
Johanna Barzen
Frank Leymann
Schahram Dustdar (Eds.)

16th Symposium and Summer School, SummerSOC 2022
Hersonissos, Crete, Greece, July 3–9, 2022
Revised Selected Papers

Service-Oriented
Computing

Communications in Computer and Information Science 1603

Communications
in Computer and Information Science 1603

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Johanna Barzen · Frank Leymann ·
Schahram Dustdar (Eds.)

Service-Oriented
Computing
16th Symposium and Summer School, SummerSOC 2022
Hersonissos, Crete, Greece, July 3–9, 2022
Revised Selected Papers

Editors
Johanna Barzen
University of Stuttgart
Stuttgart, Germany

Schahram Dustdar
TU Wien
Vienna, Austria

Frank Leymann
University of Stuttgart
Stuttgart, Germany

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-18303-4 ISBN 978-3-031-18304-1 (eBook)
https://doi.org/10.1007/978-3-031-18304-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8397-7973
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-9123-259X
https://doi.org/10.1007/978-3-031-18304-1

Preface

The 16th Symposium and Summer School on Service-Oriented Computing (Summer-
SOC 2022) continued a successful series of summer schools that started in 2007. Sum-
merSOC regularly attracts world-class experts in service-oriented computing (SOC)
to present state-of-the-art research during a week-long program organized in sev-
eral thematic tracks: IoT, formal methods for SOC, cloud computing, data science,
advanced manufacturing, software architecture, digital humanities, quantum comput-
ing, and emerging topics. The advanced summer school is regularly attended by top
researchers from academia and industry as well as by PhD and graduate students.

During theSummerSOCsymposiumoriginal research contributions in the areasmen-
tioned above were presented. All accepted contributions were submitted in advance and
were peer-reviewed in a single-blind review process. All papers received three reviews.
Based on the reviews the program chairs accepted or rejected contributions. Out of
25 submitted contributions, only nine were accepted with an acceptance rate of less
than 40%. The contributions were extensively discussed after their presentation dur-
ing the paper session. In addition to the reviewer’s comments, the feedback from these
discussions was folded into the final version published in this special issue.

The volume is structured into three parts focusing on (i) advanced application archi-
tecture, (ii) data science and applications, and (iii) quantum computing. The first article
in the section on advanced application architecture introduces a new plugin architec-
ture combining microservices and micro frontends, which is followed by an article on
enhancing IoT platforms for autonomous device discovery and selection; this second
contribution received the SummerSOC Young Researcher Award sponsored by ICSOC.
The next article provides answers to the question of serverless or serverful architectures
based on a pattern-based approach for exploring hosting alternatives. The final article of
the first part focuses on approaching immediate feedback for security relevant code in
development environments. The section on data science and applications contains four
contributions which propose a detection approach and its evaluation on unsupervised
labor intelligence systems, provide an empirical investigation on MicroStream vs. JPA,
enlighten the role of the data provider in the enterprise data marketplace supporting
the process from data asset to data product, and offer data-aware service placement in
the Cloud-IoT continuum. The final section on quantum computing provides an article
focusing on optimizing the prioritization of compiled quantum circuits based onmachine
learning approaches.

August 2022 Johanna Barzen
Schahram Dustdar

Frank Leymann

Organization

General Chairs

Schahram Dustdar Technische Universität Wien, Austria
Frank Leymann Universität Stuttgart, Germany

Organization Committee

Johanna Barzen Universität Stuttgart, Germany
George Koutras OpenIT, Greece
Themis Kutsuras OpenIT, Greece

Steering Committee

Marco Aiello Universität Stuttgart, Germany
Schahram Dustdar Technische Universität Wien, Austria
Christoph Gröger Bosch, Germany
Frank Hentschel Universität zu Köln, Germany
Willem-Jan van Heuvel Eindhoven University of Technology,

The Netherlands
Rania Khalaf Inari, USA
Frank Leymann Universität Stuttgart, Germany
Andreas Liebing StoneOne AG, Germany
Kostas Magoutis University of Crete, Greece
Bernhard Mitschang Universität Stuttgart, Germany
Dimitris Plexousakis University of Crete, Greece
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Norbert Ritter Universität Hamburg, Germany
Jakka Sairamesh CapsicoHealth Inc., USA
Sanjiva Weerawarana WSO2, Sri Lanka
Guido Wirtz Universität Bamberg, Germany
Alfred Zimmermann Hochschule Reutlingen, Germany

Program Committee

Marco Aiello Universität Stuttgart, Germany
Johanna Barzen Universität Stuttgart, Germany
Steffen Becker Universität Stuttgart, Germany

viii Organization

Wolfgang Blochinger Hochschule Reutlingen, Germany
Uwe Breitenbücher Universität Stuttgart, Germany
Antonio Brogi Università di Pisa, Italy
Guiliano Casale Imperial College London, UK
Christian Decker Hochschule Reutlingen, Germany
Stefan Dessloch TU Kaiserslautern, Germany
Schahram Dustdar TU Wien, Austria
Sebastian Feld TU Delft, The Netherlands
Frank Hentschel Universität zu Köln, Germany
Melanie Herschel Universität Stuttgart, Germany
Willem-Jan van Heuvel Eindhoven University of Technology,

The Netherlands
Eva Kühn TU Wien, Austria
Ralf Küsters Universität Stuttgart, Germany
Winfried Lamersdorf Universität Hamburg, Germany
Frank Leymann Universität Stuttgart, Germany
Claudia Linnhoff-Popien Ludwig-Maximilians-Universität München,

Germany
Kostas Magoutis University of Crete, Greece
Bernhard Mitschang Universität Stuttgart, Germany
Eric Newcomer WSO2, Sri Lanka
Daniela Nicklas Universität Bamberg, Germany
Maria Papadopouli University of Crete, Greece
Adrian Paschke Freie Universität Berlin, Germany
Cesare Pautasso University of Lugano, Switzerland
Srinath Perera WSO2, Sri Lanka
René Reiners Fraunhofer FIT, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Norbert Ritter Universität Hamburg, Germany
Jakka Sairamesh CapsicoHealth Inc., USA
Ulf Schreier Hochschule Furtwangen, Germany
Heiko Schuldt Universität Basel, Switzerland
Stefan Schulte TU Wien, Austria
Holger Schwarz Universität Stuttgart, Germany
Craig Sheridan University of Edinburgh, UK
Stefan Tai TU Berlin, Germany
Damian Tamburri Eindhoven University of Technology,

The Netherlands
Massimo Villari Università degli Studi di Messina, Italy
Stefan Wagner Universität Stuttgart, Germany
Sanjiva Weerawarana WSO2, Sri Lanka
Manuel Wimmer Johannes Kepler University Linz, Austria

Organization ix

Guido Wirtz Universität Bamberg, Germany
Uwe Zdun Universität Wien, Austria
Alfred Zimmermann Hochschule Reutlingen, Germany
Olaf Zimmermann Hochschule für Technik Rapperswil, Switzerland

Additional Reviewers

Benjamin Weder
Felix Truger

Contents

Advanced Application Architecture

Combining the Best of Two Worlds: Microservices and Micro Frontends
as Basis for a New Plugin Architecture . 3
Fabian Bühler, Johanna Barzen, Lukas Harzenetter, Frank Leymann,
and Philipp Wundrack

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 24
Jan Schneider and Pascal Hirmer

Serverless or Serverful? A Pattern-Based Approach for Exploring Hosting
Alternatives . 45
Vladimir Yussupov, Uwe Breitenbücher, Antonio Brogi,
Lukas Harzenetter, Frank Leymann, and Jacopo Soldani

Towards Immediate Feedback for Security Relevant Code in Development
Environments . 68
Markus Haug, Ana Cristina Franco da Silva, and Stefan Wagner

Data Science and Applications

Unsupervised Labor Intelligence Systems: A Detection Approach and Its
Evaluation: A Case Study in the Netherlands . 79
Giuseppe Cascavilla, Gemma Catolino, Fabio Palomba,
Andreas S. Andreou, Damian A. Tamburri,
and Willem-Jan Van Den Heuvel

MicroStream vs. JPA: An Empirical Investigation . 99
Benedikt Full, Johannes Manner, Sebastian Böhm, and Guido Wirtz

From Data Asset to Data Product – The Role of the Data Provider
in the Enterprise Data Marketplace . 119
Rebecca Eichler, Christoph Gröger, Eva Hoos, Holger Schwarz,
and Bernhard Mitschang

Data-Aware Service Placement in the Cloud-IoT Continuum 139
Jacopo Massa, Stefano Forti, and Antonio Brogi

xii Contents

Quantum Computing

Optimizing the Prioritization of Compiled Quantum Circuits by Machine
Learning Approaches . 161
Marie Salm, Johanna Barzen, Frank Leymann, and Philipp Wundrack

Author Index . 183

Advanced Application Architecture

Combining the Best of Two Worlds:
Microservices and Micro Frontends

as Basis for a New Plugin Architecture

Fabian Bühler(B) , Johanna Barzen , Lukas Harzenetter ,
Frank Leymann , and Philipp Wundrack

University of Stuttgart, Institute of Architecture of Application Systems,
Universitätsstraße 38, 70569 Stuttgart, Germany

{fabian.buehler,johanna.barzen,lukas.harzenetter,frank.leymann,
philipp.wundrack}@iaas.uni-stuttgart.de

Abstract. Plugins can be used to extend applications with new func-
tionality without requiring expensive code changes for the application.
To enable users to interact with the new functionality, plugins must be
able to contribute new elements to the user interface of the applica-
tion. However, as plugins are built for specific applications, they are not
reusable in other applications. Microservices on the other hand are built
with reusability in mind: Applications can invoke microservices to utilize
their functionality. However, a developer has to write code and create the
corresponding UI for the application to interact with the microservice. To
address the shortcomings of both plugins and microservices, we propose a
reference architecture that blends concepts of plugins and microservices
to allow microservices to provide code and user interfaces to existing
applications. Our reference architecture allows the creation of microser-
vices that can be used as plugins and as usual microservices at the same
time. To demonstrate the practical feasibility, we also present a proto-
typical implementation of the architecture and evaluate the approach for
a specific use-case.

Keywords: Micro frontend · Microservice · Plugin architecture ·
Software reuse · Quantum computing · Digital humanities

1 Introduction

Plugins are a way to extend an application dynamically by plugging in new
components that provide additional features [25]. To enable users to interact with
the new feature, plugins can extend the user interface (UI) of an application [7].
Thereby, plugins must conform to the application’s plugin contract which defines,
e.g., the invocation of plugins [25]. Therefore, plugins are purpose-built for the
application. While this is a strength of plugins, it becomes a weakness when
it comes to reusability. Plugins are tightly bound to the application they are
developed for and, thus, cannot be used in other contexts or applications.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 3–23, 2022.
https://doi.org/10.1007/978-3-031-18304-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_1&domain=pdf
http://orcid.org/0000-0003-2834-4342
http://orcid.org/0000-0001-8397-7973
http://orcid.org/0000-0003-1011-4362
http://orcid.org/0000-0002-9123-259X
http://orcid.org/0000-0001-7606-6936
https://doi.org/10.1007/978-3-031-18304-1_1

4 F. Bühler et al.

Microservices on the other hand facilitate their reuse by providing their func-
tionality through an application programming interface (API). Their APIs can
be invoked via common standard access mechanisms like HTTP, which makes it
easy to use the API [22]. A single microservice may be used by multiple appli-
cations at the same time [11]. However, for an application to use a microservice
with an unknown API, a developer first has to extend the application manually
for it to interact with the new API. If the new functionality should be exposed
to a user through the UI, then the developer also has to extend the UI of the
application. Applications can be extended to use new microservices, but it needs
a developer to adapt the application code to do so. In contrast to microservices,
plugins can be used automatically and without developer intervention, but they
are not as reusable [26].

Reusing existing software is an effective means to reduce costs for develop-
ment and maintenance [19]. However, integrating a reusable software component
into the existing software also requires development and maintenance effort.
With plugins, this development effort is only required for implementing and
maintaining the plugin interface that can be reused by multiple plugins. Plugins
that can be used in multiple applications in parallel would benefit from both,
the reuse of the plugins itself and the reuse of the plugin interface. Therefore,
the research question we are tackling in this paper is:

RQ How can microservice-based applications be enriched at runtime with
additional functionalities that are bundled with their own user interfaces
and can be reused in different applications in parallel?

To solve this, we introduce the concept of Reusable Microservice-based Plu-
gins (RAMPs) that allows microservices to be used as plugins by compatible
applications. Additionally, we present a reference architecture that is capable of
dynamically integrating and using RAMPs. The architecture adapts plugin tech-
niques for their use with microservices. Microservices built for this architecture
can still be used as normal microservices by other applications. However, the
enhanced microservices can also extend compatible applications automatically
to provide new functionality. They can contribute UI elements to enable users
of these applications to interact with the new functionality. The UI elements are
provided as micro frontends [34] that can be styled by the application to blend
in with the rest of the application’s UI. This allows the microservice plugins to
be used in different applications without compromising their visual appearance.

The remainder of this paper is structured as follows: Sect. 2 contains a short
explanation of the necessary background and terms of plugins, microservices and
micro frontends as well as our motivating scenario. The reference architecture is
introduced in detail in Sect. 3. Our prototypical implementation of the reference
architecture for our use-case is discussed in Sect. 4, which is followed by a brief
discussion of the reference architecture in general in Sect. 5, followed by related
work in Sect. 6 and a conclusion in Sect. 7.

Combining Microservices and Micro Frontends 5

2 Fundamentals and Motivating Scenario

This section describes the fundamentals about plugins, microservices, micro fron-
tends. Additionally, our motivating scenario and use-case QHAna [5] is described.
QHAna is used as a motivating scenario, use case for the reference architecture,
and as a prototypical implementation of the architecture.

2.1 Plugins

Plugins are a well-established concept in the software engineering domain. Pat-
terns for plugins document their existence since at least 1999 [25,26]. Plugins are
used to allow a software to load new functionality on demand. This enables the
development of new features independent of the main application, which reduces
the complexity of the application itself.

To allow plugins to extend an application, it must define an interface for
plugins, also referred to as plugin contract [25]. Plugins that provide new func-
tionality for an application must comply with its plugin contract. Otherwise,
they cannot be recognized and used by the application. In general, applications
are unaware of existing plugins at build time. An application is only depending
on the plugin contract instead of depending on the plugins. In fact, plugins can
be developed after the application is completed.

In the plugin architecture described by Marquardt [25], an application can use
multiple plugins but the architecture does not allow for dependencies between
plugins. Newer plugin-based applications are built completely from plugins [14].
These plugins can depend on other plugins that must be loaded in advance.
Birsan [7] calls this type of application a pure plugin system. In contrast, plug-
ins as described by Marquardt [25] extend a host application that can function
without plugins and cannot have dependencies to other plugins. However, both
plugin systems require a component that can find and load the required plugins.
Since many plugin systems are based on loading new code into the current pro-
cess, the plugin discovery mechanisms often rely on the local file system [14,46].
In object-oriented languages, plugins typically implement the plugin interface
provided by the application [46].

2.2 Microservices and SOA

Microservices [11,29] are applications only providing a single business capabil-
ity, e.g., to get the current stock list of a warehouse [29]. An application that
uses a microservice architecture is composed of multiple microservices working
together [11]. The microservices are loosely coupled and provide lightweight com-
munication mechanisms like an HTTP API to interact with each other [29]. A
microservice is usually an independent unit to facilitate individual deployment
which enables the microservices to have their own development and deployment
lifecycle [8]. Microservices are often used to break up big monoliths into smaller
and more maintainable components to reduce complexity, avoid “dependency
hell” [27], improve scalability, etc. [11].

6 F. Bühler et al.

Service oriented architecture (SOA) is an architectural style and a way to
use and organize distributed capabilities over the network [20]. These capabil-
ities are available as services that can be used to solve business problems. To
enable interoperability, the communication between components uses standard-
ized protocols. One implementation of SOA is Web Services [20].

2.3 Micro Frontends

Frontend development for the web often faces the problem of a monolithic code
base for the user interface [34]. The tight coupling of frontend components within
a frontend-monolith and the overall complexity of a large application has a neg-
ative impact on the development process: small changes in single components
require a full redeployment of the whole application, which can take a signif-
icant amount of time depending on the complexity of the application. Micro
frontends apply the idea of small, single-purpose and individually deployable
components to frontend development [33]. Thus, the benefits they offer are simi-
lar to microservices. The limited complexity of the micro frontends together with
an independent development and release cycle of the independently developed
components are benefits driving the adoption of micro frontends [34]. However,
a consistent user experience over all micro frontends is one of the challenges of
using micro frontends [34].

Micro frontends can be implemented in different ways: It can be differentiated
between server-side and client-side integration [36]. With the server-side integra-
tion approach, micro frontends can be integrated during the building process of
the application, which reintroduces tight coupling between the micro frontends,
or using server-side template composition, where micro frontends are composed
into a single user interface by the server [17].

For client-side integration three methods can be differentiated [45]: The first
method, route distribution, assigns each micro frontend its own URL. Since
the micro frontend controls the whole page, other micro frontends can only
be accessed through a full page transition, e.g., by clicking a link. While being
straight-forward, this approach is very limited, as it only allows one micro fron-
tend to be displayed at the same time.

The second method for client-side integration is using client-side code to load
and embed the micro frontend. This method is the most powerful one as the
micro frontends can execute arbitrary code in the application context. Sharing
the same execution context allows for shared dependencies and straight-forward
communication mechanisms. Web Components [47] are a special form of using
code to embed the micro frontend. Web Components are a set of standard-
ized APIs that can be used to create building blocks for Web UIs [38]. If there
are security concerns, e.g., when the micro frontend comes from a potentially
untrusted source, then this method of micro frontend integration should not be
used, as it allows arbitrary code execution in the context of the application.

The third method for client-side integration uses iframes to embed a micro
frontend into a page. This method is unique to HTML and allows embedding
full webpages that are displayed in the bounds of the iframe element. Iframes

Combining Microservices and Micro Frontends 7

can isolate their content and code from the embedding page. This “sandbox”
property of iframes enables embedding untrusted sources within a secure sandbox
environment. However, the iframe embedding approach also has disadvantages
in certain contexts, as they limit the communication between the embedded
content and the host application. Nesting iframes can further complicate this
situation, as the communication of the nested iframe has to be passed through
all iframe layers to reach the application.

Micro frontends are similar to portlets that predate the term micro frontend.
Portlets are user interface components that are composed by a portal server into
an application UI. There are two standards for building and interacting with
portlets, the Java specific JSR 362 [30] and the language agnostic WSRP [1] for
remote portlets. Portlets and the portal servers composing them are server-side
technologies, i.e., the application logic of a portlet is implemented in the portlet
server and the portlet UI is sent to the portal server as static markup [10].
Communication between portlets is coordinated by the portal server and events
that lead to state changes of a portlet, e.g., new user inputs, can require the
whole page to be rebuilt [1,2]. This is in contrast to micro frontends where the
UI specific application logic can be implemented in the micro frontend itself
which is executed by the client. Communication between micro frontends can
happen in the client without involving a server. Interactions with micro frontends
can be implemented without requiring page reloads as the micro frontends can
asynchronously request and display the new state.

2.4 Motivating Scenario: QHAna

The Quantum Humanities Analysis tool (QHAna) [5] is an application developed
in the domain of the Digital Humanities (DH). It enables its users to experiment
with different machine learning algorithms to examine a specified dataset [6].
With the availability of quantum computers in the cloud, it became viable to
evaluate the possible advantages of quantum algorithms for the DH commu-
nity [5]. Because of their unique computation model, quantum algorithms may
outperform classical algorithms in speed [40] or accuracy [15]. As the current
quantum computers are new, evaluating these algorithms is needed to deter-
mine relevant use-cases and to compare classical and quantum algorithms. Hence,
QHAna can be used to experiment with quantum machine learning algorithms
and compare them to classical ones on a given dataset. The current version con-
sists of a user interface that allows users to define all parameters relevant for
the current experiment. The prototype is built specifically for one dataset and it
is not feasible to extend it to work with different datasets and new algorithms.
Hence, an extensible plugin architecture that allows the integration of new data
sources and quantum algorithms as plugins is needed. However, in this scenario
reusing the algorithms in other applications is not possible, as the plugins need
to be built specifically for QHAna.

8 F. Bühler et al.

2.5 Problem Statement

Creating and maintaining software often requires huge implementation costs.
Such costs can be offset by reusing existing software where possible [19]. This
is especially true for quantum algorithms as they require completely different
skills than required for classical programming [16]. However, even if the desired
functionality is already implemented in a reusable piece of software, e.g., as a
microservice, there is often the need to create a small adapter, e.g., an API
client, to use the packaged functionality through the provided interface.

Plugins can be automatically integrated into applications without the need
for such an adapter. This enables also users without software development skills
to customize applications using plugins. However, plugins are developed for spe-
cific applications and cannot be reused in other applications. Thus, choosing a
plugin architecture allows automated integration of new features at the cost of
limiting reusability.

Moreover, plugins for one application must all be implemented in the same
programming language mandated by the plugin contract of that application. This
means that reusable software artifacts implemented in a different programming
language cannot be used in a plugin, which further limits the possibility for code
reuse. For QHAna, for example, we would need a separate plugin system for all
quantum programming languages we want to support, e.g., Q#1, OpenQASM2,
QUIL3 or Silq4 to name just a few [44]. Conflicting plugin dependencies, e.g.,
with two plugins depending on incompatible versions of a library, will produce
errors without careful handling of plugin dependencies. Plugin systems that can
work with different programming languages and conflicting plugin dependencies
are hard to develop and maintain.

Even if the plugin itself can be reused in different applications, we need
to consider its graphical user interface as well. Different applications can have
vastly different UI styles. The plugin UIs have to adapt their look to blend in with
the application UI. Otherwise, users may fail to recognize important interactive
elements in the user interface.

As outlined above, plugins that can be reused in multiple applications can
reduce development costs. To achieve this, we need a solution that allows building
plugins in a way that makes them reusable. Therefore, the current challenges are:

– Defining a plugin system that facilitates the reuse of plugins.
– Creating a plugin system that allows plugins to use different programming

languages and otherwise conflicting dependencies.
– Enable UIs to be reusable with adaptable styles.

1 https://docs.microsoft.com/azure/quantum/overview-what-is-qsharp-and-qdk.
2 https://qiskit.github.io/openqasm.
3 https://github.com/quil-lang/quil.
4 https://silq.ethz.ch.

https://docs.microsoft.com/azure/quantum/overview-what-is-qsharp-and-qdk
https://qiskit.github.io/openqasm
https://github.com/quil-lang/quil
https://silq.ethz.ch

Combining Microservices and Micro Frontends 9

Fig. 1. An overview of the RAMP-architecture.

3 A Reference Architecture for Reusable
Microservice-Based Plugins

This section presents the reference architecture that allows microservices with an
integrated UI to be used as reusable plugins by multiple applications in parallel.
The section starts with a general description of the architecture followed by more
detailed descriptions of its components.

3.1 Overview

To solve the problems identified in Sect. 2.5, we propose the concept of Reusable
Microservice-based Plugins (RAMPs). Therefore, we present a reference archi-
tecture, the RAMP-architecture, to build applications that can use RAMPs.
The RAMP-architecture, as shown in Fig. 1, consists of three main components:
different RAMPs, the RAMP Registry and the applications using the RAMPs.
The centrepiece of the reference architecture is the RAMP contract. It ensures
that all components can work together. The RAMP contract defines the com-
mon interface between applications and the RAMPs, it is a plugin contract for
RAMPs. RAMPs implement the API defined in the plugin contract. If the con-
tract is flexible enough, the whole application can be built only from RAMPs,
similar to the pure plugin systems mentioned by Birsan [7]. The contract can
also be used to restrict the extension points for RAMPs. Both kinds of plu-
gin contracts are supported by the RAMP-architecture. Additionally, the plugin

10 F. Bühler et al.

contract describes everything required to discover RAMPs. This includes meta-
data, also called RAMP metadata in the following, provided by the RAMPs and
used by the RAMP Registry and the applications, e.g., to discover RAMPs. How-
ever, after the RAMP discovery, applications directly interact with the RAMPs.
Applications load and integrate the micro frontends provided by RAMPs into
their own UI. For example, the application shown in Fig. 1 has loaded the micro
frontends of the Data Filtering RAMP and the CSV Displaying RAMP. These
micro frontends use the service API of their RAMP to provide the functionality
to the application. For application specific functions applications may use their
own backend. The following sections describe the architecture in greater detail.

The RAMP Contract. The RAMP contract, which has the same purpose as a
plugin contract, can be specified as part of an existing documentation or stand-
alone. Where applicable, more formal specification formats, e.g., schema lan-
guages like JSON schema or API specification languages such as AsyncAPI [28],
should be used. This can prevent misunderstandings as the semantics are then
defined by the schema or API specification language.

The RAMP contract defines three aspects of the RAMPs: (i) the RAMP dis-
covery mechanism, (ii) how an application can load RAMPs, and (iii) the interface
between the application UI and the RAMP UI once the RAMP is loaded. First,
an application has to be aware of the available RAMPs through a discovery mech-
anism defined by the RAMP contract. This discovery mechanism is backed by the
RAMP Registry that the application can use to find RAMPs. The application can
use the metadata provided by the RAMPs to select which RAMP to load. What
information the RAMP metadata contains is defined in the plugin contract. It
must contain a description of the functionality provided by the RAMPs that can
be displayed to a user who can decide whether to use that RAMP for a given task.
Additional metadata can be used to automatically filter the list of RAMPs shown
to the user, to only include the applicable RAMPs based on the current applica-
tion state. For example, RAMPs can declare in their metadata what types of data
they can operate on, e.g., JSON or CSV, and the application uses this data to
only show JSON RAMPs for JSON data. Other relevant metadata can be pric-
ing information or legal information, e.g., what is the cost per use, where is the
RAMP’s location, or who operates the RAMP. The RAMP Registry can cache
this metadata for the applications and should provide a query mechanism that
allows applications to search for RAMPs with specific metadata.

The RAMP metadata must contain the location of the micro frontend that
provides the UI of the RAMP. Applications need this information to load and
integrate the micro frontends into their UI. If the RAMP UI has dependencies,
these must be declared in the metadata and used by the application to resolve
and load the dependencies. Dependency resolution is done during the RAMP
loading process of the application.

How the RAMP UI is loaded by an application is part of the plugin lifecycle
that is defined by the plugin contract. However, because RAMPs are microser-
vices that are already running, there is no need for lifecycle phases related to the

Combining Microservices and Micro Frontends 11

installation of plugins. Hence, applications only need to discover the RAMPs and
load their micro frontends as specified in the plugin contract. For RAMPs that
have dependencies to other RAMPs, a dependency resolution step is required
either before or after the RAMP UI is loaded and integrated into the applica-
tion UI. The dependency resolution can be done after the RAMP UI is loaded, if
the dependencies can be bound late. This can be the case for optional dependen-
cies that provide additional functions for a RAMP UI that can be added even
after the UI is loaded, e.g., as entries in a menu of the RAMP UI. Microservice
dependencies, i.e., dependencies to other microservices, must be resolved without
involving an application, e.g., by using a service registry, because RAMPs are
isolated services that are running out of the scope of a specific application. How-
ever, a RAMP may expose its microservice dependencies as choices to a user
allowing the user to decide which dependency to use. For example, a RAMP
for creating navigating instructions can allow the user to select from different
microservices to calculate the route.

When a RAMP micro frontend is loaded, the communication with the appli-
cation uses an API defined in the plugin contract. At this point, the loaded
micro frontend is executed or interpreted by the application. As the RAMPs
can provide custom UIs to the application, the plugin contract must specify an
interface that can be used by the applications to style these UIs to blend in
with their UI. This styling interface allows different applications with their own
design systems to use the same RAMPs and adapt their UI styling to fit visually
into their design system. Additionally, the RAMP contract can specify when and
how the micro frontend of a RAMP can be unloaded.

RAMPs. Microservices already provide a reusable API that plugins can be
created from. Therefore, our implementation of reusable plugins is based on
microservices. A Reusable Microservice-based Plugin (RAMP) is a microservice
bundled with a micro frontend and a predefined metadata API that provides
metadata about the RAMP. The micro frontend is the graphical user interface
of the RAMP that can be used to interact with the service. To enable the use of
existing microservices as a RAMP, an Adapter RAMP which provides the micro
frontend and plugin metadata can be used as shown in Fig. 1. This allows inte-
grating microservices controlled by a third party into the RAMP-architecture.
The adapter RAMP uses the existing microservice by forwarding calls to its API.

RAMP metadata provided by the metadata API is used by applications and
their users to decide if the RAMP UI should be loaded and to find the location of
the micro frontend. This metadata can, for example, contain a description of the
RAMP functions that can be displayed to a user who can then decide whether
to use the RAMP. The RAMP contract defines what is part of the metadata.

Dependencies of RAMPs must also be declared in the metadata. The RAMP
as a microservice can depend on other microservices. These dependencies need
to be resolved by a different method than the dependency resolution used for
RAMP UI dependencies. This is because the RAMP can be used as a microser-
vice even without the other components of the RAMP architecture in place to

12 F. Bühler et al.

support it. The micro frontend is usually not aware of these dependencies, how-
ever, it can also have dependencies to other micro frontends. While the microser-
vice dependencies are managed by the service maintainers, the micro frontend
dependencies must be resolved by the application by using the RAMP Registry.

A RAMP UI can expose the microservice dependencies of a RAMP to the
user. For example, if there are multiple alternative microservices that can be
used internally by the RAMP to provide the required functionality, the micro
frontend can ask the user to select the specific microservice from the list of
available microservices. A user could, for example, decide between a cheaper
or a more accurate service based on the requirements of the current task. The
RAMP UI can utilize the micro frontends of other RAMPs that are used as
microservice dependencies, to provide the user with additional controls or fea-
tures. For example, given a plugin service that manages a data transformation
pipeline and depends on a number of transformation services that provide the
actual data transformations, the RAMP UI of the pipeline service can utilize the
RAMP UIs of the transformation services to allow the user to specify the data
transformation parameters.

There are two possibilities for a RAMP UI to use another RAMP UI. The
first method is for one RAMP UI to directly use the objects and functions defined
by the other micro frontend. This only works if both RAMPs are in the same
execution context to share code with another. The second method is for one
RAMP UI to act as an application loading the other RAMP as defined by the
plugin contract. This method can be used even if the RAMP UIs are sandboxed
and, thus, cannot share their code. For this method the RAMP UI also needs
access to the RAMP Registry to resolve its own dependency. The styling interface
for micro frontends must also take this into account, to allow the styles to be
passed through to nested RAMP UIs.

RAMP Registry. The RAMP Registry maintains a list of available RAMPs in
a database. It checks the current availability of RAMPs periodically by querying
the metadata API or a specific health check API of the RAMPs. They can be
registered through different means, e.g., service discovery mechanisms, manual
registration or self-registration of the RAMPs.

The registry allows the applications to query its database for the available
RAMPs. It is aware of the RAMP metadata to allow filtering based on the
metadata. This allows applications to search for specific RAMPs based on the
metadata. It can, for example, be used to find all RAMPs that can work with
data in a specific format, e.g., CSV or JSON. A RAMP to display CSV files does
not need to be loaded if the data is encoded as JSON. Filtering RAMPs based on
their metadata allows the applications to display a smaller list of more relevant
RAMPs for users to choose from. If the metadata is more verbose it can even
be used for completely automatic decisions by the applications. For example, if
data is only available as JSON but there is only a CSV RAMP in the registry,
then an application may search for a RAMP that can convert JSON to CSV
in the registry and recommend the data conversion RAMP to the user when he
selects the CSV RAMP.

Combining Microservices and Micro Frontends 13

query plugins

create

Application UI RAMP Registry

metadata

RAMP
(Micro Frontend)

RAMP
(Service API)

iframe

get micro frontend

micro frontend

enter input

select plugin

plugin list

get metadata

Fig. 2. A sequence diagram showing the process of loading a RAMP.

Integrated Application User Interface. In the proposed reference architec-
ture, we refer to the web UI that is able to integrate the RAMP UIs into a single
UI as application. Applications can have their own UI into which the RAMP
UIs are integrated, or they can be built completely with RAMP UIs, similar to
the pure plugin systems described by Birsan [7]. RAMPs are discovered by an
application through the RAMP Registry. Applications optionally can use their
own backend for application specific functionalities.

The RAMP UIs are integrated visually into the application UI. To achieve
this, the application changes the appearance of the RAMP UIs to blend in with
its own UI through the styling interface defined in the plugin contract. This
allows multiple applications to load the same RAMP UI, as they can all change
the RAMP UI appearance to match their own UI. This is fundamentally impor-
tant to achieve reusability of the RAMP UIs.

Applications can load RAMPs based on their metadata or on request from a
user. To load a RAMP UI, the application first has to know the location of the
micro frontend which is specified in the RAMP metadata. Then the RAMP UI
is integrated into the application UI through one of the client-side integration
methods of micro frontends as discussed in Sect. 2.3. Figure 2 shows the process of
loading a RAMP UI without dependencies using the iframe embedding method.
First the application lets the user select a plugin, then it uses the plugin metadata
to locate the micro frontend of the selected RAMP that is loaded in a newly
created iframe. At this point the user can interact with the RAMP UI and the
RAMP UI can communicate with the application and the service API of the
RAMP. With this method the RAMP UI runs in a secure sandbox environment.

14 F. Bühler et al.

This has the additional benefit of making unloading of a RAMP UI trivial, as
the iframe can simply be discarded. However, different integration methods can
be used in different plugin contracts.

3.2 RAMP User Interfaces

Extending an application with new functionality often requires introducing new
UI elements specific to that functionality. The RAMPs provide their user inter-
face in form of micro frontends. While the idea of micro frontends can be imple-
mented in different UI systems and programming languages, all resources known
to the authors are about HTML-based micro frontends. Therefore, we focus on
micro frontends built with web technologies. However, this is not the only reason
to focus on web UIs. Microservices are the backend components to many web
UIs, thus, using the same technologies to implement their micro frontends allows
for straight-forward integration. Web UIs are platform-agnostic which allows a
single UI implementation to be used across platforms. For this reason, HTML is
used to build UIs for cross-platform native apps with browser-based frameworks
like electron [39]. Another reason to use web UIs is the CSS styling language
that can be used to control the look and feel of HTML elements if they have no
local styles applied. While HTML provides the general structure and semantic
meaning of the UI elements, CSS defines the visual appearance. The same web
UI can have different looks using different style sheets.

HTML-based micro frontends can be implemented using different meth-
ods [34] which were already discussed in Sect. 2.3. The server delivering the web
UI can insert the micro frontend into the web UI before it is delivered to the
user. The micro frontend can also be integrated client-side by using JavaScript to
load the micro frontend dynamically. Both, server-side inclusion and client-side
inclusion using JavaScript, directly include the micro frontend into the web UI of
the application, including any JavaScript code that is part of the micro frontend.
This can be problematic when the RAMP may not be fully trusted because it
is not open-source or the plugin microservice is controlled by an external party.
To address security concerns with running untrusted code in the application
context, the micro frontend can be isolated in a sandbox by an iframe.

Security. The decision on how micro frontends are integrated into the main UI
has an impact on security. Because this decision is part of the plugin contract
and cannot be changed once the plugin contract is in use, the potential security
implications must be considered before committing to a plugin contract.

The current driving forces to build micro frontends are related to splitting
up larger UIs into smaller and easier to maintain micro frontends [34]. Micro
frontends that are the result of splitting up larger applications are still developed
by the same developers, thus, they do not pose a security risk. However, loading
a potentially untrusted micro frontend, especially if it is allowed to execute
JavaScript, can compromise the security of the application. Even static forms
can become an attack vector by abusing the autofill function of the browser [23].

Combining Microservices and Micro Frontends 15

If the micro frontend cannot be distinguished from the application by users, they
may even willingly enter their credentials into a legitimate looking input of the
plugin UI. Software architects and application developers should be aware of the
risks of loading untrusted plugins.

An iframe element can be used to sandbox a micro frontend from the appli-
cation. The iframe can be configured to isolate the plugin from the application
UI, while still allowing the execution of arbitrary JavaScript inside the sand-
box. However, communication with the host of the iframe is limited to a passing
messages and requires JavaScript on both ends. Applications may allow trusted
RAMPs to use other, more powerful, extension methods including the execu-
tion of JavaScript in the application context. As a precaution, micro frontends
of trusted RAMPs should be verified cryptographically before they are loaded.
A cryptographic validation can be performed through checking the certificate
of the RAMP or comparing the micro frontend payload against a signed hash.
Both methods can be used simultaneously.

Styling. The RAMP UI must expose an interface for changing its appearance
to match the application UI. This interface has to be part of the plugin contract
to ensure that every RAMP UI can be styled in the same manner to achieve
a consistent user experience between the application and the plugins. However,
not all design decisions can be compensated later by such a styling interface.
Thus, to ensure consistency and accessibility, a higher level design guideline for
user interfaces should be mandated by the RAMP contract.

CSS can apply styling rules to HTML elements based on the element itself
or the CSS classes of that element. Inline CSS styles on the HTML elements
will not be covered here, as they cannot be set by applying a CSS stylesheet.
A baseline style can be applied by directly styling HTML elements, e.g., the
different heading elements h1 to h6 or buttons and form elements.

The styling interface can consist of a set of CSS classes that can be applied to
HTML elements. The values of the classes are then provided by the application.
In some cases, it may be required to specify which classes can be used together
or how classes and the elements they are applied to may be nested to achieve
certain effects, e.g., showing certain child nodes only when the parent node is
hovered. Portlet UIs also have to be styled to blend with the application style.
WSRP defines a number of CSS names that portlets can use and for which the
portal server must provide the actual values [1].

A different approach to implement a styling interface is to use CSS vari-
ables [4]. The micro frontend can use its own CSS classes as long as all their
properties are derived from the specified CSS variables. This allows the micro
frontend more styling freedom while still maintaining the visual coherence. For
example, the application may define a colour palette using CSS variables, but
the micro frontend can decide which elements of its UI uses the colours. Both
approaches can be mixed, e.g., using CSS variables for the colour theme and CSS
classes for layout elements that require a specific nesting of multiple elements.

16 F. Bühler et al.

QHAna Backend

Plugin Runner

Micro Frontend Generator

MUSE Data
Loader API MUSE Data Loader

QHAna RAMPs

Load
RAMP UI

Call RAMP

API
Backend
Database

Home

h�ps://localhost/

MUSE Data Loader
RAMP UI

List of
RAMPs

QHAna User Interface

Defined by the RAMP Contract

Legend

iframe

Quantum algorithm . . .

Ex
te

rn
al

 A
pp

lic
a�

on
Ex

te
rn

al
 D

at
a

So
ur

ce
s (

e.
g.

 M
US

E)

Plugin Runner

Micro Frontend Generator

Plugin Runner

Micro Frontend Generator

PCA API PCA

Quantum
k-means API

Quantum
k-means

Database Access

Fig. 3. The architecture of QHAna.

4 Prototypical Evaluation

To evaluate the feasibility of our proposed architecture, we used it to redesign
QHAna [5]. The generic requirements outlined in Sect. 2.5 can be fulfilled by
the proposed reference architecture. This section starts with an overview of the
architecture of the QHAna prototype and the specific design choices for imple-
menting the proposed architecture. The overview is followed by two sections
describing specific implementation details.

4.1 The QHAna Prototype

Figure 3 shows the architecture of the revised QHAna prototype. The compo-
nents can be mapped directly to the RAMP-architecture. The QHAna UI is an
Angular application implemented in TypeScript and corresponds to the applica-
tion in our RAMP-architecture. The QHAna backend is implemented in Balle-
rina5 and provides a REST API for the user interface. It is managing a persistent
storage for all data related to an experiment in the QHAna tool. Data is stored
in the backend database and in the local filesystem. The backend also manages
a list of plugins acting as a RAMP Registry. The algorithms implemented for
QHAna are packaged as RAMPs. To ease the development of RAMPs, we cre-
ated the Plugin Runner python framework that handles all generic RAMP tasks,
e.g., reading config values, setting up background tasks for long-running jobs,
5 https://ballerina.io.

https://ballerina.io

Combining Microservices and Micro Frontends 17

and contains helper functions. The plugin runner also contains a generator for
creating simple micro frontends out of API models. To create a new RAMP,
only the algorithm implementation and the algorithm specific API, which is also
responsible for the RAMP metadata, have to be provided.

The QHAna UI presents the user with a list of available plugins to choose
from. We are experimenting with different ways to present the plugin list, e.g., by
grouping plugins, as the number of implemented plugins keeps on growing, with
the current plugins already counting 26. If the user selects a plugin in the UI,
then the UI loads the micro frontend of the selected plugin inside an iframe. We
chose the iframe embedding method for our micro frontends, because QHAna will
have to handle API tokens for quantum computing resources in the cloud that
are associated with a significant amount of money. The sandboxing properties
of the iframe are used to prevent plugins from accessing these tokens without
the user’s consent. The QHAna UI tells the micro frontend loaded in the iframe
what CSS styles should be loaded through the messaging channel provided by
the iframe. QHAna RAMPs use a styling interface that uses both, CSS classes
and variables. The prototype is developed as an open-source application and can
be found on GitHub6.

Plugin Interactions. In our prototypical implementation, the QHAna back-
end is also a RAMP Registry. RAMPs in QHAna typically implement a single
function that has input data, can be configured by hyper-parameters, and pro-
duces output data. The root resource of a QHAna RAMP is the metadata API.
It contains the location of the micro frontend and also the corresponding service
API endpoint used internally by the micro frontend. This allows applications
that do not need a graphical frontend to directly use the service API. Loading
RAMPs in QHAna follows the process described in Fig. 2. The RAMP UI is
loaded inside an iframe configured to isolate its content from the QHAna UI. A
channel to pass messages based on events is the only interface between the micro
frontend and the QHAna UI. The messages allowed on this channel are specified
using an AsyncAPI [28] specification that is part of the plugin contract. This
channel is, for example, used by the application to tell the micro frontend which
CSS files to load. Users can directly interact with the iframe content through
the browser. Once the user starts the algorithm implemented by the plugin via
the RAMP UI, it calls the corresponding resource of the microservice and then
reports to the QHAna UI. The QHAna UI then instructs the backend to watch
for the finished result of the algorithm.

Data Handling. QHAna RAMPs consume data and produce new data. They
act similar to filters of a pipes-and-filters architecture. The different algorithms
implemented for QHAna require different types of input data. To simplify the
development of plugins, we decided to only pass data by reference as a URL.
This simplifies the logic to work with data, as RAMPs only need to support
reading data from URLs. It also allows for streaming or batch-processing of
large datasets that don’t fit into memory.
6 https://github.com/UST-QuAntiL.

https://github.com/UST-QuAntiL

18 F. Bühler et al.

To help users selecting compatible data for a RAMP, QHAna stores a content
type and a data type tag as metadata for all data. The content type describes
how the data is serialized while the data type describes what kind of data is
serialized. As different plugins require different data formats, there is a need for
data transformers that can translate data from one format into another. Data
from external sources is loaded via data loading RAMPs that import the data
in a common format such as CSV. In the future, we plan to implement RAMPs
that can translate between data formats and are used automatically if required.

5 Discussion

Our prototypical implementation proves that the RAMP-architecture can be
used to create applications that can be enriched with additional functionalities
through RAMPs. The RAMPs can be used by multiple applications in parallel.
RAMPs bring their own UI with them in form of a micro frontend that can be
embedded into the application UI. Through a styling interface, RAMP UIs can
be adjusted to match the style of the application UI they are used in.

If an application attempts to load many RAMPs at startup, this may slow
down the application significantly. Applications loading large amounts of plug-
ins also exhibit this behaviour [7]. The same countermeasures, e.g., only loading
plugins when they are used, can be applied to RAMP-based applications. Addi-
tionally, RAMPs can offload some of their computation tasks from the micro
frontend into the microservice.

RAMPs are still fully functioning microservices as all plugin specific func-
tionalities are built on top of the microservice API. They can be used as a normal
microservice by any application. For an application to benefit from the plugin
functionalities of a RAMP, it needs to implement the API defined in the plugin
contract. To enrich multiple applications with RAMPs, all applications must use
the same plugin contract. On a small scale, this can be solved by defining a plu-
gin contract that takes the requirements of every application into consideration.
However, conflicting requirements may require incompatible plugin contracts.
The plugin contract should be designed in a way to maximize the potential
reuse of RAMPs in different applications. We plan on further researching how
to design such a plugin contract in the future.

Security must be considered before loading a RAMP. In this paper, we have
addressed the basic security concerns of loading untrusted RAMPs by using the
iframe sandbox. However, we do not claim that this solves all potential security
issues. Further research on the security of loading external micro frontends is
needed to fill this gap.

6 Related Work

Several case studies have been done where micro frontends were used for the
reimplementation of an existing monolithic frontend application [35,45]. Other
case studies have implemented new frontend applications from scratch using

Combining Microservices and Micro Frontends 19

micro frontends [33,42,48]. All of these case studies used a microservice-based
backend. However, none of the mentioned case studies considered the reusability
of the micro frontends in other applications.

Portlets are built to be reused in different applications. As one of the two
major standards for Portlets is Java specific, many portlet implementations and
tools require Java [2,3]. Portlets require a portal server that composes the portlet
markup and handles inter-portlet communication [2]. They cannot take advan-
tage of the client side integration techniques available for micro frontends and
frequently require the whole page to be refreshed to render new portlet state [10].
This makes portlets difficult to integrate into applications that are implemented
with frameworks that render the page and updates to the page on the client.
Our approach uses micro frontends and, thus, supports client side integration.

Patterns for plugins are described in several works [25,26]. Whereas Mayer
et al. [26], Birsan [7] and Wolfinger et al. [46] describe how plugins can use other
plugins and how to build whole applications out of plugins, Marquardt [25]
does not mention plugins depending on other plugins. The extension of the user
interface with plugins is explicitly considered in most of these works [7,26,46].
Birsan [7] uses the term pure plug-in architecture to describe applications that
are entirely made out of plugins and only contain a small runtime engine for
executing the plugins. While some works are language agnostic [25,26], Wolfinger
et al. [46] introduce a plugin architecture for the .NET platform. Asqium [43]
is plugin based framework for web application development that allows building
applications from plugins that can extend server and client side code at the same
time. However, these plugins can only be implemented in JavaScript. None of
these works describe how plugins that were developed for one application could
be reused by another application.

Pahl and Jamshidi [31] did a mapping study comparing existing research
about microservices. From the 21 studies they considered, only two of them men-
tioned reusability which is an important aspect of our work. Dragoni et al. [11]
reviewed the history of software architecture and the state-of-the-art of microser-
vices. They briefly mentioned reusability of microservices in their results. A
systematic mapping study was conducted by Cerny et al. [8] related to microser-
vices. They found that the most commonly mentioned challenges regarding
microservice were communication, integration, deployment operations, perfor-
mance, and fault tolerance. Reusability was considered as part of communica-
tion/integration. Garriga [13] created a taxonomy and used it to analyse state-
of-the-art approaches regarding microservices. A key finding of the analysis was
that microservices are being used in-house and that they are not reused for new
tasks and use cases, instead new microservices get developed. This is in contrast
to our work which promotes software reuse.

A discovery mechanism for services is a centralized registry of services as
described by Curbera et al. [9]. Service discovery mechanisms like this can be
used to implement the RAMP discovery mechanism of the RAMP Registry.
Dustdar and Papazoglou [12] give an introduction to services and service com-
position. Service composition is the development of a service that invokes other

20 F. Bühler et al.

services as part of the business logic [21,37]. A web service composition mid-
dleware that allows users to compose web services in a graphical user interface,
such as Triana [24] or the older BioOpera Flow Language [32], require precise
descriptions of the services’ functionalities, interfaces and supported protocols.
Service composition is analogous to RAMPs that call other RAMPs as part of
their execution. However, the result of a service composition is just another ser-
vice without a user interface [18,41]. RAMPs that are aware of and can use the
RAMP UIs of their dependencies can even compose the UIs to present them to
a user.

7 Conclusion and Future Work

A plugin architecture provides a way to extend existing applications with new
functionality using plugins. Plugins can be loaded by users of an application
allowing them to customize the application. Because the plugins are developed
specifically for one application, they cannot be reused for other purposes. On the
other hand, microservices are built for reusability. They can be easily integrated
into multiple applications, but this integration must be done by a developer. The
microservices cannot directly contribute new functionality to an application, as
the user interface often needs additional elements to support the new functions.
Microservices have no way of extending the user interface of existing applications.

In this paper, we presented the concept of RAMPs that can be used as
plugins and microservices at the same time. This is achieved by bundling a
microservice API together with a micro frontend and allows RAMPs to be reused
by multiple applications in parallel. As the APIs of the microservices are not
changed, RAMPs can always be used as microservices. They can also be used
like plugins and do not require a developer for the integration in an application
supporting RAMPs. Just like plugins, they can be integrated by users. Users
only need to select available RAMPs from the RAMP Registry to integrate their
functionality into an application. Unlike plugins, the user interfaces provided by
RAMPs can be integrated into multiple applications with different styles through
a styling interface. This opens up new possibilities for plugins and microservices.

The implementation of the RAMP-architecture in the redesigned prototype of
our research tool QHAna shows the potential value of the RAMP-architecture. In
future work, we plan on orchestrating the QHAna RAMPs with workflows. While
the workflows will mostly interact directly with the microservice API, the RAMP
UI can be used in human tasks. The insights gathered from these experiments will
help to form an intuition of how a plugin contract for RAMPs should be designed
to maximize the reusability of RAMPs. Additionally, we plan to implement data
transformation RAMPs for automatic data format translations and expand our
first prototype for micro frontend generation in the plugin runner component to
generate more complex UIs.

Acknowledgements. The work was partially funded by the Federal Ministry for
Economic Affairs and Climate Action project PlanQK (01MK20005N).

Combining Microservices and Micro Frontends 21

References

1. Web services for remote portlets specification v2.0 (2008). https://docs.oasis-open.
org/wsrp/v2/wsrp-2.0-spec.html

2. Akram, A., Chohan, D., Wang, X.D., Yang, X., Allan, R.: A service oriented archi-
tecture for portals using portlets. In: Uk e-Science All Hands Conference 2005.
CCLRC (2005)

3. Allan, R., Awre, C., Baker, M., Fish, A.: Portals and portlets 2003. In: Proceedings
of the NeSC Workshop, pp. 14–17. CCLRC (2004)

4. Attardi, J.: Basic CSS concepts. In: Modern CSS: Master the Key Concepts of CSS
for Modern Web Development, pp. 33–59. Apress (2020). https://doi.org/10.1007/
978-1-4842-6294-8 3

5. Barzen, J.: From digital humanities to quantum humanities: potentials and appli-
cations. In: An Introduction to Core Concepts, Theory and Applications, Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-95538-0 1

6. Barzen, J., Leymann, F.: Quantencomputing in den digital humanities: innovativ
oder übertrieben? ZfdG - Zeitschrift für digitale Geisteswissenschaften. Fabrikation
von Erkenntnis: Experimente in den Digital Humanities, pp. 1–22 (2021). https://
doi.org/10.26298/melusina.8f8w-y749-qidd

7. Birsan, D.: On plug-ins and extensible architectures. Queue 3(2), 40–46 (2005).
https://doi.org/10.1145/1053331.1053345

8. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual understanding of microservice
architecture: Current and future directions. SIGAPP Appl. Comput. Rev. 17(4),
29–45 (2018). https://doi.org/10.1145/3183628.3183631

9. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.:
Unraveling the web services web: an introduction to SOAP, WSDL, and UDDI.
IEEE Internet Comput. 6(2), 86–93 (2002). https://doi.org/10.1109/4236.991449

10. Dıaz, O., Rodrıguez, J.: Portlets as web components: an introduction. J. Univ.
Comput. Sci. 10(4), 454–472 (2004). https://doi.org/10.3217/jucs-010-04-0454

11. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

12. Dustdar, S., Papazoglou, M.P.: Services and service composition-an introduction.
IT-Inf. Technol. 50(2), 86–92 (2008)

13. Garriga, M.: Towards a taxonomy of microservices architectures. In: Cerone, A.,
Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 203–218. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74781-1 15

14. Geer, D.: Eclipse becomes the dominant java IDE. Computer 38(7), 16–18 (2005).
https://doi.org/10.1109/MC.2005.228

15. Havenstein, C., Thomas, D., Chandrasekaran, S.: Comparisons of performance
between quantum and classical machine learning. SMU Data Sci. Rev. 1(4), 30
(2018)

16. Abhijith, J., et al.: Quantum algorithm implementations for beginners (2020). ver-
sion: 2

17. Jackson, C.: Micro frontends (2019). https://martinfowler.com/articles/micro-
frontends.html#IntegrationApproaches

18. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a
systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014). https://
doi.org/10.1016/j.eswa.2013.12.017

https://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
https://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
https://doi.org/10.1007/978-1-4842-6294-8_3
https://doi.org/10.1007/978-1-4842-6294-8_3
https://doi.org/10.1007/978-3-030-95538-0_1
https://doi.org/10.26298/melusina.8f8w-y749-qidd
https://doi.org/10.26298/melusina.8f8w-y749-qidd
https://doi.org/10.1145/1053331.1053345
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1109/4236.991449
https://doi.org/10.3217/jucs-010-04-0454
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1109/MC.2005.228
https://martinfowler.com/articles/micro-frontends.html#IntegrationApproaches
https://martinfowler.com/articles/micro-frontends.html#IntegrationApproaches
https://doi.org/10.1016/j.eswa.2013.12.017
https://doi.org/10.1016/j.eswa.2013.12.017

22 F. Bühler et al.

19. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992).
https://doi.org/10.1145/130844.130856

20. Laskey, K.B., Laskey, K.: Service oriented architecture. Wiley Interdiscipl. Rev.
Computat. Stat. 1(1), 101–105 (2009)

21. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), 33:1–33:41. https://doi.org/10.
1145/2831270

22. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). https://martinfowler.com/articles/microservices.html

23. Lin, X., Ilia, P., Polakis, J.: Fill in the Blanks: Empirical Analysis of the Privacy
Threats of Browser Form Autofill, pp. 507–519. ACM, New York, NY, USA (2020).
https://doi.org/10.1145/3372297.3417271

24. Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: a graphical web service
composition and execution toolkit. In: Proceedings. IEEE International Conference
on Web Services, 2004, pp. 514–521. IEEE (2004). https://doi.org/10.1109/ICWS.
2004.1314777

25. Marquardt, K.: Patterns for plug-ins. In: Proceedings of the Fourth European
Conference on Pattern Languages of Programming and Computing (1999)

26. Mayer, J., Melzer, I., Schweiggert, F.: Lightweight plug-in-based application devel-
opment. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 87–102. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-5 9

27. Merkel, D., et al.: Docker: lightweight linux containers for consistent development
and deployment. Linux J. 239, 2 (2014)

28. Méndez, F., et al.: AsyncAPI specification. AsyncAPI, https://www.asyncapi.com/
docs/specifications/v2.3.0

29. Newman, S.: Building Microservices. O’Reilly Media, Inc., Sebastopol (2021)
30. Nicklous, M.: Jsr 362: Portlet specification 3.0 (2017). https://www.jcp.org/en/

jsr/detail?id=362
31. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: Proceedings

of the 6th International Conference on Cloud Computing and Services Science, pp.
137–146. SCITEPRESS (2016). https://doi.org/10.5220/0005785501370146

32. Pautasso, C., Alonso, G.: Visual composition of web services. In: 2003 IEEE Sym-
posium on Human Centric Computing Languages and Environments (HCC 2003),
28–31 October 2003, Auckland, New Zealand, pp. 92–99. IEEE Computer Society
(2003). https://doi.org/10.1109/HCC.2003.1260208

33. Pavlenko, A., Askarbekuly, N., Megha, S., Mazzara, M.: Micro-frontends: applica-
tion of microservices to web front-ends. J. Internet Serv. Inf. Secur. (JISIS) 10(2),
49–66 (2020). https://doi.org/10.22667/JISIS.2020.05.31.049

34. Peltonen, S., Mezzalira, L., Taibi, D.: Motivations, benefits, and issues for adopting
micro-frontends: a multivocal literature review. Inf. Softw. Technol. 136, 106571
(2021). https://doi.org/10.1016/j.infsof.2021.106571

35. Pölöskei, I., Bub, U.: Enterprise-level migration to micro frontends in a multi-
vendor environment. Acta Polytechnica Hungarica 18(8), 7–25 (2021)

36. Prajwal, Y., Parekh, J.V., Shettar, R.: A brief review of micro-frontends. United
Int. J. Res. Technol. 2, 123–126 (2021)

37. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 5

38. Rojas, C.: Building Native Web Components: Front-End Development with Poly-
mer and Vue.js. Apress (2021). https://doi.org/10.1007/978-1-4842-5905-4

https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/2831270
https://doi.org/10.1145/2831270
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3372297.3417271
https://doi.org/10.1109/ICWS.2004.1314777
https://doi.org/10.1109/ICWS.2004.1314777
https://doi.org/10.1007/3-540-36557-5_9
https://www.asyncapi.com/docs/specifications/v2.3.0
https://www.asyncapi.com/docs/specifications/v2.3.0
https://www.jcp.org/en/jsr/detail?id=362
https://www.jcp.org/en/jsr/detail?id=362
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/HCC.2003.1260208
https://doi.org/10.22667/JISIS.2020.05.31.049
https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/10.1007/978-3-540-30581-1_5
https://doi.org/10.1007/978-1-4842-5905-4

Combining Microservices and Micro Frontends 23

39. Scoccia, G.L., Autili, M.: Web frameworks for desktop apps: an exploratory study.
In: Proceedings of the 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). ESEM 2020, ACM, New York,
NY, USA (2020). https://doi.org/10.1145/3382494.3422171

40. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp.
124–134. IEEE (1994). https://doi.org/10.1109/SFCS.1994.365700

41. Strunk, A.: QoS-aware service composition: A survey. In: Eighth IEEE European
Conference on Web Services, pp. 67–74 (2010). https://doi.org/10.1109/ECOWS.
2010.16

42. Tilak, P.Y., Yadav, V., Dharmendra, S.D., Bolloju, N.: A platform for enhancing
application developer productivity using microservices and micro-frontends. In:
IEEE-HYDCON, pp. 1–4. IEEE (2020). https://doi.org/10.1109/HYDCON48903.
2020.9242913

43. Triglianos, V., Pautasso, C.: Asqium: a javascript plugin framework for extensible
client and server-side components. In: Cimiano, P., Frasincar, F., Houben, G.-
J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 81–98. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19890-3 7

44. Vietz, D., Barzen, J., Leymann, F., Wild, K.: On decision support for quantum
application developers: categorization, comparison, and analysis of existing tech-
nologies. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra,
J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 127–141. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77980-1 10

45. Wang, D., et al.: A novel application of educational management information sys-
tem based on micro frontends. Procedia Comput. Sci. 176, 1567–1576 (2020).
https://doi.org/10.1016/j.procs.2020.09.168

46. Wolfinger, R., Dhungana, D., Prähofer, H., Mössenböck, H.: A component plug-in
architecture for the .net platform. In: Lightfoot, D.E., Szyperski, C. (eds.) JMLC
2006. LNCS, vol. 4228, pp. 287–305. Springer, Heidelberg (2006). https://doi.org/
10.1007/11860990 18

47. Wusteman, J.: The potential of web components for libraries. Library Hi Tech. 37,
713–720 (2019). https://doi.org/10.1108/LHT-06-2019-0125

48. Yang, C., Liu, C., Su, Z.: Research and application of micro frontends. In: IOP
Conference Series: Materials Science and Engineering, p. 490 (2019). https://doi.
org/10.1088/1757-899x/490/6/062082

https://doi.org/10.1145/3382494.3422171
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/ECOWS.2010.16
https://doi.org/10.1109/ECOWS.2010.16
https://doi.org/10.1109/HYDCON48903.2020.9242913
https://doi.org/10.1109/HYDCON48903.2020.9242913
https://doi.org/10.1007/978-3-319-19890-3_7
https://doi.org/10.1007/978-3-030-77980-1_10
https://doi.org/10.1016/j.procs.2020.09.168
https://doi.org/10.1007/11860990_18
https://doi.org/10.1007/11860990_18
https://doi.org/10.1108/LHT-06-2019-0125
https://doi.org/10.1088/1757-899x/490/6/062082
https://doi.org/10.1088/1757-899x/490/6/062082

Enhancing IoT Platforms for Autonomous
Device Discovery and Selection

Jan Schneider(B) and Pascal Hirmer

Institute for Parallel and Distributed Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{jan.schneider,pascal.hirmer}@ipvs.uni-stuttgart.de

Abstract. The Internet of Things (IoT) encompasses a variety of tech-
nologies that enable the formation of adaptive and flexible networks from
heterogeneous devices. Along with the rising number of applications,
the amount of devices within IoT ecosystems is constantly increasing.
In order to cope with this inherent complexity and to enable efficient
administration and orchestration of devices, IoT platforms have emerged
in recent years. While many IoT platforms empower users to define appli-
cation logic for use cases and execute it within an ecosystem, they typi-
cally rely on static device references, leading to huge manual maintenance
efforts and low robustness. In this paper, we present an approach that
allows IoT platforms to autonomously and reliably execute pre-defined
use cases by automatically discovering and selecting the most suitable
devices. It establishes loose coupling and hence does not impose major
technical constraints on the ecosystems in which it is operated.

Keywords: Internet of Things · IoT platforms · Device discovery

1 Introduction

In the world of tomorrow, digital ecosystems will be able to autonomously create
synergies between so-called smart devices and let them jointly perform tasks for
the benefit of the people in their environment. This way, a smart home may
autonomously detect the presence of an internet-enabled heating system and
a smart phone and use them to control the room temperature depending on
the current location of its owner. Turning such scenarios into reality is one of
the visions of the Internet of Things (IoT) [51]. It encompasses various tech-
nologies that enable the interconnection of virtual or physical internet-enabled
devices (“things”) and to constitute advanced services from them [24]. These
devices typically comprise different capabilities and interfaces and are equipped
with sensors and/or actuators, providing them the ability to perceive their envi-
ronment and to interact with it [20]. Typical examples of IoT devices include
micro-controllers, smart phones and other objects of the everyday life, as long
as they possess basic computing and communication capabilities [35] that allow
them to exchange data within a shared IP network.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 24–44, 2022.
https://doi.org/10.1007/978-3-031-18304-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-18304-1_2

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 25

IoT platform

Data
store

Device 1

Device 2

Analysis &
visualization

Application
logic

Users

Management

Sensor data

Sensor

Actuator

Device registration
and orchestration

Data flow Control flow IoT device

Fig. 1. Exemplary IoT ecoystem with integrated IoT platform and two devices.

Along with the rapidly growing number of world-wide available IoT
devices [50] and their increasing affordability, also the individual IoT ecosystems
become more and more complex: They can now comprise several thousands of
heterogeneous devices [44], reaching from low-end micro-controllers to powerful
backend services in the cloud. The high dynamics of IoT ecosystems, to which
new devices may be added and from which existing devices may be removed at
runtime, impose further challenges [11]. In order to cope with the resulting com-
plexity, so-called IoT platforms [22] have emerged in recent years, offering tools
for the administration and orchestration of IoT devices. As depicted in Fig. 1,
they may also provide means for the definition of application logic, enabling the
implementation of custom use cases within an ecosystem. However, these IoT
platforms typically require their users1 a) to manually select suitable devices
for realizing the desired use cases and b) to register them at the IoT platform
using IP addresses or other static references. This leads to huge maintenance
efforts, since the employed devices may become less preferable or even unavail-
able during runtime and hence demand human intervention for reconfiguring
and adjusting the IoT platform accordingly.

To address this shortcoming and progress towards the previously described
vision of self-controlled and autonomously operating IoT ecosystems, dynamic
approaches for the automatic discovery of devices can be employed [11]. Device
and service discovery are broad and well-established fields in literature, sug-
gesting hundreds of different methods for the discovery of resources within net-
works [41]. However, they typically exploit very particular protocols and for-
mats and hence can only be applied to ecosystems that support exactly these
technologies. Due the high heterogeneity of the IoT and its devices, IoT plat-
forms implementing such specialised approaches become severely limited in their
scope of application and thus more difficult to integrate into existing ecosystems.

1 For the scope of this paper, we differentiate between a) non-expert users, who want
to implement their use cases within IoT ecosystems by leveraging an IoT platform
and b) administrators, who are responsible for maintaining the technical setup.

26 J. Schneider and P. Hirmer

This contradicts common design goals of IoT platforms, which are typically not
tailored towards individual ecosystems, but rather intend to represent universal
solutions for a broad variety of application scenarios [8].

To overcome these issues, we propose a) a method allowing IoT platforms to
autonomously and reliably execute pre-defined use cases within IoT ecosystems
by automatically discovering and selecting the most suitable devices and b) a sup-
porting architecture, which introduces an additional abstraction layer between
the IoT platform and the ecosystem. As a result, loose coupling is achieved,
which avoids that the IoT platform imposes major technological constraints on
the ecosystems in which it is operated.

2 Related Work and Literature Review

We conducted a comprehensive literature research in which we investigated many
papers proposing various approaches for discovery within IoT ecosystems.

2.1 Method

Most relevant work in literature is available under the keyword IoT discovery.
We searched for papers by using the online search engines of Google Scholar,
The Collection of Computer Science Bibliographies, ACM Digital Library, IEEE
Xplore Digital Library and dblp and refined our queries by adding the terms
device, sensor, platform, selection, query, directory and ranking both individually
and in various combinations. In addition, the references of the publications were
followed up recursively. We selected the papers on the basis of a) their assumed
relation to our work, b) their recency, c) their reputation within the scientific
community, but d) also in a manner to cover a broad thematic and technological
spectrum to do justice to the variety of concepts in this field. Publications that
are not directly related to the IoT or do not address local, self-contained IoT
ecosystems, are out of the scope of our work due the different problem dimen-
sions and were thus only marginally considered. The same applies to proposals
that are fundamentally unsuited for integration in cloud-operated IoT platforms,
including solutions specifically designed for proximity-based technologies.

2.2 Literature Overview

Table 1 provides an detailed overview about the different reviewed discovery
approaches and their characteristics that we were able to identify. These concepts
can generally be divided into three overlapping categories, comprising a) propos-
als based on the paradigm of Service-oriented computing (SoC) [37], which pursue
to apply holistic concepts, technologies and standards of Service-oriented Archi-
tecture (SoA) [30] to the IoT, b) suggestions for centralized solutions, in which one
or multiple central repositories are used to store and query formal descriptions of
devices and c) decentralized approaches, where the IoT devices directly commu-
nicate with each other in order to accomplish discovery, comparable to searches

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 27

in graph data structures. Accordingly, the second column of Table 1 states if and
how many central repositories are used within the approaches, while the third and
fourth column indicate whether the devices decentrally interact with each other
and whether they are based on SoA, respectively.

Some of the suggested solutions are able to discover new IoT devices joining
the ecosystem automatically, while others require administrators to manually
deposit device descriptions in corresponding repositories. Still others combine
both approaches into one system. Therefore, the sixth column of Table 1 lists
the entity which is responsible for initiating the first contact when a new device
joins the ecosystem. In most cases, this is the device itself, i.e. it has to actively
declare its presence against other components. The subsequent three columns
indicate whether the approaches support a) keyword-based (free-text) queries
for finding devices that are suitable for a certain use case, b) criteria-based
queries which allow to specify mandatory capabilities for devices or c) automatic
ranking of the search results according to the relevance of the devices to the
query. As pointed out by Gomes et al. [19], the supported types of queries can
be further classified as either synchronous or asynchronous. While synchronous
queries are processed immediately by the discovery service and answered with a
list of device descriptions matching the query, asynchronous requests allow other
components to register subscriptions at the discovery service and be notified as
soon as a change occurs in the result set of the issued query. Thus, asynchronous
requests are particularly useful for IoT ecosystems that need to adapt themselves
to changes at runtime, such as when a new device is added to the ecosystem or
when an existing device is removed from it. In Table 1, the tenth column indicates
the support for both types of queries. Finally, the last two columns provide
information about a) the technology stacks on which the proposed solutions
rely for the discovery of devices and the processing of queries, as well as b) the
description languages that are used for formally modelling the IoT devices.

Two of the approaches listed in Table 1 are particularly related to our work:
Papp et al. [38] propose a protocol which pursues to achieve interoperability
among heterogeneous devices within a common ecosystem. For this purpose,
it provides means for device abstraction and establishes an overlay on top of
the Message Queuing Telemetry Transport (MQTT) protocol, which enforces a
prescribed interaction model and, among other features, affords access to device
capabilities. According to the protocol, the network and its devices have to follow
a star topology with a so-called IoT hub in the center. Since this hub acts as
a central controller and may implement application logic for the ecosystem, it
can be considered as a kind of IoT platform. The concept includes a mechanism
for the automatic detection of new devices joining the network based on Simple
Service Discovery Protocol (SSDP), as well as a HTTP interface for manual
registration. However, since the protocol relies on MQTT and prescribes a certain
topic structure as well as message orders and formats, it can only be used with
devices that actively support the particular protocol. As a result, IoT platforms
that solely rely on this or another discovery approach from Table 1 inevitably
dictate their communication technologies to the entire ecosystem, which renders

28 J. Schneider and P. Hirmer

them unusable for all other scenarios that are based on different technology
stacks. In our work, we propose an abstraction layer between the IoT platform
and the ecosystem in order to overcome this issue.

Gomes et al. [18] suggest a centralized approach for a discovery service that
involves multiple federated repositories. By using a web interface, administrators
are able to insert semantic descriptions of devices into the available repositories
and then register the latter at the service. Subsequently, applications may use
to service to retrieve descriptions of devices showing certain characteristics by
issuing criteria-based queries. To process such a query, the discovery service cre-
ates a corresponding request and forwards it to the endpoints of all registered
repositories. Upon completion, the service consolidates their responses into a
common result set, which is then returned to the application. Both synchronous
and asynchronous queries are supported. Due to its centralized architecture with
federated repositories, the proposed discovery service is suitable for integration
into IoT platforms. Furthermore, the asynchronous queries allow the IoT plat-
form to be notified when previously used devices become unavailable or when
new, potentially more suitable devices, join the ecosystem. However, there are
still shortcomings: a) The discovery service does not evaluate and rank the search
results obtained from the different repositories and instead returns an unsorted
result set, from which suitable devices must be selected manually, b) the end-
points of all repositories need to be manually registered at the discovery service,
leading to additional maintenance efforts, c) administrators are required to man-
ually manage the device descriptions within the repositories, as these basically
act as databases, d) as no concepts for the handling of duplicates in search
results are mentioned, it has to be assumed that redundant storage of device
descriptions in multiple repositories is not allowed, which possibly leads to a loss
of information in case of failures and e) working with semantic descriptions of
devices may overwhelm users of IoT platforms who often lack sufficient technical
expertise [8]. We adapt some of the concepts of Gomes et al. for the scope of
IoT platforms and enhance them in order to overcome the mentioned issues and
enable the autonomous execution of use cases within IoT ecosystems.

Achieving interoperability between different IoT resources is also a key objec-
tive of the Web of Things (WoT) [29], which pursues to transfer concepts of the
web to the IoT. With WoT Discovery [6], it includes a flexible discovery approach,
in which directories or the devices itself provide so-called Thing Descriptions in
response to synchronous or asynchronous queries. However, the specification is
currently still in draft state and thus subject to frequent changes. Despite this,
some of the underlying web technologies may not be available or unreliable in
certain scenarios due to resource restrictions, while concepts for failure-tolerant
storage of device descriptions are not available yet. Furthermore, it is left open
which entities are responsible for inserting device descriptions into the directo-
ries, as well as how based on the descriptions the most suitable devices can be
selected for the use cases at hand. We address these open aspects for the scope
of IoT platforms by proposing a corresponding architecture and method.

In prior work [15,36], we investigated the modeling of complex context
information that was managed in a world-wide scalable infrastructure through

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 29

hierarchical registers and extensible ontologies. In contrast, the concepts proposed
in this paper provide a lightweight approach with reduced expressiveness to cater
the specific requirements of IoT platforms and resource-limited ecosystems.

Table 1. Overview about the reviewed literature, sorted by year of publication. CR:
Reliance on central repositories; D: Decentralized discovery between devices possible;
S: Exploitation of SOA-related concepts and technologies; M: Usage of semantic tech-
nologies; IN: Entity initiating first contact; K: Support for keyword-based queries; C:
Support for criteria-based queries; R: Ranking of query results; Q: Query type, either
synchronous (s), asynchronous (as) or both (b)

CR D S M IN K C R Q Technologies Device description

[42] Single ✗ ✗ ✓ Unspec. ✓ ✗ ✗ s REST SensorML

[52] Single ✗ ✓ ✗ Device ✗ ✓ ✓ s SOA stack WSDL, QoS readings

[2] Single ✗ ✗ ✗ Device ✗ ✗ ✗ - CoAP, CoRE-RD Comm. behaviour

[17] Federated ✗ ✗ ✓ Device ✓ ✓ ✗ s DNS-SD DNS names, TXT-RRs

[32] Per ecosys. ✓ ✗ ✗ Device ✗ ✓ ✗ s CoAP, CoRE-RD, P2P (Range) attributes

[12] None ✓ ✗ ✗ Device/P2P ✗ ✓ ✓ s Unstructured P2P QoS attributes

[38] Single ✗ ✗ ✗ Device or IoT
hub

✗ ✗ ✗ - SSDP/UPNP, HTTP,
MQTT

JSON

[34] Single ✗ ✓ ✓ User ✓ ✗ ✓ s REST JSON-LD

[4] Per gateway ✗ ✗ ✗ Device ✓ ✗ ✗ s DNS-SD, mDNS, CoAP,
6LoWPAN

Resource records

[6] Arbitrary ✓ ✗ ✓ Device ✓ ✓ ✗ b DNS-SD, mDNS, CoAP,
server-sent events

WoT Thing Description

[10] Blockchain ✗ ✗ ✓ Provider ✗ ✓ ✗ s SPARQL SSN/SOSA extension

[18] Federated ✗ ✗ ✓ User ✗ ✓ ✗ b MQTT, SPARQL SSN, SAN, OWL-S

[43] None ✗ ✗ ✗ Scanner ✗ ✗ ✗ - Network/port scanner Open network ports

[40] Per sniffer ✓ ✗ ✗ Device ✗ ✗ ✗ b MQTT, multicast JSON

[48] None ✓ ✗ ✗ Device ✗ ✓ ✗ s Unspecified Feature list

[13] Arbitrary ✓ ✗ ✗ Device ✓ ✓ ✗ s CoAP, CoRE-RD, P2P e.g. CoRE Link Format

[39] Single ✗ ✗ ✗ Device ✗ ✗ ✗ - HTTP proxy XML, JSON

[49] Per gatew. ✓ ✗ ✗ Device ✓ ✗ ✗ b CoAP, CoRE-RD, P2P CoRE Link Format

[1] Federated ✗ ✗ ✗ Device ✓ ✗ ✗ s CoAP, CoRE-RD JSON

[14] Per router ✓ ✗ ✗ Device ✓ ✗ ✗ s ICN, CoAP CoRE Link Format

[27] Single ✗ ✓ ✗ Device ✗ ✗ ✗ - DPWS, multicast,
MQTT

JSON

[5] Single ✗ ✗ ✓ User ✗ ✓ ✗ s SPARQL Custom ontology

[26] Sngle ✗ ✗ ✗ Device ✓ ✓ ✗ s REST, Bluetooth,
ZigBee, Wi-Fi

JSON

[19] Federated ✗ ✗ ✓ User ✗ ✓ ✗ b SPARQL SSN, SAN, OWL-S

[33] Single ✗ ✓ ✗ User/MW ✓ ✗ ✓ s SOA middleware XML

[46] Single ✗ ✗ ✓ Device ? ✓ ? s X-GSN, SPARQL SSN extension

[9] Single ✗ ✗ ✗ Device ✓ ✗ ✓ s REST, LWM2M, CoAP CoRE Link Format

[31] None ✓ ✗ ✓ n.a ✓ ✓ ✓ s P2P Skipnet Context ontologies

[7] Per gateway ✓ ✗ ✗ Device or
gateway

✓ ✗ ✗ s DNS-SD, mDNS, P2P,
CoAP

CoRE Link Format or
JSON-WSP

[28] Arbitrary ✓ ✗ ✗ device ✓ ✗ ✗ b DNS-SD, mDNS,
Bonjour

TXT-RR

[21] [3] Single ✗ ✓ ✗ Device or disc.
unit

✓ ✓ ✓ s WS-Discovery, DPWS,
multicast

WSDL

[47] Federated ✗ ✗ ✓ Device ✓ ✓ ✗ s AtomPub, mDNS Atom Syndic. Format

30 J. Schneider and P. Hirmer

2.3 Conclusion and Challenges

Based on the literature review, we conclude that our work needs to address the
following core challenges:

Limited Resources. Devices and networks of IoT ecosystems are often severely
resource-constrained and hence possess only few computing and hardware capa-
bilities, as well as low bandwidth [51]. Accordingly, when designing a discovery
mechanism for IoT platforms, it must be ensured that the additional computional
load for the devices is as low as possible. With respect to the network, the inter-
action model between the IoT platform and the devices should also minimize
the exchange and size of messages and be robust against connection failures.
Furthermore, it must be taken into consideration that the ecosystem might sup-
port only a small selection of technologies. For instance, many of the approaches
listed in Table 1 rely on UDP multicast, which however may be unavailable in
the underlying networks of certain ecosystems.

Need for Fault-Tolerance. Many of the reviewed approaches are based on
a single central repository (cf. Table 1), in which the formal descriptions of all
devices are stored. However, such architectures are often unreliable, as the repos-
itories represent single point of failures. Furthermore, they typically scale poorly
with an increasing number of devices [16] and become a bottleneck as the sys-
tem grows. For this reason, an architecture with federated repositories is to be
preferred. In addition, it should allow to redundantly store the descriptions of
devices in several repositories at the same time in order to avoid loss of infor-
mation in case of failures of individual repositories.

High Dynamics. Most IoT ecosystems are highly dynamic, as devices can
continuously join or leave them during runtime. Accordingly, devices that previ-
ously participated in a use case may be modified or become unavailable. In this
case, the discovery component of the IoT platform must be able to detect these
kind of changes and compensate for them, e.g. by transferring the affected tasks
to other suitable devices of the ecosystem. In order to enable the efficient and
timely detection of such events, the discovery mechanism should support asyn-
chronous requests, as already offered by some of the approaches listed in Table 1.
In addition, the high dynamics require that as many tasks as possible are per-
formed automatically by the IoT platform and without human intervention, so
that huge manual maintenance efforts are avoided. Thus, in contrast to some of
the proposals in literature, the discovery approach should not necessarily require
administrators to manually write, register and maintain descriptions of devices.

High Flexibility. IoT platforms are typically not tailored towards individual
IoT systems and domains, but rather represent universal solutions that are sup-
posed to be applicable in as many different contexts and ecosystems as possible.
For this reason, they either employ technology-agnostic concepts or support a
variety of different technologies. In contrast, the literature proposes a vast num-
ber of discovery approaches, which rely on different technology stacks and also
vary strongly in their individual characteristics [25]. Furthermore, in the areas

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 31

of enterprise systems, industry and home automation, numerous other discov-
ery protocols are available that are individually optimized for their respective
domains, but mostly unsuited for constrained IoT environments [40]. Due to the
interoperability issue discussed earlier for the proposal of Papp et al. [38], it does
not suffice to just integrate a single discovery approach into an IoT platform. On
the other hand, the parallel integration of multiple different discovery approaches
involves unreasonable implementation and maintenance efforts and still renders
the IoT platform useless for ecosystems relying on other technologies. For this
reason, a more flexible approach is needed that can be easily adapted to the
characteristics and requirements of individual IoT ecosystems.

3 Method for Autonomous Execution of Use Cases

In order to enhance IoT platforms for the autonomous execution of pre-defined
use cases within IoT ecosystems, we propose the method depicted in Fig. 2. It
assumes an ecosystem into which a discovery-enabled IoT platform has already
been integrated. The process can be divided into two main parts: The first one is
called User Process and is carried out only once by the users of the IoT platform.
With the beginning of the Discovery Process, the IoT platform then takes over
and autonomously performs various discovery-related tasks.

In step 1 of this method, the users of the IoT platform define use cases
that are supposed to be executed within their ecosystem. Such use cases typi-
cally involve the sensing of the environment, the recognition of situations and
the intended reactions to those. The description “when a fire is detected in the
factory building, the extinguishing system should be activated.” could be consid-
ered as a simple example. While the use cases may be described either formally
or informally at this point, they are always device-independent, meaning that
they do not explicitly specify which devices of the ecosystem are supposed to
be used for their implementation. As depicted in Fig. 2, the designed use cases
represent the resulting artifact of this method step.

Based on the first step, the users translate the use cases into corresponding
application logic for the IoT platform in step 2 . As described in Sect. 1, IoT plat-
forms typically support the definition of application logic either in a model-based
manner or in the form of “if-then” rules. However, in this method, the applica-
tion logic remains device-independent and does not refer to specific devices of
the IoT ecosystem. Hence, the users do not need to manually register devices
at the IoT platform by providing distinct identifiers, such as IP addresses, and
link them with the application logic. Instead, they define the application logic
with placeholders, which the IoT platform will automatically replace at runtime
with those devices of the ecosystem that appear to be the most suitable ones
for realizing the use cases. Ultimately, the specified application logic with the
device placeholders forms the resulting artifact of this step.

32 J. Schneider and P. Hirmer

Fig. 2. The proposed method for the autonomous execution of use cases in IoT ecosys-
tems by employing automatic device discovery and selection.

While the first two steps are performed only once within an iteration of the
method, the following steps are executed for each device placeholder that is part
of the previously specified application logic. In step 3 , the users define criteria
for each placeholder by describing the characteristics a device of the IoT ecosys-
tem must possess to be considered a possible fill-in. In order to support this in a
modular manner and to allow the reuse of criteria for multiple placeholders, the
users register so-called Device Templates at the IoT platform and attach them
to one or multiple placeholders of the application logic. Device templates can be
considered as blueprints for the devices that are supposed to be discovered by
the IoT platform within the ecosystem and selected as fill-ins for the placehold-
ers. Each device template consists of a) a set of requirements, which correspond
to search criteria and describe the hardware and software characteristics that a
device must possess in order to become a possible fill-in for the respective place-
holder, as well as a) a set of evaluation criteria specifying a scheme by which
the devices meeting all requirements are supposed to be evaluated in order to
determine the device that appears to be the most suitable fill-in. For example,
a device template may prescribe that the devices must necessarily be located
in a specific room and must be equipped with a temperature sensor in order to
qualify as fill-in for a certain placeholder. On the other hand, the evaluation cri-
teria of the device template may define that among all the devices fulfilling these

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 33

requirements always the device with the highest measurement accuracy should
be selected as substitute for the placeholder. The user-defined device template
for each placeholder forms the resulting artifact of this step.

With step 4 , the method transitions to the discovery process. Here, the
IoT platform searches the IoT ecosystem for devices that fulfill the requirements
of the device templates. While in principle one or multiple of the discovery
approaches discussed in Sect. 2 could be used for this purpose, we introduce a
loosely-coupled architecture in Sect. 4 that allows to do this in a more flexible
and technology-agnostic manner. During this procedure, the IoT platform veri-
fies each device template that has been attached to a placeholder and retrieves
the formal descriptions of all devices of the ecosystem that fulfill the specified
requirements. Since these devices are potentially suitable candidates for filling in
a specific placeholder, they are called candidate devices. If no candidate devices
can be found for a placeholder, it will currently not be possible to implement the
corresponding use case and hence the process terminates at this point. However,
it can be resumed as soon as suitable devices become available (cf. step 7). The
descriptions of the candidate devices form the artifact of this step.

In step 5 , the IoT platform assesses the previously retrieved candidate
devices for each device template. For this purpose, a score is calculated and
assigned to the candidate devices by applying the evaluation criteria of the
device template to the device descriptions. The resulting score reflects how well
the respective device suits as fill-in for the placeholder in comparison to the
other candidate devices. After all candidate devices for the device template have
been evaluated, they are ranked based on their scores in descending order, such
that the device with the highest score is listed at the top. This ranking can be
considered as a recommendation in terms of which devices should preferably be
used as fill-in for the placeholder and represents the resulting artifact of this
step.

Based on the ranking, the IoT platform in step 6 selects a so-called target
device among the associated candidate devices for each placeholder. Ideally, the
decision is made in favor of the first device in the ranking, but the IoT platform
must also ensure that this device is currently available in the IoT ecosystem and
thus can actually be used as a fill-in. In case the device is unavailable, e.g., due
to a technical issue, the next device in the ranking is selected and checked for
its readiness. The finally selected target device is the output of this step.

After the start of the discovery process, step 7 becomes active in parallel to
step 4 . It makes use of asynchronous queries as introduced in Sect. 2, so that
the IoT platform is notified about changes within the ecosystem. This way, the
IoT platform is able to quickly detect a) when a new device that also satisfies
the requirements of a user-defined device template joins the ecosystem, b) when
an existing device satisfying the requirements of a device template becomes
unavailable within the ecosystem, or c) when an existing device satisfying the
requirements of a device template is modified, such that its capabilities change.
Each of these three cases might have an impact on the candidate and target
devices that were previously determined for a device template. For example, it

34 J. Schneider and P. Hirmer

could turn out that a new device joining the ecosystem receives a higher score
in step 5 than the devices that were formerly evaluated and thus represents a
more suitable fill-in for the placeholder in the application logic. On the other
side, a device that was selected in step 6 might become unavailable or change its
capabilities over time, such that it does not fulfill the requirements of its device
template anymore and hence can no longer be considered a candidate device.
In order to cope with these situations, step 7 re-initiates the execution of the
steps 5 and 6 as soon as it is notified about a modification in the ecosystem
that actually affects the candidate devices of at least one placeholder. As part
of the invocation of step 5 , a formal description of the observed changes is
passed, such that the set of candidate devices can be updated and the ranking
re-calculated accordingly. As a result, step 7 allows the IoT platform to adapt
to changes within highly dynamic ecosystems at runtime by re-evaluating the
candidate devices and, if necessary, switching the fill-in devices for placeholders.

4 Architecture Supporting Discovery for IoT Platforms

To accommodate the application of the previously presented method in IoT
ecosystems, we propose the architecture illustrated in Fig. 3. According to it,
an IoT ecosystem consists of at least three different types of components: a)
an IoT platform, b) an arbitrary number of devices and c) at least one so-
called discovery repository (DR). The device entities in this architecture do not
solely refer to physical IoT devices, but may also encapsulate possibly necessary
IoT gateways [53] for mediating between different networks and communication
technologies. DRs are self-contained software components that collect formal
descriptions of the devices within an ecosystem and provide them to the IoT
platform on request via a prescribed interface. Since they serve as an additional
abstraction layer between the IoT platform in a cloud environment and the
devices at the edge, loose coupling can be achieved.

IoT platform

DeviceDiscovery
repository

collects
description

of

usesqueries

N

1

M N

1

N

IoT ecosystem

contains

contains

contains

N

N

1

1

1

1

Fig. 3. ER model of the components that are involved in the architecture.

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 35

IoT
Platform

Discovery
Interface

Search request
and subscription

Reply with device
descriptions

Notification
about changes

+/-

B

C

D
Devices

Sync. request Reply message Async. message

...

Collecting device
descriptions

Discovery
repository

Tight couplingLoose coupling

A

Fig. 4. Interactions between an IoT platform and a discovery repository.

4.1 Discovery Repositories

Discovery repositories (DRs) are explicitly developed and deployed for an IoT
ecosystem by its administrators. They are similar to the repositories proposed
by Gomes et al. [18], but more flexible and independent in their design and they
undertake a broader field of responsibilities. They basically pursue three tasks:

Collection of Device Descriptions: The main task of a DR is to search, col-
lect and manage the formal descriptions of the devices that are available within
the IoT ecosystem, as depicted in Fig. 4 A . This includes the storage of new
descriptions when devices join the IoT ecosystem, the deletion of descriptions
when devices leave or become unavailable, and the updating of descriptions in
case device characteristics change over time. The selection of technologies and
approaches that are employed for carrying out this task is however left to the indi-
vidual implementation of the DRs. In the simplest case, the administrators of an
IoT ecosystem can manually manage a DR by adding, deleting and updating the
descriptions of their devices as needed. Here, the DR can be considered a simple
database. In more complex systems though, the DRs may implement one or even
multiple of the discovery approaches that are proposed in literature (cf. Sect. 2),
which then enable the automatic discovery of devices and the collection of their
descriptions. Since individual requirements tend to change from ecosystem to
ecosystem, the administrators are encouraged to decide which approaches they
consider most suitable for the DRs in their present scenario. In case they plan
to employ several DRs, these may also implement different techniques.

Retrieval of Device Descriptions: As shown in Fig. 4 B , each DR pro-
vides an interface through which the IoT platform is able to issue search queries
for devices. This interface is prescribed by the IoT platform implementing the
method as introduced in Sect. 3, such that the DRs can be developed against this
interface. The queries contain the requirements that were previously defined by
a user at the IoT platform as part of a device template. When a DR receives such
a request, it is expected to search its collected device descriptions and eventually
return a response to the IoT platform (cf. C) that contains the set of all device

36 J. Schneider and P. Hirmer

descriptions meeting the given requirements. This way, the IoT platform can use
the DRs in order to obtain information about the devices of the ecosystem that
embody candidate devices for placeholders.

Notification About Changes: As part of a search query for devices (cf. B),
the IoT platform has also the option to register a subscription at the DR, such
that it is asynchronously notified by the DR about changes that affect the result
set of the query during runtime. As a result, the DR will inform the subscribed
IoT platform with a message (cf. D) as soon as it detects that a) a new
device became available in the IoT ecosystem whose description also satisfies
the requirements of the query, b) a device whose description originally satis-
fied the requirements of the query became unavailable in the IoT ecosystem, or
that c) the description of a device that either previously or now satisfies the
requirements of the query was modified with respect to its capabilities.

Optionally, a DR may also be used to transform already existing descriptions
of devices, e.g. as provided by the device manufacturers, into formats that are
supported by the IoT platform. In this case, the DR additionally acts as a
message translator [23] that allows the reuse of device descriptions and thus
eases the integration of the IoT platform into existing IoT ecosystems.

The DRs do not necessarily need to be realized as stand-alone applications;
instead, they can also be implemented on top of existing components, such as
IoT gateways [53]. This applies in particular to ecosystems in which the gateways
wrap larger groups of devices and even perform discovery tasks themselves.

In summary, the DRs encapsulate all ecosystem-specific aspects and hide
them from the IoT platform, which can then use the DRs through a prescribed
interface. As a result, the DRs become tightly coupled with the ecosystem and
its contained devices, but potentially loosely coupled with the IoT platform.

4.2 Request-Reply Interactions

In our proposed architecture, publish-subscribe-based messaging [23] via a mes-
sage broker facilitates the communication between the IoT platform and the
DRs. Accordingly, we assume that the DRs subscribe to so-called request topics
at this message broker, under which they expect to receive query messages from
the IoT platform. Similar to the concept of Gomes et al. [18], the administrators
need to register the endpoints of the available DRs at the IoT platform. However,
in our approach, they do this by specifying the request topics instead of network
addresses. As a result, a one-to-many relationship between topic registrations
and DRs is achieved, because an arbitrary number of DRs may be accessible
under the same request topic due to the publish-subscribe paradigm. This is an
important step towards loose coupling. Furthermore, in order to avoid the gen-
eration of individual request messages for each DR, our approach employs the
scatter gather messaging pattern [23], which allows to broadcast a single request
message to multiple DRs at once and to subsequently collect and combine their
responses. Figure 5 illustrates how this pattern is applied to search queries: In

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 37

IoT
Platform

T1

RT

Discovery
Interface

Message topic Message transmission

Admini-
strators

Definition of
request topics
T1 and T2 Request

message

Reply messages

RT

Aggregator

Topic: T1
Timeout: 5s
Max. replies: 3

Topic: T2
Timeout: 10s
Max. replies: 1

T2T2

RT2

RT
Request
message

Timeout T1
Max. replies T1

OR

Completeness condition

Interaction
completedTimeout T2

Max. replies T2
OR

AND

DR1 DR2

DR3

Fig. 5. Application of the scatter gather messaging pattern for achieving loose coupling
between the IoT platform and the discovery repositories.

the given ecosystem, three DRs are available, of which DR1 and DR2 are sub-
scribed to the same request topic T1, while DR3 is subscribed to T2. Both request
topics have already been registered at the IoT platform by the administrators.
In case a search query for device descriptions is supposed to be issued against all
DRs according to B in Fig. 4, the IoT platform creates a corresponding request
message and publishes it under the request topics T1 and T2 at the message
broker. This way, the request message is broadcasted to all available DRs and
processed by them. It is worth noting that for the delivery of the request message
the IoT platform does not need to know how many DRs are actually subscribed
to each request topic. Next to the requirements of a device template, the request
message also contains a so-called reply topic RT, which was previously generated
by the IoT platform and subscribed by it at the message broker. It serves as a
return address [23] for the DRs. Accordingly, after the individual DRs processed
the request message, they publish their reply messages under this topic, so that
the message broker can deliver them back to the IoT platform. Here, a software
component called aggregator [23] receives the replies and aggregates them into a
common data structure, which can then be further processed in correspondence
with the method steps presented in Sect. 3. Since all device descriptions are
allowed to be redundantly available in multiple DRs at the same time and even
in different versions, the aggregator is also responsible for eliminating duplicated
device descriptions from the result set. This is done by a) verifying unique device

38 J. Schneider and P. Hirmer

identifiers that are embedded in the device descriptions, such as MAC addresses,
as well as by b) comparing timestamps that are part of the device descriptions
in order to ensure that always the most recent version of a device description is
used among all versions that were received for the pertaining device.

Due to the one-to-many relationship, the IoT platform does not know how
many DRs are currently available in the ecosystem and will send a reply in
response to a request message. Hence, the aggregator must decide in a different
way when a scatter gather interaction can be considered complete. For this
purpose, a completeness condition is applied, which consists of two types of
parameters that are provided by the administrators during the registration of
the request topics (cf. Fig. 5): While the max. replies value specifies the maximum
number of reply messages that are expected to be received from DRs for a given
request topic, the timeout defines the maximum period of time the IoT platform
is supposed to wait for incoming replies. As soon as at least one of both events
occur for all request topics, the completeness condition is fulfilled, indicating
that the IoT platform can start to aggregate and process the received messages.

As a consequence of this approach, loose coupling is achieved, which allows
administrators to add new DRs to the ecosystem or remove DRs anytime, with-
out needing to explicitly update or reconfigure the IoT platform. The only pre-
requisite is that the new DRs make use of already registered request topics.

5 Prototype and Discussion

As proof of concept, we integrated the method as presented in Sect. 3 into the
Multi-purpose Binding and Provisioning Platform (MBP)2 [45], an open source
IoT platform that allows the definition of rule-based application logics. For test-
ing purposes, we developed an exemplary DR3 that implements the tasks as
described in Sect. 4 and is able to communicate with the MBP via MQTT in
accordance with the proposed interaction scheme. The software architecture of
this DR is depicted in Fig. 6. At its core, it consists of a Spring Boot applica-
tion with a REST interface that allows administrators to manually manage the
descriptions of the devices that are available within the IoT ecosystem. Accord-
ingly, they can add descriptions of devices joining the ecosystem, remove descrip-
tions of leaving devices and update descriptions of modified devices. The applica-
tion does not store the device descriptions itself, but instead uses an instance of
Elasticsearch for this purpose, which treats and indexes the device descriptions
as documents. This way, the DR is able to efficiently process incoming search
requests of the IoT platform by translating them into corresponding queries for
Elasticsearch. Furthermore, the DR supports subscriptions and is thus able to
asynchronously notify the IoT platform about changes that affect the result sets
of preceding search requests. By using the discovery-enabled MBP and running
multiple instances of this DR in parallel, we were able to practically test and
evaluate our concepts.
2 MBP on GitHub: https://github.com/IPVS-AS/MBP.
3 DR on GitHub: https://github.com/IPVS-AS/MBP-DiscoveryRepository.

https://github.com/IPVS-AS/MBP
https://github.com/IPVS-AS/MBP-DiscoveryRepository

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 39

M
Q
T
T

IoT Platform
(MBP)

Administrators

Manage-
ment

Elasticsearch
instance

Application
R
E
S
T

M
Q
T
T

ES-API

Indexing/
search

Search
requests

Device
descriptions

Data flow Control flow ... Interface

Spring
Boot

Discovery repository

Fig. 6. Architecture of our discovery repository that serves as proof of concept.

The proposed method and its underlying architecture can support IoT ecosys-
tems that involve such an IoT platform at improving their availability: Since
the DRs might be able to monitor the devices within the ecosystem and notify
the IoT platform asynchronously about detected changes, the IoT platform can
quickly react to device failures at runtime by re-evaluating the candidate devices
and selecting the next most suitable device for the affected placeholder. On the
other hand, the use of multiple, federated, but potentially also differently imple-
mented DRs avoids the establishment of single point of failures. Furthermore,
the aggregator component (cf. Fig. 5) is able to deal with duplicates, which
allows the redundant storage of device descriptions within multiple DRs and
hence leads to higher robustness. The federated architecture gives also rise to
scalability, because an increasing number of devices can be countered by the
deployment of additional DRs. The prerequisite for this is that the DRs share
their responsibilities of discovering and monitoring the devices, such that not
all DRs need to assess all available devices. This can be achieved e.g. by the
usage of subnets. Due to the loose coupling, new DRs can be flexibly added to
or removed from the ecosystem without needing to reconfigure the IoT platform,
which eases horizontal scaling. With this approach, almost arbitrary numbers of
devices and DRs can be inserted into an IoT ecosystem, until the IoT platform,
which is a centralized component by nature, becomes a bottleneck itself. The
proposed concepts can also be considered as efficient in terms of resource con-
sumption, as they a) do not necessarily put additional tasks or load onto the
typically resource-constrained devices, albeit this also depends on the specific
implementation of the DRs, b) apply the scatter gather messaging pattern for
the interaction between the IoT platform and the DRs, which can also be used
on top of lightweight messaging protocols such as MQTT and avoids overhead
in the generation of request messages and c) allow the developers of the DRs
to select the most suitable and most efficient technologies for the discovery of
devices within their ecosystem, based on the application scenario at hand and by
considering the actually available resources. In contrast to the proposals in liter-
ature (cf. Sect. 2), the main benefit of our approach is its flexibility. It allows to

40 J. Schneider and P. Hirmer

integrate the enhanced IoT platforms into different kinds of IoT ecosystems and
to use them in a wide range of application scenarios. The foundations for this
are provided by the DRs, since they serve as an additional abstraction layer that
encapsulates and hides all ecosystem-specific aspects from the IoT platform. At
the same time, they offer a prescribed interface through which the IoT platform
can issue criteria-based queries for devices, as well as register subscriptions for
asynchronous notifications about changes within the ecosystem. This way, the
IoT platform remains technology-agnostic and can co-operate with both man-
ually managed IoT ecosystems, as well as highly dynamic ones that need to
make use of specific, potentially custom-tailored discovery technologies. In addi-
tion, the DRs also support the reuse of already existing device descriptions.
Consequently, such an IoT platform provides high interoperability and can be
integrated in various kinds of IoT ecosystems without having to adapt the IoT
platform itself. On the downside, the additional abstraction layer may cause
overhead in terms of development efforts, latency and resource consumption.
However, this highly depends on the individual implementations of the DR.

6 Conclusion

In this paper, we presented a method that allows IoT platforms a) to assist
their users in the specification of device-independent application logic for use
cases by employing placeholders, b) to let their users define device templates,
which prescribe requirements and evaluation criteria for devices that should be
selected as fill-ins for the placeholders, c) to autonomously discover and search
for devices within an IoT ecosystem that fulfill the user-defined requirements
and thus constitute candidate devices for the placeholders, d) to score and rank
candidate devices with respect to the user-defined evaluation criteria, e) to select
the most suitable candidate devices as fill-ins for the placeholders and f) to detect
changes in highly dynamic IoT ecosystems at runtime and to cope with them
by re-evaluating the candidate devices of the affected placeholders. To ease the
application of this method, we also introduced a supporting architecture for
IoT ecosystems. It comprises so-called discovery repositories, which are tailored
towards the specific needs of the application scenario at hand and serve as an
additional abstraction layer between the IoT platform and the ecosystem to
establish loose coupling. As a result, IoT platforms implementing our method
can remain technology-agnostic and thus be applied to a wide range of different
scenarios without needing to adapt the IoT platform itself. Furthermore, also the
availability and scalability of the encompassing IoT systems can be improved.

In future work, we pursue to conduct tests in larger IoT ecosystems in order
to empirically verify our assumptions. Moreover, we plan to consider options for
the automatic selection of suitable criteria for device templates as well as for
including availability predictions into the evaluation of candidate devices.

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 41

References

1. Barreto, F.M., Duarte, P.A.d.S., Maia, M.E., et al.: Coap-ctx: a context-aware
CoAP extension for smart objects discovery in internet of things. In: 2017 IEEE
41st Annual Computer Software and Applications Conference, vol. 1, pp. 575–584
(2017)

2. Baykara, C., Şafak, I., Kalkan, K.: SHAPEIoT: secure handshake protocol for
autonomous IoT device discovery and blacklisting using physical unclonable func-
tions and machine learning. In: 13th International Conference on Network and
Communications Security (NCS 2021), September 2021

3. Chirila, S., Lemnaru, C., Dinsoreanu, M.: Semantic-based IoT device discovery
and recommendation mechanism. In: 2016 IEEE 12th International Conference on
Intelligent Computer Communication and Processing (ICCP), pp. 111–116 (2016)

4. Chiu, Y.H., Liao, C.F., Chen, K.: Transparent web of things discovery in con-
strained networks based on mDNS/DNS-SD. In: 2021 International Conference on
Platform Technology and Service (PlatCon), pp. 1–6. IEEE (2021)

5. Chun, S., Seo, S., Oh, B., et al.: Semantic description, discovery and integration
for the internet of things. In: Proceedings of the 2015 IEEE 9th International
Conference on Semantic Computing (IEEE ICSC 2015), pp. 272–275. IEEE (2015)

6. Cimmino, A., McCool, M., Tavakolizadeh, F., et al.: Web of Things (WoT) Dis-
covery. W3C working draft. In: World Wide Web Consortium (W3C), July 2022

7. Cirani, S., Davoli, L., Ferrari, G., et al.: A scalable and self-configuring architecture
for service discovery in the internet of things. IEEE Internet Things J. 1(5), 508–
521 (2014)

8. da Cruz, M.A.A., Rodrigues, J.J.P.C., et al.: A reference model for internet of
things middleware. IEEE Internet Things J. 5(2), 871–883 (2018)

9. Datta, S.K., Bonnet, C., Nikaein, N.: An IoT gateway centric architecture to pro-
vide novel m2m services. In: 2014 IEEE World Forum on Internet of Things (WF-
IoT), pp. 514–519. IEEE (2014)

10. Dawod, A., Georgakopoulos, D., Jayaraman, P.P., et al.: An IoT-owned service for
global IoT device discovery, integration and (re) use. In: 2020 IEEE International
Conference on Services Computing (SCC), pp. 312–320. IEEE (2020)

11. Del Gaudio, D., Hirmer, P.: Fulfilling the IoT Vision: Are We There Yet? In:
IoTBDS, pp. 367–374 (2020)

12. Demir, K.: A QOS-aware service discovery and selection mechanism for IoT envi-
ronments. Sādhanā 46(4), 1–13 (2021)

13. Djamaa, B., Kouda, M.A., Yachir, A., et al.: FetchioT: efficient resource fetching
for the internet of things. In: 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 637–643. IEEE (2018)

14. Dong, L., Ravindran, R., Wang, G.: ICN based distributed IoT resource discovery
and routing. In: 2016 23rd International Conference on Telecommunications (ICT),
pp. 1–7. IEEE (2016)

15. Dürr, F., Hönle, N., Nicklas, D., Becker, C., Rothermel, K.: Nexus - a platform for
context-aware applications. Roth, Jörg, editor 1, 15–18 (2004)

16. Evdokimov, S., Fabian, B., Kunz, S., et al.: Comparison of discovery service archi-
tectures for the Internet of Things. In: 2010 IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 237–244 (2010)

17. Fernandez, S., Amoretti, M., Restori, F., et al.: Semantic identifiers and DNS
names for IoT. In: 2021 International Conference on Computer Communications
and Networks (ICCCN), pp. 1–9. IEEE (2021)

42 J. Schneider and P. Hirmer

18. Gomes, P., Cavalcante, E., Batista, T., et al.: A semantic-based discovery service
for the internet of things. J. Internet Serv. Appl. 10(1) (2019)

19. Gomes, P., Cavalcante, E., Rodrigues, T., et al.: A federated discovery service for
the internet of things. In: Proceedings of the 2nd Workshop on Middleware for
Context-Aware Applications in the IoT, pp. 25–30 (2015)

20. Gubbi, J., Buyya, R., Marusic, S., et al.: Internet of things (IoT): A vision, architec-
tural elements, and future directions. Fut. Gene. Comput. Syst. 29(7), 1645–1660
(2013)

21. Guinard, D., Trifa, V., Karnouskos, S., et al.: Interacting with the SOA-based
internet of things: discovery, query, selection, and on-demand provisioning of web
services. IEEE Trans. Serv. Comput. 3(3), 223–235 (2010)

22. Guth, J., Breitenbücher, U., Falkenthal, M., et al.: Comparison of IoT platform
architectures: a field study based on a reference architecture. In: 2016 Cloudifica-
tion of the Internet of Things (CIoT), pp. 1–6. IEEE (2016)

23. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)

24. ITU: ITU-T Recommendation Y.2060: Overview of the Internet of things. Tech.
rep., International Telecommunication Union, June 2012

25. Khaled, A.E., Helal, S.: Interoperable communication framework for bridging rest-
ful and topic-based communication in IoT. Futur. Gener. Comput. Syst. 92, 628–
643 (2019)

26. Khodadadi, F., Dastjerdi, A.V., Buyya, R.: Simurgh: a framework for effective dis-
covery, programming, and integration of services exposed in IoT. In: 2015 Internat.
Conference on Recent Advances in Internet of Things, pp. 1–6. IEEE (2015)

27. Kim, S.M., Choi, H.S., Rhee, W.S.: IoT home gateway for auto-configuration and
management of MQTT devices. In: 2015 IEEE Conference on Wireless Sensors
(ICWiSe), pp. 12–17. IEEE (2015)

28. Klauck, R., Kirsche, M.: Bonjour contiki: a case study of a DNS-based discovery
service for the internet of things. In: Li, X.-Y., Papavassiliou, S., Ruehrup, S. (eds.)
ADHOC-NOW 2012. LNCS, vol. 7363, pp. 316–329. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31638-8 24

29. Kovatsch, M., Matsukura, R., Lagally, M., et al.: Web of Things (WoT) Archi-
tecture. In: W3c recommendation, World Wide Web Consortium (W3C), April
2020

30. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall, Hoboken (2005)

31. Li, J., Zaman, N., Li, H.: A decentralized locality-preserving context-aware service
discovery framework for internet of things. In: 2015 IEEE International Conference
on Services Computing, pp. 317–323. IEEE (2015)

32. Li, Z., Yao, J., Huang, H.: A CoAP-based decentralized resource discovery for IoT
network. In: 2021 6th International Conference on Communication, Image and
Signal Processing (CCISP), pp. 398–402. IEEE (2021)

33. Lunardi, W.T., de Matos, E., Tiburski, R., et al.: Context-based search engine for
industrial IoT: discovery, search, selection, and usage of devices. In: 2015 IEEE
20th Conference on Emerging Technologies & Factory Automation, pp. 1–8 (2015)

34. Madjarov, I., Slaimi, F.: A graph-based web services discovery framework for IoT
ecosystem. Open J. Internet of Things 7(1), 1–17 (2021)

https://doi.org/10.1007/978-3-642-31638-8_24

Enhancing IoT Platforms for Autonomous Device Discovery and Selection 43

35. Miorandi, D., Sicari, S., De Pellegrini, F., et al.: Internet of things: vision, appli-
cations and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

36. Nicklas, D., Mitschang, B.: On building location aware applications using an open
platform based on the nexus augmented world model. Softw. Syst. Model. 3(4),
303–313 (2004)

37. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing.
Commun. ACM 46(10), 24–28 (2003)

38. Papp, I., Pavlovic, R., Antic, M.: WISE: MQTT-based protocol for IP device pro-
visioning and abstraction in IoT solutions. Elektronika ir Elektrotechnika 27(2),
86–95 (2021)

39. Pêgo, P.R., Nunes, L.: Automatic discovery and classifications of IoT devices. In:
12th Iberian Conference on Information Systems and Technol. pp. 1–10. IEEE
(2017)

40. Pereira, E.M., Pinto, R., dos Reis, J.P.C., Gonçalves, G.: MQTT-RD: a MQTT
based resource discovery for machine to machine communication. In: IoTBDS, pp.
115–124 (2019)

41. Pourghebleh, B., Hayyolalam, V., Aghaei Anvigh, A.: Service discovery in the
internet of things: review of current trends and research challenges. Wireless Netw.
26(7), 5371–5391 (2020)

42. Raghu Nandan, R., Nalini, N., Hamsavath, P.N.: IoT-CBSE: a search engine for
semantic Internet of Things. In: Shetty, N.R., Patnaik, L.M., Nagaraj, H.C., Ham-
savath, P.N., Nalini, N. (eds.) Emerging Research in Computing, Information,
Communication and Applications. LNEE, vol. 789, pp. 265–271. Springer, Sin-
gapore (2022). https://doi.org/10.1007/978-981-16-1338-8 23

43. Riggs, C., Patel, J., Gagneja, K.: IoT device discovery for incidence response. In:
2019 Fifth Conference on Mobile and Secure Services, pp. 1–8. IEEE (2019)

44. Sharma, M., Pant, S., Kumar Sharma, D., et al.: Enabling security for the industrial
internet of things using deep learning, blockchain, and coalitions. Trans. Emerg.
Telecommun. Technol. 32(7), e4137 (2021)

45. Franco da Silva, A.C., Hirmer, P., Schneider, J., et al.: MBP: Not just an IoT
platform. In: 2020 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 1–3. IEEE (2020)

46. Soldatos, J., et al.: OpenIoT: open source internet-of-things in the cloud. In: Pod-
nar Žarko, I., Pripužić, K., Serrano, M. (eds.) Interoperability and Open-Source
Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13–25. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16546-2 3

47. Stirbu, V.: Towards a restful plug and play experience in the web of things. In:
2008 IEEE International Conference on Semantic Computing, pp. 512–517 (2008)

48. Sunthonlap, J., Nguyen, P., Wang, H., et al.: SAND: a social-aware and distributed
scheme for device discovery in the internet of things. In: 2018 Internat. Conference
on Computing, Networking and Communications (ICNC), pp. 38–42. IEEE (2018)

49. Tanganelli, G., Vallati, C., Mingozzi, E.: Edge-centric distributed discovery and
access in the internet of things. IEEE IoT J. 5(1), 425–438 (2017)

50. Transforma Insights: Global IoT market to grow to 24.1 billion devices in 2030,
generating $1.5 trillion annual revenue, May 2020. https://transformainsights.com/
news/iot-market-24-billion-usd15-trillion-revenue-2030. Accessed 2 July 2022

51. Vermesan, O., Friess, P.: Internet of Things: Converging Technologies For Smart
Environments and Integrated Ecosystems. River Publishers, Aalborg (2013)

https://doi.org/10.1007/978-981-16-1338-8_23
https://doi.org/10.1007/978-3-319-16546-2_3
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030

44 J. Schneider and P. Hirmer

52. Wang, R., Lu, J.: Qos-aware service discovery and selection management for cloud-
edge computing using a hybrid meta-heuristic algorithm in IoT. Wirel. Person.
Commun. pp. 1–14 (2021)

53. Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: IoT gateway: bridging wireless sen-
sor networks into internet of things. In: 2010 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing, pp. 347–352 (2010)

Serverless or Serverful? A Pattern-Based
Approach for Exploring Hosting

Alternatives

Vladimir Yussupov1(B), Uwe Breitenbücher1, Antonio Brogi2,
Lukas Harzenetter1, Frank Leymann1, and Jacopo Soldani2

1 Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

{yussupov,breitenbuecher,harzenetter,leymann}@iaas.uni-stuttgart.de
2 Department of Computer Science, University of Pisa, Pisa, Italy

{antonio.brogi,jacopo.soldani}@unipi.it

Abstract. Various cloud service models with different management
requirements can be used for hosting a certain application component.
For instance, more consumer-managed serverful options can be preferred
if a component has special requirements related to deployment stack
or scaling configuration management, whereas more provider-managed
serverless alternatives can be used if no customization is needed. How-
ever, finding a suitable hosting variant based on the deployment stack or
scaling configuration management requirements is cumbersome without
clear guidelines. In our previous work, we introduced a set of Compo-
nent Hosting Patterns that represent different management trade-offs
and can help finding suitable hosting options for a component to be
deployed. However, selecting the most appropriate pattern and explor-
ing which concrete deployment alternatives can be used to technically
realize the selected pattern was up to developers, thus, requiring con-
siderable expertise in provider-specific offerings. Therefore, in this work,
we (i) introduce four new complementary patterns representing abstract
deployment stack customization and scaling configuration management
decisions, which we (ii) combine with our Component Hosting Patterns
in a new pattern language. Moreover, we (iii) introduce a method that
supports application developers using the introduced pattern language as
well as refining selected patterns to concrete technical deployment stacks.
Finally, we (iv) show how the TOSCA modeling tool Eclipse Winery can
be used to support our new method.

Keywords: Application deployment · Hosting · Patterns · Pattern
language · Pattern refinement · Serverful · Serverless · Cloud computing

1 Introduction

Modern IT systems consist of various components, such as applications,
databases, or message queues, that can be hosted using different cloud ser-
vices that impose different management responsibilities on cloud consumers and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 45–67, 2022.
https://doi.org/10.1007/978-3-031-18304-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-18304-1_3

46 V. Yussupov et al.

provide diverse scaling configuration opportunities [37]. This variety of options
enables cloud consumers to select a certain hosting variant based on preferred
management trade-offs. For example, it is easier to customize the environment
for application components hosted on Infrastructure-as-a-Service (IaaS) offerings
than for components hosted on provider-managed Function-as-a-Service (FaaS)
platforms as special dependencies can be installed on virtual machines, but not
on FaaS platforms. At the same time, cloud consumers become responsible for
more management tasks, e.g., updating language runtimes, etc. Therefore, when
no customization is required for hosting and scaling a given component, choosing
a less consumer-managed offering can be preferable, i.e., hosting a small code
snippet on IaaS would incur unnecessary management and scaling configuration
overhead if simply a FaaS offering could be used for hosting and executing the
code. Here, this FaaS-based hosting is one example for serverless computing,
which focuses on developing applications hosted on provider-managed offerings
to simplify operational aspects and enable more fine-grained, utilization-based
billing [25]. As a result, the term serverless emphasizes a weaker role of process-
ing, storage, and network resources for cloud consumers as providers are respon-
sible for managing them, e.g., a provider-managed FaaS platform requires less
management efforts from cloud consumers than more serverful IaaS offerings.
However, answering our research question “How to select the most appropriate
hosting option for an application component to be deployed?" requires technical
expertise in the different variants, their benefits, and drawbacks.

To support decision making for finding a hosting variant based on desired
management responsibilities, in our previous work [37], we introduced the Com-
ponent Hosting Patterns, which provide solutions for frequently recurring prob-
lems regarding management trade-offs ranging from provider- to consumer-
managed aspects. The introduced patterns provide solutions for hosting applica-
tion components based on two management aspects: deployment stack and scal-
ing configuration management. The former aspect distinguishes hosting options
based on how much customization of the hosting environment is required, e.g.,
whether a general-purpose FaaS offering can be used to run a software compo-
nent or if a special runtime needs to be used, which typically results in using
virtual machines on IaaS. The latter aspect distinguishes hosting options based
on who is responsible for the scaling configuration of the hosting. For example,
the Serverless Hosting pattern describes that a component that requires no
special management customization and scaling configuration should be hosted
on a provider-defined deployment stack, e.g., a FaaS offering [37]. However, the
available cloud offerings are heterogeneous and often enable implementing vari-
ous hosting patterns, e.g., using different pricing modes in AWS offerings. Fur-
ther, there is currently no support for choosing a suitable hosting pattern based
on higher-level management decisions. Another issue is that selected patterns
need to be refined manually to concrete technical deployment stacks, which is
time-consuming and requires technical expertise.

In this paper we further expand on the topic of hosting patterns. Firstly, we
(i) introduce four new complementary patterns that represent decisions related
to customizability of deployment stacks and scaling configuration management.

Serverless or Serverful? A Pattern-Based Approach 47

Different combinations of these new patterns lead to specific hosting alterna-
tives represented as Component Hosting Patterns [37]. We also (ii) introduce
the Component Hosting and Management Pattern Language that intertwines the
new and previous patterns [37] together. Moreover, we (iii) present the Pattern-
based Deployment Stack Exploration Method, which guides developers in using
our pattern language, i.e., selecting a suitable pattern to host a certain compo-
nent. In addition, the method supports refining the selected pattern to a concrete
technical deployment stack, which can be used for deploying the component in
practice. Finally, we (iv) show (also including a video demonstration) how the
TOSCA modeling tool Eclipse Winery [24] can be configured and used to support
the method.

2 The Component Hosting and Management Pattern
Language

This section presents the new Component Hosting and Management Pattern Lan-
guage, which combines the Component Hosting Patterns introduced in our previ-
ous work [37] with four new complementary patterns related to deployment stack
and scaling configuration management, namely the Fixed Deployment Stack,
Customizable Deployment Stack, Consumer-managed Scaling Con-
figuration, and Provider-managed Scaling Configuration patterns. All
the presented patterns were captured by following the pattern identification and
authoring process by Fehling et al. [13].

2.1 Pattern Basics and Terminology

This subsection discusses the pattern basics and briefly recapitulates on the fun-
damental terminology presented in more details in our previous work [37]. Pat-
terns document proven solutions for problems reoccurring in specific contexts [1].
They are documented abstractly following a well-defined structure to enable solv-
ing multiple distinct problem instances. Pattern languages, e.g., Enterprise Inte-
gration Patterns [19] or Microservice Patterns [33], often group patterns from a
certain domain and enable navigating between them using semantic links to also
help solving potentially interconnected problems [12]. In this work, the patterns
are structured following the best practices employed by researchers and practi-
tioners [1,5,6,9,14,33,35]. Each pattern has a name and an icon to facilitate its
memorability. Each pattern documents the problem it solves and the initial con-
text in the eponymous paragraphs. The forces paragraph describes factors char-
acterizing the problem and the solution paragraph presents an abstract solution
with a graphical solution sketch. One or more simple examples of the pattern
are presented in the example paragraph, while the result paragraph discusses the
resulting context after the pattern is applied. Finally, the known uses paragraph
presents three or more real-world occurrences of the pattern [6]. Next, to estab-
lish a clear vocabulary for patterns, we discuss core terms related to application
hosting based on our previous work [37]:

48 V. Yussupov et al.

Application and Software Component: An application interconnects
general-purpose and application-specific software components [7,26] to provide
a specific business functionality [26]. While general-purpose components pro-
vide general functionalities, e.g., a web server, application-specific components
implement the business logic, e.g., a Java-based e-commerce component. Soft-
ware components are run on certain infrastructure, i.e., processing, storage, and
network resources [28].

Hosting Requirements and Capabilities: To run a software component,
certain hosting requirements must often be fulfilled, e.g., a compatible Java
Runtime Environment (JRE) is needed for a Java application. Hosting capa-
bility represents an ability to host a component, e.g., an operating system can
host a JRE, whereas a NoSQL database is not capable to do so. Components
can be stacked on top of each other when respective hosting requirements and
capabilities match.

Java11 Applica on

Compa ble Stack#1

Container

AWS ECS

JRE 11

AWS
Lambda

JRE 11

Alpine Linux
VM

JRE 8

Ubuntu Linux

AWS EC2
Incompa ble Stack

Req: JRE11

Cap: JRE8
alterna ves

VM

JRE 8

Ubuntu Linux

AWS EC2

Cap: JRE11 Cap: JRE11

Compa ble Stack#2

Cap: JRE11

Compa ble
Stack#3

Fig. 1. Example deployment stacks for a Java 11 Application

Deployment Stack: A deployment stack is a combination of software compo-
nents and infrastructure, i.e., processing, storage, and network resources, needed
to run a given software component. Multiple deployment stacks can host the
same software component, e.g., a Java application can be hosted on a FaaS plat-
form or using IaaS offerings. Figure 1 shows one invalid and three valid deploy-
ment stacks for a Java 11 Application using Amazon services. The incompatible
deployment stack only provides a JRE 8 hosting capability, thus it cannot host
a Java 11 application. The Compatible Stack #1 relies on AWS EC2 (IaaS)
which enables installing the JRE 11 on the chosen virtual machine. Compatible
Stack #2 enables installing the required JRE as a part of the container run-
ning on the provider-managed container engine. Compatible Stack #3 is mainly
AWS-managed: cloud consumers select a compatible stack that supports Java 11.
The management efforts needed to deploy the component vary since deployment
stacks can comprise provider- or consumer-managed components.

Consumer-Managed Component: A component in a deployment stack
is consumer-managed if cloud consumers are responsible for installing,

Serverless or Serverful? A Pattern-Based Approach 49

configuring, and managing its dependencies. For example, the JRE in the Com-
patible Stack #2 in Fig. 1 is a part of container hosted on AWS ECS: while
the underlying container engine is provider-managed, the JRE is installed and
configured by the cloud consumer.

Provider-Managed Component: A component in a deployment stack is
provider-managed if cloud providers are responsible for managing it. For
instance, a JRE in Platform-as-a-Service (PaaS) is provider-managed since the
provider is responsible for installing and configuring the deployment stack includ-
ing the runtime itself.

Scaling Configuration: Scaling configuration is a combination of component’s
scaling rules (for horizontal and vertical scaling) and the amount of infrastructure
resources required for hosting a software component. Scaling configuration can
be consumer-managed or provider-managed, e.g., cloud consumers need to define
the virtual machine size and scaling rules in the Compatible Stack #1 in Fig. 1,
whereas in the Compatible Stack #3 the provider is responsible for allocating
resources and scaling.

2.2 From the Component Hosting Patterns Catalog to a Pattern
Language

The Component Hosting Patterns introduced in our previous work [37] aim to
facilitate finding component hosting options based on preferred combinations of
two management aspects: (i) who (cloud provider or cloud consumer) is respon-
sible for managing the deployment stack and (ii) who is responsible for manag-
ing the scaling configuration as shown in Fig. 2. The Serverful Hosting and

Cloud Provider

Serverful
Hosting

Consumer-managed
Container Hosting

Provider-managed
Container Hosting

Serverless
Hosting

Customizable
Deployment Stack

Fixed Deployment
Stack

Provider-managed
Scaling Configuration

Component Hosting

Sc
al

in
g

Co
nf

ig
ur

at
io

n
M

an
ag

em
en

t

Provider-defined
Stack Hosting

Deployment Stack Management

Consumer-managed
Scaling Configuration

Fig. 2. Spectrum of component hosting patterns [37] (grey) and new patterns (black)

50 V. Yussupov et al.

Serverless Hosting patterns [37] represent two extremes related to stronger
or weaker control retained by cloud consumers, respectively. Hosting options in-
between, therefore, represent different trade-offs based on the combination of
aforementioned management aspects.

However, in our previous work, we did not treat the two high-level man-
agement dimensions, viz., (i) deployment stack management and (ii) scaling
configuration management, independently. We instead combined them implic-
itly by each of the Component Hosting Patterns, although they actually exist
separately from each other. For instance, in Fig. 2, it can also be observed that
choosing a more consumer-managed deployment stack might be preferable if a
component’s environment needs to be customized, independently of who man-
ages the scaling configuration. Therefore, in this work, we formulate these two
independent management dimensions also as individual patterns which repre-
sent solutions related to only one management dimension and which are linked
semantically with the existing Component Hosting Patterns that support them.
As a result, selecting one pattern on each management dimension leads to a
Component Hosting Pattern that supports both selected patterns. Please note
that the combination of consumer-managed solutions in fact leads to two possi-
ble Component Hosting Patterns representing different kinds of virtualization,
with container-based virtualization being a more lightweight option. The actual
choice of the virtualization type may depend on various factors, such as virtual-
ization and integration mechanisms employed for already existing components.
For example, choosing a stack for new components in microservice-based appli-
cations running on a container orchestrator can shift the decision towards the
container-based virtualization. Therefore, our new patterns have semantic links
to the Component Hosting Patterns, which are typical qualities of a pattern lan-
guage [12]. We explicitly capture these links by presenting how the Component
Hosting Patterns and the newly-introduced patterns form a pattern language,
which we refer to as the Component Hosting and Management Pattern Language.

2.3 Component Hosting Patterns Category: A Brief Recapitulation

In this subsection, we provide a brief summary of each pattern of the Component
Hosting Patterns catalog, which we introduced in our previous work [37].

Serverful Hosting Pattern: Cloud consumers need to retain control
over both, deployment stack and scaling configuration management.
Host software components on deployment stacks primarily managed
by cloud consumers, e.g., use bare metal cloud offerings such as IBM Bare Metal
Servers [21] or IaaS offerings such as AWS EC2 [2] that enable customizing
installed components and managing scaling configuration based on individual
needs [37].

Consumer-Managed Container Hosting Pattern: Cloud con-
sumers need to customize the component’s environment and con-
trol the scaling configuration management. Host software components
using provider-managed container engines or container orchestrators such as

Serverless or Serverful? A Pattern-Based Approach 51

Azure Kubernetes Service [29] that allow cloud consumers to customize the envi-
ronment via container images and manage scaling configuration by defining the
cluster size and configuring scaling rules [37].

Provider-Managed Container Hosting Pattern: Cloud con-
sumers need to customize the component’s environment without spe-
cific scaling configuration requirements. Host software components on
a deployment stack with provider-managed container engines that do not require
cloud consumers to manage scaling configuration, e.g., Google CloudRun [15]
scales containers automatically [37].

Provider-Defined Stack Hosting Pattern: Cloud consumers need
to host software components on any compatible deployment stack and
control the scaling configuration management. Host software compo-
nents on a provider-defined deployment stack that enables consumer-managed
scaling configuration, e.g., a pre-defined Java runtime on AWS Beanstalk [2]
with configurable auto-scaling rules [37].

Serverless Hosting Pattern: Cloud consumers need to host soft-
ware components on any compatible deployment stack and without
specific scaling configuration requirements. Host software components
on a provider-defined deployment stack which is compatible with the given com-
ponent and does not require cloud consumers to manage the scaling configura-
tion, e.g., Python functions hosted on a predefined deployment stack on IBM
Cloud Functions [21] and automatically scaled by the platform or a database
table hosted on AWS DynamoDB [2,37].

2.4 Deployment Stack Management Category

In this section, we present the second category of our pattern language that
contains two new patterns. The motivation for this category is distinguishing
whether software components should be hosted on a combination of infrastruc-
ture and software components that need to be customized by executing custom
configuration tasks. Thus, we introduce the Fixed Deployment Stack and
the Customizable Deployment Stack patterns that focus on the deploy-
ment stack customization: the former pattern is suitable for cases when no cus-
tomization is needed and any compatible deployment stack can be employed,
whereas the latter pattern can be applied in cases when a to-be-hosted compo-
nent requires custom configuration of the underlying deployment stack.

The Fixed Deployment Stack Pattern

Problem: “How to host a software component that requires no
special underlying infrastructure or customization of the host
environment it is running on? ”

Context: A software component needs to be hosted on a deployment stack, but
there is no need for special customization of the stack by adding, removing, or
changing components in it or configuring it in a special way.

52 V. Yussupov et al.

Forces: Cloud service models require different management efforts for the under-
lying deployment stack, e.g., hosting a component on a FaaS platform requires
less management efforts than hosting it on a consumer-managed virtual machine
on IaaS where the consumer has to take care of installing patches. Frequently,
only the common dependencies are needed for to-be-deployed components, e.g.,
a Java application without specific customization requirements or a standard
relational database.

Solution: Host a software component on a Fixed Deployment Stack for
which the cloud provider is responsible for setting up, configuring, and main-
taining all infrastructure, execution environment, and middleware components
needed to host and execute the given component. For instance, PaaS offerings
can be used to host components on provider-defined deployment stacks, e.g., by
providing a Java runtime of a specific version. Also serverless Database-as-a-
Service (DBaaS) offerings are examples for this pattern since they can provide a
specific version of the database without the need for the consumer to manage the
underlying software dependencies. Hence, consumers can directly host software
components on chosen provider-managed offerings without the need to config-
ure or customize any components in the underlying stack. Figure 3a shows the
solution sketch for this pattern that illustrates how a to-be-hosted software com-
ponent is hosted on a compatible deployment stack defined by a cloud provider.

Examples: Fig. 3b and Fig. 3c show examples of the Fixed Deployment
Stack pattern for hosting different kinds of components. The component “My
Java App" in Fig. 3b is hosted using a fixed, provider-defined stack: AWS
Lambda is a serverless FaaS platform that enables choosing a specific Java
runtime version to host the application. Another example is a NoSQL collec-
tion created using AWS DynamoDB, a MongoDB-compatible DBaaS offering as
shown in Fig. 3c. In both cases, instead of setting up all dependencies required
for running the respective component, cloud consumers simply select the desired
functionality from a list of provider-defined options.

Software Component

Hosting Component

Infrastructure Resources

a) Solution sketch

Hosting
Relationship

Non-customizable
Stack Component

To-be-hosted
Component

b) Example 1

My Java App

AWS Lambda

JRE 11

My Collection

AWS DynamoDB

Fixed Deployment
Stack on FaaS

Fixed Deployment
Stack on DBaaSFixed Deployment Stack

c) Example 2

Fig. 3. Fixed deployment stack pattern: solution sketch and examples

Serverless or Serverful? A Pattern-Based Approach 53

Result: When applied, this pattern enables hosting components without any
additional configuration since deployment stack customization is not required.
This enables reducing the amount of deployment stack management efforts. How-
ever, changing such deployment stacks to other offerings could result in extra
effort due to higher degree of lock-in with provider-specific services. For example,
implementation and configuration of components becomes more provider-specific
due to the usage of service-specific libraries, formats, packaging and configura-
tion requirements [36].

Known Uses: The Fixed Deployment Stack pattern is implemented by
various provider-managed service offerings. For example, PaaS offerings such as
AWS Beanstalk [2] or Azure App Service [29] can be used to host the business
logic on provider-defined stacks. Further, serverless FaaS offerings such as AWS
Lambda and Azure Functions [29], or serverless DBaaS offerings such as AWS
S3 [2] and IBM Cloud Databases for Redis [21] enable hosting components on
provider-defined stacks that require no management responsibilities for the cloud
consumer.

The Customizable Deployment Stack Pattern

Problem: “How to host a software component when it requires
customization of the underlying infrastructure or the host envi-
ronment it is running on? ”

Context: A software component needs to be hosted such that cloud consumers
are able to customize the underlying deployment stack with possibly nested
software layers by adding, removing, or changing components in it or configuring
the stack in a special way.

Forces: Cloud service models vary in modifiability of the underlying deployment
stack, e.g., it is possible to install additional software on a virtual machine hosted
using IaaS offerings, whereas FaaS offerings hide the underlying deployment stack
to enable consumers deploying their applications without the need for technical
expertise about underlying components. However, customization requirements

Software
Component

Hosting Operating System

Infrastructure
Resources

Infrastructure
Resources

alternatives

a) Variant 1

Container Engine

Infrastructure
Resources

Container

Software
Component

Hosting Component

Dependency Z Dependency Z

Hosting
Relationship

Fixed Stack
Component

To-be-hosted
Component

Customizable
Stack Component

b) Variant 2

Container Engine

Infrastructure
Resources

alternatives

Fig. 4. Solution sketch for the Customizable Deployment Stack pattern

54 V. Yussupov et al.

My Java App

JRE 11

Ubuntu 18.04 VMs

Openstack AWS EC2

alternatives AWS EKS

Cluster of AWS EC2 VMs

Container

My Java App

JRE 11

Alpine Linux

Sidecar App
dependency

Sidecar App
dependency

Hosting
Relationship

Fixed Stack
Component

To-be-hosted
Component

Customizable
Stack Component

a) Example 1 b) Example 2

Fig. 5. Examples for the customizable deployment stack pattern

for hosting a component can arise due to various reasons, e.g., legacy applications
that have special dependencies to other software components that need to run
in the same operating system. Another example is a side car [4] that needs to
be installed along with the component.

Solution: Host software components on a Customizable Deployment Stack
in which the cloud consumer is responsible for setting up and configuring the
infrastructure, execution environment, and middleware components needed to
host the given software component. Hence, for a given software component,
the cloud consumer can install and configure hosting components with required
dependencies completely as required by the component to be deployed. The Cus-
tomizable Deployment Stack has two variants: Fig. 4a shows the first vari-
ant, which supports customizing the physical or virtual machine the component
is running on. For example, software can be deployed on a physical machine, thus,
enabling full customization of all infrastructure components. However, especially
in the cloud, provisioning virtual machines and installing software on top of them
with all required dependencies is a more common example for this variant. The
second variant shown in Fig. 4b is based on containers, which can be customized
regarding the software and its dependencies that must be installed.

Examples: Figure 5 shows concrete examples of applying the Customizable
Deployment Stack for a Java application (“My Java App”) that requires a
custom sidecar implementation hosted in the same local environment. In Fig. 5a
the deployment is realized in a virtual machine that enables installing the Java
application together with the sidecar, while in Fig. 5b both components are run-
ning inside a container. Both examples of the pattern enable customization on
the operating system level.

Result: If the first variant is used, even physical infrastructure can be cus-
tomized if necessary—however, especially in a public cloud, typically virtual
machines are used, which means that properties of the VM and everything that
runs on the operating system can be customized. In contrast, if containers are
used as shown in the second variant, the customization opportunities are more
restricted.

Serverless or Serverful? A Pattern-Based Approach 55

Known Uses: The Customizable Deployment Stack pattern is imple-
mented by various technologies and offerings, e.g., bare metal offerings such as
IBM Cloud Bare Metal Servers [21], as well as virtualized IaaS offerings such
as AWS EC2 [2] or Azure IaaS [29]. Further, the pattern is also implemented
in container-centric services such as Azure Kubernetes Service [29] and AWS
Fargate [2].

2.5 Scaling Configuration Management Category

Especially in cloud computing, automated scaling of software components is
a key feature. However, components may also need to be hosted on deploy-
ment stacks requiring special scaling configuration. In this section, we introduce
the Provider-managed Scaling Configuration and Consumer-managed
Scaling Configuration patterns that focus on scaling configuration man-
agement: the former pattern is relevant when no specific scaling configuration
management is needed, whereas the latter can be used when a to-be-hosted
component requires custom scaling configuration management.

The Provider-Managed Scaling Configuration Pattern

Problem: “How to host a software component that needs to be
scaled horizontally but requires no special scaling configuration? ”

Context: A software component needs to be hosted on a deployment stack for
which cloud consumers do not have special requirements regarding the horizontal
scaling behavior, i.e., they want to rely on the provider’s default autoscaling
mechanism.

Forces: Cloud offerings vary in degrees of control cloud consumers have over
the underlying scaling configuration. For instance, many offerings only require
specifying the underlying infrastructure resources in virtual memory and CPU
values, without the need to know how many virtual machines are needed in
advance, while other offerings may require managing scaling configuration explic-
itly. Often, more provider-managed services do not require manual specification
of scaling configuration at all, e.g., AWS Lambda or AWS S3 are auto-scaled
by default. Moreover, the underlying offerings often do not incur extra licensing
costs, e.g., purchasing a number of licenses for a messaging middleware, which
makes reduced scaling configuration management more favorable.

Solution: Host software components on a deployment stack that supports
Provider-Managed Scaling Configuration, which means that the cloud
providers are mainly responsible for the specification of the underlying infras-
tructure resources and scaling rules. The solution sketch in Fig. 6a shows the
high-level idea of the pattern: A software component is hosted on a deployment
stack with blurred infrastructure boundaries represented using virtual resource
values. Furthermore, horizontal scaling rules are mainly managed by providers
and are not intended to be changed by cloud consumers, therefore, enabling only
few or no customization at all.

56 V. Yussupov et al.

Virtual Resources

So ware Component
a) Solu on sketch b) Example 1

My Java App

JRE 11

min size max size
Scaling rules

AWS Lambda

My Bucket

AWS S3

c) Example 2

Hos ng
Rela onship

Provider-specified
Infrastructure Boundaries

To-be-hosted
Component

Fig. 6. Provider-managed acaling configuration pattern: solution sketch and examples

Examples: The examples shown in Fig. 6 depict two different kinds of compo-
nents hosted on AWS-based deployment stacks that implemented the pattern.
The examples deal with the required amounts of virtual resources for hosting
a Java application (Fig. 6b) and an object storage bucket (Fig. 6c), while the
corresponding horizontal scaling rules are managed completely by the provider:
AWS Lambda functions are automatically scaled including scale to zero instances
when the function execution completes, and on the other side, AWS S3 buckets
also do not require specifying any scaling rules.

Result: When applied, this pattern simplifies the specification of infrastruc-
ture resource requirements and scaling rules. Hosting components on deploy-
ment stacks that support this pattern can be preferable when no specific scaling
behavior is needed. This pattern can be combined with both the Fixed as well
as with the Customizable Deployment Stack patterns to flexibly combine
management decisions.

Known Uses: The Provider-Managed Scaling Configuration pattern
is supported by multiple offerings. For example, the pattern is supported by
various FaaS offerings such as AWS Lambda [2] or Azure Functions [29]. Also
provider-managed container offerings such as Google CloudRun [15] enable spec-
ifying virtual resources and automatically scale container instances based on the
number of requests. Serverless storage offerings such as AWS DynamoDB [2] and
Azure Blob Storage [29] also support the Provider-Managed Scaling Con-
figuration pattern as no explicit specification of the infrastructure resources
and scaling rules are required.

The Consumer-Managed Scaling Configuration Pattern

Problem: “How to host a software component that needs to be
scaled horizontally while also requiring a tailored scaling config-
uration? ”

Context: A software component needs to be hosted on a deployment stack
for which cloud consumers can explicitly specify the underlying infrastructure

Serverless or Serverful? A Pattern-Based Approach 57

resources and retain a high level of control over the horizontal scaling rules, e.g.,
the size of virtual machine clusters and the desired autoscaling rules for it.

Forces: Cloud service offerings differ in how scaling configuration is man-
aged. For instance, some services require specifying the infrastructure resources,
i.e., decide on virtual machine images and number of instances, whereas more
provider-managed services abstract away resources to memory and virtual
CPU values. The configuration of horizontal scaling behavior also differs. More
provider-managed services, e.g., AWS Lambda or AWS S3, are often auto-scaled
and require no manual specification of scaling rules. In contrast, more consumer-
managed services, e.g., AWS EC2 or Azure EKS, are more customizable. In
addition, consumers may only have a limited number of available licenses for a
software, hence requiring to manage that exact number of instances.

Solution: Host software components on a deployment stack that supports
Consumer-Managed Scaling Configuration, which means that cloud con-
sumers retain more control over the specification of the underlying infras-
tructure resources and horizontal scaling rules. The solution sketch in Fig. 7a
shows a high-level view of the Consumer-Managed Scaling Configura-
tion pattern: a software component is hosted on a deployment stack with explic-
itly defined infrastructure boundaries and consumer-managed horizontal scaling
rules. If this pattern is applied, the corresponding deployment stacks provide
more transparency for cloud consumers with regard to specific aspects of scaling
configuration such as explicitly defining the desired infrastructure boundaries
and having more control over the horizontal scaling rules.

Examples: The example shown in Fig. 7b depicts a deployment stack on AWS
Beanstalk [2] that supports the Consumer-Managed Scaling Configura-
tion pattern. Cloud consumers can select the desired virtual machine images
for a given Java application component and specify the horizontal scaling rules.
Other consumer-managed services, e.g., bare-metal, IaaS, or container orches-
tration offerings, often provide more fine-grained control over the scaling config-
uration since cloud consumers can explicitly decide on the type and amount of
the underlying infrastructure resources.

Software Component

VM

a) Solution sketch b) Example

My Java App

AWS Beanstalk

JRE 11

AWS EC2 (t2.micro)

min size max size

Scaling rules

Hosting
Relationship

Explicitly-specified
Infrastructure Boundaries

To-be-hosted
Component

min size = 1 max size = 3

Fig. 7. Consumer-managed scaling configuration: solution sketch and example

58 V. Yussupov et al.

Result: When applied, this pattern enables explicitly specifying the infrastruc-
ture resource boundaries for the underlying deployment stack in terms of the
amount and flavor of the virtual machines as well as providing more control
over the horizontal scaling rules customization. The actual scaling configuration
is service-specific and depends on the specific service type, e.g., defining auto-
scaling rules for container orchestration services such as the Azure Kubernetes
Service differs from configuring autos-scaling rules for PaaS offerings such as
AWS Beanstalk. This pattern can be combined with both the Fixed and the
Customizable Deployment Stack patterns, which enables flexibly combin-
ing management decisions when choosing hosting options.

Known Uses: The Consumer-Managed Scaling Configuration pattern
is supported by a variety of service offerings. For example, consumer-managed
scaling configuration can be achieved using bare-metal and IaaS offerings such
as IBM Cloud Bare Metal Servers [21], AWS EC2 [2], and Azure IaaS [29].
Container orchestration services such as Azure Kubernetes Service [29] or AWS
Elastic Kubernetes Service [2] also enable explicitly defining the size of the clus-
ter and the horizontal scaling rules for the to-be-hosted containers. Additionally,
some existing PaaS offerings such as AWS Beanstalk support the Consumer-
managed Scaling Configuration pattern to some degree, e.g., by enabling
cloud consumers to specify exact numbers of instances and providing finer-
grained control over horizontal scaling rules.

2.6 The Pattern Language Graph

Figure 8 shows the Component Hosting and Management Pattern Language that
organizes the new and previously-introduced patterns into three categories and
semantically connects them. Two patterns in the Deployment Stack Management
category, i.e., Fixed Deployment Stack and Customizable Deployment
Stack, represent solutions to stack customization issues. The Fixed Deploy-
ment Stack pattern represents a component hosting on a deployment stack
that cannot be customized, e.g., to reduce the needed management efforts when
no customizations are required. This pattern can be refined into two Component
Hosting Patterns, namely Provider-defined Stack Hosting and Server-
less Hosting patterns. Conversely, when customization of the deployment stack
is a requirement, the Customizable Deployment Stack pattern can be used,
e.g., to enable adding or removing specific software dependencies and manag-
ing scaling configuration for chosen components. In its turn, this pattern can
be refined into the Serverful Hosting, Consumer-managed Container
Hosting, or Provider-managed Container Hosting patterns.

Furthermore, both Fixed Deployment Stack and Customizable
Deployment Stack can support different styles of scaling configuration:
consumer-managed, expressed via the Consumer-managed Scaling Con-
figuration pattern, and provider-managed, expressed via the Provider-
managed Scaling Configuration pattern, both of which belong to the Scal-
ing Configuration Management category. Thus, if patterns from the different

Serverless or Serverful? A Pattern-Based Approach 59

Consumer-
managed

Scaling
Configuration

Fixed
Deployment

Stack

Customizable
Deployment

Stack
Serverful Hosting

Consumer-managed
Container Hosting

Provider-managed
Container Hosting

Provider-defined
Stack Hosting

Serverless Hosting

supported
by

Provider-
managed

Scaling
Configuration

supported
by

supported
by

supported
by

Pattern
Relation

Pattern
Name

Existing
Pattern

Pattern
Name

New
Pattern

Legend:

Deployment Stack
Management

Scaling
Configuration
Management

Component Hosting

ca
n

su
pp

or
t

Fig. 8. Overview of the Component Hosting and Management Pattern Language

two new categories are combined, suitable deployment stack options from the
Component Hosting Patterns category reduce in number, e.g., a combination
of Fixed Deployment Stack and Provider-Managed Scaling Config-
uration leads to exactly one pattern, the Serverless Hosting pattern. As
a result, pattern combinations from the Component Hosting and Management
Pattern Language can help finding component hosting options based on both, the
desired customizability of the deployment stack and preferred scaling trade-offs.

3 A Pattern-Based Deployment Stack Exploration
Method

This section introduces the Pattern-based Deployment Stack Exploration Method
to simplify the search for concrete technical deployment stacks to deploy a cer-
tain component using our pattern language from Sect. 2. Here, a concrete tech-
nical deployment stack means a detailed description of the stack that specifies
(i) the technical components required, (ii) their dependencies, and (iii) their
configurations. Thus, such a stack provides all technical details for a declarative
deployment model [9] executable by a deployment automation technology such
as AWS CloudFormation or TOSCA Orchestrators.

3.1 Overview of the Method

The basic idea of the method is to use our patterns when creating a deployment
model: For each component, the developer selects appropriate patterns from our
language, which are then semi-automatically refined by the method-enabling
tooling to propose possible technical realizations of the patterns, i.e., concrete
technologies, services offerings, and the corresponding configurations that form
a concrete technical deployment stack.

60 V. Yussupov et al.

Selected
Component

Management
Requirements

Select
Component

1 Refine to
Component

Hosting
Patterns

3Specify
Management-

Related
Patterns

2
Use Stack in

a Deployment
Model

Concrete Technical
Deployment Stack

Explore Concrete
Technical

Deployment Stacks

4

Component Hosting
Requirements

5

repeat for other components or hosting alternatives

Fig. 9. Pattern-based Deployment Stack Exploration Method

An overview of the steps is depicted in Fig. 9. To explore possible deploy-
ment stacks, the type of component to be hosted needs to be selected in Step 1
since hosting alternatives vary for different component types. In Step 2, desired
patterns from the Deployment Stack Management and Scaling Configuration
Management categories of our Component Hosting and Management Pattern
Language are used to specify the Management Requirements from these two
management dimensions: The component to be hosted is combined with (i) either
the Customizable or Fixed Deployment Stack pattern from the Deploy-
ment Stack Management category to represent stack customization require-
ments, and/or with (ii) either the Provider- or Consumer-managed Scaling
Configuration pattern from the Scaling Configuration Management category
to specify the desired scaling configuration requirements. In Step 3, the selected
patterns are refined to Component Hosting Requirements, which are represented
by the patterns from the Component Hosting category, e.g., to the Serverless
Hosting pattern. This transition is achieved by refining the combination of com-
ponent type and Deployment Stack Management as well as Scaling Configuration
Management patterns into exactly one Component Hosting pattern by using the
links in our pattern language shown in Fig. 8. The resulting Component Hosting
pattern is refined in Step 4 to a concrete technical deployment stack options
that realizes the semantics of the pattern for the specified component type to
be deployed. As a result, developers can discover suitable options that fulfill the
characteristics of selected patterns by iteratively refining their abstract require-
ments into technical deployment stacks. After a suitable hosting alternative is
chosen, in Step 5 the technical deployment stack can be used in deployment
modeling and the same process can be repeated for other components.

3.2 Application Examples of the Method

Figure 10 shows examples of our method applied to different component types.
The transition for a component selected in Step 1 can happen between three
different layers, namely (i) Management Requirements Layer, (ii) Component
Hosting Requirements Layer, and (iii) Technical Deployment Stack Alterna-
tives Layer. The Management Requirements Layer corresponds to Step 2 of our
method and represents general requirements on customizability of the deploy-
ment stack and scaling configuration management for a given component: By
hosting components on the Customizable Deployment Stack or Fixed

Serverless or Serverful? A Pattern-Based Approach 61

PHP
App

Layer 1: Management Requirements

Hosting
Relation

PHP AppMessage
QueueJava App

Object Storage
Bucket Java App Message

Queue PHP App

Object
Storage
Bucket

AWS S3

AWS S3
Bucket

Object Storage
Bucket

Azure Blob
Storage

Azure Blob
Container

Layer 2: Component Hosting Requirements

Layer 3: Technical Deployment Stack Alternatives

AWS
Lambda

Java App

Azure
Functions

Java App

……
Amazon

MQ

MQ
Queue

IBM MQ
on Cloud

MQ
Queue

…
Apache

Webserver

Ubuntu VM

AWS EC2

PHP App

Apache
Webserver

Debian VM

OpenStack

PHP App

…

Object
Storage
Bucket

Provider-defined
Stack Hosting

Serverful
Hosting

Consumer-managed
Container Hosting

Provider-managed
Container Hosting

Serverless
Hosting

Legend:

PHP
App

PHP
AppJava App Message

Queue

Customizable
Deployment
Stack
Fixed
Deployment
Stack

Provider-
managed Scaling
Configuration
Consumer-
managed Scaling
Configuration

Fig. 10. Examples of Pattern-based Deployment Stack Exploration Method

Deployment Stack patterns, modelers can express their stack customiza-
tion preferences, while by annotating components with the Provider-managed
Scaling Configuration or Consumer-managed Scaling Configuration
patterns, modelers can express scaling configuration management requirements.
For example, Fig. 10 shows a Java Application component that requires no cus-
tomization and the PHP Application component that requires a customizable
deployment stack. Thus, in the Management Requirements Layer, these com-
ponents are associated with different patterns, namely the Fixed Deploy-
ment Stack and Provider-managed Scaling Configuration for the Java
Application, and the Customizable Deployment Stack pattern for the PHP
Application.

The Component Hosting Requirements Layer corresponds to Step 3. Here,
modelers can explore hosting options with respect to their preferences. By using
the pattern relations shown in Fig. 8, each previously-specified pattern or their
combination can be refined into a more specific Component Hosting Pattern.
For example, the Fixed Deployment Stack pattern can be refined into the
Provider-defined Stack Hosting pattern that enables consumer-managed

62 V. Yussupov et al.

scaling configuration, or the Serverless Hosting pattern in which the scaling
configuration is provider-managed. At this stage, the refined model represents a
hosting solution that satisfies the expressed trade-offs between deployment stack
and scaling configuration management.

Finally, the Technical Deployment Stack Alternatives Layer corresponds to
Step 4 of Fig. 9. Modelers can explore concrete technical deployment stack
options that implement the combination of to-be-deployed component and
refined Component Hosting pattern from the previous layer. For example, the
Serverless Hosting pattern for the Java Application component can be
refined into a deployment stack based on a provider-managed FaaS platform,
e.g., AWS Lambda or Azure Functions. Similarly, the PHP Application that is
hosted on the Serverful Hosting pattern can be refined into a deployment
stack based on the IaaS offerings, e.g., AWS EC2 [2].

3.3 Tool Support for the Method

In this section, we demonstrate how the exploration of concrete technical deploy-
ment stacks for a given combination of a component to be deployed and pat-
terns from our pattern language can be automated based on the TOSCA stan-
dard [31] and the open source TOSCA modeling tool Eclipse Winery [24]. The
TOSCA specification is an OASIS standard that defines a metamodel for declar-
ative deployment models, i.e., graph-based models in which the vertices repre-
sent software components and the edges between them represent their relation-
ships [9,31]. A goal of TOSCA is that such declarative deployment models can
then be automatically executed by a TOSCA Orchestrator [31].

Eclipse Winery is an open-source TOSCA modeling tool that enables graph-
ically creating declarative deployment models in TOSCA. In previous works, we
extended Winery to support TOSCA-based Pattern-based Deployment and Con-
figuration Models [16,17] that enable (i) using patterns as abstract components
and (ii) annotating components with patterns to specify their behavior. Winery
also supports the automatic refinement of such pattern-based models into con-
crete, executable deployment models using so-called Pattern Refinement Models
(PRM) [16,17]. Each PRM defines (i) a detector, which is a small deployment
model fragment that describes a combination of components and patterns that
can be refined by the PRM, and (ii) a refinement structure that describes a con-
crete refinement into a technical deployment model fragment. PRMs can be used
iteratively in Winery to find their detectors in pattern-based deployment mod-
els and to replace their parts matching the detectors with their corresponding
refinement structures.

Therefore, Winery and its pattern-based modeling features can be used to
enable our method in practice. For example, a pattern-based model on the
left of Fig. 11 describes a Java Application that needs to be hosted on the
Fixed Deployment Stack pattern and its scaling behavior must follow the
Provider-managed Scaling Configuration pattern. This could be the
result of a developer’s modeling using Winery. Winery can then be used to find

Serverless or Serverful? A Pattern-Based Approach 63

Java
App

Java App

Azure
Functions

Refinement StructureDetector

Java
App

Java
App

Apply PRM 2Apply PRM 1
Java App

Java
App

Java
App

Azure
Functions

Detector Refinement Structure

PR
M

 1

PR
M

 2

Fig. 11. Transitioning between the different modeling layers using Eclipse Winery [24]
and the pattern refinement approaches introduced by Harzenetter et al. [16,17]

possible refinements of this model by automatically iterating over PRMs avail-
able in Winery’s repository and finding matching detectors. PRM1 in Fig. 11
is applicable as it defines the modeled combination of Java Application and
the two patterns as detector. This PRM1 enables refining the created model
into a more concrete fragment, i.e., a Java Application hosted on the Server-
less Hosting pattern that exactly supports the semantics of the two patterns
Fixed Deployment Stack and Provider-managed Scaling Configura-
tion used in the original model. The resulting model can be further refined using
the PRM2 shown in Fig. 11 on the right: its detector matches exactly the frag-
ment obtained after the application of PRM1 and can be refined to hosting the
Java Application on Azure Functions. In practice, the refinement structure of
PRM2 can provide more details for Azure, which are omitted for brevity. More-
over, PRM2 is just one example whose detector matches the resulting model and
there could be more PRMs enabling other refinements, e.g., using AWS Lambda.

Thus, by leveraging this pattern refinement approach [16,17], we enable our
method using two types of PRMs: The first type captures the refinements within
the categories of our pattern language, which corresponds to the transition from
the Management Requirements Layer to the Component Hosting Requirements
Layer. The second type is PRMs that refine Component Hosting Patterns into
concrete technical deployment stacks as described in Fig. 11 on the right, which
corresponds to the transition from the Component Hosting Requirements Layer
to the Technical Deployment Stack Alternatives Layer. To validate the tool sup-
port, we created all possible refinements for the first type of PRMs and hosted
them on GitHub.1 We also created several PRMs for the second type in the same
repository. However, note that the PRMs for the second type can be further
extended as more cloud offerings could be mapped to specific hosting patterns.
To demonstrate how our method works in practice, we also created a video.2

4 Related Work

Multiple existing works [8,10,14,32] document patterns for structuring cloud-
native applications. These works differ from ours as they propose patterns for
1 https://github.com/OpenTOSCA/pattern-based-deployment-modeling.
2 https://youtu.be/-GpGPS5Nc1Q.

https://github.com/OpenTOSCA/pattern-based-deployment-modeling
https://youtu.be/-GpGPS5Nc1Q

64 V. Yussupov et al.

designing cloud applications, whereas our patterns focus on their hosting. Simi-
lar considerations apply to patterns in the domain of serverless computing. Taibi
et al. [34] and Zambrano [38] document patterns for architecting serverless appli-
cations. Hong et al. [20] present patterns to improve the security of cloud-hosted
services. These works also focus on designing cloud applications, whereas we
focus on how to host them. A similar hosting-centric view is described in the
“Serverless Pattern” by Richardson [33]. However, this pattern focuses only on
microservices and associates the term “serverless with FaaS platforms, hence,
restricting its applicability. Instead, our patterns including the Serverless Host-
ing Pattern represent views on hosting options based on management trade-offs
and are applicable to different kinds of application components.

Jamshidi et al. [22,23] propose a catalog of patterns for migrating on-premise
applications to the cloud and a concrete method for enacting pattern-based
migration. These patterns [22,23] differ from our patterns as they focus on adapt-
ing existing service-based applications to allow migrating them to the cloud,
rather than on their hosting. Thus, these patterns can be combined with our
patterns: developers may first exploit migration patterns to enable deploying
applications in the cloud, and then implement our patterns for hosting appli-
cation components. Morris [30] documents Infrastructure-as-Code patterns that
focus on various aspects including the granularity of deployment stacks, build
environments, configuration, and testing. Our patterns focus on the modeling
and stack selection process and can be combined with the patterns by Morris,
e.g., to enable manage changes in the selected deployment stack. Endres et al. [9]
document two patterns for specifying application deployments – declarative and
imperative, which are complementary and can be combined with our patterns.

Finally, several works focus on transitioning between patterns and solutions
they document. Falkenthal et al. [11] show how pattern languages on different
levels of abstractions can be refined to concrete solutions, i.e., implementation of
a pattern using specific technologies. Leymann and Barzen [27] propose an app-
roach and tool for navigating through pattern languages inspired by the analogy
with cartography. Such approaches can help linking the patterns presented in this
work with other pattern languages such as cloud computing patterns [14], and
support the search for concrete solutions. Bibartiu et al. [3] introduce a model-
ing approach that depends on patterns to describe an application, which focuses
on modeling of procedures and uses sequence diagrams to describe components
interaction and refine patterns to concrete components. In our method, we rely
on several existing pattern-based techniques in the domain of component host-
ing to automate the transitioning between abstract requirements and concrete
solutions using our Component Hosting and Management Pattern Language.

5 Conclusion

In this work, we introduced four new patterns representing solutions to more gen-
eral problems related to deployment stack and scaling configuration management
that complement our previously-introduced Component Hosting Patterns [37].

Serverless or Serverful? A Pattern-Based Approach 65

The combined set of patterns forms the Component Hosting and Management
Pattern Language, which can be used to identify suitable hosting options for
application components and transition to the corresponding technical deploy-
ment stacks, as we have shown by presenting the Pattern-based Deployment
Stack Exploration Method and the prototype supporting it.

In future work, we plan to further validate our method by applying it to multi-
ple distinct serverless application models. We also aim to extend our toolchain to
enable expressing other decisions for stack selection. Furthermore, using existing
concepts [18] we plan to enable automatic refinement from concrete deployment
models to pattern-based deployment models, hence, supporting the exploration
of decisions related to a specific executable deployment stack.

Acknowledgments. This work was partially funded by the German Research Foun-
dation (DFG) project IAC2 (314720630).

References

1. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, New York (1977)

2. Amazon Web Services: AWS Solutions Library (2022). https://aws.amazon.com/
solutions/browse-all

3. Bibartiu, O., et al.: Clams: a cloud application modeling solution. In: Proceedings
of the 2021 IEEE International Conference on Services Computing (SCC 2021),
pp. 1–10 (2021)

4. Burns, B., Oppenheimer, D.: Design patterns for container-based distributed sys-
tems. In: 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
2016) (2016)

5. Buschmann, F., et al.: Pattern-Oriented Software Architecture: On Patterns and
Pattern Language, vol. 5. Wiley, New York (2007)

6. Coplien, J.O.: Software patterns (1996)
7. Councill, B., Heineman, G.T.: Definition of a software component and its elements.

In: Component-Based Software Engineering: Putting the Pieces Together, pp. 5–19.
Addison-Wesley, San Francisco (2001)

8. Davis, C.: Cloud Native Patterns: Designing Change-Tolerant Software. Manning
Publishing, New York (2019)

9. Endres, C., et al.: Declarative vs. imperative: two modeling patterns for the auto-
mated deployment of applications. In: Proceedings of the 9th International Confer-
ence on Pervasive Patterns and Applications (PATTERNS 2017), pp. 22–27. Xpert
Publishing Services (2017)

10. Erl, T., et al.: Cloud Computing Design Patterns, 1st edn. Prentice Hall Press,
Upper Saddle River (2015)

11. Falkenthal, M., et al.: Leveraging pattern application via pattern refinement. In:
Proceedings of the International Conference on Pursuit of Pattern Languages for
Societal Change (PURPLSOC 2015), pp. 38–61 (2015)

12. Falkenthal, M., et al.: The Nature of Pattern Languages. In: Pursuit of Pattern
Languages for Societal Change, pp. 130–150. Tredition, October 2018

https://aws.amazon.com/solutions/browse-all
https://aws.amazon.com/solutions/browse-all

66 V. Yussupov et al.

13. Fehling, C., Barzen, J., Breitenbücher, U., Leymann, F.: A Process for pattern
identification, authoring, and application. In: Proceedings of the 19th European
Conference on Pattern Languages of Programs (EuroPLoP 2014). ACM, January
2014

14. Fehling, C., et al.: Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer, Vienna, January 2014. https://doi.org/10.
1007/978-3-7091-1568-8

15. Google: Google Cloud products (2022). https://cloud.google.com/products/
16. Harzenetter, L., et al.: Pattern-based deployment models and their automatic exe-

cution. In: 11th IEEE/ACM International Conference on Utility and Cloud Com-
puting (UCC 2018), pp. 41–52. IEEE Computer Society, Dec 2018

17. Harzenetter, L., et al.: Pattern-based deployment models revisited: automated
pattern-driven deployment configuration. In: Proceedings of the Twelfth Interna-
tional Conference on Pervasive Patterns and Applications (PATTERNS 2020), pp.
40–49. Xpert Publishing Services, October 2020

18. Harzenetter, L., et al.: Automated detection of design patterns in declarative
deployment models. In: Proceedings of the 2021 IEEE/ACM 14th International
Conference on Utility Cloud Computing (UCC 2021), pp. 36–45. ACM, December
2021

19. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, New York (2004)

20. Hong, S., et al.: Go serverless: securing cloud via serverless design patterns. In: 10th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 2018) (2018)

21. IBM: IBM Cloud Solutions (2021). https://www.ibm.com/cloud/solutions
22. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a multi-

cloud service architecture perspective. In: Toumani, F., et al. (eds.) ICSOC 2014.
LNCS, vol. 8954, pp. 6–19. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22885-3_2

23. Jamshidi, P., et al.: Pattern-based multi-cloud architecture migration. Softw. Pract.
Exp. 47(9), 1159–1184 (2017)

24. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool for
tosca-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45005-1_64

25. Kounev, S., et al.: Toward a Definition for Serverless Computing. In: Server-
less Computing (Dagstuhl Seminar 21201), vol. 11, Chap. 5.1, pp. 56–59. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021)

26. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng. 33(10),
709–724 (2007)

27. Leymann, F., Barzen, J.: Pattern Atlas. Next-Generation Digital Services. A Ret-
rospective and Roadmap for Service Computing of the Future, pp. 67–76 (2021)

28. Messerschmitt, D.G.: Rethinking components: from hardware and software to sys-
tems. Proc. IEEE 95(7), 1473–1496 (2007)

29. Microsoft: Directory of Azure Services (2022). https://azure.microsoft.com/en-us/
services/

30. Morris, K.: Infrastructure as Code. O’Reilly Media, Sebastopol (2020)
31. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 2.0. Organization for the Advancement of Structured Informa-
tion Standards (OASIS) (2020)

32. Pahl, C., et al.: Architectural principles for cloud software. ACM Trans. Internet
Technol. (TOIT) 18(2) (2018)

https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-3-7091-1568-8
https://cloud.google.com/products/
https://www.ibm.com/cloud/solutions
https://doi.org/10.1007/978-3-319-22885-3_2
https://doi.org/10.1007/978-3-319-22885-3_2
https://doi.org/10.1007/978-3-642-45005-1_64
https://doi.org/10.1007/978-3-642-45005-1_64
https://azure.microsoft.com/en-us/services/
https://azure.microsoft.com/en-us/services/

Serverless or Serverful? A Pattern-Based Approach 67

33. Richardson, C.: Microservices Patterns. Manning Publications Company, New York
(2018)

34. Taibi, D., et al.: Patterns for serverless functions (function-as-a-service): a multi-
vocal literature review. In: CLOSER, pp. 181–192 (2020)

35. Wellhausen, T., Fiesser, A.: How to write a pattern? A rough guide for first-time
pattern authors. In: Proceedings of the 16th European Conference on Pattern
Languages of Programs, pp. 1–9 (2011)

36. Yussupov, V., et al.: Facing the unplanned migration of serverless applications: a
study on portability problems, solutions, and dead ends. In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC), pp.
273–283. ACM (2019)

37. Yussupov, V., et al.: From serverful to serverless: a spectrum of patterns for hosting
application components. In: Proceedings of the 11th International Conference on
Cloud Computing and Services Science (CLOSER 2021), pp. 268–279. SciTePress,
May 2021

38. Zambrano, B.: Serverless Design Patterns and Best Practices: Build, Secure, and
Deploy Enterprise Ready Serverless Applications with AWS to Improve Developer
Productivity. Packt Publishing, Birmingham (2018)

Towards Immediate Feedback for Security
Relevant Code in Development

Environments

Markus Haug(B) , Ana Cristina Franco da Silva , and Stefan Wagner

Institute of Software Engineering, University of Stuttgart, Universitätsstraße 38,
70569 Stuttgart, Germany

markus.haug@iste.uni-stuttgart.de

Abstract. Nowadays, the correct use of cryptography libraries is essen-
tial to ensure the necessary information security in different kinds of
applications. A common practice in software development is the use of
static application security testing (SAST) tools to analyze code regarding
security vulnerabilities. Most of these tools are designed to run separately
from development environments. Their results are extensive lists of secu-
rity notifications, which software developers have to inspect manually in
a time-consuming follow-up step. To support developers in their tasks of
developing secure code, we present an approach for providing them with
continuous immediate feedback of SAST tools in integrated development
environments (IDEs). Our approach also considers the understandabil-
ity of security notifications and aims for a user-centered approach that
leverages developers’ feedback to build an adaptive system tailored to
each individual developer.

Keywords: Software development · IDE · Security · SAST ·
Notifications

1 Introduction

An essential practice for ensuring IT security in software applications nowadays
is the use of cryptography libraries, such as the Bouncy Castle Crypto APIs1 or
the Java security APIs. For example, in the communication among distributed
services in cloud environments, the security of information in transit is a highly
important requirement [4]. Yet, using cryptography libraries is not easy because
of their complexity. They are often used incorrectly, for example, due to misuse
of parameters, which can lead to severe security issues [7].

Already during implementation, static application security testing (SAST)
tools, such as SonarQube2 or CogniCrypt [5], can be used to analyze the code in
1 https://bouncycastle.org.
2 https://www.sonarqube.org.

This work is funded by the BMBF project CRITICALMATE (16KIS0995).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 68–75, 2022.
https://doi.org/10.1007/978-3-031-18304-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_4&domain=pdf
http://orcid.org/0000-0001-9377-0677
http://orcid.org/0000-0001-8549-350X
http://orcid.org/0000-0002-5256-8429
https://bouncycastle.org
https://www.sonarqube.org
https://doi.org/10.1007/978-3-031-18304-1_4

Towards Immediate Feedback for Security Relevant Code 69

development regarding security vulnerabilities [8]. For this, SAST tools contain
comprehensive rule sets, which define, for example, correct or incorrect API
usage patterns, and are used to recognize issues and decide when to show security
notifications.

Many current SAST tools are designed to be used separately from integrated
development environments (IDEs). That is, security analyses are usually per-
formed as additional steps in build processes, for example, in nightly builds.
This normally leads to extensive lists of security notifications, which software
developers have to inspect manually in a follow-up step. In addition to being
time-consuming and cumbersome, the interruption and associated loss of con-
text increase the challenge of understanding and fixing an issue for developers [9].

In this paper, we present an approach that supports software developers in
their tasks of developing secure code. Using our approach, developers are contin-
uously provided with immediate feedback from SAST tools in their IDEs. Our
approach considers the understandability of security notifications and also lever-
ages developer feedback to build an adaptive system tailored to each individual
developer. This approach has been developed as a prototype within the BMBF
funded project Cybersecurity static analysis with immediate feedback (CRITI-
CALMATE3).

Within the CRITICALMATE project, we prototyped a novel SAST tool,
also named CRITICALMATE. In the following, we will use CRITICALMATE
when referring to the tool and CRITICALMATE project when referring to the
project.

We conducted the CRITICALMATE project in collaboration with RIGS IT,
who have previously developed Xanitizer4, another SAST tool.

The remainder of this paper is structured as follows: In Sect. 2, we present our
approach. We present future improvements to our approach in Sect. 3. Section 4
discusses related work. Finally, Sect. 5 concludes our paper and gives an outlook
on future work.

2 Approach

Our approach consists of two major parts regarding notifications of security
tools: (i) their efficient integration into developer’s IDEs to provide immediate
feedback, and (ii) the understandability of security notifications.

2.1 Immediate Feedback

We integrated CRITICALMATE into IntelliJ, Eclipse, and Visual Studio Code
through the respective plugin systems. These plugins receive analysis results from
our novel static code analysis engine and display them as highlights in the IDE’s
code editor. The analysis engine as well as the integration plugins aim to perform
3 https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/critical

mate.
4 https://web.archive.org/web/20210724231452/https://www.rigs-it.com/xanitizer/.

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/criticalmate
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/criticalmate
https://web.archive.org/web/20210724231452/https://www.rigs-it.com/xanitizer/

70 M. Haug et al.

without any user-noticeable latency. This way, CRITICALMATE can provide
software developers with immediate feedback about security vulnerabilities in
their code.

One advantage of immediate feedback in IDEs is that the typical workflow
interruption while running static code analysis separately is avoided [9]. This
shortens the feedback cycle and identifies security issues in the code as early as
possible. This allows developers to fix issues while they still have most of the
context available.

Furthermore, by identifying and fixing security vulnerabilities early, we avoid
creating extensive lists of problems during nightly analysis runs, reducing asso-
ciated feelings of frustration or overwhelm in software developers.

When a developer feels that an issue reported by CRITICALMATE is a false
positive, CRITICALMATE supports suppressing certain types of notifications
via in-code annotations. Limiting this suppression to one type of notification
strikes a balance between false positive avoidance and security. If developers
were able to suppress notifications more broadly, they could inadvertently hide
actual security issues alongside false positives.

2.2 Understandable Security Notifications

Several studies in the literature have shown that many usability issues exist in
current SAST tools with respect to understandability of security notifications.
Tahaei et al. [10] conducted an experiment aiming to understand how helpful
static analysis tools notifications (SonarQube5 and SpotBugs6) are to developers.
They emphasize as a finding that developers make mistakes even if these were
well-known mistakes and had known solutions, which suggests a lack of developer
awareness and/or missing support in addressing security issues.

Smith et al. [9] conducted a usability evaluation of four SAST tools. Within
the list of found usability issues7, there are issues related to the content of
the notification, such as “Fix suggestions not adequately explained/sometimes
missing” or “Verbose XML output distracting”.

Figure 1 shows an example code snippet employing the Bouncy Castle Crypto
API for asymmetric ElGamal encryption with an elliptic curve (EC). The encryp-
tor needs to be initialized by calling the init() method with suitable parame-
ters, i.e., the public key of the recipient, before encrypting the data. However,
the developer forgot to call the init() method in this snippet.

In Fig. 1, we can also see the in-code highlight that the CRITICALMATE
analysis engine generates for this example. While the notification correctly iden-
tifies the problem, it is difficult to understand, especially for developers who are
not well-versed in the field of cryptography. Furthermore, there is no example
of how to fix the issue, which has been identified as a problem for understand-
ability above. Consequently, the solution for the issue might not be clear enough
because of missing information.
5 https://www.sonarqube.org.
6 https://spotbugs.github.io.
7 https://figshare.com/s/71d97832ae3b04e0ff1a.

https://www.sonarqube.org
https://spotbugs.github.io
https://figshare.com/s/71d97832ae3b04e0ff1a

Towards Immediate Feedback for Security Relevant Code 71

Fig. 1. Security notification regarding misuse of Bouncy Castle Crypto API for elliptic-
curve (EC) encryption

Therefore, to support software developers in avoiding misinterpretation of
security notifications, we propose an approach for presenting security notifica-
tions within IDEs that follows usability guidelines to increase the understand-
ability of the security notifications. In addition to the in-code highlights within
an IDE’s code editor, our CRITICALMATE prototype offers an on-demand pop-
up that provides additional details about each issue.

Figure 2 shows our proposed notification format for the issue highlighted in
Fig. 1. Our format is based on the format used in the SonarSource rule reposi-
tory8. In this format, information about the error should be provided in a concise
language, as well as code examples of how to fix the error should be provided.

3 Future Work

In this section, we discuss possible improvements to our prototype. We again
focus on two general areas, both revolving around adaptivity: (i) adaptive anal-
ysis strategies to improve the accuracy and usefulness of analysis results and (ii)
adaptive notifications to increase developers’ understanding of security issues.

3.1 Adaptive Analysis Strategies

Adaptive analysis strategies could help improve the accuracy of the results and
their usefulness to developers working with CRITICALMATE. One major oppor-
tunity for improvement is the false positive rate. In SAST tools, the increased
analysis performance required for immediate feedback frequently comes at the
cost of an elevated false positive rate [1,2]. Generally, such tools have two options
to handle a high false positive rate: (i) they implement more accurate analysis
strategies, usually at a performance cost, or (ii) they tighten their confidence
threshold. As a consequence, they issue fewer notifications, which however can
increase their false negative rate. Due to the severe consequences of undetected
8 https://rules.sonarsource.com.

https://rules.sonarsource.com

72 M. Haug et al.

Fig. 2. Notification format using as example an API misuse

vulnerabilities, we want to ensure a low false negative rate. That is, tightening
the confidence threshold is not a suitable option.

Furthermore, a high false positive rate reduces user trust in such tools, which
might cause adverse effects. For example, developers might disable analyses
across their whole projects instead of single notifications because of frustrat-
ing high false positive rate. In doing so, they might also inadvertently disable
notifications indicating actual security issues in the code.

To handle false positives, we consider an adaptive analysis approach with
incremental accuracy. For each class of issues, the analysis could choose a suit-
able strategy depending on factors, such as time budget, user-defined confidence

Towards Immediate Feedback for Security Relevant Code 73

rating, or recorded false positive rate for a certain combination of issue and strat-
egy. For example, for a class of notifications known to have a low false positive
rate, the analysis could choose a less detailed strategy, which would save time
for other analyses. In contrast, for a class with a low confidence level, the anal-
ysis could choose a more accurate iterative strategy, until it achieves a desired
confidence level, as long as the time budget permits this.

To be tailored to software developers, the proposed IDE plugin should be
able to learn from software developers’ feedback, especially about how they assess
notifications as false positives in the context of their development projects. Based
on this, the plugin should be able to adapt the classes and amount of shown
notifications. For example, the plugin could learn to suppress notifications, which
developers frequently classify as false positives.

3.2 Adaptive Notifications

The participants of the study conducted by Tahaei et al. [10] imply that the most
helpful part were the provided code examples in the notifications. On the other
hand, they indicated that metadata was not relevant for them. Therefore, pro-
viding code examples in notifications seems like the best way to help developers
understand security issues (cf. Sect. 3.1).

If static analysis tools use fixed code examples in the notifications, however,
they risk a mismatch between the example and developers’ actual code. This
mismatch may create confusion and inhibit understanding rather than promoting
it. One solution to tackle this problem would be to create parameterized code
example templates that can be dynamically completed to match the specific
scanned code snippet and the context of the software project.

This approach could also be taken further by automatically suggesting quick
fixes for a given notification. Developers can then choose to apply these fixes
directly in their IDE. In some cases, where a concrete fix might not be available,
a snippet with placeholders for the developer to fill in could be suggested instead.
This would help developers in fixing security issues in their software more quickly
and more accurately. Some existing static analysis tools, such as Clippy9 or rust-
analyzer10 from the Rust programming language ecosystem, already support
such features for some problems.

Furthermore, the plugin could also learn the developer’s typical workflow,
such as if they usually fix the code as soon as notifications are shown or just
before committing or sharing their code. Based on this, the plugin could increase
the amount of shown notifications when a developer is most likely to react to
them. At other times, the shown amount would be reduced, e.g., by disabling
highlights in the editor and listing the notifications only in the IDE’s error list.
This would allow developers to perform their tasks in the way that is most
suitable for them. Reducing the amount of information when developers are
unlikely to need it, could also mitigate information overload. In combination

9 https://github.com/rust-lang/rust-clippy.
10 https://rust-analyzer.github.io/.

https://github.com/rust-lang/rust-clippy
https://rust-analyzer.github.io/

74 M. Haug et al.

with an adaptive analysis strategy, this would also allow more detailed analysis
which could provide more accurate results.

Finally, the feedback of software developers to a notification, for example,
the reason a notification was not helpful, can also be used to learn about the
helpfulness of notifications and adapt future notifications’ content.

4 Related Work

This section presents related work to SAST tools, which provide an IDE inte-
gration and consequently immediate feedback.

Eclipse CogniCrypt11 is an open-source platform for static code analysis
based on CrySL rules [6]. Such rules can describe different error types indi-
cating incorrect usage of cryptography libraries. For example, a constraint error
indicates that the static analysis detected an incorrect argument in a specific
method call.

Find Security Bugs (FSB)12 is an open-source extension of the SpotBugs
static analysis tool for security audits of web application in Java. It can detect
security issues, such as those described in the open web application security
project (OWASP) Top 10. Furthermore, it provides plugins for its integration in
several IDEs, such as for Eclipse and IntelliJ.

The goals of our approach are very similar to both aforementioned works in
respect to supporting software developers with immediate feedback within their
IDEs. However, in addition, we aim for a user-centered approach that leverages
developers feedback to build an adaptive system.

5 Results and Conclusion

In this paper, we introduced an approach for supporting software developers
to address possible security issues directly in their IDEs. Through continuous
immediate feedback integrated in IDEs, developers can see notifications regard-
ing security issues, such as misuse of cryptography libraries, as soon as code is
typed in the code editor and the typed code has been analyzed by a SAST tool.
Within the Cybersecurity static analysis with immediate feedback (CRITICAL-
MATE) project, the University of Stuttgart and RIGS IT have jointly developed
a prototype that integrates the analysis results of a novel SAST tool into different
IDEs, namely IntelliJ, Eclipse IDE, and Visual Studio Code. Preliminary mea-
surements tell us that security notifications are shown to developers in average
under a second. However, there are several factors that influence the response
time from triggering the static code analysis until the visualization of the found
security notifications. To get more insights about these issues, we plan to conduct
further experiments.

11 https://www.eclipse.org/cognicrypt/documentation/codeanalysis.
12 https://find-sec-bugs.github.io.

https://www.eclipse.org/cognicrypt/documentation/codeanalysis
https://find-sec-bugs.github.io

Towards Immediate Feedback for Security Relevant Code 75

Furthermore, we plan to conduct a user study to get insights about the inter-
action of software developers with the immediate feedback and the adaptivity
feature. One possibility is to conduct a study that also conducts emotion recogni-
tion based on physiological signals or video input. We can gain valuable feedback
by recognizing confusion or frustration [3] of software developers while they are
working with selected security notifications for the study.

One big challenge in the aforementioned approach is how to differentiate
notifications that are actual false positives and what developers might label as
false positives because they do not agree on the issue or perceive them as noise.
Furthermore, if there are many notifications regarding the same code snippet,
these should be prioritized to be visualized sequentially based on, for example,
their severity, to avoid cluttered visualization or missing important notifications.

References

1. Alahmadi, B.A., Axon, L., Martinovic, I.: 99% false positives: a qualitative study
of SOC analysts’ perspectives on security alarms. In: 31st USENIX Security Sym-
posium (USENIX Security 2022), pp. 10–12. USENIX Association (2022)

2. Aloraini, B., Nagappan, M., German, D.M., Hayashi, S., Higo, Y.: An empirical
study of security warnings from static application security testing tools. J. Syst.
Softw. 158, 110427 (2019)

3. Fernandez, R., Picard, R.: Signal processing for recognition of human frustration.
In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 1998 (Cat. No. 98CH36181). vol. 6, pp. 3773–3776
(1998)

4. Iankoulova, I., Daneva, M.: Cloud computing security requirements: a systematic
review. In: 2012 Sixth International Conference on Research Challenges in Infor-
mation Science (RCIS), pp. 1–7. IEEE (2012)

5. Krüger, S., et al.: Cognicrypt: supporting developers in using cryptography. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 931–936. IEEE (2017)

6. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CRYSL: an extensible app-
roach to validating the correct usage of cryptographic APIS. IEEE Trans. Softw.
Eng. 47(11), 2382–2400 (2019)

7. Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do
java developers struggle with cryptography APIS? In: Proceedings of the 38th
International Conference on Software Engineering, pp. 935–946 (2016)

8. Nguyen Quang Do, L., Wright, J., Ali, K.: Why do software developers use static
analysis tools? a user-centered study of developer needs and motivations. IEEE
Trans. Softw. Eng. 1 (2020)

9. Smith, J., Do, L.N.Q., Murphy-Hill, E.: Why can’t Johnny fix vulnerabilities: a
usability evaluation of static analysis tools for security. In: Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020), pp. 221–238 (2020)

10. Tahaei, M., Vaniea, K., Beznosov, K., Wolters, M.K.: Security notifications in static
analysis tools: Developers’ attitudes, comprehension, and ability to act on them.
In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–17 (2021)

Data Science and Applications

Unsupervised Labor Intelligence Systems:
A Detection Approach and Its Evaluation

A Case Study in the Netherlands

Giuseppe Cascavilla1,2(B), Gemma Catolino1,3, Fabio Palomba5,
Andreas S. Andreou4, Damian A. Tamburri1,2,

and Willem-Jan Van Den Heuvel1,3

1 Jheronimus Academy of Data Science, Hertogenbosch, The Netherlands
{g.cascavilla,g.catolino,d.a.tamburri}@tue.nl, W.J.A.M.v.d.Heuvel@jads.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Tilburg University, Tilburg, The Netherlands

4 Cyprus University of Technology, Limassol, Cyprus
andreas.andreou@cut.ac.cy

5 University of Salerno, Fisciano, Italy
f.palomba@unisa.it

Abstract. In recent years, job advertisements through the web or social
media represent an easy way to spread this information. However, social
media are often a dangerous showcase of possibly labor exploitation adver-
tisements. This paper aims to determine the potential indicators of labor
exploitation for unskilled jobs offered in the Netherlands. Specifically, we
exploited topic modeling to extract and handle information from textual
data about job advertisements for analyzing deceptive and characteriz-
ing features. Finally, we use these features to investigate whether auto-
mated machine learning methods can predict the risk of labor exploita-
tion by looking at salary discrepancies. The results suggest that features
need to be carefully monitored, e.g., hours. Finally, our results showed
encouraging results, i.e., F1-Score 61%, thus meaning that Data Science
methods and Artificial Intelligence approaches can be used to detect labor
exploitation—starting from job advertisements—based on the discrep-
ancy of delta salary, possibly representing a revolutionary step.

Keywords: Case study · Data science · Artificial Intelligence

1 Introduction

In the last decade, the number of labor exploitation victims has risen in the
Netherlands1. Globally, the report of UNODC (United Nations Office on Drugs
and Crime) in 2020 showed how Internet-based trafficking had become increas-
ingly used for illegal activities such as labor exploitation [36]. Traffickers usually
target less regulated industries and those featuring seasonal demand for workers.
1 https://tinyurl.com/we359yhe.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 79–98, 2022.
https://doi.org/10.1007/978-3-031-18304-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_5&domain=pdf
https://tinyurl.com/we359yhe
https://doi.org/10.1007/978-3-031-18304-1_5

80 G. Cascavilla et al.

Vulnerable sectors include agriculture, food production, cleaning, construction,
manufacturing, entertainment, hospitality, retail, transportation, distribution,
and consumption supply chains [13]. Recently, there exists a growing trend of
recruitment through the web, social media in primis, thus increasing the number
of potential victims who can be targeted by labor exploitation [9]. The absence
of geographical boundaries and the spread of open-access online domains make
illicit behaviors accessible to a broad range of individuals that may facilitate
crime [26]. In addition, the multijurisdictional context of the Internet is still an
open challenge, thus complicating the prosecution of the perpetrators. However,
technology improved getting short-term job arrangements, resulting in a growth
in self-employed individuals. So, more effort is needed to prevent and address
issues like labor exploitation, legal worker classification, wage, benefits required,
and educate workers about their rights. United Nations did the first step to rec-
ognize common labor exploitation practices. Indeed, several institutions tried to
define a list of forced labor and human trafficking indicators. They converged in
a list of 67 indicators for human trafficking2. They are divided into six categories
based on the type of recruitment, i.e., deceptive, coercive, abuse of vulnerability,
exploitative conditions of work, forms of coercion, and abuse of vulnerability at
the destination. These indicators can provide a complete understanding of the
commonly utilized practice for forced labor.

The primary purpose of this paper is to shed light on coercive labor prac-
tices in the dutch economic sectors of unskilled labor. The goal of this work
is double. On the one hand, we want to frame deceptive behaviors in a social
media context and what are the risk factors involved in looking at online job
advertisements on Dutch market labor. On the other hand, we want to define
an approach that automatically detects deceptive practices based on the delta
salary. In particular, we extracted information about job advertisements from
Facebook groups and pages, focusing our attention on Dutch market labor. Then,
we preprocess these data and apply topic modeling—applying Latent Dirichlet
Allocation (LDA) and Latent Semantic Indexing (LSI)—to extract the most
relevant feature that characterizes job advertisement, possibly compared to the
risky indicators cited above. Finally, based on the features extracted above, we
constructed a logistic regression model for assessing whether those can predict
potential discrepancy in terms of salary—according to the Ducth National Salary
Tables3—thus possibly indicating the risk of labor exploitation. Results showed
how features like job class, external link represents info that characterizes job
advertisements and should be carefully monitored. Finally, our logistic regres-
sion model showed encouraging results, i.e., 61% F-Measure, thus meaning that
AI approaches can be used to detect labor exploitation announcements based on
the discrepancy of delta salary. Indeed, detecting and preventing labor exploita-
tion starting from job advertisements, thus represents a revolutionary step that
can help decrease this issue. We are already collaborating with Dutch Police

2 https://www.ilo.org/wcmsp5/groups/public/---ed norm/---declaration/document
s/publication/wcms 105035.pdf.

3 https://www.cbs.nl/en-gb/labour-and-income.

https://www.ilo.org/wcmsp5/groups/public/---ed_norm/---declaration/documents/publication/wcms_105035.pdf
https://www.ilo.org/wcmsp5/groups/public/---ed_norm/---declaration/documents/publication/wcms_105035.pdf
https://www.cbs.nl/en-gb/labour-and-income

Unsupervised Labor Intelligence Systems 81

to provide an intelligence dashboard that consists of an AI model for real-time
crawling data from social media and highlights possible labor exploitation in the
dutch labor market. i.e., SENTINEL Project.

Structure of the Paper. In Sect. 2, we briefly introduce the existing literature
in the context of our study. Section 3 concerns the methodology of our research
and Sect. 4 shows the results our experimentation. We discuss and conclude our
paper in Sect. 5.

2 Related Work

This section provides a brief grounding on what has been done so far by the
existing literature in labor exploitation identification.

2.1 Labour Exploitation Identification

The online recruitment of an exploitable workforce takes part on employment
websites, online agencies, and social networks [19]. The existing academic lit-
erature experimented with strategies to infer deceptive recruitment for labor
exploitation [38]. The state of the art experimented with strategies to infer decep-
tive recruitment for labor exploitation. Volodko et al. [38] addressed the problem
showing the indicators for labor exploitation by the existing literature may be
commonplace characteristics of online job advertisements for people looking for
jobs abroad. They manually labeled all the job advertisements from the most
famous Lithuanian website. They experimented with Poisson regression to test if
the characteristics of one advertisement can give enough information to predict
the number of labor trafficking indicators present.

Kejriwal et al. [23] developed a search engine to address the problem of
collecting evidence about labor exploitation but, at the same time, minimizing
investigative effort. The system exploits ontologies, knowledge graphs, and word
embedding to extract information from Open and Dark Web for human traf-
ficking identification. In addition, they used several strategies such as keyword
strategy to extract information to create an investigation schema that helps the
graph algorithm analyze the crawled web corpus.

Tong et al. [35] introduced a multi-modal deep learning algorithm to detect
suspected human trafficking advertisements automatically. The approach uses
both text and images and shows a high accuracy compared to models that use
one of the sources. Nevertheless, the approach is hardly interpretable, especially
when evaluating the impact of the features in a different context. Zhu et al.
[41] proposed a language model-based approach for creating a phrase dictio-
nary for identifying human trafficking indicators in adult service ads. The model
showed a good performance and a reasonable interpretation of the keywords
retrieved as potential trafficking indicators, thanks to the pipeline developed for
automatically detecting and extracting data from potential fraudulent websites.
This pipeline also detects and clusters human trafficking activities into unknown
criminal organizations.

82 G. Cascavilla et al.

Siddiqui et al. [33] highlighted the importance of pre-processing tasks when
dealing with unstructured or semi-structured text in order to separate relevant
snippets of information from the unorganized text and find a way to improve
the decision-making process in regard criminal fight.

The state of art on labor exploitation identification mainly concerns sex-
ual trafficking [7]. Sweileh et al. [34] showed how labor trafficking is under-
represented compared to sex trafficking. One reason is that indicators of sexual
exploitation are more discernible and less ambiguous in the online textual con-
text of working offers Di Nicola et al. [12]. Burbano et al. [4] make a corpus in
Spanish language from social media text and build a predictive model in order
to identify automatically.

2.2 Social Media Topic Detection

A recent challenge in research is to detect topics from online social networks.
These topics are mainly connected to disaster events, urban planning, public
health, political or marketing studies [24]. The open challenge is to interpret a
massive volume of unstructured data [20], but without knowing what should be
the final pattern as in the information retrieval method [22]. Since the quantity
of data available in social media is exponentially growing [6] there is a need to
recognize the necessity to employ tools for automatic topic discovery. Thus, the
goal is to detect topics that are high-level patterns of textual data. For this rea-
son, topic models represented a powerful techniques for discovering hidden text
patterns [18]. The idea behind topic modeling is to create a thematic structure
that defines a determined amount of underlying concepts through an efficient
process that takes less representation space and noise and, consequently, can
manipulate large amounts of data without human supervision.

Latent Dirichlet Allocation (LDA) is the dominant topic modeling technique
in this particular field of research [37]. Shahbazi et al. [32] collected contents
from different social media to conduct a semi-automatic process. Rohani et al.
[30] addressed the problem to detect topics from a large variety of semantic
text by proposing a topic modeling technique based on LDA. Statistical topic
modeling based on LDA is also effective in crime prediction. Gerber et al. [14]
showed that the combination of the standard approach—based on kernel density
estimation—with additional Twitter features improved spatial-temporal crime
prediction in one city in the United States. Once assessed the probability of each
word belonging to a certain topic is, the topic modeling process evaluates each
topic’s cohesion in each neighborhood.

Social network such as Twitter has been used for extracting any information:
Wang et al. [39] showed the possibility to predict hit-and-run crime incidents;
Godin et al. [15] provided a method for recommending hashtags for tweets in a
fully unsupervised approach based on LDA; Cordeiro et al. [8] improved tweet
event description by extracting latent topics using LDA from the tweets text for
each hashtag signal obtained after wavelet analysis; Prier [28] detected tobacco-
related topics in order to provide a better understanding about public health
problems in the United States. Cvijikj et al. [10] proposed a trend detection

Unsupervised Labor Intelligence Systems 83

algorithm that can collect data from Facebook and detect disruptive events and
popular topics in a near-real-time interval since Facebook does not provide real-
time streaming access as the other social media. One problem with discovering
topics from social media is the granularity that every topic can have once deter-
mined the number of topics in a corpus. Deng et al. [11] proposed a three-level
LDA topic model combined with keyword matching and coherence analysis to
identify topics and sub-topics and provide a good level of interpretability and a
better understanding of the evolution that any topic can have over time. Key-
word matching can also be done through the use of co-occurrences between pairs
of the discussion topics in a key graph-based model approach [25], or through
the use of algorithms such as Rapid automatic extraction algorithm (RAKE)
[21].

3 Methodology

In this section, we present the methodology of our research.

3.1 Research Questions

The aim of this work is to understand what indicators can be employed to detect
labor exploitation in online job offers and define an approach to detect possibly
labor exploitation alerts through salary discrepancy. To this end, we defined the
following research questions:

RQ1 - Which are the most common features that characterize deceptive online
job advertisements?
RQ2 - Can we use a logistic regression analysis to detect deceptive online job
post practise?

To answer RQ1, we collected data from Facebook public groups and pages on
Dutch market labor. We filtered out all the posts that did not match the online
job posting that had not been recalled by the existing literature demonstrated in
Sect. 2. After scraping and gathering the data, we probed and extracted meaning-
ful features for our further analysis. Indeed, we used NLP techniques to extrap-
olate meaningful information from the unstructured text. Next, we performed
topic modeling analysis using LDS and LSI to explore the most common and
insightful features that characterize job advertisements for spotting potential
labor exploitation from social media job postings.

Based on the feature extracted above, we answer R2 constructing a logis-
tic regression model for identifying potential discrepancies between the salary
proposed by the online announcements and the national Dutch working wage
calculated by the Dutch“Centraal Bureau voor de Statistiek” (CBS)4.

4 https://www.cbs.nl/en-gb/labour-and-income.

https://www.cbs.nl/en-gb/labour-and-income

84 G. Cascavilla et al.

3.2 Data Collection

In order to extract the information about job advertisements, we chose Facebook.
The reason behind our choice is related to its popularity. Indeed, it is the world’s
most widely used social media platform, especially in the context of non-sexual
labor work. For the data collection, we used a scraper written in Python as
programming language5. For identifying Facebook groups and pages that post
unskilled job offers in the Netherlands, we defined a query with simple keywords
that would capture the context of our research e.g., job, offer. Then we double-
checked the results to check whether a group or a page contained some job offers,
e.g., post every week. Out of more than 200 groups, we kept 20 of them. To
scrape the job offer posts of every group, we increased the number of pages in
a range from 200 to 500 depending on the limit of the posts that one group had,
and set the posts per page as 500 in order to avoid to lose data from groups that
mainly contain short text. The number of entries scraped was initially 10301. To
decrease the number of entries, we applied the criteria listed below. For ensuring
data quality extraction, we defined the following criteria:

– The post is from groups and/or pages that have a clear mention of job
announcements for the Netherlands or the Benelux region

– The post contains at least 100 characters
– The post is from a group or page that shows some activity in 2021 and has

two posts per month or an average of one post per week
– The post is unique and not a duplicate

To guarantee the last criterion, we removed duplicates once we merged all the
posts from different sources of groups and pages. We used the cosine similarity to
filter out further posts that show strong similarities with each other. Nonetheless,
we cannot exclude missing relevant posts. The scraper provided a JSON file as
output in which the text, the post id, and the timestamp are stored. We then
proceed to pre-process the qualified posts. The dataset is available online using
the online appendix [1].

3.3 Data Preparation

Data preprocessing is essential since we deal with unstructured data, i.e., posts,
that need to be remodeled to be input for the topic modeling analysis. In addi-
tion, raw data extracted from the collection phase need to be transformed into
an understandable format. Therefore, we deployed Regular Expression (RegEx)
to extract relevant features:

– We assigned a label as a new key for the contact information for each job
offered by matching ad hoc regular expressions in strings of text;

– We considered as a piece of contact information two details: external website
and phone contact;

5 https://github.com/kevinzg/facebook-scraper.

https://github.com/kevinzg/facebook-scraper

Unsupervised Labor Intelligence Systems 85

– For each contact information, we yielded a positive value if the expression
found the pattern in the string and a negative instead;

Afterward, we employed a language detector to recognize which language was
used in the job announcements, i.e., Java library ported from Google’s language
detection and recreated to Python6. Since this language detection algorithm is
non-deterministic, it is not always reliable. Therefore, the first and the second
authors of this paper manually double-checked half of the posts to check whether
the language detected was the correct one. Moreover, the detection can result
in ambiguous and not comprehensive as some posts can contain not only one
language. Therefore, we gave priority to labels with a different language other
than English and/or Dutch. Finally, we translated data into English to use them
as input for the topic modeling task. We employed Google translate API for doing
this task7. Posts written on social media might contain typos/errors. Hence, we
extended the translation with a spelling corrector8. Furthermore, we identified
any possible duplicates, filtered out them. 2873 represent the final number of
posts we got.

Subsequently, we extrapolated the salary offered in each post. Once again,
regular expressions came in handy when dealing with numeric characters with a
specific meaning according to their position in the text. We developed a heuristic
approach to get only the digits that represent the salary and nothing else, such
as the phone number or the date:

– We first retrieved all the words in a consecutive or closed position to every
number for every post;

– We selected only the words that related to a money offer such as euro, gross,
hourly ;

– We retrieved the digit in a new feature, and we kept all the keywords necessary
to calculate the salary and convert it hourly and into the gross form

Since we want to have an accurate conversion from a net wage to a gross
one, we collected the data from a gross/net converter website for each amount
of hourly wage and each year9. Then, we matched the net wage with the salary
obtained from the preprocessing and the year with the one from the timestamp
retrieved with the scraper; finally, we obtained the gross salary. As for the posts
that did not explicitly specify whether the salary was grossly or net, we rea-
sonably assume it as gross wage. We kept the timestamp as the next feature.
In particular, we consider the year as the most informative part of the times-
tamp. Moreover, we found five main languages, with varying degrees, consistently
present in the dataset, five different type of job post and the amount of post on
each year. These features are not related to the salary, hence we defined them
as “other” as shown in Table 1.

6 https://github.com/shuyo/language-detection.
7 https://py-googletrans.readthedocs.io/en/latest/.
8 https://textblob.readthedocs.io/en/dev/.
9 https://thetax.nl.

https://github.com/shuyo/language-detection
https://py-googletrans.readthedocs.io/en/latest/
https://textblob.readthedocs.io/en/dev/
https://thetax.nl

86 G. Cascavilla et al.

Table 1. Top 5 frequency of the other features

Language Count Job type Count Year Count

Polish 1459 Manufacturing 976 2020 803

English 815 Transportation and storage 603 2021 795

Dutch 447 Wholesale and retail trade 448 2019 575

Romanian 80 Construction 354 2018 259

Lithuanian 61 Agriculture, forestry and fishing 205 2016 198

The type of job represents the last feature. We performed a heuristic approach
to extract this information together with manual labeling:

– We took into consideration the type of job that, according to the existing
literature, is most likely to be at risk for labor exploitation;

– We considered the United Nations’ classification of the job sector10, and we
extracted all the keywords related to the type of job previously considered;

– We then matched these keywords with each post in our dataset, filtering out
all the rest of the words.

Once we had only these relevant keywords, we could manually label each post
within the appropriate job sector.

3.4 [RQ1]. Topic Modeling for Deceptive Online Job Advertisements

After extracting the data, we tried to find the essential information that charac-
terizes online job advertisements using topic modeling, possibly spotting poten-
tial signals of labor exploitation. The usage of topic modeling showed promising
results in uncovering hidden communities of tweets in social media [30]. We
exploited two topic modeling techniques, Latent Dirichlet Allocation (LDA) and
Latent Semantic Indexing (LSI).

LDA is an unsupervised learning that views documents as bags of words. It
is a generative probabilistic model of a corpus based on a three-level hierarchical
Bayesian model. The probabilistic topic model estimated by LDA consists of two
tables (matrices). The first table describes the probability or chance of selecting
a particular part when sampling a particular topic (category). The second table
describes the chance of selecting a particular topic when sampling a particular
document or composite. Indeed, it determines the proportion of a collection of
topics for each document of corpus-based on the distribution of the keywords
[2]. Once the number of topics is given, the document’s topic distribution is
reorganized. Finally, the keywords are distributed inside the topics to have the
ideal output of topic-keywords structure.

LSI is the second method that we implemented. It attempts to solve the issues
of lexical matching by retrieving information using statistically determined con-
ceptual indexes rather than individual words. It represents a method that maps
10 https://unstats.un.org/unsd/publication/seriesm/seriesm 4rev4e.pdf.

https://unstats.un.org/unsd/publication/seriesm/seriesm_4rev4e.pdf

Unsupervised Labor Intelligence Systems 87

documents into a latent semantic space [31]. Since this new space has fewer
semantic dimensions than the original one, this technique works as a dimen-
sionality reduction. A truncated singular value decomposition (SVD) evaluates
the structure of the words in each document given. The vectors created from
the truncated SVD are then used for retrieval. The result is that these vectors
produce a more reliable performance in understanding the meaning compared
to the individual phrases since they can handle the synonymy problems.

Data Preprocessing. Before deploying the topic modeling, we preprocessed
our data. First, we considered the unstructured text filtered by the keywords
from the previously extrapolated features. Then, we prepared the text data for
the preprocessing tasks.

The first operation is to correct wrongly translated words: they are translated
without a proper or reasonable meaning concerning the context in the text. For
this reason, we created an initial list of the unique words from the raw corpus of
text, and then we detected the language of each word. The words that were not
detected in English were discarded or corrected based on a manual check. Then,
we ordered the words by frequency, checking if some uncommon words appeared
in an unexpected frequency, and replaced them with the correct word.

Another step performed consisted of removing the stopwords, i.e., the most
common words such as articles, pronouns, and prepositions. We included as stop-
words words such as ‘work’, ‘job’ and ‘Netherlands’ since they often appeared,
not adding any additional information to the text. Removing this low-level infor-
mation from the text also helped reduce the number of tokens used and stream-
line the following steps. We removed punctuations, and we tokenized each post
in a list of words with the use of the Gensim library11. We computed the bigrams
and trigrams, i.e., the sets of two and three adjacent words. We tried different
value of the n-gram parameters’ function min counts and threshold to achieve
an optimal combination of n-grams words. We performed a lemmatization of
the word since we wanted to produce words that could be easily readable and
recognizable. Finally, we created the dictionary and the corpus using id2word,
which maps the unique id of each word to a token.

Applying Topic Modeling. Once we completed the preprocessing steps, we
trained the LDA model. The initial task is to set the number of topics. In order
to define the optimal number of the topic, we ran a grid search setting the
minimum and the maximum number of topics and the step as 1. We gradually
reduced the number of topics to 15 once we measured the coherence score, i.e.,
the degree of semantic similarity between high scoring words in the topic, for
each amount of topics that the LDA model was generating.

As for LSI, We replicated the same preprocessing implementation for LDA.
We used Gensim library to implement the model12. In this case, we explored
different values for the hyperparameters step, i.e., chunksize and decay.

11 https://pypi.org/project/gensim/.
12 https://radimrehurek.com/gensim/models/lsimodel.html.

https://pypi.org/project/gensim/
https://radimrehurek.com/gensim/models/lsimodel.html

88 G. Cascavilla et al.

Chunksize indicates the number of posts used in each training chunk, and it
can affect the speed of the training, while decay value gives a weight of existing
observations relatively to new ones.

Once we had the topics, we evaluated the goodness of the model. We used
two evaluation metrics: the perplexity score, which captures the level of gener-
alization of the model, and the coherence score.

The perplexity score is a statistical measure that estimates the distribution
of words in the documents and tells how the model can represent the statistics
of the held-out data [2]. Since it has been proved that this metric may not
yield human interpretable topics and it can be not positively correlated with
the human judgments [5], we include other metrics along with the perplexity
score. The metric that evaluates the coherence score is ’c v’. It measures the
score using a normalized pointwise mutual information (NPMI), and the cosine
similarity once obtained the co-occurrence between words [29]. Due to the space
limitation, we do not report the formula.

3.5 [RQ2]. Building a Logistic Regression Model

This RQ aims to predict deceptive behavior, considering as dependent variables
the most tangible value that we can get from an online job announcement: the
salary. To obtain our dependent binary variable, we relied on data regarding
the employment, working hours, and wages in the Netherlands13. In particular
we procured the hourly wage per class of job and per year. We calculated the
difference between these values and the salary extracted from our dataset.

The predictive variable was named delta salary : when the salary offered in
a job post is larger than the one displayed by the national statistic agency, we
attributed a positive value, we gave a negative value otherwise.

In order to classify this variable, we deployed a logistic regression model.
This technique can estimate the probability of occurrence, including making a
connection between features and the likelihood of specific outcomes. The features
that we considered are the ones obtained from the data preparation phase and
the topics obtained from the LDA topic model, and they are:

– Topic
– Year
– Language
– Job Class
– Presence of phone contact
– Presence of external url

In this way, we wanted to discover whether it is possible to find a hidden pattern
between potential labor exploitation indicators and if there is a chance to improve
the accuracy of the investigation in this area of research. At the same time,
having a tangible asset as the salary identification can help to assess the economic
impact better and better understand the business model employed.
13 https://opendata.cbs.nl/statline/#/CBS/en/dataset/81431ENG/table?ts=1637795

200937.

https://opendata.cbs.nl/statline/#/CBS/en/dataset/81431ENG/table?ts=1637795200937
https://opendata.cbs.nl/statline/#/CBS/en/dataset/81431ENG/table?ts=1637795200937

Unsupervised Labor Intelligence Systems 89

Before running the model, we initially explored the data and checked possi-
ble class unbalancing. Unfortunately, the negative value overcame the positive
ones. However, the ratio was not excessively unbalanced (70%–30%). Moreover,
oversampling with artificial data could deteriorate the quality of the dataset.
On the other side, undersampling could discard potentially meaningful data and
undermine the model’s accuracy. We then proceeded to encode the variables. We
first converted the categorical variable such as the job class, the language and
the topic into one hot encoded variables, time into ordinal encoded variable and
phone contact and external url into simple dummy variables. As a consequence,
the number of variables exponentially increased. Thus, we measured a possible
correlation among the variables and performed a recursion feature elimination
to select the meaningful variables and avoid high dimensionality problems. We
used the Sklearn library to implement it14.

The recursion feature elimination selects features by recursively evaluating
smaller groups of features. First, the estimator is trained on the original set of
features to determine the importance of each feature. Then, the least significant
feature is removed from the current group of features. The process is repeated
until the given set of features is attained. We decided to keep half of the features
out of those previously made. We divided the dataset into training and testing
data, finally implementing the model. We removed the features that exhibit p-
values higher than 0.05 and re-run the model. Then we removed topic features
to compare with the previous model and evaluated whether the model showed
any difference in terms of explainability. We then evaluated our final model to
predict the accuracy. We also wanted to see what is the accuracy of both of the
binary predictive classes. Thus we calculated the precision, recall, and F1-score.
We finally evaluated the sensitivity/precision trade-off using the ROC curve.

4 Results

This section presents the results obtained according to the methodology
described in Sect. 3.

4.1 Topic Modeling

In this section, we show the results from the experimentation presented in the
methodology in the Sect. 3. We started to experiment with LDA15. In particular,
we initially defined the optimal threshold of both bi-grams and tri-grams. We
experimented with several sets of values. The values outside the range between
10 to 100 displayed worse scores and poorer interpretation, so we focused on
those inside the range. We reported the results in Table 2. In this case, we chose
80 as the optimal choice since it showed a better coherence score, even though
it was very close to the other values. Once selected the threshold of the n-grams,
14 https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.RFE.

html.
15 https://github.com/giuseppecascavilla/topic modelling.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://github.com/giuseppecascavilla/topic_modelling

90 G. Cascavilla et al.

we further kept experimenting using α and η hyperparameters. We tried several
values of α and η. Since we reasonably assumed that the distribution for words
in topics and documents is sparse, we expected to have a better score with a
value of α and η less than 1. Table 3 shows the results of the tuning. While
the optimal number of topics changes from a range of values from 2 to 6, the
coherence scores are very close. The coherence score showed the same trend
for the experimentation with different values of the hyperparameters. It kept
increasing for the first few topics, before having a fall after the seventh topic, as
we can see from the Fig. 1.

Table 2. LDA: experimentation with n-grams threshold

LDA

Threshold Coherence Perplexity N. of Topics

10 0.421 –7.924 5

50 0.552 –7.750 5

80 0.577 –7.537 4

100 0.557 –7.428 2

Once selected the threshold of the n-grams, we further kept experimenting
using α and η hyperparameters. We tried several values of α and η. Since we
reasonably assumed that the distribution for words in topics and documents is
sparse, we expected to have a better score with a value of α and η less than 1. The
coherence score showed the same trend for the experimentation with different
values of the hyperparameters. It kept increasing for the first few topics, before
having a fall after the seventh topic, as we can see from the Fig. 1.

Fig. 1. Coherence scores of topics for LDA model (with α = 0.5, η = 0.01)

Unsupervised Labor Intelligence Systems 91

The coherence scores between the optimal number of topics and the number
of topics close to the optimal one do not flat out. Thus, despite the fact that
the optimal number of topics often differs from one experimentation to another,
the optimal range of topics remains the same. The coherence scores provides an
overview of the number of topics available in the dataset.

The perplexity score changed only when the value of η was set as the lowest
(0.01), and it confirms the assumption about the sparsity of the distribution
of the words in each topic. Consequently, this leads to believe that the size of
vocabulary for each topic is variable and topics contain uncertain word combina-
tions. Regarding the model, the optimal number of topics have the same range
of a number of the ones with the LDA experimentation, as we can see from the
Table 4. The coherence scores showed a slightly better performance, especially
when the chunksize is small and the decay is not more than 0.5.

Table 3. LDA: experimentation with α and η and threshold of bi-grams and tri-grams
as 80

LDA

α η Coherence Perplexity N. of Topics

Symmetric Symmetric 0.547 –7.605 2

Auto Auto 0.577 –7.536 4

0.01 Symmetric 0.539 –7.474 6

0.01 Auto 0.546 –7.498 3

0.5 Auto 0.546 –7.498 3

2 Auto 0.576 –7.905 6

0.01 0.01 0.564 –10.201 5

0.5 0.01 0.573 –10.223 3

2 0.01 0.533 –10.407 2

2 0.5 0.571 –7.554 4

2 2 0.576 –7.791 3

Table 4. LSI: experimentation with decay and chunksize

LSI

Decay Chunksize Coherence N. of Topics

0.1 10 0.627 6

0.1 50 0.591 4

0.1 100 0.559 3

0.5 10 0.624 4

0.5 50 0.605 5

0.5 100 0.622 4

1 10 0.552 3

1 50 0.530 3

1 100 0.522 10

92 G. Cascavilla et al.

As mentioned in Sect. 3.4, the purely quantitative metrics can limit the overall
evaluation. Consequently, we looked for topics in detail through the observation-
based. We considered the top 15 words of each topic, and we evaluated whether
any word was shared among the topics. We made use of the Word Cloud to
visualize better the top words (Fig. 2).

Fig. 2. Word Cloud of the 3 topics of the best LDA model

Fig. 3. Visualization of the LDA model

The majority of the topics could not identify as a determined class of job or
a specific working condition. Few words were not shared among the topics, and
only a few of them can be representative of a kind of job, working condition, or
an evident writing pattern. The LDA best model had 3 topics, a perplexity score
of –10.223 and a coherence score of 0.573. By observing the top 15 words, at
most one word per topic, ‘warehouse’ and ‘shift’ for example, was relevant to
differentiate the topics. We further visualized the LDA model in an intertopic
distance map (Fig. 3). It provided more insight regarding the top 15 words pre-
viously analyzed. Despite most of the top words being shared in every topic,

Unsupervised Labor Intelligence Systems 93

different words had different saliency levels. For example, the word ‘accommo-
dation’ has a high value of relevance but a saliency close to 0. On the contrary,
term such as ‘production’ has a high relevance as well as a high saliency towards
a specific topic, which makes it more informative. To access the interactive file
of our LDA topic modelling please refer to [1] file name everything.html.

4.2 Logistic Regression Results

Regarding the regression analysis, we implemented the procedure previously
described in 3.5. We used a Python library16 to evaluate whether the features
built can be significant to reveal if the salary offered in a job announcement is
appropriate to the national values. We considered 26 features created after the
econding phase. We also included topics from the LDA model.

Before the implementation, we considered reducing the dimensions to avoid
using irrelevant features that would have only increased the time complexity. We
used the recursive feature elimination, which is a wrapper-type algorithm that
searches for a subset of features by starting with all features and subsequently
removing them until a fixed number is provided [16], which in our case is 14,
more than a half.

We implemented the model. Out of the 14 features that we initially had, we
removed the ones with a p-value higher than 0.05, which indicates the statistical
significance for a confidence interval of 95%. As a result, 6 variables are removed.
Detailed results are available in the online appendix [1]. After this step, we
wanted to check whether the model changed the significance for the remaining
variables, so we took into consideration the Pseudo-R2 to evaluate the change
of the interpretability of the model [27]. The Pseudo-R2 of the model with 14
features is 0.385, while the one of the models without significant features is
0.263. The value showed a decrease. However, it is still in a good fit range for
the machine learning estimation, as it is demonstrated to be between 0.2 and 0.4
[17]. The significant variables kept by the model were 7, 3 regarding the language
of the text, 3 about the type of the job and the last one is the first topic of the
LDA model. We consider the Durbin Watson statistic is for the auto-correlation
in the model’s output. The value is –1.942, which was a sign of zero or low level
of auto-correlation in the residuals.

As for ‘topic’ variable, its regression coefficient was negative, which indicates
a negative proportional relationship between the text similar imputable to this
topic and the delta salary. Since we wanted to evaluate the importance of the
variable in the logistic model, we ran the regression without the topic. There is a
slight reduction of the value of the Pseudo-R2 (0.249) and a slight increase of the
log-odd, from 0.440 to 0.446, which means that the topic had some importance
in the prediction. Detailed results are available in the online appendix [1]

We analyzed several metrics used in a binary classification task namely accu-
racy, recall, precision and F1 score.

16 https://www.statsmodels.org/dev/example formulas.html.

https://www.statsmodels.org/dev/example_formulas.html

94 G. Cascavilla et al.

As we can see from Table 5, while the negative delta salary had high values
of precision, recall, and F1 score, the positive class had a low value of F1 score,
which is caused by a low recall. Moreover, since the amount of data leans towards
the negative class, the score of the macro average is lower than the one of the
weighted average.

Table 5. Classification results

of class Class Precision Recall F1-score

2 Negative Delta salary 0.81 0.98 0.88

Positive Delta salary 0.76 0.25 0.38

Macro average 0.79 0.61 0.63

Weighted average 0.80 0.80 0.76

Detailed results are available in the online appendix [1]

5 Discussion

Our initial investigation showed a match between the labor indicators stated by
the literature that we reviewed and the one from social media and how they can
affect the job research in the unskilled job market. From our research study we
found that human judgment still plays a big role in the evaluation and inter-
pretation. For example, the presence of the wage can indicate that we are more
likely to deal with unskilled job offers than skilled ones [3,40] By combining
other indicators such as the type of job, the description, and the national salary
for that job, we can assess if the offer is adequate to the national standard.

Offering a low-paid job but still above the minimum wage does not implicitly
entail illegal work. We have then to discern what kind of job is more susceptible
to salary discrepancy. In this regard, we need to shed light on a better evaluation
of the recruitment process’s weakness and what the main actors are involved for
a further investigation.

Besides the salary, the richness of the information in a job description can also
play an important role during the evaluation. Job announcements with short text
descriptions were difficult to frame into a job category since they contained very
few keywords regarding the job and, in most cases, they belonged to more than
one job type. This announcement shortness problem leads the categorization
ambiguous, compromising the next steps. The topic modeling phase suffered from
the presence of entries with a short text. Some of them were discarded due to the
lack of real information. However, others were kept since they were job offers,
and ignoring them could have reduced the variety and the true representation
in the social media context.

Stopwords are also important factors in topic modeling. There are words such
as ‘english’, ‘contact’, ‘company’ or ‘worker’. These words can be considered gen-
eral words in a job description and are not insightful. However, considering them

Unsupervised Labor Intelligence Systems 95

on a par with stopwords and removing them can lead to a complete outcome,
with different topics from a less rigorous stopwords selection. The n-gram thresh-
old is also a parameter that affects the output. Increasing the threshold we had a
fewer number of topics and a higher coherence score, but the topics are difficult
to interpret as the variety of most relevant and salient words is really low.

It was not the only time that we encountered the conflict between better per-
formance with quantitative metrics and questionable performance with human
judgment. When experimenting with LDA hyperparameters, we noticed that a
better model was given with a low value of η, since it reduced the perplexity,
which is connected to the model’s generalization. However, the results showed
topics with defined characteristics but very ambiguous from each other. Over-
all we can state that we Topic 1 is more related to the type of job offer and
the amount of hours, hence we have also terms like salary offered in a job
post. Topic 2 appears to be more related to the type of job, indeed in this topic
we have terms like production and transport that give the idea of the main
type of job offered. In the last topic, Topic 3, we find prevalence of languages
like English and Dutch. Topic 3 is representative if related to the type of lan-
guages requested to work in Netherlands. The complete analysis is available in
the Appendix online [1].

We aimed to capture in a so-called topic the type of job and the job descrip-
tion’s linguistic features simultaneously. Both LDA and LSI models displayed
good results with quantitative metrics, i.e., coherence and perplexity but hard
interpretation and human evaluation of the data, mostly because of the lack of
interpretable embedding. One problem is that we do not have clear evidence
that components from one topic have a positive or negative sense. We tried to
determine an explanation in this sense by including the topics as features in
the regression model. In fact, we had a clear relationship between statistically
significant topics and wages offered in the job announcement.

Nevertheless, metrics used along with the intertopic distance map, such as
saliency and relevancy, provided more information about a single word in each
topic. In this way, we discovered more insightful patterns in each topic. This
last evidence showed the potential that topic modeling could achieve for this
particular field of research.

As we can see from the results of our prediction model, other information
can be relevant to assessing the job announcement’s fairness. Different types of
language might affect the salary offered. Although our dataset cannot be consid-
ered a complete representation of the job market, it is interesting that language
is a significant aspect of the data. Considering that every kind of analysis needs
language conformity to provide a comparison in a final evaluation, translating
the text into language might risk losing essential information for the analysis.

Finally, we believe that our approach—which needs further studies—can rep-
resent the starting point for future investigation on how AI can help police to
detect and prevent labor exploitation starting from job advertisements, thus rep-
resenting a revolutionary step that can help decrease this issue. We are already
collaborating with Dutch Police to provide an intelligence dashboard that con-
sists of an AI model for real-time crawling data from social media and highlights

96 G. Cascavilla et al.

possible labor exploitation in the dutch labor market. i.e., SENTINEL Project
(see the acknowledgment). These studies will also converge in providing a more
general framework and tool that different countries’ police can use.

6 Conclusion

In this work, we provide a promising approach for detecting and analyzing poten-
tial labor exploitation indicators in social media. First, we examined indicators
of potential labor exploitation from the current literature, and we investigated
their presence in real data. Then we extracted and pre-processed data from Face-
book groups and pages that offer job advertisements in the dutch labor market.
To extract important feature that characterizes labor, we apply topic model-
ing techniques, i.e., Latent Dirichlet Allocation and Latent Semantic Indexing.
Then, based on the topic extracted, we constructed a logistic regression model
for predicting salary discrepancy from the wage expected to the national stan-
dard. The results of our model are encouraging (F1 Score 61%), thus meaning
that the Artificial Intelligence approaches should be considered for any crim-
inal investigation. In future works, we want to consider other types of social
networks and try different parameters configurations when running a machine
learning model.

Acknowledgements. We thank Davide Carnevale for the work done during his mas-
ter thesis. The work is supported by EU Twining DESTINI project, and, the Dutch
Ministry of Justice and Safety through the Regional Table Human Trafficking Region
East Brabant sponsored the project SENTINEL.

References

1. Appendix: unsupervised labor intelligence systems: a detection approach and its
evaluation (2022). https://doi.org/10.6084/m9.figshare.19481339.v1

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Brenčič, V.: Wage posting: evidence from job ads. Can. J. Econ./Revue canadienne
d’économique 45(4), 1529–1559 (2012)

4. Burbano, D., Hernandez-Alvarez, M.: Identifying human trafficking patterns
online. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp.
1–6. IEEE (2017)

5. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., Blei, D.M.: Reading tea
leaves: how humans interpret topic models. In: Advances in Neural Information
Processing Systems, pp. 288–296 (2009)

6. Chinnov, A., Kerschke, P., Meske, C., Stieglitz, S., Trautmann, H.: An overview
of topic discovery in twitter communication through social media analytics. In:
Americas Conference on Information System (2015)

7. Cockbain, E., Bowers, K., Dimitrova, G.: Human trafficking for labour exploitation:
the results of a two-phase systematic review mapping the European evidence base
and synthesising key scientific research evidence. J. Exp. Criminol. 14(3), 319–360
(2018)

https://doi.org/10.6084/m9.figshare.19481339.v1

Unsupervised Labor Intelligence Systems 97

8. Cordeiro, M.: Twitter event detection: combining wavelet analysis and topic infer-
ence summarization. In: Doctoral Symposium on Informatics Engineering, vol. 1,
pp. 11–16 (2012)

9. Council of Europe: Third Report on the Progress Made in the Fight Against Traf-
ficking in Human Beings. European Commission (2020)

10. Cvijikj, I.P., Michahelles, F.: Monitoring trends on facebook. In: 2011 IEEE Ninth
International Conference on Dependable, Autonomic and Secure Computing, pp.
895–902. IEEE (2011)

11. Deng, Q., Gao, Y., Wang, C., Zhang, H.: Detecting information requirements for
crisis communication from social media data: an interactive topic modeling app-
roach. Int. J. Disast. Risk Reduct. 50, 101692 (2020)

12. Di Nicola, A., et al.: Surf and sound. The role of the internet in people smuggling
and human trafficking. eCrime (2017)

13. Forte, E., Schotte, T., Strupp, S.: Serious and organised crime in the EU: The
EU serious and organised crime threat assessment (SOCTA) 2017. Eur. Police Sci.
Res. Bull. 16, 13 (2017)

14. Gerber, M.S.: Predicting crime using twitter and kernel density estimation. Decis.
Support Syst. 61, 115–125 (2014)

15. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using
topic models for twitter hashtag recommendation. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 593–596 (2013)

16. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

17. Hensher, D.A., Stopher, P.R.: Behavioural Travel Modelling. Routledge, London
(2021)

18. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: Pro-
ceedings of the First Workshop on Social Media Analytics, pp. 80–88 (2010)

19. Hughes, D.M.: Trafficking in human beings in the European Union: gender,
sexual exploitation, and digital communication technologies. SAGE Open 4(4),
2158244014553585 (2014)

20. Immonen, A., Pääkkönen, P., Ovaska, E.: Evaluating the quality of social media
data in big data architecture. IEEE Access 3, 2028–2043 (2015)

21. Jeong, B., Yoon, J., Lee, J.M.: Social media mining for product planning: a product
opportunity mining approach based on topic modeling and sentiment analysis. Int.
J. Inf. Manage. 48, 280–290 (2019)

22. Kasiviswanathan, S.P., Melville, P., Banerjee, A., Sindhwani, V.: Emerging topic
detection using dictionary learning. In: Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, pp. 745–754 (2011)

23. Kejriwal, M., Szekely, P.: An investigative search engine for the human trafficking
domain. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 247–262.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 25

24. Khanjarinezhadjooneghani, Z., Tabrizi, N.: Social media analytics: an overview of
applications and approaches. In: Proceedings of the 13th International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering and Knowledge Manage-
ment (IC3K 2021) - Volume 1: KDIR, pp. 233–240I (2021)

25. Ko, N., Jeong, B., Choi, S., Yoon, J.: Identifying product opportunities using social
media mining: application of topic modeling and chance discovery theory. IEEE
Access 6, 1680–1693 (2017)

26. Latonero, M.: Human Trafficking Online: The Role of Social Networking Sites and
Online Classifieds. SSRN 2045851 (2011)

https://doi.org/10.1007/978-3-319-68204-4_25

98 G. Cascavilla et al.

27. McFadden, D., et al.: Conditional Logit Analysis of Qualitative Choice Behavior.
Academic Press, New York (1973)

28. Prier, K.W., Smith, M.S., Giraud-Carrier, C., Hanson, C.L.: Identifying health-
related topics on twitter. In: Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.)
SBP 2011. LNCS, vol. 6589, pp. 18–25. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19656-0 4

29. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence mea-
sures. In: Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, pp. 399–408 (2015)

30. Rohani, V.A., Shayaa, S., Babanejaddehaki, G.: Topic modeling for social media
content: A practical approach. In: 2016 3rd International Conference on Computer
and Information Sciences (ICCOINS), pp. 397–402. IEEE (2016)

31. Rosario, B.: Latent semantic indexing: an overview. Techn. rep. INFOSYS 240,
1–16 (2000)

32. Shahbazi, Z., Byun, Y.C.: Analysis of domain-independent unsupervised text seg-
mentation using LDA topic modeling over social media contents. Int. J. Adv. Sci.
Technol 29(6), 5993–6014 (2020)

33. Siddiqui, T., Amer, A.Y.A., Khan, N.A.: Criminal activity detection in social net-
work by text mining: comprehensive analysis. In: 2019 4th International Conference
on Information Systems and Computer Networks (ISCON), pp. 224–229. IEEE
(2019)

34. Sweileh, W.M.: Research trends on human trafficking: a bibliometric analysis using
scopus database. Glob. Health 14(1), 1–12 (2018)

35. Tong, E., Zadeh, A., Jones, C., Morency, L.P.: Combating human trafficking with
deep multimodal models. arXiv preprint arXiv:1705.02735 (2017)

36. United Nations: Global Report on Trafficking in Persons 2020. UN (2021). https://
books.google.nl/books?id=gGxczgEACAAJ

37. Vayansky, I., Kumar, S.A.: A review of topic modeling methods. Inf. Syst. 94,
101582 (2020)

38. Volodko, A., Cockbain, E., Kleinberg, B.: “spotting the signs” of trafficking recruit-
ment online: exploring the characteristics of advertisements targeted at migrant
job-seekers. Trends Organ. Crime 23(1), 7–35 (2020)

39. Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events
extracted from twitter posts. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.)
SBP 2012. LNCS, vol. 7227, pp. 231–238. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29047-3 28

40. Zhang, S.X., Cai, L.: Counting labour trafficking activities: an empirical attempt
at standardized measurement. In: Forum on Crime and Society, vol. 8, pp. 37–61.
United Nations (2015)

41. Zhu, J., Li, L., Jones, C.: Identification and detection of human trafficking using
language models. In: 2019 European Intelligence and Security Informatics Confer-
ence (EISIC), pp. 24–31. IEEE (2019)

https://doi.org/10.1007/978-3-642-19656-0_4
https://doi.org/10.1007/978-3-642-19656-0_4
http://arxiv.org/abs/1705.02735
https://books.google.nl/books?id=gGxczgEACAAJ
https://books.google.nl/books?id=gGxczgEACAAJ
https://doi.org/10.1007/978-3-642-29047-3_28
https://doi.org/10.1007/978-3-642-29047-3_28

MicroStream vs. JPA: An Empirical
Investigation

Benedikt Full, Johannes Manner(B) , Sebastian Böhm, and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
ben.fu@t-online.de,

{johannes.manner,sebastian.boehm,guido.wirtz}@uni-bamberg.de

Abstract. MicroStream is a new in-memory data engine for Java appli-
cations. It directly stores the Java object graph in an optimized way,
removing the burden of having to map data from the Java object model
to the relational data model and vice versa, a problem well known as the
impedance mismatch. Its vendor claims that their product outperforms
JPA-based systems realized with Hibernate. They furthermore argue that
it is well-suited for implementing microservices in a cloud-native way
where each service complies with the decentralized data management
principle of microservices.

Our work empirically assessed the performance of MicroStream by
implementing two applications. The first one is a modified version of
MicroStream’s BookStore performance demo application. We used it to
reproduce the data the MicroStream developers used as backing for their
performance claims. The second application is an OLTP system based
on the TPC-C benchmark specification.

MicroStream does not provide any sophisticated features for con-
current data access management. Therefore, we created two distinct
MicroStream-based approaches for our OLTP application. For the first
solution, we used a third-party transaction management system called
JACIS. The second solution relies on structured modelling and Java 1.0
concurrency concepts.

Our results show that MicroStream is indeed up to 427 times faster
when comparing the service execution time on the server with the fastest
JPA transaction. From a user’s perspective, where network overhead,
scheduling etc. impact the overall server response time, MicroStream
is still up to 47% faster than a comparable JPA-based solution. Fur-
thermore, we implemented concurrent data access by using an approach
based on structured modelling to handle lock granularity and deadlocks.

Keywords: Cloud-native applications · Java persistence · In-memory
data engine · JPA · Concurrency control

1 Introduction

In 2019, the Java-native persistence solution MicroStream (MS) was released. It
was integrated with Helidon, a set of open-source libraries for writing cloud-native
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 99–118, 2022.
https://doi.org/10.1007/978-3-031-18304-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_6&domain=pdf
http://orcid.org/0000-0002-7298-3574
http://orcid.org/0000-0002-0438-8482
https://doi.org/10.1007/978-3-031-18304-1_6

100 B. Full et al.

microservices, in late 20211. At its core, MS is a storage engine for managing
and persisting Java object graphs. As it was developed specifically for han-
dling Java objects, persisting data does not involve object-relational mapping
(ORM). This fact is invoked by the framework developers as a major factor
for MS’s superior performance when compared to conventional relational persis-
tence based on the Java Persistence API (JPA) standard. The developers of MS
even claim that their persistence solution is “[...] up to 1000× faster than Hiber-
nate + EHCache.”2 They support this by providing results acquired using their
own, non-standardized performance evaluation solution, the BookStore Perfor-
mance Demo (BSPD) application3. Our overall motivation for this work is to
assess the marketing claim of MS as well as to compare the two persistence
solutions with each other. We are aware that MS (in-memory) and JPA (ORM-
based) solutions are two types of data management frameworks. Nevertheless
both approaches allow a developer to work with their business objects in an
object-oriented way. This is different from other in-memory data management
solutions like Redis, where only key-value pairs can be stored, leading to a frag-
mentation of the domain model into disjunct objects. Furthermore the design
principles of microservices, especially the decentralized data management prin-
ciple, encourage developers to use the best data management solution for the use
case at hand. This aspect fosters our motivation to look at MS as a candidate
for a Java-native persistence solution.

To the best of our knowledge, no other publications have investigated this
persistence solution and its vendor’s claims regarding their product’s perfor-
mance. Therefore, the research questions of this work are:

– RQ1 - Is a MicroStream-based solution up to a thousand times faster than
a comparable JPA-based implementation utilizing Hibernate?

– RQ2 - How can we achieve concurrency control for a mutable data model
with the MicroStream in-memory data engine?

– RQ3 - What are potential usage scenarios where MicroStream-based persis-
tence should be used instead of JPA-based persistence?

Evaluating the performance of any component or system is rather challeng-
ing. There seems to be no general consensus on how performance data must
be measured and interpreted [20]. Vendors sometimes provide custom applica-
tions which are supposed to highlight the strengths of their products, while
at the same time ignoring or downplaying the products’ weaknesses. For per-
formance comparisons between their product and competing systems, vendors
may use their own, non-standardized evaluation design implementations which
raise questions regarding the bias and reliability of the data acquired. Further-
more, the performance of any system depends on the workload and application
scenario [17].

1 https://medium.com/helidon/helidon-2-4-0-released-18370c0ebc5e.
2 https://microstream.one/.
3 https://github.com/microstream-one/bookstore-demo-performance.

https://medium.com/helidon/helidon-2-4-0-released-18370c0ebc5e
https://microstream.one/
https://github.com/microstream-one/bookstore-demo-performance

MicroStream vs. JPA: An Empirical Investigation 101

Benchmarks are tools used for evaluating and comparing the performance of
similar systems. A benchmark should allow its users to measure performance in a
standardized, reproducable, and simplified way [17]. The scope of a benchmark,
and thus the applicability of its results, are usually limited to some specific usage
scenario. Our research focuses on the context of Online Transaction Processing
(OLTP) applications - software systems in which multiple clients can access
resources concurrently.

For our work, we used a modified version of the BSPD application4 to acquire
some baseline performance data. We then implemented the Wholesale Supplier
(WSS) benchmark5, an OLTP benchmark based on the well-established, stan-
dardized TPC-C benchmark6 [15]. This benchmark was then used to evaluate the
performance of two different MS-based implementations in relation to a JPA-
based implementation. Besides gathering and analyzing performance data, we
share our expertise for identifying potential usage patterns and best practices
for working with MS.

The paper is organized as follows. Section 2 describes previous work in the
area of persistence solution evaluation and approaches to deal with concurrency
control. Section 3 provides a more detailed introduction to the BSPD and WSS
applications and how they were used to acquire performance data. This data
is introduced in Sect. 4 and its implications are the foundation to answer our
research questions in the subsequent part, Sect. 5. Besides answering the research
questions, we also discuss potential threats to the validity of our work. Section 6
concludes the paper and provides an overview of possible future work.

2 Related Work

2.1 Performance Evaluation

Evaluating performance in the context of computer systems—and more specif-
ically, persistence solutions—has been of concern to developers, vendors, and
researchers for decades [17].

Benchmarks were developed to provide convenient means for evaluation and
to enable fair comparisons of the performance of different solutions. Standard-
ization efforts began during the 1970s [20], driven by groups and councils from
industry and academia [17]. The Transaction Processing Performance Council
(TPC) was formed in 1988 as a body for defining standards for evaluating the
performance of systems in the context of OLTP applications. One of their most
successful publications is the TPC-C benchmark, a specification-based bench-
mark for evaluating persistence solutions in the context of OLTP applications,
released in 1992 [15].

4 https://github.com/fullben/bookstore-demo-performance.
5 https://github.com/fullben/java-persistence-benchmark.
6 The specification for the TPC-C benchmark can be found at http://www.tpc.org/

tpc documents current versions/current specifications5.asp.

https://github.com/fullben/bookstore-demo-performance
https://github.com/fullben/java-persistence-benchmark
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

102 B. Full et al.

Besides standardized benchmarks published by councils such as the TPC,
various research projects have released or used benchmarks. One of the ear-
liest benchmarks looking into the performance of relational databases are the
so-called Wisconsin benchmarks published in 1983 [2]. The HyperModel bench-
mark from 1990 was used to evaluate object-oriented database management
system (DBMS) in the context of engineering applications [1]. Another impor-
tant benchmark in this context is the OO1 benchmark from 1992, which—like
the previously mentioned HyperModel benchmark—can be used for evaluating
persistence solutions in the context of engineering applications (e.g., CAD and
CASE applications). Its authors—Cattell and Skeen—deemed all existing appli-
cations insufficient for evaluating database systems for this usage scenario and,
therefore, developed their own benchmark [7]. Based on the OO1 benchmark,
Carey, DeWitt, and Naughton developed OO7, another benchmark for evaluat-
ing the performance of object-oriented databases in the context of engineering
applications, released in 1993 [5]. While OO7 was quickly adopted by various
vendors of object-oriented databases, its authors hoped that they would be able
to eventually pass on their benchmark to some standards body [6]. Although this
has not happened to this day, besides vendors, various researchers have used the
benchmark for their own research projects [9,10,16].

Besides performance-focused work, researchers have also published evalua-
tions that primarily rely on the qualitative comparison of the features of the
systems being evaluated [8,14]. Other works use both a benchmark-based per-
formance evaluation and a feature comparison [4,16].

While most of the previously described works deal with the evaluation of
persistence solutions, only a few have been performed in the context of the
Java environment: Jordan used a set of criteria and a custom implementation
of the OO7 benchmark to evaluate Java-based persistence technologies such as
EJBs, JDBC, JOS, and JDOs [16]. Based on this work, Zyl et al. compared the
performance of object-oriented databases and relational databases by using yet
another, custom Java-based implementation of OO7 [24].

2.2 Concurrency Control

In database research, topics like the granularity of locks, transaction manage-
ment, or principles such as ACID have been discussed in the context of con-
current data access management for decades [12]. In JPA-based solutions the
concurrency handling of updating data is delegated to the DBMS. Modern
in-memory databases have similar problems to solve [18]. Handling concur-
rency control in an optimistic way is often discussed based on a multiversion
strategy [19].

Since MS does not expose any meaningful concurrency control features, users
of the persistence solution are forced to rely on external transaction management
systems with an adapter for MS, like the Java ACI Store (JACIS) library7.
Alternatively, developers may take it upon themselves to implement thread-safe

7 https://github.com/JanWiemer/jacis.

https://github.com/JanWiemer/jacis

MicroStream vs. JPA: An Empirical Investigation 103

data access in their applications. For this, they can rely on Java language features
such as locks and concurrent collections [11]. This leads to a system design where
business logic and concurrency control concepts are mixed in the source code.
Best practices and strict design rules are necessary to avoid concurrency errors
which are hard to test and resolve at runtime.

3 Methodology

3.1 BookStore Performance Demo Application

The vendor of MS has published the so-called BookStore Performance Demo
application on GitHub. This application is used to back their claims regarding
the superior performance of MS when compared to JPA-based persistence on
their website, see RQ1.

The application is implemented in Java 8 using SpringBoot and both MS
and JPA for persistence. The JPA-based, relational persistence uses Hibernate
as JPA implementation and a PostgreSQL DBMS for managing the relational
database. The business model of the BSPD application is that of a company
selling books in stores located in multiple countries. It is worth mentioning that
the model structures for the MS-based implementation are largely immutable to
increase thread-safety and ease the burden of manual synchronization.

At BSPD application startup, an initial set of model data is generated for the
MS-based persistence implementation. Once written to storage, this data is then
also written to the JPA-based implementation, thus ensuring that both persis-
tence implementation variants have the same initial set of data. After this setup
has been completed, users can use the Vaadin-based web interface of the appli-
cation to trigger one of seven predefined read-only queries. The selected query
is executed for both, the MS-based and the JPA-based persistence implemen-
tations, and usually repeated multiple times. The execution durations for these
queries are then reported back and visualized in the web interface. The actual
result data of the queries is ignored. And although the queries are designed to
be parameterized, the application selects the actual parameter values to be used
automatically.

We developed an extension of this application8. It makes no significant mod-
ifications to the behavior of the existing application components. For executing
the seven defined queries parameterized, we added a dedicated service layer. This
service layer allows for query execution against both, the MicroStream-based and
the JPA-based data. We made these services available as part of a new API. The
endpoints of the API can be used to trigger the queries with appropriate param-
eters, provided via HTTP request properties. Additionally, we wrote a JMeter
script that can be used to simulate multiple clients interacting with this API
concurrently. The clients use the API in a two-step process:

1. Setup phase: A set of data is acquired from the API in order to define the
value ranges for the parameters of the queries.

8 https://github.com/fullben/bookstore-demo-performance.

https://github.com/fullben/bookstore-demo-performance

104 B. Full et al.

2. Measurement phase: Each client randomly selects one of the seven queries
and randomly chooses valid parameters before calling the appropriate API
endpoint.

With this performance measurement approach, more data can be generated
than with the original implementation. This should potentially reduce the impact
of errors introduced by sources of uncertainty such as the host platform or the
JVM JIT-compiler activity during the initial moments of the application run-
time [3].

3.2 Why Another Custom Benchmark?

As indicated in Sect. 2.1, there is a variety of benchmarks for evaluating persis-
tence solutions. So why did we see the need for implementing our own, custom
benchmark?

Solely relying on the BSPD application would not have been appropriate, as
it is a non-standardized, vendor-provided solution.

Most of the benchmarks described in Sect. 2.1 focus on the area of engineering
applications. As our goal was to use a benchmark relevant for OLTP applications,
using benchmarks developed for evaluating the performance of persistence solu-
tions in the context of CAD or related software was not an option. Besides this
obvious mismatch in focus, OO7 and its predecessors were initially published
during the early 1990s. As the field of computing is vast and evolves quickly,
benchmarks must either evolve to remain relevant or risk becoming outdated
[15].

We, therefore, decided to implement a custom benchmark modelled after the
specification-based TPC-C benchmark. The business model and workloads of
TPC-C defined by the specification are relevant for a typical OLTP use case.
Additionally, the business scenario of the TPC-C benchmark requires a mutable
data model, as opposed to the immutable data model of the BSPD application.
Furthermore, as the benchmark is specification-based, users must create a com-
plete implementation themselves, allowing for a high degree of freedom in regard
to technologies used by the benchmark implementation.

It has to be mentioned that the WSS benchmark is not fully compliant with
the TPC-C benchmark specification. The reasons for this can primarily be found
in our disagreement with certain requirements and structures defined in the
specification. The specification heavily relies on the terminology of the relational
data model. For example, it defines many primary composite keys for the data
model entities. While this approach may have appeared intuitive in 1992, we
were able to convert it to an object-oriented model. This allowed us to drop the
foreign keys since these keys represent other objects which are class members
in our approach. We also modified the overall data model by removing a model
object we deemed unnecessary (NewOrder, used to explicitly indicate that an
order is new and for artificially providing an opportunity for deleting data) and
adding two new objects (Employee and Carrier). These two map entities which
are implicitly part of the TPC-C business model, but not modelled as entities
in the benchmark specification.

MicroStream vs. JPA: An Empirical Investigation 105

3.3 Wholesale Supplier Benchmark

Just like the TPC-C specification, the WSS benchmark models the order-entry
system of a wholesale supplier.

In the business model of our WSS application, the employees of a company
use computer terminals to perform their work tasks, such as adding a new order
of a customer or updating an order’s payment data. These tasks are referred to
as transactions.

Table 1. The business transactions of the WSS benchmark.

Transaction type Read-only Minimum % of mix

WSS1 Order-Status Yes 4

WSS2 Stock-Level Yes 4

WSS3 New-Order No 45

WSS4 Payment No 43

WSS5 Delivery No 4

The terminals are clients of the main application that implements the busi-
ness logic and manages data maintained by some persistence solution. For com-
munication with the terminals, the application exposes a web API, secured with
basic authentication. The API has two distinct sections: The first provides a set
of read-only endpoints for accessing most of the data maintained by the applica-
tion. The second section has endpoints that enable the parameterized execution
of five predefined business transactions which are listed in Table 1, together with
their execution probability. For referring to these transactions in later sections
of the paper, we numbered them with our application prefix (WSS1 to WSS5).
Of these five transactions, two are read-only and three are read-write actions.
The server is implemented in Java 11 using SpringBoot. We implemented the
application by providing two generic core modules, on which actual WSS server
implementations must be based. The first of these two is a component for data
generation which can be used to create the initial population of the database in
a persistence solution independent model representation structure. This compo-
nent relies on the JavaFaker library9 for some of the random data generation.
This data can then be converted to any solution-specific model. In the second
component, we defined the overall architecture of the server. This includes the
API structure, security, data transfer structures, and services.

For the WSS benchmark, we created three actual implementations of the
WSS server:

1. JPA: Uses JPA-based persistence, with Hibernate as JPA implementation.
Spring Data JPA is used for data access. The relational database is managed
by a PostgreSQL DBMS. Concurrent data access is facilitated by employing
the transaction mechanism defined by JPA.

9 https://github.com/DiUS/java-faker.

https://github.com/DiUS/java-faker

106 B. Full et al.

2. MS-JACIS : Relies on MS for data storage and uses the JACIS library for
data access synchronization by means of transactions on transient data. As
JACIS uses Java object cloning for transaction isolation, we were forced to
completely decouple the data model classes of this implementation. In any reg-
ular implementation (e.g. JPA-based implementation) an Order class would
have a field referencing the appropriate Customer object. But in the case of
this implementation, the Order only has a field containing an artificial iden-
tifier for the related Customer object. This approach makes simple object
graph navigation impossible, which has significant performance implications.

3. MS-Sync: Also uses MS for data storage. Concurrent data access is achieved
by using synchronization features provided by the Java environment. Primar-
ily, locks and the synchronized keyword are used with the aid of Fig. 1.

Warehouse

Carrier

District Customer Payment

Order

Item

Product

Employee

Stock

Fig. 1. Simplified Structured Entity Relationship Model of our WSS application.

For the MS-Sync variant, we analyzed the data model by using the Struc-
tured Entity Relationship Model (SERM) notation format [23], as depicted in
Fig. 1. In this diagram, we have independent entity types like the carrier or the
warehouse, which can also be identified by the shape of their boxes. Further-
more, there are entity-relationship types such as the district, which is dependent
on the warehouse and would therefore hold the foreign key of the warehouse in
a relational model. This notation gave us a direction of dependence which was
helpful when determining the ordering of our locks in the concurrent Java imple-
mentation of our application. It is important to note that we used a simplified
version of SERM. The arrows in Fig. 1 do not indicate the cardinality since we
only want to visualize the interdependence of the individual classes of the data
model.

Besides the server, we developed a JMeter script that can be used to simulate
the employee terminals. Just as in the case of the BSPD application framework,
each simulated terminal has two main phases of execution: the setup phase and
the measurement phase.

MicroStream vs. JPA: An Empirical Investigation 107

For each of the actual server implementations, we have also provided a Docker
Compose file which can be used to configure and launch the server and any
necessary auxiliary systems as Docker containers.

3.4 Experimental Setup

For our experiments we used two bare-metal Linux machines with an Ubuntu
20.04 server image. The primary machine (H90) was a Fujitsu Esprimo P757 with
an Intel Core i7-7700 CPU with 4 cores and 210 GFLOPS peak performance.
We used a LINPACK benchmark to assess the peak performance and to verify
the linear scaling behavior of our machines [22]. H90 had 32 GB of RAM and
used a SSD with 256 GB as primary drive. The other machine, referred to as
H50, was a Fujitsu Esprimo P700 with an Intel Core i7-2600 CPU with 4 cores
and approximately 92 GFLOPS peak performance. It had 16 GB of RAM and
a 240 GB SSD as primary drive.

Benchmark Server

Netdata

DB

Netdata

JMeter

MongoDB

H90 H50

Fig. 2. Overview of the experimental setup, consisting of two physical machines. Note
that the DB on H90 was, depending on the actual setup, either a SQL-based DBMS
or the files (database) used by MicroStream to store data.

For monitoring, Netdata10 was installed on both machines. Both Netdata
agents sent their recorded data to the MongoDB instance on H50 once per
second11.

We used version 1.1.1 of the BSPD12 and version 2.1.1 for the WSS applica-
tion13. Both the BSPD and WSS benchmark are similar in their overall structure.
They both have a Java application managing data operations and a JMeter script
simulating clients interacting with this application. Due to this, the setup for
measuring the performance with the two systems was very similar. We used the
10 https://www.netdata.cloud/.
11 Netdata claims that it only consumes 1% CPU utilization of a single core (https://

github.com/netdata/netdata).
12 https://github.com/fullben/bookstore-demo-performance/releases/tag/1.1.1.
13 https://github.com/fullben/java-persistence-benchmark/releases/tag/2.1.1.

https://www.netdata.cloud/
https://github.com/netdata/netdata
https://github.com/netdata/netdata
https://github.com/fullben/bookstore-demo-performance/releases/tag/1.1.1
https://github.com/fullben/java-persistence-benchmark/releases/tag/2.1.1

108 B. Full et al.

medium data generation option for BSPD. For the WSS, we scaled our model by
changing the warehouse count, as defined by the TPC-C specification. Overall,
we generated over 2.5 million objects: 5 warehouses, 50 districts (10 per ware-
house), 50 employees (one per district), 100,000 products, 150,000 customers,
and 150,000 orders. The remaining objects were order items, stock information,
and payments. The impact of these settings on the used memory for the different
applications will be discussed later.

Since we wanted an isolated workbench for the benchmark servers, we only
deployed the benchmark server (BSPD or WSS) and their respective database on
H90. The JMeter instance for executing the appropriate client-simulating script
was installed on H50 and invoked the queries via the previously mentioned server
APIs. This setup is depicted in Fig. 2.

Our measurement methodology focused on two metrics. Firstly, we recorded
the user-perceived server response time via JMeter. Since this User-perceived
Response Time (URT) contains a lot of uncontrollable effects like the physical
transmission time, the middleware layers of our application etc., we also decided
to additionally wrap the method call to the service method within the business
logic layer to measure the Server Processing Time (SPT). This processing time
value only included the actual time the business logic took to process the request.
We used JMeter to save these two metrics and other data to a CSV file. For both
applications, we simulated concurrent users executing the queries.

In the case of the BSPD application, we performed two distinct types of
executions: one targeting the data persisted using MS, and another one aimed
at the data maintained by the JPA-based persistence implementation. Each of
these runs were executed twice to ensure that the data remained consistent. Both
data sets proofed to be very similar, thereby indicating reproducibility of our
results. We therefore used only the data from one of the runs for the evaluation
included in this paper. For the WSS benchmark, we performed three distinct
types of runs, one for each of the three implementations: JPA, MS-JACIS, and
MS-Sync. As with the BSPD runs, we also performed each of these runs twice to
ensure data consistency. After each run, we shut down the containers on the H90
machine and deleted the volumes containing the data written by the persistence
solution of the current application implementation.

4 Results

All collected data and some diagrams visualizing CPU utilization, memory, disk
IO, bubble plots for the different runs and applications as well as the scripts we
used for generating the tables and plots can be found on our raw data page14,
where you can also download all data. For the discussion in this paper, we
only used a subset of this data. CPU utilization, memory, and disk IO were
measured for the machines in total since there are no other applications running
on the machines apart from JMeter on H50 and the benchmark server on H90
as depicted in Fig. 2.
14 https://spboehm.github.io/jpa-microstream-doc/.

https://spboehm.github.io/jpa-microstream-doc/

MicroStream vs. JPA: An Empirical Investigation 109

In the BSPD application, the CPU utilization when using the JPA-based
solution (∼20%) was quite different from that of the MS-based implementation
(∼8%). This additional CPU usage in the case of the JPA-based solution is
most likely caused by the DBMS and ORM overhead. In both cases, approxi-
mately 3,600 MB of RAM were occupied. Our WSS applications had a low CPU
utilization (in all cases <5%), but varying memory demands. The JPA-based
solution consumed the least amount of memory with ∼5,725 MB, whereas the
MS-JACIS implementation consumed ∼11,600 MB of RAM. The MS-Sync solu-
tion used ∼9,500 MB. Comparing this last value to those of the other solutions,
we see that the in-memory data engine requires much more RAM than the rela-
tional database. Furthermore, the memory overhead of decoupled data model in
the JACIS variant becomes evident.

Table 2. BSPD performance data for JPA and Microstream. We used our server
processing time (SPT) metric to measure the execution time.

JPA/MS Median (values in millisecond) Speed-up

[BSPD1] (6931/8380) 68.12/2.84 24.03

[BSPD2] (6935/8383) 3.64/0.91 3.99

[BSPD3] (6934/8382) 7.87/0.93 8.42

[BSPD4] (6936/8385) 2.8/0.12 23.3

[BSPD5] (6931/8376) 38.24/14.59 2.62

[BSPD6] (6929/8376) 305.06/0.72 426.61

[BSPD7] (6933/8381) 3.26/1.11 2.93

Table 2 summarizes the measured query processing times from our BSPD
application. Each line of the table includes abbreviations representing the seven
queries, get book sales (BSPD1), get books by title (BSPD2), get books in price
range (BSPD3), get customer page (BSPD4), get employee of the year (BSPD5),
get purchases of foreigners (BSPD6), and get revenue of a shop (BSPD7). In
parentheses after the transaction identifier, the number of requests made per
solution is depicted (JPA value first, followed by the corresponding MS value).
The execution time of JPA requests is higher than that of MS requests, which
explains the different number of requests as we used a fixed experiment duration.
The last column shows the speed-up of our MS-based solution compared to the
JPA-based solution for the BSPD application. We submitted the requests for
every user in sequence. So one user of our application does only make a single
request at a time. To stress the concurrency aspect, we configured JMeter with
ten concurrent users.

We used R for data evaluation and to generate boxplots to visualize our
measurements. Computing only the arithmetic mean for our transactions was too
coarse-grained and over-represented outliers. Therefore, we decided to include
the median for the BSPD application as shown in Table 2.

110 B. Full et al.
T
a
b
le

3
.
R

aw
d
a
ta

o
f
th

e
b
ox

p
lo

ts
fr

o
m

F
ig

.3
.
T

h
e

tr
a
n
sa

ct
io

n
s

a
re

a
s

fo
ll
ow

s:
W

S
S
1
-G

E
T

o
rd

er
-s

ta
tu

s,
W

S
S
2
-G

E
T

st
o
ck

-l
ev

el
,
W

S
S
3
-

P
O

S
T

n
ew

-o
rd

er
,
W

S
S
4
-P

O
S
T

p
ay

m
en

t
a
n
d

W
S
S
5
-P

U
T

d
el

iv
er

y.
A

ft
er

th
e

tr
a
n
sa

ct
io

n
id

en
ti

fi
er

,
th

e
se

co
n
d

li
n
e

in
th

e
ta

b
le

h
ea

d
er

a
re

th
e

n
u
m

b
er

o
f

tr
a
n
sa

ct
io

n
s

ex
ec

u
te

d
fo

r
J
P
A

,
M

S
-J

A
C

IS
a
n
d

M
S
-S

y
n
ch

d
u
ri

n
g

o
u
r

ei
g
h
t

h
o
u
rs

ex
p
er

im
en

t.
T

h
e

fi
rs

t
li
n
e

o
f

ea
ch

ce
ll

co
n
ta

in
s

th
e

se
rv

er
-s

id
e

p
ro

ce
ss

in
g

ti
m

e
(S

P
T

)
in

m
il
li
se

co
n
d
s

fo
r

th
e

in
d
iv

id
u
a
l
so

lu
ti

o
n
s.

L
in

e
tw

o
re

p
re

se
n
ts

th
e

sl
ow

d
ow

n
(r

ed
)

a
n
d

sp
ee

d
u
p

(g
re

en
)

o
f
M

S
-J

A
C

IS
a
n
d

M
S
-S

y
n
c

co
m

p
a
re

d
to

J
P
A

.
L
in

es
th

re
e

a
n
d

fo
u
r

fo
ll
ow

th
e

sa
m

e
st

ru
ct

u
re

a
s

o
n
e

a
n
d

tw
o

b
u
t

a
re

b
a
se

d
o
n

th
e

re
sp

o
n
se

ti
m

es
m

ea
su

re
d

cl
ie

n
t-

si
d
e

(U
R
T

).

J
P
A
/
M
S
-J
A
C
IS
/
M
S
-S
y
n
c

[W
S
S
1
]

[W
S
S
2
]

[W
S
S
3
]

[W
S
S
4
]

[W
S
S
5
]

(4
7
9
/
4
7
9
/
4
7
9
)

(4
7
8
/
4
7
8
/
4
7
9
)

(5
3
8
8
/
5
3
8
6
/
5
3
9
0
)

(5
1
4
7
/
5
1
4
5
/
5
1
4
8
)

(4
7
9
/
4
7
8
/
4
7
9
)

L
o
w
er

w
h
is
k
er

7
.2
2
/
7
6
.3
/
0
.0
1

3
1
.6
1
/
1
3
4
.6
3
/
1
.7
7

1
3
.7
6
/
2
9
.1
9
/
3
.6
2

8
.1
3
/
5
.4
1
/
3
.3
2

5
2
.0
2
/
1
3
8
.9
3
/
2
0
.1
2

1
0
.5
6
/
5
8
0
.1
9

4
.2
6
/
1
7
.8
6

2
.1
2
/
3
.8

1
.5
/
2
.4
4

2
.6
7
/
2
.5
9

8
1
/
1
4
5
/
6
6

1
0
7
/
2
0
5
/
7
0

8
8
/
9
7
/
7
2

8
3
/
7
4
/
7
3

1
2
6
/
2
0
8
/
8
9

1
.7
9
/
1
.2
3

1
.9
2
/
1
.5
3

1
.1
/
1
.2
2

1
.1
2
/
1
.1
4

1
.6
5
/
1
.4
2

L
o
w
er

q
u
a
rt
il
e

8
.1
5
/
8
5
.0
6
/
0
.0
3

3
5
.5
5
/
1
4
4
.8
4
/
1
.9
6

1
8
.9
6
/
3
3
.7
2
/
4
.5
8

9
.7
4
/
8
.1
7
/
4
.7
6

5
8
.2
6
/
1
4
8
.9
7
/
2
1
.0
9

1
0
.4
4
/
3
0
7
.8
1

4
.0
7
/
1
8
.1
7

1
.7
8
/
4
.1
4

1
.1
9
/
2
.0
5

2
.5
6
/
2
.7
6

8
5
/
1
5
7
/
7
3

1
1
3
/
2
1
8
/
7
6

9
7
/
1
0
6
/
7
8

8
7
/
8
1
/
7
9

1
3
5
/
2
2
1
/
9
5

1
.8
5
/
1
.1
6

1
.9
3
/
1
.4
9

1
.0
9
/
1
.2
4

1
.0
7
/
1
.1

1
.6
4
/
1
.4
2

M
ed

ia
n

8
.6
5
/
8
7
.8
/
0
.0
3

3
6
.7
7
/
1
4
8
.2
5
/
2
.0
3

2
1
.7
2
/
3
5
.1
6
/
4
.9
4

1
0
.4
1
/
9
.9
6
/
5
.2
2

6
0
.4
4
/
1
5
2
.1
2
/
2
1
.5
2

1
0
.1
5
/
2
6
4
.3

4
.0
3
/
1
8
.1
4

1
.6
2
/
4
.3
9

1
.0
5
/
1
.9
9

2
.5
2
/
2
.8
1

8
7
/
1
6
2
/
7
6

1
1
5
/
2
2
3
/
7
8

1
0
0
/
1
0
9
/
8
0

8
9
/
8
4
/
8
1

1
3
8
/
2
2
6
/
9
7

1
.8
6
/
1
.1
4

1
.9
4
/
1
.4
7

1
.0
9
/
1
.2
5

1
.0
6
/
1
.1

1
.6
4
/
1
.4
2

U
p
p
er

q
u
a
rt
il
e

9
.2
7
/
9
1
.0
9
/
2
.6
3

3
8
.1
9
/
1
5
2
.0
5
/
2
.0
9

2
4
.2
5
/
3
6
.7
5
/
5
.2
4

1
1
.0
3
/
1
1
.6
9
/
7
.4
2

6
2
.5
8
/
1
5
5
.6
8
/
2
2
.0
8

9
.8
2
/
3
.5
3

3
.9
8
/
1
8
.2
5

1
.5
2
/
4
.6
3

1
.0
6
/
1
.4
9

2
.4
9
/
2
.8
3

8
8
/
1
6
5
/
7
8

1
1
7
/
2
2
7
/
8
0

1
0
3
/
1
1
2
/
8
2

9
0
/
8
6
/
8
3

1
4
1
/
2
3
0
/
9
9

1
.8
8
/
1
.1
3

1
.9
4
/
1
.4
6

1
.0
9
/
1
.2
6

1
.0
5
/
1
.0
8

1
.6
3
/
1
.4
2

U
p
p
er

w
h
is
k
er

1
0
.6
9
/
9
9
.4
5
/
6
.1
1

4
2
.1
5
/
1
6
2
.3
2
/
2
.2
7

3
2
.1
4
/
4
1
.2
9
/
6
.2
1

1
2
.8
7
/
1
6
.9
2
/
1
1
.3

6
8
.7
2
/
1
6
5
.0
9
/
2
3
.5
5

9
.3
/
1
.7
5

3
.8
5
/
1
8
.5
8

1
.2
8
/
5
.1
8

1
.3
1
/
1
.1
4

2
.4
/
2
.9
2

9
2
/
1
7
6
/
8
5

1
2
3
/
2
3
9
/
8
6

1
1
2
/
1
2
1
/
8
8

9
4
/
9
3
/
8
9

1
5
0
/
2
4
3
/
1
0
4

1
.9
1
/
1
.0
8

1
.9
4
/
1
.4
3

1
.0
8
/
1
.2
7

1
.0
1
/
1
.0
6

1
.6
2
/
1
.4
4

MicroStream vs. JPA: An Empirical Investigation 111

For WSS, we included all boxplot details for the quartiles (25%, median,
75%) and the whiskers (max. 1.5 times the size of the box).

GET order−status GET stock−level POST new−order POST payment PUT delivery

0

50

100

150

D
ur

at
io

n
in

 M
ill

is
ec

on
ds

Persistence
Solutions

JPA MS−JACIS MS−Sync

Fig. 3. Wholesale Supplier performance data of the five transactions depicted as box-
plots for JPA, MS-JACIS and MS-Sync. We used our server processing time (SPT)
metric to measure the execution time.

Figure 3 depicts the results of our WSS application benchmark, while Table 3
shows the raw boxplot data. We see for all transactions that our synchronous
implementation with basic Java concurrency features is the fastest compared to
the JPA and MS-JACIS implementations. Furthermore, MS-JACIS performed
worse for most of the transactions, despite WSS4, leading to a consistent winner’s
podium for most transactions. Another view on the same data is presented in
Fig. 4, where we see the server execution time over time when benchmarking our
WSS application. For a better resolution of the Figure, we decided to exclude
0.2% of the outliers. The execution times for the JPA-based solution decreases
slightly at the beginning when the JIT compiler still optimizes code and stabilizes
after two hours. For the in-memory solution, only a minor increase is visible.

The structure of Table 3 is the same as for Table 2. WSS1 to WSS5 are in the
same order as the headlines of the boxplots in Fig. 3. Each cell consists of four
lines of data. The first line contains the processing time on the server (SPT) for

112 B. Full et al.

Queries WSS − JPA

D
ur

at
io

n
in

 m
s

0
20

40
60

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Queries WSS − MS−JACIS

D
ur

at
io

n
in

 m
s

0
50

10
0

15
0

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Queries WSS − MS−Sync

D
ur

at
io

n
in

 m
s

0
5

10
15

20
25

00:00:00 01:49:00 03:38:00 05:27:00 07:16:00

Fig. 4. Wholesale Supplier business transactions: Order-Status (blue), Stock-Level
(red), New-Order (orange), Delivery (green), and Payment (brown). (Color figure
online)

JPA, MS-JACIS, and MS-Sync requests. The second line compares MS-JACIS
and MS-Sync to JPA. Green values indicate that the corresponding solution is
faster by a factor of x compared to JPA, whereas red values stipulate that the
solution is slower by a factor of x. The next two lines of each cell show the client-
side measured response times (URT). This user-perceived performance includes
network transfer, scheduling within the application, etc.

5 Discussion

5.1 MicroStream vs. JPA

First, we want to address MS’s claim to be a thousand times faster than a
Hibernate-based solution. Table 2 shows the adapted BSPD results. We can see
that transaction BSPD6 experienced the most significant speedup. Using the
median values, MS is over 400 times faster than the JPA solution. This query
navigates many nested objects which need to be read from the relational database
via complex joins, whereas the MS solution can work on the Java object graph
by using the Java Streams API. For all other queries executed by the BSPD, MS

MicroStream vs. JPA: An Empirical Investigation 113

is faster than the JPA-based solution, but only by factors of tens, not thousands.
This insight can be used to partially address RQ1. In order to provide a complete
answer to the research question, it is important to consider another aspect. In
the preceding parts of the discussion we referred to the processing time on the
server. For a realistic scenario, we argue that the user-perceived performance
must be compared. We did not use the user-perceived response time for a BSPD
comparison since the response time measured by JMeter is only recorded on a
millisecond basis with integer precision. This distorts the comparison with the
server processing time which is sometimes only a small fraction of a millisecond
like in BSPD4. We also looked at the user-perceived performance (UPT), which
on average is a few milliseconds higher than the values measured server-side.
The response handling and scheduling on the server adds about 5 ms per query
(median of all queries).

Therefore, to fully address the first research question, in addition to the
data acquired with the BSPD application, we must also consider the results
gathered with the WSS application which contains a mutable data model. Addi-
tionally, as mentioned in the concurrency control Sect. 2.2, MS does not offer any
sophisticated concurrency control or transaction management facilities. For this
reason, we decided to use a suitable transaction framework with a MS adapter
(implemented in the MS-JACIS variant) as well as a solution based on low-level
synchronization utilizing the Java 1.0 capabilities (implemented in the MS-Sync
variant). Especially for transaction WSS1, we see a situation where MS performs
best, see boxplots in Fig. 3 and detailed data in Table 3, when looking at the first
line of data in each cell which represents the service time on the server (SRT).
This is similar to the BSPD application, where MS is a few hundred times faster
than the JPA-based implementation. On the other side, MS-JACIS performs
worse by a factor of 8–11 compared to JPA, and even worse when comparing
it to MS-Sync. JACIS appears to be currently the only available solution for
using transactions on transient objects in the context of MS-managed data. The
performance data we acquired indicates that JACIS as a third-party transaction
middleware cannot compete with JPA-based solutions. Therefore, we exclude
the JACIS-based solution (MS-JACIS) and corresponding data from all further
analysis.

When looking at user-perceived performance in the third and fourth line in
each cell, the quotient is not greater than 1.47 (median of WSS2) for MS-Sync
compared to JPA. Also, when looking at the millisecond values, it is evident
that the response overhead ranges between 65 and 85 ms and has a dominant
impact on calculating the quotients and the speedup for the user. Nevertheless,
based on our results, we have to conclude that MS is not 1000× faster than a
JPA solution. This gives an answer to RQ1. We found only a few transactions
(BSPD6 and WSS1) where MS is a few hundred times faster when assessing
the service execution time and none where it is faster by a factor of a thousand.
Furthermore, it must be considered that these speedups are not the actual,
user-perceived times. In the case of user-perceived response times, we see an
improvement between 10% (median of WSS4) and 47% (median of WSS2) when

114 B. Full et al.

comparing JPA and MS-Sync. Therefore, MS appears to be capable of outper-
forming JPA-based persistence, albeit not by as much of a margin as claimed by
the vendor of MS.

In a first version of this paper we experienced a linear increase in execution
time for WSS5 - the delivery transaction. The first executions took ∼75 ms and
after 6 h benchmark, the execution time increase linearly to ∼130 ms. At the
beginning the assumption was that the increase is caused by WSS3, the new-
order transaction, where over time the number of orders increased and therefore
the filtering and sorting is more time consuming. Considering the number of ini-
tial orders (150,000) with the newly created orders (3,376), the increase was not
justifiable. A detailed description and figures for this step-by-step investigation
can be found on our GitHub IO Page15. When searching for the cause after look-
ing at database fragmentation, index fragmentation and the LAZY and EAGER
loading capabilities of JPA, we changed the service implementation as well as
the native JPA query. Our assumption was that the many database queries and
the ordering within one query (ORDER BY SQL feature) caused the perfor-
mance problem. Connecting to a remote machines causes IO waits, therefore
we reduced the number of database queries to a minimum and executed the
benchmark again. The collected performance data showed that we fixed this
performance problem. Our process here is noteworthy in a sense that a repro-
ducible benchmark design like in our case depicted in Fig. 2 supports developers
to find performance issues before deploying an application to production.

5.2 Concurrency Best Practices

When using MS, one of the greatest challenges is the issue of concurrency control.
Therefore, in RQ2 we ask the question how can we achieve concurrency control
for a mutable data model[...]? In this Section, we want to address this question
and share best practices we identified when implementing the WSS application.

For an immutable data model like BSPD, the concurrency issue is reduced
to a minimum since immutable data is inherently thread-safe. We assume that
immutable data models are rarely used in OLTP applications. Therefore, devel-
opers must explicitly handle concurrency control in their business code and deal
with thread management in Java. From lecturing a bachelor’s course on con-
currency programming [21]16, we know how challenging it is to implement a
thread-safe solution with low-level constructs like the synchronized keyword. For
the sake of simplicity and extensibility, we suggest centralizing all concurrency
logic in a single class. This gives a developer the chance to read all code which
changes data concurrently in a single or limited number of files. From a porta-
bility investigation [13], we know that the lower the number of locations where
source code has to be read or changed, the less error prone is the implementa-
tion. In the case of WSS this class is called DataConsistencyManager. Another
important aspect is to prevent the application from becoming deadlocked. We

15 https://spboehm.github.io/jpa-microstream-doc/.
16 https://github.com/johannes-manner/ConcurrencyTopics.

https://spboehm.github.io/jpa-microstream-doc/
https://github.com/johannes-manner/ConcurrencyTopics

MicroStream vs. JPA: An Empirical Investigation 115

used the SERM notation to derive the sequence and hierarchy of lock objects
used in our implementation.

Listing 1.1. Lock granularity best practice for MicroStream’s concurrent data access.

// method f o r updating order s t a tu s and customers
pub l i c void de l i v e rO lde s tOrde r s (. . . o ldestOrders , . . .) {

synchron ized (t h i s . storageManger) {
f o r (OrderData order : o lde s tOrder s) {

. . .
synchron ized (customer . ge t Id ()) {

synchron ized (order . ge t Id ()) {
. . .

t h i s . storageManger . s toreRoot () ;
}

}
When implementing read or write operations, we used the locks from the

independent objects towards the dependent objects (Fig. 1) to build nested con-
currency blocks within the code as shown in Listing 1.1. For the granularity
of locks, we used the identifier of our business objects, a UUID string which
is declared as final and does not change its identity. This results in an encap-
sulated concurrency design since the distinct lock object for each Java object
is identical for the whole lifecycle of the object. For operations on collections
where we want to update several objects of a collection atomically, we used an
additional collection lock object like the stockLock we implemented in our WSS
application. This enabled us to handle our collections in a thread-safe manner.
A major limitation is how MS writes data to persistent storage. While a write
operation is ongoing, the managed Java object graph cannot be modified from
other threads. Therefore, we use another lock object (the storageManager) since
we can only have a single write operation at a time.

When implementing a custom synchronization solution, testing is of utmost
importance. Since a verification of the correctness of a parallel program is diffi-
cult, brute force testing is one option to assume thread-safety of an implementa-
tion with a certain level of confidence. For this, developers can use frameworks
such as jcstress17. We implemented a stress test for the most critical concurrent
operation, the updating of the product stock quantity in our WSS application.

5.3 Usage Scenarios

RQ3 is concerned with possible usage scenarios for MS. The vendor of MS
states on their website, that MS is especially suited for “Micro persistence for
microservices & serverless Java functions”18. When having microservice princi-
ples in mind and considering the decentralized data management aspect, their
assessment is comprehensible, but the nature of the data model is important for
designing an MS solution. As already indicated by the MS vendor’s own demo
17 https://github.com/openjdk/jcstress.
18 https://microstream.one/.

https://github.com/openjdk/jcstress
https://microstream.one/

116 B. Full et al.

application (BSPD), good use cases for MS-based persistence may be scenarios
with mostly immutable data models. This eases the concurrency control issues as
well as the single writing thread bottleneck. When using JACIS, we experienced
certain limitations, namely data model decoupling and performance issues. We
therefore think that in its current state, JACIS is not a viable option for resolving
the concurrency control issue in the context of MS-based persistence. Developers
may alternatively use our best practices for implementing a thread-safe solution.
But low-level concurrency programming is difficult to get right [11], which in our
opinion will therefore limit the adoption of MS as a solution for data storage. For
integrating the solution with other databases or systems, the current version of
MS provides support for various storage targets, but these adapters often do not
support the actual data model of those databases. For example, this means that
while MS supports certain relational DBMSs as storage targets, the data stored
in these targets by MS is not written as relational data. Additionally, a generic
CSV export is offered for data migration. We assume to see more adapters and
features with future MS releases, which may also support migration to data
models of other persistence solution. This may in turn prove beneficial for the
adoption of MS as a persistence solution.

5.4 Threats to Validity

During our comparison of MS and JPA, we had to make choices regarding aspects
such as the amount of data used by our benchmark applications, or the execution
duration of our benchmark runs. It must be assumed that these choices had an
impact on the performance of the systems and therefore, our conclusions. The
following listing contains the most important threats to validity from our point
of view:

No Lazy References - MS offers lazy references with a semantic similar to
JPA’s LAZY fetch type for loading data at a later point in time (on demand)
which introduces delays since the data is read from disk. For our WSS demo
application, we decided not to use this feature since we were able to maintain
the entire model data in RAM.

Custom Benchmark Application - We implemented a custom benchmark
application and used the BSPD application for reproducing the speedup factor.
Although the WSS application is self-audited due to tests, unidentified issues
and bugs may still remain. Other applications might face different speedups or
even slowdowns. Therefore, the applicability of the results of this work are most
likely limited to the current capabilities of the data engine within the context of
our modernized implementation of a well-known specification-based benchmark
(TPC-C).

Used Experimental Setup - The machines used for our experiments obviously
had an impact on the performance of our applications. This might have led
to situations where the current experimenter hardware may have favoured one
storage approach over the other (disk-based vs. in-memory). In the case of MS, as

MicroStream vs. JPA: An Empirical Investigation 117

mentioned in Sect. 5.2, only a single thread can write to disk, as MS will otherwise
recognize that parts of the object graph are being modified concurrently and
will throw an exception. During the development phase of our test environment,
when executing concurrency tests, we faced the situation that disk IO was at
maximum capacity when writing the changes, whereas CPU utilization peaked
at around 25%. Therefore, the bottleneck in this scenario might have been the
disk IO capabilities. Furthermore, while assessing RQ1, we were unable to find
the hardware configuration used by MS to run their MS version.

6 Conclusion and Future Work

In this paper, we performed a comparison of MS and JPA. First, we evaluated
the claims of the MS vendor about the performance superiority of their product
over JPA-based solutions. Secondly, we implemented a custom benchmark with a
mutable data model, a typical OLTP use case. For this implementation, we found
that the MS-based solution does indeed exhibit performance superior to that of
a JPA-based approach. When looking at the SPT of the evaluated business
function only, in the best case MS was able to outperform JPA by the factor
of 400. However, looking at URT, we only observed a speedup of no more than
47%. While this is far from the promise made by the MS vendor, the speedup
may still be relevant for latency-critical systems.

For future work, we have three aspects in mind. First, we want to investigate
major factors influencing the response time. An abstract model of these factors
should include aspects such as payload size, its serialization, and overall HTTP
message size. Secondly, we want to compare MS with other in-memory database
engines. Lastly, the machines where the benchmarks are executed directly influ-
ence the results. Therefore, we want to implement a tool to detect bottlenecks
for different hardware configurations based on the benchmarked application. The
insights gained in this process can lead to an abstraction from the hardware used.
This can help to decompose a machine in relevant components like the CPU,
memory, disk, network IO, etc. to build a machine configuration meta model for
benchmarks.

References

1. Anderson, T.L., Berre, A.J., Mallison, M., Porter, H.H., Schneider, B.: The Hyper-
Model benchmark. In: Bancilhon, F., Thanos, C., Tsichritzis, D. (eds.) EDBT 1990.
LNCS, vol. 416, pp. 317–331. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0022180

2. Bitton, D., et al.: Benchmarking database systems - a systematic approach. Tech-
nical report, University of Wisconsin-Madison, Department of Computer Sciences
(1983)

3. Blackburn, S.M., et al.: Wake up and smell the coffee: evaluation methodology for
the 21st century. Commun. ACM 51(8), 83–89 (2008)

4. Boicea, A., et al.: MongoDB vs Oracle - database comparison. In: Proceedings of
EIDWT. IEEE (2012)

https://doi.org/10.1007/BFb0022180
https://doi.org/10.1007/BFb0022180

118 B. Full et al.

5. Carey, M.J., et al.: The OO7 benchmark. ACM SIGMOD Rec. 22(2), 12–21 (1993)
6. Carey, M.J., et al.: A status report on the OO7 OODBMS benchmarking effort.

In: Proceedings of OOPSLA (1994)
7. Cattell, R.G.G., Skeen, J.: Objects operations benchmark. ACM Trans. Database

Syst. 17(1), 1–31 (1992)
8. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: Pro-

ceedings of SoCC (2010)
9. Daynes, L., Czajkowski, G.: High-performance, space-efficient, automated object

locking. In: Proceedings of ICDE (2001)
10. DeWitt, D.J., et al.: Parallelizing OODBMS traversals: a performance evaluation.

VLDB J. Int. J. Very Large Data Bases 5(1), 3–18 (1996)
11. Goetz, B., et al.: Java Concurrency in Practice. Pearson Education (2006)
12. Gray, J.N., et al.: Granularity of locks in a shared data base. In: Proceedings of

VLDB (1975)
13. Hartauer, R., et al.: Cloud function lifecycle considerations for portability in func-

tion as a service. In: Proceedings of CLOSER (2022)
14. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: 2011

International Conference on Cloud and Service Computing (2011)
15. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.

(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10424-4 3

16. Jordan, M.: A comparative study of persistence mechanisms for the JavaTM plat-
form. Technical report, Sun Microsystems Laboratories (2004)

17. Kounev, S., Lange, K.-D., von Kistowski, J.: Systems Benchmarking: For Scientists
and Engineers. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41705-
5

18. Larson, P., Levandoski, J.: Modern main-memory database systems. Proc. VLDB
Endow. 9(13), 1609–1610 (2016)

19. Larson, P., et al.: High-performance concurrency control mechanisms for main-
memory databases. Proc. VLDB Endow. 5(4), 298–309 (2011)

20. Lilja, D.J.: Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, Cambridge (2000)

21. Manner, J., Böhm, S.: Lecture notes: concurrency topics in Java. In: Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, no. 106. Otto-
Friedrich-University (2022)

22. Manner, J., Wirtz, G.: Why many benchmarks might be compromised. In: Pro-
ceedings of SOSE (2021)

23. Sinz, E.J.: Datenmodellierung im Strukturierten-Entity-Relationship-Modell
(SERM). Otto-Friedrich-Universität, Bamberg (1992)

24. van Zyl, P., et al.: Comparing the performance of object databases and ORM tools.
In: Proceedings of SAICSIT (2006)

https://doi.org/10.1007/978-3-642-10424-4_3
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5

From Data Asset to Data Product – The Role
of the Data Provider in the Enterprise Data

Marketplace

Rebecca Eichler1(B), Christoph Gröger2, Eva Hoos2, Holger Schwarz1,
and Bernhard Mitschang1

1 University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{rebecca.eichler,holger.schwarz,

bernhard.mitschang}@ipvs.uni-stuttgart.de
2 Robert Bosch GmbH, Borsigstraße 4, 70469 Stuttgart, Germany
{christoph.groeger,eva.hoos}@de.bosch.com

Abstract. In the big data era companies have an increasing volume of data at their
disposal. To enable the democratization of this data so it can be found, understood
and accessed by the majority of employees, so-called data providers must first
publish the data and provide provisioning options. However, a lack of incentives
and increased effort for the data providers to share their data hinders the democ-
ratization of data. In this work, we present the current state and challenges of a
data provider’s journey, derived from a literature study as well as expert interviews
we conducted with a globally active manufacturer. To address these challenges,
we propose the use of an enterprise data marketplace, a platform for sharing data
within the company. By presenting a functionality framework for such a market-
place and by highlighting how it can integrate with a company’s data catalog,
we outline how a marketplace can support the data provider. We implemented
a prototype of an enterprise data marketplace and determined the feasibility of
three scenarios to relieve the data provider. Finally, an assessment based on the
prototype yields that the data marketplace supports the provider throughout the
provider’s journey, addresses major challenges, and thus, contributes to the overall
goal of data democratization within enterprises.

Keywords: Data marketplace · Data catalog · Data sharing ·Metadata
management

1 Introduction

Data contains the potential to provide companieswith important knowledge, for example,
to optimize processes or develop new business models [1]. Therefore, data democrati-
zation initiatives that have the goal of empowering and motivating employees to find,
understand, access, use and share data across the company [2] are gaining importance.
To drive democratization aspects such as data sharing across the company, the use of
enterprise data marketplaces has been proposed [3].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 119–138, 2022.
https://doi.org/10.1007/978-3-031-18304-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-18304-1_7

120 R. Eichler et al.

In general, data marketplaces are metadata-driven self-service platforms for trad-
ing data and data related services [3, 4]. Enterprise data marketplaces are specifically
designed to facilitate the exchange of data and data related serviceswithin a company [5].
Within enterprise data marketplaces company employees take on the roles of data mar-
ketplace administrators, data consumers and data providers. In the context of providing
data, we distinguish three roles: Firstly, data is created by a data producer [6] which can
be both a person or system, e.g., a manufacturing machine. The person responsible for
this data is called the data owner [6]. Responsibility includes various aspects such as
legal or technical topics, yet the owner may delegate the realization thereof to, e.g., data
stewards who maintain data on behalf of the data owner [6]. The data owner may be the
data producer. Lastly, the employee that makes the data available is the data provider
[7]. The data provider may also be the data owner or data producer, for example, they
could be the owner but not the producer.

In an external data marketplace, in which data is exchanged across institutions, the
main incentive for data providers to supply data is the monetization of data and the
resulting profit [8, 9]. Within a company, however, monetization inhibits data democra-
tization, as money presents a barrier to the data consumer. Therefore, data monetization
is only envisaged to a limited degree within the enterprise data marketplace.

However, without monetization one main motivation for data providers to share data
within the company disappears. Fernandez et al. [9] also discuss that providers lack
information on how consumers require data and are disincentivized to share data which
may leak confidential information. In addition, providers may be reluctant to share data
as releasing data implies revealing own processes and quality standards [8]. Ultimately,
the provider has the additional effort but no advantage by offering the data. This lack
of incentives and increased effort on the part of the data providers therefore hinders
the democratization of data. For this reason, in this paper we examine the role of data
providers in the enterprise data marketplace, the challenges and efforts they face and
how they can be supported in sharing data.

To this end, we offer the following contributions: Based on a literature study and
expert interviews conducted with a globally active manufacturer, we developed (1) a
data provider’s journey which reflects the steps and roles involved in publishing and
provisioning data, presented in Sect. 2. From this journey, we derive (2) current chal-
lenges the provider is faced with in Sect. 2 and propose the use of an enterprise data
marketplace to address these. To investigate how a data marketplace assists the provider,
(3) we have developed a functionality framework which also differentiates the market-
place functionality from other corporate data related tasks in Sect. 3. In the same section,
we also (4) introduce a distinction between data assets and data products in order to
leverage the existent enterprise tool landscape, particularly existing data catalogs, to
support the provider. Lastly, we have developed a prototype to (5) assess the extent to
which an enterprise data marketplace supports the data provider and to address the
challenges in Sect. 4. Section 5 addresses related work and Sect. 6 concludes this paper.

2 Providing Data in the Enterprise

In order to identify the data provider’s assignments and associated processes for pub-
lishing and provisioning data within an enterprise, we conducted a literature study, as

From Data Asset to Data Product 121

described in Sect. 5, including [3, 9–12]. Yet, we found that many articles focus on the
consumer perspective not the provider perspective or only give abstract insight into the
provider’s processes. Therefore, we also conducted expert interviews with employees
of a global manufacturer to gain a more detailed and practical perspective.

The manufacturer is active in a variety of sectors like the mobility or industrial sector
and operates a global manufacturing network. A lot of data are collected and stored
across the industrial value chain, e.g. by internet of things (IoT) devices or operational
systems like enterprise resource planning (ERP) systems. The manufacturer’s business
strategy is to become a data-driven Industry 4.0 company and they aim to create an
environment where data can be shared freely and efficiently within the company. As
part of these efforts, the IT system landscape for handling data is already enhanced
with tools such as data catalogs and enterprise data marketplaces are being actively
investigated (see our previous work [13] for more details on the manufacturer’s case
and [14, 15] for details on data-driven manufacturing and Industry 4.0). The exchange
with experts from various key data-related roles in an industrial enterprise, including
enterprise and solution architects, as well as data scientists and business analysts, gives
us a representative view of current processes for publishing data in industrial enterprises
from different perspectives.

Based on the conducted interviews, we derived the data provider’s processes within
industrial enterprises,whichwehavemerged into anoverarching data provider journey as
presented in Sect. 2.1. It entails the essential steps and the parties involved in the journey.
Thereupon, the data provider’s challenges in this journey are examined in Sect. 2.2.
Building on this, the following sections in this paper examine the extent to which an
enterprise data marketplace can address these challenges.

2.1 The Data Provider Journey

The data provider’s journey of making data available in the company, as illustrated
in Fig. 1, consists of two processes: publishing the data, i.e. making it public within
the company so it can be found, and provisioning the data, i.e. making it available to
consumers so these can work with it. These parts contain a set of steps which are carried
out by various roles in the company such as the data provider, the data owner, IT or
operations, legal experts or management. To illustrate the journey by way of an example,
we demonstrate it with the scenario of a data steward. The data steward wants to provide
machine sensor data from running productions lines proactively to support machine
maintenance use cases, e.g., predictive maintenance. For warranty cases concerning the
machines, the sensor data are stored in a database for up to 15 years.

Part one, the publishing process, comprises two segments: documenting the data, and
making it known to other employees so the data can be found, understood and requested.
To begin with, the data provider must assemble documentation. This is essentially meta-
data on various aspects of the data such as descriptions of the content, the data’s quality
or lineage, the underlying data model, technical descriptions, and lifecycle specifica-
tions. Basically, this constitutes all the information which a data consumer will require
to understand and work with the data. For example, these metadata could be descriptions
of the machines which provide the sensor data, their semantics, e.g., machine temper-
atures or torque, and lifecycle information that these are stored up to 15 years. If the

122 R. Eichler et al.

data is documented sufficiently, the data provider will next specify the legal framework
in which the data may be used. This entails topics such as specifying access rights, the
allowed usage or the data’s security class, defining the data’s sensitivity, e.g. whether it
is ranked as public, internal or confidential. Specifications such as these are relevant for
ensuring personal related data privacy and compliance to legal regulations such as the
General Data Protection Regulation (GDPR) [16]. In this step, the provider may seek the
assistance and guidance of legal experts. In our example, the sensor data is not personal
data and ranked as internal, so all employees can access it, and there are no limitations
to the usage.

…

READY FOR
AQUISITION

Data LineageSample Data
Business Meaning Data Quality Technical Terms

Docu-
ment

Make
Data

Known

PU
BL

IS
H

PR
O

VI
SI

O
N

Choose
Provis.
Option

Transfer Data
to new System

Provide
API

Provide
Download

Option

Enable System
Access

Assemble
Documentation

Define Legal
Usage

Framework

Request to
Publish Data

Check
Request and
Legislation

Approve
Request

yes
no

Upload
Data

other

source system access

Lifecycle Spec.
Data Models

Request
Resource to

Impl. Provision
Options

Check Request Approve
Provis. yes

no

Publish Data
with according
Documentation

Data Provider
Data Owner
IT or Operations

Journey Segment
Metadata
Cancellation

Legal Experts
Management
Optional Step

Fig. 1. The image depicts the steps and parties involved in the journey for publishing and
provisioning data within an enterprise.

Having clarified the legal issues, the data must next be published, so the data can
be found, understood and requested by company employees. To begin with, the data
provider must issue a request to publish data. On the one hand, the provider must attain
the consent of the data owner to publish the data. On the other hand, legal experts
have to verify the authorization of the requester to release the data and whether the
publication of this data is compliant with legal regulations. If the request is rejected,
the legal framework must be adjusted. If it is approved, the provider may publish the
data. This entails entering the data into an enterprise data inventory through which the
data becomes discoverable. For this, a minimum amount of metadata must be provided,
such as the name and location of the data source, the type, e.g., oracle database, a short
description what it contains and who owns the data. To enable better understanding,
the metadata assembled in step one can be added as well. Assistance from IT may be

From Data Asset to Data Product 123

required for integration into the inventory as this may require technical expertise. In
continuation of our example, the steward contacts the data owner and legal experts, e.g.,
by email asking for the permission to publish the data. Given approval, the steward
registers the data in an inventory adding information where the data source, in this case
an oracle database with the machine sensor data, is located, a description of the data on
the production lines, the name of the owner and so on.

At this point, employees can find and understand data through the inventory and
provided metadata. The data provider now enters the second part of the journey and
must provide a provisioning option for the data in the event that there is an access-
request. As the data might currently be hosted on a local machine, it may first have
to be uploaded to some system through which it can be made accessible, e.g., a data
lake. If data is uploaded to a different system the inventory must be updated. Next, the
provisioning option must be chosen. As the responsible person for the data, the owner
has to decide with potential help from IT if direct access to the source system can
be granted through a user account. This might, for instance, not be desirable due to a
potential system overload or the risk of data manipulation in operational systems. For
instance, in the case of the sensor data, direct access is not possible for risk that it may be
manipulated and jeopardize the machine warranty. Based on the decision, the provider
either enables system access for the data consumers or implements an alternative access
method. Providing another access method may be resource intensive, e.g., by requiring
a team of developers, and therefore resources must be requested. Given admission by
management, access methods like the transfer of the data into another system like a
data lake, or the implementation of an API for access without a specific user account
or download options can be carried out by IT. By way of example, the steward requests
resources to provide an API through which the machine sensor data can be accessed.
As machine maintenance is of high relevance, the resources are granted and the API
development approved. If management rejects the request and no provisioning option
can be guaranteed, it would be useful to indicate this circumstance in the inventory or to
remove the data from it accordingly. Subsequent to performing these steps, employees
can find, understand and receive access to the data.

2.2 Challenges in the Data Provider Journey

Within this section, the challenging aspects for the provider in terms of cost and
circumstance are derived from the provider journey, presented in the previous section.

The (1) assembly of metadata is the first challenge for the data provider. Although
documentation is a best practice in many processes, it is often neglected. To ensure the
usability of the data, however, a certain degree of documentation is indispensable. Since
the provider is not necessarily an expert for the data, he has to rely on other employees
such as the data producer or a data steward to provide this documentation.

Besides assembling documentation, (2) supplying provisioning options apart from
direct system access, is also costly. This task requires an IT project, e.g., for the imple-
mentation and realization of pipelines for moving data or developing an API. This may
be a useless expense as it is unknown whether the data is of interest to other employees
and hence, the provisioning options may not be required.

124 R. Eichler et al.

In practice, there are tools for publishing data which are based on a data inventory.
One of these tools is a data catalog such as Alation1 or the Collibra Data Catalog2. These
are tools for maintaining inventories of data with discovery, administration, governance
functionality and more [12, 17]. Catalogs support finding and understanding data, how-
ever, are not built to access data. For this reason, there are further publishing tools such
as enterprise data marketplaces through which the data can be requested and accessed.
Examples are Snowflake3 or the Dawex Data Exchange Platform4. Companies are in the
process of building a tool landscape for finding, understanding and accessing data using
tools such as these [13]. For the provider, this means that the data must be registered
in several tools such as the data catalog and the enterprise data marketplace. Therefore,
challenge three refers to the effort of (3) registering data in several publishing tools
which partly require the same metadata.

Finally, (4) the process involves several parties which need to be found, contacted
and coordinated. With each new party the process becomes more complex and time-
consuming as each introduces latencies when processing their tasks.

3 Providing Data Through the Enterprise Data Marketplace

As datamarketplaces are platforms for exchanging data, they have functionality formak-
ing data available as required in the data provider journey [18]. Therefore, we examine
how a data marketplace built to exchange data within a company, i.e., an enterprise data
marketplace [5], can support the data provider in their journey and to what extent it
addresses the providers’ challenges. To examine data marketplaces’ ability to support
the data provider, it is necessary to understand what functionality a data marketplace
offers. Therefore, we present a marketplace functionality framework in Sect. 3.1. Based
on this framework, Sect. 3.2 discusses how an enterprise data marketplace can be built
on existent tools in the company, such as a data catalog. In Sect. 3.3, we outline three
provisioning scenarios in this platform tool constellation, which advantages it confers
and how it works in the favor of the data provider.

3.1 Data Marketplace Functionality

The content of this subsection refers to data marketplaces in general, i.e., not explicitly
to enterprise data marketplaces. We conducted a literature study, described in Sect. 5, to
examine existing functionality lists for data marketplaces such as those presented in [5,
18–22].According to literature and reports,marketplaces provide a range of functionality
such as the up- and download of data [18], functionality for selling and buying data,
governance topics like license management, monetization aspects like pricing, revenue
allocation and sharing functions [9, 22], functionality for data cleansing and preparation
[5, 18–20, 22] or integration [18] and analytics [21].

1 https://www.alation.com/.
2 https://www.collibra.com/us/en/platform/data-catalog.
3 https://www.snowflake.com/workloads/data-sharing/?lang=de.
4 https://www.dawex.com/en/data-exchange-platform/.

https://www.alation.com/
https://www.collibra.com/us/en/platform/data-catalog
https://www.snowflake.com/workloads/data-sharing/?lang=de
https://www.dawex.com/en/data-exchange-platform/

From Data Asset to Data Product 125

When comparing these lists, it is noteworthy that the extent of functionality differs.
Common features include the trading and exchange aspects of data, such as buying
and selling of data. Differences arise around features like data preparation which is
listed on occasion or data analytics functionality which is listed in individual cases. It is
also noticeable that functionality is described at different levels of detail. For example,
Meisel and Spiekermann [18] provide a very detailed list of functionality, e.g., with
specifics that data cleansing functionality includes duplicate and pattern recognition or
plausibility check features, whereas that of Wells [5] is at a higher level of abstraction
in which, e.g., data curation and preparation are the granular listed functionality. The
structure also differs, with some articles listing functionality by role, i.e., data provider
and consumer [19, 20] and others breaking it down by functional group [18], such as
marketplace infrastructure, interfaces and security and so on.

To assess how the marketplace supports the data provider, we need an attribution
of functionality by role. Furthermore, we considered the range of the above mentioned
functionality in the light of the company’s experience. In this context,we notice that some
lists go beyond the scope of the marketplace as we understand it. From our point of view,
a data marketplace is purely a broker for data and data related services. It is a platform
on which data providers can publish data and services and data consumers can find,
understand and gain access to these. How the data is, for instance, prepared or integrated
with other data is, in our opinion, beyond the scope of themarketplace as a broker. Finally,
we noticed that literature devotes little detail to the topic of metadata in the context
of data marketplaces. Since finding and understanding data is a crucial feature of the
marketplace, and this is dependent onmetadata supplied by the data provider,we consider
metadata management to be a relevant underlying and role independent functionality in
the marketplace. Therefore, we have created a functionality framework that takes these
three aspects into account: the division by role, the delineation of functionality that lies
within and outside the marketplace, and the metadata management which is the basis
for the role-specific features.

To create the functionality framework, we incorporated the common parts from
the different functionality lists derived from the literature study and allocated them
to the roles of the data consumer, data provider and administrator. The functionality
that was only partially represented, such as rating or data cleaning, were examined
whether they belonged in the functional scope of a broker and were accordingly included
or excluded. In this context, we also had to find a common level of abstraction that
subsumes the more detailed tasks. Additionally, we extended functionality such as the
necessary metadata features based on input from the expert interviews and the role-
based functionality. The resulting functionality framework, illustrated in Fig. 2, provides
insight what functionality is needed and is therefore a guideline for implementing a data
marketplace, but also provides a basis for comparing commercial tools, as well as a basis
to evaluate what functionality is already offered by other tools within a company and
which functionality is specifically missing.

The Functionality Framework. The functionality framework, shown in Fig. 2, dis-
plays the marketplace’s functionality in the blue box and other functionality outside
of it. Data governance and data management including data quality or data lifecycle
management take place outside its functional scope as these concern the management

126 R. Eichler et al.

as opposed to the exchange of data. Equally, activities that follow the acquisition of data
such as data preparation or exploration are out of scope as these involve data process-
ing which goes beyond data sharing. To enable an integrated data processing toolchain,
the marketplace nevertheless provides interfaces to tools that perform tasks outside the
marketplace context, such as preparation tools.

Within the marketplace, we distinguish between consumer-side functionality,
provider-side functionality and administration functionality. This functionality is acces-
sible through a portal, i.e., a graphical user interface, and an API. The metadata
management functionality and privacy, security and compliance extend across these
areas.

DATA MANAGEMENT

CONSUMER-SIDE-FUNCTIONALITY ADMINISTRATIONPROVIDER-SIDE-FUNCTIONALITY

DATA TRADING SERVICE

PUBLISHING

GOVERNANCEDISCOVERY

METADATA MANAGEMENT-FUNCTIONALITY

Transac on Mngmt.

Recommenda on

Service Access Mngmt.Browse

Search

Detailed
Descrip on

User Mngmt.
(Consumer &

Provider)Service
Registra on

Metadata
Enrichment

Subscrip on/Order Mngmt.

MARKETPLACE-SPECIFIC METADATADATASET-SPECIFIC METADATACATALOGING

Data Inventory

Data Version

Data Lineage

Purchase HistorySem. Enrichm.

Data Similarity

Transac on
History

Data Quality

Data Links

Usage Sta s cs Product Registry

DATA EXPLORATION

DATA PREPARATION

Role based
Access-Control

Policies

PRIVACY & SECURITY & COMPLIANCE

Offerings Mngmt.

INTERFACES API Consumer Portal Provider Portal Administra on Portal

Data Models

DATA MARKETPLACE

Search History

DATA GOVERNANCE

COLLABORATION

Commen ng

License &
Consent Mngmt.

…

Metadata
Sta s cs

Ra ng Use Case Docu.

…

Data Import

Fig. 2. The image depicts the data marketplace functionality framework.

Consumer-Side-Functionality. The consumer-side functionality includes discovery,
data trading and collaboration features. The consumer can browse or search for data
and services in the marketplace, like the machine sensor data provided by the data
steward in the provider journey example. For each search result, there is a detailed
description with an integrated view of all available metadata. For example, the de-tailed
description could contain a description of the machine and the according production line
with technical details how and where the data is stored or operational information such
as the data’s lineage. The marketplace can also offer service recommendations based
on the conducted search, previous acquisitions and those of similar users. In order to
support data democratization in the sense of collaboration and knowledge sharing [2],
the marketplace also offers functionality such as commenting to both the consumer and

From Data Asset to Data Product 127

producer. Furthermore, consumers can rate data and document their use case, thereby
enabling other users to see if the data has been used for similar use cases. In our example,
a user could specify how they used the data in a machine maintenance use case. These
functionalities are only available to the consumer and thus, placed in the consumer-
side box in Fig. 2. The data trading functionality like the collaboration functionality
are overarching in Fig. 2, as they are available to both the consumer and producer.
On the consumer-side service-access-management signifies the ability to request and
receive access details and a license to use data, e.g., by ordering it through a shopping
cart. Additionally, the consumer can manage transactions related to reimbursements for
services, as well as active, expired and pending orders through the subscription and
order management. In continuation of the example, the user can order the machine
sensor data through the shopping cart and request access, then pay for this data through
the transaction management and after receiving access, view the active subscription on
this data with according details.

Provider-Side-Functionality. The provider functionality involves publishing, gover-
nance and data trading functionality. For publishing services such as data-as-a-service
or professional services like courses for data preparation, the provider uses the service
registration. In this step, the marketplace adds the service, mostly a data source or a
specific dataset, to the marketplace service inventory so it can be found via the search.
In our example the data steward registers the machine sensor data in the marketplace
which is thereby added to the marketplace inventory. Although the marketplace will
reference most data as opposed to storing it, it does have a data import feature for
cases like the upload of a locally stored singular csv file. In our example, the database
in which the machine sensor data is stored is registered instead of uploading the data
directly. The metadata enrichment allows the provider to add additional metadata to
ensure a better understanding of the data. This may include a variety of metadata such
as a content description, technical details as well as information about the data prove-
nance. These could for instance be descriptions of the machine and production line,
the database and the lineage showing how the data originates in the machine and is
moved to the database by a specific script. Besides service registration, the marketplace
offers governance functionality which supports the specification as well as compliance
to aspects defined within the data’s legal usage framework explained in the provisioning
journey. A provider can define role-based access control, usage rights within policies
and package these in licenses for specific services. This functionality does not replace the
underlying data governance, it merely enables the implementation of the marketplace-
specific governance aspects. For instance, the decision who is allowed to do what with
the machine sensor data is part of the governance outside the marketplace. Within the
marketplace the steward in our example merely specifies that only people from depart-
ment x are allowed to use it for maintenance use cases. Like the consumer, the provider
has functionality to support them in the trading of data. For instance, the provider can
manage access requests, i.e., receive notifications, consult an overview and accept or
decline these requests. If monetisation or other forms of reimbursement are included in
the marketplace the provider can monitor transactions for the offerings. For example,
the steward can view closed and outstanding invoices for the sensor data. Having pro-
vided access to the data, a provider can then handle the subscriptions and orders on the

128 R. Eichler et al.

offered services. This includes an overview of who is subscribing to which data, options
to contact all subscribers or functionality to terminate subscriptions and revoke access
rights. In terms of collaboration, the provider can also enter into a comment dialog with
the data consumers.

Metadata Management Functionality. A data marketplace requires a variety of meta-
data to support the above-mentioned functionality. This comprises general metadata for
cataloging as known from a data catalog tool like an inventory, dataset-specific meta-
data such as a business description and marketplace-specific metadata like the purchase
history. Metadata for cataloguing can refer to a range of datasets and helps to provide
an overview of existing offerings. It includes a data inventory, e.g., a list of contained
data sets, data links that indicate whether data sets are related as well as data similarity
information, which reveals replicated and similar data sets. Dataset-specific metadata
refers to a specific dataset and helps users to understand and trust this data. Amongst oth-
ers, this covers data quality, lineage and versions. It is important to understand that the
maintenance of the dataset-specific metadata is not part of the marketplace, merely, that
it is relevant for the consumer in the sense of finding and understanding data. Therefore,
this metadata has to be supplied by the provider and the marketplace must support some
form of indexing and integrated processing and presentation of these. For instance, data
quality metrics like completeness or accuracy can be extracted from tools that maintain
data quality. The marketplace-specific metadata comprises a product registry, purchase
history, transaction history, search history and metadata statistics. The statistics indicate
to what extent the metadata is complete or contain user statistics such as how often a
service has been viewed. The regulation of privacy, security and compliance, and the
administration features are not discussed in detail due to lack of space. With this frame-
work we have gained insight which explicit functionality a marketplace should offer to
the user and which implicit functionality like the metadata management is required.

3.2 Data Catalogs as a Foundation for Enterprise Data Marketplaces

When examining the listed metadata management functionality within the functionality
framework, it becomes apparent that there is a considerable overlap with functionality
offered through a data catalog. Besides data asset inventories these have discovery,
administration, governance, collaboration functionality and more [12, 17]. They contain
a large part of the metadata also required in the data marketplace. Since a marketplace
also requires an inventory, a data catalog is thus a component of the data marketplace
[5]. Inversely this means, the data marketplace builds on a data catalog and extends it
with further functionality like data trading features.

Nowadays, companies have one, or are in the process of building data catalogs [13].
Accordingly, when an enterprise data marketplace is developed, this platform can be
built on top of the existing data catalogs and use them as their data inventory. Thereby,
functionality is reused and extended as opposed to duplicated. Furthermore, the catalog
metadata can be reused in the marketplace. This means, the marketplace can read the
catalog entries so these are found in the marketplace search.

In order to enable access to the data, the marketplace requires metadata which is not
part of a data catalog. This includes, for instance, details on the provisioning options

From Data Asset to Data Product 129

such as an API, download or source system access and the according access procedures
that go with these options. Also, contractual information such as the price, if data is
monetized, the license, or subscription options as well as the terms of use such as the
permitted usage or conditions of use. We call these metadata product metadata. They
include all information which is required to sell or make data available for access and
use. In this sense, we distinguish between data assets and data products. The distinction
is displayed in Fig. 3. As the term suggests, data as an asset has a potential financial
value for a company [23]. They are registered and maintained through a data catalog and
are therefore, enriched with a minimum of metadata for finding and understanding them,
such as the content description, lineage or data owner [12]. Data products are data assets
which have been prepared for access and provisioning and have been enriched through
the data marketplace with according product-specific metadata. Metadata to both of
these types belong to the dataset-specific metadata in the functionality framework, in
Fig. 2. To conclude, this means that data assets can be found through the data catalog
and data products through the marketplace. If the marketplace builds on the data catalog
and uses it as its inventory, then data assets can also be found in the marketplace, even if
they are lacking product metadata. In order for consumers to gain access to these assets,
the provider must however, first turn them into a data product by adding provisioning
options and enriching these with product metadata.

Content
description

Quality
Metrics

Lineage

Data
Model

Data
Owner

…
TERMS OF USE

DATA PROVISIONING
DATA MARKETPLACE

DATA CATALOG

Source
SystemPermitted

usage
Conditions
of usePolicies

Price License

Authorization Duration

Provisioning Options

Access Procedure

Subscription Options Registered
in

Builds
onMaintained in

Maintained in

Maintained in

CONTRACT INFO DATA

DATA ASSET

DATA PRODUCT

Usage
Statistics

Fig. 3. The figure illustrates the distinction of data assets and data products with exemplary
metadata, as well as the systems in which these are maintained. Metadata which are connected
through dashes belong to a specific topic that is portrayed though capital letters.

3.3 From Data Asset to Data Product

Data assets can be transformed into a data product in different ways, therefore, we
illustrate three main transformation scenarios. Within the first scenario, the provider
explicitly registers the data in the marketplace and directly specifies all the product
metadata, such as the permitted usage, license etc. By implication, the data is then also
registered in the catalog. In the second scenario, the data provider registers the data
within the catalog and does not concern himself with the data marketplace. The data is
therefore a data asset. Now, some employee, e.g., a data scientist, can search for data in

130 R. Eichler et al.

the marketplace and finds the data asset. The employee can then send a request to access
this data to the provider who is then prompted to specify the product metadata. Having
turned the data asset into a data product, access can be granted to this data. The third
scenario assumes that another employee can fill in the required product metadata and
send a request for asset-product transition to the provider. For instance, a data steward
may know the product metadata and can fill this in for the data owner. The owner is
notified and can accept or reject the proposed metadata. If accepted the data is turned
into a product, if not it remains a data asset which cannot yet be accessed. As underlined
by these three scenarios, the distinction of data assets and data products yields several
advantages:

• The marketplace references data even if it has not been explicitly registered in it, but
only in the data catalog.

• Consequently, the providers initially only have to register the data in the catalog so it
can be found and understood within the enterprise.

• The provider only has additional effort for adding product metadata and providing
provisioning options when the data are actually relevant and are requested.

4 Assessing How an Enterprise Data Marketplace Assists the Role
of the Data Provider

In this section, we examine the extent to which an enterprise data marketplace supports
the provider in making data available and whether the marketplace addresses the chal-
lenges (1–4), described in Sect. 2.2. Existent solutions such as the mentioned Snowflake
or Dawex Exchange Platform do not support a seamless integration with a company’s
existent tool landscape through out of the box loose coupling with existent data catalogs.
Therefore, we developed an enterprise data marketplace prototype to demonstrate and
assess the feasibility of the ideas presented in the Sect. 3. The prototype is an extension to
ourwork presented in [24]. It is built with Spring5 and based on amicro services architec-
ture including a search, product and order service. It is implemented on the open-source
data catalog Apache Atlas6 which registers the data assets. Product metadata is stored
in the marketplace’s metadata repository, set up with a Neo4J7 graph database and the
metadata is modeled according to our metadata model HANDLE [25]. The enterprise
data landscape is simulated by a variety of databases and a data lake which are registered
in the catalog.

4.1 Prototypical Demonstration – From Data Asset to Data Product

As argued in Sect. 3.2, it is beneficial to build the enterprise data marketplace on a
company’s established data catalog. In this case, we built the enterprise data marketplace
on Apache Atlas and use it as the data catalog for the marketplace. If a search query

5 https://spring.io/.
6 https://atlas.apache.org/.
7 https://neo4j.com/.

https://spring.io/
https://atlas.apache.org/
https://neo4j.com/

From Data Asset to Data Product 131

Fig. 4. Illustration of the data asset and data product distinction in the dataset search.

is issued in the marketplace it is forwarded to Atlas. The corresponding search results
are displayed in the marketplace search results view. The marketplace can identify the
data assets for which it contains the corresponding product metadata and labels these as
data products, as can be seen in Fig. 4 on the right hand side of each search result. As
explained in the following, the prototype supports several scenarios as to how data is
provided and an asset becomes a product.

Scenario One. As specified in Sect. 3.3, the data provider can register the data product
in the marketplace. To do this, the provider can select “Add new Product” in the menu
under “data provider” and is directed to a data registration wizard. The wiz-ard guides
the provider through 3 steps, as displayed in Fig. 5. The first step prompts the provider to
specify whether the data is already registered as an asset and if so, to enter the asset-id.
In the second step the provider is led to a form for either registering or editing the asset if
it already exists. In this case, the form fields are prepopulated with the metadata loaded
from the catalog. If the data is not registered as an asset, the provider fills out the form
with according metadata such as a data description, data owner, security class and so on.
The metadata is sent to the catalog in which it is registered as an asset. The provider is
then guided to the third wizard page for adding product metadata, as illustrated in Fig. 5.
This step is optional as the data can already be found through the marketplace search.
To register the product, the terms of use are specified in which the provider indicates if it
is personal data, the permitted usage, conditions of use and a license. For example, the
GDPR allows people to influence how their personal data is processed [26]. By way of
example, the data is personal and the processing has been restricted to the evaluation of
user statistics which is specified in the field permitted usage. Also, only persons from a
specific teammay access this data, therefore this is also specified in the field conditions of
use. If none of the licenses fit the requirements, the provider can also create a customized
license. Besides the terms of use, the data delivery options are specified. This includes
information on the data’s update cycle, the provisioning options and description of the
access procedure. Having specified this information, the provider clicks on the button

132 R. Eichler et al.

“Add As Product” so the metadata is stored in the metadata repository, creating a data
product.

Fig. 5. Wizard for enriching data assets with product metadata to create data products.

Scenario Two. In the second scenario, data is only registered through the data catalog.
For this purpose, the provider dials into the Atlas GUI and fills in the corresponding
15 form fields for registering data assets. As explained above, this data can then be
found in the marketplace and is flagged as an asset. If this dataset is then requested in the
marketplace by a data consumer, the provider receives an access request and is prompted
to add the product metadata and is automatically forwarded to the corresponding form
fields in the wizard as depicted in Fig. 5.

Scenario Three. The third scenario entails that another employee can fill in the required
product metadata for the provider. If a user selects a search result as shown in Fig. 4, they
are taken to a detailed page with overview metadata providing detail on the dataset. This

From Data Asset to Data Product 133

Fig. 6. This image depicts the form for creating data products which is shown if the user is not the
data owner. For space reasons the form fields are replaced by placeholders. The form is identical
to the form displayed in Fig. 5.

detail page also specifies whether the result is an asset or a product. In the case that it is
an asset, a button is displayed “add product metadata”. Clicking on this button will take
the user to the registration wizard where the user can navigate to the “add product” form.
If the user is not the data owner, this is displayed with a message as shown in Fig. 6.
The form is submitted using the “Notify Owner” button. The owner then receives the
request and can accept, reject or edit the metadata before creating the product. As shown
in this chapter, a data marketplace can be built on top of an external data catalog and
the three scenarios as described in Sect. 3.3 are supported in this catalog-marketplace
constellation.

4.2 Addressing of the Challenges in the Data Provider Journey

In this section, we discuss to which extent the enterprise data marketplace addresses the
challenges in the data provider journey, as given in Sect. 2.2. The first challenge signifies
the assembly of documentation, i.e., metadata. In effect, this task is supported to a certain
extent through tools which can automatically capture metadata. For instance, the data
catalog Alation uses AI to suggest business glossary terms and suggests links to relevant
data [27]. Since this concerns the first step of the provider journey and the marketplace
is only utilized throughout later steps, the assembly of metadata is not supported through
the marketplace.

Challenge two refers to the effort of supplying provisioning options, even if these
may not be required. This issue is addressed by the enterprise marketplace through the
differentiation of data assets and data products. It is dealt with by allowing the provider
to supply product metadata and thereby make provisioning options available only when

134 R. Eichler et al.

a request is made for a data asset. Therefore, the effort relating to provisioning options
is only undertaken if this data is actually relevant for other employees.

Challenge three deals with the necessity of registering data in several publishing
tools, namely the data catalog and the data marketplace. Whether this challenge is
addressed by the marketplace depends on the implementation approach that is cho-
sen. The marketplace can be built as a standalone platform with its own inventory. In
this case, challenge three is not addressed, data must be registered in both tools, and
some metadata must be maintained twice. As explained in Sect. 3.2, the implementation
alternative involves integrating the marketplace with a company’s existing data catalog.
If data catalogs are used as an inventory for the marketplace, so it can find the data assets
that are registered in them, the provider only has to register data in the data catalog. This
avoids the need to register data in more than one tool. In addition, as the marketplace
reads metadata from the data catalog, the duplication of the samemetadata and the dupli-
cate administration of these is avoided. Hence, this implementation option addresses the
challenge of double data registration andmetadata maintenance. It can also be added that
users who are not data owners or dedicated data providers can suggest product metadata,
which eliminates the need for the data provider to do this. In this case, the data provider
only has to accept or reject the request.

That the data provider’s journey involves several parties which have to be found,
contacted and coordinated constitutes challenge four. There are two steps, which involve
a request to third parties that can be partially automated through the marketplace. This
includes the request to publish data. For this, however, the owner and the legal experts
must be known and specified. If this is the case, themarketplace represents a platform via
which a workflow for the request and approval of such processes can be implemented.
The same is true for the request for resources. If the people frommanagement are known
and can be identified in themarketplace, then themarketplace can also ensure a regulated
workflow for the resolution of this subject matter.

Consequently, all of the challenges are addressed through various tools and the
marketplace specifically addresses the challenges two through four.

5 Related Work

We conducted a literature study based on the snowball method and considered both
scientific articles and white papers. The goal of democratizing data is related to the
FAIR principle, i.e., making data findable, accessible, interoperable and reusable, which
was introduced in the context of scientific data [12]. Labadie et al. [12] discuss the FAIR
principles in the enterprise context and how these are addressed through data catalogs,
yet they do not consider data marketplaces. Data marketplaces have been investigated
in various contexts. Some research focuses on the overall picture and identifies the main
characteristics [23, 28–31], trends and emerging markets [23, 29, 31], challenges [23,
31] and research fields [32] around data marketplaces. Other research examines the
marketplace in a specialized context such as marketplaces for open data [33] or for data
of the internet of things [34–38]. The application of different technologies in the data
marketplace, such as the use of distributed ledger technology is also studied [35, 39].
These research articles cover a wide range of topics, but do not discuss the distinguishing
features of enterprise data marketplaces.

From Data Asset to Data Product 135

A report published by Wells [5] distinguishes internal marketplaces, synonymous
to enterprise data marketplaces, and external markets. While highlighting topics such
as components and involved technologies of these marketplaces like data catalogs or
data lakes it does not discuss how these can be used to an advantage in the enterprise
data marketplace. The same is true for the article by Gröger [3] in which he presents
the enterprise data marketplace as a central element in the data ecosystem of industrial
enterprises. Like Wells, Fernandez et al. [9] differentiate internal marketplaces in their
work based on the data exchange boundaries and the incentive to share data and discuss
challenges and the research agenda for constructing data marketplaces. However, they
do not take into account the specifics of embedding a marketplace into a company’s
tool landscape. How the data marketplace can be integrated into a company’s system
landscape and how it can be used to its advantage has not been explored.

Data marketplaces are metadata-driven platforms [3] and the necessity for metadata
management in data marketplaces is expressed in several research articles. For instance,
metadata is discussed in the context of data trading challenges and provenance [19],
data integration [18] or decentralized marketplaces and storing it in the blockchain [35].
The functional frameworks presented in [18] and [5] also list metadata management
as a required feature. Most of the research around data marketplaces, however, only
provides a high-level view on metadata management. In contrast, [40] introduces a
detailed metadata model for describing data goods, to facilitate the selection and trading
of data and Fernandez et al. [9] describe a metadata engine for maintaining the lifecycle
of datasets. To the best of our knowledge, none of the work provides a detailed overview
of necessary metadata management features in marketplaces or take peculiarities of
enterprise data marketplaces into account.

As discussed in Sect. 3.1 several research articles provide a list of data marketplace
functionality [5, 9, 18–22]. However, as already explained, the aspect of metadata man-
agement functionality is not addressed sufficiently, and the delimitation of the tasks of
the data marketplace as a data broker is not clearly defined.

The role of the data provider is differentiated in a number of research articles such
as [18, 23, 32, 41]. For instance, Lange et al. [32] differentiate the role of the data
provider and derive a provider challenge, such as the difficulty of pricing data when
lacking knowledge on the data value for the consumer. Furthermore, they introduce
several marketplace types based on different data providers such as commercial, public
or private data providers. Yet, these research articles do not examine the provider in
the enterprise context. In contrast, Wells [7] discerns three types of providers for the
enterprise data marketplace, the internal providers, people and systems in the company,
open data providers which supply free external data and commercial data providers that
offer fee or subscription-based external data. But he does not look at the processes and
specific challenges that data providers face in the enterprise. Fernandez et al. [9] consider
the provider in internal and external marketplaces and tackle the provider challenge
that sharing data is hard as the providers lack information and incentives to make data
available so it increases the consumer’s utility. They propose bonus points or time as an
incentive of internal providers to share data. However, further specifics of the enterprise
data marketplace and the provider’s processes therein are not examined. Hence, this
article has covered this gap in existing literature by examining the current processes for

136 R. Eichler et al.

providing data within an enterprise and the corresponding challenges and how these are
addressed by an enterprise data marketplace.

6 Conclusion

Data democratization initiatives with the goal to facilitate a broader availability and
accessibility of data within a company are becoming increasingly important. The data
provider journey we presented illustrates the current processes for providing data within
an industrial enterprise and the challenges a provider faces which impede data democra-
tization. In this work, we propose the use of an enterprise data marketplace to support the
data provider throughout this journey. Our marketplace functionality framework illus-
trates the overall as well as provider specific functionality and shows that an enterprise
data marketplace is based on metadata management functionality. Through a prototyp-
ical implementation we demonstrate the integration of a marketplace with an existent
data catalog, the differentiation of data assets and data products, and how this enables
several application scenarios which support the data provider in publishing and provi-
sioning data. Consequently, we have demonstrated how the enterprise data marketplace
can leverage the existent tool landscape to ease the publication and provisioning of data
and is, therefore, a platform which enables data democratization within enterprises. In
future, we intend to investigate incentivationmechanisms for data providers to share data
within the enterprise and how the marketplace can leverage further tools and systems in
the enterprise system landscape such as a data lake, a business glossary or knowledge
graph.

References

1. Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. 50, 1–42 (2017)
2. Lefebvre, H., Legner, C., Fadler, M.: Data democratization : toward a deeper understanding.

In: Proceedings of the International Conference on Information Systems (ICIS) (2021)
3. Gröger, C.: There is no AI without data. Commun. ACM 64, 98–108 (2021)
4. Stahl, F., Schomm, F., Vossen, G., Vomfell, L.: A classification framework for data market-

places. Vietnam J. Comput. Sci. 3(3), 137–143 (2016). https://doi.org/10.1007/s40595-016-
0064-2

5. Wells, D.: The Rise of the Data Marketplace: Data as a Service. Eckerson Gr. (2017)
6. Abraham, R., Schneider, J., vom Brocke, J.: Data governance: a conceptual framework,

structured review, and research agenda. Int. J. Inf. Manage. 49, 424–438 (2019)
7. Wells, D.: Dynamic Data Marketplace Fast Data for Fast Business. Eckerson Gr. (2018)
8. Trauth, D., van Ouwerkerk, N., Mönckemeyer, F., Herrmann, K.: Putting a price tag on data.

In: Trauth, D., Bergs, T., Prinz, W. (eds.) Monetarisierung von technischen Daten. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-62915-4_14

9. Fernandez, R.C., Subramaniam, P., Franklin, M.J.: Data market platforms: trading data assets
to solve data problems. Proc. VLDB Endow. 13, 1933–1947 (2020)

10. Gröger, C., Hoos, E.: Ganzheitliches Metadatenmanagement im Data Lake: Anforderungen,
IT-Werkzeuge und Herausforderungen in der Praxis. In: Proceedings of the 18. Fachtagung
für Datenbanksysteme für Business, Technologie und Web (BTW) (2019)

11. Zeng, J., Glaister, K.W.: Value creation from big data: looking inside the black box. Strateg.
Organ. 16, 105–140 (2018)

https://doi.org/10.1007/s40595-016-0064-2
https://doi.org/10.1007/978-3-662-62915-4_14

From Data Asset to Data Product 137

12. Labadie, C., et al.: FAIR enough? Enhancing the usage of enterprise data with data catalogs.
In: Proceedings of the IEEE 22nd Conference on Business Informatics (CBI). pp. 201–210
(2020)

13. Eichler, R., et al.: Enterprise-widemetadata management: an industry case on the current state
and challenges. In: Proceedings of the 24th International Conference on Business Information
Systems (BIS), pp. 269–279 (2021)

14. Hoos, E., Gröger, C., Kramer, S., Mitschang, B.: ValueApping: an analysis method to identify
value-adding mobile enterprise apps in business processes. In: Cordeiro, J., Hammoudi, S.,
Maciaszek, L., Camp,O., Filipe, J. (eds.) ICEIS 2014. LNBIP, vol. 227, pp. 222–243. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22348-3_13

15. Gröger, C., Schwarz, H., Mitschang, B.: The manufacturing knowledge repository consoli-
dating knowledge to enable holistic process knowledge management in manufacturing. In:
Proceedings of the 16th International Conference on Enterprise Information Systems, vol. 1,
pp. 39–51 (2014)

16. GeneralDataProtectionRegulation (GDPR). https://gdpr.eu/tag/gdpr/.Accessed 28Mar 2022
17. Zaidi, E., et al.: DataCatalogsAre theNewBlack inDataManagement andAnalytics. Gartner.

(2017)
18. Meisel, L., Spiekermann, M.: Datenmarktplätze - Plattformen für Datenaustausch und

Datenmonetarisierung in der Data Economy. Fraunhofer ISST (2019)
19. Koutroumpis, P., Leiponen, A., Thomas, L.: The (Unfulfilled) Potential of DataMarketplaces.

ETLA Work. Pap. (2017)
20. Roman, D., et al.: ProDataMarket: a data marketplace for monetizing linked data. In: Pro-

ceedings of the ISWC 2017 Posters Demonstration and Industry Tracks Co-located with 16th
International Semantic Web Conference 1963 (2017)

21. Saxena, S.: Enterprise Data Marketplace: Democratizing Data within Organizations. Tata
Consultancy Service (2018)

22. Spiekermann, M., Lehmann-Brauns, S., Tontsch, R., Otto, B., Hoffmann, M.: Datenmarkt-
plätze in Produktionsnetzwerken. Plattf. Ind. 4.0. (2020)

23. Spiekermann, M.: Data marketplaces: trends and monetisation of data goods. Intereconomics
54(4), 208–216 (2019). https://doi.org/10.1007/s10272-019-0826-z

24. Eichler, R., et al.: Data shopping— how an enterprise data marketplace supports data democ-
ratization in companies. In: Proceedings of the 34th International Conference on Advanced
Information Systems Engineering (CAiSE). pp. 19–26 (2022)

25. Eichler, R. et al.: Modeling metadata in data lakes—a generic model. Data Knowl. Eng. 136
(2021)

26. Art. 6 GDPR - Lawfulness of processing - GDPR.eu. https://gdpr.eu/article-6-how-to-pro
cess-personal-data-legally. Accessed 7 Sep 2021

27. Alation: Data Stewards. https://www.alation.com/solutions/data-stewards/. Accessed 12 Mar
2020

28. Schomm, F., Stahl, F., Vossen, G.: Marketplaces for data: an initial survey. ACM SIGMOD
Rec. 42, 15–26 (2013)

29. Stahl, F., et al.: Marketplaces for digital data: quo vadis? Comput. Inf. Sci. 10 (2017)
30. Fruhwirth, M., Rachinger, M., Prlja, E.: Discovering business models of data marketplaces.

In: Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS)
(2020)

31. Driessen, S.W., Monsieur, G., Van Den Heuvel, W.-J.: Data market design: a systematic
literature review. IEEE Access. 10, 33123–33153 (2022)

32. Lange, J., Stahl, F., Vossen, G.: Datenmarktplätze in verschiedenen Forschungsdisziplinen:
Eine Übersicht. Informatik-Spektrum 41(3), 170–180 (2018). https://doi.org/10.1007/s00
287-017-1044-3

https://doi.org/10.1007/978-3-319-22348-3_13
https://gdpr.eu/tag/gdpr/
https://doi.org/10.1007/s10272-019-0826-z
https://gdpr.eu/article-6-how-to-process-personal-data-legally
https://www.alation.com/solutions/data-stewards/
https://doi.org/10.1007/s00287-017-1044-3

138 R. Eichler et al.

33. Zuiderwijk, A., et al.: Elements for the development of an open data marketplace. In:
Proceedings of the Conference for E-Democracy andOpenGovernement. pp. 309–322 (2014)

34. Zheng, Z., et al.: Challenges and opportunities in IoT data markets. In: Proceedings of the 4th
International Workshop on Social Sensing (SocialSense). pp. 1–2 (2019)

35. Ramachandran, G.S., Radhakrishnan, R., Krishnamachari, B.: Towards a decentralized
data marketplace for smart Cities. In: Proceedings of the IEEE International Smart Cities
Conference (ISC2). pp. 1–8 (2018)

36. Alrawahi, A.S., Lee, K., Lotfi, A.: AMACoT: a marketplace architecture for trading cloud of
things resources. IEEE Internet Things J. 7, 2483–2495 (2019)

37. Krishnamachari, B., et al.: I3: an IoT marketplace for smart communities. In: Proceedings
of the 16th ACM International Conference on Mobile Systems, Applications, and Services
(MobiSys). pp. 498–499 (2018)

38. Schmid, S., et al.: An architecture for interoperable IoT ecosystems. In: Proceedings of the
2nd International Workshop on Interoperability and Open-Source Solutions for the Internet
of Things (InterOSS-IoT), pp. 39–55 (2016)

39. Roman, D., Stefano, G.: Towards a reference architecture for trusted data marketplaces: the
credit scoring perspective. In: Proceedings of the 2nd International Conference on Open and
Big Data (OBD). pp. 95–101. IEEE (2016)

40. Spiekermann, M. et al.: A metadata model for data goods. In: Multikonferenz Wirtschaftsin-
formatik (MKWI). pp. 326–337 (2018)

41. Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets. In:
Castellanos,M.,Dayal,U., Rundensteiner, E.A. (eds.) BIRTE2012. LNBIP, vol. 154, pp. 129–
144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39872-8_10

https://doi.org/10.1007/978-3-642-39872-8_10

Data-Aware Service Placement
in the Cloud-IoT Continuum

Jacopo Massa(B) , Stefano Forti , and Antonio Brogi

Department of Computer Science, University of Pisa, Pisa, Italy

jacopo.massa@phd.unipi.it

Abstract. We present a declarative solution to determine, in a data-
aware manner, application service placements and SDN data routings
over Cloud-IoT infrastructures while meeting functional (software, hard-
ware, IoT) and non-functional (security, latency, bandwidth) application
requirements. The solution employs continuous reasoning to speed up
the reconfiguration of application placements and routing decisions at
runtime, when needed. An open-source Prolog prototype is presented
and assessed over a scenario based on lifelike data.

Keywords: Data-aware application placement · Cloud-IoT
continuum · Continuous reasoning

1 Introduction

The explosion of the Internet of Things (IoT) has given rise to the so-called data
deluge [36], with more than 500 billion connected devices producing tons of data,
which cannot always be suitably transmitted, stored, and processed by employing
traditional Cloud architectures [43]. To tame this problem, Cloud-IoT computing
paradigms – e.g. Fog [3], Edge [29], Osmotic computing [39] – have been pro-
posed. They exploit heterogeneous computing capabilities along the Cloud-IoT
continuum (e.g. data centers, ISP routers, gateways, access points, smartphones)
to process data as close as possible to their sources, avoiding unnecessary data
transfers.

In such context, much research has focussed on supporting decision-making
on where to place application services along Cloud-IoT infrastructures so to
meet a set of application requirements, e.g. availability of the required hard-
ware/software capabilities, suitable latency and bandwidth among interacting
services, or security policies [5,31]. Guaranteeing such requirements can ben-
efit from considering where to (temporarily or permanently) store data to be

This work has been partly supported by the EU Horizon 2020 Research and Innovation
program, under project ACCORDION (G.A. 871793), and by project Energy-aware
management of software applications in Cloud-IoT ecosystems (RIC2021PON A18),
funded with ESF REACT-EU resources by the Italian Ministry of University and
Research through the PON Ricerca e Innovazione 2014–20.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 139–158, 2022.
https://doi.org/10.1007/978-3-031-18304-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_8&domain=pdf
http://orcid.org/0000-0002-5255-537X
http://orcid.org/0000-0002-4159-8761
http://orcid.org/0000-0003-2048-2468
https://doi.org/10.1007/978-3-031-18304-1_8

140 J. Massa et al.

processed along the Cloud-IoT continuum. However, despite taming the data
deluge and achieving data-awareness are among the main motivations of Cloud-
IoT computing [42], to the best of our knowledge, the characteristics of the data
(e.g. security needs, volume, velocity) processed by the application have only
marginally been used to drive placement decisions [31].

Placing application services by taking into account volume, velocity and vari-
ety of data [16] can reduce access latencies and data gravity issues (i.e. the need
to move or replicate data among various services that use them), thus improving
application performance [32]. Besides, software-defined networking (SDN) can
help by instructing ad-hoc routing paths for different applications to guarantee
suitable bandwidth and latency for data transfer at runtime [30,33]. Finding a
data-aware service placement and an associated SDN routing that meet appli-
cation requirements is hence a challenging (NP-hard) problem to attack.

Focussing on data and their characteristics, this article presents:

1. a novel declarative model of Cloud-IoT infrastructures and multi-service appli-
cations and a declarative strategy to determine placement and SDN routing
decisions in a data-aware manner, meeting all application (hardware, soft-
ware, IoT, security, latency and bandwidth) requirements,

2. an incremental continuous reasoning approach, as in [7], to speed-up decision-
making at runtime when a migration is needed only for a portion of appli-
cation services that cannot currently meet their requirements, taming the
exp-time complexity of the placement and routing problem, and

3. an open-source prototype (DAPlacer) of the above, assessed over a scenario
based on lifelike data.

Overall, the novelty of this work is in that it follows a data-aware approach
accounting for the characteristics of different types of data (e.g. size, frequency,
security requirements) to derive QoS (e.g. latency, bandwidth, security) require-
ments of the application services to be placed, and for priorities to determine
which services to migrate first, when needed.

The rest of this article is organised as follows. We first illustrate a lifelike sce-
nario for our problem (Sect. 2), and describe the methodology of DAPlacer over
such a scenario (Sect. 3). Then, we assess our prototype at increasing infras-
tructure sizes and show the benefits of continuous reasoning in speeding-up
decision-making (Sect. 4). Last, we briefly discuss some related work (Sect. 5)
and conclude with some directions for future work (Sect. 6).

2 Motivating Scenario and Problem Considered

Consider the museuMonitor application sketched in Fig. 1, managing a smart
museum by orchestrating three services:

– a dataStorage service that collects and manages environment data from IoT
devices, i.e. exhibition information, temperature, humidity and lighting of
exhibited artifacts, and physical presence of people in different rooms so to
track their interest for different sections,

Data-Aware Service Placement in the Cloud-IoT Continuum 141

– an interface service that collects and streams video footage from museum
cameras, and offers a GUI to access the system, and

– a controller service that streams data to AR glasses wore by visitors to
provide them with exhibition information, and to drive them interactively
across the museum.

Fig. 1. Example application.

Each service has its hardware, software, IoT requirements. For instance, the
dataStorage service needs a 5 GHz CPU, 5 GB of RAM and 512 GB of storage
space, and to reach out sensors linked to museum artifacts and visitors.

Interacting services collect, manage and exchange data among them and
with the IoT devices they are bound to at runtime. Different data types flow
from/to IoT devices across application services as indicated by the arrows in
Fig. 1, with different colours and dashes, each characterised by a unit data size
and by associated security requirements. Data flow hops are characterised by
maximum tolerated latencies and by specific data rates.

For instance, consider the green dotted line that binds the visitorStats data
type with the dataStorage service, passing through the controller service to reach
out both AR glasses and smart door devices. The visitorStats data type has a
size of 0.4 Mb and requires encryption and authentication to be available for
the services that process it. The associated data rate varies hop by hop, i.e. it
corresponds 60 Hz for the hop from the sensors to the dataStorage, 20 Hz from the
dataStorage to the controller service, and 25 Hz from the controller to actuators.
Similarly, latency constraints vary from 100 ms for the first two hops, to 60 ms for
the last one.

Now consider the Cloud-IoT infrastructure of Fig. 2 to deploy the above appli-
cation. It is a portion of a real Cloud-IoT infrastructure at UC Davis [12,26]. Such
an infrastructure consists of heterogeneous computing nodes, interconnected via
wired and wireless links. Nodes are characterised by their software, hardware,
IoT and security capabilities. Physical links between those nodes are described
by the latency and bandwidth they feature. For instance, the studentCenter node

142 J. Massa et al.

Fig. 2. Example infrastructure.

offers a 4 GHz CPU, 8 GB of RAM and 512 GB of storage space, and reaches
out an AR glasses device. Its connection with the briggsHall node features an
average latency of 5 ms and a bandwidth of 250 Mbps.

Application management must continuously decide onto which node(s) to
place museuMonitor services, and how to route traffic between them onto the sub-
strate infrastructure. This is needed to always fulfill application service require-
ments by continuously matching them against infrastructure capabilities. In the
following, we present a declarative solution to the problem of continuously deter-
mining application placements and associated traffic routings:

A placement of a multi-service application onto a Cloud-IoT infrastruc-
ture is a complete mapping from application services to Cloud-IoT nodes
that meet all application hardware, software, IoT and data security
requirements.

A data routing for a given eligible placement is a mapping from appli-
cation data flows between services to routes across the physical links
between their deployment nodes. It must ensure that all data flows meet
the required end-to-end network QoS (based on data volume and veloc-
ity) from IoT sensors, through application services, reaching out target
actuators (if needed).

Our approach is data-aware as it considers QoS requirements dictated by the
data types handled by an application, viz. security, volume and velocity, instead
of set requirements. Besides, by employing continuous reasoning, our solution
can locally and continuously handle changes in the application requirements
(e.g. increased data frequency or volume, new security need) and infrastructure

Data-Aware Service Placement in the Cloud-IoT Continuum 143

resources (e.g. node or link overloading, deactivation of a security countermea-
sure) that might affect the runtime application performance. Last, but not least,
we allow specifying migration priorities that can be determined by considering
different factors (e.g. business criticality, service migration and data transfer
times) to reduce downtime and unavailability.

3 Modelling and Prototype

In this section, we describe our data-aware modelling of Cloud-IoT applications
and infrastructures (Sect. 3.1) and detail1 how DAPlacer determines data-aware
placements of application services and routings (Sect. 3.2), also illustrating how
it employs continuous reasoning to speed-up runtime decision-making (Sect. 3.3).

3.1 Model

Application. An application is denoted by Prolog2 facts

application(AppId, [ServiceIds]).

where AppId is a unique application identifier, and ServiceIds is the list of iden-
tifiers of the services that compose the application.

Services and their requirements are denoted as in

service(ServiceId, [SWReqs], HWReqs, [DataTypes], MigrationCost).

where ServiceId is a unique service identifier, SWReqs and HWReqs are its software
and hardware requirements, DataTypes the list of data types processed by the
service, and MigrationCost is a measure of the migration cost of ServiceID e.g.
based on the data/code transfer times, or on the impact on the application
availability. The higher its migration cost, the better to avoid migrating a service.

1 Due to space limitations, only the main predicates of DAPlacer are presented. The
prototype is open-sourced at https://github.com/di-unipi-socc/daplacer.

2 Prolog is a declarative programming language based on first-order logic. Prolog pro-
grams consist of clauses of the form a :- b1, ..., bn. stating that a holds if
b1 ∧ . . .∧ bn holds. Clauses with empty premise (n = 0) are called facts. Predicate
definitions can also contain disjunctions (denoted by ;) and negations (denoted by
\+). Variables start with upper-case letters. Prolog programs can be queried, and
the Prolog interpreter tries to answer each query by applying SLD resolution [20]
and by returning a computed answer substitution instantiating the variables in the
query. For instance, the query ?- nice(W). on the program

nice(X) :- honest(X), gentle(X).
honest(alice). honest(barbara). gentle(barbara).

returns the computed answer substitution {barbara/ W }, obtained by first rewrit-
ing the query by applying the first clause for honest/1 and failing, and then applying
the second clause for honest/1 and then the clause defining gentle/1.

https://github.com/di-unipi-socc/daplacer

144 J. Massa et al.

Data types are denoted by facts like

dataType(DataId, Size, [SecReqs]).

where DataId is a unique identifier, Size is the unit data size in Mb, and SecReqs

are the security requirements associated by such data type, which are inherited
by the service that processes it.

Applications can require runtime bindings with (one or more) IoT devices,
which can be declared as in

requirement(ReqId, IoTDeviceType, [DataIds]).

where ReqId is the unique identifier of the requirement, IoTDeviceType specifies
the type of IoT sensor/actuator needed by the application, and DataIds is the
list of data types that should be provided by such an IoT device.

Finally, interactions between application services, and between services and
IoT requirements are denoted by facts like:

e2e(A, B, MaxLatency, [DataInfo]).

where A and B are unique identifiers of interacting services or IoT requirements,
MaxLatency is the maximum tolerated latency for such interactions, and DataInfo

is a list of pairs (DataId,DataRate) that identify the data type exchanged during
the interaction along with their rate expressed in Hz. Note that this is important
as, for instance, a same service or IoT sensor can be queried for data at different
rates from different services, or at different moment in times.
Example. The museuMonitor application of Fig. 1 (Sect. 2), with its three services
(viz. interface,controller,dataStorage), is defined3 by

application(museuMonitor, [interface,controller,dataStorage]).

Similarly, the software, hardware and IoT requirements, and the migration cost
of the dataStorage service are declared by

service(dataStorage, [mySQL,ubuntu],(5,4,512),[artStats,visitorStats], 100).

Note that dataStorage processes two different data types from exhibition artifacts
and visitors’ monitoring – i.e. artStats, visitorStats – both requiring encryp-
tion and authentication mechanisms to manage users’ authentication. Those are
declared, with their data size and security requirements, as in:

dataType(artStats, 0.5, [encryption]).
dataType(visitorStats, 0.4, [auth, encryption]).

3 The full application declaration is available at https://github.com/di-unipi-socc/
daplacer/blob/main/app.pl.

https://github.com/di-unipi-socc/daplacer/blob/main/app.pl
https://github.com/di-unipi-socc/daplacer/blob/main/app.pl

Data-Aware Service Placement in the Cloud-IoT Continuum 145

Those data types require runtime bindings – rVst and rArt – to actual IoT
devices. Such requirement is specified as in:

requirement(rVst, smartphone, [visitorStats]).
requirement(rArt, heat, [artStats]).

where visitorStats requires binding to visitors’ smartphones and visitorStats

require binding to a system of thermometers installed at each exhibited artifact.
Finally, end-to-end interactions between the runtime binding requirements

above and the dataStorage service are declared as in

e2e(rVst, dataStorage, 100, [(visitorStats,60)]).
e2e(rArt, dataStorage, 120, [(artStats,30)]).

where the maximum tolerated latency is 100 ms and 120 ms respectively for rVst

and rArt, and visitorStats are transmitted 60 Hz and artStats 30 Hz. Similarly,
the end-to-end interaction between the dataStorage and the controller service is
set to have a maximum tolerated latency of 100 ms and to transmit data 20 Hz
by a fact of the form: �
e2e(dataStorage, controller, 100, [(artStats,20), (visitorStats,20)]).

Infrastructure. Cloud-IoT infrastructures are modelled as graphs. First of all,
infrastructure node can be declared by facts like:

node(NodeId,[SWCaps],HWCaps,[SecCaps],[IoTCaps]).

where NodeId is the unique node identifier and SWCaps, HWCaps SecCaps and IoTCaps
are respectively its software, hardware security and IoT capabilities. Communi-
cation links between nodes are denoted by facts like:

link(NodeId1, NodeId2, FeatLat, FeatBW).

where FeatLat FeatBW define the end-to-end latency and bandwidth featured by
the communication link between nodes NodeId1 and NodeId2. Devices connected
to a node could be sensors or actuators:

sensor(SensorId, Type, [DataIds]).
actuator(ActuatorId, Type).

identified by a SensorId (or ActuatorId) and the device type Type. Sensors are
also associated with the list of data they can generate (i.e. DataIds).

Example. Such an infrastructure, like the one shown in Fig. 2, can be represented
starting from sensors and actuators, by facts like

146 J. Massa et al.

sensor(art42, heat, [artStats]).
actuator(video3, display).

where art42 is a monitoring temperature system that manages artStats data
type, and video3 shows information as it is a visual display. IoT devices need to
be hosted on some infrastructure nodes, which are defined with their software,
hardware, security and IoT capabilities, as follows:

node(kleiberHall, [ubuntu, mySQL], (2.4, 3, 50), [], [art42]).
node(briggsHall, [ubuntu, mySQL], (3, 6, 128), [auth], []).

Note that kleiberHall node hosts art42 sensor and has empty security capabili-
ties. Conversely, briggsHall node provides higher hardware capabilities and auth

as security capability, but does not host any IoT device.
Finally, links between nodes are represented as in

link(kleiberHall, briggsHall, 15, 70).

which means that kleiberHall and briggsHall nodes are connected with a link
offering 15 ms of latency and 70 Mbps of bandwidth. �
Deployment Information. As mentioned before, applications can require runtime
bindings (via requirement/3 facts) to actual IoT sensors and actuators from/to
which collect/transmit data. Such a piece of information should be provided at
deployment time, when looking for eligible placements and routings, by facts like

dataBinding(ServiceId, ReqId, IoTId).

where ServiceId is the identifier of the service bound to a physical IoT device
IoTId of a certain type and managing the same data types as stated in the
application requirement ReqId.

Example. For instance, the runtime binding of the rArt requirement of
museuMonitor is specified as in

dataBinding(dataStorage, rArt, art42).

where art42 is an actual temperature monitoring system available in the Cloud-
IoT infrastructure of Fig. 2 at node kleiberHall. �

3.2 Placement and Routing

Based on the modelling above, predicate placement/8 (line 1) of DAPlacer imple-
ments the backtracking generate and test strategy illustrated in Fig. 3 to deter-
mine eligible placements and data routings for a given application onto a target
Cloud-IoT infrastructure. Such a strategy consists of three steps:

Data-Aware Service Placement in the Cloud-IoT Continuum 147

Fig. 3. Bird’s-eye view of DAPlacer placement strategy.

1. predicate compatibles/2 (line 2) determines for each application service S the
subset of compatible infrastructure nodes that can support its requirements.
The list of services and their compatible nodes Compatibles (line 8) is sorted
into SNs from the service with less compatible nodes to the one with more (line
9), so that they are considered from the most difficult to the less difficult to
be placed in the next step,

2. predicate servicePlacement/5 (line 3) determines an eligible placement NewP,
starting from an empty placement P, for each application service in the sorted
list SNs along with the associated hardware allocation NewHW,

3. based on the found placement, predicate findRoutes/7 (line 4) determines an
associated eligible SDN data routing NewRs, starting from both empty routing
R and bandwidth allocation PrevBW, checking that each route respects network
QoS requirements, retrieving also the associated bandwidth allocation NewBW.

Next, we detail the functioning of the predicates mentioned in 1–3.

Placement. Predicate placement/8 exploits compatibles/2 (so findCompatibles/2,
lines 6–10) to perform a pre-processing step that determines, for each application
service in Ss, a subset of nodes where to suitably place it (lines 7–8). The subset
is built by using lightNodeOK/3 predicate that starts by checking the existence
of service S (line 16) and then performs all the controls for software (line 18),
hardware and security requirements. Hardware requirements are softly checked
by checkHW/2 (line 20) as it does not consider the rest of the application, but it
only ensures that node N has enough hardware resources to host service S.

Security requirements SecReqs are dictated by the data types processed by
a service (i.e. DataIds). DAPlacer collects those via predicate getSecReqs/2 and
checks them against the security capabilities SecCaps available at node N (line 19).

Then, servicePlacement/5 (lines 11–14) actually determines the eligible place-
ment, looking for compatible nodes found in the previous pre-processing step.
It also performs a deeper check of hardware requirements exploiting the hwOK/5

predicate (lines 25–28), knowing service requirements HWReqs, node capabilities
HWCaps, the current hardware allocation AllocHW, and the cumulative allocation
associated to the placement P built so far. This incrementally checks that the
built placement does not exceed hardware capabilities of the target deployment
nodes. The current allocation CurrHW (line 26) is summed up with the currently
employed resources NewHW (line 27), collected via the hardwareUsedOnN/3 predicate
(line 29), to handle cases in which the hardware requirements of a service change
triggered by Continuous Integration/Continuous Delivery (CI/CD) pipeline.

148 J. Massa et al.

Fig. 4. Pre-processing and service placement.

If service S can be placed on node N, the placement P is updated with the
pair on(S,N) (line 13). Once a complete placement P has been fully determined,
the associated hardware allocation is computed by predicate hwAllocation/2 (line
14) and returned to the caller (Fig. 4).

Routing. As mentioned above, once an eligible service placement as been deter-
mined by servicePlacement/5, DAPlacer relies on predicate findRoutes/7 predicate4

to determine an associated eligible routing of data flows. DAPlacer handles both
determining routings between services and between a service and an IoT device.

4 Code of findRoutes/7 predicate is not shown. It is available at https://github.com/
di-unipi-socc/daplacer/blob/main/daplacer.pl.

https://github.com/di-unipi-socc/daplacer/blob/main/daplacer.pl
https://github.com/di-unipi-socc/daplacer/blob/main/daplacer.pl

Data-Aware Service Placement in the Cloud-IoT Continuum 149

To do so, predicate findRoutes/7 first collects interactions among all pre-
viously deployed services, and within sensors and actuators. Each interaction
is characterized by a maximum end-to-end latency and a set of data flowing
through it at different transmission rates. For each interaction, DAPlacer defines
a route (i.e. a list of nodes) over the infrastructure, that must traverse the net-
work supporting latency and bandwidth requirements at each hop. Precisely,
given two nodes, DAPlacer determines if they are connected directly or through
any acyclic path, checking that the total latency does not exceed the maximum
tolerated one, and all the links have enough available bandwidth to allow data
flowing, considering also the bandwidth allocated so far.

If a traversable path is found, it is saved as a list of the traversed nodes,
annotating the source and destination services with the maximum bandwidth
required along the entire route (i.e. ((S1,S2),BW,R)).

Example. To determine an eligible deployment and data routing for the applica-
tion of Sect. 2 over the infrastructure described in Sect. 3.1 the following query
can be run:

:- daplacer(museuMonitor, Placement, Routes).

Figure 5 shows the first eligible output placement returned by the query, along
with SDN traffic routings. As shown, the three computing services dataStorage,

interface and controller have been respectively placed onto cloud, ISP and Fire

& Police nodes. The table in the lower right corner of the figure summarises
all found routes and their characteristics. For instance, the dotted line from
dataStorage to controller defines a path that starts from cloud node, passing
through ISP, and finally to Fire & Police node. �

Due to the NP-hard nature of the considered problem [4], in the worst-case,
DAPlacer explores the whole search space to determine an eligible placement and
routing (if any), incurring in exp-time complexity. Given an application with S
services and a Cloud-IoT infrastructure with N nodes, determining an eligible
placement incurs in worst-case O(NS) time complexity. Similarly, given a Cloud-
IoT infrastructure with an average node degree of K and a network diameter of
D, determining eligible routings shows a O(KD). Hence, the combination of the
two steps above shows a worst-case complexity of O(NS × KD).

3.3 Continuous Reasoning

To tame the exp-time complexity of the considered problem for prompter
decision-making at runtime, DAPlacer exploits continuous reasoning [7]. Once
a deployment has been enacted according to a found placement and routing,
continuous reasoning tries to reduce the size of the considered placement prob-
lem instances at runtime, by focussing on re-placing those services and data
routings that cannot currently meet their requirements. This can happen for
two reasons:

150 J. Massa et al.

Fig. 5. Example output placement and routing.

– due to changes in the monitored5 Cloud-IoT infrastructure (e.g. node crash or
overloading, link QoS degradation) that prevent meeting application require-
ments, or

– due to changes in the declared application (e.g. service removal/addition,
requirements update, changes in the data types handled) that require
(un)deploying services, or migrating existing ones.

When possible, after identifying the deployment portion affected by the
changes above, continuous reasoning attempts to determine a new placement
and data routing only for such a portion.

To do so, predicate daplacer/3 (Fig. 6) determines an eligible placement NewP

and the associated data routing NewRs for application App. Such a predicate han-
dles the following three cases:

1. First deployment. In case a deployment of App does not exist, the first clause
of daplacer/3 triggers (lines 30–34) and exploits predicate placement/8 (line
33) with initially empty resource allocations Alloc, placement P and routes Rs

(line 32). If an eligible placement NewP and routing NewRs are found, they are
asserted into the knowledge base of DAPlacer (line 34).

2. Partial re-deployment. In case a deployment of App already exists, the second
clause of daplacer/3 triggers (lines 35–42) and exploits predicate newServices/2

(line 36) to determine the list NewSs of newly added services and predicate
reasoningStep/8 (line 38) to determine the list SsToMove of services that need to
be migrated and the partial placement TmpP and routing TmpRs that still have

5 Monitoring tools for Cloud-IoT infrastructure exists such as FogMon [10] or those
surveyed in [35].

Data-Aware Service Placement in the Cloud-IoT Continuum 151

their requirements satisfied. In this step, services are previously sorted with
sortByMigrationCost/2 (line 37), so that services with lower migration cost are
tried to migrate first. Indeed, as services are considered sequentially, migrat-
ing one might solve problems (e.g. node/link overloading) for its successors
and, therefore, avoid migrating them. Then, new services and services to be
migrated are appended into a single list (line 39), and predicate placement/8 is
exploited to complete the partial placement TmpP and routing TmpRs into NewP

and NewRs, respectively (line 40). Last, the previous placement is retracted
from the knowledge base of DAPlacer (line 41), and the new one is asserted
(line 42).

3. Full redeployment. In case a deployment of App already exists but the previous
step fails, the third clause of DAPlacer (lines 43–47) looks for a complete new
placement and routing for App, relying again on placement/8 (line 45). If one
is found, the previous placement is retracted from the knowledge base of
DAPlacer (line 46), and the new one is asserted (line 47).

Predicate reasoningStep/8 (lines 48–58) is the core of the continuous reason-
ing strategy implemented by DAPlacer. By recursively scanning the current place-
ment SPrevP, it determines services that have been removed from an application
through the CI/CD pipeline (lines 48–50), services that have their requirements
satisfied on their current deployment node (lines 51–55), and – by exclusion –
services that need to be migrated (lines 56–57). Predicates nodeOK/4 (line 53) and
serviceRoutesOK/8 (line 54) check whether the (possibly updated) service require-
ments of S are currently satisfied by node N, and that traffic routes involving S

still feature suitable QoS. While performing the check, serviceRoutesOK/8 also
updates bandwidth allocation NewBW in case application requirements have been
changed in the application declaration through the CI/CD pipeline. The cut
operator(!) after the call to reasoningStep/8 (line 38) ensures the current place-
ment is scanned only once.

As services to be placed can be determined with a poly-time scan of the
current application placement, assuming that only m out of S services need
to be replaced, the time complexity of completing a partial placement is in the
worst-case O(Nm×KD) < O(NS×KD). Hence, from an asymptotic complexity
analysis continuous reasoning can tame the complexity of the placement and
routing problems at runtime.

4 Scalability Assessment

In this section, we provide an experimental assessment6 comparing exhaustive
and continuous reasoning approaches implemented by DAPlacer.

6 All experiments were run on a machine featuring macOS Monterey 12.3, and
equipped with 16 GB of RAM and a 2,5 GHz Intel Core i7 quad-core processor.
Experiments code is accessible at: https://github.com/di-unipi-socc/daplacer/tree/
main/experiment.

https://github.com/di-unipi-socc/daplacer/tree/main/experiment
https://github.com/di-unipi-socc/daplacer/tree/main/experiment

152 J. Massa et al.

Fig. 6. Code of daplacer/3 main predicate and the continuous reasoning step.

We consider the museuMonitor application of Sect. 2 to be placed onto random
infrastructures built as per the Barabási-Albert model [2] at infrastructure vary-
ing sizes of 2i nodes with i ∈ [4, 9] and a node degree equal to i. We run discrete
event simulations over 600 epochs7 that vary infrastructure conditions according
to a given probability (i.e. variation rate). At each epoch node hardware and link
latency and bandwidth change8 according to their set variation rate so to simu-
late a life-like monitoring and evolution of infrastructure resources. Considered

7 Experimental results are aggregated over 10 repetitions of the described 600 epoch
simulations.

8 For each selected node, its hardware availability is changed by considering its initially
available RAM and HDD resources and picking a value in the range [1, 1.1 × RAM] and
[1, 1.2 × HDD], respectively. Analogously, the bandwidth of selected links is picked
anew in the range [1, 1.1 × BW], where BW is the initial bandwidth featured by the
link. Similarly, the latency of selected links is changed within [LAT/2, 1.5 × LAT],
where LAT is the initial link latency.

Data-Aware Service Placement in the Cloud-IoT Continuum 153

variation rates are 10%, 20%, 40%, and 50%. For instance, a 50% variation rate
corresponds to changing approximately a half of the nodes and links at each
epoch. Besides, we consider a lifelike series of six application CI/CD commits
that change application requirements and topology and that are enforced every
100 epochs throughout the simulation. Detailedly:

1. deploying the original museuMonitor application,
2. adding two interacting services, localisator and locStorage, which take care

of processing and storing visitorStats data,
3. removing one service, by assuming that locStorage and localisator are merged

into a single service managing and storing all visitorStats data,
4. increasing hardware requirements of the localisator service,
5. removing the e2e interaction between dataStorage and the visitor sensor, link-

ing the latter to localisator, and localisator to interface and controller

services, by adding new service-to-service interactions,
6. decreasing required maximum latency and increasing data rate for

visitorStats data type.

Such a commit history covers and tests all CI/CD triggered changes that DAPlacer
can handle, i.e. service addition/removal, service requirements updated, end-to-
end QoS requirements update/addition/removal.

Figure 7 and Fig. 8 show the execution times and the number of Prolog
inferences of the exhaustive and continuous reasoning strategy implemented
by DAPlacer at varying infrastructure sizes and simulation rates. Note that the
behaviour of the exhaustive search strategy of Fig. 7 reflects the exp-time com-
plexity of finding a solution to the placement and routing problem both in
execution times (Fig. 7(a)) and in the number of inferences (Fig. 7(b)), which
increase as the infrastructure size and variation rate increase. Execution times
settle between 0.04 and 0.08 s, while inferences settle between 80000 and 220000
approximately. Such a complexity is naturally experienced at first deployment,
when a placement and routing for an application are to be found for the first
time.

When exploiting continuous reasoning for runtime decision-making however,
results substantially improve. Figure 8a and 8b show a more gradual increase
in execution times and inferences as infrastructure sizes and variation rates
increase. In comparison with the exhaustive strategy, continuous reasoning
brings an average 21× speed-up on the execution times and of 13× on number of
inferences. Indeed, execution times settle between 0.005 and 0.03 s, while infer-
ences settle between a few 1000 s and 100000 approximately. It is worth noting
that speed-ups are always positive, despite slightly decreasing as infrastructure
sizes and variation rates increase.

These results illustrate the fact that – on average – continuous reasoning
effectively reduces the size of the problem instance to be solved only to those
services in need of attention, and manages to determine an alternative replace-
ment for them. Summing up, the experimental assessment shows that DAPlacer

can boost the runtime decision-making, achieving considerable average (infer-
ences and time) speed-ups, which can – for instance – increase the number

154 J. Massa et al.

(a) Execution time (b) Number of inferences

Fig. 7. Exhaustive search results.

(a) Execution time (b) Number of inferences

Fig. 8. Continuous reasoning results.

of considered placement requests and reduce management times for latency-
sensitive applications (e.g. AR/VR, gaming, e-surgery). Simulations also confirm
that DAPlacer can successfully handle both infrastructure and CI/CD application
changes, even in large-scale Cloud-IoT infrastructures subject to high variation
rates, confirming asymptotic considerations.

5 Related Work

Much literature has focussed on the placement of application services to physical
servers in Cloud datacentres [28], only a few of which (e.g. [15,41]) employing a
declarative approach. However, managing applications over the Cloud-IoT con-
tinuum introduces new challenges, mainly due to infrastructure scale and het-
erogeneity, need for QoS-awareness, dynamicity and support to interactions with
the IoT, rarely considered in Cloud-only scenarios. Next, we briefly summarise
the state of the art in the field of Cloud-IoT multi-service application placement
and management, referring to recent surveys [5,22,37] for further details.

Data-Aware Service Placement in the Cloud-IoT Continuum 155

Among the first proposals investigating the peculiarities of Cloud-IoT appli-
cation placement, [14] proposed a simple search algorithm to determine an eligi-
ble deployment of (multi-service) applications to tree-like Cloud-IoT infrastruc-
tures, open-sourced in the iFogSim Java prototype. Building on top of iFogSim,
various works tried to optimise different metrics, e.g. service delivery dead-
lines [21], load-balancing [40], or client-server distances [13].

In our previous work [4], we proved NP-hardness of the placement problem,
and we devised a backtracking strategy to determine context-, QoS- and cost-
aware placements of multiservice applications to Cloud-IoT infrastructures, also
employing continuous reasoning [7], and considering Osmotic service adaptation
[8]. We have also exploited logic programming to assess the security and trust
levels of application placements [9], and to determine the placement and net-
work routing of Virtual Network Function chains in Cloud-IoT scenarios [12].
Still with a declarative approach, [6] and [27] devised an approach to service
coordination based on aggregate computing, aiming at managing opportunistic
resources via a hybrid centralised/decentralised solution by relying on a self-
organising peer-to-peer architecture to handle churn and mobility. On a similar
line, we proposed a declarative fully decentralised solution to write and enforce
QoS-aware application and infrastructure management policies [11]. Last, pro-
posals exist for simulating application placements and management policies in
Cloud-IoT scenarios [23], e.g. YAFS [19], EdgeCloudSim [34], and iFogSim [14]
itself. None of the works surveyed above considers, however, data characteris-
tics to determine eligible application placements and traffic routings as we do in
DAPlacer. Indeed, as stated in [31], most existing works in application placement
in Cloud-IoT settings do not consider data-awareness.

To the best of our knowledge, only [24] and [25] propose some modelling of
data storage services, IoT sources and destinations to determine data flows across
the infrastructure. More in detail [24] and [25] model the placement problem as
a Generalized Assignment Problem (GAP). A divide and conquer approach is
used to tame the exp-time complexity of the problem, i.e. partitioning the infras-
tructure so as to solve sub-problems. Similarly, [18] exploits centrality indices
to determine the closest and most balanced distance to data sources in order to
obtain a target bandwidth distribution and an overall better network usage. Nor
[24] or [25] however consider security, data rates and runtime data binding, nor
exploit continuous reasoning to speed-up decision-making.

Finally, with a complementary architectural perspective, [38] provides a con-
figurable and adaptive framework to process big data streams and minimize
cloud fees, using microservices paradigm and mobile processing. In [1,17] they
provide tools and techniques to improve software architectures, driven by QoS
requirements.

6 Concluding Remarks

In this article, we presented a novel declarative model and methodology to deter-
mine data-aware eligible placements of multi-service applications over Cloud-IoT

156 J. Massa et al.

infrastructures and SDN routings of associated data flows. The model consid-
ers hardware, software, security, IoT application requirements and the corre-
sponding infrastructure capabilities. It is among the first proposals to feature
data-awareness, in that it accounts for data volume (i.e. data size), variety (i.e.
different data types) and velocity (i.e. different transmission rates) to compute
bandwidth and latency constraints on data flows to be routed across services.

Our methodology features both an exhaustive search strategy and a continu-
ous reasoning engine to speed-up the search of suitable placements and routings
at runtime. Continuous reasoning handles partial re-placement of services (and
re-routing of traffic flows), limiting decision-making to those services (and routes)
in need for attention either due to infrastructure changes or CI/CD modifications
of the application requirements and topology. The DAPlacer prototype written in
Prolog open-sources the proposed methodology.

DAPlacer is declarative, thus concise (� 170 lines of code) and easier to under-
stand, update and maintain in contrast with procedural solutions. Additionally,
it offers a high degree of flexibility and extensibility, which well suits the ever-
changing needs of Cloud-IoT scenarios. Experimental results over a lifelike use
case have shown that continuous reasoning boosts execution times of the exhaus-
tive strategy to determine eligible placements and routing by 7× on average,
across varying infrastructure sizes and infrastructure variation rates.

In our future work, we intend to:

– define a cost model (e.g. based on energy consumption and/or operational
costs) to find and assess the optimality of alternative candidate placements
and routings, also considering data replication on multiple nodes,

– allow for changing data bindings at runtime and to adaptively decide on which
version of a service (and data flow) to place based on target resources, in the
spirit of Osmotic computing [8,39],

– implement heuristic or meta-heuristic search strategies to speed-up finding
an eligible solution, also including the possibility of relaxing soft constraints
defined on the application, and

– run DAPlacer in real testbed settings over real applications and Cloud-IoT
resources to measure and assess its results.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: ICSE MOMPES (2009)

2. Barabási, A.L., Pósfai, M.: Network Science. Cambridge University Press, Cam-
bridge (2016)

3. Bellavista, P., Berrocal, J., Corradi, A., Das, S.K., Foschini, L., Zanni, A.: A survey
on fog computing for the internet of things. Pervasive Mob. Comput. 52, 71–99
(2019)

4. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017)

5. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog -
state of the art and open challenges. Softw. Pract. Exp. 50(5), 719–740 (2020)

Data-Aware Service Placement in the Cloud-IoT Continuum 157

6. Casadei, R., Viroli, M.: Coordinating computation at the edge: a decentralized,
self-organizing, spatial approach. In: FMEC 2019 (2019)

7. Forti, S., Bisicchia, G., Brogi, A.: Declarative continuous reasoning in the cloud-IoT
continuum. J. Logic Comput. 32(2), 206–232 (2022)

8. Forti, S., Brogi, A.: Declarative osmotic application placement. In: Advanced Infor-
mation Systems Engineering Workshops, vol. 423 (2021)

9. Forti, S., Ferrari, G.L., Brogi, A.: Secure cloud-edge deployments, with trust.
Future Gener. Comput. Syst. 102, 775–788 (2020)

10. Forti, S., Gaglianese, M., Brogi, A.: Lightweight self-organising distributed moni-
toring of Fog infrastructures. Future Gener. Comput. Syst. 114, 605–618 (2021)

11. Forti, S., Lera, I., Guerrero, C., Brogi, A.: Osmotic management of distributed
complex systems: a declarative decentralised approach. J. Softw. Evol. Process
(2021)

12. Forti, S., Paganelli, F., Brogi, A.: Probabilistic QoS-aware placement of VNF chains
at the edge. Theory Pract. Logic Program. 22(1), 1–36 (2021)

13. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement pol-
icy for performance optimization in fog computing. J. Ambient. Intell. Humaniz.
Comput. 10(6), 2435–2452 (2018). https://doi.org/10.1007/s12652-018-0914-0

14. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Soft. Pract. Exp. 47(9), 1275–1296
(2017)

15. Kadioglu, S., Colena, M., Sebbah, S.: Heterogeneous resource allocation in cloud
management. In: NCA 2016 (2016)

16. Khan, N., et al.: Big data: Survey, technologies, opportunities, and challenges. Sci.
World J. (2014)

17. Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization (2011)

18. Lera, I., Guerrero, C., Juiz, C.: Comparing centrality indices for network usage
optimization of data placement policies in fog devices. In: 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC) (2018)

19. Lera, I., Guerrero, C., Juiz, C.: YAFS: a simulator for IoT scenarios in fog com-
puting. IEEE Access 7, 91745–91758 (2019)

20. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987).
https://doi.org/10.1007/978-3-642-83189-8

21. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application mod-
ule management for fog computing environments. ACM Trans. Internet Technol.
19(1), 1–21 (2018)

22. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog
computing environments: a taxonomy, review and future directions. ACM Comput.
Surv. 53(4), 1–43 (2020)

23. Margariti, S.V., Dimakopoulos, V.V., Tsoumanis, G.: Modeling and simulation
tools for fog computing-a comprehensive survey from a cost perspective. Future
Internet 12(5), 89 (2020)

24. NAAS, M.I., Lemarchand, L., Boukhobza, J., Raipin, P.: A graph partitioning-
based heuristic for runtime IoT data placement strategies in a fog infrastructure. In:
Proceedings of the 33rd Annual ACM Symposium on Applied Computing (2018)

25. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data
placement strategy for fog infrastructure. In: 2017 IEEE 1st International Confer-
ence on Fog and Edge Computing (ICFEC) (2017)

https://doi.org/10.1007/s12652-018-0914-0
https://doi.org/10.1007/978-3-642-83189-8

158 J. Massa et al.

26. Ning, Z., Kong, X., Xia, F., Hou, W., Wang, X.: Green and sustainable cloud of
things: enabling collaborative edge computing. IEEE Commun. Mag. 57(1), 72–78
(2019)

27. Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coordi-
nation via the self-organising coordination regions pattern. Future Gener. Comput.
Syst. 114, 44–68 (2021)

28. Pietri, I., Sakellariou, R.: Mapping virtual machines onto physical machines in
cloud computing: a survey. ACM Comput. Surv. 49(3), 1–30 (2016)

29. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O.: Edge comput-
ing in industrial internet of things: architecture, advances and challenges. IEEE
Commun. Surv. Tutorials 22(4), 2462–2488 (2020)

30. Rak, J.: Resilience of future internet communications. In: Rak, J. (ed.) Resilient
Routing in Communication Networks. CCN, pp. 45–83. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22333-9 3

31. Salaht, F.A., Desprez, F., Lebre, A.: An overview of service placement problem in
fog and edge computing. ACM Comput. Surv. 53(3), 1–35 (2020)

32. Samizadeh Nikoui, T., Rahmani, A., Tabarsaied, H.: Data Management in Fog
Computing: Principles and Paradigms. Wiley, Hoboken (2019)

33. Sándor, H., Genge, B., Sebestyén-Pál, G.: Resilience in the internet of things: the
software defined networking approach. In: 2015 IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP) (2015)

34. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol.
29, e3493 (2018)

35. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: a state-of-the-art review.
J. Syst. Softw. 136, 19–38 (2018)

36. Tortonesi, M., Govoni, M., Morelli, A., Riberto, G., Stefanelli, C., Suri, N.: Tam-
ing the IoT data deluge: an innovative information-centric service model for fog
computing applications. Future Gener. Comput. Syst. 93, 888–902 (2019)

37. Vaquero, L.M., Cuadrado, F., Elkhatib, Y., Bernal-Bernabe, J., Srirama, S.N.,
Zhani, M.F.: Research challenges in nextgen service orchestration. Future Gener.
Comput. Syst. 90, 20–38 (2019)

38. Verginadis, Y., Alshabani, I., Mentzas, G., Stojanovic, N.: Prestocloud: proactive
cloud resources management at the edge for efficient real-time big data processing.
In: CLOSER (2017)

39. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

40. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017)

41. Yin, Q., Schüpbach, A., Cappos, J., Baumann, A., Roscoe, T.: Rhizoma: a runtime
for self-deploying, self-managing overlays. In: Middleware 2009 (2009)

42. Yousefpour, A., et al.: All one needs to know about fog computing and related
edge computing paradigms: a complete survey. J. Syst. Archit. 98, 289–330 (2019)

43. Zikria, Y.B., Ali, R., Afzal, M.K., Kim, S.W.: Next-generation internet of things
(IoT): opportunities, challenges, and solutions. Sensors 21(4), 1174 (2021)

https://doi.org/10.1007/978-3-319-22333-9_3

Quantum Computing

Optimizing the Prioritization of Compiled
Quantum Circuits by Machine Learning

Approaches

Marie Salm(B) , Johanna Barzen , Frank Leymann ,
and Philipp Wundrack

Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, Stuttgart, Germany

{salm,barzen,leymann,wundrack}@iaas.uni-stuttgart.de

Abstract. The performance of current quantum computers is limited by
high error rates and few qubits. Nevertheless, more and more quantum
computers are available in the cloud. Selecting a suitable quantum com-
puter to execute a specific quantum circuit and receive precise results
can be difficult. At the same time, it is crucial to choose an available
quantum computer that offers the hardware characteristics required by
the circuit to retrieve precise results, depending on the quantum com-
puter’s last re-calibration and the quantum compiler that maps the cir-
cuit to the hardware. Furthermore, cloud providers regulate hardware
access, so waiting times must be considered. To support the choice of a
quantum computer, we introduced an automated framework in previous
work. It enables the user to analyze and prioritize the compiled circuits
of a given input circuit for different quantum computers based on their
requirements. In this work, we extend the framework by automating the
prioritization of compiled circuits targeting short waiting times and pre-
cise executions based on previous results. We present our framework’s
prototype and case study to demonstrate and evaluate the practical fea-
sibility.

Keywords: Quantum computing · NISQ · Decision support ·
MCDA · Machine learning · NISQ analyzer

1 Introduction

Quantum computers need a few more years until the Noisy Intermediate-Scale
Quantum (NISQ) era is over and they can solve complex real-world prob-
lems [35]. Nevertheless, cloud providers constantly provide more and more quan-
tum computers from different vendors [22,24]. Thus, a diversity of quantum
computers is available. But choosing a quantum computer for a given quantum
circuit that offers the required hardware characteristics, i.e., enough qubits and
low error rates, is crucial to receive precise execution results, i.e., results that

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Barzen et al. (Eds.): SummerSOC 2022, CCIS 1603, pp. 161–181, 2022.
https://doi.org/10.1007/978-3-031-18304-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18304-1_9&domain=pdf
http://orcid.org/0000-0002-2180-250X
http://orcid.org/0000-0001-8397-7973
http://orcid.org/0000-0002-9123-259X
http://orcid.org/0000-0001-7606-6936
https://doi.org/10.1007/978-3-031-18304-1_9

162 M. Salm et al.

were not excessively disturbed by appearing errors [39–41]. The selection of a
suitable quantum computer is also affected by regular calibrations that mod-
ify the error rates and decoherence times [41,46,53]. Furthermore, compiling a
circuit to the hardware characteristics of a selected quantum computer is neces-
sary to execute it [23]. This can cause changes in the required number of gates
and qubits as, e.g., SWAP gates are introduced, leading to more errors [40,41].
Existing quantum compilers used for compilation vary in the resulting compiled
circuits, as the mapping is known to be NP-hard [11,42]. Passing a circuit to
different compilers is often impossible without further translation effort as the
Software Development Kits (SDKs), in which the compilers are embedded, differ
in their supported programming languages [42]. In addition, the number of users
who want to run their circuits on the available quantum computers is increas-
ing. Cloud providers, thus, manage the access, e.g., by queues, resulting in long
waiting times until a circuit is executed, especially for quantum computers with
many qubits [22,48].

To assist the user’s choice of a suitable quantum computer, we introduced a
framework in previous work [41] that compiles a circuit for different quantum
computers with multiple compilers and analyzes and prioritizes the compiled
circuits based on the user’s requirements. We analyzed several quantum SDKs
and vendors to identify metrics targeting the common need for precise execu-
tion results within short waiting times. The metrics describe properties of com-
piled circuits and quantum computers, e.g., the number of operations, average
T1, and waiting time [22,41,48,53]. To prioritize the compiled circuits based
on the identified metrics, we used well-known Multi-Criteria Decision Analysis
(MCDA) methods [41,51]. MCDA methods use weights to determine the impor-
tance of individual metrics representing the user’s requirements [51]. In the first
approach, we manually defined initial weight sets targeting precise results and
short waiting times to support the user in setting weights [41]. We examined the
metric values of quantum computers and compilation results of three circuits
and compared them with the associated results. However, more circuits have to
be considered to assess the quality of future executions, and manual examination
is error-prone. Thus, the first research question we want to answer in this work
is the following:

RQ 1: How can the determination of metric weights be automated to prior-
itize compiled quantum circuits of an input circuit and associated quantum
computers targeting precise results of their future executions?

We present an extension of the framework from [41] that (i) learns metric
weights based on previous execution results of associated compiled circuit and
quantum computer metric values using machine learning. It also enables the user
to (ii) select between predefined preferences regarding precise results and short
waiting times or to define their own weights. Furthermore, the framework enables
the (iii) application of automated sensitivity analyzes on calculated rankings
to prove their stability by automatically adapting the weights [16,25]. With

Optimizing the Prioritization of Compiled Quantum Circuits 163

the automated approach to determine metric weights with the focus on precise
execution results, our second research question rises:

RQ 2: Which quantum computer and quantum circuit metrics influence
the execution results of compiled quantum circuits the most?

We present a case study that (i) compares ranking performances of different
supported machine learning algorithms and MCDA methods to answer this ques-
tion. We, then, (ii) examine the learned metric weights of the best-performing
machine learning and MCDA combinations. Finally, we (iii) apply sensitivity
analyzes to detect metric weights that influence the calculated rankings the
most.

The structure of the paper is as follows: Sect. 2 introduces the fundamen-
tals about MCDA and machine learning algorithms to learn weights. Section 3
presents the approach of our extended framework. Section 4 shows the frame-
work’s system architecture and the prototypical implementation. Section 5
demonstrates the case study, and Sect. 6 discusses actual limitations. In Sect. 7,
related work is shown. Finally, we conclude the paper and present future work
in Sect. 8.

2 Fundamentals

This section presents the fundamentals about MCDA methods and different
machine learning algorithms to learn weights based on given data.

2.1 MCDA Methods

When several alternatives exist, MCDA methods assist the decision-maker in
choosing an alternative according to respective requirements by, e.g., calculat-
ing a ranking [41,51]. These methods are, e.g., applied in e-commerce [6] and
sustainable energy [50]. The properties of alternatives used to compare their
performances regarding the requirements are called criteria and serve as input
for an MCDA method [41,51]. The importance of individual requirements is
represented by weights that regulate the influence of each criterion. The stabil-
ity, i.e., the susceptibility of the resulting ranking’s order is usually evaluated
with a sensitivity analysis [16,25]. The analysis enables the decision-maker to
observe to what extent the orders change, and which metrics influence the rank-
ing the most [16,25]. One approach to analyzing the sensitivity of a ranking is
by repeatedly changing initial weights and their application with the selected
MCDA method [25].

In our approach, an alternative is a compiled circuit together with the related
quantum computer, and the criteria are the metrics defined in previous work [41]
(see Fig. 4 for an overview). A common goal regarding the usage of quantum
computers could be a soon as possible execution that can contradict the desire

164 M. Salm et al.

of precise execution results [16,41]. As the set of existing MCDA methods is
difficult to oversee and each has advantages and disadvantages [51], we used the
MCDA Method Selection Tool [51,52] in previous work [41] to select suitable
methods for our framework. A detailed explanation of how we chose an initial
set of MCDA methods is described in [41]. We consider the selected methods
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [21]
and Preference Ranking Organization METHod for Enrichment of Evaluations II
(PROMETHEE II) [9] also for the expansion of our framework to learn weights,
as both return precise ranking scores. The precise scores enable a more accurate
determination of the weights. A description of both methods is presented in [41].
Further MCDA methods can be added to our framework.

2.2 Learning Weights Based on Historical Data

Besides choosing a suitable MCDA method, especially the precise selection of
weights for given criteria is crucial to obtain a meaningful ranking of alternatives
considering the decision-maker’s requirements [29]. Ranking compiled quantum
circuits and their related quantum computers based on the waiting time only
requires maximum normalized weight of 1 for the metric weighting time and min-
imum weight of 0 for the others [41]. However, ranking regarding the objective of
precise execution results depends on the properties of the compiled circuits and
the related quantum computers and, thus, involves all other metrics collected
in [41]. Interviewing experts to determine the weights of these metrics is impre-
cise [49]. Instead, metric values and associated histogram intersection values of
previously executed compiled circuits should be considered [41]. A histogram
intersection value represents the precision of the measurement results of a quan-
tum computer and shows the effects of occurred errors. Therefore, a compiled cir-
cuit is executed on a simulator parallel to the execution on a quantum computer,
and their execution results, commonly presented as histograms, are superim-
posed [45]. The dependencies between histogram intersection and metric values
can automatically be revealed via machine learning, serving as expert’s knowl-
edge for actually compiled circuits [41]. Several weighting methods for MCDA
methods based on prior data exist [26,29,30]. As a first attempt, we choose
the two heuristic optimizers genetic algorithm [20] and evolution strategy [13],
and the deterministic optimizer Constrained Optimization BY Linear Approxi-
mations (COBYLA) [34] as weight learning methods [8,10]. All three methods
enable the encapsulation of MCDA methods as they do not require specific
preliminaries, e.g., being derivable, besides returning ranking scores [8,10,19].
However, further weighting methods can be added to our plug-in-based frame-
work.

Genetic Algorithm simulates the optimization process of evolution [13]. It is
known to be robust, more resistant to local minima, and requires fewer prerequi-
sites than classical optimizers such as gradient-based approaches [10,19]. How-
ever, genetic algorithms can be slow and may not deliver the best solutions [10].

Optimizing the Prioritization of Compiled Quantum Circuits 165

One possible procedure is as follows: Random parents, i.e., solution candidates,
are determined that build the first population [31]. The fitness of each parent to
solve the given problem is calculated [19]. The fittest parents generate children,
i.e., a new generation. Crossover between parents and mutation is applied to
create children [31]. New generations are created until a satisfying solution is
found.

Evolution Strategy is also an evolutionary optimization method [13]. It can
be faster in finding suitable solutions than a genetic algorithm but can be stuck
in local minima [10]. Thereby, the general procedure of evolution strategy can
roughly be described as follows [13]: The aim is, e.g., to find the global minimum.
An initial set of parents is randomly defined, building the first population. Then,
Gaussian noise is added to each parent, generating its child. The fitness of each
parent and child is calculated. The new population consists of the fittest parents
and children. This procedure is repeated until a satisfying solution exists.

COBYLA is a gradient-free optimization algorithm [34]. It is designed to find
the local minimum or maximum; however, it can perform better in certain cases
than a genetic algorithm [8,32,34]. COBYLA linearly approximates the objective
function based on the interpolation of function points [33]. The gradients of the
approximated objective function are calculated, and a new function point is
determined to evaluate the objective function that has to be optimized [8,54].
The process is repeated until a satisfactory solution is found.

Fig. 1. Automated translation, compilation, and prioritization of quantum circuits for
available quantum computers using Machine Learning (extending [41]). Light compo-
nents are from prior work, middle grey are extended, and dark are new.

166 M. Salm et al.

3 Learning to Prioritize Compiled Quantum Circuits

In this section, we address RQ 1 by presenting an extension of our framework
from [41] to automatically learn weights for prioritizing compiled quantum cir-
cuits for available quantum computers based on previous execution results. An
overview of our approach is presented in Fig. 1, where components from previous
work are light [39,41,42], extended components are middle grey, and new compo-
nents are dark. Detailed descriptions of light components are given in [39,41,42].

3.1 Translation

As described in [39,41,42], SDKs of existing quantum compilers often provide
different programming languages and gate sets to implement, compile, and exe-
cute quantum circuits. In the (1) Translation phase, the input circuit of the user
is therefore automatically translated into the different formats of the SDKs of
provided quantum compilers if required [41,42].

3.2 Compilation

In the (2) Compilation phase, all compilers supporting given vendors are selected
to compile the translated circuits on all available quantum computers and sim-
ulators using their maximum optimization level [41,42,53].

3.3 Circuit and QPU Analysis

The compiled circuits are handed over to the (3) Circuit and QPU Analysis
phase. The circuits and related quantum computers are analyzed based on the
metrics collected in [39,41,53]. Additionally, the compiled circuits are filtered
based on their executability on the target quantum computers, as described
in [39,42].

3.4 Weighting

The determined metric values of executable compiled circuits and their associ-
ated quantum computers are presented to the user and serve as input for the
(4) Weighting phase. The user can now choose one of the supported MCDA
methods that should be used as basis for the weight learning process and will be
applied for prioritization in the (5) Prioritization phase (Sect. 3.5). The MCDA
method TOPSIS [21] is selected as default as it performed best in our case study
(Sect. 5) combined with the weight learning method COBYLA [34]. The user
can also decide between determining the weights of the individual metrics based
on their unique requirements as in previous work [41] or selecting predefined
preferences such that, e.g., the automated process to learn metric weights based
on previous execution results is initiated. For the former, the user can assign 0
to 100 points to each metric, reflecting their importance based on the weight-
ing method SMART [12]. To finally calculate the weights, the number of points

Optimizing the Prioritization of Compiled Quantum Circuits 167

of each metric is automatically divided by the sum of points of all other met-
rics [12,41]. For the latter, the user can choose a prioritization targeting precise
execution results, short waiting times, or both in combination. For example, if
the user desires a prioritization only targeting short waiting times, the metric
waiting time gets maximum weight of 1, whereas the other metrics get 0 weight.

If the user desires a prioritization based on precise execution results, the user
is also enabled to select between three different machine learning algorithms, pre-
sented in Sect. 2.2, determining the weights based on previous results: evolution
strategy [13], genetic algorithm [20], or COBYLA [34]. COBYLA is automati-
cally chosen as default, see Sect. 5. The selected algorithm accesses metric values
and histogram intersection values of previously executed compiled circuits of dif-
ferent input circuits and associated quantum computer data, serving as training
data. In general, the machine learning algorithm repeatedly executes the MCDA
method with different weights on the historical metric values, and compares
the normalized ranking scores with the normalized histogram intersection values
until an optimized set of weights is found [3]. We defined the objective function
describing the performance of the resulting rankings as the mean square error
between the normalized scores of the MCDA method and the ordered histogram
intersection values which should be minimized [18]. Finally, it returns the learned
metric weights. The weights are presented to the user and can be adjusted.

The weights and the metric values of the compiled circuits to be prioritized
are passed to the next phase. If the user wants a prioritization based on short
waiting times and precise execution results, both weight sets are passed.

3.5 Prioritization

In the (5) Prioritization phase, the chosen MCDA method is now applied to pri-
oritize the recent compiled circuits based on determined weights, as presented
in [41]. If the user requested a prioritization combining short waiting times and
precise execution results, the chosen MCDA method is applied twice with both
weight sets. Then, the well-known Borda count is used to merge the two cal-
culated rankings [6,50]: Given n compiled circuits to be ranked. For each of
the two previously calculated rankings, the compiled circuit in the first ranking
place gets n − 1 points, the one in the second place earns n − 2 points, and so
forth. The circuit in the last place gets 0 points. Now, the assigned points in
both rankings are summed up for each compiled circuit. The descending num-
ber of points builds the ranking of compiled circuits and their target quantum
computers. Finally, the resulting ranking with metric values is presented to the
user.

3.6 Sensitivity Analysis

In the (6) Sensitivity Analysis phase, the user can optionally prove the stability
of the ranking regarding each of the previously applied weights [16]. We use the
method of Li et al. [25] as the weights of the supported MCDA methods have
to be normalized between 0 and 1 to serve as input [7,16]. Now, assume the

168 M. Salm et al.

sensitivity of the ranking based on changes of weight ωk of a given metric have
to be examined. For n metrics n weights exist, and let 1 ≤ k ≤ n [25]:

ω′
k =

γkωk

ω1 + ω2 + ... + γkωk + ... + ωn
(1)

ω′
j =

ωj

ω1 + ω2 + ... + γkωk + ... + ωn
with j = 1, ..., k − 1, k + 1, ..., n (2)

where γk defines by which factor ωk should be changed [25]. For normalization,
γkωk is divided by the sum of all weights, resulting in ω′

k, see Eq. (1). Also,
all other ωj therefore have to be divided by the sum of all weights, resulting in
ω′
j , see Eq. (2). The normalized weights are handed over to the MCDA method

returning a ranking that is automatically compared with the initial ranking. This
procedure is independently repeated for each metric weight to examine their
individual influence on the ranking [25]. We apply this method using different
γk within a user-defined range, building the prerequisite to be able to answer RQ
2. Each ωk is step-wise increased until the initial ranking changes or an upper
bound is reached, and step-wise decreased until the initial ranking changes or a
lower bound is reached. All other ωj are respectively adapted. The user defines
the size of the steps and the lower and upper bound. We start with γk = 1.01 and
γk = 0.99 to step-wise in- and decrease ωk as these showed to be valid starting
values by the case study (Sect. 5), where we recognized no ranking changes for
smaller values. Regarding increase, the greater the γk that changes the initial
ranking, the less sensitive the ranking is to ωk. For decrease, the smaller the
γk that changes the initial ranking, the less sensitive the ranking is to ωk. If a
change in the ranking is detected, it is shown to the user. If Borda count was
applied in the previous phase (Sect. 3.5) to fulfill the requirement for precise
and fast executions, the weights regarding precise execution results are changed.
Then, Borda count is applied to merge each resulting ranking with the previously
calculated waiting time ranking, as presented in Sect. 3.5. Finally, the user views
detected Borda count rankings that deviate from the initial merged ranking.

3.7 Execution

In the Execution phase, the user chooses which of the prioritized compiled cir-
cuits should be executed, as described in previous work [39,41,42]. Parallel to
the execution on a quantum computer, a compiled circuit is executed on an
available simulator if the simulator provides enough computing resources [41].
If the execution results of both backends are available, histogram intersection is
applied. Besides the metric values, the measurement values and the histogram
intersection value are presented to the user and stored for learning of weights
with the supported machine learning algorithms. Finally, the user can prioritize
the compiled circuits again using another machine learning algorithm, weight
set, or MCDA method, as described in the (4) Weighting phase (Sect. 3.4).

Optimizing the Prioritization of Compiled Quantum Circuits 169

Fig. 2. System architecture to learn weights and prioritize compiled quantum circuits.
Extending [41].

4 System Architecture and Prototype

In this section, we present the overall architecture and prototypical implemen-
tation of our weight learning and prioritization approach, presented in Sect. 3.

4.1 System Architecture: Behavioral View

Figure 2 gives an overview of our system architecture, which extends previous
work [39,41,42]. We, therefore, added additional components to the NISQ Ana-
lyzer [39] to enable the learning of weights for prioritizing compiled quantum
circuits. New components in Fig. 2 are dark, adapted components are middle
grey, and components from previous work are light grey [39,41,42]. With its
Translator UI on the left of Fig. 2, the Translator translates the user’s input
circuit into the formats required by the integrated quantum compilers and their
SDKs [42]. The Prioritization Service offers weight learning with several sup-
ported Weighting Algorithms explained in Sect. 2.2. Furthermore, it prioritizes
compiled quantum circuits for different quantum computers via various MCDA
Methods and calculates the Borda count if needed, as described in Sect. 3.5.
The Sensitivity Analyzer enables sensitivity analyzes on resulting rankings. The
Prioritization Service offers an HTTP REST API to be called by the NISQ Ana-
lyzer. For this purpose, we expanded the Connector of the NISQ Analyzer in
the middle of Fig. 2. Furthermore, we extended the NISQ Analyzer UI and the
HTTP REST API of the NISQ Analyzer to enable the selection between differ-
ent weighting methods and analyzing resulting rankings, as described in Sect. 3.
Besides collecting and extracting metric values, we adapted the Performance
Extractor from [41] to prepare all stored metric values and measurement results
of prior executions for the Weighting Algorithms. Besides the circuit metric val-
ues, also the related quantum computer metric values are stored in the Results
repository as analysis results. The Prioritizer [41] invokes the Prioritization Ser-
vice to learn weights, prioritize compiled circuits, and analyze rankings. It further

170 M. Salm et al.

stores the rankings and calculates corresponding histogram intersection values,
as described in [41]. The SDK Services Forest Service, pytket Service, and Qiskit
Service compile and analyze the resulting compiled circuits [41,42]. The prove-
nance system QProv enables collecting the latest data about available quantum
computers [41,53].

To initiate the compilation with several compilers on available quantum com-
puters, the user passes their circuit to the NISQ Analyzer UI by reference, as
defined in previous work [42]. Then, the circuit is handed over to the transla-
tion and compilation process on all available quantum computers and at least
one simulator as described in detail in [41,42]. The used SDK Services and
QProv [53] collect the metric values of the compiled circuits and corresponding
quantum computers and return them to the NISQ Analyzer [41]. The Selector
filters executable compiled circuits, stores them with their related circuit and
quantum computer metric values, and presents them to the user [39,41].

The user can now initiate the prioritization of the executable compiled cir-
cuits by either determining individual metric weights based on SMART [12,41]
or choosing the predefined preferences short waiting times, precise execution
results, or both. Furthermore, the user is able to select an MCDA Method [41],
and, in case of preferring precise execution results, to select one of the supported
Weighting Algorithms. The Prioritizer therefore calls the Performance Extrac-
tor to prepare all previously executed compilation results, related metric values,
and histogram intersection results, which are, then, send to the selected Weight-
ing Algorithm of the Prioritization Service via the Connector. Furthermore, the
name of the selected MCDA Method is transferred. The Weighting Algorithm
repeatedly calls the chosen MCDA Method to optimize weights, as described
in Sect. 3.4. The Prioritization Service, eventually, returns the learned weights
to the Prioritizer to store and present them to the user for optional adjustments.

Now, the Prioritizer calls the Performance Extractor to prepare the metric
values and stored weights (SMART-based or learned) of the compiled circuits to
be ranked and sends them with the Connector to the selected MCDA Method
of the Prioritization Service. Thereby, the Prioritizer also informs the Prioritiza-
tion Service whether Borda count for including waiting time should be applied
and attaches another weight set only targeting the waiting time metric. The Pri-
oritization Service therefore calls the selected MCDA Method again, with the
waiting time weight set and applies Borda count on this and the ranking based
on weights targeting precise execution results. The ranking based on defined
weights and, if desired, the Borda count ranking are returned to the Prioritizer
and are stored. Finally, the requested ranking is presented to the user via the
NISQ Analyzer UI.

The user can optionally analyze the sensitivity of the ranking by defining
the boundaries and the step sizes for γ, as described in Sect. 3.6. Therefore,
the Prioritizer invokes the Performance Extractor again to extract recent metric
values and weights, and uses the Connector to send the data and the name
of the previously applied MCDA Method to the Sensitivity Analyzer in the
Prioritization Service. If Borda count was previously applied, the waiting time

Optimizing the Prioritization of Compiled Quantum Circuits 171

weight set is again attached. The Sensitivity Analyzer repeatedly invokes the
corresponding MCDA Method with the metric values and γ-changed weights for
the analyzes. For Borda count, the ranking based on waiting time is calculated
and merged with the γ-shifted rankings based on learned weights. The resulting
analysis data is returned to the NISQ Analyzer and presented via its UI.

With the presented ranking and sensitivity analysis, the user is shown the
importance of individual metric values based on the defined preferences and
can execute compiled circuits, as presented in previous work [39]. Therefore, the
Executor of the SDK Service that previously compiled the circuit is called [41].
As described in [41], also the compiled circuit of a simulator is executed. As
soon as both execution results are returned to the NISQ Analyzer, the Priori-
tizer applies the histogram intersection and stores the result as well as the mea-
surement results for later learning. The results are finally presented to the user.
The presented framework is plug-in based such that further MCDA Methods,
Weighting Algorithms, formats, metrics, and SDK Services can be integrated.

4.2 Prototype

The Translator, the SDK Services, and the Prioritization Service are imple-
mented in Python using the framework Flask. The Translator UI and the NISQ
Analyzer UI are implemented in TypeScript with the framework Angular. Java
and Spring Boot are used for the NISQ Analyzer and QProv. The implementa-
tion details about the existing components are presented in [39,41,42]. Thereby,
the overall implementation of our framework is available open-source1 [47].

In previous work, we integrated the project Decision Deck [37] to invoke sev-
eral web services via SOAP, enabling the application of MCDA methods on our
data [41]. However, with the new approach to learning weights, the supported
machine learning algorithms have to invoke the MCDA methods frequently. The
sequential execution via SOAP to call the web services builds a response time
problem. Thus, we decided to integrate the MCDA methods locally in the Prior-
itization Service, where the machine learning algorithms are implemented. We,
therefore, used the Python library pymcdm2, offering the application of several
MCDA methods. The implementation of the genetic algorithm as a Weighting
Algorithm is based on the work of Hassan and Hamada [19]. The implementation
of evolution strategy is based on Fogel [13]. For the support of COBYLA, we used
the Python library SciPy3. The logic of the Sensitivity Analyzer is implemented
based on [25].

5 Case Study

This section presents the case study of our framework proposed in Sect. 3. First,
we evaluate the ranking performance of each MCDA and weighting method
1 https://youtu.be/luSWN5SRxNg.
2 https://pypi.org/project/pymcdm/.
3 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html.

https://youtu.be/luSWN5SRxNg
https://pypi.org/project/pymcdm/
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html

172 M. Salm et al.

combination targeting prospects of precise execution results. Then, we examine
the learned weights of the two best-performing combinations to analyze which
metrics influence the execution results the most, answering RQ 2. Finally, we
present a sensitivity analysis of both of them to investigate the sensitivity of
learned weights. An example of a ranking targeting a precise and fast execution
for a sample input circuit using the Borda count can be seen in [47].

For the evaluation, we compiled different randomized circuits4 in addition to
the three algorithmic circuits from [41] with the t|ket〉 compiler [43] and Qiskit
Transpiler [2]. To generate randomized circuits, we used the provided function
of Qiskit5 that creates random Clifford Gate sequences whose execution results
are the initial state if there have been no errors [27]. Thus, the execution on
the simulator is not necessary to obtain the exact measurement result for his-
togram intersection, which enables a decoupling to quantum simulation limits.
We generated random circuits of widths between three and five qubits and depths
between 11 and 355 containing single- and two-qubit gates. As compilation tar-
gets the free accessible IBMQ 5-qubit quantum computers ibmq lima, ibmq quito,
ibmq belem, and ibmq bogota, as well as the ibmq qasm simulator for histogram
intersection, were considered. Our training and test data to learn weights com-
prises of 228 compiled and executed circuits of 52 input circuits with 8192 shots
each. Our sample data can be viewed here [47]. To evaluate the similarity of
the target ranking based on the histogram intersection values and a calculated
ranking of compilation results, we apply the known Spearman rank correlation
coefficient [38,44]. As TOPSIS and PROMETHEE II return a total ordering,
we apply the following formula to measure the ranking performances [1,38]:

ρ = 1 − 6
∑n

i=1(RXi
− RYi

)2

n(n2 − 1)
(3)

where the both rankings to be compared have n elements [1]. RXi
is the rank of

compiled circuit Xi, e.g., in the target ranking based on the histogram intersec-
tion values, and RYi

is the rank of the compiled circuit Yi, e.g., in the calculated
ranking of a MCDA-weighting method combination. If ρ = 1 of Eq. (3), the
compared rankings are identical. For ρ = 0, the rankings do not correlate, and
with ρ = −1, the rankings are the exact opposite of each other.

We randomly split the sets of circuits to be ranked in 70% training and 30%
test data for each MCDA-weighting method combination serving as input for
learning which is a common approach [26]. We repeat this procedure 100 times.

5.1 Performance of MCDA-Weighting Method Combinations

In Fig. 3, the average Spearman rank correlation coefficient of all test data
over all learning procedures for each MCDA-weighting method combination is
4 https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-

prioritization/benchmarking.
5 https://qiskit.org/textbook/ch-quantum-hardware/randomized-benchmarking.

html.

https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/benchmarking
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/benchmarking
https://qiskit.org/textbook/ch-quantum-hardware/randomized-benchmarking.html
https://qiskit.org/textbook/ch-quantum-hardware/randomized-benchmarking.html

Optimizing the Prioritization of Compiled Quantum Circuits 173

Fig. 3. Mean of Spearman rank correlation coefficient for all MCDA-weighting method
combinations with standard errors estimating the average standard deviations.

Fig. 4. Average metric weights of TOP-COBYLA (top) and PRO-ES (bottom) with
standard deviations representing the weight stability.

presented. The standard errors represent the average standard deviations.
Regarding TOPSIS, COBYLA (TOP-COBYLA) calculates with a coefficient
of over 0.48 the best overall rankings on average. In combination with evolu-
tion strategy (TOP-ES), the worst rankings overall are returned. In contrast,
evolution strategy combined with PROMETHEE II (PRO-ES) produces the
second best rankings. PROMETHEE II and the genetic algorithm (PRO-GA),
PROMETHEE II and COBYLA (PRO-COBYLA), and TOPSIS and genetic
algorithm (TOP-GA) present similar performances. All combinations have a
similar error range. In general, PROMEHTEE II appears to perform better in
our approach.

174 M. Salm et al.

5.2 The Distribution of Learned Metric Weights

To answer RQ 2, we examine the average learned metric weights over all learning
procedures of both best performing combinations from Sect. 5.1, Fig. 3, TOP-
COBYLA and PRO-ES, presented in Fig. 4. The depicted standard deviations
represent the weight stability. Metric weights of the other combinations and the
differences of a given weight between all combinations can be viewed here [47].
It appears that TOP-COBYLA and PRO-ES differ at most for depth with a
weight distance of over 0.05. TOP-COBYLA is more secure in most weight
values in terms of standard deviations compared to PRO-ES. In general, width,
multi-qubit gate depth, i.e., the maximum sequence of multi-qubit gates, and
the number of multi-qubit gates, and, at least for TOP-COBYLA, depth, seem
to be the most critical metrics to prioritize compiled circuits in prospects of
precise results. Multi-qubit gates are generally considered crucial [43]. Number
of operations, number of measurement operations, and single-qubit gate times
are of medium importance. The results show that several metrics should be
considered to estimate the stability of execution results. Based on our sample
data, metrics about compiled circuits should be primarily regarded confirming
that choosing the most optimal compiler is essential. Our automated framework
supports the user in compiling with several compilers and considering several
metrics.

We apply sensitivity analyzes described in Sect. 3.6, on the learned weights
to estimate their sensitivity. We, again, focus on the weights of TOP-COBYLA,
shown in Fig. 5, and PRO-ES, shown in Fig. 6. Sensitivity analyzes of the other

Fig. 5. Sensitivity Analysis on average metric weights of TOP-COBYLA with increas-
ing (top) and decreasing (bottom) γ (triangles) and ratios (bars).

Optimizing the Prioritization of Compiled Quantum Circuits 175

Fig. 6. Sensitivity Analysis on average metric weights of PRO-ES with increasing (top)
and decreasing (bottom) γ (triangles) and ratios (bars).

combinations can be viewed here [47]. We set the lower bound for γ to 0.99500

such that the normalized weight comes close to 0, resulting in a minor influ-
ence of the metric on the ranking compared to the others. The upper bound is
set to 1.01500 such that the normalized weight comes close to 1, resulting in a
major influence of the considered metric compared to the others. We set the step
size to 0.01. Thus, the respective weight is multiplicatively in- and decreased by
1% in each step, allowing a fine granular coverage inside the bounds. Figure 5
and Fig. 6 present the mean values of γ for which, on average, a changed rank-
ing was detected for the 100 weight sets of all 100 learning procedures with
TOP-COBYLA and PRO-ES. The lower γ is when increasing a metric weight
(Fig. 5/Fig. 6 (top)), the more sensitive the metric is. Reversed for a γ when
decreasing a weight (Fig. 5/Fig. 6 (bottom)), the lower γ, the more insensitive
is the respective metric. A bar in Fig. 5/Fig. 6 represents the frequency ratio
a γ was found that changed the initial ranking regarding the related metric
overall 100 weight sets. With a ratio equal to 0, a value for γ was found in all
100 weight sets for the given weight. With a ratio equal to 1, no change was
detected within the bounds. It appears that the metrics with high weights in
Fig. 4, such as multi-qubit gate depth and number of multi-qubit gates, are more
sensitive and have an appropriately low ratio. Even minor adjustments in their
weights and the opposite adjustments of the other weights change the rankings.
The depth and multi-qubit gate error of PRO-ES in Fig. 6 are more insensitive
regarding a decreasing γ, and number of single-qubit gates regarding an increas-
ing γ, as their average weights are smaller compared to TOP-COBYLA in Fig. 5.
Multi-qubit gate depth and number of multi-qubit gates are more insensitive with

176 M. Salm et al.

PRO-ES considering a decreasing γ (Fig. 6 (bottom)). The weight adaptions
for number of measurement operations and single-qubit gate time have not pro-
duced any changes within the given bounds. Single-qubit gate error and the
decoherence time T1 seem remarkably sensitive at the bottom of Fig. 5 (TOP-
COBYLA), even with low average weights. The detection of a ranking influenced
by a decreasing γ for these metrics is rare.

6 Discussion and Limitations

The proposed framework, of course, has its limitations. The sample circuits used
for weight learning in Sect. 5 do not cover all possible shapes of quantum cir-
cuits, e.g., further algorithmic circuits. Furthermore, we only considered gate-
based five-qubit quantum computers. Other machine learning algorithms than
the selected may perform better in weight learning; however, our plug-in-based
system supports adding other weighting methods. Also, the set of supported
MCDA methods can be extended. Nevertheless, the results of Sect. 5 show that
especially the metrics about the number and depth of multi-qubit gates, known
for their high error rates, have to be considered with respect to, e.g., the qubit
connectivity of the quantum computer when targeting precise execution results,
which is consistent with other work [43]. We do not consider monetary met-
rics, as we currently access free-of-charge quantum computers. However, further
metrics and SDK Services can be added to our framework.

7 Related Work

MCDA methods are applied in several fields such as e-commerce [6], sports [29],
and sustainable energy [50], as stated in previous work [41]. In [6], a frame-
work is presented that compromises the rankings of multiple MCDA methods
using the Copeland method. They present a sensitivity analysis of the resulting
rankings to evaluate their approach and compared the different rankings. An
weighting method is used that determines weights by considering actual metric
values. Thus, no learning of weights based on previous results is shown. Other
weighting methods are presented by several approaches that calculate weights
based on experts’ knowledge, metric values of alternatives to be ranked, or both
in combination [38,49,50]. However, the approaches do not consider historical
data as a basis to learn weights. The framework proposed in [14] combines sev-
eral weighting methods to a single method. They evaluate it using TOPSIS and
PROMETHEE II. Nevertheless, this work does not provide a prototype that
enables a dynamical selection between several MCDA and weighting methods.

Several approaches train weights based on available data sets in the context
of MCDA. Olson [29] analyzes the ranking performance of TOPSIS with different
weighting approaches such as linear regression. The weights based on regression
were trained and applied on a test data set. The work presents that accurate
weights are important for precise ranking results. Luu et al. [26] propose combin-
ing multiple linear regression to define weights with TOPSIS for ranking. In [4],

Optimizing the Prioritization of Compiled Quantum Circuits 177

the combination of logical regression for determining weights and PROMETHEE
for ranking is presented. The work of Mojtahedi and Oo [28] proposes to deter-
mine weights with bootstrap resampling based on small data sets in the context
of flood risk analysis. The weights are then used with TOPSIS. Orak et al. [30]
present an approach that uses an artificial neuronal network to define weights
and pass them as input for TOPSIS. However, these approaches only considered
single MCDA methods and their focus was not the implementation of an auto-
mated plug-in-based framework offering several MCDA methods and weighting
algorithms.

Regarding the area of quantum computing, approaches exist that automati-
cally select or recommend quantum computers based, e.g., on their availability.
For example, Ravi et al. [36] present a scheduling framework for executions on
quantum computers. They use a prediction model for the scheduling that consid-
ers quantum computer fidelities and waiting times. However, as described in [41],
the user cannot define individual requirements. The work of Garcia-Alonso et
al. [15] introduces a Quantum API Gateway that recommends quantum comput-
ers based on the number of qubits, estimated costs, and estimated waiting time.
Also, Grossi et al. [17] propose a framework that enables the scheduling of exe-
cution jobs for quantum computers based on available qubits and the size of the
queues, as discussed in [41]. However, both approaches do not consider further
technical properties about compiled circuits and quantum computers regarding
precise results and do not enable the user to define their requirements.

8 Conclusion and Future Work

We extended the framework from previous work [41] that prioritizes compiled
circuits of a quantum circuit for several quantum computers by (i) learning
preferences based on previous circuit executions using three different machine
learning algorithms. The user can thereby (ii) select between defining own or pre-
defined preferences regarding short waiting times and precise execution results,
answering RQ 1. Furthermore, (iii) sensitivity analyzes can be applied to cal-
culated rankings of compiled circuits. To answer RQ 2, we presented a case
study where we (i) compared the ranking performances of the different MCDA-
weighting method combinations, (ii) examined the metric weights of the best-
performing combinations, and (iii) applied sensitivity analyzes on the learned
weights. As expected, the case study showed that especially the number and
depth of multi-qubit gates influence the execution results. Nevertheless, both
metrics have to be considered jointly with, e.g., the width and depth to estimate
the quality of execution results in advance. The case study also confirmed that
the comparison of different quantum compilers is crucial as their compilation
results have major impact on the executions on quantum computers [42].

In the future, we want to use further circuits and quantum computers to con-
sider if the learned weights change. We also plan to support additional MCDA
methods and weighting methods to examine their ranking performances. Fur-
thermore, we want to support monetary metrics as they are crucial for accessing

178 M. Salm et al.

quantum computers on a fee-base. Finally, an integration of the NISQ Analyzer
into QHAna [5] is intended to support a proper selection of quantum computers
when comparing classical algorithms with their quantum counterparts.

Acknowledgements. This work was partially funded by the BMWK project PlanQK
(01MK20005N).

References

1. Dodge, Y.: Spearman rank correlation coefficient. In: Dodge, Y. (ed.) The Concise
Encyclopedia of Statistics, pp. 502–505. Springer, New York (2008). https://doi.
org/10.1007/978-0-387-32833-1 379

2. Aleksandrowicz, G., et al.: Qiskit: An Open-source Framework for Quantum Com-
puting (2019). https://doi.org/10.5281/zenodo.2562111

3. Alpaydin, E.: Machine Learning: The New AI. MIT Press, Cambridge (2016)
4. Balugani, E., Lolli, F., Butturi, M.A., Ishizaka, A., Sellitto, M.A.: Logistic regres-

sion for criteria weight elicitation in PROMETHEE-based ranking methods. In:
Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds.) IHSI 2020.
AISC, vol. 1131, pp. 474–479. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39512-4 74

5. Barzen, J.: From Digital Humanities to Quantum Humanities: Potentials and
Applications (2022, to appear). https://doi.org/10.48550/ARXIV.2103.11825

6. B ↪aczkiewicz, A., Kizielewicz, B., Shekhovtsov, A., W ↪atróbski, J., Sa�labun, W.:
Methodical aspects of MCDM based E-commerce recommender system. J. Theor.
Appl. Electron. Commer. Res. 16(6), 2192–2229 (2021). https://doi.org/10.3390/
jtaer16060122

7. Bilbao-Terol, A., Arenas-Parra, M., Cañal-Fernández, V., Antomil-Ibias, J.: Using
TOPSIS for assessing the sustainability of government bond funds. Omega 49,
1–17 (2014). https://doi.org/10.1016/j.omega.2014.04.005

8. Bös, J.: Numerical optimization of the thickness distribution of three-dimensional
structures with respect to their structural acoustic properties. Struct. Multidiscip.
Optim. 32(1), 12–30 (2006). https://doi.org/10.1007/s00158-005-0560-y

9. Brans, J.-P., Mareschal, B.: Promethee methods. In: Figueira, J., Greco, S., Ehro-
gott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys.
ISORMS, vol. 78, pp. 163–186. Springer, New York (2005). https://doi.org/10.
1007/0-387-23081-5 5

10. Choi, K., Jang, D.H., Kang, S.I., Lee, J.H., Chung, T.K., Kim, H.S.: Hybrid algo-
rithm combing genetic algorithm with evolution strategy for antenna design. IEEE
Trans. Magn. 52(3), 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2486043

11. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.:
On the qubit routing problem. In: 14th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2019). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.TQC.
2019.5

12. Edwards, W.: How to use multiattribute utility measurement for social decision-
making. IEEE Trans. Syst. Man Cybern. 7(5), 326–340 (1977). https://doi.org/
10.1109/TSMC.1977.4309720

https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1007/978-3-030-39512-4_74
https://doi.org/10.1007/978-3-030-39512-4_74
https://doi.org/10.48550/ARXIV.2103.11825
https://doi.org/10.3390/jtaer16060122
https://doi.org/10.3390/jtaer16060122
https://doi.org/10.1016/j.omega.2014.04.005
https://doi.org/10.1007/s00158-005-0560-y
https://doi.org/10.1007/0-387-23081-5_5
https://doi.org/10.1007/0-387-23081-5_5
https://doi.org/10.1109/TMAG.2015.2486043
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.1109/TSMC.1977.4309720
https://doi.org/10.1109/TSMC.1977.4309720

Optimizing the Prioritization of Compiled Quantum Circuits 179

13. Fogel, D.: An introduction to simulated evolutionary optimization. IEEE Trans.
Neural Networks 5(1), 3–14 (1994). https://doi.org/10.1109/72.265956

14. Gao, R., Nam, H.O., Ko, W.I., Jang, H.: National options for a sustainable nuclear
energy system: MCDM evaluation using an improved integrated weighting app-
roach. Energies 10(12) (2017). https://doi.org/10.3390/en10122017

15. Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., Murillo, J.M.:
Quantum software as a service through a quantum API gateway. IEEE Internet
Comput. 26(1), 34–41 (2022). https://doi.org/10.1109/MIC.2021.3132688

16. Geldermann, J., Lerche, N.: Leitfaden zur Anwendung von Methoden der multi-
kriteriellen Entscheidungsunterstützung. Promethee, Methode (2014)

17. Grossi, M., et al.: A serverless cloud integration for quantum computing (2021)
18. Guo, M., Zhang, Q., Liao, X., Chen, F.Y., Zeng, D.D.: A hybrid machine learn-

ing framework for analyzing human decision-making through learning preferences.
Omega 101, 102263 (2021). https://doi.org/10.1016/j.omega.2020.102263

19. Hassan, M., Hamada, M.: Genetic algorithm approaches for improving prediction
accuracy of multi-criteria recommender systems. Int. J. Comput. Intell. Syst. 11,
146–162 (2018). https://doi.org/10.2991/ijcis.11.1.12

20. Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J.
Comput. 2(2), 88–105 (1973). https://doi.org/10.1137/0202009

21. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Hwang,
C.-L., Yoon, K. (eds.) Multiple Attribute Decision Making, pp. 58–191. Springer,
Heidelberg (1981). https://doi.org/10.1007/978-3-642-48318-9 3

22. LaRose, R.: Overview and comparison of gate level quantum software platforms.
Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130

23. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in
the NISQ era. Quantum Sci. Technol. 5(4), 1–28 (2020). https://doi.org/10.1088/
2058-9565/abae7d

24. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum
in the cloud: application potentials and research opportunities. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science
(CLOSER 2020), pp. 9–24. SciTePress (2020)

25. Li, P., Qian, H., Wu, J., Chen, J.: Sensitivity analysis of TOPSIS method in water
quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess.
185(3), 2453–2461 (2013). https://doi.org/10.1007/s10661-012-2723-9

26. Luu, C., von Meding, J., Mojtahedi, M.: Analyzing Vietnam’s national disaster
loss database for flood risk assessment using multiple linear regression-topsis. Int.
J. Disaster Risk Reduct. 40, 101153 (2019). https://doi.org/10.1016/j.ijdrr.2019.
101153

27. Magesan, E., et al.: Efficient measurement of quantum gate error by interleaved
randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012). https://doi.org/
10.1103/PhysRevLett.109.080505

28. Mojtahedi, S., Oo, B.: Coastal buildings and infrastructure flood risk analysis using
multi-attribute decision-making. J. Flood Risk Manag. 9(1), 87–96 (2016). https://
doi.org/10.1111/jfr3.12120

29. Olson, D.: Comparison of weights in topsis models. Math. Comput. Model. 40(7),
721–727 (2004). https://doi.org/10.1016/j.mcm.2004.10.003

30. Orak, S., Arapoğlu, R.A., Sofuoğlu, M.A.: Development of an ANN-based decision-
making method for determining optimum parameters in turning operation. Soft.
Comput. 22(18), 6157–6170 (2017). https://doi.org/10.1007/s00500-017-2682-8

31. Pathak, S. (ed.): Intelligent Manufacturing. MFMT, Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-50312-3

https://doi.org/10.1109/72.265956
https://doi.org/10.3390/en10122017
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1016/j.omega.2020.102263
https://doi.org/10.2991/ijcis.11.1.12
https://doi.org/10.1137/0202009
https://doi.org/10.1007/978-3-642-48318-9_3
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1007/s10661-012-2723-9
https://doi.org/10.1016/j.ijdrr.2019.101153
https://doi.org/10.1016/j.ijdrr.2019.101153
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1111/jfr3.12120
https://doi.org/10.1111/jfr3.12120
https://doi.org/10.1016/j.mcm.2004.10.003
https://doi.org/10.1007/s00500-017-2682-8
https://doi.org/10.1007/978-3-030-50312-3

180 M. Salm et al.

32. Pellow-Jarman, A., Sinayskiy, I., Pillay, A., Petruccione, F.: A comparison of var-
ious classical optimizers for a variational quantum linear solver. Quantum Inf.
Process. 20(6), 1–14 (2021). https://doi.org/10.1007/s11128-021-03140-x

33. Powell, M.: A view of algorithms for optimization without derivatives. Math.
TODAY 43 (2007)

34. Powell, M.J.D.: A direct search optimization method that models the objective
and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.)
Advances in Optimization and Numerical Analysis, pp. 51–67. Springer, Dordrecht
(1994). https://doi.org/10.1007/978-94-015-8330-5 4

35. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

36. Ravi, G.S., Smith, K.N., Murali, P., Chong, F.T.: Adaptive job and resource man-
agement for the growing quantum cloud (2021)

37. Ros, J.C.: Introduction to Decision Deck-Diviz: Examples User Guide. Departa-
ment d’Enginyeria Informàtica i Matemàtiques (2011)

38. Sa�labun, W., W ↪atróbski, J., Shekhovtsov, A.: Are MCDA methods benchmark-
able? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II
methods. Symmetry 12(9) (2020). https://doi.org/10.3390/sym12091549

39. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: The
NISQ analyzer: automating the selection of quantum computers for quantum
algorithms. In: Dustdar, S. (ed.) SummerSOC 2020. CCIS, vol. 1310, pp. 66–85.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6 5

40. Salm, M., Barzen, J., Leymann, F., Weder, B.: About a criterion of successfully
executing a circuit in the NISQ era: what wd � 1/εeff really means. In: Pro-
ceedings of the 1st ACM SIGSOFT International Workshop on Architectures and
Paradigms for Engineering Quantum Software (APEQS 2020), pp. 10–13. ACM
(2020). https://doi.org/10.1145/3412451.3428498

41. Salm, M., Barzen, J., Leymann, F., Weder, B.: Prioritization of compiled quantum
circuits for different quantum computers. In: Proceedings of the 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER
2022), pp. 1258–1265. IEEE (2022). https://doi.org/10.1109/SANER53432.2022.
00150

42. Salm, M., Barzen, J., Leymann, F., Weder, B., Wild, K.: Automating the compar-
ison of quantum compilers for quantum circuits. In: Barzen, J. (ed.) SummerSOC
2021. CCIS, vol. 1429, pp. 64–80. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-87568-8 4

43. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.:
t|ket〉: a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6, 014003
(2020). https://doi.org/10.1088/2058-9565/ab8e92

44. Spearman, C.: The proof and measurement of association between two things. In:
Studies in Individual Differences: The Search for Intelligence, pp. 45–58 (1961).
https://doi.org/10.1037/11491-005

45. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision 7(1), 11–32
(1991). https://doi.org/10.1007/BF00130487

46. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-
aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2019, pp. 987–999. ACM (2019). https://
doi.org/10.1145/3297858.3304007

https://doi.org/10.1007/s11128-021-03140-x
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.3390/sym12091549
https://doi.org/10.1007/978-3-030-64846-6_5
https://doi.org/10.1145/3412451.3428498
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1007/978-3-030-87568-8_4
https://doi.org/10.1007/978-3-030-87568-8_4
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1037/11491-005
https://doi.org/10.1007/BF00130487
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007

Optimizing the Prioritization of Compiled Quantum Circuits 181

47. University of Stuttgart: NISQ Analyzer Content Repository (2022). https://github.
com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/
prioritization-based-on-learned-weights

48. Vietz, D., Barzen, J., Leymann, F., Wild, K.: On decision support for quantum
application developers: categorization, comparison, and analysis of existing tech-
nologies. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra,
J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 127–141. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77980-1 10

49. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhang, X.T., Shi, G.H.: Integrated evaluation
of distributed triple-generation systems using improved grey incidence approach.
Energy 33(9), 1427–1437 (2008). https://doi.org/10.1016/j.energy.2008.04.008

50. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhao, J.H.: Review on multi-criteria decision
analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev.
13(9), 2263–2278 (2009). https://doi.org/10.1016/j.rser.2009.06.021

51. W ↪atróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zio�lo, M.: Generalised
framework for multi-criteria method selection. Omega 86, 107–124 (2019). https://
doi.org/10.1016/j.omega.2018.07.004

52. W ↪atróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zio�lo, M.: MCDA
Method Selection Tool (2021). http://mcda.it

53. Weder, B., Barzen, J., Leymann, F., Salm, M., Wild, K.: QProv: a provenance
system for quantum computing. IET Quantum Commun. 2(4), 171–181 (2021).
https://doi.org/10.1049/qtc2.12012

54. Wundrack, P.: Quantenunterstütztes Clustering mit hybriden neuronalen Netzen.
Master’s thesis (2021). http://dx.doi.org/10.18419/opus-11422

https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/prioritization-based-on-learned-weights
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/prioritization-based-on-learned-weights
https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/prioritization-based-on-learned-weights
https://doi.org/10.1007/978-3-030-77980-1_10
https://doi.org/10.1016/j.energy.2008.04.008
https://doi.org/10.1016/j.rser.2009.06.021
https://doi.org/10.1016/j.omega.2018.07.004
https://doi.org/10.1016/j.omega.2018.07.004
http://mcda.it
https://doi.org/10.1049/qtc2.12012
http://dx.doi.org/10.18419/opus-11422

Author Index

Andreou, Andreas S. 79

Barzen, Johanna 3, 161
Böhm, Sebastian 99
Breitenbücher, Uwe 45
Brogi, Antonio 45, 139
Bühler, Fabian 3

Cascavilla, Giuseppe 79
Catolino, Gemma 79

da Silva, Ana Cristina Franco 68

Eichler, Rebecca 119

Forti, Stefano 139
Full, Benedikt 99

Gröger, Christoph 119

Harzenetter, Lukas 3, 45
Haug, Markus 68
Hirmer, Pascal 24
Hoos, Eva 119

Leymann, Frank 3, 45, 161

Manner, Johannes 99
Massa, Jacopo 139
Mitschang, Bernhard 119

Palomba, Fabio 79

Salm, Marie 161
Schneider, Jan 24
Schwarz, Holger 119
Soldani, Jacopo 45

Tamburri, Damian A. 79

Van Den Heuvel, Willem-Jan 79

Wagner, Stefan 68
Wirtz, Guido 99
Wundrack, Philipp 3, 161

Yussupov, Vladimir 45

	 Preface
	 Organization
	 Contents
	Advanced Application Architecture
	Combining the Best of Two Worlds: Microservices and Micro Frontends as Basis for a New Plugin Architecture
	1 Introduction
	2 Fundamentals and Motivating Scenario
	2.1 Plugins
	2.2 Microservices and SOA
	2.3 Micro Frontends
	2.4 Motivating Scenario: QHAna
	2.5 Problem Statement

	3 A Reference Architecture for Reusable Microservice-Based Plugins
	3.1 Overview
	3.2 RAMP User Interfaces

	4 Prototypical Evaluation
	4.1 The QHAna Prototype

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Enhancing IoT Platforms for Autonomous Device Discovery and Selection
	1 Introduction
	2 Related Work and Literature Review
	2.1 Method
	2.2 Literature Overview
	2.3 Conclusion and Challenges

	3 Method for Autonomous Execution of Use Cases
	4 Architecture Supporting Discovery for IoT Platforms
	4.1 Discovery Repositories
	4.2 Request-Reply Interactions

	5 Prototype and Discussion
	6 Conclusion
	References

	Serverless or Serverful? A Pattern-Based Approach for Exploring Hosting Alternatives
	1 Introduction
	2 The Component Hosting and Management Pattern Language
	2.1 Pattern Basics and Terminology
	2.2 From the Component Hosting Patterns Catalog to a Pattern Language
	2.3 Component Hosting Patterns Category: A Brief Recapitulation
	2.4 Deployment Stack Management Category
	2.5 Scaling Configuration Management Category
	2.6 The Pattern Language Graph

	3 A Pattern-Based Deployment Stack Exploration Method
	3.1 Overview of the Method
	3.2 Application Examples of the Method
	3.3 Tool Support for the Method

	4 Related Work
	5 Conclusion
	References

	Towards Immediate Feedback for Security Relevant Code in Development Environments
	1 Introduction
	2 Approach
	2.1 Immediate Feedback
	2.2 Understandable Security Notifications

	3 Future Work
	3.1 Adaptive Analysis Strategies
	3.2 Adaptive Notifications

	4 Related Work
	5 Results and Conclusion
	References

	Data Science and Applications
	Unsupervised Labor Intelligence Systems: A Detection Approach and Its Evaluation
	1 Introduction
	2 Related Work
	2.1 Labour Exploitation Identification
	2.2 Social Media Topic Detection

	3 Methodology
	3.1 Research Questions
	3.2 Data Collection
	3.3 Data Preparation
	3.4 [RQ1]. Topic Modeling for Deceptive Online Job Advertisements
	3.5 [RQ2]. Building a Logistic Regression Model

	4 Results
	4.1 Topic Modeling
	4.2 Logistic Regression Results

	5 Discussion
	6 Conclusion
	References

	MicroStream vs. JPA: An Empirical Investigation
	1 Introduction
	2 Related Work
	2.1 Performance Evaluation
	2.2 Concurrency Control

	3 Methodology
	3.1 BookStore Performance Demo Application
	3.2 Why Another Custom Benchmark?
	3.3 Wholesale Supplier Benchmark
	3.4 Experimental Setup

	4 Results
	5 Discussion
	5.1 MicroStream vs. JPA
	5.2 Concurrency Best Practices
	5.3 Usage Scenarios
	5.4 Threats to Validity

	6 Conclusion and Future Work
	References

	From Data Asset to Data Product – The Role of the Data Provider in the Enterprise Data Marketplace
	1 Introduction
	2 Providing Data in the Enterprise
	2.1 The Data Provider Journey
	2.2 Challenges in the Data Provider Journey

	3 Providing Data Through the Enterprise Data Marketplace
	3.1 Data Marketplace Functionality
	3.2 Data Catalogs as a Foundation for Enterprise Data Marketplaces
	3.3 From Data Asset to Data Product

	4 Assessing How an Enterprise Data Marketplace Assists the Role of the Data Provider
	4.1 Prototypical Demonstration – From Data Asset to Data Product
	4.2 Addressing of the Challenges in the Data Provider Journey

	5 Related Work
	6 Conclusion
	References

	Data-Aware Service Placement in the Cloud-IoT Continuum
	1 Introduction
	2 Motivating Scenario and Problem Considered
	3 Modelling and Prototype
	3.1 Model
	3.2 Placement and Routing
	3.3 Continuous Reasoning

	4 Scalability Assessment
	5 Related Work
	6 Concluding Remarks
	References

	Quantum Computing
	Optimizing the Prioritization of Compiled Quantum Circuits by Machine Learning Approaches
	1 Introduction
	2 Fundamentals
	2.1 MCDA Methods
	2.2 Learning Weights Based on Historical Data

	3 Learning to Prioritize Compiled Quantum Circuits
	3.1 Translation
	3.2 Compilation
	3.3 Circuit and QPU Analysis
	3.4 Weighting
	3.5 Prioritization
	3.6 Sensitivity Analysis
	3.7 Execution

	4 System Architecture and Prototype
	4.1 System Architecture: Behavioral View
	4.2 Prototype

	5 Case Study
	5.1 Performance of MCDA-Weighting Method Combinations
	5.2 The Distribution of Learned Metric Weights

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

