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Abstract. We present MPCCache, an efficient Multi-Party Cooperative
Cache sharing framework, which allows multiple network operators to
determine a set of common data items with the highest access frequencies
to be stored in their capacity-limited shared cache while guaranteeing the
privacy of their individual datasets. The technical core of our MPCCache
is a new construction that allows multiple parties to compute a specific
function on the intersection set of their datasets, without revealing both
the private data and the intersection itself to any party.

We evaluate our protocols to demonstrate their efficacy and practical-
ity. The numerical results show thatMPCCache scaleswell to large datasets
and achieves a few hundred times faster compared to a baseline scheme
that optimally combines existing MPC protocols.

1 Introduction

The explosive growth of data traffic due to the proliferation of wireless devices
and bandwidth-hungry applications leads to an ever-increasing capacity demand
across wireless networks to enable scalable wireless access with high quality of
service (QoS). This trend will likely continue for the near future due to the emer-
gence of new applications like augmented/virtual reality, 4K/8K UHD video, and
tactile Internet [13]. Thus, it is imperative for mobile operators to develop cost-
effective solutions to meet the soaring traffic demand and diverse requirements
of various services in the next generation communication network.

Enabled by the drastic reduction in data storage cost, edge caching has
appeared as a promising technology to tackle the aforementioned challenges in
wireless networks [3]. In practice, many users in the same service area may
request similar content such as highly-rated Netflix movies. Furthermore, most
user requests are associated with a small amount of popular content. Hence,
by proactively caching popular content at the network edge (e.g., at base sta-
tions, edge clouds) in advance during off-peak times, a portion of requests during
peak hours can be served locally right at the edge instead of going all the way
through the mobile core and the Internet to reach the origin servers. The new
edge caching paradigm can significantly reduce duplicate data transmission, alle-
viate the backhaul capacity requirement, mitigate backbone network congestion,
increase network throughput, and improve user experience [1,3,13,37].
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Motivation. With edge caching, the advantages brought by cooperation become
clear. Each operator can maintain a private cache and share a shared cache with
others. Although the benefits of edge caching have been studied extensively in
the previous literature along with many real-world deployments [1,3,37], most of
the existing works on cooperative edge caching consider cooperation among edge
caches owned by a single operator only [27,37,38]. The potential of cache cooper-
ation among multiple operators has been overlooked. For cooperative cache shar-
ing, the data privacy of individual Telcos is important. For example, if TelcoA
knows the access pattern of subscribers of TelcoB, TelcoA can learn characteris-
tics of TelcoB’s subscribers and design incentive schemes and services to attract
these subscribers to switch to TelcoA. Therefore, it is imperative to study vari-
ous mechanisms that provide the benefits of cache sharing without compromising
privacy.

Contributions. We introduce an MPCCache scheme to tackle the cooperative
content caching problem at the network edge where multiple semi-honest par-
ties (i.e., network operators) can jointly cache common data items in a shared
cache. The problem is to identify the set of common items with the highest
access frequency to be cached in the shared cache while respecting the privacy
of each individual party. To the best of our knowledge, we are among the first
to realize and formally examine the multi-party cooperative caching problem by
exploiting the non-rivalry of cached data items, and tackle this problem through
the lens of secure multi-party computation. We introduce an efficient construc-
tion that outputs only the result of a specific function computed securely on the
intersection set, (i.e., find k best items in the intersection set) without reveal-
ing the private data of individual parties as well as the intersection itself to
any party, and works for the multi-party setting with more than two parties. In
addition, we propose an efficient top-k algorithm that achieves an approximate

log2(m)(
log(k)+2

)
log(k)

× improvement compared with the prior top-k algorithms, where

m is the size of the dataset.
We demonstrate the practicality of our protocol with experimental numbers.

For instance, for the setting of 8 parties each with a data-set of 216 records,
our decentralized protocol requires 5 min to compute k-priority common items
for k = 28. We also propose an optimized server-aid MPCCache construction,
which is scalable for large datasets and a number of parties. With 16 parties,
each has 220 records, our optimized scheme takes only 8 min to compute the
k-priority common items for k = 28. MPCCache aims at proactive caching where
caches are refreshed periodically (e.g., hourly). Therefore, the running time of
MPCCache is practical in our application.

In addition to cooperative cache sharing as our main motivation, we believe
that the proposed techniques can find applications in other areas as well.

2 Related Work and Technical Overview of MPCCache

Consider a single party with a set of items S. Each item includes an identity
x (i.e., a file name, a content ID) and its associated value v. For each set S,
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Parameters: n parties Pi∈[n], each has mi items, a threshold k, where k is much
smaller than the intersection size.
Functionality:
• Wait for an input Si = {(xi

1, v
i
1), . . . , (xi

mi
, vi

mi
)} ⊂ ({0, 1}κ, {0, 1}θ) from Pi

• Let I =
⋂

i∈[n]{xi
1, . . . , x

i
mi

} to be the intersection set. For each x� ∈ I, compute
the sum v� of associated values, i.e., v� =

∑n
i=1 vi

ji where (x�, vi
ji) ∈ Si

• Give parties {x�
1, . . . , x

�
k} where v�

1 , . . . , v�
k are k largest numbers among

v�
1 , . . . , v�

|I|.

Fig. 1. The MPCCache functionality

an element (x, v) is said to belong to a set of k-priority elements of S if its
associated value v is one of the k-largest values in S. Note that the value of
each content item may represent the number of predicted access frequency of
the content or the benefit (valuation) of the operator for the cached content.
Each network operator has its own criteria to define the value for each content
that can be stored in the shared edge cache space. How to define the value for
each content is beyond the scope of this work. In this work, we assume that the
parties are truthful by using their true valuations for each content item in their
databases. It is because the access frequency of each party to each cached file
is measurable and known. Additionally, some economic penalty schemes can be
used to enforce truthfulness as mentioned in the full version of the paper [25].

Since the cache is shared among the operators, they would like to store only
common content items in the cache. Here, a common item refers to an item
(based on identity) that is owned by every party. The common items with the
highest values will be placed in the shared cache. The value of a common item
is defined as the sum of the individual values of the operators for the item. Con-
cretely, we consider the cooperative caching problem in the multi-party setting
where each party Pi has a set Si = {(xi

1, v
i
1), . . . , (x

i
mi

, vi
mi

)}. Without loss of
generality, we assume that all parties have the same set size m. An item (x�, v�)
is defined to belong to the set of the k-priority common elements if it satisfies
the two following conditions: (1) x� is the common identity of all parties; (2)
(x�, v�) are the k-priority elements of S� = {(x�

1, v
�
1), . . . , (x

�
|I|, v

�
|I|)}, where v�

i is
the sum of the values associated with these common identities from each party,
and I =

⋂
i∈[n]{xi

1, . . . , x
i
mi

} is the intersection set with its size |I|. In the setting,
we consider the input datasets of each Pi contain proprietary information, thus
none of the parties are willing to share its data with the other. We describe the
ideal functionality of MPCCache in Fig. 1. For simplicity, we remove under-script
of the common item x� and clarify that a pair (x�, vi

ji
) ∈ Si belongs to Pi.

A closely related work to MPCCache is a private set intersection (PSI).
Recall that the functionality of PSI enables n parties with respective input sets
Xi∈[n] to compute the intersection itself

⋂
i∈[n] Xi without revealing any infor-

mation about the items which are not in the intersection. However, MPCCache
requires to evaluate a top-K computation on the top of the intersection

⋂
i∈[n] Xi

while also keeping the intersection secret from parties. The work [8,21,29,32]
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proposed optimized circuits for computing on the intersection by deciding which
items of the parties need to be compared. However, their constructions only
work for the two-party setting. Most of the existing multi-party PSI construc-
tions [10,17,20,24,33] output the intersection itself. Only very few works [18,23]
studied some specific functions on the intersection. While [18] does not deal
with the intersection set of all parties (in particular, an item in the output set
in [18] is not necessarily a common item of all parties), [23] finds common items
with the highest preference (rank) among all parties. [23] can be extended to
support MPCCache which is a general case of the rank computation. However,
the extended protocol is very expensive since if an item has an associated value
v, [23] represents the item by replicating it v times. For ranking, their solution
is reasonable with small v but for our MPCCache it is not suitable since v can
be a very large value. We describe a detailed discussion in the full version of
the paper [25]. The work of [31] proposes MPCircuits, a customized MPC circuit.
One can extend MPCircuits to identify the secret share of the intersection and
use generic MPC protocols to compute a top-k function on the secret-shared
intersection set. However, the number of secure comparisons inside MPCircuits
is large and depends on the number of parties. A concurrent and independent
work by Chandran et al. [7] is the state-of-the-art multi-party circuit-PSI, but
only supports a weaker adversary, who may corrupt at most t < n/2 the parties.
Moreover, in terms of theoretical complexity comparisons, [7] is expensive than
ours. We explicitly compare our proposed MPCCache with the MPCircuits and
[7] in Sect. 6.3.

Our decentralized MPCCache construction contains two main phases. The
first one is to obliviously identify the common items (i.e., items in the intersection
set) and aggregate their associated values of the common items in the multi-
party setting. In particular, if all parties have the same x� in their set, they
obtain secret shares of the sum of the associated values v� =

∑n
i=1 vi

ji
where

(x�, vi
ji

) ∈ Si. Otherwise, v� equals to zero and it should not be counted as
a k-priority element. A more detailed overview of the approach is presented in
Sect. 4. It is worth mentioning that the first phase does not leak the intersection
set to any party. The second phase takes these secret shares which are either
the zero value or the correct sum of the associated values of common items,
and outputs k-priority items. To privately choose the k-priority elements that are
secret shared by n parties, one could study top-k algorithms.

In MPC setting, a popular method for securely finding the top-k elements
is to use an oblivious sort (i.e., parties jointly sort the dataset in decreasing
order of the associated values, and pick the k largest values). The most practical
algorithm is Batcher’s network [4], which computational and communication
complexity are O(m log2(m)) and O(�m log2(m)), respectively, where m is the
size of the dataset and � is the bit-length of the element (see the full version
of the paper [25] for more detail). To output the index of the k largest values,
we also need to keep track of their indexes, therefore, the total communication
complexity of oblivious Batcher’s network is O((�+log(m))m log2(m)). Another
approach to compute k-priority elements is to use an oblivious heap that allows



84 D. T. Nguyen and N. Trieu

to get a maximum element from the heap (ExtractMax). This solution requires
to call ExtractMax k times, which leads to a number of rounds of the interaction
of at least O(k log(m)).

In MPCCache, the size of an edge cache k is usually much smaller than the size
of the dataset m. In addition, it is also much smaller than the caching facility at
the core of the network operator. Since we are motivated by applications where
k � m, we propose a new protocol with computational and communication
overhead of O(m log2(k)) of secure comparisons and O((� + log(m))m log2(k))
bits, respectively. Our protocol requires O(log(m)) rounds. Concretely, we show
an approximate log2(m)(

log(k)+2
)
log(k)

× improvement compared with the prior work.

Recently, [9] presents an approximate top-K selection with complexity of
O(m+k2) comparisons and O((�+log(m))(m+k2) bits. One could integrate their
algorithm in the second phase of our scheme to achieve better performance. In
applications where exact top-K selection is required, our k-priority is preferable.

Our decentralized protocol supports the full corrupted majority, which means
that if any subset of parties is corrupted, they learn nothing except the protocol
output. In this paper, we also present the optimization for MPCCache in the
non-colluding semi-honest setting in which we assume to know two non-colluding
parties. This model can be considered as the server-aided model where clients
obliviously distribute (secret share) their private database to two non-colluding
servers. Our optimized server-aided MPCCache construction achieves almost the
same cost as that of our two-party decentralized protocol.

3 Cryptographic Preliminaries

In this work, the computational and statistical security parameters are denoted
by κ, λ, respectively. We use [.] notation to refer to a set, and [i, j] to denote the
set {i, . . . , j}. The additive secret sharing of a value x is defined as �x�.

Secret Sharing. To additively secret share �x� an �-bit value x of the party
Pi to other parties, he first chooses xi ← Z2� uniformly at random such that
x =

∑n
j=1 xj mod 2�, and then sends each xj to the party Pj . For ease of

composition, we omit the mod. To reconstruct an additive shared value �x�, all
parties Pj sends �x� = xj to the party Pi, who locally reconstructs the secret
value by computing x ←

∑n
i=1 xj . In this work, we also use Boolean sharing in

the binary field. Boolean sharing can be seen as additive sharing in the field Z2.

Oblivious Key-Value Store (OKVS). An OKVS [14] is a data structure
in which a sender, holding a set of key-value mapping Γ = {(ki, vi), i ∈ [n]}
with pseudo-random vi, wishes to give that mapping over to a receiver who can
evaluate the mapping on any input but without revealing the keys ki. Formally,
an OKVS consists of two algorithms: Encode(Γ ) → T is a randomized algorithm
that takes as input a set of n key-value pairs Γ = {(ki, vi)i∈[n]} from the domain
K × V, outputs a table T ; and Decode(k, T ) → v is a deterministic algorithm
that takes as input a table T , a key k and outputs a value v.
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The correctness of the OKVS is that if for all key-value pairs A ⊆ K × V
with distinct keys and pseudo-random values, Encode(A) = T and (k, v) ∈ A
then Decode(k, T ) = v. An OKVS is secure if the values vi are chosen uniformly
then the output of Encode hides the choice of the keys ki.

Garbled Circuit. An ideal functionality GC [5,16,36] is to take the inputs xi

from party Pi, and computes a function f on them without revealing the parties’
inputs. We use Yao [36] and BMR-style protocols [5,6] for two-party and multi-
party GC, respectively. In our protocol, we use f as “less than” and “equality”
where inputs are secretly shared amongst all parties. For example, a “less than”
GC takes the parties’ secret shares �x� and �y� as input, and output the shares
of 1 if x < y and 0 otherwise. We denote the GC by �z� ← GC(�x�, �y�, f).

Oblivious Sort and Merge. The main building block of the sorting algorithm
is Compare-Swap operation that takes the secret shares of two values x and y,
then compares and swaps them if they are out of order. It is typical to measure
the complexity of oblivious sort/merge based on the number of Compare-Swap.

Oblivious Sort: We denote the oblivious sorting by {�xi�i∈[m]} ←
Fobv-sort({�xi�i∈[m]} which takes the secret share of m values and returns their
refresh shares in which all xi∈[m] are sorted in decreasing order. As discussed
in [25], Batcher’s network for oblivious sort requires 1

4m log2(m) Compare-Swap
operations.

Oblivious Merge: Given two sorted sequences, each of size m, we also need
to merge them into a sorted array, which is part of the Batcher’s obliv-
ious merge sort. It is possible to divide the input sequences into their
odd and even parts, and then combine them into an interleaved sequence.
This oblivious merge requires 1

2m log(m) Compare-Swap operations and has
a depth of log(m). We denote the oblivious merge by {�z1�, . . . , �z2m�} ←
Fobv-merge({�x1�, . . . , �xm�}, {�y1�, . . . , �ym�}).

4 Our Decentralized MPCCache Construction

Recall that our MPCCache construction contains two main parts. The first phase
allows parties to securely generate shares of the sum of the associated values
under a condition. More precisely, if all parties have x in their sets then the sum of
their obtained shares is equal to the sum of the associated values for the common
x. Otherwise, the sum of the shares is zero. These shares are forwarded as input
to the second phase, which ignores the zero sum and returns only k-priority
common items. For the second phase, we first present the Fk-prior functionality
of computing k-priority elements in Fig. 2, and use it as a black box in our
MPCCache construction. We describe our Fk-prior construction in Sect. 4.3.

4.1 A Special Case of Our First Phase

We start with a special case. Suppose that each party Pi∈[n] has only one item
(xi, vi) in its set Si. Our first phase must satisfy the following conditions:
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Fig. 2. The k-priority functionality (Fk-prior)

(1) If all xi are equal, the parties obtain secret shares of the sum of the associated
values as v� =

∑n
i=1 vi.

(2) Otherwise, the parties obtain secret shares of zero.
(3) The protocol is secure in the semi-honest model, against any number of

corrupt, colluding parties.

The requirement (3) implies that all corrupt parties should learn nothing
about the input of honest parties. To satisfying (3), the protocol must ensure
that parties do not learn which of the cases (1) or (2) occurs.

We assume that there is a leader party (say P1) who interacts with other
parties to output (1). The protocol works as follows. For (xi, vi), Pi�=1 chooses
a secret si ∈ {0, 1}θ uniformly at random, and defines wi def= vi − si (for
ease of composition we omit the mod). He then computes a one-time pad
as OTP(xi, wi) = xi ⊕ wi (for simplicity, we assume that the domain size
of xi and wi are equal; it is also possible to use H(xi) instead of the orig-
inal item xi, where H : {0, 1}� → {0, 1}� is a collision-resistant hash func-
tion). The Pi�=1 then sends the ciphertext to the leader P1. Using his item x1,
the P1 decrypts the received ciphertext and obtains wi if x1 = xi, random
otherwise. Clearly, if all parties have the same x1, P1 receives wi = vi − si

from Pi�=1. Now, P1 computes s1
def= v1 +

∑n
i=2 wi. It easy to verify that∑n

i=1 si = (v1 +
∑n

i=2 wi) +
∑n

i=2 si = v1 +
∑n

i=2(w
i + si) =

∑n
i=1 vi = v�.

By doing so, each Pi has an additive secret share si of v� as required in (1).
In case that not all xi are equal, the sum of all the shares

∑n
i=1 si is a random

value since P1 receives a random (incorrect) wi from some party/parties. To
satisfy (2), we use GC to turn the random sum

∑n
i=1 si to zero. However, for

(3), the random sum and the correct sum are indistinguishable from the view
of all parties. One might make use of GC by computing n equality comparisons
to check whether all xi is equal. If yes, the circuit gives refreshed shares of
the correct sum, otherwise shares of zero. This solution requires O(n) equality
comparisons inside MPC. We aim to minimize the number of equality tests.

We improve the above solution using zero-sharing [2,20,22]. An advantage of
the zero-sharing is that the party can non-interactively generate a Boolean share
of zero after a one-time setup. Let’s denote the zero share of Pi to be zi. We
have

⊕n
i=1 zi = 0. Similar to the protocol described above to achieve (1): Instead

of (xi, vi), the Pi uses (xi, zi) as input, and receives a Boolean secret share ti.
If all xi are equal, the XOR of all obtained shares is equal to the XOR of all
associated values zi. In other words,

⊕n
i=1 ti =

⊕n
i=1 zi = 0. Otherwise,

⊕n
i=1 ti
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is random. These obtained shares are used as an if condition to output either
(1) or (2). Concretely, parties jointly execute a garbled circuit to check whether⊕n

i=1 ti = 0. If yes (i.e. parties have the same item), the circuit re-randomizes
the shares of v�, otherwise, generates the shares of zero. The zero-sharing based
solution requires only one equality comparison inside MPC.

We now describe a detailed construction to generate zero-sharing [20] and
how to compute ti, wi more efficiently.

a) Zero-sharing key setup: one key is shared between every pair of parties. For
example, the key kij is for a pair (Pi, Pj) where i, j ∈ [n], i < j. It can be
done as Pi randomly chooses ki,j ← {0, 1}κ and sends it to Pj . Let’s denote a
set of the zero-sharing keys of Pi as Ki = {ki,1, . . . , ki,(i−1), ki,(i+1), . . . , ki,n}.

b) Generating zero share: Given a PRF F : {0, 1}κ × {0, 1}∗ → {0, 1}∗, a set of
keys Ki and a value x, each Pi locally computes a zero share of x as zi =⊕n

j=1 F (ki,j , x). Clearly, each term F (ki,j , x) appears exactly twice in the

expression
⊕n

i=1 zi. Thus,
⊕n

i=1 zi = 0. We define f z(Ki, x) def=
⊕n

j=1 F (kij , x)
for Pi to generate the zero share of x.

c) Computing s1 and t1: the Pi�=1 chooses random si and ti. For an input (xi, vi)
and a zero share zi ← f z(Ki, x

i), he computes wi def= vi − si and yi def= zi ⊕ ti

and sends the one-time pad OTP(xi, yi||wi) to the leader P1 (assume that
the length of xi and yi||wi are equal). Using his item x1 as a decryption
key, P1 obtains the correct yi||wi if x1 = xi, random otherwise. P1 computes
s1

def= v1 +
∑n

i=2 wi and t1
def= (

⊕n
i=2 yi) ⊕ z1. At this point, each Pi has secret

shares si and ti such that
∑n

i=1 si = v� and
⊕n

i=1 ti = 0 if all xi are equal.

4.2 A General Case of Our First Phase

So far, we only consider the simple case where each party has only one item.
In this section, we show how to efficiently extend our protocol to support the
general case where m > 1. At the high-level idea, we use hashing scheme to map
the common items into the same bin and then reply on OKVS to compress each
bin into a share so that the parties can evaluate MPCCache bin-by-bin efficiently.

Similar to many PSI constructions [19,28], we use two popular hashing
schemes: Cuckoo and Simple. The leader P1 uses Cuckoo hashing [26] with k̃ = 3
hash functions to map his {x1

1, . . . , x
1
m} into β = 1.27m bins. He then pads his bin

with dummy items so that each bin contains exactly one item. This step is to hide
his actual Cuckoo bin size. On the other hand, each Pi�=1 use the same k̃ Cuckoo
hash functions to place its {xi

1, . . . , x
i
m} into β bins (so-called Simple hashing),

each item is placed into k̃ bins with high probability. The Pi�=1 also pads his bin
with dummy items so that each bin contains exactly γ = 2 log(m) items. Accord-
ing to [12,28], the parameters β, k̃, γ are chosen so that with the probability 1−2−λ

every Cuckoo bin contains at most one item and no Simple bin contains more than
γ items. More detail is described in the full version of the paper [25].

For each bin bth, P1 and Pi�=1 can run a special-case protocol described in
Sect. 4.1. In particular, let Bi[b] denote the set of items in the bth bin of Pi. All
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parties locally generate zero shares zi
j ← f z(Ki, x

i
j). The Pi�=1 locally chooses

random values si
b and tib. For each (xi

j , v
i
j) ∈ Bi[b], Pi�=1 computes wi

j
def= vi

j − si
b

and yi
j

def= zi
j ⊕ tib and sends the one-time pad ciphertext OTP(xi

j , y
i
j ||wi

j) to the
leader P1. Using his item x1

b ∈ B1[b] as a decryption key, P1 obtains ŷi
j ||ŵi

j which
equals yi

j ||wi
j if x1

b = xi
j , random otherwise. Since there are γ values ŷi

j ||ŵi
j , each

for a pair in Bi[b], obtained from Pi�=1, the P1 has γn−1 possible ways to choose
ji ∈ [γ] and compute his share s1b

def= v1
b +

∑n
i=2 ŵi

ji
and t1b

def=
⊕n

i=2 ŷi
ji

⊕z1b . Thus,
this solution requires γn−1 equality comparisons to check all combinations of
whether

⊕n
i=1 tib = 0 to determine whether x1

b is common.
To improve the above computation, we rely on an OKVS data structure in

order that P1 learns from Pi�=1 only one pair {ŷi, ŵi} per bin, instead of γ pairs
per bin. More precisely, for each bin b, the party Pi�=1 creates a set of points
Γ i

b = {(xi
j , y

i
j ||wi

j) | xi
j ∈ Bi[b]}, encodes it as Encode(Γ i

b ) → T i
b and sends the

OKVS table T i
b to the leader P1. Thanks to the oblivious property of OKVS, we

no longer need the one-time pad encryption. Using x1
b , the P1 decodes T i

b and
obtains ŷi

b||ŵi
b ← Decode(x1

b , T i
b ). Note that, if x1

b ∈ Bi�=1[b], ŷi
b||ŵi

b equals to a
yi

ji
||wi

ji
that was encoded in T i

b , and otherwise, random.
In summary, if all parties have x1

b in their bth bin, the leader P1 receives
ŵi

b = vi
ji

−si
b and ŷi

b = zi
j ⊕ tib from the corresponding OKVS execution involving

Pi�=1. The leader computes s1b
def= v1

b +
∑n

i=2 ŵi
b. If all parties have x1

b , we have∑n
i=1 si

b is equal to the sum of the associated values corresponding with the
identity x1

b . Similarly, when defining t1b
def= (

⊕n
i=2 ŷi

b) ⊕ z1b , we have
⊕n

i=1 tib = 0
if all parties have x1

b . Consider a case that some parties Pi�=1 might not hold the
item x1

b ∈ B1[b] that P1 has, the corresponding OKVS with these parties gives
P1 random ŷi

b||ŵi
b. Thus t1b

def= (
⊕n

i=2 ŷi
b) ⊕ z1b is random, so is

⊕n
i=1 tib.

Similar to Sect. 4.1, we use GC to check whether
⊕n

i=1 tib = 0 for the bin b,
and outputs either refreshed shares of

∑n
i=1 si

b or shares of zero. Since P1 only
has one s1b , the protocol only needs to execute one comparison circuit per bin,
thus the number of equality tests needed is linear in the number of the bins.

Even though Pi�=1 uses the same offset si
b, t

i
b per bin, all wi

j and yi
j are random

(assume that vi
j is randomly distributed). In addition, the OKVS only gives P1

one pair per bin. Therefore, as long as the OKVS used is secure, so is our first
phase of MPCCache construction. We formalize and prove secure our first phase
which is presented, together with proof of our MPCCache security in Sect. 4.4.

4.3 Our Second Phase: k-priority Construction

In this section, we measure the complexity of our k-priority protocol based on
the number of secure Compare-Swap operations. As discussed in Sect. 2, one could
use oblivious sorting to sort the input set and then take the indexes of k biggest
values. This approach requires about 1

4m log2(m) Compare-Swap operations and
the depth of log(m). In the following, we describe our simple construction which
costs

(
1
4 log(k)+ 1

2

)
m log(k)− 1

2k log(k) Compare-Swap with the same depth. The

proposed algorithm achieves an approximate log2(m)(
log(k)+2

)
log(k)

× improvement.
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Fig. 3. Our decentralized MPCCache construction.

The main idea of our construction is that parties divide the input set into
�m

k 	 groups, each has k items except possibly the last group which may have
less than k items (without loss of generality, we assume that m is divisible by
k). Parties then execute an oblivious sorting invocation within each group to
sort these values of this group in decreasing order. Unlike the recent work [9]
for approximate top-K selection where it selects the maximum element within
each group for further computation, we select the top-K elements of two neigh-
bor groups. Concretely, the oblivious merger is built on top of each two sorted
neighbor groups. We select only a set of the top-K elements from each merger
and recursively merge two selected sets until reaching the final result.

Sorting each group requires 1
4k log2(k) Compare-Swap invocations, thus, for

m
k groups the total Compare-Swap operations needed is m

k

(
1
4k log2(k)

)
. The
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oblivious odd-even mergers are performed in a binary tree structure. The merger
of two sorted neighbor groups, each has k items, is computed at each node of
the tree. Unlike the sorting algorithm, we truncate this resulted array, maintain
the secret shares of only k largest sorted numbers among these two groups, and
throw out the rest of k numbers. By doing so, instead of 2k, only k items are for-
warded to the next odd-even merger. The number of Compare-Swap required for
each merger does not blow up, and is equal to 1

2k log(k). After (m
k −1) recursive

oblivious merger invocations, parties obtain the secret share of the k largest val-
ues among the input set. In summary, our secure k-priority construction requires(
1
4 log(k) + 1

2

)
m log(k) − 1

2k log(k) Compare-Swap operations.
The above discussion gives parties the secret shares of k largest values. To

output their indexes, before running our k-priority protocol we attach the index
with its value using the concatenation ||. Namely, we use (� + �log(m)	)-bit
string to represent the input. The first � bits to store the additive share �vi� and
the last �log(m)	 bits to represent the index i. Therefore, within a group the
oblivious sorting takes {�vi�||i, ..., �vi+k−1�||(i + k − 1)} as input, use the shares
�vj�,∀j ∈ [i, i+k−1] for the secure comparison. The algorithm outputs the secret
shares of the indexes, re-randomizes the shares of the values and swaps them if
needed. The output of the modified oblivious sorting is {�vi1 ||i1�, ..., �vik

||ik�}
where the output values {vi1 , . . . , vik

} ⊂ {vi, . . . , vi+k−1} are sorted. Similarly,
we modify the oblivious merger structure to maintain the indexes. At the end
of the protocol, parties obtain the secret share of the indexes of k largest values,
which allows them jointly reconstruct the secret indexes.

Figure 4 presents our k-priority construction which security proof is given in
the full version of the paper [25].

4.4 Putting All Together: MPCCache

We formally describe our semi-honest MPCCache construction in Fig. 3. From the
preceding description, the cuckoo-simple hashing maps the same items into the
same bin. Thus, for each bin #b, if parties have the same x1

b ∈ B1[b], they obtain
the secret share of the sum of all corresponding associated values. Otherwise,
they receive the secret share of zero (in practice, the sum of all parties’ associated
values for items in the intersection is not equal to zero). In our protocol, the
equation

⊕n
i=1 tib = 0 determines whether the item x1

b is common. We choose
the bit-length of the zero share to be λ + log(n) to ensure that the probability
of the false positive event for this equation is overwhelming (1 − 2−λ).

The second step of the online phase takes the shares from parties, and returns
the indexes of k-priority common elements. Since k must be less than or equal
to the intersection size, the obtained results will not contain an index whose
value is equal to zero. In other words, the output of our protocol satisfies the
MPCCache conditions since the identity is common and the sum of the values
associated corresponding to this identity is k-largest.

The security of our decentralized MPCCache is based on OKVS and Fk-prior

primitives. Its formal proof is given in the full version of the paper [25].
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Fig. 4. Our secure k-priority construction

5 Our Server-Aided MPCCache

In this section, we show an optimization to improve the efficiency of MPCCache.
We assume that P1 and P2 are two non-colluding servers, and we call other
parties as users. The optimized protocol consists of two phases. In the first one,
each user interacts with the servers so that each server holds the same secret
value, chosen by all users, for the common identifies that both servers and all
users have. The servers also obtain the additive secret share of the sum of all
the associated values corresponding to these common items. In a case that an
identity xe

j of the server Pe∈{1,2} is not common, this server receives a random
value. This phase can be considered as each user distributes a share of zero
and a share of its associated value under a “common” condition. Note that,
if even two servers collude they only learn the intersection items and nothing
else, which provides a stronger security guarantee than the standard server-aided
setting mentioned in the full version [25]. Our second phase involves only the
servers’ computation, which can be done by our 2-party decentralized MPCCache
described in Sect. 4.4.
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Parameters:
• Set size m, a bit-length θ, security parameter λ, and n parties Pi∈[n].
• A two-party decentralizedMPCCache, and an OKVS with Encode and Decode.

Input of party Pi∈[n]: A set of key-value pairs Si = {(xi
1, v

i
1), . . . , (xi

m, vi
m)}

Protocol:
I. Centralization.
1. Each user Pi∈[3,n] chooses random zi

j ← {0, 1}λ+log(n) and si
j ← {0, 1}θ,

and generates two sets Γ e,i = {(xi
j , z

i
j ||we,i

j )}, where w1,i
j

def= si
j and w2,i

j

def=
vi

j − si
j .

2. Each user Pi∈[3,n] encodes Γ e,i as Encode(Γ e,i) → T e,i and sends T e,i to
Pe∈{1,2} who computes Decode(xe

j , T e,i) and obtains ẑe,i
j ||ŵe,i

j .

3. For j ∈ [m], each Pe∈{1,2} computes ye
j

def=
⊕n

i=3 ẑe,i
j and se

j
def= ve

j+
∑n

i=3 ẑe,i
j .

II. Server-working. Two servers Pe∈{1,2} invoke an instance of MPCCache
where Pe’s input is a set {(ye

1, s
e
1), . . . , (ye

m, se
m)} and learns k-priority com-

mon items.

Fig. 5. Our server-aided MPCCache construction.

More concretely, in the first phase, each user Pi∈[3,n] chooses random zi
j ←

{0, 1}λ+log(n) and si
j ← {0, 1}θ, and then defines w1,i

j
def= si

j , and w2,i
j

def= vi
j − si

j .
Next, Pi∈[3,n] generates two sets of key-value points Γ e,i = {(xi

j , z
i
j ||w

e,i
j )},∀e ∈

{1, 2}, computes T e,i = Encode(Γ e,i), and sends T e,i to the server Pe. Let’s
ẑe,i
j ||ŵe,i

j ← Decode(xe
j , T e,i) be an output of the OKVS decoding computed by

Pe∈{1,2}. If two servers have the same item x1
k = x2

k′ which is equal to the item
xi

j of the user Pi, we have ẑ1,i
k = ẑ2,i

k′ = zi
j and ŵ1,i

k + ŵ2,i
k′ = vi

j (since ŵ1,i
k = si

j

and ŵ2,i
k′ = vi

j −si
j). Each server Pe∈{1,2} defines ye

j
def=

⊕n
i=3 ẑe,i

j as an XOR of all
the obtained values ẑe,i

j corresponding to each item xe
j∈[m]. For two indices k and

k′, we have y1
k =

⊕n
i=3 ẑ1,i

j =
⊕n

i=3 ẑ2,i
j = y2

k′ if all parties has x1
k = x2

k′ in their
set. This property allows servers obliviously determinate the common items (i.e.,
checking whether y1

k = y2
k′ ,∀k, k′ ∈ [m]). Moreover, let se

j
def= ve

j +
∑n

i=3 ŵe,i
j . For

two indices k and k′, s1k and s2k′ are secret shares of the sum of the associated
values for the common item x1

k = x2
k′ In summary, after this first phase, each

server Pe∈{1,2} has a set of points {(ye
1, s

e
1), . . . , (y

e
m, se

m)} where y1
k = y2

k′ if all
parties have the same identity x1

k = x2
k′ , and s1k + s2k′ is equal to the sum of the

associated values of the common x1
k. Therefore, we reduce the problem of n-party

MPCCache to the problem of a two-party case where each server Pe∈{1,2} has a
set of points {(ye

1, s
e
1), . . . , (y

e
m, se

m)} and wants to learn the k-priority common
items. We formally describe the optimized MPCCache protocol is in Fig. 5.

Recall that ye
j =

⊕n
i=3 ẑe,i

j ,∀e ∈ {1, 2}, j ∈ [m]. Let i be the highest index
of a user Pi∈[3,n] who did not have the identity x1

k in their input set. That user
does not insert a pair {x1

k, something} to his set Γ e,i for the OKVS in Step (I.1).
Thus, P1 obtains a random ẑ1,i

k in Step (I.3). The protocol is correct except in
the event of a false positive—i.e., y1

k = y2
k′ for some x1

k not in the intersection.
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By setting � = λ + 2 log2(n), a union bound shows that the probability of any
item being erroneously included in the intersection is 2−λ.

The security proof of our server-aided MPCCache protocol is essentially simi-
lar to that of the decentralized protocol, which is presented in the full version [25].

Discussion. From our two-server-aided framework, our protocol can be
extended to support a small set of servers (e.g., t servers, t < n). More precisely,
in the centralization phase, each user Pi∈[t+1,n] secretly shares their associated
value vi

j∈[m] to the servers Pe∈[t] via OKVS. Each server aggregates the share
of the associated value corresponding to their item. The obtained results are
forwarded to the server-working phase in which Pe∈[t] jointly run MPCCache
to learn k-priority common items. The main cost of our server-aided construc-
tion is dominated by the second phase. Hence, the performance of t-server-aided
scheme is similar to that of decentralized MPCCache performed by t parties.
We are interested in two-server aided architecture since we can take advantage
of efficient two-party secure computation for the k-priority and GC. Moreover,
the two-server setting is common in various cryptography schemes (e.g. pri-
vate information retrieval [11], distributed point function [15], private database
query [34]).

6 Implementation

We implement building blocks of MPCCache and do experiments on a single
Linux machine that has Intel Core i7 1.88 GHz CPU and 16 GB RAM, where
each party is implemented as a separate process. Computing cache sharing usu-
ally runs in the fast and low-latency edge network, especially with 5G technolo-
gies [1,3,13,37] as the servers of operators are typically placed closer to each
other (e.g., in edge clouds in the same area such as New York City). Thus, we
evaluate MPCCache over a simulated 10 Gbps network with 0.2 ms round-trip
latency. We assume there is an authenticated secure channel between each pair
of parties. Our MPCCache is very amenable to parallelization. Specifically, our
algorithm can be parallelized at the level of bins. In our evaluation, however, we
use a single thread to perform the computation between two parties.

All evaluations were performed with an identity and its associated value
input length 128 bits and θ = 16 bits, respectively, λ = 40, and κ = 128.
We use OKVS code from [14], garbled circuit from [35]. To understand the
scalability of our scheme, we evaluate it on the range of the number parties
n ∈ {4, 6, 8, 16}. Note that the dataset size m of each party is expected to be
not too large (e.g., billions). First, the potential of MPCCache is in 5G where
each shared cache is deployed for a specific region. Second, each operator chooses
only frequently-accessed files as an input to MPCCache because the benefit of
caching less-accessed files is small. Therefore, we benchmark our MPCCache on
the set size m ∈ {212, 214, 216, 218, 220}. To understand the performance effect of
the k values discussed in Sect. 4.3, we use k ∈ {26, 27, 28, 29, 210} in our k-priority
experiments, and compare its performance to the most common oblivious sort
protocol [30,35] which is based on Batcher’s network (ref. Sect. 2).
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Table 1. The total runtime (minute) and communication per item (KB) of our k-priority
construction and the state-of-the-art oblivious sort, where m is the dataset size.

m Running time Communication

Ours k-priority Sort [30,35] Ours k-priority Sort [30,35]

k = 27 k = 28 k = 29 k = 210 k = 27 k = 28 k = 29 k = 210

212 0.012 0.014 0.016 0.018 0.014 8.008 10.11 12.38 14.72 18.43

214 0.049 0.056 0.068 0.087 0.071 8.05 10.21 12.6 15.2 25.09

216 0.199 0.238 0.294 0.35 0.382 8.061 10.23 12.65 15.32 32.77

218 0.786 0.996 1.217 1.449 1.964 8.063 10.24 12.67 15.35 41.47

220 2.984 3.798 4.697 5.527 9.844 8.064 10.24 12.67 15.36 51.2

Table 2. The total runtime (minute) of our MPCCache constructions to find k-priority
common items, where the number of parties n, each with dataset size m.

Parameters Server-aided Decentralized

m n k = 26 k = 27 k = 28 k = 29 k = 210 k = 26 k = 27 k = 28 k = 29 k = 210

212 4 0.036 0.036 0.039 0.041 0.04 0.15 0.14 0.16 0.16 0.16

6 0.036 0.036 0.039 0.041 0.04 0.23 0.22 0.24 0.23 0.27

8 0.037 0.037 0.039 0.041 0.04 0.31 0.29 0.32 0.33 0.33

216 4 0.502 0.526 0.564 0.62 0.68 2.08 2.23 2.3 2.75 2.72

6 0.502 0.531 0.569 0.625 0.68 3.09 3.06 3.71 3.65 3.96

8 0.53 0.53 0.57 0.63 0.68 4.47 4.24 4.59 5.01 5.41

220 4 7.59 7.69 7.73 8.02 8.07 31.51 31.71 31.74 33.59 36.24

6 7.7 7.92 7.81 8.1 8.17 46.07 46.35 46.37 46.69 46.96

8 7.76 7.97 8.18 8.32 8.37 60.73 61.83 62.24 63.76 64.66

Table 3. The total runtime (minute) and communication cost per item (KB) of our
server-aided MPCCache with k = 28 for the number of parties n, each with set size m.

#party n Role Running time (minute) Communication (KB)

m = 212 m = 214 m = 216 m = 218 m = 220 m = 212 m = 214 216 m = 218 m = 220

4 User 0.002 0.003 0.088 0.324 1.202 0.58 0.66 0.73 0.81 0.88

Server 0.039 0.146 0.564 2.089 7.732 24.47 26.34 28.06 29.74 31.41

6 User 0.002 0.004 0.093 0.342 1.271 1.17 1.32 1.46 1.61 1.76

Server 0.039 0.147 0.569 2.1 7.813 24.77 26.67 28.43 30.14 31.85

8 User 0.002 0.004 0.095 0.35 1.291 1.75 1.97 2.19 2.42 2.64

Server 0.039 0.147 0.571 2.12 7.781 25.06 27 28.79 30.54 32.28

16 User 0.02 0.058 0.24 0.912 3.374 4.09 4.61 5.12 5.64 6.15

Server 0.047 0.167 0.598 2.155 7.833 26.23 28.32 30.26 32.15 34.04

6.1 k-priority Performance

Our k-priority requires
(
1
4 log(k) + 1

2

)
m log(k) − 1

2k log(k) Compare-Swap
instances. We use GC [5,36] to perform secure comparisons. Table 1 presents the
running time and communication cost of our k-priority for the different k values.
The cost is measured in KB per item as we would like to show an improved
performance factor of our proposed protocol compared to the state-of-the-art
oblivious sort as well as a performance change when increasing k. Thus, for
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Fig. 6. The total running time (red bar) in minute and communication cost (blue bar)
per item in KB of our k-priority and oblivious sort for Top-k and data set size m = 216.
(Color figure online)

m = 218 and k = 27, our approach shows 5.15× and 2.5× improvements in
terms of communication and computational costs, respectively.

To see more clearly the performance change for different k values, we present
the performance of our k-priority protocol using a bar chart in Fig. 6, and show
that there is a minor change in the running time when increasing k.

6.2 MPCCache Performance

Table 2 presents the total running time for the decentralized and server-aided
MPCCache. The main difference between these constructions is in the steps of
GC equality checks and k-priority. While the decentralized scheme requires all
participants to jointly compute these steps, in the server-aided framework only
two specific servers perform the computation. Thus, the former model is expen-
sive than the latter one but provides a stronger security guarantee where any
subset of corrupted parties learns nothing about the dataset of honest parties.

The numbers reported in Table 2 are for an end-to-end server-aided MPC-
Cache execution, which includes the user’s waiting time for the servers’s compu-
tation. As discussed Sect. 5, the server-aided protocol is asymmetric with respect
to the servers Pe∈{1,2} and other users. Table 3 presents the performance of dif-
ferent roles of the participants. Because the user only distributes its dataset to
two servers in the centralization phase, his workload is very light. The perfor-
mance of our server-aided MPCCache on the user’s side does not depend much on
the number of parties due to the parallelizability with a separate secure channel
between user and server. The server’s work is heavy due to equality checks and
k-priority. Table 3 shows that our protocol scales to a large number of parties.
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6.3 Comparison with Prior Work

We compare our protocols with recent related works [7,31]. One can extend
MPCircuits [31] to address the multi-party cooperative cache sharing problem
by following similar steps of MPCCache: the first phase is to compute the secret
share of the intersection. The second phase uses generic MPC protocols or our
k-priority to compute the top-k function on the obtained results. Recall that
MPCircuits only allows to compute secret-shared intersection items themselves.
It is based on a binary tree structure as [31] observed that the set intersection
of n sets can be expressed as a consecutive set intersection of two sets until
reaching the final result. Therefore, the intersection of two sets is computed
at each node of the tree, and the final intersection of all sets is computed at
the root of the tree. Using three operations as sort, merge, and compare, the
complexity of their garbled circuit is O(n2m� log(m)2) where � is the bit-length
of the element identity. To keep track θ-bit associated value of the identity, the
MPCircuits-based solution requires a complexity of O(n2m(� + θ) log2(m)). In
contrast, with the lightweight OKVS, our solution requires only a single equality
comparison per bin. Thus, the complexity of our circuit is O(nm(|z|+θ)), where
z is a bit-length of the zero share which is equal to min (�, λ + log(n)). It is easy
to see that the first phase of our solution is about n log2(m)× better than that of
MPCircuit-based approach. For example, with n = 8 and m = 220 our solution
shows about an 3, 200× improvement.

To hide the intersection set size, the output of the MPCircuits-based com-
putation at the root of the tree consists of mn secret shares of all intersection
and non-intersection items. As a result, the second phase of the baseline solu-
tion takes mn secret shares as an input of each party. On the other hand, our
MPCCache only takes β = 1.27m secret shares, each per bin.

A concurrent and independent work [7] is designed for a generic circuit-PSI
which only supports an honest majority (e.g., the number of colluding parties
is up to t < n/2). Their protocol is similar to MPCCache and consists of two
main phases. However, the first phase of [7] requires expensive steps (e.g., multi-
plication on secret-shared values) to compute the shares of intersection (Step 6
&7, [7, Figure 6]). Moreover, each participant (e.g. client) of [7] has a computa-
tion/communication complexity O(nm) and requires to participate in the mostly
full computation process. In contrast, in our server-aided protocol, the client does
not involve in the entire MPCCache computation process, thus, has commuta-
tion/communication complexity O(tm) which is independent of n. According
to [7, Table 4] for m = 220, n = 5, t = 2 their client expects to finish the first
phase in 25.48 s while ours requires only 13.02 s, an 1.96× improvement1. The
improvement factor is higher when the ratio n/t is larger.

For the second phase, [7] is not customized for the top-K computation. Based
on the theoretical analysis in Sect. 6.1 and numerical experiment in Sect. 4.3, we
expect that the second phase of MPCCache is about 1.7–3.3× faster than [7].

1 [7]’s implementation is not yet publicly available. Its benchmark machine is stronger
than ours, which is in favor of their protocol.
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