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Abstract. Constant function market makers (CFMMs) are the most
popular mechanism for facilitating decentralized trading. While these
mechanisms have facilitated hundreds of billions of dollars of trades, they
provide users with little to no privacy. Recent work illustrates that pri-
vacy cannot be achieved in CFMMs without forcing worse pricing and/or
latency on end users. This paper quantifies the trade-off between pricing
and privacy in CFMMs. We analyze a simple privacy-enhancing mecha-
nism called Uniform Random Ezecution and prove that it provides (e, d)-
differential privacy. The privacy parameter ¢ depends on the curvature
of the CFMM trading function and the number of trades executed. This
mechanism can be implemented in any blockchain system that allows
smart contracts to access a verifiable random function. Our results pro-
vide an optimistic outlook on providing partial privacy in CFMMs.

1 Introduction

Constant function market makers (CFMMSs) have become the most widely used
decentralized product. In 2021, these market makers were facilitating over a bil-
lion dollars of daily (spot) volume, comparable to centralized exchanges such as
Binance, Coinbase, or FTX. These market makers allow those looking for passive
yield on a portfolio of assets to be automatically matched with traders looking to
execute a swap against their assets. CFMMs work by ensuring that an invariant
known as the trading function is kept constant before and after a trade is executed.
The trading function, which is a function of the liquidity provided by those seek-
ing passive yield, controls the price displayed by the CFMM that traders can exe-
cute a trade at. In order to ensure that liquidity providers (LPs) do not always lose
money, as they are effectively buying the currency whose value is going down in
exchange for one that is going up, a trading fee is applied to each transaction. Prior
work [AC20,AAE+21, AEC20] has investigated necessary and sufficient conditions
for the trading function and choice of fee to lead to profitable outcomes for LPs.

Privacy in CFMMs. One major problem with CFMMs is their lack of privacy.
At a high-level, privacy in CFMMs boils down to preventing an adversary from
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discerning trade sizes as a function of public prices and the knowledge of a fea-
sible trade. Additionally, the dramatic increase in maximal extractable value
(MEV) and front-running on Ethereum makes transaction-level privacy increas-
ingly important [QZLG20,QZG21,ZQT+20, AEC21a]. Mechanisms that reduce
the amount of information that an adversary has about user transactions can
help reduce MEV and increase privacy. However, we do note that there are sub-
tle distinctions between mechanisms that reduce MEV versus mechanisms that
increase privacy (which we address in Sect.3.1) In this paper, we study mecha-
nisms purely in terms of privacy, but are motivated to study the problem in the
hope that some form of privacy might address MEV.

Prior work [AEC21b] has shown that given any feasible trade and the (usu-
ally public) prices before and after executed trades, one can uniquely identify the
size of the trade. This is a natural (although somewhat indirect) consequence
of the concavity of the trading function [AC20,AAE+21]. This work implies
that, even with modern cryptography such as zero-knowledge proofs (ZKPs),
one will need to modify the CFMM mechanism to blind user’s trade sizes. In
other words, simply hiding balances via ZKPs of reserves (which has been pro-
posed and implemented in multiple protocols [CXZ20,Pow21]) is not sufficient
for transaction-level privacy.

Proposed Solutions. The two main options presented in [AEC21b] for recovering
privacy involve either modifying prices (e.g., adding noise to quoted prices) or
batching transactions.! Both of these changes often degrade the user experience:
both options force traders to bear worse price impact while the latter option also
means that users face higher latency for trade confirmation. Assuming that these
are the only options available, a natural question to ask is: how well can we con-
trol the trade-off between worsened price and latency and improved transaction
privacy? One might formulate this rather general question as the following:

— What is the minimum number of swaps, n(d), that must be batched such that
an adversary is unable to infer the true trade sizes, beyond a precision of 67

— How much worse is the worst price offered to any one user via such a mech-
anism?

Answers to the former question are analogous to sample complexity bounds
from learning theory, whereas answers to the latter question measure the ‘cost
of privacy’.

Differential Privacy. One method for answering questions of this form is through
the lens of differential privacy [DR~+14]. Differentially private algorithms aim to
hide individual user data (e.g., trades) while simultaneously preserving aggregate
statistics (e.g., prices or averages). Many differentially private mechanisms work
by adding targeted randomness to each individual users’ data. As a simple illus-
tration, suppose for which we have a sequence of values x1,...,x, and we want

! There are two live batching CFMMs in production, CowSwap on Ethereum [Mar21]
and Penumbra which relies on a specialized ZKP chain [dV21].
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to report the mean p = % >; Ti. One can (in expectation) preserve the mean
by adding i.i.d., mean zero noise to each x;, before computing and reporting the
new mean, j. Intuitively, as the variance of the added noise becomes large, it is
harder to recover the original value of x;, prior to the added noise, but the new
reported mean fi is likely to be far away from the true mean pu.

In this sense, differentially private algorithms induce a natural trade-off
between the privacy and accuracy of a query, much like the trade-off between
price impact and privacy in CFMMs. We note that the methods from differential
privacy have been used at scale and in production at the US Census [Dwo19],
Google [ACG+16], and Apple [CJK+18]. Our threat model for the adversary
(Sect. 3.1) involves an adversary trying to estimate an ordered vector of trades
given prices. In this scenario, we can view the set of trades to be executed as
“private” user data while the accuracy of the query is the deviation in price that
users have to pay for privacy. Differential privacy is a natural way to study the
expected worst case behavior of such an estimation process, similar to its usage
within machine learning.

We note that achieving differential privacy, even with non-private noise, can
help reduce expected MEV profits. Moreover, as differential privacy has often
been used in machine learning to improve algorithmic fairness, we posit (with-
out proof) that differentially private DeF1i algorithms inherit fairness guarantees
[DHP+12]. These fairness guarantees are distinct of those from cryptographic
fair ordering [KZGJ20], as they provide explicit guarantees on the trade-off
between (economic) utility, privacy, and fairness [CGKM19,XYW19].

Uniform Random Execution. To achieve differential privacy in CFMMs, we con-
struct a black-box algorithm called Uniform Random Execution (URE). This
algorithm can be viewed as the inverse of batching, as it breaks up and splits
large trades before subsequently randomly permuting the trade ordering. Ran-
domness is used for both splitting up large trades and for permuting the split
up trades. Blockchains with smart contract capabilities that include CFMM
ordering as part of consensus rules can execute the URE (e.g., Celo [KOR19],
Terra [MSS20], Penumbra [dV21], Osmosis [AO21]). In particular, any blockchain
with a verifiable random function (VRF) [MRV99] that provides public random-
ness and consensus rules for executing trades in a particular order suffices for
URE.

Summary. Our analysis of the differential privacy of URE utilizes a novel repre-
sentation of a sequence of trades as a binary tree. The tree is constructed such
that the height of the tree provides a lower bound on the worst case price impact.
On the other hand, number of leaves of the tree controls how easy it is for one to
invert the precise trades executed. Representing continuous objects (sequences
of real-valued trades) as a random discrete data structure allows us to utilize
traditional tools from differential privacy. We show that the trade tree controls
the maximum price impact of a sequence of trades by utilizing curvature of a
CFMM [AEC20, §2]. Curvature represents bounds on market impact cost and
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liquidity and is crucial for relating the trade tree to worst-case price impact. Sub-
sequently, we analyze the impact of splitting up and randomly permuting trades
on the trade tree and then compute bounds on the price impact associated to
these actions.

In order to achieve differential privacy, we first prove that splitting up trades
can be executed in a differentially private manner (Claim 2). To split a trade,
we sample a random distribution 7 and the split up a single trade according
to w. After splitting up the trades, we then show that randomly permuting
the trades leads to an (¢, §)-differentially private algorithm. We use composition
laws [DR+14,KOV15] to combine these two results and show that the URE is
differentially private. Note that € and § depend on the CFMM’s curvature and
on the on the number of trades executed.

2 Preliminaries

We will cover preliminaries on CFMMs and differential privacy. For more
details, please refer to review articles on CFMMs [AAE+21] and differential
privacy [DR+14].

2.1 Constant Function Market Makers

A constant function market maker is a contract that holds some amount of
reserves R, R’ > 0 of two assets and has a trading function v : R?> x R? — R.
Traders can then submit a trade (A, A’) denoting the amount they wish to
tender (if negative) or receive (if positive) from the contract. The contract then
accepts the trade if

l/}(R, R/a Aa A,) - 7/}(Ra Rla Oa 0)7

and pays out (A, A’) to the trader.
Curvature. We briefly summarize the main definitions and results of [AEC20]

here. Suppose that the trading function ¢ is differentiable (as most trading
functions in practice are), then the marginal price for a trade of size A is

_ 83¢(R7 RI7A7A/)
N 84/(/)(R7 RlaAvA/) '

g(4)

Here 0; denotes the partial derivative with respect to the ith argument, while
A’ is specified by the implicit condition ¥ (R, R, A, A") = (R, R’,0,0); i.e.,
the trade (A, A’) is assumed to be valid. Additionally, the reserves R, R’ are
assumed to be fixed. The function g is known as the price impact function as
it represents the final marginal price of a positive sized trade. When there are
fees, one can show that gf¢¢(A) = vg(yA) where 1 — 7 denotes the percentage
fee. We say that a CFMM is p-stable if it satisfies

g(0) —g(=4) < pA
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for all A € [0, M] for some positive M. This is a linear upper bound on the max-
imum price impact that a bounded trade (bounded by M) can have. Similarly,
we say that a CFMM is k-liquid if it satisfies

9(0) —g(=4) > rA

for all A € [0, K] for some positive K. Simple methods for computing some p
and £ in common CFMMs are presented in [AEC20, §1.1].

Two-Sided Bounds. We can define similar upper and lower bounds for g(A) —
9(0), with constants g/ and x’, which hold when the trades A are in intervals
[0, M'], [0, K'], respectively. For the remainder of this paper, we will refer to
p-stability as the upper bound for both g(0) — g(—A) and g(A) — ¢g(0), and
similarly for k-liquidity. More specifically, given u, u’, we say that a CFMM is
symmetrically u/-stable if

19(4) — g(0)] < plA],
when —M < A < M’, and symmetrically " stable if
lg(A) —g(0)] > &[|A].

when —K < A < K’. From the above, it suffices to pick p” = min{y, 1’} and
k" = min{k, k'}.

For the remainder of this paper, we will focus on using CFMM curvature
parameters to bound the impact cost realized, which in turn controls how easily

an adversary can invert a trade size from prices.

2.2 Differential Privacy

Differential privacy is a framework for classifying how well a randomized algo-
rithm A anonymizes individual data points.

Definition 1. A randomized algorithm A is (e, 0)-differentially private if for all
S, 5" € Dom A with d(S,S") <1 we have for all measurable B C Range A

Prob[A(S) € B] < e*Prob[A(S') € B] +6

In this definition, € can be thought of as a uniform upper bound on the Kullback-
Leibler divergence over the distribution induced by any pair of neighboring data
sets. Traditionally, S, S’ are thought of as discrete and the metric d corresponds
to the Hamming metric. In this case, the intuition behind the definition is the
following: changing one entry of the variable S’ does not change the output
distribution ‘too much,” making it difficult to tell apart S from S’ by look-
ing only at the results of algorithm A. In this paper, we will assume d is the
L' norm [DR+14,NRS07]. We provide further details on differential privacy in
Appendix A.
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3 Problem Construction

In the discussions of [AEC21b, §3], two ways of providing approximate privacy
are presented:

1. Randomizing price: the protocol can randomly perturb the price quoted by
the CFMM, in manner resistant to adversaries (while also not destroying
liquidity provider returns).

2. Batching orders: picking a number of orders n to batch prior to execution.

Neither of these proposed solutions are perfect and [AEC21b] provides no adver-
sarial model for assessing them. Here we first formulate a simple adversarial
threat model for these solutions and then introduce URE. To construct URE,
we first describe a simpler method called Simple Uniform Random FEzecution
(SURE) which achieves differential privacy under restrictive conditions on trade
sizes. We then prove that the URE achieves differential privacy by modifying
SURE using extra randomness whose entropy is parametrized by the number
of trades to execute and the curvature. For the remainder of the paper, we
will assume that there are only two assets traded (in order to utilize curvature
bounds) while n will refer to the number of trades executed.

3.1 Threat Model

Adversary Definition and Attack. We assume a simple model of an adversary
that generalizes [AEC21b]. The adversary, who we will call Eve, attempts to
discover the quantities traded by a set of agents referred to as Traders. Eve is
unable to see the exact quantities the Traders use to trade with the CFMM,
but knows when the Traders transactions Aq,..., A, are executed as a block.
Eve does not know the order in which the trades are executed and her goal is to
estimate the ordering and sizes of the trades. Her only ability is to interact with
the CFMM in the state before the traders’ transactions are executed and the
state after their transactions are executed. Explicitly, Eve’s goal is to produce
a vector (Ay,...,A,) such that |[(4;,...,A,) = (Ay,...,An)||: is small with
high probability. Differential privacy provides a precise way of characterizing the
probability of such a scenario occurring.

When a user submits a transaction to a blockchain, they send a transaction
via a peer-to-peer network that reaches a miner or validator. In both proof-of-
stake and layer 2 chains, the validator who chooses the final execution order of
transactions is known as a sequencer. For the remainder of this paper, any refer-
ence to the sequencer will assume that the sequencer is honest (e.g. they execute
a given ordering when received from an MEV auction). Unless the blockchain
uses a fully homomorphic virtual machine (which does not currently exist),
the sequencer necessarily sees a user’s transaction in order to execute a valid
state transition. Fair-ordering systems [KZGJ20,KDL+21] attempt to decen-
tralize this sequencing operation, albeit with extra assumptions on validator
behavior. Our threat model does not prevent the sequencer from discovering
Traders’ trades and front-running them as we assume that Eve is not the (hon-
est) sequencer.



Differential Privacy in Constant Function Market Makers 155

Action Space. We assume that Eve has access to two queries:

— marginalPrice(): Computes the marginal price of the CFMM at its current
reserves

— isValid(A): Takes a trade A € R, returns True if the trade is valid and False
otherwise

We will denote the set of valid trades at reserves R € R} as A,(R) and note that
it can effectively be thought of as the epigraph of the trading function ¢ [AC20].

3.2 Simple Uniform Random Execution

One of the simplest ways to introduce entropy into a CFMM is to randomly
permute the set of trades to be executed. We will first describe the simple uniform
random execution (SURE) mechanism that simply permutes observed trades.
Formally, suppose that we are given a vector of valid trades

i—1
Ay € AG(R), A € Ay | R+ A
j=1

For brevity, we will refer to above condition as A,(A) for a trade vector A.
The SURE mechanism draws a random permutation 7 ~yns S,, and constructs
a sequence of trades AT = A ;), which arise from permuting the order in which
the trades are executed. Comnsider the marginal prices of the original trades
P1,- -+, Pn and the permuted prices pT, ..., py. Note that p,, = pr(y) if and only if
the CFMM is path-independent (e.g., feeless). Our goal is two-fold: first, we aim
to bound the maximum deviation between the true price p and the permuted
prices p™. That is, we want to compute

Esurp = E  |max|p™(i) — p(i)]
m~Sy | i€[n]

This deviation effectively corresponds to a bound on the worst quoted price that
a trader can receive (relative to their original order price). Secondly, we want to
capture a notion of how difficult it is for an adversary to learn the values of 7
chosen given only the prices pT.

Before analyzing the SURE mechanism for some classes of trades, let’s look
at some simple examples. If all of the trades A; are unique—e.g., fi,j € [n]
such that A; = Aj—then computing A; given p™ is in some sense be difficult
to invert to a precision higher than xmin;;|A; — A;|. This is because if 7
is a single adjacent transposition (i i + 1), then g(3_7_; Ai) — g(3°52; 4;) >
kmin(A;, A;—1) > kmin; ; |A; — Aj|. Moreover, we should expect that SURE
should work better when Y7, sgn(4;) ~ 0. This is because the probability of
having a long run of trades in the same direction is very low. For instance, if A;
is a Rademacher random variable (e.g., uniformly drawn from {—1,1}) then the
expected maximum length of a run is ©(logn) [ER75, Theorem 1].
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On the other hand, if there is a set S C [n] with |S| = 2(n) such that for all
i,j € S, A; = Aj;, then it will be much easier to invert the set of trades. There is a
loss of entropy in the output trade sequences as there will be many permutations
m, 7, # 7 such that A™ = A™ . Let’s consider an explicit numerical example.
Let Ay =100 and A; =1 for all ¢ € {2,...,n}. Even though we are sampling
from n! permutations, there are only n output sequences that SURE outputs:
AT = Apq) = 100 in the jth position for j € [n]. Suppose we consider a
permutation 7 with (1) = j. For any trade in position ¢ with 7 (i) < j, the
trade gets significantly better execution than they did initially. This is because
their trade is executed before the trade of size 100 is executed, giving them
significantly less impact. Therefore, SURE requires the trade distribution to have
sufficient entropy and the distribution of trade sizes to not be too concentrated
in order to work.

We will first analyze SURE on a subset of allowable input trades. This subset
will be defined via simple constraints on min; ; |A; — A;|. We later relax these
by splitting up large trades in a manner that ensure that the trade size distri-
bution satisfies these constraints with high probability. To analyze SURE, we
will start by obtaining upper and lower bounds on the worst case expected price
discrepancy, E[max; |[p™ (i) — p(7)|]. This analysis will provide insight into what
subset of admissible trades provide provable bounds on price discrepancy and
identifiability.

Mazimum of the Price Process and Random Binary Trees. Suppose the price
impact function g is k-liquid and p-stable on an interval [—M, M]. By definition
this implies that for all ¢ € [n]

DAy — udy < pT(i) = pli) S Y ndag) — KA,
j=1 j=1

This means that we have

i [ - ‘ : K
K max > A - ~4y| <max|p™(i) — p(f)] < pmax > An) — ;Aj
Jj=1 j=1

(1)

Therefore, bounds on partial sums of permuted trades will allow us to bound
the worst case price impact of SURE. Define the partial sum

: 1
pi(A,7) =" Any — ~4 (2)
j=1

Now consider the binary search tree T'(p(A, 7)) whose root is p1 (A, 7). Each
element p;(A, ) is inserted sequentially to construct the tree (see Fig. 1 for an
example).

This representation of the partial sums as a tree provides a natural geomet-
ric description of the maximum price deviation. In particular, max; p;(A,7) is



Differential Privacy in Constant Function Market Makers 157

Fig. 1. Depiction of the tree T'(p(A, 7)) where p; = pi(A,7) and p11 < p1o < p3 <
p12 < pa < p1 < psg < ps < pg < p2<p7<pe

necessarily a leaf node in this tree. This means that the maximum deviation
max; ; |pi(A,7) — p;j(A,7)| is at most 2 times the height of the tree as the dis-
tance from p; to any element is maximized by the height. This provides the
following bounds using (1)

T . K
() = (0] < g (11 (&) + x| 4oy~ 4,

-2 - height(T(p(A, 71'))))
3)
o (A7) + mjin (A,r(j) - %Aj) -2 - height(T(p(A, TI')))‘ +0(1)

(4)

max |p" (i) — p(i)| > &

Note that the second bound comes from bounded support of curvature:

pi(A, ) + i (Awm - %AJ‘)

=1

p1(A,7) +min (Am.) - gAj) -2 - height(T'(p(A, 77)))’ +0(1)

max |pj (A, m)| 2 |p; (A, m)| =

>

Moreover, the number of leaves in the tree represent the number of left-
to-right local maxima of p;. Note, furthermore, that by using curvature and
the tree structure, we have reduced the maximum price deviation problem (a
continuous problem) into a combinatorial one regarding a random tree. If the
tree is roughly balanced (e.g., height is O(logn)) and there are 2(n) leave nodes
then it is unlikely that a small change to the permutation 7 by a transposition
will change the maximum value. We will formalize this by studying the behavior
of the random variable T'(A), which draws a permutation 7 randomly and sets
T(A) = T(p(A, 7).

To study the behavior of T(A), we need to analyze the expected height of
a random binary tree. It is known that the height of a random binary tree with
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distinct elements (e.g., such that every permutation is equiprobable) has height
O(logn) with high probability:

Theorem 1 (Theorem 1 [Ree03]). Let A have unique elements. Then
Elheight(T(A))] = alogn — Bloglogn and Varlheight(T'(A))] = O(1)

If we can guarantee that the elements of T(A) are distinct (e.g., such that every
permutation of A is equiprobable) then combining this result with (3) yields

Efmax |p" (i) — p(i)[] < p (E[m(Anr)] +2max : E[height(T(A))])

]

A -2
o

<p (E[m(A, )] + 2 max
¥

A — LA
o

(alogn — Bloglog n))

<3pu (max ) (alogn — Bloglogn + 1) (5)
¥

K
A=A
where we used the upper bounds max; ’Aw(j) - ﬁAj’ < max; j ‘Ai - ﬁAj‘ and
A — fA

A — fAl

< max

E[pi(A, )] %Z

Similarly, note that E[p1 (A, m)] > min; (A ;) — £A;) so we have

(2 E[height(T(A)) + O(1)])

E[max [p™ (1) = p(i)[] = &

. 7
Aniy — =4
M S () = o5

> 2K (alogn — Bloglogn + O(1))

min A; — ﬁAj
K

]

Therefore, provided that the following two conditions hold

max A; — fA

4,J

min A; — fA

(2]

Amin = Q(]-) Amax = O(l) (6)

we have Esyrp = E[max; [p7™ (i) — p(i)|] = ©(logn). Such a bound is ideal as it
ensures that there is always a minimum price discrepancy of 2(xlogn) so that
an adversary cannot determine a trade size with precision greater than 2(x). On
the other hand, the upper bound on price deviation means that the mechanism
will not cause too great of a price impact for users.

Note that the usage of Theorem 1 is prefaced on every permutation of the
elements of p;(A, ) being equiprobable. One simple example of when this isn’t
true is from the threshold trades, A = (T, 1,...,1) € RT when pu > 100x. When
this is true, neither of the conditions (6) hold and moreover, the conditions
of Theorem 1 do not hold. This means that SURE only works when (a) all
permutations of partial sums are unique and (b) when p < (max; 4;)x. In the
next section, we will achieve (a) by adding noise dependent on A, u, k to the
trades and (b) by splitting trades.
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3.3 Uniform Random Execution

We have seen the SURE mechanism works well at providing privacy while min-
imizing price discrepancy when (6) holds, when elements of A are unique, and
when £ is not too large. However, we're not guaranteed that both of these condi-
tions hold in general as illustrated by the example at the end of the last section.
This section will focus on using randomization to ensure that a) (6) holds with
high probability and b) the elements of A are unique. We will do this by per-
forming two actions: splitting large trades to ensure the maximum condition
holds and adding noise to trades to ensure that trades are not too close in size.
Applying these two actions to A and subsequently executing SURE is termed
the Uniform Random FEzxecution mechanism. There are three parameters that
control the URE mechanism:

— Cmin: Lower bound on A,
— s € R4 Split threshold that controls the average chunk size for a big trade
— k € N: Multiple of (1 + s)Aumin that requires splitting

Lower Bounding the Minimum by Adding Laplace Noise. Our goal is to con-
struct random variables &i,...,§, drawn ii.d. from a distribution that can
depend on a particular A but guarantees that A = A + ¢ satisfies the left
hand side of (6) with high probability. In particular, we would like to control
Prob Hminm A; — ﬁjj > cmin} for a constant cpin > 0. We desire the follow-

ing condition to hold bounded above by ¢ € (0,1):

Prob |: min AI - ﬁA’] < Cmini| = Prob |:|m1n A+ & — E(A] + 5]) < Cmini|
Y m Y I
< Prob [— ’min A; — EAJ- ‘mlnfI — ,gj < cmm:|
N J
= Prob |: m1n§2 — 7£J < Cmin + |min 4A; — fA ] <
i, “w

6
(7)
In Appendix C, we prove the following claim:

Claim 1. There exists a € R dependent on A, i, s and §; ~ Lap(a, |a|) such that
(7) holds

This mechanism can be naturally modified to inherit the e-privacy guaran-
tees of the Laplace mechanism [DR+14, §3.2]. Note that the dependence of the
noise parameter a on A is similar to smoothed sensitivity in differential pri-
vacy [NRS07]. We note that this added noise ensures both that the lower bound
of (6) holds and ensures that the elements of A + ¢ are unique so that Theorem
1 holds.
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Upper Bounding the Maximum by Splitting Trades. One way to reduce the upper
bound on error in (5) is to split up a trade A;. This reduces Anax and as
explained in Appendix G, also increases the privacy of SURE. More precisely,
we split 4; into AL, A with A; = AL + AY and then consider the pricing error
associated to p(A’) where A’ = (Ay,..., A1, AL A, Ajyq, ..., Ay). This pro-
cess can be iterated until all trades meet a particular criteria. Instead of splitting
trades in two, we instead split trades into m(4;) pieces, where m(4;) is defined

as m(A;) = max <17 [(1+|?)lAmlj>

That is, the mechanism splits the trade into m(A4;) pieces who sizes are roughly
(1 + s)Amin- Let 1™ = (1,...,1). For any trade A; with m(4;) > 1, we draw
7 ~ Dir(1™(49)) and split 4, into trades A;; = A;r;. Since Z?:l T = 1,
this provides a natural mechanism for splitting trades in a single step. As the
Dirichlet distribution is sub-Gaussian when using uniform weights [MA17] and as
the expected order statistics of a Dirichlet process decay exponentially [BJP12],
Prob[A; ; — (1 + ) Amin > kAmin] also decays exponentially in k. This ensures
that we have very few chunks that are significantly greater than (1 + s)Apin,
which ensures that with high probability max; A; < (14s+k)Amin. As described
in Appendices D and G, this condition ensures that SURE is effective with
high probability. We note that the precise price impact of splitting trades (as a
function of curvature) is analyzed in [AEC20].

3.4 Differential Privacy

We are now in a position to prove that the URE mechanism satisfies (e, d)-
differential privacy, where ¢ = O(ulogn 4+ max; A;). Our proof proceeds in two
steps. First, we prove the following claim in the Appendix E.

Claim 2 (Splitting is differentially private). Suppose that we have a sequence of
admissible trades A € R™ and after adding noise we have A with Amin > 0.
For each k € N define Sy = {j : 4; > kApm}. If n* = max; % = O(n)
and there exists & > 0 such that [Sy| = O(1), then there exists an (e,0)-

differentially private algorithm Split(A) for splitting trades in A such that
height(T'(Split(A))) = O(logn) where € = O(n*)

This claim ensures that under mild conditions on the maximum trade size,
we can generate a partial sum trade tree of height O(log n). Note that we can get
the claim’s conditions to be satisfied by varying s, the scale parameter, which
leads to a privacy-utility trade-off. Second, we show that when a partial sum
trade tree has height O(logn), permuting the trades provides (O(ulogn),d)-
differential privacy for the maximum price impact (Claim 3). We combine these
two differentially private algorithms using standard composition theorems (see
Appendix), resulting in a differentially private CFMM.

Claim 3 (SURE is differentially private). Suppose that we have a sequence of
admissible trades A € R™ such that height(T(A)) = O(logn) and all trade
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sizes are unique. Then randomly permuting the trades A™ can be made into a
(ulogn, §)-differential private algorithm for the minimum and maximum price
impact

While the full proof of the theorem is in the appendix, we sketch the steps
of the proof below. First, we show that if a set of trades satisfies (6), then we
can achieve differential privacy. We do this by first bounding the local sensi-
tivity [DR+14] of the price impact vector p;(m, A) as a function of A. This is
done by reducing the problem to analyzing two different price trees (Appendix
B). We make an analogue of smooth sensitivity [NRS07] that rounds a vector of
trades to an integer lattice whose length is Ap;,. These steps ensure that the
maximum difference in price impact between neighboring sets of trades will be
O(plogn). This immediately leads to achieving (e, §)-differential privacy, where
e =0O(ulogn).

Using the composition property of differential privacy, we are able to compose
these two mechanisms to achieve (ulogn+max; A;, §)-differential privacy where
§=F71O (%)) and F~! is the inverse Laplace CDF. While the constants can
likely be improved, this suggests that permuting and splitting up trades is a
simple and viable mechanism for adding differential privacy to CFMMs. Finally,
note that in Appendix F we provide a convex program that can split up trades
more efficiently than the Dirichlet mechanism of Theorem 3.4. This is likely
useful to practitioners where randomness is a constrained resource (e.g., on a
blockchain).

4 Worst-Case Bounds and Path Deficiency

In this section, we’ll explore if we can do better than the URE mechanism by
analyzing the curvature of the mechanism and generalizing the previous work
using Generic Chaining. Our goal will be to consider classes of mechanisms, F,
that can provide (e, §)-differential privacy for CFMMs and attempt to compute
worst-case bounds. We first provide some necessary conditions that elements
of such a class have to satisfy. We will also show that extending the results of
Sect. 3.4 to the path-deficient (positive fee) case involves proving bounds over
a class of functions F. Finally, we’ll investigate connections to private PAC
learning which suggest that one cannot do significantly better than the URE
unless curvature is dynamically adjusted.

4.1 Mechanism Curvature

Instead of directly working with a mechanism, can we say something about the
set of all mechanisms that ensure that |[p™ (i) — p'(i)] > & where p™(i) is the
ith price of the mechanism and p’(i) is the non-private or true price? Using
a curvature definition analogous to those of [AEC20], we can provide a simple
bounds related to this question.
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Note that bounds of the form |[p —pf| > § involve bounding changes between
two different price processes. Suppose that we define “curvatures” of the form

relAil < [p(0) = p" (i = DI < el A
fom|Ai| < |p™ (@) = p" (i = 1] < pm| Ad
Ko A < [p™ (i) = P*(0)] < ] A
First, let’s look at the difference between the mechanism price at time ¢ and the
true price at time 7 — 1:

™ (i) — p'(9)| = |(p™ (i) — p"(4)) — (p*(i — 1) — p'(4))|
> |p™ (i) — p' (i) — |p* (i) — p'(i — 1)]
> (Km — tmt)| A

This says that we can ensure that the predictive value of previous price infor-
mation on a trade cannot be resolved more than a multiplicative amount of
Km — Mmt times the trade size. In particular, x,, > « + U, ensures that an
adversary never has more than a precision « of information about the trade size.
This provides a necessary condition in terms of mechanism curvature for a class
F of mechanisms to provide differential privacy bounds.

4.2 Path Deficiency

Any CFMM that has non-zero fees (e.g., v = 1 — f < 1) is path-deficient and
has strictly negative expected value for round trip trades [AEC20]. Such CFMMs
have price path p'(i) that are explicitly dependent on the trade ordering. Note
that almost all CFMMs that are used in practice have non-zero fees to attract lig-
uidity, so this is an important scenario to study. Previous work on path-deficient
CFMDMs has focused on analyzing how a particular price process (such as a geo-
metric brownian motion) interacts with the expected returns from fees [EAC21].
Moreover, [AEC20, §2] illustrated that when fees are present g/ (A) = vg(yA),
where g/ is the price impact function with fees and g is the feeless price impact
function. This suggests that we can analyze the path-dependent case by uni-
formly bounding the geometric parameters of Sect. 3.2 (e.g., height and number
of leaves) as a function of the fee.
Suppose that given a trade vector A, we have a bound of the form

LB max|pF(A) —pT(A)]| = 0(") (8)
In Appendix I, we compute a lower bound that allows one to prove such a
bound for Uniswap (the most commonly used CFMM). Then we can bound the
deviation in height between the set of trade and price trees (see Appendix B) as
a function of v and transfer path-independent returns to the path-deficient case
with extra polylogarithmic terms in . Two ways of proving bounds of the form
(8) are using generic chaining [Tal21, Ch. 3] and smoothed analysis [HRS20]. We
discuss how this analysis can be applied to CFMMs in Appendix H.
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4.3 Private PAC Learning and Adversarial Bounds

A number of recent results have shown that differentially private PAC learning
and online learning are closely related. In particular, the finiteness of an integer-
valued complexity measure known as the Littlestone dimension controls whether
a particular algorithm can be learned in both an online and differentially private
manner [ALMMI19,BLM20]. The Littlestone dimension of a class of functions
F from X — Y, LDim(F), is defined as the maximum depth d € N of a tree
made up of sequences z1,...,24 € X such that there exists f € F with f(x;) =
y; for every possible y; € Y. Consider the set F™(A) which is the set of all
trees constructable from any permutation = € S, for a fixed A € R"™. The
results of Sect. 3.2 show that LDim(F™(A)) = £2(plogn). State-of-the-art results
for blackbox constructions of online learners [GL21] show that the regret of a
differentially private online learning algorithm is O(22LD'm(f)). This implies that
the best online learners can do again the URE, in a blackbox manner, is 0(2"“).
This means that any algorithm that has non-zero curvature is unlikely to do
asymptotically better then the URE. If it were possible to construct a polynomial
time algorithm to privately PAC learn trades, then there would be significantly
degraded privacy guarantees for users. However, this would require a mechanism
for which LDim(F™) = O(loglogn), which appears unlikely except for constant-
sum market makers that have g = 0. One other piece of evidence that Littlestone
dimension is the correct complexity measure for CFMM privacy comes from the
fact that the worst case instances for Littlestone dimension and CFMMs are
thresholds (cf., Sect. 3.2 and [ALMM]19]).

5 Differentially (Non)-private MEV Reduction

In previous sections, we assumed an honest sequencer who implements a dif-
ferentially private mechanism for CFMM trades. We had explored this in the
hopes that privacy might hinder MEV. Interestingly, it may be possible to pre-
vent MEV by instantiating the “sequencer” and our mechanism on a public
blockchain with access to a verifiable random function [MRV99], which exists
on chains such as Polkadot [BCC+20] and Cosmos [Bucl6].? While this would
not necessarily be differentially private—the noise is from public but unpre-
dictable random coins—it could still prevent MEV. And the cost to users of
doing so is modeled by the price impact analysis of Sect. 3.2. We see a similarity
between this and results in machine learning relating differential privacy and
fairness [DHP+12].

In practice, the majority of front-running and sandwich attacks are executed
via maximal extractable value (MEV) auctions [BDKJ21]. These auctions sep-
arate the roles of sequencing (choosing an execution ordering) from searching,

2 We note, however, that the precise design in this paper is not immediately
implementable—there are a number of practical and technical hurdles to overcome.
These include, but are not limited to, determining how to allow applications to use
randomness generated by consensus and figuring out how transaction submission
and the pending transaction queue are affected by random orderings.
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which is the process of finding the optimal front-run or sandwich transactions to
maximize profit. Searchers bid for priority of transaction placement—they place
a trade of size X before another user’s trade of size Y in order to front-run them.
Sequencers collect these bids and construct a final transaction ordering based on
which bids generate the maximum profit for them. Within this context, we can
view the searchers as Eve (Sect.3.1)—they do not know the final ordering and
they can only affect it by placing a bid with the sequencer. Note, however, that
when consensus-provided randomness is used to dictate the transaction order
and sizing (e.g. via a verifiable random function), searchers match the descrip-
tion of Eve as they have a negligible edge over a coin flip in determining the
order of trades. Even if searchers colluded with the sequencer to try to force a
particular ordering, they would need to successfully execute a grinding attack
against the VRF. In this paper, we implicitly have assumed that a VRF for
which grinding attacks are hard to execute is used by the base protocol.

This observation demonstrates that our threat model is one in which
searchers (not sequencers) are thwarted by the mechanisms of the subsequent
sections. Given that >50% of CFMM extractable value from front-running is
executed via the largest MEV auction, Flashbot [DOS], our model more closely
models the real agents who are front-running users.

6 Conclusion

In this paper, we demonstrated that there exists a novel, practical mechanism
for providing differential privacy to users of constant function market makers.
This mechanism, unlike previous methods such as batching, has provable guar-
antees on the worst case price impact and strong privacy guarantees. As a num-
ber of new blockchain protocols implement CFMMs directly in their consen-
sus mechanism, the randomness needed to execute this algorithm will become
more plentiful and easier to source. Our analysis used novel techniques combin-
ing results from stochastic processes, concentration inequalities, and differential
privacy. The results in this paper can likely be improved by providing tighter
bounds on the minimal amount of noise needed to achieve (¢, d)-differential pri-
vacy. Moreover, numerical studies of the utility loss (e.g., worsened price impact)
would justify practical usage of URE on networks such as Osmosis [AO21] and
Penumbra [dV21]. Finally, we note that differential privacy has been explored in
path-independent prediction markets [FW17], where similar bounds to the ones
found in this paper exist. These bounds utilize different proof techniques as pre-
diction market makers do not directly translate to CFMMs (cf., [AC20, §3.2]).
We note that a consequence of using this mechanism is that it likely provides
better fairness for end users. Unlike fair ordering solutions [KZGJ20, KDL+-21],
our results provide economic guarantees on fairness for a particular application.
Future work involves demonstrating that fairness is inherently present when a
DeFi protocol can guarantee differential privacy.
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A Differential Privacy Results

We implicitly use a number of differential privacy results on composition and
provide them here for convenience. First we note the serial composition theorem:

Theorem 2 (Composition Theorem 3.16 [DR+14]). Let Ay,... A, be a
sequence of (€;,0;) algorithms such that Range A; C Dom A, 1. Then the com-
position A, o---o0 Ay is (31, €, >y 6;)-differentially private

Secondly, we note the parallel composition theorem

Theorem 3. Let Ay, ..., A, be algorithms whose domains (databases) are inde-
pendent and each algorithm is (€;, d;)-differentially private. Then (A, ..., A)
is max; €; differentially private

Finally, we note that the serial composition rule can be improved from
(> €2, 6:) to (ne+e nlog(1/8),né+8) where § = O(né) if ¢; = €,6; = 6 for
all i [KOV15]. We will not need to use this result, only the generic composition

rules. However, it is possible that one can improve our constants using results
such as this.

B Price Tree Height Is Close to Trade Tree Height

Suppose that we have an admissible trade vector A = (A4,...,A,) € A,. Given
™ € Sy, we can write a sequence of prices in terms of the price impact function:

pi(r) =g (Z Aw(z‘))

We generate a random binary tree from the price vector by uniformly sampling
Jj ~ [n] and making p;(m) the root before inserting the remaining prices sequen-
tially as per m. Under this framework, we have

T~Sy T~ Sy

< E [pj(m)] +p(maxA;) E [height(T(p;(r)))]

i~fn] S

B, [mopy(m)] < B[]+ max ) — pis ()], [height(T ;)

We can later remove this constraint by adding a small amount of noise to each
entry, which will make the entries unique a.s. Note that the height of the tree
generated by P; represents the number of trades in the longest sequential devia-
tion from the mean price. Let’s consider when the trade tree and price tree differ
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in branching. On average, this occurs when the jth price pr;) is a left branch
whereas the j+1st price py ;1) is a right branch, but both trades Az (;), Az(j41)
are left branches. When this happens, the price tree has an average height that
is 1 less than the trade tree.

We will first illustrate this when the first two elements of the permutation
after the pivot (which is random) differ from the expected pivot value. Explicitly,
suppose that we have

1 « 1 —
Pr(2) — pr(i) <0 Pr(3) — pr(i) >0
=1 i=1

Using curvature bounds, the first equation gives

1 n M n
02> pr2) — -~ Zpﬂ(i) > KAz — - Z A;

i=1 i=1

Similarly, the second equation gives

1 n K n
0<pr@3 — -~ pr(i) < pArs) — - Z A;
=1 =1

which when combined gives

pf 1
Aw(2)§l€<nZAi>:77+ (9)

=1

k1
Apzy > — | — Al =n- 10
023 (154) o

Let p; be as in (2) and let A = 37" A, On the other hand, suppose that
pa(m) — A(r), p3(1) — A(r) are both greater than zero (e.g., they are both left
nodes of their parent). This implies that Ay 2y)+Ax3) > % > 1 A;. This means
that we can only end up in a state where height(T'(p;(m))) > height(T'(p;(m)))
if the trades are within the interval [n_,n.]. For instance, when the drift
%Z?Zl A; = 0, then interval has size zero (its a mean-reverting set of trades)
and we never enter this error condition. This matches intuition: if there’s a lot of
drift in the trades, then we shouldn’t expect our price and trade vectors to ‘sort’
the same way. In particular, the higher the curvature of the CFMM, the less
drift we can tolerate because large trades cause more noticeable price impact.
The length of the interval [n_,n;] is

(-5 (5a)
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Note that we can recurse the above argument as we go down the tree and get

a set of intervals Il = [77—(1)7 T]+(1)]7 IQ = [T]— (2)7 N+ (2)]7 e In = [77— (TL)7 N+ (TL)]
Performing the same calculation as above yields

) K - ) W 1 —
_ = — A = — A
n (Z) 1 <n — ;:i w(z)) N+ (7') K (n — ?:i W(Z))

Given that the maximum interval size is pM is the max trade size for which
curvature is valid), we can use this to bound the probability p; that vertex j
has a height difference between the trade and price trees. This probability is
upper bounded by ratio of the length of I; and the interval length pM, e.g.,

pj < Jf—JM‘ We can upper bound the interval length by the maximum mean-drift

subsequence:
uo K 1
L)< |=-—— max — A
] (H u) JcmHJWEQ !

Define R*(A) = max jc[n] Ii}fl > jes 4Q;. Finally, performing a union bound gives
an upper bound on the probability pqis of the heights of the trade tree and price
tree different

pdlﬁ<zpjn< S ) BA) (1)

If this quantity is sufficiently small (e.g., we have tight curvature bounds), then
bounds on the trade tree transfer to the price tree with high probability. For the
rest of the paper, we will assume that (11) is sufficiently small. We note that fee
adjustments and curvature adjustments are intricately related [AEC20, §3] and
in practice, this can be enforced by dynamic updates to a CFMM curve.

C Proof of Claim 1

Suppose that & ~;;q Lap(a,b). We need to analyze the distribution of &; —
B¢;. Recall that if X ~ Lap(a,b) then kX ~ Lap(ka, |k|b). Therefore we are
trying to bound the distribution of Z(a,b) = X + Y where X ~ Lap(a,b),

~ Lap ( La, “b) In particular, given 6 < 0 we want to choose a, b such that

Fz(k) <Prob[X +Y < k| <6

where k = cpin + ‘minm A — ﬁAj’~ Nadarajah [Nad07, Theorem 1] explicitly
computes the CDF F(, ;) (k) and shows that it is monotone, continuous, and
differentiable in a, b except at one value of k for all a, b. Moreover, it is supported
on the entire real line. Therefore, Ja* such that Fyz - |q-|)(k) = 6.
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D Proof of Claim 2

Our proof works by differentially privately sampling a probability distribution
m ~ Dir(1) multiple times using the mechanism of [GWH+21]. The Dirichlet

mechanism on k nodes M(LI;)(’N) samples a Dirichlet distribution centered at ,
where m € P, = {x € R¥: ", 2; = 1,2; > 0}. One can think of it as sampling a
increment dm, adding it to m and renormalizing. First, we reproduce a theorem
on differentially private Dirichlet sampling.

Theorem 4 ([GWH+21], Theorem 1, Corollary 1). The Dirichlet mecha-
nism M(Dk)(ﬂ') achieves (e, 6)-differential privacy where e = O(k(1 + log(o(k)))
and § = 1 — min, Prob[M% (7) — 7 > 2(e)]

Define the vector n(A) as follows:

)= ([2] [ 22))

Each coordinate represents rounding each trade to an integer lattice with width
Amin. Define Sy, = {i : n(A) > k} and S§ = [n] — Si. For each j € Sy, privately
sample m ~ Dir(1) where 1 = (1,...,1) € R"®)i. Let A;; = Ajm, with
Dok AAj,k = A;. We can view each Dirichlet sample 7 as providing a mechanism
for splitting the trade A;. Our goal is to find £ € N such that the following two
conditions hold

L. height(T'(As¢)) = O(logn)
2. height(T(A; 1)) = O(logn;) with high probability

We can show that the latter condition holds with high probability when the
distribution sampled is Dirichlet centered at the centroid (%, R %) Construct-
ing a partial sum tree from a Dirichlet sample is the same as drawing a sample
from a Poisson-Dirichlet branching random walk [ABF13]. These walks satisfy
Prob||height(T'(4; 1)) — clogn(A),| > k] = O(e™*) for a universal constant
¢ [ABF13, Corollary 1.3]. Therefore, the probability that all of the Dirichlet

constructed trees T'(A; ;) have height greater than clogn(A); is

" S
Prob [3j € Sy/height(T(A;4)) — clogn| > ¢ logn;| < ( j')
j
which directly follows from the independent sampling from the private Dirichlet

distribution and inclusion-exclusion. Therefore, with probability p* = 1 — ‘;ﬁ‘,
o

we have the maximum height of a tree constructed from all |Sk| vectors A,y is
> logn; < |Sk| maxlogn;
JESk /

which under our assumptions is O(logn). Our claim about differential privacy
then follows immediately from Theorem 4.



Differential Privacy in Constant Function Market Makers 169

E Proof of Claim 3

We will prove differential privacy by using the smooth sensitivity framework
of [NRS07]. First, we will recall definitions and introduce preliminaries on this
framework before specializing it to SURE. Smooth sensitivity places an upper
bound on the local sensitivity of a function f, which is defined as

LSy(@) = max |f(z) = f(y)

Note that unlike the global sensitivity, which is used in the generic Laplace
mechanism [DR+14], the local sensitivity depends on the particular input z.
Often times, it is too difficult to get uniform bounds on local sensitivity and
instead it is easier to use a smooth proxy. A S-smooth upper bound S : Dom f —
R for LS;(z) satisfies S(x) > LS (x) for all z € Dom f and S(x) < e?S(y) for
all z,y € Dom f with d(x,y) = 1. We are now in a position to recall two results
of Nissim, et al.:

Theorem 5 ([NRS07], Lemma 2.6). Let h be an (o, §)-admissible noise prob-
ability density function and let Z ~ h. For a function f : D™ — R%, let S be a
B-smooth upper bound in the local sensitivity of f, then A(x) = f(x) + @Z is
(€, 0)-differentially private.

Theorem 6 ([NRS07], Lemma 2.9). For ¢,0 € (0,1), the d-dimensional
Laplace distribution, h(z) = 2~ %~ is (a, 3)-admissible with o = §, B =

Tosaziy where ps(Y) is the 1 — 6 quantile of Y.

Combined, these results illustrate that if we can construct a (-smooth upper
bound, we can immediately construct a Laplace mechanism that achieves (e, J)-
differential privacy. Section 3 of [NRS07] provides a mechanism for computing a
(B-smooth upper bound by first defining the sensitivity at distance k,

LS’J’E' () = max LSy(x)

yeDom f
d(z,y)<k

A B-smooth upper bound on local sensitivity is defined as,

Srg(z)= max e FPLSK(x
fﬁ( ) ke{01n} f( )
Therefore, we need to construct a function f that represents price impact and
compute an analogue of local sensitivity.

For a differentially private CFMM, we want to minimize the worst case price
impact in a neighborhood of a trade A. We define f(A) as

f(A) = maxp;(A)

J€[n]

Now we need to modify the definition of local sensitivity to account for trade
admissibility and discretization. Normally, local sensitivity is defined for discrete



170 T. Chitra et al.

spaces where the distance d is taken to be the Hamming metric. We can discretize
our trade space in terms of Ayy,. Recall that we ensure that Ay, > 0 by adding
Laplace noise to all trades (whose parameter will be tuned in accordance with
the above theorem). Note that moving to such a discretization simply changes
our choice of 3. Using this definition, we can define the local trade sensitivity as

TSF(A) = sup [F(A) = f(A")]
A’eDom fNA(R)
d(A,A)<kAmin

where A(R) is the set of admissible trades. From the results of Sect.3.2, we
know that TS’J?(A) = O(kp(max; A)logn) since the depth of the tree quantifies
the largest price impact. In particular, each element A} such that |A; — A} >
Apmin can cause price impact of at most p(max; A)logn and we can add these
independently over the at most k coordinates that have prices changed by more
than Api,. We can define an analogous smooth sensitivity bound,

Stp(x) = max e_wTS;(A) = max e %P tp(max A) log n

This is minimized when ¢ = %, giving

Sip(x) = %(m?x A)logn

Therefore, provided that a) the partial sum tree has height O(logn) b) the noise
25;.5(x)

€

added ensures that A, > 0, and ¢) the noise is rescaled by
differential privacy.

Note that in particular, our bound depends on max; A and the curvature
upper bound. By splitting trades using Claim 2, we reduce max; A and can
ensure that the noise added is reasonable. Moreover, as we saw, without splitting
trades, we run into issues with trades of the form (7,1,...,1). Note that algo-
rithms that try to learn where the trade T" occurs (after applying a permutation
m) is equivalent to privately learning threshold functions [BNSV15, ALMM19].

, we achieve

F Convex Trade Splitting

When we are considering CFMM arbitrage, it can be shown that a necessary
condition for stability is path-deficiency. Path deficiency ensures that no rational
trader (e.g., profit optimizing) is incentivized to split a desired trade size A into
two trades A; + Ay = A. However, if a trader also desires privacy, splitting up
trades can become necessary. To see why, consider a trader who makes a trade
of size T and a sequence of trades A = (T,1,...,1) € RT*!. Using curvature,
we know that the price impact is at least k1" after a trade of size T and of size x
after each trade of size 1. This means that an adversary can easily discern where
my trade is, even if A is randomly permuted due to the T times larger price
impact. Therefore, splitting up the trade of size T into trades close to size 1 will
make it hard for an adversary to reconstruct the total trade size.
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Our goal is to split up trades such that the probability of an adversary detect-
ing the position of a single trade is small relative to the curvature. Suppose that
a trade Ay is split into trades Af,..., A% and let A = (A7,..., A}, Az, .., Ay)
A splitting adversary is a binary classifier ¢(A, A) that returns 1 if A €
{Af, ..., A%} and 0 otherwise. We say that a splitting mechanism is (J, €) indis-
tinguishable if
I, = =
. Z (4, A7)

1=

Prob - =
n

<e] <4d

over some suitable set of splitting classifiers. The inequalities in Appendix G can
directly be used to prove that this holds for the L? norm.

However, path-deficiency implies that splitting trades will cost a user an extra
fee. This trade-off between best execution price and privacy can be explored via
a simple, convex objective function that trades off price impact vs. improved
privacy via splitting. Recall that the L? norm strictly decreases under splitting,

e.g.,
(AL A=Y A2 =43+ A2
=1 1=2

=ali+(1—a)A) A7 > a®AT+ (1-a)?A + ) A7
i=2 =2
= [l(ad1, (1 = a)Ar,..., A3

where a € (0,1) represents the splitting fraction.

This property allows us to quantify the privacy benefit to splitting trades,
as the more minimal the L? norm, the less noise that is needed to ensure that
the random binary tree has height ©(logn) and £2(n) leaves. In particular, the
Cauchy and Gaussian mechanisms for differential privacy utilize distributions
whose variances are proportional to the L? norm.

Given that we want to minimize price impact while maximizing the amount
of trade splitting necessary for indistinguishable, we construct a convex opti-
mization problem. Define the function f as:

FAL - A) =Y v (7D A | +n) 4
i=1 j=1 i=1

The first term in f represents an upper bound on the price impact and the
second term represents the L? splitting term. Our goal is to minimize f over
sequences of trades (Ay,...,Ax) € U2, R such that Zfil A; = A% e.g.,

minimize  f(Ay,...,4,)

. . (12)
subject to A;+---+A4,=A4
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Using curvature bounds, we can construct a simple descent algorithm to solve
this. Firstly, note that the definition of curvature yields

KDY N A< (AL A, UZA2<IWQZZA
i=1j=1 i=1j=1
Furthermore, note that we can rewrite the double sum as
D) BRI SURRIEY
i=1j=1 i=1

Next, note that we can upper bound the split function, f(ad;, (1—a)Aq,..., Ay)
as

flaAr, (1 —a)A, ..., Ap) < pry? <(n +1adi+n(l—a)d+ Y (n—i+ Z)Ai>
=2

+n< A2 +(1—a)? +ZA2>

= 2 <(n +a)A; + Z(n —i+ 1A+ A*)

=2
+77< A2 4 (1—a) A2+ZA2>
Combining these gives the following

(AL, An) = f@d1, (1 - @)A1, ., An) > 22— 1) S (0 — i+ 1)4; — A*
i=2
— 17’ (n+a)A1 +nAT(1 —a® — (1 - a)?)
(13)

Maximize the right-hand side in a provide a mechanism for deciding whether to
split trade A;. Optimizing over a yields

. 1w
a® =max | = —
2 477A1 ’
If we substitute a* into (1) and the right-hand side is position, we split the trade
A into two trades of size a* Ay and (1 — a*)A4;.

G Splitting Trades: Concentration

Chatterjee proved a concentration bound using Stein’s method that provides
intuition as to why splitting trades improves the effectiveness of SURE. Theorem
7 shows that the variance of concentration around the mean for a randomly
permuted sum is linear in the expected value.
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Theorem 7 ([Cha07], Proposition 1.1). Let {a; ;}1<i j<n be a collection of
numbers from [0,1]. Let X = Y7 | a; r(;y where © ~ S, uniformly. Then

Prob||X — E[X]| > {] < 2exp (-W) (14)

Note that unlike Bernstein-like inequalities there is no direct dependence on

n. Moreover, unlike Talagrand-like inequalities [Tal21], we do not have terms
dependent on e-nets. If we let ¢ = k E[X], we have

exp (—m) ~exp (-’;fﬁ) < exp(~KE[X))

For positive trade sizes, this implies that if we can split big trades into smaller
trades (which reduces in turn reduces E[X]) we can achieve the sufficient condi-
tion. More specifically, suppose that a; ; = A; — ﬁAi. Then X =37 | Qi (i) 18
the upper bound from (6) and the theorem claims that reducing the maximum
will reduce the variance of SURE’s utility.

We also note that better asymptotic results exist for non-negative sums:

Theorem 8 ([Alb19], Corollary 2.2). Let a;; be a connection of any real num-

bers and ™ ~ S, as uniform random permutation. Let Z,, = Z?=1 a; r(iy- Then
forallxz >0
1/16 —t?
Prob(|Z, — E[Z,]| > t) < 16
rob(| [Znll 2 1) < 16e7 T exp (256(Var[Zn] + max; ; |a1-j|t))

This bound explicitly includes a maximum term, directly justifying the improve-
ment to SURE provided by splitting trades.

H Path Dependency and Generic Chaining

Suppose that we want to try to find the worst case price deviation given that
we have fees, v < 1. If we define X; = p™(¢) — p(i), then we want to study the
extremal behavior of this process, albeit without being able to directly bound
price impact using methods from Sect.3.2. We will be most interested in the
behavior of the random variable X* = max; X;, which quantifies the worse
execution price received by a user under this mechanism. To do this, we will
utilize the theory of empirical processes. Roughly speaking, one can show that
for a metric space (T,d), Esup,cq Xy = ©(Diam(T)/log cardT’) by looking at
simple bounds for empirical processes [Tall4,Tal21]. Our goal is to define a
metric space T, that depends on fees and such that S,, acts faithfully on 7’,. We
want the action to be faithful because that will be equivalent to the condition of
unique elements of the form ’Ai — %Aj‘ We can then attempt to bound, using
chaining arguments, the worst case price deviation.
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Chaining bounds rely on tail bounds on increments, e.g., showing that for
some metric d on our space T',, we have the following two conditions:

u2
Ju >0, Y Prob[X, >u] > 1 (16)
seT

In our case, we need to construct a metric space that takes advantage of our
trading function curvature and the randomness induced by the choice of permu-
tation.

Our goal is to construct a metric on .S, that depends on both . We need to
construct metric dy p,.a @ Sp X S, — R4 that we can use to find a formula like
Eq. (15). A natural metric to construct is the raw price differences:

Ao po,a(T1,72) Z|P7r1 P7r2 |

Note that if we took an infimum over one of the two permutations, we
arrive at the Wasserstein distance. Suppose we have dy . a(m1,m) <
flp, po, A)d(my,m2) for some natural metric on the symmetric group (e.g.,
Mallows metric [Dia88]). Moreover, suppose there exists x > 0 such that
Prob[X, > logn(k+ ), A;)] > 1. Then we have the lower bound [Tal21,
Eq. 2.15]

<K+ZA> logn < EsupXt <’ <KZ—|—ZA> Diamy(T)+/logn

One simple idea for a metric upper bound is:

d 71_1,7'(-2 MZ|A7T1(Z) Trg(i)‘

Under this metric, we need to show that

u2
Prob|[| X, — X| > u] <2exp ( 2d(7r,7r’)2>
This is effectively direct from Azuma’s inequality since 4; is in a bounded
ball (in order for us to use curvature). Next, we need to show Prob[X, >
Viegn (k+ 3, A;)] > 1. For each permutation m € S,, we can construct a
binary tree T from the partial sums S; ), Ar(;), where S; < S; implies S; is
in the left subtree of S; (and vice versa). Assume, first, that each S; is unique.
Then, it can be shown that the expected height and the tail bounds for the
height of this subtree satisfies [ABC20,Ree03]

Problh(T;) > +/logn] >

c
n
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Our conjecture is that kh(Ty) < X < ph(T,) which would immediately imply
> res, Prob[X: > u] > 1. Unfortunately to find bounds of this form with fees,
one needs to find universal bounds on g(A) —vg(yA). We illustrate such bounds
for Uniswap in Appendix I.

I Path Dependency in Uniswap

Getting bounds such as (15) relies on bounding how far away the path-dependent
case strays from the path independent case. For a fixed A, pP’ only depends
on ».,A; for path-independent, whereas pP?(7) does depend on the path
Ar(1), - Ar(n). However, if we can uniformly bound max,csg, [phe(m) — pZ|
as a function of fees and curvature.

For Uniswap, we have gyn;(4) = ﬁ. This gives a difference between the
impact of a single path independent trade and a single path dependent trade as
(see [AEC20] for the formulae):

_ 1 v kK Y(R— A)?
9(4) —r9(yA) =k (( 7 - <R—7A>2) = - ape (1‘ (R—WAP)

R—A)
o (1 U —1%‘)2)
) (1 B V(RJ;AV (1 B CZ%A»
) (1 B ’y(RJ;QA)Q B CVA(;_ A))
- 9(2) (17(1?)2@ (1+5) A))

where we assume that % < 1 and use the geometric series (so ¢ < 1). When

R>1and R— A < kR for some k < 1, this gives us the bound

9(4) —9(y4) ., (R—-A)

A g R
oa) Sl SRR
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