
Multi-party Updatable Delegated Private
Set Intersection

Aydin Abadi1(B), Changyu Dong2, Steven J. Murdoch1, and Sotirios Terzis3

1 University College London, London, UK
{aydin.abadi,s.murdoch}@ucl.ac.uk

2 Newcastle University, Newcastle upon Tyne, UK
changyu.dong@newcastle.ac.uk

3 University of Strathclyde, Glasgow, UK
sotirios.terzis@strath.ac.uk

Abstract. With the growth of cloud computing, the need arises for Pri-
vate Set Intersection protocols (PSI) that can let parties outsource the
storage of their private sets and securely delegate PSI computation to
a cloud server. The existing delegated PSIs have two major limitations;
namely, they cannot support (1) efficient updates on outsourced sets and
(2) efficient PSI among multiple clients. This paper presents “Feather”,
the first lightweight delegated PSI that addresses both limitations simul-
taneously. It lets clients independently prepare and upload their private
sets to the cloud once, then delegate the computation an unlimited num-
ber of times. We implemented Feather and compared its costs with the
state of the art delegated PSIs. The evaluation shows that Feather is more
efficient computationally, in both update and PSI computation phases.

1 Introduction

Private Set Intersection (PSI) is an interesting protocol that lets parties com-
pute the intersection of their private sets without revealing anything about the
sets beyond the intersection [23]. PSI has various applications. For instance, it
has been used in COVID-19 contact tracing schemes [21], remote diagnostics
[17], and Apple’s child safety solution to combat “Child Sexual Abuse Mate-
rial” (CSAM) [14]. PSI has been considered by the “Financial Action Task
Force” (FATF) as one of the vital tools for enabling collaborative analytics
between financial institutions to strengthen “Anti-Money Laundering” (AML)
and “Countering the Financing of Terrorism” (CFT) compliance [22].

Traditionally, PSIs have been designed for the setting where parties locally
maintain their sets and jointly compute the sets’ intersection. Recently, it has
been a significant interest in the delegated PSIs that let parties outsource the
storage of their sets to cloud computing which later can compute the intersection
without being able to learn the sets and their intersection. One of the reasons
for this trend is that the cloud is becoming mainstream among individuals,
businesses, and financial institutes. For instance, IDC’s 2020 survey suggests that
the banking industry is not only adopting but also accelerating the adoption of
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 100–119, 2022.
https://doi.org/10.1007/978-3-031-18283-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_6

Multi-party Updatable Delegated Private Set Intersection 101

the cloud, based on its benefits proven in the market [41]. The cloud can serve
as a hub that allows for large-scale storage and data analysis by pooling clients’
data together, without the need for them to locally maintain the data, which lets
them discover new knowledge that could provide fresh insights to their business.

However, there are two major limitations to the existing delegated PSIs;
namely, they cannot efficiently support (1) updates on outsourced private sets,
and (2) PSI among multiple clients. Particularly, they have been designed for
static sets and do not let parties efficiently update their outsourced sets. For
application areas involving large private sets frequently updated, like fintech
(e.g., stock market trend analysis [42]), e-commerce (e.g., consumer behaviour
prediction [43]), or e-health (e.g., cancer research on genomic datasets [11]), the
cost of securely updating outsourced sets using these schemes is prohibitive; in
particular, it is linear with the entire set’s size, O(c). Another limitation is that
they cannot scale to multiple clients without sacrificing security or efficiency.
Specifically, in the most efficient delegate PSI in [1], the cloud has to perform a
high number of random polynomials’ evaluations which leads to a performance
bottleneck, when the number of clients is high. A PSI that supports more than
two parties creates opportunities for much richer analytics than what is possible
with two-party PSIs. For example, it can benefit (i) companies that wish to
jointly launch an ad campaign and identify the target audience, (ii) multiple
ISPs which have private audit logs and want to identify network attacks’ sources,
or (iii) the aforementioned Apple’s solution in which different CSAM datasets
are provided by distinct child safety organizations [9].

Our Contributions. In this paper, we:

• present Feather, the first multi-party delegated PSI that lets a client efficiently
update its outsourced set by accessing only a tiny fraction of this set. The
update in Feather imposes O(d2) computation cost, where d is a hash table’s
bin size, i.e., d = 100.

• implement Feather and make its source code public, in [2].
• perform a rigorous cost analysis of Feather. The analysis shows that (a)

updates on a set of 220 elements are over 1000 times, and (b) PSI’s com-
putations are over 2 times faster than the fastest delegated PSI. Moreover,
during the PSI computation when two clients participate, Feather’s cloud-
side runtime is over 26 times faster than the cloud’s runtime in the fastest
delegated PSI and this gap would grow when the number of clients increases.
In Feather, it only takes 4.7 s to run PSI with 1000 clients, where each client
has 211 elements.

Feather offers other features too; for instance, the cloud learns nothing about
the sets and their intersection, each client can independently prepare its set, and
can delegate the PSI computation an unlimited number of times. We define and
prove Feather’s security in the simulation-based paradigm.

102 A. Abadi et al.

2 Related Work

Since their introduction in [23], various PSIs have been designed. PSIs can be
broadly divided into traditional and delegated ones. In traditional PSIs data
owners interactively compute the result using their local data. So far, the pro-
tocol of Kolesnikov et al. in [36] is the fastest two-party PSI secure against a
semi-honest/passive adversary. It relies on symmetric key operations and has a
computation complexity linear with the set size, i.e., O(c), where c is a set size.
Recently, Pinkas et al. in [39] proposed an efficient PSI that is secure against
a stronger (i.e., active) adversary, and has O(c log c) computation complexity.
Recently, researchers propose two threshold PSIs in [14] that let the Apple server
learn the intersection of CSAM and a user’s set only if the intersection cardinal-
ity exceeds a threshold. These two PSIs involve O(c) asymmetric key operations.
Also, there have been efforts to improve the communication cost in PSIs, through
homomorphic encryption and polynomial representation [10,16,19,26]. Recently,
a new PSI has been proposed that achieves a better balance between commu-
nication and computation costs [18]. Also, researchers designed PSIs that let
multiple (i.e., more than two) parties efficiently compute the intersection. The
multi-party PSIs in [28,37] are secure against passive adversaries while those
in [12,25,45] were designed to remain secure against active ones. To date, the
protocols in [37] and [25] are the most efficient multi-party PSIs designed to
be secure against passive and active adversaries respectively. The computation
complexities of [37] and [25] are O(cξ2 + cξ) and O(cξ) respectively, where ξ is
the number of clients. However, Abadi et al. [5] showed that the latter is suscep-
tible to several attacks. The former uses inexpensive symmetric key primitives
and performs well with a small number of clients, i.e., up to 15. But, as we will
discuss, it imposes high costs when the number of clients is high.

Delegated. PSIs use cloud computing for computation and/or storage, while pre-
serving the privacy of the computation inputs and outputs from the cloud. They
can be divided further into protocols that support one-off and repeated delega-
tion of PSI computation. The former like [30,33,46] cannot reuse their outsourced
encrypted data and require clients to re-encode their data locally for each com-
putation. The most efficient such protocol is [30], which has been designed for
the two-party setting and its computation complexity is O(c). In contrast, the
latter (i.e., repeated PSI delegation ones) let clients outsource the storage of
their encrypted data to the cloud only once, and then with the data owners’
consent run any number of computations.

Looking more closely at the repeated PSI delegation protocols, the ones in
[38,40,47] are not secure, as illustrated in [1,6]. In contrast, the PSIs in [1,6,7,44]
are secure. Those in [6,7,44] involve O(c) asymmetric key operations. In these
schemes, the entire set is represented as a polynomial outsourced to the cloud.
The protocol in [1] is more efficient than the ones in [6,7,44] and involves only
O(c) symmetric key operations. It uses a hash table to improve the performance.
However, all these four protocols have been designed for the two-party setting
and only support static datasets. Even though the authors in [1,6,7] explain how

Multi-party Updatable Delegated Private Set Intersection 103

their two-party protocols can be modified to support multi-party, the extensions
are computationally expensive; they also (a) impose a bottleneck to the cloud,
and (b) do not provide any empirical evaluation for their modified protocols. In
these PSIs, for parties to update their sets and avoid serious data leakage, they
need to locally re-encode their entire outsourced set that incurs high costs.

3 Preliminaries

In this section, we outline the primitives used in this paper.

3.1 Pseudorandom Functions and Permutation

Informally, a pseudorandom function is a deterministic function that takes a
key of length Λ and an input; and outputs a value indistinguishable from that
of a truly random function. In this paper, we use two pseudorandom functions:
PRF : {0, 1}Λ ×{0, 1}∗ → Fp and PRF′ : {0, 1}Λ ×{0, 1}∗ → {0, 1}Ψ , where |p| = Ω
and Λ, Ψ,Ω are the security parameters. In practice, a pseudorandom function
can be obtained from an efficient block cipher [32].

A pseudorandom permutation, π(k, #»v), is a deterministic function that per-
mutes the elements of a vector, #»v , pseudorandomly using a secret key k. In
practice, Fisher-Yates shuffle algorithm [35] can permute a vector of m elements
in time O(m). Formal definitions of pseudorandom function and permutation
can be found in [32].

3.2 Hash Tables

A hash table is an array of bins each of which can hold a set of elements. It is
accompanied with a hash function. To insert an element, we first compute the
element’s hash, and then store the element in the bin whose index is the element’s
hash. In this paper, we set the table’s parameters appropriately to ensure the
number of elements in each bin does not exceed a predefined capacity. Given
the maximum number of elements c and the bin’s maximum size d, we can
determine the number of bins, h, by analysing hash tables under the balls into
the bins model [13]. In the paper’s full version [4], we explain how the hash table
parameters are set.

3.3 Horner’s Method

Horner’s method [20] is an efficient way of evaluating polynomials at a given
point, e.g., x0. In particular, given a degree-n polynomial of the form: τ(x) =
a0 + a1x + a2x

2 + ... + anxn and a point: x0, one can efficiently evaluate the
polynomial at the point iteratively from inside-out, in the following fashion:

τ(x0) = a0 + x0(a1 + x0(a2 + ... + x0(an−1 + x0an)...)))

Evaluating a degree-n polynomial naively requires n additions and (n2+n)
2

multiplications, whereas using Horner’s method the evaluation requires only n
additions and n multiplications. We use this method throughout the paper.

104 A. Abadi et al.

3.4 Bloom Filter

A Bloom filter [15] is a compact data structure that allows us to efficiently check
an element membership. It is an array of m bits (initially all set to zero), that
represents n elements. It is accompanied with k independent hash functions. To
insert an element, all the hash values of the element are computed and their
corresponding bits in the filter are set to 1. To check an element membership, all
its hash values are re-computed and checked whether all are set to 1 in the filter.
If all the corresponding bits are 1, then the element is probably in the filter;
otherwise, it is not. In Bloom filters it is possible that an element is not in the
set, but the membership query indicates it is, i.e., false positives. In this work,
we ensure the false positive probability is negligible, e.g., 2−40. In the paper’s
full version [4], we explain how the Bloom filter parameters can be set.

3.5 Representing Sets by Polynomials

Freedman et al. in [23] put forth the idea of using a polynomial to represent a
set elements. In this representation, set elements S = {s1, ..., sd} are defined over

a field, Fp, and set S is represented as a polynomial of form: ρ(x) =
d∏

i=1

(x − si),

where ρ(x) ∈ Fp[X] and Fp[X] is a polynomial ring. Often a polynomial of degree
d is represented in the “coefficient form” as: ρ(x) = a0 + a1 · x + ... + ad · xd.
As shown in [34], for two sets S(A) and S(B) represented by polynomials ρ(A)

and ρ(B) respectively, their product, i.e., polynomial ρ(A) ·ρ(B), represents the set
union, while their greatest common divisor, i.e., gcd(ρ(A), ρ(B)), represents the
set intersection. For two degree-d polynomials ρ(A) and ρ(B), and two degree-d
random polynomials γ(A) and γ(B), it is proven in [34] that:

θ = γ(A) · ρ(A) + γ(B) · ρ(B) = μ · gcd(ρ(A), ρ(B)), (1)

where μ is a uniformly random polynomial, and polynomial θ contains only
information about the elements in S(A)∩S(B), and contains no information about
other elements in S(A) or S(B). To find the intersection, one extracts θ’s roots,
which contain the roots of (i) random polynomial μ and (ii) the polynomial that
represents the intersection, i.e., gcd(ρ(A), ρ(B)). To distinguish errors (i.e., roots
of μ) from the intersection, PSIs in [1,6,34] use a padding technique. In this
technique, every element ui in the set universe U , becomes si = ui||G(ui), where
G is a cryptographic hash function with sufficiently large output size. Given a
field’s arbitrary element, s ∈ Fp, and G’s output size, we can parse s into a and

b, such that s = a||b and |b| = |G(.)|. Then, we check b
?= G(a). If b = G(a), then

s is an element of the intersection; otherwise, it is not.
Polynomials can also be represented in the “point-value form”. Specifically,

a polynomial p(x) of degree d can be represented as a set of m (m > d) point-
value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct non-zero points
and yi = ρ(xi) for all i, 1 ≤ i ≤ m. Polynomials in point-value form have been
used previously in PSIs [1,26]. A polynomial in this form can be converted into
coefficient form via polynomial interpolation, e.g., via Lagrange interpolation [8].

Multi-party Updatable Delegated Private Set Intersection 105

Usually, PSIs that rely on this representation assume that all xi are picked from
F\U . Also, one can add or multiply two polynomials, in point-value form, by
adding or multiplying their corresponding y-coordinates.

4 Feather: Multi-party Updatable Delegated PSI

In this section, we first outline Feather’s model, followed by an overview of its
three protocols: setup, update, and PSI computation. Then, we elaborate on
each protocol.

4.1 An Overview of Feather’s Definition

Similar to most PSIs, we consider the semi-honest adversaries; similar to the
PSIs in [1,7,29], we assume that the adversaries do not collude with the cloud.
However, all but one clients are allowed to collude with each other. Similar to
the security model of searchable encryption [27,31], in our security model we let
some information, i.e., the query and access patterns, be leaked to the cloud to
achieve efficiency. Informally, we say the protocol is secure as long as the cloud
does not learn anything about the computation inputs and outputs beyond the
allowed leakage and clients do not learn anything beyond the intersection about
the other clients’ set elements. We formalise Feather’s security in the simulation-
based paradigm. We require the clients’ and cloud’s view during the execution
of the protocol can be simulated given their input and output (as well as the
leakage). We refer readers to the paper’s full version [4] for a formal definition.

4.2 An Overview of Feather’s Protocols

At a high level, Feather works as follows. In the setup, the cloud publishes a set
of public parameters. Any time a client wants to outsource the storage of its set,
it uses the parameters to create a hash table. It inserts its set’s elements to the
hash table’s bins, encodes the bins’ content such that the encoded bins leak no
information. Next, it assigns random-looking metadata to each bin, and shuffles
the bins and the metadata. It sends the shuffled hash table and metadata to the
cloud. When the client wants to insert/delete an element to/from its outsourced
set, it figures out to which bin the element belongs and asks the cloud to send
only that bin to it. Then, the client locally updates that bin’s content, encodes
the updated bin, and sends it to the cloud. In the PSI computation phase, the
result recipient client, i.e., client B, interacts with other clients’ to have their
permission. Those clients that want to participate in the PSI computation send
a set of messages to the cloud and client B. Using the clients’ messages, the
cloud connects the clients’ permuted bins with each other and then obliviously
computes the sets intersection. It sends the result to client B which, with the
assistance of other clients’ messages, extracts the result.

In Feather, we use various techniques to attain scalability and efficiency. For
instance, by analysing the most efficient delegated PSI in [1], we identified a per-
formance bottleneck that prevents this PSI to scale in the multi-party setting.

106 A. Abadi et al.

Specifically, we observed that in this scheme, the cloud has to perform a high
number of random polynomials’ evaluations on the clients’ behalf. To avoid this
bottleneck, in Feather, each client locally evaluates its random polynomials and
sends the result to the cloud, yielding a significant performance improvement on
the cloud side. To attain efficiency, we (i) substitute previous schemes’ padding
technique with an efficient error detecting mechanism, (ii) use an efficient poly-
nomial evaluation (i.e., Horner’s) method, and (iii) utilise a novel combination
of permuted hash tables, permutation mapping, labels, and resettable counters.

4.3 Feather Setup

In this section, we first explain the efficient error detecting technique and then
present Feather’s setup protocol.

An Efficient Error Detecting Technique. As we described in Sect. 3.5, often
in the PSIs that use the polynomial representation, during the setup, each set
element is padded (with some values). This lets the result recipient distinguish
actual set elements from errors. A closer look reveals that the minimum bit-size
of the padding is t+ ε (due to the union bound), where 2t is the total number of
roots and 2−ε is the maximum probability that at least one invalid root has a set
element structure, e.g., ε ≥ 40. So, this padding scheme increases element size,
and requires a larger field. This has a considerable effect on the performance
of (all arithmetic operations in the field and) polynomial factorisation whose
complexity is bounded by (i) the polynomial’s degree and (ii) the logarithm
of the number of elements in the field, i.e., O(na log2 2|p|) or O(na|p|), where
1 < a ≤ 2, n is polynomial’s degree and |p| is the field bit size [24].

We observed that to improve efficiency, the padding scheme can be replaced
by Bloom filters. The idea is that each client generates a Bloom filter which
encodes all its set elements, blinds, and then sends the blinded Bloom filter (BB)
along with other data to the cloud. For PSI computation, the result recipient gets
the result along with its own BB. After it extracts the result, i.e., polynomials’
roots, it checks if the roots are already in the Bloom filter and only accepts
those in it. The use of BB reduces an element size and requires a smaller field
which improves the performance of all arithmetic operations in the field. Here,
we highlight only the improvement during the factorisation, as it dominates the
protocol’s cost. After the modification, the factorisation complexity is reduced
from O(na(|p|+t+ε)) to O(na|p|). For instance, for e elements, e ∈ [210, 220], and
the error probability 2−40, we get a factor of 1.5-2.5 lower runtime, when |p| ∈
[40, 100]. In general, this improvement is at least a factor of 2, when |p| ≤ t + ε.
The smaller element and field size reduces the communication and cloud-side
storage costs too.

Feather Setup Protocol. Now, we present the setup protocol in Feather.
Briefly, first the cloud generates and publishes a set of public parameters. Then,
each client builds a hash table using these parameters. It maps its set elements

Multi-party Updatable Delegated Private Set Intersection 107

into the hash table’s bins and represents each bin’s elements as a blinded polyno-
mial. It assigns a Bloom filter to each bin such that a bin’s Bloom filter encodes
that bin’s set elements. Next, it blinds each filter and assigns a unique label
to each bin. It pseudorandomly permutes the (i) bins (containing the blinded
polynomials), (ii) blinded Bloom filters, and (iii) labels. It sends the permuted:
bins, blinded Bloom filters, and labels to the cloud. It can delete its local set at
this point. Below, we present the setup protocol.

Cloud Setup: Sets c as an upper bound of sets’ size and sets a hash table
parameters, i.e., table’s length: h, hash function: H, and bin’s capacity: d. It
picks pseudorandom functions PRF (used to generate labels and masking) and
PRF′ (used to mask Bloom filters), and a pseudorandom permutation, π. It picks
a vector #»x = [x1, .., xn] of n = 2d + 1 distinct non-zero values. It publishes the
parameters.

Client Setup: Let client I ∈ {A1, ...Aξ, B} have set: S(I), |S(I)| < c. Client I:

1. Gen. a hash table and Bloom filters: Builds a hash table HT(I) and inserts
its elements into it, i.e., ∀s(I)

i ∈ S(I): H(s(I)
i) = j, then s(I)

i → HT(I)
j . If needed,

it pads every bin to d elements (using dummy values). Then, for every j-th

bin, it generates a polynomial representing the bin’s elements:
d∏

l=1

(x − e(I)

l),

and evaluates each polynomial at every element xi ∈ #»x , where e(I)

l is either
a set element or a dummy value. This yields a vector of n y-coordinates:

y(I)
j,i =

d∏

l=1

(xi − e(I)

l), for that bin. It allocates a Bloom filter: B(I)
j to bin HT(I)

j ,

and inserts only the set elements of the bin in the filter.
2. Blind Bloom filters: Blinds every Bloom filter, by picking a secret key: bk(I),

extracting h pseudorandom values and using each value to blind each Bloom
filter; i.e., ∀j, 1 ≤ j ≤ h : BB(I)

j = B(I)
j ⊕ PRF′(bk(I), j), where ⊕ denotes XOR.

Thus, a vector of blinded Bloom filters is computed: # »
BB(I) = [BB(I)

1 , ..., BB(I)

h].
3. Blind bins: To blind every y(I)

j,i, it assigns a key to each bin by picking a
master secret key k(I), and generating h pseudorandom keys: ∀j, 1 ≤ j ≤ h:
k(I)

j = PRF(k(I), j). Next, it uses each k(I)
j to generate n pseudorandom values

z(I)
j,i = PRF(k(I)

j , i). Then, for each bin, it computes n blinded y-coordinates as
follows: ∀i, 1 ≤ i ≤ n : o(I)

j,i = y(I)
j,i + z(I)

j,i. Thus, d elements in each HT(I)
j are

represented as #»o (I)
j : [o(I)

j,1, ..., o
(I)
j,n].

4. Gen. labels: Assigns a pseudorandom label to each bin, by picking a fresh
key: lk(I) and then computing h values, i.e., ∀j, 1 ≤ j ≤ h : l(I)j = PRF(lk(I), j).

5. Shuffle: Pseudorandomly permutes the labeled hash table. To do that, it
picks a fresh key, pk(I), and then calls π as follows:

#»

ô (I) = π(pk(I), #»o (I)),
#»

l̂ (I) =
π(pk(I),

#»

l (I)), where #»o (I) = [#»o (I)
1 , ..., #»o (I)

h] and
#»

l (I) contains the labels generated
in step 4. Also, it pseudorandomly permutes # »

BB(I) as:
»

B̂B(I) = π(pk(I),
»
BB(I)).

6. Gen. resettable counters: Builds and maintains a vector: #»c (I) of counters c(I)
i

initially zero, where each counter c(I)
i keeps track of the number of times a

bin HT(I)
i in the outsourced hash table is retrieved by the client for an update.

They will let the client efficiently regenerate the most recent blinding factors.

108 A. Abadi et al.

Outsourcing: Every client I sends the permuted labeled hash table: (
#»

ô (I),
#»

l̂ (I))
along with the permuted blinded Bloom filters:

»

B̂B(I) to the cloud.

4.4 Feather Update Protocol

In this section, we present the update protocol in Feather. Briefly, for client I to
insert/delete an element, s(I), to/from its outsourced set, it asks the cloud to send
to it a bin and that bin’s blinded Bloom filter. To do that, it first determines to
which bin the element belongs. It recomputes the bin’s label and sends the label
to the cloud which sends the bin and related blinded Bloom filter to it. Then,
the client uses the counter and a secret key to remove the most recent blinding
factors from the bin’s content, applies the update, re-encodes the bin and filter.
Next, it refreshes their blinding factors and sends the updated bin along with
the updated filter to the cloud.

The efficiency of Feather’s update protocol stems from three factors: (a) the
ability of a client to (securely) update only a bin of its outsourced hash table,
that leads to very low complexities, (b) the use of an efficient error detecting
technique that yields communication and computation costs reduction, and (c)
the use of the local counters that yields client-side storage cost reduction. Now,
we explain the update protocol in detail.

1. Fetch a bin and its Bloom filter: Recomputes the label of the bin to which
element s(I) belongs, by generating the bin’s index: H(s(I)) = j, and computing
the label: l(I)j = PRF(lk(I), j). It sends l(I)j to the cloud which sends back the
bin: #»o (I)

j , and the blinded Bloom filter: BB(I)
j .

2. Unblind : Removes the blinding factors from #»o (I)
j and BB(I)

j as follows.
a. Regen. blinding factors: To regenerate the blinding factors of the bin

and its Bloom filter, it first regenerates the key for that bin, as k(I)
j =

PRF(k(I), j). Then, it uses k(I)
j , bk(I), and c(I)

j to regenerate the bin’s masking
values:

• If the bin has never been fetched (i.e., c(I)
j = 0), then it computes

b(I)

j = PRF′(bk(I), j) and ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(k(I)

j , i)

• Otherwise (i.e., c(I)
j 	= 0), it computes:

b
(I)
j = PRF′(PRF′(bk(I), j), c

(I)
j) and ∀i, 1 ≤ i ≤ n : z

(I)
j,i = PRF(PRF(k

(I)
j , c

(I)
j), i)

b. Unblind: Removes the blinding factors from the bin and its blinded Bloom
filter, as follows. B(I)

j = BB(I)
j ⊕ b(I)

j , ∀i, 1 ≤ i ≤ n : y(I)
j,i = o(I)

j,i − z(I)
j,i.

The result is a Bloom filter: B(I)
j and a vector: #»y (I)

j = {y(I)
j,1, ..., y

(I)
j,n}.

3. Update the counter: Increments the corresponding counter: c(I)
j = c(I)

j + 1.
4. Update the bin’s content:

• If update: element insertion

Multi-party Updatable Delegated Private Set Intersection 109

* if the element, to be inserted, is not in the bin’s Bloom filter, then
it uses the n pairs of (y(I)

j,i, xi) to interpolate a polynomial: ψj(x) and
considers valid roots of ψj(x) as the set elements in that bin. Then,

it generates a polynomial:
d∏

m=1

(x − s′(I)
m), where its roots consist of

valid roots of ψj(x), s(I), and some random elements to pad the bin.
Next, it evaluates the polynomial at every xi ∈ #»x . This yields #»u (I)

j =
[u(I)

j,1, ..., u
(I)
j,n]. It discards B(I)

j and builds a fresh one: B′(I)
j encoding s(I)

and valid roots of ψj(x).
* otherwise, i.e., if s(I) ∈ B(I)

j , it sets #»u (I)
j = #»y (I)

j and B′(I)
j = B(I)

j , where
#»y (I)

j and B(I)
j were computed in step 2.b. Note, in this case the element

already exists in the set; therefore, the element is not inserted.
• If update: element deletion

* if the element, to be deleted, is not in the bin’s Bloom filter, then it
sets #»u (I)

j = #»y (I)
j and B′(I)

j = B(I)
j , where #»y (I)

j and B(I)
j were computed in

step 2.b. It means the element does not exist in the set, so no deletion
is needed.

* otherwise, if s(I) ∈ B(I)
j , it uses pairs (y(I)

j,i, xi) to interpolate a polyno-

mial: ψj(x). It constructs a polynomial:
d∏

m=1

(x − s′(I)
m), where its roots

contains valid roots of ψj(x), excluding s(I), and some random ele-
ments to pad the bin (if required). Then, it evaluates the polynomial
at every xi ∈ #»x . This yields #»u (I)

j = [u(I)
j,1, ..., u

(I)
j,n]. Also, it discards B(I)

j

and builds a fresh one: B′(I)
j that encodes valid roots of ψj(x) excluding

s(I).
5. Blind : Blinds the updated bin: #»u (I)

j and Bloom filter: B′(I)
j as follows.

a. generates fresh blinding factors:

b(I)

j = PRF′(PRF′(bk(I), j), c(I)

j), ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(PRF(k(I)

j , c(I)

j), i)

b. blinds the bin’s content and Bloom filter, using the fresh blinding factors.

BB(I)

j = B′(I)
j ⊕ b(I)

j and ∀i, 1 ≤ i ≤ n : o(I)

j,i = u(I)

j,i + z(I)

j,i

6. Send update query : Sends #»o (I)
j = [o(I)

j,1, ..., o
(I)
j,n], BB(I)

j , l(I)j , and “Update” to the
cloud which replaces the bin’s and Bloom filter’s contents with the new ones.

4.5 Feather PSI Computation Protocol

In this section, we present the PSI computation protocol in Feather. Note, to
let the cloud compute PSI correctly, clients need to tell it how to combine the
bins of their hash tables (each of which permuted under a different key) without
revealing the bins’ original order to the cloud. Also, as the blinding values of
some of the bins get refreshed (when updated), each client needs to efficiently
regenerate the most recent ones in PSI delegation and update phases. To address
those issues, we use two novel techniques: permutation mapping, and resettable

110 A. Abadi et al.

counter, respectively. Now, we outline how the clients delegate the computation
to the cloud. When client B wants the intersection of its set and clients Aσ ∈
{A1, ..., Aξ} sets, it sends a message to each client Aσ to obtain its permission. If
client Aσ agrees, it generates two sets of messages (with the help of the counter),
one for client B and one for the cloud. It sends messages that include unblinding
vectors to client B, and a message that includes a permutation map to the cloud.
The vectors help client B to unblind the cloud’s response. The map lets the cloud
associate client Aσ’s bins to client B’s bins. The cloud uses the clients’ messages
and the outsourced datasets to compute the result that contains a set of blinded
polynomials. It sends them to client B which unblinds them and retrieves the
intersection. Below, we present the PSI computation protocol in more detail.

1. Computation Delegation: It is initiated by B which is interested in the
intersection.
a. Gen. a permission query: Client B performs as follows.

i. Regen. blinding factors: regenerates the most recent blinding factors:
#»z (B) = [#»z (B)

1 , ..., #»z (B)

h] (as explained in step 2.a. of the update). Then,
it shuffles the vector: π(pk(B), #»z (B)).

ii. Mask blinding factors: to mask the shuffled vector, it picks a fresh
temporary key: tk(B), uses it to allocate a key to each bin, i.e., ∀g, 1 ≤
g ≤ h : tk(B)

g = PRF(tk(B), g). Then, using each key, it generates fresh
pseudorandom values and uses them to blind the vector’s elements,
as below:

∀g, 1 ≤ g ≤ h, ∀i, 1 ≤ i ≤ n : r(B)

g,i = z(B)

a,i + PRF(tk(B)

g , i)

Let #»r (B)
g = [r(B)

g,1, ..., r
(B)
g,n]. Note, #»z (B)

a at index a (1 ≤ a ≤ h) in #»z (B)

moved to index g after it was shuffled in the previous step.
iii. Send off secret values: sends lk(B), pk(B), #»r (B) = [#»r (B)

1 , ..., #»r (B)

h], and
its id: ID

(B), to every client Aσ. Also, it sends tk(B) to the cloud.
b. Grant the computation: Each client Aσ ∈ {A1, ..., Aξ} performs as fol-

lows.
i. Gen. a mapping: computes a mapping vector that will allow the

cloud to match client Aσ’s bins to client B’s ones. To do so, it first
generates

»

M Aσ→ B whose elements, mg, are computed as follows.

∀g, 1 ≤ g ≤ h : l(Aσ)
g = PRF(lk(Aσ), g), l(B)

g = PRF(lk(B), g), mg = (l(Aσ)
g , l(B)

g)

It permutes the elements of
»

M Aσ→ B. This yields mapping vector
»

M̂ Aσ→ B

ii. Regen. blinding factors: regenerates the most recent blinding factors:
#»z (Aσ) = [#»z (Aσ)

1 , ..., #»z (Aσ)

h] where each #»z (Aσ)
g contains n blinding factors.

After that, it pseudorandomly permutes the vector as: π(pk(Aσ), #»z (Aσ)).
iii. Gen. random masks and polynomials: assigns n fresh random values:

a
(A

σ
)

g,i and two random degree-d polynomials: ω(A
σ
)

g , ω(B
σ
)

g to each bin:
HTg.

Multi-party Updatable Delegated Private Set Intersection 111

iv. Gen. mask removers: generates #»q (Aσ) that will assist client B to
remove the blinding factors from the result provided by the cloud. To
do that, it first multiplies each element at position g in π(pk(A), #»z (A))
and in #»r (B), by ω(Aσ)

g and ω(Bσ)
g , respectively, i.e., ∀g, 1 ≤ g ≤ h and

∀i, 1 ≤ i ≤ n :

v(Aσ)
g,i = ω(Aσ)

g,i · z(Aσ)
j,i and v(Bσ)

g,i = ω(Bσ)
g,i · r(Bσ)

g,i = ω(Bσ)
g,i · (z(B)

a,i + PRF(tk(B)
g , i))

Then, given permutation keys: pk(Aσ) and pk(Bσ), for each value v(Aσ)
g,i

it finds its matched value: v(Bσ)
e,i , such that the blinding factors z(Aσ)

j,i

and z(B)
j,i of the two values belong to the same bin, HTj. Specifically,

for each v(Aσ)
g,i = ω(Aσ)

g,i · z(Aσ)
j,i it finds v(Bσ)

e,i = ω(Bσ)
e,i · (z(B)

j,i + PRF(tk(B)
e , i)).

Next, it combines and blinds the matched values, i.e., ∀g, 1 ≤ g ≤ h
and ∀i, 1 ≤ i ≤ n:

q(Aσ)
e,i = −(v(Aσ)

g,i +v(Bσ)
e,i)+a(Aσ)

g,i = −(ω(Aσ)
g,i ·z(Aσ)

j,i +ω(Bσ)
e,i ·(z(B)

j,i +PRF(tk(B)
e , i)))+

a(Aσ)
g,i

v. Send values: sends #»q (Aσ) = [#»q1
(Aσ), ..., # »qh

(Aσ)] to client B, where each
#»qe

(Aσ) contains q(Aσ)
e,i . It sends to the cloud ID

(B), ID
(Aσ),

»

M̂ Aσ→ B, the blind-
ing factors: a(Aσ)

g,i , “Compute”, and random polynomials’ y-coordinates,
i.e., all ω(Aσ)

g,i , ω(Bσ)
g,i .

2. Cloud-side Result Computation : The cloud uses each mapping vector:
»

M̂ Aσ→ B to match the bins’ of clients Aσ and B. Specifically, for each e-th bin
in

#»

ô (B) it finds gσ-th bin in
#»

ô (Aσ), where both bins would have the same index,
e.g., j, before they were permuted. Next, it generates the elements of #»

te, i.e.,
∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n:

te,i = (
ξ∑

σ=1

ω(Bσ)
e,i) · (o(B)

e,i + PRF(tk(B)
e , i)) −

ξ∑

σ=1

a(Aσ)
gσ,i +

ξ∑

σ=1

ω(Aσ)
gσ,i

· o(Aσ)
gσ,i

where o(Aσ)
gσ,i ∈ #»o (Aσ)

gσ
∈ #»

ô (Aσ). It sends to B its blinded Bloom filters:
»

B̂B(B) and
result #»

t = [#»
t1, ...,

#»
th], where each #»

te has values te,i.
3. Client-side Result Retrieval : Client B unblinds the permuted Bloom fil-

ters using the key bk(B). This yields a vector of permuted Bloom filters
#»

B̂ (B).
Then, it uses the elements of vectors #»q (Aσ) to remove the blinding from the
result sent by the cloud, i.e., ∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n:

fe,i = te,i +
ξ∑

σ=1

q(Aσ)

e,i = (
ξ∑

σ=1

ω(Bσ)

e,i) · (u(B)

j,i) +
ξ∑

σ=1

ω(Aσ)

gσ,i
· u(Aσ)

j,i

Given vectors
#»

fe and #»x , it interpolates h polynomials: φe(x), for all e. Then,
it extracts the roots of each polynomial. It considers the roots encoded in
B(B)

e ∈ #»

B̂ (B) as valid, and the union of all valid roots as the sets’ intersection.

Theorem 1. If PRF and PRF′ are pseudorandom functions, and π is a pseudo-
random permutation, then Feather is secure in the presence of (a) a semi-honest
cloud, or (b) semi-honest clients where all but one clients collude with each other.

112 A. Abadi et al.

Proof Outline. In the following, we provide an overview of the proof and we refer
readers to the paper’s full version, for an elaborated one. We conduct the secu-
rity analysis for three cases where one of the parties is corrupt at a time. In cor-
rupt cloud case, we show that given the leakage function output, i.e. query and
access patterns, we can construct a simulator that produces a view indistinguish-
able from the one in the real model. The proof includes (1) simulating each client’s
outsourced data, (2) simulating clients queries (in PSI and update) by using query
pattern (and access pattern in the update), and (3) arguing that the simulated val-
ues are indistinguishable from their counter-party in the real model, mainly based
on the indistinguishability of pseudorandom functions and permutation outputs.
In corrupt client B case, the proof includes (1) simulating each authoriser client’s
input and query, (2) simulating cloud’s result, and (3) arguing that the simulated
values are indistinguishable from their counter-party in the real model and it can-
not learn anything beyond the intersection; the argument is based on the indistin-
guishability of randomised polynomials (in Sect. 3.5) and the indistinguishability
of pseudorandom functions and permutation output. In corrupt client Aσ case,
the proof comprises (1) simulating client B’s queries and (2) arguing that the sim-
ulated values are indistinguishable from those in the real model, according to the
indistinguishability of pseudorandom functions output.

In the paper’s full version, we provide several remarks on Feather’s protocols
and explain why naive solutions cannot offer Feather’s features. In the full version,
we present various extensions of Feather that outline how to: (a) reduce authoriz-
ers’ storage space, (b) reset the counters, (c) further delegate grating the compu-
tation to a semi-honest third-party, and (d) further reduce communication cost.

5 Asymptotic Cost Analysis

In this section, we analyse and compare the complexities of Feather with those
of delegated and traditional PSIs that support multi-client in the semi-honest
model. Table 1 summarizes the results. We do not take the update cost of the
traditional multi-party PSIs, i.e., in [28,37], into account, as they are designed

Table 1. Comparison of the multi-party PSIs. Note, c: set cardinality upper bound,
ξ + 1: total number of clients, d = 100, and all costs are in big O.

Property Feather [1] [6] [7] [44] [37] [28]

Repeated delegated PSI � � � � � × ×
Supporting multi-party � � � � � � �

Mainly symmetric key primitives � � × × × � �

Total PSI comm. complexity cξ cξ cξ cξ cξ cξ2 cξ2

Total PSI cmp. complexity cξ + c cξ + c cξ + c2 cξ + c2 cξ + c2 cξ2 + cξ cξ2 + cξ

Update comm. complexity d c c c c – –
Update comp. complexity d2 c c c c – –

Multi-party Updatable Delegated Private Set Intersection 113

for the cases where parties maintain locally their set elements and do not (need
to) support data update. We present a full analysis in the paper’s full version.

5.1 Communication Complexity

In PSI Computation. Below, we analyse the protocols’ communication cost
during the PSI computation. Briefly, in Feather, client B’s cost is O(cξ), each
client Aσ’s cost is O(c), and the cloud’s cost is O(c). Thus, Feather’s total com-
munication cost during the computation of PSI is O(cξ). The cost of each PSI
in [1,6,7,44] is O(cξ), where the majority of the messages in [6,7,44] are the
output of a public-key encryption scheme, whereas those in [1] and Feather are
random elements of a finite field, that have much shorter bit-length. Also, each
scheme’s complexity in [28,37] is O(cξ2).

In Update. In Feather, for a client to update its set, it sends to the cloud two
labels, a vector of 2d+1 elements, and a Bloom filter. So, in total its complexity is
O(d). The cloud sends a vector of 2d+1 elements and a Bloom filter to the client
that costs O(d). Therefore, the update in Feather imposes O(d) communication
cost. The protocols in [1,6,7,44] offer no efficient update mechanism. Therefore,
for a client to securely update its set, it has to download and locally update the
entire set, which costs O(c).

5.2 Computation Complexity

In PSI Computation. Next, we analyse the schemes computation complexity
during the PSI computation. First, we analyse Feather’s complexity. In short,
client B’s and cloud’s complexity is O(cξ + c) while each client Aσ’s complexity
is O(c). During the PSI computation, the main operations that the parties per-
form are modular addition, multiplication, and polynomial factorization. Thus,
Feather’s complexity during the PSI computation is O(cξ + c). In the delegated
PSIs in [6,7,44], the cost is dominated by asymmetric key operations and poly-
nomial factorization. These protocols’ cost is O(cξ + c2). Moreover, the cost of
running PSI in the delegated PSI in [1] is O(cξ + c). Now, we turn our attention
to the traditional PSIs in [28,37]. Each PSI in [28,37] has O(cξ2 +cξ) complexity
and involves mainly symmetric key operations.

In Update. In Feather, to update an element, a client (i) performs O(d) modu-
lar additions and multiplications, (ii) interpolates a polynomial that costs O(d),
(iii) extracts a bin’s elements that costs O(d2), and (iv) evaluates a polynomial
which costs O(d). So, the client’s total cost is O(d2). To update a set element
in the PSIs in [6,44], a client has to encode the element as a polynomial, eval-
uate the polynomial on 2c + 1 points, and perform O(c) multiplications. The
cloud performs the same number of multiplications to apply the update. So,
each protocol’s update complexity is O(c). In [7], the client has to download
the entire set, remove blinding factors, and apply the change locally that costs

114 A. Abadi et al.

O(c). Although the PSI in [1] use a hash table, if a client updates a single bin,
then the cloud would learn which elements are updated (with a non-negligible
probability); Because the bins are in their original order and each bin’s address
is the hash value of an element in that bin. Thus, in [1], for a client to securely
update its set, it has to locally re-encode the entire set that costs O(c).

6 Concrete Cost Evaluation

In this section, we first explain how we choose the optimal parameters of a hash
table. Then, we provide a concrete evaluation of three protocols: Feather and
the PSIs in [1,37]. The reason we only consider [1,37] is that [37] is the fastest
traditional multi-party PSI while [1] is the fastest delegated PSI among the PSIs
studied in Sect. 5. We consider protocols in the semi-honest model.

6.1 Choice of Parameters

In Feather, with the right choice of the hash table’s parameters, the cloud can
keep the overall costs optimal. In this section, we briefly show how these param-
eters can be chosen. As before, let c be the upper bound of the set cardinality,
d be the bin size, and h be the number of bins. Recall, in Feather the overall
cost depends on the product, hd, i.e., the total number of elements, including
set elements and random values stored in the hash table. Also, the computation
cost is dominated by factorizing h polynomials of degree n = 2d + 1. For the
cloud to keep the costs optimal, given c, it uses Inequality 2 (in the full version)
to find the right balance between parameters d and h, in the sense that the cost
of factorizing a polynomial of degree n is minimal, while hd is close to c. At a
high level, to find the right parameters, we take the following steps. First, we
measure the average time, t, taken to factorize a polynomial of degree n, for
different values of n. Then, for each c, we compute h for different values of d.
Next, for each d we compute ht, after that for each c we look for minimal d
whose ht is at the lowest level. After conducting the above experiments, we can
see that the cloud can set d = 100 for all values of c. In this setting, hd is at
most 4c and only with a negligibly small probability, 2−40, a bin receives more
than d elements. We present a full analysis in the paper’s full version.

6.2 Concrete Communication Cost Analysis

In PSI Computation. Below, we compare the three PSIs’ concrete communi-
cation costs during the PSI computation. Briefly, Feather has 8–496 times lower
cost than the PSI in [37], while it has 1.6–2.2 times higher cost than the one in
[1], for 40-bit elements. The PSI’s cost in [37] grows much faster than Feather’s
and the scheme in [1], when the number of clients increases. Feather has a slightly
higher cost than the one in [1], as Feather lets each client Aσ send to the cloud
2hn y-coordinates of random polynomials yielding a significant computation
improvement. Table 2 compares the three PSIs’ cost. Table 5, in the paper’s full
version, provides a detailed analysis of Feather’s communication cost.

Multi-party Updatable Delegated Private Set Intersection 115

In Update. In Feather, a client downloads and uploads only one bin, that
makes its cost of update 0.003 MB for all set sizes, when each element bit-size
is 40. In [1], for a client to securely update its data, it has to download the
entire set, locally update and upload it. Via this approach, the update’s total
communication cost, in MB, is in the range [0.13, 210] when the set size is in the
range [210, 220] and each element bit-size is 40. Thus, Feather’s communication
cost is from 45 to 70254 times lower than [1].

6.3 Concrete Computation Cost Analysis

In this section, we provide an empirical computation evaluation of Feather using
a prototype implementation developed in C++. Feather’s source code can be
found in [2]. We compare the concrete computation cost of Feather with the two
protocols in [1,37]. All experiments were run on a macOS laptop, with an Intel
i5@2.3 GHz CPU, and 16 GB RAM. In the paper’s full version, we provide full
detail about the system’s parameters used in the experiment.

Table 2. Concrete communication cost comparison (in MB)

Protocols Elem. size Set’s cardinality Number of clients

212 216 220 3 4 10 15 100

[37]

40,
64-

bit
� 24 45 300 679 30278

� 407 762 5015 11341 505658

� 6719 12571 82697 186984 8335520

[1]

40-
bit

� 0.8 1 2 4 29

� 18 25 62 93 625

� 300 400 1001 1501 10011

64-
bit

� 1.3 1.7 4 6 43

� 28 37 94 141 941

� 452 602 1506 2260 15069

Feather

40-
bit

� 1 2 5 8 61

� 30 44 123 189 1311

� 494 705 1973 3028 20979

64-
bit

� 2 3 9 14 97

� 48 69 196 301 2096

� 773 1111 3138 4828 33549

In PSI Computation. We first compare the runtime of Feather and the PSI
in [1] in a two-client setting, as the latter was designed and implemented in this
setting. Briefly, Feather is 2–2.5 times faster than the PSI in [1]. The cloud-side
runtime in Feather is 26–34 times faster than the one in [1]. Because Feather
lets each client compute and send y-coordinates of random polynomials to the
cloud, so the cloud does not need to re-evaluate them. Tables 6 and 7, in the
full version, compare these PSIs’ runtime in the setup and PSI computation
respectively. Briefly, for a small number of clients, the performance of the PSI
in [37] is better than Feather, e.g., about 40–4 times when the number of clients
is 3–15. But, the performance of the one in [37] gets significantly worse when
the number of clients is large, e.g., 100–150; as its cost is quadratic with the

116 A. Abadi et al.

number of clients. Thus, Feather outperforms the PSI in [37] when the number
of clients is large. We provide a more detailed analysis in the full version. We
also conducted experiments when a very large number of clients participate in
Feather, i.e., up to 16000 clients. To provide a concrete value here, in Feather
it takes 4.7 s to run PSI with 1000 clients where each client has 211 elements.
Table 9, in the full version, provides more detail.

In Update. Now, we compare the runtime of Feather and the PSI in [1] during
the update. As the PSI in [1] does not provide a way for an update, we developed
a prototype implementation of it that lets clients securely update their sets. The
implementation’s source code is in [3]. The update runtime of Feather is much
faster than that of in [1]. The update runtime of the latter scheme, for 40-bit
elements, grows from 0.07 to 27 s when the set size increases from 210 to 220;
whereas in Feather, the update runtime remains 0.023 s for all set sizes. Hence,
the update in Feather is 3–1182 times faster than the one in [1]. Table 3 provides
the update’s runtime detailed comparison.

Table 3. The update runtime comparison between Feather and [1] (in sec.).

Protocols Elem. size 210 211 212 213 214 215 216 217 218 219 220

[1] 40-bit 0.07 0.09 0.13 0.21 0.37 0.68 1.72 3.41 6.88 13.75 27.2

64-bit 0.08 0.11 0.14 0.22 0.38 0.69 1.76 3.43 7.12 13.94 28.15

Feather 40-bit ← 0.023 →
64-bit ← 0.035 →

7 Conclusion

Private set intersection (PSI) is an elegant protocol with numerous applications.
Nowadays, due to cloud computing’s growing popularity, there is a demand for
an efficient PSI that can securely operate on multiple outsourced sets that are
updated frequently. In this paper, we presented Feather. It is the first efficient
delegated PSI that lets multiple clients (i) securely store their private sets in
the cloud, (ii) efficiently perform data updates, and (iii) securely compute PSI
on the outsourced sets. We implemented Feather and performed a rigorous cost
analysis. The analysis indicates that Feather’s performance during the update
is over 103 times, and during PSI computation is over 2 times faster than the
most efficient delegated PSI. Feather has low communication costs too.

Recently, it has been shown that the most efficient multi-party PSI in [25]
supposed to be secure against active adversaries, suffers from serious issues.
Hence, to fill the void, future research could investigate how to enhance Feather
so it remains secure against active adversaries while preserving its efficiency.

Multi-party Updatable Delegated Private Set Intersection 117

Acknowledgments. Aydin Abadi was supported in part by REPHRAIN: The
National Research Centre on Privacy, Harm Reduction and Adversarial Influence
Online, under UKRI grant: EP/V011189/1. Steven J. Murdoch was supported by
REPHRAIN and The Royal Society under grant UF160505. This work was also par-
tially funded by EPSRC Doctoral Training Grant studentship and EPSRC research
grants EP/M013561/2 and EP/N028198/1.

References

1. Abadi, A., Terzis, S., Metere, R., Dong, C.: Efficient delegated private set inter-
section on outsourced private datasets. IEEE Trans. Dependable Secure Comput.
16(4), 608–624 (2018)

2. Abadi, A.: The implementation of multi-party updatable delegated private
set intersection (2021). https://github.com/AydinAbadi/Feather/tree/master/
Feather-implementation

3. Abadi, A.: The implementation of the update phase in efficient delegated pri-
vate set intersection on outsourced private datasets (2021). https://github.com/
AydinAbadi/Feather/tree/master/Update-Simulation-code

4. Abadi, A., Dong, C., Murdoch, S.J., Terzis, S.: Multi-party updatable delegated
private set intersection-full version. In: FC (2022)

5. Abadi, A., Murdoch, S.J., Zacharias, T.: Polynomial representation is tricky: mali-
ciously secure private set intersection revisited. In: Bertino, E., Shulman, H., Waid-
ner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 721–742. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88428-4 35

6. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol.
455, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-
8 1

7. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4 9

8. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education India (1974)

9. Apple Inc.: Security threat model review of Apple’s child safety features
(2021). https://www.apple.com/child-safety/pdf/Security Threat Model Review
of Apple Child Safety Features.pdf

10. Badrinarayanan, S., Miao, P., Raghuraman, S., Rindal, P.: Multi-party threshold
private set intersection with sublinear communication. In: Garay, J.A. (ed.) PKC
2021. LNCS, vol. 12711, pp. 349–379. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-75248-4 13

11. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: CCS (2011)

12. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: PSImple:
practical multiparty maliciously-secure private set intersection. IACR Cryptology
ePrint Archive (2021)

13. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the
heavily loaded case. In: STOC (2000)

https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
https://github.com/AydinAbadi/Feather/tree/master/Update-Simulation-code
https://github.com/AydinAbadi/Feather/tree/master/Update-Simulation-code
https://doi.org/10.1007/978-3-030-88428-4_35
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-662-54970-4_9
https://www.apple.com/child-safety/pdf/Security_Threat_Model_Review_of_Apple_Child_Safety_Features.pdf
https://www.apple.com/child-safety/pdf/Security_Threat_Model_Review_of_Apple_Child_Safety_Features.pdf
https://doi.org/10.1007/978-3-030-75248-4_13
https://doi.org/10.1007/978-3-030-75248-4_13

118 A. Abadi et al.

14. Bhowmick, A., Boneh, D., Myers, S., Talwar, K., Tarbe, K.: The Apple
PSI system (2021). https://www.apple.com/child-safety/pdf/Apple PSI System
Security Protocol and Analysis.pdf

15. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

16. Branco, P., Döttling, N., Pu, S.: Multiparty cardinality testing for threshold private
set intersection. IACR Cryptology ePrint Archive (2020)

17. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: CCS (2007)

18. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

19. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: ACM CCS (2017)

20. Dorn, W.S.: Generalizations of Horner’s rule for polynomial evaluation. IBM J.
Res. Dev. 6(2), 239–245 (1962)

21. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applica-
tions to contact tracing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 29

22. Financial Action Task Force (FATF): Stocktake on data pooling, collaborative
analytics and data protection (2021). https://www.fatf-gafi.org/publications/
digitaltransformation/documents/data-pooling-collaborative-analytics-data-
protection.html

23. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

24. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey.
J. Symb. Comput. 31(1–2), 3–17 (2001)

25. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

26. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

27. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM CCS (2014)

28. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0 13

29. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
ePrint (2011)

30. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-030-64840-4_29
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13

Multi-party Updatable Delegated Private Set Intersection 119

31. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2007)
33. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-

tion. In: ASIACCS (2012)
34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

35. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms, 2nd edn. Addison-Wesley (1981)

36. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS (2016)

37. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: CCS (2017)

38. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection
protocol for outsourced datasets. In: IC2E (2014)

39. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 25

40. Qiu, S., Liu, J., Shi, Y., Li, M., Wang, W.: Identity-based private matching over
outsourced encrypted datasets. IEEE Trans. Cloud Comput. 6(3), 747–759 (2018)

41. Silva, J.: Banking on the cloud: results from the 2020 cloudpath survey (2020).
https://www.idc.com/getdoc.jsp?containerId=US45822120

42. Tsai, C.F., Hsiao, Y.C.: Combining multiple feature selection methods for stock
prediction: union, intersection, and multi-intersection approaches. Decis. Support
Syst. 50(1), 258–269 (2010)

43. Citrin, A.V., Sprott, D.E., Silverman, S.N., Stem Jr., D.E.: Adoption of internet
shopping: the role of consumer innovativeness. Ind. Manag. Data Syst. 100(7),
294–300 (2000)

44. Yang, X., Luo, X., Wang, X.A., Zhang, S.: Improved outsourced private set inter-
section protocol based on polynomial interpolation. Concurr. Comput. 30(1), e4329
(2018)

45. Zhang, E., Liu, F., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: CCSW (2019)

46. Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving match-
making via threshold PSI. IACR Cryptology ePrint Archive (2018)

47. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced
encrypted data. In: IC2E (2015)

https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://www.idc.com/getdoc.jsp?containerId=US45822120

	Multi-party Updatable Delegated Private Set Intersection
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Pseudorandom Functions and Permutation
	3.2 Hash Tables
	3.3 Horner's Method
	3.4 Bloom Filter
	3.5 Representing Sets by Polynomials

	4 Feather: Multi-party Updatable Delegated PSI
	4.1 An Overview of Feather's Definition
	4.2 An Overview of Feather's Protocols
	4.3 Feather Setup
	4.4 Feather Update Protocol
	4.5 Feather PSI Computation Protocol

	5 Asymptotic Cost Analysis
	5.1 Communication Complexity
	5.2 Computation Complexity

	6 Concrete Cost Evaluation
	6.1 Choice of Parameters
	6.2 Concrete Communication Cost Analysis
	6.3 Concrete Computation Cost Analysis

	7 Conclusion
	References

