed that the method achieved
good results on the SNLI dataset [20].

Paraphrase recognition is also called paraphrase detection. The task of paraphrase
recognition is to determine whether two texts hold the same meaning. If they have
the same meaning, they are called paraphrase pairs. Traditional paraphrase recogni-
tion methods focus on text features. However, there are problems such as low accuracy
rate. Therefore, deep learning-based paraphrase recognition methods have become a hot
research topic. Deep learning-based paraphrase recognition methods are mainly divided
into two types; 1) calculated word vectors by neural networks, and then calculated word
vector distances to determine whether they were paraphrase pairs. For example, Huang
et al. used an improved EMD method to calculate the semantic distance between vec-
tors and obtain the interpretation relationship [7]. 2) Directly determining whether a
text pair is a paraphrased pair by a neural network model, which is essentially a binary
classification algorithm. Wang et al. proposed the BIMPM model, which first encodes
sentence pairs by a bidirectional LSTM and then matches the encoding results from
multiple perspectives in both directions [21]. Chen et al. proposed an ESIM model that
uses a two-layer bidirectional LSTM and a self-attention mechanism for encoding, then
it extracts features through the average pooling layer and the maximum pooling layer,
and finally performs classification [5].

These models mentioned above have achieved good results on specific tasks, but
most of these models have difficulty extracting deep semantic information and effec-
tively fusing the extracted semantic information, in this paper, we propose a sentence
matching model based on deep interaction and fusion. We use the bi-directional atten-
tion and self-attention to obtain the high-level semantic information. Then, we use a
heuristic fusion function to fuse the low-level semantic information and the high-level
semantic information to obtain the final semantic information. We conducted exper-
iments on the SNLI datasets for the recognizing textual entailment task, the Quora
dataset for the paraphrase recognition task. The results showed that the accuracy of
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the proposed algorithm on the SNLI test set is 87.1%, and the accuracy of the Quora
test set is 86.8%. Our contributions can be summarized as follows:

• We propose a sentence matching model based on deep interaction and fusion. It
introduces bidirectional attention mechanism into sentence matching task for the
first time.

• We propose a heuristic fusion function. It can learn the weights of fusion by neural
network to achieve deep fusion.

• We evaluate our model on two different tasks and Validate the effectiveness of the
model.

2 BIDAF Model Based on Bi-directional Attention Flow

In the task of extractive machine reading comprehension, Seo et al. first proposed a bi-
directional attention flow model BIDAF (Bi-Directional Attention Flow) for question-
to-article and article-to-question [16]. Its structure is shown in Fig. 1.

Fig. 1. Bi-directional attention flow model

The model mainly consists of an embed layer, a contextual encoder layer, an atten-
tion flow layer, a modeling layer, and an output layer. After the character-level word
embedding and the pre-trained word vector Glove word embedding, the contextual rep-
resentations X and Y of the article and the question are obtained by a bidirectional
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LSTM, respectively. The bi-directional attention flow between them is computed, and
it proceeds as follows:

a) The similarity matrix between the question and the article is calculated. The calcu-
lation formula is shown in Eq. 1.

Ktj = WT [X:t;Y:j ;X:t � Y:j ] (1)

where Ktj is the similarity of the t-th article word to the j-th question word, X:t is
the t-th column vector of X , Y:j is the j-th column vector of Y , and W is a trainable
weight vector.

b) Calculating the article-to-question attention. Firstly, the normalization operation is
performed on the above similarity matrix, and then the weighted sum of the problem
vector is calculated to obtain the article-to-problem attention, which is calculated as
shown in Eq. 2.

xt = softmax (K)

Ŷ:t =
∑

j

xtjY:j
(2)

c) Query-to-context (Q2C) attention signifies which context words have the clos-
est similarity to one of the query words and are hence critical for answer-
ing the query. We obtain the attention weights on the context words by y =
softmax(maxcol (K)) ∈ RT , where the maximum function maxcol is performed
across the column. Then the attended context vector is x̂ =

∑
t ytX:t. This vector

indicates the weighted sum of the most important words in the context with respect
to the query. x̂ is tiled T times across the column, thus giving X̂ ∈ R2d∗T .

d) Fusion of bidirectional attention streams. The bidirectional attention streams
obtained above are stitched together to obtain the new representation, which is cal-
culated as shown in Eq. 3.

L:t =
[
X:t; Ŷ:t;X:t � Ŷ:t;X:t � X̂:t

]
(3)

We builds on this work by looking at sentence pairs in a natural language sen-
tence matching task as articles and problems for reading comprehension. We use the
bi-directional attention and self-attention to obtain the high-level semantic information.
Then, we use a heuristic fusion function to fuse the low-level semantic information and
the high-level semantic information to obtain the final semantic information.

3 Method

In this section, we describe our model in detail. As shown in Fig. 2, our model mainly
consists of an embedding layer, a contextual encoder layer, an interaction layer, a fusion
layer, and an output layer.
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Fig. 2. Overview of the architecture of our proposed DIFM model. It consists of an embedding
layer, a contextual encoder layer, an interaction layer, a fusion layer, and an output layer.

3.1 Embedding Layer

The purpose of the embedding layer is to map the input sentence A and sentence B into
word vectors. The traditional mapping method is one-hot encoding. However, it is spa-
tially expensive and inefficient, so we use pre-trained word vectors for word embedding.
These word vectors are constant during training.

Since the text contains unregistered words, we also use character-level word vector
embedding. Each word can be seen as a concatenation of characters and characters,
and then we use LSTM to get character-level word vectors. It can effectively handle
unregistered words.

We assume that the pre-trained word vector for word h is hw, and character-level
word vector is hc, we splice the two vectors and use a two-tier highway network [25]
to get the word vector representation of word h:h = [h1;h2] ∈ Rd1+d2 , where d1
is the dimension of Glove word embedding and d2 is the dimension of character-level
word embedding. Finally, we obtain the word embedding matrix X ∈ Rn∗(d1+d2) for
sentence A and the word embedding matrix Y ∈ Rm∗(d1+d2) for sentence B, where n,
m represent the number of words in sentence A and sentence B.

3.2 Contextual Encoder Layer

The purpose of the contextual encoder layer is to fully exploit the contextual relation-
ship features of the sentences. We use bidirectional LSTM for encoding which can mine
the contextual relationship features of the sentences. Then, we can obtain its represen-
tation H ∈ R2d∗n and P ∈ R2d∗m , where d is the hidden layer dimension.
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3.3 Interaction Layer

The purpose of the interaction layer is to extract the effective features between sen-
tences. In this module, we can obtain low-level semantic information and high-level
semantic information.

Low-Level Semantic Information. The purpose of this module initially fuses two
sentences to get the low-level semantic information. We first calculate the similarity
matrix S of the context-encoded information H and P , which is shown in Eq. 4.

Sij = Ws
T [h; p;h � p] (4)

where Sij denotes the similarity between the i-th word of H and the j-th word of P ,
Ws is weight matrices, h is the i-th column of H , and p is the j-th column of P . Then,
we calculate the low-level semantic information V of A and B, which is shown in Eq. 5.

V = P · softmax(ST ) (5)

High-Level Semantic Information. The purpose of this module is mine the deep
semantics of the text, and to generate high-level semantic information. In this mod-
ule, we frist calculate the bidirectional attention of H and P that is the attention of
H → P and P → H . It is calculated as follows.

H → P : The attention describes which words in the sentence P are most relevant
to H . The calculation process is as follows; firstly, each row of the similarity matrix is
normalized to get the attention weight, and then the new text representation Q ∈ R2d∗n

is obtained by weighted summation with each column of P , which is calculated as
shown in Eq. 6.

αt = softmax(St:) ∈ Rm

q:t =
∑

j

αtjP:j
(6)

where q:t is the t-th column of Q.
P → H: The attention indicates which words in H are most similar to P . The

calculation process is as follows: firstly, the column with the largest value in the simi-
larity matrix S is taken to obtain the attention weight, then the weighted sum of H is
expanded by n time steps to obtain C ∈ R2d∗n, which is calculated as shown in Eq. 7.

b = softmax(max
col

(S)) ∈ Rn

c =
∑

t

btHt: ∈ R2d (7)

After obtaining the attention matrix Q of H → P and the attention matrix C of
P → H , we splice the attention in these two directions by a multilayer perceptron.
Finally, we get the spliced contextual representation G, which is calculated as shown in
Eq. 8.

G:t = β(C:t,H:t, Q:t)

β(c, h, q) = [h; q;h � q;h � c] ∈ R8d
(8)
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Then, we calculate its self-attention [19], which is calculated as shown in Eq. 9.

E = GTG

Z = G · softmax(E)
(9)

Finally, we pass the above semantic information Z through a bi-directional LSTM
to obtain high-level semantic information U .

3.4 Fusion Layer

The purpose of the fusion layer is to fuse the low-level semantic information V and the
high-level semantic informationU . We innovatively propose a heuristic fusion function,
it can learn the weights of fusion by neural network to achieve deep fusion. We fuse V
and U to obtain the text representation L = fusion(U, V ) ∈ Rn∗2d , where the fusion
function is defined as shown in Eq. 10:

x̃ = tanh(W1[x; y;x � y;x − y])
g = sigmoid(W2[x; y;x � y;x − y])
z = g � x̃ + (1 − g) � x

(10)

where W1 and W2 are weight matrices, and g is a gating mechanism to control the
weight of the intermediate vectors in the output vector. In this paper, x refers to U and
y refers to V .

3.5 Output Layer

The purpose of the output layer is to output the results. In this paper, we use a linear
layer to get the results of sentence matching. The process is shown in Eq. 11.

y = softmax(tanh(ZW + b)) (11)

where both W and b are trainable parameters. Z is the vector after splicing its first and
last vectors.

4 Experimental Results and Analysis

In this section, we validate our model on two datasets from two tasks. We first present
some details of the model implementation, and secondly, we show the experimental
results on the dataset. Finally, we analyze the experimental results.

4.1 Experimental Details

Loss Function. In this paper, the cross-entropy loss function can be chosen as shown
in Eq. 12.

loss = −
N∑

i=1

K∑

k=1

y(i,k) log ŷ(i,k) (12)

where N is the number of samples, K is the total number of categories and ŷ(i,k) is the
true label of the i-th sample.
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Dataset. In this paper, we use the natural language inference datasets SNLI, and the
paraphrase recognition dataset Quora to validate our model. The SNLI dataset contains
570K manually labeled and categorically balanced sentence pairs. The Quora question
pair dataset contains over 400k pairs of data that each with binary annotations, with 1
being a duplicate and 0 being a non-duplicate. The statistical descriptions of SNLI and
Quora data are shown in Table 1.

Table 1. The statistical descriptions of SNLI and Quora

Dataset Train Validation Test

SNLI 550152 10000 10000

Quora 384290 10000 10000

Table 2. Values of hyper parameters

Hyper Parameters Values

Glove dimension 300

Character embedding dimension 100

Hidden dimension 200

Learning rate 0. 0005

Optimizer Adam

Dropout 0.2

Activation function ReLU

Epoch 30

Batch size 128

Parameter Settings. This experiment is conducted in a hardware environment with a
graphics card RTX5000 and 16G of video memory. The system is Ubuntu 20.04, the
development language is Python 3.7, and the deep learning framework is Pytorch 1.8.

In the model training process, a 300-dimensional Glove word vector are used for
word embedding, and the maximum length of text sentences is set to 300 and 50 words
on the SNLI and Quora datasets, respectively. The specific hyperparameter settings are
shown in Table 2.

4.2 Experimental Results and Analysis

We compare the experimental results of the sentence matching model based on deep
interaction and fusion on the SNLI dataset with other published models. The evaluation
metric we use is the accuracy rate. The results are shown in Table 3. As can be seen
from Table 3, our model achieves an accuracy rate of 0. 871 on the SNLI dataset, which
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achieves better results in the listed models. Compared with the LSTM, it is improved
by 0. 065. Compared with Star-Transformer model, it is improved by 0. 004. Compared
with some other models, it is observed that our model is better than the others model.

Table 3. The accuracy (%) of the model on the SNLI test set. Results marked with a are reported
by Bowman et al. [4], b are reported by Han et al. [9], c are reported by Shen et al. [17], d are
reported by Borges et al. [1], e are reported by Guo et al. [8], f are reported by Mu et al. [14].

Model Acc

300D LSTM encodersa 80.6

DELTAb 80.7

SWEM-maxc 83.8

Stacked Bi-LSTMsd 84.8

Bi-LSTM sentence encoderd 84.5

Star-Transformere 86.0

CBS-1+ESIMf 86.7

DIFM 87.1

We conduct experiments on the Quora dataset, and the evaluation metric is accuracy.
The experimental results on the Quora dataset are shown in Table 4. As can be seen
from Table 4, the accuracy of our method on the test set is 0.868. The experimental
results improve the accuracy by 0.054 compared to the traditional LSTM model. Com-
pared with the enhanced sequential inference model ESIM, it is improved by 0.004.
The experimental results achieved good results compared to some current popular deep
learning methods. Our model achieve relatively good results in both tasks, which illus-
trates the effectiveness of our model.

Table 4. The accuracy (%) of the model on the Quora test set. Results marked with g are reported
by Yang et al. [22], h are reported by He et al. [10], i are reported by Zhao et al. [24], j are
reported by Chen et al. [5].

Model Acc

LSTM 81.4

RCNNg 83.6

PWIMh 83.4

Capsule-BiGRUi 86.1

ESIMj 85.4

DIFM 86.8
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4.3 Ablation Experiments

To explore the role played by each module, we conduct an ablation experiment on
the SNLI dataset . Without using the fusion function, which means that the low-level
semantic information are directly spliced with the high-level semantic information. The
experimental results are shown in Table 5.

Table 5. Ablation study on the SNLI validation dataset

Model Acc(%)

DIFM 87.1

w/o character embedding 85.6 (↓1.5)
w/o low-level semantic information 85.9 (↓1.2)
w/o high-level semantic information 79.5 (↓7.6)
w/o fusion 86.1 (↓1.0)
w/o self-attention 58.8 (↓1.3)
w/o P → H 84.6 (↓2.5)
w/oH → P 86.2 (↓0.9)

We first verify the effectiveness of character embedding. Specifically, we remove the
character embedding for the experiment, and its accuracy drops by 1.5% points, proving
that character embedding plays an important role in improving the performance of the
model.

In addition, we verify the effectiveness of the semantic information and fusion mod-
ules. We removed low-level semantic information and high-level semantic information
from the original model, and its accuracy dropped by 1.2% points and 7.6% points. At
the same time, we remove the fusion function, and its accuracy drops by about 1.0%
points. It shows that the different semantic information and the fusion function are ben-
eficial to improve the accuracy of the model, with the high-level semantic information
being more significant for the model.

Finally, we verify the effectiveness of each attention on the model. We remove the
attention from P to H , the attention from H to P , and the self-attention module respec-
tively. Their accuracy rates decreased by 2.5% points, 0.9% points, and 1.3% points. It
shows that all the various attention mechanisms improve the performance of the model,
with the P to H attention being more significant for the model.

The ablation experiments show that each component of our model plays an impor-
tant role, especially the high-level semantic information module and the P to H atten-
tion module, which have a greater impact on the performance of the model. Meanwhile,
the character embedding and fusion function also play an important role in our model.

5 Conclusion

we investigate natural language sentence matching methods and propose an effective
deep interaction and fusion model for sentence matching. Our model first uses the
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bi-directional attention in the machine reading comprehension model and self-attention
to obtain the high-level semantic information. Then, we use a heuristic fusion function
to fuse the semantic information that we get. Finally, we use a linear layer to get the
results of sentence matching . We conducted experiments on SNLI and Quora datasets.
The experimental results show that the model proposed in this paper can achieve good
results in two tasks. In this work, we find that our proposed interaction module and
fusion module occupie the dominant position and have a great impact on our model.
However, Our model is not as powerful as the pre-trained model in terms of feature
extraction and lacks external knowledge. The next research work plan will focus on
the following two points: 1) we use more powerful feature extractors, such as BERT
pre-trained model as text feature extractors; 2) the introduction of external knowledge
will be considered. For example, WordNet, an external knowledge base, contains many
sets of synonyms, and for each input word, its synonyms are retrieved from WordNet
and embedded in the word vector representation of the word to further improve the
performance of the model.
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Abstract. Learning sentence representation is a fundamental task in
natural language processing and has been studied extensively. Recently,
many works have obtained high-quality sentence representation based
on contrastive learning from pre-trained models. However, these works
suffer the inconsistency of input forms between the pre-training and fine-
tuning stages. Also, they typically encode a sentence independently and
lack feature interaction between sentences. To conquer these issues, we
propose a novel Contrastive framework with Inter-sentence Interaction
(ConIsI), which introduces a sentence-level objective to improve sentence
representation based on contrastive learning by fine-grained interaction
between sentences. The sentence-level objective guides the model to focus
on fine-grained semantic information by feature interaction between sen-
tences, and we design three different sentence construction strategies to
explore its effect. We conduct experiments on seven Semantic Textual
Similarity (STS) tasks. The experimental results show that our ConIsI
models based on BERTbase and RoBERTabase achieve state-of-the-art
performance, substantially outperforming previous best models SimCSE-
BERTbase and SimCSE-RoBERTabase by 2.05% and 0.77% respectively.

Keywords: Sentence representation · Inter-sentence interaction ·
Contrastive learning

1 Introduction

Learning good universal sentence representation is a fundamental task and ben-
efits a wide range of natural language processing tasks such as text classification
and machine translation, especially for large-scale semantic similarity compu-
tation and information retrieval. With the rise of pre-trained language models
[16,27], many downstream tasks have achieved remarkable improvements. How-
ever, the native sentence representation derived from pre-trained language mod-
els without additional supervision are usually low-quality and can not be used
directly [34]. Recently, contrastive learning has become a popular approach to
improve the quality of sentence representation in a self-supervised way.
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Contrastive learning is an approach of learning effective feature representa-
tion by positive pairs and negative pairs. It generally takes different views as
positive or negative pairs for each sentence using various data augmentation
ways. And it works by pulling semantically close positive instances together and
pushing negative instances away. However, current approaches based on con-
trastive learning mainly suffer two problems: train-tuned bias and fine-grained
interaction deficiency. Firstly, previous approaches typically input a single sen-
tence to the encoder at a time, which is inconsistent with the pre-training stage
of the language models. Most language models concatenate multiple sentences
as the input form at the pre-training stage. We argue that the inconsistency of
input forms between the pre-training and fine-tuning stages may harm the per-
formance. Secondly, each sentence in a minibatch is encoded independently while
training, which lacks fine-grained interaction information between sentences.
According to previous works in text matching [25,29,39], modeling a proper
interaction between input sentences can improve the performance of semantic
feature embedding for representation-based models, but existing works on sen-
tence representation ignore the importance of this interaction.

Therefore, to conquer these drawbacks of current contrastive learning based
methods, we propose ConIsI, a Contrastive framework with Inter-sentences
Interaction for self-supervised sentence representation. Firstly, we present to
construct a sentence pair as positive instance for each sentence to alleviate the
train-tuned bias. By referring to an original sentence and a sentence pair as a
positive pair, the model can not only obtain effective representation of a single
sentence, but also mitigate the train-tuned bias between the pre-training and
fine-tuning stages. Further, to solve the problem of lacking interaction between
sentences, we propose a sentence-level objective to perform the inter-sentence
interaction during encoding. We pass a pair of sentences as a text sequence
into the encoder and the target semantic category of the two sentences is pre-
dicted. The sentence pair is sufficiently interacted through the internal interac-
tion mechanism in Transformer-based block [37] during encoding. Through the
inter-sentence interaction, the model can encode fine-grained semantic informa-
tion and achieve further improvement. Moreover, for a minibatch of n sentences,
there are n · (n − 1)/2 interactive computations. In order to ensure the train-
ing efficiency, we do not perform an interactive operation on all data due to
too many possible combinations. Instead, we artificially construct a sentence for
each original sentence to adjust the difficulty of the interactive objective, which
only requires n interactive computations. We propose several models based on
three sentence construction strategies, named ConIsI-o1, ConIsI-o2, and ConIsI-
s, respectively. The overall model of our proposed ConIsI can be seen in Fig. 1.

Our contributions can be summarized as follows:

– We propose to construct each positive pair with an original sentence and a
sentence pair based on contrastive learning, which not only learns effective
representation by pulling semantically close samples together but also miti-
gates the train-tuned bias between pre-training and fine-tuning phases.
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– We propose a simple but effective sentence-level training objective based on
inter-sentence interaction. It alleviates the problem of interaction deficiency
among sentences and enriches the semantic information of sentence represen-
tation. We also present three sentence construction strategies for interactive
sentence pairs and analyze their effects.

– We conduct extensive experiments on seven standard Semantic Textual Simi-
larity (STS) datasets. The results show that our proposed ConIsI-s-BERTbase

and ConIsI-s-RoBERTabase achieve 78.30% and 77.34% averaged Spearman’s
correlation, a 2.05% and 0.77% improvement over SimCSE-BERTbase and
SimCSE-RoBERTabase respectively, which substantially outperforms the pre-
vious state-of-the-art models.

2 Related Work

Sentence representation built upon the distributional hypothesis has been widely
studied and improved considerably. Early works [20,22,28] inspired by word2vec
[31] lead to strong results by predicting surrounding information of a given sen-
tence. The emergence of pre-trained models such as BERT [16] shows much great
potential for sentence representation. Recently, many works have explored how
to learn better sentence embeddings from the pre-trained models.

Supervised Methods. A common supervised step of learning a model is fine-
tuning with labeled data in downstream training sets. Several works build upon
the success of using annotated natural language inference (NLI) datasets (includ-
ing Stanford NLI [6] and Multi-Genre NLI [40]) for sentence representation,
which projects it as a 3-way classification task (entailment, neutral, and contra-
diction) to get better sentence embeddings. Conneau et al. [14] use a BiLSTM-
based model as encoder, and they train it on both Stanford NLI and Multi-Genre
NLI datasets. Universal Sentence Encoder [9] uses the Stanford NLI dataset
to enhance the unsupervised training by adopting a Transformer-based model.
Sentence-BERT [34] that adopts a Siamese network [13] with a shared BERT
encoder is also trained on Stanford NLI and Multi-Genre NLI datasets.

Unsupervised Methods. Some works focus on using the regularization method
to improve the quality of raw sentence representation generated by original
BERT. Bert-flow [24] puts forward a flow-based approach to solving the prob-
lem that native embeddings of BERT occupy a narrow cone in the vector space.
Similarly, Bert-whitening [36] maps BERT’s embeddings to a standard Gaussian
latent space by whitening the native embeddings. They all try to alleviate the
representation degeneration of pre-trained models and yield substantial improve-
ment.

Self-supervised Methods. The sentence-level training objective in language
models like BERT inspires a line of work over self-supervised sentence repre-
sentation learning. BERT includes the next sentence prediction (NSP) task,
which predicts whether two sentences are neighboring or not. However, Liu et
al. [27] prove that NSP has minimal effect on the final performance and even
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does harm to the training model. Therefore, many works have proposed various
self-supervised objectives for pre-training sentence encoders. Cross-Thought [38]
and CMLM [43] are two similar approaches that present to predict surround-
ing tokens of given contextual sentences. And Lee et al. [23] propose to learn
an objective that predicts the correct sentence ordering provided the input of
shuffled sentences.

As a self-supervised learning method, contrastive learning with no need for
scarce labeled data attracts much attention, and many excellent works have been
proposed. Inspired by SimCLR [10] which applies data augmentation techniques
on the same anchor such as image rotating, scaling, and random cropping to
learn image representation in the computer vision community, some works pay
attention to getting effective positive pairs by using similar approaches. In the
natural language process community, many works apply textual augmentation
techniques on the same sentence to obtain different views as positive pairs based
on the SimCLR framework. Zhang et al. [45] extract global feature of a sentence
as positive pairs, Clear [41] and ConSERT [42] take some token-level transfor-
mation ways such as word or subword deletion or replacement, and SimCSE [17]
applys dropout mask of Transformer-based encoder to get positive pairs. And
BSL [44] adopts BYOL [19] framework using back-translation data.

3 Methodology

In this section, we present ConIsI, a contrastive framework with inter-sentence
interaction for self-supervised sentence representation, which contains two parts:
(1) the ConIsI model of joint contrastive learning objective and inter-sentence
interactive objective (Sect. 3.1), and (2) the strategies of sentence construction
in the inter-sentence interactive objective (Sect. 3.2).

3.1 Model

The ConIsI model joints contrastive learning and inter-sentence interactive
objectives. The inter-sentence interactive objective is a binary classification task
that performs fine-grained interaction between sentences and predicts whether
two sentences are in the same semantic category. The overall architecture is
shown in Fig. 1.

Data Augmentation. To alleviate the train-tuned bias caused by differ-
ent input forms, we perform sentence-level repetition operation to construct
positive instances. For each sentence, our approach proposes to take a sen-
tence pair as positive instance. Specifically, given a tokenized sentence x =
{t1, t2, ..., tl} (l is the max sequence length), we define the sentence pair as
Y = {t1, t2, ..., tl, t1, t2, ..., tl}, which is the concatenation of two original sen-
tences. For each minibatch of sentences B = {xi}N

i=1 (N is the batch size), we
perform data augmentation operation on each sentence and then get the positive
instances BAug = {Yi}N

i=1.
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Fig. 1. The overall structure of the ConIsI model. It mainly consists of five components:
the data augmentation operation ( 1©), the text composition part ( 2©), the encoder ψ(·)
mapping the input data to the sentence representation space, the CL Head g(·) and
the Interaction Classifier f(·) applying for the contrastive loss and the interactive loss
respectively.

Sentence Pair Composition. To perform fine-grained interaction between
sentences, we take a pair of sentences as a textual sequence to input into the
encoder. The input two sentences can get fine-grained interaction with each other
through Transformer-based block. Also, considering the training efficiency, we do
not perform interaction on all sentences as there are too many combinations of
sentence pairs. Instead, we construct the composed sentence pair Zi = {xi, ci} for
each sentence xi in B. Specifically, we try to obtain a sentence ci which belongs
to a different semantic category from xi. Then we concatenate the sentence xi

and the sentence ci as a composed sentence pair Zi. We perform the sentence
pair composition operation on each sentence in minibatch B = {xi}N

i=1 and then
get the composed pairs BCom = {Zi}N

i=1. We explore three different sentence
construction strategies to obtain ci in Sect. 3.2.

Encoding. We take pre-trained checkpoints of BERT or RoBERTa as the
encoder model to obtain sentence representation. For BERT, there are two input
forms to fine-tune downstream tasks: one is the single sentence input, and the
other is the sentence pair input. Previous works based on contrastive learning
input a single sentence to the pre-trained model to learn sentence embeddings,
which is inconsistent with the pre-training stage and suffers the train-tuned bias.
To alleviate this problem and maintain the model’s ability of encoding a single
sentence meanwhile, we propose to adopt both two forms. The original sentence
xi is taken as a single sentence and input to the encoder 1. The augmented sen-
tence pair Yi and the composed sentence pair Zi are taken as sentence pairs and
input to the encoder 2. And to ensure that the augmented sentence pair has the
same meaning as the original sentence, the max length of the tokenizer for the
former is set double for the latter. The encoder 1 and the encoder 2 share the
same parameters.



36 M. Sun and D. Huang

For RoBERTa whose input forms are a single sentence or several concatenated
sentences separated by “</s>” token, we input the original sentence into the
encoder 1. And The augmented sequence pair and the composed sentence pair
are taken as two concatenated sentences and input to the encoder 2. Similarly,
the max length of the tokenizer for encoder 2 is set double for that of encoder
1, and the two encoders share the same parameters.

Contrastive Learning. Contrastive learning aims to learn effective represen-
tation by pulling semantically close objects and pushing ones that are dissimilar
away. We follow the SimCRL [10] contrastive framework and take a cross-entropy
objective [12] in our approach.

For each minibatch B = {xi}N
i=1, the contrastive loss is defined on B and

the augmented instances BAug = {Yi}N
i=1. Let i ∈ {1, .., N} denote the index

of an arbitrary instance in augmented set BAug, and let j ∈ {1, .., N} be the
index of the other instance in BAug. We refer to (xi, Yi) as a positive pair, while
treating the other N −1 examples Yj(j �= i) in BAug as negative instances for this
positive pair. After the positive pair is encoded, we obtain the last hidden state of
the special “ [CLS]” token as the contextual representation of the corresponding
sample, denoted as h[CLS].

hx
[CLS], h

x
1 , ..., hx

l , hx
[SEP] = ψ1(x)

hY
[CLS], h

Y
1 , ..., hY

l , hY
[SEP], h

Y
′

1 , ..., hY
′

l , hY
′

[SEP] = ψ2(Y )
(1)

Then we add a predictor layer g(·) to map h[CLS] to the contrastive embedding
space and obtain h, which is given as follows:

h = Elu(BN1(W1 · h[CLS] + b1)) (2)

where W1 ∈ Rd×d is the weight matrix, b1 ∈ Rd×1 is the bias vector, and d is the
number of features in hidden layers. Both W1 and b1 are trainable parameters.
BN1 is the BatchNorm1d layer and Elu is the activate function.

Let hx
i , hY

i and hY
j be the corresponding outputs of the head g(·). Then for

xi, we try to separate Yi apart from all negative instances by minimizing the
following,

�I
i = −log

esim(hx
i ,hY

i )/τ

∑N
j=1e

sim(hx
i ,hY

j )/τ
(3)

where τ denotes the temperature parameter we set as 0.05. We choose cosine sim-
ilarity sim(·) as the similarity calculation function between a pair of normalized
outputs, sim(h1, h2) =

hT
1 h2

||h1||·||h2|| .
The contrastive loss is then averaged over all pairs,

LContrastive =
N∑

i=1

�I
i /N (4)
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Interactive Classification. When applying a training objective after getting
sentence embeddings in previous work, each sentence is encoded independently
and can not see other sentences while encoding. Therefore, the semantic informa-
tion contained in each sentence embeddings is insufficient. In contrast, modeling
sentence pairs can effectively alleviate this problem. While encoding a sentence
pair through the model, the two sentences can obtain fine-grained interaction
information from each other. We propose to model an inter-sentence interaction
objective between input sentences to enrich semantic information for sentence
embeddings.

We encode the sentence pairs into the semantic category space for self-
supervised classification. Different from contrastive learning objective, the inter-
active objective learns fine-grained semantic information through the interac-
tion between sentences. The interactive loss is implemented on the augmented
instance Yi in BAug and the corresponding composed instance Zi in BCom. We
refer to the two sentences {xi, xi} in augmented pair Yi as being in the same
category, and the sentences {xi, ci} in composed pair Zi as being in different cat-
egory. Our model passes Yi and Zi to the encoder 2 and obtains the last hidden
state of the special “ [CLS]” token as their sentence pair embeddings, respectively.

hY
[CLS], h

Y
1 , ..., hY

l , hY
[SEP], h

Y
′

1 , ..., hY
′

l , hY
′

[SEP] = ψ2(Y )

hZ
[CLS], h

Z
1 , ..., hZ

l , hZ
[SEP], h

Z
′

1 , ..., hZ
′

l , hZ
′

[SEP] = ψ2(Z)
(5)

We use a predictor and linear layers to encode h[CLS] into the semantic cat-
egory space to obtain r. r ∈ Rd is the semantic category representation. The
formulas are as follows:

h = Elu(BN2(W2 · h[CLS] + b2)) (6)
r = W3 · h + b3 (7)

where W2,W3 ∈ Rd×d are the weight matrixs, b2, b3 ∈ Rd×1 are the bias vectors,
and d is the number of features in the hidden layers. W2,W3 and b2, b3 are all
learnable parameters, and W2, b2 share the same parameters with W1 and b1
in g(·) respectively. BN2 share the same parameters with BN1 and Elu is the
activate function.

Let rY
i and rZ

i denote the corresponding outputs of the head f(·). Then we
predict whether each pair is in the same category by optimizing the following
objective,

�II
i = −log

erY
i

erY
i + erZ

i

(8)

Then the interactive loss for a mini-batch with N sentence pairs is as follows:

LInteractive =
N∑

i=1

�II
i /N (9)
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Overall Objective. Finally, our overall objective is,

L = (1 − λ) · LContrastive + λ · LInteractive

= (1 − λ) ·
N∑

i=1

�I
i /N + λ ·

N∑

i=1

�II
i /N

(10)

where �I
i , �II

i are defined in Eq. (3) and Eq. (8), respectively. λ is the balanced
parameter between the contrastive loss and the interactive loss. During training,
we jointly optimize a contrastive learning objective and an inter-sentence inter-
active objective over the original sentences, the augmented sentence pairs and
composed sentence pairs. Then we fine-tune all the parameters using the joint
objective.

3.2 Sentence Construction Techniques

Intuitively, two semantically opposite sentences are easier for the model to distin-
guish than two semantically closer sentences. As a self-supervised classification
task, the difficulty of the interactive objective can significantly affect the perfor-
mance of the model. Thus we propose different sentence construction techniques
to control the complexity of the inter-sentence interactive objective. We try to
construct a sentence ci that is not in the same semantic category as the original
sentence xi in Sect. 3.1. We explore three sentence construction methods, two
of which are constructing from the original sentence, and one is sampling from
other sentences.

From Original Sentence. Since the bidirectional language models encode a
word based on contextual information, sentences with high textual similarity
usually are in high semantic similarity in representation. However, the sentences
with high textual similarity may not actually be semantically similar. For exam-
ple, “this is not a problem.” and “this is a big problem.” are two sentences with
high textual similarity because of similar wording, but they are not semantically
similar because of opposite meanings. The models usually fail to distinguish tex-
tual similarity and semantic similarity, which has been discussed deeply in the
vision field [11,35]. As a result, a model may overestimate the semantic similar-
ity of any pairs with similar wording regardless of the actual semantic difference
between them. Therefore, we propose to construct sentences that are semanti-
cally different but are textually similar to the original sentence to improve the
fine-grained semantic discrimination ability of the model.

Subword Replacement. The subword replacement mechanism randomly sub-
stitutes some sub-words in a sentence. Specifically, given a tokenized sub-word
sequence x = {t1, t2, ..., tl} (l is the max sequence length) after processing by
a sub-word tokenizer. Firstly, We mask a certain proportion of the tokenized
sequence x at random. If the i-th token is chosen, then we replace the masked
token with a random token 80% of the time, leaving the masked token unchanged
20% of the time.
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Word Replacement. The word replacement mechanism works on full words
in a sentence. Different from subword replacement, the word replacement mech-
anism randomly substitutes some full words with antonyms. If a word is chosen,
then we replace the word with its antonym. We use the WordNet [32] to obtain
the antonym of a word.

From Other Sentences. Different from constructing a new sentence from the
original sentence, this method selects one other sentence from the training data
at random. Specifically, for a given sentence xi within the minibatch B = {xi}N

i=1,
we randomly select sentence xk (k ∈ [1, N ], k �= i) as ci for composed pair.

We apply the three sentence construction strategies to our ConIsI model,
named ConIsI-o1, ConIsI-o2, and ConIsI-s. Among them, ConIsI-o1 and ConIsI-
o2 represent the joint contrastive objective and interactive objective under the
subword replacement and word replacement, respectively. ConIsI-s represents the
jointing of contrastive learning and the interactive objective under the sampling
from other sentences.

4 Experiments

4.1 Data

We train our model on the same one million sentences randomly sampled from
English Wikipedia that are provided by SimCSE1. All our experiments are fully
self-supervised and note that no STS sets are used for training.

We evaluate our approach on multiple Semantic Textual Similarity (STS)
datasets: STS12-16 (STS12 - STS16) [1–5], STS Benchmark (STS-B) [8] and
SICK-Relatedness (SICK-R) [30], which are seven standard STS benchmark
datasets and are extensively used to measure the sentence embeddings and the
semantic similarity of sentence pairs. These datasets are composed of pairs of
sentences and one golden score between 0 and 5, where a higher score indicates
a higher similarity between two sentences in Table 1. The statistics is shown in
Table 2.

Table 1. The sentence samples of STS datasets.

Sentence1 Sentence2 Golden Score

A plane is taking off An air plane is taking off 5.000
A cat is playing a piano A man is playing a guitar 0.600
A man is playing a guitar A man is playing a trumpet 1.714

1 https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/
wiki1mforsimcse.txt.

https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
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Table 2. The statistics of STS datasets.

STS12 STS13 STS14 STS15 STS16 STSb SICK-R Total

Train samples 0 0 0 0 0 5479 4500 –
Valid samples 0 0 0 0 0 1500 500 –
Test samples 3108 1500 3750 3000 1186 1379 4927 –
Unlabeled texts 6216 3000 7500 17000 18366 17256 19854 89192

4.2 Evaluation Setup

Following previous work, we evaluate our method on STS tasks using the Sen-
tEval toolkit [15]. We take the “[CLS]” embedding generated by the last hidden
layer of the encoder 1 in Fig. 1 as the sentence representation. To evaluate the
sentence representation for a fair comparison, we follow the settings of Sentence-
BERT [34] and SimCSE [17]: (1) we directly take cosine similarities for all STS
tasks without training extra linear regressor on top of frozen sentence embed-
dings for STS-B and SICK-R; (2) we report Spearman’s rank correlation coeffi-
cients rather than Pearson’s; (3) and we take the “all” setting for STS12-STS16
which fuses data from different topics together to make the evaluation closer to
real-world scenarios.

4.3 Training Details

We implement our ConIsI model with Huggingface’s transformers package2
4.2.1 based on Python 3.8.12 and Pytorch 1.8.0 and run the model on Nvidia
3090 GPU. We start our experiments from pre-trained checkpoints of BERT or
RoBERTa. All experiments use the Adam optimizer and the random seed is set
as 42. The temperature parameter τ is set as 0.05, and the dropout rate is set
as 0.1. Furthermore, the hyper-parameter settings of the models are shown in
Table 3. Besides, We train our models for one epoch and evaluate the model
every 125 training steps.

Table 3. Hyper-parameters settings for ConIsI-s models.

Model Batch size Max seq len Learning rate Hidden size λ

ConIsI-s-BERTbase 64 32 3e-5 768 0.8
ConIsI-s-RoBERTabase 64 32 3e-5 768 0.1
ConIsI-s-BERTlarge 64 28 3e-5 1024 0.1

2 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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4.4 Baselines

We compare our model with previous strong baseline models on STS tasks,
including:

(1) Recent state-of-the-art self-supervised models using a contrastive objective:
SimCSE [17], IS-BERT [45], ConSERT [42], Mirror-BERT [26], DeCLUTR
[18], CT-BERT [7], BSL [44], SG-OPT [21];

(2) Post-processing methods like BERT-flow [24] and BERT-whitening [36];
(3) And naive baselines like averaged GloVe embeddings [33]; averaged first and

last layer BERT embeddings.

4.5 Main Results

Table 4 shows the evaluation results on seven STS tasks. ConIsI-s-BERTbase

can significantly outperform SimCSE-BERTbase and raise the averaged Spear-
man’s correlation from 76.25% to 78.30%, which brings a 2.05% average improve-
ment over the SimCSE-BERTbase model on seven tasks. For the RoBERTa
model, ConIsI-s-RoBERTabase can also improve upon SimCSE-RoBERTabase
from 76.57% to 77.34%, a 0.77% increase. And for the ConIsI-s-BERTlarge model,
we also achieve better performance, from 78.41% to 79.55%, a 1.14% increase. In
general, our method achieves substantial improvement on the seven STS datasets
over baseline models.

Table 4. Sentence embedding performance on STS tasks in terms of Spearman’s corre-
lation and “all” setting. ♣: results from [34]; §: results from [45]; †: results from [44]; ‡:
results from [42]; �: results from [21]; �: results from [26]; �: results from [17]; ∗: results
from ours.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe-embeddings♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase

� 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow� 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening� 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase

§ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
BSL-BERTbase

† 67.83 71.40 66.88 79.97 73.97 73.74 70.40 72.03
CT-BERTbase

� 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
ConSERT-BERTbase

‡ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SG-OPT-BERTbase

� 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
Mirror-BERTbase

� 69.10 81.10 73.00 81.90 75.70 78.00 69.10 75.40
SimCSE-BERTbase

� 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
∗ConIsI-s-BERTbase 70.92 84.35 76.67 83.53 78.94 82.15 71.55 78.30
RoBERTabase

� 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabasewhitening� 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase

� 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTabase

� 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
∗ ConIsI-s-RoBERTabase 71.21 83.31 75.11 81.13 80.73 80.50 69.39 77.34
SimCSE-BERTlarge

� 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
∗ ConIsI-s-BERTlarge 72.33 86.14 77.42 84.83 79.60 81.76 74.78 79.55
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4.6 Ablation Study

In this section, we discuss the effects of different components. In our model, both
the contrastive learning objective and the inter-sentence interactive objective are
crucial because they are committed to obtaining the ability of normal semantic
encoding and fine-grained semantic information, respectively. If we remove the
inter-sentence interactive objective, the model becomes a SimCSE-like model
with a different positive instance construction way, causing a drop of 1.30%. If
we remove the contrastive learning objective, the performance of Avg. drops sig-
nificantly by more than 10% (see Table 5). This results show that it is important
to have common and fine-grained attributes that exist together in the sentence
representation space. When compared with SimCSE-BERTbase, our proposed
method of taking a sentence pair as positive instance brings an improvement of
0.75%. The result shows that the problem of train-tuned bias is alleviated by
the input form of augmented sentence pair.

Table 5. Avg. results of seven STS tasks for ConIsI-s-BERTbase model variants.

Model Avg.

SimCSE-BERTbase 76.25
ConIsI-s-BERTbase 78.30
w/o fine-grained classification loss 77.00 (−1.30) (+0.75)
w/o contrastive loss 67.68 (−10.62)

4.7 Analysis

In this section, we conduct a series of experiments to validate our model better.
We use BERTbase or RoBERTabase model and all reported results are evaluated
on the seven STS tasks.

Validation of Sentence Construction Strategies. We compare the three
models ConIsI-o1, ConIsI-o2, and ConIsI-s to verify the effects of our proposed
sentence construction strategies for the inter-sentence interactive objective.

Table 6 shows that our proposed sentence construction techniques for the
inter-sentence interactive objective improve the performance of self-supervised
sentence representation. Compared with SimCSE-BERTbase and SimCSE-
RoBERTabase, the Spearman’s correlation of ConIsI-o1-BERTbase and ConIsI-
o1-RoBERTabase on seven STS tasks have improved by 0.89% and 1.78% respec-
tively, a 1.34% increase on average. The results of ConIsI-o2-BERTbase and
ConIsI-o2-RoBERTabase on seven STS tasks have improved by 1.10% and 1.56%
respectively, a 1.33% increase on average. The results of ConIsI-s-BERTbase and
ConIsI-s-RoBERTabase have improved by 2.05% and 0.77% respectively, a 1.41%
increase on average.
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Table 6. Validation results of sentence construction strategies.

Model Avg. Model Avg.

SimCSE-BERTbase 76.25 SimCSE-RoBERTabase 76.57
∗ConIsI-o1-BERTbase 77.14 ∗ConIsI-o1-RoBERTabase 78.35
∗ConIsI-o2-BERTbase 77.35 ∗ConIsI-o2-RoBERTabase 78.13
∗ConIsI-s-BERTbase 78.30 ∗ConIsI-s-RoBERTabase 77.34

As the Table 6 shown, the ConIsI-o1-RoBERTabase and ConIsI-o2-
RoBERTabase implemented by the strategies of “from original sentence” bring
more remarkable improvement to the SimCSE-RoBERTa model, exceeding 1.5%.
And the ConIsI-s models implemented by the strategy of “from other sentences”
gets a lower boost to the SimCSE-RoBERTa model, but a greater improvement
to the SimCSE-BERT model. That is, RoBERTa is more capable of encoding
fine-grained features and distinguishing textual similarity and semantic similar-
ity than BERT. In contrast, BERT focuses more on encoding common features
in the sentence representation space. We argue that the pre-trained RoBERTa
model pays more attention to fine-grained features because of the more refined
optimization techniques than BERT in the pre-training phase. So ConIsI-o1-
RoBERTabase and ConIsI-o2-RoBERTabase achieve better performance than
ConIsI-s-RoBERTabase. While ConIsI-s-BERTbase achieves better performance
than ConIsI-o1-BERTbase and ConIsI-o2-BERTbase.

Overall, our proposed contrastive framework with inter-sentence interaction
have improved performance compared with the previous best model SimCSE.
The experimental results show that the three sentence construction strategies
are effective for the ConIsI model. We take the ConIsI-s model’s results as our
final ConIsI model’s performance.

Effect of Coefficient λ. λ is the weighted hyperparameter for contrastive loss
and inter-sentence interactive loss involved in the final joint objective function
Eq. (10). A smaller λ means a larger contrastive loss weight, indicating that
the model pays more attention to common features. And a larger λ means a
larger interactive loss weight, indicating that the model focuses more on fine-
grained features. Our experiments find that λ plays an essential role in the joint
objective, and the experimental results are shown in Table 7. When λ = 0, the
model becomes a SimCSE-like model, and the result shows that our proposed
method to take a sentence pair as the positive instance is effective, which brings
an improvement over SimCSE-BERTbase [17] by 0.75%. The results prove that
the interactive objective is helpful to enhance the performance of the model
under different λ. And when λ = 0.8, it achieves the best performance on the
STS datasets and gets substantial improvement over that when λ = 0.
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Table 7. Avg. results of seven STS tasks under different λ for ConIsI-s-BERTbase.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Avg. 77.00 77.97 77.42 77.78 77.81 78.03 77.76 77.93 78.30 77.58

5 Conclusion

In this paper, we propose the ConIsI model, which joints contrastive learning
and inter-sentence interactive training objective for optimization. We propose
to perform a sentence repetition operation on each sentence and then take the
augmented pair as a positive instance based on contrastive learning, which allevi-
ates the train-tuned bias of language models. We also propose the inter-sentence
interactive objective, which guides the model to focus on fine-grained seman-
tic information by feature interaction between sentences. Moreover, we design
three sentence construction strategies in the inter-sentence interactive objective.
Experimental results show our proposed ConIsI achieves substantial improve-
ment over the previous state-of-the-art models. In the future, we will further
explore more effective inter-sentence interactive way to enrich semantic infor-
mation in sentence representation, and we hope to apply our approach to other
downstream tasks such as machine translation.
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Abstract. Semantic parsing aims to convert natural language utterances to log-
ical forms. A critical challenge for constructing semantic parsers is the lack of
labeled data. In this paper, we propose a data synthesis and iterative refinement
framework for neural semantic parsing, which can build semantic parsers without
annotated logical forms. We first generate a naive corpus by sampling logic forms
from knowledge bases and synthesizing their canonical utterances. Then, we fur-
ther propose a bootstrapping algorithm to iteratively refine data and model, via
a denoising language model and knowledge-constrained decoding. Experimen-
tal results show that our approach achieves competitive performance on GEO,
ATIS and OVERNIGHT datasets in both unsupervised and semi-supervised data
settings.

Keywords: Semantic parsing · Data synthesis · Unsupervised methods

1 Introduction

Semantic parsing is the task of translating natural language (NL) utterances to their
formal meaning representations (MRs), such as lambda calculus [42,50], FunQL [23,
28], and SQL queries [5,8,16]. Currently, most neural semantic parsers [12,13] model
semantic parsing as a sequence translation task via a encoder-decoder framework. For
instance, given an utterance “What is the length of river traverses state0”, a SEQ2SEQ
parsing model obtains its FunQL representation by sequentially generating its tokens
answer(length(river(traverse 2(state0)))).

One of the key challenges in building a semantic parser is the scarcity of annotated
data. Since annotating utterances with MRs is time consuming and requires specialized
expert knowledge.Witnessed the data bottleneck problem, there are many learning algo-
rithms have been proposed, such as denotation-based weak supervised learning [29,30],
dual learning [6], transfer learning [18,37]. There are also many studies focus on the
quick construction of training data, such as OVERNIGHT [40]. However, these works
still require some degree of human efforts.
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In this paper, we propose a data synthesis and iterative refinement framework, which
can build semantic parsers without labeled data. Inspired by the idea that, a simple
and noise corpus can be synthesized by a grammar-lexicon method, like the one used
in OVERNIGHT, and can be refined by leveraging external knowledges, like language
models and knowledge base constraints. So, we first obtain a naive corpus based on
synchronous context-free grammars and a seed lexicon. Then we improve the corpus
with the knowledge of language models and knowledge base constraints by iteratively
refining data and model to obtain mature corpus. Finally, we use the refined corpus to
train the semantic parser. Figure 1 shows the overview of our method.

Specifically, to get the naive corpus, we sample logical forms from knowl-
edge bases, and then synthesize their corresponding canonical utterances using a
grammar-based synthesizing algorithm. For example, like in Overnight, we can
synthesize an unnatural utterance “what is length river traverse state0” from
answer(length(river(traverse 2(state0)))). Although the synthe-
sized utterance “what is length river traverse state0” is different from the real-world
utterance “what is the length of river traverse state0”, the naive corpus can provide a
start for unsupervised learning, and can be used to pretrain a base semantic parser.

Then, to improve the synthesized naive corpus, we iteratively refine the model and
the data via a bootstrapping process, using the knowledge of language models and
knowledge base constraints. Due to the limitation of grammars and seed lexicon, the
synthesized training instances in naive corpus are often noisy, differing from real-world
utterances, and with limited diversity, which hinder the model from generalizing to nat-
ural data. To address these issues, we propose to iteratively refine the model and the
synthesized data via a denoising language model and knowledge-constrained decoding.
Firstly, we view synthesized canonical utterances as an artificial version of utterances
which are often not as fluent as natural utterances, then leverage a denoising language
model to rewrite the canonical utterances to be closer to natural utterances. Secondly, to
address the noise problem, a knowledge-constrained decoding algorithm is employed
to exploit constraints from knowledge bases, therefore meaning representations can be
more accurately predicted even when semantic parser is not strong enough. Finally, the
data synthesization and semantic parsing are iteratively refined to bootstrap both the
corpus and the semantic parser: the refined corpus is used to train a better semantic
parser, and the better semantic parser in turn is used to refine training instances.

The main contributions of this paper are:

– We propose a data synthesis and iterative refinement framework to build neural
semantic parsers without labeled logical forms, in which we generate naive cor-
pus from scratch and improve them with the knowledge of language models and
knowledge base constraints via an iterative data-model refinement.

– Experimental results on GEO, ATIS and OVERNIGHT datasets show that our app-
roach achieves competitive performance without using annotated data.
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Fig. 1. The overview of our approach.

Fig. 2. The illustration of our approach. MRs denotes meaning representations, NLs denotes nat-
ural language sentences. The naive corpus is synthesized by seed lexicon. In each bootstrapping
iteration, the corpus is refined via denoising language model and knowledge-constrained decod-
ing. The data and the models are improved iteratively.

2 Background

2.1 Base Semantic Parsing Model

We employ the SEQ2SEQ semantic parser as our base model [12], which has shown
its simplicity and effectiveness. Notice that our method is not specialized to SEQ2SEQ
model and it can be used for any neural semantic parsers.

Encoder. Given a sentence x = w1, w2, ..., wn, the SEQ2SEQ model encodes x using
a bidirectional RNN. Each word wi is mapped to a fixed-dimensional vector by a word
embedding function φ(·) and then fed into a bidirectional LSTM [19]. The hidden states

in two directions are concatenated hi = [
−→
h i;

←−
h i], and the encoding of the whole sen-

tence is: h1,h2, ...,hn.
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Attention-Based Decoder. Given the sentence representation, the SEQ2SEQ model
sequentially generates the tokens of its logical form. Specifically, the decoder is first
initialized with the hidden states of encoder s0 = [

−→
h n;

←−
h 1]. Then at each step t, let

φ(yt−1) be the vector of the previous predicted logical form token, the current hidden
state st is obtained from φ(yt−1) and st−1. Then we calculate the attention weights for
the current step t, with the i-th hidden state in the encoder:

αi
t =

exp (st · hi)∑n
i=1 exp (st · hi)

(1)

and the next token is generalized from the vocabulary distribution:

ct =
n∑

i=1

αi
thi

P (yt|y<t,x) = softmax(Wo[st; ct] + bo)

(2)

where Wo ∈ R
|Vy|×3n, bo ∈ R

|Vy| and |Vy| is the output vocabulary size.

Learning. Given a training corpus consisting of <utterance, logical form> pairs, the
SEQ2SEQ model is trained by optimizing the objective function:

J = −
∑

(x,y)∈D

m∑

t=1

log p(yt|y<t,x) (3)

where D is the corpus, x is the utterance, y is its logical form label.

2.2 SCFG for Data Synthesization

Wang, Berant, and Liang [40] use a synchronous context-free grammar(SCFG) to gen-
erate logical forms paired with canonical utterances, and use crowdsourcing to para-
phrase these canonical utterances into natural utterances. The SCFG consists of a set
of production rules (lexicon): N → 〈α, β〉, where N is a non-terminal, and α and β
are sequence of terminal and non-terminal symbols. Any non-terminal symbol in α is
aligned to the same non-terminal symbol in β, and vice versa. Therefore, SCFGs define
a set of joint derivations of aligned pairs of strings. The seed lexicon in OVERNIGHT

is specified by the builder containing types, entities, and properties in databases. Type
checking is also performed to rule out some uninterpretable canonical utterances.

3 Approach

This section describes our data synthesis and iterative refinement method for semantic
parsing. Firstly, we generate a naive training corpus by sampling meaning representa-
tions from knowledge bases and synthesizing their utterances using a grammar-based
algorithm. Then, to reduce the noise and eliminate the gap with real corpus, we pro-
pose to iteratively refine the data and the model by rewriting synthesized utterances via
a denoising language model and generating meaning representations via knowledge-
constraint decoding. Figure 2 shows the overview of our approach and we describe all
components in detail as follows.
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3.1 Data Synthesis

In OVERNIGHT [40] and PARASEMPRE [3], they use simple grammars to generate
logical forms paired with canonical utterances. To generate corpus from scratch, we
also synthesize data via a grammar-based algorithm.

Specifically, we first sample MRs from knowledge bases via a graph sampling algo-
rithm, then we synthesize their utterances by mapping predicates to words from a seed
lexicon and composing these words using context free grammars. Different from the
corpus generation method in OVERNIGHT, our method starts from not only grammar
but also the knowledge base schema, and can be easier to extended to other datasets like
GEO and ATIS.

Generating MRs via Graph Sampling. The graph sampling algorithm aims to sam-
ple meaning representations from knowledge bases. Given a knowledge base, Graph
Sampling regards MRs as subgraphs of the knowledge base. To ensure the truthfulness
and integrality of generated meaning representations, we sample subgraph-based MRs
according to both the structure of MRs and the schemas of knowledge bases.

Specifically, to generate MRs, we start from the nonterminal token root and
then recursively expand all nonterminal tokens in current MRs. For general/functional
nonterminal tokens such as root, argmax and count, because they are domain-
independent, we expand them using hand-crafted general production rules. For nonter-
minal tokens about entities and relations such as river, state and city for GEO,
because they are domain dependent, we expand them by production rules sampled from
knowledge base schemas.

To utilize the schema to produce MRs, we extend the original schema by adding the
attribute value as value type nodes and the aggregation operations as self-loop edges.
We provide the extended schema and sampling examples in the Fig. 3.

Fig. 3. The extended schema of GEO (partial). To sample the subgraph from the dotted edges, the
root nonterminal token root is recursively extended by the production rules:
root → answer(length value)
length value → length(river set)
river set → river(river attri)
river attri → traverse 2(state set)
state set → state0,
generating the MR: answer(length(river(traverse 2 (state0))))
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Based on the schema graph, the meaning representations can be effectively sampled
by utilizing context-free grammar (i.e., the production rules) for grammatical correct-
ness and knowledge base schemas for semantic correctness.

Synthesizing Utterances via SCFG-Based Algorithm. Based on canonical composi-
tionality assumption in Wang, Berant, and Liang [40], we also use SCFG to generate
utterances. We extend the context-free grammar in Graph Sampling to synchronous
context-free grammar. For example in Fig. 2, based on the SCFG rules, we can synthe-
size the utterance “what is length river traverse state0” from the sampled MR:

root → 〈answer(FORM),what is FORM〉
FORM → 〈length(FORM), length FORM〉
FORM → 〈river(FORM), river FORM〉
FORM → 〈traverse 2(FORM), traverse FORM〉
FORM → 〈state0, state0〉

Seed Lexicon Construction. To synthesize utterances from sampled semantic repre-
sentations, a lexicon is further needed for SCFG, which maps logical tokens to their
natural language words. For OVERNIGHT, we simply use its original seed lexicon. For
other datasets, we use the following simple way to build an initial lexicon:

For domain-general logical tokens we manually write their natural language tem-
plates. The number of domain-general rules is usually very small. Some examples of
our domain-general rules are in Table 1.

Table 1. Examples of our domain-general rules on GEO (above) and ATIS (below). We write
seed lexicon of domain-general grammar manually, the number of which is usually very small
(only 5 needed in GEO and 12 in ATIS and 23 in OVERNIGHT).

Category Domain-general rules NL templates

Query answer (FORM) what is FORM

Count count (FORM) the number of FORM

Exclusion exclude (FORM1, FORM2) FORM1 do not FORM2

Superlative (max) largest one (VALUE (FORM)) FORM with largest VALUE

Filter (type) λtλs: ($t $s) $t $s

Filter (property) λpλvλs: ($p $v $s) $s whose $p is $v

Comparative (<) λpλvλs: (< ($p $v) $s) $s whose $p is smaller than $v

Superlative(max) λpλs: argmax $s ($p $s) $s with largest $p

For domain-dependent entity tokens and relation tokens, we simply use the words
in their logical tokens, with a simple preprocessing which removes numbers and under-
lines. For example, the area 1 denotes the words “area” and departure time
denotes the words “departure time”.

Using the above SCFG with seed lexicon, an initial training corpus can be syn-
thesized. Although, this seed lexicon is obviously with limited coverage and lack of
diversity. This naive corpus can still provide a helpful start for semantic parsing. Next,
we describe how to iterative refine the parsing mode and data.
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3.2 Iterative Data-Model Refining

Due to the limitation of grammar and lexicon, the synthesized training instances in naive
corpus are often noisy, differing from real-world sentences, and with limited diversity.
To address these issues, we refine the corpus with the knowledge of language models
and knowledge base constraints through a bootstrapping process: 1) we rewrite synthe-
sized utterances via a denoising language model, so the utterances will be more fluent
and closer to natural utterances; 2) we propose to exploit knowledge during decoding,
so that meaning representations can be more accurately predicted even when the model
is not strong enough; 3) we iteratively refine the data and the model via a bootstrapping
process. After several iterations of refinement, we obtain the mature corpus and the final
semantic parser.

Utterance Rewriting via Denoising Language Model. The synthesized utterances
are often not fluent, differing from real-world sentences. For example, the synthesized
utterance in Fig. 2: “what is length river traverse state” is very different to its natural
expression “what is the length of river traverses state0”. And this discrepancy misleads
models to learn incorrect patterns.

Thanks to the current powerful language models, we can use a denoising language
model to rewrite synthesized utterances to more natural sentences. Specifically, we
regard the synthesized utterances as a noisy version of natural expressions, and then
denoise them via neural language model-based language denoising techniques [26].

Specifically, we train a language model based on GPT2.0 [34], which is then used
to denoise by minimizing:

Llm = Ex∼X[− logP (x|C(x))] (4)

where C is a noise model with some words dropped and swapped as in Lample
et al. [26].

Generating High-Quality Lexicon via Knowledge-Constrained Decoding. To
obtain high-quality lexicon, which can be used to synthesize better 〈MR, canonical
utterance〉 pairs, we use the current parser to generate parallel data. Without manually
annotated corpus, the initial semantic parser is often not strong enough, therefore it
is difficult to find high-quality meaning representations. So we also apply knowledge-
constrained decoding.

Like previous work [25,44,47], we decode the meaning representations under the
grammar we mentioned in Graph Sampling. Only the grammatical logical forms are
generated during the decoding. Additionally, we leverage knowledge base schemas to
effectively filter out illegal logical forms. Given a semantic parser, we first obtain the top
K meaning representations for each sentence. Then if there exists an executing program
or search engine for logical forms, we will only keep the executable logical forms.
Otherwise, we verify whether the logical form is well-typed under the knowledge base
schema constraints, and only preserve the eligible logical forms.

After obtaining the higher quality parallel data, following Wong and Mooney [41],
we apply the GIZA++ on the parallel data to get the alignments between words and
grammar rules and induce a new SCFG lexicon.
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Table 2. Accuracies on OVERNIGHT. The previous methods with superscript ∗ means they use
different unsupervised settings.

Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Avg.

Supervised

SEQ2SEQ 84.3 57.9 78.1 69.9 76.2 80.7 78.0 80.5 75.7

RECOMBINATION [21] 85.2 58.1 78.0 71.4 76.4 79.6 76.2 81.4 75.8

CROSSDOMAIN [37] 86.2 60.2 79.8 71.4 78.9 84.7 81.6 82.9 78.2

SEQ2ACTION [9] 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0

DUAL [6] 87.5 63.7 79.8 73.0 81.4 81.5 81.6 83.0 78.9

Unsupervised (with nonparallel data)

Two-stage [7] 64.7 53.4 58.3 59.3 60.3 68.1 73.2 48.4 60.7

WmdSamples [7] 31.9 29.0 36.1 47.9 34.2 41.0 53.8 35.8 38.7

Mature Corpus + Samples 58.5 55.3 62.4 65.1 66.7 62.2 72.3 47.1 61.2

Unsupervised

Cross-domain Zero Shot∗ [18] - 28.3 53.6 52.4 55.3 60.2 61.7 - -

GENOVERNIGHT [40] 15.6 27.7 17.3 45.9 46.7 26.3 61.3 9.7 31.3

Naive Corpus EMBED BERT 15.9 24.6 18.6 44.1 46.9 27.0 62.2 9.7 31.1

Glove 16.2 23.6 16.2 30.3 36.9 27.0 43.2 9.2 25.3

Rand 13.8 21.1 15.6 28.2 21.9 27.0 31.1 8.2 20.9

Mature Corpus EMBED BERT 45.9 52.5 52.7 58.5 61.9 52.1 69.8 33.6 53.4

Glove 44.1 51.5 48.5 56.4 58.8 50.2 68.9 32.0 51.3

Rand 35.1 43.2 36.5 44.7 46.9 46.5 65.0 25.6 42.9

w/o Denoising 32.8 45.0 40.1 46.8 52.5 45.6 63.1 26.6 44.1

w/o Constraint 29.0 39.7 35.3 37.8 41.9 42.8 64.7 23.4 39.3

Iterative Learning. It is obviously that the model promotion and the data refining
can reinforce each other: better parsers can generate data of higher quality, and higher
quality data can be used to train stronger models. Based on this intuition, we propose to
iteratively refine model and data by leveraging the duality between them.

Specifically, in each data-model refining iteration, we: 1) first synthesize the utter-
ances X′ of the sampled MRs Y′ using the current lexicon and the denoising model;
2) train a new semantic parser using the synthesized data; 3) parse the unlabeled utter-
ances via knowledge-constrained decoding; 4) induce a new lexicon using both the
highly confident automatically labeled data and the synthesized data.

We gradually increase the proportion of parsing data at each iteration. In the k-th
iteration, we select the top δ × (k+1) confident parsing pairs for lexicon learning. The
confidence scores are calculated as the normalized likelihood:

Score(x, y) =
1

Ny
logP (y|x) (5)
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4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three standard datasets: GEO, and ATIS,
OVERNIGHT, which use different meaning representations and contain different
domains.

GEO. This is a semantic parsing benchmark about U.S. geography [49]. The variable-
free semantic representation FunQL [23] is used in this dataset. We follow the standard
600/280 train/test instance splits.

ATIS. This is a large dataset, which contains 5,410 queries to a flight booking system.
Each question is annotated with a lambda calculus query. Following Zettlemoyer and
Collins [51], we use the standard 4,473/448 train/test instance splits in our experiments.

OVERNIGHT. OVERNIGHT contains natural language paraphrases paired with lambda
DCS logical forms across eight domains. We evaluate on the standard train/test splits as
Jia and Liang [40].

In all our experiments, we only use the unlabeled sentences in each dataset. The
standard accuracy is used to evaluate different systems, which is obtained as the same
as Jia and Liang [21].

Synthesized Training Corpus. We generate training instances proportional to the orig-
inal dataset sizes (1500 for GEO, 5000 for ATIS, and 1500 for each domain in
OVERNIGHT). For OVERNIGHT, we use its original defined grammar and lexicon.

Denoising Language Model. We train an individual denoising language model for each
dataset (each domain for OVERNIGHT). For each utterance in unlabeled queries, we
sample 5 noisy sentences to construct the training pairs by dropping words randomly
or slightly shuffling the utterance as Lample et al. [26]. The pretrained language model
GPT2.0 is adapted on paraphrase generation dataset, then fine-tuned on denoising sen-
tences with 15 epochs and the learning rate of 1e-5.

System Settings. We train all our models with 5 data-model refining iterations. In each
iteration, the neural semantic parser is trained 15 epochs, with the initial learning rate
of 0.001. We use Adam algorithm [24] to update parameters, with batch size is 20. Our
model uses 200-dimensional hidden units and 200-dimensional word vectors for sen-
tence encoding. We initialize all parameters by uniformly sampling within [−0.1, 0.1].
BERTLARGE [11] is used to get word representations. The beam size K during decoding
is 5. The hyper-parameter δ is 0.1. Following Dong and Lapata [12], we handle entities
with a Replacing mechanism, which replaces identified entities with their types and IDs.

4.2 Experimental Results

Overall Results. We compare our model with different settings:

1) Naive Corpus – the semantic parser is trained from the naive corpus, which is gen-
erated by meaning representation sampling and utterance synthesizing;
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Fig. 4. Test accuracies on GEO with different size of synthesized data. The number of sampled
meaning representations has increased from 0.1 times the amount of original data to 10 times.
The dash line shows the accuracy of Golden MRs

2) Mature Corpus – the corpus is improved by iterative data-model refining;
3) Supervised – the model is trained using the original training corpus with the same

settings.

For Overnight, we further compare with the Cross-domain Zero Shot [18] which
is trained on other source domains and then generalized to new domains and GEN-
OVERNIGHT [40] in which all the canonical utterances are also generated without man-
ual annotation. With the nonparallel data: Two-stage [7] employs the cycle learning
framework. WmdSamples [7] labels each input sentences with the most possible out-
puts in the unparallel corpus and deals with these faked samples in a supervised way.
Our Mature Corpus + Samples method follows WmdSamples, using the parser built on
the refined data to label each input.

The results are shown in Table 2 and Table 3. We can see that:

1) Our learning framework is promising for resolving the training data bottleneck
problem of semantic parsing. In all datasets, our method outperforms other base-
lines in the same unsupervised settings. On OVERNIGHT, our method also surpasses
the previous approaches in unsupervised data settings. These results verify that data
synthesis and iterative data-model refinement is a promising method for semantic
parsing without annotated logical forms.

2) The iterative data-model refining is effective to bootstrap semantic parsers.
Compared with Naive Corpus, after corpus refinement our Mature Corpus gains
27.9 accuracy improvement in ATIS. This verifies the effectiveness of the data-
model refining. We believe it results from: i) denoising language model can improve
the quality of generated utterances and knowledge-constrained decoding can filter
out invalid meaning representations; ii) the bootstrapping can leverage the duality
between data and model for iterative refining.

Detailed Analysis

Effects of Utterance Denoising and Constrained Decoding. Table 2 and 3 show the
accuracies by removing denoising language model (–Denoising) and by removing
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Table 3. Accuracies on GEO and ATIS. The previous methods with superscript ∗ means they use
different unsupervised settings. Confidence-driven and Two-stage both use the nonparallel data.

GEO ATIS

Supervised

SEQ2SEQ 88.2 84.2

Dong and Lapata [12] 87.1 84.6

Jia and Liang [21] 89.3 83.3

Susanto and Lu [39] 90.0 -

Xu et al. [45] 88.1 85.9

Chen, Sun, and Han [9] 88.9 85.5

Jie and Lu [22] 89.3 -

Guo et al. [17] 87.1 83.1

Unsupervised

Confidence-driven∗ 66.4 -

Two-stage∗ 63.7 -

Naive Corpus 29.3 25.0

Mature Corpus

EMBED BERT 58.2 52.9

GloVe 55.0 52.5

Rand 44.6 43.3

w/o Denoising 45.0 39.5

w/o Constraint 38.9 37.1

Table 4. Evaluation Accuracies on GEO and ATIS with the increase of iterations.

GEO ATIS

Iterative updating

Iter.1 41.4 37.7

Iter.2 49.3 44.6

Iter.3 57.1 48.0

Iter.4 58.9 52.5

Iter.5 58.2 52.9

knowledge constraints during decoding (–Constraint). We can see that: 1) Both utter-
ance denoising and constrained decoding are effective. In average on all three datasets,
removing denoising results in 12.0 accuracy drop and removing constrained decoding
results in 16.4 accuracy drop. 2) Constrained decoding is more helpful than denoising.
We believe this is because the grammar and the knowledge-base can effectively improve
the quality of automatically generated parallel data, from which a new lexicon is built
and is further used to synthesize new parallel data.
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Fig. 5. Test accuracies on ATIS with different amounts of labeled data.

Effects of Word Embeddings. To analyze the effects of word embeddings settings, we
compare our method with different settings of word embeddings: BERT – word rep-
resentations are from the pretrained BERTLARGE [11]; GloVe – word embeddings are
initialized by GloVe [31]; Rand – the word embeddings are initialized by uniformly
sampling within the interval [-0.2, 0.2], and the unseen words are all presented as UNK
token. We can see that the pretrained word embeddings can effectively improve the
model. We believe this is because it empowers the model with better representation and
helps the model generalize to similar words.

Effect of Data Synthesis. To analyze the effectiveness of synthesized data, we: 1) com-
pare our models with Golden MRs – in which all utterances are synthesized from the
manually labeled meaning representations in original corpus; 2) increase the amount of
sampled meaning representations from ×0.1 to ×10 size of the original labeled data.
The results on GEO are shown on Fig. 4.

We can see that: 1) the graph sampling algorithm can effectively sample meaning
representations – compared with Golden-MRs, our method can achieve nearly the same
performance with ×1 dataset. 2) The data synthesis is useful, when the size of data
increases from ×0.1 to ×1, the performance gradually increases. We also noticed that
when the data size exceeds the original data, the performance of the model does not
improve much. We believe that this is because too much data generated with a certain
amount of noise can no longer provide useful supervision information.

Effect of Iterative Bootstrapping. Table 4 shows the accuracies by increasing the num-
ber of iterations. We can see that: 1) the iterative data-model refining is effective: when
we conduct more refining iterations, the performance gradually increases and stabilizes
at a reasonable level – from 41.4 accuracy in Iter 1 to 58.9 in Iter 4 in GEO; 2) The boot-
strapping process can reach its equilibrium within few iterations: for GEO in 5 iterations
and for ATIS in 4 iterations.

Semi-supervised Learning. To investigate the effectiveness of our method given some
additional labeled instances, we vary the amount of labeled data from 0 to all labeled
data. Our model can use the labeled data to train semantic parser and induce lexicon in
each iteration. Seq2Seq can only use the labeled data. Dual learning [6] forms a closed
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loop to learn unlabeled data in reinforcement learning. In Fig. 5, We can see that our
model enhances semantic parsing over most settings. Especially, our model has obvious
advantages when there is a small amount of labeled data.

5 Related Work

Neural Semantic Parsers. In recent years, neural semantic parsers have achieved sig-
nificant progress. Neural parsers model semantic parsing as a sentence to logical form
translation task [20–22,44], And many constrained decoding algorithms are also pro-
posed [9,20,25,27];

Data Scarcity in Semantic Parsing. Witnessed the labeled data bottleneck problem,
many techniques have been proposed to reduce the demand for labeled logical forms.
Many weakly supervised learning are proposed [1,2,4,35], such as denotation-base
learning [14,30], iterative searching [10]. Semi-supervised semantic parsing is also
proposed, such as variational auto-encoding [48], dual learning [6], dual information
maximization [46], and back-translation [38]. Constrained language models are also
proposed to resolve few-shot semantic parsing [36,43].

Unsupervised Semantic Parsers. There are also some unsupervised semantic parsers,
such as USP [32] proposes the first unsupervised semantic parse, and GUSP [33] builds
semantic parser by annotating the dependency-tree nodes and edges. Wang et al. [15]
select high confidence pairs for unsupervised learning. Two-stage [7] train unsupervised
paraphrasing model with non-parallel data for semantic parsing.

6 Conclusions

We propose a data synthesis and iterative data-model refining algorithm for neural
semantic parsing, which can build semantic parsers without labeled data. In our method,
the naive corpus is generated from scratch by grammar-based method and knowledge
base schemas, and the corpus is improved on bootstrapping to refine model and data
with the knowledge of language models and knowledge bases constraints. Experimental
results show our approach can achieve promising performance in unsupervised settings.
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Abstract. Natural language understanding tasks require a comprehensive under-
standing of natural language and further reasoning about it, on the basis of holistic
information at different levels to gain comprehensive knowledge. In recent years,
pre-trained language models (PrLMs) have shown impressive performance in nat-
ural language understanding. However, they rely mainly on extracting context-
sensitive statistical patterns without explicitly modeling linguistic information,
such as semantic relationships entailed in natural language. In this work, we
propose EventBERT, an event-based semantic representation model that takes
BERT as the backbone and refines with event-based structural semantics in terms
of graph convolution networks. EventBERT benefits simultaneously from rich
event-based structures embodied in the graph and contextual semantics learned
in pre-trained model BERT. Experimental results on the GLUE benchmark show
that the proposed model consistently outperforms the baseline model.

Keywords: Event-based semantics · Graph convolution networks · Natural
language understanding

1 Introduction

Recent years have witnessed deep pre-trained language models (PrLM) such as
ELMo [28], BERT [8], XLNet [45] and ERNIE [38] significantly prospering the perfor-
mance of a wide range of natural language understanding (NLU) tasks. The remarkable
advancements brought by PrLM have shown the effectiveness of leveraging contextual-
ized representation. However, they mainly rest on extracting context-sensitive statistical
patterns without explicitly modeling linguistic information such as semantic relation-
ships in natural language.

It is clear that natural language itself abounds with ample, multi-level linguis-
tic information. Although PrLMs like BERT implicitly represent linguistic knowl-
edge more or less [33], studies disclose that linguistic knowledge is far from fully
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absorbed [10,33]. Therefore, there emerges a series of derivatives of PrLM intending
to fuse explicit linguistic knowledge so as to acquire better language representation,
including syntactic [1,44,47] and semantic information [14,17,46].

Fig. 1. An example showing how SRL parses sentences and the intuition of constructing event-
based graph.

In cognition practice, human needs to distill semantics of different levels to gain
a comprehensive understanding, whereas neural language models learn semantic rep-
resentation to deal with downstream tasks [13]. Thus, effective learning of semantic
knowledge plays a crucial role in NLU tasks and has gained growing attention recently.
For instance, SemBERT [46] directly connects multiple predicate-argument structures
acquired by semantic role labeler (SRL) to get the joint representation.

The essence of SRL [36] lies in that every sentence possesses multiple predicate-
specific structures which can represent different frames of events, while semantic roles
express the abstract role that arguments of a predicate can take in the event. Besides, the
events inside a sentence have interactions with each other that serve together to present
the overall semantic knowledge. As shown in Fig. 1, SRL parses every sentence with
multiple predicate-specific structures which can serve as events inferring who did what
to whom, when and why. Each event has an inner structure centered on the predicate to
which several arguments are associated such as Hoy[ARG0], the woman’s age[ARG1]
and Tuesday[ARGM-TMP] connected to confirmed[V]. Meanwhile, the multiple events
work together to give a comprehensive meaning of a sentence, like the events centered
on said, confirmed and left. With regard to delving into the inner interactions between
the events and effectively capturing multiple objects, we are motivated to build a graph
to reveal the intrinsic structures between and inside the events.

Inspired by the above ideas, we propose EventBERT: an event-based semantic rep-
resentation model which takes BERT as the backbone and refines with event-based
structural semantics. Our EventBERT benefits simultaneously from rich event-based
structures embodied in the graph and contextual semantics learned in the pre-trained
BERT.
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Our proposed model works in three steps: it first applies an off-the-shelf SRL toolkit
to parse every sentence with semantic role labels; then it constructs event-based graphs
and employs Graph Convolutional Networks (GCNs) [35] to propagate and aggregate
information from neighboring nodes on the graph; at last, it combines the contextualized
representation acquired by BERT encoder together with the graph-level representation
to obtain an event-based contextualized representation.

The key contributions of our work are summarized as follows:

1) We extract event-based semantic knowledge from SRL to enrich language represen-
tation.

2) We employ GCNs to construct sentence-level graphs which better reveal interactions
inside and between the events in a sentence.

2 Related Work

2.1 Semantics in Language Representation

Recent studies show that current prominent pre-trained language models have already
incorporated semantic information to some extent [6], yet such implicit semantic infor-
mation is far from enough for comprehensive natural language understanding [10]. Thus
there emerges a research line that focuses on fusing semantic information into contex-
tualized language representation. ERNIE2.0 [38] adopts three-stage masking in which
entity-level masking helps to obtain a word representation containing richer semantic
information. SemBERT [46] makes use of PropBank [27] to fuse semantic role tags
into language representation. FMSR [16] utilizes FrameNet [2] to extract multi-level
semantic information within sentences. SS-MRC [15] takes advantage of syntax and
frame semantics in an attempt to carve out information from two complementary per-
spectives to obtain richer language representation.

Besides simply employing semantic knowledge, other recent works shift the focus
to exploring deeper structural semantics. For instance, frame semantics and graph neu-
ral networks are leveraged to model sentences from both intra-sentence level and inter-
sentence level [14]. SIFT is introduced to inject predicate-argument semantic depen-
dencies into pre-trained language models via R-GCNs [42]. Structured knowledge is
introduced through multi-tasking to get a unified model, which inspires the potential of
leveraging structural information [43]. Unlike previous works that attempt to capture
shallow semantic structures by semantic tags, our model digs deeper into semantics
itself and aims to find the structured event-based information behind semantics, thus
unveiling richer structural-semantic information inside the sentence.

2.2 Graph Modeling for Language Understanding

As natural language itself abounds with dependencies and intricate relations between
different levels of language units, graph neural networks (GNNs), which model the units
as nodes in the graph and learn the weight via the message passing between nodes of the
graph [18,34,39], stand out by explicitly and intuitively capturing the relations. Besides,
a number of extensions to the original graph neural networks have been developed,
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the most notable of which include graph convolutional networks (GCNs) [18], graph
attention networks (GANs) [39] and the models from [22] and [29] utilizing gating
mechanisms to facilitate optimization.

In response to the outstanding performance of GCNs, several efforts have been made
in recent years to improve performance on natural language understanding using GCNs,
including GraphRel [12] which considers the interaction between named entities and
relations via relation-weighted GCNs to better extract relations, NumNet [32] which
utilizes a numerically-aware graph to perform numerical reasoning, DFGN [30] which
dynamically builds the entity graph by adding the edges with co-occurrence relations,
HGN [11] which creates a hierarchical graph by constructing nodes on different levels
of granularity and social information reasoning [21] which uses GCNs to capture the
documents’ social context.

Moreover, R-GCNs [35] have shown effectiveness in relational graph modeling. For
example, Entity-GCN [7] employs R-GCNs to link mentions of candidate answers for
multi-document question answering. DFGN [30] dynamically builds the entity graph by
adding the edges with co-occurrence relations and softly masking out irrelevant entities.
DGM [26] constructs two discourse graphs and uses R-GCNs to fully capture interac-
tions among the elements. R-GCNs are employed to enhance reference dependencies
for dialogue disentanglement [23]. In contrast with previous works, our work proposes
a sentence-level graph that is finely designed to mine the relationships between multiple
elements in a sentence, extract rich structural semantics and facilitate information flow
over the graph as well.

3 Model

Figure 2 gives an overview of our proposed EventBERT, which consists of two major
components:

1. Context Encoder which acquires deep and contextualized representations for raw
input sequences by following BERT architecture;

2. Event-based Encoder which obtains richer structural-semantic representation by
modeling event-based intra-sentence graphs.

We omit the details of BERT which is widely used and ubiquitous and leave readers to
resort to [8] for more information.

3.1 Context Encoder

The raw input sentence X = {x1, . . . , xn} is a sequence of words in length n.
It is first tokenized to a sequence of sub-words with [SEP] inserted at the end as
the end marker and [CLS] inserted at the beginning to get a sentence-level rep-
resentation: X ′ = {token1, . . . , tokenm}. Then we pass it through the embedding
block and encoder block of BERT to produce a context-informed representation C =
{c1, . . . , cm} ∈ R

m×dhs using the equation below:

C = BERT (X ′), (1)

wherem denotes the length of sentence on sub-word level and dhs stands for the dimen-
sion of hidden states.
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Fig. 2. The overall structure of EventBERT.

3.2 Event-Based Encoder

Semantic Role Labeler. The raw input sentence is simultaneously fed into Semantic
Role Labeler [36] to fetch multiple predicate-specific structures tagged by PropBank
semantic roles:

T = {t1, . . . , td}, (2)

where d is the number of semantic structures for one sentence. Notably, ti can be repre-
sented under the format {tagi1, tagi2, ..., tagin} and every tag span in ti is recorded with
its corresponding index in the context for further alignment.

Graph Construction. Figure 3 shows the process of graph construction: the predicates
in the original input text are firstly extracted and an event subgraph is constructed with
each predicate as the center; then a super event node (SEN) is applied to link all the
predicates to collect the integral event information within the aggregated sentence; the
Levi graph is finally constructed with reference to the method of [20], which is used to
prepare the next stage of further computational operations on the graph.

For each sentence with the argument-predicate roles, we construct an event-based
graph G = (V, E ,R) with span-level nodes vi ∈ V and labeled edges (vi, r, vj) ∈ E ,
where r ∈ R a relation type. Since every sentence has several semantic structures, here
we take one structure as example and show the modeling method. Given Seqtag =
{tag1, tag2, ..., tagn} a word-level tag sequence,

1. We first transform it to a span-level sequence Seq′
tag = {tag′

1, tag
′
2, ..., tag

′
l} by

aggregating the same neighboring tags with l ≤ n representing the length of tags on
span-level;

2. Then, we add a Super Event Node (v = SEN ) to seize global graph information;
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Fig. 3. The process of graph construction: from raw sentence text to event-based graph and cor-
responding Levi graph.

3. After that, we add other nodes and edges to G based on the following process:
(a) we first find tag′

p which corresponds to predicate (Verb in e′),
(b) we add a node v = np and a directed edge e = (np, V erb, SEN) with r =

V erb,
(c) for the rest tags referring to arguments of the predicate, tag′

q for example, we add
a node v = nq and a directed edge linking to the predicate e = (nq, tag

′
q, np)

with relation r = tagq;
4. Finally, the corresponding Levi graph [20] is extended from G to GL =

(VL, EL,RL). For nodes VL, we add the nodes representing relations to the orig-
inal: VL = V ∪ R. For edges EL, we transform each edge e = (nq, tag

′
q, np) in

G into two corresponding edges: e1 = (nq, tag
′
q) and e2 = (tag′

q, np) in GL. For
RL, we follow the setting of [26] and refine it to five types: default-in, default-out,
reverse-in, reverse-out, self according to the direction of edges towards the relation
vertices, as is shown in Table 1.

Table 1. Relation types in our extended Levi graph

RL in Levi graph Illustration

default-in The propagation path pointing to the node as the end point

default-out The propagation path pointing to the node as the starting point

reverse-in The propagation path in the opposite direction of default-in

reverse-out The propagation path in the opposite direction of default-out

self The propagation paths pointing to the node itself
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Event-Based Contextualized Representation. We adopt Relational Graph Convolu-
tional Networks (R-GCNs) [35] to implement explicit event graphs since traditional
Graph Convolutional Networks (GCNs) cannot handle graphs containing edge features
with multiple relations. For predicate and argument nodes, we inject the corresponding
span-level encoding results obtained from Context Encoder in Sect. 3.1. For relation
nodes, we regard the relations as embeddings and use a lookup table to get the initial
representation. Given that the initial representation of each node vi is h0

i , the propaga-
tion process can be written as:

h
(l+1)
i = ReLU

⎛
⎝ ∑

r∈RL

∑
vj∈Nr(vi)

1

ci,r
w(l)

r h
(l)
j

⎞
⎠ , (3)

where h(l)
i ∈ R

d(l)
is the hidden state of node vi in layer l with d(l) being the dimen-

sionality of this layer’s representations, Nr (vi) denotes the set of neighbor indices of
node vi under the relation r, ci,r is a problem-specific normalization constant equal to

|N r
i |, w(l)

r is the learnable parameters of layer l.
Since the importance of these relations cannot be treated the same, for example, the

relation Verb is much more important than the relation ARG2, we introduce the gating
mechanism [24]. The basic idea is to compute a value between 0 and 1 for message
passing control as is shown in Eq. 4. Finally, the propagation process of R-GCNs under
the gating mechanism is as follows:

g
(l)
j = Sigmoid

(
h
(l)
j W (l)

r,g

)
(4)

h
(l+1)
i = ReLU

⎛
⎝ ∑

r∈RL

∑
vj∈Nr(vi)

g
(l)
j

1

ci,r
w(l)

r h
(l)
j

⎞
⎠ , (5)

where W (l)
r,g is the learnable parameter under the l-th level relation type r.

With R-GCNs model, we obtain a graph-level semantic representation:

R = {r1, . . . , rf} ∈ R
f×dhs (6)

where f is the number of nodes in the graph and dhs is the same dimension as the
representation C in Eq. 1 obtained from the context encoder.

At last, we concatenate R with the contextual sub-word-level representation C pro-
vided by Context Encoder and generate an event-based contextualized representation
taking the mean value of both sub-word-level and graph-level information, which is
then used as the new sequence representation for downstream tasks following the same
way of [8].

4 Experiments

4.1 Setup

Datasets. We build EventBERT on the BERT backbone and fine-tune the model on
GLUE (General Language Understanding Evaluation) benchmark [40] to evaluate the
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Table 2. Comparisons between our models and baseline models on GLUE dev set.

Model CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg

(mc) (acc) (acc) (acc) (acc) (acc) (acc) (pc) -

Base-size

BERTBASE 58.4 92.8 83.2 88.6 68.5 86.0 86.5 87.8 81.5

EventBERTBASE 59.6 93.3 83.9 91.8 69.7 89.7 89.8 88.9 83.3(↑1.8)
Large-size

BERTLARGE 60.3 93.1 85.2 91.5 70.3 88.5 90.2 89.3 83.6

EventBERTLARGE 63.1 94.0 85.3 92.6 71.4 89.5 90.6 89.5 84.5(↑0.9)

performance, which includes two single-sentence tasks CoLA [41], SST-2 [37]), three
similarity and paraphrase tasks MRPC [9], STS-B [4], QQP [5], three inference tasks
MNLI [25], QNLI [31], RTE [3]. We exclude the controversial and problematic dataset
WNLI [19].

Evaluation Metrics. According to [40], different datasets in GLUE correspond to dif-
ferent evaluation metrics, which include accuracy (acc), Matthew’s correlation (mc) and
Pearson correlation (pc). Among the eight datasets, STS-B is reported by Pearson cor-
relation, CoLA is reported by Matthew’s correlation, and other tasks are reported by
accuracy.

Implementation Details. For the experiments, we use an initial learning rate in {1e−5,
2e−5, 3e−5} with warm-up rate of 0.1 and L2 weight decay of 0.01. The batch size
is selected in {16, 32}. The maximum number of epochs is set in [2, 5] depending on
tasks. Texts are tokenized with maximum length of 256 for the tasks. We use 2 layers
of R-GCNs in our model.

4.2 Results

Table 2 presents the results on the GLUE benchmark, which show that EventBERT
achieves consistent gains over all the subtasks under both base and large models.

The results indicate that our model performs better on longer sentences as shown
in Sect. 5.3. Furthermore, our analysis shows that EventBERT can effectively benefit
from the fine-grained graph-like event-based structures, as illustrated in case studies in
Sect. 5.4. The results also disclose that modeling intrinsic structures between and inside
events is crucial for language understanding.

In addition, the experimental results show that EventBERT has a significant perfor-
mance gain on small datasets such as CoLA and MRPC, which indicates that semantic
information involving event modeling is more advantageous and competitive in smaller
datasets. In practice or industry, large-scale annotated data is rare and scarce due to the
high cost and required expensive human resources, so language models that dominate
in small-scale datasets are more valuable and important for most NLP tasks.
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5 Analysis

5.1 Ablation Study

We conduct the ablation study to investigate the effects of the gating mechanism and
the addition of global nodes in the event-based encoder module. Results in Table 3 show
that both the gating mechanism and global nodes are non-trivial.

5.2 Methods of Aggregation

During the period of concatenating and aggregating the graph level semantic repre-
sentation R and the contextual representation C, we further analyze the influence of
different methods of aggregation such as max-pooling and mean-pooling by comparing
the models with the same hyper-parameters on three datasets CoLA, MRPC and RTE
respectively. Results in Table 3 demonstrate that employing mean-pooling presents bet-
ter performance.

5.3 Effectiveness of Semantic Structures

Table 3. Ablation study and comparison of
aggregation methods on three datasets.

Model CoLA MRPC RTE

(mc) (acc) (acc)

Ablation study

EventBERTbase 59.6 89.7 69.7

w/o gating 58.6 86.8 69.0

w/o global node 58.4 87.0 67.9

Aggregation methods

BERTbase 58.4 86.0 68.5

w/ max-pooling 59.1 86.8 68.2

w/ mean-pooling 59.6 89.7 69.7

In order to dig deeper into the rationale
behind the effectiveness of the model, we
select two datasets QNLI and MRPC, repre-
senting large-scale and small-scale datasets
respectively. We statistically calculate the
accuracy of the corresponding models on
different word-level sequence length inter-
vals for EventBERT and baseline. Figure 4
shows that our model outperforms the base-
line especially when the sequence is rela-
tively long and our model performs better
on longer sentences compared with shorter
ones, which implies that modeling intrinsic
semantic structures is potential to guide the
model to learn richer structural semantics
more than contextualized information. Thus,
the analysis of word sequence lengths shows that EventBERT performs better on data
with longer sequence lengths, which indicates that event-level modeling is promising
and competitive for understanding long texts. Under many practical situations where
available data are long texts, the idea of extracting event-level structural-semantic infor-
mation is promising in many NLP tasks.
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Fig. 4. Accuracy of different sequence word lengths on QNLI and MRPC.

5.4 Interpretability: Case Study

We select three cases in Classification, Sentence Similarity and Language Inference
from SST-2, MRPC and QNLI respectively which are shown in Fig. 5, aiming to further
explore the mechanism. It can be seen that our model can perceive explicit structural
meaning to better understand the language. We will analyze each of the three cases in
detail so as to analyze the advantages of EventBERT more intuitively.

Fig. 5. Examples selected from the dev set of SST-2, MRPC and QNLI where baseline fails but
our model succeeds.

Classification. In the case from SST-2, our model succeeds in capturing and under-
standing the event Friel and william’s exceptional performances[ARG0] anchored[V]
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the film’s power[ARG1], whereas the baseline does not manage to capture this meaning,
thus leading to the failure.

Sentence Similarity. The case from MRPC demonstrates that our model grabs the
distinct semantic structures centered on is and has and thus gives the right answer not
equivalent. The event centered on the predicate donate belongs to the same structure,
which contains the arguments ARG0, ARG1 and ARGM-TMP having the same contents
(i.e., the woman donated blood). Nevertheless, the remaining events which center on
the predicate is and the predicate has in the sentence pair are semantically different as
one structure includes the arguments ARG1 and ARG2 while the other contains only
ARG0 and ARG1.

In Sentence Similarity tasks, two sentences in a sentence pair are likely to have one
or several events in common, such as the event centered donate in this case. However,
a subtle difference in a key element in the semantic structure of the sentence may also
lead to a very different semantics of the whole sentence, such as the events centered on
is and has. Our proposed model EventBERT precisely appreciates the value of abstract-
ing structural semantics, benefiting from capturing event-based semantic knowledge to
perceive the differences between sentences and thus make more accurate judgments.

Language Inference. Referring to the case from QNLI, as can be seen from Fig. 5, the
question and paragraph texts are broadly similar in terms of sell-centered structure, both
containing the arguments labeled ARG0, ARG1, and ARGM-TMP. However, by means
of graph modeling, it can be clearly and explicitly observed that the structures centered
on force are distinct, with the structure in the interrogative sentence containing the argu-
ment ARGM-CAU and the corresponding structure in the paragraph texts containing the
argument ARGM-LOC instead. It is worth noting that one of the most crucial steps in
determining whether a paragraph entails the correct answer to a question is whether
the corresponding semantic structure in paragraph texts has the span labeled with the
semantic role referring to the interrogative in the question. For example, in this case,
the interrogative Why is exactly the ARGM-CAU of the predicate force; whereas the
structure centered on force in the paragraph lacks the corresponding argument content
and is replaced by ARGM-LOC instead. Therefore, it can be easily inferred that the
paragraph focuses on the location (i.e., in Japan and Latin America) while the question
concentrates on the cause (i.e., Why), which exactly reflects that there is no answer span
for the interrogative of the question.

It is known that interrogative in the question and corresponding answer span
should belong to the same semantic role. EventBERT takes full advantage of extract-
ing abstracted semantics based on predicates, thus conducting language inference tasks
more efficiently.

5.5 Error Analysis

We select bad cases of the baseline model and further investigate the ones of which our
EventBERT also fails to predict the correct answers. We study two cases respectively
fromMRPC and QNLI as is shown in Table 4. The first error is caused by EventBERT’s
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identification of the argument in a written statement of the predicate said in the first sen-
tence, which is not entailed in the second sentence. However, the lack of this argument
does not affect the main semantic information. The second error is due to argument
reference confusion for the special predicate is. For instance, the interrogative What is
labeled as ARG2 whereas the correct answer Hypersensitivity is labeled as ARG1. From
the above error cases, it may suggest that our model needs to have a more accurate
perception of semantic relationships, which is left for future studies.

Table 4. Errors in predictions for cases in MRPC and QNLI dev set. The words in magenta
indicate the key predicate. The words in blue indicate the key arguments referred to the predicate.

Example EventBERT Golden answer

This decision is clearly incorrect, FTC
Chairman Timothy Muris said in a written
statement. The decision is clearly incorrect,
FTC Chairman Tim Muris said

Not equivalent Equivalent

What is the name for a response of the immune
system that damages the body’s native tissues?
Hypersensitivity is an immune response that
damages the body’s own tissues

Not entailment Entailment

6 Conclusion

In this work, we propose EventBERT, an event-based semantic representation model
that builds on BERT architecture and incorporates event-based structural semantics in
terms of graph network modeling for fine-grained language representation. Experiments
on a wide range of NLU tasks show the effectiveness of our model by consistently sur-
passing the baseline. While most existing works focus on fusing accurate semantic sig-
nals to enhance semantic information, we open up a novel perspective to model intrinsic
structural semantics for deeper comprehension and inference in an intuitive and explicit
way.
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Abstract. Zero-shot relation extraction is an important method for dealing with
the newly emerging relations in the real world which lacks labeled data. How-
ever, the mainstream two-tower zero-shot methods usually rely on large-scale
and in-domain labeled data of predefined relations. In this work, we view zero-
shot relation extraction as a semantic matching task optimized by prompt-tuning,
which still maintains superior generalization performance when the labeled data
of predefined relations are extremely scarce. To maximize the efficiency of data
exploitation, instead of directly fine-tuning, we introduce a prompt-tuning tech-
nique to elicit the existing relational knowledge in pre-trained language model
(PLMs). In addition, very few relation descriptions are exposed to the model dur-
ing training, which we argue is the performance bottleneck of two-tower meth-
ods. To break through the bottleneck, we model the semantic interaction between
relational instances and their descriptions directly during encoding. Experiment
results on two academic datasets show that (1) our method outperforms the pre-
vious state-of-the-art method by a large margin with different samples of prede-
fined relations; (2) this advantage will be further amplified in the low-resource
scenario.

Keywords: Relation extraction · Semantic matching · Deep learning

1 Introduction

Relation extraction (RE) aims to extract the relation between entity pairs from unstruc-
tured text. The extracted relation facts can benefit various downstream applications such
as knowledge graph completion [25], web search [27] and dialog systems [18]. How-
ever, many effective RE methods [7,26] work within predefined relation sets. They
failed to deal with a real-world environment where new relations will emerge after the
training phase. These fast-growing new relations make it impossible for us to gather
labeled training data for all of them. To recognize the newly emerging relations lacking
labeled data, zero-shot RE is of the utmost practical interest.
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Fig. 1.When shifting to some special domains (e.g. medicine, finance) where large-scale labeled
data are not available, the performance of these methods on new relations decreases significantly.
By inducing the knowledge in the pre-trained language model, our method can approach the
results of previous state-of-the-art method ZS-BERT [1] using only 200 labeled data. When using
all data, our method improves the F1 score by 8.83%.

Despite the great potential of zero-shot RE in real-world applications, there have
been relatively few studies focusing on this challenging task. To enable models to pre-
dict unseen relations, previous works usually model zero-shot relation extraction as
a well-designed task form. Levy et al. [15] consider relation extraction as a machine
reading comprehension. They first associate a few question templates for each rela-
tion and then determine which relation satisfies the given sentence and question by
model prediction. However, a reasonable and effective question template usually needs
careful design, which cannot meet the extraction needs of rapidly growing new rela-
tions [1]. Therefore, instead of manually constructing question templates, subsequent
works [1,19] take advantage of the readily available textual description to represent
the new relations, and formulate zero-shot RE as a semantic matching task achieving
superior results.

However, current methods usually require a large number of in-domain labeled data
of predefined relations to train the model parameters. The learned relational knowledge
is mainly from labeled data itself. As a result, when shifting to some special domains
where large-scale labeled data are not available, the performance of these methods on
new relations decreases significantly. An experimental illustration is shown in Fig. 1.
Fortunately, pre-trained language models (PLMs) such as BERT [4] and GPT [21], can
learn a wealth of linguistic [20], local syntactic [12] and long-range semantic [13] from
large-scale corpora by self-supervised learning. An interesting question is whether we
can reduce the dependence on labeled data of predefined relations with the help of
knowledge in PLMs?

To answer this question, in this work, we propose a prompt-based zero-shot RE
method. Different from previous methods, in which the learned relational knowledge
mainly comes from the labeled data of predefined relations, we leverage prompt to stim-
ulate the rich knowledge distributed in PLMs to reduce dependence on these labeled
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data. Specifically, we model zero-shot RE as a semantic matching task between rela-
tional instance and description. In order to induce the knowledge in PLMs, we fuse the
original input with the prompt template to formulate a cloze-style task. Then, we count
the probability distribution of the model output and take the words with significant
differences between classes as label words. In addition, each predefined relation corre-
sponds to many instances and one description. The significant quantity gap makes the
two-tower methods unable to effectively model the semantics of relation description.
Therefore, we directly model the semantic interaction between instances and descrip-
tions during training. Based on the reformulated input and these selected label words,
we optimize a semantic matching model, which predicts whether the relation and the
textual description match. Experimental results show that our method has very sig-
nificant advantages when the large-scale labeled data of predefined relations are not
available.

To summarize, the main contributions of our work are as follows: (1) We propose
a prompt-based zero-shot relation extraction method, which maintains high generaliza-
tion ability when using even one labeled data per predefined relations. (2) We design
comprehensive experiments to analyze the impact of predefined relations and prompt
composition on the generalization performance of the model in the low-resource sce-
nario, which may enlighten the following work. (3) Experiment results on two academic
datasets show that our method outperforms the previous state-of-the-art method by a
large margin and this advantage will be further amplified in low resource scenarios.

2 Related Work

2.1 Knowledge in Pretrained Language Model

Contextual word representations derived from pre-trained language models have
recently been shown to provide significant improvements to the state of the art for a
wide range of NLP tasks, motivating a growing body of research investigating what
aspects of linguistic knowledge they are able to learn from unlabeled data. Peters et
al. [20] showed that different neural architectures (e.g., LSTM, CNN, and Transform-
ers) can hierarchically structure linguistic information that varies with network depth.
[3,8,13] show that such hierarchy exists as well for BERT models that are not trained
using the standard language modeling objective. More recently, many studies [12,23]
probe the knowledge within PLMs from various perspectives and find that the existing
models trained on language modeling and translation produce strong representations for
syntactic phenomena. Together, these results suggest that pre-trained language models
entail comprehensive linguistic knowledge, which accounts for its great performance on
downstream tasks and proves its potential to represent the samples of zero-shot relation
extraction tasks, which has limited training data.

2.2 Prompt-Based Optimization

Since the advent of prompt tuning, it has soon become the prevailing paradigm of nat-
ural language processing. Prompt tuning is based on language models that estimate the
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probability of text. It modifies the original input of downstream tasks to a prompt with
unfilled positions, and predicts the output based on the slot-filling result by language
models [17]. This method has been proven to be helpful on various NLP tasks, includ-
ing text classification [9], entity typing [6], text generation [16], and also multi-modal
tasks [24]. Current studies have made some attempts to derive knowledge from PLMs
with prompts. Jiang et al. [14] proposed mining-based and paraphrasing-based meth-
ods to automatically generate high-quality prompts, which boosted the performance of
knowledge-driven tasks. Zhong et al. [29] conducted a set of control experiments to
disentangle the efforts of training data and pre-trained knowledge. Inspired by these
works, compared with direct fine-tuning, using the limited labeled data to derive the
existing relational knowledge in the pretrained model is a better choice.

3 Method

We reformulate the task of zero-shot relation extraction as a semantic matching task
optimized by prompt-tuning. In this section, we will introduce our proposed method
in detail. We start by defining the problem we will tackle. Then we introduce how we
reformulate zero-shot relation extraction, our prompt design and the selection of label
tokens. Finally, we introduce the strategy of making predictions with our model.

3.1 Problem Definition

For the zero-shot relation extraction task, we expect the model M to predict the right
relation of two annotated entities within the text, where the candidate relations are
unseen during training.

Formally, let Rs = {r1s , . . . , rns } denotes the set of predefined relations. Each
relation in Rs has a corresponding textual description, composing the set of relation
descriptions Ds = {d1s, . . . , dns }. In the train set Ss = {S1

s , . . . , S
N
s }, each sam-

ple Si
s = (xi, ris) consists of a relational instance xi and its relation label ris ∈ Rs,

in which the relational instance xi is a piece of text si with annotated entities ei1
and ei2, namely xi =

〈
si, ei1, e

i
2

〉
. Similarly, the set of unseen relations for testing

is denoted as Ru = {r1u, . . . , rmu }, together with the corresponding description set
Du = {d1u, . . . , dmu }. Note that all relations in Ru are unseen during training, i.e.
Rs ∩ Ru = ∅. The test set is denoted as Su = {S1

s , . . . , S
M
u }, in which each test

sample Sj
u = (xj , rju).

3.2 Task Reformulation

In our work, we model zero-shot relation extraction as a semantic matching task where
we need to recognize the semantic equivalence relations between relational instances
and the description of their corresponding relation labels. Specifically, we pair each
test sample with the description of every candidate relation, and label them with
match/not match to form semantic matching samples. And we set it to have half the
probability of pairing the training sample with the non-corresponding relation descrip-
tion and half the probability of pairing it with the corresponding relation description.
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Table 1. An example of the reformulation of zero-shot relation extraction task. Each original
sample is paired with various descriptions to form new samples.

Input Label

Original Sample Prompt

Cloud Nothings was formed in Cleveland . [CLS] [CT] Premise : input text [SEP] [CT] Hypothesis : relation description . Answer : [MASK] [SEP] Place of Foundation

Reformulated Samples

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : location where a group or organization was formed . Answer : [MASK] [SEP] match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : musical instrument that a person plays . Answer : [MASK][SEP] not match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : league in which team or player plays or has played in . Answer : [MASK] [SEP] not match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : heritage designation of a historical site . Answer : [MASK] [SEP] not match

Therefore, the number of positive and negative semantic examples in the training set
is roughly equal. As shown in Table 1, the pair is labeled as match only when the
description matches the corresponding relation label of the relational instance.

Formally, taking the training sample Si
s = (xi, ris) for example, we can derive a

semantic matching sample {(xi, dks , y
k)} from it, where

yk =
{

match ris = rks
not match otherwise,

(1)

We denote the newly derived train set for semantic matching as S′
s =

{(xi, dks , y
ik)}i=1...N . Note that from each test sample we will derive m semantic

matching samples. The test set is denoted as S′
u = {(xj , dlu, y

jl)}j=1...M,l=1...m. In
summary, the above efforts convert the original problem to a semantic matching task,
which is basically a 2-classification task that we could handle.

Is the Two-Tower Architecture Suitable for this Task? The state-of-the-art zero-shot
methods [1,19] adopt a two-tower architecture to implement the above semantic match-
ing model. However, encoding instances and descriptions in isolation is not a good
choice. Assuming that we use 10 relations and 100 instances of each relation to train
a two-tower model, there are 1000 different inputs for instance encoder and only 10
inputs for the description encoder. This significant gap makes it difficult for descrip-
tion encoder to learn semantics effectively. Different from the two-tower architecture,
the proposed method directly models the semantic interaction between instances and
description during encoding. We will show the significant improvement brought by this
change in the experiments.

3.3 Model with Prompt Tuning

To model the semantic matching between relational instances and descriptions, we take
advantage of pre-trained language models together with prompt tuning. Noticeably, for
zero-shot relation extraction, the most critical issue during training is that very few
relation descriptions are exposed to the model. Furthermore, all of the descriptions
in the test set are unseen in training. Thus, the rich linguistic knowledge of PLM is
necessary to ensure that the model understands the descriptions with limited training.
Additionally, to tackle the discrepancy of PLM between the pre-training and fine-tuning
stage, prompt tuning is necessary to reformulate downstream tasks as cloze-style tasks
that BERT is good at. We believe that prompt tuning provides an effective way to
fully export knowledge from pre-trained language models and also enables few-shot
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Fig. 2. An overview of the process of relation prediction. The [MASK]ed positions within input
prompts are firstly filled by language model, then the logits of label tokens are collected to predict
the matching probability of input text and description. Lastly, we collect the matching probabili-
ties for each pair and estimate the distribution of relational labels based on them.

learning of the task. Due to the discussions, we build our model based on BERT, which
learns the objectives by prompt tuning.

Prompt Design. For each reformulated sample (x, d, y), we fill the original text of rela-
tional instance and the description into a prompt. We define the prompt x′ for relational
instance x and relation description d as

x′ =[CLS][CT] s′ [SEP][CT] d′

[MASK][SEP]

where s′ =Premise: s

d′ =Hypothesis: d Answer:,

(2)

where s is the input text, which is the original text of x; s′ and d′ denotes the prompt-
formulated input text and description respectively; [CT] denotes T different contin-
uous tokens that make up the template. Examples of input prompts could be seen in
Table 1. The design of prompt aims to fully utilize the ability of BERT as a rich knowl-
edge base, and the introduction of continuous tokens in template aims to enhance the
representation ability of the prompt, since these tokens could be optimized in the whole
embedding space.

Label Token Selection. Following the common settings of prompt tuning on classi-
fication task, we also determine label tokens for each category (namely match or
not match) for consequential prompt tuning. Basically, for the two categories, the
probability distributions of masked language modeling should be different and distin-
guishable. Thus, retrieving label tokens is the process of capturing features that indicate
the distribution associated with a certain category. We solve the problem by estimat-
ing the distributions and retrieving tokens that have the most significant difference of
probability among distributions.

Formally, we partition the reformulated train set S′
s by category of label y. The

matched and unmatched samples are denoted as Ssm = {(x, d, y) ∈ S′
s|y = match}

and Ssn = {(x, d, y) ∈ S′
s|y = not match}, respectively. The prompts of samples
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are then fed to BERT. For sample (x, d, y), the estimated distribution of the [MASK]
token is calculated as

P (w|x, d) = softmax(W (MLM(x′)) + b), (3)

where w denotes every token in vocabulary, P (w|x, d) indicates the estimated MLM
distribution of the sample, MLM denotes the output embedding of [MASK] token, W
and b denote trainable weights of linear projection.

The MLM distribution of categories is estimated by averaging the predicted distri-
butions among samples in the category:

Pm(w) =
1

|Ssm|
Ssm∑

(x,d,y)

P (w|x, d), (4)

Pn(w) =
1

|Ssn|
Ssn∑

(x,d,y)

P (w|x, d), (5)

where Pm(w) and Pn(w) indicate the estimated MLM distribution of the cate-
gory match and not match, |Ssm| and |Ssn| denote the number of matched and
unmatched samples, respectively.

Finally, for each category, the tokens with top-K possibility difference between the
MLM distribution within and without the category are selected as the label tokens. The
possibility difference of each word is divided by their estimated occurrence possibility
to ensure fair comparison.

{w1
m, . . . , wK

m} = topK
w

Pm(w) − Pn(w)
Pm(w) + Pn(w)

, (6)

{w1
n, . . . , w

K
n } = topK

w

Pn(w) − Pm(w)
Pm(w) + Pn(w)

. (7)

In Eqs. 6 and 7, K is the number of tokens selected for each category, {w1
m, . . . , wK

m}
and {w1

n, . . . , w
K
n } denote the selected label tokens of the category of {match and

not match} respectively.

3.4 Training and Inference

In this part, we introduce our strategy to derive relation predictions from the semantic
matching model, along with the training objectives.

Similar to other prompt-based methods, the output possibilities of label tokens are
collected to perform a 2-classification on label y. The possibility of categories is pro-
portional to the production possibility of label words. As shown in Eq. 8, in implemen-
tation, we achieve this by adding the output logits of label tokens and applying softmax
on them:

P (y = c|x, d) = softmax

(
K∑

k=1

logP (wk
c |x, d)

)

, (8)
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where c ∈ {match,not match}.
The prediction of relation label for relational instance xi is done by collecting the

possibilities of match between xi and the descriptions of every candidate relation Rk ∈
R. As in Eq. 9, the matching possibilities of xi and all candidate relations are collected
as logits and are put to a softmax function to predict the distribution of the relation
label.

pik = P (yik = match|xi,Dk), (9)

P (rk|xi) =
exp(pik)

∑

rk∈R

exp(pik)
. (10)

Lastly, the model is trained on cross-entropy loss LCE to maximize the log-likelihood
of all training samples.

LCE =
N∑

i=1

CrossEntropy(ris, {piks }nk=1). (11)

As for making prediction on unseen samples, i.e. evaluating model on test sets,
for each test sample Sj

u, the predicted relation distribution of relational instance xj is
illustrated in Eqs. 12 and 13. We pick the relation with the highest possibility as the
predicted result.

pjl = P (yjl = match|xj , dlu), (12)

P (Rl
u|xj) =

exp(pjl)
∑

rju∈Ru

exp(pik)
, (13)

r̂ju = argmax
l

P (Rl
u|xj). (14)

4 Experimental Setup

In this section, we describe the datasets for training and evaluating the proposed method.
We also detail the baseline models for comparison. Finally, we clarify the implementa-
tion details and hyperparameter configuration of our method.

4.1 Datasets

Our main experiments are conducted on two relation extraction datasets: FewRel and
TACRED. The original statistics of the two datasets are listed in Table 2.

FewRel [10]. There are 80 relations included in FewRel, a high-quality RE dataset with
56,000 instances from Wikipedia. To be consistent with the previous state-of-the-art
method, we rearrange the dataset. To be specific, we choose 65 relations as labeled
set with predefined relation and select 15 relations as the unlabeled set with unseen
relations.
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TACRED [28]. TACRED is a human-annotated relation extraction dataset that contains
106,264 examples with 42 kinds of relations(including “no relation”). The instances of
special class “no relation” is removed, and we use the remaining 21,773 instances for
training and evaluation.

We also add a low-resource setting, which means the size of training data is small.
Under the setting, the development set is provided, with about 5 examples per relation.
As shown in Table 3 and Table 4, the three different values of n represents the number
of data used for training are only 20, 100 and 200 respectively. For the setting, We
randomly sample training data from each relation category roughly evenly. Note that
when sampling 20 training data, the number of relation categories in the training set of
both datasets is also reduced to 20. For both of the two datasets, we use the Macro-F1
score as the main metric to evaluate the model’s performance.

Table 2. Original statistics of datasets FewRel and TACRED. %N/A is the proportion of label
“no relation” and “-” represents there is no N/A instances.

Dataset # Inst # relations % N/A

FewRel 56000 80 −
TACRED 106264 42 79.5%

4.2 Compared Methods

To verify the effectiveness of our proposed method, we select the following models for
comparison. The state-of-the-art method ZS-BERT [1] adopted the two-tower architec-
ture, this method encodes sentences and relation descriptions separately and uses near-
est neighbor search as the matching function to obtain the prediction of unseen relations.
When comparing with R-BERT [26] and Attentional Bi-LSTM [30], two supervised
relation extraction (SRE) models, we take the same way as ZS-BERT [1] so that SRE
models can carry out zero-shot prediction. Specifically, we change the last layer to a
fully-connected layer with tanh activation function. Based on the input instance embed-
ding and relation description’s embedding, the nearest neighbor search will be applied
to generate the zero-shot prediction. We also compare our method with ESIM [2], a
semantic matching model. To have a fair comparison, the strategy to generate relation
predictions from the semantic matching model is the same as ours. Finally, we introduce
BERT(CLS) [5] to intuitively show the performance improvement brought by modeling
the semantic interaction between instances and descriptions during encoding.

4.3 Implementation Details

We adopt BERT-base-cased as the encoder and all experiments are conducted using a
NVIDIA GeForce RTX 3090 with 24 GB memory. The number of continuous tokens
is t = 4. We use AdamW for optimization, in which the initial learning rate is 3e−5.
Taking into account the randomness of network initialization and random selection of
n training instances, we run our experiment 5 times and the results we report are the
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average results. Other results of compared methods are gotten when the parameters
remain the same as its own published source code. We follow Soares et al. [22] to
augment each instance with four reserved word pieces to mark the begin and end of
each entity. The relation descriptions of FewRel are obtained from [11] and TACRED’s
are obtained from the TAC-KBP relation ontology guidelines1.

5 Results and Discussion

Table 3. Main results on FewRel. The best results are bold. n is the number of provided training
data andm represents unseen relations’ number.

FewRel (m = 15)

Method n = 20 n = 100 n = 200 n = all

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM [30] 14.19 13.88 14.03 15.75 19.8 17.55 20.83 26.00 23.13 38.13 32.05 34.82

ESIM [2] 0.60 5.45 1.08 0.90 6.56 1.58 7.66 7.38 7.52 36.97 32.51 34.60

R-BERT [26] 8.40 8.38 8.39 13.61 15.90 14.67 16.05 18.58 17.22 32.25 25.58 28.53

ZS-BERT [1] 6.04 6.36 6.20 6.34 7.93 7.05 8.35 9.59 8.93 35.54 38.19 36.82

BERT(CLS) [5] 44.95 33.65 38.49 49.99 47.20 48.55 53.14 52.13 52.62 67.62 59.12 63.09

Ours 44.94 45.72 45.33 50.21 51.72 50.96 52.49 53.98 53.23 64.48 62.45 63.45

Table 4.Main results on TACRED. The best results are bold. n is the number of provided training
data andm represents unseen relations’ number.

TACRED (m = 11)

Method n = 20 n = 100 n = 200 n = all

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM [30] 14.33 11.38 12.68 13.73 10.64 11.99 15.68 21.70 18.20 25.20 20.17 22.41

ESIM [2] 9.09 0.15 0.29 8.54 9.41 8.96 1.52 9.15 2.61 26.99 18.38 21.87

R-BERT [26] 14.59 7.27 9.70 18.93 12.12 14.78 23.62 19.67 21.47 44.66 45.86 45.25

ZS-BERT [1] 10.79 9.35 10.02 12.53 9.25 10.64 14.98 15.79 15.38 38.08 42.72 40.27

BERT(CLS) [5] 25.53 19.78 22.29 9.34 10.55 9.91 37.97 34.43 36.11 51.90 44.71 48.03

Ours 32.40 30.54 31.44 38.12 22.75 28.50 34.56 33.73 34.14 51.85 46.63 49.10

5.1 Main Results

The main results of our experiments on FewRel and TACRED are listed in Table 3
and Table 4. First, as can be seen, the method we propose steadily outperforms com-
pared methods, and even the previous state-of-the-art method [1] performs much worse
than our method when targeting at different number of training instances. The reason

1 https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC KBP 2015 Slot Descriptions V1.0.
pdf.

https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC_KBP_2015_Slot_Descriptions_V1.0.pdf
https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC_KBP_2015_Slot_Descriptions_V1.0.pdf
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is that the two-tower model which the previous state-of-the-art method [1] encodes the
input instances and candidate relations with large quantitative differences separately,
and we argue that this modeling choice is insufficiently expressive for modeling the
semantic matching between instances and relation descriptions. What’s more, the sim-
ple matching function (ZS-BERT uses nearest neighbor search) is incapable of cap-
turing the complicated interactions between input sentences and relation descriptions.
Our proposed method yields rich interactions between the input instance and candi-
date relation description, as they are jointly encoded to obtain a final representation. At
the layers of transformer, every word in the candidate relation description can attend
to every word in the input instance, and vice-versa, so our proposed method can pro-
duce a candidate-sensitive input representation, which the ZS-BERT cannot. Second, it
can be apparently found that the baseline’s performance decreases significantly when
the number of labeled data decreases, which indicates that large number of in-domain
labeled data of predefined relations is a prerequisite for their good performance. While
our method manage to derive the original knowledge in PLMs with prompt so that our
method still performs well when the labeled data is scarce. For FewRel, our MACRO-
F1 score reaches 45.33% training with 20 instances, which is better than the result of
previous state-of-the-art using the complete train dataset. Such results verify the strong
ability of low-resource learning for our proposed method.

5.2 Cross Domain Analysis

Through the analysis of main results, we have concluded that large-scale labeled data
of predefined relations is a prerequisite for the existing model to achieve good general-
ization performance on unseen relations. An ensuing question is: when we deal with the
problem of a field that lacks labeled data, can we solve this problem by using labeled
data with existing relations in common fields? To answer this question, we conducted
experiments on two constructed cross-domain zero-shot relation extraction tasks.i.e.,:
FewRel to TACRED and TACRED to FewRel. Specifically, pre-defined relations and
their labeled instances come from the source domain training dataset, and we evaluate
performance on the target domain testing dataset.

Table 5 shows the results. By comparing with the in-domain experimental results
in the main experiment, we can find: the change of domain does increase the semantic
gap between the pre-defined and unseen relations. As a result of that: For FewRel to
TACRED, the experimental result of our method is reduced from 49.10% to 39.36%,
and for TACRED to FewRel, the result is reduced from 63.45% to 54.99%. But our
performance still outperforms compared methods, which shows the proposed method’s
generalization on unseen relations.

5.3 Influence of Pre-defined Relation Number

In this subsection, we study the effect of the number of seen predefined relations in
the train dataset. And we conduct the experiment on FewRel. For FewRel, the original
number of predefined relations is 65, we sample 33, 17, 9, 5 classes from the original
train dataset in turn, which correspond to 50%, 25%, 12.5%, 6.25% of the original
classes represented by the scale on the horizontal axis in the figure. The results of Fig. 3
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Table 5. Results on two constructed cross-domain tasks.

FewRel TACRED TACRED FewRel

Method n=all n=all

Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM [30] 21.86 27.72 24.44 31.27 39.26 34.82

ESIM [2] 22.67 18.91 20.62 19.38 11.93 14.77

R-BERT [26] 23.10 28.49 23.98 15.31 14.70 15.00

ZS-BERT [1] 35.90 29.78 32.55 17.69 11.81 14.16

Ours 41.26 37.62 39.36 60.01 50.74 54.99

Table 6. Results on different prompts.

Prompt FewRel TACRED

[PRE] Question : [HYP] . true or false ? Answer : [MASK] 63.11 47.19

[PRE] Question : [HYP] ? [MASK] 61.09 48.79

[PRE] Is [HYP] true ? Answer : [MASK] 63.58 47.72

Does [HYP] agree with [PRE] ? [MASK] 62.44 45.73

Ours 63.45 49.10

prove that the number of pre-defined relations does matter. As the number decreases, the
knowledge learned from the training set also decreases, which can weaken the model’s
generalization of unseen relations. So the performance of our proposed method also
gets worse. Nevertheless, our method can still be said to perform well. For FewRel,
When we reduce the number of predefined relation types to 5, our performance still
outperforms the previous state-of-the-art, which can validate the effectiveness of our
proposed method.

5.4 Analysis on Different Prompt Forms

To explore the impact of different forms of prompt on the performance of the proposed
method, we conducted experiments on two datasets based on different prompts. Because
the continuous tokens’ position relative to [HYP] and [PRE] doesn’t change, it is
omitted from the table. As is shown in Table 6, inappropriate forms may lead to worse
results, but on the other hand, a suitable prompt form can also improve model perfor-
mance since it can help elicit the existing knowledge in PLMs. Among all the prompt
forms, the form we have chosen is relatively well-behaved. Moreover, the prompt’s per-
formance is not necessarily the same as our intuition, in other words, the prompt we
think good is not necessarily good for PLMs and we think the automatic generation of
prompts is a promising research direction.
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Fig. 3. Model results with different number of predefined training relations on FewRel.

6 Conclusions

In this work, we introduce a prompt-based zero-shot relation extraction method, which
still maintains superior generalization performance under low-resource settings. We
clarify the limitations of the two-tower architecture in previous state-of-the-art methods,
and directly model the interaction between instances and descriptions during encod-
ing, which breaks the performance bottleneck of the previous model. The introduce
of prompt-tuning effectively elicit the knowledge in PLMs and significantly reduces
the dependence on predefined relations. We believe that these are the reasons why our
method achieves excellent results. Experiment results on two academic datasets show
that our method outperforms the previous state-of-the-art method by a large margin and
this advantage will be further amplified in low resource scenarios.
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Abstract. Supervised learning is a classic paradigm of relation extraction (RE).
However, a well-performing model can still confidently make arbitrarily wrong
predictions when exposed to samples of unseen relations. In this work, we
propose a relation extraction method with rejection option to improve robust-
ness to unseen relations. To enable the classifier to reject unseen relations, we
introduce contrastive learning techniques and carefully design a set of class-
preserving transformations to improve the discriminability between known and
unseen relations. Based on the learned representation, inputs of unseen relations
are assigned a low confidence score and rejected. Off-the-shelf open relation
extraction (OpenRE) methods can be adopted to discover the potential relations
in these rejected inputs. In addition, we find that the rejection can be further
improved via readily available distantly supervised data. Experiments on two
public datasets prove the effectiveness of our method capturing discriminative
representations for unseen relation rejection.

Keywords: Relation extraction · Rejection option · Deep learning

1 Introduction

Relation extraction aims to predict the relation between entities based on their context.
The extracted relational facts play a vital role in various natural language processing
applications, such as knowledge base enrichment [5], web search [32], and question
answering [12].

To improve the quality of extracted relational facts and benefit downstream tasks,
many efforts have been devoted to this task. Supervised relation extraction is a rep-
resentative paradigm built upon the closed world assumption [8]. Benefiting from art-
fully designed network architectures [14,24,36] and valuable knowledge in pretrained
language model [1,6,30,31], models effectively capture semantic-rich representations
and achieves superior results. However, conventional supervised relation extraction
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Fig. 1. Neural models tend to use the simplest way to meet the supervised objective (Shortcut
phenomenon [9]), which would lead to negative predictions on unseen relations. Hence, for
the unseen relations, we hope neural models can reject prediction through embracing sufficient
features.

suffer from the lack of large-scale labeled data. To tackle this issue, distantly supervised
relation extraction has attracted much attention. The existing works mainly focus on
how to alleviate the noise generated in the automatic annotation. Common approaches
include selecting informative instances [19], incorporating extra information [35], and
designing sophisticated training [22].

Although a supervised relation classifier achieves excellent performance on known
relations, real-world inputs are often mixed with samples of unseen relations. A well-
performing model can still confidently make arbitrarily wrong predictions when deal-
ing with these unseen relations [25,27]. The unrobustness is rooted in the Shortcut
feature [9] of neural networks. Models optimized by a supervised objective does not
actively learn features beyond the bare minimum necessary to discriminate between
known relations. As shown in Fig. 1, if there is only president relation in the training
data between Obama and the United States, the model tends to predict the president
relation when it encounters them again. However, entities are not equivalent to relation
definitions. Models severely biased to the extraction of overly simplistic features can
easily fail to generalize to discriminate between known and unseen relations. As shown
in Table 1, when the unseen relations appears in the test set, the supervised RE models’
F1-score drops by at least 30 points.

Table 1. Supervised RE models’ performance when encountering new relations. These models
are from previous papers [15,21,26]. Ori: all relations in the test set are present in the training
set. Mix: 50% of the relations in the test set do not appear in the training set.

Model/Dataset SpanBERT Roberta CP

Ori (F1-score) 0.919 0.928 0.936

Mix (ΔF1-score) 0.317↓ 0.310↓ 0.310↓

In this work, we propose a robust relation extraction method in real world set-
tings. By integrating rejection option, the classifier can effectively detect whether
inputs express unseen relations instead of making arbitrary bad predictions. Specifi-
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cally, we introduce contrastive training techniques to achieve this goal. A set of care-
fully designed class-preserving transformations are used to learn sufficient features,
which can enhance the discriminability between known and unknown relation repre-
sentations. The classifier built on the learned representation is confidence-calibrated.
Thereby samples of unseen relations are assigned a low confidence score and rejected.
Off-the-shelf OpenRE methods can be used to discover potential relations in these sam-
ples. In addition, we find the rejection can be further improved via the readily available
distantly-supervised data. Experimental results show the effectiveness of our method
capturing discriminative representations for unseen relation rejection.

To summarize, the main contributions of our work are as follows: (1) We propose
a relation extraction method with rejection option, which is still robust when exposed
to unseen relations. (2) We design a set of class-preserving transformations to learn
sufficient features to discriminate known and novel relations. In addition, we propose
to use readily available distantly-supervised data to enhance the discriminability. (3)
Extensive experiments on two academic datasets prove the effectiveness of our method
capturing discriminative representations for unseen relation rejection.

2 Related Work

2.1 Relation Extraction

Relation extraction has advanced for more than a couple of decades. Super-
vised/Distantly supervised relation extraction is oriented at predefined relational types.
Researchers have explored different network architectures [36], training strategies [22]
and external information [35]. Superior results have been achieved. Open relation
extraction is oriented at emerging unknown relation. Well-designed extraction forms
(e.g. sequence labelling [7], clustering [38]) are used to deal with relations without
pre-specified schemas. Different from them, we consider a more general scenario, in
which known and unknown relations are mixed in the input. We effectively separate
them by a rejection option, which enables us to use the optimal paradigm to deal with
the corresponding relations.

2.2 Classification with Rejection Option

Most existing classification methods are based on the closed world assumption. How-
ever, inputs are often mixed with samples of unknown classes in real-world applications.
The approaches used to handle it roughly fall into one of two groups. The first group
calculates the confidence score based on the classifier output. The score can be used to
measure whether an input belongs to unknown classes. Maximum softmax probability
(MSP) [11] is a represetative method and Liang et al. [17] further improve MSP by
introducing temperature scaling. Furthermore, Shu et al. [29] build a multi-class classi-
fier with a 1-vs-rest final layer of sigmoids to reduce the open space risk. The second
group considers classification with rejection option as an outlier detection problem.
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Off-the-shelf outlier detection algorithms [2,20,28] are leveraged. Different optimiza-
tion objectives such as large margin loss [18], gaussian mixture loss [33] are adopted
to learn more discriminative representations to facilitate anomaly detection. Recently,
Zhang et al. [34] propose to learn the adaptive decision boundary (ADB) that serves as
the basis for judging outliers.

3 Approach

In this paper, we propose a robust relation extraction method in real world settings. By
integrating rejection option, the classifier can effectively detect whether inputs express
unseen relations instead of making arbitrary bad predictions. Off-the-shell OpenRE
methods can be used to discover potential relations in these rejected samples.

The problem setting in this work is formally stated as follows. Let K =
{R1, ...,Rk} be a set of known relations and U = {Rk+1, ...,Rn} be a set of
unseen relations where K ∩ U = ∅. Let X be an input space. Given the training
data D� = {(x�

i , y
�
i )}i=1,...,N where x�

i ∈ X , y�
i ∈ K, we target constructing a

mapping rule f : X → {R1, ...,Rk,R∗} where R∗ denotes rejection option. Let
Du = {(xu

i , yu
i )}i=1,...,M be the testing dataset where yu

i ∈ K ∪ U . An desirable
mapping rule f should meet the following objective as much as possible:

f(x) =
{

yu
i yu

i ∈ K
R∗ yu

i ∈ U .

3.1 Method Overview

We approach the problem by introducing contrastive learning techniques. As illustrated
in Fig. 2, the proposed method comprises four major components: relation represen-
tation encoder g(·), confidence-calibrated classifier η(·), class-preserving transforma-
tions T , and the OpenRE module.

Our overview starts from the first two components. There is no doubt that an encoder
and classifier are the basic components of a supervised relation extractor. However, the
supervised training objective does not encourage the model to learn features beyond the
bare minimum necessary to discriminate between known relations. Consequently, the
classifier can misclassify unseen relations to known relations with high confidence.

In order to calibrate the confidence of the classifier, we introduce contrastive learn-
ing techniques. Given training batch B, an augmented batch B̃ is obtained by applying
random transformation t ∈ T to mask partial features. Then the supervised contrastive
learning objective max/minimize the representation agreement according to whether
their relations are the same. By doing this, the model is forced to find more features
to discriminate between relations and the classifier can be calibrated. Based on the
confidence-calibrated classifier, unknown relations are rejected if the maximum soft-
max probability of the classifier does not exceed a preset threshold θ.
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Fig. 2. An overview of the proposed method. Three steps are included: (1) Contrastive training
techniques and a set of class-preserving transformations are utilized to learn sufficient features.
(2) The classifier extract known relations and rejects samples of unseen relations according to
these features. (3) Off-the-shelf OpenRE method (SelfORE) is incorporated to discovery unseen
relations in these rejected samples.

In order to discriminate unknown relations rather than just detect their existence,
we further integrate the off-the-shelf OpenRE method into our framework. The samples
rejected by the classifier are sent to the OpenRE module to detect potential unknown
relations.

3.2 Relation Representation Encoder

Given a relation instance x�
i = (wi, hi, ti) ∈ D� where wi = {w1, w2, ..., wn} is

the input sentence and hi = (sh, eh), ti = (st, et) mark the position of head and
tail entities, relation representation encoder g(·) aims to encode contextual relational
information to a fixed-length representation ri = g(xi) ∈ R

d. We opt for simplicity
and adopt the commonly used BERT [4] to obtain ri while various other choices of the
network architecture are also allowed without any constraints. Formally, the process of
obtaining ri is:

h1, ...,hn = BERT(w1, ..., wn) (1)

hent = MAXPOOL(hs, ...,he) (2)

ri = 〈hhead|htail〉 , (3)

where h1, ...,hn is the result of the input sentence after BERT encoding, subscript s
and e represent the start and end positions of the entity, hent represents the result of
the maximum pooling of the entity, hent can be divided into head entity hhead and tail
entity htail, and 〈·|·〉 is the concatenation operator.
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3.3 Confidence-Calibrated Classifier

In order to alleviate overconfidence to unseen relations, we introduce contrastive learn-
ing techniques to calibrate classifier. A well-calibrated classifier should not only accu-
rately classify known relations, but also give low confidence to unseen relations, that is,
maxy p(y|x).

Given a training batch B = (x�
i , y

�
i )

B

i=1, we obtain a augmented batch B̃ =
(x̃�

i , y
�
i )

B

i=1 by applying random transformation t ∈ T on B. For brevity, the super-
script � is omitted in the subsequent elaboration of this section. For each labeled sample
(x̃i, yi), B̃ can be divided into two subsets B̃yi

and B̃−yi
. B̃yi

denotes a set that contains
samples of relation yi and B̃−yi

contains the rest. The supervised contrastive learning
objective is defined as follows:

Lsup
cts (B, T ) =

1
2B

2B∑
j=1

Lcts(x̃i, B̃yi
\{x̃i}, B̃−yi

) (4)

Lcts(x,D+,D−) = − 1
|D+| log

∑
x′∈D+ q(x, x′)∑

x′∈D+∪D+ q(x, x′)
(5)

q(x, x′) = exp(sim(z(x),z(x′))/τ), (6)

where |D| denotes the number of samples in D, sim(x, x′) denotes the cosine similarity
between x and x′ and τ denotes a temperature coefficient. Following Chen et al. [3], we
use a additional projection layer t to obtain the contrastive feature z(x) = t(g(x)).

Benifiting from contrastive training, the encoder g(·) learns rich features to discrim-
inate between known and novel relations. Accordingly, we train a confidence-calibrated
classifier η(·) upon g(·) as follows:

L = E(x,y)∼D� [Lce(η(g(xi)), y)], (7)

where Lce is the cross entropy loss. In addition, we can easily obtain a large number of
training data Ddist through distant supervision. None of the ydist

i in Ddist are known
relation, that is, {ydist

i } ∩ {y�
j} = ∅. These data are only used as negative examples, so

the noise in the data will not be a problem. We force the classifier output distribution
of negative examples to approximate the uniform distribution by optimizing the cross-
entropy between them. Using Ddist, we optimize model by following objective instead
of Eq. 7.

Ldist = L + λEx∼Ddist [Lce(η(g(x)), yuni)], (8)

where L refers to the optimization objective of Eq. 7. λ is the hyperparamters that
balances the known relation data and distantly supervised data. We can achieve good
results simply by setting λ to 1 without adjustment. yuni represents a uniform distribu-
tion.

Based on the confidence-calibrated classifier, we specify the rejection rule f(·) as
follows:

f(xi) =
{

y maxyp(y|xi) > θ
R∗ Otherwise,

(9)

where θ is a threshold hyperparameters, the posterior probability p(y|xi) is the output
of classifier η and R∗ denotes the rejection option.
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3.4 Class-Preserving Transformations

Transformations is the core component of contrastive learning. Our intuition in design-
ing transformation is that feature masks at different views force the model to find more
features to discriminate between known relations. These new features can play a vital
role in recognizing unseen relations. Why do the above methods work? As shown in
Fig. 1, due to the shortcut phenomenon, the model is more inclined to remember the
relations between entities and it would make mistakes when predicting new relations
between the same entity pair. Intuitively through the mask mechanism, the model could
mask out some features that belong to Obama and the United States, and then it will
have to find more other features to distinguish the president of from other relations.
Therefore it will not learn the Shortcut bias of Obama + the United States = the presi-
dent of. In this work, we design three class-preserving transformations to mask partial
features as follows.

Token Mask. Token mask works in the process of sentence encoding. In this transfor-
mation, we randomly mask a certain proportion of tokens to generate a new view of
relation representation.

RandomMask. Random mask also works in the process of sentence encoding. Instead
of completely masking representation of selected tokens, each dimension of the repre-
sentation of each word is considered independently in this transformation.

Feature Mask. Feature mask works after sentence encoding. Given a relation instance
x�

i ∈ D�, we first obtain its relation representation ri = g(xi). Then we randomly mask
a certain proportion of feature dimensions of ri to generate a new view.

It is certain that a more complicated and diverse transformations will bring addi-
tional improvement. This will be one of our future work.

3.5 OpenRE Module

We introduce the OpenRE module for the integrity of the framework, although it is
not our main concerns. Based on the rejection rules f described in Sect. 3.3, we can
classify samples of known relations while rejecting unseen relations. In this section,
we take a step forward. By integrating the off-the-shelf OpenRE method, we try to
discover the potential unseen relations in the rejected samples instead of only detecting
their existence. We adopt SelfORE [13], a clustering-based OpenRE method, as the
building block of our OpenRE module. Various other methods can also be used as the
alternative to SelfORE without any constraints. More details about OpenRE methods
can be found in the related papers. Overall, the method proposed in this paper is detailed
in Algorithm 1.

4 Experimental Setup

In this section, we describe the datasets for training and evaluating the proposed method.
We also detail the baseline models for comparison. Finally, we clarify the implementa-
tion details.
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Algorithm 1. Robust Relation Extraction

Input: known relation dataset D�, distantly
supervised dataset Ddist (optional), testing dataset Du, transformation set T , model
parameters Θ, Φ for encoder and classifier, OpenRE module O and learning rate α.

1 Training Phase
2 repeat
3 sample a training batch B from D�;

4 obtain transformed batch ˜B = t(B), t ∼ T ;
5 enrich representation by contrastive training (Eq. 4): Θ = Θ − α∇ΘLsup

cts ;
6 sample a distant batch Bdist from Ddist;
7 optimize classifier by supervised training (Eqs. 7 or 8):
8 {Θ, Φ} = {Θ, Φ} − α∇{Θ,Φ}Ldist;
9 until convergence;

10 Testing Phase
11 Filter the unseen relations subset Drej from Du by the rejection rule f (Eq. 9);
12 Output predictions {yu

i } for the rest samples of known relations;
13 Run the OpenRE module O to obtain potential relations in Drej ;

4.1 Datasets

We conduct our experiments on two well-known relation extraction datasets. In addi-
tion, a distantly supervised dataset are used in a auxiliary way.

FewRel. Few-Shot Relation Classification Dataset [10]. FewRel is a human-annotated
dataset containing 80 types of relations, each with 700 instances. We use the top 40
relations as known and the middle 20 relations as unseen. Since the relations of FewRel
dataset is exactly the same as that of FewRel-Distance, we hold out the last 20 relations
for the use of distant supervision. The training set contains 25600 randomly selected
samples of known relations. In order to evaluate the rejection performance to the unseen
relations, the test/validation set contains 3200/1600 samples composed of known and
unseen relations.

TACRED. The TAC Relation Extraction Dataset [37]. TACRED is a human-annotated
large-scale relation extraction dataset that covers 41 relation types. Similar to the setting
of FewRel, we use the top 31 relations as known and the rest 10 relations as unseen. The
training set consists of 18113 randomly selected samples of known relations. The size
of validation set and test set are 900 and 1800 respectively, including known and unseen
relations. It should be noted that 50% of the unseen relation samples in the validation
set and test is no_relation.

FewRel-distant. FewRel-distant contains the distantly-supervised data obtained by the
authors of FewRel before human annotation. We use this dataset as the distantly super-
vised data in our experiments.

4.2 Baselines and Evaluation Metrics

MSP [11]. MSP assumes that correctly classified examples tend to have greater max-
imum softmax probabilities than examples of unseen classes. Thereby the maximum
softmax probabilities are used as confidence score for unseen classes detection.
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MSP-TC [17]. MSP-TC uses maximum softmax probabilities with temperature scaling
and small perturbations to enhance the separability between known and unseen classes,
allowing for more effective detection.

DOC [29]. DOC builds n 1-vs-rest sigmoid classifiers for n known classes respectively.
The maximum probability of these binary classifiers is considered as the confidence
score for unseen classes detection.

LMCL [18]. Large margin cosine loss (LMCL) aims to learn a discriminative deep
representations. It forces the model to not only classify correctly but also maximize
inter-class variance and minimize intra-class variance. Based on the learned represen-
tations, local outlier factor (LOF) is used to detect unseen classes.

ADB [34]. Labeled known classes samples are first used for representation learning.
Then the learned representations are utilized to learn the adaptive spherical decision
boundaries for each known classes. Samples outside the hypersphere will be rejected
for recognition.

Evaluation Metrics. We follow previous work [18,34] and take all the unseen rela-
tions as one rejected class. The accuracy and macro F1 metrics are used as the scoring
function to evaluate the unseen relation detection.

4.3 Implementation Details

We use the Adam [16] as the optimizer, with a learning rate of 1e − 4 and batch size of
100 for all datasets. If the results don’t improve on the validation set for 10 epochs, we
stop the training to avoid overfitting. All experiments are conducted using a NVIDIA
GeForce RTX 3090 with 24 GB memory.

5 Results and Analysis

In this section, we present the experimental results of our method on FewRel and
TACRED datasets to demonstrate the effectiveness of our method.

5.1 Main Results

Our experiments in this section focus on the following three related questions.

Can the Proposed Method Effectively Detect Unseen Relations? To answer this
question, we consider all the known relations as one predicted class and the rest
unseen relations as one rejected class. Table 2 reports model performances on FewRel,
TACRED datasets, which shows that the proposed method achieves state-of-the-art
results on unseen relation detection. Benefiting from the contrastive training objectives
and the carefully designed transformations, the Shortcut phenomenon is effectively alle-
viated, and the model learns sufficient features to discriminate between known and
unseen relations. Therefore, the proposed method consistently outperforms the com-
pared baselines by a large margin in different mixing-ratio settings.
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Table 2. Main results of unseen relation detection with different known class proportions (25%,
50% and 75%) on two relation extraction datasets. Compared with the best results of all baselines,
our method improves F1-score by an average of 2.6%, 3.5% on FewRel and TACRED dataset,
respectively.

Dataset Method 25% 50% 75%

Accuracy F1-score Accuracy F1-score Accuracy F1-score

FewRel MSP [11] 0.805 0.781 0.786 0.786 0.797 0.774

MSP-TC [17] 0.802 0.772 0.769 0.769 0.786 0.768

DOC [29] 0.794 0.768 0.781 0.781 0.784 0.761

LMCL [18] 0.810 0.785 0.740 0.740 0.835 0.777

ADB [34] 0.801 0.800 0.837 0.799 0.837 0.784

Ours 0.888 0.852 0.844 0.824 0.838 0.827

TACRED MSP [11] 0.758 0.691 0.698 0.688 0.734 0.650

MSP-TC [17] 0.789 0.687 0.674 0.670 0.765 0.671

DOC [29] 0.793 0.687 0.707 0.678 0.775 0.681

LMCL [18] 0.737 0.705 0.667 0.684 0.785 0.654

ADB [34] 0.772 0.714 0.711 0.710 0.767 0.699

Ours 0.827 0.758 0.723 0.742 0.788 0.715

Table 3. Macro F1-score of known relation classification with different proportion of known
relations.

Dataset Method 25% 50% 75%

FewRel MSP 0.730 0.769 0.814

MSP-TC 0.675 0.771 0.764

DOC 0.737 0.780 0.805

LMCL 0.765 0.767 0.809

ADB 0.778 0.770 0.810

Ours 0.827 0.793 0.828

TACRED MSP 0.610 0.619 0.668

MSP-TC 0.378 0.438 0.639

DOC 0.628 0.627 0.686

LMCL 0.616 0.615 0.687

ADB 0.625 0.640 0.665

Ours 0.637 0.633 0.688
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Fig. 3. ROC curves on two datasets.

Does the Detection of Unseen Relations Impair the Extraction of Known Rela-
tions? Integrating the rejection option can make the classifier more robust in real appli-
cations. However, we do not want the unseen relations detection impair known relations
classification, which is the basic function of the classifier. From table 3 we can observe
that the proposed model not only effectively detect unseen relations, but also accurately
classify known relations. This demonstrate that the designed transformation will not
affect the original relational semantics, so the rich features obtained by comparative
learning remain discriminability for the known relations.

Can the Model Achieve Superior Performance Under Different Threshold Set-
tings? We show the receiver operating characteristic (ROC) curve in Fig. 3. The area
under ROC curve (AUROC) summarize the performance of a classifier detecting unseen
relations across different thresholds. From Fig. 3 we can observe that the AUROC of the
proposed method is the largest. Therefore, the proposed method has certain advantages
under different threshold settings.

5.2 Ablation Study

To understand the effects of each component of the proposed model, we conduct an
ablation study on it and report the results (Macro-F1) on the two dataset in Table 4. The
results show that the detection of unseen relations is degraded if any transformation
is removed. It indicates that (1) These transformations force model learn sufficient fea-
tures through mask mechanism from different views. The learned features are beneficial
for the detection of unseen relations. (2) Since the transformations are from different
views, they can be superimposed and further enhance the detection of unseen relations.
In addition, we find that distantly supervised data can significantly improve the detec-
tion of unseen relations. Because there are a large number of diverse relations in the
external knowledge base, we can easily construct a large number of negative samples.
So this improvement can be seen as a free lunch.
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Table 4. Abalation study of our method.

Dataset Method 25% 50% 75%

FewRel W/o Feature mask 0.845 0.807 0.816

w/o Random mask 0.846 0.814 0.809

w/o Token mask 0.833 0.810 0.803

w/o Distant 0.810 0.805 0.815

Ours 0.852 0.824 0.827

TACRED w/o Feature mask 0.753 0.728 0.703

w/o Random mask 0.740 0.735 0.706

w/o Token mask 0.750 0.738 0.706

w/o Distant 0.716 0.700 0.684

Ours 0.758 0.742 0.715

5.3 Relation Representation Visualization

To intuitively show the influence of the rich features learned through contrastive train-
ing, we visualize the relational representation with t-SNE [23]. We select five seman-
tically similar known relations from FewRel dataset, and randomly select 40 samples
for each of them. 100 hard samples of unseen relations misclassified by MSP method
are selected to show the superiority of our method. From the visualization results in
Fig. 4, we can observe that, before training (upper left), the relation representations are
scattered in the semantic space. After supervised training (upper right), samples can be
roughly divided by relation, but different relations are still close to each other. This is
consistent with the Shortcut feature in neural network. We note that samples of unseen
relations are mixed with known relation samples. After contrastive training (down left),
model learns sufficient features to discriminate unseen relations. Therefore, samples
of unseen relations are effectively separated. Finally, a best relation representation are
obtained by applying both supervised and contrastive optimization (down right).

5.4 A Case Study on OpenRE

Table 5. Extracted and golden surface-form relation names on TACRED.

Extracted surface-form Golden surface-form

university schools_attended

was found founded

charges with charges

died in country_of_death

was born in date_of_birth
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Fig. 4. Visualization of the relation representation after t-SNE dimension reduction. The repre-
sentations are colored with their ground-truth relation labels. Black triangles indicate unknown
relations. These four from top left to bottom right sequentially illustrate the relation represen-
tation of initial state, after supervised optimization, after contrastive optimization, after both of
them.

For the samples rejected by the classifier, the off-the-shelf OpenRE method can be
used to discovery potential unseen relations. In this section, we provide a brief case
study to show the discovered unseen relations by SelfORE [13]. OpenRE module out-
puts the cluster assignment of these rejected samples. We extract the relation names
using the frequent n-gram in each cluster and the extraction results are shown in Table
5. By integrating the OpenRE module, our method complete (1) the classification of
known relations, (2) the rejection of unseen relations, (3) discovery of unseen relations.
Based on the above process, robust relation extraction in real applications is realized.

6 Conclusions

In this work, we introduce a relation extraction method with rejection option to improve
the robustness in real-world applications. The proposed method employs contrastive
training techniques and a set of carefully designed transformations to learn sufficient
features. The classification of known relations and rejection of unseen relations can be
done with these features. Unseen relations in the rejected samples can be discovered
by incorporating off-the-shelf OpenRE methods. Experimental results show that our
method outperforms SOTA methods for unseen relation rejection.
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Abstract. Empathetic conversation generation intends to endow the
open-domain conversation model with the capability for understanding,
interpreting, and expressing emotion. Humans express not only their
emotional state but also the stimulus that caused the emotion, i.e.,
emotion cause, during a conversation. Most existing approaches focus
on emotion modeling, emotion recognition and prediction, and emotion
fusion generation, ignoring the critical aspect of the emotion cause, which
results in generating responses with irrelevant content. Emotion cause
can help the model understand the user’s emotion and make the gener-
ated responses more content-relevant. However, using the emotion cause
to enhance empathetic conversation generation is challenging. Firstly,
the model needs to accurately identify the emotion cause without large-
scale labeled data. Second, the model needs to effectively integrate the
emotion cause into the generation process. To this end, we present an
emotion cause extractor using a semi-supervised training method and an
empathetic conversation generator using a biased self-attention mecha-
nism to overcome these two issues. Experimental results indicate that
our proposed emotion cause extractor improves recall scores markedly
compared to the baselines, and the proposed empathetic conversation
generator has superior performance and improves the content-relevance
of generated responses.

Keywords: Empathetic conversation generation · Emotion cause ·
Content relevance · Semi-supervised training

1 Introduction

Open-domain conversation generation has made remarkable progress over recent
years, relying on deep learning and neural networks [5,19,27,32]. However, previ-
ous works primarily centre around improving the linguistic quality of the gener-
ated responses, such as grammatical correctness, content variety, and topic rele-
vance, neglecting the important factor of emotion [31]. The information conveyed
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by humans during communication contains not only syntactic and semantic infor-
mation but also emotional information. Emotion is one of the essential cogni-
tive behaviors in humans, and artificial intelligence has the objective of enabling
machines to mimic human intelligent behaviors. As an important research branch
of AI, one of the long-term goals of dialogue systems is to enable machines to
perceive, comprehend and express emotions. In addition, studies [13–15] have
shown that introducing emotional information into conversation systems can
improve user engagement and satisfaction, make human-computer conversation
more natural, and reduce the number of conversation terminations.

As a new research hotspot for the NLP community, most existing approaches
on empathetic conversation generation focus on identifying the emotion category
of the input sequence and generating a response based on the predicted emotion
label. Song et al. [23] introduce an external emotion lexicon into the generation
module to achieve explicit and implicit emotion expression. Li et al. [9] create
a coarse-grained and fine-grained emotion representation for the input sequence
by using an emotion classifier to identify the input sequence’s emotion category
and an external emotion lexicon to identify the emotion terms. Majumder et
al. [12] improve the empathetic expression in the generated response by mim-
icking the input sequence’s emotion while taking into account their emotional
polarity. Firdaus et al. [3] incorporate multiple emotions to varying degrees in
the generation of responses to make the model more anthropomorphic.

Table 1. Examples of empathetic conversation.

Input 1 My son really needs to cut down on the amount of sugary snacks he has!

Emotion Disappointed

EmpDG That is so disgusting! I bet he is a very disgusting situation

GPT2 I know how you feel. I have a son who is 6 and a daughter who is 5

Input 2 I feel so lonely sometimes because all my friends live in a different country

Emotion Lonely

EmpDG I am sorry you had to go through that

GPT2 Oh no! I hope you are ok!

Existing works mainly focus on emotion-related issues, focusing less on
content-relevance. However, a case study of the responses generated by the exist-
ing models shows that the existing models do not guarantee the content-relevance
of the generated responses very well. As shown in Table 1, in case 1, EmpDG [9]
generates an emotionally irrational and irrelevant response, whereas GPT2 [16]
can express empathy for the user’s emotion, but the generated response deviates
from the conversation’s topic (from diet to age); in case 2, EmpDG and GPT2
both focus too much on the user’s lonely emotion but fail to develop the conver-
sation around the user’s specific situation, resulting in the generation of a safe
response, which is also irrelevant to the situation.
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We suggest there are two main reasons: Firstly, as Gao et al. [4] pointed out,
existing works deal with emotions on a surface level and do not consider the
underlying causes of the emotion, making it difficult to comprehend user’s com-
plicated emotions and badly affecting the subsequent links of emotion prediction
and empathetic conversation generation. Secondly, emotion category is a strong
supervisory signal, and overemphasizing its importance in the process of gener-
ating responses can easily lead to the generation of safe responses for specific
emotion categories. For examples in Table 1, if the model can accurately capture
the emotion cause in the input sequence (as highlighted in red) and incorporate
them into the process of generating responses, the model will have the ability to
understand the user’s emotion better and generate responses with more relevant
content by developing topics around the facts conveyed by the user during the
generation process.

To this end, we propose an empathetic conversation generation model
enhanced by emotion cause to improve the content-relevance of generated
responses. Specifically, our model involves two components, an emotion cause
extractor and an empathetic conversation generator. In order to accurately iden-
tify emotion cause in the absence of large-scale labeled data, we present a semi-
supervised training method to optimize the emotion cause extractor. To inte-
grate the extracted emotion cause into the empathetic conversation generator
and minimize the damage to the general language knowledge already learned
by the pre-trained language model, we introduce a biased self-attention mech-
anism to enhance the model’s attention to the emotion cause when generating
responses.

The contributions of our work are summarized as follows:

• To compensate for the scarcity of large-scale word-level emotion-cause labeled
datasets, a semi-supervised training method using labeled and unlabeled data
for joint training is proposed.

• To integrate the extracted emotion cause into the generation process, a biased
self-attention mechanism that does not introduce new additional parameters
is proposed.

• Experimental results indicate that our proposed model performs superior to
the baselines and improves the content-relevance of the generated responses.

2 Related Work

Empathetic conversation generation has made great progress in recent years.
Several works [18,20,21,23,26,30] attempt to make dialogue models more empa-
thetic and have achieved promising results. Song et al. [23] introduce an external
emotion lexicon into the generation module to achieve explicit and implicit emo-
tion expression. Shen et al. [20] present a novel framework that extends the
emotional conversation generation through a dual task and alternatively gen-
erates the responses and queries. Welivita et al. [26] combine dialogue intent
modeling and neural response generation to obtain more controllable and empa-
thetic responses. Zheng et al. [30] propose a multi-factor hierarchical framework
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to model communication mechanism, dialog act and emotion in a hierarchical
way. Sabour et al. [18] introduce external commonsense information to absorb
additional information about the situation and help the model better understand
the user’s emotion.

Emotion cause extraction is intended to discover the stimulus reasons behind
the user’s emotion [2,7]. Although there has been a lot of excellent works
in this research direction [1,24,28], most of the existing datasets are at the
sentence/sub-sentence level [6]. There is still a lack of a large-scale word-level
emotion-cause labeled dataset up till now.

Most existing approaches on empathetic conversation generation only con-
sider superficial emotional information in the dialogue context but ignore deeper
emotional causes. Recently, some researches [4,6] have attempt to investigate
emotion cause in empathetic conversation generation, resulting in more rele-
vant and empathetic responses. Since there is no large-scale word-level emotion-
cause labeled dataset, Gao et al. [4] train an emotion cause extractor using
a sentence-level labeled dataset and then automatically construct a word-level
labeled dataset. Kim et al. [6] use a Bayesian conditional probability formula
based on the emotion category of the dialogue context to train an emotion cause
extractor in a weakly supervised way. In order to incorporate emotion cause
into the process of generating responses, Gao et al. [4] introduce a soft gating
mechanism and a hard gating mechanism to make model boost the attention
on emotion cause; while Kim et al. [6] introduce the RSA framework, which is
essentially a Bayesian conditional probability-based response rewriting module
based on the original decoder.

3 Task Formulation

Emotion Cause Extraction. Given an input sequence Xe = (x1, x2, ..., xk),
the goal is to predict the emotion cause probability C = (c1, c2, ..., ck) that
indicates whether the token is an emotion cause. Specifically, we add special
tokens [CLS] and [SEP] at the beginning and end of the sequence, respectively
(as shown in Fig. 1).

Empathetic Conversation Generation. Given an input sequence Xg =
(x1, x2, ..., xn), the goal is to generate a response Y = (y1, y2, ..., ym) that is
empathetic and relevant to the conversation. Specifically, follow the previous
works [4,10,22], we concatenate all utterances in the dialogue context together
as input and separate utterances by [SEP] tokens (as shown in Fig. 1).

4 Approach

Our proposed emotion-cause-enhanced empathetic conversation generation
model consists of two main modules: Emotion Cause Extractor and Empathetic
Conversation Generator. The overview is shown in Fig. 1. Since there is no large-
scale word-level emotion cause dataset available, we present a semi-supervised
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Fig. 1. The overview of our proposed ECE and ECG.

training method to obtain the emotion cause extractor using small-scale labeled
data jointly trained with large-scale unlabeled data. To involve the emotion
cause in the generation process, we introduce multiplicative signals to imple-
ment the biased self-attention mechanism. The multiplicative signal enhances the
model’s attention to the emotion cause in the generation process and improves
the content-relevance of the generated responses.

4.1 Emotion Cause Extractor

The RoBERTa model [11] created by stacking the Transformer encoder [25]
can better model contextual information in both directions. We construct the
Emotion Cause Extractor (ECE for short) based on the RoBERTa to identify
the emotion categories of the input sequence and its emotion causes. Thus the
tasks of the ECE can be divided into emotion recognition and emotion cause
detection.

Emotion Recognition. Emotion recognition is a classification problem aiming
to predict the emotion category of the input sequence. Given a input sequence
Xe, the forward propagation process of the model can be defined as:

HE
h = RoBERTa(Xe) (1)

P = softmax
(
WeHE

h,1 + be
)

(2)

where HE
h denotes the output of the last hidden layer, and HE

h,1 denotes the
output of the first token (i.e., [CLS]) in the last hidden layer. We and be denote
the parameters of the feed-forward neural network.

After obtaining the probability distribution P of emotion category, the emo-
tion category of the Xe can be defined as E = argmax(P).

We employ the following loss function to optimize the parameters:

Lemo (P ) = −
∑

i∈labels

t (i) log pi (3)
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where labels ∈ {1, 2, ..., s} denotes emotion categories, and t (i) denotes the
ground truth distribution corresponding to the input sequence.

It is noted that the input representation of the RoBERTa contains both word
embedding and positional embedding:

HE
0 = XeW

W
e + XP

e WP
e (4)

where WW
e denotes the word embedding matrix, XP

e denotes the absolute posi-
tion of tokens in Xe, and WP

e denotes the positional embedding matrix.

Emotion Cause Detection. Emotion cause detection is a sequence label-
ing problem that aims to predict whether each token in the input sequence is
the emotion cause, i.e., a word-level {0, 1} labeling problem. Since no large-
scale word-level emotion cause dataset is available, this section proposes a semi-
supervised training method using small-scale labeled data jointly with large-scale
unlabeled data.

For the labeled data, given an input sequence Xe, the context-aware word
representation is obtained by encoding using the RoBERTa. Then, a layer of the
feed-forward neural network is used for {0, 1} sequence labeling:

HE
h = RoBERTa(Xe) (5)

Ĉ = softmax
(
WcHE

h + bc
)

(6)

where Ĉ represents the emotion cause probability of each token, Wc and bc
denote the parameters of the feed-forward neural network.

The loss function applied for parameter learning is as follows:

Lcau

(
Ĉ

)
= −

k∑

i=1

log P
(
Ĉi

)
(7)

where k indicates the length of the input sequence, and P(·) denotes obtaining
the probability corresponding to the ground truth label of each token.

For the unlabeled data, we observe that the model needs to pay atten-
tion to the emotion cause when predicting the emotion category of the input
sequence. Thus the attention weight distribution of the model in predicting emo-
tion categories can be used to predict whether each token is an emotion cause
or not. Given an input sequence Xe, emotion recognition is performed using the
RoBERTa to obtain the attention weight distribution AttCLS of the first [CLS]
token in the last hidden layer. Then, simple filtering based on the rules (including
removing punctuation, special words, stop words, etc.) is applied, and the tokens
with top-k weights are selected as the emotion cause of the input sequence. In
this way, emotion cause labels can be automatically constructed for unlabeled
data, and the rest of the processing is similar to labeled data.

However, the above method of automatic emotion cause labeling requires
converting each token from vector to text at the realization and then performing
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rule-based filtering. This leads to the fact that the computational graph of auto-
matic emotion cause labeling module is not fully linked with that of emotion
cause detection module, i.e., the loss function Lcau of emotion cause detection
is not derivable for AttCLS , and cannot be directly involved in the optimization
of AttCLS . Thus we propose an additional auxiliary loss function to link the
computational graph and introduce the regularization constraint by computing
the vector inner product of AttCLS and Ĉ1:

Laux

(
AttCLS , Ĉ

)
= AttCLS · Ĉ1 (8)

where Ĉ1 = Ĉ [1, :] denotes the probability that each token is the emotion cause.
In summary, we employ the following loss function to optimize the emotion

cause extractor:
LECE = λ1Lemo + λ2Lcau + λ3Laux (9)

where λi indicates the weight of each loss function (we set λ1 = 1/3, λ2 = λ3 = 1).

4.2 Empathetic Conversation Generator

Conversation Generation. Given a input sequence Xg and the corresponding
probability of emotion cause C, the goal of the Empathetic Conversation Gen-
erator (ECG for short) is to maximize the probability P (Y |Xg, C). The empa-
thetic conversation generator proposed in this section is implemented based on
the GPT2 [16]. Forward propagation process of the GPT2 in conversation gen-
eration task can be defined as:

HG
h = GPT2(Xg) (10)

Ŷ = softmax
(
WgHG

h + bg
)

(11)

where Wg and bg denote the parameters of the feed-forward neural network.
The loss function is as follows:

LECG
(
Ŷ

)
= −

m∑

i=1

log P
(
Ŷi

)
(12)

where m denotes the length of the sequence, and P(·) denotes obtaining the
probability corresponding to the ground truth.

It is noted that the input representation of the GPT2 contains three parts:
word embedding, positional embedding and role embedding:

HG
0 = XgW

W
g + XP

g WP
g + XR

g WR
g (13)

where XR
g denotes the role identifier of each token in the input sequence Xg

(used to distinguish different speakers), and WR
g denotes the role embedding

matrix.
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Biased Self-attention Mechanism. In order to integrate the emotion cause
into the generation progress of the GPT2, it is typical to introduce a new
attention mechanism layer. However, considering that the GPT2 has large-scale,
trained parameters, if a new attention mechanism layer is introduced in the fine-
tuning phase, it may greatly impact the original parameters and destroy the
general knowledge already learned by the GPT2. Therefore we chose to intro-
duce multiplicative signals based on emotion cause on top of the original self-
attention mechanism of the GPT2 to enhance the model’s attention to emotion
cause during generation. Meanwhile, the above possible problems are avoided
since no additional parameters are introduced.

Moreover, considering that deep neural networks are biased toward modelling
syntactic information at the bottom level and semantic information at the top
level, the first few layers of the GPT2 network do not require special attention for
the emotion cause. We use the layer number information to scale the above mul-
tiplicative signals. As the number of layers increases, the multiplicative signals
based on the emotion cause gradually strengthen.

The original self-attention mechanism of the GPT2 is defined as:

MaskedAttention(Q ,K ,V ) = softmax
(
QKT

√
dk

� M − λ (I − M )
)
V (14)

where � denotes the multiplication of the corresponding elements of the matrix,
λ denotes an infinite scalar (generally taken as λ = 10000). M denotes the lower
triangular matrix with all non-zero elements being 1, I denotes the matrix where
all elements are 1.

Our proposed biased self-attention mechanism based on the emotion cause
can be defined as:

MaskedScore(Q ,K ) = softmax
(
QKT

√
dk

� M − λ (I − M )
)

(15)

BiasedScore(Q ,K ) = Normalize
(

MaskedScore(Q ,K ) �
(
I +

hi
h
C

))

(16)

Normalize(X ) =
xi,j∑
i xi,j

(17)

BiasedAttention(Q ,K ,V ) = BiasedScore(Q ,K )V (18)

where C represents the probability of each token being an emotion cause, hi ∈
{1, 2, ..., h} denotes the serial number of the self-attention layer, Normalize(·)
denotes the function for normalization by row.

4.3 Training Strategy

Our proposed model is trained using a two-stage training strategy.
In the first stage, the ECE is trained using a semi-supervised training method,

as shown in Algorithm 1.
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Algorithm 1: The training process of ECE
Input: ECE, EmoCause-1 dataset and EmpDialog dataset

1 Loading the RoBERTa and randomly initializing other parameters;
2 for training iteration do
3 for data ∈ EmoCause-1 do
4 Train ECE in a supervised method;
5 end
6 for data ∈ EmpDialog do
7 Construct emotion cause labels automatically;
8 Train ECE in a supervised method based on the emotion cause labels;

9 end

10 end
Output: ECE

In the second stage, the ECG is trained based on the emotion cause extracted
by the ECE, and the parameters of the ECE are frozen in this stage. The training
process is shown in Algorithm 2.

Algorithm 2: The training process of ECG
Input: ECG, ECE and EmpDialog dataset

1 Loading the ECE;
2 Loading the GPT2 and randomly initializing other parameters;
3 for training iteration do
4 for data ∈ EmpDialog do
5 Extract the emotion cause of the input sequence using ECE;
6 Integrate the extracted emotion cause into ECG using biased

self-attention mechanism;
7 Update the parameters of the ECG;
8 end
9 end
Output: ECG

5 Experiments

5.1 Datasets

We use the following two datasets to conduct experiments.
EmpatheticDialogues (EmpDialog for short) is a dataset for empathetic con-

versation generation created by Rashkin et al. [17]. The dataset, which contains
19,533 conversations in the training set, 2770 conversations in the validation set
and 2547 conversations in the test set, is collected and created by the Ama-
zon Mechanical Turk platform. EmpDialog defines 32 emotion categories, and
each conversation is created based on an emotional category and a situation
description. An example of the EmpDialog dataset is shown in Table 2.
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Table 2. An example of the EmpDialog dataset.

Label Hopeful

Situation I have been making goals each week for earning money. I’m hoping to
save enough to start renovations on my house

Conversation Speaker: I have big renovation plans for my house. I’ve made a
money plan and have kept to it so far

Listener: Well at least you have a plan. Are you planning to start
the renovation soon?

Speaker: Yes, hopefully it will all go as planned. So far so good

Listener: Awesome. I’m sure it’s going to turn out great

EmoCause is a word-level emotion cause dataset created by Kim et al. [6]
based on the validation and test sets of EmpDialog. The dataset is also collected
and created by the Amazon Mechanical Turk platform. The workers are asked to
vote for each token in a given situation to determine whether it is the emotion
cause. EmoCause have 2770 validation data and 2547 test data. An example of
the EmoCause dataset is shown in Table 3.

Table 3. An example of the EmoCause dataset.

Label Hopeful

Situation I have been making goals each week for earning money. I’m hoping
to save enough to start renovations on my house

Cause Goals, earning, money

As described in Subsect. 4.3 our proposed model is trained in two stages and
the experimental data used in different stages are different.

Experimental Data for ECE: The experimental data used by ECE are
obtained from EmpDialog and EmoCause. First, the validation set of Emo-
Cause is randomly divided into two equal parts (denoted as EmoCause-1 and
EmoCause-2). Then, the training set (unlabeled) of EmpDialog is combined
with EmoCause-1 (labeled) to form the training set used in the experiments,
EmoCause-2 is used as the validation set for experiments, and the test set of
EmoCause is used as the test set for experiments.

Experimental Data for ECG: The experimental data used in ECG are
derived from EmpDialog, and the division of the training set, validation set
and test set is the same as the original dataset.

5.2 Comparison Methods

For ECE, we chose the following three models as baselines: (1) EmpDG [9]: a
Transformer-based model that creates the coarse and fine-grained emotion rep-
resentation by emotion classification and external emotion lexicon. In addition,



122 M. Zou et al.

it uses two discriminators to interact with user feedback. Here, we select the
coarse-grained tokens as the emotion cause. (2) RoBERTa Att: a RoBERTa-
based [11] model that is trained on the emotion recognition task, we obtain
emotion cause by the attention weight distribution of the first special token
[CLS]. (3) GEE [6]: a BART-based [8] model that uses a Bayesian conditional
probability formula based on the emotion category labels of context to predict
emotion cause.

For ECG, we chose the following three models as baselines: (1) EmpDG [9]:
the same as mentioned above. (2) RecEC [4]: a Transformer-based model that
incorporates emotion cause into response generation with gating mechanisms.
It constructs emotion cause labels using a pre-trained sentence-level emotion
cause extractor. (3) GPT2 [16]: a GPT2-based model that is fine-tuned on the
conversation generation task.

5.3 Evaluation Metrics

For ECE, we conducted the automatic evaluation to evaluate with the following
metrics: emotion classification accuracy (Accuracy for short) and emotion cause
recall rate (Recall for short).

For ECG, we used automatic evaluation and manual evaluation to verify the
effectiveness. The metrics used for the automatic evaluation included Perplexity,
Distinct-1, Distinct-2, and emotion classification accuracy (Accuracy for short),
well-known metrics commonly used to evaluate conversation generation. Addi-
tionally, we introduced BERTscore [29] to measure the cosine similarity between
the generated response and the gold response. BERTscore contains three more
specific metrics, namely recall rate (RBERT), precision rate (PBERT) and F1 score
(FBERT).

The manual evaluation included both quantitative and qualitative compo-
nents. The quantitative component required scorers to score on three dimen-
sions of Empathy, Relevance, and Fluency, with each dimension being scored
in an increasing value domain from 1 to 5. The qualitative component required
scorers to rank the response generated by different models in order of prefer-
ence. The manual evaluation randomly selected 100 test data and disrupted the
responses generated by different models. Afterwards, these responses are dis-
tributed to 3 scorers for scoring, and the final results are averaged. The above
approach fully ensures the fairness of the manual evaluation.

5.4 Parameter Settings

ECE is constructed based on RoBERTa-base, and ECG is constructed based on
GPT2-base. Table 4 is drawn to show the parameter settings in detail.

5.5 Experimental Results and Analysis

Table 5 shows the experimental results of different emotion cause extractors. Our
ECE performs optimally in all metrics compared to the comparison methods.
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Table 4. Parameter setting of ECE and ECG.

ECE ECG

Initial learning rate 0.00002 0.00002

Gradient reduce strategy ReduceLROnPlateau ReduceLROnPlateau

Gradient clip threshold 1 1

Gradient accumulation threshold 1 2

Batch size 64 8

Early stopping strategy Top-5 Recall Perplexity

Early stopping threshold 5 5

Table 5. Results on comparative experiments of the different Emotion Cause
Extractors.

Model Accuracy Top-1 Recall Top-3 Recall Top-5 Recall

EmpDG 0.31 0.134 0.362 0.493

Roberta Att 0.58 0.148 0.399 0.596

GEE 0.40 0.173 0.481 0.684

ECE (Ours) 0.58 0.227 0.565 0.727

Compared with the Roberta Att, ECE maintains its original strong competitive-
ness in emotion classification accuracy while achieving remarkable improvement
in emotion cause recall rate. These achievements demonstrate that our proposed
semi-supervised training method can effectively narrow the gap between emotion
recognition and emotion cause detection and significantly improve the emotion
cause detection ability of the model.

Table 6. Results on ablation study of the ECE.

Training dataset Accuracy Top-1 Recall Top-3 Recall Top-5 Recall Training method

Train 0.56 0.147 0.410 0.607 Unsupervised

Valid 0.56 0.246 0.514 0.556 Supervised

Merge (ours) 0.58 0.227 0.565 0.727 Semi-supervised

Merge w/o Laux 0.58 0.208 0.523 0.709 Semi-supervised

We design the ablation study to further analyze the effectiveness of our pro-
posed semi-supervised training method. In Table 6, the “train” (or “valid”) in
Training Dataset represents that ECE uses only the training (or validation)
set of EmoCause for unsupervised (or supervised) training. Similarly, “merge”
represents that ECE uses the training set of EmpDialog with EmoCause-1 for
semi-supervised training. Note that in the “valid” set of experiment, the test
set of EmoCause is used as the validation set, which is actually not a regular
practice and is only required here to meet the need of the ablation experiments
because we do not have more labeled data.



124 M. Zou et al.

The experimental results in Tabel 6 show that the supervised training method
is outstanding on Top-1 Recall and Top-3 Recall compared with the unsupervised
training method. Still, the supervised training method is significantly weaker than
the unsupervised training method on Top-5 Recall. This phenomenon declares
that the supervised training method is superior to the unsupervised training
method in performance, but it can easily cause overfitting and lead to instability.
In contrast, the semi-supervised training method has the advantage of combining
the two. On the one hand, supervised training can be used to provide a clear, task-
appropriate optimization goal for emotion cause detection. On the other hand, the
labeled data can guide the processing of automatic emotion cause labeling and the
unlabeled data can avoid overfitting that may result from using only labeled data.
In addition, an ablation study on Laux under the semi-supervised training method
also validates the effectiveness of our proposed auxiliary loss function.

Table 7. Results on Automatic Evaluation of the ECG. It should be noted that the
particularly large Perplexity of RecEC is because the model is trained with FBERT as
the optimization target for the early stop strategy.

Model Perplexity Distinct-1 Distinct-2 PBERT RBERT FBERT Accuracy

EmpDG 34.311 0.018 0.069 0.252 0.213 0.232 0.314

RecEC 177.825 0.019 0.090 0.225 0.177 0.201 0.412

GPT2 14.132 0.027 0.112 0.304 0.238 0.271 /

ECG (Ours) 14.063 0.025 0.109 0.307 0.240 0.273 0.598

Table 7 demonstrates the automatic evaluation results of different empathetic
conversation generation models. Our ECG achieves remarkable improvements in
all metrics compared with EmpDG and RecEC, which are Transformer-based
models. ECG also makes a small improvement in all metrics except Distinct
compared with the pre-trained language model GPT2. The above phenomenon
suggests that our ECG can improve the quality of the generated responses by
introducing attention to emotion cause on the basis of pre-trained language
models. Regarding the poor performance of ECG on Distinct, it may be due to
the limitations caused by the emotion cause in the generation process.

Table 8. Results on Manual Evaluation of the ECG.

Model Empathy Relevance Fluency

EmpDG 2.927 2.763 4.497

RecEC 2.893 2.790 4.677

GPT2 3.213 3.257 4.753

ECG (Ours) 3.383 3.553 4.763

Table 8 shows the manual evaluation results of different empathetic conver-
sation generation models. The improvement in Empathy and Relevance of the
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Table 9. Preference test (%) between any two method.

Pref. (%) EmpDG RecEC GPT2 ECG (Ours)

EmpDG / 47.1 26.7 29.9

RecEC 52.9 / 38.2 31.0

GPT2 73.3 61.8 / 42.5

ECG (Ours) 70.1 69.0 57.5 /

responses generated by ECG is remarkable, which indicates that introducing
attention to the emotion cause in the generation process can promote the model’s
understanding of user emotion and generate more content-relevant emotional
responses. Table 9 presents the preferences of scorers for different models. The
scorers’ preference for our ECG is greater than the other models, which verifies
the validity of the ECG.

5.6 Case Study

Table 10. Two cases of responses generated by different models.

Input I recently went to eat a restaurant that was not very clean. The
whole place had an odd odor and made me uncomfortable

Emotion Disgusted

EmpDG I would have cried right now

RecEC Oh no! I hate when people do that

GPT2 Oh no! Did you clean it up?

ECG (Ours) That’s not good. Did you complain to the manager?

Input My son was just born, My first boy after 6 girls!

Emotion Joyful

EmpDG Wow, That is amazing. How old is your son?

RecEC Oh that’s great. Is he a big boy?

GPT2 Wow! That’s amazing! I bet you are proud of him!

ECG (Ours) Congratulations! That is a very exciting time for you and your
family

To further illustrate that focusing on the emotion cause helps improve the
content-relevance of the generated responses, we show two cases in Table 10.
In the first case, ECE identifies the emotion cause in user input (as highlighted
in red) and understands the stimulus behind the user’s disgusted emotion is the
poor environment of the restaurant, which prompts ECG to generate an empa-
thetic response expressing sympathy and concerning for subsequent development
(as highlighted in cyan). In the second case, ECE recognizes the emotion cause
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in user input (as highlighted in red) and understands the stimulus behind the
user’s joyful emotion is the long-awaited birth of a son, prompting ECG to gen-
erate an empathetic response that congratulates to the user and fits the user’s
family situation (as highlighted in cyan).

Comparing the responses generated by different models in the above two
cases, it can be seen that our proposed model can accurately capture the emotion
cause in user input and effectively incorporate it into the generation process,
showing stronger content-relevance compared to other baselines, which further
illustrates the important role of the emotion cause in the content-relevance of
generated responses.

6 Conclusion

In this paper, we present an empathetic conversation generation model enhanced
by the emotion cause to make the generated responses more content-relevant.
Our proposed model comprises an emotion cause extractor and an empathetic
conversation generator. To compensate for the scarcity of large-scale word-level
emotion-cause labeled datasets, we suggest a semi-supervised training method
that simultaneously uses labeled and unlabeled data for training. To integrate
the extracted emotion cause into the generation process, we propose a biased
self-attention mechanism that does not introduce new additional parameters.
Experimental results indicate that our proposed model performs superior to the
baselines and the generated responses of our model are more empathetic and
content-relevant.
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Abstract. Recent advances in the field of abstractive summarization leverage
pre-trained language models rather than train a model from scratch. However,
such models are sluggish to train and accompanied by a massive overhead.
Researchers have proposed a few lightweight alternatives such as smaller adapters
to mitigate the drawbacks. Nonetheless, it remains uncertain whether using
adapters benefits the task of summarization, in terms of improved efficiency
without an unpleasant sacrifice in performance. In this work, we carry out mul-
tifaceted investigations on fine-tuning and adapters for summarization tasks with
varying complexity: language, domain, and task transfer. In our experiments,
fine-tuning a pre-trained language model generally attains a better performance
than using adapters; the performance gap positively correlates with the amount
of training data used. Notably, adapters exceed fine-tuning under extremely low-
resource conditions. We further provide insights on multilinguality, model con-
vergence, and robustness, hoping to shed light on the pragmatic choice of fine-
tuning or adapters in abstractive summarization.

Keywords: Summarization · Pre-trained language models · Transfer learning

1 Introduction

In the current era of research, using large pre-trained language models (PLM) and fine-
tuning these models on a downstream task yields dominating results in many tasks
[2,6,15,23]. The scope of our work is on abstractive summarization, which is the task of
generating a concise and relevant summary given a long document. Recent works have
demonstrated the success of fine-tuning PLMs on summarization [17,24,26]. Nonethe-
less, such a paradigm becomes increasingly expensive with the ever-growing sizes of
PLMs, since both the training time and space requirement increase along with the num-
ber of parameters. The issue becomes more severe when multiple languages or domains
are introduced, as separate models need to be trained and saved depending on the setup.

Houlsby et al. [10] proposed lightweight adapters as an alleviation of the large over-
head of fine-tuning PLM on a downstream task. While many researchers have followed
and adopted their idea, experiments are rarely done on summarization; from both quan-
titative and qualitative perspectives, it remains a myth of which direction one should
pick in practice. In this work, we perform a thorough exploration of using adapters with
a PLM on the task of abstractive summarization by examining different scenarios.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 133–146, 2022.
https://doi.org/10.1007/978-3-031-18315-7_9
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Our experiments are designed along three dimensions: 1) languages involved:
monolingual, cross-lingual, and multilingual; 2) data availability: high, medium, low,
and scarce; 3) knowledge being transferred: languages, domains as well as tasks.
Through comprehensive experimental results, we demonstrate that with a realistic avail-
ability of resources, fine-tuning a PLM is superior to using adapters for the purpose of
obtaining the best text quality. However, the game changes under low-resource settings:
adapters have shown better, if not, on par performances compared to fine-tuning, espe-
cially in domain adaption.

2 Related Work

Fine-tuning a PLM with downstream task-specific objectives is a useful paradigm. It
not only speeds up training, but also transfers the knowledge from abundant pre-training
data to lower-resourced tasks. Whilst it has been proven successful in the field of sum-
marization [14,24,26,28], this strategy requires optimizing and updating all parameters
in the fine-tuned model, and is particularly expensive when a number of (sub-)tasks
need to be approached.

To mitigate these problems, Houlsby et al. [10] proposed to insert small neural
modules named “adapters” to each layer of the PLM sequentially, and only update the
adapters during fine-tuning while freezing most of the PLM parameters. When dealing
with different sub-tasks – languages, domains, etc. – it is especially storage-efficient as
only adapter weights need to be saved instead of the whole fine-tuned model. Several
adapter architectures have been designed since then. Pfeiffer et al. [22] suggested sim-
ply placing adapters after the feed-forward block in each layer of the PLM, instead of
adding adapters after both the multi-head attention and feed-forward block as proposed
in the original work. Apart from adding adapters sequentially, He et al. [9] designed an
adapter that is parallel to the PLM.

Recent research that had utilized adapters in the task of summarization, argued that
the low availability of opinion summarization datasets often leads to the standard fine-
tuning method overfitting on tiny datasets [1]. Thus, they presented an efficient few-shot
fine-tuning method based on adapters for opinion summarization. They added adapters
to pre-trained models, trained the adapters on a large unlabelled customer reviews
dataset, then fine-tuned them on the human-annotated corpus. Their method outper-
formed standard fine-tuning methods on various datasets. In addition, they showed that
the proposed method can generate better-organized summaries with improved coher-
ence and fewer redundancies in the case of summary personalization. Chen and Shuai
[3] created a meta-transfer learning framework for low-resource abstractive summariza-
tion, aiming to leverage pre-trained knowledge to improve the performance of the target
corpus with limited examples. They inserted adapter modules into their model to per-
form meta-learning and leverage pre-trained knowledge simultaneously. Their methods
are particularly effective under manually constructed low-resource settings on various
summarization datasets with diverse writing styles and forms.

In comparison, our work investigates fine-tuning and using adapters in summariza-
tion, by comparing the performance of models using the fine-tuning strategy with mod-
els using adapters in the case of language adaptability, data availability, and knowledge
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transfer. For language adaptability, we examine the case of monolingual, cross-lingual,
and multilingual summarization. For data availability, we study models trained under
low, medium, and high resource scenarios. Lastly, for knowledge transfer, we inves-
tigate several factors: languages, domains, and tasks. To the best of our knowledge,
adapters have not been tested in these scenarios.

3 Methodology

3.1 Method Overview

Our aim is to study two fine-tuning variants for summarization under several settings
using a PLM: the fine-tuning paradigm, and the adapter strategy. Fine-tuning initializes
a PLM from a pre-trained checkpoint, then trains and updates the whole model on a
summarization dataset. On the other hand, the adapter strategy also initializes a PLM
from a pre-trained checkpoint, with adapter modules then inserted into the model. Dur-
ing training, we only update the adapter, the layer normalization parameters, and the
final output layer.

We use mBART [18] as our backbone PLM for settings involving non-English lan-
guages. It is a sequence-to-sequence model pre-trained on large-scale monolingual cor-
pora in 25 languages, with a denoising autoencoding objective. The model is designed to
do multilingual machine translation tasks. After training it on a summarization dataset,
the model is capable of doing monolingual, cross-lingual, and multilingual summariza-
tion. For English-only settings, we use BART [15] as the PLM. Similar to mBART,
BART is also a sequence-to-sequence model pre-trained on large-scale corpora with
denoising autoencoder architecture.

Fig. 1. An illustration of our mBART based model for cross-lingual summarization from English
to Chinese.

We have two types of models: mBART-FT which employs the fine-tune strategy,
and mBART-Adapt which uses the adapt strategy. In order to recognise the source and
target languages, following Liu et al. [18], our models take a special separator token
between each sentence, a language code token at the end of the source document, and at
the beginning of the target summary. We provide a cross-lingual demonstration for our
model in Fig. 1. In addition for English-only experiments, we propose BART-FT and
BART-Adapt which use the fine-tuning strategy and the adapter strategy, respectively.
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3.2 Adapter Variants

As mentioned earlier, there are various adapter variants. We experiment with two vari-
ants: one with sequential connections [10], and one with parallel connections [9]. We
display an illustration of these variants in Fig. 2. After trying out different learning rates
and reduction factors (the ratio between PLM’s hidden dimension and adapter’s bottle-
neck dimension), we discover that sequential adapters always outperform the parallel
ones in our tasks. Thus we use the sequential adapter for all of our mBART/BART-
Adapt models.

Fig. 2. An illustration of adapter variants, adapted from He et al. [9]. “PLM module” denotes a
certain sub-layer in the PLM (e.g. attention or feed-forward) that is frozen.

3.3 Evaluation

The evaluation metrics are F1 scores of ROUGE-1/2/L [16]. Since we deal with multiple
languages, we use the multilingual ROUGE implemented in a previous paper.1 We stick
to the toolkit’s default settings, e.g., sentence segmentation and word stemming.

4 Language Experiments

4.1 Experimental Setup

We test our proposed paradigm on NCLS2, WikiLingua3, and XL-Sum4 datasets par-
ticularly designed for cross-lingual and multilingual summarization [8,14,27]. These
datasets are either machine-translated or crawled from the web.

NLCS is built by machine-translating an existing English (en) dataset (CNN/Daily
Mail by Nallapati et al. [19]) to Chinese (zh), and vice versa (Sina Weibo by Hu et al.
[11]). A translated document is only kept if its round-trip translation reaches a certain

1 https://github.com/csebuetnlp/xl-sum/tree/master/multilingual rouge scoring.
2 https://github.com/znlp/ncls-corpora.
3 https://github.com/esdurmus/wikilingua.
4 https://github.com/csebuetnlp/xl-sum.

https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring
https://github.com/znlp/ncls-corpora
https://github.com/esdurmus/wikilingua
https://github.com/csebuetnlp/xl-sum
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Table 1. Statistics of datasets and languages for the language adaption experiment.

Dataset Language train/valid/test Source

NCLS zh→en 1.7m/3.0k/3.0k Sina Weibo

en→zh 365k/3.0k/3.0k CNN/Daily Mail

Wiki-Lingua en→ar 20.4k/2.9k/5.8k wikiHow

en→vi 13.7k/2.0k/3.9k

en↔ja 8.9k/1.3k/2.5k

XL-Sum gu 9.1k/1.1k/1.1k BBC

fr 8.7k/1.1k/1.1k

ne 5.8k/0.7k/0.7k

ko 4.4k/0.6k/0.6k

si 3.2k/0.5k/0.5k

threshold score. Plain translations and human-corrected translations are supplied as sep-
arate test sets; we use the human-corrected set in this work. WikiLingua is constructed
by extracting and aligning article-summary pairs from wikiHow. We experiment with
three languages that resemble medium and low-resource scenarios: Arabic (ar), Viet-
namese (vi), and Japanese (ja).

Different from the cross-lingual datasets, XL-Sum is monolingual. It consists of
professionally annotated article-summary pairs from BBC in many languages. The
datasets come in various sizes for a number of languages, as shown in Table 1. This
dataset allows for multilingual experiments since the data come from the same domain
and are not centred on English. We experiment on five low-resource languages: Gujarati
(gu), French (fr), Nepali (ne), Korean (ko), and Sinhala (si). For the monolingual sce-
nario, we directly use the monolingual summarization data to train the model. For the
cross-lingual setting, since machine translation is a cross-lingual task, we also directly
train the model using the cross-lingual summarization data. Lastly, in a multilingual
configuration, we simply mix summarization data in different languages, and train the
model using the mixed data.

Our experiments are based on a public mBART checkpoint5. Fine-tuning an
mBARTmodel updates around 610M parameters in total; the addition of adapters intro-
duces 50M parameters, yet only this 8% are being optimized during training. We use
the Adam optimizer for training [12], with a learning rate of 1e-5 for mBART, and 1e-4
for mBART with adapters. We set the adapter reduction factor to 2, which means that
the bottleneck dimension in an adapter is half of the hidden dimension in mBART. We
perform hyperparameter searches on the following: learning rate and reduction factor,
and monitor ROUGE scores on the validation set to select the best value. We provide
further details of the grid search in Appendix A.

All models are trained on 4 NVIDIA A100 GPUs with a batch size of 12 on NCLS,
and 4 on WikiLingua and XL-Sum. The model convergence time is from 1 to 30 h
depending on the dataset used. We use PyTorch [20] for our model implementation.

5 https://huggingface.co/facebook/mbart-large-cc25.

https://huggingface.co/facebook/mbart-large-cc25
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Table 2. Results for cross-lingual summarization.

(a) High-resource, NCLS.

Lang. mBART-FT mBART-Adapt

R1 R2 RL R1 R2 RL

zh→en 46.46 30.18 42.26 41.41 22.73 36.56

en→zh 45.22 22.49 34.38 40.74 16.83 29.27

(b) Medium and low-resource, WikiLingua.

Lang. mBART-FT mBART-Adapt

R1 R2 RL R1 R2 RL

en→ar 25.85 7.35 21.01 24.68 7.26 20.40

en→vi 33.63 15.17 26.65 30.98 13.94 24.59

en→ja 35.70 12.34 28.34 34.06 11.43 27.08

ja→en 35.24 12.38 28.09 33.14 11.54 26.46

Table 3. Results for low-resource multilingual and monolingual summarization on XL-Sum.

Lang. Multilingual Monolingual

mBART-FT mBART-Adapt mBART-FT mBART-Adapt

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

gu 20.18 6.96 18.09 20.12 6.82 17.99 20.23 6.43 17.67 19.20 5.95 16.96

fr 33.53 14.37 26.11 33.44 14.01 25.63 33.29 13.68 25.13 32.37 13.02 24.73

ne 24.70 9.52 22.23 23.26 8.55 20.94 24.06 9.05 21.62 23.31 8.36 21.01

ko 17.73 8.76 16.27 18.82 8.12 17.23 19.73 9.12 18.07 19.05 9.24 17.73

si 26.95 13.51 22.36 25.68 12.69 21.80 25.59 12.25 21.92 24.99 12.30 21.44

We use the Huggingface library [25] and AdapterHub [21] for mBART and adapter
implementation.

4.2 Results

We first provide results on high-recourse cross-lingual summarization on NCLS in
Table 2a. We can see that mBART-FT achieves significantly higher ROUGE scores
than mBART-Adapt in both Chinese-to-English as well as English-to-Chinese settings.
We then list result numbers on medium and low-recourse cross-lingual summarization
on WikiLingua in Table 2b. Similar to the behaviour under the high-resource setting,
mBART-FT consistently achieves better ROUGE performance than mBART-Adapt,
regardless of the source or target languages. However, we spot that the difference in
ROUGE scores is smaller for language pairs with lower resources, which suggests a
positive correlation between the gap in performance and training data availability.

In Table 3, we show results of both multilingual (left) and monolingual (right) sum-
marization on XL-Sum. In a multilingual setup, a single model is trained on five lan-
guages. whereas in a monolingual setup, five individual models are trained on the five
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languages separately. We can first see that mBART-FT generally surpasses mBART-
Adapt, in both multilingual and monolingual setups. In addition, multilingual models
generally outperform monolingual models by a small margin. This behaviour is cor-
roborated by Hasan et al. [8]’s work that mixing multiple languages altogether during
training can result in a positive transfer among them [5].

It is straightforward from our work, that, for summarization tasks with high data
availability, it is not worth trading performance for efficiency with adapters. For low-
resource scenarios, adapters achieve similar results as fine-tuning, and can therefore
be a convenient choice for fast training and compact disk storage. When multiple low-
resource languages are concerned, especially if they are related languages, it might be
beneficial to build a multilingual model instead of individual monolingual models.

4.3 Convergence

To measure the convergence difference between mBART-FT and mBART-Adapt, we
plot validation set ROUGE-1 scores against epochs for two previous experiments (high-
resource zh→en and low-resource ja→en) in Fig. 3. Plotting stops when validation does
not improve. We measure convergence in terms of epochs, rather than wall-time. In
our experiments, we find that wall-time per epoch for mBART-FT is about merely 1.5
times that for mBART-Adapt, since validation takes a large portion especially when the
dataset is small.
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Fig. 3. Validation ROUGE-1 (y-axis) against epochs (x-axis) for mBART-FT and mBART-Adapt
in different data conditions.

As Fig. 3(a) shows, with sufficient resources, mBART-FT and mBART-Adapt
started with similar ROUGE scores, then the gap quickly increases, suggesting a faster
and better convergence rate for fine-tuning. We also observe that mBART-FT converged
within fewer epochs. Furthermore, Fig. 3(b) suggests that, in a low-resource condition,
even though mBART-FT surpasses mBART-Adapt in terms of ROUGE, they both have
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similar convergence rates with the gap reduced. These trends indicate that in a high-
resource scenario fine-tuning is preferred, whereas in a low-resource scenario, adapters
can be used to reduce overhead while maintaining performance.

5 Domain Adaptation Experiments

5.1 Experimental Setup

In addition to multilinguality, we conduct extra experiments on domain adaptation,
which is typically tackled using the same pre-training then fine-tuning paradigm. In our
setting, we adapt CNN/Daily Mail to XL-Sum, both in English, with various data sizes.
Although both datasets are news articles, they differ hugely in writing styles. We start
with a BART model [15] fine-tuned on the CNN/Daily Mail dataset for summarization;
it is available as a public model checkpoint.6

To further understand the impact of data availability, we artificially and iteratively
make the training data 10 times smaller. This results in five data conditions with sizes
ranging from merely 31 to 306.5k. We make sure that larger training splits are supersets
of the smaller splits. The validation and test sets remain unchanged at 11.5k as pro-
vided in the original dataset. In addition to the XL-Sum dataset, which is in the news
domain, we also experimented with adapting CNN/Daily Mail to the BookSum7 [13]
dataset, a collection of narratives from the literature domain such as novels, plays, and
stories. Their human written summaries have three levels of granularity, and we use the
paragraph-level summaries for our experiment. Unlike the CNN/Daily Mail dataset, we
only experiment on the full size of the BookSum dataset.

The English BART checkpoint has in total 139M parameters to be fine-tuned, while
adapters have 14.2M parameters (10%). As an additional parameter-controlled fine-
tuning variant, we choose to freeze the entire BART but the last decoder layer, which
has 9.5M parameters. The final decoder layer makes up 7% of the entire model, and
has a comparable amount of trainable parameters to an adapter. Similar to the previous
setting, we use the Adam optimizer with a learning rate of 1e-5 for BART-FT, and 1e-4
for BART-Adapt. We use a batch size of 4 on XL-Sum, and 8 on BookSum. All other
hyperparameter settings are identical to those in the language adaptation experiment.

5.2 Results

We report the experiment results in Table 4. The pattern is that for medium to large
CNN/Daily Mail data sizes, BART-FT outperforms BART-Adapt significantly. The two
methods tie at around 300-3000 training sizes. BART-Adapt wins notably when there
are only a handful of examples. This implies that adapters only stand out when the
amount of data is extremely limited. In this case, we doubt the importance of training
efficiency in adapters when the data size is so small. Instead, we argue that a poten-
tial benefit of using adapters is to reduce overfitting. As for BookSum, we can observe
that numbers are very similar for both models with BART-FT slightly outperforming

6 https://huggingface.co/ainize/bart-base-cnn.
7 https://github.com/salesforce/booksum.

https://huggingface.co/ainize/bart-base-cnn
https://github.com/salesforce/booksum
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Table 4. Results for domain adaptation from CNN/Daily Mail to XL-Sum on English (top) with
artificially constrained data sizes, and to BookSum (bottom) with full data size.

Domain Data size BART-FT BART-Adapt BART-FT-LastLayer

R1 R2 RL R1 R2 RL R1 R2 RL

XL-Sum original 306.5 k 34.48 14.73 28.93 32.94 13.46 27.60 30.20 11.69 25.17

medium 30.65 k 30.63 11.38 25.31 30.15 11.10 25.05 26.70 8.67 21.94

small 3065 27.27 8.91 22.27 27.32 8.79 22.20 23.06 6.21 18.76

tiny 307 24.10 6.52 19.38 24.29 6.41 19.50 19.13 4.12 15.54

micro 31 19.69 4.26 15.73 20.74 4.65 16.45 16.30 2.20 11.43

BookSum 111.6 k 20.27 4.01 15.50 20.22 3.95 15.57 19.33 3.56 14.93

Table 5. Examples of gold and generated summaries (from models trained on the full dataset)
with their corresponding articles selected from the XL-Sum (English) dataset. Summary phrases
italicized and highlighted in red denote hallucinations.

Article:Lewis Williams, 20, died on 11 January from a shotgun wound suffered in Wath Road, Mexborough. South Yorkshire Police said
two men aged 20 and 49 were arrested on Friday in connection with his death, bringing the total number of arrests to eight . . .

Gold Summary: Two more people have been arrested in connection with a fatal shooting.

BART-FT Summary: Two more people have been arrested in connection with the fatal shooting of a man in South Yorkshire.

BART-Adapt Summary: Eight more people have been arrested in connection with the death of a man in South Yorkshire.

Article: BBC News Officials say the country’s Olympic Committee will “oversee participation of women athletes who can qualify”. The
decision will end recent speculation as to whether the entire Saudi team could have been disqualified on grounds of gender discrimination
. . . For the desert kingdom, the decision to allow women to compete in the Olympics is a huge step, overturning deep-rooted opposition
from those opposed to any public role for women . . .

Gold Summary: Saudi Arabia is to allow its women athletes to compete in the Olympics for the first time.

BART-FT Summary: Saudi Arabia is to allow women to compete in next year’s Olympic and Paralympic Games.

BART-Adapt Summary: Saudi Arabia is to allow women to take part in the 2012 Winter Olympics, officials say.

Article: The vehicle was seen at about 03:45 BST at the fast food giant’s branch in Catterick, North Yorkshire. A 19-year-old man was
arrested at the site, a short distance from the local golf club, on suspicion of theft and driving while unfit through drink. Police said it was
the “most unusual job” of the night but officers managed to “avoid a high-speed pursuit” . . .

Gold Summary: A stolen golf buggy was seized after being spotted at a McDonald’s drive-thru.

BART-FT Summary: A suspected stolen car was spotted at a McDonald’s drive-thru.

BART-Adapt Summary: A man has been arrested after a car was seen driving into a McDonald’s branch.

BART-Adapt. We argue adapters can do well in domain adaption despite the domain dif-
ference as long as there are sufficient training data. Finally, we notice the performance
of fine-tuning only the last decoder layer is nowhere near BART-FT or BART-Adapt;
this implies the practicability of adapters in summarization.

5.3 Qualitative Analysis

To understand the quality of generated summaries between BART-FT and BART-Adapt,
we examined a set of randomly selected model outputs from the XL-Sum dataset. We
show some examples in Table 5. We find that summaries generated by the two models
are roughly the same in terms of informativeness, grammaticality, and fluency. Despite
summaries being similar in these aspects, we find that BART-Adapt summaries are more
prone to hallucinations, which is a well-known problem in abstractive summarization
that summaries are not factual with respect to the source or general knowledge.
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Table 6. Results for task adaption from CNN/Daily Mail to DialogSum and SAMSum.

Task Data size Model R1 R2 RL

DialogSum 12.5k BART-FT 47.40 24.66 39.03

BART-Adapt 47.24 24.57 38.56

SAMSum 14.7k BART-FT 49.52 24.91 40.64

BART-Adapt 49.38 24.69 40.99

Table 7. Results for robustness analysis of task adaption experiments. Results are directly
obtained by using the trained model from the other task without any further training. *denotes
the model trained on SAMSum, and **denotes the model trained on DialogSum.

Task Data size Model R1 R2 RL

DialogSum 12.5k BART-FT* 35.60 16.59 29.69

BART-Adapt* 36.35 17.03 30.25

SAMSum 14.7k BART-FT** 40.91 14.82 32.32

BART-Adapt** 40.42 14.65 32.28

6 Task Transfer Experiments

6.1 Experimental Setup

In previous settings, we conduct experiments with the fine-tuning paradigm on the sub-
ject of language and domain adaption. We also conduct experiments on task adaption to
further verify our findings. In particular, we experiment with adapting a news summa-
rization model to dialogue summarization. Dialogue summarization is often considered
a much different task from monologic texts (e.g. news in our case) summarization due
to its unique challenges. Chen et al. [4] pointed out that: information flow is reflected in
the dialogue discourse structures, summaries are required to be objective, and dialogue
is acted at the pragmatic level. For these reasons, we choose to work with the Dialog-
Sum [4] and the SAMSum [7] datasets. We follow the previous setting and start with a
BART model already fine-tuned on the CNN/Daily Mail dataset, then further train the
model on these two datasets separately. We use a batch size of 8 for both DialogSum
and SAMSum. All other hyperparameter settings are identical to those in the domain
adaptation experiment.

6.2 Results

We report the experiment results in Table 6. We can observe that despite the dataset,
BART-FT almost always beats BART-Adapt. However, we can notice that the perfor-
mance gap is rather small, possibly due to the small dataset sizes. This is consistent
with our earlier findings that adapters are on par with fine-tuning when the amount of
training data is limited.
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6.3 Model Robustness

In addition to model performance, we also examine the robustness of models with
either fine-tuning or adapters. In particular, we evaluate the model in a zero-shot man-
ner where we directly test the DialogSum model on the SAMSum dataset, and vice
versa. We present the results in Table 7. We can first observe that performance drops
significantly compared to those in Table 6. Moreover, BART-Adapt has better perfor-
mance than BART-FT on the DialogSum dataset, and it achieves very similar results on
the SAMSum dataset. This suggests that adapters are more robust in a zero-shot setup
with fewer data; the reason could be less overfitting introduced by a limited number of
parameters in adapters.
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Fig. 4. The effect of the training data size on ROUGE difference between the fine-tuning and
adapter strategy. We display how much percent FT is better than using adapters. Note that data
points from different tasks (with different shapes and colors) are not strictly comparable.

6.4 Effect of Data Availability on Performance

Our results suggest that fine-tuning generally surpasses adapters under all three settings
(language, domain, and task adaption). In addition, we observe that the amount of train-
ing data affects the performance gap between the two methods. To further validate this
observation, we plot the percentage change in ROUGE performance (between those of
fine-tuning and those of adapters) against the training size (log-scale) and we provide
the visualization in Fig. 4. We use the average number of ROUGE-1/2/L to represent the
performance. From the plot, we can see that percentage change in ROUGE has an obvi-
ous positive relationship with the training data size which means that as the amount
of training data increases, the performance gap between BART-FT and BART-Adapt
increases as well. Looking at the tasks individually, we can see that for language adap-
tion tasks with relatively small amounts of data, this trend is not very notable. The trend
is most salient on domain adaption tasks since we manually controlled the data size for
the experiment for adapting CNN/Daily Mail to XL-Sum.
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7 Conclusions and Future Work

With large PLMs coming to light, we investigate fine-tuning and adapter strategies for
transfer learning in abstractive summarization. We demonstrated that the performance
gap between the two strategies is positively correlated with the availability of training
resources, despite the languages being tested. Further analysis on domain adaptation
and task adaption produces agreeing observations. We conclude that for realistically
large summarization datasets, full fine-tuning will guarantee the best output quality. On
the other hand, when resources are scarce, the advantages of adapters emerge in the
niche market.

Most summarization datasets are web-crawled or machine-translated, resulting in
non-optimal data quality. We plan to perform more qualitative analysis on the model
outputs such as linguistic interpretation and human evaluation. In addition, we only
experimented with fine-tuning and using adapters on mBART and BART for abstractive
summarization, so there is room for research on other large PLMs, as well as other NLP
tasks in the future.

Acknowledgements. We thank the reviewers of the paper for their feedback. Zheng Zhao is
supported by the UKRI Centre for Doctoral Training in Natural Language Processing (grant
EP/S022481/1). Pinzhen Chen is supported by a donation to Kenneth Heafield. This work does
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A Model Configurations

We tuned the hyperparameters using the validation set. We list the hyperparameters in
Table 8, and highlight the selected ones in bold if multiple values are tried out. Instead
of an expensive grid search on all combinations, we searched for the best configurations
one by one. We performed a single run for each experiment.

Table 8.Model and training configurations.

Configuration Value

training toolkit PyTorch [20]

stopping criterion validation ROUGE

learning rate 1e-3, 5e-3, 1e-4 (mBART+Adapt), 5e-4, 1e-5 (mBART-FT), 5e-5

optimizer Adam [12]

beta1, beta2 0.9, 0.999

weight decay 1e-6

loss function cross-entropy

decoding batch size 1

decoding beam size 5

decoding len. penalty 1.0

adapter reduction factor 1, 2, 8, 16

trainable parameters mBART-FT: 610M

mBART-Adapt: 50M
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Abstract. Medical named entity recognition (NER), a fundamental
task of medical information extraction, is crucial for medical knowledge
graph construction, medical question answering, and automatic medi-
cal record analysis, etc. Compared with named entities (NEs) in general
domain, medical named entities are usually more complex and prone
to be nested. To cope with both flat NEs and nested NEs, we propose
a MRC-based approach with multi-task learning and multi-strategies.
NER can be treated as a sequence labeling (SL) task or a span bound-
ary detection (SBD) task. We integrate MRC-CRF model for SL and
MRC-Biaffine model for SBD into the multi-task learning architecture,
and select the more efficient MRC-CRF as the final decoder. To fur-
ther improve the model, we employ multi-strategies, including adaptive
pre-training, adversarial training, and model stacking with cross valida-
tion. Experiments on both nested NER corpus CMeEE and flat NER
corpus CCKS2019 show the effectiveness of the MRC-based model with
multi-task learning and multi-strategies.

Keywords: Medical NER · MRC · Multi-task learning ·
Multi-strategies

1 Introduction

With the fast development of medical digitalization, more and more medical
documents are generated, including electronic medical records, medical reports,
etc. Medical information extraction, including medical named entity recognition
(NER), becomes increasingly important to applications like knowledge graph con-
struction, question answering system, and automatic electronic medical record
analysis. Medical NER is a task to automatically recognize medical named enti-
ties, like body (bod), disease, clinical symptom (sym), medical procedure, medi-
cal equipment, drug, medical examination item, etc., from medical texts. Medical
named entities are usually long, nested and polysemous, which pose great chal-
lenges to medical NER. For example, in Fig. 1, the two “bod” entities “延髓”
(medulla oblongata) and “脊髓” (spinal cord) are nested in the “sym” entity “延
髓和脊髓受损” (damage to the medulla oblongata and spinal cord).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 149–162, 2022.
https://doi.org/10.1007/978-3-031-18315-7_10
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Fig. 1. An example with nested entity

To tackle both flat and nested NER, like [13], we take NER as a machine
reading comprehension (MRC) problem. In addition, from different views, NER
can be treated as a sequence labeling (SL) task or a span boundary detection
(SBD) task. We integrate MRC-CRF model for SL and MRC-Biaffine model
for SBD into the multi-task learning (MTL) architecture. There is no nested
NEs composed of entities of the same type in the datasets, so we select the
more efficient MRC-CRF as the final decoder. To further improve the model,
we employ multi-strategies (MS), including adaptive pre-training, adversarial
training, and model stacking with cross validation. The main contributions of
this paper are as follows:

• We improve MRC-CRF for medical NER with Biaffine through a multi-task
learning architecture, which is a lighter way than traditional ensemble learn-
ing.

• We propose multi-strategies to improve the NER model, including adaptive
pre-training, adversarial training, and model stacking with cross validation.

• Experimental results on both the nested NER corpus CMeEE [20] and the
flat NER corpus CCKS2019 [7] show the effectiveness of the proposed model.

2 Related Work

Just like NER in other application domains, medical NER borrows methods
from NER in general domain. The methods evolve from rule-based methods,
traditional machine learning-based methods, deep learning-based methods, to
the present mainstream pre-training-based methods.

Pre-trained models like BERT [4,12,17], ELMo [11,14,18], etc., have become
a standard module to encode the input texts. To better represent a text, RNN [3],
LSTM [4], GRU [17], CNN [8] and other neural networks are usually employed
after the pre-trained model. Taking the NER as a sequence labeling problem,
CRF [10] is finally used to generate the sequence labels.

For Chinese, characters [14], radicals, strokes [11,16] and glyphs [24] can
provide useful information besides words. Thus such linguistic units are encoded
together with words using LatticeLSTM [22], ELMo [11,14,18] and other net-
works. Domain data can be used to improve medical NER. [15] pre-train a Med-
BERT based on medical texts to boost the performance significantly. [2] integrate
domain dictionary and rules with Bi-LSTM-CRF.
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Multi-task learning is another way to improve the performance. NER model
can be enhanced by parameter sharing with models of other tasks. [3] take NER
and POS tagging as two tasks. [16] take NER on two different datasets as two
tasks. To tackle nested NER problem and encode knowledge from entity types,
NER is formulated as a machine reading comprehension task [13], and two binary
classifiers are used to detect the span of a named entity. To enhance the informa-
tion interaction between the head and tail of an entity, [1] introduce biaffine to
MRC. [25] ensemble sequence labeling and span boundary detection by voting
strategies while [23] ensemble CRF and MRC.

3 The MRC-MTL-MS Model

MRC model extracts answer fragments from paragraphs by a given question.
Suppose X is the input text, for each entity type y, designing a query qy, extract-
ing a subsequence x of type y from X, and we can get the triple (qy, x,X), which
is exactly the (question, answer, context) a MRC model needs. The model only
calculates the loss of context during training, and masks the loss of query and
padding.

Fig. 2. The architecture of the proposed NER model

3.1 Multi-task Learning (MTL)

The overall architecture of the model is shown in Fig. 2. The multi-task learning
architecture consists of the main task of sequence labeling by CRF and the
auxiliary task of span boundary detection by Biaffine. For each entity type y,
the input to the model is context X followed by query qy, which is proved



152 X. Du et al.

experimentally better than reversed concatenating way. The input is encoded by
an adaptive pre-trained model CME-NEZHA, then goes through a Conditional
LayerNorm guided by entity label embedding to further untilize entity type
knowledge, and finally is decoded by CRF and Biaffine respectively.

Sequence Labeling with CRF. Suppose h = (h1, h2, ..., hN ) is the encoded
hidden layer sequence after Conditional LayerNorm, and y = (y1, y2, ..., yN ) is
the tag sequence, as shown in Fig. 2. The score of sequence y is computed as
follows,

s(h, y) =
N∑

n=1

Wn,yn
+

N∑

n=2

Tyn−1,yn
(1)

where W is the score matrix of each tag at each time step and T is the transition
matrix between tags.

The probability of sequence y is calculated by softmax function, where Y (h)
represents all possible tag sequences.

p(y | h) =
es(h,y)

∑
ỹ∈Y (h) es(h,ỹ)

(2)

The maximum likelihood loss function is used for training.

LCRF = log(p(y | h)) (3)

During inference, the predicted tag sequence with the maximum score is
obtained with Viterbi algorithm.

y∗ = arg max
ỹ∈Y (h)

s(h, ỹ) (4)

Span Boundary Detection with Biaffine. As shown in Fig. 2, the hidden
layer sequence after Conditional LayerNorm goes through a bidirectional LSTM
and two seperate nonlinear layers to learn the representation of start and end
of the span. Finally, the score of a span i is calculated by a Biaffine classifier as
follows,

hs
i = MLPstart (hi) (5)

he
i = MLPend (hi) (6)

r(i) = hsT

i Uhe
i + W (hs

i ⊕ he
i ) + b (7)

where U is a N ∗ C ∗ N tensor, W is a 2N ∗ C matrix, b is the bias, N is the
length of the sentence, C is the number of entity categories +1(non-entity).
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We assign span i a NER category yi:

yi = arg max r(i) (8)

The learning objective of our named entity recognizer is to assign a correct
category to each valid span. Hence it is a multi-class classification problem and
we optimise the model with softmax cross-entropy:

p (ic) =
exp (r (ic))∑C
ĉ=1 exp (r (iĉ))

(9)

LBiaffine = −
N∑

i=1

C∑

c=1

yic log p (ic) (10)

The Combined Loss. The final loss function of the model is weighted by the
loss function of CRF and the loss function of Biaffine, as shown below:

L = α∗LCRF + β∗LBiaffine (11)

where α and β are positive real number and their sum equals 1. They can be
learned and updated iteratively with the training and we initialize both of them
as 0.5.

3.2 Multi-strategies (MS)

Three strategies are adopted to enhance the performance, including Adaptive
Pre-training (AP), Adversarial Training (AT) and model stacking with Cross
Validation (CV). In order to reduce distribution differences between the task
data and data used by the pre-trained model, we use CMeEE data for task-
adaptive pre-training [6] based on the pre-trained model NEZHA [19] with
Whole Word Masking (WWM) strategy to get a new domain adaptive pre-
trained model CME-NEZHA. In order to improve the robustness of the model,
we employ adversarial training [9] with Fast Gradient Method (FGM) strategy.
Lastly, 5-fold cross validation is adopted to prevent model overfitting and exploit
advantages of multi-models. Five models are trained and contribute equally to
the final decision.

4 Datasets

Two public datasets are used for experiments, CMeEE for nested NER and
CCKS2019 for flat NER. Statistics of the two datasets are shown in Table 1,
including sizes of the training, validate and test sets. As can be seen, the size of
CMeEE is larger while the average text length of CCKS2019 is longer.

The texts of CMeEE are from textbooks of clinical pediatrics, which contain
9 types of entities, including Body (bod), Disease (dis), Symptom (sym), Medi-
cal procedure (pro), Medical equipment (equ), Drug (dru), Medical examination
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Table 1. Statistics of datasets

Dataset Training set Validation set Test set Average sentence length

CMeEE 15000 5000 3000 >50 characters

CCKS2019 800 200 379 >390 characters

Table 2. Entity statistics of CMeEE and CCKS2019

Entity Type Entity number Percent Average entity length

bod 26589 28% 3.37

dis 24077 26% 5.35

sym 18579 20% 6.70

pro 9610 10% 5.30

dru 6331 7% 4.74

ite 4091 4% 4.37

mic 3019 3% 4.31

equ 1392 1% 4.30

dep 494 1% 2.86

Total 94182 100% 4.91

Anatomy 11520 49% 2.48

Disease 5535 23% 6.98

Drug 2307 10% 3.71

Laboratory 1785 8% 4.00

Image 1317 5% 3.79

Operation 1191 5% 12.85

Total 23655 100% 4.36

item (ite), Department (dep) and microorganism (mic). The texts of CCKS2019
are from electronic medical records, which contain 6 types of entities, including
Disease and diagnosis, Image examination, Laboratory examination, Operation,
Drug and Anatomy. As show in Table 2, the distributions of entities are imbal-
anced in both corpora. The top 3 dominant types of entities in CMeEE are
bod, dis, and sym, while the top 3 dominant types of entities in CCKS2019 are
Anatomy, Disease and Drug. On average, entities of sym and Operation are the
longest in the two corpora respectively.

Table 3. Nested entity statistics of CMeEE

Flat entity Nested entity Percent of nested Percent of nested in sym

84119 10063 10.68% 30.21%

As shown in Table 3, 10.68% of all entities in CMeEE are nested entities and
30.21% entities of sym are nested entities. Entities nested in sym entities are
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Table 4. Entities nested in sym

Entity type Number Percent Example of nested entity

bod 4706 84.84%
{无色胶冻样 [痰]bod}sym

{Colorless jelly like [sputum]bod}sym

ite 486 8.76%
{[胸片]ite 异常}sym

{[Chest radiograph]ite Abnormal}sym

dis 229 4.13%
{逐步发生全身弛缓性 [瘫痪]dis}sym

{Progressive generalized flaccid [paralysis]dis}sym

pro 59 1.06%
{[肺部听诊]pro 呼吸音减弱}sym

{[Lung auscultation]pro respiratory sound is reduced}sym

dru 28 0.50%
{[维生素A]dru 摄入不足}sym

{[vitamin A]dru Insufficient intake}sym

mic 26 0.47%
{气道分泌物[细菌]mic 培养阳性}sym

{Airway secretion [bacteria]mic culture positive}sym

equ 13 0.23%
{长期[呼吸机]equ 依赖}sym

{Long-term [respirator]equ dependence}sym

shown Table 4. All entity types except dep have entities nested in sym, where
bod is the dominant type.

5 Experiments

5.1 Query Generation

As shown in Table 5, for CMeEE, we put example entities into the query, while
for CCKS2019, we take the description of the entity type as the query.

5.2 Experimental Settings

We retrain the pre-trained model NEZHA based on the CMeEE corpus by 100
epochs. Then we fine-tune the model for NER by 4 epochs. We set the batch
size to 16, dropout to 0.1, NEZHA learning rate to 2.5e-5, other learning rate
to 2.5e-3, and maximum text length to 256. NVIDIA GTX2080Ti is used to run
the program. Micro average F1 is chosen as the evaluation metric.

5.3 Comparison with Previous Models

Baselines on CMeEE Corpus. (1) MacBERT-large and Human are from
[20]. MacBERT is variant of BERT, taking a MLM (Masked Language Model) as
correction strategy. Human denotes the annotating result of human. (2) BERT-
CRF, BERT-Biaffine and RICON are from [5]. BERT-CRF solves sequence
labeling with CRF, BERT-Biaffine detects span boundary with Biaffine, and
RICON learns regularity inside entities. (3) Lattice-LSTM, Lattice-LSTM+Med-
BERT, FLAT-Lattice, Medical-NER, and Medical NER+Med-BERT are from
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Table 5. Query for different entity types in CMeEE and CCKS2019

Entity type Query

bod 在文本中找出身体部位，例如细胞、皮肤、抗体

Find body parts in the text, for example, cells, skin and antibodies

dep 在文本中找出科室，例如科,室

Find departments in the text, for example, department and room

dis 在文本中找出疾病，例如癌症、病变、炎症、增生、肿瘤

Find diseases in the text, for example, cancer and pathological changes

dru 在文本中找出药物，例如胶囊、疫苗、剂

Find drugs in the text, for example, capsule, vaccine and agent

equ 在文本中找出医疗设备，例如装置、器、导管

Find medical devices in the text, for example, device and conduit

ite 在文本中找出医学检验项目，例如尿常规、血常规

Find medical test items in the text, for example, urine routine

and blood routine

mic 在文本中找出微生物，例如病毒、病原体、抗原、核糖

Find micro organisms in the text, for example, virus and pathogen

pro 在文本中找出医疗程序，例如心电图、病理切片、检测

Find medical procedures in the text, for example, electrocardiogram

and pathological section

sym 在文本中找出临床表现，例如疼痛、痉挛、异常

Find clinical manifestations in the text, for example, pain and spasm

Anatomy 找出疾病、症状和体征发生的人体解剖学部位

Find where in the human anatomy the disease, symptoms and signs

occur

Disease 找出医学上定义的疾病和医生在临床工作中对病因、病生理、

分型分期等所作的判断

Find medically defined diseases and physicians’ judgments regarding

etiology, pathophysiology, staging, etc., in clinical work-up

Drug 找出用于疾病治疗的具体化学物质

Find specific chemicals for disease treatment

Image 找出影像检查（X线、CT、MR、PETCT等）+造影+超声+

心电图

Find imaging examinations (X-ray, CT, Mr, PETCT, etc.) +

contrast + ultrasound + ECG

Laboratory 找出在实验室进行的物理或化学检查

Find physical or chemical examinations performed in the laboratory

Operation 找出医生在患者身体局部进行的切除、缝合等治疗，是外科的主要

治疗方法

Find the main treatment in surgery that doctors

perform locally on the patient’s body, such as excision, suture, etc.
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[15]. Lattice-LSTM, Lattice-LSTM+Med-BERT and FLAT-Lattice incorporate
lexicon to decide entity boundary. Medical NER and Medical NER+Med-BERT
introduce big dictionary and pre-trained domain model.

Table 6. Comparison with previous models on CMeEE

Model Precision/% Recall/% F1 score/%

MacBERT-large [20] – – 62.40

Human [20] – – 67.00

BERT-CRF [5] 58.34 64.08 61.07

BERT-Biaffine [5] 64.17 61.29 62.29

RICON [5] 66.25 64.89 65.57

Lattice-LSTM [15] 57.10 43.60 49.44

Lattice-LSTM+Med-BERT [15] 56.84 47.58 51.80

FLAT-Lattice [15] 66.90 70.10 68.46

Medical NER [15] 66.41 70.73 68.50

Medical NER+Med-BERT [15] 67.99 70.81 69.37

MRC-MTL-MS(Ours) 67.21 71.89 69.47

Baselines on CCKS2019 Corpus. (1)BERT-BiLSTM-CRF is from [4], tak-
ing CRF for sequence labeling. (2)BBC+Lexicon+Glyph is from [24], introduc-
ing lexicon and glyph information. (3) WB-Transformer+SA is from [21], taking
self-attention for semantic enrichment. (4) ELMo-lattice-LSTM-CRF is from
[14], fusing ELMo and lexicon to improve sequence labeling performance. (5)
ACNN is from [8], composed of hierarchical CNN and attention mechanism. (6)
FS-TL is from [11], fusing stroke information with transfer learning.

Table 7. Comparison with previous models on CCKS2019

Model Precision/% Recall/% F1 score/%

BERT-BiLSTM-CRF [4] 73.84 75.31 74.53

BBC+Lexicon+Glyph [24] 85.17 84.13 84.64

WB-Transformer+SA [21] – – 84.98

ACNN [8] 83.07 87.29 85.13

FS-TL [11] – – 85.16

ELMo-lattice-LSTM-CRF [14] 84.69 85.35 85.02

MRC-MTL-MS(Ours) 85.29 85.32 85.31

As shown in Table 6 and 7, our MRC-MTL-MS model outperforms all com-
parison models on both the nested NER corpus CMeEE and the flat NER corpus
CCKS2019.
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5.4 Ablation Experiments

The ablation experiments are shown in Table 8. MRC-Base is the same with [13],
pointer network is used to detect span boundary. MRC-CRF only uses CRF for
decoding. MRC-Biaffine only uses Biaffine for decoding. MRC-MTL integrates
CRF and Biaffine with multi-task learning and use CRF as the final decoder. We
can see that multi-task learning model outperforms single-task models. Adaptive
Pre-training (AP), Adversarial Training (AT), and model stacking with Cross
Validation (CV) strategies further improve the performance. Among which, CV
contributes the most. Compared with MRC-Base, the improvement of F1 score
on the nested NER corpus is 2.56%, which is higher than that of 1.63% on the
flat NER corpus.

Table 8. Ablation experiments on CMeEE and CCKS2019

Model CMeEE/% CCKS2019/%

Precision Recall F1 score Precision Recall F1 score

MRC-Base 67.98 65.87 66.91 82.63 84.76 83.68

MRC-CRF 67.17 67.25 67.21 84.40 84.91 84.65

MRC-Biaffine 70.71 64.09 67.24 83.22 83.77 83.49

MRC-MTL 64.58 71.76 67.98 84.42 84.97 84.70

+AP 66.28 70.34 68.25 84.23 85.24 84.73

+AP+AT 68.04 69.16 68.59 84.20 85.39 84.79

+AP+AT+CV 67.21 71.89 69.47 85.29 85.32 85.31

5.5 Experiments on Different Types of NEs

Experimental results of different types of NEs on the two corpora are shown
in Table 9 respectively. As can be seen, on CMeEE, the entity type dru has
the highest F1 score 81.17%, while the entity type ite has the lowest F1 score.
The averagely longest and most nested entity type sym also has low F1 score
and needs further study. The overall F1 scores on CCKS2019 are high and the
entity type Drug also has the highest F1 score 95.25%, indicating that Drug
entities are easier to recognize. For those entity types with low scores, like ite
and Laboratory, constructing related lexicons maybe useful for improvement.
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Table 9. Results of different types of NEs on CMeEE and CCKS2019

Entity type Precision/% Recall/% F1 score/%

bod 62.92 71.33 66.86

dis 76.78 80.69 78.69

dru 75.38 87.93 81.17

dep 54.24 88.89 67.37

equ 74.48 81.20 77.70

ite 51.06 49.23 50.13

mic 76.64 82.16 79.30

pro 61.91 71.50 66.36

sym 58.49 54.68 56.52

Mac-Avg 65.77 74.18 69.72

Anatomy 85.25 87.07 86.15

Disease 85.63 85.56 85.60

Drug 95.45 95.05 95.25

Image 86.65 87.64 87.14

Laboratory 74.54 67.97 71.10

Operation 85.91 79.01 82.32

Mac-Avg 85.57 83.72 84.63

5.6 Case Study

Table 10 gives two examples from CMeEE. In the first example, the MRC-Base
model does not correctly detect the boundary of the entity “郎飞结上的补体被激
活” (Complement on Ranvier knot is activated), while the MRC-MTL-MS model
correctly recognizes the boundary and the entity type. In the second example,
the MRC-Base model correctly detects the boundary of the entity “高血压”
(hypertension), but predicts a wrong label. The MRC-MTL-MS model correctly
recognizes the polysemous entity, indicating its superiority in disambiguating
polysemous entities.
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Table 10. Two cases with labels BIES

Sentence AMAN的一个早期表现就是郎飞结上的补体被激活。

An early manifestation of AMAN is that complement on

Ranvier knot is activated.

Entity 郎飞结上的补体被激活

Complement on Ranvier knot is activated.

Golden Labels B-SYM I-SYM I-SYM I-SYM I-SYM I-SYM I-SYM I-SYM

I-SYM E-SYM

MRC B-BOD I-BOD E-BOD O O O O O O O

MRC-MTL-MS B-SYM I-SYM I-SYM I-SYM I-SYM I-SYM I-SYM I-SYM

I-SYM E-SYM

Sentence 患儿情况好，只 1 例发生慢性排异及高血压。

The condition of the child is good, and only one develops

chronic rejection and hypertension.

Entity 高血压

hypertension

Golden Labels B-SYM I-SYM E-SYM

MRC B-DIS I-DIS E-DIS

MRC-MTL-MS B-SYM I-SYM I-SYM

6 Conclusion

This paper proposes a MRC-based multi-task model for Chinese medical NER,
enhancing MRC-CRF with Biaffine to recognize the named entities more accu-
rately. To further improve the model, we introduce multi-strategies, including
adaptive pre-training, adversarial training and model stacking with cross valida-
tion. Our model can cope with both flat NER and nested NER. Experiments on
the nested NER corpus CMeEE and the flat NER corpus CCKS2019 show the
effectiveness of our model. In the future, we will incorporate domain knowledge
to improve the recognition performance on hard named entities.
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Abstract. Named entity recognition and relation extraction are core sub-tasks of
relational triple extraction. Recent studies have used parameter sharing or joint
decoding to create interaction between these two tasks. However, ensuring the
specificity of task-specific traits while the two tasks interact properly is a huge
difficulty. We propose a multi-gate encoder that models bidirectional task inter-
action while keeping sufficient feature specificity based on gating mechanism in
this paper. Precisely, we design two types of independent gates: task gates to
generate task-specific features and interaction gates to generate instructive fea-
tures to guide the opposite task. Our experiments show that our method increases
the state-of-the-art (SOTA) relation F1 scores on ACE04, ACE05 and SciERC
datasets to 63.8% (+1.3%), 68.2% (+1.4%), 39.4% (+1.0%), respectively, with
higher inference speed over previous SOTA model.

Keywords: Joint entity and relation extraction · Gating mechanism ·
Transformer

1 Introduction

Extracting relational facts from unstructured texts is a fundamental task in information
extraction. This task can be decomposed into two sub-tasks: Named Entity Recognition
(NER) [11], which aims to recognize the boundaries and types of entities; and Relation
Extraction (RE) [35], which aims to extract semantic relations between entities. The
extracted relational triples in the form of (subject, relation, object) are basic elements
of large-scale knowledge graphs [18].

Traditional approaches perform NER and RE in a pipelined fashion [5,13,40].
They first extract all the entities in a given text, and then identify pairwise relations
between the extracted entities. However, because the two sub-tasks are modeled inde-
pendently, pipelined methods are vulnerable to error propagation issue. Since the inter-
action between NER and RE is neglected, the errors accumulated in the previous NER
stage cannot be corrected in the subsequent RE stage. To resolve this issue, some joint
models have been proposed to model these two tasks simultaneously. Early feature-
based joint models [23,34] rely on complicated feature engineering to build interaction
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between entities and relations. More recently, neural joint models have attracted increas-
ing research interest and have demonstrated promising performance on joint entity and
relation extraction.

In existing neural joint models, there are mainly two ways to build the interac-
tion between NER and RE: parameter sharing and joint decoding. In parameter sharing
methods [2,8,36], NERmodel and RE model are built on top of a shared encoding layer
to achieve joint learning. However, approaches based on parameter sharing implicitly
rather than explicitly model the inter-task interaction, leading to insufficient excavation
of the inherent association between the two tasks. Moreover, these two tasks focus on
different contextual information [33,39], but methods of sharing representations cannot
provide task-specific features with enough specificity for the two tasks. In terms of error
propagation, parameter sharing methods alleviate the error propagation between tasks,
but to a limited extent, because these models still perform pipelined decoding. Another
family of approaches adopt unified tagging framework in the form of sequences [38],
tables [24,37], or graphs [12,31] to integrate the information of entities and relations as
a whole and perform joint decoding to extract relational triples. Although these methods
enhance the inter-task interaction, the specificity of task features is not well considered
since the entities and relations still share contextual representations in essence. More-
over, all these joint decoding methods require complex joint decoding algorithms, and
it is challenging to balance the accuracy of joint decoding and the abundance of task-
specific features.

Accordingly, the main challenge of joint entity and relation extraction is to con-
struct proper interaction between NER and RE while ensuring the specificity of task-
specific features. Wang and Lu et al. [27] adopt two types of representations to generate
task-specific representations, sequence representations for NER and table representa-
tions for RE, separately. These two types of representations interact with each other
to model inter-task interaction. Yan et al. [32] perform neuron partition in an autore-
gressive manner to generate task-specific features jointly in order to build inter-task
interaction. They combine the task-specific features and global features as the final
input to the task modules. Inspired by Yan et al. [32]’s work, we adopt the task mod-
ules they used that model each relation separately with tables [23], and we propose a
simple but effective feature encoding approach for joint entity and relation extraction,
achieving excellent results while being less computationally intensive. We will detail
the differences and our advantages in Sect. 3.5.

In this work, we propose aMulti-Gate Encoder (MGE) that control the flow of fea-
ture information based on gating mechanism, so as to filter out undesired information
and retain desired information. MGE has two types of gates: task gates and interac-
tion gates. Task gates are used to generate task-specific features, and interaction gates
control how much information flows out to guide the opposite task. The output of inter-
action gate is combined with the opposite task-specific features to generate the input of
corresponding task module, resulting in a bidirectional interaction between NER and
RE while maintaining sufficient specificity of task-specific features.

The main contributions of this work are summarized below:

1. Amulti-gate encoder for joint entity and relation extraction is proposed, which effec-
tively promotes interaction between NER and RE while ensuring the specificity of
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task features. Experimental results show that our method establishes the new state-
of-the-art on three standard benchmarks, namely ACE04, ACE05, and SciERC.

2. We conduct extensive analyses to investigate the superiority of our model and vali-
date the effectiveness of each component of our model.

3. The effect of relation information on entity recognition is examined. Our addi-
tional experiments suggest that relation information contributes to predicting enti-
ties, which helps clarify the controversy on the effect of relation signals.

2 Related Work

The task of extracting relational triples from plain text can be decomposed into two
sub-task: Named Entity Recognition and Relation Extraction. The two tasks can be
performed in a pipelined manner [5,13,33,39] or in a joint manner [23,27,32,38].

Traditional pipelined methods [5,13,40] firstly train a model to extract entities and
then train another model to classify the relation type between subject and object for
each entity pair. Recent pipelined approaches [33,39] still follow this pattern and adopt
marker-based span representations to learn different contextual representations between
entities and relations, and between entity pairs, which sheds some light on the impor-
tance of feature specificity. Although Zhong and Chen et al. [39] and Ye et al. [33]
achieve better performance than previous pipelined methods and some joint methods,
they still run the risk of error propagation and do not adequately account for interactions
between tasks. To ease these issues, some joint models that extract entities and relations
jointly has been proposed.

Joint entity and relation extraction is a typical multi-task scenario, and how to han-
dle the interaction between tasks is a frequently discussed topic. Early joint models
[23,34] rely on feature engineering to build task interaction. More recently, many neural
joint models have been proposed and show promising performance. Miwa and Bansal
et al. [22] builds a sequence tagging model for NER and a dependency tree model for
RE separately on top of a shared LSTM layer and performs joint learning, achieving
task interaction through parameter sharing. Zeng et al. [36] uses sequence-to-sequence
learning framework with copy mechanism to jointly extract entities and relations. Bek-
oulis et al. [3] builds a CRF layer for NER and a sigmoid layer for RE on a shared LSTM
layer. Eberts and Ulges et al. [10] proposes a span-based joint model for entity and rela-
tion extraction. They performs span classification and span filtering to extract entity
spans and then performs relation classification based on the contextual span represen-
tations from BERT [7] encoder. All these approaches construct the interaction between
NER and RE through parameter sharing. Another class of methods adopts joint decod-
ing to fuse the two tasks together. Li and Ji et al. [16] uses structured perceptron with
beam search to extract entities and relations simultaneously. Wang et al. [28] proposes
a transition system to convert the joint task into a directed graph. Wang et al. [30] intro-
duces a novel handshaking tagging scheme to formulate joint extraction as a token pair
linking problem. Zhang et al. [37] and Ren et al. [24] convert the task into a table-filling
problem.

In addition to building interaction between tasks, another important issue is the
specificity of task features. As recent studies [33,39] have shown, generating specific
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contextual features for different tasks can achieve better results on the overall task than
sharing input features. Zhong and Chen et al. [39] and Ye et al. [33] both use a pre-
trained language model (e.g., BERT) for NER and another for RE to obtain different
contextual representations for specific task. However, fine-tuning distinct pre-trained
encoders for the two task separately is computationally expensive. In our work, we
adopts gating mechanism to balance the flow of feature information, taking into account
both the interaction between tasks and the specificity of task features.

3 Method

In this section, we first formally define the problem of joint entity and relation extraction
and then detail the structure of our model. Finally, we discuss how our model differs
from the approach we follow and explain why our method performs better.

3.1 Problem Definition

The problem of joint entity and relation extraction can be decomposed into two sub-
tasks: NER and RE. Let E denotes the set of predefined entity types and R denotes
the set of predefined relation types. Given a sentence containing N words, X =
{x1, x2, . . . , xN}, the goal of NER is to extract an entity type eij ∈ E for each span
sij ∈ S that starts with xi and ends with xj , where S is the set of all the possible
spans in X . For RE, the goal is to extract a relation type ri1i2 ∈ R for each span
pair whose start words are xi1 and xi2 respectively. Combining the results of NER
and RE, we get the final output of this problem Yr = {(ei1j1 , ri1i2 , ei2j2)}, where
ei1j1 , ei2j2 ∈ E , ri1i2 ∈ R.

3.2 Multi-gate Encoder

We adopt BERT [7] to encode the contextual information of input sentences. As shown
in Fig. 1, our proposed MGE employs four gates to control the flow of feature infor-
mation based on gating mechanism. The two task gates are designed to generate task-
specific features for NER and RE, while the two interaction gates aim to generate inter-
action features that have a positive effect on the opposite task. The task-specific features
and interaction features are combined to form the input of task modules, carrying out
bidirectional task interaction through feature exchange.

Let Hb ∈ R
N×d denotes the contextual feature matrix of sentence X extracted

by BERT encoder, where d is the hidden size of BERT layer. In order to preliminarily
build the specificity between entity recognition features and relation extraction features,
we generate candidate entity features Hc

e and candidate relation features Hc
r based on

BERT output representations as follows:

Hc
e = tanh (HbWe + be)

Hc
r = tanh (HbWr + br) ,

(1)

where W(·) ∈ R
d×h and b(·) ∈ R

h denote trainable weights and bias and h is the hidden
size in MGE. tanh (·) means tanh activation function. The candidate features will be
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Fig. 1. The architecture of our proposed MGE. There are two types of gates in the encoder: task
gates and interaction gates. Hc

e and Hc
r denote candidate entity features and candidate relation

features respectively. He task and Hr task denote task-specific features generated by task gates.
He inter and Hr inter denote interaction features generated by interaction gates to guide the
opposite task.Hner andHre are the final input features to NER module and RE module.

input to the task gates and interaction gates of corresponding task for further feature
filtering to generate task-specific features and interaction features.

The task gates decide what information in the candidate features is contributing to
the corresponding specific task, which is implemented by a sigmoid layer. The sigmoid
layer produces values in the range of zero to one, indicating how much information is
to be transmitted. A value of zero means no information is allowed to pass, whereas a
value of one means all the information is allowed to pass. We calculate entity task gate
Ge task and relation task gate Gr task as below:

Ge task = σ (HbWe task + be task)
Gr task = σ (HbWr task + br task) ,

(2)

where σ (·) represents sigmoid activation function. W(·) ∈ R
d×h and b(·) ∈ R

h denote
weights and bias. The entity task gate Ge task and relation task gate Gr task work
independently and are specialized in filtering information useful for specific task in
candidate features to obtain task-specific features for entity recognition and relation
extraction respectively. We calculate the Hadamard (element-wise) product between
task gates and candidate features to generate task-specific features for NER and RE:

He task = Ge task � Hc
e

Hr task = Gr task � Hc
r ,

(3)
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where � denotes Hadamard product operation. He task and Hr task represent entity
task-specific features and relation task-specific features respectively.

Similarly, the interaction gates decide what information in entity candidate features
Hc

e is helpful for guiding relation extraction and what information in Hc
r is helpful

for guiding entity recognition. This is also implemented through sigmoid activation
function:

Ge inter = σ (HbWe inter + be inter)
Gr inter = σ (HbWr inter + br inter) ,

(4)

where Ge inter denotes entity interaction gate and Gr inter denotes relation interaction
gate. W(·) ∈ R

d×h and b(·) ∈ R
h denote weights and bias. These two interaction gates

are then applied to candidate features to generate interaction features:

He inter = Ge inter � Hc
e

Hr inter = Gr inter � Hc
r ,

(5)

where He inter denotes entity interaction features used to guide RE and Hr inter

denotes relation interaction features used to guide NER.
Finally, we perform feature exchange based on the task-specific features and inter-

action features to achieve bidirectional interaction between NER and RE. Specifically,
we concatenate entity task-specific features He task and relation interaction features
Hr inter, and relation task-specific features Hr task is concatenated with entity interac-
tion features He inter:

Hner = He task ⊕ Hr inter

Hre = Hr task ⊕ He inter,
(6)

where ⊕ means concatenation operation. Hner ∈ R
N×2h and Hre ∈ R

N×2h are the
final features to be input to NER and RE task modules respectively. Through exchang-
ing features that are designed to guide the opposite task and combining task-specific
features, Hner and Hre balance the task interaction and feature specificity of NER and
RE.

3.3 Table-Filling Modules

Following Yan et al. [32], we adopt table-filling framework to extract entities and rela-
tions, which treats both NER and RE as table filling problems. For NER, the goal is to
predict all the entity spans and corresponding entity types. Specifically, we construct
a N × N type-specific table for each entity type k ∈ E , whose element at row i and
column j represents the probability of span sij ∈ S belonging to type k. We firstly
concatenate the representations of every two tokens based on Hner and connect a fully-
connected layer to reduce the hidden size. Then we employ layer normalization [1] and
ELU activation [6] to obtain table representations of spans. Formally, for span sij that
starts with xi and ends with xj , we compute the table representation T i,j

ner ∈ R
h as

follows:
T i,j
ner = ELU(LayerNorm([Hi

ner;H
j
ner]W

h
e + bhe )), (7)
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where Hi
ner ∈ R

2h and Hj
ner ∈ R

2h denote the vectors corresponding to words xi

and xj in entity features Hner ∈ R
N×2h that containing both entity task-specific infor-

mation and relation interaction information. Wh
e ∈ R

4h×h and bhe ∈ R
h are trainable

parameters. To predict the probability of span sij belonging to entity type k, we project
the hidden size to |E| with a fully-connected layer followed by a sigmoid activation
function:

p(eij = k) = σ(T i,j
nerW

tag
e + btage ),∀k ∈ E , (8)

where W tag
e ∈ R

h×|E| and btage ∈ R
|E| are trainable parameters and |E| represents the

number of predefined entity types.
The goal of RE table-filling module is to predict the start word of each entity and

classify the relations between them. The structure of RE module is formally analogous
to the NER module. Similar to NER, we construct a N × N type-specific table for
each relation type l ∈ R. For the table corresponding to relation l, the element at row
i and column j represents the probability that the i-th word xi and the j-th word xj in
a sentence are respectively the start words of subject entity and object entity of relation
type l. For xi and xj , we compute the table representations T i,j

re ∈ R
h as follows:

T i,j
re = ELU(LayerNorm([Hi

re;H
j
re]W

h
r + bhr )), (9)

where Hi
re ∈ R

2h and Hj
re ∈ R

2h denote the vectors corresponding to words xi and
xj in features Hre ∈ R

N×2h that containing both relation task-specific information and
entity interaction information. Wh

r ∈ R
4h×h and bhr ∈ R

h are trainable parameters.
The probability that xi and xj are the start words of the subject and object of relation
type l is calculated as follows:

p(rij = l) = σ(T i,j
re W tag

r + btagr ),∀l ∈ R, (10)

where W tag
r ∈ R

h×|R| and btagr ∈ R
|R| are trainable parameters and |R| represents the

number of predefined relation types. We obtain the prediction results of NER module
and RE module under the following conditions:

p(ei1j1 = k1) ≥ 0.5; p(ri1i2 = l) ≥ 0.5; p(ei2j2 = k2) ≥ 0.5 (11)

where k1, k2 ∈ E , l ∈ R. For a fair comparison, the hyper-parameter threshold is set to
be 0.5 without further fine-tuning as in previous works.

Combining the prediction results of NER and RE task modules, we can get the final
relational triples in a given sentence:

Yr = {(ei1j1 , ri1i2 , ei2j2)}, ei1j1 , ei2j2 ∈ E , ri1i2 ∈ R, (12)

where ei1j1 and ei2j2 are entity spans predicted by NER task module, and ri1i2 denotes
the relation between head-only entities predicted by RE task module.

3.4 Loss Function

During training, we adopt binary cross entropy loss for both NER and RE task modules.
Given a sentence containingN words, we compute the NER loss and RE loss as follows:
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LNER = −
N∑

i=1

N∑

j=i

∑

k∈E
p̂(eij = k) log p(eij = k) + (1− p̂(eij = k)) log (1− p(eij = k))

LRE = −
N∑

i=1

N∑

j=1

∑

l∈R
p̂(rij = l) log p(rij = l) + (1− p̂(rij = l)) log (1− p(rij = l)),

(13)

where p̂(eij = k) and p̂(rij = l) represent ground truth labels. p(eij = k) and p(rij =
l) are the probability predicted by NER and RE modules. The final training goal is to
minimize the sum of these two losses:

L = LNER + LRE. (14)

3.5 Differences from PFN

Our method differs from PFN [32] in the following ways: (1) We generate interac-
tion features using distinct interaction gates, which are independent of the process of
generating task-specific features. (2) All feature operations in MGE are performed in a
non-autoregressive manner, i.e., all tokens in the sentence are processed in a single pass,
resulting in increased efficiency. As a result, our method is simpler while still ensuring
proper NER-RE interaction. Furthermore, as demonstrated in Sect. 4, our model outper-
forms PFN on three public datasets and achieves faster inference speed while employing
the same task modules and pre-trained encoders.

4 Experiments

4.1 Dataset

We evaluate our model on three popular English relation extraction datasets: ACE05
[26], ACE04 [9] and SciERC [19]. The ACE05 and ACE04 datasets are collected from
various domains, such as news articles and online forums. Following Luan et al. [20],
we split ACE04 into 5 folds and ACE05 into 10051 sentences for training, 2424 sen-
tences for validation, and 2050 sentences for test1. And we follow Yan et al. [32] to
construct the development set of ACE04 with 15% of the training set.

The SciERC dataset is collected from 500 AI paper abstracts, and includes annota-
tions for scientific entities, their relations, and coreference clusters. It consists six pre-
defined scientific entity types and seven predefined relation types. In our experiments,
we only use the annotation information of entities and relations. We download the pro-
cessed dataset from the project website2 of Luan et al. [19], including 1861 sentences
for training, 275 sentences for validation and 551 sentences for test. Table 1 shows the
statistics of ACE04, ACE05 and SciERC datasets.

1 We process the datasets with scripts provided by Luan et al. [20]: https://github.com/luanyi/
DyGIE/tree/master/preprocessing.

2 http://nlp.cs.washington.edu/sciIE/.

https://github.com/luanyi/DyGIE/tree/master/preprocessing
https://github.com/luanyi/DyGIE/tree/master/preprocessing
http://nlp.cs.washington.edu/sciIE/
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Table 1. Statistics of datasets. |E| and |R| are numbers of entity and relation types.

Dataset |E| |R| #Entities #Relations #Sentences

Train Dev Test

ACE05 7 6 38,287 7,070 10,051 2,424 2,050

ACE04 7 6 22,708 4,084 8, 683 (5-fold)

SciERC 6 7 8,094 4,684 1,861 275 551

4.2 Evaluation

Following standard evaluation protocol, we use micro F1 score as an evaluation for both
NER and RE. For NER task, an entity is considered as correct if its boundary and type
are both predicted correctly. For RE task, a relational triple is correct only if its relation
type and the boundaries and types of entities are correct.

4.3 Implementation Details

For fair comparison, we use albert-xxlarge-v1 [15] as the base encoder for ACE04 and
ACE05. And for SciERC, we use scibert-scivocab-uncased [4] as the base encoder.
Regarding the use of cross-sentence context [20,21], that is, to extend each sentence by
its context for better contextual representations, we don’t adopt this experimental set-
ting considering the fairness of experimental comparisons. Zhong and Chen et al. [39]
extend each sentence to a fixed context window size of 300 words for entity model and
100 words for relation model. Ye et al. [33] set the context window size to be 512 words
for entity model and 256/384 words for relation model. Although cross-sentence con-
text may further enhance the performance of entity recognition and relation extraction,
if the research focus is not on the cross-sentence context, the different cross-sentence
context lengths will greatly affect the experimental results, making it difficult to con-
duct fair comparisons. All our experiments are carried out in single-sentence setting and
we compare with the experimental results of other baselines under the single-sentence
setting.

Our model is implemented with PyTorch and we train our models with Adam opti-
mizer of a linear scheduler with a warmup ratio of 0.1. For all the experiments, the
learning rate and training epoch are set to be 2e−5 and 100 respectively. We set the
batch size to be 4 for SciERC and 16 for ACE04 and ACE05. Following previous work
[32], the max length of input sentence is set to be 128. All the models are trained with
a single NVIDIA Titan RTX GPU. We select the model with the best average F1 score
of NER and RE on the development set, and report the average F1 of 5 runs on the test
set.

4.4 Baselines

We compare our model with the following baselines: (1) BiLSTM [14,22]: these mod-
els perform NER and RE based on shared Bi-directional LSTMs. Miwa and Bansal
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Table 2. Overall F1 scores on the test set of ACE04, ACE05, and SciERC. Results of PURE are
reported in single-sentence setting for fair comparison.

Model Encoder ACE05 ACE04 SciERC

NER RE NER RE NER RE

SPTree [22] LSTM 83.4 55.6 81.8 48.4 - -

Katiyar and Cardie [14] LSTM 82.6 53.6 79.6 45.7 - -

Multi-turn QA [17] BERT 84.8 60.2 83.6 49.4 - -

Table-Sequence [27] ALBERT 89.5 64.3 88.6 59.6 - -

SPE [29] SciBERT - - - - 68.0 34.6

PURE [39] ALBERT 89.7 65.6 88.8 60.2 - -

SciBERT - - - - 66.6 35.6

PFN [32] ALBERT 89.0 66.8 89.3 62.5 - -

SciBERT - - - - 66.8 38.4

MGE (Ours) ALBERT 89.7 68.2 89.3 63.8 - -

SciBERT - - - - 68.4 39.4

et al. [22] treats entity recognition as a sequence tagging task and represents the rela-
tions between entities in dependency tree. Katiyar and Cardie et al. [14] formulates both
entity recognition and relation detection as sequence tagging tasks. (2)Multi-turn QA
[17]: it converts the task into a multi-turn question answering task: each entity type
and relation type has its corresponding pre-designed question template, and entities and
relations are extracted by answering template questions with standard machine read-
ing comprehension (MRC) [25] framework. (3) Table-Sequence [27]: this work uses a
sequence encoder and a table encoder to learn task-specific representations for NER and
RE separately, and models task interaction through combining these two types of repre-
sentations. (4) SPE [29]: this method proposes a span encoder and span pair encoder to
add intra-span and inter-span information to the pre-trained model for entity and relation
extraction task. (5) PURE [39]: this work builds two independent encoders for NER
and RE separately and performs entity relation extraction in a pipelined fashion. PURE
experimentally validates the importance of learning different contextual representations
for entities and relations separately. (6) PFN [32]: this work proposes a partition filter
network to generate task-specific features and shared features of the two tasks, and then
combining global features to extract entities and relations with table-filling framework.

Among these baselines, the two BiLSTM based methods build task interaction
through parameter sharing, Multi-turn QA is a paradigm shift based method, PURE is
a pipelined method, and Table-Sequence, SPE and PFN are methods based on multiple
representations interaction.

4.5 Main Results

Table 2 reports the results of our approach MGE compared with other baselines on
ACE05, ACE04 and SciERC. As is shown, MGE achieves the best results in terms of
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F1 score against all the comparison baselines. For NER, MGE achieves similar perfor-
mance to PURE [39] on ACE05 but surpasses PURE by an absolute entity F1 of +0.5%,
+1.8% on ACE04 and SciERC. And for RE, our method obtains a substantially +2.6%,
+3.6%, +3.8% absolute relation F1 improvement over PURE on ACE05, ACE04, and
SciERC respectively. This demonstrates the superiority of the bidirectional task inter-
action in our model compared to the unidirectional interaction in PURE.

In comparison to the previous state-of-the-art model PFN [32], we can see that
our method achieves a similar entity F1 to PFN on ACE04, but an absolute relation
F1 improvement of +1.3%. This suggests that, given the same NER performance, our
method can obtain a better RE performance, implying that the entity knowledge in our
method more effectively leads the RE task. Furthermore, on ACE05, MGE surpasses
PFN by an absolute F1 improvement of +0.7% and +1.4% in NER and RE, respectively.
On SciERC, we get a 1.6% higher entity F1 and a 1.0% higher relation F1 compared
to PFN. Note that we use the same pre-trained encoders and task modules as PFN, and
these improvements demonstrate the effectiveness of our proposed multi-gate encoder.

4.6 Inference Speed

As described in Sect. 3.5, our method employs a non-autoregressive way for feature
encoding, which is simpler and faster than the autoregressive approach in PFN. In order
to experimentally compare the model efficiency, we conduct experiments to evaluate
these two models’ inference speed on the test set of ACE05 and SciERC datasets. We
perform inference experiments on a single NVIDIA Titan V GPU with a batch size
of 32.

Table 3. We compare our MGE model with PFN model in both relation F1 and inference speed.
We use scibert− scivocab− uncased for SciERC and albert− xxlarge− v1/bert− base−
cased for ACE05. † marks the inference speed on ACE05 when using bert − base − cased
encoder.

Model SciERC ACE05

RE (F1) Speed (sent/s) RE (F1) Speed (sent/s)

PFN 38.4 342.2 66.8/60.8† 34.2/387.2†

MGE (Ours) 39.4 479.2 68.2/62.0† 36.0/567.6†

Table 3 shows the relation F1 scores and the inference speed of PFN and MGE. We
use scibert−scivocab−uncased encoder for SciERC and albert−xxlarge−v1/bert−
base − cased [7] encoder for ACE05. As is shown, with the same pre-trained model,
our method obtains +1.0% improvement in relation F1 score with +40% speedup on the
test set of SciERC. On ACE05, our model achieves a relation F1 improvement of +1.4%
compared to PFN, but only slightly accelerates the inference speed (34.2 vs 36.0) when
using albert−xxlarge−v1 pre-trained model. This is because albert−xxlarge−v1
contains 223M parameters, which is much larger than the 110M parameters in scibert−
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scivocab−uncased and bert−base−cased, and most of the computational cost of the
model is concentrated in the pre-trained model part. As a result, the speedup provided
by MGE does not appear to be significant. Therefore, we also evaluate the inference
speed on ACE05 using bert − base − cased. As Table 3 shows, our model achieves
+47% speedup and an absolute relation F1 improvement of +1.2% on ACE05 when
using bert − base − cased. This clearly demonstrates that our proposed MGE can
improve the performance of joint entity and relation extraction while accelerating the
model inference speed.

5 Analysis

In this section, we conduct ablation study on ACE05, ACE04 and SciERC to inves-
tigate how each component of MGE affects the final performance, where we apply
albert−xxlarge−v1 encoder for ACE05 and ACE04, scibert−scivocab−uncased
encoder for SciERC. Specifically, we ablate the task gate or interaction gate to verify
their effectiveness.

Table 4. F1 scores of ablation study on ACE05, ACE04 and SciERC. B denotes BERT encoder.
Ge task, Gr task, Ge inter and Gr inter means entity task gate, relation task gate, entity interac-
tion gate and relation interaction gate.

Encoder ACE05 ACE04 SciERC

B Ge task Gr task Ge inter Gr inter NER RE NER RE NER RE

� � � � � 89.7 68.2 89.3 63.8 68.4 39.4

� - � � � 89.7 67.4 88.8 62.2 68.2 37.5

� � - � � 89.9 67.8 88.8 62.6 68.0 39.1

� � � - � 89.4 67.4 89.1 63.0 68.5 38.9

� � � � - 90.0 66.6 89.2 63.6 68.2 38.7

� � � - - 90.0 66.1 88.4 62.8 67.9 37.8

5.1 Effect of Task Gates

We remove task gates from the complete MGE structure to explore whether they can
generate effective task-specific features. As shown in Table 4, when we remove the
entity task gate, the entity F1 scores on the ACE04 and SciERC datasets decrease by
0.5% and 0.2%, respectively. And when we remove the relation task gate, the relation
F1 scores on ACE05, ACE04 and SciERC datasets decrease by 0.4%, 1.2% and 0.3%,
respectively. This indicates that task gates can effectively generate task-specific features
to improve the performance of NER and RE.

5.2 Effect of Interaction Gates

We also investigate the effect of the MGE entity interaction gate and relation interaction
gate on task interaction. As there is no entity interaction gate, it is similar to weakening
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the guidance of entity information on the relation extraction task when compared to
the unaffected MGE model. After deleting the entity interaction gate, the relation F1
scores on the ACE05, ACE04, and SciERC datasets decrease by 0.8%, 0.8%, and 0.5%,
respectively, as shown in Table 4. In MGE, this highlights the effectiveness of the entity
interaction gate.

Although it is widely accepted that entity information is necessary for relation
extraction, previous research on the impact of relation information on entity recognition
has been mixed. Zhong and Chen et al. [39] claims that relation information has no sig-
nificant improvement on entity model. However, Yan et al. [32] discover that relation
signals have a significant impact on entity prediction. Our research also sheds light on
this contentious issue. In MGE, the guidance of relation information on entity recogni-
tion is cut off when the relation interaction gate is ablate. The entity F1 scores decrease
on ACE04 and SciERC but increase on ACE05 when the relation interaction gate is
removed. Our experimental results match the experimental analysis of Yan et al. [32].
They conclude that relation information is helpful for predicting entities that appear in
relational triples, but not for entities outside relational triples. According to Yan et al.
[32], there are fewer entities belonging to relational triples in ACE05, compared with
ACE04 and SciERC. Consequently, the relation information is comparatively less help-
ful for entity recognition in ACE05 but has a positive effect on entity recognition in
ACE04 and SciERC. To sum up, the relation interaction gate can effectively generate
interaction features to facilitate the recognition of entities within triples.

Moreover, when we remove both the entity interaction gate and the relation interac-
tion gate, the relation F1 scores on ACE05, ACE04 and SciERC datasets decrease by
2.1%, 1.0% and 1.6%, respectively. This shows the effectiveness of interaction gates in
MGE for task interaction in joint entity relation extraction.

5.3 Bidirectional Interaction vs Unidirectional Interaction

From Table 4, we also observe that employing only an entity interaction gate or only a
relation interaction gate in the encoder performs worse than adopting these two gates
simultaneously. This means that the two tasks of entity recognition and relation extrac-
tion are mutually reinforcing, and bidirectional interaction between NER and RE is
more effective than unidirectional interaction.

6 Conclusion

In this paper, we propose a multi-gate encoder for joint entity and relation extraction.
Our model adopts gate mechanism to build bidirectional task interaction while ensuring
the specificity of task features by controlling the flow of feature information. Experi-
mental results on three standard benchmarks show that our model achieves state-of-the-
art F1 scores for both NER and RE. We conduct extensive analyses on three datasets to
investigate the superiority of our model and validate the effectiveness of each compo-
nent of our model. Furthermore, our ablation study suggests that relation information
contributes to entity recognition, which helps to clarify the controversy on the effect of
relation information.
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Abstract. Event Temporal Relation Classification (ETRC) is crucial to
natural language understanding. In recent years, the mainstream ETRC
methods may not take advantage of lots of semantic information con-
tained in golden temporal relation labels, which is lost by the discrete
one-hot labels. To alleviate the loss of semantic information, we propose
learning Temporal semantic information of the golden labels by Auxil-
iary Contrastive Learning (TempACL). Different from traditional con-
trastive learning methods, which further train the PreTrained Language
Model (PTLM) with unsupervised settings before fine-tuning on target
tasks, we design a supervised contrastive learning framework and make
three improvements. Firstly, we design a new data augmentation method
that generates augmentation data via matching templates established by
us with golden labels. Secondly, we propose patient contrastive learn-
ing and design three patient strategies. Thirdly we design a label-aware
contrastive learning loss function. Extensive experimental results show
that our TempACL effectively adapts contrastive learning to supervised
learning tasks which remain a challenge in practice. TempACL achieves
new state-of-the-art results on TB-Dense and MATRES and outperforms
the baseline model with up to 5.37%F1 on TB-Dense and 1.81%F1 on
MATRES.

Keywords: Temporal relation classification · Contrastive learning

1 Introduction

The temporal relations of events are used to describe the occurring sequence of
events in an article. Therefore understanding the temporal relations of events
in articles is useful for many downstream tasks such as timeline creation [12],
generating stories [4], forecasting social events [10], and reading comprehension
[15]. Hence, the ETRC task is an important and popular natural language under-
standing research topic among NLP community.

The ETRC task is to determine the occurrence sequence of a given event
pair. The context of the event pair is usually given to aid judgment. Ning et al.
[14] first encoded the event pairs into embedded representations and then used
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 180–193, 2022.
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fully connected layers as a classifier to generate confidence scores for each cate-
gory of temporal relations. All related works of the NLP community since then
have followed the classification view: classifying the embedded representations.
Naturally, we can encode the context and events into a better embedding space
in which the different relations are distinguished well, to get better classification
results.

Traditionally, all recent works use one-hot vectors to represent golden tem-
poral relation labels in the training stage. However, the one-hot vector reduces
the label with practical semantics to the zero-one vector. It makes the embed-
ded representations extracted by the ETRC models waiting for classifying be
the similarities of the instances with the same label. But, the similarities are not
equal to the label semantics, and lead to arbitrary prediction and poor model
generalization, especially for confused instances. In brief, the one-hot vectors
which represent temporal relation categories lose much semantic information.

To cope with the loss of semantic information in golden labels, we propose
to learn the lost semantic information by contrastive learning, which is well con-
firmed and most competitive method for learning representations under unsuper-
vised settings, so that the ETRC model can obtain better event representations.
However, effectively adapting contrastive learning to supervised learning tasks
remains a challenge in practice. General methods such as [3], which continue
to train the PTLM model using unsupervised contrastive learning on the input
texts (without labels) from the target task before fine-tuning, apply contrastive
learning to supervised representation learning mechanically. They discard the
category information in the process of further training. In the supervised ETRC
task, we want the event pair representations with the same category to be as close
as possible without collapsing. But direct application of the unsupervised con-
trastive learning loss function would prevent them from getting closer, because
it discard the category information. It’s an inherent problem of self-supervised
contrastive learning. So the standard contrastive learning is not natural for the
supervised ETRC task. To solve this problem we designed label-aware contrastive
learning loss and design a new contrastive learning framework. Additionally, we
argue that we can do contrastive learning in the intermediate layers of the PTLM
as same as the last layer simultaneously. In a cascade structure, a change in pre-
vious layers affects the subsequent layers and continuous positive changes will
make the learning process easier. Hence, we propose patient contrastive learning
and design three patient strategies.

Overall, we propose TempACL: Firstly, we manually construct templates
based on the semantics of labels and get augmentation sentences by matching
the labels of instances. Secondly, we train the encoder of key samples which are
necessary for contrastive learning by the augmentation datasets established by
the ETRC datasets and the augmentation sentences. Thirdly, we jointly train
the ETRC model with cross entropy loss and label-aware contrastive learning
loss using a patient contrastive learning strategy.

The main contributions of this paper can be summarized as follows:
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1. We propose learning the lost semantic information in golden labels by con-
trastive learning, and then design TempACL, a supervised contrastive learn-
ing framework based on a new data augmentation method designed by us. To
our knowledge, we are the first to propose using contrastive learning on the
ETRC task.

2. In order to make our TempACL achieve better performance, we design label-
aware contrastive learning loss and patient contrastive learning strategy.

3. We demonstrate the effectiveness of our TempACL on TB-Dense and
MATRES datasets. Our TempACL outperforms the current best models with
up to 2.13%F1 on TB-Dense and 1.26%F1 on MATRES and outperforms the
baseline model with up to 5.37%F1 on TB-Dense and 1.81%F1 on MATRES.

2 Related Work

2.1 Event Temporal Relation Classification

Since the birth of pre-trained language models, researchers have mainly used
them to encode event representations and design many new methods based on
them. Wang et al. [19] propose a JCL method that makes the classification model
learn their designed logical constraints within and across multiple temporal and
subevent relations by converting these constraints into differentiable learning
objectives. Zhou et al. [24] propose the CTRL-PG method, which leverages the
Probabilistic Soft Logic rules to model the temporal dependencies as a regulariza-
tion term to jointly learn a relation classification model. Han et al. [8] propose the
ECONET system, which further trains the PTLM with a self-supervised learning
strategy with mask prediction and a large-scale temporal relation corpus. Zhang
et al. [23] propose the TGT network that integrates both traditional multi-head
self-attention and a new temporal-oriented attention mechanism and utilizes a
syntactic graph that can explicitly find the connection between two events. Tan
et al. [18] propose the Poincaré Event Embeddings method which encodes events
into hyperbolic spaces. They argue that the embeddings in the hyperbolic space
can capture richer asymmetric temporal relations than the embeddings in the
Euclidean space. And they also proposed the HGRU method which addition-
ally uses an end-to-end architecture composed of hyperbolic neural units, and
introduces common sense knowledge [14].

All of the above methods use the one-hot vector and lose the semantic infor-
mation of the golden label. To take advantage of the missing semantic informa-
tion, we make the target ETRC model learn from them via contrastive learning.

2.2 Contrastvie Learning

Contrastive learning aims to learn efficient representations by pulling seman-
tically close neighbors together and pushing non-neighbors away [7]. In recent
years, self-supervised contrastive learning and supervised contrastive learning
have attracted more and more researchers to study them.
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Self-supervised Contrastvie Learning. In computer vision (CV), We et al.
[21] propose MemoryBank, which maintain a large number of representations
of negative samples during training and update negative sample representations
without increasing batch size. He et al. [9] propose MoCo, which designs the
momentum contrast learning with two encoders and employs a queue to save
the recently encoded batches as negative samples. Chen et al. [2] proposed the
SimCLR which learns representations for visual inputs by maximizing agreement
between differently augmented views of the same sample via a contrastive loss.
Grill et al. [5] propose BYOL, which uses asymmetric two networks and dis-
cards negative sampling in self-supervised learning. In Natural Language Pro-
cessing (NLP), Yan et al. [22] propose ConSERT, which has a similar model
structure to SimCLR, except that ResNet is replaced by Bert and the mapping
header is removed. And they also propose multiple data augmentation strategies
for contrastive learning, including adversarial attack, token shuffling, cutoff and
dropout.

Supervised Contrastvie Learning. Khosla et al. [11] extend the self-
supervised contrastive approach to the fully-supervised setting in the CV
domain, and take many positives per anchor in addition to many negatives (as
opposed to self-supervised contrastive learning which uses only a single positive).
Gunel et al. [6] extends supervised contrastive learning to the NLP domain with
PTLMs.

Different from ConSERT we design a new data augmentation method based
on templates in our contrastive learning framework. And different from Khosla’s
work, we design a new supervised contrastive loss which still uses only a single
positive but does not treat the sentence representations with the same label as
negative examples.

3 Our Baseline Model

Our baseline model is comprised of an encoder and a classifier. We use RoBERTa
[13] as our encoder and use two fully connected layers and a tanh activation
function between them as our classifier. Recently, most of the related works use
RoBERTa as an encoder, because RoBERTa can achieve better results on the
ETRC task than BERT in practice.

Each instance is composed of an event temporal triplet t (i.e. ( < e1 >,
< e2 >, r ), where < e1 > and < e2 > are event mentions and r is the temporal
relation of the event pair. ) and the context s of the events which may be a single
sentence or two sentences.

We first tokenize the context and get a sequence of tokens X[0,n) with length
n. Then we feed the X[0,n) into RoBERTa. One event mention may correspond
to multiple tokens, so we send the token embeddings corresponding to these
tokens to an average pooling layer to get the final event representation ei. Next,
we combine e1 and e2 into a classification vector e1 ⊕ e2, where ⊕ is used to
denote concatenation. Finally, we feed the classification vector into the classifier
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Fig. 1. Joint training with patient contrastive learning. We name the PLTM which
encodes positive and negative key samples as Encoder K and the PLTM used for
ETRC as Encoder Q.

followed by a soft-max function to get confidence scores for each category of
temporal relations.

4 Self-supervised Contrastive Learning

Contrastive learning is learning by pulling similar instance pairs closer and push-
ing dissimilar instance pairs farther. The core of self-supervised contrastive learn-
ing is to generate augmented examples of original data examples, create a predic-
tive task where the goal is to predict whether two augmented examples are from
the same original data example or not, and learn the representation network
by solving this task. He et al. [9] formulate contrastive learning as a dictionary
look-up problem and propose an effective contrastive loss function LCL with
similarity measured by dot product:

LCL = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

{K−} exp (q · k−/τ)
(1)

where q is a query representation, k+ is a representation of the positive (similar)
key sample, k− are representations of the negative (dissimilar) key samples, K−

is a negative key samples set, and τ is a temperature hyper-parameter. He et
al. [9] also propose maintaining the dictionary as a queue of data samples. It
allows contrastive learning to reuse the previous batch of key samples so that we
can increase the number of negative samples without increasing the batch size,
thus improving the performance of the model. The dictionary size is a flexible
hyper-parameter. The samples in the dictionary are progressively replaced. The
current batch is enqueued to the dictionary, and the oldest batch in the queue
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Fig. 2. Overall process of TempACL

Table 1. Templates. All the six temporal relation labels are in TB-Dense and ∗ indi-
cates the temporal relation label also exists in MATRES.

Temporal relation Templates

AFTER∗ the beginning of the event of < e1 > is after the end of the
event of < e2 >

BEFORE∗ the end of the event of < e1 > is before the beginning of the
event of < e2 >

INCLUDES the beginning of the event of < e1 > is before the beginning
of the event of < e2 > and the end of event of < e1 > is after
the end of the event of < e2 >

IS_INCLUDED the beginning of the event of < e1 > is after the beginning of
the event of < e2 > and the end of event of < e1 > is before
the end of the event of < e2 >

VAGUE∗ the temporal relation between the event of < e1 > and the
event of < e2 > is vague

SIMULTANEOUS∗ the event of < e1 > and the event of < e2 > have the same
beginning and end time

is removed. In this paper, we follow this part of their work and transfer it to the
supervised ETRC task.

5 TempACL Approach

In this section, we introduce our TempACL approach in details and draw the
overall process of TempACL in Fig. 2. TempACL aims to encoder semantic infor-
mation of golden temporal relation labels and uses contrastive learning to make
the baseline model extract better event representations. Hence, we first train
Encoder K used for encoding semantic information of golden temporal relation
labels, and then jointly train the baseline model with auxiliary contrastive learn-
ing via the label-aware contrastive learning loss function and a patient strategy.
Specially, we fix the parameters of the Encoder K in the joint training stage.

5.1 Training Encoder K

First of all, we need to establish templates. In order to make the positive key
samples encoded by Encoder K contain as much and as detailed semantic infor-
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mation of golden temporal relation labels as possible, we need to create efficient
templates that automatically convert each golden temporal relation label into a
temporal information-enriched sentence s′ to enrich the semantic information of
golden temporal relation labels. We argue that the time span of events (i.e., the
duration of the events) guides ETRC. So we use the start and end times of events
and the temporal relation between events to describe the temporal relation of
the event pair on a subtle level. We show the templates in Table 1.

Subsequently, we build the augmentation dataset. For each record (t, s) in
original Dataset, we use r to match the templates and get s′ by filling events
into the corresponding positions in the template, then concatenate s and s′ to
get an augmentation sentence saug = s + s′, finally get a new record (t, saug).
We combine all new records into an augmentation dataset.

Finally, we use the augmentation dataset to train the Encoder K with the help
of the classifier which we propose in Sect. 3 under supervised setting. Encoder
K is a RoBERTa model.

5.2 Joint Training with Patient Label-Aware Contrastive Loss

The trained Encoder K has been obtained, we can start joint training in Fig. 1.
We send s in the original dataset to Encoder Q, and then get event pair rep-
resentations {e1j ⊕ e2j}12j=1 in different layers of Encoder Q. eij is the hidden
state corresponding to the event i from the j-th RoBERTa Layer. We simul-
taneously send saug in the augmentation dataset to Encoder K, and then get
event pair representations {ê1j ⊕ ê2j}12j=1 in different layers of Encoder K. êij is
the hidden state corresponding to the event i from the j-th RoBERTa Layer,
and ˆ is used to denote the hidden state from the Encoder K. We normalized
e1j ⊕ e2j as the query q and ê1j ⊕ ê2j as key k with L2 Norm. According to
different patient strategies, queries and keys of different layers were selected for
comparative learning.

We should not mechanically apply the loss function of self-supervised con-
trastive learning in Eq. 1 to the supervised ETRC directly. In the supervised
ETRC task, we want the event pair representations with the same category to
be as close as possible without collapsing. But LCL treat the key samples in
the queue, whose event pair have the same temporal relation with the event
pair of the query sample, as negative key samples. Therefore, in the process of
minimizing the LCL, the event pair representations with the same category are
mutually exclusive, which confuse the ETRC model. So we propose label-aware
contrastive loss function LLACL:

LLACL = −
N∑

i=1

(

log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

{K′−} exp
(
q · k′−/τ

)

)

i

(2)

where K̄− is negative key samples set which except the key samples with the
same label as q, and N is the number of training samples. In practice, we convert
q · k where k ∈ {k : k ∈ K−, k /∈ K ′−} to −106 by matrix operations.
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Inspired by Sun et al. [17], we argue that using the event pair representations
of the intermediate layers of the Encoder Q and the event pair representations
of the intermediate layers of the Encoder Q for additional contrastive learning
can enhance the learning of semantics of the Encoder Q, and improve the perfor-
mance of the baseline model. Hence we propose patient label-aware contrastive
learning loss LPCL based on Eq. 2:

LPCL = −
∑

j∈J

N∑

i=1

1
‖J‖

(

log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

{K′−} exp
(
q · k′−/τ

)

)

i,j

(3)

where J is the set of intermediate layers involved in contrastive learning. Specif-
ically, we propose three patient contrastive learning strategies: (1) PCL-Last
four: we contrast the last four layers of the Encoder Q and Encoder K (Fig. 1
upper right). (2) PCL-Skip: we contrast every two layers of the Encoder Q and
Encoder K (Fig. 1 lower left). (3) PCL-Every: we contrast every layers of the
Encoder Q and Encoder K (Fig. 1 lower right).

Finally, we jointly train ETRC task and auxiliary label-aware contrastive
learning task with the final loss function Lf inal:

Lfinall = αLCE + βLPCL (4)

where LCE is cross-entropy loss function, α and β are hyper-parameters which
weight the importances of ETRC task and auxiliary label-aware contrastive
learning task.

6 Experiments and Results

In this section, we perform experiments on TB-Dense and MATERS and prove
our TempACL performs better than previous state-of-the-art methods. Details
on the datasets, experimental setup, and experimental results are provided in
the following subsections.

TB-Dense TB-Dense [1] is a densely annotated dataset for the ETRC and
annotated based on TimeBank. It also annotates the temporal relations of pairs
of events across sentences, different from TimeBank which only annotates events
in the same sentence. It annotates a total of 6 temporal relations (AFTER,
BEFORE, INCLUDE, IS INCLUDED, VAGUE, SIMULTANEOUS). We follow
the split strategy of Han et al. [8] and Zhange et al. [23] which uses 22 documents
as train set, 5 documents as dev set and 9 documents as test set.

MATERS MATERS [16] is refined from 275 documents in TimeBank and
TempEval (containing AQUAINT and Platinum). Ning et al. [16] design a
novel multi-axis (i.e., main, intention, opinion and hypothetical axes) annota-
tion scheme to further annotate the 275 documents. There are only 4 temporal
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Table 2. Data statistics for TB-Dense and MATRES

TB-Dense MATRES
Documents Triplets Documents Triplets

Train 22 4032 204 10097

Dev 5 629 51 2643

Test 9 1427 20 837

relations (BEFORE, AFTER, EQUAL and VAGUE) different from TB-Dense
and the EQUAL is the same as SIMULTANEOUS. We follow the official split
strategy that uses TimeBank and AQUAINT for training and Platinum for test-
ing. We also follow the previous works [14,18] that randomly select 20 percents
of the official train documents as dev set.

We briefly summarize the data statistics for TB-Dense and MATRES in
Table 2.

6.1 Dataset

6.2 Experimental Setup

In the process of training Encoder K, we add a dropout layer between the
Encoder K and the Classifier and set the drop probability to 0.5, in order to make
the key samples contain more useful temporal information. We train Encoder K
10 and 20 epochs respectively on TB-Dense and MATRES. We set the batch size
to 24, the τ to 0.1, the learning rate of the Classifier to 5e−4 and the learning
rate of RoBERTa to 5e−6. We use grid search strategy to select the best α ∈
[0.7: 1.4] and β ∈ [0.01: 0.001]. As for the dimension of the hidden states between
two fully connected layers in the Classifier, we set it to 36. We set the size of the
queue to 3840 and 9600 respectively on TB-Dense and MATRES.

6.3 Main Results

As shown in Table 3, we compare our approach with other state-of-the-art meth-
ods in recent years on TB-Dense and MATRES. We report the best F1 value
for each method. The compared methods have been introduced in Sect. 2. And
the results of compared methods are directly taken from the cited papers except
CERT1. We reproduce CERT and record the results.

We observe that our baseline model achieves 63.56%F1 on TB-Dense and
79.95%F1 on MATRES. It demonstrates that our baseline model can effectively
classify temporal relation, and even achieves a competitive performance that is
close to the current best 80.5%F1 on MATRES. Furthermore, our TempACL
outperforms previous state-of-the-art methods on ETRC with up to 2.13%F1 on
TB-Dense and 1.26%F1 on MATRES. Compared with CERT, the traditional
1 https://github.com/UCSD-AI4H/CERT.

https://github.com/UCSD-AI4H/CERT
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Table 3. Comparison of various approaches on ETRC on TB-Dense and MATRES.
Bold denotes the best performing model. F1-score (%)

Method TB-Dense MATRES

JCL [19] RoBERTa base - 78.8
ECONET [8] RoBERTa Large 66.8 79.3
TGT [23] BERT Large 66.7 80.3
Poincaré event embeddings [18] RoBERTa base – 78.9
HGRU+knowledge [18] RoBERTa base – 80.5
CERT [3] RoBERTa base 64.92 80.46
Baseline (ours) RoBERTa base 63.56 79.95
TempACL (ours) RoBERTa base 68.93 81.76

self-supervised contrastive learning method, our TempACL achieves 4.01%F1

and 1.30%F1 improvement respectively. These experimental results prove the
effectiveness of learning semantic information of golden temporal relation labels
via patient label-aware contrastive learning. There are three possible reasons for
the effectiveness: (1) The difference between the query representation and the
key representation comes from the semantic information of the golden temporal
relation label, because the input of Encoder Q doesn’t have the label information
but the input of Encoder K input does. The LLACL forces q closer to K to
reduce the difference. So that in the process of minimizing LLACL Encoder Q
learns the label semantic information and forces itself to extract more useful
information related to golden temporal relation labels from the sentences that do
not contain any golden temporal relation label information. (2) The supervised
contrastive learning framework and LLACL designed by us is more suitable for
the ETRC task than the traditional self-supervised contrastive learning method.
(3) The data augmentation method proposed by us not only utilizes the semantic
information of labels but also enriches the semantic information of labels.

Different from JCL and HGRU, which use external commonsense knowl-
edge to enrich the information contained in event representations, TempACL
enables the model to better mine the information contained in original sen-
tences. Compared to ECONET and TGT, which use a larger pre-trained lan-
guage model, or TGT and HGRU, which use networks with complex structures
followed RoBERTa base or BERT Large, TempACL enables a smaller and sim-
pler model which only contains a RoBERTa base and two fully connected layers
to achieve the state-of-the-art performance.

6.4 Ablation Study and Qualitative Analysis

We observe that, TempACL make improvements of 5.37%F1 and 1.81%F1 on
TB-Dense and MATRES respectively compared with the baseline model. In this
section, we first qualitatively analyze key samples, and then we do the ablation
experiments to further study the effects of patient strategies and label-aware



190 T. Sun and L. Li

Table 4. Results of TempACL with different strategies. F1-score (%)

Method TB-Dense MATRES

Traditional-last one 66.17 80.95
PCL-Last four 68.93 81.76
PCL-Skip 67.73 80.46
PCL-Every 65.23 80.37

Table 5. Results of TempACL with different contrastive learning loss. F1-score (%)

Method TB-Dense MATRES

TempACL-LACL 68.93 81.76
TempACL-TCL 66.03 80.89
Baseline 63.56 79.95

contrastive learning loss. We ensure that all ablation results are optimal by
using optimal strategies under the given conditions.

Qualitative Analysis. Wang et al. [20] propose to justify the effectiveness of
contrastive learning in terms of simultaneously achieving both alignment and
uniformity. Hence we reduce the dimension of key samples in each layer through
PCA and represent it in Fig. 3 on TB-Dense. All four contrastive strategies we
used to utilize the key samples of the last layer, so we take Fig. 3(l) to analyze
the alignment and uniformity of TempACL. On the one hand, we can see that
there are 6 clusters of representations that are well-differentiated even in two
dimensions. Our method maps key samples with the same category to a rela-
tively dense region. These well demonstrate that our embedded knowledge has a
strong alignment. On the other hand, we also can see that the 5 clusters, which
represent temporal categories in Fig. 3(l) right, are farther from the VAGUE
cluster than each other. It means that our embedded knowledge retains as much
category information as possible. The farther away different clusters are, the
more category information and differences are retained. Moreover, different key
samples with the same category distribute evenly within the dense region, which
means that our key samples retain as much instance information as possible.
Furthermore, the more evenly distributed they are, the more information they
retain. These well demonstrate that our embedded knowledge has a strong uni-
formity. We find that the key samples encoded by the last four layers of the
Encoder K have strong alignment and uniformity.

Last One Strategy vs Patient Strategy. In Sect. 5.2 we propose three
patient strategies. In this section, we do experiments to study which strategy is
optimal and report the experimental results in Table 4. PCL-Last four achieves
the best results on both TB-Dense and MATRES. On the one hand, PCL-Last
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(a) layer 1 (b) layer 2 (c) layer 3

(d) layer 4 (e) layer 5 (f) layer 6

(g) layer 7 (h) layer 8 (i) layer 9

(j) layer 10 (k) layer 11 (l) layer 12

Fig. 3. The distributions of key samples of each RoBERTa layers on TB-Dense.

four provides more positive and negative samples. In Fig. 3, the distribution of
key samples in the last four layers also indicates that these positive and nega-
tive samples have great value in learning. On the other hand, this layer-by-layer
approach greatly reduces the difficulty of learning. In the PTLM, different sub-
layers are cascade, and the changes in the output in the front layers influence
the latter layers. PCL-every performs poorly and worse than Traditional-Last
one, because the first eight layers do not provide good positive and negative key
samples, and learning them confuses the model. However PCL-Skip performs
better than Traditional-Last one. This is because the number of bad key sam-
ples in PCL-Skip is relatively small, which makes the negative impact of these
bad key samples much smaller. The layer-by-layer approach reduces the difficulty
of learning and the benefits outweigh the negative impact.
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Label-Aware Contrastive Loss vs Traditional Contrastive Loss. In order
to determine whether our proposed label-aware contrastive loss has a positive
effect, we conduct a comparative experiment and record the experimental results
in Table 5. We compare the TempACL with label-aware contrastive learning loss
(TempACL-LACL) and the TempACL with traditional contrastive learning loss
(TempACL-TCL) on TB-Dense and MATRES respectively. We can see that
the TempACL-LACL achieves 2.90%F1 and 0.87%F1 performance improvement
over the TempACL-TCL respectively. It shows the benefit of eliminating key
samples with the same label as the query from the negative samples set. The
reason is that using key samples, which have the same label as the query, as
negative samples prevent instances of the same label from learning similar event
representations to some extent, which runs counter to the ETRC’s aims. And
the label-aware contrastive learning loss can avoid such a situation.

7 Conclusion

In recent years, the mainstream ETRC methods focus on using discrete values
to represent temporal relation categories and lose too much semantic informa-
tion contained in golden labels. So we propose TempACL, which makes the
ETRC model learn the lost semantic information in golden labels via con-
trastive learning. Extensive experiments prove the contrastive learning frame-
work in TempACL is more suitable for the supervised ETRC task than tradi-
tional self-supervised contrastive learning. The patient contrastive learning strat-
egy designed by us provides more useful positive and negative key samples and
reduces the difficulty of contrastive learning. The label-aware contrastive learn-
ing loss designed by us avoids the negative interactions between different queries
and keys in the same category, which is an inherent problem of self-supervised
contrastive learning.
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Abstract. Machine translation quality estimation (QE) aims to evalu-
ate the quality of machine translation automatically without relying on
any reference. One common practice is applying the translation model as
a feature extractor. However, there exist several discrepancies between
the translation model and the QE model. The translation model is
trained in an autoregressive manner, while the QE model is performed in
a non-autoregressive manner. Besides, the translation model only learns
to model human-crafted parallel data, while the QE model needs to
model machine-translated noisy data. In order to bridge these discrep-
ancies, we propose two strategies to post-train the translation model,
namely Conditional Masked Language Modeling (CMLM) and Denoising
Restoration (DR). Specifically, CMLM learns to predict masked tokens
at the target side conditioned on the source sentence. DR firstly intro-
duces noise to the target side of parallel data, and the model is trained to
detect and recover the introduced noise. Both strategies can adapt the
pre-trained translation model to the QE-style prediction task. Experi-
mental results show that our model achieves impressive results, signif-
icantly outperforming the baseline model, verifying the effectiveness of
our proposed methods.

Keywords: Quality estimation · Machine translation · Denoising
restoration

1 Introduction

Machine translation has always been the hotspot and focus of research. Com-
pared with traditional methods, neural machine translation (NMT) has achieved
great success. However, current translation systems are still not perfect to meet
the real-world applications without human post-editing. Therefore, to carry out
risk assessment and quality control for machine translation, how to evaluate the
quality of machine translation is also an important problem.
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Quality Estimation (QE) aims to predict the quality of machine transla-
tion automatically without relying on reference. Compared with commonly used
machine translation metrics such as BLEU [18] and METEOR [13], QE can be
applicable to the case where reference translations are unavailable. It has a wide
range of applications in post-editing and quality control for machine translation.
The biggest challenge for QE is data scarcity. Since QE data is often limited in
size, it is natural to transfer bilingual knowledge from parallel data to the QE
task.

One well-known framework for this knowledge transfer is the predictor-
estimator framework, in which the predictor is trained on large parallel data
and used to extract features, and the estimator will make quality estimation
based on features provided by the predictor. The predictor is usually a machine
translation model, which can hopefully capture the alignment or semantic infor-
mation of the source and the target in a pair. Kim et al. [11] first proposed to use
an RNN-based machine translation model as the feature extractor, to leverage
massive parallel data to alleviate the sparsity of annotated QE data. Wang et
al. [23] employed a pre-trained translation model as the predictor and added
pseudo-PE information to predict translation quality.

However, there are two discrepancies between machine translation and qual-
ity prediction, which impedes the NMT model to be directly adopted for feature
extraction. i) Translation task is usually a language generation task trained in an
autoregressive manner, where each token is only conditioned on previous tokens
unidirectionally. But QE is a language understanding task performed in a non-
autoregressive manner, therefore each token could attend to the whole context
bidirectionally. ii) The predictor is trained on human-crafted parallel data and
only learns to model the alignment between correct translation pairs. However,
the QE task needs to model machine-translated, imperfect translation pairs.
Both discrepancies may hinder the adaptation of the pre-trained NMT model to
the downstream QE task, leading a degradation of model performance [25].

In this paper, we propose two strategies to alleviate the discrepancies, named
as Conditional Mask Language Modeling (CMLM) and Denoising Restoration
(DR). Both strategies are applied to the pre-trained NMT model and can be
deemed as a post-training phase. The CMLM is to train the NMT model to
recover the masked tokens at the target side in a non-autoregressive manner,
where each token can attend to the whole target sequence bidirectionally. Fur-
thermore, the DR first generates erroneous translation by performing condition-
ally masked language modeling, and then trains the NMT model to detect the
introduced noise and recover the target sequence, which is also performed in a
non-autoregressive manner. Both methods can adapt the autoregressive NMT
model to non-autoregressive QE prediction. Moreover, compared with CMLM,
DR removes the introduction of [MASK] token (which may also cause the dis-
crepancy between pre-training and QE prediction). Besides, adversarially using
another model with knowledge distillation to generate noise could provide more
natural and harder training samples, thereby pushing the translation model bet-
ter model the semantic alignment between the imperfect translation and source
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sequence. After the post-training phase, the NMT model is better adapted to
the quality prediction task, and can serve as a better feature extractor.

Our contributions can be summarized as follows:

– We propose two strategies for post-training the NMT model to bridge the
gaps between machine translation and quality estimation, which can make
the NMT model more suitable to act as the feature extractor for the QE
task.

– We conduct experiments on the WMT21 QE tasks for En-Zh and En-De
directions, and our methods outperform the baseline model by a large margin,
proving its effectiveness. We also perform in-depth analysis to dig into the
discrepancies between translation and quality prediction.

2 Background

2.1 Task Description

Quality Estimation aims to predict the translation quality of an MT system
without relying on any reference. In this task, the dataset is expressed in the
format of triplet (s,m, q), where s represents the source sentence, m is the trans-
lation output from a machine translation system, and q is the quality score of
machine translation.

Generally, Quality Estimation task includes both word-level and sentence-
level tasks. In word-level task, the prediction is done both on source side (to
detect which words caused errors) and target side (to detect mistranslated or
missing words). In sentence-level task, it will mark each sentence with a score,
which can be calculated based on different standards, consists of Human-targeted
Translation Edit Rate (HTER) [21], Direct Assessment (DA) [8], Multidimen-
sional Quality Metrics (MQM) [15], etc. In this work, we mainly focus on sentence
level post-editing effort prediction, which is measured by:

HTER = (I + D + R)/L, (1)

where I, D and R are the number of Insertions, Deletions and Replacement
operations required for post-editing, and L is the reference length. However,
labeling the data requires post-editing for the machine translations by experts,
leading the label of QE data too expensive to obtain, which makes QE highly
data-sparse.

2.2 Previous Work

Generally, sentence-level QE is fomulated as a regression task. Early approaches
were based on features fed into a traditional machine learning method, such as
QuEst++ [22] and MARMOT [14] system. These model usually has two mod-
ules: the feature extraction module and the classification module. But they relied
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on heuristic artificial feature designing, which limits their development and appli-
cation [10]. With the increasing popularity of deep learning methods, researchers
resort to distributed representations and recurrent networks to encode transla-
tion pairs. However, the limited size of training samples impedes the learning
of deep networks [16]. To solve this problem, a lot of research has been done
to use additional resource (both bilingual and monolingual) to strengthen the
representation [11]. After the emergence of BERT [5], some work attempts to use
the pre-trained language model as a predictor directly and add a simple linear
on top of the model to obtain the predictions [1,2], which has led to significant
improvements.

Among all the deep learning-based methods, one commonly used framework
for QE is the predictor-estimator framework, where the predictor is used as a
feature extractor and the estimator uses the features to make predictions. The
predictor is usually a translation model, which can alleviate the problem of data
sparsity by transferring bilingual knowledge from parallel data. Kim et al. [11]
firstly proposed the predictor-estimator framework to leverage massive parallel
data to improve QE results, they applied an RNN-based machine translation
model as the predictor and added a bidirectional RNN as estimator to predict
QE scores, which achieved excellent performance especially in sentence-level QE.
Fan et al. [6] used Transformer-based NMT model as the predictor to extract
high-quality features, and used 4-dimensional mis-matching features from this
model to improve performance. Wang et al. [24] pre-trained left-to-right and
right-to-left deep Transformer models as the predictor and introduced a multi-
layer bidirectional Gated Recurrent Unit (Bi-GRU) as the estimator to make
prediction. Wu et al. [26] reformed Transformer-based predictor-estimator by
using multidecoding during the machine translation module, then implemented
LSTM-based and Transformer-based estimator with top-K and multi-head atten-
tion strategy to enhance the sentence feature representation. Wang et al. [23]
employed a pre-trained translation model as the predictor and added pseudo-PE
information to predict translation quality, which obtained the best result in the
English-German direction of WMT20. However, despite various of improvement
has been made on the predictor-estimator framework, the discrepancy prob-
lem between machine translation and quality estimation is not systematically
investigated.

3 Approach

In this section, we first describe the NMT-based QE architecture, and then
describe our proposed post-training strategies.

3.1 QE Architecture

The QE architecture is shown in Fig. 1. Our work follows the predictor-estimator
framework. The predictor is a translation model trained with the transformer
architecture on parallel data, which has learned the feature extraction ability of
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Fig. 1. The illustration of the QE model. The source and mt sentence are fed into
encoder and decoder respectively. The BAL is integrated after the self-attention layer
and the FFN layer, respectively. In order to better adapt to QE task, the causal mask
in decoder is removed.

bilingual inputs after a long-term and large-scale pre-training. Therefore, adding
only a linear layer on the top of translation model and fine-tuning with a small
amount of QE data can achieve promising results.

As shown in Fig. 1, the final hidden vector of the neural machine translation
model corresponding to the first input token is fed into a simple linear layer to
make quality prediction, which is given by:

HTERpred = WT
s h(0) + b0, (2)

where h(0) ∈ R
H is the hidden vector of the first input token, Ws ∈ R

H represents
a weight matrix, H is the dimension of hidden states, b0 ∈ R

1 is the bias. The
loss function is the mean squared error between HTERpred and HTERtrue,
which can be written as:

LQE = MSE(HTERpred,HTERtrue) (3)
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Since the size of training dataset is relatively small, the model is easy to
be over-fitted when all parameters are updated. Incorporating the insights from
Wang et al. [23], the Bottleneck Adapter Layers (BAL) [9] are integrated into the
neural machine translation model, which alleviates the problem of overfitting by
freezing the parameters of the original model. The BAL is implemented with two
simple fully-connected layers, a non-linear activation and residual connections,
where the hidden representations are first expanded two times and then reduced
back to the original dimension.

3.2 Conditional Masked Language Modeling

The Conditional Masked Language Modeling is illustrated in Fig. 2. Despite
using the same architecture as the machine translation model, the CMLM utilizes
a mask language modeling objective at the target side [7]. The source sentence
is sent to the encoder, while some tokens are corrupted at the target side. Then
the CMLM is trained to recover the corrupted target sentence.

Fig. 2. The illustration of the CMLM. At the target side, some tokens are replaced
with [mask] symbol or random token. Note that it also needs to remove the casual
mask in decoder.

In terms of implementation, given a parallel sentence pair <x, y>, we gen-
erate a corrupted sentence y′ with a 25% mask ratio. When the i-th token is
chosen to be masked, it may be replaced with the [MASK] token 20% of the
time or a random token 80% of the time. The training objective for CMLM is to
maximize: P (yi|x, y′), where yi is the i-th token, x and y′ represent the source
sentence and the corrupted target sentence, respectively. More specifically, we
reuse the parameters of the neural machine translation model instead of training
the model from scratch, and the model is trained with data in the same domain
as the QE data.

Translation model is a natural language generation model trained in an
autoregressive manner, where each token can only pay attention to the tokens
before it, and the tokens after it are masked out. On the contrary, QE task is a
natural language understanding task in which each token needs to be concerned
with the whole context. Through this mask-prediction task focusing on bidirec-
tional information, the model can learn the context-based representation of the
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token at the target side, thereby adapting the unidirectional NMT decoder to
the bidirectional prediction task.

3.3 Denoising Restoration

Inspired by Electra [3], to further mitigate the discrepancy of data quality, we
apply the Denoising Restoration strategy to post-train the neural machine trans-
lation model. The model architecture is illustrated in Fig. 3, which can be divided
into the Noiser and the Restorer. The Noiser is used to create noisy samples, and
the restorer is used to recover the noisy samples. After that, only the Restorer
would be used as the predictor and the Noiser would be dropped.

Fig. 3. The Noiser-Restorer architecture.

The Noiser is first trained to introduce noise at the target side. It has the
same architecture as the CMLM, the difference is that we utilize the decoding
results of the to-be-evaluated NMT model as the training objective of the Noiser,
where the to-be-evaluate NMT model is used to generate QE data. Specifically,
given a parallel sentence pair <x, y>, we use the to-be-evaluted NMT model
to generate the translation ỹ of x. Then the Noiser is trained with the new
parallel sentence pair <x, ỹ>. After the training of the Noiser, we put the Noiser
and the Restorer together for training with parallel data<x, y>. Moreover, it
is performed by dynamic mask strategy with the masked positions decided on-
the-fly, where the mask ratio is same as that of the CMLM. The loss function is
defined as follows:

LDR = −
L∑

i=1

logP (l = li|x, ŷ), li ∈ {1, 2, ..., V }, (4)

where L is the length of sentence, ŷ is the sentence generated by the Noiser, V
is the size of vocabulary.

The reason for introducing Noiser is that in the CMLM strategy, there is a
large deviation between the sentences generated by randomly adding noise and
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real machine translation, which is easily detected and may limit the performance.
Limited by the performance of the Noiser, it is certain that not all tokens can
be recovered completely and correctly. Therefore, the target sequence generated
by the Noiser is noisy compared with reference translation. Meanwhile, since
the Noiser utilizes a decoder with language modeling capabilities for generation,
the generated sentences are more natural without obvious lexical and syntactic
errors. Similarly, real machine translation noise is also natural and does not have
significant lexical and syntactic errors, so the noise generated by the Noiser is
closer to the real noise distribution than the noise generated by random replace-
ment. A possible example is shown in the Fig. 3.

In addition, we utilize knowledge distillation technique [12] in the Noiser,
which is used to transfer specific patterns and knowledge among different
sequence generation models. In our scenario, the decoding process of the to-be-
evaluated NMT model has a fixed pattern, so the translation results obtained by
decoding the source sentences with this NMT model contains the noise distri-
bution of the to-be-evaluated NMT model. When the Noiser learns to recover a
corrupted token, both training objectives and context are generated by this NMT
model. Hence, the obtained Noiser would have a similar decoding space with the
to-be-evaluated NMT model. Note that the Noiser could produce pseudo trans-
lations with the same length as the reference translation, which is convenient for
later training.

Despite both adopting non-autoregressive training objective, the difference
between CMLM and Restorer lies in the source of noise. The noise of CMLM
comes from random masking, while the noise of Restorer comes from language
model generation. On the one hand, the noise generated by the Noiser is more
consistent with the noise distribution of the to-be-evaluated NMT model, so
during the training, the Restorer can learn the modeling ability for noise data
with specific distribution. On the other hand, since the noise generated by the
Noiser is more natural and more difficult to identify, the obtained Restorer would
have a better feature extraction ability and can identify trivial translation errors.
In cases where QE needs to model machine-translated noisy data, the Restorer
is more suitable for QE task.

4 Experiments

4.1 Settings

Dataset. Our experiments focus on the WMT21 QE tasks for English-to-
Chinese (En-Zh) and English -to-German (En-De) directions. The QE data in
each direction contains a training set of 7000, a validation set of 1000, and a
test set of 1000. Besides, we also use the test set of WMT20. To train our own
NMT model, we use the En-Zh and En-De parallel data released by the organiz-
ers1, which contains roughly 20M sentence pairs for each direction after cleaning.
For the CMLM and DR, We first trained a BERT-based domain classifier and
1 https://www.statmt.org/wmt21/quality-estimation-task.html.

https://www.statmt.org/wmt21/quality-estimation-task.html
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then screened 200K in-domain data from WikiMatrix for each direction2. The
validation set we use is the training set of the QE task.

Implementation Details. All our programs are implemented with Fairseq [17].
For the NMT model, we use Transformer-base architecture. We apply byte-pair-
encoding (BPE) [20] tokenization to reduce the number of unknown tokens and
set BPE steps to 32000. The learning rate is set to 5e−4. This setting is adopted
in both En-Zh and En-De directions.

For the CMLM, the casual mask is removed and learning rate is set to 5e-5.
For the Noiser-Restorer model, the parameters of the Noiser are frozen and the
learning rate for the Restorer is 5e−5. For the Noiser, we use the decoding results
of the to-be-evaluated NMT model as the training objective. We use inverse-
square-root scheduler in above three models. For the QE model, it trained for 30
epochs and the hyperparameter patience is set to 5. The activation function in
the BAL is ReLU. We batch sentence pairs with 4096 tokens and use the Adam
optimizer with β1 = 0.9, β2 = 0.98 and ε = 10−8 . The learning rate is 1e-4
without any scheduler.

The training data for all models is preprocessed by Fairseq based on the
vocabulary and BPE vocabulary of the NMT model. For fair comparison, we
tune all the hyper-parameters of our model on the validation data, and report
the corresponding results for the testing set. The main metric we use is Pearson’s
Correlation Coefficient. We also calculate Spearman Coefficient, but it is not a
ranking reference in the QE task.

4.2 Main Results

We compare our models with the following methods:

PLM-Baseline: Pre-training language models (PLM) are directly used as the
predictor without integrating the BAL layer. In our experiments, DistilBert [19]
and XLM-RoBERTa [4] were selected, and the baseline of organisers is also
implemented by XLM-RoBERTa.

NMT-Baseline: An NMT model pre-trained on parallel data is used as the
predictor, where NMT(finetune) is obtained by continuing to finetune on the
in-domain data used by CMLM and DR.

The experimental results in both En-Zh and En-De directions are reported
in Table 1. The Test20 is officially corrected, so there are no up-to-date results.
As can be seen, the performance of the baseline model is relatively poor. By
leveraging MLM training strategies, the CMLM can better focus on contextual
information and achieves much better performance than NMT model. Moreover,
the denoising restoration strategy further enhances the feature extraction ability
of Restorer by introducing noise that is consistent with the distribution of NMT
and outperforms the CMLM in two language pairs. This illustrates that our
approaches alleviate the discrepancy between the NMT model and the QE model,

2 http://data.statmt.org/wmt21/translation-task/WikiMatrix.

http://data.statmt.org/wmt21/translation-task/WikiMatrix
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Table 1. Experiment results on both En-Zh and En-De directions. ‘XLM-R’ and ‘Dis-
tilBERT’ are implemented by us based on XLM-RoBERTa and DistilBERT. ‘Avg’
represents the average value of the pearson over two datasets. ‘-’ indicates missing
results.

Direction System Test21 Test20 Avg
Pearson↑ Spearman↑ Pearson↑ Spearman↑

En-Zh XLM-R (WMT-baseline) 0.282 – – – 0.282
DistilBert 0.257 0.223 0.340 0.334 0.299
XLM-R 0.265 0.219 0.323 0.318 0.294
NMT 0.286 0.242 0.322 0.312 0.304
NMT (finetune) 0.294 0.243 0.322 0.311 0.308
CMLM 0.334 0.273 0.355 0.345 0.345
DR 0.342 0.275 0.362 0.353 0.352

En-De XLM-R (WMT-baseline) 0.529 – – – 0.529
DistilBert 0.466 0.433 0.432 0.427 0.449
XLM-R 0.537 0.492 0.469 0.464 0.503
NMT 0.528 0.491 0.427 0.424 0.478
NMT (finetune) 0.532 0.491 0.438 0.430 0.485
CMLM 0.569 0.518 0.450 0.437 0.509
DR 0.577 0.521 0.460 0.424 0.519

thereby making the NMT model better adapted to the QE task. Combined
with the official ranking, in En-Zh direction, our single model outperforms other
systems except the first place (which adapt multiple ensemble techniques and
data-augmentation).

The CMLM and DR also perform better than the fine-tuned NMT model,
which indicates the performance gains of them are not due to the introduction
of additional datasets. Besides, the NMT-based models are more effective than
PLM-Baseline in most of the comparisons, we consider that the NMT model is
naturally fit for machine translation related tasks, benefiting from the knowledge
of bilingual alignment.

5 Analysis

5.1 The Impact of Mask Ratio and [MASK] Symbol

During the training stage, the number of corrupted tokens may affect the perfor-
mance of the model, which is related to the mask ratio. We conduct experiments
to study the impact of different mask ratio and the results are illustrated in
Fig. 4.
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Fig. 4. The illustration of the CMLM. At the target side, some tokens are replaced
with [mask] symbol or random token. Note that it also needs to remove the casual
mask in decoder.

We find that the two diagrams exhibit roughly the same pattern. The QE
performance first improves, but when the mask ratio is too high, the results
start to decline. This is because as the mask ratio increases, the quality of the
pseudo data is gradually approaching the real machine translation, therefore the
model can better model semantic alignment between the imperfect translation
and source. However, when the mask ratio is too high, most of the input sen-
tence is covered and it is too difficult for the model to restore them, thus the
model can barely learn anything useful and the performance is degraded. We
also observe that the performance peak of the Noiser-Restorer model in En-Zh
direction comes later than that in the En-De direction. One possible reason is
that the Noiser in the En-Zh direction performs better than that in the En-De
direction, we will explain this in the next subsection.
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Fig. 5. The impact of the [MASK] symbol.
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In the CMLM strategy, among the corrupted tokens, some will be replaced
with [MASK] symbol, and the others will be replaced with random tokens. We
fix the mask ratio and then gradually increase the proportion of corrupted tokens
replaced with [MASK] symbol to study the impact of introducing [MASK] sym-
bol. The results are presented in Fig. 5. We can observe that performance get
worse as the introduced [MASK] symbol increases. It may be caused by the
mismatch between pre-training and fine-tuning when too many [MASK] tokens
are introduced, as they never appear during the fine-tuning stage. Furthermore,
using only random replacement does not give the best results, which proves that
the performance improvement brought by DR is not only due to the removal of
[MASK] symbol but also benefits from the introduction of natural noise close to
the real machine translation.

5.2 The Impact of Knowledge Distillation

In the implementation of the Noiser, we use the decoding results of the to-be-
evaluated NMT model as the training objective of the Noiser. Our motivation
is to make the Noiser learn the knowledge implied by to-be-evaluated model, so
as to generate sentences that is closer to the noise of real machine translation.
We conduct experiments to verify the effective of this scheme, and the results
are shown in Table 2.

Table 2. The comparison results of Noiser-Restorer under two strategies. ‘w/ kd’ and
‘w/o kd’ denote with or without knowledge distillation, respectively. The ‘MAE’ is the
Mean Absolute Error.

Direction System Test21 Test20 Avg
Pearson↑ MAE↓ Pearson↑ MAE↓

En-Zh Noiser-Restorer w/o kd 0.328 0.240 0.346 0.226 0.337
Noiser-Restorer w/ kd 0.334 0.202 0.360 0.233 0.347

En-De Noiser-Restorer w/o kd 0.546 0.125 0.449 0.144 0.498
Noiser-Restorer w/ kd 0.549 0.128 0.436 0.133 0.493

For a fair comparison, we extracted another dataset from WikiMatrix instead
of the one used to train the Noiser for experiments. According to the experimen-
tal results, we find that the scheme plays an obvious role in the En-Zh direc-
tion, which shows that the Noiser generates pseudo data consistent with the
noise distribution of the to-be-evaluated NMT model, thereby improving the
performance. However, the situation is different for the En-De direction, where
the results are not improved or even slightly decreased as a whole. We specu-
late that it may be affected by the performance of the to-be-evaluated neural
machine translation model. We studied the QE dataset and came up with the
results shown in the Table 3.
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Table 3. The statistical results of translation quality for QE dataset in En-Zh and
En-De directions. The values in the table represent the average value of hter label.

Direction train valid test21 test20

En-Zh 0.4412 0.2839 0.2283 0.3329
En-De 0.1784 0.1830 0.1754 0.1667

HTER indicates human-targeted translation edit rate, and the higher HTER
is, the worse the translation quality is. As can be seen in Table 3, the average
value of HTER in the En-Zh direction is generally higher than that in the En-
De direction. This shows that the to-be-evaluated NMT model has a better
translation effect in the En-De direction, thus the machine translation is not
much different from the reference translation. It is difficult for Noiser to learn
the pattern contained in the NMT model, so the knowledge distillation does not
play a significant role.

5.3 Different Loss Calculation Methods

Base on previous researches, there are two ways to calculate the loss:

i. Following BERT, calculating the loss only on the small subset that was
masked out.

ii. Calculating the loss over all input tokens at the target side.

Table 4. Experimental results of different loss calculation methods in En-Zh and En-
De directions. ‘Only-Corrupted’ and ‘All-Tokens’ mean the loss is calculated on the
corrupted tokens and all input tokens, respectively.

Direction System Test21 Test20 Avg
Pearson↑ MAE↓ Pearson↑ MAE↓

En-Zh Only-Corrupted 0.328 0.217 0.348 0.227 0.338
All-Tokens 0.334 0.202 0.355 0.233 0.345

En-De Only-Corrupted 0.574 0.125 0.445 0.136 0.510
All-Tokens 0.568 0.126 0.450 0.132 0.509

We compare these two methods on the CMLM strategy and the results are
shown in Table 4. In the En-Zh direction, the method of calculating the loss on all
tokens is better than that only on the corrupted tokens. However, the situation is
a little different in the En-De direction. We speculate that English and German
belong to the same family of languages, and the prediction is relatively simple,
so adding this additional information has little effect. Overall, the performance
of the two methods is roughly equivalent.
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6 Conclusion

When applying the pre-trained machine translation model to feature extraction
for QE, there are two discrepancies between the NMT model and the QE model.
One is the difference in data quality, the other is the regressive behavior of the
decoder. In this paper, we propose two strategies to adapt the neural machine
translation model to QE task, namely Conditional Masked Language Modeling
and Denoising Restoration. The CMLM adopts a mask-prediction task at the
target side, which allows the model to learn context-based representations. More-
over, the DR employs a Noiser-Restorer architecture, where the Noiser is used
to generate sentences with the same noise distribution as machine translation,
then the Restorer will detect and recover the introduced noise. Compared with
the original NMT model, our methods bridge the gaps between the NMT model
and the QE model, making it more suitable for the QE task. The experimental
results verify the effectiveness of our methods.

The main work in this paper focuses on sentence-level task. Intuitively, the
discrepancy also exists on word-level quality estimation when applying the pre-
trained NMT model, and our strategies could function without any adaptation.
Besides, enhancing the estimator can also improve QE performance, and we will
leave this as our future work.
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Abstract. Multilingual pre-trained representations are not well-aligned by
nature, which harms their performance on cross-lingual tasks. Previous methods
propose to post-align the multilingual pre-trained representations by multi-view
alignment or contrastive learning. However, we argue that both methods are not
suitable for the cross-lingual classification objective, and in this paper we pro-
pose a simple yet effective method to better align the pre-trained representations.
On the basis of cross-lingual data augmentations, we make a minor modifica-
tion to the canonical contrastive loss, to remove false-negative examples which
should not be contrasted. Augmentations with the same class are brought close
to the anchor sample, and augmentations with different class are pushed apart.
Experiment results on three cross-lingual tasks from XTREME benchmark show
our method could improve the transfer performance by a large margin with no
additional resource needed. We also provide in-detail analysis and comparison
between different post-alignment strategies.

Keywords: Multilingual pre-trained representations · Contrastive learning ·
Cross-lingual

1 Introduction

Cross-lingual transfer learning aims to transfer the learned knowledge from a resource-
rich language to a resource-lean language. The main idea of crosss-lingual transfer is
to learn a shared language-invariant feature space for both languages, so that a model
trained on the source language could be applied to the target language directly. Such
generalization ability greatly reduces the required annotation efforts, and has urgent
demand in real-world applications.

Recent multilingual pre-trained models, such as XLM-RoBERTa (XLM-R) [5],
have been demonstrated surprisingly effective in the cross-lingual scenario. By fine-
tuning on labeled data in a source language, such models can generalize to other target
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languages even without any additional training. This has become a de-facto paradigm
for cross-lingual language understanding tasks.

Despite their success in cross-lingual transfer tasks, multilingual pre-training com-
monly lacks explicit cross-lingual supervision, and the representations for different lan-
guages are not inherently aligned. To further improve the transferability of multilingual
pre-trained representations, previous works propose different methods for cross-lingual
alignment. Zheng et al. [28] and Lai et al. [14] propose to augment the training set
with different views, and align the pre-trained representations of different languages by
dragging two views closer. However, simply bringing different views closer would eas-
ily lead to representation collapse and performance degradation [22]. Meanwhile, Pan
et al. [19] and Wei et al. [25] propose to incorporate additional parallel data, and align
the pre-trained representations by contrasting positive and negative samples. However,
monotonously treating all random samples equally negative is inconsistent with the
classification objective.

In this work, we propose a simple yet effective method to better post-align the
multilingual representations on downstream tasks, which can both avoid representa-
tion collapse and meanwhile induce classification bias. With only training data for the
source language available, our method performs cross-lingual fine-tuning by two steps.
1) Firstly, the original training data is augmented with different views, including code-
switching, full-translation and partial-translation. All views could provide cross-lingual
supervision for post-alignment. 2) Given one training sentence as the anchor point,
the corresponding augmented view serves as the positive sample, and other augmented
views with different labels serve as the negative samples, contrastive learning is per-
formed by pulling positive samples together and pushing apart negative samples. This
is called Supervised Contrastive Learning (SCL), and can be deemed as a cross-lingual
regularizer to be combined with conventional fine-tuning.

We perform experiments on two cross-lingual classification tasks, namely XNLI
(cross-lingual inference) and PAWS-X (cross-lingual paraphrase identification) [6,26].
We compare different alignment methods, and our proposed method outperforms pre-
vious methods by a large margin, proving its effectiveness. Besides, we also apply
our method on the cross-lingual retrieval task of BUCC1 and tatoeba [1]. We use the
data from PAWS-X as supervision, and fine-tune the pretrained model by contrasting
samples with their machine translation. Our proposed method again outperforms other
methods by a large margin.

Detailed analysis and discussion are provided to compare different post-alignment
methods for pre-trained representations, and to prove the necessity of label-supervision
when performing cross-lingual contrastive learning.

2 Background

2.1 Contrastive Learning

Contrastive learning aims at maximizing the similarity between the encoded query q and
its matched positive samples k+ while keeping randomly sampled keys {k0, k1, k2, ...}
1 https://comparable.limsi.fr/bucc2017/.

https://comparable.limsi.fr/bucc2017/


214 S. Wang et al.

far away from it. With similarity measured by a score function s(q, k), InfoNCE [18]
loss is commonly used to this end:

Lctl =
exp(s(q, k+))

exp(s(q, k+)) +
∑n

i=1 exp(s(q, k
−
i ))

Contrastive learning has led to significant improvements in various domains [9,
10]. Recently, Khosla et al. [12] propose to incorporate label-supervision to the fine-
tuning of pre-trained models, and obtain improvement on multiple datasets of the GLUE
benchmark, and our work is inspired by them. However, their method is only targeted
at monolingual tasks.

2.2 Cross-Lingual Transfer

Cross-lingual transfer learning aims to transfer the learned knowledge from a resource-
rich language to a resource-lean language. Despite recent success in large-scale lan-
guage models, how to adapt models trained in high-resource languages (e.g., English)
to low-resource ones still remains challenging. Several benchmarks are proposed to
facilitate the progress of cross-lingual transfer learning [11,17], where models are fine-
tuned on English training set and directly evaluated on other languages.

Recently, several pre-trained multilingual language models are proposed for cross-
lingual transfer, including multilingual BERT [7], XLM [15], and XLM-R [5]. The
models work by pre-training multilingual representations using some form of language
modeling, and have made outstanding progress in cross-lingual tasks. However, most
existing models use only single-language input for language model finetuning, without
leveraging the intrinsic cross-lingual alignment. Therefore, several methods have been
proposed to post-align the pre-trained representations, by introducing some form of
cross-lingual supervision. Cao et al. [2] and Dou et al. [8] propose to generate word
alignment information from parallel data, and push the aligned words in parallel data to
have similar representations. Pan et al. [19], Wang et al. [23] and Wei et al. [25] propose
to utilize contrastive learning for post-alignment by contrasting positive and negative
samples, where positive samples are parallel to each other while negative samples are
randomly picked. Zheng et al. [28] and Lai et al. [14] propose to augment the training set
with different views, and align the representations by dragging two views close to each
other. In a nutshell, despite all variations of supervision in both sentence or word-level,
from both parallel data or automatically crafted data, the alignment must be performed
by inter-lingual comparing, either by bringing two representations closer or contrasting
a representation with random sampled representations. However, we argue that both
methods are in contradiction with the cross-lingual classification objective, for which
we will give detailed analysis in Sect. 3.2 (Fig. 1).

3 Approach

In this section, we first introduce the three cross-lingual data augmentation methods.
Based on that, we propose three paradigms to post-align the multilingual representa-
tions, and provide theoretical analysis and comparison for them.
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3.1 Cross-Lingual Data Augmentation

Fig. 1. Different cross-lingual data-augmentation methods. Here we use sentence-pair classifica-
tion as an example, therefore each sample contains two sentences.

In this work, we do not want to incorporate any parallel data (which is inaccessible in
a lot of scenarios, especially for a resource-lean language that we want to transfer to).
Therefore, to provide cross-lingual supervision for post-alignment, we propose three
data augmentation methods:

1. Code-switching: Following Qin et al. [20], we randomly select words in the original
text in the source language and replace them with target language words in the bilin-
gual dictionaries, to generate code-switched data. The intuition is to help the model
automatically and implicitly align the replaced word vectors in the source and all
target languages by mixing their context information, and the switched words can
serve as anchor point for aligning two representation space.

2. Full-translation: Machine translation has been proved to be an effective data aug-
mentation strategy under the cross-lingual scenario. It can provide translations
almost in-line-with human performance, and therefore serves as a strong baseline
for cross-lingual tasks.

3. Partial-translation: This method simply takes a portion of input and replace it with
its translation in another language. According to Singh et al. [21], partial-translation
could provide inter-language information, where the non-translated portion serves
as the anchor point. This is somehow akin to code-switching, and can be deemed as
code-switching in segment-level.

The three methods can provide cross-lingual supervision in a coarse-to-fine manner
(sentence-level, segment-level, word-level). We perform all the three methods to the
whole training set. Each training sample could be code-switched multiple times with
different results, and each task contains translation into multiple languages, leading to
multiple views from a cross-lingual perspective.

3.2 Cross-Lingual Alignment: What Do We Want?

Many experiments [2,13] suggest that to achieve reasonable performance in the cross-
lingual setup, the source and the target languages need to share similar representations.
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However, current multilingual pre-trained models are commonly pre-trained without
explicit cross-lingual supervision. Therefore, the cross-lingual transfer performance can
be further improved by additional cross-lingual alignment.

Given the training sample in source language and its cross-lingual augmentations,
previous methods perform cross-lingual alignment in two different trends: Multi-view
Alignment [14,28] or Contrastive Learning [19,25]. The multi-view alignment is to
bring the sample and the corresponding augmentation together, while the contrastive
learning is to bring these two together while pushing apart other random sampled aug-
mentations. Suppose we are working with a batch of training examples of size N ,
{xi, yi}, i = 1, ...N , xi denotes the training sample, while yi is the label, the two
different objectives can be denoted as follows:

LMV A = −s(Φ(xi), Φ(x̂i))

LCL = − log
s(Φ(xi), Φ(x̂i))

s(Φ(xi), Φ(x̂i)) +
∑N

j=1 Ij �=is(Φ(xi), Φ(x̂j))

where Φ(·) ∈ Rd denotes the L2-normalized embedding of the final encoder hid-
den layer before the softmax projection, and x̂i denotes the augmented view (code-
switching, full-translation, partial-translation, etc.), and s(q, k) denotes the similarity
measure (cosine similarity, KL divergence, etc.). MVA is short for multi-view align-
ment, and CL is short for contrastive learning.

Since in vanilla contrastive learning, the similarity function is normally in the form
of exponential, therefore LCL can be detached into two terms:

LCL = −s(Φ(xi), Φ(x̂i)))
︸ ︷︷ ︸

alignment

+ log(es(Φ(xi),Φ(x̂i)) + e
∑N

j=1 Ij �=is(Φ(xi),Φ(x̂j)))
︸ ︷︷ ︸

uniformity

where the first term optimize the alignment of representation space, and the second term
optimize the uniformity, as discussed in Wang et al. [24]. According to Gao et al. [9],
let W be the sentence embedding matrix corresponding to xi, i.e., the i-th row of W is
Φ(xi), optimizing the uniformity term essentially minimizes an upper bound of the
summation of all elements in WW�, and inherently “flatten” the singular spectrum of
the embedding space.

However, the uniformity term in LCL is in contradiction with the classification
objective. In classification task, we want the representations to be clustered in several
bunches, each bunch corresponds to a class. Or else to say, we want the representations
to be inductively biased, rather than uniformly distributed.

On the other hand, it is obvious that the multi-view alignment objective LMV A is
to solely maximize the alignment. This would easily lead to representation collapse,
since simply projecting all representations to one data point could easily reduce the
alignment term to zero. Contrast between samples is necessary to avoid collapse, and
simply removing the uniformity term is also not what we want. (Fig. 2).



Supervised Contrastive Learning for Cross-Lingual Transfer Learning 217

Fig. 2. Our proposed supervised contrastive learning. Solid line connects positive pairs while
dashed line connects negative pairs. Notice the false negative sample is removed.

3.3 Better Alignment with SCL

To better perform cross-lingual alignment, we propose to introduce label information to
the vanilla contrastive learning, named as Supervised Contrastive Learning (SCL):

LSCL = − log
s(Φ(xi), Φ(x̂i))

s(Φ(xi), Φ(x̂i)) +
∑N

j=1 Iyj �=yi
s(Φ(xi), Φ(x̂j))

More concretely, our modification is based on InfoNCE loss [18], therefore the
similarity function is written as:

s(Φ(xi), Φ(x̂i)) = ecos(Φ(xi),Φ(x̂i))/τ

where τ > 0 is an adjustable scalar temperature parameter that controls the separa-
tion of classes. Empirical observations show that both L2-normalization of the encoded
embedding representations (which is incorporated in the calculation of cosine similar-
ity) and an adjustable scalar temperature parameter τ improve performance. This can
serve as a cross-lingual regularization term and be combined with the canonical classi-
fication loss:

LCE = yi · log(1 − ŷi) + ŷi · log(1 − yi)

Ltotal = LCE + λLSCL

where λ is a scalar weighting hyperparameter that we tune for each downstream task.
The core idea is simple, just to remove the negative samples which belong to the

same class with the anchor point. Therefore, only samples from different classes would
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be pulled apart. The modified uniformity term is not to unify the representations any
more, but to push the multilingual decision clusters apart from each other.

This loss can be applied to a variety of encoders, not just limited to multilingual
pre-trained transformer-like models. The loss is meant to capture similarities between
examples of the same class and contrast them with examples from other classes. This is
in line with the objective of cross-lingual alignment. When we are doing cross-lingual
alignment, what we really want to do is to transfer the representation for a certain class
to another language, rather than to learn a unified multilingual representation space.

4 Experiments

4.1 Data Preparation

In this work, we mainly focus on sentence-level tasks, for which the aggregated repre-
sentation is easily accessible. We conduct experiments on two cross-lingual sentence-
pair classification tasks: natural language inference and paraphrase identification. The
Cross-lingual Natural Language Inference corpus (XNLI) [6] asks whether a premise
sentence entails, contradicts, or is neutral toward a hypothesis sentence. The Cross-
lingual Paraphrase Adversaries fromWord Scrambling (PAWS-X) [26] dataset requires
to determine whether two sentences are paraphrases. Both tasks are from XTREME
benchmark [11]. Despite their intrinsic different objective, both tasks can be formal-
ized as sentence-pair classification tasks. For both tasks, the training set is in English,
while human annotated development and test sets are available for a bunch of different
languages. The model is evaluated on the test data of the task in the target languages.

For cross-lingual data augmentation, we first randomly sample a target language
and then adapt the generating method for each data augmentation method. Since XNLI
covers more target languages than PAWS-X, we set tf = 2, tp = 2, tc = 1 in XNLI,
and tf = 1, tp = 1, tc = 1 in PAWS-X, where tf , tp and tc respectively represent the
number of samples generated by full-translation, partial translation and code-switching
for each training data. Therefore, each training batch contains 6× batch_size sentence
pairs in XNLI and 4×batch_size sentence pairs in PAWS-X. The code-switching ratio
rc is set as 0.75 in XNLI and 0.5 in PAWS-X. For cross-lingual retrieval tasks mentioned
below, each training pair from PAWS-X is detached into two sentences when feeding to
the model, and we do not incorporate code-switching as data augmentation.

4.2 Setup

For sentence pair classification tasks of XNLI and PAWS-X, we concatenate the input
as the formation defined by XLM-R:

[s] input1 [\s] input2 [\s]
and we use the final hidden layer corresponding to [s] as aggregated representation.
For retrieval tasks of BUCC and tatoeba, we perform alignment on the same aggregated
representation, but the retrieval is performed on the averaged pooled eighth layer, fol-
lowing the related works [3,4]. Adam optimizer is applied with a learning rate of 5e−6.
Batch size is set as 24 for XNLI, 36 for PAWS-X and 48 for retrieval.



Supervised Contrastive Learning for Cross-Lingual Transfer Learning 219

Table 1. Experiment results on XNLI. Results with † are reimplemented by us with their released
codes. InfoXLM [3] and HITCL [25] use contrastive learning while xTune [28] uses multi-view
alignment. Notice xTune uses more augmentation data and model ensemble compared to us.

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg

cross-lingual transfer (Models are fine-tuned on English training data only.)

InfoXLM 86.4 74.2 79.3 79.3 77.8 79.3 80.3 72.2 77.6 67.5 74.6 75.6 67.3 77.1 77.0 76.5

HITCL 86.3 74.8 80.6 79.5 78.9 81.3 80.5 73.1 79.0 69.9 75.7 75.4 69.7 77.4 77.6 77.3

xTune† 84.7 76.7 81.0 79.9 79.4 81.6 80.5 75.6 77.9 68.4 75.4 77.2 72.2 78.1 77.4 77.7

XLMR-base 84.8 72.7 78.8 77.9 76.5 79.8 78.9 72.2 76.5 66.8 73.9 73.7 68.0 76.8 75.4 75.5

MVA 85.0 75.0 79.1 78.2 78.1 79.7 79.1 72.5 76.8 68.9 75.5 74.5 70.0 76.9 77.4 76.5

CL 84.4 75.5 80.0 79.3 78.7 80.4 79.8 74.1 78.3 71.5 76.1 76.0 71.0 78.2 77.8 77.4

SCL 86.3 77.8 81.7 81.3 80.6 82.7 81.8 76.3 80.4 73.8 78.9 78.1 73.1 80.5 80.2 79.6

translate-train (Models are fine-tuned on both English data and its translations.)

InfoXLM 86.5 78.9 82.4 82.3 81.3 83.0 82.6 77.8 80.6 73.3 78.9 79.5 71.6 81.0 80.7 80.0

HITCL 86.5 78.1 82.2 80.8 81.6 83.2 82.3 76.7 81.3 73.8 78.6 80.5 73.9 80.4 80.7 80.0

xTune† 86.6 79.7 82.7 82.2 81.9 83.1 82.3 78.9 80.9 75.7 78.4 79.8 75.3 80.5 80.0 80.5

XLMR-base 84.3 76.9 80.3 79.8 79.1 81.5 80.3 75.3 78.1 72.9 77.1 77.4 70.8 79.8 79.7 78.2

MVA 85.4 78.5 81.5 81.8 80.6 82.3 81.0 77.3 79.9 74.1 78.8 78.2 73.5 80.2 80.2 79.6

CL 85.9 77.2 81.6 80.5 80.0 81.7 81.5 76.5 80.3 73.5 77.8 78.2 72.5 79.9 79.9 79.1

SCL 86.4 78.8 82.0 82.0 80.5 82.9 82.3 77.3 80.5 74.5 78.6 79.7 74.2 80.9 80.3 80.1

We evaluate a number of strong baselines and the three post-align strategies dis-
cussed in the former section. The baseline is trained with cross-entropy loss with
no alignment term serving as cross-lingual regularizer. Then we create cross-lingual
augmentations with different methods, and apply different alignment strategies. Three
groups of augmentations (full-translation, partial translation, code-switching) are mixed
together. The bilingual dictionaries we used for code-switch substitution are from
MUSE [16]. For languages that cannot be found in MUSE, we ignore these languages
since other bilingual dictionaries might be of poorer quality. The machine translated
training set is taken from the XTREME repository, which is obtained by an in-house
translation model from Google.

We mainly compare with models that learn multilingual contextual representations
as they have achieved state-of-the-art results on cross-lingual tasks. All cross-lingual
alignment strategies are applied to pre-trained XLM-R-base. Following the trend of Hu
et al. [11], we mainly consider the following two scenarios:

Cross-Lingual Transfer: The models are fine-tuned on English training data, and
directly evaluated on different target languages.

Translate-Train: The models are fine-tuned on the concatenation of English training
data and its translation to all target languages. Translate-train is normally a strong base-
line for cross-lingual transfer tasks. For classification tasks, it is straightforward that the
translation should be assigned with the same label.

In both settings, the alignment term is combined with the canonical cross-entropy
loss to be back-propagated together. We use KL Divergence as the similarity measure
for multi-view alignment. For contrastive learning, we only consider in-batch negative
samples, leaving more complicated methods (e.g. to maintain a memory bank for neg-
ative samples [10]) to the future.
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Table 2. Experiment results on PAWS-X. Results with † are reimplemented by us with their
released codes.

Method en de es fr ja ko zh avg

cross-lingual transfer (Models are fine-tuned on English training data only.)

InfoXLM† 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4

xTune† 93.7 90.2 89.9 90.4 82.6 81.9 84.3 87.6

XLMR-base 94.5 88.4 89.4 89.3 76.0 77.2 82.6 85.3

MVA 95.0 89.1 90.9 90.6 79.5 81.1 83.7 87.1

CL 94.6 89.8 91.3 90.9 78.9 80.0 82.8 86.9

SCL 95.3 91.3 91.8 91.7 83.2 84.5 85.7 89.0

translate-train (Models are fine-tuned on both English data and its translations.)

InfoXLM† 94.5 90.5 91.6 91.7 84.4 83.9 85.8 88.9

xTune† 93.9 90.4 90.9 91.7 85.6 86.8 86.6 89.4

XLMR-base 95.0 89.8 91.8 91.6 81.2 84.3 84.4 88.3

MVA 95.3 90.9 92.0 91.8 83.1 83.6 85.3 88.8

CL 95.4 90.2 92.1 91.4 81.7 84.0 85.3 88.6

SCL 95.5 91.4 92.3 92.3 83.2 85.0 87.2 89.5

4.3 Main Results

As shown in Table 1 and Table 2, we can see that our proposed method could improve
the cross-lingual transfer results of pre-trained XLM-R by a large margin. Our method
is especially effective in zero-shot setting, where the accuracy is improved by 4.1 points
on XNLI and 3.7 points on PAWS-X. Our method can also achieve significant improve-
ment in translate-train setting, where the accuracy is improved by 1.9 points on XNLI
and 1.2 points on PAWS-X. Results are consistently improved among all languages,
despite their relation with English close or not.

The results of multi-view alignment and vanilla contrastive learning, despite using
the same augmentation data, underperform our method on both datasets. This proves the
pre-trained representations are better aligned according to the label information after
SCL. Different representations, despite belonging to different languages, are projected
to the same cluster if they belong to the same class.

SCL is a simple yet effective framework to align the pre-trained multilingual rep-
resentations on downstream tasks. Cross-lingual signals can be obtained by machine
translation or bilingual dictionary, therefore no extra human annotation is needed. While
previous works also propose other methods to align the pre-trained representations, the
results in Table 1 and 2 prove the superiority of our method.

5 Analysis and Discussion

5.1 Different Augmentations

In this section, we want to explore the influence of different cross-lingual augmen-
tations. We apply different groups of augmentations under the zero-shot setting, and
compare the results on different tasks.



Supervised Contrastive Learning for Cross-Lingual Transfer Learning 221

Table 3. Experiment results on XNLI and PAWS-X based on different cross-lingual data aug-
mentations, including full-translation, partial translation, and code-switching. For each group of
data, we apply all three post-align methods.

AugData Method XNLI PAWS-X

en avg en avg

None XLMR 84.9 75.5 94.5 85.3

Full-trans MVA 85.2 76.6 94.9 87.1

CL 85.0 77.9 94.9 87.2

SCL 85.6 79.2 95.3 88.7

Partial-trans MVA 83.7 75.7 95.2 86.5

CL 84.5 76.9 94.9 86.6

SCL 85.3 78.4 95.3 88.1

Code-switch MVA 85.3 76.4 94.7 86.1

CL 84.5 76.1 95.2 86.5

SCL 84.8 76.2 95.1 87.2

As shown in Table 3, we can see that the results of full translation and partial trans-
lation are better than code-switching. We think it is because the information provided by
code-switching is comparably sparse, only a few anchor words covered by the bilingual
dictionary. On the other side, well-trained machine translation system can provide fluent
and accurate translation, therefore the multilingual representation can be better aligned.
We can also tell that the results of our proposed method outperform the counterparts
again on both datasets, proving its superiority.

5.2 Similarity Measure

Table 4. Experiment results of different similarity measures and loss weight λ on XNLI. Here
we only use the augmentation of full-translation, and the results is in cross-lingual setting. We do
not experiment on PAWS-X due to resource limitation.

Similarity measure Lambda XNLI

en avg

KLDiv 1 85.19 76.64

10 85.05 76.71

Symmetric KLDiv 1 84.67 76.17

10 83.85 76.20

Cosine similarity 1 83.03 75.16

10 84.05 76.38

Mean-square error 1 83.95 75.37

10 84.35 76.58

The similarity measure in LMV A has many alternatives. Previous studies on multi-view
learning propose all kinds of measures [27], such as Cosine-Similarity, Mean-Square
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Error, Kullback-Leibler Divergence and Symmetric Kullback-Leibler Divergence. Sup-
pose we are dealing with an input x and its augmentation x̂, different similarity mea-
sures can be denoted as:

LKLDiv = Φ(x)log
Φ(x̂)
Φ(x)

LSymKLdiv = Φ(x)log
Φ(x̂)
Φ(x)

+ Φ(x̂)log
Φ(x)
Φ(x̂)

Lcosine =
Φ(x) · Φ(x̂)

||Φ(x)|| ||Φ(x̂)||
LMSE = ||Φ(x) − Φ(x̂)||2

where Φ(·) denotes the L2-normalized aggregated representation. We experiment dif-
ferent similarity measures on the multi-view alignment objective, in combination with
different loss weight λ, and the results are shown in Table 4. Surprisingly, we do not see
a clear difference between different measures, and in the end we decide to use cosine
similarity with λ = 10 in all experiments. On the other hand, λ is set as 1 for contrastive
learning.

5.3 Contrast Temperature

Table 5. Experiment results of different contrast temperatures on XNLI and PAWS-X. Here we
only use the augmentation of full-translation, and the results are based on supervised contrastive
learning.

setting temp XNLI PAWS-X

en avg en avg

Cross-transfer 1.0 85.6 79.2 95.3 88.7

0.3 85.2 79.1 94.8 88.7

0.1 85.8 79.2 95.3 88.2

Translate-train 1.0 86.4 79.8 95.4 89.0

0.3 85.8 79.8 95.4 89.1

0.1 85.9 79.5 95.3 89.2

Previous empirical observations show that an adjustable scalar temperature parame-
ter τ can improve the performance of contrastive learning [10,24]. Lower tempera-
ture increases the influence of examples that are harder to separate, effectively creating
harder negatives. However, we do not find such a pattern in our experiments, as shown
in Table 5, and finally we decide to set the temperature τ as 1.0 in all experiments.

5.4 SCL for Cross-Lingual Retrieval

To further prove the importance of label information in cross-lingual fine-tuning, we
also apply the alignment methods on cross-lingual sentence retrieval tasks. We experi-
ment on two datasets, BUCC2 and tatoeba [1]. Both datasets aim at extracting parallel

2 https://comparable.limsi.fr/bucc2017.

https://comparable.limsi.fr/bucc2017
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sentences from a comparable corpus between English and other languages, with BUCC
covering 4 languages and tatoeba covering more than 100 languages. To compare with
previous works, we only use a subset of tatoeba (33 languages) in this work.

The pre-trained multilingual models are able to provide language-deterministic rep-
resentations by nature. Previous works directly calculate the similarity of different sen-
tences by representations from the pre-trained model, to determine whether two sen-
tences are parallel or not [3,4,11]. In this work, we propose to use the data of paraphrase
identification, including the original training sentence pairs and their translations to six
languages, to post-align the pre-trained representations.

We compare the previously proposed three strategies to post-align the pre-trained
representations. Since we are dealing with retrieval task, the sentence pair from two dif-
ferent languages are encoded separately by the pre-trained XLM-R. We apply the align-
ment training methods on the aggregated representation. For multi-view alignment, only
two translation pairs are pulled closer to each other. For vanilla contrastive learning, we
treat all translation pairs as positive while the others as negative. For our proposed SCL,
both translation pairs and translation with paraphrasing pairs are deemed as positive,
while the others are deemed as negative, as denoted by the following formula:

LSCL = −
N∑

j=1

Iyij=1 log
s(Φ(xi), Φ(x̂j))

s(Φ(xi), Φ(x̂j)) +
∑N

k=1 Iyik �=1s(Φ(xi), Φ(x̂k))

where xi is a training sample and x̂i is its translation, and yij = 1 denotes xi and xj

are a paraphrase pair. After the fine-tuning stage, following previous work, we utilize
the average pooled hidden representation of the eighth layer of the pre-trained model as
the sentence representation.

As shown in Table 6 and Table 7, paraphrase identification dataset with translated
augmentation, despite containing noise generated by the MT model, can provide cross-
lingual signal to post-align the multilingual representations. Vanilla contrastive learning
can perform alignment space by pulling translation pairs together and pushing transla-
tion pairs apart, but paraphrase pairs also possess the same semantics, and should not
be contrasted as negative samples. After introducing label information into contrast, the

Table 6. Experiment results on BUCC2018 test set. Results with ∗ are released by XTREME
[11]. We apply different post-align strategies on pre-trained XLM-RoBERTa-base model using
the training set of PAWS-X with translation augmentation.

Method en-de en-fr en-ru en-zh avg

mBERT∗ 62.5 62.6 51.8 50.0 56.7

XLM∗ 56.3 63.9 60.6 46.6 56.8

XLMR-large∗ 67.6 66.5 73.5 56.7 66.0

XLMR-base 82.68 74.85 82.08 64.09 75.93

MVA 43.92 26.24 38.71 7.58 29.11

CL 87.22 79.93 86.88 78.83 83.21

SCL 88.82 81.88 88.01 82.47 85.29
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Table 7. Experiment results on tatoeba. Result with ∗ is released by [4]. xx denotes the 33 lan-
guages as experimented in [3] and [4], and we release the averaged accuracy in both directions.

Method en-xx xx-en

XLMR-base∗ 55.50 53.40

XLM-E [4] 65.00 62.30

InfoXLM [3] 68.62 67.29

XLMR-base 55.60 53.49

MVA 28.00 27.79

CL 78.80 77.87

SCL 80.41 80.84

retrieval accuracy is further improved by 2–3 points. On the contrary, multi-view align-
ment would lead to representation collapse and cannot converge at all. This is in line
with our previous analysis.

6 Conclusion

In this paper, we propose to improve cross-lingual fine-tuning with supervised con-
trastive learning. Cross-lingual supervision is created by augmenting the training set,
and different methods to post-align the multilingual pre-trained representation are com-
pared. We propose to incorporate label-information when performing cross-lingual con-
trastive fine-tuning, and outperforms previous methods by a large margin on four cross-
lingual transfer benchmark datasets.

Canonical cross-entropy has many intrinsic problems, especial when performing
transfer learning tasks, and contrastive learning can be a decent supplementary. By
alleviating the commonality and differences between different examples, representa-
tions are efficiently transferred from one domain or language to another. In the future,
we would explore the application of supervised contrastive learning on other transfer
learning tasks, including token-level classification, language generation, cross-domain
transfer, etc.
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Abstract. Mongolian question answer matching task is challenging,
since Mongolian is a kind of low-resource language and its complex mor-
phological structures lead to data sparsity. In this work, we propose an
Interactive Mongolian Question Answer Matching Model (IMQAMM)
based on attention mechanism for Mongolian question answering sys-
tem. The key parts of the model are interactive information enhance-
ment and max-mean pooling matching. Interactive information enhance-
ment contains sequence enhancement and multi-cast attention. Sequence
enhancement aims to provide a subsequent encoder with an enhanced
sequence representation, and multi-cast attention is designed to generate
scalar features through multiple attention mechanisms. Max-Mean pool-
ing matching is to obtain the matching vectors for aggregation. More-
over, we introduce Mongolian morpheme representation to better learn
the semantic feature. The model experimented on the Mongolian corpus,
which contains question-answer pairs of various categories in the law
domain. Experimental results demonstrate that our proposed Mongo-
lian question answer matching model significantly outperforms baseline
models.

Keywords: Mongolian · Question answer matching · Interactive
information enhancement · Law domain

1 Introduction

Question answer matching is used to identify the relationship between the
question-answer pairs, and it is one of the application scenarios of text match-
ing. Text matching is an important fundamental technology in Natural Language
Processing (NLP) and can be applied to a large number of NLP tasks, such as
Information Retrieval (IR), Natural Language Inference (NLI), question answer-
ing (QA) system, dialogue system, etc. For the tasks of Information Retrieval,
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text matching is utilized to compute the relevance between queries and docu-
ments to select the relevant documents [4]. For the tasks of Natural Language
Inference, text matching is employed to judge whether the premise can infer the
hypothesis [1]. And for the question answering tasks, text matching is applied
to pick the answers that are most relevant to a given question [16].

With the development of deep learning, text matching methods with neu-
ral network are increasingly emerging. These methods can be divided into two
types-representation-based match and interaction-based match. The first type
is representation-based match [4,11,14], which is focused on modeling the rep-
resentations of the two sentences, so that they are encoded into semantic vec-
tors in the same embedding space. The second type is interaction-based match
[2,17,21], which is targeted at interacting with each information between sen-
tence pairs to improve the process of representation learning. Interaction-based
match performs better than representation-based match, because representation-
based match lacks a comparison of lexical and syntactic information between sen-
tence pairs, while interaction-based match can take advantage of the interactive
information across sentence pairs to enhance their own representations. There-
fore, interactive matching methods are currently the mainstreaming methods of
text matching.

However, the development of Mongolian question answering system is rel-
atively slow, and there are few studies about it. The first reason for the slow
development is that Mongolian is a kind of low-resource language. It lacks public
labeled corpus. The second reason is the data-sparse problem caused by complex
Mongolian morphological structures. Mongolian is an agglutinative language and
its root can be followed by different suffixes, which is different from Chinese and
English.

Fig. 1. A Mongolian question-answer pair example.

In this paper, we construct a Mongolian question answering data set in the
law domain. An example is shown in Fig. 1, there are two Mongolian sentences,
including the question and its corresponding answer. Our task is to judge whether
the answer corresponds to the question. In order to solve the problem of insuf-
ficient information enhancement of previous interaction-based matching meth-
ods, we propose an Interactive Mongolian Question Answer Matching Model
(IMQAMM), which combines interactive information enhancement and max-
mean pooling matching. Interactive information enhancement concatenates a
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series of feature vectors to get the enhanced sequence representation and adopts
a compression function to reduce feature vectors to scalars based on multiple
attention mechanisms for the issue of data-sparse. Max-Mean pooling matching
is to compute the maximum and average cosine similarities corresponding to
each morpheme representation.

The paper is organized as follows: Sect. 2 introduces the related work.
Section 3 presents the details of our Mongolian question answer matching model.
Section 4 shows our experimental setup and results. Section 5 gives the conclusion
and the future work.

2 Related Work

Text semantic matching is the core of retrieval question answering system. In
recent years, there has been a lot of research on text semantic matching, which
has driven the development of question answering systems. Early work on text
semantic matching was based on relatively simple models to compare the sen-
tence pairs. Most of these work was based on sentence encoding methods. Huang
et al. (2013) proposed Deep Structured Semantic Models (DSSM), which pro-
jected queries and documents into a common low-dimensional space to get sim-
ilarities between them. Since the CNN has the characteristics of local percep-
tion and parameter sharing, Shen et al. (2014) improved the DSSM model and
proposed the Convolutional Latent Semantic Model (CLSM). To tackle the lim-
itations of RNN in capturing contextual dependencies, Palangi et al. (2014)
presented the Long Short Term Memory DSSM (LSTM-DSSM). Mueller and
Thyagarajan (2016) proposed the Manhattan LSTM (MaLSTM) model, which
utilized the siamese LSTM to compute the Manhattan distance between sentence
pairs. Shen et al. (2018) proposed Directional Self-Attention Network (DiSAN)
without any RNN or CNN for sentence encoding. Yang and Kao (2020) proposed
a Siamese sentence encoder that would not propagate any interactive informa-
tion between sentence pairs.The matching methods based on attention networks
have gradually developed [5,16,24]. Tan et al. (2016) used the attentive LSTM
to match questions and passage answers with question information. Yin et al.
(2016) explored computing the attention matrix before and after convolution to
select correct answers for a question. Kim et al. (2019) used densely-connected
recurrent neural network and concatenated the co-attentive features in multiple
layers for semantic sentence matching.

Compare-Aggregate networks are very popular in different tasks [2,17,18,
20,21]. Wang and Jiang (2017) presented a compare-aggregate model that per-
formed word-level matching by element-wise multiplication or subtraction and
aggregated by CNN. Wang et al. (2017) proposed a bilateral multi-perspective
matching (BiMPM) model, which used multi-perspective cosine matching strat-
egy between encoded sentence pairs. Chen et al. (2017) improved the app-
roach proposed by Parikh et al. (2016) and achieved sequential inference model
using chain LSTMs. Tay et al. (2017) presented ComProp Alignment-Factorized
Encoders (CAFE) that used factorization machines to compress the alignment
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vectors into scalar features, which can effectively augment the word representa-
tions. Tay et al. (2018) explored using Multi-Cast Attention Networks (MCAN)
to improve learning process by adopting several attention variants and perform-
ing multiple comparison operators.

These text semantic matching models laid the foundation for later IR models
and QA systems. Although these models have achieved state-of-the-art perfor-
mance on various datasets, they may not be suitable for low-resource aggluti-
native languages. In this paper, we introduce Mongolian morpheme represen-
tation, then use interactive information enhancement to take full advantage of
the information across Mongolian question-answer pairs and apply max-mean
pooling matching to capture the maximum influence and the overall influence
between Mongolian question-answer pairs.

Fig. 2. Architecture for Interactive Mongolian Question Answer Matching Model
(IMQAMM), where the initial morpheme representations and the contextual repre-
sentations are respectively applied to compute the similarity matrix for interactive
information enhancement.
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3 Model Architecture

In this section, we will describe our model architecture layer by layer. Figure 2
shows a high-level view of the architecture, and then the details of our model
are given as follows.

Fig. 3. An example of traditional Mongolian transformation steps.

3.1 Input Layer

Mongolian is a kind of agglutinative language with complex morphological struc-
tures [19]. Although there are natural spaces between Mongolian words, morpho-
logical segmentation is still needed for us. Mongolian word-formation is achieved
by appending different suffixes to the stem, and they can also be concatenated
layer by layer, which can lead to data sparsity. In this paper, we use Latin to deal
with Mongolian and segment the suffixes to get the morpheme representations
[22].

Before getting the morpheme representations of Mongolian question-answer
pairs, we need to make some transformations to the traditional Mongolian lan-
guage. As shown in Fig. 3, the steps of transformation are divided into three
steps. First of all, we convert the traditional Mongolian alphabet to the corre-
sponding Latin alphabet. Next, because a Mongolian glyph can map to different
letters, it is necessary to proofread the text [8]. Finally, the suffixes connect to
the stem through a Narrow No-Break Space (NNBS) (U+202F, Latin:“-”), so we
can segment the suffixes to get the independent training units.

To obtain the morpheme embeddings of Mongolian question-answer pairs,
we adopt Word2Vec [9], which contains CBOW (Continuous Bag of Word) and
Skip-gram. And we choose the Skip-gram model to train the morpheme vectors.
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3.2 Context Encoding Layer

LSTM is a variant of RNN, which can capture contextual dependencies effec-
tively. In order to better represent the semantic information, we utilize the
bi-directional LSTM (BiLSTM) to extract contextual features from question
embeddings q and answer embeddings a.

q̄i = BiLSTM(q, i) , ∀i ∈ [1, . . . , m] (1)

āj = BiLSTM(a, j) , ∀j ∈ [1, . . . , n] (2)

where m is the length of question sentence, and n is the length of answer sentence.

3.3 Interaction Layer

In this layer, we introduce the interactive information enhancement, which con-
tains sequence enhancement based on LSTMs and multi-cast attention using
four variants of attention mechanism.

Sequence Enhancement. Inspired by the ESIM proposed by Chen et al.
(2017), we also adopt the non-parameterized comparison strategy for sequence
enhancement. Firstly, we calculate the similarity matrix between a question-
answer pair encoded by BiLSTM.

eij = q̄i
T āj (3)

Then the key of the strategy is soft alignment attention, which can get an
attentive vector of a weighted summation of the other hidden states (āj or q̄i).
This process is shown in the following formulas:

q̃i =
n∑

j=1

exp (eij)∑n
k=1 exp (eik)

āj , ∀i ∈ [1, . . . ,m] (4)

ãj =
m∑

i=1

exp (eij)∑m
k=1 exp (ekj)

q̄i , ∀j ∈ [1, . . . , n] (5)

where q̃i is a weighted summation of {āj}nj=1, ãj is a weighted summation of
{q̄i}mi=1.

Finally, we use the original hidden states and the attentive vectors to compute
the difference and the element-wise product, which are then concatenated with
the original hidden states and the attentive vectors.

T q
i = [q̄i; q̃i; q̄i − q̃i; q̄i � q̃i] , ∀i ∈ [1, . . . ,m] (6)

T a
j = [āj ; ãj ; āj − ãj ; āj � ãj ] , ∀j ∈ [1, . . . , n] (7)
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Co-attention. Co-attention is a pair-wise attention mechanism, which has a
natural symmetry between sentence pairs or other pairs [7]. Co-attention is a
kind of variant of attention mechanism, and in this work, we decide to adopt four
variants of attention mechanism: (1) max-pooling co-attention, (2) mean-
pooling co-attention, (3) alignment-pooling co-attention, and (4) self
attention.

The first step is to connect question and answer by calculating the similarity
matrix between the initial morpheme embeddings of question-answer pairs.

sij = qTi Maj (8)

where M is a trainable parameter matrix.
Extractive pooling includes max-pooling and mean-pooling. Max-pooling

co-attention aims to attend each morpheme of the sequence based on the max-
imum effect on each morpheme of the other sequence, while mean-pooling
co-attention is focused on the average effect. The formulas are as following:

q′
1 = Softmax(max

col
(s))�q a′

1 = Softmax(max
row

(s))�a (9)

q′
2 = Softmax(mean

col
(s))�q a′

2 = Softmax(mean
col

(s))�a (10)

where q′
1, q′

2, a′
1 and a′

2 are the co-attentive representations of q or a.
Similar to the sequence enhancement mentioned above, alignment-pooling co-
attention is computed individually to softly align each morpheme to the other
sequence. The process is shown in the following formulas:

q̃i
′ =

n∑

j=1

exp (sij)∑n
k=1 exp (sik)

aj , ∀i ∈ [1, . . . ,m] (11)

ãj
′ =

m∑

i=1

exp (sij)∑m
k=1 exp (skj)

qi , ∀j ∈ [1, . . . , n] (12)

where q̃i
′ is a weighted summation of {aj}nj=1, ãj

′ is a weighted summation of
{qi}mi=1.

Self attention is applied to both question and answer independently. The sen-
tence representation is denoted by x instead of q or a. The self attention function
is computed as:

x′
i =

l∑

j=1

exp (sij)∑l
k=1 exp (sik)

xj (13)

where xi
′ is the self-attentional representation of xj , l is the length of the sen-

tence.
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Fig. 4. Information enhancement of question.

Multi-cast Attention. Multi-cast attention can get a multi-casted feature
vector from multiple attention mechanisms. Each attention mechanism performs
concatenation, subtractive and multiplicative operations respectively, and uses a
compression function to get three scalars. The initial morpheme embeddings of
a question-answer pair q and a are replaced by x, and x̃ is the attentive vector.
The casted attention features for each attention mechanism are shown in the
following formulas:

fcon = Fc([x̃;x]) (14)

fsub = Fc(x̃ − x) (15)

fmul = Fc(x̃ � x) (16)

where Fc is a compression function, [.; .] is the concatenation operator and � is
the element-wise product.

Factorization Machines (FM) can make predictions on any real-valued feature
vector [13]. Therefore, we adopt FM as a compression function to get casted
scalars. The function is as follows:

F (x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑

j=i+1

< vi, vj > xixj (17)

where w0 ∈ R , wi ∈ R
n , v1, . . . , vn ∈ R

n×k, and k is the number of latent
factors of the FM model.

For each Mongolian question-answer pair, we apply four variants of attention
mechanism mentioned above: (1) Max-pooling co-attention (2) Mean-pooling
co-attention (3) Alignment-pooling co-attention and (4) Self-attention. Take the
question sentence as an example, as shown in the Fig. 4, three scalars are gener-
ated from each attention mechanism, so the final multi-casted feature vector is
t ∈ R

12. As such, for each morpheme, we concatenate the enhanced sequence rep-
resentation T and the multi-casted feature vector t to get the new representation
Oq. And Oa can be obtained in the same way.
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Oq
i = [T q

i ; t
q
i ] , ∀i ∈ [1, . . . ,m] (18)

Oa
j = [T a

j ; t
a
j ] , ∀j ∈ [1, . . . , n] (19)

We use BiLSTM to encode interaction information at each time-step of Oq

and Oa.

−→
hq
i =

−−−−→
LSTM(hq

i−1, O
q
i ) i = 1, . . . ,m

←−
hq
i =

←−−−−
LSTM(hq

i+1, O
q
i ) i = m, . . . , 1

(20)−→
ha
j =

−−−−→
LSTM(ha

j−1, O
a
j ) j = 1, . . . , n

←−
ha
j =

←−−−−
LSTM(ha

j+1, O
a
j ) j = n, . . . , 1

(21)

3.4 Matching Layer

To match question-answer pairs, we adopt the max-mean pooling matching strat-
egy. Firstly, the cosine function is defined as follows:

sim = fs(v1, v2;W ) (22)

where v1 and v2 are the d-dimensional vectors to be matched, W ∈ R
l×d is

the trainable parameter matrix, and l is the number of perspectives. For each
dimension of the dimension space, it can be assigned different weights. Thus, the
matching value from the k-th perspective is calculated by the formula as follows:

simk = cosine(Wk ◦ v1,Wk ◦ v2) (23)

where ◦ represents the element-wise product, Wk is the k-th low of W .
Then we compare each time-step of question (or answer) representation

against all time-steps of answer (or question) representation. For convenience,
we only define the matching direction q → a.

Morpheme Matching: For the initial morpheme embeddings of question-
answer pairs, we define the max-mean pooling matching strategy. The formulas
are as following:

sim
q_max
i = max

j∈(1...n)
fs(q, a;W 1) (24)

sim
q_mean
i = mean

j∈(1...n)
fs(q, a;W 1) (25)

Interaction Matching: And for the representations of question-answer pairs
after interaction, we also define the max-mean pooling matching strategy in
forward direction and backward direction. Figure 5 shows the max-mean pooling
matching in forward direction. The formulas are as following:
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Fig. 5. The max-mean pooling matching in forward direction of matching direction
q → a.

−−→
sim

q_max
i = max

j∈(1...n)
fs

(−→
hq
i ,

−→
ha
j ;W

2
) ←−−

sim
q_max
i = max

j∈(1...n)
fs

(←−
hq
i ,

←−
ha
j ;W

3
)

(26)

−−→
sim

q_mean
i = mean

j∈(1...n)
fs

(−→
hq
i ,

−→
ha
j ;W

2
) ←−−

sim
q_mean
i = mean

j∈(1...n)
fs

(←−
hq
i ,

←−
ha
j ;W

3
)

(27)

At last, we concatenate all the results of the max-mean pooling matching.

simq
i = [sim

q_max
i ; sim

q_mean
i ;

−−→
sim

q_max
i ;

−−→
sim

q_mean
i ;

←−−
sim

q_max
i ;

←−−
sim

q_mean
i ]

(28)
where i ∈ [1, . . . ,m] , max is element-wise maximum and mean is element-wise
mean. The calculation process of sima

j is similar to that of simq
i .

3.5 Aggregation Layer

We utilize BiLSTM to aggregate the matching vectors simq
i and sima

j , which
are calculated from two matching directions q → a and a → q.

−→
vqi =

−−−−→
LSTM(vqi−1, sim

q
i ) i = 1, . . . ,m

←−
vqi =

←−−−−
LSTM(vqi+1, sim

q
i ) i = m, . . . , 1

(29)−→
vaj =

−−−−→
LSTM(vaj−1, sim

a
j ) j = 1, . . . , n

←−
vaj =

←−−−−
LSTM(vaj+1, sim

a
j ) j = n, . . . , 1

(30)

Then we concatenate the last hidden states of BiLSTM models used in two
matching directions.

yout = [
−→
vqm;

←−
vq1 ;

−→
van;

←−
va1 ] (31)
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3.6 Prediction Layer

Mongolian question answer matching in this paper is a binary classification prob-
lem. We then pass the output of aggregation yout into a two-layer feed-forward
neural network and a softmax layer.

ypred = softmax(WF
2 · tanh(WF

1 · yout + bF1 ) + bF2 ) (32)

where WF
1 ∈ R

h1×h2 , bF1 ∈ R
h2 , WF

2 ∈ R
h2×2, bF2 ∈ R

2.

3.7 Model Training

To train our model, we minimize the binary cross-entropy loss.

L = − 1
N

N∑

i=1

[yi logPi + (1 − yi) log(1 − Pi)] (33)

where N is the number of labels, yi ∈ {0, 1} and Pi is the predicted
probability.

4 Experiments

In this section, we describe our experimental setup and give our experimental
results.

4.1 Data Set and Evaluation Metrics

Our Mongolian question answering data set is translated from the Chinese ques-
tion answering corpus and crawled from the Mongolian web sites. In order to
improve the generalization ability of the model, we extend the original data set
and construct negative samples. The ratio of positive and negative samples is 1 : 1.
The data set contains 265194 question-answer pairs and each category is randomly
divided into train, dev and test with the percent 80%, 10% and 10%, respectively.

We adopt Precision (P), Recall (R), F1-score (F1) and Accuracy (Acc) as
the evaluation metrics of our experiments.

4.2 Model Configuration

We implement our model in TensorFlow. The batch size is set to 128, the epoch
is set to 20, the max sentence length is set to 50 and the number of perspectives is
set to 5. We use pre-trained 300-dimensional Mongolian Word2Vec embeddings.
The size of hidden layers of all BiLSTM layers is set to 100. We use dropout
with a rate of 0.1, which is applied to every layer. For training, we use the Adam
optimizer [6] with an initial learning rate of 0.0005 to update parameters.

4.3 Baselines

In this subsection, we compare our model with several matching models on
the Mongolian question answering data set. The first two models are based on
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sentence encoding methods, the next two models are based on attentive networks,
while the others are based on compare-aggregate networks.

1) SINN: Yang and Kao (2020) proposed the model that applied self-attention
based on RNN and CNN for sentence encoding.

2) DiSAN: Shen et al. (2018) proposed the model that used directional self-
attention for encoding, and compressed features with multi-dimensional self-
attention.

3) ABCNN: Yin et al. (2016) proposed the model that computed the attention
matrix before and after convolution for modeling sentence pairs.

4) DRCN: Kim et al. (2019) proposed the model that used stacked RNN and
co-attentive features to enhance representation.

5) MULT: Wang and Jiang (2017) presented the model that performed word-
level matching by element-wise multiplication and aggregated by CNN.

6) CAFE: Tay et al. (2017) presented the model that adopted factorization
machines to compress the alignment vectors into scalar features for augment-
ing the word representations.

7) MCAN: Tay et al. (2018) presented the model that adopted several attention
variants and performed multiple comparison operators.

8) ESIM: Chen et al. (2017) presented the sequential inference model using
chain LSTMs.

4.4 Results

Table 1 and Table 2 report the overall performance of the different models and
the performance comparison of each category.

Table 1 presents that our Interactive Mongolian Question Answer Match-
ing Model (IMQAMM) achieves an accuracy of 83.02%, which has already out-
performed all the baseline models. Notably, IMQAMM has an improvement of
about 1.23% compared to the highest ESIM in the baseline models. It shows
that the introduction of multi-cast attention is helpful. IMQAMM outperforms

Table 1. Test accuracy on Mongolian question answering data set.

Model Acc(%)

SINN 75.21
DiSAN 81.69
ABCNN 73.78
DRCN 75.31
MULT 81.19
CAFE 81.27
MCAN 81.63
ESIM 81.79
IMQAMM 83.02
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Table 2. Performance comparison of different methods on test set.

Model Matched Mismatched
P(%) R(%) F1(%) P(%) R(%) F1(%)

SINN 72.53 81.17 76.60 78.62 69.25 73.64
DiSAN 82.73 80.11 81.40 80.72 83.27 81.98
ABCNN 71.10 80.11 75.34 77.23 67.44 72.00
DRCN 77.53 71.29 74.28 73.43 79.33 76.27
MULT 82.80 78.74 80.72 79.73 83.64 81.64
CAFE 80.97 81.74 81.35 81.57 80.79 81.18
MCAN 80.78 83.01 81.88 82.53 80.25 81.37
ESIM 82.23 81.10 81.66 81.36 82.47 81.91
IMQAMM 83.68 82.04 82.85 82.39 84.00 83.18

MCAN and CAFE by 1.39% and 1.75%, which proves the significance of sequence
enhancement. Compared with DRCN and ABCNN, the five models at the bot-
tom of Table 1 have significant improvements, thus compare-aggregate networks
can provide more interactive information than attentive networks in this task.
And the performance of our model is higher than SINN and DiSAN, which
indicates that our interactive model is better than the sentence encoding based
methods on Mongolian question answering data set.

Table 2 presents the performance comparison of different methods. The
improvements of IMQAMM over the highest ESIM on the matched F1 score
and mismatched F1 score are 1.19% and 1.27%. Compared with all the baseline
methods, our IMQAMM is competitive in each category.

4.5 Ablation Study

As shown in Table 3, we conduct an ablation study to analyze the influence of
each component. We remove three parts from IMQAMM to examine the influ-
ence: 1) Multi-Cast Attention. 2) Morpheme Matching. 3) Interaction Matching.

According to the results of ablation experiments in Table 3, we can see the
key components of our model. Firstly, when removing Multi-Cast Attention,
the accuracy decreases by 0.38%, which proves that Multi-Cast Attention is
helpful for our model. Secondly, we find that Morpheme Matching is necessary
for our model. When we remove it, the accuracy is reduced by 0.6%. Finally,
when removing Interaction Matching, we can observe that the performance of
our model drops dramatically. The accuracy drops from 83.02% to 80.52%. This
result shows that Interaction Matching is crucial for our model.
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Table 3. Ablation study on Mongolian question answering data set.

Model Acc(%)

IMQAMM 83.02
w/o Multi-cast attention 82.64
w/o Morpheme matching 82.42
w/o Interaction matching 80.52

5 Conclusion

In this paper, we propose an Interactive Mongolian Question Answer Matching
Model (IMQAMM), which mainly combines interactive information enhance-
ment and max-mean pooling matching. First of all, we make some transforma-
tions to traditional Mongolian language and introduce the morpheme vectors.
Second, we enhance the sequence representation by concatenating a series of fea-
ture vectors. Third, the multi-cast attention is introduced to alleviate the data-
sparse problem caused by complex Mongolian morphological structures. Finally,
the max-mean pooling matching strategy is applied to match question-answer
pairs in two directions. Experimental results show that our model performed
well on the Mongolian question answering data set.

However, there is still a lot of room for improvement. In the future work,
we will consider using the pre-trained language model BERT to get a better
initialization, which may help improve the performance of our model.
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Abstract. Traditional Chinese Medicine (TCM) is a natural, safe, and
effective therapy that has spread and been applied worldwide. The unique
TCM diagnosis and treatment system requires a comprehensive analy-
sis of a patient’s symptoms hidden in the clinical record written in free
text. Prior studies have shown that this system can be informationized
and intelligentized with the aid of artificial intelligence (AI) technology,
such as natural language processing (NLP). However, existing datasets
are not of sufficient quality nor quantity to support the further devel-
opment of data-driven AI technology in TCM. Therefore, in this paper,
we focus on the core task of the TCM diagnosis and treatment system—
syndrome differentiation (SD)—and we introduce the first public large-
scale benchmark for SD, called TCM-SD. Our benchmark contains 54,152
real-world clinical records covering 148 syndromes. Furthermore, we col-
lect a large-scale unlabelled textual corpus in the field of TCM and pro-
pose a domain-specific pre-trained language model, called ZY-BERT.
We conducted experiments using deep neural networks to establish a
strong performance baseline, reveal various challenges in SD, and prove
the potential of domain-specific pre-trained language model. Our study
and analysis reveal opportunities for incorporating computer science and
linguistics knowledge to explore the empirical validity of TCM theories.

Keywords: Natural language processing · Bioinformatics · Traditional
chinese medicine

1 Introduction

As an essential application domain of natural language processing (NLP),
medicine has received remarkable attention in recent years. Many studies have
explored the integration of a variety of NLP tasks with medicine, including ques-
tion answering [21,29], machine reading comprehension [17,37], dialogue [38],
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named entity recognition [11,12], and information retrieval [20]. Meanwhile,
numerous datasets in the medical domain with different task formats have
also been proposed [17,21,29]. These have greatly promoted the development
of the field. Finally, breakthroughs in such tasks have led to advances in various
medical-related applications, such as decision support [9,23] and International
Classification of Disease (ICD) coding [4,36].

However, most existing datasets and previous studies are related to modern
medicine, while traditional medicine has rarely been explored. Compared to
modern medicine, traditional medicine is often faced with a lack of standards and
scientific explanations, making it more challenging. Therefore, it is more urgent
to adopt methods of modern science, especially NLP, to explore the principles
of traditional medicine, since unstructured texts are ubiquitous in this field.

Fig. 1. Concept of Traditional Chinese Medicine (TCM) syndrome differentiation.

TCM, as the representative of traditional medicine, is a medical system with
a unique and complete theoretical basis formed by long-term medical practice
under the influence and guidance of classical Chinese materialism and dialec-
tics. Unlike modern medicine, in which medical professionals assign treatments
according to disease type, TCM practitioners conduct in-depth analyses based on
evidence collected from four diagnostics methods—inspection, auscultation and
olfaction, interrogation, and palpation—to determine which type of syndrome
(zheng, 证证证) the patient experiencing. Different treatment methods are then
adopted according to the type of syndrome. Therefore, patients with the same
disease may have different syndromes and thus receive different treatments, while
patients with different diseases may have the same syndrome and thus undergo
the same treatment. These concepts are called “treating the same disease with
different therapies (同病异治) ” and “treating different diseases with the same
therapy (异病同治) ,” respectively, which are the core methods upheld by TCM.
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For the example shown in Fig. 1, patients A and B have the same disease—
dysmenorrhea—but one is influenced by cold while the other is driven by Qi
stagnation (which is a specific concept in TCM). Thus, different therapies would
be assigned. However, patient C suffered from angina pectoris but shared the
same syndrome as patient B. Therefore, they would be treated with similar
therapies. Thus, the syndrome, instead of the disease, can be regarded as the
primary operating unit in the TCM medical system, which not only effectively
summarizes the patients’ symptoms but also determines the subsequent treat-
ment. In this process, known as syndrome differentiation, the inferencing
task of deciding which syndrome is associated with a patient based on clinical
information, is a vital pivot of the TCM medical system.

In recent years, with the discovery of artemisinin [30] and the beneficial clin-
ical manifestations of TCM to treat COVID-19 [34,41], TCM has increasingly
attracted attention. There have been some studies in which NLP techniques were
used to explore SD tasks [19,22,33,39,40], but the development has been signif-
icantly hindered by the lack of large-scale, carefully designed, public datasets.

Therefore, this paper aims to further integrate traditional medicine and
artificial intelligence (AI). In particular, we focus on the core task of TCM—
syndrome differentiation (SD)—to propose a high-quality, public SD benchmark
that includes 54,152 samples from real-world clinical records. To our best knowl-
edge, this is the first time that a textual benchmark has been constructed in
the TCM domain. Furthermore, we crawled data from the websites to construct
a TCM domain text corpus and used this to pre-train a domain-specific lan-
guage model called as ZY-BERT (where ZY came from the Chinese initials of
TCM). The experiments and analysis of this dataset not only explored the char-
acteristics of SD but also verified the effectiveness of domain-specific language
model.

Our contributions are summarized as follows:

1. We have systematically constructed the first public large-scale SD benchmark
in a format that conforms to NLP, and established the strong baselines. This
can encourage researchers use NLP techniques to explore the principles of
TCM that are not sufficiently explained in other fields.

2. We proposed two novel methods, pruning and merging, which could normalize
the syndrome type, improve the quality of the dataset, and also provide a
reference for the construction of similar TCM datasets in the future.

3. We proposed a domain-specific language model named as ZY-BERT pre-
trained with a large-scale unlabeled TCM domain corpus, which produces
the best performances so far.

2 Preliminaries

To facilitate the comprehension of this paper and its motivation and significance,
we will briefly define several basic concepts in TCM and analyze the differences
between TCM and modern medicine.
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2.1 Characteristics of Traditional Chinese Medicine (TCM)
Diagnosis

The most apparent characteristic of TCM is that it has a unique and com-
plete diagnostic system that differs from modern medicine. In modern medicine,
with the assistance of medical instruments, the type of disease can be diag-
nosed according to the explicit digital indicators, such as blood pressure levels.
However, TCM adopts abstract indicators, such as Yin and Yang, Exterior and
Interior, Hot and Cold, and Excess and Deficiency.

Fig. 2. Different diagnostic processes of TCM and modern medicine for the same med-
ical history.

As shown in Fig. 2, given a medical history, modern medicine diagnoses the
disease based on the level of fasting blood glucose, while TCM would map the
various symptoms into a specific space with a unique coordinate system, analyze
the latent causes, and combine them to determine a certain syndrome. Compared
with the apparent numerical indicators of modern medicine, the concept of TCM
is far more abstract and challenging to explain with modern medical theories.

However, TCM’s difficult-to-describe nature does not mean that it has no
value or rationality. In contrast, TCM has various complete and self-contained
SD theories. Therefore, to explore TCM, we should not confine ourselves to the
biomedical field. We may adopt NLP to explore TCM, which mainly consists
of unstructured text. The linguistic characteristics may offer a scientific way to
explain TCM theories. Therefore, in this paper, we present an SD dataset for
further development.

2.2 Differences Between ICD Coding and Syndrome Differentiation

Automatic ICD coding is defined as assigning disease codes to Electronic Medical
Records (EMR) , which is similar to TCM syndrome differentiation. Yet the two
tasks are worlds apart in difficulty. Generally, the name of a patient’s disease is
directly recorded in EMR, and the task of the ICD coding is simply to normalize
the names of these diseases in the manner of the ICD standard, without requiring
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Table 1. Comparison of medical datasets in traditional and modern medicine. This
table only includes textual data. The abbreviations in the table are defined as follows:
classification (Class.), machine reading comprehension (MRC), de-identification (De-
ID.), disease name recognition (DNR), natural language inference (NLI), recognizing
question entailment (RQE), and question answering (QA).

Medical system Domain # of syndromes # of samples Task Type Is available? Language

This Work Traditional Medicine General 148 54,152 Class.,MRC Yes Chinese

Wang [32] Traditional Medicine Liver Cirrhosis 3 406 Class No Chinese

Zhang [39] Traditional Medicine Stroke 3 654 Class No Chinese

Wang [33] Traditional Medicine Diabetes 12 1,180 Class No Chinese

Pang [22] Traditional Medicine AIDS 7 12,000 Class No Chinese

Johnson [13] Modern Medicine Critical Care - 53,423 - Yes English

Stubbs [28] Modern Medicine General - 1,304 De-ID Yes English

Dougan [8] Modern Medicine General - 6,892 DNR Yes English

Abacha [1] Modern Medicine General - 405;203;383 NLI;RQE;QA Yes English

Tian [29] Modern Medicine General - 46,731 MRC Yes Chinese

a deep understanding of the context. For the example shown in Fig. 2, Type 2
diabetes has already described in the medical history so that ICD coding can be
easily completed. While the syndrome differentiation not only requires collecting
scattering evidence from the context through deep understanding, but also need
to execute reliable and feasible inference, which brings a huge challenge to the
model.

3 Related Works

There are three main streams of work related to this manuscript: medical dataset,
natural language processing in syndrome differentiation and domain specific pre-
trained language model.

3.1 Medical Datasets

In recent years, health record systems in hospitals have been moving towards
digitalization and electronization, and a large amount of clinical data has been
accumulated. To make more effective use of these data and provide better medi-
cal services, some studies led by MIMIC-III [13] have shared these valuable data
with medical researchers around the world [8,28]. Subsequently, with the devel-
opment of AI, the domain characteristics of various studies have been combined
to design various task-oriented datasets [17,21,29]. These datasets have greatly
promoted the development of AI in the medical field and have had a profound
impact on society in terms of health and well-being.

However, as shown in Table 1, most of these publicly available datasets focus
on modern medicine, there are far fewer datasets on traditional medicine. This is
because, compared with traditional medicine, modern medicine has a rigorous,
scientific, and standardized medical system, which can efficiently collect high-
quality data. Furthermore, the standardization of traditional medicine is still in
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Table 2. Summary of pre-training details for the various BERT models.

Model Corpus Domain Language Corpus Size

BERT [7] Wiki+Books General EN 3.3B tokens

RoBERTa-wwm [5] Web Crawl General CN 5.4B tokens

MacBERT [6] Web Crawl General CN 5.4B tokens

SciBERT [3] Web Crawl Science EN 3.2B tokens

BioBERT [16] PubMed Medical EN 4.5B tokens

ClinicalBERT [2] MIMIC Medical EN 0.5B tokens

BlueBERT [24] PubMed+MIMIC Medical EN 4.5B tokens

PubMedBERT [10] PubMed Medical EN 3.1B tokens

TCM-BERT [35] Web Crawl Medical (TCM) CN 0.02B tokens

ZY-BERT (Ours) Web Crawl Medical (TCM) CN 0.4B tokens

the development stage, which makes the collection and construction of relevant
datasets extremely challenging. Thus the scarce TCM SD datasets has hindered
the development of AI in this field. To alleviate this issue, we constructed the
first large-scale, publicly available dataset for TCM SD.

3.2 Natural Language Processing (NLP) in Syndrome
Differentiation

At present, most existing studies have treated SD as a multi-class classification
task (i.e., taking the medical records as the input and output the predicted
one from numerous candidate syndrome labels). Zhang [39] used support vector
machines to classify three types of syndromes for stroke patients. Zhang [40] also
introduced an ensemble model consisting of four methods, a back-propagation
neural network, the random forest algorithm, a support vector classifier, and the
extreme gradient boosting method, to classify common diseases and syndromes
simultaneously. Wang [33] proposed a multi-instance, multi-task convolutional
neural network (CNN) framework to classify 12 types of syndromes in 1,915 sam-
ples. Pang [22] proposed a multilayer perceptron (MLP) model with an attention
mechanism to predict the syndrome types of acquired immunodeficiency syn-
drome (AIDS). Similarly, Liu [19] proposed a text-hierarchical attention network
for 1,296 clinical records with 12 kinds of syndromes. However, these approaches
only worked well for small-scale datasets. Our work established a series of strong
baseline models and conducted comparisons on a larger-scale datasets.

3.3 Domain Specific Pre-trained Language Model

Large-scale neural language models pre-trained on unlabelled text has proved
to be a successful approach for various downstream NLP tasks. A represen-
tative example is Bidirectional Encoder Representations from Transformers
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(BERT) [7], which has become a foundation block for building task-specific
NLP models. However, most works typically focus on pre-training in the gen-
eral domain, while domain-specific pre-training has not received much atten-
tion. Table 2 summarizes common language models pre-trained in either general
domain or specific domain. In general, biomedical and science are mainstream
fields of pre-training language model, but in the filed of TCM, there is no much
work that has been conducted as for as we know.

The reasons may be two-fold. On the one hand, TCM lacks large-scale public
text corpus, like Wikipedia and PubMed. We deal with this issue by presenting
a corpus in TCM domain via crawling and collecting related documents from
the websites and books. On the other hand, there is also a lack of downstream
tasks that can verify the performance of the pre-training language model, thus
we propose the syndrome differentiation task to measure its effectiveness.

To be noticed, an existing work already proposed a language model in the
filed of TCM, named as TCM-BERT [35], but it did not undergo pre-training
of large-scale corpus, but was only finetuned on small-scale nonpublic corpus
(0.02B tokens). While, our work provide a more completed TCM-domain corpus
(over 20 times larger) and verify its effectiveness during pre-training stage.

4 Benchmark and Methods

The TCM-SD benchmark that we collected contains over 65,000 real-world Chi-
nese clinical notes. Table 3 presents an example. Specifically, each clinical note
contains the following five components: Medical history is the critical informa-
tion for completing SD. It mainly describes a patient’s condition at admission;
Chief complaint is a concise statement describing the main symptoms that
appeared in the medical history; Four diagnostic methods record (FDMR)
is a template statement consisting of four main TCM diagnostic methods: inspec-
tion, auscultation and olfaction, interrogation, and palpation; ICD-10 index
number and name represents the name and corresponding unique ID of the
patient’s disease; Syndrome name is the syndrome of the current patient. How-
ever, the raw data could not be used directly for the SD task due to the lack
of quality control. Therefore, a careful normalization was further conducted to
preprocess the data.

4.1 Syndrome Normalization

Like ICD, TCM already has national standards for the classification of TCM
diseases, named Classification and Codes of Diseases and Zheng of Traditional
Chinese Medicine (GB/T15657-1995), which stipulates the coding methods of
diseases and the zheng of TCM. However, TCM standardization is still in its early
phase of development and faces inadequate publicizing and implementation [31].
Some TCM practitioners still have low awareness and different attitudes toward
TCM standardization, resulting in inconsistent naming methods for the same
syndrome.
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Table 3. A sample clinical record from the TCM-SD dataset with related external
knowledge. An explicit match between the medical history and external knowledge
is marked in blue, while the text in orange is an example of an implicit match that
required temporal reasoning.

Medical History
The patient began to suffer from repeated dizziness more than eight years ago, and the blood
pressure measured in a resting-state was higher than normal many times. The highest blood
pressure was 180/100 mmHg, and the patient was clearly diagnosed with hypertension. The
patient usually took Nifedipine Sustained Release Tablets (20 mg), and the blood pressure was
generally controlled, and dizziness occasionally occurred. Four days before the admission, the
patient’s dizziness worsened after catching a cold, accompanied by asthma, which worsened
with activity. Furthermore, the patient coughed yellow and thick sputum. The symptoms were
not significantly relieved after taking antihypertensive drugs and antibiotics, and the blood
pressure fluctuated wildly. On admission, the patient still experienced dizziness, coughing with
yellow mucous phlegm, chills, no fever, no conscious activity disorder, no palpitations, no chest
tightness, no chest pain, no sweating, a weak waist and knees, less sleep and more dreams,
forgetfulness, dry eyes, vision loss, red hectic cheeks, and dry pharynx, five upset hot, no
nausea and vomiting, general eating and sleeping, and normal defecation.
患者8年余前开始反复出现头晕，多次于静息状态下测血压高于正常，最高血压180/100
mmHg，明确诊断为高血压，平素服用硝苯地平缓释片20 mg，血压控制一般，头晕时有发
作。此次入院前4天受凉后头晕再发加重，伴憋喘，动则加剧，咳嗽、咳黄浓痰，自服降压药、
抗生素症状缓解不明显，血压波动大。入院时：仍有头晕，咳嗽、咳黄粘痰，畏寒，无发热，无
意识活动障碍，无心慌、胸闷，无胸痛、汗出，腰酸膝软，少寐多梦，健忘，两目干涩，视力减
退，颧红咽干，五心烦热，无恶心呕吐，饮食睡眠一般，二便正常。
Chief Complaint
Repeated dizziness for more than eight years, aggravated with asthma for four days.
反复头晕8年余，加重伴喘憋4天。
Four Diagnostic Methods Record
Mind: clear; spirit: weak; body shape: moderate; speech: clear,..., tongue: red with little coating;
pulse: small and wiry.
神志清晰，精神欠佳，形体适中，语言清晰, ... , 舌红少苔，脉弦细。
ICD-10 Name and ID: Vertigo (眩晕病) BNG070
Syndrome Name: Syndrome of Yin deficiency and Yang hyperactivity 阴虚阳亢证

External Knowledge Corpus:

A syndrome with Yin deficiency and Yang hyperactivity is a type of TCM syndrome. It refers to
Yin liquid deficiency and Yang loss restriction and hyperactivity. Common symptoms include
dizziness, hot flashes, night sweats, tinnitus, irritability, insomnia, red tongue, less saliva, and
wiry pulse. It is mainly caused by old age, exposure to exogenous heat for a long period, the
presence of a serious disease for a long period, emotional disorders, and unrestrained sexual
behavior. Common diseases include insomnia, vertigo, headache, stroke, deafness, tinnitus,
premature ejaculation, and other diseases.
阴虚阳亢证，中医病证名。是指阴液亏虚，阳失制约而偏亢，以头晕目眩，潮热盗汗，头晕耳
鸣，烦躁失眠，舌红少津，脉细数为常见证的证候，多因年老体衰，外感热邪日久，或大病久
病迁延日久，情志失调，房事不节等所致。常见于不寐、眩晕、头痛、中风、耳聋耳鸣、早泄等
疾病中。

Therefore, based on the above issues, we accomplish syndrome normalization
in two stages: merging and pruning.

Merging operation is mainly used in two cases. The first is cases in which the cur-
rent syndrome has multiple names, and all appear in the dataset. For example,
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syndrome of wind and heat (风热证) and syndrome of wind and heat attack-
ing the external (风热外袭证) belong to the same syndrome, and we would
merge them into one unified name. In this case, we used the national standards
for screening. Another is that the current syndrome name does not exist in a
standardized form. Therefore, we recruited experts to conduct syndrome differ-
entiation according to the specific case clinical records and finally merge the
invalid syndromes into standard syndromes. For example, syndrome of spleen
and kidney yang failure (脾肾阳衰证) would be merged into syndrome of spleen
and kidney yang deficiency (脾肾阳虚证) .

Pruning operation is mainly applied to syndromes with non-standard names that
experts fail to differentiate due to vague features. In addition, since syndrome
names are hierarchically graded, we pruned out syndromes with higher grades to
ensure that the syndromes that appear in the current dataset are the most basic
grade, that is the most specific ones that determine the subsequent treatment.
For example, syndrome of wind and cold (风寒证) is a high-grade syndrome, and
its clinical manifestations can be a syndrome of exterior tightened by wind-cold
(风寒束表证) or syndrome of wind-cold attacking lung (风寒袭肺证) ; each has
different symptoms and treatment methods.

Fig. 3. The characteristics and syndrome distribution in the dataset.

4.2 Dataset Statistics

After normalization, the number of syndromes in the dataset was reduced from
the original 548 categories to 244. Considering that some syndromes are infre-
quent, we further filtered out syndrome categories containing fewer than 10
samples when partitioning the dataset. Then, the processed dataset with 148
syndrome categories and 54,152 samples was divided into a training set, a devel-
opment (Dev) set, and a test set with a ratio of 8:1:1. The dataset characteristics
and syndrome distribution shown in Fig. 3.

Since the data were collected from real-world scenarios, the distribution of
syndromes was inevitably unbalanced, leading to a significant gap between the
number of rare syndromes and the number of the common ones. The subsequent
experiments demonstrate the challenges brought by long-tail distribution issues,
and we show that this issue can be mitigated by introducing external knowledge
and domain-specific pre-training.
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4.3 External Knowledge

Current clinical records do not contain any relevant knowledge about the target
syndromes, which causes models to have to rely on remembering patterns to
complete the task. Therefore, we constructed an external unstructured knowl-
edge corpus encompassing 1,027 types of TCM syndromes by web crawling for
information on all the TCM syndromes on the online1. Specifically, the knowl-
edge of each syndrome consisted of three parts: the cause of the syndrome, the
main manifestations, and common related diseases. Table 3 shows an example.
We demonstrate the effectiveness of this knowledge in the experimental section.

4.4 ZY-BERT

In general, ZY-BERT differs with TCM-BERT in two main parts: data and
pre-training task.

First, the scale and quality of unlabelled text corpus directly affect the perfor-
mance of pre-trained language models. Previous work TCM-BERT [35] directly
used clinical records as pre-training corpus, resulting in monotonic data type and
limited corpus size, which could not meet the needs of large-scale pre-training
language model. To deal with this issue, we collected unlabelled data varies in
different types from the TCM related websites, including books, articles from
websites and academic papers from China National Knowledge Infrastructure
(CNKI), counting over 400 million tokens.

Furthermore, the previous work TCM-BERT adopts char masking (CM)
and next sentence prediction (NSP) as the pre-training tasks. However, Chi-
nese words usually consist of multiple characters and masking single character
might destroy the meaning of the whole word. For example, the word phrase
Yang Deficiency(阳虚) consists of two characters. Thus, we borrowed the idea
of Whole Word Masking from Cui [5] and replace NSP with it, which could
add challenges to the model training process and allow the model to learn more
complex linguistic features.

Finally, the pre-trained language model consists of 24 Transformer layers,
with input dimensionality of 1024. Each transformer contains 16 attention heads.
Then we trained the model 300K steps with a maximum learning rate 5e-5 and a
batch size of 256. Other hyperparameters and pre-training details are kept same
as the ones used in Liu [18].

5 Experiments

We selected the multi-class classification task as the primary form of SD to
directly compare the performances of the existing models against the TCM-SD
dataset, and used the accuracy and Macro-F1 as evaluation metrics. Specifically,
the chief complaint and medical history were concatenated as the inputs, i.e.
[CLS] Chief Complaint [SEP] Medical History [SEP], where [CLS] and [SEP]
1 www.dayi.org.cn.

www.dayi.org.cn
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are special tokens used for classification and separation. Then the model predicts
the target syndromes from 148 candidate labels based on the representation of
[CLS] token.

5.1 Baseline

The baseline methods we used consisted of four types: statistical methods, clas-
sical neural-network-based (NN-based) methods, language-model-based (LM-
based) methods and domain-specific LM-based methods.

Statistical Methods. These methods were the decision tree (DT) and support
vector machine (SVM) methods. These two statistical methods have been widely
used in previous studies on SD.

Classical NN-Based Methods. These methods included a Bi-LSTM [27], a Bi-
GRU [25], and a two-layer CNN [14]. Word embeddings were retrieved from the
Chinese version of BERT [5].

LM-Based Methods. These methods included several popular LMs, such as
BERT [7], RoBERTa [18], distillBERT [26], and ALBERT [15]. These models
concatenate multiple pieces of text with special tokens as inputs, make classifi-
cations based on the hidden states of the first token, or determine the start and
end of the answer by training two classifiers.

Domain-Specific LM-Based Methods. These methods are similar with LM-based
ones but usually pre-trained on domain-specific corpus rather than general
domain corpus. TCM-BERT [35] and our proposed ZY-BERT are the two LM
used in this manuscripts.

5.2 Main Results

Table 4 presents the performances of all the methods for the classification task.
Generally, all the methods had good accuracy, which demonstrated that the
models were effective at fitting when enough examples were supplied. However,
each syndrome in the TCM-SD dataset should have the same importance. Thus,
the Macro-F1 is a more accurate metric to evaluate the performances of the
models. The Macro-F1 scores achieved by the models were much lower than
the accuracy, which demonstrated the challenges of the imbalanced TMC-SD
datasets.

Moreover, the statistical methods achieved better scores than the classical
NN-based methods. This is because the structures designed for focusing on con-
textualized representations, such as the Bi-LSTM and Bi-GRU networks, were
not good at capturing features, and the performances were worse. In contrast,
the SVM and CNN methods were good at extracting local features and obtained
better scores. Nonetheless, the language models still achieved the highest scores,
demonstrating the effectiveness of the large-scale corpus pre-training.
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Table 4. Performance for the classification task. The marker † refers to p-value <0.01.

Method Dev Test

Acc. Macro-F1 Macro-R Macro-P Acc. Macro-F1 Macro-R Macro-P

DT 59.42% 20.68% 21.33% 21.52% 59.10% 21.67% 22.38% 22.20%

SVM 77.63% 32.13% 29.56% 43.10% 78.53% 36.37% 32.98% 49.35%

BiLSTM 69.30% 17.53% 15.08% 14.76% 69.65% 15.15% 15.65% 17.08%

BiGRU 73.57% 19.53% 20.12% 21.81% 74.43% 20.93% 21.90% 23.76%

CNN 77.56% 31.79% 30.39% 37.99% 78.58% 32.83% 31.29% 39.19%

BERT 79.44% 34.18% 34.12% 38.00% 80.17% 35.45% 34.99% 42.00%

distilBERT 79.09% 36.07% 36.62% 38.13% 80.46% 40.24% 39.99% 45.84%

ALBERT 79.62% 37.88% 37.65% 41.94% 80.51% 40.50% 39.57% 46.54%

RoBERTa 80.81% 43.18% 42.55% 47.68% 82.26% 47.55% 45.72% 54.15%

TCM-BERT 79.48% 37.84% 37.60% 42.00% 80.55% 41.58% 40.91% 48.47%

ZY-BERT(ours) 81.43%† 49.47%† 48.89%† 54.08%† 82.19%† 51.01%† 49.42%† 57.70% †

6 Discussion

6.1 Effect of Domain-Specific Pre-training

The last two rows in Table 4 indicates the effects of domain-specific pre-training.
To be noticed, our proposed ZY-BERT achieved the astonishing performance
improvement and mitigated long-tail distribution issue greatly. On the one hand,
Macro-F1 score achieved by ZY-BERT is over 4% larger than that achieved by
RoBERTa, demonstrating the effectiveness of large-scale domain-specific corpus
for domain-specific tasks. On the other hand, ZY-BERT also achieves over 10%
Macro-F1 scores higher than the previous domain-specific model TCM-BERT,
which proves the quality and reliability of the TCM domain corpus constructed
by us.

6.2 Effect of Knowledge

To testify the effectiveness of the external knowledge corpus, we leveraged
knowledge into the model by concatenating the relevant syndrome knowledge
with the medical history. However, due to the length limits of the language
models, feeding knowledge of all syndromes into the model is infeasible under
classification setting. Thus we converted the task from classification to extractive
MRC, and designed the following three settings shown in Table 5 to evaluate the
significance of the knowledge.

Firstly, we concatenated the original inputs with all syndrome names, and
asked the model to extract the target syndrome spans from the context. The
competitive results shown between MRC and classification tasks demonstrated
that the model had a consistent ability among different task formats without
external knowledge. Then we further conducted two groups of experiments. In
the first group, instead of concatenating all syndrome names, we only included
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Table 5. Performance with the machine reading comprehension (MRC) task.

Method Dev Test

EM Macro-F1 Macro-R Macro-P EM Macro-F1 Macro-R Macro-P

Medical History + All Syndromes

BERT 77.27% 40.71% 41.10% 43.26% 78.20% 45.60% 45.32% 50.15%

RoBERTa 78.71% 45.09% 44.30% 49.38% 80.42% 47.57% 46.42% 51.89%

Medical History + Five Syndromes

BERT 95.59% 77.12% 76.32% 81.04% 95.83% 82.33% 81.35% 86.34%

RoBERTa 95.75% 79.16% 78.74% 82.79% 95.86% 84.42% 84.92% 86.74%

Medical History + Five Syndromes + Knowledge

BERT 95.24% 81.21% 81.33% 84.61% 96.06% 85.15% 84.48% 87.92%

RoBERTa 95.33% 81.53% 81.76% 84.49% 96.26% 85.88% 85.59% 89.09%

five syndromes, where one was the target syndrome and the other four were ran-
domly selected. In the second group, we appended the corresponding knowledge
for each syndrome selected in the first group. The superior results achieved by
the latter group demonstrate the importance of knowledge.

However, the outstanding performance, either with knowledge or without
knowledge, was mainly due to the fact that we manually narrowed down the
search range to five syndromes. We used the term frequency–inverse document
frequency (TFIDF) to search for relevant knowledge from the knowledge corpus
based on medical history, and P@5 was only 3.94%. Thus, knowledge is essential,
but finding it is difficult.

6.3 Ablation Study

Table 6 shows the results of the ablation study on the TCD-SD dataset. Remov-
ing either the medical history or the chief complaint resulted in lower perfor-
mances, especially if only the chief complaint was taken into account. This was
because the chief complaint was typically too short to include sufficient fea-
tures for classification. However, the chief complaint and medical history com-
plemented each other in a coarse-to-fine fashion.

6.4 Error Analysis

By analyzing the error cases, we found that the vast majority of errors occurred
in the category with few samples, and fitting only according to the data distri-
bution was still the most significant issue. Except for algorithmic problems, we
concluded that there were three main error types:

Complex Reasoning. As shown in Table 3, besides the explicit match marked
in blue, there was an implicit match marked in orange that required tempo-
ral reasoning. Additionally, the task also included complex reasoning, such as
numerical reasoning, spatial reasoning and negative reasoning.
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Table 6. Ablation study on the TCM-SD dataset.

Method Dev Test

Acc. Macro-F1 Macro-R Macro-P Acc. Macro-F1 Macro-R Macro-P

Only Chief Complaint

BERT 70.56% 23.15% 26.34% 26.34% 71.58% 24.08% 25.38% 24.08%

RoBERTa 71.36% 28.55% 28.85% 33.13% 72.91% 30.78% 34.54% 34.54%

Only Medical History

BERT 79.40% 33.50% 33.46% 37.90% 79.62% 35.57% 35.13% 42.18%

RoBERTa 79.80% 41.40% 40.12% 45.38% 81.83% 45.19% 43.03% 53.78%

Chief Complaint + Medical History

BERT 79.44% 34.18% 34.12% 38.00% 80.17% 35.45% 34.99% 42.00%

RoBERTa 80.81% 43.18% 42.55% 47.68% 82.26% 47.55% 45.72% 54.15%

Incomplete Knowledge. The current models do not take into account the con-
cepts that arise from the SD task, such as Yin and Yang. Therefore, the models
do not know how to map the symptoms into the special coordinate system of
the TCM diagnostics system.

Out-of-Vocabulary. In the clinical records, there exists not only academic
medical-related terms but also various rare traditional characters in TCM, which
impeded the understanding of the context.

7 Conclusions

This paper introduced a meaningful task, SD, in TCM and its connection with
NLP and presented the first public large-scale benchmark of SD: TCM-SD.
Furthermore, a knowledge corpus supporting the model understanding and the
large-scale TCM domain corpus for pre-training were constructed. Moreover, one
domain-specific pre-training language model named as ZY-BERT was proposed.
The experiments on this dataset demonstrated the challenges, the inadequacy of
existing models, the importance of knowledge and the effectiveness of domain-
specific pre-training. This work can greatly promote the internationalization and
modernization of TCM, the proposed benchmark and associated baseline models
provide a basis for subsequent research.
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Abstract. The definition generation task aims to generate a word’s definition
within a specific context automatically. However, owing to the lack of datasets
for different complexities, the definitions produced by models tend to keep the
same complexity level. This paper proposes a novel task of generating defini-
tions for a word with controllable complexity levels. Correspondingly, we intro-
duce COMPILING, a dataset given detailed information about Chinese defini-
tions, and each definition is labeled with its complexity levels. The COMPILING
dataset includes 74,303 words and 106,882 definitions. To the best of our knowl-
edge, it is the largest dataset of the Chinese definition generation task. We select
various representative generation methods as baselines for this task and conduct
evaluations, which illustrates that our dataset plays an outstanding role in assist-
ing models in generating different complexity-level definitions. We believe that
the COMPILING dataset will benefit further research in complexity controllable
definition generation.

Keywords: Definition generation · Controllable generation · Prompt learning

1 Introduction

Definition Generation (DG) is the task of describing the meaning that a word takes in
a specific context. This task can help language learners by providing explanations for
unfamiliar words. Recent researches [17,32] attempted to apply the task to the field of
Intelligent Computer-Assisted Language Learning (ICALL), and have made a signifi-
cant progress.

Previous studies on DG mainly concentrate on generating different definitions for
polysemous words [8,22,25], or generating definitions with appropriate specificity [14].
In these studies, researchers have faced various issues, such as the high complexity
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problem. High complexity definitions contain words that are more difficult than the
defined word, and hence are labored for language learners to read and understand. Nev-
ertheless, there have been few focuses on complexity controllable generation of def-
initions. A possible reason is that the complexities of definitions are not provided in
currently existed datasets, which leads to the difficulty of automatic training and evalu-
ation.

Actually, the problems mentioned above are especially prominent in the language
environment of Chinese. Definitions with suitable complexity are in urgent practical
needs for Chinese as Foreign Language (CFL) learners. According to the Ministry of
Education of China, by the end of 2020, more than 20 million foreign students are learn-
ing Chinese. But as [30] pointed out, since the difficulty of definitions is not considered,
most existing dictionaries cannot meet CFL learner’s requirements. Besides, the exist-
ing Chinese learner dictionaries contain only a small number of words. For instance,
the Contemporary Chinese Learner Dictionary (CCLD) only has about 6,400 words. In
contrast, the Modern Chinese Dictionary (MCD), which is designed for native speakers,
has about 69,000 words.

Therefore, in this work, we focus on the task of generating definitions for CFL
learners with appropriate complexities. At present, there are two datasets used for the
Chinese definition generation task, but neither of them can meet the needs of this task.
The most widely used CWN dataset [6,20,28] was built from the Chinese WordNet
[13], which is a knowledge base of sense distinction1. This dataset is limited in size with
8,221 words. [32] constructed a dataset from the 5th edition ofMCD. But it only collects
disyllabic nouns and verbs, and additional annotation of formation rules is required.
Besides, both datasets didn’t provide the complexity of definitions, which is essential
information in the controllable generation.

To enhance the study of this task, we propose to build a novel benchmark dataset
named COMPILING (Chinese cOMPlexIty controLlable defINition Generation).
The dataset is large and of high quality, which contains 127,757 entries in total. Each
entry consists of a word, an example, a definition, and two complexity measurements of
this definition. More specifically, we build the dataset by using two Chinese dictionar-
ies, namely the CCLD and the 7th edition of MCD. The former collects fewer words,
but the definitions are simpler. The latter is the opposite. By combining these two dic-
tionaries, we obtain a large amount of definitions that vary in different complexities.

In order to quantitatively measure the complexity of definitions, we refer to the
graded vocabularies formulated by HSK (Chinese Proficiency Test). HSK is set up to
test the proficiency of non-native speakers. It has nine levels from easy to hard, and
each level corresponds to a vocabulary. The COMPILING dataset contains an average
level and a maximum level of each definition.

We find that both dictionaries tend to use phrases rather than complete sentences
as examples in some cases. For instance, the word “规模” (scale) has two example
phrases in MCD (Modern Chinese Dictionary), which are “规模宏大” (large scale)
and “初具规模” (begin to take shape). We think that short phrases might be helpful for
language learners to understand, but complete sentences can provide more context in

1 http://lope.linguistics.ntu.edu.tw/cwn2.
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the automatic definition generation. Thus, we design an algorithm to expand the phrases
into sentences (Sect. 4.2).

We believe that this dataset can further enhance the research on Chinese complexity
controllable definition generation, which could not only benefit the language learners,
but also low literacy readers, as well as people with aphasia or dyslexia. We also provide
baselines of mainstream generation methods as references (Sect. 6).

In summary, our contributions are listed below:

– We propose a novel task of generating definitions for a word with appropriate com-
plexity. The task is of great use in helping CFL learners to learn the vocabulary.

– We propose the COMPILING dataset that is of large scale and high quality. This
dataset could serve as the benchmark of the task we proposed.

– We perform several experiments on the COMPILING dataset and the results demon-
strate it could assist models to achieve effective complexity controllable generations.

2 Related Work

2.1 Definition Generation

[23] first proposed the definition modeling task and use word embeddings to gener-
ate definitions of the corresponding words. Referencing on the problem of word sense
disambiguation, [17] and [8] incorporated word contexts into definition modeling and
demonstrated its effectiveness of distinguishing different meanings. Recent work [15]
reformulates the task as generating descriptions using extracted knowledge. Research
on Chinese definition modeling was first proposed by [28], they adapted a transformer-
based model and incorporated sememes into the model to provide more external seman-
tic knowledge. [6] redefined the Chinese definition modeling as generating the corre-
sponding definition for a target word and its context. [32] utilized the characteristics
of Chinese by adding formation features to enhance definition modeling. Besides, there
are also studies on multilingual definition generation [20] and combining extraction and
generation for this task [16].

Notably, [19] proposed to generate simple definitions employing a multitasking
framework. Since the lack of a definition dataset with different complexities, they man-
aged to generate both complex and simple definitions in an unsupervised way.

Differently, we focus on building the benchmark dataset for different Chinese defi-
nition generation tasks and hope it could be beneficial for further research.

2.2 Controllable Generation

Controllable generation is widely adapted in kinds of language modeling tasks. For
instance, data augmentation [1], dialog generation [7], storytelling [10], and so on. And
the objects controlled in different studies vary from each other. Specifically, consider-
ing the significance of sentiment in poetry definition, [2] proposed a model to generate
poetry with controllable emotions. [9] first presented a framework to develop ques-
tions about specific answers that meet target difficulty levels. To attract more readers,
[18] introduced a headline generation model to produce enticing titles with target three
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styles. Likewise, in order to explore and release the practical value of definition gener-
ation, we propose the complexity controllable definition generation task committed to
producing definitions satisfying users of all levels.

Currently, the most controllable generation tasks are achieved based on pre-trained
learning models. And [29] summarized the common methods as Finetuning, Retrain
PLMs, and Post-Process and we utilize the first method to control the complexity of the
definition more efficiently.

2.3 Prompt Learning

In recent years, the pre-trained model with fine-tuning has gradually become the main-
stream of natural language processing tasks. Due to the complex training objectives and
large hyperparameter groups, large-scale pre-training models can effectively extract
features from a large amount of supervised and unsupervised data. By storing the
learned knowledge in parameters and fine-tuning the model for specific tasks, the same
model can be applied to a series of downstream natural language processing tasks [11].

Prompt learning is a method of fully learning knowledge by adding additional text
to the model’s input. Prompt can be divided into artificial and automatic construction
according to the text attached to the input [11]. Among them, automatically constructed
prompts are divided into discrete and continuous ones. A discrete prompt refers to the
fact that the constructed prompt is composed of actual text symbols, and applicable
tasks include text classification [12], text generation [31], etc.

Although the combination of pre-training and fine-tuning methods can be adapted to
most NLP tasks, when it comes to each specific task, the number of parameters that need
to be adjusted for are vast. By adopting prompt learning, the pre-training model can be
applied to the required tasks by only modifying the part of the prompt for different
downstream tasks. Therefore, the training process will become more efficient.

3 Problem Formulation

In this work, we aim to generate a definition dc with appropriate complexity c, for a
given word and example sentence (w∗,e). This task is feasible because the word and
it’s corresponding definition should be assumed to have the same semantics. A common
solution is to predict tokens in the definition one by one, depending on the previous
words and the other conditions, which can be formulated as:

P (dc|w∗,e, c) =
T∏

t=1

P (dc
t |dc

<t, w
∗,e, c), (1)

where dct is the t-th token in the definition, and T is the total length of definition. Each
probability distribution can be approximated by the following equation:

P (dc
t |dc

<t, w
∗,e, c) ∝ exp(Wht/τ), (2)

where W is a matrix collecting word vectors, ht is a vector summarizing inputs at
current time-step, and τ is a hyper-parameter for temperature, set to 1 in default.
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4 Dataset Construction

The source corpora are extracted from the MCD and CCLD, both published by the
Commercial Press. For corpus from MCD and CCLD, we process them separately with
the same construction methods and finally put them together.

The construction of the COMPILING dataset is divided into three stages: data struc-
tured annotation, example sentences expansion, and post-processing. First, we propose
a strategy for building structured datasets due to the high complexity and compact con-
struction of automatically extracted data. In this phase, we set up a platform. It not
only helps annotators proofread and audit corpus data more efficiently but is also con-
ducive for us to check and collect data. Besides, since the context of a targeted word
in the dictionary is always a collocation instead of a complete sentence, we then con-
duct expanding context to enhance the overall abundance of language for our proposed
datasets. Furthermore, to divide definitions into different complexity levels, we calcu-
late the HSK level of each description.

4.1 Data Structured Annotation

In the beginning, we collect initial data and find they are disorganized and complex in
structure, which is problematic to conduct automatic processing. Hence, we start up
data structured annotation. To better manage and boost the whole process, we build up
a platform before the formal annotation and deploy it on two servers, one for corpus
from MCD, and the other for corpus from CCLD. This platform could not only serve
specifically for this task, but it is also appropriate for the construction of any resource
by replacing the data.

Concentrating on tackling the problem of disorganized data, we suggest a series of
rules for annotation. For a particular word, its attached contents include its spell, defini-
tion, example sentences of the usage of a specific definition, and so on. Hence, we pro-
pose to add labels before corresponding contents to distinguish different types of data,
which is conducive for computers to extract this information based on their labels auto-
matically. Both dictionaries have instructions illustrating the meta-information, such as
the organization of entries, the style of definitions and examples, and basic usages. We
invite a student who majors in linguistics to formulate the annotation guidelines based
on the instructions, which will be the reference for annotators. By doing so, we hope
annotators could restore that language information and the relationships between them
to a large extent. Then, we invite 20 students majoring in linguistics to annotate the
corpora on our platform regarding the guidelines. This phase lasted for two months.

4.2 Example Sentences Expansion

While the information extracted from dictionaries is large and abundant, the context
attached to the targeted words given in dictionaries is too short to provide enough
knowledge for the model to learn and generate descriptions. In the second stage of
construction, considering the significance of sentences, we start up example sentence
expansion. For contexts without sufficient length in the original corpus, we tend to find
sentences with a longer length and higher quality in the new canon for replacement,
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Algorithm 1. Example Sentences Expansion
Input: phrase p, corpus C
Output: examples E
1: D ← {}, E ← []
2: for sentence in C do
3: if p in sentence then
4: score ← pplScore(sentence) � Compute the PPL score for each sentence.
5: D[sentence] ← score
6: end if
7: end for
8: sortedExamples ← descSortByV alue(D) � Descendant sort by the scores.
9: for i = 0 → topN do � topN is set to 5 in practice.
10: E.add(sortedExamples[i])
11: end for

and the specific process is as follows. We first screened each example sentence in the
annotated texts. We set the length threshold to six, and if the length of the initial context
is longer than the threshold, we will retain the sentences; otherwise, we will find longer
sentences with more abundant information in the new corpus to cover the original ones.
It is worth noting that if a term contains more than one sentence (collocation), for each
sentence (collocation), we will replace it with new matching contexts.

We design Algorithm 1 to match and gain new high-quality sentences. Given the
ambiguity of most words, we utilize an allocation as the input of Algorithm 1 instead of
a phrase to ensure the found sentences contain the corresponding usage of a specific def-
inition. As shown in Algorithm 1, we collect all the sentences that fit the requirements
and grade them by utilizing Perplexity (PPL)2, which is one of the most common met-
rics for evaluating language fluency. Eventually, the top five sentences in the rankings
are designated to replace those original short contexts.

4.3 Post Processing

Difficulty Classification. The most crucial step of constructing a complexity-controlled
dataset is integrating the difficulty level of definition into the dataset. We utilize the
HSK metric to represent the complexity degree. HSK3, called the Chinese Proficiency
Test, set to evaluate the Chinese proficiency and application of non-native speakers. It is
divided into nine levels, and the difficulty increases progressively from low to high. For
convenience, we regard the seventh, eighth, and ninth levels as a whole. Finally, we set
seven complexity levels of HSK, and each level corresponds to a vocabulary. For words
that are not included in the first seven-level, we classify them as the highest level.

Entry Construction. Besides, For each definition, we first conduct word segmentation,
then calculate the average and highest HSK level, and combine the HSK level into the
dataset. Eventually, each entry of the COMPILING dataset consists of a target word,

2 https://huggingface.co/docs/transformers/perplexity.
3 http://www.chinesetest.cn.

https://huggingface.co/docs/transformers/perplexity
http://www.chinesetest.cn
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its definition, the average and highest HSK level, and the contexts of the corresponding
usage of this description.

Table 1. The main statistics of the COMPILING dataset.

Datasets Count Average length

Words Entries Definition Context

MCD 67,801 101,314 13.8 27.5

CCLD 6,502 26,443 13.4 20.4

5 Dataset Analysis

Asmentioned before, the smallest unit of the COMPILING dataset consists of five parts.
In particular, if a word is polysemous or has numerous contexts, they are regarded as
distinct entries. For instance, as shown in Table 2, the word “收拾” (clear up) has four
different definitions, and each of them follows an example sentence. Hence there are
four entries of “收拾” (clear up) in total.

As shown in Table 1, we analyze statistics of data extracted from MCD and CCLD,
respectively. Table 3 shows the basic statistics of the COMPILING dataset and another
dataset of Chinese definition modeling. For training, the given definitions of each entry
are seen as the ground truth.

Table 2. Example entries of COMPILING dataset.

Word Definition Average Maximum Sentence Source

收拾
clear up

使变干净整齐；整理
To make clean and tidy

2 3
东西都收拾好了，可以出门了。

With everything packed up,
we’re ready to go.

CCLD

收拾
repair

使有毛病的东西功能正常；修理
To make something

defective function properly
2 4

我的手机坏了，得找厂家收拾一下。
My phone is out of order so I have to ask

manufacturer for help.
CCLD

收拾
settle

整理；整顿
Put in order

4 6

冬储夏衣，夏藏冬衣，收拾屋子，还要照看外孙女。
Store summer clothes in the winter, hide
winter clothes in the summer, clean

the house, and look after her granddaughter.

MCD

收拾
kill

消灭；杀死
Eliminate

8 10
据点的敌人，全叫我们收拾了。
All the enemies in the stronghold

have been eliminated.
MCD

To better highlight the complexity degree of the dataset, we set levels 1–3 in HSK
as the simple grade, levels 3–7 as the medium grade, and levels 7–9 and 9+ as hard
quality. We count the HSK level distribution of definitions of COMPILING, as shown
in Fig. 1.
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Table 3. Statistics of Chinese definition modeling datasets.

Datasets Count Average length

Words Entries Definition Context

CWN 8,221 84,542 9.07 21.57

COMPILING 74,303 127,757 13.60 23.95

27%

64%

5% 4%

33%

47%

7%
13%

0%

15%

30%

45%

60%

75%

Level1 (1-3) Level2 (3-7) Level3 (7-9) Level4 (9+)

CWN
COMPILING

Fig. 1. The distribution of average HSK level in CWN and COMPILING.

The distribution of definitions in the COMPILING dataset in the three levels is
closer than CWN. Given the particularity of the Complexity Controllable definition gen-
eration task, it is necessary to construct a dataset including entries covering all difficulty
levels. In this way, the model can learn and distinguish the complexity of descriptions,
hence generating a new definition of a word with a target complexity level.

Hence, the COMPILING dataset could be applied to both general definition gener-
ation tasks and those which incorporate the complexity of definitions, demonstrating its
value in being as a benchmark dataset.

6 Experiments

6.1 Baselines

This section introduces several methods for common generation tasks, which can serve
as baselines for our proposed task.

LOG-CaD. LOG-CaD [17] is a model for generating descriptions for words and
phrases. This model summarizes clues from the static, contextualized, as well as
character-level embeddings of the given word, and then employs an LSTM-decoder
for the generation. A gated attention mechanism is employed to capture and filter infor-
mation from the embeddings during decoding.

Transformser. We treat the task as a special type of single language translation and
directly use the original transformer model proposed by [26]. We concatenate the word
and example sentence as the input sequence and train the model to generate the defini-
tion. We use the same approach to deal with the input and output in BERT and BART
models. All hyper-parameters are set according to the original paper for a fair compari-
son.
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BERT. Pretrained language models have been widely used in various NLP tasks in
recent years. By obtaining prior knowledge during pretraining, the PLMs can encode
the input sentence more effectively. Thus, we use the Chinese-bert-base [4] model to
initialize all the parameters in a transformer encoder and employ a transformer decoder
for the generation. Note that the decoder is trained from scratch without initialization.

BART. Unlike BERT, BART [21] is a pretrained encoder-decoder language model,
which is more suitable for generation tasks. Since the monolingual BART only sup-
port English, we use the multilingual version of BART and set both source and target
language as Chinese for this task.

MT5. T5 is one of the representative pre-training language models. It considers all NLP
tasks as a uniform text-to-text paradigm. mT5 [27] is a multi-language variant of T5,
and its performance on various benchmark tasks is generally outstanding. Therefore,
we choose mT5 to perform the prompt learning method.

Table 4. Datasets divided by HSK level.

Complexity HSK Entries

Easy 1–3 48,458

Medium 4–7 53,945

Hard 7+ 25,354

6.2 Settings

As a benchmark dataset introduced to enhance the Chinese definition generation task,
we set up the experiments to verify the effectiveness of the COMPILING dataset.

Regardless of Complexity Levels. We first design the experiment to evaluate the overall
performance of the baseline models on our dataset. In this setting, we train the models
using the entire training set, despite of the different complexity levels. And the purpose
of this setting is to provide a comparison standard for other experiments. We divide the
dataset into training, development, and test sets according to 8:1:1. The training data
are fine-tuned according to the input formats of different models.

Complexity Specific Models. To evaluate the significant role of the COMPILING
dataset in generating definitions across various difficulties, we set up an experiment
to train the model on different complexity-level sub-datasets. First of all, we split the
dataset into three subsets on basis of the average HSK level. As shown in Table 4, the
HSK levels of definitions in Easy Set are between 1 to 3, Medium Set corresponding to
level 4–6, and Hard Set corresponding to level 7+. Then we split each subset into train-
ing, development, and test sets according to the ratio of 8:1:1. Finally, we fine-tune the
BART model utilizing these three training sets, and hence getting three models. Each
one could generate definitions with its corresponding complexity level.
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Unified Model Based on Prompt Learning. To assist the model to generate descriptions
with different complexity of demand, we adopt the method of prompt learning. It allows
the model to learn by adding tokens that represent difficulty information to the inputs,
such as <extra id 1> for level 1 (lowest), <extra id 2> for level 2, and so on. The
training set is formed by prefacing each definition of the COMPILING dataset with the
corresponding special tokens. Each entry of the final dataset includes: <extra id x>,
target word, its corresponding definitions and context. During the training phase, the
model encodes both complexity and definition information. In the analysis stage, aiming
to verify the effectiveness of this method, we select 10 entries from the test set of the
COMPILING dataset. For each entry, only its difficulty token is modified with the other
information keep remaining, so as to construct two copies of the entry. It is worth noting
that the principle of constructing the new complexity tokens is, that the two new entries
and the original one(a group of data) differ by at least 2 levels or more, which means
they can represent easy, medium, and hard complexity respectively. For example, if the
definition of the source entry is specified with the difficulty as 3, the complexities of the
two copies of it need to be constructed as at least 1 and 5. Finally, a total of 30 entries
are included in the new test set. Then, we perform the model on this new test set to
observe whether the generated definitions are differentiated in line with their specified
complexity.

6.3 Evaluation Metrics

In order to better analyze and quantify the experimental results, we select three eval-
uation metrics: BLEU [24], NIST [5] and HSK, which are used to comprehensively
evaluate the quality and complexity level of generated definitions.

BLEU. BLEU (Bilingual Evaluation Understudy) [24] was originally proposed for the
evaluation of machine translation research. The core of BLEU is to separately calcu-
late the N-gram in the generated and the reference sentence, and then compare them
one by one to count the times that can be matched. The higher times illustrate higher
accuracy. However, the shorter reference segment always leads to more co-occurrence
times, which means the shorter generated definitions tend to get a higher BLEU score.

NIST. On the basis of BLEU, NIST (National Institute of Standards and Technology)
[5] adds the calculation of the information weight of N-gram. While the BLEU simply
sums up the number of N-grams, the NIST sums up the information weights and then
divides it by the number of N-gram segments in the whole sentence. In this way, the
weightage of those N-grams which appear less frequently will be heavier.

HSK. As mentioned in Sect. 4.3, HSK is a test set to evaluate the Chinese proficiency
and application ability of non-native Chinese speakers. Based on the purpose of assist-
ing CFL learners to understand Chinese well, we select HSK to measure the complexity
level of definitions. Besides, we set seven difficulty levels (scores) of HSK and each of
them corresponds to a vocabulary. The final level of a definition is determined by the
average score of its segments.



274 J. Yuan et al.

Table 5. Experiment results on the COMPILING dataset.

Models Dev Test

BLEU NIST HSK BLEU NIST HSK

LOG-CaD 27.66 25.55 3.74 27.71 27.88 3.85

Transformer 28.61 25.85 3.92 28.58 31.00 3.96

BERT 32.95 29.66 4.05 32.03 30.56 4.08

BART 29.49 36.90 4.76 30.63 42.79 4.80

6.4 Results and Analysis

Regardless of Complexity Levels. We report the experimental results on the entire
COMPILING dataset in Table 5. The results show that PLMs outperforms the other
two methods in terms of the BLEU and NIST scores apparently. However, the results of
BERT and BART models diverged on these two metrics. Since NIST assigns different
weights to tokens, we believe it better reflects the model’s performance. We confirmed
this by reading the generated samples. We also notice that as the model performance
improves, so does the average HSK level of the generated definitions. This phenomenon
is because simpler words are used more frequently, and hence are more easily learned
by models. As the modeling ability improves, the better-performing models learn to use
more complex words. This can be challenging for future complexity controllable def-
inition generation works, i.e., improving the performance and reducing the generation
complexity at the same time.

Complexity Specific Models. Table 6 illustrates experiment results on three different
subsets. As listed in the table, we not only test on the subset in which the model is
trained, but also on other subsets. Generally, all the models perform best on the sub-
set it was trained, and poorly on other subsets. Moreover, the performance decays as
the complexity level between the model and data increases. Definitions with different
complexity have different lexical and syntax, resulting in poor cross-complexity gener-
alization. Besides, we found that even on different test sets, definitions generated by the
same model have similar complexity.

Table 6. Experiment results in terms of complexity controllable generation on three test sets.

Models Easy set Medium set Hard set

BLEU NIST HSK BLEU NIST HSK BLEU NIST HSK

BART-Easy 32.44 64.40 2.40 21.56 27.61 2.73 25.89 7.95 2.74

BART-Medium 22.92 24.59 4.70 27.69 40.68 4.86 29.37 16.09 5.01

BART-Hard 22.49 3.55 8.46 23.70 7.04 8.45 46.57 18.22 8.76
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Unified Model Based on Prompt Learning. MT5-base [27] was selected as the bench-
mark model in this experiment. The best PPL obtained from the definitions generated
on the validation set is 38.44. The BLEU and NIST of the model on the test set are 27.42
and 4.66, respectively. The model generates interpretations based on the new test men-
tioned in Sect. 6.2. Table 7 lists two examples where it is fairly obvious that the resulting
definitions are differentiated and conform to the expectations for their specified com-
plexity levels. To evaluate the complexity of generating definitions more accurately, we
adopt automatic evaluation, ranking the difficulty of each group4. The automatic eval-
uation is based on the Chinese Text Complexity Analysis Platform (CTAP)5 [3]. We
selected the features of word diversity and word density that reflect the difficulty of
paraphrases and calculated the scores of definitions in each group based on the above
features. Finally, the scatter distribution diagram is shown in Fig. 2. It can be seen that
the complexity score of the Hard Group is mainly above 5, and the number of defi-
nitions with the highest score is the largest. The definition in the Easy Group scored
the lowest overall score. This means the difficulty level of the model-generated inter-
pretations obtained by automatic evaluation is roughly in line with expectations. The
result proves the effectiveness of prompt learning on complexity controllable task, but
since the difference in the overall distribution of scattered points in each group in the
figure is not particularly obvious, it also reflects that there is room for exploration and
improvement of this task in the future.
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Fig. 2. The automatic evaluation results. For example, the scatters of the Hard Group represent
those definitions that are specified as the hardest, and the ordinate corresponds to the scores
obtained by the automatic rating.

7 Conclusion

In this work, we propose a novel task of generating Chinese complexity controllable
definitions for a given word and example sentence. This task is of great use in help-
ing CFL learners and low literacy readers. Meanwhile, we introduce the COMPILING
dataset, which is a benchmark adapting to kinds of definition generation tasks. We also

4 Each group of data refers to one original entry and its two copies, their specified complexity
of definition is different and other information keep the same.

5 http://ctap.wenmind.net.

http://ctap.wenmind.net
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provide several baselines for this task, among which the prompt learning method bet-
ter assist models in generating definitions with specified complexity. Nevertheless, the
experimental results also show that this task is challenging, and the performance needs
further improvement.
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Abstract. Explanations can increase the transparency of neural net-
works and make them more trustworthy. However, can we really trust
explanations generated by the existing explanation methods? If the
explanation methods are not stable enough, the credibility of the expla-
nation will be greatly reduced. Previous studies seldom considered such
an important issue. To this end, this paper proposes a new evalua-
tion frame to evaluate the stability of current typical feature attribution
explanation methods via textual adversarial attack. Our frame could gen-
erate adversarial examples with similar textual semantics. Such adver-
sarial examples will make the original models have the same outputs,
but make most current explanation methods deduce completely differ-
ent explanations. Under this frame, we test five classical explanation
methods and show their performance on several stability-related metrics.
Experimental results show our evaluation is effective and could reveal the
stability performance of existing explanation methods.

Keywords: Feature attribution · Explanation method · Adversarial
attack

1 Introduction

Fueled by recent rapid development in deep learning, NLP systems have obtained
promising results in several fields, such as medical, law and commerce [6,28].
However, besides the predicted results, users concern more on how these results
are generated [18]. To this end, lots of emphases have been set upon the expla-
nation methods for neural networks [4,17,26,30].

Although the current explanation methods have increased the transparency
of the neural networks and provided explanations as supports for predicted
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 281–297, 2022.
https://doi.org/10.1007/978-3-031-18315-7_18
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results, most of them ignored important questions: are these methods reliable
and the generated explanations really trustful? Besides the widely used focused
properties of explanation methods, such as faithfulness, plausibility [1,3,14],
readableness [4] and compactness [16,21], we believe stability is an important
but often overlooked property [27]. When we put a small perturbation on the
input, which would not change the input semantic and the output of the original
model, we believe that the explanation method is not stable enough when we
obtain the same outputs with quite different explanations. For example, Fig. 1
shows all results of major explanation methods would change when we just
replace fine by refined, including LIME [26], Leave-one-out [17], Vanilla Gra-
dient [30], Smooth Gradient [32], Integrated Gradient [35].

  The movie exists for its soccer action and its fine acting.
  Label: Positive                            Attribution Order: 1st  2nd  3rd

  LeaveOneOut                                                          Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its terrific acting. 

  LIME                                                                       Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The special exists for its soccer action and its fine acting. 

  Vanilla Gradient                                                     Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its refined acting. 

  Smooth Gradient                                                    Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its gorgeous acting. 

  Integrated Gradient                                               Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer behavior and its good acting. 

Fig. 1. An example of the result of our adversarial attack. We select a sentence from
SST-2 and show the adversarial examples for explanation method Vanilla Gradient
[30]. Ori and Adv stand for original sentence and corresponding adversarial example
respectively. We show the three most important tokens and sign them in different
colors. (Color figure online)

To fulfill the stability testing, we intuitively consider existing word-
substitution based textual adversarial attack methods1 [25,38], since it is under

1 Feature attribution based explanation methods show the importance of each token
to the prediction. Therefore, paraphrase-based attack methods do not fit because
they would modify too many parts of inputs at once.
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the black-box2 settings and no need for the transparency of the model frame-
work. However, we could not directly extend the current adversarial attack on
the explanation methods. In our explanation stability test setting, the attack
method should ensure the original prediction model has unchanged outputs for
the adversarial examples, but the explanations vary, which is obviously differ-
ent from the target of the common textual adversarial attacks. Thus, the main
challenge is, for such adversarial examples, how to ensure the explanations are
different but the outputs of the original model are the same. To this end, we
modified the target of the standard textual adversarial attack to keep the pre-
diction label of the adversarial examples unchanged. At the same time, we define
two criteria to measure the difference between two explanations and add them
respectively to the score function. Such explanation difference measurements are
used to help the judgment of the adversarial examples’ qualities in the attacking
procedure.

Finally, we put the attack on five typical feature attribution explana-
tion methods. Experimental results show their performance on stability. We
find perturbation-based explanation methods perform better on stability than
gradient-based methods. All of the source code and data will be available soon.

2 Related Work

2.1 Feature Attribution Explanation Method

Feature attribution explanation methods score each token of the input based
on its contribution to the prediction label. We can easily find the key tokens
according to the attribution value. These explanation methods can be simply
classified as below two categories: perturbation-based methods and gradient-
based methods.

Perturbation-based get the attribution score by perturbing the input
sequence: LIME [26] sampled enough new sequences from the neighbor of the
input sequence and fit the output logits of these sampled sequences by a linear
function, the coefficients of the fitted function are the attribution score for each
token. Leave-one-out [17] observed the probability change on the predicted
class when erasing some certain word and the value of probability change is the
attribution score for the removed word. Gradient-based methods compute the
attribution score according to the gradient of the input: Vanilla Gradient [30]
simply computed the gradient of the loss with respect to each token. Smooth
Gradient [32] added small Gaussian noise to every embedding and take the
average gradient value as the final attribution score for each token. Integrated
Gradient [35] integrated the gradient along the path from a sequence of all-zero
embeddings to the original input and take the integral value as the attribution
score.
2 Black-box refers to we can only utilize the outputs of the model during the attack.

However, some explanation methods are not black-box such as gradient-based meth-
ods. Whether the explanation method is black-box has nothing to do with our black
box attack method.
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2.2 Evaluation of Explanation Methods

Recently, a collection of explanation methods has emerged exploring to interpret
neural networks. To compare these explanation methods, various explanation
metrics have been proposed. Faithfulness refers to how accurately the expla-
nation reflects the true reasoning process of the model [13,14,37]. Plausibility
refers to how convincing the explanation is to humans by comparing explana-
tions that generated by explanation methods and human annotated explana-
tions [3,9]. Besides, readableness measures whether human could understand
the explanations [22] and compactness requires a explanation should be short or
selective [16,21]. However, these evaluation metrics ignore whether the explana-
tion method is reliable.

To evaluate the reliability of existing explanation methods, consistency and
stability have been proposed. However, consistency is quite different from sta-
bility actually. To evaluate consistency, existing studies usually modified origi-
nal model to generate different explanations when the inputs and outputs keep
unchanged. [15] modified the attention value and maintain the output unchanged
to illustrate attention is not explanation. [12] applied adversarial model manipu-
lation to generate different explanations. [31] aims to sample based explanation
methods. They modified the original classifier into two parts: original classifier for
original instances and another model for instances in neighbor. [36] construct a
new model which has similar outputs with original model but definitely different
gradient. They added this model on original model and the added model shows
similar prediction but totally different gradient-based explanations. Indeed, they
all try to modified the original model to generate different explanations. How-
ever, for stability, we just put perturbation on inputs not on model, which is
extremely different with consistency.

For stability, though existing works defined its specific meanings, only a few
work design corresponding experiments to evaluate the performance of stability.
[11] applied pixel-level perturbations to evaluate the stability. However, pixel-
level perturbations can not be easily transferred in NLP. In NLP only [10] eval-
uated this property by manually constructing similar instances, which is much
time-consuming and expensive. Therefore, in this paper, we automatically con-
struct similar instances by learning from textual adversarial attack.

3 Formulation

In this section, we first introduce the basic information of the common textual
adversarial attack in Sect. 3.1. Then we introduce how to formulate explanation
adversarial attack in Sect. 3.2.

3.1 Textual Adversarial Attack

Formally, suppose that a sentence xk = ω1ω2 · · · ωn, where ωi is the i-th word
in xk. For a given classifier P (y|x) and label set Y = (y1, y2, ..., ym), the model
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prediction yk for xk can be formulated as yk = arg maxy∈Y P (y|xk). The target
is to find x

′
k, which can be formulated as:

x
′
k

s.t. yk �= y
′
k,

∥
∥
∥x

′
k − xk

∥
∥
∥ < ε

(1)

where x
′
k is the adversarial example of xk. The core constraint is to ensure

the difference between xk and x
′
k is small enough. In this paper, we ensure the

semantics of xk and x
′
k to be as similar as possible, which has been shown more

imperceptible for human [39].

3.2 Explanation Adversarial Attack

Feature attribution explanation method can generate an explanation ek =
(s1, s2, · · · , sn) according to xk and its prediction yk, where si is the attribution
score of ωi. Therefore, the target is to find x

′
k, which can be formulated as follow:

x
′
k

s.t. ek �= e
′
k, y

′
k = yk,

∥
∥
∥x

′
k − xk

∥
∥
∥ < ε

(2)

We also follow the common textual adversarial attack to keep the semantics of
xk and x

′
k to be similar. And the most important difference is an extra con-

straint y
′
k = yk, we must ensure this constraint should be satisfied because of

the definition of stability. Obviously, the constraint is contrary to the target of
common textual attack, where y

′
k �= yk. By contrast, our target is to ensure the

explanations are different. Therefore, we will define how to measure explanation
difference in the following section.

4 Attack Method

According to Sect. 3.2, we need to measure the explanation difference. There-
fore, we propose two metrics in Sect. 4.1. Then we present our detailed attack
strategies to attack existing explanation methods in Sect. 4.2.

4.1 Measuring the Explanation Difference

For feature attribution methods, people usually do not care the specific attri-
bution score of each token but the relative importance ranks of these tokens.
Therefore, we consider the rank differences between explanations. We can easily
get the corresponding rank sequence Rk for explanation Ek in descending order,
where Rk = (rk

1 , rk
2 , ..., rk

n), rk
i stands for the descending rank of the i-th token in

xk. We can also get the corresponding position sequence Pk = (pk
1 , p

k
2 , ..., p

k
n) via

argsort, pk
i stands for the index of the i-largest attribution score in xk. Based
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on this, we design two quantitative criteria to measure the difference between
explanations.

Rank-count: In this setting, we compute the number of positions whose rank
has changed:

dcount(Ei, Ej) =
n∑

k=1

||ri
k − rj

k||0 (3)

where || · ||0 refers to the L0 norm.

Rank-topk: In this setting, we compute the size of intersection set of two posi-
tion set of the top-k rank. The top-k set for ei is the first k elements of position
sequence ri: Ei

topk = {pi
1, p

i
2, ..., p

i
k}.

dtopk(Ei, Ej) = |Ei
topk ∩ Ej

topk| (4)

where | · | refers to the size of a set.
For example, given E1 = {0.1, 0.5, 0.3, 0.2} and E2 = {0.6, 0.3, 0.4, 0.2}. We

get the rank sequence R1 = {3, 0, 1, 2} and R2 = {0, 2, 1, 3}, then we can get the
position sequence P1 = {1, 2, 3, 0} and P2 = {0, 2, 1, 3}. Accordingly, we compute
dcount(E1, E2) = 3 and dtopk(E1, E2) = 2 when k = 3.

4.2 Attack Strategies

Word-substitution based textual adversarial attack methods usually consist of
two main steps: determining substitution order and selecting substitution words.
In different steps, we employ different strategies. To determine the substitu-
tion order, we modify [29] as an example. To select substitution words, we uti-
lize OpenHowNet [24] as the substitution resource [38]. Notably, other word-
substitution based adversarial attack methods [2,25,38] are also applicable.

Determining Substitution Order. Formally, for a sentence x = ω1ω2 · · ·
ωi · · · ωn, to determine the substitution order, we compute the word saliency
WSi for token ωi first. To compute WSi , we should get x̂i = ω1ω2 · · · 0 · · · ωn

by replacing ωi with 0.

WSi = P (yori|x) − P (yori|x̂i) (5)

where yori refers to the original output label. We calculate the word saliency
WSi for all ωi ∈ x and then we sort all of the tokens in descending order based
on their saliency value. Then we substitute the words in this order [29].

Selecting Substitution Words. We construct candidate substitution set via
sememes and utilize OpenHowNet [24] as the resource. Sememe is the minimum
semantic unit of language [5] and the sememes of one word can composite the
meaning of this word. Therefore, words that have the same sememe can substi-
tute for each other [38]. As shown in Fig. 2, when we want to find substitution
words for the original word writer. We utilize OpenHowNet to get its sememes
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original word sememe word with same sememe candidate word

writer

human

compile

literature

{police, author, teacher, poet…}

{edit, redact, poet, author…}

{poetry, novel, author, poet…}

{poet, author,...}
intersection

The writer is pleased with his latest work. The poet/author is pleased with his latest work.

Fig. 2. An example of how to construct candidate substitution word set for the word
writer by its sememes human, compile and literature.

human, compile and literature. Then we get three word sets that has these
three sememes respectively. Finally, we compute the intersection of these three
word sets and get the substitution word poet and author for the original word
writer. According to [24] and [38], when we replace the word with the obtained
substitution word, the semantic of the original sentence would not change.

After getting substitution set for the original word by above method, we still
have to choose which word to substitute the original word. Therefore, we also
need a quantitative criterion to help us to find the most suitable substitution
word from the whole substitution set. Specifically, we define our score function
as follow:

score(x1, x2) = d(e1, e2) × (1 − ||y1 − y2||0) (6)

where d(e1, e2) represent the explanation difference for x1, x2 and we directly
employ the Eq. (3) and Eq. (4). y1, y2 are the prediction label for x1, x2. We
directly force the labels must be same, otherwise the score would be zero.

With this score function, we can get the substitution word ω∗
i for ωi in

xi = ω1ω2 · · · ωiωn. This process can be formulate as follow:

ω∗
i = arg max

ωi∈Lωi

score(x, x
′
i) (7)

where x
′
i = ω1ω2 · · · ω′

i · · · ωn and Lωi
is the candidate set for the word ωi. Finally,

ω∗
i is the substitution word for ωi is x.

5 Experiments

5.1 Datasets and Models

Following previous explanation studies [3,9], we also select sentiment analysis
as the target task. In specific, we choose SST-2 [33] and IMDB [19] as the test
benchmark dataset and select the base version of BERT [8] and BiLSTM [7] as
the target model.

For BERT, we utilize the base version of BERT. For BiLSTM, the hidden
states are 256-dimensional and we utilize the 300-dimensional pre-trained Glove
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[23] word embeddings. Our reproduced BERT can achieve accuracy of 91.28%
and 91.36% on SST-2 and IMDB respectively. And BiLSTM can achieve accuracy
of 85.50% and 90.38% on SST-2 and IMDB respectively.

To improve evaluation efficiency, we randomly sample 500 correctly classified
instances with the length of 10–100 from the test set.

5.2 Explanation Methods

We select five classical feature attribution explanation methods in the two main-
stream types to conduct our experiments:

A. Perturbation-Based Explanation Method:

LIME [26] sampled enough sentences from the neighbor of the input and fit
the output logits of these samples by a linear function. The coefficients of the
obtained linear function is the corresponding attribution scores.

LeaveOneOut (LOO) [17] observed the probability change on the predicted
class when erasing each word one by one and take this change value as the
attribution score.

B. Gradient-Based Explanation Method:

VanillaGradient (VG) [30] simply computed the gradient of the model loss
with respect to the token and multiply with its embedding as its corresponding
attribution score.

ai = xi · ∂f(xi)
∂xi

(8)

SmoothGradient (SG) [32] added small Gaussian noise to every embedding N
times and average these N VanillaGradient value as the final attribution score.

ai =
1
N

N∑

i=1

(xi + N (0, 1)) · ∂f(xi + N (0, 1))
∂(xi + N (0, 1))

(9)

where N (0, 1) refers to the Gaussian noise.

IntegratedGradient (IG) [35] integrated the gradient along the path from a
basic sequence x

′
i to the original input xi and take the integral value ai as the

attribution.

ai = (xi − x
′
i)

∫ 1

α=0

∂f(x
′
i + α × (xi − x

′
i))

∂α
dα (10)

Specifically, it is time-consuming to compute integral value. To improve com-
putation efficiency, we divide the integral area into K parts and obtain the
approximate value of ai [35].

ai = (xi − x
′
i)

K∑

m=1

∂f(x
′
i + m

K × (xi − x
′
i))

∂xi
× 1

K
(11)
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5.3 Experimental Settings and Results

Explanation Similarity. Firstly, we fix m modified words to generate corre-
sponding adversarial examples whose explanations are the most different. Then
we use explanation similarity to evaluate the stability of explanation meth-
ods. More stable explanation methods could get higher explanation similarity.
In specific, we employ three specific criteria including change, spearman and
inte. change refers to the percentage of positions whose corresponding rank
has changed, spearman refers to the spearman’s rank order correlation efficient
between the ranks of two explanations [34], and inte refers to the size of the
intersection of the 5 most important tokens before and after perturbation [11].
Table 1 presents the experimental results of the five explanation methods that
conduted on BERT and BiLSTM on the two datasets SST-2 and IMDB.

Table 1. Results of similarity of explanations between original instances and their
adversarial examples by replacing m words for BERT and BiLSTM. change is defined
as the percentage of positions whose corresponding ranks have changed. spearman is
the spearman’s rank order correlation between two explanations. inte is defined as the
size of the intersection of the 5 most important tokens before and after perturbation.

Model Dataset Explanations m=1 m=2 m=3

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑ change↓ spearman↑ inte↑
BERT SST-2 LIME 79.87 0.80 3.87 84.03 0.78 3.81 86.52 0.76 3.75

LOO 89.13 0.64 3.14 92.62 0.62 3.09 94.12 0.61 3.03

VG 92.99 0.48 2.83 95.65 0.45 2.71 97.11 0.42 2.64

SG 92.86 0.55 2.92 95.71 0.53 2.87 96.70 0.52 2.83

IG 86.79 0.71 3.45 90.01 0.69 3.38 91.69 0.67 3.37

IMDB LIME 84.60 0.92 4.23 88.65 0.90 4.08 90.04 0.88 3.87

LOO 90.10 0.84 3.48 93.47 0.79 3.12 95.22 0.76 2.91

VG 92.75 0.79 3.23 95.44 0.73 2.88 96.65 0.69 2.66

SG 92.48 0.82 3.29 95.26 0.76 2.89 96.60 0.73 2.67

IG 85.49 0.91 4.07 89.58 0.89 3.90 91.37 0.87 3.81

BiLSTM SST-2 LIME 71.18 0.81 4.02 80.38 0.74 3.78 84.22 0.68 3.63

LOO 75.76 0.77 3.89 84.07 0.71 3.70 86.96 0.67 3.60

VG 78.20 0.75 3.78 85.04 0.62 3.52 88.50 0.56 3.36

SG 77.83 0.77 3.85 84.49 0.68 3.55 87.21 0.64 3.40

IG 73.55 0.79 3.99 81.73 0.72 3.75 85.39 0.67 3.61

IMDB LIME 81.44 0.90 4.24 86.36 0.86 4.07 88.25 0.84 3.92

LOO 84.96 0.86 4.11 89.48 0.82 3.91 90.78 0.81 3.85

VG 86.25 0.85 3.72 90.42 0.80 3.41 91.88 0.77 3.27

SG 86.22 0.86 4.08 90.00 0.81 3.89 91.45 0.79 3.80

IG 82.80 0.88 4.21 87.41 0.84 4.02 89.19 0.83 3.89

To evaluate stability, following its definition, we should ensure the same out-
put and keep semantics of adversarial examples unchanged. For output consis-
tency, we test the consistency of predictions between all test instances and their
adversarial examples, which can achieve 100%. It means our methods satisfy
the requirement of the same outputs. As for input semantic consistency, we per-
form human evaluation to check the semantic similarity between the adversarial
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example and the original example. Specifically, We invite 4 postgraduates score
ranges 1 to 3 according to the semantic similarity between original instances and
their adversarial examples. Scores of 1,2 and 3 indicate low, medium and high
semantic similarity, respectively. Higher scores mean better consistency. Table 2
shows the results of human evaluation. These results show that our generated
examples could keep semantics unchanged. Therefore, our experiment satisfies
the definition of stability and the experimental results in Table 1 are convincing.

Table 2. Results of human evaluation. The human evaluation score is not an objective
metric and the higher score does not stand for the better method. We list it here just
to show the adversarial examples in Table 1 keep the semantic unchanged.

Model Dataset Explanation m=1 m=2 m=3

BERT SST-2 LIME 2.75 2.48 2.23

LOO 2.74 2.46 2.18

VG 2.73 2.42 2.12

SG 2.74 2.44 2.14

IG 2.75 2.47 2.21

IMDB LIME 2.82 2.67 2.41

LOO 2.79 2.63 2.36

VG 2.77 2.60 2.34

SG 2.77 2.61 2.33

IG 2.80 2.65 2.39

BiLSTM SST-2 LIME 2.76 2.48 2.25

LOO 2.73 2.44 2.19

VG 2.72 2.41 2.13

SG 2.72 2.44 2.16

IG 2.75 2.46 2.23

IMDB LIME 2.81 2.67 2.37

LOO 2.75 2.47 2.18

VG 2.74 2.44 2.15

SG 2.74 2.46 2.16

IG 2.75 2.50 2.22

From the experimental results in Table 1, we find the stability performance of
the five typical explanation methods keep same on different models and different
datasets. And the stability performance (from good to bad) of these explanation
methods is as follow: LIME, Integrated Gradient, LeaveOneOut, Smooth
Gradient, Vanilla Gradient.

According to the results for different m in Table 1, when we replace more
words, explanation difference obviously increases. However, from the human eval-
uation results in Table 2, we find the semantic consistency also decreases as m
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increases. Therefore, one thing must be pointed out, to satisfy the semantic con-
sistency of input, we should control the modification rate when we evaluate the
stability of explanation methods.

Attack Success Rate. Secondly, following the common textual adversarial
attack, We design a series of success conditions to check the attack success rate
for different explanation methods. Combining with the finding in Sect. 5.3 that
we should control the modification rate when evaluating stability, we set the
maximum modification rate 20%. And existing textual adversarial attack also
usually control the modification rate less than 20% [2,25,38].

Then we illustrate our formulated success conditions. We utilize the quanti-
tative criteria introduced in Sect. 4.1 and then define the success conditions as
dcount > α ∗ length and dtopk < β for different α, β. dcount > α ∗ length refers to
the proportion of positions whose ranks have changed in should bigger than α
and we select α from {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. dtopk < β refers to the size of
intersection of the top-5 important tokens should smaller than β and we choose
β from {1, 2, 3, 4, 5}. Obiviously, bigger α and smaller β mean more difficult suc-
cess conditions, and a smaller attack success rate on the same condition means
a more stable explanation method. Given a sentence, if achieving the success
condition with the modification rate less than 20% , we define this is a success-
ful attack. Otherwise, when the success condition can not be achieved even on
the maximum modification rate, we define this is a unsuccessful attack. Then
we calculate the corresponding attack success rate on all examples.

Fig. 3. Success rate for different success conditions. Left part shows the condition
dcount > α ∗ length for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Right part shows the condition
dtopk < β for β ∈ {1, 2, 3, 4, 5}. Success rate is the percentage of instances whose
explanation difference could satisfy the condition. Bigger α and smaller β indicate more
different explanations. A smaller success rate on the same success condition indicates
a more stable method.

Figure 3 shows the results of BERT on SST-2. Under the two type of success
conditions, we find the relative rank of the five explanation methods appears
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the same. And more difficult success condition would cause lower attack success
rate. The stability performance (from good to bad) is the same as the results in
Sect. 5.3: LIME, Integrated Gradient, LeaveOneOut, Smooth Gradient,
Vanilla Gradient.

In summary, in our different experiment settings (Table 1 and Fig. 3), all
experimental results consistently show that the stability performance (from
good to bad) of the five methods is as follows: LIME, Integrated Gradi-
ent, LeaveOneOut, Smooth Gradient, Vanilla Gradient. Besides, we also
observe perturbation-based methods have better performance on stability than
gradient-based methods.

6 Discussion

Beyond the above experiments, our discussions would address the following
research questions:

– RQ1 How do the evaluation results change when replacing the two steps in
the proposed attack strategy with othe existing methods?

– RQ2 How can we improve the stability of explanation methods?

6.1 Correlation Analysis Between the Two Attack Steps
and the Evaluation Results

To address RQ1, we modify the two steps in Sect. 4.2 to conduct experiments
in the following parts:

Table 3. Results of explanation similarity for BERT on SST-2. ori refers to the results
based on the word substitution order in Sect. 4.2 and rand refers to the results based
on the random substitution order.

m = 1 m = 2

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑
ori rand ori rand ori rand ori rand ori rand ori rand

LIME 79.87 76.00 0.80 0.84 3.87 4.03 84.03 82.71 0.78 0.79 3.81 3.89

LOO 89.13 84.25 0.64 0.76 3.14 3.48 92.62 90.40 0.62 0.69 3.09 3.25

VG 92.99 89.82 0.48 0.62 2.83 3.20 95.65 94.58 0.45 0.55 2.71 2.99

SG 92.86 89.13 0.55 0.65 2,92 3.23 95.71 94.20 0.53 0.55 2.87 2.99

IG 86.79 79.39 0.71 0.80 3.45 3.89 90.01 86.12 0.69 0.75 3.38 3.69

Effect of Substitution Order. To verify whether the other substitution order
is effective to evaluate the stability of explanation methods, we utilize a random
order to replace the substituion order in Sect. 4.2. Specifically, following experi-
ments settings in Sect. 5.3, we select SST-2 and conduct experiments on BERT
model. To improve efficiency, we only choose m = 1 and m = 2.
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Table 3 shows the corresponding results. Compare to results in Table 1, all of
the attack performance have dropped. In specific, for same explanation method
on same setting, the change metric decreases and the spearman and inte metrics
both increases, which stands for the higher explanation similarity. And this is
consistent with the common textual adversarial attack, which has been shown
the random order would much decrease the attack performance [25]. Besides, we
find the stability performance of these five explanation methods still keep same
as the previous findings.

Effect of Substitution Set. To verify whether the other substitution set is
effective, we utilize WordNet [20] to construct substitution word set. We can
easily find synonyms for a given word via WordNet. Following experiments set-
tings in Sect. 5.3, we select IMDB and conduct experiments on BiLSTM model.
To improve efficiency, we also only choose m = 1 and m = 2.

Similar to replacing the substitution order with random order, the attack
performance also drop. And the stability performance of these five explanation
methods also keep same.

In summary, our evaluation frame is independent to the specific substitution
order and how to construct substitution set. These specific steps only influence
the attack performance and could get the similar results of existing explanation
methods when evaluating stability Table 4.

Table 4. Results of explanation similarity for BiLSTM on IMDB. ori refers to utiliz-
ing OpenHowNet to construct substitution set and WN refers to utilizing WordNet to
construct substitution set.

m = 1 m = 2

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑
ori WN ori WN ori WN ori WN ori WN ori WN

LIME 81.44 78.89 0.90 0.92 4.24 4.41 86.36 83.21 0.86 0.89 4.07 4.09

LOO 84.96 82.18 0.86 0.89 4.11 4.18 89.48 86.32 0.82 0.85 3.91 3.98

VG 86.25 83.79 0.85 0.87 3.72 4.02 90.42 88.14 0.80 0.83 3.41 3.85

SG 86.22 83.72 0.86 0.87 4.08 4.14 90.00 87.97 0.81 0.84 3.89 3.95

IG 82.80 79.97 0.88 0.90 4.21 4.27 87.41 84.56 0.84 0.87 4.02 4.05

6.2 Simply Improving Stability of Explanation Method

To address RQ2, we try to explore how to improve the stability of two explana-
tion methods.

Adding More Noise. We explore the influence of the number of the added
noise N (Eq. (9)) in Smooth Gradient. We select Spearman’s rank order corre-
lation as the evaluation metric. Figure 4 (left) shows the results. We find adding
appropriate noises is useful and adding more noises is not meaningful.
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Fig. 4. The left figure shows the relation between Spearman’s rank order correlation
and the number of the added noise M in Smooth Gradient. The right figure shows
the relation between change ratio and the number of the divided parts K in Integrated
Gradient.

More Robust Mechanism. Integrated Gradient is a more robust mechanism
compared to Simple Gradient and Smooth Gradient, because it satisfy sensitivity
and implementation invariance these two important axiom [35]. We explore the
influence of the divided parts K in Eq. (11). Figure 4 (right) shows the results of
change rate. We find adding the number of the divided parts K is useful. The
bigger K is, the more accurate the integral value is, which means more robust
mechanism. Therefore, more robust mechanism could improve the stability of
explanation methods.

Therefore, we can try to add appropriate noises and seek more robust mecha-
nisms to make explanation methods more stable. And we take the further explo-
ration of improving stability as our future work.

7 Conclusion

This paper proposes a new evaluation frame to evaluate the stability of typical
feature attribution explanation methods via adversarial attack. Various exper-
imental results on different experimental settings reveal their performance on
stability, which also show the effectiveness of our proposed evaluation frame. We
also conduct experiments to show the proposed frame is dependent of specific
step. Therefore, we hope the proposed evaluation frame could be applied to eval-
uating the stability of feature attribution explanation methods in the future and
attract more research on this important but often overlooked property.

8 Limitations

The proposed evaluation frame only focus on the rank of the feature attribution
explanation methods. These explanation methods also provide specific attribu-
tion scores and these scores may further refine the proposed frame.
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Abstract. Grammatical error correction (GEC) aims at correcting texts
with different types of grammatical errors into natural and correct forms.
Due to the difference of error type distribution and error density, cur-
rent grammatical error correction systems may over-correct writings and
produce a low precision. To address this issue, in this paper, we propose
a dynamic negative example construction method for grammatical error
correction using contrastive learning. The proposed method can con-
struct sufficient negative examples with diverse grammatical errors, and
can be dynamically used during model training. The constructed nega-
tive examples are beneficial for the GEC model to correct sentences pre-
cisely and suppress the model from over-correction. Experimental results
show that our proposed method enhances model precision, proving the
effectiveness of our method.

Keywords: Grammatical error correction · Contrastive learning ·
Negative example construction

1 Introduction

Grammatical error correction (GEC) [8,15,17] aims at correcting texts with
different types of grammatical errors into natural and correct forms. It is an
important research topic for both natural language processing and language
education.

Most of the current GEC systems are developed for correcting writings by
learners of English as a second language [2,5,8,15,17]. However, GEC for native
writings is also worth exploring, as texts written by native speakers may also
contain grammatical errors that should be corrected for enhancement of writ-
ing quality. Currently, it is not feasible to train a GEC model specifically for
correcting native writings because GEC data containing native writings are not
sufficient. Therefore, native writings are often corrected by GEC models that are
trained on GEC data consisting of writings by non-native speakers such as the
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Lang-8 [21] and NUCLE [9] datasets. However, the error type distribution, error
density and fluency are inconsistent between the writings by non-native and
native speakers. Therefore, those GEC models may over correct sentences and
produce a low precision of error correction [12]. In terms of this issue, contrastive
learning (CL) [6,7,13,19] can be incorporated to help alleviate the over correc-
tion behaviour of the GEC models. The core idea is to take the over-corrected
sentences as negative examples, and to effectively avoid or alleviate the problem
of over correction by increasing the distance between the anchor sentence and
the negative examples. So the focus is on how to construct effective negative
examples for training the GEC models effectively. Previous studies about GEC
models mainly focus on data augmentation for generating pseudo parallel train-
ing pairs as complement for the current insufficient GEC training data [27,30],
or focus on improving the correction performance with a variety of model archi-
tectures [1,25,26], few of them focus on improving the performance of the GEC
models with contrastive learning. To the best of our knowledge, Cao et al. [4] is
the only recent work for that. In their work, they propose two approaches for
constructing negative examples. First, they treat the beam search candidates
produced by an off-the-shelf GEC model as negative examples. They find that
many output candidates generated by beam search contain erroneous edits, and
the constructed negative examples help suppress the trained GEC model from
producing erroneous edits. Second, the source sentence is treated directly as a
negative example if it contains grammatical errors. Their intuition is that there
should be differences between the corrected output sentence and the source sen-
tence, otherwise the GEC model fails to detect any grammatical errors in the
source sentence. The negative examples constructed in this way suppress the
trained GEC model from outputting the erroneous source sentences as they are
without any modifications.

Although the aforementioned study produces good performance, we believe
that there are still two points that can be improved: (1) The negative examples
constructed with beam search may not be sufficient. Many beam search output
candidates are the same as the target sentence and cannot be used as negative
examples. That leads to a small number of the generated negative examples. In
addition, the beam search candidates may contain unrealistic grammatical errors
with a small number of error types, limiting the diversity of grammatical errors
in the generated negative examples. As a result, the low diversity of the negative
examples makes the GEC model less easier to learn to distinguish the nega-
tive examples from the anchor, which limits the improvement of error correction
performance brought by contrastive learning. (2) They construct the negative
examples with their negative example construction methods before model train-
ing. As a result, the GEC model can only be able to see a fixed set of negative
examples in each iteration during training, which may reduce the generalization
ability of the GEC model.

To this end, we propose a dynamic negative example construction method for
grammatical error correction using contrastive learning. The proposed method
contains a negative example construction strategy that makes use of realistic
grammatical error patterns produced by humans to generate sufficient negative
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examples with more diverse grammatical errors. With the constructed nega-
tive examples, the GEC model can learn to correct sentences precisely and be
suppressed from over-correction. Moreover, the proposed strategy is simple and
lightweight, enabling it to be applied dynamically during the training process. In
this manner, our method enhances the generalization ability of the GEC model.

The main contributions of this work are as follows:

(1) We propose a dynamic negative example construction method for grammat-
ical error correction using contrastive learning. The proposed method can
construct sufficient negative examples with diverse grammatical errors, and
can be dynamically applied during model training. The constructed nega-
tive examples are beneficial for the model to correct sentences precisely and
suppress it from over-correction.

(2) We conduct extensive experiments on the public CWEB dataset that con-
tains native writings, and compare our proposed method with existing GEC
studies focusing on negative example construction. Experimental results
show that our proposed method indeed enhances model precision and sup-
presses the GEC model from over-correction.

2 Related Work

In this section, we briefly review different GEC methods, including the early
rule-based methods, the widely used methods based on machine translation or
BERT, and the recently proposed GEC methods using contrastive learning.

GEC Methods Based on Rules. Early GEC models are mostly rule-based
pattern recognizers or dictionary-based linguistic analysis engines [20,22–24].
These rule-based methods require a set of pre-defined error recognition rules to
detect grammatical errors in the input sentences. Once a certain span in the
input sentence is matched by a certain rule, the error correction system provides
a correction for the matched error.

GEC Methods Based on Machine Translation. GEC models based on
machine translation have been proposed to “translate” wrong sentences into cor-
rect sentences. Brockett et al. [2] use a noisy channel model in conjunction with
a statistical machine translation model for error correction. Felice et al. [11] pro-
pose a hybrid GEC model that integrates grammatical rules and a statistical
machine translation model. They also adopt some techniques such as type fil-
tering. Zheng and Ted [29] apply a neural machine translation model with the
attention mechanism to GEC. In addition, they also introduce a method that
uses a combination of an unsupervised alignment model and a word-level transla-
tion model to solve the problem of sparse and unrecognized words. Chollampatt
et al. [8] integrate four convolutional neural translation models combined with a
re-scoring mechanism. Kiyono et al. [17] construct the GEC model with Trans-
former and use many data augmentation techniques.

GEC Methods Based on BERT. Many studies have introduced the Trans-
former-based deep bidirectional language model BERT [10] into GEC, hoping
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that the correction performance can be improved with the help of its rich lan-
guage knowledge and deep textual understanding ability. Awasthi et al. [1] mod-
ify the BERT structure to predict the edit operation of each word in the source
sentence by sequence tagging. Then they apply the edit operations to the source
sentence to construct its correct form. Chen et al. [5] use BERT to predict and
annotate error spans in the input sentence, and subsequently rewrite the anno-
tated error spans with a sequence model. Kaneko et al. [15] first fine-tune BERT
with GEC data, then feed the output representations of the fine-tuned BERT to
the GEC model as additional information for error correction.

GEC Methods Based on Contrastive Learning. Contrastive learning [6,
7,13,19] is a discriminative self-supervised learning method used to enhance the
feature representation ability of deep learning models. For any training example,
contrastive learning requires automatic construction of examples that are similar
(positive examples) and dissimilar (negative examples) to an anchor. And during
training, the model needs to reduce the distance between the anchor and the
positive examples in the representation space, while to increase the distance
between the anchor and the negative examples.

Cao et al. [4] try to use contrastive learning to improve the error correc-
tion ability of the GEC model. Since constructing positive examples is difficult
for GEC, they propose a margin-based contrastive loss, which only requires to
construct negative examples and does not require to construct positive exam-
ples. Their work is the most similar to ours. In view of the limitations of their
negative example construction method, we propose a dynamic negative example
construction method to better address the over correction problem of the GEC
model in low error density native writings.

3 Our Method

3.1 Overall Architecture

As mentioned above, the purpose of this work is to incorporate contrastive learn-
ing into the GEC model to effectively alleviate the problem of over correction by
increasing the distance between the anchor sentence and the negative examples.
We illustrate our method in Fig. 1, which consists of two components: the nega-
tive example construction component and the contrastive learning component.

Given a training pair (x,y), where x = (x1, x2, · · · , xm) indicates the source
sentence that may contain grammatical errors, xi is the ith word, m is the source
sentence length, and y = (y1, y2, · · · , yn) indicates the target sentence that is
grammatically correct, yj is the jth word, n is the target sentence length. The
goal of the GEC task is to correct sentence x into sentence y.

For the negative example construction component, we use the proposed neg-
ative example construction strategy to construct K negative examples Ỹ =
{ỹ1, ỹ2, · · · , ỹK } for the training pair (x,y). Each negative example ỹk is con-
structed as follows. First, several words in the target sentence y are randomly
selected by a noising probability p. For each selected word yj , a noised word y′

j is
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generated by the negative example construction strategy. The generated noised
word y′

j is used to replace the selected word yj . After replacing all selected words,
the modified target sentence is treated as a constructed negative example ỹk .

Fig. 1. Overall architecture of our proposed method. Our method consists of two
components: the negative example construction component and the contrastive learn-
ing component. For the negative example construction component, we use the pro-
posed negative example construction strategy to construct K negative examples
Ỹ = {ỹ1, ỹ2, · · · , ỹK } for the training pair (x,y). For the contrastive learning compo-
nent, we first input the source sentence x into the GEC model and obtain the decoder
output ŷ. Then, we treat the decoder output ŷ as an anchor, and maximize the dis-
tance between the anchor ŷ and the negative examples ỹ1, ỹ2, · · · , ỹK constructed by
our proposed negative example construction strategy.

For the contrastive learning component, we first input the source sentence x
into the GEC model and obtain the decoder output ŷ. Then, we treat the decoder
output ŷ as an anchor, and maximize the distance between the anchor ŷ and the
negative examples ỹ1, ỹ2, · · · , ỹK constructed by our proposed negative example
construction strategy.

3.2 Negative Example Construction Strategy

In this section, we detail the proposed negative example construction strategy. It
contains three schemes: realistic scheme, random scheme and linguistic scheme.
In most cases, we use the realistic scheme for constructing negative examples.
When the realistic scheme is not applicable, we use the random scheme or the
linguistic scheme instead. We demonstrate examples using our proposed strategy
in Table 1.
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Table 1. Demonstration of our proposed negative example construction strategy,
which contains three schemes. Note that each linguistic transformation in the lin-
guistic scheme is demonstrated separately for clarity. In practice, one of the linguistic
transformations will be randomly selected.

Target sentence y We are exploring negative example construction strategies.

Realistic Scheme We is exploring negative example construction strategy.
Random Scheme We are exploring Title example fill strategies.
Linguistic Scheme

-synonym We are exploring passive example building strategies.
-inflection We are explored negative example constructed strategies.
-function word They are exploring negative example construction strategies.
-case we are exploring Negative example construction strategies.
-misspelling We air exploding negative example construction strategies.

The realistic scheme makes use of the realistic grammatical error patterns
produced by human beings for constructing negative examples. Realistic gram-
matical error patterns are effective for introducing realistic grammatical errors
into error-free text and have been used in previous GEC studies for data aug-
mentation [18] and error-aware BERT fine-tuning [14]. In this study, we utilize
them for generating sufficient negative examples with more diverse grammati-
cal errors. Specifically, we first extract all realistic grammatical error patterns
{WRONG: CORRECT} from the training data, where WRONG indicates an erroneous
word in a sentence and CORRECT indicates its correction. Then, we reverse their
key-value pairs into the form of {CORRECT:WRONG} for negative example construc-
tion. When constructing a negative example, for each word yj selected from the
target sentence y, we randomly choose one of the {CORRECT:WRONG} patterns
whose key CORRECT is yj , and use the value WRONG as the noised word of yj for
replacement. The intuition is that we replace a correct word with a wrong word.

In practice, however, a word yj randomly selected from the target sentence
may not be one of the keys in the available {CORRECT:WRONG} pairs, such as an
out-of-vocabulary word. To handle this case, we propose two additional schemes
as compromise:

1) Random Scheme. Such a particular word is replaced by another word
sampled from the vocabulary of the dataset in a uniform distribution.

2) Linguistic Scheme. Such a particular word is replaced by one of the
five linguistic transformations described below. These linguistic transformations
are used by some GEC studies to mimic realistic grammatical errors [14,18,27].

◦ Synonym Transformation. Replacing yj with one of its synonyms. It is helpful
for generating word misuse errors (noun errors, verb errors, adjective errors,
etc.) commonly appeared in writings, such as misusing “situation” as “condi-
tion”.

◦ Inflection Transformation. Replacing yj with one of its inflections. It imitates
inflection misuse in the writings, such as misusing noun declension and verb
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conjugation. E.g., using the present tense of “is” where the past tense “was”
is required.

◦ Function Word Transformation. Replacing yj with another function word that
belongs to the same function word category of yj . It imitates the improper
function word uses in writings, such as misusing “at” as “in” and misusing “to”
as “towards”.

◦ Case Transformation. Replacing yj with one of the three case patterns: lower-
case, uppercase, and capitalize. It mimics the case errors made frequently by
native English speakers due to their carelessness, such as lower-casing country
names, city names and abbreviations.

◦ Misspelling Transformation. Replacing yj with one of its 10 most similar
words. It mimics the misspelling errors commonly appeared in writings by the
native English speakers due to carelessness or rapid typing with keyboards.

3.3 Dynamic Construction

Many contrastive learning studies [6,7,13] have proved that the variety of nega-
tive examples is beneficial for improving the performance of the trained model.
In our method, the proposed negative example construction strategy is based on
rules, and the operations required for constructing negative examples are merely
random sampling and replacement. Therefore, they are lightweight and consume
little time, enabling them to be dynamically applied during the training process.

As shown in Fig. 2, we depict the proposed dynamic negative example con-
struction, and compare it with the static negative example construction. In the
figure, (x,y) denotes a training pair, where x denotes the source sentence and
y denotes the target sentence. Ỹ denotes the constructed negative examples.
fstatic denotes the static negative example construction strategy and fdynamic
denotes our proposed dynamic negative example construction strategy.

With static construction (the higher part of the figure), the negative examples
Ỹ (blue) for the training pair (x,y) are constructed before the training process.
And during training, the same set of negative examples constructed (Ỹ ) is used
in each iteration. On the contrary, with dynamic construction (the lower part of
the figure), different sets of negative examples are constructed dynamically for
the training pair (x,y) in each iteration during training. Specifically, in iteration
1, a set of negative examples Ỹ1 (orange) are constructed with the negative exam-
ple construction strategy fdynamic. Similarly, another set of negative examples
Ỹ2 (yellow) are constructed in iteration 2. In this manner, for the same training
pair, dynamic construction enables the model to see different sets of negative
examples in different iterations during training, and significantly increases the
variety of the negative examples.

3.4 Model Training

Following Cao et al. [4], we use the weighted sum of the negative log likelihood
loss LNLL and a margin-based contrastive loss LCL as the training loss L for each
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Fig. 2. Demonstration of the proposed dynamic negative example construction and its
comparison with the static negative example construction.

training pair (x,y) to optimize model parameters, as in Eq. 1. α is a weighting
parameter that controls the relative importance of the two losses. During train-
ing, the negative log likelihood loss LNLL (Eq. 2) increases the similarity between
the model output ŷ and the target sentence y. And the contrastive loss LCL

(Eq. 3) discourages the model from generating each negative example ỹk that
contains grammatical errors. K is the number of constructed negative examples,
and γ is the margin.

L = α · LNLL + (1 − α) · LCL (1)

LNLL = −y log ŷ (2)

LCL =
1
K

K∑

k=1

max(−y log ŷ + ỹk log ŷ + γ, 0) (3)

4 Experiments

4.1 Datasets

We use the CWEB dataset [12] for experiments. It contains low error density
writings from native English speakers and includes two domains. The G domain
(CWEB-G) contains writings with a higher number of grammatical errors, and
the S domain (CWEB-S) contains more professional writings with fewer gram-
matical errors.

The CWEB dataset only contains development data and test data but no
training data. Following previous studies [4,12], we extract the first 1,000 samples
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of CWEB-G and the first 1,000 of CWEB-S from the original development data
and combine them to form the training data, which are used for training models
and extracting realistic grammatical error patterns. The remaining of the original
development data are taken as new development data for obtaining the best
model during training. The original test data of CWEB are left unchanged, with
which we evaluate the trained GEC models. We use ERRANT [3] to calculate
precision, recall and F0.5 for evaluating the correction performance of the GEC
models. Statistics of the dataset are shown in Table 2.

The grammatical errors and their corresponding corrections are annotated
by two annotators. When training the model, we only use the corrections from
annotator 1 as target sentences. When evaluating the trained model on test
data, we calculate the scoring performance against each annotator and take the
average for report.

Table 2. Statistics of the CWEB dataset. Original is the statistics of the original
dataset and Derived is the statistics after splitting the development set into training
and development data.

Splits Original Derived

Train – – 2,867 1,862
Dev 3,867 2,862 1,000 1,000
Test 3,981 2,864 3,981 2,864

4.2 Experiment Settings

We use Transformer-big [28] as the model architecture. Following Cao et al. [4],
we use the pre-trained weights of GEC-PD [17] to initialize the GEC model.
We use the Adam [16] optimizer with the learning rate set to 3e−5. We train
the model for 10 epochs and validate it after each epoch on the development
set. Model weights of the smallest validation loss is used as the best model for
evaluation on the test set. We construct K = 4 negative examples for each
training pair and set the noising probability p to 0.15. We run 3 times with
different seeds for each experiment and take the average of the 3 runs for report
to reduce randomness.

4.3 Compared Models

We compare our method with several strong baselines to prove the effectiveness
of the proposed method:

Direct Inference. Making predictions on CWEB test data directly with an off-
the-shelf GEC model developed for correcting writings by learners of English as
a second language, without further training on CWEB training data. In experi-
ments, we use GEC-PD [17] for this purpose.
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NLL. The model is first initialized with the weights of the GEC-PD model.
Then, it is trained on the training data merely with negative log-likelihood (i.e.,
without contrastive learning) and evaluated on the test data.

CL2021. The model propsoed by Cao et al. [4]. They first initialize the model
with the weights of GEC-PD. Then, they train the model on the training data
with their contrastive learning method, and evaluate the trained model on the
test data.

4.4 Overall Results and Analysis

The overall experimental results are shown in Table 3. Direct Inference are
the results by the GEC-PD [17] model without further training on the training
set. NLL are the results of the GEC model initialized with the weights of GEC-
PD and trained merely using the negative log-likelihood loss without contrastive
learning. CL2021 are the results reported in the paper of Cao et al. [4]. Ours
(Realistic+Rand) are the results of our proposed method with realistic scheme
& random scheme, and Ours (Realistic+Ling) are the results of our proposed
method with realistic scheme & linguistic scheme. Average are the average
results of CWEB-G and CWEB-S. The best scores of each column are shown in
bold.

Table 3. Overall experiment results. Direct Inference are the results by the GEC-
PD [17] model without further training on the training set. NLL are the results of the
GEC model initialized with the weights of GEC-PD and trained merely using the neg-
ative log-likelihood loss without contrastive learning. CL2021 are the results reported
in the paper of Cao et al. [4]. Ours (Realistic+Rand) are the results of our proposed
method with realistic scheme & random scheme, and Ours (Realistic+Ling) are the
results of our proposed method with realistic scheme & linguistic scheme. Average
are the average results of CWEB-G and CWEB-S. The best scores of each column are
shown in bold.

Model CWEB-G CWEB-S Average
P R F0.5 P R F0.5 P R F0.5

Direct Inference 21.18 23.01 21.45 17.27 15.76 16.92 19.22 19.38 19.18
NLL 40.46 18.93 32.76 36.78 16.66 29.51 38.62 17.79 31.14
CL2021 37.21 23.15 33.03 36.30 20.40 31.34 36.76 21.78 32.19
Ours (Realistic+Rand) 41.37 19.80 33.80 38.06 17.08 30.48 39.71 18.44 32.14
Ours (Realistic+Ling) 42.42 19.06 33.89 39.10 16.80 30.82 40.76 17.93 32.36

First, it is shown that the results of Direct Inference with GEC-PD are
low. It’s average F0.5 is 19.18. And its average precision is only 19.22, which is
lower than other results by a large margin. That supports the finding that the
GEC model developed for correcting writings by learners of English as a second
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language indeed produces low performance on the writings by native English
speakers due to the low error density [12].

Second, we find that after training GEC-PD on the CWEB training data
with our proposed method, the results are improved. Specifically, the average
F0.5 of our proposed Realistic+Ling (32.36) is higher than NLL (31.14) by
1.22, and higher than CL2021 (32.19) by 0.17.

Third, we can also see that our method significantly boosts the precision of
the GEC model. For example, the precision of Realistic+Ling in CWEB-G
and CWEB-S are 42.42 and 39.10, which are 1.96 and 2.32 higher than NLL,
5.21 and 2.80 higher than CL2021. At the same time, it also produces the highest
average precision (40.76). The higher precision of our GEC model illustrates that
the grammatical errors detected by the model indeed are erroneous, rather than
accurate. In the task of grammatical error correction, a GEC model with an
ability to accurately correct the detected grammatical errors (higher precision)
is more preferred than one with an ability to detect many grammatical errors
but fail to correct them (higher recall). This is also reflected by the evaluation
metric F0.5 of GEC, which values the precision twice as the recall. Therefore,
our proposed method is beneficial for enhancing the correction performance of
the GEC model, as it indeed makes the model correct the detected grammatical
errors precisely and suppresses the model from over-correction.

Finally, the results also show that Realistic+Ling produces higher average
precision (40.76) and average F0.5 (32.36) than Realistic+Rand (39.71 and
32.14). It proves that the pseudo grammatical errors generated by the linguis-
tic transformations are beneficial and effective for the construction of negative
examples, which leads to a better GEC model.

5 Discussion and Analysis

5.1 Case Study

In order to demonstrate that our proposed negative example construction strat-
egy can indeed generate sufficient negative examples with realistic and diverse
grammatical errors, we extracted one training pair from the CWEB dataset
accompanied by their corresponding negative examples constructed by Cao et
al. [4]’s method and those constructed with our proposed method, as shown in
Table 4. In the training pair, there is a case error (“allow” → “Allow”), which
is coloured red. In the negative examples, noises introduced by the negative
example construction methods are coloured blue.

We can see that the first, third and fourth negative examples constructed by
Cao et al. [4]’s method are the same as the source sentence. The second example
contains an insertion error (“pick” → “pick up”). Obviously, these negative exam-
ples do not contain diverse and realistic grammatical errors, which is not helpful
for the model to learn to correct properly from contrastive learning. On the
other hand, the negative examples constructed using our proposed method con-
tain a large number of diverse and realistic grammatical errors. For instance, the
first example contains a preposition error (“for” → “with”). The second example
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Table 4. Case study. We extracted one training pair from the CWEB dataset accompa-
nied by their corresponding negative examples constructed by Cao et al. [4]’s method
and those constructed with our proposed method. Grammatical errors in the train-
ing pair are coloured red. Noises in the negative examples introduced by the negative
example construction methods are coloured blue. The negative examples constructed
with our proposed method are more sufficient with more diverse grammatical errors.

Source sent Allow them to pick some coloring sheets that you can print for them.
Target sent Allow them to pick some coloring sheets that you can print for them.

Cao et al. [4] allow them to pick some coloring sheets you can print for them.
Allow them to pick up some coloring sheets you can print for them.
allow them to pick some coloring sheets you can print for them.
allow them to pick some coloring sheets you can print for them.

Ours Allow them to pick some coloring sheets you can print with them.
Allow them to pick some coloring piece you can prunt for them.
Allow them to pick sum coloring sheets you can print for them.
allow them to pick some coloring sheets you can print in them.

contains a synonym error (“sheets” → “piece”) and a misspelling error (“print”
→ “prunt”). From the negative examples with diverse and realistic errors, the
GEC model can better learn to correct sentences precisely through contrastive
learning.

5.2 Effect of Dynamic Construction

As mentioned above, our proposed dynamic negative example construction can
increase the variety of the negative examples during model training. In this
section, we investigate the effect of dynamic construction by comparing the scor-
ing performance of the proposed Realistic+Rand and Realistic+Ling methods
with static and dynamic construction respectively.

The experimental results are shown in Table 5. The left half shows the results
of static construction, while the right half shows the results of dynamic construc-
tion. The results of each negative example construction method are the average
of CWEB-G and CWEB-S. The higher results between the static and dynamic
construction of each method are bolded.

As shown in the table, the dynamic results are generally higher than the
static results. Specifically, the F0.5 of static Realistic+Rand is 31.78, while that
of the dynamic one is 32.14, with a performance gap of 0.36. The F0.5 of static
Realistic+Ling is 31.77, while the dynamic one is 32.36, with a large performance
gap of 0.59. It proves that by increasing the variety of the negative examples
during training, dynamic construction indeed increases the variety of the neg-
ative examples, thereby avoiding overfitting and enhancing the generalization
ability of the GEC model.



310 J. He et al.

Table 5. Scoring performance comparison of the proposed Realistic+Rand and Real-
istic+Ling methods with static and dynamic construction respectively.

Method Static Dynamic
P R F0.5 P R F0.5

Realistic+Rand 39.90 17.74 31.78 39.71 18.44 32.14
Realistic+Ling 38.75 18.73 31.77 40.76 17.93 32.36

Fig. 3. Scoring performance of the GEC model at different values of p, from 0.05 to 0.95
at a 0.1 interval. The dynamic Realistic+Ling strategy is used for constructing negative
examples in the experiment. The experiment results are obtained from averaging the
results of CWEB-G and CWEB-S. When p is set to 0.15, the score reaches the highest
(precision = 40.76, F0.5 = 32.36). As p gradually increases, the precision and F0.5 drop
gradually.

5.3 Effect of the Noising Probability

When constructing a negative example with our proposed negative example con-
struction strategy, a noising probability p should be determined to randomly
select words from the target sentence for replacement. In this section, we analyze
the impact of different values of p on the correction performance. Specifically, we
construct negative examples with the proposed dynamic Realistic+Ling strat-
egy according to different values of p, from 0.05 to 0.95 at a 0.1 interval. The
precision and F0.5 at each probability are shown in Fig. 3, which are obtained
from averaging the results of CWEB-G and CWEB-S.

The results show that when p is set to 0.15, the score reaches the highest
(precision = 40.76, F0.5 = 32.36). As p gradually increases, the precision and F0.5

drop gradually. The reason may be that as p increases, more words are selected
from the target sentence for replacement. Therefore, the negative examples con-
structed are more different from the target sentence. The greater the difference
between the target sentence and the negative example, the easier it is for the
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GEC model to compare their differences, and the smaller the improvement in
the error correction ability of the model obtained from contrastive learning.

6 Conclusion

In this paper, a dynamic negative example construction method for grammati-
cal error correction using contrastive learning is proposed. The proposed method
constructs sufficient negative examples with diverse grammatical errors dynam-
ically during model training. The constructed negative examples are beneficial
for the GEC model to correct sentences precisely and suppress the model from
over-correction. Experimental results show that our proposed method enhances
the correction precision significantly. In this study, positive example construc-
tion strategy is not proposed for grammatical error correction using contrastive
learning, as it is hard to construct sentences that are morphologically different
from but semantically identical to the target sentence. One possible solution for
that may be utilizing data augmentation. In future work, we will investigate this
topic in depth.
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Abstract. With the development of deep learning in recent years, text
classification research has achieved remarkable results. However, text
classification task often requires a large amount of annotated data, and
data in different fields often force the model to learn different knowledge.
It is often difficult for models to distinguish data labeled in different
domains. Sometimes data from different domains can even damage the
classification ability of the model and reduce the overall performance of
the model. To address these issues, we propose a shared-private archi-
tecture based on contrastive learning for multi-domain text classifica-
tion which can improve both the accuracy and robustness of classifiers.
Extensive experiments are conducted on two public datasets. The results
of experiments show that the our approach achieves the state-of-the-art
performance in multi-domain text classification.

Keywords: Contrastive learning · Multi-domain · Text classification

1 Introduction

Text classification is one of the most basic tasks among the many tasks of Natural
Langugae Processing (NLP). In recent years, the research work of text classi-
fication has produced a large number of applications and achieved remarkable
results. With the continuous release of a large number of pretrained language
models in recent years, such as BERT [5], ALBERT [11], RoBERTa [16] and other
pretrained models, text classification problems have been able to achieve good
results on the basis of neural network and pretrained models. However, most
text classification problems are highly domain-dependent in that the meaning
of the same word may transform in different domains. For example, the word
apple expresses the fruit in kitchen review (e.g., I have shifted to an apple for
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lunch), while in electronics review, it means a brand of electronic products (e.g.,
I can’t understand how apple sell so much ipod video). A common strategy,
training multiple classifiers for different domains, is used to solve above prob-
lems. However, text data in reality often have characteristics of multiple domains
and the cost of labeling a large number of multi-domain data is too high. There-
fore, it is very important and practical meaningful to improve the accuracy of
text classification in multiple related domains. Multi-domain text classification
(MDTC) [12] is proposed to solve above problems, it aims to utilize textual
information in different domains to improve the performance of model archi-
tecture, but there is no need to train a separate classifier for each domain. In
recent years, deep learning has been widely used in MDTC problems, and has
achieved excellent results [22,23]. The method used in most studies is shared-
private architecture. Private modules are used to capture domain-specific knowl-
edge for each domain, and shared modules are used to capture domain-invariant
knowledge [13]. However, these researches only pay attention to how to obtain
the shared knowledge of multiple domains and domain-specific knowledge better,
but ignore the representation of the samples in the representation space. In order
to solve the problems above, in this paper, we propose Shared-Private Architec-
ture based on Contrastive Learning (SPACL), which uses contrastive learning to
improve the representations of different types of samples in the representation
space, thereby improving the performance level of downstream tasks. Different
from previous studies, our architecture can not only use conditional adversarial
training to extract domain-invariant features, but also generate better sample
representations for MDTC.

The contributions of this paper are summarized as follows: 1) In order to
strengthen the alignment representations of data in different domains, we pro-
pose a shared-private architecture based on contrastive learning for multi-domain
text classification which can improve both the accuracy and robustness of the
text classfier. 2) We adopt a conditional adversarial network to interact domain-
shared features and classification labels, which can be better adapted to multi-
domain text classification. 3) Experiments are carried out on two public multi-
domain datasets, and the experimental results compared with multiple baselines
show that our proposed model architeture has achieved state-of-the-art results.

2 Related Work

2.1 Multi-domain Text Classification

Multi-domain text classification was proposed first to improve performance
through fusing training data from multiple domains [12]. The biggest challenge
of this task is that the same text may has different implications in different
domains, and the cost of labeling each domain is too costly.

Some early studies mainly used domain transfer learning techniques for
MDTC. The structural correspondence learning (SCL) algorithm was proposed
to select source domains most likely to adapt well to given target domains [1].
Pan et al. [19] proposed a spectral feature alignment (SFA) method to align
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domain-specific words from different domains into unified clusters, with the help
of domain-independent words as a bridge. Wu and Huang [22] proposed a novel
approach based on multi-task learning to train sentiment classifiers for different
domains in a collaborative way. Liu et al. [15] proposed a multi-task deep neural
network (MTDNN) for learning representations across multiple tasks, not only
leveraging large amounts of cross-task data, but also benefiting from a regular-
ization effect that leads to more general representations to help tasks in new
domains. Liu et al. [14] proposed an adversarial multi-task learning framework,
alleviating the shared and private latent feature spaces from interfering with
each other.

The most recent prior works on MDTC include Meta Fine-Tuning (MFT) for
multi-domain text classification [21]. Dual Adversarial Co-Learning (DACL) for
Multi-Domain Text Classification [23], Conditional Adversarial Networks (CAN)
for Multi-Domain Text Classification [24] and Mixup Regularized Adversarial
Networks (MRAN) for Multi-Domain Text Classification [25]. MFT uses meta-
learning and domain transfer technology to learn highly transferable knowledge
from typical samples in various domains. Both DACL and CAN leverage adver-
sarial training to obtain the shared domain features. MRAN adopts the domain
and category mixup regularizations to enrich the intrinsic features in the shared
latent space and enforce consistent predictions in-between training instances.
However, these methods ignore the distance of samples in the feature space when
learning multi-domain feature representations, which is an important guideline to
help classification. Furthermore, they did not consider the interaction between
the extracted features and class labels, which is often important to improve
their correlation. Different from the above studies, the work our proposed fur-
ther advances the line of study by deploying contrastive learning. It can also
model the interactions between shared domain features and classes to enhance
their representations through a conditional adversarial network. We assume that
data in various domains is insufficient, and make full use of data from multiple
domains to improve overall system performance.

2.2 Contrastive Learning

Recently, related researches show that contrastive learning is an effective self-
supervised learning method. Chen et al. [3] proposed simple framework for con-
trastive learning of visual representations (SimCLR) to improve the quality of
the learned representations by contrastive learning.

Meng et al. [18] present a self-supervised learning framework, COCO-LM,
that pretrains Language Models by COrrecting and COntrasting corrupted text
sequences. Giorgi et al. [9] present Deep Contrastive Learning for Unsupervised
Textual Representations (DeCLUTR) to enclose the performance gap between
unsupervised and supervised pretraining for universal sentence encoders. One
of the key aspects of contrastive learning is the sampling of positive pairs. Gao
et al. [8] add dropout noise to keep a good alignment for positive pairs. Fang
et al. [6] uses data augmentation to generate positive pairs from the original
sentences.
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We develop our model architecture with contrastive learning. In our exper-
iments, we select a sample and combine it with itself to get a positive pair.
And then combine it with other different kinds of samples to get negative pairs.
A contrastive loss is used to control the distance between samples of different
classes in the sample space so that enhance the ability of the text classifier.

3 Methodology

3.1 Model Architecture

In this paper, we consider MDTC tasks in the following settings.
Specifically, there exists M domains {Di}Mi=1. The labeled training collection

of the m-th domain is denoted by Xm
1 =

{(
xm
j , ym

j

) | j ∈ [1, Nm
1 ]

}
, where xm

j

and ym
j are the input texts and the label of the j-th sample of the m-th domain.

Nm
l is the total number of the labeled samples of the m-th domain. The unlabeled

training collection of the m-th domain is denoted by Xm
u = {(xm

k ) | k ∈ [1, Nm
u ]},

where xm
k and Nm

u are the input texts of the j-th sample and the sample size
of the m-th domain. NL represents the amount of labeled data for all domains
and NU represents the amount of unlabeled data for all domains. The goal of
MDTC is to improve the overall system performance by utilizing the training
sets of M domains. The classification performance of the system is measured by
the average classification accuracy across M domains (Fig. 1).

Fig. 1. The overall model atchitecture of SPACL. A shared feature extractor is used to
capture the shared knowledge. Each domain-specific extractor is trained to extract the
domain-specific knowledge. A domain classifier is trained to predict the domain label of
the input sample. A text classifier is trained to predict the class of samples and calculate
the loss of contrastive learning. Ltask is the loss function of text classification. Lcl is the
loss fuction of contrastive learning. Ldom is the loss function of domain classfication.
Lcan is the conditoning adverserial loss function which extracts the shared knowledge
across domains.
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3.2 Domain-Specific Representation Learning

In order to ensure the validity of our extracted domain-specific features, we add a
simple and effective domain discriminator Dd, which takes the extracted domain-
specific features as input and outputs the predicted domain category, so as to
optimize the domain discrimination ability. The hp is the output of the domain-
specific extractor for the given instance X. The domain classifier Dd (hp; θd) → d̂
maps the domain-specific feature representation to a domain label prediction.
θd denotes the parameters of the domain classifier Dd. The discriminator Dd is
trained to minimize the prediction loss on labeled and unlabeled instances of
multiple domains:

Ldom = − 1
NU + NL

M∑

m=1

Nm
l +Nm

u∑

j=1

dmj log d̂mj +
(
1 − dmj

)
log

(
1 − d̂mj

)
(1)

where the d̂ is prediction probaiblities of domain labels of domain discriminator
Dd and the d is the true domain label of input text.

3.3 Conditional Adversarial Network

Motivated by some previous works of domain separation learning [2,20], we adopt
a conditional adversarial network for SPACL to extract domain shared features.
After the domain-specific learning, we freeze the parameters θd of the domain
discriminator Dd to ensure that the discriminator has good domain recognition
capabilities. At the same time, in order to ensure that the features we extract
can express shareability across domains, we also adopt a negative entropy loss so
that the domain classifier cannot accurately identify the domain of the shared-
representation the input text.

The hs is the output of the shared extractor Fs for the given instance X. The
hs is the output of the shared extractor Fs for the given instance X. The hp is
the output of the shared extractor Fp for the given instance X. The final joint
representations h is the concatenated vector of private features hp and shared
features hs. The text classifier C outputs the probability distribution of the
prediction labels which are denoted as hc.The domain classifier Dd (hc ⊗ h; θd) →
d̂ maps the joint feature representation h and the class prediction hc to a domain
label d̂. The loss can be defined as:

Lcan =
1

NU + NL

M∑

m=1

Nm
l +Nm

u∑

j=1

dmj log d̂mj +
(
1 − dmj

)
log

(
1 − d̂mj

)
(2)

where hc ⊗ h denotes the cross-covariance of the two vectors which is calculated
by multilinear conditioning [17].

3.4 Contrastive Learning

Intuitively, we hope that the distance between the final joint representation vec-
tors of samples of different categories is as far as possible, so as to make the
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final text classifier C easier to distinguish. Therefore, we adopt a contrastive
learning approach to generate better joint representation vectors. Specifically,
assuming that given a batch of samples, we will sample a pair of positive exam-
ples and other sets of negative examples in the batch. The class label of every
sample denotes y. Given a final joint representation hi of a sample, from a
batch we can get an positive pair (hi, hpos) and other negative sample pairs
{(hi, hneg) | hi ∈ y, hneg /∈ y}.

The loss of contrastive learning is defined as:

Lcl = − 1
Nb

Nb∑

i=1

log
exp (sim (hi, hpos ))∑

{(hi,hne.g.)|hi∈y,hneg /∈y} exp (sim (hi, hn))
(3)

where sim(u, v) = uTv/‖u‖2‖v‖2 denotes the cosine distance between the two
vectors u and v. Nb and ‖.‖2 denote the number of batch size and the L2 norm.

3.5 Objective Function

The multi-domain text classification task is a binary classification task.Therefore,
we define the task loss is :

Ltask = − 1
NL

M∑

m=1

Nm
l∑

j=1

ymj log ŷmj +
(
1 − ymj

)
log

(
1 − ŷmj

)
(4)

The text classifier C takes the final joint representation as input, and outputs
the prediction labels which denote ŷ.

The final loss function is the combination of above losses:

L = Ltask + Ldom + αLcan + βLcl (5)

where α and β are hyperparameters for balancing different losses.

4 Experiment

4.1 Dataset

We evaluate SPACL on two standard datasets in our experiments: the Amazon
review dataset [1] and the FDU-MTL dataset [15]. The Amazon review dataset
contains reviews in four domains: books, DVDs, electronics, and kitchen. The
data for each domain has 1000 positive samples and 1000 negative samples. This
dataset is already preprocessed into a bag of features (unigrams and bigrams)
which loses word order information. The FDU-MTL datasets contains a total of
16 domains: books, electronics, DVDs, kitchen, apparel, camera, health, music,
toys, video, baby, magazine, software, sport, IMDB, and MR. Each domain of
FDU-MTL dataset contains a development set of 200 samples, a test set of 400
samples, a training set of about 1400 samples, and about 2000 unlabeled samples.
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4.2 Baselines

To evaluate SAPCL, we compare it with the following baselines.
The multi-task learning with bidirectional language (MT-BL) method uti-

lizes extraction of task-invariant features by leveraging potential information
among related tasks, which improves the performance of a single task [26]. The
multinomial adversarial network (MAN) learns features that are invariant across
multiple domains by resorting to its ability to reduce the divergence among the
feature distributions of each domain [4]. This method trains the domain discrim-
inator by two loss functions: the least square loss (MAN-L2) and the negative
log-likelihood loss (MAN-NLL). Dual adversarial co-learning (DACL) deploys
dual adversarial regularizations to align features across different domains, aiming
to improve the classifiers’ generalization capacity with the learned features [23].
Conditional adversarial networks (CANs) introduce a conditional domain dis-
criminator to model the domain variance in both shared feature representations
and class-aware information simultaneously and adopts entropy conditioning
to guarantee the transferability of the shared features [24]. The collaborative
multi-domain sentiment classification (CMSC) train the models by three loss
functions: the least square loss (CMSC-LS), the hinge loss (CMSC-SVM), and
the log loss (CMSC-Log) [22]. The adversarial multi-task learning for text classi-
fication (ASP-MTL) alleviates the shared and private latent feature spaces from
interfering with each other [14]. All the comparison methods use the standard
partitions of the datasets. Thus, we cite the results from [4,14,22–24,26] for fair
comparisons.

Table 1. MDTC results on the Amazon review dataset

Domain CMSC-LS CMSC-SVM CMSC-Log MAN-NLL MAN-L2 DACL CAN SPACL
(proposed)

Books 82.10 82.26 81.81 82.98 82.46 83.45 83.76 84.65
DVD 82.40 83.48 83.73 84.03 83.98 85.50 84.68 85.20
Elec. 86.12 86.76 86.67 87.06 87.22 87.40 88.34 88.20
Kit. 87.56 88.20 88.23 88.57 88.53 90.00 90.03 90.10
Avg 84.55 85.18 85.11 85.66 85.55 86.59 86.70 87.03

4.3 Experimental Setting

In our experiment, we set the hyperparameters α = 0.001, β = 0.1. The experi-
ment uses the Adam optimizer with the learning rate of 0.0001. The vector size
of the shared feature extractor is 64 while the vector size of the domain-specific
feature extractor is 128. The dropout rate is 0.5. ReLU is the activation func-
tion. The batch size is 128. MLP feature extractors are the feature extractor
of the experiment on the Amazon review dataset with an input size of 5000.
MLP feature extractor is composed of two hidden layers, with size 1,000 and
500, respectively. CNN feature extractor with a single convolutional layer is the
feature extractor of the experiment on the FDU-MTL review dataset. Each CNN
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Table 2. MDTC results on the FDU-MTL dataset

Domain MT-BL ASP-MTL MAN-L2 MAN-NLL SPACL
(proposed))

Books 89.0 84.00 87.6 86.8 90.2
Electronics 90.2 86.80 87.4 88.8 90.0
Dvd 88.0 85.50 88.1 88.6 88.5
Kitchen 90.5 86.20 89.8 89.9 90.0
Apparel 87.2 87.00 87.6 87.6 88.0
Camera 89.5 89.20 91.4 90.7 91.2
Health 92.5 88.20 89.8 89.4 90.2
Music 86.0 82.50 85.9 85.5 86.0
Toys 92.0 88.0 90.0 90.4 91.1
Video 88.0 84.5 89.5 89.6 88.7
Baby 88.7 88.20 90.0 90.2 89.9
Magazine 92.5 92.20 92.5 92.9 92.5
Software 91.7 87.20 90.4 90.9 89.5
Sports 89.5 85.7 89.0 89.0 88.2
IMDb 88.0 85.5 86.6 87.0 88.7
MR 75.7 76.7 76.1 76.7 76.5

AVG 88.6 86.1 88.2 88.4 88.7

Table 3. Ablation study on the Amazon review dataset

Method Book DVD Electronics Kitchen AVG

SPACL w/o C 83.10 83.05 85.10 86.20 84.36
SPACL w/o CL 84.10 82.50 84.00 85.05 83.90
SPACL w/o D 83.05 80.01 82.05 83.17 82.07
SPACL (full) 84.65 85.20 88.20 90.10 87.03

feature extractor uses different kernel sizes (3, 4, 5) with input size of 1000. Text
classifier and discriminator are MLPs with one hidden layer of the same size as
their input (128 + 64 for text classifier and 128 for discriminator).

4.4 Results

We conduct the experiments on the Amazon review dataset and FDU-MTL
dataset following the setting of [4]. A 5-fold cross-validation is conducted on the
Amazon review dataset. All data is divided into five folds: three folds are used
as the training set, one fold is used as the validation set, and the remaining one
fold is used the test set. The experimental results on the Amazon review dataset
are shown in Table 1 and the results on the FDU-MTL dataset are shown in
Table 2. The best performance is shown in bold.

From Table 1, we can see that our proposed SPACL architecture is able to
achieve the best average accuracy across multiple domains on the Amazon review
dataset. This suggests our proposed model architecture is more effective than
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other baselines. From the experimental results on FDU-MTL in the Table 2, the
average accuracy of our proposed SPACL is superior to the other methods. The
experimental results once again demonstrate the effectiveness of our proposed
method.

The reasons for the above results are as follows: 1) Our model utilizes a con-
ditional adversarial network to correlate the extracted shared features and pre-
dicted class labels, thereby improving the overall generalization performance of
the model architecture. 2) Our model architecture expands the distance between
samples of different classes in the sample space and the distance of samples of the
same class through the method of comparative learning. Therefore, our model
performs better at multi-domain text classification tasks.

4.5 Ablation Study

To validate the contribution of conditional adversarial networks and contrastive
learning in our model architecture, we conduct extensive ablation experiments
on the Amazon review dataset. In particular, we studied two kinds of ablation
variants: (1) SPACL w/o C, the variant model architecture of our SPACL with-
out conditional adversarial learning on shared feature extractor; (2) SPACL w/o
CL, the variant model architecture of our SPACL without contrastive learning
on the final joint representation; (3) SPACL w/o D, the variant model architec-
ture of our SPACL without domain-specific representation learning; The abla-
tion experiment results are shown in the Table 3, where we can see all variants
of produce poor results, the full model architecture provides the best perfor-
mance. Therefore, this validated our model architecture of the components in
the presence of necessity. From the results of the ablation experiments, we can
see that using contrastive learning to improve the sample representation benefits
the performance of our model.

5 Conclusion

In this paper, we proposed a shared-private architecture based on contrastive
learning to use across different domains of all the available resources for multi-
domain text classification. The model architecture expands the distance between
shared-representations of samples of different categories in the sample space by
introducing contrastive learning, thereby further improving the discriminative
ability of the model architecture. In addition, the model architecture uses a con-
ditional adversarial network to establish the correlation between domain shared
features and classification prediction labels which improves the overall perfor-
mance of the model architecture. The experimental results on two benchmarks
show that the SPACL model architecture can effectively improve the perfor-
mance of the system on the multi-domain text classification task. In the future,
we will explore a better solution to transfer knowledge from different domains
for multi-domain text classification.



SPACL 323

Acknowledgement. This work has been supported by the Ministry of education
of Humanities and Social Science project under Grant No. 19YJAZH128 and No.
20YJAZH118, the Science and Technology Plan Project of Guangzhou under Grant
No. 202102080305.

References

1. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and
blenders: domain adaptation for sentiment classification. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 440–
447 (2007)

2. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain
separation networks. Advances in Neural Information Processing Systems 29 (2016)

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

4. Chen, X., Cardie, C.: Multinomial adversarial networks for multi-domain text clas-
sification. arXiv preprint arXiv:1802.05694 (2018)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

6. Fang, H., Wang, S., Zhou, M., Ding, J., Xie, P.: Cert: contrastive self-supervised
learning for language understanding. arXiv preprint arXiv:2005.12766 (2020)

7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2030–2096 (2016)

8. Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embed-
dings. arXiv preprint arXiv:2104.08821 (2021)

9. Giorgi, J., Nitski, O., Wang, B., Bader, G.: Declutr: deep contrastive learning for
unsupervised textual representations. arXiv preprint arXiv:2006.03659 (2020)

10. Hu, M., Wu, Y., Zhao, S., Guo, H., Cheng, R., Su, Z.: Domain-invariant feature dis-
tillation for cross-domain sentiment classification. arXiv preprint arXiv:1908.09122
(2019)

11. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a
lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019)

12. Li, S., Zong, C.: Multi-domain sentiment classification. In: Proceedings of ACL-08:
HLT, Short Papers, pp. 257–260 (2008)

13. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101 (2016)

14. Liu, P., Qiu, X., Huang, X.: Adversarial multi-task learning for text classification.
arXiv preprint arXiv:1704.05742 (2017)

15. Liu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.Y.: Representation learning
using multi-task deep neural networks for semantic classification and information
retrieval. In: Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pp. 912–921. Association for Computational Linguistics, Denver, Colorado (2015).
https://doi.org/10.3115/v1/N15-1092, https://aclanthology.org/N15-1092/

16. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

http://arxiv.org/abs/1802.05694
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.12766
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2006.03659
http://arxiv.org/abs/1908.09122
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1605.05101
http://arxiv.org/abs/1704.05742
https://doi.org/10.3115/v1/N15-1092
https://aclanthology.org/N15-1092/
http://arxiv.org/abs/1907.11692


324 G. Xiong et al.

17. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adap-
tation. Advances in Neural Information Processing Systems 31 (2018)

18. Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., Song, X., et al.: Coco-lm:
correcting and contrasting text sequences for language model pretraining. Advances
in Neural Information Processing Systems 34 (2021)

19. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classi-
fication via spectral feature alignment. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 751–760 (2010)

20. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: Thirty-second AAAI Conference on Artificial
Intelligence (2018)

21. Wang, C., Qiu, M., Huang, J., He, X.: Meta fine-tuning neural language models
for multi-domain text mining. arXiv preprint arXiv:2003.13003 (2020)

22. Wu, F., Huang, Y.: Collaborative multi-domain sentiment classification. In: 2015
IEEE International Conference on Data Mining, pp. 459–468. IEEE (2015)

23. Wu, Y., Guo, Y.: Dual adversarial co-learning for multi-domain text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6438–6445
(2020)

24. Wu, Y., Inkpen, D., El-Roby, A.: Conditional adversarial networks for multi-
domain text classification. arXiv preprint arXiv:2102.10176 (2021)

25. Wu, Y., Inkpen, D., El-Roby, A.: Mixup regularized adversarial networks for multi-
domain text classification. In: ICASSP 2021–2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 7733–7737. IEEE (2021)

26. Yang, Q., Shang, L.: Multi-task learning with bidirectional language models for
text classification. In: 2019 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE (2019)

http://arxiv.org/abs/2003.13003
http://arxiv.org/abs/2102.10176


Low-Resource Named Entity Recognition
Based on Multi-hop Dependency Trigger

Peiqi Yan1 and Jiangxu Wu2(B)

1 Guangzhou, Guangdong, China
2 Shenzhen, Guangdong, China
wujx27@mail2.sysu.edu.cn

Abstract. This paper introduces DepTrigger, a simple and effective
model in low-resource named entity recognition (NER) based on multi-
hop dependency triggers. Dependency triggers refer to salient nodes rel-
ative to an entity in the dependency graph of a context sentence. Our
main observation is that triggers generally play an important role in rec-
ognizing the location and the type of entity in a sentence. Instead of
exploiting the manual labeling of triggers, we use the syntactic parser to
annotate triggers automatically. We train DepTrigger using an indepen-
dent model architectures which are Match Network encoder and Entity
Recognition Network encoder. Compared to the previous model Trig-
gerNER, DepTrigger outperforms for long sentences, while still maintain
good performance for short sentences as usual. Our framework is signif-
icantly more cost-effective in real business.

Keywords: NER · Dependency trigger · Low resource

1 Introduction

Named Entity Recognition (NER) aims to detect the span from text belonging
to the semantic category such as person, location, organization, etc. NER plays
a core component in many NLP tasks and is widely employed in downstream
applications, such as knowledge graph [1], question answering [2] and dialogue
system [3]. The deep-learning based approaches have shown remarkable success
in NER, while it requires large corpora annotated with named entities. Moreover,
in many practical settings, we wish to apply NER to domains with a very limited
amount of labeled data since annotating data is a labor-intensive and time-
consuming task. Therefore, it is an emergency to improve the performance of
the deep-learning based NER model with limited labeled data.

Previous work in low-resource NER mainly focused on meta-learning [6],
distantly supervision [7], transfer learning [16], et al. Recently, [5] proposed an
approach based on entity trigger called TriggerNER. The key idea is that an
entity trigger is a group of words that can help explain the recognition process of
an entity in a sentence. Considering the sentence “Biden is the president of _”, we
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are able to infer that there is a country entity on the underline according to “the
president of”. In this case, “the president of” is a group of triggers. Experiments
reveal that the performance of utilizing 20% of the trigger-annotated sentences
is comparable to that of exploiting 70% of conventional annotated sentences.
However, crowd-sourced entity trigger annotations, which suffer from the same
problem as traditional annotation, require labor costs and expert experience.

Fig. 1. The dependency parse results of “Alice was born in Beijing”, “S-PER” is entity
label, “T-Trigger” is trigger label, “O” denotes others.

Inspired by attribute triggers in Attribute Extraction [8], this paper presents
an alternative approach to automatically annotate the trigger in a sentence by
utilizing the syntactic parse. Figure 1 is the dependency parse result of the sen-
tence “Alice was born in Beijing”, the relation “nsubj:pass” shows that the subject
of “born” is “Alice”. According to the meaning of “born”, we are capable of infer-
ring that “Alice” is a person entity. Inspired by this fact, we propose a novel
model, namley DepTrigger, which explore the structures of dependency trees
and utilize the syntactic parser to annotate trigger in a sentence.

Naturally, we propose a simple yet effective framework for low-resource NER,
namely DepTriggerNER. It includes a trigger semantic matching module (Trig-
ger Match Network) and a sequence annotation module (Entity Recognition Net-
work). The DepTriggerNER adopts two-steps pipeline mode: 1) we first trains
the Trigger Match Network module for learning trigger representation; and 2) we
combine trigger representation to train the Entity Recognition Network module.
Our main contribution includes the new proposed “DepTrigger” model, which
reduces the cost and complexity by using a syntactic parser to automatically
annotate trigger.

We evaluate DepTrigger on CoNLL2003 [11] and BC5CDR [12], where Dep-
Trigger outperforms the TriggerNER model on BC5CDR but slightly under-
performs on CoNLL2003. Compared to TriggerNER, DepTrigger is particularly
useful in its ability to automatically produce annotated triggers. Besides, the
independent model architectures have a better performance. Our results suggest
that DepTrigger is a promising alternative to the TriggerNER in low-resource
NER tasks.
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2 Model

2.1 DepTrigger

DepTrigger are prominent nodes relative to an entity in the context sentence
dependency graph. We apply Stanford CoreNLP to the sentences to obtain
dependency paths. The dependency paths is a directed graph with words as
nodes and dependencies as edges. Figure 1 shows the dependency parse results
of the sentence “Alice was born in Beijing”. In Fig. 1, “born” is connected with
the entity “Alice” by relation “nsubj:pass”, so that “born” is a DepTrigger. Words
have a one-hop relationship with entities are called primary triggers, and words
have a two-hop relationship with entities are called secondary triggers.

Fig. 2. The framework of DepTriggerNER. The left is the Trigger Match Network. The
right is the Entity Recognition Network. The circle in the upper left corner is Trigger
Pattern Prototype, it is a look-up table generated by Trigger Match Network after
training.
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2.2 Trigger Match Network

Each entity contains a group of DepTrigger, which form a trigger pattern. We
assume that each sentence has an entity and contains a trigger pattern. In the
training stage, the Trigger Match Network aims to learn the representation of
trigger patterns and sentences. In the inference stage, the trigger pattern repre-
sentation with similar semantics to the sentence representation will be selected
from the Trigger Pattern Prototype.

In Fig. 2, each sentence is first transformed into a vector by the Words Embed-
ding module. Then, the hidden state matrix is obtained through the Trigger
Match Network Encoder. The self-attention layer is used to obtain sentence rep-
resentation �gs and trigger pattern representation �gt, [16] defined as follows:

�αs = Softmax (W2 × tanh (W1 × H)) (1)

�gs = �αsH (2)

�αt = Softmax (W2 × tanh (W1 × M)) (3)

�gt = �αtM (4)

W1 and W2 are the trainable parameters. H and M represent the hidden state
matrix of the sentence and the hidden state matrix of DepTrigger, respectively.

The Match Network calculates the distance between trigger pattern repre-
sentation and sentence representation. The matching loss function [5] is defined
as follows:

L =

{
||�gs − �gt||22, t ∈ s

max
(
0,m − ||�gs − �gt||22

)
, t /∈ s

(5)

|| · ||2 is L2-norm distances, m is margin. t ∈ s indicates trigger pattern
representation and sentence representation matches well while t /∈ s is on the
contrary. We create negative samples by randomly matching trigger pattern
representation and sentence representation in a batch.

2.3 Entity Recognition Network

Entity Recognition Network is similar to most deep-learning based NER models
and consists of encoder and decoder. However, the Entity Recognition Network
has been added a trigger-attention layer. Note that the parameters of Trigger
Match Network are frozen when training Entity Recognition Network.

In training, each sentence passes through the Trigger Match Network Encoder
and the Entity Recognition Network Encoder, respectively. Then, �gt is obtained
from the self-attention layer. In the trigger-attention layer, �gt is used to calculate
the weight of each vector in the Entity Recognition Network Encoder’s outputs
as follows [13]:

�α = Softmax (�v × tanh (U1 × H + U2 × �gt)) (6)

H ′ = �αH (7)
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U1, U2, �v are model parameters, and H is the Entity Recognition Network
Encoder’s outputs matrix. Finally, we concatenate the matrix H with the trigger-
enhanced matrix H as the input ([H;H ′]) fed into the decoder.

2.4 Inference

After training, each sentence in the training set is re-input into Trigger Match
Network to obtain trigger pattern representation. We then save these represen-
tations in memory, shows as the Trigger Pattern Prototype in Fig. 2. In the infer-
ence stage, We first obtain sentence representations �gs through Trigger Match
Network and then retrieve the semantic similarity vector �gt from Trigger Pat-
tern Prototype. Vector �gt is used as the attention query in Entity Recognition
Network.

3 Experiments

3.1 Experiments Setup

Table 1. Data statistics.

Dataset #Class #Sent #Entity

CoNLL’03 4 14986 23499
BC5CDR 2 4560 9385

CoNLL2003 [11] and BC5CDR [12] are used to evaluate our model. The statis-
tics of these datasets are shown in Table 1. We choose BiLSTM-CRF [15] and
TriggerNER [5] as baseline models. TriggerNER is the first trigger-based NER
model. We choose BiLSTM as encoder and CRF as decoder in our model. To
ensure a fair comparison, we use the same codebase and words embedding from
GloVE [14], which used in baseline model. The hyper-parameters of the model
are also the same. Our code and data are released1.

We choose BIOES tagging schema for non-triggers, and triggers are all labeled
with “T-trigger”. In order to make the model learn the relation between entity
and its trigger better, we repeat a sentence N times, and N is the number of
entities in the sentence. Each sentence retains one entity and its trigger, other
entities are marked as non-entities.

3.2 Results

As shown in Table 2, Our model achieves a similar performance as TriggerNER.
More detailed, our model performs better on BC5CDR than TriggerNER, but
slightly worse on CoNLL2003. We explain this phenomenon in terms of the
1 https://github.com/wjx-git/DepTriggerNER.

https://github.com/wjx-git/DepTriggerNER
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number of triggers each entity has. Figure 3 shows the ratio of the number of
sentences with the number of triggers an entity has in each dataset. The two
yellow curves are very close when the abscissa value is greater than 3, and the
yellow dotted line is larger than the solid line when the abscissa value is less than
3. This fact demonstrates that on CoNLL2003 the number of triggers annotated
by our method is less than TriggerNER. In the two blue curves, the solid blue
line is larger than the dashed line when the abscissa value is greater than 4,
and the opposite is true when the abscissa value is less than 4. This shows that
the number of triggers annotated by our method is more than TriggerNER on
BC5CDR. We believe that an entity is easier to recognize when it has more
triggers, which would explain why our model performs better on BC5CDR and
slightly worse on CoNLL2003.

Table 2. F1 score results. “#sent” denotes the percentage of the sentences labeled only
with entity label, “#trig” denotes the percentage of the sentences labeled with both
entity label and trigger label.

CoNLL 2003 BC5CDR
#sent BiLSTM-

CRF
#trig Trigger-

NER
Ours #sent BiLSTM-

CRF
#trig Trigger-

NER
Ours

5% 69.04 3% 75.33 77.42 5% 71.87 3% 61.44 63.37
10% 76.83 5% 80.2 80.26 10% 72.71 5% 66.11 66.92
20% 81.3 7% 82.02 81.3 20% 69.92 7% 67.22 69.27
30% 83.23 10% 83.53 82.96 30% 73.71 10% 70.71 71.42
40% 84.18 13% 84.22 83.26 40% 72.71 13% 71.87 73.17
50% 84.27 15% 85.03 83.86 50% 75.84 15% 71.89 74.35
60% 85.24 17% 85.36 84.32 60% 75.84 17% 73.05 75.08
70% 86.08 20% 86.01 84.53 70% 76.12 20% 73.97 76.44

We analyzed the sentence length distribution in the two datasets to further
understand why we annotate fewer triggers in CoNLL and more in BC5CDR
than in TriggerNER. The statistical results of sentence length distribution in
Table 3, show that sentences are shorter in the CoNLL dataset and longer in the
BC5CDR dataset. From Table 3 and Fig. 3, it can be concluded that our method
can label more triggers in long sentences but fewer triggers in short sentences
compared to manual marking in TriggerNER. Therefore, our method is more
suitable for datasets with longer sentences.

Table 3. Statistical results of sentence length distribution

Datasets 1~10 10~25 25~50 50~

CoNLL 52.32% 27.33% 19.93% 0.42%
BC5CDR 5.7% 50.64% 37.54% 6.51%
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Fig. 3. Ratio of the number of sentences with the number of triggers each entity has
in the dataset. The X-axis is the number of triggers of a entity has, and the Y-axis is
the percentage. The solid lines represent the trigger of ours. The yellow line represents
CoNLL datasets. (Color figure online)

Table 4. Comparative experiment F1 score results. merge means to merge Trigger
Match Network encoder and Entity Recognition Network encoder. separate means
to separate Trigger Match Network encoder and Entity Recognition Network encoder.
The best results are in bold.

#trig CoNLL 2003 BC5CDR
Merge Separate Merge Separate

3% 76.36 77.42 61.3 63.37
5% 79.38 80.26 66.15 66.92
7% 80.37 81.3 68.02 69.27

10% 81.58 82.96 70.93 71.42
13% 82.55 83.26 72.7 73.17
15% 83.03 83.86 73.25 74.35
17% 83.51 84.32 74.95 75.08
20% 83.81 84.53 75.08 76.44
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In our model, Trigger Match Network encoder and Entity Recognition Net-
work encoder are independent, which is different from the TriggerNer. The main
purpose of Trigger Match Network is to learn the representation of trigger pat-
terns, and Entity Recognition Network is to learn entity representation. So we
think we can not get an advantage by combining Trigger Match Network and
Entity Recognition Network because they need to capture specific information.
That is inspired by [17], and they observe that the contextual representations
for the entity and relation models essentially capture specific information, so
sharing their representations hurts performance.

We do a comparative experiment to test the performance of our model for
merging and separating, respectively, while leaving everything else unchanged.
The experimental results are shown in Table 4, merge means to merge Trig-
ger Match Network encoder and Entity Recognition Network encoder. Separate
means to separate Trigger Match Network encoder and Entity Recognition Net-
work encoder. It shows that the performance is better when the Trigger Match
Network encoder and Entity Recognition Network encoder are independent.

In order to compare the influence of primary and secondary trigger words
on the model, we backup two datasets of CoNLL, and only the primary triggers
are labeled in one dataset, and only the secondary trigger words are labeled in
the other dataset, do the same for BC5CDR. Table 5 shows the F1 score on
these datasets. Compared primary and secondary trigger, there is no evident
show that one is better than the other. Combined with Table 1 and Table 4, the
effect of using the primary trigger and the secondary trigger at the same time is
significantly better than that of using them alone.

Table 5. Comparative experiment of primary and secondary trigger

#trig CoNLL 2003 BC5CDR
Primary Secondary Primary Secondary

3% 63.4 62.35 52.3 50.92
5% 66.3 66.3 54.17 55.84
7% 70.37 69.44 58.92 57.33

10% 74.02 73.44 60.32 60.24
13% 74.86 74.91 61.35 62.01
15% 76.2 75.46 64.26 64.25
17% 77.36 76.33 64.51 64.26
20% 77.55 77.53 65.94 66.69

4 Conclusion and Future Work

We have introduced dependency trigger to incorporate trigger information into
NER method. The core of our method is using syntactic parser to automatically
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label the trigger of entities. Our model performs well for long sentences, while
maintain similar performance as TriggerNER for short sentences. Thanks to
automatically annotate trigger of entities, our framework is more practical in
the real business. Future work with DepTrigger includes: 1) adjusting our model
to encoder based on language model; 2) making a further analysis of trigger type;
3) developing models for improving the performance on short sentences.
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Abstract. Stock movements are influenced not only by historical prices,
but also by information outside the market such as social media and news
about the stock or related stock. In practice, news or prices of a stock in
one day are normally impacted by different days with different weights,
and they can influence each other. In terms of this issue, in this paper, we
propose a fundamental analysis based neural network for stock movement
prediction. First, we propose three new technical indicators based on raw
prices according to the finance theory as the basic encode of the prices
of each day. Then, we introduce a coattention mechanism to capture the
sufficient context information between text and prices across every day
within a time window. Based on the mutual promotion and influence of
text and price at different times, we obtain more sufficient stock repre-
sentation. We perform extensive experiments on the real-world StockNet
dataset and the experimental results demonstrate the effectiveness of our
method.

Keywords: Stock movement prediction · Fundamental analysis ·
Coattention mechanism

1 Introduction

Stock Movement Prediction aims to predict the future price trend of a stock
based on its historical price or related information. Stock movement prediction
can help investors, ordinary users and companies to predict the stock trend in
the future, which has good application value.

The high randomness and volatility of the market make the task of Stock
Movement Prediction a big challenge [1]. However, with the development of neu-
ral network technology, stock movement prediction has achieved good results in
recent years [7,10,13,18,19,24,25]. Based on fundamental and technical analysis,
existing methods can be roughly grouped into two categories, namely methods
based on price factors only and methods based on price and other factors (e.g.,
news of the stock.). Nelson et al. [13] used the LSTM [9] network to predict
future stock price trends based on historical price and technical analysis indica-
tors. Feng et al. [7] used the adversarial training as perturbations to simulate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sun et al. (Eds.): CCL 2022, LNAI 13603, pp. 335–350, 2022.
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the randomness of price variables, and trained the model to work well with small
but intentional perturbations. They also extracted 11 related price features to
effectively help the model to predict future changes.

According to the Efficient Market Hypothesis (EMH) [6], price signals them-
selves cannot capture the impact of market accidents and unexpected accidents,
while social media texts such as tweets could have a huge impact on the stock
market. Based on this idea, different models have been proposed to model rel-
evant news texts to improve the overall performance of stock movement pre-
diction. Hu et al. [10] proposed to use the hierarchical attention mechanism to
predict the trend of stocks based on the sequence of recent related news. Xu et al.
[24] integrated signals from social media which reflected the opinions of general
users and used Variational Autoencoder (VAE) to capture the randomness of
prices and the importance of different time steps by adding temporal attention.
Sawhney et al. [18] introduced a novel architecture for efficient mixing of chaotic
temporal signals from financial data, social media, and inter stock relationships
in a hierarchical temporal manner through Graph Attention Neural Network.

Although previous studies have achieved good results, whether it is a purely
technical approach based on historical prices or a fundamental approach based
on multiple factors such as prices and news, they can be improved in terms of
the full integration of the two important factors of texts and prices. We found
that previous works usually encode news and prices separately according to time
series, and then fuse them through simple concatenation operation, similar to
the work of Sawhney et al. [18]. In fact, in practice, prices on a given day can
be influenced by different news at different times (e.g., previous day or after two
days). Similarly, some news about a stock on a given day may be influenced
by stock prices at different times. As is shown in Fig. 1, if we can capture the
context information of each price and text by different days, we can get more
sufficient information for predicting the stock trend accurately.

Fig. 1. Contexts of prices and texts across the history captured by coattention. Left
shows each price representation of one day captures context of all news about the stock
from day1 to dayT by different attention weights. Right shows each text representation
of one day captures context of all prices about the stock from day1 to dayT by different
attention weights.

To this end, in this paper, we propose a fundamental analysis based neural
network for stock movement prediction. More specifically, we first use Bi-GRU
to encode the original texts of each day. Then, we use text-level attention to
get a text representation of each day. As for the prices of each day, we use the
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existing 11 indicator features and 3 indicators we proposed in this paper as
price representation of each day. Then we use the coattention mechanism [23]
to capture more information between texts and prices across every day within a
time window. Finally, we incorporate a Bi-GRU to encode the fully integrated
texts and prices representation according to the time window, so that it can
obtain various prices and text-related information of the stock, and obtain the
final effective representation of the stock.

The contributions of this work are as follows:

– We propose a fundamental analysis based neural network for stock movement
prediction. The model introduces the coattention mechanism into text and
price features of a stock to learn the effective context information of them.
The method can obtain sufficient stock representation based on the mutual
promotion and influence of texts and prices at different times.

– We also introduce three technical indicators based on raw prices in the finan-
cial field as their input features to better reflect the fluctuation information
of the market. We perform multiple experiments on the StockNet dataset and
the results demonstrate the effectiveness of our model.

2 Related Work

In this section, we will review the related work about stock movement predic-
tion from technical analysis based approach and fundamental analysis based
approach.

2.1 Technical Analysis Based Approach

Technical analysis based approach is to predict the trend of a stock based on
its historical price features such as close price and movement percent of price,
which follows the assumption that future price changes are the result of his-
torical behavior. Most recent stock movement prediction methods are based on
deep learning. Among them, recurrent neural networks such as LSTM and GRU
have become a key part for capturing the temporal patterns of stock prices.
This is because they can further capture long-term dependencies in time series.
Nelson et al. [13] used LSTM networks to study future trends, predicting stock
prices based on historical stock prices and technical analysis indicators. These
indicators are mathematical calculations designed to determine or predict the
characteristics of a stock based on its historical data. A total of 175 techni-
cal indicators are generated each period, and they are designed to represent or
predict a very different set of characteristics of a stock, like the future price,
volume to be traded and the strength of current movement trends. Feng et al.
[7] proposed to use adversarial training and added perturbations to simulate the
randomness of price variables, and trained the model to work well with small but
intentional perturbations. In addition, they extracted 11 related price features
that effectively help the model predict future changes. Feng et al. [8] proposed
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the Temporal Graph Convolution (TGC) model combining historical prices for
predicting movement of stock, which dynamically adjusts the predefined firm
relations before feeding them into Graph Convolution Network (GCN) [11].
As LSTM struggles to capture extremely long-term dependencies, such as the
dependencies across several months on financial time series. Transformer-based
employs multi-head self-attention mechanism to globally learn the relationships
between different locations, thus enhancing the ability to learn long-term depen-
dencies. Ding et al. [5] proposed various enhancements for Transformer-based
models, such as enhancing locality of Transformer with Multi-Scale Gaussian
Prior, avoiding learning redundant heads in the multihead self-attention mech-
anism with Orthogonal Regularization and enabling Transformer to learn intra-
day features and intra-week features independently with Trading Gap Splitter.
However, in reality, it is often difficult to find clear pattern of change from the
market historical data. Furthermore, it fails to reveal the rules governing market
volatility beyond stock price data.

2.2 Fundamental Analysis Based Approach

Efficient Market Hypothesis tells that textual information can be used to extract
implicit information for helping predict the future trend of stock prices, such as
financial news and social media. Fundamental analysis based approach is able
to capture information that is not available in traditional price-based stock pre-
diction. A hybrid attention network [10] is proposed to predict stock trends
by imitating the human learning process. In order to follow three basic princi-
ples: sequential content dependency, diverse influence, and effective and efficient
learning, the model builds news-level attention and temporal attention mech-
anisms to focus on key information in news, and applies self-paced learning
mechanisms to automatically select suitable training samples for different train-
ing stage improves the final performance of the framework. Different from the
traditional text embedding methods, Ni et al. [15] proposed Tweet Node algo-
rithm for describing potential connection in Twitter data through constructing
the tweet node network. They take into account the internal semantic features
and external structural features of twitter data, so that the generated Tweet
vectors can contain more effective information. Financial news that does not
explicitly mention stocks may also be relevant, such as industry news, and is
a key part of real-world decision-making. To extract implicit information from
the chaotic daily news pool, Tang et al. [19] proposed News Distilling Network
(NDN) which takes advantage of neural representation learning and collabora-
tive filtering to capture the relationship between stocks and news. Xie et al.
[22] conducted adversarial attacks on the original tweets to generate some new
semantically similar texts, which are merged with the original texts to confuse
the previously proposed models, proving that text-only stock prediction mod-
els are also vulnerable to adversarial attacks. This also reflects that the model
obtained only by text training is less robust, so it is still necessary to incorporate
knowledge such as relevant historical price features and the relationship between
stocks to better improve the performance of the model.
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Therefore, some studies fuse price and text data to build models, and even
add the relationship between stocks to improve the performance of the model. A
novel deep generation model that combines tweets and price signals is proposed
by Xu et al. [24]. They introduced temporal attention to model the importance
of different time steps and used Variational Autoencoder (VAE) to capture ran-
domness of price. Recent studies have attempted to simulate stock momentum
spillover through Graph Neural Networks (GNN). Sawhney et al. [18] intro-
duced an architecture for efficient mixing of chaotic temporal signals from finan-
cial data, social media, and inter stock relationships in a hierarchical temporal
manner. Cheng et al. [4] proposed a momentum spillover effect model for stock
prediction through attribute-driven Graph Attention Networks (GAT) [20], and
the implicit relations between stocks can be inferred to some extent. Zhao et
al. [25] constructed a market knowledge graph which contains dual-type entities
and mixed relations. By introducing explicit and implicit relationships between
executive entities and stocks, dual attention network is proposed to learn stock
momentum overflow features.

Since stock prices have temporal characteristics, that is, the price of a day
will be affected by the price and news text of previous days, in this paper,
we propose to use coattention mechanism to obtain the context information of
stock prices and news text under different timestamp, so as to improve the final
representation of the stock and the prediction performance.

3 Our Method

3.1 Task Definition

Similar to the previous work [24], we define the stock movement prediction task
as a binary classification problem. Given a stock s, we define the price movement
of the stock from day T to T + 1 as:

YT+1 =
{−1, pcT+1 < pcT
1, pcT+1 ≥ pcT

(1)

where pcT represents adjusted closing price on day T , −1 represents stock price
goes down and 1 represents the stock price goes up. The goal of the task is to
predict the price movement YT+1 of a stock s according to its historical prices
collections P and news text collections L in a time sliding window of T days,
where P = {P1, P2, ..., Pi, ..., PT }, L = {L1, L2, ..., Lj , ..., LT }, where Pi is the
price features of the stock s on day i and Lj is the news text collection of the
stock s on day j.

3.2 Overall Architecture

The whole architecture of our method is shown in Fig. 2. As is shown in Fig. 2, we
first encode raw text for each stock across every day over a fixed time window. As
for the price, the existing price features and the three new proposed indicators
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are concatenated together as the price representation. Then richer information
will be captured by our introduced coattention mechanism. In order to obtain
the integrated information of various prices and texts within the time window,
we adopt a Bi-GRU for final encoding.

In the following sections, we will describe text and price features encoding
in Sect. 3.3 and 3.4. And we will introduce temporal fusion to handle prices and
text in Sect. 3.5 and introduce global fusion by sequential modeling in Sect. 3.6.
Finally, model training will be introduced in Sect. 3.7.

Fig. 2. Overview architecture of our method.

3.3 Text Encoding

As each text contains rich semantic information, we use a Bi-GRU to encode
the text and get the representation of each text in one day. Besides, different
texts within the same day about the same stock may also be different (e.g.,
one text contains important information about the stock while other texts don’t
have valuable information about the stock). For addressing that, we use a soft-
attention operation to get the weighted representation of the texts of one day.

Following the work of Xu et al. [24], we incorporate the position informa-
tion of stock symbols in texts to handle the circumstance that multiple stocks
are discussed in one single text. Given stock s contains K number of related
texts on day m, which is denoted as Lm = {lm1 , lm2 , ..., lmi

, ...lmK
}, where lmi

denotes the i-th text of stock s on day m. For each text lmi
= {w1, w2, ..., wn},

suppose that the location where the stock symbol appears first is denoted as
z, we use two GRUs to encode the words sequence from w1 to wz to get the
hidden representations

−→
hf and words sequence from wz to wn to get the hidden
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representations
←−
hb, respectively. We use the average of the last hidden states of

the two GURs
−→
hz and

←−
hz as the hidden representation of the text hlmi

:

−→
hf =

−−−→
GRU

(
ef ,

−−−→
hf−1

)
(2)

←−
hb =

←−−−
GRU

(
eb,

←−−
hb+1

)
(3)

hlmi
=

(−→
hz +

←−
hz

)
/2 (4)

Where ef ,eb is the word embedding using pre-trained Global Vectors for Word
Representation (GloVe) [17] for words of the text, f ∈ [1, . . . , z] , b ∈ [z, . . . , n].
After that, we can get all the text representations Mi = [hlm1 , hlm2 , ..., hlmK

].
Since the text quality is different, we use a text-level attention mechanism to
identify texts that could have a more substantial impact on the market every
day, and finally obtain a final representation of all texts. The calculation formula
is as follows:

uK = tanh(MiWm + bm) (5)

αK = softmax(uKWu) (6)

hTexts_dm =
∑
K

αKhlmK
(7)

where αK is the attention weight, Wm and Wu are the parameters to be
learned, bm is the bias terms. hTexts_dm is the representation of the news
text of stock s on m-th day(daym). According to the time sliding window
defined previously, the text data in the window is finally denoted as Ht =
[hTexts_d1, hTexts_d2, ..., hTexts_dT ].

3.4 Price Features

As mentioned in Sect. 2.2, the models that predict stock trends only based on text
are often fragile, while price features have been shown to effectively reflect market
volatility. In this paper, we introduce three new relevant price features to be used
in our method. The three new technical indicators are from financial domain and
are used to describe fluctuation of stock, namely Average True Range (ATR) [3],
Bias Ratio (BIAS) and Momentum (MTM) [12]. The detailed calculation of the
three indicators is shown in Table 1. We describe the three indicators as follows:

– ATR: ATR is a volatility indicator that was developed by Wilder et al.
[21] and is used to measure the volatility or the degree of price movement of
security. It was originally designed for commodity trading, which is frequently
subject to gaps and limit moves. As a result, ATR takes into account gaps,
limit moves, and small high-low ranges in determining the true range of a
commodity, and it also applies to the stock market.
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– BIAS: BIAS is the deviation between the closing price and moving average.
When the stock price moves drastically to deviate from the trend, the possi-
bilities for a pullback or rebound increase; When the stock price movement
does not deviate from the trend, it is likely that the trend will continue.

– MTM: MTM is an indicator that shows the difference between today’s clos-
ing price and the closing price n days ago. Momentum generally refers to the
continued trend of prices. Momentum shows a trend, staying positive for a
sustained uptrend or negative for a sustained downtrend. An upward crossing
of zero can be used as a signal of buying, and a downward crossing of zero
can be used as a signal of selling. How high the indicator is (or how low when
negative) indicates how strong the trend is.

Table 1. The three price features.

Features Calculation

ATR EMA(max(hight, closet−1)− min(lowt, closet−1), n)

BIAS closet∑4
i=0 closet−i/5

− 1

MTM closet − closet−1

Following previous work, We adopt 11 temporal price features based on
the raw price [7], denoted as F1 = {p1, p2, ..., p11} and our proposed three
new price features, denoted as F2 = {patr, pbias, pmtm}, as our final price fea-
tures. The two are concatenated together to get the final price features of m-
th day, recorded as hPrices_dm = [F1, F2]. According to the time sliding win-
dow defined above, the price features in the window are finally recorded as
Hp = [hPrices_d1, hPrices_d2, ..., hPrices_dT ].

3.5 Temporal Fusion by Coattention Neural Network

After Sect. 3.3 and Sect. 3.4, the coding features of price and text were obtained
as Hp and Ht respectively. To effectively blend text and price, we use the coat-
tention mechanism [23] to learn the fusion between text and price to obtain
richer implicit information. First, we use a nonlinear projection layer to convert
the dimension of the price feature into the same dimension as the text with the
following formula:

H ′
p = tanh (HpWp + bp) (8)

Applying the coattention mechanism to focus on both text and price, and
learn about fusion. We first compute an affinity matrix that contains the corre-
sponding affinity scores of all prices hidden states and texts hidden state pairs.
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Then the affinity matrix is normalized by Softmax, attention weights are gener-
ated for text features by row, and attention weights of price features are gener-
ated by columns. The calculation formula is as follows:

L = Ht

(
H ′

p

)T (9)

At = softmax(L) (10)

Ap = softmax
(
LT

)
(11)

Next, we calculate the attention context of price features based on the atten-
tion weight of text features. The calculation formula is as follows:

Ct = AtH
′
p (12)

Meanwhile, we compute the attention context of the text features as ApHt

based on the attention weights of the price features. Following Xiong et al. [23],
we also calculate ApCt which maps text feature encoding into the space of price
feature encoding. The calculation formula is as follows:

hd = Ap [Ht, Ct] (13)

where hd is interdependent representation of the text and the price. The [ ]
denotes for concatenation operation.

3.6 Global Fusion by Sequential Encoding

We input hd obtained from Sect. 3.5 into the bidirectional GRU to obtain the
hidden states for each time t. To capture past and future information as its
context, we connect the hidden states from the two directions to construct a
two-way encoding vector hi with the following formulas:

−→
hi =

−−−→
GRU (hd) (14)

←−
hi =

←−−−
GRU (hd) (15)

hi =
[−→
hi ,

←−
hi

]
(16)

In addition to its own information, hi also contains information about its
adjacent contexts. In this way, we encoded its time series. Since news releases on
different dates contributed unequally to stock trends, we employed soft attention
mechanism which is calculated as follows:

oi = tanh (hiWh + bh) (17)

βi = softmax (oiWo) (18)

hfinal =
∑
i

βihi (19)

where βi is the attention weight, Wh and Wo are the parameters to be learned,
bh is the bias terms. Finally, hfinal is input into a classic three-layer preceptron
(MLP) to predict the future trend of stocks.
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3.7 Model Training

We use cross entropy for model training, which is calculated by Eq. (20), where
N is the total number of stocks, yt

i and ŷt
i represent the ground truth and predict

stock trend of stock i at t day, respectively.

l = −
N∑
i=1

∑
t

yt
i ln(ŷt

i) (20)

4 Experiments

4.1 Dataset

We use the SotckNet1 dataset [24] to train and validate the model. The dataset
contains historical data on the high trading volumes of 88 stocks in the NASDAQ
and NYSE stock markets. We annotate the samples based on the movement
percent of the adjusted closing price of stock, and label the samples as up and
down when movement percent ≥ 0.55% or ≤ −0.5%, respectively. We split the
dataset temporarily with 70/20/10, leaving us with date ranges from 2014-1-1
to 2015-8-1 for training, 2015-8-1 to 2015-10-1 for validation and 2015-10-1 to
2016-1-1 for testing. Similarly, we adjust trading days by removing samples with
missing prices or texts and further aligned data for all trading day windows to
ensure that data is available for all trading days in all windows.

4.2 Experiment Settings

We use a 5-day trading day sliding window to build the samples. Following the
setting of Xu et al. [24], we set the maximum number of texts in a day to 30,
and each text has a maximum of 40 words. Glove word embedding is also used
to initialize words into 50-dimensional vectors. We train the model using the
Adam optimizer, with an initial learning rate set to 5e−5. The bidirectional
GRU hidden dimensions for encoding tweets and sequential modeling were set
to 100 and 64, respectively. Each model is trained for 40 epochs with a batch
size of 32. We report the best average test performance of the model on the
validation set at 5 different runs.

Following previous studies [18,24], we use Accuracy (Acc), F1 score, and
Matthews Correlation Coefficient (MCC) as evaluation metrics for this classifi-
cation task.

4.3 Compared Models

To demonstrate the effectiveness of our proposed model, we compare the results
with the following comparative models.

1 https://github.com/yumoxu/stocknet-dataset.

https://github.com/yumoxu/stocknet-dataset
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– RAND. A simple predictor to make random guess about the rise and fall.
– ARIMA. Autoregressive Integrated Moving Average, an advanced technical

analysis method using only price signals [2].
– Adversarial LSTM. Feng et al. [7] proposed a deep model using an adver-

sarial attention LSTM mechanism, which exploits adversarial training to sim-
ulate randomness during model training. They propose the use of adversarial
training to improve the generalization of neural network prediction models,
since the input feature for stock prediction is usually based on stock price,
which is essentially a random variable that naturally changes over time. They
added perturbations to their stock data and trained the model to work well
with small but intentional perturbations.

– RandForest. Pagolu et al. [16] implemented a sentiment analysis model
based on Twitter data. The authors used Word2vec to analyse the polarity
of sentiments behind the tweets and directly assessed tweets related to stock
and tried to predict the price of the stock for the next day.

– TSLDA. A new topic model, Topic Sentiment Latent Dirichlet Allocation
(TSLDA), which can obtain new feature that captures topics and sentiments
on the documents simultaneously and use them for prediction of the stock
movement [14].

– HAN. A hybrid attention network that predicts stock trends by imitating
the human learning process. Follows three basic principles: sequential content
dependency, diverse influence, and effective and efficient learning. The model
includes news-level attention and temporal attention mechanisms to focus on
key information in news [10].

– StockNet. A Variational Autoencoder (VAE) to encode stock inputs to cap-
ture randomness and use temporal attention to model the importance of
different time steps [24]. We compare with the best variants of StockNet.

– MAN-SF. Multipronged Attention Network (MAN-SF) jointly learns from
historical prices, tweets and inter stock relations. MAN-SF through hierar-
chical attention captures relevant signals across diverse data to train a Graph
Attention Network (GAT) for stock prediction. And the study considers one
pre-built graph from Wikidata [18].

4.4 Experimental Results

We conduct several experiments to evaluate the performance of our method. In
this section, we analyze the benchmark performance and the results of our model
on the StockNet dataset. The experimental results of the different models are
shown in Table 2.

First, we compare the first three baseline models presented in this paper. All
three baseline methods use only historical price information, although Adver-
sarial LSTM with more representative features and training with adversarial
learning achieved better performance. Our model clearly exceeds these three
methods in each evaluation indicator.

Second, our model is compared to models that only use textual information,
such as RandForest, TSLDA, and HAN. Our model also significantly outperforms
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Table 2. The results of different models.

Model Acc F1 MCC

RAND 50.9 50.2 −0.002
ARIMA [2] 51.4 51.3 −0.021
Adversarial LSTM [7] 57.2 57.0 0.148
RandForest [16] 53.1 52.7 0.013
TSLDA [14] 54.1 53.9 0.065
HAN [10] 57.6 57.2 0.052
StockNet [24] 58.2 57.5 0.081
MAN-SF [18] 60.8 60.5 0.195
Ours 62.6 61.1 0.228

these three methods, outperforming the best-performing HAN by 5, 3.9, and
0.176 in Acc, F1, and MCC, respectively. So far, we can find that the performance
of the model using only price or text is not satisfactory enough.

Finally, compared to StockNet, which also uses texts and prices, our model
is 4.4, 3.6 and 0.147 higher on Acc, F1 values and MCC, respectively. Compared
to another MAN-SF using the same data, our model contains no additional
knowledge of stock relations. But the result still demonstrates that our model
is 1.8, 0.6, and 0.033 higher than the MAN-SF on Acc, F1 values, and MCC,
respectively. Overall experimental results demonstrate the effectiveness of the
proposed model.

4.5 Ablation Study

In order to better demonstrate the different effects of components of our method,
we conduct ablation studies to investigate the different contribution of coatten-
tion mechanism and the three proposed financial indicators. The results are
shown in Table 3. We mainly design two variants: ours w/o coattention and ours
w/o ATR-BIAS-MTM.

For w/o coattention, we change the method of learning effective implicit
information between price and text from the coattention mechanism to the direct
concatenation of the two. This model drops 1.7, 0.7 and 0.014 compared to the
full model on Acc, F1 value and MCC, respectively, proving that the coattention
mechanism can effectively improve the performance of the model and obtain
richer information between price and text.

For w/o ATR-BIAS-MTM, We remove the three features proposed earlier in
this paper and only use the 11 features proposed in previous studies [7]. The
experimental results of the model decreased by 0.3, 0.3 and 0.007 on Acc, F1
values and MCC, respectively, which also prove that these three features help the
performance of the model by reflecting the volatility of the market. Here we take
ATR as an example to analyze, it can simply be understood as the expectations
and enthusiasm of traders. Large or increasing volatility indicates that traders
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may be prepared to continue buying or selling stocks during the day. A reduction
in volatility indicates that traders are not showing much interest in the stock
market.

Table 3. The ablation study of our method.

Model Acc F1 MCC

Ours 62.6 61.1 0.228
w/o coattention 60.9 60.4 0.214
w/o ATR-BIAS-MTM 62.3 60.8 0.221

4.6 Case Study

As mentioned before, we use the coattention mechanism in the model to capture
richer information, which in turn help to learn more precise attention weights
of intra-day tweets (Tweet-level attention) and inter-day of time slide window
(Temporal attention). In order to investigate how the coattention mechanism
guides the learning of attention weights, we conduct a case study on a sample
of $FB (FaceBook) between Nov 5th and Nov 9th, 2015, which is finally used to
predict the rise or fall of Nov 10th, 2015.

Fig. 3. Text-level and temporal attention weights learned by Ours and Ours (Δ) (as
mentioned Ours w/o coattention) on a sample of $FB (FaceBook). Numbers represent
weight values and darker colors indicate greater weights. Text on green, red and grey
backgrounds represent signals with positive, negative and neutral respectively.

As shown in Fig. 3, a row represents a day. For example, the first row rep-
resents texts of 5th. And we use the trading day alignment, because the 7th
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and 8th are weekends, so the text data for the three days from the 6th to the
8th were merged together. Each rectangle inside each row represents the con-
tent of a text. All texts within a day are denoted as [Text1, T ext2, . . . , T extK].
And We present the attention weights learned by our model (Ours) and without
coattention mechanism (denoted as Ours (Δ)).

First, we can see that the closer to the target day, the more weight Ours gives
to that day. This is also in line with the laws of the real world, and the newer
news can have a greater impact. Specifically, Ours pays more attention to the
positive signals from the 6th to the 9th. On the 5th, it pays too much attention
to a neutral Text3 whose impact is uncertain. However, because of giving it a
lower weight on the day, it can help its correct prediction for the rise. On the
contrary, Ours (Δ) has a greater weight than Ours on the 5th. At the same time,
the tweet texts with negative signals in the 5th and 9th are more concerned by
Ours (Δ), and finally make a wrong prediction.

Next we analyze the texts for each day in more detail. For a more intuitive
understanding, we artificially add different background colors to each rectangle
to represent different tendencies of the text, such as green, red and grey back-
grounds representing signals with positive, negative and neutral respectively. On
the 5th day, we can see that Ours (Δ) has higher attention than Ours on the two
negative texts Text1 and Text2. During the period from the 6th to the 9th, Ours
gives a higher weight value to the texts with positive signals than Ours (Δ), such
as the Text2 from the 6th to the 8th and the TextK of the 9th, which all reflect
the good development prospects of FaceBook. In particular, Ours has a smaller
weight than Ours (Δ) on the Text1 with negative influence in 9th. Although this
negative news appears on the day closest to the target prediction, because the
model combined with coattention can fuse the information of the entire window,
and analyzes that Facebook stock is still showing an upward trend in general.

The observation shown in Fig. 3 indicates that the coattention mechanism
can guide the model to pay more attention to texts with tendencies and can
effectively model the temporal. With more accurate attention weights, Ours can
capture more effective representation, thus it can achieve better performance
than Ours (Δ).

5 Conclusion

To effectively fuse texts and prices to predict future stock movements, in this
paper, we propose a fundamental analysis based neural network for stock move-
ment prediction. Our model introduces the coattention mechanism to capture
richer implicit information between text and price as a better representation of
a stock. We also introduce three new technical indicators in the financial field as
price features. We perform the extensive experiments on the StockNet dataset
and the experimental results show the effectiveness of our proposed method. In
the future, we plan to use more data other than stock prices, such as finan-
cial reports, relationships between stock, to better capture market dynamics.
In addition, extracting features that can better reflect trend changes is still a
direction worth exploring.
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