
MicroStream vs. JPA: An Empirical
Investigation

Benedikt Full, Johannes Manner(B) , Sebastian Böhm, and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
ben.fu@t-online.de,

{johannes.manner,sebastian.boehm,guido.wirtz}@uni-bamberg.de

Abstract. MicroStream is a new in-memory data engine for Java appli-
cations. It directly stores the Java object graph in an optimized way,
removing the burden of having to map data from the Java object model
to the relational data model and vice versa, a problem well known as the
impedance mismatch. Its vendor claims that their product outperforms
JPA-based systems realized with Hibernate. They furthermore argue that
it is well-suited for implementing microservices in a cloud-native way
where each service complies with the decentralized data management
principle of microservices.

Our work empirically assessed the performance of MicroStream by
implementing two applications. The first one is a modified version of
MicroStream’s BookStore performance demo application. We used it to
reproduce the data the MicroStream developers used as backing for their
performance claims. The second application is an OLTP system based
on the TPC-C benchmark specification.

MicroStream does not provide any sophisticated features for con-
current data access management. Therefore, we created two distinct
MicroStream-based approaches for our OLTP application. For the first
solution, we used a third-party transaction management system called
JACIS. The second solution relies on structured modelling and Java 1.0
concurrency concepts.

Our results show that MicroStream is indeed up to 427 times faster
when comparing the service execution time on the server with the fastest
JPA transaction. From a user’s perspective, where network overhead,
scheduling etc. impact the overall server response time, MicroStream
is still up to 47% faster than a comparable JPA-based solution. Fur-
thermore, we implemented concurrent data access by using an approach
based on structured modelling to handle lock granularity and deadlocks.

Keywords: Cloud-native applications · Java persistence · In-memory
data engine · JPA · Concurrency control

1 Introduction

In 2019, the Java-native persistence solution MicroStream (MS) was released. It
was integrated with Helidon, a set of open-source libraries for writing cloud-native
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 99–118, 2022.
https://doi.org/10.1007/978-3-031-18304-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_6&domain=pdf
http://orcid.org/0000-0002-7298-3574
http://orcid.org/0000-0002-0438-8482
https://doi.org/10.1007/978-3-031-18304-1_6

100 B. Full et al.

microservices, in late 20211. At its core, MS is a storage engine for managing
and persisting Java object graphs. As it was developed specifically for han-
dling Java objects, persisting data does not involve object-relational mapping
(ORM). This fact is invoked by the framework developers as a major factor
for MS’s superior performance when compared to conventional relational persis-
tence based on the Java Persistence API (JPA) standard. The developers of MS
even claim that their persistence solution is “[...] up to 1000× faster than Hiber-
nate + EHCache.”2 They support this by providing results acquired using their
own, non-standardized performance evaluation solution, the BookStore Perfor-
mance Demo (BSPD) application3. Our overall motivation for this work is to
assess the marketing claim of MS as well as to compare the two persistence
solutions with each other. We are aware that MS (in-memory) and JPA (ORM-
based) solutions are two types of data management frameworks. Nevertheless
both approaches allow a developer to work with their business objects in an
object-oriented way. This is different from other in-memory data management
solutions like Redis, where only key-value pairs can be stored, leading to a frag-
mentation of the domain model into disjunct objects. Furthermore the design
principles of microservices, especially the decentralized data management prin-
ciple, encourage developers to use the best data management solution for the use
case at hand. This aspect fosters our motivation to look at MS as a candidate
for a Java-native persistence solution.

To the best of our knowledge, no other publications have investigated this
persistence solution and its vendor’s claims regarding their product’s perfor-
mance. Therefore, the research questions of this work are:

– RQ1 - Is a MicroStream-based solution up to a thousand times faster than
a comparable JPA-based implementation utilizing Hibernate?

– RQ2 - How can we achieve concurrency control for a mutable data model
with the MicroStream in-memory data engine?

– RQ3 - What are potential usage scenarios where MicroStream-based persis-
tence should be used instead of JPA-based persistence?

Evaluating the performance of any component or system is rather challeng-
ing. There seems to be no general consensus on how performance data must
be measured and interpreted [20]. Vendors sometimes provide custom applica-
tions which are supposed to highlight the strengths of their products, while
at the same time ignoring or downplaying the products’ weaknesses. For per-
formance comparisons between their product and competing systems, vendors
may use their own, non-standardized evaluation design implementations which
raise questions regarding the bias and reliability of the data acquired. Further-
more, the performance of any system depends on the workload and application
scenario [17].

1 https://medium.com/helidon/helidon-2-4-0-released-18370c0ebc5e.
2 https://microstream.one/.
3 https://github.com/microstream-one/bookstore-demo-performance.

https://medium.com/helidon/helidon-2-4-0-released-18370c0ebc5e
https://microstream.one/
https://github.com/microstream-one/bookstore-demo-performance

MicroStream vs. JPA: An Empirical Investigation 101

Benchmarks are tools used for evaluating and comparing the performance of
similar systems. A benchmark should allow its users to measure performance in a
standardized, reproducable, and simplified way [17]. The scope of a benchmark,
and thus the applicability of its results, are usually limited to some specific usage
scenario. Our research focuses on the context of Online Transaction Processing
(OLTP) applications - software systems in which multiple clients can access
resources concurrently.

For our work, we used a modified version of the BSPD application4 to acquire
some baseline performance data. We then implemented the Wholesale Supplier
(WSS) benchmark5, an OLTP benchmark based on the well-established, stan-
dardized TPC-C benchmark6 [15]. This benchmark was then used to evaluate the
performance of two different MS-based implementations in relation to a JPA-
based implementation. Besides gathering and analyzing performance data, we
share our expertise for identifying potential usage patterns and best practices
for working with MS.

The paper is organized as follows. Section 2 describes previous work in the
area of persistence solution evaluation and approaches to deal with concurrency
control. Section 3 provides a more detailed introduction to the BSPD and WSS
applications and how they were used to acquire performance data. This data
is introduced in Sect. 4 and its implications are the foundation to answer our
research questions in the subsequent part, Sect. 5. Besides answering the research
questions, we also discuss potential threats to the validity of our work. Section 6
concludes the paper and provides an overview of possible future work.

2 Related Work

2.1 Performance Evaluation

Evaluating performance in the context of computer systems—and more specif-
ically, persistence solutions—has been of concern to developers, vendors, and
researchers for decades [17].

Benchmarks were developed to provide convenient means for evaluation and
to enable fair comparisons of the performance of different solutions. Standard-
ization efforts began during the 1970s [20], driven by groups and councils from
industry and academia [17]. The Transaction Processing Performance Council
(TPC) was formed in 1988 as a body for defining standards for evaluating the
performance of systems in the context of OLTP applications. One of their most
successful publications is the TPC-C benchmark, a specification-based bench-
mark for evaluating persistence solutions in the context of OLTP applications,
released in 1992 [15].

4 https://github.com/fullben/bookstore-demo-performance.
5 https://github.com/fullben/java-persistence-benchmark.
6 The specification for the TPC-C benchmark can be found at http://www.tpc.org/

tpc documents current versions/current specifications5.asp.

https://github.com/fullben/bookstore-demo-performance
https://github.com/fullben/java-persistence-benchmark
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

102 B. Full et al.

Besides standardized benchmarks published by councils such as the TPC,
various research projects have released or used benchmarks. One of the ear-
liest benchmarks looking into the performance of relational databases are the
so-called Wisconsin benchmarks published in 1983 [2]. The HyperModel bench-
mark from 1990 was used to evaluate object-oriented database management
system (DBMS) in the context of engineering applications [1]. Another impor-
tant benchmark in this context is the OO1 benchmark from 1992, which—like
the previously mentioned HyperModel benchmark—can be used for evaluating
persistence solutions in the context of engineering applications (e.g., CAD and
CASE applications). Its authors—Cattell and Skeen—deemed all existing appli-
cations insufficient for evaluating database systems for this usage scenario and,
therefore, developed their own benchmark [7]. Based on the OO1 benchmark,
Carey, DeWitt, and Naughton developed OO7, another benchmark for evaluat-
ing the performance of object-oriented databases in the context of engineering
applications, released in 1993 [5]. While OO7 was quickly adopted by various
vendors of object-oriented databases, its authors hoped that they would be able
to eventually pass on their benchmark to some standards body [6]. Although this
has not happened to this day, besides vendors, various researchers have used the
benchmark for their own research projects [9,10,16].

Besides performance-focused work, researchers have also published evalua-
tions that primarily rely on the qualitative comparison of the features of the
systems being evaluated [8,14]. Other works use both a benchmark-based per-
formance evaluation and a feature comparison [4,16].

While most of the previously described works deal with the evaluation of
persistence solutions, only a few have been performed in the context of the
Java environment: Jordan used a set of criteria and a custom implementation
of the OO7 benchmark to evaluate Java-based persistence technologies such as
EJBs, JDBC, JOS, and JDOs [16]. Based on this work, Zyl et al. compared the
performance of object-oriented databases and relational databases by using yet
another, custom Java-based implementation of OO7 [24].

2.2 Concurrency Control

In database research, topics like the granularity of locks, transaction manage-
ment, or principles such as ACID have been discussed in the context of con-
current data access management for decades [12]. In JPA-based solutions the
concurrency handling of updating data is delegated to the DBMS. Modern
in-memory databases have similar problems to solve [18]. Handling concur-
rency control in an optimistic way is often discussed based on a multiversion
strategy [19].

Since MS does not expose any meaningful concurrency control features, users
of the persistence solution are forced to rely on external transaction management
systems with an adapter for MS, like the Java ACI Store (JACIS) library7.
Alternatively, developers may take it upon themselves to implement thread-safe

7 https://github.com/JanWiemer/jacis.

https://github.com/JanWiemer/jacis

MicroStream vs. JPA: An Empirical Investigation 103

data access in their applications. For this, they can rely on Java language features
such as locks and concurrent collections [11]. This leads to a system design where
business logic and concurrency control concepts are mixed in the source code.
Best practices and strict design rules are necessary to avoid concurrency errors
which are hard to test and resolve at runtime.

3 Methodology

3.1 BookStore Performance Demo Application

The vendor of MS has published the so-called BookStore Performance Demo
application on GitHub. This application is used to back their claims regarding
the superior performance of MS when compared to JPA-based persistence on
their website, see RQ1.

The application is implemented in Java 8 using SpringBoot and both MS
and JPA for persistence. The JPA-based, relational persistence uses Hibernate
as JPA implementation and a PostgreSQL DBMS for managing the relational
database. The business model of the BSPD application is that of a company
selling books in stores located in multiple countries. It is worth mentioning that
the model structures for the MS-based implementation are largely immutable to
increase thread-safety and ease the burden of manual synchronization.

At BSPD application startup, an initial set of model data is generated for the
MS-based persistence implementation. Once written to storage, this data is then
also written to the JPA-based implementation, thus ensuring that both persis-
tence implementation variants have the same initial set of data. After this setup
has been completed, users can use the Vaadin-based web interface of the appli-
cation to trigger one of seven predefined read-only queries. The selected query
is executed for both, the MS-based and the JPA-based persistence implemen-
tations, and usually repeated multiple times. The execution durations for these
queries are then reported back and visualized in the web interface. The actual
result data of the queries is ignored. And although the queries are designed to
be parameterized, the application selects the actual parameter values to be used
automatically.

We developed an extension of this application8. It makes no significant mod-
ifications to the behavior of the existing application components. For executing
the seven defined queries parameterized, we added a dedicated service layer. This
service layer allows for query execution against both, the MicroStream-based and
the JPA-based data. We made these services available as part of a new API. The
endpoints of the API can be used to trigger the queries with appropriate param-
eters, provided via HTTP request properties. Additionally, we wrote a JMeter
script that can be used to simulate multiple clients interacting with this API
concurrently. The clients use the API in a two-step process:

1. Setup phase: A set of data is acquired from the API in order to define the
value ranges for the parameters of the queries.

8 https://github.com/fullben/bookstore-demo-performance.

https://github.com/fullben/bookstore-demo-performance

104 B. Full et al.

2. Measurement phase: Each client randomly selects one of the seven queries
and randomly chooses valid parameters before calling the appropriate API
endpoint.

With this performance measurement approach, more data can be generated
than with the original implementation. This should potentially reduce the impact
of errors introduced by sources of uncertainty such as the host platform or the
JVM JIT-compiler activity during the initial moments of the application run-
time [3].

3.2 Why Another Custom Benchmark?

As indicated in Sect. 2.1, there is a variety of benchmarks for evaluating persis-
tence solutions. So why did we see the need for implementing our own, custom
benchmark?

Solely relying on the BSPD application would not have been appropriate, as
it is a non-standardized, vendor-provided solution.

Most of the benchmarks described in Sect. 2.1 focus on the area of engineering
applications. As our goal was to use a benchmark relevant for OLTP applications,
using benchmarks developed for evaluating the performance of persistence solu-
tions in the context of CAD or related software was not an option. Besides this
obvious mismatch in focus, OO7 and its predecessors were initially published
during the early 1990s. As the field of computing is vast and evolves quickly,
benchmarks must either evolve to remain relevant or risk becoming outdated
[15].

We, therefore, decided to implement a custom benchmark modelled after the
specification-based TPC-C benchmark. The business model and workloads of
TPC-C defined by the specification are relevant for a typical OLTP use case.
Additionally, the business scenario of the TPC-C benchmark requires a mutable
data model, as opposed to the immutable data model of the BSPD application.
Furthermore, as the benchmark is specification-based, users must create a com-
plete implementation themselves, allowing for a high degree of freedom in regard
to technologies used by the benchmark implementation.

It has to be mentioned that the WSS benchmark is not fully compliant with
the TPC-C benchmark specification. The reasons for this can primarily be found
in our disagreement with certain requirements and structures defined in the
specification. The specification heavily relies on the terminology of the relational
data model. For example, it defines many primary composite keys for the data
model entities. While this approach may have appeared intuitive in 1992, we
were able to convert it to an object-oriented model. This allowed us to drop the
foreign keys since these keys represent other objects which are class members
in our approach. We also modified the overall data model by removing a model
object we deemed unnecessary (NewOrder, used to explicitly indicate that an
order is new and for artificially providing an opportunity for deleting data) and
adding two new objects (Employee and Carrier). These two map entities which
are implicitly part of the TPC-C business model, but not modelled as entities
in the benchmark specification.

MicroStream vs. JPA: An Empirical Investigation 105

3.3 Wholesale Supplier Benchmark

Just like the TPC-C specification, the WSS benchmark models the order-entry
system of a wholesale supplier.

In the business model of our WSS application, the employees of a company
use computer terminals to perform their work tasks, such as adding a new order
of a customer or updating an order’s payment data. These tasks are referred to
as transactions.

Table 1. The business transactions of the WSS benchmark.

Transaction type Read-only Minimum % of mix

WSS1 Order-Status Yes 4

WSS2 Stock-Level Yes 4

WSS3 New-Order No 45

WSS4 Payment No 43

WSS5 Delivery No 4

The terminals are clients of the main application that implements the busi-
ness logic and manages data maintained by some persistence solution. For com-
munication with the terminals, the application exposes a web API, secured with
basic authentication. The API has two distinct sections: The first provides a set
of read-only endpoints for accessing most of the data maintained by the applica-
tion. The second section has endpoints that enable the parameterized execution
of five predefined business transactions which are listed in Table 1, together with
their execution probability. For referring to these transactions in later sections
of the paper, we numbered them with our application prefix (WSS1 to WSS5).
Of these five transactions, two are read-only and three are read-write actions.
The server is implemented in Java 11 using SpringBoot. We implemented the
application by providing two generic core modules, on which actual WSS server
implementations must be based. The first of these two is a component for data
generation which can be used to create the initial population of the database in
a persistence solution independent model representation structure. This compo-
nent relies on the JavaFaker library9 for some of the random data generation.
This data can then be converted to any solution-specific model. In the second
component, we defined the overall architecture of the server. This includes the
API structure, security, data transfer structures, and services.

For the WSS benchmark, we created three actual implementations of the
WSS server:

1. JPA: Uses JPA-based persistence, with Hibernate as JPA implementation.
Spring Data JPA is used for data access. The relational database is managed
by a PostgreSQL DBMS. Concurrent data access is facilitated by employing
the transaction mechanism defined by JPA.

9 https://github.com/DiUS/java-faker.

https://github.com/DiUS/java-faker

106 B. Full et al.

2. MS-JACIS : Relies on MS for data storage and uses the JACIS library for
data access synchronization by means of transactions on transient data. As
JACIS uses Java object cloning for transaction isolation, we were forced to
completely decouple the data model classes of this implementation. In any reg-
ular implementation (e.g. JPA-based implementation) an Order class would
have a field referencing the appropriate Customer object. But in the case of
this implementation, the Order only has a field containing an artificial iden-
tifier for the related Customer object. This approach makes simple object
graph navigation impossible, which has significant performance implications.

3. MS-Sync: Also uses MS for data storage. Concurrent data access is achieved
by using synchronization features provided by the Java environment. Primar-
ily, locks and the synchronized keyword are used with the aid of Fig. 1.

Warehouse

Carrier

District Customer Payment

Order

Item

Product

Employee

Stock

Fig. 1. Simplified Structured Entity Relationship Model of our WSS application.

For the MS-Sync variant, we analyzed the data model by using the Struc-
tured Entity Relationship Model (SERM) notation format [23], as depicted in
Fig. 1. In this diagram, we have independent entity types like the carrier or the
warehouse, which can also be identified by the shape of their boxes. Further-
more, there are entity-relationship types such as the district, which is dependent
on the warehouse and would therefore hold the foreign key of the warehouse in
a relational model. This notation gave us a direction of dependence which was
helpful when determining the ordering of our locks in the concurrent Java imple-
mentation of our application. It is important to note that we used a simplified
version of SERM. The arrows in Fig. 1 do not indicate the cardinality since we
only want to visualize the interdependence of the individual classes of the data
model.

Besides the server, we developed a JMeter script that can be used to simulate
the employee terminals. Just as in the case of the BSPD application framework,
each simulated terminal has two main phases of execution: the setup phase and
the measurement phase.

MicroStream vs. JPA: An Empirical Investigation 107

For each of the actual server implementations, we have also provided a Docker
Compose file which can be used to configure and launch the server and any
necessary auxiliary systems as Docker containers.

3.4 Experimental Setup

For our experiments we used two bare-metal Linux machines with an Ubuntu
20.04 server image. The primary machine (H90) was a Fujitsu Esprimo P757 with
an Intel Core i7-7700 CPU with 4 cores and 210 GFLOPS peak performance.
We used a LINPACK benchmark to assess the peak performance and to verify
the linear scaling behavior of our machines [22]. H90 had 32 GB of RAM and
used a SSD with 256 GB as primary drive. The other machine, referred to as
H50, was a Fujitsu Esprimo P700 with an Intel Core i7-2600 CPU with 4 cores
and approximately 92 GFLOPS peak performance. It had 16 GB of RAM and
a 240 GB SSD as primary drive.

Benchmark Server

Netdata

DB

Netdata

JMeter

MongoDB

H90 H50

Fig. 2. Overview of the experimental setup, consisting of two physical machines. Note
that the DB on H90 was, depending on the actual setup, either a SQL-based DBMS
or the files (database) used by MicroStream to store data.

For monitoring, Netdata10 was installed on both machines. Both Netdata
agents sent their recorded data to the MongoDB instance on H50 once per
second11.

We used version 1.1.1 of the BSPD12 and version 2.1.1 for the WSS applica-
tion13. Both the BSPD and WSS benchmark are similar in their overall structure.
They both have a Java application managing data operations and a JMeter script
simulating clients interacting with this application. Due to this, the setup for
measuring the performance with the two systems was very similar. We used the
10 https://www.netdata.cloud/.
11 Netdata claims that it only consumes 1% CPU utilization of a single core (https://

github.com/netdata/netdata).
12 https://github.com/fullben/bookstore-demo-performance/releases/tag/1.1.1.
13 https://github.com/fullben/java-persistence-benchmark/releases/tag/2.1.1.

https://www.netdata.cloud/
https://github.com/netdata/netdata
https://github.com/netdata/netdata
https://github.com/fullben/bookstore-demo-performance/releases/tag/1.1.1
https://github.com/fullben/java-persistence-benchmark/releases/tag/2.1.1

108 B. Full et al.

medium data generation option for BSPD. For the WSS, we scaled our model by
changing the warehouse count, as defined by the TPC-C specification. Overall,
we generated over 2.5 million objects: 5 warehouses, 50 districts (10 per ware-
house), 50 employees (one per district), 100,000 products, 150,000 customers,
and 150,000 orders. The remaining objects were order items, stock information,
and payments. The impact of these settings on the used memory for the different
applications will be discussed later.

Since we wanted an isolated workbench for the benchmark servers, we only
deployed the benchmark server (BSPD or WSS) and their respective database on
H90. The JMeter instance for executing the appropriate client-simulating script
was installed on H50 and invoked the queries via the previously mentioned server
APIs. This setup is depicted in Fig. 2.

Our measurement methodology focused on two metrics. Firstly, we recorded
the user-perceived server response time via JMeter. Since this User-perceived
Response Time (URT) contains a lot of uncontrollable effects like the physical
transmission time, the middleware layers of our application etc., we also decided
to additionally wrap the method call to the service method within the business
logic layer to measure the Server Processing Time (SPT). This processing time
value only included the actual time the business logic took to process the request.
We used JMeter to save these two metrics and other data to a CSV file. For both
applications, we simulated concurrent users executing the queries.

In the case of the BSPD application, we performed two distinct types of
executions: one targeting the data persisted using MS, and another one aimed
at the data maintained by the JPA-based persistence implementation. Each of
these runs were executed twice to ensure that the data remained consistent. Both
data sets proofed to be very similar, thereby indicating reproducibility of our
results. We therefore used only the data from one of the runs for the evaluation
included in this paper. For the WSS benchmark, we performed three distinct
types of runs, one for each of the three implementations: JPA, MS-JACIS, and
MS-Sync. As with the BSPD runs, we also performed each of these runs twice to
ensure data consistency. After each run, we shut down the containers on the H90
machine and deleted the volumes containing the data written by the persistence
solution of the current application implementation.

4 Results

All collected data and some diagrams visualizing CPU utilization, memory, disk
IO, bubble plots for the different runs and applications as well as the scripts we
used for generating the tables and plots can be found on our raw data page14,
where you can also download all data. For the discussion in this paper, we
only used a subset of this data. CPU utilization, memory, and disk IO were
measured for the machines in total since there are no other applications running
on the machines apart from JMeter on H50 and the benchmark server on H90
as depicted in Fig. 2.
14 https://spboehm.github.io/jpa-microstream-doc/.

https://spboehm.github.io/jpa-microstream-doc/

MicroStream vs. JPA: An Empirical Investigation 109

In the BSPD application, the CPU utilization when using the JPA-based
solution (∼20%) was quite different from that of the MS-based implementation
(∼8%). This additional CPU usage in the case of the JPA-based solution is
most likely caused by the DBMS and ORM overhead. In both cases, approxi-
mately 3,600 MB of RAM were occupied. Our WSS applications had a low CPU
utilization (in all cases <5%), but varying memory demands. The JPA-based
solution consumed the least amount of memory with ∼5,725 MB, whereas the
MS-JACIS implementation consumed ∼11,600 MB of RAM. The MS-Sync solu-
tion used ∼9,500 MB. Comparing this last value to those of the other solutions,
we see that the in-memory data engine requires much more RAM than the rela-
tional database. Furthermore, the memory overhead of decoupled data model in
the JACIS variant becomes evident.

Table 2. BSPD performance data for JPA and Microstream. We used our server
processing time (SPT) metric to measure the execution time.

JPA/MS Median (values in millisecond) Speed-up

[BSPD1] (6931/8380) 68.12/2.84 24.03

[BSPD2] (6935/8383) 3.64/0.91 3.99

[BSPD3] (6934/8382) 7.87/0.93 8.42

[BSPD4] (6936/8385) 2.8/0.12 23.3

[BSPD5] (6931/8376) 38.24/14.59 2.62

[BSPD6] (6929/8376) 305.06/0.72 426.61

[BSPD7] (6933/8381) 3.26/1.11 2.93

Table 2 summarizes the measured query processing times from our BSPD
application. Each line of the table includes abbreviations representing the seven
queries, get book sales (BSPD1), get books by title (BSPD2), get books in price
range (BSPD3), get customer page (BSPD4), get employee of the year (BSPD5),
get purchases of foreigners (BSPD6), and get revenue of a shop (BSPD7). In
parentheses after the transaction identifier, the number of requests made per
solution is depicted (JPA value first, followed by the corresponding MS value).
The execution time of JPA requests is higher than that of MS requests, which
explains the different number of requests as we used a fixed experiment duration.
The last column shows the speed-up of our MS-based solution compared to the
JPA-based solution for the BSPD application. We submitted the requests for
every user in sequence. So one user of our application does only make a single
request at a time. To stress the concurrency aspect, we configured JMeter with
ten concurrent users.

We used R for data evaluation and to generate boxplots to visualize our
measurements. Computing only the arithmetic mean for our transactions was too
coarse-grained and over-represented outliers. Therefore, we decided to include
the median for the BSPD application as shown in Table 2.

110 B. Full et al.
T
a
b
le

3
.
R

aw
d
a
ta

o
f
th

e
b
ox

p
lo

ts
fr

o
m

F
ig

.3
.
T

h
e

tr
a
n
sa

ct
io

n
s

a
re

a
s

fo
ll
ow

s:
W

S
S
1
-G

E
T

o
rd

er
-s

ta
tu

s,
W

S
S
2
-G

E
T

st
o
ck

-l
ev

el
,
W

S
S
3
-

P
O

S
T

n
ew

-o
rd

er
,
W

S
S
4
-P

O
S
T

p
ay

m
en

t
a
n
d

W
S
S
5
-P

U
T

d
el

iv
er

y.
A

ft
er

th
e

tr
a
n
sa

ct
io

n
id

en
ti

fi
er

,
th

e
se

co
n
d

li
n
e

in
th

e
ta

b
le

h
ea

d
er

a
re

th
e

n
u
m

b
er

o
f

tr
a
n
sa

ct
io

n
s

ex
ec

u
te

d
fo

r
J
P
A

,
M

S
-J

A
C

IS
a
n
d

M
S
-S

y
n
ch

d
u
ri

n
g

o
u
r

ei
g
h
t

h
o
u
rs

ex
p
er

im
en

t.
T

h
e

fi
rs

t
li
n
e

o
f

ea
ch

ce
ll

co
n
ta

in
s

th
e

se
rv

er
-s

id
e

p
ro

ce
ss

in
g

ti
m

e
(S

P
T

)
in

m
il
li
se

co
n
d
s

fo
r

th
e

in
d
iv

id
u
a
l
so

lu
ti

o
n
s.

L
in

e
tw

o
re

p
re

se
n
ts

th
e

sl
ow

d
ow

n
(r

ed
)

a
n
d

sp
ee

d
u
p

(g
re

en
)

o
f
M

S
-J

A
C

IS
a
n
d

M
S
-S

y
n
c

co
m

p
a
re

d
to

J
P
A

.
L
in

es
th

re
e

a
n
d

fo
u
r

fo
ll
ow

th
e

sa
m

e
st

ru
ct

u
re

a
s

o
n
e

a
n
d

tw
o

b
u
t

a
re

b
a
se

d
o
n

th
e

re
sp

o
n
se

ti
m

es
m

ea
su

re
d

cl
ie

n
t-

si
d
e

(U
R
T

).

J
P
A
/
M
S
-J
A
C
IS
/
M
S
-S
y
n
c

[W
S
S
1
]

[W
S
S
2
]

[W
S
S
3
]

[W
S
S
4
]

[W
S
S
5
]

(4
7
9
/
4
7
9
/
4
7
9
)

(4
7
8
/
4
7
8
/
4
7
9
)

(5
3
8
8
/
5
3
8
6
/
5
3
9
0
)

(5
1
4
7
/
5
1
4
5
/
5
1
4
8
)

(4
7
9
/
4
7
8
/
4
7
9
)

L
o
w
er

w
h
is
k
er

7
.2
2
/
7
6
.3
/
0
.0
1

3
1
.6
1
/
1
3
4
.6
3
/
1
.7
7

1
3
.7
6
/
2
9
.1
9
/
3
.6
2

8
.1
3
/
5
.4
1
/
3
.3
2

5
2
.0
2
/
1
3
8
.9
3
/
2
0
.1
2

1
0
.5
6
/
5
8
0
.1
9

4
.2
6
/
1
7
.8
6

2
.1
2
/
3
.8

1
.5
/
2
.4
4

2
.6
7
/
2
.5
9

8
1
/
1
4
5
/
6
6

1
0
7
/
2
0
5
/
7
0

8
8
/
9
7
/
7
2

8
3
/
7
4
/
7
3

1
2
6
/
2
0
8
/
8
9

1
.7
9
/
1
.2
3

1
.9
2
/
1
.5
3

1
.1
/
1
.2
2

1
.1
2
/
1
.1
4

1
.6
5
/
1
.4
2

L
o
w
er

q
u
a
rt
il
e

8
.1
5
/
8
5
.0
6
/
0
.0
3

3
5
.5
5
/
1
4
4
.8
4
/
1
.9
6

1
8
.9
6
/
3
3
.7
2
/
4
.5
8

9
.7
4
/
8
.1
7
/
4
.7
6

5
8
.2
6
/
1
4
8
.9
7
/
2
1
.0
9

1
0
.4
4
/
3
0
7
.8
1

4
.0
7
/
1
8
.1
7

1
.7
8
/
4
.1
4

1
.1
9
/
2
.0
5

2
.5
6
/
2
.7
6

8
5
/
1
5
7
/
7
3

1
1
3
/
2
1
8
/
7
6

9
7
/
1
0
6
/
7
8

8
7
/
8
1
/
7
9

1
3
5
/
2
2
1
/
9
5

1
.8
5
/
1
.1
6

1
.9
3
/
1
.4
9

1
.0
9
/
1
.2
4

1
.0
7
/
1
.1

1
.6
4
/
1
.4
2

M
ed

ia
n

8
.6
5
/
8
7
.8
/
0
.0
3

3
6
.7
7
/
1
4
8
.2
5
/
2
.0
3

2
1
.7
2
/
3
5
.1
6
/
4
.9
4

1
0
.4
1
/
9
.9
6
/
5
.2
2

6
0
.4
4
/
1
5
2
.1
2
/
2
1
.5
2

1
0
.1
5
/
2
6
4
.3

4
.0
3
/
1
8
.1
4

1
.6
2
/
4
.3
9

1
.0
5
/
1
.9
9

2
.5
2
/
2
.8
1

8
7
/
1
6
2
/
7
6

1
1
5
/
2
2
3
/
7
8

1
0
0
/
1
0
9
/
8
0

8
9
/
8
4
/
8
1

1
3
8
/
2
2
6
/
9
7

1
.8
6
/
1
.1
4

1
.9
4
/
1
.4
7

1
.0
9
/
1
.2
5

1
.0
6
/
1
.1

1
.6
4
/
1
.4
2

U
p
p
er

q
u
a
rt
il
e

9
.2
7
/
9
1
.0
9
/
2
.6
3

3
8
.1
9
/
1
5
2
.0
5
/
2
.0
9

2
4
.2
5
/
3
6
.7
5
/
5
.2
4

1
1
.0
3
/
1
1
.6
9
/
7
.4
2

6
2
.5
8
/
1
5
5
.6
8
/
2
2
.0
8

9
.8
2
/
3
.5
3

3
.9
8
/
1
8
.2
5

1
.5
2
/
4
.6
3

1
.0
6
/
1
.4
9

2
.4
9
/
2
.8
3

8
8
/
1
6
5
/
7
8

1
1
7
/
2
2
7
/
8
0

1
0
3
/
1
1
2
/
8
2

9
0
/
8
6
/
8
3

1
4
1
/
2
3
0
/
9
9

1
.8
8
/
1
.1
3

1
.9
4
/
1
.4
6

1
.0
9
/
1
.2
6

1
.0
5
/
1
.0
8

1
.6
3
/
1
.4
2

U
p
p
er

w
h
is
k
er

1
0
.6
9
/
9
9
.4
5
/
6
.1
1

4
2
.1
5
/
1
6
2
.3
2
/
2
.2
7

3
2
.1
4
/
4
1
.2
9
/
6
.2
1

1
2
.8
7
/
1
6
.9
2
/
1
1
.3

6
8
.7
2
/
1
6
5
.0
9
/
2
3
.5
5

9
.3
/
1
.7
5

3
.8
5
/
1
8
.5
8

1
.2
8
/
5
.1
8

1
.3
1
/
1
.1
4

2
.4
/
2
.9
2

9
2
/
1
7
6
/
8
5

1
2
3
/
2
3
9
/
8
6

1
1
2
/
1
2
1
/
8
8

9
4
/
9
3
/
8
9

1
5
0
/
2
4
3
/
1
0
4

1
.9
1
/
1
.0
8

1
.9
4
/
1
.4
3

1
.0
8
/
1
.2
7

1
.0
1
/
1
.0
6

1
.6
2
/
1
.4
4

MicroStream vs. JPA: An Empirical Investigation 111

For WSS, we included all boxplot details for the quartiles (25%, median,
75%) and the whiskers (max. 1.5 times the size of the box).

GET order−status GET stock−level POST new−order POST payment PUT delivery

0

50

100

150

D
ur

at
io

n
in

 M
ill

is
ec

on
ds

Persistence
Solutions

JPA MS−JACIS MS−Sync

Fig. 3. Wholesale Supplier performance data of the five transactions depicted as box-
plots for JPA, MS-JACIS and MS-Sync. We used our server processing time (SPT)
metric to measure the execution time.

Figure 3 depicts the results of our WSS application benchmark, while Table 3
shows the raw boxplot data. We see for all transactions that our synchronous
implementation with basic Java concurrency features is the fastest compared to
the JPA and MS-JACIS implementations. Furthermore, MS-JACIS performed
worse for most of the transactions, despite WSS4, leading to a consistent winner’s
podium for most transactions. Another view on the same data is presented in
Fig. 4, where we see the server execution time over time when benchmarking our
WSS application. For a better resolution of the Figure, we decided to exclude
0.2% of the outliers. The execution times for the JPA-based solution decreases
slightly at the beginning when the JIT compiler still optimizes code and stabilizes
after two hours. For the in-memory solution, only a minor increase is visible.

The structure of Table 3 is the same as for Table 2. WSS1 to WSS5 are in the
same order as the headlines of the boxplots in Fig. 3. Each cell consists of four
lines of data. The first line contains the processing time on the server (SPT) for

112 B. Full et al.

Queries WSS − JPA

D
ur

at
io

n
in

 m
s

0
20

40
60

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Queries WSS − MS−JACIS

D
ur

at
io

n
in

 m
s

0
50

10
0

15
0

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Queries WSS − MS−Sync

D
ur

at
io

n
in

 m
s

0
5

10
15

20
25

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Fig. 4. Wholesale Supplier business transactions: Order-Status (blue), Stock-Level
(red), New-Order (orange), Delivery (green), and Payment (brown). (Color figure
online)

JPA, MS-JACIS, and MS-Sync requests. The second line compares MS-JACIS
and MS-Sync to JPA. Green values indicate that the corresponding solution is
faster by a factor of x compared to JPA, whereas red values stipulate that the
solution is slower by a factor of x. The next two lines of each cell show the client-
side measured response times (URT). This user-perceived performance includes
network transfer, scheduling within the application, etc.

5 Discussion

5.1 MicroStream vs. JPA

First, we want to address MS’s claim to be a thousand times faster than a
Hibernate-based solution. Table 2 shows the adapted BSPD results. We can see
that transaction BSPD6 experienced the most significant speedup. Using the
median values, MS is over 400 times faster than the JPA solution. This query
navigates many nested objects which need to be read from the relational database
via complex joins, whereas the MS solution can work on the Java object graph
by using the Java Streams API. For all other queries executed by the BSPD, MS

MicroStream vs. JPA: An Empirical Investigation 113

is faster than the JPA-based solution, but only by factors of tens, not thousands.
This insight can be used to partially address RQ1. In order to provide a complete
answer to the research question, it is important to consider another aspect. In
the preceding parts of the discussion we referred to the processing time on the
server. For a realistic scenario, we argue that the user-perceived performance
must be compared. We did not use the user-perceived response time for a BSPD
comparison since the response time measured by JMeter is only recorded on a
millisecond basis with integer precision. This distorts the comparison with the
server processing time which is sometimes only a small fraction of a millisecond
like in BSPD4. We also looked at the user-perceived performance (UPT), which
on average is a few milliseconds higher than the values measured server-side.
The response handling and scheduling on the server adds about 5 ms per query
(median of all queries).

Therefore, to fully address the first research question, in addition to the
data acquired with the BSPD application, we must also consider the results
gathered with the WSS application which contains a mutable data model. Addi-
tionally, as mentioned in the concurrency control Sect. 2.2, MS does not offer any
sophisticated concurrency control or transaction management facilities. For this
reason, we decided to use a suitable transaction framework with a MS adapter
(implemented in the MS-JACIS variant) as well as a solution based on low-level
synchronization utilizing the Java 1.0 capabilities (implemented in the MS-Sync
variant). Especially for transaction WSS1, we see a situation where MS performs
best, see boxplots in Fig. 3 and detailed data in Table 3, when looking at the first
line of data in each cell which represents the service time on the server (SRT).
This is similar to the BSPD application, where MS is a few hundred times faster
than the JPA-based implementation. On the other side, MS-JACIS performs
worse by a factor of 8–11 compared to JPA, and even worse when comparing
it to MS-Sync. JACIS appears to be currently the only available solution for
using transactions on transient objects in the context of MS-managed data. The
performance data we acquired indicates that JACIS as a third-party transaction
middleware cannot compete with JPA-based solutions. Therefore, we exclude
the JACIS-based solution (MS-JACIS) and corresponding data from all further
analysis.

When looking at user-perceived performance in the third and fourth line in
each cell, the quotient is not greater than 1.47 (median of WSS2) for MS-Sync
compared to JPA. Also, when looking at the millisecond values, it is evident
that the response overhead ranges between 65 and 85 ms and has a dominant
impact on calculating the quotients and the speedup for the user. Nevertheless,
based on our results, we have to conclude that MS is not 1000× faster than a
JPA solution. This gives an answer to RQ1. We found only a few transactions
(BSPD6 and WSS1) where MS is a few hundred times faster when assessing
the service execution time and none where it is faster by a factor of a thousand.
Furthermore, it must be considered that these speedups are not the actual,
user-perceived times. In the case of user-perceived response times, we see an
improvement between 10% (median of WSS4) and 47% (median of WSS2) when

114 B. Full et al.

comparing JPA and MS-Sync. Therefore, MS appears to be capable of outper-
forming JPA-based persistence, albeit not by as much of a margin as claimed by
the vendor of MS.

In a first version of this paper we experienced a linear increase in execution
time for WSS5 - the delivery transaction. The first executions took ∼75 ms and
after 6 h benchmark, the execution time increase linearly to ∼130 ms. At the
beginning the assumption was that the increase is caused by WSS3, the new-
order transaction, where over time the number of orders increased and therefore
the filtering and sorting is more time consuming. Considering the number of ini-
tial orders (150,000) with the newly created orders (3,376), the increase was not
justifiable. A detailed description and figures for this step-by-step investigation
can be found on our GitHub IO Page15. When searching for the cause after look-
ing at database fragmentation, index fragmentation and the LAZY and EAGER
loading capabilities of JPA, we changed the service implementation as well as
the native JPA query. Our assumption was that the many database queries and
the ordering within one query (ORDER BY SQL feature) caused the perfor-
mance problem. Connecting to a remote machines causes IO waits, therefore
we reduced the number of database queries to a minimum and executed the
benchmark again. The collected performance data showed that we fixed this
performance problem. Our process here is noteworthy in a sense that a repro-
ducible benchmark design like in our case depicted in Fig. 2 supports developers
to find performance issues before deploying an application to production.

5.2 Concurrency Best Practices

When using MS, one of the greatest challenges is the issue of concurrency control.
Therefore, in RQ2 we ask the question how can we achieve concurrency control
for a mutable data model[...]? In this Section, we want to address this question
and share best practices we identified when implementing the WSS application.

For an immutable data model like BSPD, the concurrency issue is reduced
to a minimum since immutable data is inherently thread-safe. We assume that
immutable data models are rarely used in OLTP applications. Therefore, devel-
opers must explicitly handle concurrency control in their business code and deal
with thread management in Java. From lecturing a bachelor’s course on con-
currency programming [21]16, we know how challenging it is to implement a
thread-safe solution with low-level constructs like the synchronized keyword. For
the sake of simplicity and extensibility, we suggest centralizing all concurrency
logic in a single class. This gives a developer the chance to read all code which
changes data concurrently in a single or limited number of files. From a porta-
bility investigation [13], we know that the lower the number of locations where
source code has to be read or changed, the less error prone is the implementa-
tion. In the case of WSS this class is called DataConsistencyManager. Another
important aspect is to prevent the application from becoming deadlocked. We

15 https://spboehm.github.io/jpa-microstream-doc/.
16 https://github.com/johannes-manner/ConcurrencyTopics.

https://spboehm.github.io/jpa-microstream-doc/
https://github.com/johannes-manner/ConcurrencyTopics

MicroStream vs. JPA: An Empirical Investigation 115

used the SERM notation to derive the sequence and hierarchy of lock objects
used in our implementation.

Listing 1.1. Lock granularity best practice for MicroStream’s concurrent data access.

// method f o r updating order s t a tu s and customers
pub l i c void de l i v e rO lde s tOrde r s (. . . o ldestOrders , . . .) {

synchron ized (t h i s . storageManger) {
f o r (OrderData order : o lde s tOrder s) {

. . .
synchron ized (customer . ge t Id ()) {

synchron ized (order . ge t Id ()) {
. . .

t h i s . storageManger . s toreRoot () ;
}

}
When implementing read or write operations, we used the locks from the

independent objects towards the dependent objects (Fig. 1) to build nested con-
currency blocks within the code as shown in Listing 1.1. For the granularity
of locks, we used the identifier of our business objects, a UUID string which
is declared as final and does not change its identity. This results in an encap-
sulated concurrency design since the distinct lock object for each Java object
is identical for the whole lifecycle of the object. For operations on collections
where we want to update several objects of a collection atomically, we used an
additional collection lock object like the stockLock we implemented in our WSS
application. This enabled us to handle our collections in a thread-safe manner.
A major limitation is how MS writes data to persistent storage. While a write
operation is ongoing, the managed Java object graph cannot be modified from
other threads. Therefore, we use another lock object (the storageManager) since
we can only have a single write operation at a time.

When implementing a custom synchronization solution, testing is of utmost
importance. Since a verification of the correctness of a parallel program is diffi-
cult, brute force testing is one option to assume thread-safety of an implementa-
tion with a certain level of confidence. For this, developers can use frameworks
such as jcstress17. We implemented a stress test for the most critical concurrent
operation, the updating of the product stock quantity in our WSS application.

5.3 Usage Scenarios

RQ3 is concerned with possible usage scenarios for MS. The vendor of MS
states on their website, that MS is especially suited for “Micro persistence for
microservices & serverless Java functions”18. When having microservice princi-
ples in mind and considering the decentralized data management aspect, their
assessment is comprehensible, but the nature of the data model is important for
designing an MS solution. As already indicated by the MS vendor’s own demo
17 https://github.com/openjdk/jcstress.
18 https://microstream.one/.

https://github.com/openjdk/jcstress
https://microstream.one/

116 B. Full et al.

application (BSPD), good use cases for MS-based persistence may be scenarios
with mostly immutable data models. This eases the concurrency control issues as
well as the single writing thread bottleneck. When using JACIS, we experienced
certain limitations, namely data model decoupling and performance issues. We
therefore think that in its current state, JACIS is not a viable option for resolving
the concurrency control issue in the context of MS-based persistence. Developers
may alternatively use our best practices for implementing a thread-safe solution.
But low-level concurrency programming is difficult to get right [11], which in our
opinion will therefore limit the adoption of MS as a solution for data storage. For
integrating the solution with other databases or systems, the current version of
MS provides support for various storage targets, but these adapters often do not
support the actual data model of those databases. For example, this means that
while MS supports certain relational DBMSs as storage targets, the data stored
in these targets by MS is not written as relational data. Additionally, a generic
CSV export is offered for data migration. We assume to see more adapters and
features with future MS releases, which may also support migration to data
models of other persistence solution. This may in turn prove beneficial for the
adoption of MS as a persistence solution.

5.4 Threats to Validity

During our comparison of MS and JPA, we had to make choices regarding aspects
such as the amount of data used by our benchmark applications, or the execution
duration of our benchmark runs. It must be assumed that these choices had an
impact on the performance of the systems and therefore, our conclusions. The
following listing contains the most important threats to validity from our point
of view:

No Lazy References - MS offers lazy references with a semantic similar to
JPA’s LAZY fetch type for loading data at a later point in time (on demand)
which introduces delays since the data is read from disk. For our WSS demo
application, we decided not to use this feature since we were able to maintain
the entire model data in RAM.

Custom Benchmark Application - We implemented a custom benchmark
application and used the BSPD application for reproducing the speedup factor.
Although the WSS application is self-audited due to tests, unidentified issues
and bugs may still remain. Other applications might face different speedups or
even slowdowns. Therefore, the applicability of the results of this work are most
likely limited to the current capabilities of the data engine within the context of
our modernized implementation of a well-known specification-based benchmark
(TPC-C).

Used Experimental Setup - The machines used for our experiments obviously
had an impact on the performance of our applications. This might have led
to situations where the current experimenter hardware may have favoured one
storage approach over the other (disk-based vs. in-memory). In the case of MS, as

MicroStream vs. JPA: An Empirical Investigation 117

mentioned in Sect. 5.2, only a single thread can write to disk, as MS will otherwise
recognize that parts of the object graph are being modified concurrently and
will throw an exception. During the development phase of our test environment,
when executing concurrency tests, we faced the situation that disk IO was at
maximum capacity when writing the changes, whereas CPU utilization peaked
at around 25%. Therefore, the bottleneck in this scenario might have been the
disk IO capabilities. Furthermore, while assessing RQ1, we were unable to find
the hardware configuration used by MS to run their MS version.

6 Conclusion and Future Work

In this paper, we performed a comparison of MS and JPA. First, we evaluated
the claims of the MS vendor about the performance superiority of their product
over JPA-based solutions. Secondly, we implemented a custom benchmark with a
mutable data model, a typical OLTP use case. For this implementation, we found
that the MS-based solution does indeed exhibit performance superior to that of
a JPA-based approach. When looking at the SPT of the evaluated business
function only, in the best case MS was able to outperform JPA by the factor
of 400. However, looking at URT, we only observed a speedup of no more than
47%. While this is far from the promise made by the MS vendor, the speedup
may still be relevant for latency-critical systems.

For future work, we have three aspects in mind. First, we want to investigate
major factors influencing the response time. An abstract model of these factors
should include aspects such as payload size, its serialization, and overall HTTP
message size. Secondly, we want to compare MS with other in-memory database
engines. Lastly, the machines where the benchmarks are executed directly influ-
ence the results. Therefore, we want to implement a tool to detect bottlenecks
for different hardware configurations based on the benchmarked application. The
insights gained in this process can lead to an abstraction from the hardware used.
This can help to decompose a machine in relevant components like the CPU,
memory, disk, network IO, etc. to build a machine configuration meta model for
benchmarks.

References

1. Anderson, T.L., Berre, A.J., Mallison, M., Porter, H.H., Schneider, B.: The Hyper-
Model benchmark. In: Bancilhon, F., Thanos, C., Tsichritzis, D. (eds.) EDBT 1990.
LNCS, vol. 416, pp. 317–331. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0022180

2. Bitton, D., et al.: Benchmarking database systems - a systematic approach. Tech-
nical report, University of Wisconsin-Madison, Department of Computer Sciences
(1983)

3. Blackburn, S.M., et al.: Wake up and smell the coffee: evaluation methodology for
the 21st century. Commun. ACM 51(8), 83–89 (2008)

4. Boicea, A., et al.: MongoDB vs Oracle - database comparison. In: Proceedings of
EIDWT. IEEE (2012)

https://doi.org/10.1007/BFb0022180
https://doi.org/10.1007/BFb0022180

118 B. Full et al.

5. Carey, M.J., et al.: The OO7 benchmark. ACM SIGMOD Rec. 22(2), 12–21 (1993)
6. Carey, M.J., et al.: A status report on the OO7 OODBMS benchmarking effort.

In: Proceedings of OOPSLA (1994)
7. Cattell, R.G.G., Skeen, J.: Objects operations benchmark. ACM Trans. Database

Syst. 17(1), 1–31 (1992)
8. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: Pro-

ceedings of SoCC (2010)
9. Daynes, L., Czajkowski, G.: High-performance, space-efficient, automated object

locking. In: Proceedings of ICDE (2001)
10. DeWitt, D.J., et al.: Parallelizing OODBMS traversals: a performance evaluation.

VLDB J. Int. J. Very Large Data Bases 5(1), 3–18 (1996)
11. Goetz, B., et al.: Java Concurrency in Practice. Pearson Education (2006)
12. Gray, J.N., et al.: Granularity of locks in a shared data base. In: Proceedings of

VLDB (1975)
13. Hartauer, R., et al.: Cloud function lifecycle considerations for portability in func-

tion as a service. In: Proceedings of CLOSER (2022)
14. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: 2011

International Conference on Cloud and Service Computing (2011)
15. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.

(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10424-4 3

16. Jordan, M.: A comparative study of persistence mechanisms for the JavaTM plat-
form. Technical report, Sun Microsystems Laboratories (2004)

17. Kounev, S., Lange, K.-D., von Kistowski, J.: Systems Benchmarking: For Scientists
and Engineers. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41705-
5

18. Larson, P., Levandoski, J.: Modern main-memory database systems. Proc. VLDB
Endow. 9(13), 1609–1610 (2016)

19. Larson, P., et al.: High-performance concurrency control mechanisms for main-
memory databases. Proc. VLDB Endow. 5(4), 298–309 (2011)

20. Lilja, D.J.: Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, Cambridge (2000)

21. Manner, J., Böhm, S.: Lecture notes: concurrency topics in Java. In: Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, no. 106. Otto-
Friedrich-University (2022)

22. Manner, J., Wirtz, G.: Why many benchmarks might be compromised. In: Pro-
ceedings of SOSE (2021)

23. Sinz, E.J.: Datenmodellierung im Strukturierten-Entity-Relationship-Modell
(SERM). Otto-Friedrich-Universität, Bamberg (1992)

24. van Zyl, P., et al.: Comparing the performance of object databases and ORM tools.
In: Proceedings of SAICSIT (2006)

https://doi.org/10.1007/978-3-642-10424-4_3
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5

	MicroStream vs. JPA: An Empirical Investigation
	1 Introduction
	2 Related Work
	2.1 Performance Evaluation
	2.2 Concurrency Control

	3 Methodology
	3.1 BookStore Performance Demo Application
	3.2 Why Another Custom Benchmark?
	3.3 Wholesale Supplier Benchmark
	3.4 Experimental Setup

	4 Results
	5 Discussion
	5.1 MicroStream vs. JPA
	5.2 Concurrency Best Practices
	5.3 Usage Scenarios
	5.4 Threats to Validity

	6 Conclusion and Future Work
	References

