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Abstract. We are witnessing the emergence of decentralized AI
pipelines wherein different organisations are involved in the different
steps of the pipeline. In this paper, we introduce a comprehensive frame-
work for verifiable provenance for decentralized AI pipelines with sup-
port for confidentiality concerns of the owners of data and model assets.
Although some of the past works address different aspects of provenance,
verifiability, and confidentiality, none of them address all the aspects
under one uniform framework. We present an efficient and scalable app-
roach for verifiable provenance for decentralized AI pipelines with sup-
port for confidentiality based on zero-knowledge proofs (ZKPs). Our work
is of independent interest to the fields of verifiable computation (VC) and
verifiable model inference. We present methods for basic computation
primitives like read only memory access and operations on datasets that
are an order of magnitude better than the state of the art. In the case of
verifiable model inference, we again improve the state of the art for deci-
sion tree inference by an order of magnitude. We present an extensive
experimental evaluation of our system.

1 Introduction

In this paper we consider a decentralized AI pipeline with multiple indepen-
dent organizations wherein one set of organizations specialize in curating high
quality datasets based on independent data sources, another set of organiza-
tions specialise in training models from the curated datasets, and another set
of organizations deploy the trained models and provide them as a service to
the model consumers. A typical decentralized AI pipeline is shown in Fig. 1. The
core assets like datasets and models represent significant intellectual property for
their respective owners. Therefore, it is essential for the asset owners to ensure
the confidentiality of their assets beyond the intended usage. On the other hand,
since the model consumers are likely to use them for driving major decisions,
they would like to ensure auditability and integrity of the models by (i) verifying
the provenance and performance of the models on benchmark datasets1 and (ii)
ensuring that the predictions from the deployed service match with that of the
verified model. In summary, decentralized AI pipelines need to provide end to
end provenance while ensuring the confidentiality of different assets.
1 Provenance of the model training step is not considered in this paper.
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Fig. 1. Typical decentralized AI pipeline.

Consider an example of deciding on mortgage applications using an AI ser-
vice. A data service provider, SP, provides high quality training and benchmark
datasets by curating historical mortgage data from reputationally trusted finan-
cial institutes. A specialized fintech company, FC, trains and deploys an AI model
as a service for the given task. Further, it makes a public claim on the model perfor-
mance on benchmark dataset. Note that establishing provenance of model training
carried out by FC is not addressed in this work. A financial institute, CONS, want-
ing to use AI in mortgage approval process would want to independently verify the
claim made by FC before deciding to subscribe to the service. If CONS is satisfied
after the verification process, it might use the deployed service to make decision
on mortgage applications. At this time, CONS and individual mortgage applicants
should be able to independently verify that the predictions from the deployed ser-
vice match with that of the verified model. The reputationally trusted data owners
and FC would like to protect the confidentiality of their assets except from those
actors who are entitled to access them. We would like to highlight a special and
important requirement of FC: to prevent model reengineering attacks, the FCwould
like to ensure that the model verifier does not get to learn the predictions of the
models on individual instances during the process of verification.

We present significant progress towards describing efficient and scalable app-
roach to provide public verifiability for common operations in an AI pipeline,
while preserving confidentiality of involved data and model assets. In the paper
we have highlighted few primitive operations, but more operations on both data
and models can be added as state of the art improves. While it is difficult to
match the expressiveness of what is possible via plain-text computations, our
methods can nevertheless provide provenance over simpler pipelines.

1.1 Related Work

While there is no prior work that addresses all the aspects of verifiable distributed
AI pipeline as introduced in this paper, there are past works that address differ-
ent aspects of the overall requirements. The provenance requirement is addressed
in [19,21], the model verification or certification requirement is addressed in
[15,22], and the verifiable inference from private model requirement is addressed
in [11,14,18,23,28]. Our work is of independent interest to the field of Verifiable
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Computation (VC) as it provides more efficient methods for useful computational
primitives like Read Only Memory (ROM) access and operations on datasets. We
briefly review and contrast the relevant literature with our work.

Provenance Models for AI: There has recently been considerable interest in
the provenance of AI assets. For instance, [19,21] provide good motivation and
DLT based architecture for establishing provenance of AI assets. The provenance
is enabled by recording the cryptographic hash of each asset on the tamper-proof
ledger, and recording any operations on them as transactions. While this provides
auditability and lineage of an asset, its verification necessarily involves revealing
the assets, thereby violating the confidentiality requirements in our setting. We
build on the tools from verifiable computation to enable verifiability of assets and
operations on them while supporting all the stated confidentiality requirements.

Model Certification for AI: Training and testing AI models for fairness and
bias is an area of active research. Recently, efforts have been made to leverage
methods from secure multiparty computation (MPC) to enable fair training and
certification of AI models while ensuring privacy of sensitive data of the partici-
pants [15,22]. These methods require a trusted party (e.g. a regulator) to certify
the claims on the models and therefore, do not support the public verifiability
requirement in our setting.

Verifiable Model Inference: The problem of verifying the predictions from
private AI models, with different privacy requirements, has been considered in
the literature. For instance, verifiable execution of neural networks has been
considered in [14,18,23,27] and verification of predictions from decision trees has
been considered in [28]. These works cannot be extended for end to end pipeline
verification as they cannot handle verification of operations on datasets. In our
work, apart from providing verification for the entire AI pipeline, we improve
upon the work of [28] by making the verification of the decision tree inference
more scalable as described in Sect. 1.2.

Reusable Gadgets for VC: On the technical front, our work complements
persistent efforts such as [16,25] to enable more computations efficiently in the
VC setting. The problem of efficiently supporting addressable memory inside
VC circuits has received considerable attention [3,5,16,25,31] as many computa-
tions are best expressed using the abstraction of memory. Methods in aforemen-
tioned efforts support arbitrary zero knowledge Succinct Arguments of Knowl-
edge (zkSNARKs). We provide a more efficient variant of prior methods, lever-
aging a zkSNARK with commit and prove capability (see Sect. 3). However, this
is not a major hinderance as many efficient zkSNARKs can be modified to be
commit and prove with negligible overhead (see [8]). Our efficient abstractions
for read only memory (ROM) and datasets can be incorporated into zkSNARK
circuit compilers such as ZokRates [10], when suitably targeted for a commit
and prove backend. In particular, supporting datasets as first class primitives in
zkSNARK compilers will make them more attractive for privacy preserving data
science applications. Finally we mention that the work on Verifiable Outsourced
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Databases (e.g. [29,30]) is not directly applicable here as (i) current implemen-
tations do not address data confidentiality and (ii) they do not support reusable
representation of datasets across computations.

1.2 Our Contributions

We present the first efficient and scalable system for decentralized AI pipelines
with support for confidentiality concerns of the asset owners (as described in
Table 2) and public verifiability. Our work represents major system level inno-
vations in the areas of model certification ([15] - lacks public verifiability, prove-
nance), provenance architectures for AI artifacts ([19,21] - lack privacy), and con-
fidentiality preserving model inference ([14,23,28] - lack provenance). A number
of technical contributions enable this system level novelty and they are summa-
rized as follows.

– Improved method for read-only memory access in arithmetic circuits with an
order of magnitude gain in efficiency over the existing methods (see Table 3).
The improved memory access protocol is crucially used in realizing efficient
circuits for data operations (inner-join) and decision tree inference.

– A method for consistent modeling of datasets in arithmetic circuits with com-
plete privacy. In addition, we design efficient circuits to prove common oper-
ations on datasets. We make several optimizations over the basic approach
of using zkSNARKs resulting in at least an order of magnitude gain in effi-
ciency (see Table 4). On commodity hardware, our implementation scales well
to prove operations on datasets with up to 1 million rows in a few minutes.
The verification takes few hundred milliseconds.

– We present an improved protocol for privacy preserving verifiable inference
from decision tree. Our method yields up to ten times smaller verification
circuits by avoiding expensive one-time hashing of the tree used in [28]. Fur-
ther leveraging our method for read-only memory access, we also incur fewer
multiplication gates per prediction (see Sect. 5 for more details). Comparative
performance under different settings is summarized in Table 5.

– We implement our scheme using Adaptive-Pinocchio [24] to experimentally
evaluate the efficacy of our scheme. We report the results in Sect. 6. Our
scheme can also be instantiated with other CP-SNARKs.

Our implementation uses pre-processing zkSNARKs [5,9,13,20] which pre-
process a circuit description to make subsequent proving and verification more
efficient. Our circuits can also be used with generic zkSNARKs such as those in
[2,4,7], suitably augmented with commit and prove capability.

2 Verifiable Provenance in Decentralized AI Pipelines

A typical AI pipeline consists of different steps, such as accessing raw datasets
from multiple sources, performing aggregation and transformations in order to
curate training and testing datasets for the AI task on hand, developing the AI
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Table 1. Performance of our dataset operations. For concrete numbers we took number
of rows N = 100K and bit-width of elements b = 32.

Operation Complexity
(asymptotic)

Complexity
(concrete)

Prov. time (s) Ver. time (ms)

Aggregation O(N) 2.1 mil 37 400

Filter O(N) 0.7 mil 12 400

Order-By O(bN) 3.1 mil 50 400

Inner-Join O(bN) 6.5 mil 80 400

model, and deploying it in production. We are interested in settings in which the
AI pipeline is decentralized, i.e., different steps of the pipeline are carried out
by different independent actors. We assume five different type of actors: data
owners(DO), data curators(DC), model owners(MO), model certifiers(MCERT), and
model consumers(MCONS). For brevity of exposition, we assume that the number
of data curators, model owners, model certifiers, and model consumers is just
one. However, all the concepts and results extend in a straight forward manner
to the general setting involving multiple entities of each type.

We assume that there is a task T for which the process of building an AI
pipeline is undertaken in a decentralized setting. The salient features of our
provenance and certification framework is summarized as follows.

There are m data owners DO1, DO2, . . . , DOm who share their respective raw
datasets D1,D2, . . . , Dm privately with the data curator DC and also make a
public commitment of the datasets. The data curator curates a dataset Db =
f(D1,D2, . . . , Dm) for the purpose of benchmarking the performance of an AI
model for the task T and makes a public commitment of Db. We assume the
model owner, MO, has a pre-trained AI model M and wants to offer it as a
service. MO makes a public commitment of the model. MO buys the benchmark
dataset Db from DC. MO wishes to convince potential consumers of the utility of
the model M by making performance claim accuracy = score(M,Db) when M
is used for getting predictions on the dataset Db. The model certifier, MCERT,
should be able to independently verify the provenance of all the steps and the
claimed performance of the model M . MCERT also ensures that the timestamp
of the public commitment of model M is earlier than the timestamp of public
commitment of Db to ensure that the model M cannot be overfitted to the
dataset Db. MCERT certifies the model M only after verifying the correctness of
the claim. The model consumer, MCONS, subscribes to the model M only upon
its successful certification. Suppose MCONS supplies a valid input data D′ to the
service provided by MO and gets a prediction Y ′. We require that MCONS should be
able to independently verify that the prediction Y ′ matches with the prediction
of the committed model M on the instance D′.

We observe that the outlined requirements ensure that the decentralized
AI pipeline is transparent. The key question we address in this paper is that of
providing such a transparency while satisfying the confidentiality requirements of
all the actors. We assume that none of the actors in the set up have any incentive
to collude with the others, but, can act maliciously. The privacy requirements
and security model of different actors is summarized in Table 2.
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Table 2. Summary of privacy requirements and trust assumptions in our setting.

Participant Confidentiality requirement Security model

DOs P1: Only DC can access their plaintext
data

S1: Trusted to provide the correct
data

DC P2: Only MO can access curated plaintext
data

S2: Not trusted with the correct
computation

MO P3: No one can access the plaintext model
P4: During the certification, MCERT
cannot get access to prediction of M for
any instance in the dataset Db

S3: Not trusted to make the right
performance claim or use the certified
model for providing predictions

MCERT NA S4: Trusted to certify the model only
after end to end provenance is
verified

MCONS P5: No one other than model owner
(optional) can access its data in clear

NA

We present a provenance framework which ensures trust in the AI pipeline by
proving each computation step using zero-knowledge proofs, thus meeting all the
confidentiality requirements captured in Table 2. Below, we present a concrete
example of an AI pipeline for establishing fairness of an AI model, where we
clearly highlight involvement of various actors.

2.1 Decentralized Model Fairness

Increasingly, AI models are required to be fair (i.e. non-discriminating) with
respect to protected attributes (e.g. Gender). There are several metrics which
are used to evaluate a model for fairness. For the sake of illustration, we choose
the popular metric called predictive parity, which requires a model to have similar
accuracy for different values of the protected attribute. In our specific example,
our goal is to show that for binary classification model M we have:

∣
∣Pr[M(x) = y |Gender(x) = M] − Pr[M(x) = y |Gender(x) = F]

∣
∣ ≤ ε

where (x, y) ∼ D for representative distribution D. We may estimate the above
metric emperically on a test data T consisting of samples {(xi, yi)}n

i=1. For con-
creteness, let M be a decision tree model developed by model owner MO to be
used by financial institutions for approving home mortgage loan applications.
Let D1 and D2 be two private datasets consisting of loan applications, which
are owned by financial instituions DO1 and DO2 respectively. A data curator DC
curates the dataset T by concatenating (row-wise) datasets D1, D2 and further
generates datasets TM , TF consisting of applications with male and female appli-
cants respectively. Finally the model owner MO obtains datsets TM and TF and
computes the accuracy of its model on the respective datasets. In Fig. 2, the top
left code block shows the operations executed by different actors in the pipeline
without verifiability. The remaining code blocks show operations performed by
actors in a verifiable pipeline. The asset owners publicly commit their private
assets (bottom left) and generate proofs to attest correctness of their operations
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on assets (top right). Finally, a verifier (e.g. auditor) uses published commit-
ments and proofs to establish the correctness of steps performed by respective
actors in the pipeline (bottom right).

Fig. 2. Example pipeline for certifying financial model for fairness.

3 Overview

This section provides overview of the technical challenges in instantiating our
solution. More detailed technical contributions appear in Sects. 4 and 5.

3.1 Building Blocks

Cryptographic Primitives: We use zkSNARKs as the main cryptographic
tool to verify correctness of data operations and model inference while main-
taining confidentiality of the respective assets. A zkSNARK consists of a triple
of algorithms (G,P,V) where (i) G takes description of a computation as an arith-
metic circuit C and outputs public parameters pp ← G(1λ, C), (ii) P takes pp
and a satisfying instance (x,w) for C and outputs a proof π ← P(pp,x,w) while
(iii) V takes pp, statement x and a proof π and outputs b ← V(pp,x, π). The
proof π reveals no knowledge of the witness w, while an accepting proof π implies
that prover knows a satisfying assignment (x,w) with overwhelming probabil-
ity. A commit and prove zkSNARK (CP-SNARK) allows proving knowledge of
witness w as before, where part of w additionally opens a public commitment c,
i.e. w = (u,z) and Open(c) = u. A CP-SNARK specifies a commitment scheme
Com and like a zkSNARK, it provides algorithms G,P and V for generating pub-
lic parameters, generating proofs and verifying proofs respectively. Additionally,
a CP-SNARK allows one to generate proofs over data committed using Com
with negligible overhead in proof generation and verification.
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Notation: We use the notation [n] to denote the set of natural numbers
{1, . . . , n}. We often use the array notation x[ i ] to denote the ith component of
the vector x, with 1 as the starting index. We will denote the concatenation of
vectors x and y as �x,y�. All our arithmetic circuits, vectors and matrices are
over a finite field F of prime order.

Circuits for Dataset Operations: To use zkSNARKs, we express operations
on datasets as arithmetic circuits. At a high level, arithmetic circuits representing
data operations accept datasets as their inputs and outputs. Since establishing
provenance of an asset in an AI pipeline requires verifying operations over several
related assets, we require uniform representation of datasets across arithmetic
circuits, which would allow a dataset to be used as inputs/outputs in different
circuits. The second design constraint we enforce is that arithmetic circuits to be
universal, i.e., the same circuit can be used to verify operations on all datasets
within a known size bound. We need universal circuits for two primary reasons:
(i) the sizes of datasets are considered confidential and must not be inferable
from the circuits being used, and (ii) the circuits can be pre-processed to yield
efficient verification as it is a frequent operation in our applications.

Dataset Representation in Circuits: As we use the same circuit to represent
operations over datasets of varying sizes, we first describe a uniform representa-
tion of datasets which can be used within the arithmetic circuits. Let N denote
a known upper bound on the size of input/output datasets. We view a dataset
as a collection of its column vectors (of size at most N). We encode a vector of
size at most N as N + 1 size vector �s,X� where X = (X[1], . . . ,X[N ]) In this
encoding s denotes the size of the vector, X[1], . . . ,X[s] contain the s entries of
the vector, while X[i] for i > s are set to 02. Similarly, a dataset is encoded by
encoding each of its columns separately.

Dataset Commitment: Let Com be a vector commitment scheme associated
with a CP-SNARK CP. We additionally assume that Com is homomorphic. To
commit a vector x, we first compute its encoding x as a vector of size N +
1, and then compute c = Com(x, r) as its commitment. Here r denotes the
commitment randomness. To commit a dataset D with columns x1, . . . ,xM , we
commit each of its columns to obtain c = (c1, . . . , cM ), where ci = Com(xi)
as the commitment. Using our circuits with the CP-SNARK CP allows us to
efficiently prove operations over committed datasets.

3.2 Optimizations

We now highlight optimizations that are pivotal to the scalability of our system:

Mitigating Commitment Overhead: To prove statements over committed
values using general zkSNARKs, one generally needs to compute the commitment
as part of the arithmetic circuit expressing the computation. This introduces sub-
stantial overhead, when the amount of data to be committed is large. To avoid this,
2 This introduces no ambiguity if 0 is legitimately part of the vector, as s specifies the

content of the vector.
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we use a CP-SNARK and its associated commitment scheme. We instantiate our
system using Adaptive-Pinnochio [24], as the CP-SNARK. Adaptive-Pinnochio
augments the popular Pinnochio [20] zkSNARK with commit and prove capability.
The resulting scheme incurs ≤ 5% overhead in proof generation time over Pinno-
chio, while verification continues to be efficient (≤ 400ms) in practice. We expect
similar savings with other CP-SNARK schemes, and thus our constructs are agnos-
tic to the choice of CP-SNARK.

Circuit Decomposition: For some operations, verification is more efficient
when decomposed as two or more circuits, than when encoded as a mono-
lithic circuit. Let C(x,u,w) be an arithmetic circuit which checks some prop-
erty on (x,u) where u additionally opens the commitment c. Our decompo-
sition takes the form C(x,u,w) ≡ C1(x,u,w0,w1) ∧ C2(x,u,w0,w2) where
w = (w0,w1,w2) denotes a suitable partition of witness wires. Using a CP-
SNARK we let the prover provide an additional commitment c0 for the witness
wires w0 which are common to both the sub-circuits. In our decompositions,
we let C1 encode relation that is easily verified by an arithmetic circuit and let
C2 encode the relation which has substantially cheaper probabilistic verification
circuit, i.e., there exists a circuit C̃2(α,x,u,w0,w2) which takes additional ran-
dom challenge α and has identical output to C2 with overwhelming probability
(over random choices of α). In our constructions, the latter circuit verifies either
the simultaneous permutation property or consistent memory access property
which we introduce below. These are inefficient to check deterministically using
arithmetic circuits but admit efficient probabilistic circuits.

3.3 Simultaneous Permutation

We say that tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in F
N satisfy the simul-

taneous permutation relation if there exists a permutation σ of [N ] such that vi =
σ(ui) for all i ∈ [k]. We now describe protocol to check the relation over committed
vectors: i.e., given commitments cu1, . . . , cuk, cv1, . . . , cvk the prover shows knowl-
edge of vectors u1, . . . ,uk and v1, . . . ,vk corresponding to the commitments which
satisfy the relation. To achieve this, the verifier first sends a challenge β1, . . . , βk

and challenges the prover to show that β-linear combinations of the vectors u =
∑k

i=1 βiui, v =
∑k

i=1 βivi, corresponding to commitments cu =
∑k

i=1 βicui,
cv =

∑k
i=1 βicvi are permutations of each other. This is accomplished via a further

challenge α ← F and subsequently chekcing
∏N

i=1(α − u[ i ]) =
∏N

i=1(α − v[ i ]).
We describe the formal protocol and its analysis in Appendix C.1. The last compu-
tation can be expressed in an arithmetic circuit using O(N) multiplication gates
which is concretely more efficient compared to deterministic circuits for checking
permutation relation using routing networks [6,26].

3.4 Consistent Memory Access

We define consistent memory access relation for a triple of vectors L,U and V
where L ∈ F

n and U ,V ∈ F
m for some integers m,n. We say that (L,U ,V )
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Table 3. Comparison of Circuit Complexity for different ROM approaches. ZK and
CP denote zkSNARK and CP-SNARK protocols. m and n denote number of reads and
memory size respectively.

Circuit complexity Circuit complexity
(m = n =10000)

Backend

Linear scan 2mn 200 mill ZK

Routing networks [6,26] (m + n)(3 log(m + n) + 3 logm) 5.7 mill ZK

Buffet [25] m(21 + 2 log n + 10 logm) 1.9 mill ZK

xJSNARK [16] m(2
√
n + log n) 2.1 mill ZK

Our work 5(m + n) 0.1 mill CP

satisy the relation if V [ i ] = L[U [i] ] for all i ∈ [m]. We think of L as read only
memory (ROM) which is accessed at locations given by U with V being the
corresponding values. We adapt the techniques in [3,5,25,31] to take advantage
of CP-SNARKs in our construction. Next, we present a protocol to check the
relation given commitments to L,U and V . The verification proceeds as:

1. First m + n sized vectors u and v are computed as follows: For the vector
u we require u[ i ] = i for i ∈ [n] and u[ i + n ] = U [ i ] for i ∈ [m]. For the
vector v we require v[ i ] = L[ i ] for i ∈ [n] and v[ i + n ] = V [ i ] for i ∈ [m]
(see Fig. 3).

2. The prover also supplies auxiliary vectors ũ and ṽ of size m+n, where ũ and
ṽ are purportedly obtained from u and v via the same permutation.

3. Finally, we ensure that the vector ũ is sorted and that the vector ṽ differs in
adjacent positions only if the same is true for those positions in vector ũ.

The constraints on the first n entries of vectors u and v in step (1) can be
thought of as “loading” constraints that load the entries of L against correspond-
ing address in memory, while constraints on the last m entries can be thought of
as “fetching” constraints that fetch the appropriate value against the specified
memory location. The steps (2) and (3) ensure that the value fetched for a given
location is same as the value loaded against it during the initial loading steps. We
decompose above checks across two circuits. The first arithmetic circuit CROM,m,n

ensures steps (1) and (3) while the second circuit checks that vectors ũ, ṽ are
obtained by applying the same permutation to vectors u,v respectively. The
circuit CROM,m,n can be realized using O(m+n) multiplication gates. Generally,
verifying that a vector such as ũ is sorted in step (3) incurs logarithmic overhead
due to the need for bit decomposition of each element. However, we can leverage
the fact that ũ is a (sorted) rearrangement of u, which includes all elements of [n]
by construction. Thus, monotonicity of ũ is established provided (i) ũ[n ] = 1,
(ii) ũ[m + n ] = n and ũ[ i + 1 ] − ũ[ i ] ∈ {0, 1} for all 1 ≤ i ≤ m + n − 1, which
together require O(m + n) gates to verify. Finally, we invoke the protocol for
“Simultaneous Permutation” property in Sect. 3.3 to check compliance of step
(2). We illustrate the verification circuit and the decomposition in Fig. 3. The
formal protocol and analysis appears in Appendix C.2. Overall we incur O(m+n)
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Fig. 3. Consistent memory access

gates, which is more efficient than encoding entire relation in one circuit. In that
case one uses routing networks which incur O((m+n) log(m+n)) gates and are
concretely much more expensive. We can optimize further when the same access
pattern is used for accessing different ROMs as described below.

Multiplexed Memory Access. For access pattern U ∈ F
m and ROMs Lj ∈

F
n for j ∈ [k], we can show the correctness of lookup values Vj [ i ] = Lj [U [i] ],

i ∈ [M ], j ∈ [k] using just one instance of protocol discussed in this section.
To achieve this, the verifier sends a random challenge α1, . . . , αk to the prover.
The prover then shows that (L,U ,V ) satisfy correct memory access where L =
α1L1+ · · ·+αkLk and V = α1V1+ · · ·+αkVk for uniformly sampled α1, . . . , αk.
Note that due to the homomorphism of the commitment scheme, both the prover
and the verifier can compute the commitments for L,U and V .

3.5 Our Techniques in Perspective

Commit and prove functionality in conjunction with zero knowledge proofs has
been used in recent works addressing privacy in machine learning, most notably
in [18,27,28]. In [18] and [28], CP-SNARKs are used to “link” proofs of cor-
rectness for different parts of the circuit (similar to Circuit Decomposition in
our setting) to prove inference from a private neural network and a decision
tree respectively. In [27], public commitments are linked to set of authenticated
inputs between a prover and a verifier in a two party protocol. Subsequently
the prover produces a ZK proof showing correctness of neural network infer-
ence over authenticated inputs. In contrast, our usage of CP-SNARKs is more
pervasive. We first optimize key relations (simultaneous permutation, consistent
memory access) for CP-SNARKs and then design our dataset representation in
a way that allows us to represent operations on them in terms of aforementioned
relations.
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4 Privacy Preserving Dataset Operations

We now describe protocols for common dataset operations such as aggregation,
filter, order-by, inner-join etc. These operations serve to illustrate our key
techniques, which can be further applied to yeild protocols for much more compre-
hensive list of dataset operations. We use the fact that most of the operations dis-
tribute nicely as identical computations over different pairs of columns. Through-
out this section, N denotes the upper bound on the sizes of input/output datasets.

Aggregation: Aggregation operation takes two datasets as inputs and outputs
their row-wise concatenation. We first describe arithmetic circuit to verify the con-
catenation of vectors. The circuit accepts three vectors in their uniform represen-
tation as discussed in Sect. 3.1. Let x,y,z be three vectors of size at most N repre-
sented as �s,X�, �t,Y � and �w,Z� respectively where X,Y ,Z are vectors of size
N . The verification involves ensuring that the first w entries of Z contain the first
s entries of X and the first t entries of Y . Figure 4 illustrates the setting for s = 3,
t = 4, w = 7 and N = 9. To aid the verification, the prover provides N -length
binary vectors ρs,ρt and ρw as auxiliary inputs. The vector ρs is 1 in its first s
entires, and 0 elsewhere. Similar relation is satisfied by ρt and ρw. The correctness
of aggregation now reduces to showing that there is a permutation that simulta-
neously maps �ρs,ρt� to �ρw,0� and �X,Y � to �Z,0�. Figure 4 also shows how
the verification is decomposed: The first circuit checks that (i) w = s + t, (ii) vec-
tors ρs,ρt,ρt are correctly provided and (iii) ensures u1 = �ρs,ρt�, v1 = �X,Y �,
u2 = �ρw,0� and v2 = �Z,0�. The second circuit checks the “simultaneous per-
mutation” property on the pairs (u1,v1) and (u2,v2). Both the circuits can be
realized using O(N) multiplication gates. Using a CP-SNARK we can verify the
correctness of aggregation of vectors over commitments.

We now leverage the above construction to verify aggregation operation
over datasets. Let Dx,Dy and Dz be datasets each with k columns given by
(xi)k

i=1, (yi)k
i=1 and (zi)k

i=1 respectively. The reduction technique involves the ver-
ifier sampling random α1, . . . , αk satisfying α1 + · · · + αk = 1. Next, we use the
above circuit constructionwith aCP-SNARKtoprove that vectorsx =

∑k
i=1 αixi

,y =
∑k

i=1 αiyi and z =
∑k

i=1 αizi satisfy the concatenation property. We give
complete protocol and proof of the reduction in the Appendix C.3.

Filter: Filter operation involves a dataset and a selection predicate as inputs
and subsequently outputs a dataset consisting of subset of rows satisfying the
predicate. We divide the computation in two parts (i) Applying selection predi-
cate to rows of the dataset to obtain a binary vector f which we call as selection
vector and (ii) Applying selection vector to the source dataset to obtain the tar-
get dataset. The latter computation can be verified with techniques similar to
those used in aggregation operation. For the first computation, we describe an
efficient circuit for predicates of the form ∧k

i=1(xi == vi) where x1, . . . ,xk are
the columns of the dataset. Once again the verifier chooses random α1, . . . , αk

with
∑k

i=1 αi = 1 and challenges the prover to show that the selection vector f

satisfies f = (x == v) where x =
∑k

i=1 αixi and v =
∑k

i=1 αivi. The relation
f = (x == v) can be verified using a circuit with O(N) gates. Due to the homo-
morphism of the commitment scheme, the verifier can compute the commitment
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Fig. 4. Circuit for verifying vector concatenation

for vector x given the commitments to columns of the dataset. For more general
range queries of the form ∧k

i=1(�i < xi ≤ ri), we can compute selection vector
fi for each column, and then compute the final selection vector f = ∧k

i=1fi.

Order By: Order-By relation involves permuting the rows of the dataset so that
a specified column is in sorted order. The verification can be naturally expressed
as columns of source and target dataset satisfying simultaneous permutation
relation, where additionally the specified column is sorted. We can check the
monotonicity of a column using a circuit with O(bN) gates where b is the bit-
width of the range of values in the column. We skip the details.

Inner-Join: Inner join operation concatenates pairs of rows of input datasets
which have identical value for the designated columns (joining columns). We con-
sider the inner-join operation under the restriction that the joining columns have
distinct values. As a first step, we order both the input datasets so that the joining
columns are sorted. We can use the verification protocol for order-by operation
to ensure correctness of this step. We therefore assume that joining columns are
sorted, and take distinct values. Let D1 and D2 be two datasets which are joined
on columns x and y to yield the dataset D. We write D as juxtaposition of columns
[D

′
1,z,D

′
2] where D

′
i denotes the columns coming from Di while z denotes the col-

umn obtained as intersection of x and y. We first design sub-circuit for private
set intersection (PSI) to compute the size w of the resulting dataset. We then let
the prover provide auxiliary selection vectors f1 and f2 of size w. Finally, using
the circuit for filter relation, we verify that f1 applied to D1 yields dataset
DL = [D

′
1,z] and f2 applied to D2 yields the dataset DR = [D

′
2,z]. The over-

all circuit complexity is O(bN) where b is the bit-width of the range of values in x
and y with set-intersection computation dominating the overall cost.

5 Privacy Preserving Model Inference: Decision Trees

In this section we present a zero knowledge protocol for verifiable inference from
decision trees (and random forests). Decision trees are popular models in machine
learning due to their interpretability. A decision tree recursively partitions the fea-
ture space (arranged as a tree), and finally assigns a label to each leaf segment. The
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problem of proving correct inference from a decision tree was considered recently
in [28], where authors present a privacy preserving method for an adversary to
commit to a decision tree and later prove inference from the tree on public test
data. We present a new construction based on consistent memory access, which
improves upon the prior construction by reducing the number of multiplication
gates in the inference circuit. We also provide zero knowledge protocol for estab-
lishing the accuracy of a decision tree on test data. We consider variants with test
data being public or private. The latter scenario is helpful while verifying perfor-
mance of a private model on reputationally trusted private dataset.

Decision Tree Representation: We parameterize a binary decision tree with
following parameters: the maximum number of nodes (N), the maximum length
of a decision path (h) and maximum number of features used as predictors (d).
We assume that the nodes in the decision tree have unique identifiers from the set
[N ], while features are identified using indices in set [d]. We naturally represent
a decision tree T as a lookup table with five columns, i.e., T = (V ,T ,L,R,C),
where each column vector is of size N . For a decision tree with t ≤ N nodes, we
encode as follows: For i ∈ [t]:

– V [ i ] denotes the identifier for the splitting feature for ith node.
– T [ i ] denotes the threshold value for the splitting feature for ith node.
– L[ i ] and R[ i ] denote the identifiers for the left and right child of ith node.

In case of a leaf node, this value is set to i itself.
– C[ i ] denotes the label associated with the ith node, when it is a leaf node.

For non-leaf nodes this may be set arbitrarily.

We commit to a decision tree, by committing to each of the vectors. We define
cmT = (cmV , cmT , cmL, cmR, cmC) as the commitment to T .

Decision Tree Inference: We model the test data D as n × d matrix, con-
sisting of n d-dimensional samples. Let D be the vector of size dn obtained by
flattening D in row major order. The algorithm below computes decision paths
pi = (pi[ 1 ], . . . ,pi[h ]) for each sample i ∈ [n]. The prediction vector q contains
class labels corresponding to leaf nodes pi[h ] for i ∈ [n].

1. For i = 1, . . . , n do:
– Set pi[ 1 ] = 1 : root is the first node on every decision path.
– For j = 1, . . . , h determine next node as follows:

(a) Compute splitting feature: fi[ j ] = V [ pi[j] ].
(b) Compute threshold value: ti[ j ] = T [ pi[j] ].
(c) Compute left and right child id: li[ j ] = L[ pi[j] ], ri[ j ] = R[ pi[j] ].
(d) Compute label: ci[ j ] = C [ pi[j] ].
(e) Compute f̂i[ j ] = d ∗ i + fi[ j ].
(f) Compute value of splitting feature: vi[ j ] = D[ i, fi[j] ] = D[ f̂i[j] ].
(g) Compute next node: pi[j +1] = li[ j ] if vi[ j ] ≤ ti[ j ] and ri[ j ] otherwise.

– Compute label for the sample: q[ i ] = ci[ h ].

Verification of the above algorithm involves verifying (i) hn memory accesses
on the tables of T in steps (a)-(d), which share the access pattern pi[ j ], (ii) ver-
ifying hn memory accesses on D (of size dn) in step (f) and (iii) hn comparisons
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as part of step (g). Using the optimization in Sect. 3.4, the first verification incurs
O(N +hn) multiplication gates, while the second verification incurs O(dn+hn)
multiplication gates. Using standard techniques, verification of (iii) can be made
using O(whn) multiplication gates, where w is the bit-width of feature values.
Thus, overall circuit complexity of our solution is O(N + n(d + h + wh)). We
compare our solution with the method for zero-knowledge decision tree (zkDT)
inference presented in [28]. Broadly, the method in [28] establishes the correct-
ness of inference as three checks:

– Consistency of input decision tree with public commitment: This involves
O(N) evaluations of the hash function H used for commitment and thus
incurs c(H) · N multiplication gates. Here c(H) denotes the size of circuit
required to evaluate H.

– Consistency of feature vector with decision path: The verification of this step
leverages a “Multiset Check” ([28, Section 4.1]) which costs O(d log h) multi-
plication gates per sample.

– Correct evaluation of decision tree function: It involves h comparisons for
each sample, which incurs hw mutliplication gates, where w is the bit-width
of feature values.

Above steps result in an overall circuit complexity of c(H)N + n(3d log h + hw)
for zkDT. Our solution improves upon the approach in [28] by reducing the cost
of the first two checks. Using a CP-SNARK, we avoid the cost of computing the
commitment within the verification circuit, while using our optimized protocols
for memory access allows us to accomplish the second check with an average cost
of O(h + d) gates per sample (O(dn + hn) overall), which compares favorably
with per sample cost of O(d log h) incurred by zkDT for h = Θ(d). The concrete
improvement obtained using our approach depends on which of the three checks
dominate the cost for specific parameter settings. We compare the cost of the
two approaches for some representative parameter settings in Table 5.

Decision Tree Accuracy: The above circuit for decision tree inference can be
easily modified to yield the circuit for proving accuracy of a decision tree on test
data. In this case, the prediction vector is kept private, and tallied against ground
truth to compute accuracy. Since our system also includes verifiability of model
performance (accuracy) on private benchmark datasets, we briefly describe the
modifications required to achieve the same. Let D be a private dataset with
columns (x1, . . . ,xd) with commitments to columns being public. Since, we can
no longer compute the flattened vector D as before, we cannot verify the lookup
vi[ j ] = D[ f̂i[j] ]. Instead we use polynomial interpolation to pre-process D. For
ith row D[i, ·] of the original data (a vector of size d), we interpolate a polynomial
pi of degree d−1 such that p(j) = D[i, j]. We obtain the pre-processed dataset D′

whose ith row consists of coefficients of pi. The data owner makes a commitment
to D′ instead of D. The lookup vi[ j ] = D′[i, j] = pi(j) now involves evaluating
a d−1 degree polynomial which incurs d multiplication gates. The overall circuit
complexity for accuracy over private datasets is therefore O(N+hn+hnw+hnd).
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Table 4. Measuring the efficacy of our optimizations on 100K× 10 datasets.

No optimization Partial optimization Full optimization

Aggregation 19.3 mil 1.6 mil 0.21 mil

Filter 12.5 mil 0.7 mil 0.07 mil

Inner-Join 22.1 mil 4.4 mil 0.65 mil

Table 5. Comparison of Circuit Complexity for decision tree inference.

Test data size (n) T1 = (1000,50,20) T2 = (10000,35,25)

Our Work zkDT [28] Our Work zkDT [28]

100 0.11 mil 3.1 mil 0.16 mil 30.1 mil

1000 1 mil 4.3 mil 1.2 mil 31 mil

10000 9.5 mil 16.5 mil 11.5 mil 41 mil

6 Experimental Evaluation

In this section we report the concrete performance of our system primitives.
For our implementation, we used Adaptive Pinocchio [24] as the underlying
CPSNARK, which we implemented using the libsnark [17] library. We also
used the libsnark library for our circuit descriptions. Our experiments were
performed on Ubuntu Linux 18.04 cloud instances with 8 Intel Xeon 2.10 GHz
virtual cpus with 32 GB of RAM. The experiments were run with finite field
arithmetic libraries and FFT libraries compiled to exploit multiple cores. We
often use circuit complexity (multiplication gates in the circuit) as the “envi-
ronment neutral” metric for comparing different approaches (the proving times
scale quasi-linearly with circuit complexity).

Performance of Dataset Operations: Table 1 contains summary of asymp-
totic as well as concrete efficiency of our dataset operations. All the operations
scale linearly with the number of rows (with marginal additive dependence on
the number of columns). The numbers for proof generation and verification were
generated for representative dataset size of 100K × 10. While proof generation
is an expensive operation by general standards, it is practical enough for infre-
quent usage. We also tabulate the efficacy of our optimizations in Table 4. For
the unoptimized case, we do not use CP-SNARKs and instead compute commit-
ments using circuit-friendly MiMC hash [1]. For partially optimized case, we use
native commitment scheme of CP-SNARK for commitments, but use monolithic
circuits to encode the operations. To express permutations in monolithic circuits,
we use gadgets for routing networks [6,26] available in [17]. The fully optimized
version delegates permutation checking and memory access check to probabilistic
circuits as discussed in Sect. 3.2. In the first case, hashing dominates the circuit
complexity resulting in 50–100 times larger circuits. Decomposing the circuits
instead of monolithic circuits also results in an order of magnitude savings.
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Table 6. Concrete proving and verification time for decision tree inference.

Test data size (n) T1 = (1000,50,20) T2 = (10000,35,25)

Prov.Time(s) Ver.Time(ms) Prov.Time(s) Ver.Time(ms)

100 1 400 1 400

1000 5 400 6 400

10000 170 400 200 400

Performance of Decision Tree Inference: We use two decision trees T1 and
T2 to benchmark performance of our decision tree inference implementation. We
also use the same trees to compare our method with the one presented in [28]. We
synthetically generate the tree T1 with 1000 nodes, 50 features and depth as 20,
which roughly corresponds to the largest tree used in [28]. The tree T2 is trained
on a curated version of dataset [12] for Home Mortgage Approval. We identify 35
features from the dataset to train binary decision tree. We train T2 with 10000
nodes and depth 25. We verify the inference from the two trees for batch sizes
of 100 (small), 1000 (medium) and 10000 (large). Using our method to generate
proof of predictions takes from few seconds (on small data) to few minutes (on
large data), as seen in Table 6. The circuit complexity and the proving time
scale almost linearly for our method. We also compare the multiplication gates
incurred by arithmetic circuits in our method with that in [28] in Table 5. Our
efficiency is an order of magnitude better for smaller data sizes, as we do not
incur one time cost for hashing the tree. For larger batch sizes, our method
is still about 1.5-4× more efficient. As the batch sizes get large, comparisons
dominate the circuit complexity in both the approaches. We report the circuit
complexity for proving the accuracy for decision trees on private datasets and
public datasets. Table 7 shows that the overhead for proving accuracy on private
datasets ranges from 50–80%.

Performance of Memory Access: We also independently benchmark the
performance of our memory abstraction technique and compare it to existing
methods in Table 3. Leveraging CP-SNARKs and probabilistic reductions we
essentially incur constant number of gates per access. We compare different
approaches both in terms of asymptotic complexity and concrete complexity
for parameter settings representative of their usage in our work. Our concrete
efficiency is an order of magnitude better than the alternatives considered.

Table 7. Circuit Complexity for decision tree accuracy for public and private bench-
mark datasets.

Test data size (n) T1 = (1000,50,20) T2= (10000,35,25)

Public Private Public Private

100 0.11 mil 0.18 mil 0.16 mil 0.23 mil

1000 1 mil 1.75 mil 1.2 mil 1.8 mil

10000 9.5 mil 17.4 mil 11.5 mil 18 mil
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A Preliminaries

We briefly summarise some key cryptographic notions that we use throughout
the paper. For more details on the notions discussed below, we refer the reader
to [8, Section 2].

A.1 Commitment Scheme

Definition 1. A commitment scheme Com = (Setup,Commit,VerCommit) is a
tuple of algorithms with message space D, commitment space C and opening space
O which satisfies correctness, hiding and binding as described below:

– Setup(1λ) → ck takes security parameter λ and outputs commitment key ck.
– Commit(ck, u) → (c, o) takes commitment key ck and u ∈ D and outputs

commitment c ∈ C and opening o ∈ O.
– VerCommit(ck, c, u, o) → b takes commitment key ck, commitment c, message

u and opening o and outputs b ∈ {0, 1}.

Correctness: A valid commitment always verifies correctly, i.e. for ck ←
Setup(1λ), (c, o) ← Commit(ck, u), with probability 1, we have VerCommit(ck,
c, u, o) = 1.

Binding: It is infeasible for a polynomial time adversary to provide two openings
to the same commitment.

Hiding: Commitments to any two messages are indistinguishable.

A.2 Zero Knowledge Arguments

We define the notion of pre-processing zero-knowledge Succinct Arguments of
Knowledge (zkSNARKs).

Definition 2. A zkSNARK for a family of NP relations {Rλ}λ∈N is a tuple of
algorithms (G,P,V) where:

– G(1λ, R) → (pp, td) takes security parameter and the relation R ∈ Rλ and
outputs public parameters pp = (pk, vk) and a trapdoor td. In the above pk is
called the evaluation key and vk is called the verification key.

– P(pk,x,w) → π takes the evaluation key, public input vector x, witness vector
w and outputs a proof π.

– V(vk,x, π) → b takes the verification key, public input vector x, a proof π and
outputs b = 1 (accept) or b = 0 (reject).

A zkSNARK S = (G,P,V) satisfies the following properties:
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Completeness: For all (R,x,w) such that R ∈ Rλ and R(x,w) = 1, the
following probability is 1.

Pr[π ← P(pk,x,w);V(vk,x, π) = 1]

Knowledge Soundness: Let RG denote a relation generator and Z denote a
(benign) auxiliary input generator. Then the zkSNARK S is called knowledge
sound for (RG,Z) if for all efficient provers P ∗, there exists an extractor EP ∗

such that the following probability is negligible:

Pr

⎡

⎢
⎢
⎣

(R, auxR) ← RG, pp ← G(1λ, R)
Z ← Z(pp, R, auxR) V(pp,x, π)∧

(x, π) ← P ∗(R, auxR, pp, Z) ¬R(x,w)
w ← EP ∗

(R, auxR, pp, Z)

⎤

⎥
⎥
⎦

Zero Knowledge: We say that S satisfies zero-knowledge for relation generator
RG if there exists simulator S = (S1, S2) such that the following hold:

– Key Indistinguishability: For all efficient adversaries A we have:

Pr
[

(R, auxR) ← RG(1λ), pp ← G(1λ, R) A(R, auxR, pp) = 1
]

≈ Pr
[

(R, auxR) ← RG(1λ), A(R, auxR, pp) = 1
(pp, td) ← S1(R, auxR)

]

– Proof Indistinguishability: For all efficient adversaries A and all R ∈ Rλ,
(x,w) such that R(x,w) = 1 we have:

Pr

⎡

⎣

(R, auxR) ← RG(1λ),
pp ← G(R, auxR), A(pp, auxR, π) = 1
π ← P(pp,x,w)

⎤

⎦

≈ Pr

⎡

⎣

(R, auxR) ← RG(1λ),
(pp, td) ← S1(R, auxR), A(pp, auxR, π) = 1
π ← S2(pp,x, td)

⎤

⎦

A.3 Commit and Prove SNARKs

Informally, a commit and prove SNARK (CP-SNARK) is a SNARK that can
prove knowledge of witness where part of the witness opens a commitment c. In
other words, a CP-SNARK for relation R allows one to prove knowledge of w =
(u,z) such that R(x,w) = 1 and c is a commitment for u. The commitments
can be used in several proofs to prove composite statements. We summarise the
formal notion of CP-SNARKs as defined in [8].

Definition 3 (CP-SNARK). Let Com be a commitment scheme with input
space D, opening space O and commitment space C. Let {Rλ}λ∈N be a family of
relations R over Dx × Du × Dw where Du splits as D1 × · · · × D� for some � ≥ 1
such that Di ⊆ D for i = 1, . . . , �. A commit and prove zkSNARK (CP) for Com
and {Rλ}λ∈N is a zkSNARK for family of relations {RCom

λ }λ∈N where:
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– every R ∈ RCom is represented by (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ.
– R is over the pairs (x,w) where x = (x, (cj)j∈[�]) ∈ Dx ×C� is the statement

and w = ((uj)j∈[�], (oj)j∈[�], ω) ∈ D1 ×· · ·×D� ×O� ×Dω is the witness. The
relation R holds iff:

∧

j∈[�]

VerCommit(ck, cj , uj , oj) = 1 ∧ R(x, (uj)j∈[�], ω) = 1

Further, we say that CP is knowledge sound for relation generator RG and aux-
iliary input generator Z if it satisfies knowledge soundness (RGCom,Z) where
RGCom denotes the relation generator which samples (ck, R, aux) as RG(1λ) →
(R, aux) and Setup(1λ) → ck.

We elaborate slightly on the intuition behind the above definition. Typically a
zkSNARK for relation R ⊆ Dx × Dω proves knowledge of w ∈ Dω for a given
statement x ∈ Dx such that R(x,w) = 1. With a CP-SNARK, we additionally
wish to prove that part of the witness w opens a commitment c, i.e. w = (u, z)
where c is a commitment for u. Generalizing this further, we can decompose the
committed part of the witness u into � slots, where witness corresponding to
each slot opens a specified commitment.

B Security Analysis

We describe our protocols as interactive protocols with (semi) honest verifiers.
One can obtain non-interactive arguments of knowledge (SNARKs) in the Ran-
dom Oracle model from them via Fiat-Shamir heuristic. We first define a secure
protocol for proving a relation R under commitments using the commitment
scheme Com. We will write a relation R as R(x,u,w) where x denotes the public
input (plain-text), u denotes the committed witness while w denotes the “free”
(uncommitted witness). The vector u purportedly opens a public commitment c.

Definition 4 (Secure Protocol). A secure protocol for a relation R and
commitment scheme Com consists of tripe Π = (G,P,V) consisting of generator
algorithm G, a PPT prover P and a PPT verifier V which work as follows:

1. G(ck, R, 1λ) −→ pp: Given a commitment key ck ← Com.Setup(1λ) and R, G
outputs public parameters pp.

2. Given public parameters pp for relation R and a pair (x, c) consisting of
statement x and a public commitment c, P and V interact via an alternating
sequence of messages, at the end of which V outputs 0 (Reject) or 1 (Accept).

Further, a secure protocol Π satisfies completeness, soundness and zero-
knowledge which we define shortly.

Let Π(pp,x, c;u,w, 0) denote the output (0/1) of interaction between P
and V on common input (x, c) and P’s private inputs as u,w, o. Similarly, let
Π.Vw(x, c;u,w, o) denote V’s view in the interaction. We use ΠA(pp,x, c) to
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denote the output of interaction between an adversarial prover A and V on
common input (x, c). Next, we define the security properties satisfied by a secure
protocol Π.

Completeness: We call Π to be complete if for all ck ∈ Com.Setup(1λ) and
(x,u,w) ∈ R we have:

Pr
[

pp ← G(ck, R, 1λ), c = Com.Commit(ck,u, o),Π(x, c;u,w, o) = 1
]

= 1

.

Soundness: We call Π to have soundness if for all PPT adversaries A, there
exists and efficient extractor E such that the following probability is negligible:

Pr
[

ck ← Com.Setup(1λ), pp ← G(ck, R, 1λ),
(x, c) ← A(pp, z), (u,w, o) ← EA(pp, z)

∣
∣
∣
∣

ΠA(pp,x, c) = 1
∧¬R̃(x, c,u,w, o)

]

Here R̃(x, c,u,w, o) ≡ R(x,u,w) ∧ Com.VerCommit(ck, c,u, o).

Zero Knowledge: We say that Π is zero-knowledge if there exists efficient
simulator S = (S1,S2) such that for all ck ∈ Com.Setup(1λ), (x, c,u,w, o) such
that (x,u,w) ∈ R and c = Com.Commit(ck,u, o), the following are statistically
indistinguishable:

[

pp ← G(ck, R) |
(

pp,Π.Vw(pp,x, c;u,w, o)
)]

≈
[

(pp, td) ← S1(1λ, R) |
(

pp,S2(td, pp, ck,x, c)
)]

First, we exhibit a trivial secure protocol that can be obtained from a CP-
SNARK for a relation.

Lemma 1. Let CP = (G,P,V) be a CP-SNARK for relation R and commitment
scheme Com. Then Π = (G,P,V) as described below is a secure protocol for
relation R and commitment scheme Com.

– G(ck, R, 1λ) −→ pp where pp ← G(ck, R, 1λ).
– On common input (x, c) and P’s input (u,w, o), P and V interact as follows:

1. P computes: π ← P(pp,x,u,w, o).
2. P → V: P sends π to V.
3. V outputs V(pp,x, c, π).

The proof of the above is trivial and follows directly from the properties of CP-
SNARK CP. We now formally define the probabilistic relation decomposition
and provide a secure protocol for decomposed relation in by gluing the secure
protocols for the constituent relations.
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Definition 5 (Probabilistic Relation Decomposition). Let R(x,u,w) be
a relation. We say that relations (R1, R2) are a probabilistic decomposition of R
if there exists a canoical partitioning of w as w0||w1||w2 and a challenge space
C such that for α ← C:

Pr [R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 1] = 1
Pr [R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 0] = negl

Lemma 2 (Glueing Lemma). Let (R1, R2) be a probabilistic relation decom-
position of the relation R and let Π1 and Π2 be secure protocols for (R1,Com)
and (R2,Com) respectively, where Com is a commitment scheme. Then the pro-
tocol Π = (G,P,V) as described below is a secure protocol for (R,Com).

– G(ck, R, 1λ) −→ pp: The algorithm P invokes generator algorithms for the
consituent relations as pp1 ← Π1.G(ck, R1, 1λ), pp2 ← Π2.G(ck, R2, 1λ) and
returns pp = (pp1, pp2).

– On common input (x, c) and private prover inputs (u,w, o), P and V interact
as follows:
1. P computes: P partitions w as w0||w1||w2. Next P samples ow ← O and

computes cw = Com.Commit(ck,w0, ow).
2. P → V: P sends cw to V.
3. P and V execute the secure protocol Π1 with common input (x, (c, cw))

and prover’s (Π1.P) inputs as ((u,w0),w1, (o, ow)). Let b1 denote the
output of the protocol Π1.

4. V → P: V samples α ← C and sends α to P.
5. P and V execute the secure protocol Π2 with common input

((α,x), (c, cw)) and prover’s (Π2.P) inputs as ((u,w0),w2, (o, ow)). Let
b2 denote the output of the protocol Π1.

6. V outputs b1 ∧ b2.

Proof. We skip the proof of completeness of protocol Π, as it is straightforward
to verify. To show soundness, let A be a PPT adversary such that ΠA(pp,x, c) =
1. Let cw be the first message (commitment) sent by A to V. From the protocol
description of Π, we have:

ΠA(pp,x, c) = Π1,A(pp1,x, (c, cw)) ∧ Π2,A(pp2, (α,x), (c, cw)).

Thus A is also an adversary for secure protocols Π1 and Π2. Soundness of Π1

and Π2 implies existence of extractors E1 and E2 such that ((u,w0),w1, o) ←
EA
1 (pp1, z) and ((u′,w′

0,w2, (o′, o′
w)) ← EA

2 (pp2, z). We define extractor E which
invokes the above extractors and outputs (u,w, o) for w = w0||w1||w2. With
overwhelming probability we have

R1(x,u,w0,w1) ∧ Com.VerCommit(ck, (c, cw), (u,w0), (o, ow))
R2(α,x,w′

0,w2) ∧ Com.VerCommit(ck, (c, cw), (u′,w′
0, (o

′, o′
w))

By the binding property of Com, we also have u′ = u, w′
0 = w0, o′ = o and

o′
w = ow and Com.VerCommit(ck, (c, cw), (u,w0), (o, ow)) = 1 with overwhelming
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probability. Finally, since R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1, we must
have R(x,u,w) = 1 for w = w0||w1||w2 with probability negligibly close to 1.
This proves that E extracts a valid witness with overwhelming proability.

We now show that Π is zero-knowledge. Let ck ← Com.Setup(1λ) and let
(x, c,u,w, o) be such that (x,u,w) ∈ R and c = Com.Commit(ck,u, o). We
show the existence of simulator S = (S1,S2) such that:

[

pp ← G(ck, R) |
(

pp,Π.Vw(pp,x, c;u,w, o)
)]

≈
[

(pp, td) ← S1(1λ, R) |
(

pp,S2(td, pp, ck,x, c)
)]

Let S̃ = (S̃1, S̃2) and Ŝ = (Ŝ1, Ŝ2) be the simulators for secure protocols Π1 and
Π2 respectively. The simulator S works as follows:

– S1(1λ, R) −→ (pp′, td′): On input R and security parameter, S1 invokes sim-
ulators for R1, R2 to obtain (pp′

1, td
′
1) ← S̃1(1λ, R1), (pp′

2, td
′
2) ← Ŝ1(1λ, R2)

respectively. It sets pp′ = (pp′
1, pp

′
2) and td′ = (td′

1, td
′
2).

– S2 works as follows: It samples α ← C, õ ← Oλ and computes c̃w =
Com.Commit(ck,0, õ). Then it invokes simulators S̃2 and Ŝ2 as:

• V ′
1 ← S̃2(td′

1, pp
′
1,x, (c, c̃w)),

• V ′
2 ← Ŝ2(td′

2, pp
′
2, (α,x), (c, c̃w)).

– Finally it outputs (α, c̃w, V ′
1 , V ′

2).

The required indistinguishability follows via hybrids shown below. For ease
of notation let V1 denote Π1(pp1,x, (c, cw); (u,w0),w1, (o, ow)) and V2 denote
Π2(pp2, (α,x), (c, cw); (u,w0),w2, (o, ow)). Then we have:

〈pp,Π.Vw(pp,x, c;u,w, o)〉 (1)
= 〈pp1, pp2, α, cw, V1, V2〉 (2)

≈ 〈pp′
1, pp2, α, cw, S̃2(td′

1, pp
′
1,x, (c, cw)), V2〉 (3)

≈ 〈pp′
1, pp

′
2, α, cw, S̃2(td′

1, pp
′
1,x, (c, cw)), Ŝ2(td′

2, pp
′
2, (α,x), (c, cw))〉 (4)

≈ 〈pp′
1, pp

′
2, α, c̃w, V ′

1 , V ′
2〉 (5)

In the above the indistinguishability of (2) and (3) follows from the zero knowl-
edge property of Π1. Similarly zero knowledge of Π2 implies indistinguishability
of (3) and (4). Finally, the indistinguishability of (4) and (5) follows from the
hiding property of Com. This completes the proof.

C Secure Protocols

In this section, we give secure protocols for the different relations discussed in
this paper such as simultaneous permutation, consistent memory access, various
dataset operations and decision tree inference.
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C.1 Simultaneous Permutation

For a fixed N , recall that k-tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in F
N

satisfy simultaneous permutation relation if there exists a permutation σ of [N ]
such that σ(ui) = vi for all i ∈ [N ]. Let Rσ denote the relation over (α,u,v)
with α ∈ F and u,v ∈ F

N such that
∏N

i=1(α − u[ i ]) =
∏N

i=1(α − v[ i ]). Let
Πσ denote the trivial secure protocol obtained from CP-SNARK for (Rσ,Com)
(using Lemma 1), where we also assume Com is homomorphic.

Lemma 3. The protocol Πperm = (G,P,V) in Fig. 5 is a secure protocol for
simultaneous permutation relation and commitment scheme Com.

Proof. By standard rewinding technique, with overwhelming probability the
extractor E , for an accepting adversarial prover A can extract vectors {ui,vi}k

i=1

such that ui opens commitment cui and vi opens commitment cvi for all i ∈ [k].
This is accomplished by running the subprotocol Πσ for k different linear com-
binations of commitments given by the challenge (β1, . . . , βk), and using the
extractor for Πσ to obtain openings for respective linear combinations of vectors.
Since the challenges are linearly independent with overwhelming probability, we
can solve the system of equations to obtain openings for individual commitments
cui and cvi for all i ∈ [k]. By homomorphism of Com, the vectors u =

∑k
i=1 βiui

and v =
∑k

i=1 βivi open commitments cu and cv respectively. Again sound-
ness of Πσ implies with overwhelming probability (α,u,v) ∈ Rσ. Since α was
drawn uniformly at random, we conclude that there is a permutation π such
that π(u) = v with probability almost 1. Finally, since β1, . . . , βk were drawn
uniformly at random π(

∑k
i=1 βiui) =

∑k
i=1 βivi, with overwhelming probability

we must have π(ui) = vi for all i ∈ [k]. This shows the soundness of Πperm. We
skip the proof of zero-knowledge for Πperm as it follows from the same property
for Πσ.

G(1λ) −→ pp: Obtains pp as pp ← Πσ.G(1λ, Rσ).
Inputs: On common input cu = (cui)ki=1, cv = (cvi)ki=1 and P’s inputs consisting
of {ui, vi, oi, ωi}k

i=1, permutation π of [N ]; P and V interact as follows:

1. V → P: (α, β1, . . . , βk) ← F
k+1.

2. P and V compute: cu =
∑k

i=1 βicui, cv =
∑k

i=1 βicvi.
3. P computes: u =

∑k
i=1 βiui, v =

∑k
i=1 βivi, o =

∑k
i=1 βioi, ω =

∑k
i=1 βiωi.

4. P and V execute the protocol Πσ with (α, cu, cv) as the common input and
(u, v, o, ω) as prover’s inputs. Let b be the output of the protocol Πσ.

5. V outputs b.

Fig. 5. Protocol Πperm for simultaneous permutation
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C.2 Consistent Memory Access

in this section, we formalize the secure protocol for consistent memory access
relation discussed in Sect. 3.4.

Lemma 4. There exists a secure protocol Πcma for consistent memory access
relation defined in Sect. 3.4.

Proof. We consider the relation Rcma explained in Sect. 3.4 for consistent mem-
ory access as:

Rcma(·, �L,U ,V �, �u,v, ũ, ˜v,w1,w2�)

In the above, there are no public inputs, the committed witness consists of
L,U and V which denote the read only memory, access pattern and values
respectively. The uncommitted witness consists of auxiliary inputs (u,v, ũ, ṽ)
and other witness w1 and w2 required to prove the relation. The description in
Sect. 3.4 partitions the above as:

CROM,m,n(·, �L,U ,V ,w0�,w1) ∧ Rσ(·,w0,w2) (6)

where w0 = �u,v, ũ, ṽ�. The secure protocol ΠROM can be obtained using a CP-
SNARK for circuit CROM,m,n via Lemma 1. Invoking Glueing Lemma (Lemma
2) with ΠROM and protocol Πperm for simultaneous permutation relation, we
obtain the secure protocol Πcma.

C.3 Aggregation Operation

We now provide a secure protocol for showing correctness of aggregation oper-
ation on datasets as described in Sect. 4. In Sect. 4 we described a protocol for
checking correct concatenation of vectors under commitments, and then reduced
the verification of dataset aggregation to that of verifying concatenation of
vectors (obtained via linear combination of columns of dataset). We also jus-
tify the aforementioned reduction. We assume Πconcat is a secure protocol for
checking concatenation of vectors, which we assume is desceribed by the rela-
tion Rconcat. The secure protocol Πagg = (G,P,V) for verifying aggregation of
datasets appears in Fig. 6. Let Dx,Dy and Dz be datasets with columns given
by (xi)k

i=1, (yi)k
i=1 and (zi)k

i=1 respectively. Similarly let (cxi)k
i=1, (cyi)k

i=1 and
(czi)k

i=1 denote public commitments to the columns of Dx, Dy and Dz respec-
tively. As in Sect. 4, let N denote the upper bound on the sizes of datasets and
vectors.

Lemma 5. The protocol Πagg in Fig. 6 is a secure protocol for aggregation rela-
tion on datasets and commitment scheme Com.

Proof. The completeness and zero-knowledge properties of the protocol are
proved in a manner similar to earlier protocols. Here we prove the soundness
of the probabilistic reduction from aggregation relation on datasets to con-
catenation relation on vectors, which implies soundness of the overall proto-
col. With overwhelming probability, a successful adversary A knows vectors
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G(1λ) −→ pp: Obtains pp as pp ← Πconcat.G(1λ, Rconcat).
Inputs: On common input (cxi)ki=1, (cyi)

k
i=1 and (czi)ki=1 and P’s inputs consisting

of {xi, yi, zi, oi, ωi, δi}k
i=1; P and V interact as follows:

1. V → P: (β1, . . . , βk) ← F
k+1 satisfying

∑k
i=1 βi = 1.

2. P and V compute: cx =
∑k

i=1 βicxi, cy =
∑k

i=1 βicyi and cz =
∑k

i=1 βiczi.
3. P computes: x =

∑k
i=1 βixi, y =

∑k
i=1 βiyi, z =

∑k
i=1 βizi. Similarly it

also obtains o, ω and δ as β-linear combinations of {oi}k
i=1, {ωi}k

i=1, {δi}k
i=1

respectively.
4. P and V execute the protocol Πconcat with (cx, cy, cz) as the common input and

(x, y, z, o, ω, δ) as prover’s inputs. Let b be the output of the protocol Πconcat.
5. V outputs b.

Fig. 6. Protocol Πagg for dataset aggregation

(xi)k
i=1, (yi)k

i=1 and (zi)k
i=1 such that their respective β-linear combinations x,y

and z satisfy the concatenation relation. As in Sect. 4, we write xi = �si,Xi�,
yi = �ti,Yi� and zi = �wi,Zi� for i ∈ [k]. Similarly, let x = �s,X�, y = �t,Y �
and z = �w,Z�. Note that we must have:

s =
k∑

i=1

βisi, t =
k∑

i=1

βiti, w =
k∑

i=1

βiwi

X =
k∑

i=1

βiXi, Y =
k∑

i=1

βiYi, Z =
k∑

i=1

βiZi

Now, from description in Sect. 4, the vectors x,y and z satisfy the concatenation
relation if there exists a permutation of [2N ], which we denote by permutation
matrix Λ such that Λ · �ρs,ρt� = �ρw,0�, Λ · �X,Y � = �Z,0� where vectors
ρs,ρt and ρw are in {0, 1}N such that ρs is 1 in precisely the first s positions,
ρt is 1 in precisely the first t positions and ρw is 1 in precisely the first w
positions where further w = s + t. The relation thus also implicity requires that
s, t, w ∈ [N ]. We now claim that si = s, ti = t and wi = w for all i ∈ [k].
Otherwise it is easily seen that s is distributed uniformly in F (and likewise for
t and w) for uniformly sampled β1, . . . , βk (subject to sum being 1), and thus
s ∈ [N ] with negligible probability N/|F|. Similar reasoning also implies that
with overwhelming probability we have Λ · �Xi,Yi� = �Zi,0� for all i ∈ [k].
Combined with the fact that Λ · �ρs,ρt� = �ρw,0�, it implies that the same
permutation Λ maps the first s entries of column xi and first t entries of column
yi to the first w = s + t entries of the column zi for all i ∈ [k]. Thus Dz

corresponds to aggregation of datasets Dx and Dy.

Protcols and Proofs for Other Operations: We have provided circuit
descriptions for other operations such as filter, order-by, inner-join and
also ML operations such as inference and accuracy from decision trees. These
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circuits can be used with CP-SNARKs to yeild secure protocols for those opera-
tions using techniques similar to presented protocols (essentially using Lemmas
1 and 2), alongwith reduction technique when applicable.
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