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Abstract. The framework of interactive oracle proofs (IOP) has been
used with great success to construct a number of efficient transparent
zk-SNARKs in recent years. However, these constructions are based on
Reed-Solomon codes and can only be applied directly to statements given
in the form of arithmetic circuits or R1CS over large enough fields F.

This motivates the question: what is the best way to apply these IOPs
to statements that are naturally written as R1CS over small fields, and
more concretely, the binary field F2? While one can just see the system
as one over an extension field F2e containing F2, this seems wasteful,
as it uses e bits to encode just one “information” bit. In fact, in FC21
the work BooLigero devised a way to apply the well-known Ligero while
being able to encode

√
e bits into one element of F2e .

In this paper, we introduce a new protocol for F2-R1CS which among
other things relies on a more efficient embedding which (for practical
parameters) allows to encode ≥ e/4 bits into an element of F2e . Our
protocol makes then black box use of lincheck and rowcheck protocols for
the larger field. Using the lincheck and rowcheck introduced in Aurora
and Ligero respectively we obtain 1.31−1.65× smaller proofs for Aurora
and 3.71× for Ligero. We also estimate the reduction of prover time by
a factor of 24.7× for Aurora and between 6.9− 32.5× for Ligero without
interactive repetitions.

Our methodology uses the notion of reverse multiplication friendly
embeddings introduced in the area of secure multiparty computation,
combined with a new IOPP to test linear statements modulo a subspace
V ≤ F2e which may be of independent interest.

1 Introduction

A zero-knowledge proof is a protocol in which a prover convinces a verifier that
a statement is true, while conveying no other information apart from its truth.
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Zero-knowledge proofs have been among the most useful and studied primitives
in cryptography since their advent in the 80s. Their popularity has increased even
more in recent times, propelled by new applications motivated by blockchain
technologies. This context has highlighted the relevance of a particular flavour
of zero-knowledge proof, known as zero-knowledge succinct non-interactive argu-
ment of knowledge, or zk-SNARK.

The flexibility and efficiency of zk-SNARKs allow to provide practical argu-
ments of knowledge for relations that lack any kind of algebraic structure, for
instance the preimage relation for a one-way function. However, it is well known
[Wee05] that under standard complexity assumptions, succinct non-interactive
arguments do not exist unless some kind of setup is assumed, such as a common
reference string. This either requires a trusted third party or the execution of
heavy MPC protocols if the setup relies on secret randomness.

For this reason, transparent SNARKs have been proposed, whose setup
involves only publicly generated randomness. Many constructions of transpar-
ent setup SNARKs have been proposed in recent years, both based on asym-
metric [BCC+16], [WTS+18], [BBB+18], [BFS20] and symmetric [AHIV17],
[BBHR18b], [BCR+19], [COS20], [Set20], [BFH+20] cryptographic techniques.

In this work we focus on this latter type of constructions and remark that all
cited works in this category are built in (variants of) the Interactive Oracle Proof
framework presented in [BCS16] and independently in [RRR16] as “interactive
PCP”. Moreover they all address directly or indirectly the NP-complete rank 1
constraint system satisfiability problem. An easier to state variant asks to prove,
given A,B,C ∈ F

m,n and b ∈ F
m, the existence of a vector z ∈ F

n such that
Az ∗ Bz = Cz + b, where ∗ is the component-wise multiplication of vectors in
F

m.
An IOP is an interactive proof where the verifier has oracle access to some

strings provided by the prover. Its relation to zk-SNARKs stems from the results
in [BCS16] where it was shown that any IOP can be efficiently compiled into
a non-interactive argument in the random oracle model by using Merkle trees
[Mer90]. Moreover the transformation, which can be seen as a generalization of
the reduction in [Mic94] from PCP, preserves zero knowledge and knowledge
soundness. In particular, IOPs can be used to construct zk-SNARKs.

Unfortunately, the IOP constructions above cannot be directly instantiated
for every field choice as they extensively use Reed-Solomon codes, that requires
the existence of enough points in F and, even worse, the soundness error is often
greater than |F|−1 due to polynomial identity tests which implies |F| > 2λ with
λ security parameter. This leaves out, for example, the case of R1CS over F2.
This case is actually interesting as some hash functions and encryption schemes
can be interpreted as boolean circuits with relative ease, and then translated
to a R1CS. A straight-forward way to overcome this problem, mentioned in
[AHIV17], is to simply embed F2 in a larger field F2e , for large enough e (where
at least e > λ) and add constraints of the kind z2i = zi for i = 1, . . . , n to ensure
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that the witness entries belongs to F2,1 and then execute the protocol for R1CS
over the larger field.

However this approach seems wasteful, as elements of F2e which in principle
could encode up to e bits of information are used to represent only one element of
F2. Also, operations over F2e are more expensive than those over F2. Finally one
needs the aforementioned additional constraints on the witness, which increase
the size of the system.

Since F2e is an e-dimensional vector space over F2, one attempt to improve
this would be to interpret vectors in F

e
2 as elements over the larger field F2e .

While this would work for systems that only involve additions (XORs), it fails
in general when multiplications (ANDs) are needed too.2 The technical issue
is that for e > 1, the ring F

e
2, considered with component-wise addition and

multiplication, cannot be embedded via a ring homomorphism into F2e (nor any
other finite field) since F

e
2 contains zero divisors while fields do not.

A better approach was presented in BooLigero [GSV21] for the case of Ligero
[AHIV17]. Their technique allows to encode e bits into roughly

√
e field elements

in F2e , so that one can use Ligero over F2e to treat
√

e times larger statements
over F2 than the “näıve” method, with roughly the same R1CS size. This however
motivates the following question: can we find embeddings of F

k
2 into F2e with a

larger embedding rate k/e which allow to produce more efficient IOPs for R1CS
over F2 given an IOP for R1CS over F2e?

1.1 Our Contributions

In this work we answer the above question in the affirmative using a more efficient
embedding that allows us to encode k ≥ e/4 bits into an element of F2e . We then
present a construction of an IOP for F2-R1CS satisfiability which makes black-
box use of any IOP satisfying mild assumptions for R1CS over larger fields. This
leads us to reducing Aurora’s argument size up to 1.31 − 1.65× and Ligero’s
argument size up to 3.71×.

More concretely, we can use any Reed Solomon encoded IOP, a variant of
IOP introduced in [BCR+19], that provides two commonly used sub-protocols:
a generalised lincheck, which tests linear relations of the form A1x1+. . .+Anxn =
b when the verifier has only oracle access to Reed Solomon codewords encoding
xi, and a rowcheck, which tests quadratic relations x∗y = z when the verifier has
oracle access to encodings of x,y, z. This includes Ligero3, Aurora [BCR+19]4

1 This is necessary as, for example, x2 + x + 1 = 0 is satisfiable over F4 but not over
F2, despite the fact that the constraint only involves constants over F2. Note that
interpreting field multiplication as logical AND, the above constrain is equivalent to
x · (x − 1) = 1, i.e. both x and its negation are true.

2 This not only includes coordinate-wise products of secret vectors, but also the linear
operations Ax in the R1CS system, where A is a public matrix over the larger field.

3 See [BCR+19] for how to see Ligero as an IOP with these characteristics.
4 We cannot however apply our techniques to IOPs with preprocessing, see comment

in Sect. 1.3.
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and Ligero++ [BFH+20] up to minor manipulations to transform their lincheck,
see the full version [CG21].

In a nutshell, our embedding technique relies primarily on two components:
first, the use of reverse multiplication friendly embeddings (RMFE), introduced
in the MPC literature in [CCXY18] and independently in [BMN18] and used in
several subsequent works [DLN19,CG20,PS21,DGOT21,ACE+21]. Such alge-
braic device maps a vector from F

k
2 into an element of a larger field Fq = F2e

in a manner such that field additions and products of two encodings in Fq still
encode the component-wise additions and products of the originally vectors from
F

k
2 , even though the map is not a ring homomorphism. For k < 100 we can get

RMFEs with e ≈ 3.3k (or e = 4k if we insist on e being a power of 2). Second,
the notion of modular lincheck, an IOPP which we introduce in Sect. 3.3 and
that we believe is of independent interest, to test linear relations modulo an F2

vector space V contained in Fq, i.e. equations of the form Ax = b mod V n

(meaning that each coordinate of the vector Ax − b is in V ).
In conclusion for each of the aforementioned schemes we compare known

adaptations to F2-R1CSs with our general reduction both in terms of argument
size and prover complexity. Regarding the proof size we estimate it numerically,
see our Python implementation at [Git21]. Regarding prover time we estimate
it asymptotically, predicting an improvement factor of 24.7× for Aurora and
between 6.9 − 32.5× for Ligero without interactive repetitions.

1.2 Techniques

Reverse Multiplication Friendly Embeddings. A (k, e)p-RMFE is a pair of Fp-
linear maps ϕ : F

k
p → Fpe and ψ : Fpe → F

k
p satisfying x ∗ y = ψ(ϕ(x) · ϕ(y))

for all x,y ∈ F
k
p, where ∗ denotes the component-wise product. The proper-

ties automatically imply that ϕ is injective, hence the name embedding. Note
that ϕ is not necessarily a ring homomorphism, i.e. ϕ(x ∗ y) �= ϕ(x) · ϕ(y) in
general. In this paper we extend the notation blockwise to Φ : (Fk

p)n → F
n
pe

given by Φ(x1, . . . ,xn) = (ϕ(x1), . . . , ϕ(xn)) and Ψ : F
n
pe → (Fk

p)n given by
Ψ(x1, . . . , xn) = (ψ(x1), . . . , ψ(xn)). These satisfy then x ∗ y = Ψ(Φ(x) ∗ Φ(y))
for all x,y ∈ (Fk

p)n = F
kn
p , where the component-wise product on the right side

is on F
n
pe .

From F2 -R1CS to a System of Statements Over Fq. A key ingredient of our
result is how to translate the system A1w ∗ A2w = A3w + b over F2 into an
equivalent set of relations over Fq that can be efficiently checked. Even with the
RMFE in hand, this is not trivial because ϕ (consequently Φ) is neither a ring
homomorphism nor surjective.

Defining xi = Aiw, we can split the above statement into the three linchecks
Aiw = xi and the rowcheck x1∗x2 = x3+b. The prover will start by embedding
w̃ = Φ(w) ∈ F

n/k
q and x̃i = Φ(xi). We then need to deal with the following:

First of all, because Φ is not surjective, we need additional constraints to
ensure w̃, x̃i lie in the image of Φ. We can write these in the form In/k · w̃ ∈
(Im ϕ)n/k and Im/k · x̃i ∈ (Im ϕ)m/k (where I� is the � by � identity matrix).
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Then, because Φ is not a ring homomorphism, we can not simply translate
x1 ∗x2 = x3 +b into x̃1 ∗ x̃2 = x̃3 +Φ(b), as this is not true in general. Instead,
we need to use the RMFE “product recovery map” ψ. Setting t = x̃1 ∗ x̃2, we
show that the rowcheck statement is equivalent to the modular linear relation
t − u · x̃3 = u · Φ(b) mod (Ker ψ)m/k where u = ϕ(1) ∈ Fq, 1 is the all-one
vector and Ker denotes the kernel.

Similarly, we show that each lincheck Aiw = xi can be translated into ˜Aiw̃−
˜Imx̃i ∈ (Ker S◦ψ)m, where ˜Ai, ˜Im are the result of applying Φ to Ai, Im row-wise
and S is the map summing the k components of a vector in F

k
2 .

Modular Linear Test. The sketched characterization above implies that provid-
ing a way to test linear modular relations over Fq yields the desired IOP as the
prover could provide oracle access to encodings of w̃, x̃1, x̃2, x̃3, t and then con-
vince the verifier that all those constraints are satisfied. To test x = 0 mod V n,
a standard approach would consist in proving that a random linear combination
of its coordinates belongs to V . However, we are dealing with a F2-vector space,
and this translates into a soundness error of 1/2. In order to decrease it to 2−λ,
we could check λ independent linear combinations, which involves λn random
bits. In Sect. 3.3 we describe how to reduce the required random bits to Θ(λ)
by using a certain family of almost universal linear hash functions, and achieve
zero knowledge by adding a masking term.

Optimizations. The above techniques require a total of 8 modular linchecks and
a rowcheck. In Sect. 4, we introduce several modifications, the main of which is
to reduce the number of modular linchecks to just 3. The observation is that we
can test several equations of the form Axi = bi mod V ni (with common V )
all at once by checking

∑

Ri(Axi − bi) ∈ V λ for appropriately chosen matrices
Ri. Additionaly, we compress messages sent by the prover using the structure of
these vector spaces V , which comes from our use of an RMFE.

1.3 Other Related Work

Our work provides a significant reduction of the proof size with respect to
BooLigero [GSV21]. Applying our construction to Ligero for an F2-R1CS con-
sisting of 220 constraints we measure proofs 3.71× shorter than plain Ligero and
3.03× smaller than BooLigero. We also stress that in contrast to [GSV21] we
present a general reduction that can be applied to a larger class of protocols.

Regarding the use of RMFE, to the best of our knowledge only the recent
work [DGOT21] applied this tool in the IOP framework (see their Appendix A).
However, their use is restricted to their own protocol, which follows the MPC-
in-the-head paradigm introduced in [IKOS07], and cannot be applied directly
to other existing IOPs such as Aurora. Furthermore, this optimisation is only
considered in the multi-instance case while in our work we manage to integrate
the RMFE also for a single instance.

We also remark that even though our construction captures essentially any
IOPs that provides a lincheck and a rowcheck, it still cannot be applied out of
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the box to zk-SNARKS with preprocessing such as Fractal [COS20] or Spar-
tan [Set20]. The reason is that we use the given linchecks to test a randomised
relation depending on the random coins of the verifier. This significantly affects
the usefulness of any pre-computation. We believe however that this issue can
be overcome in a non black-box way with different techniques, a problem that
we leave for future work.

2 Preliminaries

The set {1, . . . , n} is called [n]. Vectors are denoted with boldface font. v ∗ w
denotes the coordinate-wise product of two vectors of the same length, and ‖v‖
is the Hamming weight of v. 1k is the vector of k 1’s. Matrices are denoted with
capital letters, A� is the transpose of A and In is the n by n identity matrix.
Given q a prime power, Fq is a field of q elements. When q = pe, Fp can be
seen as a subset of Fq and Fq can be treated as an Fp vector space of dimension
e. V ≤ Fq means that V is an Fp-vector subspace of Fq. a = b mod V means
that a − b ∈ V , and for vectors of length m, a = b mod V m iff ai = bi mod V
for all i ∈ [m]. Given an Fp-linear map L : V → W its kernel is Ker L = {x ∈
V : L(x) = 0} and its image is Im L = {y ∈ W : y = L(x) for some x ∈ V }.
Given a polynomial ̂f ∈ Fq[x] and L ⊆ Fq we denote ̂f |L = ( ̂f(α))α∈L its
evaluation over L. The Reed-Solomon code over L of rate ρ ∈ [0, 1] is the set
RSFq,L,ρ := { ̂f |L : ̂f ∈ Fq[x], deg ̂f < ρ|L|}. We will typically encode vectors v
of length m < ρ|L| as codewords from RSFq,L,ρ by sampling a f ∈ RSL,ρ such
that ̂f |H = v. F

H
q denotes the set of vectors over Fq with coordinates indexed

by H and F
H1×H2
q is the set of matrices with rows and columns indexed by H1

and H2 respectively. Finally FFT(F, n) denotes the number of field operations
required to perform a fast Fourier transform over a set of size n, see [GM10].

2.1 Reverse Multiplication Friendly Embedding

We now recall the notion of reverse multiplication friendly embedding from
[CCXY18]. Its purpose is to ‘reconcile’ the coordinate-wise multiplicative struc-
ture of a ring F

k
p and the finite field structure of an extension Fpe of Fp.

Definition 1. Given a prime power p and k, e ∈ N a Reverse Multiplication-
Friendly Embedding, denoted (k, e)p-RMFE, is a pair of Fp-linear maps ϕ :
F

k
p → Fpe , ψ : Fpe → F

k
p such that for all x,y ∈ F

k
p, it holds that

x ∗ y = ψ(ϕ(x) · ϕ(y)).

That is, one can embed F
k
p into Fpe via a linear map ϕ so that the product in Fpe

of the images of any two vectors x,y carries information about their component-
wise product x ∗ y, and this can be recovered applying ψ to that field product.
However, ϕ is in general not a ring homomorphism and therefore ψ �= ϕ−1. For
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notational convenience, we extend both ϕ and ψ to maps Φ, Ψ as follows. Given
vectors x = (x1, . . . ,xn) ∈ (Fk

p)n and z = (z1, . . . , zn) ∈ (Fpe)n we define

Φ(x) := (ϕ(x1), . . . , ϕ(xn)) ∈ (Fpe)n, Ψ(z) := (ψ(z1), . . . , ψ(zn)) ∈ (Fk
p)n.

The following properties of these extended functions will be key in Sect. 3.1 to
transform a F2-R1CS system into a system of equations over F2e . Note in par-
ticular (3) and (4) characterize respectively coordinatewise and inner products
over Fp in terms of the corresponding operations over Fpe . The lemma follows
quite directly from the definitions and a proof appears in the full version [CG21].

Lemma 1. The following holds for all positive n ∈ N:

1. The maps ϕ and Φ are injective. The maps ψ and Ψ are surjective.
2. For all x, y ∈ (Fk

p)n, x ∗ y = Ψ(Φ(x) ∗ Φ(y)) where the ∗ product in the
right-hand side is component-wise in (Fpe)n, i.e. in each component we use
the field product in Fpe .

3. Let u = ϕ(1k) ∈ Fpe .5 Then for all x ∈ (Fk
p)n we have x = Ψ(u · Φ(x)).

4. Let S : F
k
p → Fp be given by S(x1, x2, . . . , xk) = x1 + x2 + · · · + xk. Then for

all x, y ∈ (Fk
p)n, the inner product x�y can be written as

x�y = S ◦ ψ(Φ(x)�Φ(y))

As for the existence of RMFEs, in our case of interest p = 2 one can obtain the
following parameters by concatenation of polynomial interpolation techniques
[CCXY18,CG20] (for asymptotics and other results see the full version [CG21]):

Lemma 2. For all r ≤ 33, there exists a (3r, 10r)2-RMFE. For all a ≤ 17 there
exists a (2a, 8a)2-RMFE. For all b ≤ 65 there exists a (3b, 12b)2-RMFE.

This yields RMFEs with parameters (48, 192), (48, 160) and (32, 128), setting
r = a = b = 16, that we will concretely use to evaluate our reduction.

2.2 R1CS, Lincheck and Rowcheck

We now recall the main relations used in recent IOP-based6 SNARKs like
[BCR+19,AHIV17]. The first one is the rank 1 constraints system, or R1CS, that
defines an NP-complete language closely related to arithmetic circuit satisfiabil-
ity. Here we present an equivalent affine version that requires for A1, A2, A3 ∈
F

m,n and b ∈ F
m to exhibit a vector w ∈ F

n such that A1w ∗ A2w = A3w + b.
Formally

Definition 2. We define the affine R1CS relation as the set

RR1CS = {((F,m, n,A1, A2, A3,b),w) : Ai ∈ F
m,n, A1w ∗ A2w = A3w + b}.

5 Note that u is not necessarily equal to 1.
6 See [BCS16,BCR+19] for the rigorous definition , or the full version [CG21] for a

simplified explanation.
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Instead of directly providing a proof system for R1CS, two intermediate rela-
tions, lincheck and rowcheck, are defined and for which [BCR+19] constructs
RS-encoded IOPPs.7 These are then used as building blocks to produce a RS-
encoded IOP for the R1CS relation, which in turn can be combined with a low
degree test, such as FRI [BBHR18a] or [BGKS20], to make a standard IOP for
R1CS. The complexity of this reduction depends on the so-called max rates, two
parameters related to the degrees of polynomials and the relations which are
tested

The lincheck relation requires that the witnesses f1, f2 ∈ RSL,ρ encode over
H1,H2 ⊆ Fq two vectors x1,x2 (i.e. ̂fi|Hi

= xi) which satisfy a given linear
constraint Mx1 = x2. The rowcheck relation requires that witnesses f1, f2, f3 ∈
RSL,ρ encode over H ⊆ Fq three vectors x1,x2,x3 such that x1 ∗ x2 = x3. For
efficiency reasons, depending on the concrete instantiations of Aurora and FRI,
in both definitions below L,H1,H2,H are taken to be F2-affine subspaces of Fq.

Definition 3. We define RLin as the set of tuples ((Fq, L,H1,H2, ρ,M), (f1, f2))
such that L,Hi ⊆ Fq are affine subspaces, Hi ∩L = ∅ for i ∈ {1, 2}, fi ∈ RSL,ρ,
M ∈ F

H1×H2
q and the linear relationship ̂f1|H1

= M · ̂f2|H2
holds.

Definition 4. We define RRow as the set of tuples ((Fq, L,H, ρ), (f1, f2, f3))
such that L,H ⊆ Fq are disjoint affine subspaces, fi ∈ RSL,ρ for i ∈ {1, 2, 3}
and the quadratic relationship ̂f1|H ∗ ̂f2|H = ̂f3|H holds.

RS-encoded IOPPs (PLin ,VLin) and (PRow,VRow) for the two relations above
are provided in [BFH+20,BCR+19] and in [AHIV17] up to minor adaptations
in the second case. We will need a generalisation of RLin that tests relations of
the form M1x1 + . . . + Mhxh = b (for h = 2, M1 = −I and b = 0 we get back
the standard lincheck).

Definition 5. RLinh
is the set of tuples ((Fq, L,H0,Hi, ρ,Mi,b)h

i=1, (fi)h
i=1)

such that L,H0,Hi ≤ Fq, L∩H0 = L∩Hi = ∅ for all i ∈ {1, . . . , h}, fi ∈ RSL,ρ,
Mi ∈ F

H0×Hi
q and the linear relationship

∑h
i=1 Mi · ̂fi|Hi

= b holds.

The lincheck protocol presented in Aurora can be generalised to capture this
variant, as shown in the full version of this paper.

3 Simplified Construction

In the rest of the paper we aim at describing an efficient RS-encoded IOP for
F2-R1CS. As the only tools we assume are a lincheck and a rowcheck over a
large enough field, our first step in Sect. 3.1 is to characterise F2-R1CS in terms
of one quadratic relation over Fq and a set of linear relations modulo some vector

7 Reed-Solomon IOPs are IOPs where soundness is guaranteed only when the messages
sent by the prover are oracles to codewords of a Reed-Solomon code. Reed-Solomon
IOPPs (proofs of proximity) additionally provide oracle access to the witness, also
a set of Reed-Solomon codewords, to the verifier.
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space V ≤ Fq. An RS-encoded IOPP to test the latter conditions is provided in
Sect. 3.3. Finally a simple solution that uses naively the above IOPP is provided
in Section 3.4. Even if suboptimal, we see this as a useful stepping stone to better
present the efficient version in Sect. 4.2.

3.1 Characterisation of R1CS

In the following we assume (ϕ,ψ) to be a (k, e)2-RMFE, where q = 2e, and recall
that Φ, Ψ denote the block-wise application of ϕ and ψ, cf. Sect. 2.1.

Theorem 1. Let A1, A2, A3 ∈ F
m,n
2 , b ∈ F

m
2 with m,n multiples of k. Then

there exists w ∈ F
n
2 such that ((F2,m, n,A1, A2, A3,b),w) ∈ RR1CS if and only

if there exist w̃ ∈ F
n/k
q and x̃1, x̃2, x̃3, t ∈ F

m/k
q satisfying

x̃1 ∗ x̃2 = t (1)

w̃ = 0 mod (Im ϕ)n/k (2)

x̃i = 0 mod (Im ϕ)m/k ∀i ∈ {1, 2, 3} (3)
˜Aiw̃ − ˜Imx̃i = 0 mod (Ker S ◦ ψ)m ∀i ∈ {1, 2, 3} (4)

t − ux̃3 = u˜b mod (Ker ψ)m/k (5)

where ˜b = Φ(b) ∈ F
m/k
q , u = ϕ(1k) ∈ Fq, ˜Ai ∈ F

m,n/k
q is the matrix obtained by

applying Φ row-wise to Ai, and ˜Im ∈ F
m,m/k
q is the matrix obtained by applying

Φ row-wise to the identity matrix Im ∈ F
m,m
2 . Moreover if w is a witness for the

R1CS then w̃ = Φ(w), x̃i = Φ(Aiw), t = x̃1 ∗ x̃2 satisfy the conditions above.

The proof appears in the full version [CG21], but we remark Eqs. (2), (3)
are equivalent to saying w̃ = Φ(w), x̃i = Φ(xi) for some w, xi; Eqs. (1) and
(5) encode x1 ∗ x2 = x3 + b (the rowcheck) and the latter is derived using
properties (2) and (3) in Lemma 1; while Eqs. (4) encode Aiw = xi (the lincheck)
and are derived from property (4) in Lemma 1.

3.2 Linear Hashing

We now adapt linear checks to small fields. A common technique to test Ax = b
over Fq is to sample a random vector r ∈ F

m
q and check r�Ax = r�b. Alter-

natively one can set r = (1, r, . . . , rm−1) for r ←$
Fq to save randomness. The

soundness errors of these approaches are respectively 1/q and (m − 1)/q, which
are too large if q is small as in our case. Therefore they need to be adapted.
With this aim in mind, let ϑ : F

λ
2 → F2λ be an isomorphism of F2-linear spaces8.

For any α ∈ F2λ define R
(m)
α : F

λm
2 → F

λ
2 such that

R(m)
α (x1, . . . ,xm) = ϑ−1

(

αϑ(x1) + . . . + αmϑ(xm)
)

.

8 Observe here we do not worry about their multiplicative structures.
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Seeing this function as a matrix in F
λ,λm
2 , we can apply it to vectors in F

λm
q , i.e., if

R
(m)
α = (ri,j) ∈ F

λ,λm
2 and x = (xj)λm

j=1 ∈ F
λm
q then R

(m)
α x =

(

∑λm
j=1 ri,jxj

)λ

i=1
.

This family of linear functions satisfies the following properties.

Proposition 1. Let V ≤ Fq be an F2 vector subspace, y ∈ F
λ
q , x ∈ F

λm
q \ V λm

and α ∼ U(F2λ), then Pr
[

R
(m)
α x = y mod V λ

]

≤ 2−λ · m

Proposition 2. Let V ≤ Fq be an F2 vector subspace, y ∈ F
λ
q , xi ∈ F

λmi
q for

i ∈ [h] such that xj /∈ V λmj for some j. Then αi ∼ U(F2λ) implies

Pr
[

R(m1)
α1

x1 + . . . + R(mh)
αh

xh = y mod V λ
]

≤ 2−λ · max{mi : i ∈ [h]}.

3.3 Modular Lincheck

In this section we provide an RS-encoded IOPP that generalises the Lincheck to
linear relations of the form M1x1 + . . . + Mhxh = b modulo an F2 vector space
V ≤ Fq, where the verifier has oracle access to an encoding of xi for each i.

Definition 6. The Modular Lincheck relation is the set RMlinh
of all tuples

((Fq, L,H0,Hi, ρ,Mi,b, V )h
i=1, (fi)h

i=1) such that L,H0,Hi ⊆ Fq are affine
F2-spaces with L ∩ Hi = ∅, ρ ∈ [0, 1), Mi ∈ F

H0×Hi
q , fi ∈ RSL,ρ and

∑h
i=1 Mi

̂fi|Hi
= b mod V H0 .

Consider the simpler statement x = 0 mod V H , i.e. x ∈ V H , and the follow-
ing proof: the verifier samples a random R ∼ U(FH′

0×H
2 ), and receives v = Rx

from the prover; the verifier then checks v ∈ V H′
0 and then runs a lincheck to test

v = Rx. In order to make this zero knowledge, we add a masking codeword g
sampled from Mask(L, ρ,H ′

0, V ) = {f ∈ RSL,ρ : ̂f |H′
0

∈ V H′
0} so that the sender

first sends an oracle to g, receives R, and sends v = Rx + ĝ|H′
0

in plain. In the

general case we replace x with
∑h

i=1 Mi
̂fi|Hi

− b and, for efficiency reasons, the
random matrix R with Rα obtaining the protocol in Fig. 1.

From the above observations, the protocol has the following properties, where
soundness comes from Proposition 2. See the full paper for a rigorous proof.

Theorem 2. Protocol 1 is an RS-encoded IOPP for the relation RMlinh
that

upon setting |H ′
0| = λ has the following parameters:

Rounds = 2
Proof Length = 3|L| elements of Fq

Randomness = λ + 2 log q bits
Soundness Error = �m/λ�2−λ + λq−1

Prover Time = FFT(Fq, |L|) +
∑h

i=1 ‖Mi‖ + ‖b‖ + λ
∑n

i=1 |Hi| + TP
Linh+1

Verifier Time = λ dim V +
∑h

i=1 ‖Mi‖ + ‖b‖ + TV
Linh+1

Max Rates =
(

ρ + λ|L|−1, ρ + (λ + |H|)|L|−1
)

where H = span (H1, . . . , Hh,H ′
0) and TP

Linh+1
, TV

Linh+1
denotes the costs of run-

ning respectively PLinh+1 and VLinh+1 .
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Fig. 1. RS-encoded IOPP for RMlinh with pp = (Fq, L, H0, (Hi)
h
i=1, ρ)

3.4 An RS-Encoded IOP for R1CS from Modular Lincheck

Given RS-encoded IOPP for Modular Lincheck and Rowcheck we briefly sketch
how to build a simple RS-encoded IOP for F2-R1CS. By Theorem 1 we know
that a given system, defined by A1, A2, A3 ∈ F

m,n
2 , b ∈ F

m
2 is satisfied if and

only if there exists x̃1, x̃2, x̃3, t ∈ F
m/k
q and w̃ ∈ F

n/k
q that satisfy Eqs. 1–5.

Thus we let the prover initially compute the extended witness xi = Aiw,
apply block-wise the RMFE to get x̃i = Φ(xi), w̃ = Φ(w) and finally set t =
x̃1 ∗ x̃2. Next, it picks two affine subspaces H1,H2 ⊆ Fq of sizes m/k, n/k and
sample five codewords fx̃i

, ft, fw̃ such that ̂fx̃i |H1
= x̃i, ̂ft|H1

= t and ̂fw̃|H2
=

w̃.
Finally it provides oracle access to these codewords to the verifier and they

both run:

– One rowcheck to test x̃1 ∗ x̃2 = t.
– Four modular lincheck to test Im/k · x̃i ∈ (Im ϕ)H1 and In/k · w̃ ∈ (Im ϕ)H2 .
– Three modular lincheck to test that Ãi · w̃ − Ĩm · x̃i ∈ (Ker S ◦ ψ)m.
– One modular lincheck to check Im/k · t − (uIm/k) · x̃3 = u˜b mod (Ker ψ)H1 .

Correctness and soundness of the above protocol follows from Theorem 1, while
Zero Knowledge against β queries can be achieved setting the rate of fx̃i

, ft to
m/k+β

|L| and the rate of fw̃ to n/k+β
|L| .
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4 Efficient Construction

4.1 Batching Modular Linchecks and Packing Vectors

The protocol above requires a total of 8 modular Linchecks. In this section
we show how to reduce the number of required modular linchecks to three, by
batching proofs of relations modulo the same vector space: we aim at designing
an RS-encoded IOPP for a relation of the form: ∀i ∈ [h], Aixi = bi mod V mi .

We propose the following: as before the prover begins by sending a codeword
that encodes a masking term y ∼ U(V λ). The verifier then chooses h matrices
Rα1 , . . . , Rαh

and the prover replies by sending v =
∑h

i=1 Rαi
(Aixi − bi) + y.

Finally the verifier checks if v ∈ V λ and both parties executes a lincheck to test
the above relation. Informally security follows as in the single modular lincheck
from Sect. 3.3, except that for soundness we use Proposition 2.

To further improve the complexities, we now show how to reduce the size of
vectors sent in plain by the prover in the (batched) modular lincheck. Recalling
u = ϕ(1k) we point out Kerψ and u · Im ϕ intersect only in 0, because ψ(u ·
ϕ(v)) = 1k ∗ v = v. Therefore Fq is the direct sum of Ker ψ and (u · Im ϕ).
Then given x ∈ (Im ϕ)n and y ∈ (Ker ψ)n, we just need to send z = ux + y.
Given z one can extract x = Φ(Ψ(z)) and y = z−ux, where the former equation
is justified by observing that, if we call v ∈ F

kn
2 such that x = Φ(v), then

Φ(Ψ(z)) = Φ(Ψ(ux + y)) = Φ(Ψ(u · Φ(v))) = Φ(v) = x, where the second
equality following from y ∈ (Ker ψ)n and the third one from Lemma 1.

4.2 An Efficient RS-Encoded IOP for R1CS

With the two ideas presented so far we can now improve the protocol sketched
in Sect. 3.4. We batch linchecks in three groups, testing equations modulo Imϕ,
Ker S ◦ψ and Kerψ respectively. Moreover we observe that the masking terms of
these tests can be aggregated. To do so we choose three disjoint affine subspaces
H ′

1,H
′
2,H

′
3 of size λ and sample g from the set BMask (L, ρ,H ′

1,H
′
2,H

′
3, ϕ, ψ)

defined as
{

f ∈ RSL,ρ : ̂f |H′
1

∈ (Im ϕ)H′
1 , ̂f |H′

2
∈ (Ker S ◦ ψ)H′

2 , ̂f |H′
3

∈ (Ker ψ)H′
3

}

.

In the following protocol we let ρ1 = (m/k + β)|L|−1, ρ2 = (n/k + β)|L|−1 and
ρ3 = (3λ + β)|L|−1 be the three rates used (Fig. 2).

Theorem 3. Protocol 2 is an RS-encoded IOP for the relation RR1CS which,
using Aurora’s lincheck and rowcheck, achieves the following parameters

Rounds = 3
Proof Length = 8|L| elements of Fq

Randomness = 8λ + 5 log q bits
Soundness Error = max(�m/λ�, �n/kλ�) · 2−λ + λq−1

Prover Time = O(|L| log(m + n) +
∑3

i=1 ‖Ai‖ + ‖b‖) + 35 · FFT(Fq, |L|)
Verifier Time = O(

∑3
i=1 ‖Ai‖ + ‖b‖ + n + m)

Max Rates =
(

max(m/k,n/k,3λ)+2β
|L| , max(2m/k,2n/k,3λ)+2β

|L|
)
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Fig. 2. RS-encoded IOP for R1CS. We fix a linear order on H0, H1, H2 and assume
˜Ai ∈ F

H0×H2
q , ˜Im ∈ F

H0×H1
q . Note the first two steps can be precomputed knowing

the input size, and that v0,v2 are sent directly, i.e. without providing oracle access
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Observe this means can take |L| · ρ ≈ max(2m/k, 2n/k, 3λ) + 2β for a fixed
rate ρ ≈ 1/8.

5 Comparisons

In this section we compare our construction with [AHIV17,BCR+19,GSV21,
BFH+20] when proving satisfiability of an R1CS over F2. In all cases we assume
[BCS16] is used to compile IOP into NIZK. Our focus will be on the proof size,
which we compute through a parameter optimiser, available at [Git21], based
on [lib20], the open source implementation of Aurora and R1CS-Ligero. We
also consider prover efficiency, which we only estimate theoretically. Regarding
verifier time instead we do not expect significant improvements or overhead, as
asymptotic costs are the same with roughly the same constants.

Aurora - Proof Size: Compiling Aurora [BCR+19] to a NIZK, proof size
is dominated by the replies to oracle queries. Calling |L| the block length of
the Reed Solomon code in use, each of these replies requires O(log2 |L|) hash
values. As we use Reed Solomon codewords that encode vectors k times smaller
w.r.t. Aurora with näıve embedding, the block length in our work is roughly
k times smaller. We therefore estimate the proof size to be reduced by a term
O(log k log |L|). Concrete proof sizes are shown in Fig. 3 where results on the
left are obtained using proven soundness bounds, while on the right optimistic
(but not proven) bounds are used, see the full version for more details. The
improvement factor for 220 constraints with a (48, 192)2-RMFE and 128 security
bits amounts in the first case to 1.65, in the second case to 1.31.

Aurora - Prover Time: Using again the fact that the block length is reduced
by a factor of k with a (k, e)2-RMFE observe that

– In the RS-encoded IOP, the cost is dominated by the 18 ·FFT(Fq, |L|). In our
case we perform 35 fast Fourier transforms over a set k times smaller, leading
to an improvement factor of 18k/35.

– In the low degree test, prover complexity is upper bounded by 6|L| arithmetic
operations [BBHR18a]. Hence our construction improves by a factor k.

– In the BCS transform, computing the Merkle tree from an oracle of size |L|
requires 2|L| − 1 hashes. Using column hashing our construction requires the
same amount of trees as in plain Aurora. Moreover, calling fi FRI’s i-th
oracle, the length of fi is |L| · 2−iη for a constant η, i.e. it scales linearly in
|L|. Therefore our protocol requires k times less hash function evaluations.

In conclusion, we estimate that deploying a (48, 192)2-RMFE leads to a
18k/35 ≈ 24.7× speed up asymptotically.

Ligero and BooLigero - Proof Size: Applying our construction to R1CS-
Ligero [BCR+19], whose proof size is Θ(

√
n), over a field F2160 we can obtain

shorter proof by a factor
√

k ≈ 6.9 as we would invoke every sub-protocol on
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Fig. 3. Argument Size w.r.t. the number of constraints for 128 security bit for:
Aurora with proven soundness bounds (up, left) and with optimistic bounds (up,
right), Ligero/BooLigero with interactive repetitions and smaller fields (down, left)
and Ligero++ (down, right). Our work uses a (48, 192)2-RMFE in the first two cases,
and a (48, 160)2-RMFE for the others.

input k times shorter. However in [AHIV17] an optimisation through interactive
repetitions working over smaller fields is presented. As this version is harder to
analyse asymptotically, we estimate its cost comparing it with BooLigero and
our construction using a (48, 160)2-RMFE (Fig. 3, down left).

Ligero and BooLigero - Prover Time: For simplicity we only compare
our construction to Ligero without repetitions, as in this case operations are
performed over the same extension of F2, for a R1CS over F2 with n variables
and n constraints. Recall that |L| = Θ(

√
n) and each vector is divided in m

blocks of length �, both growing asymptotically as
√

n. As in Aurora we split
the prover time in three terms:

– In the IOP, costs are dominated asymptotically by 21m ·FFT(Fq, |L|). In our
cases we would need 31m′ fast Fourier transform but with m′ ∼ m/

√
k and

over a set
√

k times smaller, leading to an improvement factor of 21k/31
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– As Ligero performs a direct low degree test no extra computation is performed
for testing proximity

– In the BCS transform, using column hashing only one tree with 2|L| − 1
nodes has to be computed. Hence in our construction this step is performed√

k times faster.

In conclusion we expect an improvement factor between 6.9–32.5 with a
(48, 160)2-RMFE. We leave prover time comparison with the more efficient ver-
sion of Ligero that allows repetitions as future work.

Ligero++: As [BFH+20] combines Ligero with an inner product argument,
which can be realised adapting Aurora’s sumcheck to achieve poly-logarithmic
argument size, we expect a prover time reduction comparable to those in plain
Ligero and Aurora. The same applies to the proof size that, for completeness,
we also estimate through our parameter optimiser, Fig. 3, achieving a median
improvement factor of 1.26×.
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