
Explainable Arguments

Lucjan Hanzlik1(B) and Kamil Kluczniak1,2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{lucjan.hanzlik,kamil.kluczniak}@cispa.saarland

2 Stanford University, Stanford, USA
kamil.kluczniak@stanford.edu

Abstract. We introduce an intriguing new type of argument systems
with the additional property of being explainable. Intuitively by explain-
able, we mean that given any argument under a statement, and any wit-
ness, we can produce the random coins for which the Prove algorithm
outputs the same bits of the argument.

This work aims at introducing the foundations for the interactive as
well as the non-interactive setting. We show how to build explainable
arguments from witness encryption and indistinguishability obfuscation.
Finally, we show applications of explainable arguments. Notably we con-
struct deniable chosen-ciphertext secure encryption. Previous deniable
encryption scheme achieved only chosen plaintext security.

1 Introduction

Deniability, first introduced by Dolev, Dwork, and Naor [30], is a notion that
received a considerable amount of attention because of its application to authen-
tication protocols. This property allows the user to argue against a third party
that it did not take part in a protocol execution. The usual argument made by
the user to the third party is that the server could simulate a valid communica-
tion transcript without actually interacting with the user.

A variant of deniability was considered in the case of encryption schemes
[15,16,63], where a public Expl algorithm allows anyone to open any ciphertext
to any message without the secret key. Since we can publicly open ciphertexts,
the random coins cannot serve as proof that a particular message is encrypted.

A similar concept was recently introduced to ring signatures [58] and called
unclaimability. The property states that no one can claim to be the signer of a
particular ring signature σ. The premise is similar. There exists an Expl algorithm
that allows any of the ring members to generate random coins that can be used
to receive the same σ.

Deniability and unclaimability are related notions. In the former, we consider
the server malicious because it tries to gain an undeniable proof of an interac-
tion. In the latter, the malicious party is a different user that tries to make it
impossible for honest users to explain an interaction/signature. Interestingly, the
deniability and unclaimability definitions studied in the literature only consider
scenarios where the party producing a transcript/signature/ciphertext is honest,
but may eventually become corrupt in the future.
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 59–79, 2022.
https://doi.org/10.1007/978-3-031-18283-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_4

60 L. Hanzlik and K. Kluczniak

1.1 Contribution

We introduce a new property for argument systems called explainability.
Explainability informally resembles deniability and unclaimability. We consider
interactive and non-interactive variants of such systems. We show that achiev-
ing strong explainability is hard and requires very strong primitives like witness
encryption (WE) and indistinguishability obfuscation (iO). Our contribution can
be summarized as follows.

New Definitions. We introduce a new property for argument systems that
we call explainability, i.e., the ability for anyone with a valid witness wit to
compute the random coins coins that “explain” a given argument arg. By
“explain,” we mean that the witness and coins result in the same argument string
arg = Prove(stmt,wit; coins) or the same transcript of an interaction, given the
same instance of the verifier. Thus if one can explain an argument for all wit-
nesses and all coins, then such argument/transcript cannot serve as proof that a
particular witness was used. We accounted for certain subtle differences between
interactive and non-interactive arguments. In both cases, we consider malicious
prover explainability, where a prover tries to create a proof that other provers
cannot explain with a different but valid witness. In this case, we require the
protocol to be unique, in the sense that it is infeasible for a malicious prover to
produce two different arguments (or transcripts) that the verifier accepts given
the same statement and random coins. For the interactive case, we also consider
a malicious verifier (similar to deniability) that can abort the protocol execution
or send corrupt messages to make it impossible for provers with a different wit-
ness to explain the current interaction. Since, in the non-interactive case, there
is no interaction with a verifier, we consider a scenario where the common refer-
ence string (if used) is maliciously generated. We refer to this case as malicious
setup explainability. Additionally, we call a (non-)interactive argument system
fully explainable, when it is explainable even if both the setup/verifier and the
prover are malicious.

Implications. To study the power of explainable arguments we prove several
interesting implications of explainable arguments.

– We show that when an argument system is malicious verifier explainable, then
it is also witness indistinguishable.

– We show that non-interactive malicious prover explainable arguments and
one-way functions imply witness encryption (WE). This result serves us as
evidence that constructing such arguments is difficult and requires strong
cryptographic primitives.

Constructions of Interactive Explainable Arguments. We introduce new
properties for witness encryption that we call robustness and plaintext awareness.
Informally, robustness ensures that decryption is independent of which witness is

Explainable Arguments 61

used. In other words, there do not exist two valid witnesses for which a ciphertext
decrypts to a different message (or ⊥). Plaintext awareness ensures that an
encrypter must know the plaintext it encrypted. We then show how to leverage
robust witness encryption to construct interactive explainable arguments. The
resulting protocol is round-optimal, predictable, and can be instantiated to yield
an optimally laconic argument. Given the witness encryption is plaintext aware,
we can show that the protocol is zero-knowledge. Finally, assuming the witness
encryption is extractably secure, we can show that our protocol is a proof of
knowledge.

Constructions of Non-interactive Explainable Arguments. We show how
to construct malicious setup and malicious prover explainable arguments from
indistinguishability obfuscation. While malicious prover explainable arguments
can trivially be build using techniques from Sahai and Waters [63], the case of
malicious setup explainable arguments is more involved and requires us to use
dual-mode witness indistinguishable proofs. Furthermore, we show how to build
fully explainable arguments, additionally assuming NIZK.

Why Study Explainable Arguments? Argument systems are fundamental
primitives in cryptography. While some privacy properties like zero-knowledge
already give a strong form of deniability, our notion of explainability is much
stronger as it considers the extreme case where the provers’ coins are leaked or are
chosen maliciously. For example, using our explainable arguments, we can show
explainable interactive anonymous authentication schemes, where anonymity is
defined similarly as in ring-signature schemes (see full paper [45]). Notably, we
can construct CCA-1 secure encryption with deniability as defined by Sahai and
Waters [63], from CPA secure deniable encryption and our explainable argu-
ments assuming random oracles. Our deniable encryption is a variant of the
Naor-Yung transform [56], but only rely on witness indistinguishability instead
of zero-knowledge which allows us to instantiate this transformation using our
explainable arguments.

Malicious Verifier/Setup Explainability. We consider adversaries that are sub-
stantially more powerful than what is usually studied in the literature, e.g., in
deniable authentication schemes or ring-signatures. In particular, in our case, the
user can deny an argument even when the adversary asks to reveal the user’s
random coins used to produce the argument. Immediate real-world examples
of such powerful adversaries are rogue nation-state actors that might have the
right to confiscate a user’s hardware and apply effectual forensics techniques
to obtain the random seeds as evidence material against the user. We believe
that the threat posed by such potent adversaries may prevent the use of e.g.,
ring-signatures by whistleblowers, as the anonymity notions provided might be
insufficient.

Malicious Prover Explainability. The main application we envision for malicious
prover explainability is internet voting. An essential part of a sound and fair

62 L. Hanzlik and K. Kluczniak

voting scheme is to prevent the selling of votes by malicious voters. We note
that the “selling votes” issue isn’t limited to actual bribery but, perhaps more
critically, addresses the issue of forcing eligible voters to vote on a particular
candidate. In this case, an authoritarian forces others to deliver evidence that
they voted on a particular option or participate in a specific digital event. An
authoritarian here may be an abusive family member, corrupt supervisor, or
employer. Our strong unclaimability notion is essential to handle such drastic
cases, mainly because users might be coerced or bribed to use specific coins in
the protocol.

1.2 Related Work

Explainability of the verifier was used by Bitansky and Choudhuri [8] as a step
in proving the existence of deterministic-prover zero-knowledge proofs. In their
definition they used the fact that the choices of a verifier can be “explained” by
outputting random coins that will lead to the same behaviour. This later can
be used to transform the system to be secure even against a malicious verifier.
In contrary, we consider the explainability of the prover. While arguments with
our type of explainability have not been studied before, there exists some related
concepts. Here we give an overview of the related literature.

Deniable Authentication. Dolev, Dwork, and Naor [30] first introduced the con-
cept of deniability. The first formal definition is due to Dwork, Naor, and Sahai
[32]. Deniability was studied in numerous works [25,48,55] in the context of
authentication protocols. The concept was later generalized to authenticated key
exchange and was first formally defined by Di Raimondo, and Genaro [26]. Since
then deniable key exchange protocols got much attention from the community
[11,24,27,28,46,49,51,65–69]. In such protocols, deniability is informally defined
as a party’s ability to simulate the transcript of interaction without actually com-
municating with another party. Since each party can generate a transcript itself,
the transcript cannot be used as proof to a third party that the interaction
took place. At a high level, deniability is very similar to zero-knowledge, but it
is important to mention that Pass [59] showed some subtle differences between
both notions.

Deniable Encryption. Deniable encryption was first introduced by Canetti,
Dwork, Naor, and Ostrovsky [15]. Here we deal with a “post” compromise situ-
ation, where an honest encrypter may be forced to “open” a ciphertext. In other
words, given a ciphertext, it should be possible to show a message and ran-
domness that result in the given ciphertext. Deniable encryption was intensively
studied [1,7,20–22,41,57,63]. Very recently, Canetti, Park, and Poburinnaya [16]
generalize deniable encryption to the case where multiple parties are compro-
mised and show constructions also assuming indistinguishability obfuscation.

Ring Signatures. Early forms of deniability were the main motivation for the
work of Rivest, Shamir, and Tauman [61], which introduces the concept of ring

Explainable Arguments 63

signatures. This early concept took into account a relaxed form of deniabil-
ity where only the secret key of a user may leak. Very recently [58] extended
ring signatures with additional deniability properties. For example, they show
a signer deniable ring signature where any signer may generate random coins
that, together with its secret key, will result in the given signature. However,
they require to assume the prover is honest at the moment of signature genera-
tion. In our argument setting, we do not make such assumptions.

We are the first to study arguments with unclaimability and deniability prop-
erties that allow denying executing a protocol even when the prover is forced
to reveal all its random coins or where the prover chooses its coins maliciously.
Previous works mostly address a post-compromise setting, whereas some of our
explainability notions take into account malicious prover. We believe that our
primitives may find applications in protocols as a means of providing consistency
checks or anonymous authentication of the votes. For example, the protocols
from [17,62] rely on a trusted party to verify a voter’s signature. That party
knows the user’s vote. Using our explainable arguments, we can build (see full
paper) a simple anonymous authentication protocol without degrading receipt
freeness of the voting scheme, and in effect, remove the trust assumption in terms
of privacy.

Receipt Freeness and Coertion Resistance in Voting Schemes. Some of our defi-
nitions and potential application are tightly connected to voting schemes. In par-
ticular, our definition of malicious prover explainability poses the same require-
ments, at a high level, for an argument system as receipt freeness or coercion
resistance in voting schemes [6,47,54,64]. Since we focus on a single primitive,
our definitions are much simpler in comparison to complex voting systems. For
example, the definition from [17] involves numerous oracles, and defines a set of
parties, and assumes trusted parties. Our definition for malicious prover explain-
ability is simple and says that it is infeasible to produce two different arguments
under the same statement that verify incorrectly.

Outline of the Paper. In Sect. 3 we give definitions of explainable argument
systems. In Sect. 4 we construct non-interactive explainable arguments. In Sect. 5
we introduce robust witness encryption, and apply it to build interactive explain-
able arguments. Finally, in Sect. 6, we show how to apply explainable arguments
to construct deniable CCA-secure encryption. In the full paper [45], we recall all
definitions for the primitives in the preliminaries section, show an explainable
anonymous authentication protocol, and all security proofs.

2 Preliminaries

Notation. We denote execution of an algorithm Alg on input x as a ← Alg(x)
were the output is assigned to a. Unless said otherwise, we will assume that algo-
rithms are probabilistic and choose some random coins internally. In some cases,
however, we will write Alg(.; r) to denote that Alg proceeds deterministically on

64 L. Hanzlik and K. Kluczniak

input a seed r ∈ {0, 1}s for some integer s. We denote an execution of a protocol
between parties V and P , by 〈Prove(.) � Verify(.) → x〉 = trans, where x is the
output of Verify after completion of the protocol, and trans is the transcript of
the protocol. A transcript trans contains all messages send between Prove and
Verify and the input of Verify. We write View(Prove(.) � Verify(.)) to denote the
view of Verify. The view contains the transcript, all input to Verify including its
random coins and its internal state. W say that a function negl : N �→ R

+ is
negligible if for every constant c > 0 there exists a integer Nc ∈ N such that for
all λ > Nc we have negl(λ) < λ−c.

Standard Definitions. We use a number of standard cryptographic tools through-
out the paper, including: pseudorandom generators and Goldreich-Levin hard-
core bits [39], existential unforgeable and unique signature schemes [37,42],
zero-knowledge (ZK) and witness-indistinguishable (WI) argument systems,
non-interactive ZK arguments from non-falsifiable assumptions [35], dual-mode
witness-indistinguishable proofs [43], CCA1 secure and publicly deniable encryp-
tion [63], witness encryption [36] and extractable witness encryption [40],
indistinguishability obfuscation [3], and punctured pseudorandom functions
[13,14,50].

3 Explainable Arguments

In this section, we introduce the security notions for explainable arguments.

3.1 Interactive Explainable Arguments

In an interactive argument system, the prover uses a witness wit for statement
stmt to convince the verifier that the statement is true. The communication
between the prover and the verifier creates a transcript trans that contains all
the exchanged messages. An interactive explainable argument system allows a
prover with a different witness wit∗ to generate random coins coins for which
Prove(stmt,wit∗; coins) interacting with the same instance of the verifier (i.e.,
the verifier uses the same random coins) creates the same transcript trans. In
other words, this means that any prover with a valid witness can provide random
coins that would explain the interaction in trans. More formally.

Definition 1 (Interactive Explainable Arguments). An interactive argu-
ment system ΠR = (Prove,Verify) for language �LR is an interactive explainable
argument system if there exists an additional Expl algorithm:

– Expl(stmt,wit, trans): takes as input a statement stmt, any valid witness wit
(i.e. R(stmt,wit) = 1) and transcript trans, and outputs coins ∈ CoinProve

(i.e. coins that are in the space of the randomness used in Prove),

which satisfies the correctness definition below.

Explainable Arguments 65

Definition 2 (Correctness). For all security parameter λ, for all statements
stmt ∈ �LR, for all wit,wit∗ such that R(stmt,wit) = R(stmt,wit∗) = 1, we have

〈Verify(stmt) � Prove(stmt,wit)〉 =
〈Verify′(stmt; trans) � Prove(stmt,wit∗; coinsE)〉 = trans,

where coinsE ← Expl(stmt,wit∗, trans) and coinsE ∈ CoinProve and Verify′ sends
its messages as in trans as long as Prove answers as is trans. If the output of
Prove do not match trans, then Verify′ aborts and outputs ⊥.

Remark 1. Note that a naive way to implement the Expl algorithm would be
to set coinsE and make the Prove algorithm to “replay” the messages. How-
ever, this is obviously a scheme that would not be desirable, since an adversary
could easily distinguish such coins from honest ones. Therefore we require that
coinsE ∈ CoinProve to ensure that coinsE can be given as input to an honest
Prove algorithm.

The above definition constitutes a correctness definition for explainable argu-
ments and assumes that all parties are honest. Informally, we require that given a
witness and a transcript of an interaction between a verifier and a prover (with a
possibly different witness), Expl generates coins such that a honest prover returns
the same messages given that the verifier send its messages as in trans.

Below we describe explainability of a malicious verifier. Roughly speaking,
this property says that a transcript produced during an execution with a mali-
cious verifier, and a honest prover P , should be explainable. The goal of a verifier,
is to send such messages to the prover P , that P sends such responses that no
other prover (with a different witness) would send. If the adversary succeeds
then the transcript (possibly with P ’s random coins) can be used as a proof to
a third party, that P indeed took part in the communication. Remind that P
may be forced to reveal its random coins after completing the protocol.

Definition 3 (Malicious Verifier Explainability). For a security parameter
λ, we define the advantage AdvMVExpl

A (λ) of an adversary A = (A1,A2,A3) as

1 − Pr[〈A3(stmt; coinsA) � Prove(stmt,wit∗; coinsP)〉 = trans], where

(stmt,wit,wit∗, st) ← A1(λ),
trans = 〈coinsA ← A2(stmt; st) � Prove(stmt,wit)〉,

coinsP ← Expl(stmt,wit∗, trans),
wit 	= wit∗, R(stmt,wit) = R(stmt,wit∗) = 1,

where the probability is taken over the random coins of Prove. Furthermore, A3

sends the same messages to Prove as in trans as long as the responses from the
prover are as in trans.

We say that an interactive argument system is malicious verifier explainable
if for all adversaries A = (A1,A2,A3) such that A1,A2,A3 are PPT algorithms

66 L. Hanzlik and K. Kluczniak

there exists a negligible function negl(.) such that AdvMVExpl
A (λ) ≤ negl(λ). We

say that the argument system is malicious verifier statistically explainable if the
above holds for an unbounded adversary A.

Let us now consider a scenario where proving ownership of an argument is
beneficial to the prover, but at the same time, the system requires the proof to be
explainable. A malicious prover tries to prove the statement in a way that makes
it impossible for others to “claim” the generated proof. For this property, it is
easy to imagine a malicious prover that sends such messages to the verifier, that
the verifier accepts, and no other honest prover would ever send such messages.
In practice, we may imagine that an adversary runs a different implementation
of the prover, for which the distribution of the sent messages deviate from the
distribution of the original implementation. Later to “claim” the transcript that
adversary may prove that the transcript is indeed the result of the different
algorithm, not the honest one. Note that such a “claim” is sound if an honest
prover would never produce such messages. To prevent such attacks, we require
that there is only one (computationally feasible to find) valid way a prover can
respond to the messages from an honest verifier.

Definition 4 (Uniqueness/Malicious Prover Explainability). We define
the advantage AdvMPExpl

A (λ) of an adversary A = (A1,A2,A3) as

1 − Pr
[〈1 = Verify(stmt; coinsV) � A2(st1) → st2〉

	= 〈1 = Verify(stmt; coinsV) � A3(st2)〉
]

,

where st1, stmt ← A1(λ) and the probability is taken over the coins coinsV .
We say that an interactive argument system is malicious prover explainable

if for all PPT adversaries A there exists a negligible function negl(.) such that
AdvMPExpl

A (λ) ≤ negl(λ). We say that the system is malicious prover statistically
explainable if the above holds for an unbounded A.

Theorem 1. If (Prove,Verify,Expl) is a malicious verifier (statistical) explain-
able argument system then it is also (statistical) witness indistinguishable.

Definition 5. We say that an interactive argument system is fully explainable
if it is malicious prover explainable and malicious verifier explainable.

3.2 Non-interactive Explainable Arguments

Here we present definitions for non-interactive explainable arguments. Similar
to the interactive case, we begin by defining what it means that a system is
explainable.

Definition 6 (Non-Interactive Explainable Arguments). A non-inter-
active argument system ΠR = (Setup,Prove,Verify) for language �LR is a
non-interactive explainable argument system if there exists an additional Expl
algorithm:

Explainable Arguments 67

– Expl(crs, stmt,wit, arg): takes as input a statement stmt, any valid witness wit
and an argument arg, and outputs random coins coins

which satisfies the correctness definition below.

Definition 7 (Correctness). For all security parameter λ, for all statements
stmt ∈ �LR, for all wit,wit∗ such that R(stmt,wit) = R(stmt,wit∗) = 1, for all
random coins coinsP ∈ CoinProve, we have

Prove(crs, stmt,wit; coinsP) = Prove(crs, stmt,wit∗; coinsE)

where coinsE ← Expl(crs, stmt,wit∗, arg), coinsE ∈ CoinProve and crs ←
Setup(λ).

Now we define malicious setup explainability. Note that a malicious verifier
cannot influence the explainability of an argument because there is no interaction
with the prover. Hence, the malicious verifier from the interactive setting is
replaced with an untrusted setup. An adversary might generate parameters that
result in the Expl algorithm to output coins yielding a different argument or
even failing on certain witnesses. In some sense, we can think of the adversary
as wanting to subvert the common reference string against deniability of certain
“targeted” witnesses.

Definition 8 (Malicious Setup Explainability). We define the advantage
AdvMSExpl

A (λ) of an adversary A by the following probability

1 − Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

arg∗ = arg :

(stmt,wit,wit∗, crs) ← A(λ)
wit 	= wit∗

R(stmt,wit) = R(stmt,wit∗) = 1
arg ← Prove(crs, stmt,wit);

coinsP ← Expl(crs, stmt,wit∗, arg);
arg∗ ← Prove(crs, stmt,wit∗; coinsP)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the probability is taken over the random coins of the prover Prove. We say
that a non-interactive argument is malicious setup explainable if for all PPT
adversaries A there exists a negligible function negl(.) such that AdvMSExpl

A (λ) ≤
negl(λ). We say the that a non-interactive argument is malicious setup statis-
tically explainable if the above holds for an unbounded adversary A. Moreover,
we say that a non-interactive argument is perfectly malicious setup explainable
if AdvMSExpl

A (λ) = 0.

Theorem 2. If there exists a malicious setup explainable non-interactive argu-
ment, then there exists a two-move witness-indistinguishable argument, where the
verifier’s message is reusable. In other words, given a malicious setup explainable
non-interactive argument, we can build a private-coin ZAP.

Malicious prover explainability is defined similarly as in the case of inter-
active arguments. For the non-interactive setting, it is simpler to formalize the
definition, as we simply require the adversary to return two arguments that
verify correctly, but their canonical representation is different.

68 L. Hanzlik and K. Kluczniak

Definition 9 (Uniqueness/Malicious Prover Explainability). We define
the advantage of an adversary A against malicious prover explainability of
ExArg as AdvMPExpl

A (λ) = Pr[arg1 	= arg2] where crs ← Setup(λ) and
(stmt, arg1, arg2) ← A(λ) are such that Verify(crs, stmt, arg1) = Verify(crs, stmt,
arg2), and the probability is over the random coins of Setup. We say that a non-
interactive argument is malicious prover explainable if for all PPT adversaries
A there exists a negligible function negl(.) such that AdvMPExpl

A (λ) ≤ negl(λ). We
say that a non-interactive argument is malicious prover statistically explainable
if the above holds for an unbounded adversary A. Moreover, we say that an
argument system is a perfectly malicious prover explainable if AdvMPExpl

A (λ) = 0.

For full explainability, we combine both malicious prover and malicious ver-
ifier explainability.

Definition 10 (Full Explainability). We define the advantage of an adver-
sary A against full explainability of ExArg by the following probability

AdvFExplA (λ) = Pr[arg1 	= arg2]

where (stmt, crs, arg1, arg2) ← A(λ) is such that Verify(crs, stmt, arg1) =
Verify(crs, stmt, arg2). We say that a non-interactive argument is full explain-
able if for all PPT adversaries A, there exists a negligible function negl(.) such
that AdvFExplA (λ) ≤ negl(λ). We say that the non-interactive argument is full sta-
tistically explainable if the above holds for an unbound adversary A. Moreover,
we say that an argument system is perfectly full explainable if AdvFExplA (λ) = 0.

Theorem 3. If ExArg is a fully explainable argument, then ExArg is a malicious
setup and malicious prover explainable argument.

Theorem 4. Given that one-way functions and malicious prover selectively
sound non-interactive (resp. two-move) arguments for NP exist, then there exists
a witness encryption scheme for NP.

4 Non-interactive Explainable Arguments

In this section, we show that it is possible to construct malicious setup explain-
able non-interactive argument systems from falsifiable assumptions. We also
show a fully explainable argument assuming non-interactive zero-knowledge. As
both schemes are nearly identical and differ only in several lines, we will denote
the lines or specific algorithms with ◦ for the malicious setup explainable argu-
ment, and with †, we denote the code specific for the fully explainable argument.

Scheme 1 (Non-interactive Explainable Argument). Let ∇ = ◦ for the
malicious setup explainable argument, and ∇ = † for the fully explainable argu-
ment. Let DMWI be a dual-mode proof, NIWI be a non-interactive witness indis-
tinguishable proof, Com be an equivocal commitment scheme, Sig be a unique
signature scheme, and PRF be a punctured pseudorandom function. We con-
struct the non-interactive argument system ExArg∇ = (Setup,Prove,Verify) as
follows.

Explainable Arguments 69

Circuit for ProgProve1◦ and ProgProve1†

Hardwired: pp, crsDMWI,K

Input: (stmt,wit)
1
◦: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ⊥.

3 : else

4 : sks ← PRF.Eval(K, stmt)

5 : arg ← Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify

Hardwired: K

Input: (stmt)
1 : sks ← PRF.Eval(K, stmt)

2 : vks ← Sig.Setup(sks)

3 : return vks

Fig. 1. Circuits for ProgProve1◦, ProgProve
1
† and ProgVerify. Note that ProgProve differ

only in line 1.

Setup(λ, �LR):
1. Choose K ← PRF.Setup(λ) and crsDMWI ← DMWI.Setup(λ, modeSound;

coinsS), where coinsS are random coins.
2. OProve ← Obf(λ,ProgProve1∇[pp, crsDMWI,K]; coinsP), where ProgProve1∇

is given by Fig. 1 and coinsP are random coins.
3◦. Define statement stmt◦Setup as

{ ∃i∈[2],K,coinsP OProve ← Obf(λ,ProgProvei
◦[pp, crsDMWI, K]; coinsP) ∨

∃mode,coinsS crsDMWI ← DMWI.Setup(λ,mode; coinsS) ∧ mode = modeWI

}
.

3†. Define statement stmt†Setup as

{∃K,coinsP OProve ← Obf(λ,ProgProve1†[pp, crsDMWI,K]; coinsP)}.

4. Set witSetup = (1,K, coinsP).
5◦. π ← NIWI.Prove(stmt◦Setup,witSetup).
5†. π ← NIZK.Prove(stmt†Setup,witSetup).
6. Compute OVerify ← Obf(λ,ProgVerify[K]) and output crs =

(OProve, OVerify, pp, etd, crsDMWI, π).
Prove(crs, stmt,wit; r):

1◦. Set stmt◦Setup as in the setup algorithm.
1†. Set stmt†Setup as in the setup algorithm.
2◦. If NIWI.Verify(stmt◦Setup, π) = 0 return ⊥.
2†. If NIZK.Verify(stmt†Setup, π) = 0 return ⊥.
3◦. Run wit′ ← DMWI.Prove(crsDMWI, stmt,wit; r) and

arg ← OProve(stmt,wit′).
3†. Run arg ← OProve(stmt,wit).
4. Run vks ← OVerify(stmt).

70 L. Hanzlik and K. Kluczniak

5. If Sig.Verify(vks, arg, stmt) 	= 1 return ⊥.
6. Otherwise, return arg.

Verify(crs, stmt, arg):
1. Run vks ← OVerify(stmt).
2. Output Sig.Verify(vks, sig,msg)

Expl(crs, stmt,wit, arg):
1. Output 0.

Circuit for ProgProve2◦ and ProgProve2†

Hardwired: crsDMWI, pp

Kstmt∗ = PRF.Puncture(K, stmt∗)

Input: (stmt,wit, r)
1
◦: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ⊥.

3 : else

4 : sks ← PRF.Eval(Kstmt∗ , stmt)

5 : arg ← Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify∗

Hardwired: stmt∗, vk∗
s ,

Kstmt∗ = PRF.Puncture(K, stmt∗)

Input: (stmt)
1 : if stmt = stmt∗

2 : return vk∗
s

3 : else

4 : sks ← PRF.Eval(Kstmt∗ , stmt)

5 : vks ← Sig.Setup(sks)

6 : return vks

Fig. 2. Circuits for ProgProve2◦, ProgProve
2
† and ProgVerify∗ used in the soundness proof

of the non-interactive argument.

Theorem 5. Let ExArg◦ be the system given by Scheme 1. The system ExArg◦

is computationally sound (in the selective setting) assuming indistinguishability
obfuscation of Obf, pseudorandomness in punctured points of PRF, mode indis-
tinguishability of the DMWI scheme, and unforgeability of the signature scheme
(Fig. 2).

Theorem 6. Given that the signature scheme Sig is unique, NIWI is perfectly
sound, DMWI is a dual-mode proof, and all primitives are perfectly correct, the
argument system ExArg◦ is malicious setup explainable.

Theorem 7. Let ExArg† be the system given by Scheme 1. The system ExArg†

is computationally sound (in the selective setting), assuming indistinguishabil-
ity obfuscation of Obf, pseudorandomness in punctured points of PRF, zero-
knowledge of the NIZK scheme and unforgeability of the signature scheme.

Theorem 8. Given that the signature scheme Sig is unique, NIZK is sound, and
all primitives are perfectly correct, argument system ExArg† is fully explainable.

Corollary 1. The scheme is witness indistinguishable against a malicious setup.

Proof. Witness indistinguishability follows from explainability of the argument
system and Theorem 2.

Theorem 9. Let ExArg∇ be the system given by Scheme 1 for ∇ = ◦ or ∇ = †.
ExArg∇ is zero-knowledge in the common reference string model.

Explainable Arguments 71

5 Robust-Witness Encryption and Interactive
Explainable Arguments

We introduce robust witness encryption and show a generic transformation from
any standard witness encryption scheme to a robust witness encryption scheme.

Definition 11 (Robust Witness Encryption). We call a witness encryption
scheme WE = (Enc,Dec) a robust witness encryption scheme if it is correct,
secure and robust as defined below:

Robustness: A witness encryption scheme (Enc,Dec) is robust if for all PPT
adversaries A there exists a negligible function negl(.) such that

Pr

⎡
⎢⎢⎣m0 	= m1 :

R(stmt,wit0) = R(stmt,wit1) = 1 ∧
(stmt, ct,wit0,wit1) ← A(λ);

m0 ← Dec(stmt,wit0, ct)
m1 ← Dec(stmt,wit1, ct)

⎤
⎥⎥⎦ ≤ negl(λ),

We call the scheme perfectly robust if the above probability is always zero.

Below we define plaintext awareness [5], but tailored to the case of witness
encryption.

Definition 12 (Plaintext Aware Witness Encryption). Let WE = (Enc,
Dec) be a witness encryption scheme. We extend the scheme with an algorithm
Verify that on input a ciphertext ct and a statement stmt outputs a bit indicating
whether the ciphertext is in the ciphertext space or not. Additionally we define
an algorithm Setup that on input the security parameter λ outputs a common
reference string crs, and an algorithm Setup∗ that additionally outputs τ . We say
that the witness encryption scheme for a language �L ∈ NP is plaintext aware if
for all PPT adversaries A, there exists a negligible function negl(.) such that

| Pr[A(crs) = 1 : crs ← Setup(λ)]
−Pr[A(crs) = 0 : (crs, τ) ← Setup∗(λ)]| ≤ negl(λ),

and there exists a PPT extractor Ext such that

Pr

⎡
⎣msg ← Ext(stmt, ct, τ):

(crs, τ) ← Setup∗(λ);
(ct, stmt) ← A(crs);
Verify(stmt, ct) = 1

⎤
⎦ ≤ 1 − negl(λ)

where for all witnesses wit such that R(stmt,wit) = 1 we have msg = Dec(ct,wit),
and the probability is taken over the random coins of Setup and Setup∗.

Scheme 2 (Generic Transformation). Let WE = (Enc,Dec) be a witness
encryption scheme and NIZK = (NIZK.Prove,NIZK.Verify) be a proof system.
We construct a robust witness encryption scheme WErob as follows.

72 L. Hanzlik and K. Kluczniak

Encrob(λ, stmt,msg):
1. Compute ctmsg ← WE.Enc(λ, stmt,msg)
2. Let stmtNIZK be defined as

{∃msg ctmsg ← WE.Enc(λ, stmt,msg)}
3. Compute π ← NIZK.Prove(stmtNIZK,wit) using witness wit = (msg)
4. Return ct = (ctmsg, π).

Decrob(stmt,wit, ct):
1. Set the statement stmtNIZK as

{∃msg ctmsg ← WE.Enc(λ, stmt,msg)}
2. If NIZK.Verify(stmtNIZK, π) = 0, then return ⊥. Otherwise return

WE.Dec(stmt,wit, ctmsg)

Theorem 10 (Security and Extractability). Scheme 2 is a (extractably)
secure witness encryption if WE is a (extractably) secure witness encryption,
and NIZK is zero-knowledge (in the common reference string or RO model).

Theorem 11 (Robustness and Plaintext Awareness). Scheme 2 is robust
if the witness encryption scheme WE is perfectly correct, and the NIZK proof
system is perfectly sound (in the common reference string or RO model). If the
NIZK proof system is a proof of knowledge (in the common string or RO model),
then Scheme 2 is plaintext aware.

5.1 Fully Explainable Arguments from Robust Witness Encryption

In this subsection, we will tackle the problem of constructing fully explainable
arguments. The system is described in more detail by Scheme 3.

Scheme 3 (Interactive Explainable Argument). The argument system
consists of Prove, Verify and Expl, where the protocol between Prove and Verify
is specified as follows. Prove takes as input a statement stmt and a witness
wit, and Verify takes as input stmt. First Verify chooses r ←$ {0, 1}λ, com-
putes ct ← Encrob(λ, stmt, r) and sends ct to Prove. Then Prove computes
arg ← Decrob(stmt,wit, ct) and sends arg to Verify. Finally, Verify returns iff
arg = r. The explain algorithm Expl is as follows.

Expl(stmt,wit, trans): On input the statement stmt, the witness wit and a tran-
script trans, output ⊥.

Theorem 12 (Soundness). Scheme 3 is an argument system for NP language
�L assuming the witness encryption scheme WE for �L is secure. Furthermore,
if the underlying witness encryption scheme WE scheme is extractable, then
Scheme 3 is an argument of knowledge.

Theorem 13 (Zero-Knowledge). Scheme 3 is zero-knowledge given the
underlying witness encryption scheme WE is plaintext aware.

Explainable Arguments 73

Theorem 14 (Explainability). Scheme 3 is fully explainable assuming the
used witness encryption scheme is robust (or plaintext aware) and correct.

Remark 2. Scheme 3 is predictable in the sense that the verifier can “predict”
the value of the prover’s arguments/proof [33]. Furthermore, the protocol is
optimally laconic [12], as the verifier can encrypt single bits.

Theorem 15. Let WE be a (non-robust) perfectly correct witness encryption
scheme for NP. Let Π be an interactive public-coin zero-knowledge proof pro-
tocol for NP. Then there exists a malicious verifier explainable (and witness-
indistinguishable) argument for NP.

6 Applications

In this section, we show how to apply explainable arguments. We focus on con-
structing a CCA1 secure publicly deniable encryption scheme using as a building
block malicious verifier explainable arguments. Our transformation is based on
the one from Naor and Yung [56] but we replace the NIZK proof system with
a NIWI. In the full version we show how to build a deniable anonymous cre-
dential scheme from malicious prover explainable arguments. Here we note that
the anonymous credential system is a straightforward application of malicious
prover explainable arguments and standard signature schemes.

The main idea behind the Naor and Yung construction is to use two CPA
secure ciphertexts ct1, ct2 and a NIZK that both contain the same plaintext. The
soundness property ensures that a decryption oracle can use either of the secret
keys (since the decrypted message would be the same) and zero-knowledge allows
the security reduction to change the challenged ciphertext, i.e. change the two
CPA ciphertexts. We note that in our approach we replace NIZK with NIWI,
that to the best of our knowledge has not been do before.

Scheme 4 (Generic Transformation from CPA to CCA). Let E =
(KeyGencpa,Enccpa,Deccpa) be a CPA secure encryption scheme, (NIWI.Setup,
NIWI.Prove,NIWI.Verify) be a non-interactive witness-indistinguishable proof
system. Additionally we define the following statement stmtcpa be defined as

{(∃msg ct1 ← Enccpa(pk1,msg) ∧ ct2 ← Enccpa(pk2,msg)) ∨
(∃α,βHG(ct1, ct2) = (gα, gβ , gα·β))},

where HG is defined as above.

KeyGencca1(λ):
1. generate CPA secure encryption key pairs (pk1, sk1) ← KeyGencpa(λ) and

(pk2, sk2) ← KeyGencpa(λ),
2. generate a common reference string crs ← NIWI.Setup(λ),
3. set pkcca1 = (pk1, pk2, crs) and skcca1 = sk1.

Enccca1(pkcca1,msg):

74 L. Hanzlik and K. Kluczniak

1. compute ciphertexts ct1 ← Enccpa(pk1,msg) and ct2 ← Enccpa(pk2,msg),
2. compute NIWI proof Π ← NIWI.Prove(crs, stmtcpa, (msg),
3. return ciphertext ct = (ct1, ct2,Π).

Deccca1(skcca1, ct):
1. return ⊥ if NIWI.Verify(crs, stmtcpa,Π) = 0,
2. return msg ← Deccpa(sk1, ct1).

Theorem 16. Scheme 4 is an encryption scheme secure against non-adaptive
chosen ciphertext attacks (CCA1) in the random oracle model assuming the
encryption scheme E is an encryption scheme secure against chosen plaintext
attacks and NIWI is a sound and witness indistinguishable proof system.

Theorem 17. Scheme 4 is an publicly deniable encryption scheme secure
against non-adaptive chosen ciphertext attacks (CCA1) in the random oracle
model assuming the encryption scheme E is an publicly deniable encryption
scheme secure against chosen plaintext attacks and NIWI is a malicious setup
explainable argument system.

7 Conclusions

In this paper, we introduce new security definitions for interactive and non-
interactive argument systems that formally capture a property called explain-
ability. Such arguments can be used to construct CCA1 deniable encryption
and deniable anonymous authentication. We also introduced a new property for
witness encryption called robustness which can be of independent interest. An
interesting open question is whether such arguments systems can be constructed
from simpler primitives or we need such strong primitives because malicious
prover explainability implies uniqueness of the proof.

Acknowledgements. This work has been partially funded/supported by the German
Ministry for Education and Research through funding for the project CISPA-Stanford
Center for Cybersecurity (Funding numbers: 16KIS0762 and 16KIS0927).

References

1. Apon, D., Fan, X., Liu, F.-H.: Deniable attribute based encryption for branching
programs from LWE. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS,
vol. 9986, pp. 299–329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 12

2. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-45146-4_18

Explainable Arguments 75

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

6. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: 26th ACM STOC, pp. 544–553. ACM Press, May 1994

7. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds
for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 7

8. Bitansky, N., Choudhuri, A.R.: Characterizing deterministic-prover zero knowl-
edge. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp.
535–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 19

9. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

11. Bohli, J.-M., Steinwandt, R.: Deniable group key agreement. In: Nguyen, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 298–311. Springer, Heidelberg (2006).
https://doi.org/10.1007/11958239 20

12. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78372-7 8

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 15

14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

15. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

16. Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryption. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
807–835. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 27

17. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1614–1625.
ACM Press, October 2016

18. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS,
vol. 12110, pp. 220–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45374-9 8

19. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In:
Motiwalla, J., Tsudik, G. (eds.) ACM CCS 1999, pp. 46–51. ACM Press, November
1999

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-030-64375-1_19
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/11958239_20
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/978-3-030-45374-9_8

76 L. Hanzlik and K. Kluczniak

20. Dachman-Soled, D.: On the impossibility of sender-deniable public key encryption.
Cryptology ePrint Archive, Report 2012/727 (2012). https://eprint.iacr.org/2012/
727

21. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme from
a plaintext aware (sPA1) encryption scheme. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 37–55. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54631-0 3

22. De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS,
vol. 9614, pp. 196–222. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49384-7 8

23. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

24. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In:
Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp. 112–121. ACM Press,
November 2005

25. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J.
Cryptol. 22(4), 572–615 (2009)

26. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., Capitani di Vimercati, S.D. (eds.) ACM
CCS 2006, pp. 400–409. ACM Press, October/November 2006

27. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 28

28. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 10

29. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

30. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

31. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

32. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
pp. 409–418. ACM Press, May 1998

33. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In:
Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 121–150. Springer, Heidel-
berg (2017). https://doi.org/10.1007/978-3-662-54365-8 6

34. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

36. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

37. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 9

https://eprint.iacr.org/2012/727
https://eprint.iacr.org/2012/727
https://doi.org/10.1007/978-3-642-54631-0_3
https://doi.org/10.1007/978-3-642-54631-0_3
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/978-3-319-10879-7_28
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48910-X_9

Explainable Arguments 77

38. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computa-
tion. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22670-0 28

39. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

40. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

41. Goldwasser, S., Klein, S., Wichs, D.: The edited truth. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 305–340. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 11

42. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 16

43. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

44. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

45. Hanzlik, L., Kluczniak, K.: Explainable arguments. Cryptology ePrint Archive,
Report 2021/xxxx (2021, to appear). https://ia.cr/2021/xxxx

46. Hanzlik, L., Kluczniak, K., Kuty�lowski, M., Krzywiecki, �L: Mutual restricted iden-
tification. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp.
119–133. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53997-
8 8

47. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 38

48. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

49. Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (extended
abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 4

50. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013

51. Krzywiecki, L., Kluczniak, K., Kozie�l, P., Panwar, N.: Privacy-oriented dependency
via deniable sigma protocol. Comput. Secur. 79, 53–67 (2018)

52. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

53. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999

https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-319-70500-2_11
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://ia.cr/2021/xxxx
https://doi.org/10.1007/978-3-642-53997-8_8
https://doi.org/10.1007/978-3-642-53997-8_8
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-540-85230-8_4
https://doi.org/10.1007/3-540-45708-9_38

78 L. Hanzlik and K. Kluczniak

54. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

55. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 31

56. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

57. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 30

58. Park, S., Sealfon, A.: It wasn’t me! Repudiability and claimability of ring signa-
tures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 6

59. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

60. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

61. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

62. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

63. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June (2014)

64. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 32

65. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges
for secure messaging. Proc. Priv. Enhanc. Technol. 2018(1), 21–66 (2018)

66. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I.,
Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1211–1223. ACM Press, October
2015

67. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic
deniability of the signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spog-
nardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 188–209. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57878-7 10

https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-030-57878-7_10

Explainable Arguments 79

68. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro,
N.: Verifiable predicate encryption and applications to CCA security and anony-
mous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30057-8 15

69. Yao, A.C.-C., Zhao, Y.: Deniable internet key exchange. In: Zhou, J., Yung, M.
(eds.) ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13708-2 20

https://doi.org/10.1007/978-3-642-30057-8_15
https://doi.org/10.1007/978-3-642-30057-8_15
https://doi.org/10.1007/978-3-642-13708-2_20

	Explainable Arguments
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	3 Explainable Arguments
	3.1 Interactive Explainable Arguments
	3.2 Non-interactive Explainable Arguments

	4 Non-interactive Explainable Arguments
	5 Robust-Witness Encryption and Interactive Explainable Arguments
	5.1 Fully Explainable Arguments from Robust Witness Encryption

	6 Applications
	7 Conclusions
	References

