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Abstract Measurements resulting from the operation of two different low-cost air 
quality monitoring devices (LCAQMD) are used as a basis for a data analytics and 
modelling procedure towards the improvement of the uncertainty of sensor readings. 
A data processing method for missing value and outliers handling, followed by the 
implementation of computational intelligence-oriented algorithms aimed to the PM10 

modelling. Descriptive statistics and correlation coefficients are used for a primary 
evaluation of data analytics results, while modelling outcomes are compared with 
the aid of the relative expanded uncertainty, as well as via the model performance 
evaluation metrics, to determine the most efficient model. Results suggest that the 
advanced artificial neural network oriented computational intelligence algorithms, 
may lead to significant improvement of the performance of the two LCAQMD, this 
being applicable for a certain concentration range (18–65 μg/m3), indicating that 
additional future work and more advanced computational techniques are required 
for further improvement of their performance. 

Keywords Low-cost air quality monitoring devices · Measurement uncertainty ·
Data quality · Computational intelligence 

1 Introduction 

Air pollution has been proven to have various adverse effects on health, climate, 
and sustainable development [1]. The increase in the number of air quality (AQ) 
monitoring devices improves our knowledge on air pollution and allows for better 
regulatory as well as information provision actions towards better quality of life. 
Such devices are usually of high cost, this being a limiting factor concerning their
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wide-spread application. An alternative that has gained ground in recent years, 
especially in relation to citizen science initiatives, is that of low-cost air quality 
monitoring devices (LCAQMD) [2]. Unfortunately, the quality of these measure-
ments has been strongly doubted as they often differ significantly from those of 
high quality or reference instruments that operate in accordance with the standards 
of European legislation [3]. Nevertheless, improving the performance of LCAQMD 
will help in their operational use as supporting methods for the assessment of air 
pollution. For this purpose, we apply computational intelligence methods to model 
and improve the performance of two different LCAQMD tested in Thessaloniki, 
Greece. In Chap. 2 we describe the materials and methods employed, Chap. 3 
presents and discusses the results, and Chap. 4 draws the conclusions of this study. 

2 Materials and Methods 

2.1 Study Area and Experimental Setup 

The study was conducted in Thessaloniki, the financial and educational centre of 
the Macedonian region in Northern Greece, with approx. one million inhabitants. 
The city has the sea to its south and southwest (Thermaikos gulf), with the Chortiatis 
mountains framing its southeast border and the Seich-Sou forest lying to the northeast 
outskirts of the urban web. The local climate is Mediterranean with hot, dry summers 
and mild, wet winters. The annual mean temperature is 15.6 °C, while mean relative 
humidity ranges from 53.2% (July) to 78% (December), with an annual mean rate 
of 67.3%. 

The Aristotle University experimental location 

The devices participating in the experiment were placed on the roof of Building 
E14 of the Faculty of Engineering at the Aristotle University of Thessaloniki main 
campus. The location is next to a busy street (named “3rd of September”) and close to 
the city centre (Fig. 1). The installation is less than 50 m away from a road junction, 
so measurements are expected to display sharp gradients of PM10 concentrations [4]. 
A metro construction site is located at a distance less than 200 m. Two devices have 
been used:

(a) The Purpleair PA-II LCAQMD (manufacturer: Purpleair llc, USA), which 
employs the Plantower PMS5003 optical sensor for particulate matter (PM). 
It has a built-in microscopic fan to ensure the necessary air flow and can detect 
a wide range of particle sizes up to 10 μm, therefore being used for PM2.5 

and PM10 concentration estimations. The generated signals of the sensors are 
processed by special company algorithms for their conversion into concentra-
tion units of the corresponding mass. The PMS5003 sensors are calibrated in a 
certified laboratory by the manufacturer. Moreover, this specific device uses two
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Fig. 1 Location of the air quality device installations in Thessaloniki, Greece: a Aristotle University 
campus installation and b Thessaloniki city centre installation 

optical sensor units connected to each other under the same protective frame, 
while it also includes an air temperature and relative humidity sensor.

(b) The Dust Sentry PM10 (DS-PM10, manufacturer: Aeroqual Ltd, New Zealand), 
which was used as the high-quality measuring instrument at site. Its operation 
is based on a light scattering nephelometer with a sharp cut cyclone. It also 
contains a built-in sensor for detecting and balancing temperature changes, air 
purification filter to keep the surface of optical sensors clean, automatic baseline 
drift correction and optical fibres to control the procedure of optical components. 

The corresponding data set consists of 8296 h values received from 01/01/2019 
to 12/12/2019. 

The city centre experimental location 

This is the second location of the experiment, where an official air quality reference 
station is installed (at Ermou Street, near Agias Sofias square, Fig. 1). This is a busy 
city centre area, therefore expected to depict high gradients of traffic-related pollutant 
concentrations. The area is surrounded by high-density buildings and hosts a metro 
construction site at a distance approx. 250 m. Two devices have been installed here 
also:

(a) The AQY, used as the LCAQMD (manufacturer: Aeroqual Ltd, New Zealand). It 
uses the Nova Fitness SDS011 particle optical sensor, which detects PM2.5 and 
PM10 using an optical laser particle counter. The same device also detects NO2 

and O3 using sensitive electrochemical sensors (Gas Sensitive Electrochemical-
GSE) and Gas Sensitive Semiconductor (GSS) sensors, respectively.
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Table 1 Parameters 
monitored by the devices 
participating in the study 

Instrument Parameters monitored 

Purpleair PM1, PM2.5, PM10, Temperature (ambient), Rel. 
Humidity 

DS-PM10 PM10, O3, Ox, NO2, SO2, Temperature (ambient), 
Rel. Humidity 

AQY PM2.5, PM10, O3, NO2, Temperature (ambient), 
Rel. Humidity 

Reference PM2.5, PM10, O3, NO2, Temperature (ambient), 
Rel. Humidity 

(b) A reference instrument, that measures concentration levels of PM10 and PM2.5 

using an Eberline FH 62 IR analyser together with a b-type damper. Both the 
low-cost and the reference instruments were accompanied by temperature and 
relative humidity measurements. The resulting dataset is composed of 3960 
hourly instances for the period 27/03/2019–08/09/2019. 

Both installation locations display similar characteristics concerning the prox-
imity to main roads of the city, while the metro construction sites add an extra factor 
that draws the attention to compare these two occasions. Monitored parameters are 
reported in Table 1. 

2.2 Data Pre-processing 

It was made evident that technical issues led to considerable number of missing 
values, thus it was decided to remove all records corresponding to those of the DS-
PM10 and of the reference instruments. For the Purpleair and AQY devices, the 
kNN data imputation method was implemented: For each time series vector the 
algorithm identifies the k-nearest observations closer to a missing value based on 
their Euclidean distance and then calculates their weighted average. This new value 
is assigned to the missing point. The procedure is repeated until every missing point is 
substituted by the average of its k-nearest neighbour of the corresponding variable. 
The number of k-nearest neighbours is a parameter that the user needs to select 
based on computational experiments [5]. In this study five nearest neighbours were 
selected, for each variable in all the available datasets, as the parameter more suitable 
to achieve the best results. 

Outliers were also identified in the studied datasets using the criteria described 
below and then they were assigned as missing values following the procedure 
described previously: 

(i) The standard deviation criterion: Values greater than the sum of 3μ + σ, where 
μ is the average (mean) and σ the standard deviation of each variable, were 
flagged as outliers.
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(ii) The Iglewicz-Hoaglin criterion [6]: Considering the x1, x2, x3,…, xN values of 
a vector X, their mean value xm and Mx the median value of the vector, for each 
single value the Mean Absolute Difference (MAD) is calculated as: 

MADi = |xi − Mx | (1) 

Estimating the median value MMAD of the newly formed vector of MADi , 
the variable Mi for each single value can be evaluated as following: 

Mi = 
0.675(xi − xm) 

MMAD 
(2) 

where MMAD is the median value of the vector formed by the Eq. 1. Values 
with Mi > 3.5 are labelled as outliers. 

2.3 Intercomparison of Measurements 

To analyse the measurements taken via the LCAQMDs, several descriptive statistics 
were employed, while correlation coefficients were also calculated. Moreover, the 
relative expanded uncertainty of the measurements was estimated, as a key param-
eter for assessing and improving the performance of the low-cost devices. Table 3 
presents the mean value, the standard deviation, the skewness, and kurtosis coeffi-
cients concerning PM10 concentration. While the mean and the standard deviation 
describe the location and spreading of the measurements, skewness and kurtosis are 
a measure of symmetry and heavy tailing of the values. 

Another useful aspect of the analysis focused on the calculation of the Pearson 
and Spearman correlation coefficients among the time series of each parameter. Their 
main difference is that Pearson does not reflect non-linear relationships, whereas 
the existence of extreme values strongly affects its magnitude. Spearman on the 
other hand, reflects the monotonic relationship that may exist between the variables. 
Positive values of these coefficients indicate that two factors increase in parallel, 
while negative ones demonstrate opposite trends. 

In addition to the above metrics, relative expanded uncertainty (REU) is a key 
factor for estimating the quality of air pollutants measurements. In the field of air 
quality monitoring, the concept of uncertainty has been introduced through the Euro-
pean Air Quality Framework Directive 2008/50/EC. It constitutes a robust criterion 
of the established Data Quality Objectives (DQO) which an observation must meet 
to be considered equivalent to the one derived from the use of the reference methods, 
or to be defined as an indicative one as a function of its relative expanded uncer-
tainty that characterizes it. Values of the REU used for classifying measurements 
to different “quality” groups are defined in Annex I of 2008/50/EC. According to 
the technical specifications being developed by the Sensor Working Group [7] of
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the Technical Committee on Air Quality Standardization CEN/TC 264/WG 42 [7], 
low-cost sensor measurements can be categorized as follows [8]: 

• Class 1 sensor systems: A monitoring device whose measurements comply with 
the DQO criteria of the indicative methods set out in Directive 2008/50/EC. In 
the case of PM10, REU in this case should be below 50%. 

• Class 2 sensor systems: A monitoring device whose measurements comply with 
the DQO criteria of the specified objective estimations in Directive 2008/50/EC. 
In the case of PM10, REU in this case should be between 50 and 100%. 

• Class 3 sensor systems: A monitoring device whose measurements do not apper-
tain to any kind of officially established uncertainty limits. This is the case for 
PM10 if the REU is greater than 100%. 

The REU is used in accordance with the procedure described in the report 
published by the EC Working Group on the Guidance for the Demonstration of 
Equivalence [9] and the technical report by the Joint Research Centre (JRC), the 
European Commission’s science and knowledge service [10]. On this basis, the initial 
performance of the Purpleair and AQY LCAQMDs, compared to the high-precision 
DS-PM10 and reference instrument correspondingly, is evaluated, as well as the effi-
ciency of the results obtained from the modelling procedure for the improvement of 
their performance. 

2.4 Data-Driven Modelling 

In a further analysis, an effort was made to develop data-driven mathematical models 
that receive as an input the variables monitored by the LCAQMD and have as a target-
variable the desired parameter of the high precision instrument, this being PM10 in 
the frame of the current study. For the two intercomparisons performed, the inputs 
were all the parameters mentioned in Table 1 for the low-cost devices (Purpleair 
and AQY) apart from PM10, while the outputs produced were the PM10 which they 
were later compared with the actual values of PM10 vectors of the high-precision 
instruments. For this reason, computational intelligence algorithms were employed. 

Polynomial Regression (PR) 

This method examines the relationship between two variables through a polynomial 
curve [11], which is expressed as the sum of the products of the constant coefficients 
β1, β2,…,βn with the independent variable, having a power exponent greater than 1. 
The general form of the equation describing the relationship between the independent 
and dependent variables is: 

y = β0 + β1 · x + β2 · x2 +  · · ·  +  βn · xn (3) 

The most common technique of adjusting the curve to the points is the least 
squares method that calculates the best fitted curve trying to minimize the sum of the
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squares of the distances that the plane points have from this curved line. However, 
one of its major disadvantages is its sensitivity and the incapability to find a suitable 
adjusted curve under the presence of many outliers. 

Support Vector Regression (SVR) 

SVR algorithm belongs to the category of non-linear regression models [12]. In 
this case the model tries to find the most appropriate insensitive region in the N-
dimensional space, which is defined by a central hyperplane (maximum margin 
hyperplane) and two others, at a distance ε on each side of it. Ultimate target is to 
include as many points of the data space as possible, minimizing therefore the loss 
function which is translated as the distance of the excluded points from the limits of 
this insensitive region. The loss function is described by the following equation: 

minw 
1 

2
||w||2 + C 

N∑

i=1 

(ξi + ξi ∗) (4) 

where w is the normalized vector at the external surfaces of the hyperplane, ξ i and 
ξ ∗ 
i are the excluded points at each side of the plane respectively and C is a factor that 
reinforces the minimization. 

Random Forest (RF) 

The RF algorithm belongs to the family of Decision Trees and is used for classification 
and regression purposes [13]. The algorithm builds regression models in the form of 
a tree structure through a sequence of logical decisions. These logical decisions aim 
to the division of the initial dataset into smaller subsets depending on the information 
entropy criterion, to obtain the greatest possible gain of useful information. RF is an 
ensemble method combining the behaviour of several trees, each trained in a subset 
of the initial dataset, resulting from a bootstrapping (sampling with replacement) 
procedure. For the specific analysis 10 trees were selected as the parameter, which 
deduces the greatest results. The final model result is based on weighted voting. 
The points showing highest gain of useful information are selected as nodes in the 
development of the tree. 

Artificial Neural Networks (ANNs) 

The Multilayer Perceptron feedforward backpropagation ANN was utilized in this 
study [14]. Many network architectures were tested to improve model results; 
two hidden layers of 10 neurons correspondingly rendered the optimum outcome, 
avoiding at the same time the adverse phenomenon of overfitting with the parallel 
examination of train and test sets values of loss function. The structure of the 
algorithm contained additional early stop settings to avoid overfitting. 

In all of the aforementioned modelling approaches, the validation procedure of 
both the random train-test split and the 10-fold cross validation were tested in order 
to create the training and the test set, nevertheless the first one rendered slightly better 
results in most of the occasions, so it was selected as the common validation technique
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for all models. In particular, 70% of the data were used as the training sample, 
while the rest 30% formed the test set, having been split in a random mode. These 
percentages were selected after conducting computational tests, which indicated 
these two as the most efficient ones. 

Convolutional Neural Networks (CNN 1D) 

Convolutional Neural Networks are algorithms derived from the field of Deep 
Learning [15]. Although they initially targeted at image recognition problems, their 
basic logic can also be used for time series modelling problems. The main goal 
of the algorithm is to reduce the dimensions of the input dataset making use of a 
transformation process based on Artificial Neural Network principles. The transition 
from a 2D matrix dataset to a 3D structure, to comply with the CNN characteristics, 
is accomplished by the manual addition of a 3rd dimension to the array, which is 
the number of the time step used to divide the initial dataset into smaller subsets. 
Meanwhile, the output is defined to consist of one variable which is the outcome of 
the network. Contrary to the previous methods of training test data random split, in 
the CNN case a sequential division is preferred to avoid repetition of the informa-
tion provided by the multiple sub-sets. A time step equal to 3 was selected as the 
time-step parameter, meaning that each input sub-set is composed of 3 instances, 
covering thus sequentially the whole dataset. In each of these smaller sets there was 
the corresponding single value of the variable-target vector; thereby it is secured the 
preservation of the initiatory relations between the variables. The Rectifier function 
was selected as the activation parameter and the best resulting architecture was a 
network composed of one hidden layer consisted of 64 neurons. A sequential split of 
70% of the data as training set and 30% as test set was implemented. Contrary to the 
previous models’ random split, the sequential split was chosen for the CNN model, 
due to the additional time-step slicing of dataset that has been performed. Valida-
tion of the performance of this algorithm was achieved by monitoring the curves of 
training and test sub-sets loss function minimization. Early stop settings were also 
used to avoid overfitting. The similarity in the behaviour of the curves is considered 
as the criterion of validation procedure. 

Long Short-Term Memory Recurrent Neural Networks (LSTM) 

Long Short-Term Memory (LSTM) networks is a special type of Recurrent Neural 
Networks (RNN). RNNs use as input not just the present records but also the data 
coming from a previous time step [16]. There are multiple networks for each time 
instance, connected with inner loops as the extracted values of a specific moment is 
utilized for the input of the next period, allowing thus information to persist over a 
time frame: the decision that a network of this kind will take at time step t-1 affects 
the decision it will make the exact next moment at time step t. For this reason, 
RNNs are considered to receive two sources of input, the present and the recent 
past. Hence, memory is the main characteristic of RNNs. It should be mentioned 
that RNNs function suffers from two problems: vanishing gradient and exploding 
gradient causing numerous hurdles. A way around this issue was provided by the 
invention of Long Short-Term Memory units, which preserves the backpropagated
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error. Maintenance of a constant error can permit to recurrent nets learning over many 
precedent time steps. The main logic behind LSTM algorithms is that they produce 
outputs with a forecasting approach, while the previous work on a nowcasting mode. 
The preferable architecture selected in this study consists of 4 LSTM layers with 
50 neurons respectively. Furthermore, a memory of 24 h instances (or 1 day) was 
attributed to the dataset, following concurrently the sequential split of 70% training 
and 30% test of CNN networks for the same reason of time-step slicing. LSTM 
algorithm uses by default Hyperbolic Tangent and Sigmoid functions for the main 
and recurrent activation correspondingly. 

3 Results and Discussion 

3.1 Data Pre-processing 

First step at the data pre-processing procedure was the determination of the 
percentage of missing values in the datasets, to decide which periods were the most 
appropriate and representative for the computational experiments. This is useful in 
order to decide whether a whole instance will be subtracted, or the corresponding 
missing values will be substituted as described in Chap. 2. Most missing values 
for Purpleair and DS-PM10 was detected during the period July–August of 2019 
on account of technical problems caused by the high temperatures and high levels 
of relative humidity, contrary to the pair of AQY-Reference instruments. For this 
cause, it was decided not to use the exact same period for both experiments. Based 
on missing values as well as outlier identification and handling, the pre-processed 
data for both experimental locations are visualised in Fig. 2. It is evident that the 
high accuracy instrument (DS-PM10) provided data that were of lower concentration 
value on average, in comparison to the Purpleair device; in the case of the AQY 
device, its values were on average lower than those provided by the high accuracy 
reference instrument.

3.2 Intercomparison of Devices 

Basic descriptive statistics (Table 2) show that the Standard Deviation of PM10 time 
series for the DS-PM10 Aeroqual measurements is greater than its mean value. A 
potential explanation of this phenomenon is the influence stemming from the sharp 
gradients of PM10 concentrations due to the nearby traffic load. This can be observed 
also from the relatively high value of kurtosis and skewness [17].

Concerning correlation coefficients (Table 3), results provide a first look at the 
divergence of the examined instruments. AQY indexes for PM10 are higher (Pearson 
= 0.52, Spearman = 0.54), implying a stronger relationship between the low- and
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Fig. 2 Time series intercomparison for PM10 concentration levels concerning Purpleair and DS-
PM10 Aeroqual (up), and AQY-Reference instrument (down)

Table 2 Basic statistical quantities for the low-cost and high-precision instrument measurements 
concerning PM10 (in μg/m3) 

Device Mean Std Skewness Kurtosis 

Purpleair 26.85 18.62 1.58 5.61 

DS-PM10 10.54 14.67 2.96 13.21 

AQY 17.33 8.42 1.57 6.81 

Reference 32.65 11.79 1.26 7.38
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Table 3 Correlation 
coefficients for PM10 between 
the low-cost and 
high-precision instruments 

LCAQMD High precision Pearson Spearman 

Purpleair DS-PM10 0.16 0.48 

AQY Reference 0.52 0.54

high-quality measurements for this case, contrary to the pair of Purpleair-DS-PM10 

(Pearson = 0.16, Spearman = 0.48). 

3.3 Uncertainty of PM10 Measurements 

The REU of the initial PM10 measurements of the LCAQMDs as well as of the 
values resulting from their computational improvement are presented in Fig. 3 and 
in Fig. 4. In the case of the Purpleair device the initial PM10 observations signifi-
cantly deviate in comparison to the measurements of the high precision instrument 
(DS-PM10 Aeroqual). More specifically, low concentration levels in the range up to 
15 μg/m3 account for uncertainty levels which start at the level of 800% and then 
register a sharp drop reaching the level of approximately 250% at 15 μg/m3 refer-
ence concentration. From that point and after, uncertainty levels represent a gradual 
upward trend, levelling off at a rate marginally below 1800% (not presented in the 
relevant graph), as reference values keep rising at the same time, indicating thus a 
positive correlation above 15 μg/m3. 

Referring to AQY, the REU of the initial PM10 values exhibits a better behaviour 
in comparison to the desired performance of the reference instrument. In detail, the 
curve begins from a level slightly lower than 300%, then decreases achieving almost

Fig. 3 Purpleair REU (initial and after the computational improvement) for PM10. Dashed line 
indicates the limit of 1st class measurements of 50%
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Fig. 4 AQY REU (initial and after the computational improvement) for PM10. Dashed line indicates 
the limit of 1st class measurements of 50%

200% for reference concentrations of about 20 μg/m3, ending up at 370% for the 
highest amount of PM10 concentrations of 68 μg/m3. However, for both low-cost 
instruments, the level of 50% of 1st class category of indicative measurements has 
not been approached. On the contrary, both instruments demonstrate a REU greater 
than 100%, therefore rendering them as class 3 sensor systems. 

Based on the computationally improved PM10 REU curves for Purpleair, it is 
evident that LSTM and CNN demonstrate the most significant upgrade of measure-
ments followed by RF and the simple ANN. More specifically, LSTM started from 
the level of 320% and progressively approached the limit of 1st class measurements 
of 50% without falling under it for a PM10 concentration between 40 and 50 μg/m3. 
On the other hand, CNN illustrated a different trend: for a PM10 concentration range 
of approximately 0–25 μg/m3, the REU drops nearer to the 1st class limit in compar-
ison to LSTM, and then flattens slightly above it. The two other algorithms appear to 
have an almost aligned behaviour. However, the goal of 50% uncertainty rate is not 
achieved by any of the algorithms, while the 100% class 2 sensor limit is achieved for 
a certain concentration value range by LSTM and CNN. Model performance metrics 
[18], for the evaluation of the models’ performance (reported in Table 4), confirm 
the findings based on the REU graphs as LSTMs obtain the best indices, achieving 
the lowest RMSE and MAE and the highest R2.

Coming to the AQY computational improvement of PM10 measurements, it is 
evident that the LSTM model led to the lowest uncertainty rates. Its curve starts at 
the level of approximately 75% for low concentration values and then falls under 
the limit of 50% for the concentration range 18–65 μg/m3. The 1st class goal is 
achieved from all other algorithms and especially from CNN which follows LSTM in 
performance ranking, as it drops below 50% for a concentration range 22–60 μg/m3.
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Table 4 Indices for the performance of the models for Purpleair and AQY for improving PM10 
measurements in comparison to PM10 measurements of high-quality instruments 

Purpleair AQY 

Models RMSE MAE R2 RMSE MAE R2 

Pol. Regr 12.39 7.11 0.32 8.42 6.24 0.37 

SVR 13.81 6.26 0.15 8.55 6.23 0.35 

RF 10.09 5.55 0.55 8.71 6.45 0.33 

ANN 12.3 7.19 0.32 8.55 6.37 0.35 

CNN 10.87 6.21 0.46 7.19 5.5 0.55 

LSTM 11.76 7.5 0.57 6.18 4.5 0.67

Model performance metrics also verify the best performance achieved by LSTM and 
CNN, reaching an R2 equal to 0.67 for LSTM. 

4 Conclusions 

The use of LCAQMD as alternative sources of information concerning air pollu-
tion concentration estimation, is limited by the low quality of their measure-
ments, in comparison to the one obtained by high quality and especially refer-
ence instruments. The REU is being used for categorizing low-cost instruments into 
three classes according to the Technical Committee on Air Quality Standardization 
CEN/TC264/WG42 [7, 8], while also being a key criterion for a recently proposed 
certification protocol for the evaluation of sensor systems dedicated to the ambient air 
quality monitoring [19]. The performance of such devices can be improved with the 
aid of computational methods which make use of monitored data as inputs, targeting 
the values of the parameter of interest as recorded by high quality monitoring instru-
ments. This approach has been applied for two LCAQMD installed and tested in 
Thessaloniki, Greece. In both cases, parameters monitored via the low-cost devices 
were used as model inputs, and a total of six computational intelligence algorithms 
were employed for improving their performance, using PM10 as the parameter of 
interest. The initial REU for Purpleair was higher in comparison to the REU of AQY, 
and in both cases the levels of uncertainty were well above the 50 μg/m3 criterion for 
class 1 measurements. The result of the modelling approach demonstrated that CNN 
and LSTM performed best in terms of REU improvement: In the case of Purpleair 
achieving an uncertainty level close to the 50% criterion and below the 100% crite-
rion (LSTM being the best performing algorithm concerning the latter), while in 
the case of AQY achieving an uncertainty lower than the 50% criterion, therefore 
resulting in measurements that can be considered to be as indicative (i.e. device class 
1), for a concentration range 18–65 μg/m3, concerning their overall REU. Both algo-
rithms achieved the best results in terms of the RMSE, ME and R2, with the latter
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reaching 0.67 for the calibrated PM10 measurements of AQY in comparison to the 
reference instrument measurements, and 0.57 for the Purpleair vs DS-PM10. These 
are results directly comparable with the ones that have been reported for the AQY 
instrument at the same location [20], where a more advanced feature selection and 
modelling procedure was followed, aiming at maximizing the improvement of the 
LCAQMD performance in terms of the REU. Overall, LSTMS could be proposed 
as a method that renders the most desirable outcomes, however the selection of the 
most appropriate algorithm depends highly on the examined datasets. 

Further research should aim at testing more advanced, ensemble-oriented methods 
like the ones reported in a number of different LCAQMD and at different locations 
[21]. The ultimate goal would be the development of generalizable and transferrable 
data-driven models for sensor improvement at an operational level. In this direction, 
results reported in [22] are very supportive and provide with a way towards achieving 
this goal. 

Acknowledgements The authors greatly acknowledge kartECO S.A. for providing access to the 
AQY and the Dust Sentry PM10 Aeroqual measurements. 

Appendix A 

Pearson and Spearman correlation coefficients [23] 

Pearson coefficient: 

rxy  = 1 

n − 1 

n∑

i=1

⎡
(xi − x) 

sx 

(yi − y) 
sy

⎤
(5) 

Spearman coefficient: 

= 1 − 
6
∑n 

i=1 Di 
2 

n(n2 − 1) 
(6) 

where y and x are the mean values of the measurements coming from the low cost 
and of the high-quality devices respectively, sy and sx the standard deviations of the 
two vectors, D is the difference between the simultaneous values of the two variables. 

Relative expanded uncertainty: 

For this purpose, the measurements of the examined instrument Yi are linearly related 
to those of the reference instrument Xi according to the following equation: 

Yi = a + bXi (7)
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The orthogonal regression calculating procedure is involved for calculating 
parameters a(slope) and b(intersection): 

b = 
Syy − Sxx  +

/
(Syy − Sxx  )2 + 4(Sxy)2 

2Sxy  
(8) 

where: 

Sxx  = 
N∑

i=1 

(xi − x)2 (9) 

Syy = 
N∑

i=1 

(yi − y)2 (10) 

Sxy  = 
N∑

i=1 

(xi − x)(yi − y) (11) 

α = y − bx (12) 

Here y and x are the mean values of the measurements coming from the low cost 
and of the high-quality devices, respectively. 

The uncertainty of a single value Yi (symbolized as u) can then be evaluated as: 

u(Yi ) =
/

RSS 

n − 2 
− u(xi )

2 + [a + (b − 1)xi ]2 (13) 

where RSS is the sum of relative residuals, and it is calculated as follows: 

RSS = 
N∑

i=1 

(yi − a − bxi )2 (14) 

and u(xi ) is the uncertainty of the reference instrument. Especially for the particulate 
matter case, u(xi ) can be assigned with the constant value u(xi )

2 = 0, 67[μgm−3]2 
in accordance with the indications of European Directive 2008/50/EC. Finally, the 
relative expanded uncertainty is calculated inserting the coverage factor k = 2 [9] as  
follows: 

u(yi )r = 
2 · u(Yi ) 

Yi 
(15)
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