
Ittay Eyal
Juan Garay (Eds.)

LN
CS

 1
34

11

Financial Cryptography
and Data Security
26th International Conference, FC 2022
Grenada, May 2–6, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13411

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Ittay Eyal · Juan Garay (Eds.)

Financial Cryptography
and Data Security
26th International Conference, FC 2022
Grenada, May 2–6, 2022
Revised Selected Papers

Editors
Ittay Eyal
Technion - Israel Institute of Technology
Haifa, Israel

Juan Garay
Texas A&M University
College Station, TX, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-18282-2 ISBN 978-3-031-18283-9 (eBook)
https://doi.org/10.1007/978-3-031-18283-9

© International Financial Cryptography Association 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7595-2258
https://orcid.org/0000-0003-0366-7110
https://doi.org/10.1007/978-3-031-18283-9

Preface

The 26th International Conference on Financial Cryptography and Data Security (FC
2022) was held on the beautiful island of Grenada from May 2 to May 6, 2022.
The conference is organized annually by the International Financial Cryptography
Association (IFCA) and is a major international forum for research, advanced
development, education, exploration, and debate regarding information assurance,
with a specific focus on financial and commercial contexts. The conference aims to
attract works focusing on both fundamental and real-world deployments on all aspects
surrounding commerce security.

The conference was supposed to take place earlier, from February 14 to February 18,
2022, but due to uncertainties related toCOVID-19, the conference’s SteeringCommittee
decided to postpone it. This turned out to be a prophetic decision as by the beginning
of May many travel restrictions had been lifted, resulting in a lively and well-attended
conference, a much-needed experience after the long COVID-19 hiatus.

These proceedings include the 36 papers that were selected by the Program
Committee (PC), out of a total of 159 received submissions. Submissions were assigned
to at least three reviewers, while submissions by PC members were assigned at least
four reviews. The double blind review process and ensuing discussion among PC mem-
berswere lively and engaging, to the extent that 15 of the accepted paperswere condition-
ally accepted and shepherded by selected PCmembers. Five of the accepted manuscripts
are short papers and one is a Systematization of Knowledge (SoK) contribution. In
addition, we received four poster submissions, out of which threewere accepted, but, due
to travel impediments, only onewas displayed during theWelcomeReception and Poster
Session on Monday evening.

This year the Program Committee consisted of 64 members, and we made every
attempt for its composition to reflect our proficiency, diversity, and inclusion goals. We
are deeply grateful to the members of the PC for their dedication and thorough work, as
well as to the many external reviewers who joined the review process in their areas of
expertise.

FC 2022 celebrated 25 years of the FC conference program (postponed from last
year’s 25th FC that was online only due to COVID-19). The program was enriched by
a special anniversary program and included a “Looking back at 25 years of FC history”
presentation assembled by Kazue Sako and delivered by Sven Dietrich; a “Perspec-
tives from FC since 2015” anniversary talk by Patrick McCorry; FC 25th anniversary
vignettes collected by the anniversary coordinators; and a FC 25th anniversary
retrospective panel—past impact and going forward, with panelists Don Beaver, Andrew
Miller, and Hinde ten Berge, moderated by Sven Dietrich.

The main conference program, which lasted four days, was followed by a series
of one-day workshops and a tutorial on more specialized topics: AMHIS 2022 (1st
Workshop on Approaches toModelling Heterogeneous Interacting Systems), CoDecFin
2022 (3rd Workshop on Coordination of Decentralized Finance), DeFi 2022 (2nd
Workshop on Decentralized Finance), Voting 2022 (7th Workshop on Advances in

vi Preface

Secure Electronic Voting), WTSC 2022 (6th Workshop on Trusted Smart Contracts),
and the “Quantum Computing Essentials for Financial Cryptographers” tutorial given
by Or Sattath.

We are grateful to General Chairs Sergi Delgado Segura and Rafael (Ray) Hirschfeld
for their predisposition, availability and efforts. In fact, it is hard to think of an aspect of
the event’s organization—from managing the conference’s website, and collecting and
uploading the talks’ videos toYouTube, to coordinating all the fluctuating dates, updates,
and related logistics with the RadissonGrenadaBeachResort hotel where the conference
took place—which Ray wasn’t on top of, and which resulted in such a well-planned and
enjoyable event—thanks, Ray!

We are also grateful to the conference Platinum sponsors (Casper, CipherTrace,
Harmony,Novi, andRipple); to theGold Sponsors (Chainalysis, IBMResearch, Interlay,
and Zilliqa); to the Silver Sponsors (IOHK, Manta Ray Labs, NTT Research, Protocol
Labs, Smart Contract Research Forum, and the Zcash Foundation); and to the Sponsors
in Kind (Grenada Tourism Authority and Worldpay), as well as the Uniswap Grant
Program.

Finally, we thank all the authors who submitted papers to this conference, and all the
conference attendees who made this event a truly intellectually stimulating one through
their active participation.

August 2022 Ittay Eyal
Juan Garay

Organization

General Chairs

Sergi Delgado Segura Talaia Labs, UK
Rafael Hirschfeld Unipay Technologies, The Netherlands

Program Committee Chairs

Ittay Eyal Technion, Israel
Juan Garay Texas A&M University, USA

Steering Committee

Joseph Bonneau New York University, USA
Rafael Hirschfeld Unipay Technologies, The Netherlands
Andrew Miller University of Illinois at Urbana-Champaign, USA
Monica Quaintance Zenia Systems, USA
Burton Rosenberg University of Miami, USA

Program Committee

Ittai Abraham VMware Research, Israel
Christian Badertscher IOHK, Switzerland
Foteini Baldimtsi George Mason University, USA
Jeremiah Blocki Purdue University, USA
Rainer Böhme University of Innsbruck, Austria
Joseph Bonneau New York University, USA
Christian Cachin University of Bern, Switzerland
L. Jean Camp Indiana University, USA
Srdjan Capkun ETH Zurich, Switzerland
Hubert Chan University of Hong Kong, China
Jing Chen Stony Brook University, USA
Michele Ciampi University of Edinburgh, UK
Jeremy Clark Concordia University, Canada
Vanesa Daza Pompeu Fabra University, Spain
Stefan Dziembowski University of Warsaw, Poland
Karim Eldefrawy SRI International, USA
Matthias Fitzi IOHK, Switzerland

viii Organization

Chaya Ganesh Indian Institute of Science, Bangalore, India
Christina Garman Purdue University, USA
Arthur Gervais Imperial College London, UK
Stephanie Hurder Prysm Group, USA
Ari Juels Cornell Tech, USA
Aniket Kate Purdue University, USA
Eleftherios Kokoris Kogias IST Austria and Novi Research, Austria
Nikos Leonardos National and Kapodistrian University of Athens,

Greece
Ben Livshits Imperial College London and Brave Software, UK
Daniel Masny Visa Research, USA
Shin’ichiro Matsuo Georgetown University and NTT Research, USA
Patrick McCorry Infura, UK
Shagufta Mehnaz Dartmouth College, USA
Ian Miers University of Maryland, USA
Andrew Miller University of Illinois at Urbana-Champaign, USA
Tal Moran IDC, Israel
Pedro Moreno-Sanchez IMDEA Software Institute, Spain
Pratyay Mukherjee Visa Research, USA
Kartik Nayak Duke University, USA
Georgios Panagiotakos IOHK, Greece
Benny Pinkas Bar-Ilan University, Israel
Alex Psomas Purdue University, USA
Elizabeth Quaglia Royal Holloway, University of London, UK
Ling Ren University of Illinois at Urbana-Champaign, USA
Ori Rottenstreich Technion, Israel
Mahmood Sharif Tel Aviv University, Israel
Abhi Shelat Northeastern University, USA
Mark Simkin Aarhus University, Denmark
Alessandro Sorniotti IBM Research – Zurich, Switzerland
Alexander Spiegelman Novi Research, Israel
Ewa Syta Trinity College, USA
Qiang Tang University of Sydney, Australia
Vanessa Teague Thinking Cybersecurity and the Australian

National University, Australia
Daniel Tschudi Concordium, Switzerland
David Tse Stanford University, USA
Marko Vukolic Protocol Labs, Switzerland
Riad Wahby Stanford University and Algorand, USA
Roger Wattenhofer ETH Zurich, Switzerland
Edgar Weippl University of Vienna and SBA Research, Austria
Fan Zhang Duke University, USA

Organization ix

Ren Zhang Nervos, USA
Yupeng Zhang Texas A&M University, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA
Vassilis Zikas Purdue University, USA
Aviv Zohar The Hebrew University, Israel

Contents

Tokenomics

Maximizing Extractable Value from Automated Market Makers 3
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 20
Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou,
Nigel P. Smart, and Younes Talibi Alaoui

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 38
Zhipeng Wang, Kaihua Qin, Duc Vu Minh, and Arthur Gervais

MPC (Mostly)

Explainable Arguments . 59
Lucjan Hanzlik and Kamil Kluczniak

MPCCache: Privacy-Preserving Multi-Party Cooperative Cache Sharing
at the Edge . 80
Duong Tung Nguyen and Ni Trieu

Multi-party Updatable Delegated Private Set Intersection . 100
Aydin Abadi, Changyu Dong, Steven J. Murdoch, and Sotirios Terzis

Privacy

The Effect of False Positives: Why Fuzzy Message Detection Leads
to Fuzzy Privacy Guarantees? . 123
István András Seres, Balázs Pejó, and Péter Burcsi

Differential Privacy in Constant Function Market Makers 149
Tarun Chitra, Guillermo Angeris, and Alex Evans

Anonymous Tokens with Public Metadata and Applications to Private
Contact Tracing . 179
Tjerand Silde and Martin Strand

xii Contents

ZKP

SnarkPack: Practical SNARK Aggregation . 203
Nicolas Gailly, Mary Maller, and Anca Nitulescu

On Interactive Oracle Proofs for Boolean R1CS Statements 230
Ignacio Cascudo and Emanuele Giunta

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 248
Nitin Singh, Pankaj Dayama, and Vinayaka Pandit

Old-School Consensus

Be Aware of Your Leaders . 279
Shir Cohen, Rati Gelashvili, Lefteris Kokoris Kogias, Zekun Li,
Dahlia Malkhi, Alberto Sonnino, and Alexander Spiegelman

Jolteon and Ditto: Network-Adaptive Efficient Consensus
with Asynchronous Fallback . 296
Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino,
Alexander Spiegelman, and Zhuolun Xiang

Quick Order Fairness . 316
Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini

Mostly Payment Networks

Analysis and Probing of Parallel Channels in the Lightning Network 337
Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel
Networks . 358
Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan Schmid,
Samarth Tiwari, and Michelle Yeo

Short Paper: A Centrality Analysis of the Lightning Network 374
Philipp Zabka, Klaus-T. Foerster, Christian Decker, and Stefan Schmid

Resurrecting Address Clustering in Bitcoin . 386
Malte Möser and Arvind Narayanan

Contents xiii

Incentives

ABSNFT: Securitization and Repurchase Scheme for Non-Fungible
Tokens Based on Game Theoretical Analysis . 407
Hongyin Chen, Yukun Cheng, Xiaotie Deng, Wenhan Huang,
and Linxuan Rong

Decentralisation Conscious Players and System Reliability 426
Sarah Azouvi and Alexander Hicks

Towards Overcoming the Undercutting Problem . 444
Tiantian Gong, Mohsen Minaei, Wenhai Sun, and Aniket Kate

Arbitrage Attack: Miners of the World, Unite! . 464
Yuheng Wang, Jiliang Li, Zhou Su, and Yuyi Wang

Suborn Channels: Incentives Against Timelock Bribes . 488
Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos

Sliding Window Challenge Process for Congestion Detection 512
Ayelet Lotem, Sarah Azouvi, Patrick McCorry, and Aviv Zohar

Short Paper: On Game-Theoretically-Fair Leader Election 531
Rati Gelashvili, Guy Goren, and Alexander Spiegelman

Not Proof of Work

The Availability-Accountability Dilemma and Its Resolution
via Accountability Gadgets . 541
Joachim Neu, Ertem Nusret Tas, and David Tse

Three Attacks on Proof-of-Stake Ethereum . 560
Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot,
Aditya Asgaonkar, Ertem Nusret Tas, and David Tse

Permissionless Consensus in the Resource Model . 577
Benjamin Terner

Performance

Plumo: An Ultralight Blockchain Client . 597
Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon,
Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines,
Marek Olszewski, and Eran Tromer

xiv Contents

SoK: Blockchain Light Clients . 615
Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias

Achieving Almost All Blockchain Functionalities with Polylogarithmic
Storage . 642
Parikshit Hegde, Robert Streit, Yanni Georghiades, Chaya Ganesh,
and Sriram Vishwanath

Measurements

Short Paper: On the Claims of Weak Block Synchronization in Bitcoin 663
Seungjin Baek, Hocheol Nam, Yongwoo Oh, Muoi Tran,
and Min Suk Kang

India’s “Aadhaar” Biometric ID: Structure, Security, and Vulnerabilities 672
Pratyush Ranjan Tiwari, Dhruv Agarwal, Prakhar Jain,
Swagam Dasgupta, Preetha Datta, Vineet Reddy, and Debayan Gupta

Short Paper: What Peer Announcements Tell Us About the Size
of the Bitcoin P2P Network . 694
Matthias Grundmann, Hedwig Amberg, Max Baumstark,
and Hannes Hartenstein

An Empirical Study of Two Bitcoin Artifacts Through Deep Learning 705
Richard Tindell, Alex Mitchell, Nathan Sprague, and Xunhua Wang

Author Index . 725

Tokenomics

Maximizing Extractable Value
from Automated Market Makers

Massimo Bartoletti1, James Hsin-yu Chiang2(B), and Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

jchi@dtu.dk

Abstract. Automated Market Makers (AMMs) are decentralized appli-
cations that allow users to exchange crypto-tokens without the need for a
matching exchange order. AMMs are one of the most successful DeFi use
cases: indeed, major AMM platforms process a daily volume of transac-
tions worth USD billions. Despite their popularity, AMMs are well-known
to suffer from transaction-ordering issues: adversaries can influence the
ordering of user transactions, and possibly front-run them with their own,
to extract value from AMMs, to the detriment of users. We devise an
effective procedure to construct a strategy through which an adversary
can maximize the value extracted from user transactions.

Keywords: Miner extractable value · Front-running · Decentralized
finance

1 Introduction

Decentralized finance (DeFi) is emerging as an alternative to traditional finance,
boosted by blockchains, crypto-tokens and smart contracts [18]. Automated
Market Makers (AMMs)—one of the main DeFi applications—allow users to
exchange crypto-tokens without the need to find another party wanting to partic-
ipate in the exchange. Major AMM platforms like e.g. Uniswap, Curve Finance,
and SushiSwap, hold dozens of billions of USD and process hundreds of millions
worth of transactions daily [1,5,8].

AMMs are sensitive to transaction-ordering attacks, where adversaries who
can influence the ordering of transactions in the blockchain exploit this power
to extract value from user transactions [14,16,17,21]. We illustrate this kind of
attacks through a minimal example. Assume a Uniswap-like AMM holding 100
units of a crypto-token τ0 and 100 units of another token τ1, and assume that
both tokens have the same price in the reference currency (say, USD 1,000). Now,
suppose that user A wants to swap 20 units of τ0 in her wallet for at least 15
units of τ1. This requires to append to the blockchain a transaction of the form
A : swap0(20 : τ0, 15 : τ1), where the prefix A indicates the wallet involved in the
transaction, swap is the called AMM function, and the superscript 0 indicates the
swap direction, i.e. deposit 20 : τ0 to receive back at least 15 : τ1 (a superscript
1 would indicate the opposite direction). In a constant-product AMM platform
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-18283-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_1

4 M. Bartoletti et al.

like Uniswap, the actual amount of τ1 transferred to A must be such that the
product between the AMM reserves remains constant before and after a swap.

Now, suppose that an adversary M (possibly a miner) observes A’s transac-
tion in the txpool, and appends to the blockchain the following sandwich:

M : swap0(5.9 : τ0, 5.5 : τ1) A : swap0(20 : τ0, 15 : τ1) M : swap1(25.9 : τ0, 20.6 : τ1)

where the last transaction is in the opposite direction, i.e.M sends 20.6 : τ1 to
receive at least 25.9 : τ0. As a result, A only yields the minimum amount of
15 : τ1 in return for 20 : τ0. This implies that USD 5,000 have been gained by M
and lost by A. This has been called Miner Extractable Value (MEV) [14].

Recent works study this and other kinds of attacks to AMMs [14,17,20,21]:
however, all these approaches are preeminently empirical, as they focus on the
definition of heuristics to extract value from AMMs, and on their evaluation
in the wild. To the best of our knowledge, a general solution to obtain optimal
MEV is still missing, even in the special case of constant-product AMMs.

To exemplify a case where prior approaches fail to extract optimal MEV,
consider the following set of user transactions, containing a swap of τ0 for τ1, a
deposit of units of τ0 and τ1, and a redeem of units of minted (liquidity) tokens:

{ A : swap0(40 : τ0, 35 : τ1), A : dep(30 : τ0, 40 : τ1), A : rdm(10 : (τ0, τ1)) }
Here, both the swap and the dep transactions would be rejected. For instance,

the constant-product invariant dictates that 40 : τ0 sent by the user swap in the
initial AMM state (100 : τ0, 100 : τ1) will return exactly 28.6 : τ1; since the swap
transaction requires 35 : τ1, it would be discarded. The known heuristics here fail
to extract any value. Even considering only the swap, the sandwich would not be
profitable for M, since it requires the same direction for M’s and A’s swap (offer
τ0 to obtain τ1), making A’s swap not enabled. Further, the known heuristics
only operate on swap actions, neglecting user deposits and redeems. This paper
proposes a layered construction to extract the maximum value from all user
transactions, through a multi-layer sandwich that we call Dagwood sandwich. In
our example, M’s strategy would be to fire the following three-layer sandwich:

M : swap1(11 : τ0, 13 : τ1) A : swap0(40 : τ0, 35 : τ1)

M : swap1(42 : τ0, 38 : τ1) A : dep(30 : τ0, 40 : τ1)

M : swap0(18 : τ0, 21 : τ1)

The first transaction is a swap in the opposite direction (i.e., pay τ1 to get τ0)
w.r.t. the subsequent user swap, unlike in the classical sandwich heuristic. M’s
second swap enables A’s deposit; the final swap is an arbitrage move [9]. The
user redeem is dropped, since it would negatively contribute to M’s profit. By
firing the transaction sequence above, M can extract approx. USD 5,700 from
A, improving over swap-only attacks, that would only extract USD 5,000.

Contributions. To the best of our knowledge, this work is the first to formalise
the MEV game for AMMs (Sect. 3), and the first to effectively construct optimal

Maximizing Extractable Value from Automated Market Makers 5

solutions which attack all types of transactions supported by constant-product
AMMs (Sect. 4). We discuss in Sect. 6 the applicability of our technique in the
wild. The proofs of our statements are in [10].

2 Automated Market Makers

We assume a set T0 of atomic token types (ranged over by τ, τ ′, . . .), repre-
senting native cryptocurrencies and application-specific tokens. We denote by
T1 = T0 ×T0 the set of minted token types, representing shares in AMMs. In
our model, tokens are fungible, i.e. individual units of the same type are inter-
changeable. In particular, amounts of tokens of the same type can be split into
smaller parts, and two amounts of tokens of the same type can be joined. We
use v, v′, r, r′ to range over nonnegative real numbers (R+

0), and we write r : τ
to denote r units of token type τ ∈ T = T0 ∪ T1.

We model the wallet of a user A as a term A[σ], where the partial map
σ ∈ T ⇀ R+

0 represents A’s token holdings, and write A[] if the wallet balance
is clear from context. We denote with dom (σ) the domain of σ. An AMM is a
pair of the form (r0 : τ0, r1 : τ1), representing the fact that the AMM is holding
r0 units of τ0 and r1 units of τ1. We denote by resτ0,τ1(Γ) the reserves of τ0 and
τ1 in Γ, i.e.resτ0,τ1(Γ) = (r0, r1) if (r0 : τ0, r1 : τ1) is in Γ.

A state is a composition of wallets and AMMs, represented as a term:

A1[σ1] | · · · | An[σn] | (r1 : τ1, r
′
1 : τ ′

1) | · · · | (rk : τk, r′
k : τ ′

k)

where: (i) all Ai are distinct, (ii) the token types in an AMM are distinct, and
(iii) distinct AMMs cannot hold exactly the same token types. Note that two
AMMs can have a common token type τ, as in (r1 : τ1, r : τ) | (r′ : τ, r2 : τ2),
thus enabling indirect trades between token pairs not directly provided by any
AMM. We use Γ, Γ ′, . . . to range over states. For a base term Q (either wallet
or AMM), we write Q ∈ Γ when Γ = Q | Γ ′, for some Γ ′, where we assume that
two states are equivalent when they contain the same base terms.

We define the supply of a token type τ in a state Γ as the sum of the balances
of τ in all the wallets and the AMMs occurring in Γ. Formally:

splyτ(A[σ]) =

{
σ(τ) if τ ∈ dom (σ)
0 otherwise

splyτ(r0 : τ0, r1 : τ1) =

{
ri if τ = τi

0 otherwise

and the supply of τ in Γ | Γ ′ is the summation splyτ(Γ) + splyτ(Γ ′).
We model the interaction between users and AMMs as a transition system

between states. A transition Γ T−−→ Γ ′ represents the evolution of the state Γ
into Γ ′ upon the execution of the transaction T. The possible transactions are:

– A : dep(v0 : τ0, v1 : τ1), which allows A to deposit v0 : τ0 and v1 : τ1 to an
AMM, receiving in return units of the minted token (τ0, τ1).

– A : swapd(v0 : τ0, v1 : τ1) with d ∈ {0, 1}, which allows A to swap tokens, i.e.
transfer vd : τd to an AMM, and receive in return at least v1−d : τ1−d.

6 M. Bartoletti et al.

– A : rdm(v : τ), which allows to A redeem v units of minted token τ = (τ0, τ1)
from an AMM, receiving in return units of the atomic tokens τ0 and τ1.

We now formalise the one-step relation T−−→ through rewriting rules, inspired
by [9]. We use the standard notation σ{v/x} to update a partial map σ at point
x: namely, σ{v/x}(x) = v, while σ{v/x}(y) = σ(y) for y �= x. For a partial map
σ ∈ T ⇀ R+

0 , a token type τ ∈ T and a partial operation ◦ ∈ R+
0 × R+

0 ⇀ R+
0 ,

we define the partial map σ ◦ v : τ (updating τ’s balance in σ by v) as follows:

σ ◦ v : τ =

{
σ{σ(τ) ◦ v/τ} if τ ∈ dom σ and σ(τ) ◦ v ∈ R+

0

σ{v/τ} if τ �∈ dom σ

Deposit. Any user can create an AMM for a token pair (τ0, τ1), provided that
such an AMM is not already present in the state. This is achieved by the trans-
action A : dep(v0 : τ0, v1 : τ1), through which A transfers v0 : τ0 and v1 : τ1 to
the new AMM. In return, A receives an amount of units of a new token type
(τ0, τ1), which is minted by the AMM. We formalise this behaviour by the rule:

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) τ0 �= τ1 τ0, τ1 ∈ T0 (: τ0, : τ1), (: τ1, : τ0) �∈ Γ

A[σ] | Γ
A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−−→ A[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ

[Dep0]

Once an AMM is created, any user can deposit tokens into it, as long as
doing so preserves the ratio of the token holdings in the AMM. When a user
deposits v0 : τ0 and v1 : τ1 to an existing AMM, it receives in return an amount
of minted tokens of type (τ0, τ1). This amount is the ratio between the deposited
amount v0 and the redeem rate of (τ0, τ1) in the current state Γ. This redeem
rate is the ratio between the amount r0 of τ0 stored in the AMM, and the total
supply sply(τ0,τ1)(Γ) of the minted token in the state.

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) r1v0 = r0v1 v = v0
r0

· sply(τ0,τ1)
(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ ′

[Dep]

The premise r1v0 = r0v1 ensures that the ratio between the reserves of τ0 and
τ1 in the AMM is preserved, i.e. r1+v1/r0+v0 = r1/r0.

Swap. Any user A can swap units of τ0 in her wallet for units of τ1 in an AMM
(r0 : τ0, r1 : τ1), or vice versa swap units of τ1 in the wallet for units of τ0 in
the AMM. This is achieved by the transaction A : swapd(v0 : τ0, v1 : τ1), where
d ∈ {0, 1} is the swap direction. If d = 0 (“left” swap), then v0 is the amount
of τ0 transferred from A’s wallet to the AMM, while v1 is a lower bound on the
amount of τ1 that A will receive in return. Conversely, if d = 1 (“right” swap),
then v1 is the amount of τ1 transferred from A’s wallet, and v0 is a lower bound
on the received amount of τ0. The actual amount v of received units of τ1−d must
satisfy the constant-product invariant [19], as in Uniswap [7], SushiSwap [6]
and other common AMMs implementations:

r0 · r1 = (rd + vd) · (r1−d − v)

Maximizing Extractable Value from Automated Market Makers 7

Formally, for d ∈ {0, 1} we define:

σ(τd) ≥ vd > 0 v =
r1−d·vd

rd+vd
0 < v1−d ≤ v

A[σ] | (r0 : τ0, r1 : τ1) | Γ
A:swapd(v0:τ0,v1:τ1)−−−−−−−−−−−−−→

A[σ − vd : τd + v : τ1−d] | (r0 : τ0, r1 : τ1) + vd : τd − v : τ1−d | Γ

[Swap]

where we define the update of the units of τ in an AMM, for ◦ ∈ {+,−}, as:

(r0 : τ0, r1 : τ1) ◦ v : τ =

{
(r0 ◦ v : τ0, r1 : τ1) if τ = τ0 and r0 ◦ v ∈ R+

0

(r0 : τ0, r1 ◦ v : τ1) if τ = τ1 and r1 ◦ v ∈ R+
0

Redeem. Users can redeem units of a minted token (τ0, τ1) for units of the
underlying atomic tokens τ0 and τ1. Each unit of (τ0, τ1) can be redeemed for
equal fractions of τ0 and τ1 remaining in the AMM:

σ(τ0, τ1) ≥ v > 0 v0 = v r0
sply(τ0,τ1)(Γ)

v1 = v r1
sply(τ0,τ1)(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:rdm(v:(τ0,τ1))−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ ′

[Rdm]

A key property of the transition system is determinism, i.e. if Γ T−−→ Γ ′ and
Γ T−−→ Γ ′′, then the states Γ ′ and Γ ′′ are equivalent. We denote with type(T)
the type of T (i.e., dep, swap, rdm), and with usr(T) the user issuing T. For
a sequence of transactions λ = T1 · · ·Tn, we write Γ λ−−→ Γ ′ whenever there
exist intermediate states Γ1, . . . Γn−1 such that Γ T1−−−→ Γ1

T2−−−→ · · · Tn−1−−−−→
Γn−1

Tn−−−→ Γ ′. When this happens, we say that λ is enabled in Γ, or just Γ λ−−→.
A state Γ is reachable if there exist some Γ0 only containing wallets with atomic
tokens and some λ such that Γ0

λ−−→ Γ.

3 The MEV Game

The model in the previous section defines how the state of AMMs and wallets
evolves upon a sequence of transactions, but it does not specify how this sequence
is formed. We specify this as a single-player, single-round game where the only
player is an adversary M who attempts to maximize its MEV. Accordingly, we
call this the MEV game . The initial state of the game is given by a reachable
state Γ (not including M’s wallet) and by a finite multiset X of user transactions,
representing the pool of pending transactions (also called txpool). The moves
of M are pairs (σ, λ), where σ is M’s initial balance, and λ is a sequence formed
by (part of) the transactions in X, and by any number of M’s transactions. We
require that the sequence λ in a move is enabled in Γ. The MEV game assumes
the following (see Sect. 6 for a discussion thereof):

1. Users balances in Γ are sufficiently high to not interfere with the validity of
any specific ordering of actions in X.

8 M. Bartoletti et al.

2. The balance σ of M does not include minted tokens.
3. The length of the sequence λ is unbounded.
4. Prices of atomic tokens are fixed throughout the game execution.

Besides the above, some further assumptions are implied by our AMM model:

5. AMMs only hold atomic tokens (this is a consequence of [Dep0]).
6. Swap actions do not require fees (this is a consequence of [Swap]).
7. There are no transaction fees.
8. Interval constraints on received token amounts are modelled in swaps only.

A solution to the game is a move that maximizes M’s gain, i.e. the change in M’s
net worth after performing the sequence λ from Γ. Intuitively, the net worth of a
user is the overall value of tokens in her wallet. To define it, we need to associate
a price to each token. We assume that the prices of atomic tokens are given
by an oracle P ∈ T0 → R+

0 : naturally, the MEV game solution will need to be
recomputed should the price of atomic tokens be updated. The price PΓ(τ0, τ1)
of a minted token (τ0, τ1) in a state Γ is defined as follows:

PΓ(τ0, τ1) =
r0 · P(τ0) + r1 · P(τ1)

sply(τ0,τ1)(Γ)
if resτ0,τ1(Γ) = (r0, r1) (1)

Minted tokens are priced such that the net worth of a user is preserved
when she deposits or redeems minted tokens in her wallet. We assume that the
reserves in an AMM are never reduced to zero in an execution, in order to
preserve equality of minted token prices between two states with equal reserves,
thereby facilitating proofs and analysis. While our semantics of AMMs allows
reserves to be emptied, we note that this does not occur in practice, as it would
halt the operation of the respective AMM pair. We define the net worth of a
user A in a state Γ such that A[σ] ∈ Γ as follows:

WA(Γ) =
∑

τ∈dom (σ) σ(τ) · PΓ(τ) (2)

and we denote by GA(Γ, λ) the gain of user A upon performing a sequence of
transactions λ enabled in state Γ (if λ is not enabled, the gain is zero):

GA(Γ, λ) = WA(Γ ′) − WA(Γ) if Γ
λ−→ Γ ′ (3)

A rational player is a player which, for all initial states (Γ,X) of the game,
always chooses a move (σ, λ) that maximizes the function GM(M[x] | Γ, y) on
variables x and y. We define the miner extractable value in (Γ,X) as the gain
obtained by a rational player by applying such a solution (σ, λ), i.e.:

MEV (Γ,X) = GM(M[σ] | Γ, λ)

Lemma 1 states that firing transactions preserves the global net worth, i.e.
the gains of some users are balanced by equal overall losses of other users.

Lemma 1.
∑

A GA(Γ,T) = 0.

Maximizing Extractable Value from Automated Market Makers 9

By using a simple inductive argument, we can extend Lemma 1 to sequences
of transactions: if Γ λ−−→ Γ ′, then the summation of the gains GA(Γ, λ) over
all users (including M) is 0. Hence, the MEV game is zero-sum. The following
lemma ensures that deposit and redeem actions do not directly affect the net
worth of the user who performs them.

Lemma 2. If type(T) ∈ {dep, rdm}, then Gusr(T)(Γ,T) = 0.

Finally, we note that prices of a minted token in two states are equal if the
reserve ratio in the two states are as well.

Lemma 3. Let Γ λ−−→ Γ ′, and let resτ0,τ1(Γ) = (r0, r1), resτ0,τ1(Γ
′) = (r′

0, r
′
1).

Then, PΓ(τ0, τ1) = PΓ ′(τ0, τ1) if and only if r0/r1 = r′
0/r′

1.

4 Solving the MEV Game

By Lemma 1, a move which minimizes the gain of all users but M must maximize
M’s gain, and therefore is a solution to the MEV game. More formally, we have:

Corollary 1. GM(Γ, λ) is maximized iff GA(Γ, λ) is minimized for all A �= M.

The net worth WA of a user A can be decomposed in two parts: W 0
A , which

accounts for the atomic tokens, and W 1
A , which accounts for the minted tokens:

W 0
A(Γ) =

∑
τ∈T0

σA(τ) · P(τ) W 1
A(Γ) =

∑
τ∈T1

σA(τ) · PΓ(τ) (4)

This provides M with two levers to reduce the users’ gain: token balances,
and the price of minted tokens. To use the first lever, M needs to exploit user
actions in the txpool X of the MEV game. For the second lever, since the prices of
atomic tokens (τ ∈ T0) are fixed, M can only influence the price of minted tokens
(τ ∈ T1). This can be achieved by performing actions on the respective AMMs.

In the rest of the section we devise an optimal strategy to exploit these two
levers. Intuitively, our strategy constructs a multi-layer Dagwood Sandwich1,
containing an inner layer for each exploitable user action in X, which M front-
runs by a swap transaction to enable it (if necessary), and a final layer of
swaps by M to minimize the prices of all minted tokens.

The construction of the final layer of the Dagwood sandwich is shown in
Sect. 4.1, while the construction of the inner layers is presented in Sect. 4.2.

4.1 Price Minimization

Lemma 4 below states that, in any state, M can minimize the price of a minted
token by using a single swap, at most. In particular, this minimization can always
be performed in the final layer of the Dagwood sandwich.

1 We name it after Dagwood Bumstead, a comic strip character who is often illustrated
while producing enormous multi-layer sandwiches.

10 M. Bartoletti et al.

Lemma 4. There exists a function Pmin such that if M[σ] | Γ →∗ M[σ′] | Γ ′

then: (i) PΓ ′(τ0, τ1) ≥ Pmin
Γ (τ0, τ1); (ii) there exist σ′′ and λ consisting at most of

a swap by M such that M[σ′′] | Γ ′ λ−−→ M[] | Γ ′′ and PΓ ′′(τ0, τ1) = Pmin
Γ (τ0, τ1).

In order to construct the swap transaction which minimizes the price of a
minted token (τ0, τ1) in Γ, we need some auxiliary definitions. For each swap
direction d ∈ {0, 1}, we define the canonical swap values as:

wd
d(τ0, τ1, Γ) =

√
P(τ1−d)
P(τd)

· r0 · r1 − rd wd
1−d(τ0, τ1, Γ) =

r1−d · wd
d(τ0, τ1, Γ)

rd + wd
d(τ0, τ1, Γ)

Intuitively, wd
d is the amount of tokens deposited in a swap of direction d:

it is defined such that, after the swap, the AMM reaches an equilibrium, where
the ratio of the AMM reserves is equal to the (inverse) ratio of the token prices.
Instead, wd

1−d is the amount of tokens received after the swap, i.e. it is the unique
value for which the swap invariant is satisfied.

If both w0
0(τ0, τ1, Γ) ≤ 0 and w1

1(τ0, τ1, Γ) ≤ 0, then the price of the minted
token (τ0, τ1) is already minimized. Otherwise, if wd

d(τ0, τ1, Γ) > 0 for some d
(and there may exist at most one d for which this holds), then we define the
price minimization transaction Xd(τ0, τ1, Γ) as:

M : swapd(wd
0(τ0, τ1, Γ) : τ0, wd

1(τ0, τ1, Γ) : τ1) (5)

Theorem 1 constructs the final layer of the Dagwood sandwich. We show that
this layer is the solution of the MEV game on an empty txpool. This is because
if M cannot leverage user transactions, the solution is just to minimize the price
of all minted tokens. The solution is obtained by sequencing price minimization
transactions on all AMMs. Since the price of a minted token is a function of the
reserves of the corresponding AMM, this can be done in any order.

Theorem 1. Let Γ = ‖ i∈I(ri,0 : τi,0, ri,1 : τi,1) | Γw, where Γw only contains
wallets. For all j ∈ I and d ∈ {0, 1}, let vd

j = wd
d(τj,0, τj,1, Γ), and let:

σj =

{
vd

j : τj,d if vd
j > 0

0 if v0
j , v1

j ≤ 0
λj =

{
Xd(τj,0, τj,1, Γ) if vd

j > 0
ε if v0

j , v1
j ≤ 0

Then, (σ1 · · · σn, λ1 · · · λn) is a solution to the game (Γ,X) for an empty X.

4.2 Constructing the Inner Layers

Consider a solution (σ, λ) to the game (A[σA] | Γ,X), and let:

M[σ] | A[σA] | Γ
λ−−→ M[σ′] | A[σ′

A] | Γ ′

By decomposing the net worth as in (4), we find that A’s gain for λ is:

GA(M[σ] | A[σA] | Γ, λ) = W 0
A(Γ ′) − W 0

A(Γ) + W 1
A(Γ ′) − W 1

A(Γ)

=
∑
τ∈T0

(
σ′
A(τ) − σA(τ)

) · P(τ) +
∑
τ∈T1

(
σ′
A(τ) · PΓ ′(τ) − σA(τ) · PΓ(τ)

)

Maximizing Extractable Value from Automated Market Makers 11

Since λ is a solution, by Lemma 4 we can replace PΓ ′(τ) with Pmin
Γ (τ):

=
∑
τ∈T0

(
σ′
A(τ) − σA(τ)

) · P(τ) +
∑
τ∈T1

(
σ′
A(τ) · Pmin

Γ (τ) − σA(τ) · PΓ(τ)
)

(6)

Note that all token prices in (6) are already defined in state Γ. Thus, A’s gain
can be minimized by considering only the effect on the token balance σ′

A , which
we can rewrite as σA + Δ0 + Δ1 + · · · where Δi is the effect on user A’s balance
induced by the i’th transaction in λ: this transaction is necessarily one initially
authorized by A. We will show that Δi is fixed for any user transaction when
executed in an inner solution layer: the position of an inner layer in solution λ
does not affect its optimality.

The following theorem states that solutions to the MEV game can be con-
structed incrementally, by layering the local solutions for each individual trans-
action in the txpool. Intuitively, we choose a transaction T from X, we solve the
game for (Γ, [T]), we compute the state Γ ′ obtained by executing this solution,
and we inductively solve the game in the (Γ ′,X′), where X′ is X minus T.

Theorem 2. With respect to the MEV game in (Γ,X):

1. If X is empty, the solution is the final layer constructed for (Γ, []) in Sect. 4.1.
2. Otherwise, if X = [T]+X′ , let (σ, λ) be the inner layer constructed for (Γ, [T]),

let M[σ] | Γ λ−−→ M[] | Γ ′, and let (σ′, λ′) be the solution for (Γ ′,X′). Then,
the solution to (Γ,X) is (σ + σ′, λλ′).

We now describe how to define the inner layers of the Dagwood sandwich, i.e.
the base case of the inductive construction given by Theorem 2. Each inner layer
includes a user transaction from the txpool, possibly front-run by M such that
executing the layer leads the user’s net worth to a local minimum. We define
below the construction of these inner layers for each transaction type.

Swap Inner Layer. Swap actions only affect the balance of atomic tokens.
To minimize the gain of A after a swap, M must make A receive exactly the
minimum amount of requested tokens. The effect of the swap on A’s atomic net
worth is:

W 0
A(Γ ′) − W 0

A(Γ) = −vd · P(τd) + v1−d · P(τ1−d) if Γ
A:swapd(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ ′

If the change in A’s atomic net worth is negative, A’s transaction is included
in the layer. Although this transaction minimizes A’s atomic net worth, it simul-
taneously affects the price of the minted token (τ0, τ1). This is not an issue,
since the final layer of the Dagwood sandwich minimizes the prices of all minted
tokens. Thus, the change of minted token prices due to the swap inner layer
will not affect the user gain in the full Dagwood sandwich, as evident from (6).
Note that the amount of tokens exchanged in a swap is chosen by the user, so the
actual position of the layer in the Dagwood sandwich is immaterial (Theorem 2).

12 M. Bartoletti et al.

We now define the transaction used by M to front-run A’s swap, ensuring that
A receives the least amount of tokens from the swap. For Γ = (r0 : τ0, r1 : τ1) | · · ·
and T = A : swapdA (v0 : τ0, v1 : τ1), let the swap front-run reserves be:

SFrdA
(τ0, τ1, Γ,T) =

∣∣∣√v2
0 · v2

1 + 4 · v0 · v1 · r0 · r1

∣∣∣ − v0 · v1

2 · v1−dA

SFr1−dA
(τ0, τ1, Γ,T) =

r0 · r1
SFrdA

(τ0, τ1, Γ,T)

These values define the reserves of (τ0, τ1) in the state Γ ′ reached from M[σ] | Γ
with M’s transaction. Intuitively, if the swap front-run reserves do not coincide
with the reserves r0, r1 in Γ, then M’s transaction is needed to enable A’s swap.
We define the swap front-run direction dM as:

dM =

{
dA if SFrdA

(τ0, τ1, Γ,T) > rdA

1 − dA if SFr1−dA
(τ0, τ1, Γ,T) > r1−dA

We define the swap front-run values (i.e., the parameters of M’s swap) as:

SFwdM
(τ0, τ1, Γ,T) =

{
SFrdA

(τ0, τ1, Γ,T) − rdA
if dM = dA

rdA
− SFrdA

(τ0, τ1, Γ,T) if dM = 1 − dA

SFw1−dM
(τ0, τ1, Γ,T) =

{
r1−dM

− SFr1−dM
(τ0, τ1, Γ,T) if dM = dA

SFr1−dM
(τ0, τ1, Γ,T) − r1−dM

if dM = 1 − dM

(7)

We combine these values to craft the swap front-run transaction :

SFX(τ0, τ1, Γ,T) = M : swapdM (SFw0(τ0, τ1, Γ,T) : τ0,SFw1(τ0, τ1, Γ,T) : τ1)

The inner layer is included in the Dagwood sandwich if it reduces A’s net
worth, i.e. if −vd · P(τd) + v1−d · P(τ1−d) < 0. The swap front-run transaction
is omitted if the reserves in Γ coincide with the swap front-run reserves. The
balance of M in the (local) game solution is SFwdM

(τ0, τ1, Γ,T) : τdM
. Note

that, the amount of tokens exchanged by the swapping user in (6) is fixed by
(−vd ,+v1−d), and the effect of a swap inner layer does not depend on its position
along the Dagwood sandwich (Theorem 2).

Example 1. We recast our first example in Sect. 1 as a MEV game,
assuming a txpool X = {A : swap0(40 : τ0, 35 : τ1)}. The initial state is
Γ = (100 : τ0, 100 : τ1) | Γw, where Γw is made of user wallets, among which
A[40 : τ0], and P(τ0) = P(τ1) = 1, 000. We construct the Dagwood sandwich.
Since A’s swap yields a reduction in A’s atomic net worth, 35·P(τ1)−40·P(τ0) =
−5, 000, then A’s transaction is included in the inner layer. To check if A’s swap
must be front-run by M, we first compute the swap front-run reserves:

SFr0(τ0, τ1,T, Γ) =
√

402 · 352 + 4 · 40 · 35 · 1002 − 40 · 35
2 · 35

≈ 88.8

SFr1(τ0, τ1,T, Γ) =
1002

89
≈ 112.7

Maximizing Extractable Value from Automated Market Makers 13

Since these values differ from the reserves in the initial game state,
M must front-run A’s transaction. The direction dM of M’s swap is 1, as
SFr1(τ0, τ1, Γ,T) > r1. The swap front-run values (7) are given by:

SFw0(τ0, τ1, Γ,T) = 100 − 88.8 ≈ 11.2 SFw1(τ0, τ1, Γ,T) = 112.7 − 100 ≈ 12.7

Therefore, the swap inner layer is made of two transactions:

M : swap1(11.2 : τ0, 12.7 : τ1) A : swap0(40 : τ0, 35 : τ1)

and M’s balance of the (local) game solution is 12.7 : τ1. To construct the final
layer, we consider the state Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · · , shown in Fig. 1.
In Γ ′′, the canonical swap values are given by:

w1
0(τ0, τ1, Γ

′′) =
128.8 · 22.3
77.7 + 22.3

≈ 28.7

w1
1(τ0, τ1, Γ

′′) =
√

1
1 · 128.8 · 77.7 − 77.7 ≈ 22.3

Since w1
1(τ0, τ1, Γ

′′) > 1, the direction d of the price minimization swap is 1.
Therefore, the final layer is made of a single swap on the pair (τ0, τ1):

M : swap1(28.7 : τ0, 22.3 : τ1))

where M’s required balance is 22.3 : τ1. Summing up, the Dagwood sandwich
is constructed by appending the final layer to the inner layer, and M’s required
balance is σ = 12.7 : τ1 + 22.3 : τ1 = 35 : τ1. The MEV obtained by M through
the Dagwood sandwich is (11.2 − 12.7) · 1, 000 + (28.7 − 22.3) · 1, 000 ≈ 5, 000. �

Deposit Inner Layer. By Lemma 2, deposits preserve the user’s net worth.
Thus, executing T = A : dep(v0 : τ0, v1 : τ1) in Γ does not bring any gain to A:

GA(Γ,T) = −v0 · P(τ0) − v1 · P(τ1) + v · PΓ(τ0, τ1) = 0 (8)

where v is the amount of minted tokens (τ0, τ1) given to A upon the deposit.
By Lemma 4, PΓ(τ0, τ1) ≥ Pmin

Γ (τ0, τ1). By using this inequality in (8), we have:

− v0 · P(τ0) − v1 · P(τ1) + v · Pmin
Γ (τ0, τ1) ≤ 0

⇐⇒ v · Pmin
Γ (τ0, τ1) ≤ v0 · P(τ0) + v1 · P(τ1)

M[35 : τ1] | Γ = (100 : τ0, 100 : τ1) | · · ·
SFX (τ0,τ1,Γ,T)−−−−−−−−−−→ M[11.2 : τ0, 22.3 : τ1] | Γ ′ = (88.8 : τ0, 112.7 : τ1) | · · ·

T=A:swap0(40:τ0,35:τ1)−−−−−−−−−−−−−−−→ M[11.2 : τ0, 22.3 : τ1] | Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · ·
X (τ0,τ1,Γ ′′)−−−−−−−−→ M[40 : τ0, 0 : τ1] | Γ ′′′ = (100 : τ0, 100 : τ1) | · · ·

Fig. 1. A Dagwood sandwich exploiting a single user swap.

14 M. Bartoletti et al.

By (6) it follows that including T in a game solution λ reduces A’s net
worth, since the decrease of A’s net worth in atomic tokens is not always offset
by the increase of net worth in minted tokens. Additionally, the minted token
price PΓ(τ0, τ1) in (8) when the user deposit occurs is determined by deposit
parameters v0, v1 alone: let Γ →∗ Γ ′ be such that the given user deposit T is
enabled in both Γ and Γ ′. By [Dep], this implies v0/v1 = r0/r1 = r′

0/r′
1 where

(r0, r1) = resτ0,τ1(Γ) and (r′
0, r

′
1) = resτ0,τ1(Γ

′). Then, by Lemma 3, PΓ(τ0, τ1) =
PΓ ′(τ0, τ1), as the reserve ratios in Γ and Γ ′ are equal. Thus, the amount of
minted tokens v received by the depositing user in (6) is fixed by (v0, v1), and
the effect of a deposit inner layer does not depend on its position along the
Dagwood sandwich (Theorem 2).

Similarly to the construction of the swap inner layer, M may
need to front-run transaction T = A : dep(v0 : τ0, v1 : τ1) to enable it. For
Γ = (r0 : τ0, r1 : τ1) | · · · , we define the deposit front-run reserves as:

DFr0(τ0, τ1, Γ,T) =
∣∣∣√v0/v1 · r0 · r1

∣∣∣ DFr1(τ0, τ1, Γ,T) =
∣∣∣√v1/v0 · r0 · r1

∣∣∣
which satisfy DFr0(τ0, τ1, Γ,T) · v1 = DFr1(τ0, τ1, Γ,T) · v0, as required by [Dep].
Given a swap direction dM , we define the deposit front-run values as:

DFwdM
(τ0, τ1, Γ,T) = DFrdM

(τ0, τ1, Γ,T) − rdM

DFw1−dM
(τ0, τ1, Γ,T) = r1−dM

− DFr1−dM
(τ0, τ1, Γ,T)

If DFwdM
(τ0, τ1, Γ,T) > 0 and DFw1−dM

(τ0, τ1, Γ,T) > 0 holds for a swap
direction dM , then we define the deposit front-run transaction as:

DFX(τ0, τ1, Γ,T) = M : swapdM (DFw0(τ0, τ1, Γ,T) : τ0,DFw1(τ0, τ1, Γ,T) : τ1)

If the reserve ratio in the initial state does not coincide with the ratio
of deposited funds, i.e. v0/v1 �= r0/r1, then the deposit inner layer is
DFX(τ0, τ1, Γ,T) T, and the balance required by M is DFwdM

(τ0, τ1, Γ,T) : τdM
.

Otherwise, the deposit inner layer is made just by T, and the required balance
is zero.

Redeem Inner Layer. By Lemma 2, redeem actions preserve the user’s net
worth, i.e.A’s gain is zero when firing T = A : rdm(v : (τ0, τ1)) in Γ:

GA(Γ,T) = −v · PΓ(τ0, τ1) + v0 · P(τ0) + v1 · P(τ1) = 0

Unlike for the deposit inner layer, redeem transactions increase the users’
gain when executed in the game solution. This is apparent when substituting in
the above equation PΓ(τ0, τ1) = Pmin

Γ (τ0, τ1) (as per Lemma 4) to express the
user gain contribution (6) of the redeem action.

−v · Pmin
Γ (τ0, τ1) + v0 · P(τ0) + v1 · P(τ1) ≥ 0

Therefore, user redeem actions always reduce M’s gain, and so they are not
included in the solution. Therefore, the redeem inner layer is always empty.

Maximizing Extractable Value from Automated Market Makers 15

M[18 : τ0, 50.5 : τ1] | Γ = (100 : τ0, 100 : τ1) | · · ·
SFX (τ0,τ1,Γ,T)−−−−−−−−−−→ M[29.3 : τ0, 37.8 : τ1] | Γ ′ = (88.8 : τ0, 112.7 : τ1) | · · ·

T=A:swap0(40:τ0,35:τ1)−−−−−−−−−−−−−−−→ M[29.3 : τ0, 37.8 : τ1] | Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · ·
DFX (τ0,τ1,Γ ′′,T′)−−−−−−−−−−−→ M[71.4 : τ0, 0 : τ1] | Γ ′′′ = (86.6 : τ0, 115.5 : τ1) | · · ·

T′=A:dep(30:τ0,40:τ1)−−−−−−−−−−−−−−→ M[71.4 : τ0, 0 : τ1] | Γ ′′′′ = (116.6 : τ0, 155.5 : τ1) | · · ·
X (τ0,τ1,Γ ′′′′)−−−−−−−−−→ M[53.4 : τ0, 20.8 : τ1] | (134.6 : τ0, 134.6 : τ1) | · · ·

Fig. 2. A Dagwood sandwich exploiting a user swap, deposit and redeem (dropped).

Example 2. We now recast the full example in Sect. 1 as a MEV game, consid-
ering all three user transactions in the txpool:

X = { A : swap0(40 : τ0, 35 : τ1) , A : dep(30 : τ1, 40 : τ1) , A : rdm(10 : (τ0, τ1)) }

The game solution is shown in Fig. 2: note that we can reuse the swap inner
layer from Example 1, since the initial state and user swap action are identical.
Thus, we continue by constructing the deposit inner layer for user deposit T′ in
state Γ ′′ = (128.8 : τ0, 77.7 : τ1). Here, the deposit front-run reserves are:

DFr0(τ0, τ1, Γ ′′,T′) =
∣∣∣√30/40 · 128.8 · 77.7

∣∣∣ = 86.6

DFr1(τ0, τ1, Γ ′′,T′) =
∣∣∣√40/30 · 128.8 · 77.7

∣∣∣ = 115.5

Since the ratio of the deposit front-run reserves does not coincide with the reserve
ratio in Γ ′′ (86.6/115.5 �= 128.8/77.7), the deposit front-run by M is necessary to
enable the user deposit action. By choosing a swap direction dM = 1, we obtain
the positive deposit front-run values, which confirm the choice of the direction:

DFw0(τ0, τ1, Γ
′′,T′) = 128.8 − 86.6 ≈ 42.2 DFw1(τ0, τ1, Γ

′′,T′) = 115.5 − 77.7 ≈ 37.8

Therefore, M’s deposit front-run transaction is:

DFX(τ0, τ1, Γ ′′,T′) = M : swap1(42.2 : τ0, 37.8 : τ1)

which requires a balance σ(τ1) ≥ 37.8. The deposit inner layer is obtained by
prepending this transaction to A’s deposit. The redeem inner layer is empty, as
shown before. By (5), the final layer to minimize the price of minted tokens is:

M : swap1(18.0 : τ0, 20.8 : τ1)

16 M. Bartoletti et al.

Summing up, the full Dagwood sandwich (see also Fig. 2) is:

SFX(τ0, τ1, Γ,T) T DFX(τ0, τ1, Γ ′′,T′) T′ X(τ0, τ1, Γ ′′′′)

which requires an initial balance σ = {18.0 : τ0, 12.7 + 37.8 : τ1} by M. By
inspection of the Dagwood sandwich execution in Fig. 2, it can be seen that the
miner has obtained a gain of approximately 5,700. �

5 Related Work

Daian et al. [14] study the effect of transaction reordering obtained through pri-
ority gas auctions. These are games between users who compete to include a
bundle of transactions in the next block, bidding on transaction fees to incen-
tivize miners to include their own bundle. Notably, [14] finds empirical evidence
of the fact that the gain derived from transaction reorderings in decentralized
exchanges (DEX) exceeds the gain given by block rewards and transaction fees
in Ethereum. The same work also proposes a game model of priority gas auc-
tions, showing a Nash equilibrium for players to take turns bidding, compatibly
with behavior observed in the wild on Ethereum. Our mining game differs from
that in [14], since we assume a greedy adversary wanting to maximize its gain
at the expense of all the other users, exploiting arbitrages on AMMs.

Zhou et al. [21] provide a theoretical framework to study the front-running
on AMMs. Two sandwich heuristics are studied: the front-run & back-run swap
sandwich, and the novel front-run redeem & back-run swap and deposit. The
swap semantics used in [21] is simplified, compared to ours, since no minimum
amount of received tokens is enforced by the AMM, users only perform swaps
and hold no minted tokens (depositing and swapping agents are decoupled).
Further, extractable value from arbitrage is considered separately. In comparison,
we emphasize that we propose a solution to attack all main user action types
offered by leading AMMs, thereby extracting value from user submitted swaps
and deposits. Our model also accurately model minted tokens: their value is
dynamically affected by miner and user swaps during the execution of the attack.
Thus, our game solution extracts the maximum value in a more concrete setting,
considering the victim transactions of both aforementioned attacks in [21], and
leaving no arbitrage opportunities unexploited.

More general ordering and injection of transactions by a rational agent is
generally referred to as front-running. Eskandari et al. [16] provide a taxonomy
for various front-running attacks in blockchain applications and networks. This
taxonomy is expanded in [17] with liquidations, sandwich attacks and arbitrage
actions between DEX.

Some works investigate the problem of detecting front-running attacks on
public blockchains. For example, in [17], Qin et al. introduce front-running detec-
tion heuristics which are deployed to empirically study the presence of such
attacks on public DeFi applications. On the other hand, various fair ordering
schemes have been proposed to mitigate front-running or exploitation of miner-
extractable value. However, simple commit-and-reveal schemes still leak infor-
mation such as account balances. Breidenbach et al. [12] propose “submarine

Maximizing Extractable Value from Automated Market Makers 17

commitments”, which rely on k-anonymity to prevent any leaks from user com-
mitments. Baum et al. [11] introduce a order-book based DEX which delegates
the matching of orders to an out-sourced, off-chain multi-party computation
committee. Private user orders are not revealed to other participants, such that
no front-running can occur in each privately-computed order matching round.
Ciampi et al. [13] introduce a market maker protocol in which the strictly sequen-
tial trade history between an off-chain market maker and traders are verifiable as
a hash-chain. Any subsequent reordering by the AMM is publicly provable: col-
lateral from the market maker incentivizes honest, fair-ordering behaviour. Such
work aims to provide alternative, front-running resistant designs with AMM-like
functionality. In contrast, our work is intended to formalize the behaviour of
current, mainstream AMMs in the presence of a rational adversary.

The DeFi community is developing tools to enable agents to extract value
from smart contracts: e.g., flashbots [2] is a project aiming to develop Ethereum
implementations which support transaction bundles: Rather than front-running
individual transactions by adjusting their fees, an agent can communicate a
sequence or bundle of transactions to the miner, asking its inclusion in the next
block. Our game solutions could be implemented to solve for such bundles.

6 Conclusions

We have addressed the problem of adversaries extracting value from AMMs inter-
actions to the detriment of users. We have constructed an optimal strategy that
adversaries can use to extract value from AMMs, focussing on the widespread
class of constant-product AMMs. Our results apply to any adversary with the
power to reorder, drop or insert transactions: besides miners, this includes roll-
up aggregators, like e.g. Optimism and StarkWare [3,4]. Notably, our work shows
that it is possible to extract value from all types of AMM transactions, while
previous works focus on extracting value from token swaps, only.

In practice, value is also extracted from AMMs by colluding mining and
non-mining agents: for the Ethereum blockchain, agents can send transaction
bundles [2] to mining pools for block inclusion, in return for a fee. Our tech-
nique naturally applies to this setting, where the actions of the miner are simply
replaced by actions by the agent submitting the transaction bundle.

We now discuss the simplifying assumptions (1–8) listed in Sect. 3. (1) User
balances do not limit the order in which transactions in the txpool can be exe-
cuted. In practice, in some cases it would be possible to perform a sequence of
actions by exploiting the funds received from previous actions. We leave order-
ing constraints imposed by limited wallet balances for future work. (2) The
adversary holds no minted tokens prior to executing the game solution. Yet, the
adversary can exploit an (unbounded) initial balance of atomic tokens to acquire
minted tokens as part of the game solution by performing deposits. The opti-
mality of the Dagwood sandwich illustrates that this is not necessary. (3) The
size of the Dagwood sandwich is unbounded. In practice, a typical block of trans-
actions will include other transactions besides those directed to AMMs, and so

18 M. Bartoletti et al.

the adversary can find enough space for its sandwiches by dropping non-AMM
transactions. During times of block-congestion, a constraint on the length of the
Dagwood sandwich will apply: we conjecture that solving such an optimization
is NP-hard, and regard this as an relevant question for future work. (4) Prices
of atomic tokens are fixed for the duration of the game: the Dagwood sandwich
will need to be recomputed should prices change. (5) AMMs only hold atomic
tokens. This is common in practice, but we note that extending the mining game
to account for arbitrary nesting of minted tokens by AMM pairs is an interest-
ing direction of future research. (6) No AMM swap fees and (7) no transaction
fees are modelled: the adversary’s gain resulting from the Dagwood sandwich is
an upper bound to profitability as fees tend to zero. Yet, fees affect this gain,
so they should be taken into account to construct an optimal strategy. Further-
more, transaction fees may make it convenient for a miner to include user redeem
transactions in the sandwich, while these are never exploited by our strategy. (8)
Besides fees, we abstract from the intervals that users can express to constrain
the amount of tokens received upon deposits and redeems (we only model these
constraints for swaps). This is left for future work.

In this paper we have considered AMMs which implement the constant-
product swap invariant, like e.g. Uniswap and SushiSwap. A relevant research
question is how to solve the MEV game under different swap invariants, e.g. those
used by Curve Finance and SushiSwap. Uniform frameworks which address this
problem have been proposed in [9,15] where swap invariants are abstracted as
functions subject to a given set of constraints.

Acknowledgements. Massimo Bartoletti is partially supported by Conv. Fondazione
di Sardegna & Atenei Sardi project F75F21001220007 ASTRID. James Hsin-yu Chiang
is supported by the PhD School of DTU Compute.

References

1. Curve statistics (2020). https://www.curve.fi/dailystats
2. Flashbots (2021). https://github.com/flashbots/pm
3. Optimism website (2021). https://optimism.io/
4. Starkware website (2021). https://starkware.co/
5. SushiSwap statistics (2021). https://analytics.sushi.com/
6. SushiSwap token pair implementation (2021). https://github.com/sushiswap/

sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/
uniswapv2/UniswapV2Pair.sol

7. Uniswap token pair implementation (2021). https://github.com/Uniswap/
uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/
UniswapV2Pair.sol

8. Uniswap V2 statistics (2021). https://v2.info.uniswap.org/
9. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of automated market

makers in DeFi. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS,
vol. 12717, pp. 168–187. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-78142-2 11

https://www.curve.fi/dailystats
https://github.com/flashbots/pm
https://optimism.io/
https://starkware.co/
https://analytics.sushi.com/
https://github.com/sushiswap/sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/uniswapv2/UniswapV2Pair.sol
https://github.com/sushiswap/sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/uniswapv2/UniswapV2Pair.sol
https://github.com/sushiswap/sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/uniswapv2/UniswapV2Pair.sol
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol
https://v2.info.uniswap.org/
https://doi.org/10.1007/978-3-030-78142-2_11
https://doi.org/10.1007/978-3-030-78142-2_11

Maximizing Extractable Value from Automated Market Makers 19

10. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. CoRR abs/2106.01870 (2021). https://arxiv.org/
abs/2106.01870

11. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentral-
ized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021.
LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78372-3 7

12. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the Hydra: towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: USENIX Security
Symposium, pp. 1335–1352. USENIX Association (2019)

13. Ciampi, M., Ishaq, M., Magdon-Ismail, M., Ostrovsky, R., Zikas, V.: FairMM: a
fast and frontrunning-resistant crypto market-maker. Cryptology ePrint Archive,
Report 2021/609 (2021). https://eprint.iacr.org/2021/609

14. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

15. Engel, D., Herlihy, M.: Composing networks of automated market makers. In:
Advances in Financial Technologies (AFT), pp. 15–28. ACM (2021). https://doi.
org/10.1145/3479722.3480987

16. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

17. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark
is the forest? (2021). https://arxiv.org/abs/2101.05511

18. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: SoK: decentralized finance (DeFi). CoRR abs/2101.08778 (2021)

19. Zhang, Y., Chen, X., Park, D.: Formal specification of constant product market
maker model & implementation (2018). https://github.com/runtimeverification/
verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

20. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discov-
ery of profit-generating transactions in DeFi protocols. In: IEEE Symposium on
Security and Privacy, pp. 919–936. IEEE (2021). https://doi.org/10.1109/SP40001.
2021.00113

21. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on
decentralized on-chain exchanges. In: IEEE Symposium on Security and Privacy,
pp. 428–445. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00027

https://arxiv.org/abs/2106.01870
https://arxiv.org/abs/2106.01870
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-030-78372-3_7
https://eprint.iacr.org/2021/609
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1145/3479722.3480987
https://doi.org/10.1145/3479722.3480987
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13
https://arxiv.org/abs/2101.05511
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00027

Kicking-the-Bucket: Fast
Privacy-Preserving Trading Using

Buckets

Mariana Botelho da Gama1 , John Cartlidge2 , Antigoni Polychroniadou3,
Nigel P. Smart1(B) , and Younes Talibi Alaoui1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{mariana.botelhodagama,nigel.smart,younes.talibialaoui}@kuleuven.be

2 University of Bristol, Bristol, UK
john.cartlidge@bristol.ac.uk

3 J. P. Morgan AI Research, New York, USA
antigoni.polychroniadou@jpmorgan.com

Abstract. We examine bucket-based and volume-based algorithms for
privacy-preserving asset trading in a financial dark pool. Our bucket-
based algorithm places orders in quantised buckets, whereas the volume-
based algorithm allows any volume size but requires more complex val-
idation mechanisms. In all cases, we conclude that these algorithms are
highly efficient and offer a practical solution to the commercial problem
of preserving privacy of order information in a dark pool trading venue.

1 Introduction

The majority of major stock exchanges are now electronic order-driven markets,
where investors submit orders to buy or sell a quantity of stock at a particular
price. Orders that are not immediately filled (i.e., those that do not immediately
result in a trade) are publicly displayed in a limit order book (LOB), which
presents a price-ordered view of the instantaneous demand and supply in the
market. With each order in the book acting as an advertisement of an investor’s
willingness to commit to a particular trade, the LOB is an efficient method for
finding counterparties with whom to trade. However, sometimes it is beneficial
for an investor to hide their trading intention. In particular, when attempting
to trade in large volume (i.e., when wanting to buy or sell a large quantity of
stock), exposing one’s intention will likely lead to adverse price movement as the
information contained in the large order causes other investors to re-evaluate
market price. This effect is known as price impact, or market impact, and it can
be extremely costly to a large-volume investor. To reduce impact, an investor
will often “salami slice” one large order into multiple smaller orders and drip
feed these into the market slowly over time. So common is this approach that
many exchanges offer an “iceberg” order type that automates a similar process.
When an iceberg order is submitted, only a small proportion of the full order
volume (the “tip of the iceberg”) is displayed in the order book at any given
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 20–37, 2022.
https://doi.org/10.1007/978-3-031-18283-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_2&domain=pdf
http://orcid.org/0000-0002-2759-043X
http://orcid.org/0000-0002-3143-6355
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7947-9450
https://doi.org/10.1007/978-3-031-18283-9_2

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 21

time, while the bulk of the remaining order remains hidden (“submerged” out
of view). However, while the use of icebergs to disguise order volumes can help
limit the effects of market impact, icebergs are exposed to the risk that other
investors will anticipate the hidden iceberg volume from information leaking
from the visible tip.

To counter this, some trading venues hide all pre-trade order information.
Commonly referred to as “dark pools” to contrast with the “lit” order books
of an exchange, these trading venues ensure that all order information is non-
displayed. As other investors have no access to the information in a dark pool,
so market impact can be significantly reduced, or avoided entirely. Hidden away
from viewing eyes, orders in a dark pool tend to take longer to fill than equivalent
orders submitted to an exchange. However, in most cases, the potential savings
available to large volume institutional investors will significantly outweigh the
desire for trading urgency. That is, volume investors are usually prepared to wait
as long as the final deal they make is fair. As a result, dark pool trading has
risen in popularity, with more than 15% of all US equities, and more than 8% of
all EU equities, trading on dark pools in 2017 [17]. Yet, dark pools persistently
suffer from negative reputation as some operators have taken advantage of their
privileged access to the non-displayed orders in their systems. Indeed, between
2011–2018, dark pool operators paid more than $217 million to the SEC in
penalty settlements for misusing customer order information or operating the
dark pool in a way that disadvantaged their customers [9]. In the shadowy world
of the dark pool, it is easier for a market manipulator to hide. As such, it is
perhaps unsurprising that many investors have a fear of the dark.

There is now a strong commercial drive from financial institutions, such as
JPMorgan [2,4], to offer investors a secure dark pool trading venue. To be com-
mercially viable, such a platform would require guaranteed order privacy, the
ability to handle imbalanced order-flows from around 1000 active investors or
more, and periodic order matching at regular intervals, where execution price
is determined by some reference value such as the mid-point of the National
Best Bid and Offer (NBBO). To address this problem, we consider algorithms
for implementing fast privacy-preserving trading protocols such that nobody, not
even the system operator, can access (and therefore misuse) order information.
These algorithms are designed to stop fraudulent behaviour but can also ben-
efit honest dark pool operators as they offer customers a guarantee that does
not rely solely on trust. Using multi-party computation (MPC) based protocols,
the investors secret share their orders across several entities who emulate the
dark pool operator. As long as these entities do not collude, nobody can access
the system information. In [8], Cartlidge et al. used MPC to present a proof-of-
concept implementation of three dark pool trading mechanisms, showing that
“volume matching” can be viably executed in a privacy-preserving manner with
order throughput similar to that required by a real world dark pool trading
venue. Further, in [9], Cartlidge et al. demonstrated how to use MPC to run
multiple auctions in parallel, offering simultaneous trading across thousands of
stocks such that the identity of the stock being traded is also hidden and secure.

22 M. B. da Gama et al.

The throughput per MPC engine is however significantly lower than that of the
volume matching from [8] due to the use of a more complex matching algorithm.

In this paper, we build upon the work from [8] and introduce two matching
algorithms using MPC: (i) “bucket match”, and (ii) a “volume match” with
a more efficient clearing phase. For both mechanisms, we trade one financial
instrument (i.e., one stock) such that orders are matched according to volume
only and price is determined by some external reference value. In bucket match,
buy and sell orders placed in the same auction must have the same volume,
which is determined by the bucket size. To hide the volume that each investor
wishes to buy or sell (or the fact that the investor is even interested in trading a
given stock), orders with zero volume may also be submitted. Multiple auctions
with different sized buckets can be run in parallel, after which unfilled orders
remaining in the different bucket lists may be matched against each other. In
volume match, there is no bucketing and investors may submit orders of any
volume they wish (including zero volume orders), similar to the volume trading
algorithm presented in [8]. However, we extend the previous volume trading
protocol by simplifying the clearing phase. Namely, all the orders in the direction
with less total volume are opened simultaneously, instead of being checked one by
one before opening. We also increase privacy by no longer revealing the direction
of an order (i.e., it is not possible to tell whether the order is to buy or to sell).
Both algorithms were implemented with the Scale-Mamba Framework [1] using
Shamir Secret Sharing based MPC, which provides security with abort against
active adversaries for an honest majority. We empirically evaluate the case where
three MPC parties emulate the dark pool operator.

Related Work: Work in secure privacy-preserving auction mechanisms can be
roughly categorised into two broad categories: those involving a public bulletin
board (e.g., a blockchain), for verifying auction correctness, or as a secure com-
munication channel between parties; and those where MPC is used to implement
an auction or dark pool using a set of operators. We briefly review these, below.

In 2021, Ngo et al. [15] introduced a framework for secure financial trad-
ing that uses a public bulletin board (e.g., a permissionless blockchain) hidden
behind an anonymous network (e.g., Tor) for privacy-preserving communica-
tion between investors. The authors introduce witness-key-agreement (WKA),
a cryptographic scheme that allows counterparties to securely agree on a secret
using publicly committed information that meets some desired relation. Par-
ties negotiate securely by publishing partial zk-SNARK proofs on the public
bulletin board to reach a trade agreement. This process emulates a secure dis-
tributed over-the-counter (OTC) dark pool, such that trade price and volume is
negotiated directly between counterparty pairs. Therefore, there is no need for
an auctioneer (or dark pool operator) to match orders. The runtimes for each
protocol step are below 15 s, the average block generation time in Ethereum.

Also in 2021, Galal and Youssef [12] introduced a publicly verifiable and
secrecy preserving periodic auction protocol that makes use of a smart contract
deployed on the Ethereum blockchain. Investors first commit to their orders in

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 23

the smart contract using Bulletproofs to generate an aggregate range proof. The
auction (or dark pool) operator then privately receives orders from investors,
each encrypted with the operator’s public key. The operator decrypts orders
and calculates clearing price and volume for the auction, before publishing a
proof of correctness to the smart contract. The smart contract serves as a secure
bulletin board and enables public verification of the submitted zero-knowledge
proofs. Constantinides and Cartlidge [10] introduced a similar smart contract for
validating the honesty of the operator. Again, orders are submitted in encrypted
form to the smart contract, the operator matches orders off-chain in unencrypted
form, and the result of the auction is published to the smart contract. This
enables investors to verify whether their own orders were handled correctly,
while preserving the privacy of all unexecuted orders. In addition, since the
smart contract logic only handles order flow and is independent of the matching
logic, the operator can use any double auction matching rules without altering
the smart contract.

In 2019, Bag et al. [3] presented a protocol to perform a first-price sealed-bid
auction without a central “auctioneer” entity. Decentralised bidders engage in
the protocol to determine the winning bidder with the highest bid. The protocol
consists of a committing phase, where every bidder sends an order commitment
to a public bulletin board, then a second phase where bidders jointly compute
the highest bid without leaking the other bids. This computation is performed
using a modified version of the Anonymous Veto network protocol proposed in
[13]. Following this, the winning bidder can come forward to prove they had
the highest bid, and everyone else can verify their claim. The computation and
communication have a linear complexity on the bit length of the bids throughout
all phases; and the verification phase has linear complexity on the number of
parties. While this protocol has efficient time complexity, it is not obvious how
it could be extended to a double auction, where buyers and sellers are matched.

In 2006, Parkes et al. [16] proposed a secure protocol to perform a sealed-
bid auction using homomorphic encryption, where only one auctioneer carries
out the auction. The auctioneer publishes his/her public key, and the auction is
performed by bidders committing to their bids and then sending the commit-
ments to the auctioneer. Bidders then submit their bids to the auctioneer who
verifies first if the bids are consistent with the commitments, before running the
auction on clear bid data. Subsequently, the auctioneer posts the winner of the
auction along with proofs that the computation was performed according to the
specified protocol. One thing to note here is that, while the protocol prevents
the auctioneer from cheating, the unmet orders are revealed to the public and
so the trading intentions of these bidders are leaked. This work was extended
in 2007 [18] to cope with continuous double auctions (where orders to buy and
sell can be submitted and matched at any time), by checking whether orders
can be matched with existing orders as soon as they are entered. In 2009 [19],
protocols were further extended to enable trading in baskets of securities; and
in 2012 [20], rule-based trading was introduced. The works of [2,4] offer a pri-
vacy preserving double auction mechanism and a volume matching mechanism,
respectively, without any leakage based on fully homomorphic encryption using
a single operator.

24 M. B. da Gama et al.

In 2006, seminal work by Bogetoft et al. [6] introduced an MPC protocol
to perform a one-shot double auction among a set of auctioneers, such that
investors secret share their orders with the auctioneers and orders are obliviously
addressed using Shamir Secret Sharing with passive security. This work was
deployed in 2008 [5], to secure the Danish sugar beet auction between farmers
and the company Danisco, the only sugar beet processor in Denmark. In this
auction, farmers provide the amount of sugar beet they are willing to sell for
every potential price. Similarly, buyers provide the amounts they are willing
to buy for every potential price. The clearance price is then calculated as the
point that supply equals demand. The auction was successfully run by three
auctioneers, namely, Danisco; DKS, the sugar beet growers’ association; and
SIMAP, the research team. Since then, the auction has taken place every year.

In 2015, Jutla [14] introduced an MPC based protocol for periodic double
auctions, with five entities playing the role of the auctioneers; four brokers and
one regulating authority. Investors first submit orders during an open-auction
period. Orders are then cleared at a single price and unmet orders remain in the
auction for the following rounds. Making the assumption that the strategies of
investors do not have to be kept secret, Jutla suggests that a passively secure
protocol is sufficient, as long as the auctioneers wait a reasonable amount of time
(e.g., one month) before releasing transcripts of the computations for audit. Jutla
does not report an implementation of the protocol, but claims that the MPC
technology at that time (in 2015) would be capable of executing the day’s first
auction in 30 min and subsequent auctions every 15 min; with additional 5 min
breaks between auctions, to allow bidders to digest results.

Cartlidge et al. [8] proposed an MPC based protocol for performing auctions
in dark pools, where a set of l = 2 or l = 3 auctioneers can emulate the dark pool
operator. Cartlidge et al. considered three common matching mechanisms: (i) a
continuous double auction, where buyers and sellers can submit orders at any
time and a limit order book is used for matching; (ii) a periodic double auction,
where the clearance price is determined by maximising quantity matched; and
(iii) a volume matching algorithm, which simply matches buy and sell volume
and price is taken from some reference exchange. Investors submit orders by
secret sharing them among the auctioneers, thus auctioneers learn nothing about
the orders, except for the direction of the order (i.e., whether the order is to
sell or to buy), as this information is sent to auctioneers on clear data. The
protocols proposed are actively secure with abort and were implemented using
the Scale-Mamba framework [1], with l = 2 using the SPDZ protocol [11], and
l = 3 using Shamir Secret Sharing based MPC. The runtimes reported show that
the volume matching is the fastest algorithm, capable of processing a throughput
of around 1000 orders per second for the case where l = 3, and around 2000
orders per second for the case where l = 2. The throughput for the other two
algorithms was found to be insufficient for real-world applicability. Namely, the
continuous double auction algorithm which can be commonly found in lit markets
was considered unsuitable for evaluation in an MPC system for dark pools.

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 25

In 2020, Cartlidge et al. [9] introduced a follow-up work to secure a sys-
tem inspired by the London Stock Exchange Group’s Turquoise Plato Uncross
algorithm (TPU for short). The TPU manages dark pool trading across 4500
different instruments, thus Cartlidge et al. considered running the auction on
multiple engines, where each engine addresses a sub-set of instruments, so as to
cope with the amount of orders that TPU receives in real life. The challenge con-
sisted of distributing instruments across engines without leaking the instruments
that each engine is dealing with, as this would reveal information about the trad-
ing activity of each instrument. Cartlidge et al. [9] concluded that assigning 16
instruments to each engine (and thus 281 engines are needed)1 would cope with
the real world throughput that TPU needs to address. The worst case through-
put for each of these engines is of around 8 orders per second for l = 2, and
around 5 orders per second for l = 3. Note that, as mentioned before, this is
indeed significantly lower than the throughput of the volume matching in [8]
presented above.

2 Our Proposed Auction Algorithms

Both of the proposed algorithms follow the scheduled cross methodology, where
the matching occurs at fixed points in time and is based on volume only. Trade
price is determined by reference to an external lit market value, thus the orders
for both algorithms do not contain price information. Each order contains the
identity of the investor who submitted it, the direction of the order (i.e., whether
it is a buy or a sell order), and, in the volume match case, the volume to be
traded. A separate auction is run for each tradable instrument (i.e., each stock).
The output of each auction consists of a list of all filled orders (although some
orders might be partially filled, as will be explained at the end of this section).

A textual description of the bucket match and the volume match in the clear
can be found below.

Bucket Match: We consider an auction in which orders can only be executed
in a given number y of bucket sizes. For each j ∈ [1, . . . , y] we define the fixed
bucket size as unitj , and the algorithm maintains a list Lj of the orders with
list Lj containing only buy and sell orders of size unitj . Order i in list j is of
the form [idj

i , direction
j
i], where idj

i is the identity of the investor, and directionj
i

is the direction of the order, i.e., whether the order is a sell (directionj
i = 1) or

buy order (directionj
i = 0). Therefore, if an investor wishes, for instance, to sell

a volume v, the investor has to submit gj distinct orders to list j, where gj ≥ 0,
such that v =

∑j=y
j=1 gj ·unitj , with the direction of each of these orders indicating

that they consist of sell orders, i.e., directionj
i = 1 for all orders.

Orders are placed in their lists in order of arrival, and orders that arrived first
will be matched first. The clearing of all orders is then run at periodic intervals.
1 Plus one engine that serves as an entry gateway for orders; therefore a total of 282

engines required.

26 M. B. da Gama et al.

Unless the number of sell orders is identical to the number of buy orders in a
given list, there will be leftover unmatched orders after this same list is cleared.
After every list is cleared, we can check the direction of the leftover orders from
each of them. If there are leftover orders with different directions (e.g., leftovers
from L1 are buy orders, and leftovers from L2 are sell orders), then there will
be another clearing period where the leftover orders of all lists are matched
among each other. Recall that orders from different lists have different volume
and hence we must now take into consideration their unit volume, in addition
to their direction.

For ease of exposition, we will consider in our work only the cases of y = 1
and y = 2; i.e., we will either have one bucket size or two bucket sizes. As a
shorthand, we will refer to these as bucket-1 and bucket-2, respectively; bucket-z
will refer to the general case of multiple lists, i.e., where y > 1.

Volume Match: In this algorithm, the auction runs over one list L that con-
tains orders of different sizes. Order i is thus of the form [idi, directioni, volumei],
where idi is the identity of the investor, directioni is the direction of the order,
and volumei is the volume of the order. Note that, in this situation, if one wishes
to trade a volume v, it is enough to submit a single order of volume v (though it
is also possible to split the volume into multiple smaller orders). The procedure
is then similar to the bucket match case, except that here we consider only one
list and therefore the cross-list matching does not take place.

Table 1. Intuitive comparison of bucket match with 1 list, multiple lists, and volume
match.

Algorithm Total orders Additional computation Leakage potential Loss in volume submitted

Bucket-1 Most – Low Low

Bucket-z Medium Cross-list matching Cross-list match leakage Low

Volume Least Input correctness check Lowest No loss

Intuitive Comparison: Bucket-1 will tend to receive more orders than bucket-
z or volume match, as multiple orders must be submitted for trading large vol-
umes. Therefore, as more orders need to be processed, runtimes for bucket-1 are
likely to be longer. Bucket-z solves this problem by introducing multiple bucket
sizes, thus allowing orders of different volumes. However, it will usually require
an additional cross-list matching period to find all possible matches between
different bucket sizes. Moreover, we would like the volume of unmatched orders
to remain secret, which might not be possible when matching orders of differ-
ent volumes. If an order can only be partially matched, the leftover volume will
become public. Therefore, bucket-z has potential for greater leakage than bucket-
1. Regarding the total submitted volume, note that one cannot always submit
the exact volume they wish, since all orders must fit the predefined bucket size(s).
Thus, investors might need to submit a lower total volume than intended.

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 27

Volume match allows orders to be submitted with any volume, so there is
additional uncertainty about the volume of unopened orders. There is also no
need to implement an additional cross-list matching period, therefore preventing
the leakage of leftover volume of partially matched orders. However, checking the
correctness of input orders will be slower than in bucket-1 and bucket-z, with the
runtime growing linearly with the number of input bits representing the volume.

3 Secure Implementations of the Algorithms

To ensure privacy of the orders we implement the above auction algorithms on
top of a generic multi-party computation (MPC) system. For an overview of the
MPC requirements see the full version of this paper [7].

3.1 Setup

The setup consists of a number of servers S = {S1, . . . , Sl} emulating the auc-
tioneer, where the orders entering the auction will be secret shared among these
servers.

3.2 Bucket Match

We aim to hide as much about the intention of the investors as possible, especially
for unmet orders. Thus we allow investors to enter ‘dummy’ orders, i.e., orders
which are neither buy or sell. We will discuss later the precise number of dummy
orders which should be entered, and how this number affects the privacy and
performance of the auction. Note that investors can submit dummy orders to
stocks they do not wish to trade, thus hiding their trading activity in each stock.

For i = 1, . . . , n, each order i will of be the form ordj
i = [〈idj

i 〉, 〈bj
i 〉, 〈sj

i 〉],
where bj

i and sj
i are bits indicating the direction of the order, that is, a sell order

will have bj
i = 0, sj

i = 1 and a buy order will have bj
i = 1, sj

i = 0. To allow
dummy orders, orders can also contain bj

i = 0 and sj
i = 0. Every order for which

(bj
i , s

j
i) �∈ {(0, 0), (0, 1), (1, 0)} will be rejected. Each list j will contain nj orders,

among which mj are dummy. For instance, if an investor j wants to sell a volume
V , they need to enter the orders {ord11, . . . , ord1g1 , . . . , ord

y
1, . . . , ord

y
gy} such that

V =
∑j=y

j=1

∑i=gj

i=1 (sj
i − bj

i) · unitj .
To ensure that the conditional operation 〈c〉 > 0 can be executed we need

to ensure that c ∈ [−2k−1, . . . , 2k−1]. For the case of one list we simply need to
ensure that the total number of orders n is less than 2k−1. For the case of more
than one list we need to ensure that n · unity < 2k−1.

Bucket-1 Match: For ease of exposition we first examine the case when we
have only one bucket size, i.e. y = 1. The formal description of the algorithm is
given in Fig. 1. We distinguish 3 phases:

28 M. B. da Gama et al.

1. The input phase, where orders are entered into the auction and a check is
run to discard invalid orders. In the input orders for this algorithm, the buy
and sell entries b and s must be bits. Additionally, at least one of these two
entries must be zero. To verify this, we draw three numbers α, β, γ ∈ Fp at
random and calculate

〈t〉 = α · (〈b〉 · 〈b〉 − 〈b〉) + β · (〈s〉 · 〈s〉 − 〈s〉) + γ · (〈b〉 · 〈s〉).
Afterwards, we open 〈t〉 and check whether t = 0. The first two terms are
zero only if b and s are bits, except with probability 1/p. The last term is
zero only if either b = 0 or s = 0, except with probability 1/p. If more than
one term is different from zero, their sum will be zero with probability 1/p.

2. The clearing phase one, where we open the orders in the direction that will
be completely cleared. First, we need to check which list has largest total
volume. To do so, we first calculate

〈c〉 ←
n∑

i=1

〈bi〉 − 〈si〉.

Then, we perform the comparison 〈c〉 > 0 and open the output. If c is greater
than zero, there are more buy orders than sell orders and so we open the 〈si〉
share of every order i. Otherwise, we open the 〈bi〉 shares. The 〈id〉 of non-
dummy orders is also opened. Opening 〈si〉 (or 〈bi〉) will reveal whether order i
is a sell order (or buy order, respectively). However, because of the existence
of dummy orders, revealing that order i is not a sell order (or buy order,
respectively) does not imply that it is an order in the opposite direction. We
are then left with a mix of dummy and non-dummy orders, without knowing
which are which.

3. The clearing phase two, where we open the orders in the direction that will
be only partially cleared. The orders are opened one by one, and the 〈id〉 of
non-dummy orders is also opened. For each opened order, we check whether
the opposite direction has been completely cleared. When that is the case,
we exit the algorithm.

Bucket-2 Match: We now examine the case with two bucket sizes, i.e., y = 2.
The size of the first bucket is unit1 and the size of the second bucket is unit2. The
formal description of the algorithm is given in the full version. We distinguish
the following phases of the algorithm:

1. The input phase, the clearing phase one and the clearing phase two are exactly
as in the bucket match with one bucket size. Each of the two lists is cleared
individually, and then we check whether the leftover orders from both lists
have different directions. If so, we can proceed to matching orders from dif-
ferent lists. If all the orders have the same direction, we exit the algorithm.
Note that, while we know the direction of the leftover orders, we do not know
which of them might be dummy orders.

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 29

Bucket-1: match on one list

Input phase: On input ordi = [〈idi〉, 〈si〉, 〈bi〉], where idi, si, bi ∈ Fp:
1. αi, βi, γi ← FRand().
2. 〈ti〉 ← αi · (〈bi〉 · 〈bi〉 − 〈bi〉) + βi · (〈si〉 · 〈si〉 − 〈si〉) + γi · (〈bi〉 · 〈si〉)
3. ti ← Open(〈ti〉)
4. If ti = 0 then add ordi to a list L, otherwise reject ordi.

Clearing phase one: On input L = [ord1, . . . , ordn], the list of orders that will
be cleared on the same round
1. 〈c〉 ← ∑n

i=1〈bi〉 − 〈si〉
2. 〈d〉 ← (〈c〉 > 0)
3. d ← Open(〈d〉)
4. If d = 1

I. For all i, execute si ← Open(〈si〉)
II. For all i such that si = 1, execute idi ← Open(〈idi〉).
III. σ ← ∑n

i=1 si
IV. Move all orders with si = 0 to a list Lb

5. Else
I. For all i, execute bi ← Open(〈bi〉)
II. For all i such that bi = 1, execute idi ← Open(〈idi〉).
III. σ ← ∑n

i=1 bi
IV. Move all orders with bi = 0 to a list Ls

Clearing phase two: On input a List Lb = [ord1, . . . , ordo] (or Ls =
[ord1, . . . , ordo]), and the sum σ:
1. c ← 0
2. For i in {1, . . . , o}

I. bi ← Open(〈bi〉) if d = 1 (or si ← Open(〈si〉 if d = 0)
II. If bi = 1 (or si = 1)

i. idi ← Open(〈idi〉)
ii. c ← c + 1
iii. If c = σ then break.

Output the set of completely opened orders from Lb (resp. Ls).

Fig. 1. Bucket-1: match on one list

2. The clearing phase three, where we open the orders in the direction that will
be completely cleared. First, we need to check which direction has largest
total volume. To do so, we first calculate

〈c〉 ←
n′2
∑

i=1

〈dir2i 〉 · unit2 −
n′1
∑

i=1

〈dir1i 〉 · unit1,

where dirj is bj if the leftovers from list j are buy orders, or sj if the leftovers
from list j are sell orders. Then, we perform the comparison 〈c〉 > 0 and open
the output. If c is greater than zero, there is more volume in direction dir2

and so we open all the 〈dir1〉 shares. Otherwise, we open the 〈dir2〉 shares.
The 〈id〉 of non-dummy orders is also opened.

30 M. B. da Gama et al.

3. The clearing phase four, where we open the orders in the direction that will
be only partially cleared. The orders are opened one by one, and the 〈id〉 of
non-dummy orders is also opened. For each opened order, we check whether
the opposite direction has been completely cleared. When that is the case,
we exit the algorithm.

Note, the last opened order from the clearing phase four will not be necessarily
completely matched. The unmatched volume from this last order will therefore
be leaked. This source of leakage is further discussed in Sect. 4

3.3 Volume Match

Similarly to the bucket match, we will hide here the direction of orders and we
will allow dummy orders. Each order i will be of the form ordi = [〈idi〉, 〈vi〉, 〈dirbi 〉,
〈dirsi 〉], where vi is the volume of the order, dirbi = 0 if ordi is a sell order, dirsi = 0
if ordi is a buy order, and dirbi = dirsi = 0 if ordi is a dummy order. The list of
orders from all the investors will contain n orders, m of which are dummy orders.
If an investor wants to sell volume V , they need to enter orders ord1, . . . , ordg

such that V =
∑i=g

i=1(vi · (dirsi − dirbi))
The formal description of this algorithm is presented in the full version. Again

we distinguish 3 phases of the algorithm:

1. The input phase, where orders are entered into the auction and a check is run
to discard invalid orders. To ensure investors enter values vi that are valid
non-negative numbers less than some bound B (which we assume is an exact
power of two, i.e. B = 2�), they enter the value as a sequence of � bits, vi,j , for
j = 0, . . . , � − 1. Additionally, they enter two bits dirbi and dirsi that indicate
the direction of the order. All these values are checked to be bits, using the
same check used in the bucket matching algorithm, and then the actual values
of the volume in each direction are formed from vb

i = dirbi · ∑�−1
j=0 vi,j · 2j and

vs
i = dirsi ·∑�−1

j=0 vi,j · 2j . We still need to check that at least one of dirbi or dirsi
is zero, so we calculate

〈ti〉 = 〈dirbi 〉 · 〈dirsi 〉,
open 〈ti〉 and check whether ti = 0. Clearly, that happens if and only if either
dirbi = 0 or dirsi = 0. To ensure the comparison 〈c〉 > 0 can be evaluated
correctly we simply need to pick parameters so that n · B < 2k−1.

2. The clearing phase one, where we open the orders in the direction that will
be completely cleared. First, we need to check which list has largest total
volume. To do so, we first calculate

〈c〉 ←
n∑

i=1

〈vb
i 〉 − 〈vs

i 〉.

Then, we perform the comparison 〈c〉 > 0 and open the output. If c is greater
than zero, the total buy volume is greater than the total sell volume and so

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 31

we open the 〈vs
i 〉 share of every order i. Otherwise, we open the 〈vb

i 〉 shares.
The 〈id〉 of non-dummy orders is also opened. We then calculate the total
volume σ of the opened orders. Suppose the 〈vs

i 〉 shares were opened. For
every vs

i = 0, we calculate the cumulative buy volume of the first i orders,
〈wi〉 =

∑i
h=1〈vb

h〉. If the 〈vb
i 〉 shares were opened, the cumulative sell volume

is calculated instead. This cumulative volume will be used in the next clearing
phase to avoid leaking the unmatched volume of the last opened order.

3. The clearing phase two, where we open the orders in the direction that will be
only partially cleared. First, we run a binary search on the cumulative volume
calculated previously to find the highest index u such that 〈wu〉 < σ. Then,
the first u orders are opened, as well as the 〈id〉 of non-dummy orders. At this
point, we still did not completely clear the orders opened during clearing phase
one. However, if we open ordu+1, part of its volume will remain unmatched
and there will be an information leakage. To avoid this, we simply subtract
the volume σ − 〈wu〉 we still need from ordu+1 and open 〈idu+1〉. This way,
only the volume that will indeed be cleared is revealed, with the leftover
volume of this last order remaining secret.

4 Leakage

There are two possible sources of information leakage in the described algorithms:
(i) leakage from partially unmatched orders; and (ii) leakage from opening orders.
Each of these sources is discussed below. All the analyses are equivalent when
the buy orders have the largest total volume, thus we consider always the case
when the total sell volume is more than the total buy volume.

Leakage from Partially Matched Orders: This type of leakage can hap-
pen in both the volume match and the bucket-2 match, since in both of these
algorithms there are orders with different volumes. In the bucket-1 match, every
non-dummy order has exactly the same volume, so every opened order is com-
pletely matched and this type of leakage never happens.

In the volume match, orders from the direction with largest total volume are
opened until the next order to be opened would finish clearing the other direction.
We will then remove the volume we need to finish the clearing from this next
order without opening its volume share. This means that the last order might
still have some leftover volume, though it is also possible that all its volume was
matched. Since it was at least partially matched, we need to reveal the investor
who submitted the order so that the trade can be processed. We will therefore
know that this investor might still have some volume left to trade and, if that
is the case, we also know the direction of the order. The leftover volume in this
last order and whether it is positive or not will however remain unknown.

In the bucket-2 match, the clearing phases one and two are the same as
the bucket-1 match, and hence there is no leakage. As for clearing phases three
and four, since the orders in each direction will have different volumes, the
situation is similar to the volume match. Let unit1 and unit2 be the bucket sizes

32 M. B. da Gama et al.

of the buy and the sell orders, respectively, in the clearing phases three and four.
Considering unit1 = k · unit2 for some k ∈ N, if the sell orders have larger total
volume, then there will be no leakage. If the buy orders have larger total volume,
the unmatched volume will be leak = h · unit2, for h ∈ {0, ..., k − 1}.

In case gcd(unit1, unit2) = k, for some k /∈ {unit1, unit2}, then the unmatched
volume will be either leak ∈ {0, k, 2k, ..., unit1 − k}, when the buy orders have
largest total volume, or leak ∈ {0, k, 2k, ..., unit2 − k}, when the sell orders have
largest total volume.

Note that for this algorithm the maximum leakage that can occur from
unmatched orders is known, and the investors can plan how to divide their
orders into the two lists according to this information.

Leakage from Opening Orders: Consider the bucket-1 match and suppose
there are no dummy orders in a given auction. Let the sell orders be the ones
with largest total volume, and hence the buy orders are the first ones to be
opened. For each 〈bi〉 that is revealed to be bi = 0, we learn that this must be a
sell order of unit volume. This means that as soon as we finish the clearing phase
one, all the information about the orders’ volume has been revealed.

Suppose now that the probability of having a dummy order is pd, with the
total number of dummy orders being m = pd · n. Let the buy orders be the
first ones to be opened, and let the number of buy orders be B = pb · (n − m)
(note that here we must have pb ≤ 1/2 since there are less buy orders than sell
orders). After clearing phase one, we will have n−B orders which might be either
dummies or sells, and the probability of finding a sell order is n−B−m

n−B . For each
newly opened sell order, we learn whether an order is a sell or a dummy. Let i
be the number of opened sell orders, and j the number of opened dummies, then
the probability of the next opened order being a sell is:

Pr(“order is sell”) =
n − B − m − i

n − B − (i + j)
.

Assuming an even distribution of dummy orders within the buy orders.
By the end of clearing phase two, we should have opened a total of B sell

orders plus m′ dummy orders. At this moment, even if pd is unknown, an adver-
sary might use the information about previously opened orders and consider
p′

d = m′/(2B + m′). The expected amount of leftover sell orders will then be
(n − 2B − m′) · (1 − p′

d). Note that, since we are in the bucketed case, knowing
the amount of leftover sells implies knowing the total leftover sell volume.

In the bucket-2 match, the situation for the clearing phases one and two is
identical to the bucket-1 match. For clearing phases three and four, we also know
exactly the volume of each buy and sell order (even if this volume is different
for buys and sells). However, note that these orders have a different format, i.e.,
they only contain the ID and either the sell or the buy volume, and so opening
one of the directions does not leak information about the other. Therefore, the
leakage associated with the opening of each of these lists will be the same as if
we were continuing the clearing phase two openings.

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 33

The case for the volume match is similar, except that since each non-dummy
order might have any positive volume, the uncertainty about the volume of
unopened orders increases.

Summary: The bucket-1 match has no leakage from partially matched orders,
but there is some leakage from opening orders. In order to mitigate this effect,
the investors must submit more dummy orders. The bucket-2 match does have
leakage from partially matched orders (although this does not necessarily occur),
in addition to the leakage from opening orders, which is similar to bucket-1
match. Once again, submitting dummy orders reduces this last type of leakage.
Note also that when we have two lists, usually less non-dummy orders need to be
submitted, so we can increase the proportion of dummy orders without getting
worse runtimes than when using one list only.

Runtimes for different amounts of dummy orders are presented in the full
version. Note that for the chosen bucket sizes, bucket-2 match with 9 dummy
orders per non-dummy order has faster runtimes than bucket-1 match with 5
dummy orders per non-dummy order. However, using bucket-2 match means
we might get leakage from partially matched orders, depending on the balance
between buy and sell orders in each list.

Volume match results in the least leakage. The leakage from partially matched
orders corresponds only to the direction of a (possibly empty) order. The leakage
from opening orders is minor when compared to bucket match, because of the
uncertainty introduced by fact that orders can have any possible volume. This
means that even if investors submit only 1 (or fewer) dummy order per non-
dummy order, the leakage will remain low.

5 Runtimes

To provide runtimes of our algorithms, we model the situation where T investors
participate in the auction, each of whom has one volume to submit drawn from
the distribution (N (0, 1) + 5) · 106, and places the same order in three dif-
ferent auctions, each of which utilizes one of our three algorithms presented,
namely volume match, bucket-1 match, and bucket-2 match. We varied T in
{10, 100, 1000, 10000}, as well as the number of dummy orders submitted per
non-dummy order (which we call d) in {0, 1, 5, 9}. Buy, sell, and dummy orders
(when they exist) are evenly distributed in the lists of orders. We also assume
that there is an order imbalance such that 2/5 of the investors are buyers and
3/5 are sellers.

This order imbalance was suggested through discussions with JPMorgan, a
tier one US investment bank who operate in this space and have observed a
tendency of investors to have a buy:sell imbalance in the ratio of 2:3. This con-
forms with evidence that informed investors tend to trade in the same direction
(e.g., [21]). Here we model a sell imbalance (3/5 of investors are sellers), however
buy imbalances (where 3/5 of investors are buyers) also occur, depending on the
mood of the market. For the protocols we have presented, results are symmetric

34 M. B. da Gama et al.

such that a buy:sell imbalance of 2:3 has the same run time as a buy:sell imbal-
ance of 3:2. If the imbalance is different or if there is no imbalance at all, the
number of matched orders will be affected (assuming the submitted volume is
drawn from the same distribution). This will influence the running time of the
clearing phases, where we might need to reveal more or less id’s. However, most
of the total running time comes from the input phase and so a different order
imbalance will not have a significant impact.

As a simplification, we computed runtimes for the situation where there is
only one auction trading one stock. However, a real world venue would allow
trading in many stocks, so many auctions would be required. For instance, if
the venue is trading 5000 different stocks then 5000 auctions are required. These
auctions can be run sequentially, in which case the runtime for all auctions to
complete is 5000 times the runtime of a single auction. Alternatively, multiple
MPC engines can be used to run auctions in parallel. In the extreme case, where
we have 5000 engines (i.e., one engine per stock), all auctions run in parallel and
hence the total runtime for all auctions to complete is the same as the runtime
for a single auction.

Setting: We used Scale-Mamba with Shamir secret sharing between l = 3 par-
ties. All the parties run identical machines with an Intel i-9900 CPU and 128 GB
of RAM. The ping time between the machines is 1.003 ms.

Online Phase of Volume Match: The average time for input phase depends
on the bound B that is set for the volume of the orders. Recall that the orders’
volumes are entered as a sequence of bits, and we must confirm that every one
of them really is a bit. Therefore, the more bits we allow for the input volume,
the longer it will take to run this check. Here we assume that the volume of each
order can have at most 32 bits, and we obtain an average time for the input
phase of 0.00062 s (0.62 ms) per order, with a standard deviation of 0.00005 s
(0.05 ms).

Runtimes are provided in the full version, where we also provide a comparison
of this version of volume matching to that described in [8]). One can notice that
clearing phase 1 is faster than clearing phase 2. This is mainly due to the fact
that the operation of opening directions can be vectorized for the case of clearing
phase 1, as we are opening the direction of all orders, while for the case of clearing
phase 2, this operation has to be sequential, as we do not know for how many
orders we should open the direction.

Online Phase of Bucket-1 Match: The average time of the input phase is
0.00013 s (0.13 ms) per order, with a standard deviation of 0.00001 s (0.01 ms).
Note that the order format check is similar to the one used for the volume match,
but here the volume of each order consists of a single bit, resulting in a faster
input phase.

However, unlike what happens in the volume match, every order must now
have the same fixed volume. This means that each investor must submit different

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 35

non-dummy orders that sum up to the desired volume. When this volume is not
a multiple of the chosen bucket size unit, we round the volume down to the
closest multiple. Thus, we will generally have more orders than in the volume
match, depending on the exact value of unit. If unit is small, more orders will be
needed and the total submitted volume will be closer to the volume match case.
If we choose unit to be large, we will not need as many orders, but the investors
will submit significantly less volume than in the volume match case. The average
number of orders and the average total submitted volume for different bucket
sizes can be found in the full version.

In our case, 99.7% of the investors will submit a volume between 2 · 106 and
8 · 106. If we choose e.g. unit = 106, the volume submitted by each investor will
be rounded down to the closest multiple of 106. This will result in an average
submitted volume of 4.49 · 106, as opposed to the average volume of 5 · 106

obtained in the volume match, where no rounding is needed. We will also have
around 4.5 orders for each order in the volume match case.

We present in the full version the runtimes corresponding to the bucket match
for one list with unit = 106. One can make the same remark as the volume match
for the runtimes. That is, clearing phase 1 is faster than clearing phase 2 due to
the fact that we can vectorise computation for the case of clearing phase 1.

Online Phase of Bucket-2 Match: Let unitk denote the bucket size associated
with list Lk. We assume that unit1 (the small bucket) is smaller than unit2 (the
big bucket).

Similar to bucket-1 match, the volume to be traded in bucket-2 match will be
divided into multiple orders according to the bucket sizes. If the volume cannot
be fully obtained with a combination of the two buckets, we round it down to
the closest possible combination. We assume that the investors will divide their
volume such that they use as many big buckets as possible. The average number
of orders in each list and the average total submitted volume for different bucket
sizes can be found in the full verion.

Summary: If clearing phases 3 and 4 of bucket-2 match are not executed
then all three algorithms have roughly the same leakage, which in each case is
extremely small and relies on estimating unmatched order volume by observing
historical dummy ratios. In practice, this level of information leakage is negligi-
ble if investors use a randomised dummy order submission strategy. Assuming a
3:2 imbalance in orders to sell or buy, this implies that bucket-2 (or, more gen-
erally, bucket-z) is to be preferred as it has the quickest input phase. However,
the precise trade off between the simple cost of input checking in bucket-z versus
the more complicated cost of input checking in the volume matching algorithm
depends on the exact distribution of dummy orders that investors submit in
a real environment. Compared with volume match, bucket-z match is likely to
incentive the placement of more dummy orders to disguise the fact that each real
order has a known volume equal to the bucket size. Once this number of addi-
tional dummy orders grows above some threshold, then volume match becomes

36 M. B. da Gama et al.

more efficient than bucket-z match. For example, with T = 1000 investors, with
a 9:1 ratio of dummy to real orders in bucket-2 match and a 1:1 ratio of dummy
to real orders in volume match, volume match has an input phase of 1.24 s and
a clearing phase of 0.06 s, whereas bucket-2 match has a longer input phase of
2.8 s and a longer parallel clearing phase of 0.27 s. However, in either scenario
that bucket-z or volume match is quickest, the runtimes demonstrate that these
algorithms can securely input and clear more than a thousand orders per second,
and are therefore clearly capable of handling the throughput requirements of a
real world dark pool trading venue.

Acknowledgments. This work has been supported in part by ERC Advanced Grant
ERC-2015-AdG-IMPaCT, by the FWO under an Odysseus project GOH9718N, and
by CyberSecurity Research Flanders with reference number VR20192203. Additionally,
the first author is supported by the Flemish Government through FWO SBO project
SNIPPET S007619N. The second author is sponsored by Refinitiv.

This paper was prepared in part for information purposes by the Artificial Intel-
ligence Research group of JPMorgan Chase & Co and its affiliates (“JPMorgan”),
and is not a product of the Research Department of JPMorgan. JPMorgan makes no
representation and warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein. This document is not
intended as investment research or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial instrument, financial prod-
uct or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any
person, if such solicitation under such jurisdiction or to such person would be unlawful.

References

1. Aly, A., et al.: SCALE-MAMBA v1.12: Documentation (2021). https://homes.esat.
kuleuven.be/∼nsmart/SCALE/Documentation.pdf

2. Asharov, G., Balch, T.H., Polychroniadou, A., Veloso, M.: Privacy-preserving dark
pools. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) Pro-
ceedings of the 19th International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2020, Auckland, New Zealand, 9–13 May 2020, pp. 1747–
1749. International Foundation for Autonomous Agents and Multiagent Systems
(2020)

3. Bag, S., Hao, F., Shahandashti, S.F., Ray, I.G.: SEAL: sealed-bid auction without
auctioneers. Cryptology ePrint Archive, Report 2019/1332 (2019). https://eprint.
iacr.org/2019/1332

4. Balch, T., Diamond, B.E., Polychroniadou, A.: SecretMatch: inventory matching
from fully homomorphic encryption. In: Balch, T. (ed.) ICAIF 2020: The First
ACM International Conference on AI in Finance, New York, NY, USA, 15–16 Oct
2020, pp. 1–17. ACM (2020). https://doi.org/10.1145/3383455.3422569

5. Bogetoft, P., et al.: Multiparty computation goes live. Cryptology ePrint Archive,
Report 2008/068 (2008). http://eprint.iacr.org/2008/068

6. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006). https://doi.org/10.1007/11889663 10

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2019/1332
https://eprint.iacr.org/2019/1332
https://doi.org/10.1145/3383455.3422569
http://eprint.iacr.org/2008/068
https://doi.org/10.1007/11889663_10

Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets 37

7. da Gama, M.B., Cartlidge, J., Polychroniadou, A., Smart, N.P., Talibi Alaoui,
Y.: Kicking-the-bucket: fast privacy-preserving trading using buckets. Cryptology
ePrint Archive, Report 2021/1549 (2021). https://eprint.iacr.org/2021/1549

8. Cartlidge, J., Smart, N.P., Alaoui, Y.T.: MPC joins the dark side. In: Galbraith,
S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.) ASIACCS
19, pp. 148–159. ACM Press (2019). https://doi.org/10.1145/3321705.3329809

9. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: Multi-party computation mechanism
for anonymous equity block trading: a secure implementation of Turquoise Plato
Uncross. Intell. Syst. Acc. Finance Manage. 28, 239–267 (2020)

10. Constantinides, T., Cartlidge, J.: Block Auction: A general blockchain protocol for
privacy-preserving and verifiable periodic double auctions. In: 2021 IEEE Interna-
tional Conference on Blockchain (Blockchain) (2021)

11. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-
cal covertly secure MPC for dishonest majority - or: breaking the SPDZ limits.
Cryptology ePrint Archive, Report 2012/642 (2012). http://eprint.iacr.org/2012/
642

12. Galal, H., Youssef, A.: Publicly verifiable and secrecy preserving periodic auctions.
In: Workshop on Trusted Smart Contracts (WTSC) (2021). https://fc21.ifca.ai/
wtsc/WTSC21paper2.pdf

13. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2006. LNCS, vol.
5087, pp. 202–211. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04904-0 28

14. Jutla, C.S.: Upending stock market structure using secure multi-party computa-
tion. Cryptology ePrint Archive, Report 2015/550 (2015). http://eprint.iacr.org/
2015/550

15. Ngo, N., Massacci, F., Kerschbaum, F., Williams, J.: Practical witness-key-
agreement for blockchain-based dark pools financial trading. In: Financial Cryp-
tography and Data Security 2021 (2021). https://fc21.ifca.ai/papers/113.pdf

16. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.A.: Practical secrecy-
preserving, verifiably correct and trustworthy auctions, pp. 70–81. Association
for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/
1151454.1151478

17. Petrescu, M., Wedow, M.: Dark pools in European equity markets: emergence,
competition and implications. European Central Bank: Occasional Paper Series,
No. 193 (2017). https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf

18. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: Dietrich, S.,
Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 163–178. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77366-5 16

19. Thorpe, C., Parkes, D.C.: Cryptographic combinatorial securities exchanges. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 285–304. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 18

20. Thorpe, C., Willis, S.R.: Cryptographic rule-based trading. In: Keromytis, A.D.
(ed.) FC 2012. LNCS, vol. 7397, pp. 65–72. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32946-3 6

21. Zhu, H.: Do Dark Pools Harm Price Discovery? Rev. Finan. Stud. 27(3), 747–789
(2013)

https://eprint.iacr.org/2021/1549
https://doi.org/10.1145/3321705.3329809
http://eprint.iacr.org/2012/642
http://eprint.iacr.org/2012/642
https://fc21.ifca.ai/wtsc/WTSC21paper2.pdf
https://fc21.ifca.ai/wtsc/WTSC21paper2.pdf
https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/978-3-642-04904-0_28
http://eprint.iacr.org/2015/550
http://eprint.iacr.org/2015/550
https://fc21.ifca.ai/papers/113.pdf
https://doi.org/10.1145/1151454.1151478
https://doi.org/10.1145/1151454.1151478
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf
https://doi.org/10.1007/978-3-540-77366-5_16
https://doi.org/10.1007/978-3-642-03549-4_18
https://doi.org/10.1007/978-3-642-32946-3_6
https://doi.org/10.1007/978-3-642-32946-3_6

Speculative Multipliers on DeFi:
Quantifying On-Chain Leverage Risks

Zhipeng Wang(B), Kaihua Qin, Duc Vu Minh, and Arthur Gervais

Imperial College London, London, UK
{zhipeng.wang20,kaihua.qin,duc.vu-minh20,a.gervais}@imperial.ac.uk

Abstract. Blockchains and DeFi have consistently shown to attract
financial speculators. One avenue to increase the potential upside (and
risks) of financial speculation is leverage trading, in which a trader bor-
rows assets to participate in the financial market. While well-known over-
collateralized loans, such as MakerDAO, only enable leverage multipli-
ers of 1.67×, new under-collateralized lending platforms, such as Alpha
Homora (AH), unlock leverage multipliers of up to 8× and attracted over
1.2B USD of locked value at the time of writing.

In this paper, we are the first to formalize a model for under-
collateralized DeFi lending platforms. We analytically exposit and empir-
ically evaluate the three main risks of a leverage-engaging borrower: (i)
impermanent loss (IL) inherent to Automated Market Makers (AMMs),
(ii) arbitrage loss in AMMs, and (iii) collateral liquidation. Based on
our analytical and empirical results of AH over a timeframe of 9 months,
we find that a borrower may mitigate the IL through a high leverage
multiplier (e.g., more than 4×) and a margin trading before supplying
borrowed assets into AMMs. We interestingly find that the arbitrage and
liquidation losses are proportional to the leverage multiplier. In addition,
we find that 72.35% of the leverage taking borrowers suffer from a neg-
ative APY, when ignoring the governance token incentivization in AH.
Finally, when assuming a maximum ±10% move among two stablecoins,
we pave the way for more extreme on-chain leverage multipliers of up to
91.9× by providing appropriate system settings.

1 Introduction

Over 44% of the total locked DeFi value is dedicated to lending and borrow-
ing services. Financial debt has therefore manifested its importance within the
decentralized financial ecosystem. The very first DeFi debt protocols focused
on so-called over-collateralized loans—wherein a borrower must collateralize
more financial value than the lent debt amounts to [4,15,16]. Common over-
collateralized loan systems require the collateral value not to decline below 150%
of the total debt value. While over-collateralized loans grant the borrower a wide
degree of flexibility in using the borrowed’ assets, they remain capital-inefficient

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 38–56, 2022.
https://doi.org/10.1007/978-3-031-18283-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_3

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 39

and limit the borrowers leverage multipliers below 2×1—that is the multiplier
by which traders can increase their financial up- or downside of a loan.

In under-collateralized loans, however, speculate-afine traders can gamble
with leverage multipliers beyond 2×, which we subsequently refer to as leverage
trading. While the borrowed assets remain under the tight control of immutable
on-chain smart contracts, existing on-chain leverage platform, such as Alpha
Homora [1] grants the borrowers the ability to speculate with a leverage of up to
8×. To the best of our knowledge, this is the first work to explore the practices
and possibilities of secure under-collateralized on-chain leverage. We formalize
an on-chain leverage model, measure existing lending practices and assess the
risks quantitatively as we summarize in our contributions:

On-chain Leverage Model: To the best of our knowledge, we are the first to
provide a model for on-chain lending platforms with a leverage factor beyond
2×. We formalize the generic users and components to encompass future
leverage designs. We show that with reasonable system settings, an on-chain
lending system can achieve a leverage multiplier of up to 91.9×.

On-chain Leverage Analytics: Over a timeframe of 9 months, we analyze
on-chain data analytics of Alpha Homora (AH), with 1.2B USD of locked
value, the largest on-chain leverage platform in DeFi. We find that lenders
consistently benefit from a positive APY, while 72.35% of the leverage taking
borrowers suffer from a negative APY, when ignoring the governance token
incentivization in AH.

Leverage Risk Quantification: We identify three risks causing borrower
losses: (1) impermanent loss (IL) inherent to Automated Market Makers,
(2) asset arbitrage, and (3) collateral liquidation. We find that out of the
10,430 positions analyzed over 9 months for leverage trading in AH, 1,139
suffer from IL, 149 are susceptible to asset arbitrage and 270 suffered from
collateral liquidation. We find that a borrower may mitigate the risk of IL by
simultaneously (1) employing a high leverage multiplier (e.g., more than 4×)
and (2) performing a margin trade to swap the borrowed assets to collateral-
ized tokens before supplying assets into AMMs.

2 Background

In the following, we provide essential notions of DeFi to further understand the
novelties presented in this paper.

2.1 DeFi

Decentralized Finance, also known as DeFi, is a financial ecosystem which runs
autonomously on smart-contracts-enabled blockchains and has grown to a total
locked value (TVL) of over 100B USD at the time of writing. Many DeFi pro-
tocols are inspired by traditional centralized finance (CeFi) systems, such as
1 For instance, 1.67×, in the case of MakerDAO, where the collateral value shall not

decline below 150% of the debt value.

40 Z. Wang et al.

lending and borrowing platforms, asset exchanges, derivatives, and margin trad-
ing systems. However, compared to CeFi, DeFi offers distinct features to its
users, such as complete transparency and non-custodial asset control. DeFi also
enables novel financial primitives that do not exist in traditional CeFi, such as
flash loans [27]. Flash loans enable borrowers with nearly zero upfront collateral
to borrow instantly billions of USD. Such financial enablers grant arbitrageur
traders significant power through the atomic execution of arbitrage transactions
across the many composable DeFi markets. For a more thorough background on
DeFi, we refer the interested reader to the related works [24,28].

2.2 Price Oracles

While DeFi is being built, the decentralized finance paradigm remains deeply
connected to CeFi. Because blockchains are isolated databases, and cannot access
off-chain data, DeFi gathers external data from third-party services, commonly
referred to as oracles. Price oracles allow feeding e.g. stock or other asset price
information to smart contracts and can therefore act as a bridge between DeFi
and the external world [17]. Oracles can be classified as centralized and decentral-
ized oracles based on the number of external sources. Two major decentralized
DeFi oracle providers are Chainlink [8] and the Band Protocol [23].

2.3 Automated Market Maker

The prevalent price-finding and order matching mechanism in centralized
exchanges (CEXs) is the limit order-book model (LOB), which matches buyers’
bids to sellers’ ask prices [24]. In decentralized exchanges (DEXs) [29,31], theAuto-
mated Market Maker (AMM) evolved to replace LOB due to its suitability for low-
throughput blockchains [36]. An AMM consists of a liquidity pool which receives
and emits financial assets through the control of a pre-defined algorithm, in its
simplest form a constant product formula. A pool is funded by liquidity providers
(LP), who receive LP tokens matching the accounting share of their pool owner-
ship. Liquidity takers (LT) request a trade with the pool by providing one asset X
plus a transaction fee [9] while receiving another asset Y in return. The transaction
fees are paid to the LPs, proportionally to the LP pool shares.

Impermanent Loss. Liquidity providers have the choice of either depositing
their assets to a liquidity pool, or holding the assets in their wallets. If the
accumulative value of the tokens in a liquidity pool drops below the hypothetical
value of simply holding the assets in a wallet, there exists an impermanent loss
(IL), also known as divergence loss. From the moment of an LP deposit, the
accumulative asset value decline may occur, when the tokens in a liquidity pool
diverge in price from each other [6,9]. If the token values revert to the price ratio
at the time of the LP deposit, the IL is reverted. An IL is therefore only realized,
when an LP exits a liquidity pool in a state where there exists an IL.

Arbitrage. Arbitrage is the process of profiting by selling/buying assets among
multiple markets, leveraging price differences. Arbitrage increases the DeFi mar-
ket efficiency and is typically considered benign. Previous works [10,34,36] have

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 41

shown that DeFi arbitrage bots monitor blockchain state changes and execute
arbitrages among AMMs to make profits.

2.4 Financial Leverage

Leverage is the practice of taking on debt, i.e., to borrow assets for a subsequent
financial operation [5]. One such operation is to perform a momentary exchange
of assets, which is commonly referred to as margin trading. Another operation
would be to take the lent assets and provide these towards a financial instrument,
such as a DeFi liquidity pool, as we investigate within this work.

Leverage, in general, can amplify trader profits, as well as losses. Aggressive
traders are known to be willing to undertake such risks in pursuit of higher
returns [30]. The degree of amplification is determined by the leverage multi-
plier, which is defined as the ratio of the total assets to the equity (or cash)
that a trader holds. The leverage multiplier can be freely adjusted by the trader,
i.e., by providing or removing ad hoc collateral from the leverage position. A
multiplier of 1× means that the total assets that the trader has access to are
equivalent to the trader’s equity, i.e., the trader does not borrow any assets. A
leverage factor beyond 1× is achieved as soon as the trader can borrow assets
to perform a subsequent financial operation. Centralized cryptocurrency trad-
ing platforms have readily introduced leverage trading, e.g., Prime XBT [33],
OkEX [19], BitMEX [7], and Poloniex [22], offering leverage multipliers from
2.5× to 100× [20].

2.5 Leverage in DeFi

Because of the lack of Know-Your-Customer (KYC) verifications and the
blockchain’s pseudonymity, DeFi users cannot safely resort to credit to exert
leverage. Therefore, DeFi borrowing is usually fully collateralized or over-
collateralized and (with 29B USD of total locked value) widely applied in sev-
eral lending platforms such as MakerDAO [16], Compound [15] and Aave [4].
MakerDAO for instance, allows traders to open collateralized debt positions by
providing various cryptocurrencies as a then locked security deposit. In exchange
for locking these assets, the trader can then mint a stablecoin DAI, which can
be freely used, as long as the collateral value does not decline below a certain
threshold. Specifically, MakerDAO requires that the collateral value does not
decline below 150% of the granted debt position. As such, MakerDAO enables
maximum leverage of 2.5/1.5 ≈ 1.67×, while in this work we investigate proto-
cols that enable higher leverage multipliers. If the collateral value declines below
150% in MakerDAO, the debt position becomes liquidatable as we elaborate
further in the following.

2.6 Liquidations

If the value of debt collateral in a lending system declines below a custom thresh-
old, then the debt position may be opened for liquidation. The Health Factor

42 Z. Wang et al.

(HF) is a common metric to measure the health of a debt position, whereas an
HF smaller than 1 indicates that a debt position is liquidatable [25]. A liquida-
tion is then an event in which a liquidator repays outstanding debts of a position
and, in return, receives a portion of the collateral of the position as a reward.
Liquidations in DeFi are widely practiced, and related works have quantified
that over the years 2020 and 2021, liquidators realized a financial profit of over
800M USD while performing liquidations [25].

3 On-Chain Leverage System

We proceed to outline the actors and components of on-chain leverage systems
as shown in Fig. 1.

Lending Pool. A lending pool is a multi-asset management pool that allows
capital-providing entities to earn interest on their capital as well as capital-taking
entities to trade with a multiple of the capital they hold. Essentially, three actors
interact with a lending pool: Lenders, Borrowers as well as Liquidators.

Lender. Lenders supply assets (e.g., ETH, USDT) to the lending pool to earn
from the lending interest rate. The lending interest rate is paid by the borrowing
interest rate that leveraged yield farmers contribute for borrowing assets.

Borrower. Borrowers supply assets as collateral to the lending pool to then
open leveraged positions, while paying borrowing interests. To avoid liquidations,
borrowers can provide additional collateral or partially repay their position. In
addition, borrowers can supply the borrowed assets to liquidity providing pools
to earn trading fees, or stake LP tokens to liquidity mining pools to earn profits.

Liquidator. Leveraged positions are subject to liquidation when the debt
becomes unhealthy [25]. A liquidator can repay the debt and benefit from a
liquidation spread.

Price Oracle. The lending pool obtains the asset prices of various cryptocur-
rencies through external price oracles, which can then inform the smart contract
whether a position is liquidatable.

Lending Pool
Supply Assets/Collateralize

Price Oracle

Open Leverage
Borrowers

Lend

Withdraw

Supplied + Borrowed Assets

Liquidity Mining Pools
(AMMs)

APY

Lenders

Stake LP Tokens

Liquidators

Liquidate

Liquidity Providing Pools
(AMMs)

Feed

Fig. 1. High-level system diagram of on-chain leverage platforms. The solid arrows (→)
represent the movement of cryptocurrencies, and the dash arrows (���) represent the
transmission of data.

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 43

Table 1. Notation summary

Notations Definitions Notations Definitions

LV leverage platform Collt(P
C
id) amount of collateral cryptocurrency

Pid = (C, B) debt position Borrt(P
B
id) amount of borrowing cryptocurrency

x X x amount of cryptocurrency X pB→C
t price of B in the unit C at time t

DebtRatiot(Pid) debt ratio (B, C)
how much credit a position gains when
collaterizing 1 C and borrowing 1 B

LMt(Pid) leverage multiplier m the initial leverage multiplier when opening a position

LossIL impermanent loss ReturnIL,Mg
cp

the return from impermanent
loss and margin trading

LossAR arbitrage loss ReturnMg
cp

the return from margin trading without impermanent
loss

LossLQ liquidation loss LS
liquidation spread, which determines the
rewards for a liquidator after repaying the debt

3.1 Formal Leverage Model

In the following, we formalize the leverage model.We also provide a table to
summarize the notations used in this paper (cf. Table 1).

We denote an on-chain leverage platform as LV = 〈C,B,P,F〉, where C

denotes the set of collateral cryptocurrencies; B denotes the set of debt cryp-
tocurrencies available for borrowing; P denotes the set of debt positions. A posi-
tion is denoted as P = (C, B), where C ∈ C is a collateral cryptocurrency and
B ∈ B is a debt cryptocurrency. F denotes the set of farming cryptocurrencies
that borrowers can receive after providing their borrowing cryptocurrencies into
farming pools. In practice, borrowers can (1) supply their borrowing cryptocur-
rencies to liquidity providing pools to earn trading fees, and (2) stake LP tokens
to liquidity mining pools to earn profits. For simplicity, in our model, we regard
steps (1) and (2) as block box and only consider borrowers’ final returns.

Each debt position P = (C, B) has a unique id, denoted as Pid. We define
Collt(PC

id) and Borrt(PB
id) as the amount of collateral and borrowing cryptocur-

rencies of a position Pid respectively in LV at time t (in practice, time t is
measured in block timestamp). In a leverage platform, the prices of cryptocur-
rencies are available through a price oracle (cf. Sect. 2.2). We denote x amount
of cryptocurrency X with x X. We denote pB→C

t as the price of B in the unit C at
time t, i.e., 1 B = pB→C

t C.
LV maintains the state of every position Pid ∈ P, and the state is quantified

by the debt ratio DebtRatiot(Pid) = Borrt(P
B
id)

Collt(PC
id)

· (B, C) · pB→C
t · 100%, where (B, C)

is a fixed parameter set by the platform LV, which determines how much credit
Pid receives when collaterizing 1 C and borrowing 1 B. When DebtRatiot(Pid)
exceeds 100% due to, for example, the fluctuations of price pB→C

t , Pid becomes
available for liquidations.

A position Pid is over-collateralized, if Collt(PC
id) > Borrt(PB

id) · pB→C
t , and

under-collateralized otherwise. Debt positions in a leverage platform LV are
typically under-collateralized. We finally define the leverage multiplier to mea-
sure to what degree borrowers can expand their assets in a position Pid, i.e.,
LMt(Pid) = Borrt(P

B
id)·pB→C

t +Collt(P
C
id)

Collt(PC
id)

.

44 Z. Wang et al.

3.2 AMM Model

AMM exchanges are to date the most prevalent markets where leverage borrow-
ers deposit borrowed assets to realize revenue through the collection of trading
fees. Hence, the borrowers’ returns and risks are fundamentally influenced by
the underlying AMM mechanisms. To ease our subsequent analysis, we proceed
to outline an AMM (cf. Sect. 2.3) model. We assume the existence of an AMM
A allowing the exchange between a pair of cryptocurrencies X and Y. xt and yt

denote the amount of X and Y respectively supplied in A at time t. xt and yt

satisfy a conservation function f(xt, yt,k) = 0, where k is invariant over time.
The spot price of X with respect to Y in A at time t is defined as pt = ∂f

∂yt
/ ∂f

∂xt
.

We assume that at time t, a trader swaps δx X to δy Y. Following the conservation
function, δx and δy should satisfy f(xt, yt,k) = 0 and f(xt + δx, yt − δy,k) = 0.

Liquidity providers (LPs) provide liquidity to A by depositing asset X and Y.
Due to the price movement between X and Y, xt and yt may change over time.
Hence, the amount of X and Y that a LP is allowed to redeem varies with respect
to pt, denoted by gXt (pt) and gYt (pt).

Constant Product AMMs. For a constant product AMM A, the conservation
function is f(xt, yt, k) = xt · yt − k = 0, which stipulates that the product of
xt and yt remains constant after an asset exchange and generally defines the
AMM’s bonding curve. The spot price in A is derived with pt = yt

xt
.

Exchange. When a trader purchases Y from A with δx X, we can derive the
output amount of Y with δy = yt − xt·yt

xt+δx . Note that the realized exchange rate
δy
δx is lower than the spot price pt, as the executed price depends on the trade
volume along the AMM bonding curve. We refer to the difference between the
expected price (i.e., the spot price) and the actual exchange rate as slippage [36].

Liquidity Supply. Liquidity providers supply X and Y to a pool A while typ-
ically not changing the pool’s spot price. The ratio between the supplied X and
Y in a single deposit at time t therefore follows Δy

Δx = yt

xt
.

4 Analytical Evaluation

While leverage is a speculative tool to increase the borrowers’ profit, this upside
increases the potential monetary risks as we outline in the following. The primary
risks we identify are (i) impermanent loss, (ii) arbitrage and (iii) liquidation.

4.1 Impermanent Loss Risk

As widely understood, the impermanent loss (IL) [6,9] is caused by diverging
asset prices within a liquidity pool (cf. Sect. 2.3). In the following, we investigate
the financial risks created through the IL. Notably, we find that the return from
margin trading through leverage may positively outweigh IL (cf. Fig. 3).

Generic Formulas for IL. We assume that at time t0, the price pB→C
t0 in an

AMM A is p0, i.e., 1 B = p0 C. A borrower supplies gCt0(p0) C + gBt0(p0) B to A.

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 45

Fig. 2. Resulting return from impermanent loss in constant product AMMs and margin
trading in on-chain leverage systems such as Alpha Homora. We find that the return
from margin trading through leverage may positively outweigh the impermanent loss
if the leverage multiplier is sufficiently high. For example, at a leverage of 7×, we find
that upon a price change of 0.64, the return given by margin trading is 94.43%, while
the impermanent loss amounts to −2.44%.

We further assume that, at time t0 +Δ, the price changes to p and the borrower
removes all supplied tokens from A. Due to the price movement, the assets that
the borrower is allowed to redeem become gCt0+Δ(p) C and gBt0+Δ(p) B. We can
then derive the borrower’s impermanent loss in A with Eq. 1.

LossIL =
gCt0+Δ(p) · 1 + gBt0+Δ(p) · p

gCt0(p0) · 1 + gBt0(p0) · p
− 1 (1)

IL in Constant Product AMMs. We assume that at time t0, a borrower
collateralizes c C in the leverage platform LV, sets the leverage multiplier as
m to borrow gCt0(p0) C + gBt0(p0) B, and then provides the assets to a constant
product AMM A. Because A typically requires to receive a specific proportion
of supplied assets for returning LP tokens, gCt0(p0) and gBt0(p0) need to satisfy
gC

t0
(p0)

gB
t0

(p0)
= p0. We can then derive that gCt0(mc, p0) = mc

2 and gBt0(mc, p0) = mc
2p0

.
We further assume that the percentage of the total liquidity that the borrower

owns in A is invariant over time. Then at time t0 + Δ, the borrower can redeem
gCt0+Δ(mc, p) C = mc

2
√

p0

√
p C and gBt0+Δ(mc, p) B = mc

2
√

p·p0
B. Then according to

Eq. 1, the borrower’s impermanent loss in A is LossILcp =
2
√

p
p0

1+ p
p0

− 1.

Speculation Through Margin Trading. If we only consider the imperma-
nent loss in A, the borrower will always suffer from LossIL. However, a borrower
can choose to mitigate the IL though a margin trading as follows: (1) the bor-
rower collateralizes c C, and sets the leverage multiplier as m(m > 2) to borrow
(m−1)c

p0
B; (2) the borrower then swaps (m

2 − 1) c
p0

B to (m
2 − 1)c C and supplies

mc
2 C + mc

2p0
B into A; (3) the borrower removes all assets in A and repays the

46 Z. Wang et al.

(1). Collateralize 1 REN + Borrow 5 USDT

(2). Swap 2 USDT to 2 REN

(3). Supply 3 REN + 3 USDT
Uniswap

AH

(6). Repay 5 USDT

(5). Swap 0.8 REN to 1.25 USDT

(4). Remove 2.4 REN + 3.75 USDT
Uniswap

AH

Time

Fig. 3. Example of positive return from margin trading and IL: We assume that, at
time t, the price between two tokens USDT and REN is pUSDT→REN

t = 1 in Uniswap [31],
which is a constant product AMM exchange. A borrower, namely Bob, (1) collateralizes
1 REN in AH and sets a 6× leverage multiplier to borrow 5 USDT. (2) Bob then swaps
2 USDT to 2 REN, and (3) supplies 3 USDT and 3 REN to Uniswap. If at time t + Δ, the
price pUSDT→REN

t+Δ becomes 0.64, Bob then holds 2.4 REN and 3.75 USDT in Uniswap. Bob
suffers from an IL of 3.75×0.64+2.4

3×0.64+3
− 1 = −2.44%. (4) Finally, Bob removes all assets

from Uniswap and (5) swaps 0.8 REN to 1.25 USDT (now Bob has 1.25+3.75 = 5 USDT),
and (6) repays the debt with 5 USDT. Bob’s final return is 2.4 − 0.8 − 1 = 0.6 REN, a
profit realized through leverage and margin trading.

debt at time t + Δ. We can then derive the borrower’s resulting return from
impermanent loss and margin trading with Eq. 2.

ReturnIL,Mg
cp =

mc
2
√

p0

√
p · 1 + mc

2
√

p·p0
· p − (m−1)c

p0
· p

c
− 1 = m(

√
p

p0
− p

p0
) +

p

p0
− 1

(2)
We notice that, because the borrower performs a margin trade to swap the

borrowed token B (i.e., shorts the debt B) to the collateralizing token C (i.e.,
longs the collateral C) before supplying assets into A, the decline of p may help
the borrower to increase the financial return. We can further derive the return
from margin trading without IL: ReturnMg

cp = ReturnIL,Mg
cp − LossILcp = m(

√
p
p0

−
p
p0

) + p
p0

− 2
√

p
p0

1+ p
p0

. This return may outweigh the impermanent loss LossILcp, when

the leverage m satisfies m >
1− p

p0√
p

p0
− p

p0

.

In Fig. 2, we set the leverage of a position to be 2×, 4× and 7×. We then
visualize the return ReturnIL,Mg

cp of such position by capturing a hypothetical price
change p

p0
in the range of 0 to 3. Under a leverage setting of 4 or 7, we observe

that the borrower may receive a positive return, if 1
9 < p

p0
< 1. We provide an

example to show our results in practice (cf. Fig. 3).

4.2 Arbitrage Risk

A liquidity pool typically requires receiving a specific proportion of supplied
assets before returning the accounting LP tokens. The LP therefore may need

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 47

to exchange parts of its assets prior to providing the liquidity. Because liquidity
provisions may involve significant liquidity amounts, the prior swap of assets
may cause a slippage which can be exploited by DeFi arbitrageurs [10,34,36].

Although arbitrage is regarded as benign for the whole DeFi ecosystem (cf.
Sect. 2.3), borrowers on a leverage platform can suffer from a loss when swap-
ping their assets in AMMs, which may generate profitable opportunities for arbi-
trageurs. In the following, we formalize the financial risks originating through
arbitrage loss.

Generic Formulas for Arbitrage Loss. We assume that there are two con-
stant product AMMs A1 and A2 allowing exchanges between cryptocurrencies
B and C. At time t, A1 and A2 have the same spot price pB→C

t = pt(xt, yt). A
borrower swaps δx C to δy B in A1. We can then derive that the new spot price
pB→C

t+δ in A1 is pB→C
t+δ = pt+δ(xt + δx, yt − δy + δy).

We assume that the spot price in A2 does not change from time t to t + δ. If
pB→C

t+δ < pB→C
t , an arbitrageur can undertake the following actions to make profits:

(1) The arbitrageur first swaps δy2 B to δy2 · pB→C
t C in A2; (2) The arbitrageur

then swaps δy2 · pB→C
t C to δy2·pB→C

t

pB→C
t+δ

B in A1. We can then derive the arbitrageur’s

final profits is LossAR = δy2 ·
(

pB→C
t

pB→C
t+δ

− 1
)
B, which also equals to the loss of the

borrower who supplies δx C to A1.

Arbitrage Risk in Constant Product AMMs. If A1 and A2 are both
constant product AMMs, then pB→C

t = yt

xt
. If the borrower performs a margin

trading, then δx = (m
2 − 1)c, and pB→C

t+δ = yt−δy+δy
xt+δx = yt

xt+δx . We can derive the

arbitrage loss as LossARcp = δy2 ·
(

xt+δx
xt

− 1
)
B = (m

2 −1)c·δy2

xt
B.

We find that the arbitrage loss LossARcp is proportional to δx, the amount of C
supplied by the borrower, and δy2, the amount of B swapped by the arbitrageur.
Hence, to reduce the arbitrage loss LossARcp , the borrower can simply supply assets
to the liquidity pool through multiple (temporally distributed) transactions by
dividing the entire volume into smaller chunks suffering from less slippage. Note
that generating several transactions will involve additional blockchain fees.

4.3 Liquidation Risk

As discussed in Sect. 3, a position is liquidatable when the debt becomes
unhealthy, i.e., DebtRatiot+Δ(Pid) > 100%, due to a price change of pB→C

t . In
the following, we explore what price changes may cause liquidations and associ-
ated financial risks in leverage systems.

We denote the leverage multiplier at time t as m. To capture how the price
affects a position’s health, we compute the liquidation threshold price p̂l

B→C at
which the position is eligible for liquidation (cf. Eq. 3).

DebtRatiot+Δ(Pid) ≤ 1 ⇐⇒ p̂l
B→C

pt0

≤ 1
(B, C) · (m − 1)

(3)

48 Z. Wang et al.

In Fig. 2, we choose (B, C) = 1.5 and show the liquidation thresholds of p̂l
B→C

given a leverage 2×, 4× and 7×. We find that the threshold p̂l
B→C is inversely

proportional to the chosen leverage. Moreover, the threshold p̂l
B→C is unrelated

to the resulting return from impermanent loss and margin trading, i.e., even
if the return is positive under a leverage 4× or 7×, the position can still be
liquidatable when pB→C

t

pt0
> 1

9 .
In addition, according to Sect. 2.6, the financial loss from a liquidation for a

position Pid at time t can be derived as LossLQ = Borrt(P
B
id)·LS·cl·pB→C

t

Collt(PC
id)

= (m − 1) ·
LS ·cl · pB→C

t

pt0
, where LS ∈ (0, 1] is a parameter for the liquidation spread set by the

leverage platform LV, with which a liquidator can receive profits by repaying
the debt2; cl ∈ (0, 1] is a parameter that the liquidator chooses to determine
what percentage of the debt shall be repaid.

4.4 Maximum Reasonable On-Chain Leverage

In the following, we investigate how to achieve a larger maximum on-chain lever-
age multiplier, by changing the system parameters of a DeFi leverage platform.
Note that the maximum leverage multiplier discussed in this section is limited
to the liquidation risk.

We consider two conditions regarding liquidations: (1) To avoid an instant
liquidation when opening a position, the debt ratio should be less than 1 after
setting the initial leverage, i.e., DebtRatiot(Pid) ≤ 1 (cf. Eq. 3); (2) To incentivize
liquidators, a position should have sufficient collateral to repay for a liquidation,
i.e., LossLQ ≤ 1 (cf. Sect. 4.3). By combining the two conditions, we derive the
maximum leverage multiplier mmax in Eq. 4.

mmax =
1

max(LS, (B, C)) · max(pt

pt0
)

+ 1 (4)

We notice that three parameters play herein an important role: (1) (B, C),
a parameter determining the credit that a position gains when collaterizing 1 C
and borrowing 1 B (cf. Sect. 3.1). (2) LS, the liquidation spread on the system
(cf. Sect. 4.3). (3) pt

pt0
, the price change with respect to the initial price when

opening a position, which varies over time. Both (B, C) and LS are configurable
system parameters, while pt

pt0
indicates the price volatility.

Given (B, C), LS and max(pt

pt0
), we plot the distribution of mmax in Fig. 4. We

discuss three cases for choosing mmax for stablecoins:

– Case 1: If max(pt

pt0
) = 1.1, choosing max(LS, (B, C)) = 0.11, then mmax =

9.3×. In this case, we assume that the price change pt

pt0
always remains below

1.1. This is a reasonable assumption for stablecoins in practice. For instance,

2 For example, in Alpha Homora V2, if a liquidator repays all debt of a position, the
liquidator will receive 5% of debts as rewards, i.e., LS = 5%.

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 49

Fig. 4. Distribution of the maximum leverage multiplier mmax over max(LS, (B, C)),
when max(pt

pt0
) is fixed.

the prices of USDT and USDC range between 0.99 USD and 1.01 USD in 2020 [18,
24]. Moreover, the two system parameters (B, C) and LS satisfy the following
constraints: (1) (B, C) is less than 0.11, which is a practical number adopted
on AHv2 [3] when B and C are stablecoins. (2) The liquidation spread LS on
the system is at most 11%, which is larger than the LS on AHv2 (i.e., 5%).

– Case 2: If max(pt

pt0
) = 1.1, choosing max(LS, (B, C)) = 0.05, then mmax =

19.2×. In this case, (B, C) is equal to the LS on AHv2.
– Case 3: If max(pt

pt0
) = 1.1, choosing max(LS, (B, C)) = 0.01, then mmax =

91.9×. In this case, LS decreases to 1%. However, as mmax increases, liquida-
tors’ final rewards do not drop (cf. Sect. 4.3) and they will still be incentivized
to liquidate unhealthy positions in practice.

Furthermore, according to Fig. 4, to achieve a large leverage multiplier for
non-stablecoins (e.g., cryptocurrencies with a high price volatility pt

pt0
> 1.1),

the leverage system needs to choose small (B, C) and LS.

5 Empirical Evaluation

This section outlines our empirical evaluation of user behavior and risks in Alpha
Homora, the biggest leverage platform to date.

Measurement Setup. We crawl the on-chain events of AH’s smart con-
tracts [14] (e.g., borrow, repay and liquidate events) and related blockchain
states (e.g., oracle prices, the supply interest rates of a lending pool on a spe-
cific block height, etc.) from Ethereum block 11,007,158 (7th October, 2020, the
inception of AH) to 13,010,057 (12th August, 2021). We use an Ethereum full
archive node, on an AMD Ryzen Threadripper 3990X with 64 cores, 256 GB of
RAM, and 2 × 8 TB NVMe SSD in Raid 0 configuration. Note that we capture
both AHv1 [2] and AHv2 [3], while AHv2 debuted at block 11,515,006 (24th
December, 2020).

50 Z. Wang et al.

We observe a total of 5,110 borrow, 3,616 repay, and 122 liquidate events
in AHv2. In AHv1, we find 14,466 work (emitted during borrows and repays)
and 148 kill (liquidation) events. We normalize the prices of different tokens to
ETH by calling the smart contract of the platform’s on-chain price oracles at the
block when an event was triggered. Note that we do not rely on any third-party
API or external oracle for our data, and solely use the publicly available on-chain
data which eases the reproducibility of our results.

5.1 User Behavior in On-Chain Leverage Platforms

We proceed to empirically analyze the user behavior for borrowers and lenders
in Alpha Homora. We identify that 3,800 borrowers opened 10,430 leverage posi-
tions in AH (i.e., 7,081 in AHv1 and 3,349 in AHv2). In addition, because lending
on AH is basically the same as on other lending protocols [4,12,15], which have
been investigated thoroughly in related works [21,25], we focus on AH borrowers
in this section and analyze lenders in our full paper [32].

Borrower Leverage Multiplier. In AH, borrowers can collateralize their
assets and then open a leverage position by setting the leverage multiplier while
borrowing assets from the lending pool. For each leverage position, we crawl the
amount of collateralized and borrowed assets from the transfer and borrow
events in AH, at the time when opening the position. Given a position’ collat-
eral and debt, we can calculate the leverage multiplier.

Fig. 5. Distribution of leverage over
tokens. Stablecoins attract higher lever-
age settings. Partial-stablecoin means
that borrowers collateralize stable and
non-stable coins simultaneously.

Fig. 6. Platform leverage distribution.
The stablecoin platform Curve appears
to attract higher leverage settings.

We find that 65% of the 3,349 borrower positions in AHv2 select a leverage
multiplier smaller than 3.0, the average leverage multiplier is 3.07×. In AHv1,
the maximum and average leverage multiplier of the 7,071 positions are 3× and
2.01×, respectively.

Contrary to AHv1, which only supports borrowing ETH, in AHv2, a borrower
can collateralize (resp. borrow) 43 (resp. 12) tokens and then provide liquidity

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 51

to Uniswap, Sushiswap, Curve, and Balancer. We plot the leverages’ distribution
when borrowers collateralize stable and non-stable coins (cf. Fig. 5) and when
borrowers provide liquidity to the four platforms (cf. Fig. 6). We observe that
borrowers in AHv2 tend to choose a high leverage multiplier while collateralizing
stablecoins or providing liquidity to Curve. This can be explained by the fact
that stablecoin pools (which Curve specializes in) are less volatile and hence
less likely to experience a liquidation event. We find that stablecoin pools are
being used with an average leverage of 5.39×, which is 344.70% higher than the
average leverage on non-stablecoin pools.

A borrower can choose to dynamically adjust the leverage of a position, by
adding or removing collateral. In Fig. 7 we visualize the distribution of 2,581
closed positions in AHv2 over their adjustment frequency and initial leverage
(upon position creation). We find that 348 positions are adjusted more than once
and the higher the initial leverage, the less likely this position will be adjusted.
Moreover, we observe that 67.92% (i.e., 1,753) of the positions are open for less
than two weeks (cf. Fig. 8).

Fig. 7. Debt position distribution over
leverage multiplier and adjustment fre-
quency.

Fig. 8. Debt position distribution over
leverage multiplier and duration.

Borrower APY. In the following, we analytically derive the borrower interest
rates on closed debt positions with only 1 adjustment, i.e. which went through
the entire cycle of opening a position with collateral, without modifying the
leverage intermediately, and ultimately closing the debt. By focusing on closed
positions we achieve a holistic image of the borrowers’ return and behavior over
the entire life-cycle of a leveraged debt position.

To calculate the APY of a borrower, we crawl the initial collateral deposit
and the collateral return amounts, as well as the position opening and closure
timestamps. Given this data, we can infer the financial return or APY of a
closed position. Note that we convert all assets to USD (cf. Fig. 9) at the position
opening and closure moments. Beware that we do ignore the additional potential
revenue from Alpha token yield farming, as these are custom temporary protocol
participation incentives [32].

Figure 9 visualizes the relationship between the BorrowAPY and the leverage
multipliers. The average APY of a maximum of 1-day long positions is −585.70%.

52 Z. Wang et al.

Fig. 9. Distribution of debt positions over BorrowAPY and leverage multipliers. The
marker size in the figure is proportional position’s collateral value. The linear regression
lines are for the APY of the positions with the same duration (i.e., the same color).
We find that any leverage setting is prone to negative and positive APY.

From the regression lines, we infer that the longer a position is open (i.e., more
than 7 days), the more likely the borrower achieves an APY of 0%. By separating
the DeFi platforms to which the borrowers supply borrowed assets, we observe
that BorrowAPY varies across platforms [32].

Notably, we find that for 72.35% of the closed positions, the borrowers achieve
a negative APY, i.e., lose assets despite leverage. Therefore, we can conclude
that, in practice, platform subsidies (i.e., governance token rewards such as Alpha
tokens) are an essential incentive mechanism for borrowers using leverage.

5.2 Empirical Analysis of Risks

In the following, we provide an empirical analysis of three risks for borrowers in
Alpha Homora, and compare our results with Sect. 4.

Impermanent Loss. We investigate the AH borrowers’ IL when supplying
assets into constant product AMMs. We find that 1,139 closed positions in AHv2
interact with Sushi- or Uniswap. For each position, we crawl the spot price in
the liquidity pool when a borrower deposits and withdraws assets. We observe
that all 1,139 positions suffer from impermanent loss, with a price change p

p0
from 0.63 to 1.62. Interestingly, we find that if the borrowers perform a margin
trade (cf. Sect. 4.1) before supplying assets into the liquidity, 44.95% (i.e., 512)
positions can benefit from a positive return, which compensates IL (cf. Fig. 10).

Arbitrage Loss. We find that borrowers suffer an arbitrage loss in 149 AH
positions, when swapping and supplying assets in Uni- or Sushiswap. To further
investigate the arbitrage loss, we crawl the cryptocurrency X’s amount xt in the
pool, the borrowers’ collateral c, and the arbitrageur’s swapped assets δy2. We
find that for the positions in AHv2 suffering from arbitrage losses, the average
leverage multiplier is 5.25±1.95×, and the average collateral is 2.03±4.21M USD,

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 53

Fig. 10. Distribution of IL for AHv2 positions interacting with Uni- and Sushiswap.
The continuous lines show our analytical results, while the points represent the empir-
ical measurements. Note that the difference between our results can be explained by
the fact our analytical results assume a constant leverage factor.

which are 61.04% and 21.06% higher than the average leverage multiplier and
collateral in AHv2, respectively. Interestingly, we find that the position with id
61 suffered from the most important arbitrage loss, i.e., 81.67% (1.66M USD) of
the collateral was lost due to the arbitrage [32].

To show an arbitrageur’s expected return, given a borrower’s collateral and

leverage, we visualize the relationship between LossARcp
δy2

and c
xt

in Fig. 11. We find
that arbitrageurs achieve less profits than our analytical results when the lever-
age multiplier is large (i.e., m > 4). This is probably because the borrowers do
not perform a margin trading to swap (m

2 − 1)c X (cf. Sect. 4.2).

Liquidation Loss. We identify 50 unique liquidators performing 270 liquida-
tions in AH to repay 4,352.52 ETH of debt in total. To show the liquidation loss,
we crawl a position’s collateral before and after the liquidation. Figure 12 visual-
izes the relationship between liquidation loss and the initial leverage multiplier.
We find that the average leverage for the 122 liquidated positions in AHv2 is
2.01×, and the maximal liquidation loss is 10.63%. We observe that, due to the
change of pt, 73.77% positions suffer from a higher liquidation loss than the
analytical results (cf. Sect. 4.3) when LS = 5%, and cl = 1 (i.e., the liquidator
repays all the debt).

6 Related Work

In this section, we proceed to discuss existing work related to this paper.

Liquidations in DeFi. A growing body of literature has studied liquidations on
borrowing and lending platforms in DeFi. Qin et al. [25] measure various risks
that liquidation participants are exposed to on four major Ethereum lending
pools (i.e., MakerDAO [16], Aave [4], Compound [15], and dYdX [12]), and

54 Z. Wang et al.

quantify the instabilities of existing lending protocols. Darlin et al. [11] analyze
the optimal bidding strategies for auction liquidations.

Fig. 11. Distribution of arbitrage loss for
149 debt positions in AH. Arbitrageurs
achieve fewer profits than our analytical
results when m > 4.

Fig. 12. Distribution of liquidation loss
for 122 debt positions in AHv2. We
observe that liquidations on Balancer
cause higher loss (i.e., 8.51% on average).

Blockchain Extractable Value. Eskandir et al. [13] are the first to propose a
front-running taxonomy for permissionless blockchains. Daian et al. [10] follow up
by introducing the concept of Miner Extractable Value (MEV) on blockchains.
Zhou et al. [36] formalize sandwich attacks on AMM exchanges, which involve
front- and back-running victim transactions on DEXs. Qin et al. [26] quantify
how much value was sourced from blockchain extractable value (BEV), such as
sandwich attacks, liquidations, and decentralized exchange arbitrage [35].

7 Conclusion

In this work, we are to the best of our knowledge the first to provide a deep dive
into under-collateralized DeFi lending protocols. While under-collateralization
reduces the flexibility of the borrowed funds, with up to 8× leverage multi-
pliers, such designs grant speculators more powerful tools to indulge in riskier
on-chain trading. We qualitatively and quantitatively analyze the risks caused
by impermanent loss, arbitrage, and liquidation. We find that 72.35% of the
closed debt positions suffer from a negative APY, when ignoring the rewards of
Alpha token in AH. We also find empirical evidence that stablecoin leverage is on
average 344.70% higher than non-stable coin leverage. We finally show that with
reasonable system settings, an on-chain leverage system can achieve a leverage
multiplier of up to 91.9×.

Acknowledgments. We thank the anonymous reviewers and Stephanie Hurder for
providing valuable comments and feedback which helped us to strengthen the paper.
We are moreover grateful to Nimiq for partially funding this work.

Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 55

References

1. Alpha homora (2021). https://alphafinancelab.gitbook.io/alpha-finance-lab/
alpha-products/alpha-homora

2. Alpha homora v1 (2021). https://homora.alphafinance.io/
3. Alpha homora v2 (2021). https://homora-v2.alphafinance.io/
4. Aave: Aave Protocol (2020). https://github.com/aave/aave-protocol
5. Adrian, T., Shin, H.S.: Liquidity and leverage. J. Financ. Intermed. 19(3), 418–437

(2010)
6. Aigner, A.A., Dhaliwal, G.: Uniswap: impermanent loss and risk profile of a liq-

uidity provider. arXiv preprint arXiv:2106.14404 (2021)
7. BitMEX: Bitmex (2021). https://www.bitmex.com/
8. Breidenbach, L., et al.: Chainlink 2.0: next steps in the evolution of decentralized

oracle networks (2021)
9. Cousaert, S., Xu, J., Matsui, T.: SoK: yield aggregators in DeFi. In: 2022 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–14.
IEEE (2022)

10. Daian, P., et al.: Flash boys 2.0: frontrunning, transaction reordering, and consen-
sus instability in decentralized exchanges. In: IEEE Symposium on Security and
Privacy (SP) (2020)

11. Darlin, M., Papadis, N., Tassiulas, L.: Optimal bidding strategy for maker auctions.
arXiv preprint arXiv:2009.07086 (2020)

12. dYdX: dYdX (2020). https://dydx.exchange/
13. Eskandari, S., Moosavi, M., Clark, J.: SoK: transparent dishonesty: front-running

attacks on blockchain (2019)
14. Alpha Finance: AHV contract addresses (2021). https://immunefi.com/bounty/

alphafinance/
15. Compound Finance: Compound finance (2019). https://compound.finance/
16. The Maker Foundation: Makerdao (2019). https://makerdao.com/en/
17. Liu, B., Szalachowski, P., Zhou, J.: A first look into DeFi oracles, pp. 39–48 (2021)
18. Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for stablecoin

designs. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 174–
197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 11

19. OkEX: Okex (2021). https://www.okex.com/
20. Trading Crypto with Leverage & the Top 6 Providers (2019). https://

blog.goodaudience.com/trading-crypto-with-leverage-the-top-6-providers-
31d4db6d3e00

21. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: DeFi on a knife-edge.
In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 457–476. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0 24

22. Poloniex: Poloniex (2021). https://poloniex.com/
23. Band Protocol: Band protocol (2019). https://bandprotocol.com/
24. Qin, K., Zhou, L., Afonin, Y., Lazzaretti, L., Gervais, A.: CeFi vs. DeFi-

comparing centralized to decentralized finance. In: 2021 Crypto Valley Conference
on Blockchain Technology (CVCBT). IEEE (2021)

25. Qin, K., Zhou, L., Gamito, P., Jovanovic, P., Gervais, A.: An empirical study of
DeFi liquidations: incentives, risks, and instabilities. In: Proceedings of the 21st
ACM Internet Measurement Conference, pp. 336–350. ACM (2021)

26. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark
is the forest? In: 2022 IEEE Symposium on Security and Privacy (SP). IEEE (2022)

https://alphafinancelab.gitbook.io/alpha-finance-lab/alpha-products/alpha-homora
https://alphafinancelab.gitbook.io/alpha-finance-lab/alpha-products/alpha-homora
https://homora.alphafinance.io/
https://homora-v2.alphafinance.io/
https://github.com/aave/aave-protocol
http://arxiv.org/abs/2106.14404
https://www.bitmex.com/
http://arxiv.org/abs/2009.07086
https://dydx.exchange/
https://immunefi.com/bounty/alphafinance/
https://immunefi.com/bounty/alphafinance/
https://compound.finance/
https://makerdao.com/en/
https://doi.org/10.1007/978-3-030-51280-4_11
https://www.okex.com/
https://blog.goodaudience.com/trading-crypto-with-leverage-the-top-6-providers-31d4db6d3e00
https://blog.goodaudience.com/trading-crypto-with-leverage-the-top-6-providers-31d4db6d3e00
https://blog.goodaudience.com/trading-crypto-with-leverage-the-top-6-providers-31d4db6d3e00
https://doi.org/10.1007/978-3-662-64331-0_24
https://poloniex.com/
https://bandprotocol.com/

56 Z. Wang et al.

27. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol.
12674, pp. 3–32. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-
64322-8 1

28. Schär, F.: Decentralized finance: on blockchain-and smart contract-based financial
markets. Available at SSRN 3571335 (2020)

29. SushiSwap: SushiSwap (2020). https://sushi.com/
30. Thurner, S., Farmer, J.D., Geanakoplos, J.: Leverage causes fat tails and clustered

volatility. Quant. Finance 12(5), 695–707 (2012)
31. Uniswap: Uniswap (2020). https://uniswap.org/
32. Wang, Z., Qin, K., Minh, D.V., Gervais, A.: Speculative multipliers on DeFi: quan-

tifying on-chain leverage risks. Financ. Cryptogr. Data Secur. (2022). https://www.
ifca.ai/fc22/preproceedings/71.pdf

33. Prime XBT: Prime XBT (2021). https://primexbt.com/
34. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discovery

of profit-generating transactions in DeFi protocols. In: 2021 IEEE Symposium on
Security and Privacy (SP), pp. 919–936 (2021)

35. Zhou, L., Qin, K., Gervais, A.: A2MM: mitigating frontrunning, transaction
reordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371 (2021)

36. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 428–445. IEEE (2021)

https://doi.org/10.1007/978-3-662-64322-8_1
https://doi.org/10.1007/978-3-662-64322-8_1
https://sushi.com/
https://uniswap.org/
https://www.ifca.ai/fc22/preproceedings/71.pdf
https://www.ifca.ai/fc22/preproceedings/71.pdf
https://primexbt.com/
http://arxiv.org/abs/2106.07371

MPC (Mostly)

Explainable Arguments

Lucjan Hanzlik1(B) and Kamil Kluczniak1,2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{lucjan.hanzlik,kamil.kluczniak}@cispa.saarland

2 Stanford University, Stanford, USA
kamil.kluczniak@stanford.edu

Abstract. We introduce an intriguing new type of argument systems
with the additional property of being explainable. Intuitively by explain-
able, we mean that given any argument under a statement, and any wit-
ness, we can produce the random coins for which the Prove algorithm
outputs the same bits of the argument.

This work aims at introducing the foundations for the interactive as
well as the non-interactive setting. We show how to build explainable
arguments from witness encryption and indistinguishability obfuscation.
Finally, we show applications of explainable arguments. Notably we con-
struct deniable chosen-ciphertext secure encryption. Previous deniable
encryption scheme achieved only chosen plaintext security.

1 Introduction

Deniability, first introduced by Dolev, Dwork, and Naor [30], is a notion that
received a considerable amount of attention because of its application to authen-
tication protocols. This property allows the user to argue against a third party
that it did not take part in a protocol execution. The usual argument made by
the user to the third party is that the server could simulate a valid communica-
tion transcript without actually interacting with the user.

A variant of deniability was considered in the case of encryption schemes
[15,16,63], where a public Expl algorithm allows anyone to open any ciphertext
to any message without the secret key. Since we can publicly open ciphertexts,
the random coins cannot serve as proof that a particular message is encrypted.

A similar concept was recently introduced to ring signatures [58] and called
unclaimability. The property states that no one can claim to be the signer of a
particular ring signature σ. The premise is similar. There exists an Expl algorithm
that allows any of the ring members to generate random coins that can be used
to receive the same σ.

Deniability and unclaimability are related notions. In the former, we consider
the server malicious because it tries to gain an undeniable proof of an interac-
tion. In the latter, the malicious party is a different user that tries to make it
impossible for honest users to explain an interaction/signature. Interestingly, the
deniability and unclaimability definitions studied in the literature only consider
scenarios where the party producing a transcript/signature/ciphertext is honest,
but may eventually become corrupt in the future.
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 59–79, 2022.
https://doi.org/10.1007/978-3-031-18283-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_4

60 L. Hanzlik and K. Kluczniak

1.1 Contribution

We introduce a new property for argument systems called explainability.
Explainability informally resembles deniability and unclaimability. We consider
interactive and non-interactive variants of such systems. We show that achiev-
ing strong explainability is hard and requires very strong primitives like witness
encryption (WE) and indistinguishability obfuscation (iO). Our contribution can
be summarized as follows.

New Definitions. We introduce a new property for argument systems that
we call explainability, i.e., the ability for anyone with a valid witness wit to
compute the random coins coins that “explain” a given argument arg. By
“explain,” we mean that the witness and coins result in the same argument string
arg = Prove(stmt,wit; coins) or the same transcript of an interaction, given the
same instance of the verifier. Thus if one can explain an argument for all wit-
nesses and all coins, then such argument/transcript cannot serve as proof that a
particular witness was used. We accounted for certain subtle differences between
interactive and non-interactive arguments. In both cases, we consider malicious
prover explainability, where a prover tries to create a proof that other provers
cannot explain with a different but valid witness. In this case, we require the
protocol to be unique, in the sense that it is infeasible for a malicious prover to
produce two different arguments (or transcripts) that the verifier accepts given
the same statement and random coins. For the interactive case, we also consider
a malicious verifier (similar to deniability) that can abort the protocol execution
or send corrupt messages to make it impossible for provers with a different wit-
ness to explain the current interaction. Since, in the non-interactive case, there
is no interaction with a verifier, we consider a scenario where the common refer-
ence string (if used) is maliciously generated. We refer to this case as malicious
setup explainability. Additionally, we call a (non-)interactive argument system
fully explainable, when it is explainable even if both the setup/verifier and the
prover are malicious.

Implications. To study the power of explainable arguments we prove several
interesting implications of explainable arguments.

– We show that when an argument system is malicious verifier explainable, then
it is also witness indistinguishable.

– We show that non-interactive malicious prover explainable arguments and
one-way functions imply witness encryption (WE). This result serves us as
evidence that constructing such arguments is difficult and requires strong
cryptographic primitives.

Constructions of Interactive Explainable Arguments. We introduce new
properties for witness encryption that we call robustness and plaintext awareness.
Informally, robustness ensures that decryption is independent of which witness is

Explainable Arguments 61

used. In other words, there do not exist two valid witnesses for which a ciphertext
decrypts to a different message (or ⊥). Plaintext awareness ensures that an
encrypter must know the plaintext it encrypted. We then show how to leverage
robust witness encryption to construct interactive explainable arguments. The
resulting protocol is round-optimal, predictable, and can be instantiated to yield
an optimally laconic argument. Given the witness encryption is plaintext aware,
we can show that the protocol is zero-knowledge. Finally, assuming the witness
encryption is extractably secure, we can show that our protocol is a proof of
knowledge.

Constructions of Non-interactive Explainable Arguments. We show how
to construct malicious setup and malicious prover explainable arguments from
indistinguishability obfuscation. While malicious prover explainable arguments
can trivially be build using techniques from Sahai and Waters [63], the case of
malicious setup explainable arguments is more involved and requires us to use
dual-mode witness indistinguishable proofs. Furthermore, we show how to build
fully explainable arguments, additionally assuming NIZK.

Why Study Explainable Arguments? Argument systems are fundamental
primitives in cryptography. While some privacy properties like zero-knowledge
already give a strong form of deniability, our notion of explainability is much
stronger as it considers the extreme case where the provers’ coins are leaked or are
chosen maliciously. For example, using our explainable arguments, we can show
explainable interactive anonymous authentication schemes, where anonymity is
defined similarly as in ring-signature schemes (see full paper [45]). Notably, we
can construct CCA-1 secure encryption with deniability as defined by Sahai and
Waters [63], from CPA secure deniable encryption and our explainable argu-
ments assuming random oracles. Our deniable encryption is a variant of the
Naor-Yung transform [56], but only rely on witness indistinguishability instead
of zero-knowledge which allows us to instantiate this transformation using our
explainable arguments.

Malicious Verifier/Setup Explainability. We consider adversaries that are sub-
stantially more powerful than what is usually studied in the literature, e.g., in
deniable authentication schemes or ring-signatures. In particular, in our case, the
user can deny an argument even when the adversary asks to reveal the user’s
random coins used to produce the argument. Immediate real-world examples
of such powerful adversaries are rogue nation-state actors that might have the
right to confiscate a user’s hardware and apply effectual forensics techniques
to obtain the random seeds as evidence material against the user. We believe
that the threat posed by such potent adversaries may prevent the use of e.g.,
ring-signatures by whistleblowers, as the anonymity notions provided might be
insufficient.

Malicious Prover Explainability. The main application we envision for malicious
prover explainability is internet voting. An essential part of a sound and fair

62 L. Hanzlik and K. Kluczniak

voting scheme is to prevent the selling of votes by malicious voters. We note
that the “selling votes” issue isn’t limited to actual bribery but, perhaps more
critically, addresses the issue of forcing eligible voters to vote on a particular
candidate. In this case, an authoritarian forces others to deliver evidence that
they voted on a particular option or participate in a specific digital event. An
authoritarian here may be an abusive family member, corrupt supervisor, or
employer. Our strong unclaimability notion is essential to handle such drastic
cases, mainly because users might be coerced or bribed to use specific coins in
the protocol.

1.2 Related Work

Explainability of the verifier was used by Bitansky and Choudhuri [8] as a step
in proving the existence of deterministic-prover zero-knowledge proofs. In their
definition they used the fact that the choices of a verifier can be “explained” by
outputting random coins that will lead to the same behaviour. This later can
be used to transform the system to be secure even against a malicious verifier.
In contrary, we consider the explainability of the prover. While arguments with
our type of explainability have not been studied before, there exists some related
concepts. Here we give an overview of the related literature.

Deniable Authentication. Dolev, Dwork, and Naor [30] first introduced the con-
cept of deniability. The first formal definition is due to Dwork, Naor, and Sahai
[32]. Deniability was studied in numerous works [25,48,55] in the context of
authentication protocols. The concept was later generalized to authenticated key
exchange and was first formally defined by Di Raimondo, and Genaro [26]. Since
then deniable key exchange protocols got much attention from the community
[11,24,27,28,46,49,51,65–69]. In such protocols, deniability is informally defined
as a party’s ability to simulate the transcript of interaction without actually com-
municating with another party. Since each party can generate a transcript itself,
the transcript cannot be used as proof to a third party that the interaction
took place. At a high level, deniability is very similar to zero-knowledge, but it
is important to mention that Pass [59] showed some subtle differences between
both notions.

Deniable Encryption. Deniable encryption was first introduced by Canetti,
Dwork, Naor, and Ostrovsky [15]. Here we deal with a “post” compromise situ-
ation, where an honest encrypter may be forced to “open” a ciphertext. In other
words, given a ciphertext, it should be possible to show a message and ran-
domness that result in the given ciphertext. Deniable encryption was intensively
studied [1,7,20–22,41,57,63]. Very recently, Canetti, Park, and Poburinnaya [16]
generalize deniable encryption to the case where multiple parties are compro-
mised and show constructions also assuming indistinguishability obfuscation.

Ring Signatures. Early forms of deniability were the main motivation for the
work of Rivest, Shamir, and Tauman [61], which introduces the concept of ring

Explainable Arguments 63

signatures. This early concept took into account a relaxed form of deniabil-
ity where only the secret key of a user may leak. Very recently [58] extended
ring signatures with additional deniability properties. For example, they show
a signer deniable ring signature where any signer may generate random coins
that, together with its secret key, will result in the given signature. However,
they require to assume the prover is honest at the moment of signature genera-
tion. In our argument setting, we do not make such assumptions.

We are the first to study arguments with unclaimability and deniability prop-
erties that allow denying executing a protocol even when the prover is forced
to reveal all its random coins or where the prover chooses its coins maliciously.
Previous works mostly address a post-compromise setting, whereas some of our
explainability notions take into account malicious prover. We believe that our
primitives may find applications in protocols as a means of providing consistency
checks or anonymous authentication of the votes. For example, the protocols
from [17,62] rely on a trusted party to verify a voter’s signature. That party
knows the user’s vote. Using our explainable arguments, we can build (see full
paper) a simple anonymous authentication protocol without degrading receipt
freeness of the voting scheme, and in effect, remove the trust assumption in terms
of privacy.

Receipt Freeness and Coertion Resistance in Voting Schemes. Some of our defi-
nitions and potential application are tightly connected to voting schemes. In par-
ticular, our definition of malicious prover explainability poses the same require-
ments, at a high level, for an argument system as receipt freeness or coercion
resistance in voting schemes [6,47,54,64]. Since we focus on a single primitive,
our definitions are much simpler in comparison to complex voting systems. For
example, the definition from [17] involves numerous oracles, and defines a set of
parties, and assumes trusted parties. Our definition for malicious prover explain-
ability is simple and says that it is infeasible to produce two different arguments
under the same statement that verify incorrectly.

Outline of the Paper. In Sect. 3 we give definitions of explainable argument
systems. In Sect. 4 we construct non-interactive explainable arguments. In Sect. 5
we introduce robust witness encryption, and apply it to build interactive explain-
able arguments. Finally, in Sect. 6, we show how to apply explainable arguments
to construct deniable CCA-secure encryption. In the full paper [45], we recall all
definitions for the primitives in the preliminaries section, show an explainable
anonymous authentication protocol, and all security proofs.

2 Preliminaries

Notation. We denote execution of an algorithm Alg on input x as a ← Alg(x)
were the output is assigned to a. Unless said otherwise, we will assume that algo-
rithms are probabilistic and choose some random coins internally. In some cases,
however, we will write Alg(.; r) to denote that Alg proceeds deterministically on

64 L. Hanzlik and K. Kluczniak

input a seed r ∈ {0, 1}s for some integer s. We denote an execution of a protocol
between parties V and P , by 〈Prove(.) � Verify(.) → x〉 = trans, where x is the
output of Verify after completion of the protocol, and trans is the transcript of
the protocol. A transcript trans contains all messages send between Prove and
Verify and the input of Verify. We write View(Prove(.) � Verify(.)) to denote the
view of Verify. The view contains the transcript, all input to Verify including its
random coins and its internal state. W say that a function negl : N �→ R

+ is
negligible if for every constant c > 0 there exists a integer Nc ∈ N such that for
all λ > Nc we have negl(λ) < λ−c.

Standard Definitions. We use a number of standard cryptographic tools through-
out the paper, including: pseudorandom generators and Goldreich-Levin hard-
core bits [39], existential unforgeable and unique signature schemes [37,42],
zero-knowledge (ZK) and witness-indistinguishable (WI) argument systems,
non-interactive ZK arguments from non-falsifiable assumptions [35], dual-mode
witness-indistinguishable proofs [43], CCA1 secure and publicly deniable encryp-
tion [63], witness encryption [36] and extractable witness encryption [40],
indistinguishability obfuscation [3], and punctured pseudorandom functions
[13,14,50].

3 Explainable Arguments

In this section, we introduce the security notions for explainable arguments.

3.1 Interactive Explainable Arguments

In an interactive argument system, the prover uses a witness wit for statement
stmt to convince the verifier that the statement is true. The communication
between the prover and the verifier creates a transcript trans that contains all
the exchanged messages. An interactive explainable argument system allows a
prover with a different witness wit∗ to generate random coins coins for which
Prove(stmt,wit∗; coins) interacting with the same instance of the verifier (i.e.,
the verifier uses the same random coins) creates the same transcript trans. In
other words, this means that any prover with a valid witness can provide random
coins that would explain the interaction in trans. More formally.

Definition 1 (Interactive Explainable Arguments). An interactive argu-
ment system ΠR = (Prove,Verify) for language �LR is an interactive explainable
argument system if there exists an additional Expl algorithm:

– Expl(stmt,wit, trans): takes as input a statement stmt, any valid witness wit
(i.e. R(stmt,wit) = 1) and transcript trans, and outputs coins ∈ CoinProve

(i.e. coins that are in the space of the randomness used in Prove),

which satisfies the correctness definition below.

Explainable Arguments 65

Definition 2 (Correctness). For all security parameter λ, for all statements
stmt ∈ �LR, for all wit,wit∗ such that R(stmt,wit) = R(stmt,wit∗) = 1, we have

〈Verify(stmt) � Prove(stmt,wit)〉 =
〈Verify′(stmt; trans) � Prove(stmt,wit∗; coinsE)〉 = trans,

where coinsE ← Expl(stmt,wit∗, trans) and coinsE ∈ CoinProve and Verify′ sends
its messages as in trans as long as Prove answers as is trans. If the output of
Prove do not match trans, then Verify′ aborts and outputs ⊥.

Remark 1. Note that a naive way to implement the Expl algorithm would be
to set coinsE and make the Prove algorithm to “replay” the messages. How-
ever, this is obviously a scheme that would not be desirable, since an adversary
could easily distinguish such coins from honest ones. Therefore we require that
coinsE ∈ CoinProve to ensure that coinsE can be given as input to an honest
Prove algorithm.

The above definition constitutes a correctness definition for explainable argu-
ments and assumes that all parties are honest. Informally, we require that given a
witness and a transcript of an interaction between a verifier and a prover (with a
possibly different witness), Expl generates coins such that a honest prover returns
the same messages given that the verifier send its messages as in trans.

Below we describe explainability of a malicious verifier. Roughly speaking,
this property says that a transcript produced during an execution with a mali-
cious verifier, and a honest prover P , should be explainable. The goal of a verifier,
is to send such messages to the prover P , that P sends such responses that no
other prover (with a different witness) would send. If the adversary succeeds
then the transcript (possibly with P ’s random coins) can be used as a proof to
a third party, that P indeed took part in the communication. Remind that P
may be forced to reveal its random coins after completing the protocol.

Definition 3 (Malicious Verifier Explainability). For a security parameter
λ, we define the advantage AdvMVExpl

A (λ) of an adversary A = (A1,A2,A3) as

1 − Pr[〈A3(stmt; coinsA) � Prove(stmt,wit∗; coinsP)〉 = trans], where

(stmt,wit,wit∗, st) ← A1(λ),
trans = 〈coinsA ← A2(stmt; st) � Prove(stmt,wit)〉,

coinsP ← Expl(stmt,wit∗, trans),
wit 	= wit∗, R(stmt,wit) = R(stmt,wit∗) = 1,

where the probability is taken over the random coins of Prove. Furthermore, A3

sends the same messages to Prove as in trans as long as the responses from the
prover are as in trans.

We say that an interactive argument system is malicious verifier explainable
if for all adversaries A = (A1,A2,A3) such that A1,A2,A3 are PPT algorithms

66 L. Hanzlik and K. Kluczniak

there exists a negligible function negl(.) such that AdvMVExpl
A (λ) ≤ negl(λ). We

say that the argument system is malicious verifier statistically explainable if the
above holds for an unbounded adversary A.

Let us now consider a scenario where proving ownership of an argument is
beneficial to the prover, but at the same time, the system requires the proof to be
explainable. A malicious prover tries to prove the statement in a way that makes
it impossible for others to “claim” the generated proof. For this property, it is
easy to imagine a malicious prover that sends such messages to the verifier, that
the verifier accepts, and no other honest prover would ever send such messages.
In practice, we may imagine that an adversary runs a different implementation
of the prover, for which the distribution of the sent messages deviate from the
distribution of the original implementation. Later to “claim” the transcript that
adversary may prove that the transcript is indeed the result of the different
algorithm, not the honest one. Note that such a “claim” is sound if an honest
prover would never produce such messages. To prevent such attacks, we require
that there is only one (computationally feasible to find) valid way a prover can
respond to the messages from an honest verifier.

Definition 4 (Uniqueness/Malicious Prover Explainability). We define
the advantage AdvMPExpl

A (λ) of an adversary A = (A1,A2,A3) as

1 − Pr
[〈1 = Verify(stmt; coinsV) � A2(st1) → st2〉

	= 〈1 = Verify(stmt; coinsV) � A3(st2)〉
]

,

where st1, stmt ← A1(λ) and the probability is taken over the coins coinsV .
We say that an interactive argument system is malicious prover explainable

if for all PPT adversaries A there exists a negligible function negl(.) such that
AdvMPExpl

A (λ) ≤ negl(λ). We say that the system is malicious prover statistically
explainable if the above holds for an unbounded A.

Theorem 1. If (Prove,Verify,Expl) is a malicious verifier (statistical) explain-
able argument system then it is also (statistical) witness indistinguishable.

Definition 5. We say that an interactive argument system is fully explainable
if it is malicious prover explainable and malicious verifier explainable.

3.2 Non-interactive Explainable Arguments

Here we present definitions for non-interactive explainable arguments. Similar
to the interactive case, we begin by defining what it means that a system is
explainable.

Definition 6 (Non-Interactive Explainable Arguments). A non-inter-
active argument system ΠR = (Setup,Prove,Verify) for language �LR is a
non-interactive explainable argument system if there exists an additional Expl
algorithm:

Explainable Arguments 67

– Expl(crs, stmt,wit, arg): takes as input a statement stmt, any valid witness wit
and an argument arg, and outputs random coins coins

which satisfies the correctness definition below.

Definition 7 (Correctness). For all security parameter λ, for all statements
stmt ∈ �LR, for all wit,wit∗ such that R(stmt,wit) = R(stmt,wit∗) = 1, for all
random coins coinsP ∈ CoinProve, we have

Prove(crs, stmt,wit; coinsP) = Prove(crs, stmt,wit∗; coinsE)

where coinsE ← Expl(crs, stmt,wit∗, arg), coinsE ∈ CoinProve and crs ←
Setup(λ).

Now we define malicious setup explainability. Note that a malicious verifier
cannot influence the explainability of an argument because there is no interaction
with the prover. Hence, the malicious verifier from the interactive setting is
replaced with an untrusted setup. An adversary might generate parameters that
result in the Expl algorithm to output coins yielding a different argument or
even failing on certain witnesses. In some sense, we can think of the adversary
as wanting to subvert the common reference string against deniability of certain
“targeted” witnesses.

Definition 8 (Malicious Setup Explainability). We define the advantage
AdvMSExpl

A (λ) of an adversary A by the following probability

1 − Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

arg∗ = arg :

(stmt,wit,wit∗, crs) ← A(λ)
wit 	= wit∗

R(stmt,wit) = R(stmt,wit∗) = 1
arg ← Prove(crs, stmt,wit);

coinsP ← Expl(crs, stmt,wit∗, arg);
arg∗ ← Prove(crs, stmt,wit∗; coinsP)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the probability is taken over the random coins of the prover Prove. We say
that a non-interactive argument is malicious setup explainable if for all PPT
adversaries A there exists a negligible function negl(.) such that AdvMSExpl

A (λ) ≤
negl(λ). We say the that a non-interactive argument is malicious setup statis-
tically explainable if the above holds for an unbounded adversary A. Moreover,
we say that a non-interactive argument is perfectly malicious setup explainable
if AdvMSExpl

A (λ) = 0.

Theorem 2. If there exists a malicious setup explainable non-interactive argu-
ment, then there exists a two-move witness-indistinguishable argument, where the
verifier’s message is reusable. In other words, given a malicious setup explainable
non-interactive argument, we can build a private-coin ZAP.

Malicious prover explainability is defined similarly as in the case of inter-
active arguments. For the non-interactive setting, it is simpler to formalize the
definition, as we simply require the adversary to return two arguments that
verify correctly, but their canonical representation is different.

68 L. Hanzlik and K. Kluczniak

Definition 9 (Uniqueness/Malicious Prover Explainability). We define
the advantage of an adversary A against malicious prover explainability of
ExArg as AdvMPExpl

A (λ) = Pr[arg1 	= arg2] where crs ← Setup(λ) and
(stmt, arg1, arg2) ← A(λ) are such that Verify(crs, stmt, arg1) = Verify(crs, stmt,
arg2), and the probability is over the random coins of Setup. We say that a non-
interactive argument is malicious prover explainable if for all PPT adversaries
A there exists a negligible function negl(.) such that AdvMPExpl

A (λ) ≤ negl(λ). We
say that a non-interactive argument is malicious prover statistically explainable
if the above holds for an unbounded adversary A. Moreover, we say that an
argument system is a perfectly malicious prover explainable if AdvMPExpl

A (λ) = 0.

For full explainability, we combine both malicious prover and malicious ver-
ifier explainability.

Definition 10 (Full Explainability). We define the advantage of an adver-
sary A against full explainability of ExArg by the following probability

AdvFExplA (λ) = Pr[arg1 	= arg2]

where (stmt, crs, arg1, arg2) ← A(λ) is such that Verify(crs, stmt, arg1) =
Verify(crs, stmt, arg2). We say that a non-interactive argument is full explain-
able if for all PPT adversaries A, there exists a negligible function negl(.) such
that AdvFExplA (λ) ≤ negl(λ). We say that the non-interactive argument is full sta-
tistically explainable if the above holds for an unbound adversary A. Moreover,
we say that an argument system is perfectly full explainable if AdvFExplA (λ) = 0.

Theorem 3. If ExArg is a fully explainable argument, then ExArg is a malicious
setup and malicious prover explainable argument.

Theorem 4. Given that one-way functions and malicious prover selectively
sound non-interactive (resp. two-move) arguments for NP exist, then there exists
a witness encryption scheme for NP.

4 Non-interactive Explainable Arguments

In this section, we show that it is possible to construct malicious setup explain-
able non-interactive argument systems from falsifiable assumptions. We also
show a fully explainable argument assuming non-interactive zero-knowledge. As
both schemes are nearly identical and differ only in several lines, we will denote
the lines or specific algorithms with ◦ for the malicious setup explainable argu-
ment, and with †, we denote the code specific for the fully explainable argument.

Scheme 1 (Non-interactive Explainable Argument). Let ∇ = ◦ for the
malicious setup explainable argument, and ∇ = † for the fully explainable argu-
ment. Let DMWI be a dual-mode proof, NIWI be a non-interactive witness indis-
tinguishable proof, Com be an equivocal commitment scheme, Sig be a unique
signature scheme, and PRF be a punctured pseudorandom function. We con-
struct the non-interactive argument system ExArg∇ = (Setup,Prove,Verify) as
follows.

Explainable Arguments 69

Circuit for ProgProve1◦ and ProgProve1†

Hardwired: pp, crsDMWI,K

Input: (stmt,wit)
1
◦: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ⊥.

3 : else

4 : sks ← PRF.Eval(K, stmt)

5 : arg ← Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify

Hardwired: K

Input: (stmt)
1 : sks ← PRF.Eval(K, stmt)

2 : vks ← Sig.Setup(sks)

3 : return vks

Fig. 1. Circuits for ProgProve1◦, ProgProve
1
† and ProgVerify. Note that ProgProve differ

only in line 1.

Setup(λ, �LR):
1. Choose K ← PRF.Setup(λ) and crsDMWI ← DMWI.Setup(λ, modeSound;

coinsS), where coinsS are random coins.
2. OProve ← Obf(λ,ProgProve1∇[pp, crsDMWI,K]; coinsP), where ProgProve1∇

is given by Fig. 1 and coinsP are random coins.
3◦. Define statement stmt◦Setup as

{ ∃i∈[2],K,coinsP OProve ← Obf(λ,ProgProvei
◦[pp, crsDMWI, K]; coinsP) ∨

∃mode,coinsS crsDMWI ← DMWI.Setup(λ,mode; coinsS) ∧ mode = modeWI

}
.

3†. Define statement stmt†Setup as

{∃K,coinsP OProve ← Obf(λ,ProgProve1†[pp, crsDMWI,K]; coinsP)}.

4. Set witSetup = (1,K, coinsP).
5◦. π ← NIWI.Prove(stmt◦Setup,witSetup).
5†. π ← NIZK.Prove(stmt†Setup,witSetup).
6. Compute OVerify ← Obf(λ,ProgVerify[K]) and output crs =

(OProve, OVerify, pp, etd, crsDMWI, π).
Prove(crs, stmt,wit; r):

1◦. Set stmt◦Setup as in the setup algorithm.
1†. Set stmt†Setup as in the setup algorithm.
2◦. If NIWI.Verify(stmt◦Setup, π) = 0 return ⊥.
2†. If NIZK.Verify(stmt†Setup, π) = 0 return ⊥.
3◦. Run wit′ ← DMWI.Prove(crsDMWI, stmt,wit; r) and

arg ← OProve(stmt,wit′).
3†. Run arg ← OProve(stmt,wit).
4. Run vks ← OVerify(stmt).

70 L. Hanzlik and K. Kluczniak

5. If Sig.Verify(vks, arg, stmt) 	= 1 return ⊥.
6. Otherwise, return arg.

Verify(crs, stmt, arg):
1. Run vks ← OVerify(stmt).
2. Output Sig.Verify(vks, sig,msg)

Expl(crs, stmt,wit, arg):
1. Output 0.

Circuit for ProgProve2◦ and ProgProve2†

Hardwired: crsDMWI, pp

Kstmt∗ = PRF.Puncture(K, stmt∗)

Input: (stmt,wit, r)
1
◦: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ⊥.

3 : else

4 : sks ← PRF.Eval(Kstmt∗ , stmt)

5 : arg ← Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify∗

Hardwired: stmt∗, vk∗
s ,

Kstmt∗ = PRF.Puncture(K, stmt∗)

Input: (stmt)
1 : if stmt = stmt∗

2 : return vk∗
s

3 : else

4 : sks ← PRF.Eval(Kstmt∗ , stmt)

5 : vks ← Sig.Setup(sks)

6 : return vks

Fig. 2. Circuits for ProgProve2◦, ProgProve
2
† and ProgVerify∗ used in the soundness proof

of the non-interactive argument.

Theorem 5. Let ExArg◦ be the system given by Scheme 1. The system ExArg◦

is computationally sound (in the selective setting) assuming indistinguishability
obfuscation of Obf, pseudorandomness in punctured points of PRF, mode indis-
tinguishability of the DMWI scheme, and unforgeability of the signature scheme
(Fig. 2).

Theorem 6. Given that the signature scheme Sig is unique, NIWI is perfectly
sound, DMWI is a dual-mode proof, and all primitives are perfectly correct, the
argument system ExArg◦ is malicious setup explainable.

Theorem 7. Let ExArg† be the system given by Scheme 1. The system ExArg†

is computationally sound (in the selective setting), assuming indistinguishabil-
ity obfuscation of Obf, pseudorandomness in punctured points of PRF, zero-
knowledge of the NIZK scheme and unforgeability of the signature scheme.

Theorem 8. Given that the signature scheme Sig is unique, NIZK is sound, and
all primitives are perfectly correct, argument system ExArg† is fully explainable.

Corollary 1. The scheme is witness indistinguishable against a malicious setup.

Proof. Witness indistinguishability follows from explainability of the argument
system and Theorem 2.

Theorem 9. Let ExArg∇ be the system given by Scheme 1 for ∇ = ◦ or ∇ = †.
ExArg∇ is zero-knowledge in the common reference string model.

Explainable Arguments 71

5 Robust-Witness Encryption and Interactive
Explainable Arguments

We introduce robust witness encryption and show a generic transformation from
any standard witness encryption scheme to a robust witness encryption scheme.

Definition 11 (Robust Witness Encryption). We call a witness encryption
scheme WE = (Enc,Dec) a robust witness encryption scheme if it is correct,
secure and robust as defined below:

Robustness: A witness encryption scheme (Enc,Dec) is robust if for all PPT
adversaries A there exists a negligible function negl(.) such that

Pr

⎡
⎢⎢⎣m0 	= m1 :

R(stmt,wit0) = R(stmt,wit1) = 1 ∧
(stmt, ct,wit0,wit1) ← A(λ);

m0 ← Dec(stmt,wit0, ct)
m1 ← Dec(stmt,wit1, ct)

⎤
⎥⎥⎦ ≤ negl(λ),

We call the scheme perfectly robust if the above probability is always zero.

Below we define plaintext awareness [5], but tailored to the case of witness
encryption.

Definition 12 (Plaintext Aware Witness Encryption). Let WE = (Enc,
Dec) be a witness encryption scheme. We extend the scheme with an algorithm
Verify that on input a ciphertext ct and a statement stmt outputs a bit indicating
whether the ciphertext is in the ciphertext space or not. Additionally we define
an algorithm Setup that on input the security parameter λ outputs a common
reference string crs, and an algorithm Setup∗ that additionally outputs τ . We say
that the witness encryption scheme for a language �L ∈ NP is plaintext aware if
for all PPT adversaries A, there exists a negligible function negl(.) such that

| Pr[A(crs) = 1 : crs ← Setup(λ)]
−Pr[A(crs) = 0 : (crs, τ) ← Setup∗(λ)]| ≤ negl(λ),

and there exists a PPT extractor Ext such that

Pr

⎡
⎣msg ← Ext(stmt, ct, τ):

(crs, τ) ← Setup∗(λ);
(ct, stmt) ← A(crs);
Verify(stmt, ct) = 1

⎤
⎦ ≤ 1 − negl(λ)

where for all witnesses wit such that R(stmt,wit) = 1 we have msg = Dec(ct,wit),
and the probability is taken over the random coins of Setup and Setup∗.

Scheme 2 (Generic Transformation). Let WE = (Enc,Dec) be a witness
encryption scheme and NIZK = (NIZK.Prove,NIZK.Verify) be a proof system.
We construct a robust witness encryption scheme WErob as follows.

72 L. Hanzlik and K. Kluczniak

Encrob(λ, stmt,msg):
1. Compute ctmsg ← WE.Enc(λ, stmt,msg)
2. Let stmtNIZK be defined as

{∃msg ctmsg ← WE.Enc(λ, stmt,msg)}
3. Compute π ← NIZK.Prove(stmtNIZK,wit) using witness wit = (msg)
4. Return ct = (ctmsg, π).

Decrob(stmt,wit, ct):
1. Set the statement stmtNIZK as

{∃msg ctmsg ← WE.Enc(λ, stmt,msg)}
2. If NIZK.Verify(stmtNIZK, π) = 0, then return ⊥. Otherwise return

WE.Dec(stmt,wit, ctmsg)

Theorem 10 (Security and Extractability). Scheme 2 is a (extractably)
secure witness encryption if WE is a (extractably) secure witness encryption,
and NIZK is zero-knowledge (in the common reference string or RO model).

Theorem 11 (Robustness and Plaintext Awareness). Scheme 2 is robust
if the witness encryption scheme WE is perfectly correct, and the NIZK proof
system is perfectly sound (in the common reference string or RO model). If the
NIZK proof system is a proof of knowledge (in the common string or RO model),
then Scheme 2 is plaintext aware.

5.1 Fully Explainable Arguments from Robust Witness Encryption

In this subsection, we will tackle the problem of constructing fully explainable
arguments. The system is described in more detail by Scheme 3.

Scheme 3 (Interactive Explainable Argument). The argument system
consists of Prove, Verify and Expl, where the protocol between Prove and Verify
is specified as follows. Prove takes as input a statement stmt and a witness
wit, and Verify takes as input stmt. First Verify chooses r ←$ {0, 1}λ, com-
putes ct ← Encrob(λ, stmt, r) and sends ct to Prove. Then Prove computes
arg ← Decrob(stmt,wit, ct) and sends arg to Verify. Finally, Verify returns iff
arg = r. The explain algorithm Expl is as follows.

Expl(stmt,wit, trans): On input the statement stmt, the witness wit and a tran-
script trans, output ⊥.

Theorem 12 (Soundness). Scheme 3 is an argument system for NP language
�L assuming the witness encryption scheme WE for �L is secure. Furthermore,
if the underlying witness encryption scheme WE scheme is extractable, then
Scheme 3 is an argument of knowledge.

Theorem 13 (Zero-Knowledge). Scheme 3 is zero-knowledge given the
underlying witness encryption scheme WE is plaintext aware.

Explainable Arguments 73

Theorem 14 (Explainability). Scheme 3 is fully explainable assuming the
used witness encryption scheme is robust (or plaintext aware) and correct.

Remark 2. Scheme 3 is predictable in the sense that the verifier can “predict”
the value of the prover’s arguments/proof [33]. Furthermore, the protocol is
optimally laconic [12], as the verifier can encrypt single bits.

Theorem 15. Let WE be a (non-robust) perfectly correct witness encryption
scheme for NP. Let Π be an interactive public-coin zero-knowledge proof pro-
tocol for NP. Then there exists a malicious verifier explainable (and witness-
indistinguishable) argument for NP.

6 Applications

In this section, we show how to apply explainable arguments. We focus on con-
structing a CCA1 secure publicly deniable encryption scheme using as a building
block malicious verifier explainable arguments. Our transformation is based on
the one from Naor and Yung [56] but we replace the NIZK proof system with
a NIWI. In the full version we show how to build a deniable anonymous cre-
dential scheme from malicious prover explainable arguments. Here we note that
the anonymous credential system is a straightforward application of malicious
prover explainable arguments and standard signature schemes.

The main idea behind the Naor and Yung construction is to use two CPA
secure ciphertexts ct1, ct2 and a NIZK that both contain the same plaintext. The
soundness property ensures that a decryption oracle can use either of the secret
keys (since the decrypted message would be the same) and zero-knowledge allows
the security reduction to change the challenged ciphertext, i.e. change the two
CPA ciphertexts. We note that in our approach we replace NIZK with NIWI,
that to the best of our knowledge has not been do before.

Scheme 4 (Generic Transformation from CPA to CCA). Let E =
(KeyGencpa,Enccpa,Deccpa) be a CPA secure encryption scheme, (NIWI.Setup,
NIWI.Prove,NIWI.Verify) be a non-interactive witness-indistinguishable proof
system. Additionally we define the following statement stmtcpa be defined as

{(∃msg ct1 ← Enccpa(pk1,msg) ∧ ct2 ← Enccpa(pk2,msg)) ∨
(∃α,βHG(ct1, ct2) = (gα, gβ , gα·β))},

where HG is defined as above.

KeyGencca1(λ):
1. generate CPA secure encryption key pairs (pk1, sk1) ← KeyGencpa(λ) and

(pk2, sk2) ← KeyGencpa(λ),
2. generate a common reference string crs ← NIWI.Setup(λ),
3. set pkcca1 = (pk1, pk2, crs) and skcca1 = sk1.

Enccca1(pkcca1,msg):

74 L. Hanzlik and K. Kluczniak

1. compute ciphertexts ct1 ← Enccpa(pk1,msg) and ct2 ← Enccpa(pk2,msg),
2. compute NIWI proof Π ← NIWI.Prove(crs, stmtcpa, (msg),
3. return ciphertext ct = (ct1, ct2,Π).

Deccca1(skcca1, ct):
1. return ⊥ if NIWI.Verify(crs, stmtcpa,Π) = 0,
2. return msg ← Deccpa(sk1, ct1).

Theorem 16. Scheme 4 is an encryption scheme secure against non-adaptive
chosen ciphertext attacks (CCA1) in the random oracle model assuming the
encryption scheme E is an encryption scheme secure against chosen plaintext
attacks and NIWI is a sound and witness indistinguishable proof system.

Theorem 17. Scheme 4 is an publicly deniable encryption scheme secure
against non-adaptive chosen ciphertext attacks (CCA1) in the random oracle
model assuming the encryption scheme E is an publicly deniable encryption
scheme secure against chosen plaintext attacks and NIWI is a malicious setup
explainable argument system.

7 Conclusions

In this paper, we introduce new security definitions for interactive and non-
interactive argument systems that formally capture a property called explain-
ability. Such arguments can be used to construct CCA1 deniable encryption
and deniable anonymous authentication. We also introduced a new property for
witness encryption called robustness which can be of independent interest. An
interesting open question is whether such arguments systems can be constructed
from simpler primitives or we need such strong primitives because malicious
prover explainability implies uniqueness of the proof.

Acknowledgements. This work has been partially funded/supported by the German
Ministry for Education and Research through funding for the project CISPA-Stanford
Center for Cybersecurity (Funding numbers: 16KIS0762 and 16KIS0927).

References

1. Apon, D., Fan, X., Liu, F.-H.: Deniable attribute based encryption for branching
programs from LWE. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS,
vol. 9986, pp. 299–329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 12

2. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-45146-4_18

Explainable Arguments 75

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

6. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: 26th ACM STOC, pp. 544–553. ACM Press, May 1994

7. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds
for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 7

8. Bitansky, N., Choudhuri, A.R.: Characterizing deterministic-prover zero knowl-
edge. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp.
535–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 19

9. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

11. Bohli, J.-M., Steinwandt, R.: Deniable group key agreement. In: Nguyen, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 298–311. Springer, Heidelberg (2006).
https://doi.org/10.1007/11958239 20

12. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78372-7 8

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 15

14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

15. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

16. Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryption. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
807–835. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 27

17. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1614–1625.
ACM Press, October 2016

18. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS,
vol. 12110, pp. 220–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45374-9 8

19. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In:
Motiwalla, J., Tsudik, G. (eds.) ACM CCS 1999, pp. 46–51. ACM Press, November
1999

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-030-64375-1_19
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/11958239_20
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/978-3-030-45374-9_8

76 L. Hanzlik and K. Kluczniak

20. Dachman-Soled, D.: On the impossibility of sender-deniable public key encryption.
Cryptology ePrint Archive, Report 2012/727 (2012). https://eprint.iacr.org/2012/
727

21. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme from
a plaintext aware (sPA1) encryption scheme. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 37–55. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54631-0 3

22. De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS,
vol. 9614, pp. 196–222. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49384-7 8

23. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

24. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In:
Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp. 112–121. ACM Press,
November 2005

25. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J.
Cryptol. 22(4), 572–615 (2009)

26. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., Capitani di Vimercati, S.D. (eds.) ACM
CCS 2006, pp. 400–409. ACM Press, October/November 2006

27. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 28

28. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 10

29. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

30. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

31. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

32. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
pp. 409–418. ACM Press, May 1998

33. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In:
Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 121–150. Springer, Heidel-
berg (2017). https://doi.org/10.1007/978-3-662-54365-8 6

34. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

36. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

37. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 9

https://eprint.iacr.org/2012/727
https://eprint.iacr.org/2012/727
https://doi.org/10.1007/978-3-642-54631-0_3
https://doi.org/10.1007/978-3-642-54631-0_3
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/978-3-319-10879-7_28
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48910-X_9

Explainable Arguments 77

38. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computa-
tion. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22670-0 28

39. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

40. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

41. Goldwasser, S., Klein, S., Wichs, D.: The edited truth. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 305–340. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 11

42. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 16

43. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

44. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

45. Hanzlik, L., Kluczniak, K.: Explainable arguments. Cryptology ePrint Archive,
Report 2021/xxxx (2021, to appear). https://ia.cr/2021/xxxx

46. Hanzlik, L., Kluczniak, K., Kuty�lowski, M., Krzywiecki, �L: Mutual restricted iden-
tification. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp.
119–133. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53997-
8 8

47. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 38

48. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

49. Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (extended
abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 4

50. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013

51. Krzywiecki, L., Kluczniak, K., Kozie�l, P., Panwar, N.: Privacy-oriented dependency
via deniable sigma protocol. Comput. Secur. 79, 53–67 (2018)

52. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

53. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999

https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-319-70500-2_11
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://ia.cr/2021/xxxx
https://doi.org/10.1007/978-3-642-53997-8_8
https://doi.org/10.1007/978-3-642-53997-8_8
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-540-85230-8_4
https://doi.org/10.1007/3-540-45708-9_38

78 L. Hanzlik and K. Kluczniak

54. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

55. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 31

56. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

57. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 30

58. Park, S., Sealfon, A.: It wasn’t me! Repudiability and claimability of ring signa-
tures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 6

59. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

60. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

61. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

62. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

63. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June (2014)

64. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 32

65. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges
for secure messaging. Proc. Priv. Enhanc. Technol. 2018(1), 21–66 (2018)

66. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I.,
Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1211–1223. ACM Press, October
2015

67. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic
deniability of the signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spog-
nardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 188–209. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57878-7 10

https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-030-57878-7_10

Explainable Arguments 79

68. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro,
N.: Verifiable predicate encryption and applications to CCA security and anony-
mous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30057-8 15

69. Yao, A.C.-C., Zhao, Y.: Deniable internet key exchange. In: Zhou, J., Yung, M.
(eds.) ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13708-2 20

https://doi.org/10.1007/978-3-642-30057-8_15
https://doi.org/10.1007/978-3-642-30057-8_15
https://doi.org/10.1007/978-3-642-13708-2_20

MPCCache: Privacy-Preserving
Multi-Party Cooperative Cache Sharing

at the Edge

Duong Tung Nguyen and Ni Trieu(B)

Arizona State University, Tempe, AZ, USA
{duongnt,nitrieu}@asu.edu

Abstract. We present MPCCache, an efficient Multi-Party Cooperative
Cache sharing framework, which allows multiple network operators to
determine a set of common data items with the highest access frequencies
to be stored in their capacity-limited shared cache while guaranteeing the
privacy of their individual datasets. The technical core of our MPCCache
is a new construction that allows multiple parties to compute a specific
function on the intersection set of their datasets, without revealing both
the private data and the intersection itself to any party.

We evaluate our protocols to demonstrate their efficacy and practical-
ity. The numerical results show thatMPCCache scaleswell to large datasets
and achieves a few hundred times faster compared to a baseline scheme
that optimally combines existing MPC protocols.

1 Introduction

The explosive growth of data traffic due to the proliferation of wireless devices
and bandwidth-hungry applications leads to an ever-increasing capacity demand
across wireless networks to enable scalable wireless access with high quality of
service (QoS). This trend will likely continue for the near future due to the emer-
gence of new applications like augmented/virtual reality, 4K/8K UHD video, and
tactile Internet [13]. Thus, it is imperative for mobile operators to develop cost-
effective solutions to meet the soaring traffic demand and diverse requirements
of various services in the next generation communication network.

Enabled by the drastic reduction in data storage cost, edge caching has
appeared as a promising technology to tackle the aforementioned challenges in
wireless networks [3]. In practice, many users in the same service area may
request similar content such as highly-rated Netflix movies. Furthermore, most
user requests are associated with a small amount of popular content. Hence,
by proactively caching popular content at the network edge (e.g., at base sta-
tions, edge clouds) in advance during off-peak times, a portion of requests during
peak hours can be served locally right at the edge instead of going all the way
through the mobile core and the Internet to reach the origin servers. The new
edge caching paradigm can significantly reduce duplicate data transmission, alle-
viate the backhaul capacity requirement, mitigate backbone network congestion,
increase network throughput, and improve user experience [1,3,13,37].
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 80–99, 2022.
https://doi.org/10.1007/978-3-031-18283-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_5

MPCCache 81

Motivation. With edge caching, the advantages brought by cooperation become
clear. Each operator can maintain a private cache and share a shared cache with
others. Although the benefits of edge caching have been studied extensively in
the previous literature along with many real-world deployments [1,3,37], most of
the existing works on cooperative edge caching consider cooperation among edge
caches owned by a single operator only [27,37,38]. The potential of cache cooper-
ation among multiple operators has been overlooked. For cooperative cache shar-
ing, the data privacy of individual Telcos is important. For example, if TelcoA
knows the access pattern of subscribers of TelcoB, TelcoA can learn characteris-
tics of TelcoB’s subscribers and design incentive schemes and services to attract
these subscribers to switch to TelcoA. Therefore, it is imperative to study vari-
ous mechanisms that provide the benefits of cache sharing without compromising
privacy.

Contributions. We introduce an MPCCache scheme to tackle the cooperative
content caching problem at the network edge where multiple semi-honest par-
ties (i.e., network operators) can jointly cache common data items in a shared
cache. The problem is to identify the set of common items with the highest
access frequency to be cached in the shared cache while respecting the privacy
of each individual party. To the best of our knowledge, we are among the first
to realize and formally examine the multi-party cooperative caching problem by
exploiting the non-rivalry of cached data items, and tackle this problem through
the lens of secure multi-party computation. We introduce an efficient construc-
tion that outputs only the result of a specific function computed securely on the
intersection set, (i.e., find k best items in the intersection set) without reveal-
ing the private data of individual parties as well as the intersection itself to
any party, and works for the multi-party setting with more than two parties. In
addition, we propose an efficient top-k algorithm that achieves an approximate

log2(m)(
log(k)+2

)
log(k)

× improvement compared with the prior top-k algorithms, where

m is the size of the dataset.
We demonstrate the practicality of our protocol with experimental numbers.

For instance, for the setting of 8 parties each with a data-set of 216 records,
our decentralized protocol requires 5 min to compute k-priority common items
for k = 28. We also propose an optimized server-aid MPCCache construction,
which is scalable for large datasets and a number of parties. With 16 parties,
each has 220 records, our optimized scheme takes only 8 min to compute the
k-priority common items for k = 28. MPCCache aims at proactive caching where
caches are refreshed periodically (e.g., hourly). Therefore, the running time of
MPCCache is practical in our application.

In addition to cooperative cache sharing as our main motivation, we believe
that the proposed techniques can find applications in other areas as well.

2 Related Work and Technical Overview of MPCCache

Consider a single party with a set of items S. Each item includes an identity
x (i.e., a file name, a content ID) and its associated value v. For each set S,

82 D. T. Nguyen and N. Trieu

Parameters: n parties Pi∈[n], each has mi items, a threshold k, where k is much
smaller than the intersection size.
Functionality:
• Wait for an input Si = {(xi

1, v
i
1), . . . , (xi

mi
, vi

mi
)} ⊂ ({0, 1}κ, {0, 1}θ) from Pi

• Let I =
⋂

i∈[n]{xi
1, . . . , x

i
mi

} to be the intersection set. For each x� ∈ I, compute
the sum v� of associated values, i.e., v� =

∑n
i=1 vi

ji where (x�, vi
ji) ∈ Si

• Give parties {x�
1, . . . , x

�
k} where v�

1 , . . . , v�
k are k largest numbers among

v�
1 , . . . , v�

|I|.

Fig. 1. The MPCCache functionality

an element (x, v) is said to belong to a set of k-priority elements of S if its
associated value v is one of the k-largest values in S. Note that the value of
each content item may represent the number of predicted access frequency of
the content or the benefit (valuation) of the operator for the cached content.
Each network operator has its own criteria to define the value for each content
that can be stored in the shared edge cache space. How to define the value for
each content is beyond the scope of this work. In this work, we assume that the
parties are truthful by using their true valuations for each content item in their
databases. It is because the access frequency of each party to each cached file
is measurable and known. Additionally, some economic penalty schemes can be
used to enforce truthfulness as mentioned in the full version of the paper [25].

Since the cache is shared among the operators, they would like to store only
common content items in the cache. Here, a common item refers to an item
(based on identity) that is owned by every party. The common items with the
highest values will be placed in the shared cache. The value of a common item
is defined as the sum of the individual values of the operators for the item. Con-
cretely, we consider the cooperative caching problem in the multi-party setting
where each party Pi has a set Si = {(xi

1, v
i
1), . . . , (x

i
mi

, vi
mi

)}. Without loss of
generality, we assume that all parties have the same set size m. An item (x�, v�)
is defined to belong to the set of the k-priority common elements if it satisfies
the two following conditions: (1) x� is the common identity of all parties; (2)
(x�, v�) are the k-priority elements of S� = {(x�

1, v
�
1), . . . , (x

�
|I|, v

�
|I|)}, where v�

i is
the sum of the values associated with these common identities from each party,
and I =

⋂
i∈[n]{xi

1, . . . , x
i
mi

} is the intersection set with its size |I|. In the setting,
we consider the input datasets of each Pi contain proprietary information, thus
none of the parties are willing to share its data with the other. We describe the
ideal functionality of MPCCache in Fig. 1. For simplicity, we remove under-script
of the common item x� and clarify that a pair (x�, vi

ji
) ∈ Si belongs to Pi.

A closely related work to MPCCache is a private set intersection (PSI).
Recall that the functionality of PSI enables n parties with respective input sets
Xi∈[n] to compute the intersection itself

⋂
i∈[n] Xi without revealing any infor-

mation about the items which are not in the intersection. However, MPCCache
requires to evaluate a top-K computation on the top of the intersection

⋂
i∈[n] Xi

while also keeping the intersection secret from parties. The work [8,21,29,32]

MPCCache 83

proposed optimized circuits for computing on the intersection by deciding which
items of the parties need to be compared. However, their constructions only
work for the two-party setting. Most of the existing multi-party PSI construc-
tions [10,17,20,24,33] output the intersection itself. Only very few works [18,23]
studied some specific functions on the intersection. While [18] does not deal
with the intersection set of all parties (in particular, an item in the output set
in [18] is not necessarily a common item of all parties), [23] finds common items
with the highest preference (rank) among all parties. [23] can be extended to
support MPCCache which is a general case of the rank computation. However,
the extended protocol is very expensive since if an item has an associated value
v, [23] represents the item by replicating it v times. For ranking, their solution
is reasonable with small v but for our MPCCache it is not suitable since v can
be a very large value. We describe a detailed discussion in the full version of
the paper [25]. The work of [31] proposes MPCircuits, a customized MPC circuit.
One can extend MPCircuits to identify the secret share of the intersection and
use generic MPC protocols to compute a top-k function on the secret-shared
intersection set. However, the number of secure comparisons inside MPCircuits
is large and depends on the number of parties. A concurrent and independent
work by Chandran et al. [7] is the state-of-the-art multi-party circuit-PSI, but
only supports a weaker adversary, who may corrupt at most t < n/2 the parties.
Moreover, in terms of theoretical complexity comparisons, [7] is expensive than
ours. We explicitly compare our proposed MPCCache with the MPCircuits and
[7] in Sect. 6.3.

Our decentralized MPCCache construction contains two main phases. The
first one is to obliviously identify the common items (i.e., items in the intersection
set) and aggregate their associated values of the common items in the multi-
party setting. In particular, if all parties have the same x� in their set, they
obtain secret shares of the sum of the associated values v� =

∑n
i=1 vi

ji
where

(x�, vi
ji

) ∈ Si. Otherwise, v� equals to zero and it should not be counted as
a k-priority element. A more detailed overview of the approach is presented in
Sect. 4. It is worth mentioning that the first phase does not leak the intersection
set to any party. The second phase takes these secret shares which are either
the zero value or the correct sum of the associated values of common items,
and outputs k-priority items. To privately choose the k-priority elements that are
secret shared by n parties, one could study top-k algorithms.

In MPC setting, a popular method for securely finding the top-k elements
is to use an oblivious sort (i.e., parties jointly sort the dataset in decreasing
order of the associated values, and pick the k largest values). The most practical
algorithm is Batcher’s network [4], which computational and communication
complexity are O(m log2(m)) and O(�m log2(m)), respectively, where m is the
size of the dataset and � is the bit-length of the element (see the full version
of the paper [25] for more detail). To output the index of the k largest values,
we also need to keep track of their indexes, therefore, the total communication
complexity of oblivious Batcher’s network is O((�+log(m))m log2(m)). Another
approach to compute k-priority elements is to use an oblivious heap that allows

84 D. T. Nguyen and N. Trieu

to get a maximum element from the heap (ExtractMax). This solution requires
to call ExtractMax k times, which leads to a number of rounds of the interaction
of at least O(k log(m)).

In MPCCache, the size of an edge cache k is usually much smaller than the size
of the dataset m. In addition, it is also much smaller than the caching facility at
the core of the network operator. Since we are motivated by applications where
k � m, we propose a new protocol with computational and communication
overhead of O(m log2(k)) of secure comparisons and O((� + log(m))m log2(k))
bits, respectively. Our protocol requires O(log(m)) rounds. Concretely, we show
an approximate log2(m)(

log(k)+2
)
log(k)

× improvement compared with the prior work.

Recently, [9] presents an approximate top-K selection with complexity of
O(m+k2) comparisons and O((�+log(m))(m+k2) bits. One could integrate their
algorithm in the second phase of our scheme to achieve better performance. In
applications where exact top-K selection is required, our k-priority is preferable.

Our decentralized protocol supports the full corrupted majority, which means
that if any subset of parties is corrupted, they learn nothing except the protocol
output. In this paper, we also present the optimization for MPCCache in the
non-colluding semi-honest setting in which we assume to know two non-colluding
parties. This model can be considered as the server-aided model where clients
obliviously distribute (secret share) their private database to two non-colluding
servers. Our optimized server-aided MPCCache construction achieves almost the
same cost as that of our two-party decentralized protocol.

3 Cryptographic Preliminaries

In this work, the computational and statistical security parameters are denoted
by κ, λ, respectively. We use [.] notation to refer to a set, and [i, j] to denote the
set {i, . . . , j}. The additive secret sharing of a value x is defined as �x�.

Secret Sharing. To additively secret share �x� an �-bit value x of the party
Pi to other parties, he first chooses xi ← Z2� uniformly at random such that
x =

∑n
j=1 xj mod 2�, and then sends each xj to the party Pj . For ease of

composition, we omit the mod. To reconstruct an additive shared value �x�, all
parties Pj sends �x� = xj to the party Pi, who locally reconstructs the secret
value by computing x ←

∑n
i=1 xj . In this work, we also use Boolean sharing in

the binary field. Boolean sharing can be seen as additive sharing in the field Z2.

Oblivious Key-Value Store (OKVS). An OKVS [14] is a data structure
in which a sender, holding a set of key-value mapping Γ = {(ki, vi), i ∈ [n]}
with pseudo-random vi, wishes to give that mapping over to a receiver who can
evaluate the mapping on any input but without revealing the keys ki. Formally,
an OKVS consists of two algorithms: Encode(Γ) → T is a randomized algorithm
that takes as input a set of n key-value pairs Γ = {(ki, vi)i∈[n]} from the domain
K × V, outputs a table T ; and Decode(k, T) → v is a deterministic algorithm
that takes as input a table T , a key k and outputs a value v.

MPCCache 85

The correctness of the OKVS is that if for all key-value pairs A ⊆ K × V
with distinct keys and pseudo-random values, Encode(A) = T and (k, v) ∈ A
then Decode(k, T) = v. An OKVS is secure if the values vi are chosen uniformly
then the output of Encode hides the choice of the keys ki.

Garbled Circuit. An ideal functionality GC [5,16,36] is to take the inputs xi

from party Pi, and computes a function f on them without revealing the parties’
inputs. We use Yao [36] and BMR-style protocols [5,6] for two-party and multi-
party GC, respectively. In our protocol, we use f as “less than” and “equality”
where inputs are secretly shared amongst all parties. For example, a “less than”
GC takes the parties’ secret shares �x� and �y� as input, and output the shares
of 1 if x < y and 0 otherwise. We denote the GC by �z� ← GC(�x�, �y�, f).

Oblivious Sort and Merge. The main building block of the sorting algorithm
is Compare-Swap operation that takes the secret shares of two values x and y,
then compares and swaps them if they are out of order. It is typical to measure
the complexity of oblivious sort/merge based on the number of Compare-Swap.

Oblivious Sort: We denote the oblivious sorting by {�xi�i∈[m]} ←
Fobv-sort({�xi�i∈[m]} which takes the secret share of m values and returns their
refresh shares in which all xi∈[m] are sorted in decreasing order. As discussed
in [25], Batcher’s network for oblivious sort requires 1

4m log2(m) Compare-Swap
operations.

Oblivious Merge: Given two sorted sequences, each of size m, we also need
to merge them into a sorted array, which is part of the Batcher’s obliv-
ious merge sort. It is possible to divide the input sequences into their
odd and even parts, and then combine them into an interleaved sequence.
This oblivious merge requires 1

2m log(m) Compare-Swap operations and has
a depth of log(m). We denote the oblivious merge by {�z1�, . . . , �z2m�} ←
Fobv-merge({�x1�, . . . , �xm�}, {�y1�, . . . , �ym�}).

4 Our Decentralized MPCCache Construction

Recall that our MPCCache construction contains two main parts. The first phase
allows parties to securely generate shares of the sum of the associated values
under a condition. More precisely, if all parties have x in their sets then the sum of
their obtained shares is equal to the sum of the associated values for the common
x. Otherwise, the sum of the shares is zero. These shares are forwarded as input
to the second phase, which ignores the zero sum and returns only k-priority
common items. For the second phase, we first present the Fk-prior functionality
of computing k-priority elements in Fig. 2, and use it as a black box in our
MPCCache construction. We describe our Fk-prior construction in Sect. 4.3.

4.1 A Special Case of Our First Phase

We start with a special case. Suppose that each party Pi∈[n] has only one item
(xi, vi) in its set Si. Our first phase must satisfy the following conditions:

86 D. T. Nguyen and N. Trieu

Fig. 2. The k-priority functionality (Fk-prior)

(1) If all xi are equal, the parties obtain secret shares of the sum of the associated
values as v� =

∑n
i=1 vi.

(2) Otherwise, the parties obtain secret shares of zero.
(3) The protocol is secure in the semi-honest model, against any number of

corrupt, colluding parties.

The requirement (3) implies that all corrupt parties should learn nothing
about the input of honest parties. To satisfying (3), the protocol must ensure
that parties do not learn which of the cases (1) or (2) occurs.

We assume that there is a leader party (say P1) who interacts with other
parties to output (1). The protocol works as follows. For (xi, vi), Pi�=1 chooses
a secret si ∈ {0, 1}θ uniformly at random, and defines wi def= vi − si (for
ease of composition we omit the mod). He then computes a one-time pad
as OTP(xi, wi) = xi ⊕ wi (for simplicity, we assume that the domain size
of xi and wi are equal; it is also possible to use H(xi) instead of the orig-
inal item xi, where H : {0, 1}� → {0, 1}� is a collision-resistant hash func-
tion). The Pi�=1 then sends the ciphertext to the leader P1. Using his item x1,
the P1 decrypts the received ciphertext and obtains wi if x1 = xi, random
otherwise. Clearly, if all parties have the same x1, P1 receives wi = vi − si

from Pi�=1. Now, P1 computes s1
def= v1 +

∑n
i=2 wi. It easy to verify that∑n

i=1 si = (v1 +
∑n

i=2 wi) +
∑n

i=2 si = v1 +
∑n

i=2(w
i + si) =

∑n
i=1 vi = v�.

By doing so, each Pi has an additive secret share si of v� as required in (1).
In case that not all xi are equal, the sum of all the shares

∑n
i=1 si is a random

value since P1 receives a random (incorrect) wi from some party/parties. To
satisfy (2), we use GC to turn the random sum

∑n
i=1 si to zero. However, for

(3), the random sum and the correct sum are indistinguishable from the view
of all parties. One might make use of GC by computing n equality comparisons
to check whether all xi is equal. If yes, the circuit gives refreshed shares of
the correct sum, otherwise shares of zero. This solution requires O(n) equality
comparisons inside MPC. We aim to minimize the number of equality tests.

We improve the above solution using zero-sharing [2,20,22]. An advantage of
the zero-sharing is that the party can non-interactively generate a Boolean share
of zero after a one-time setup. Let’s denote the zero share of Pi to be zi. We
have

⊕n
i=1 zi = 0. Similar to the protocol described above to achieve (1): Instead

of (xi, vi), the Pi uses (xi, zi) as input, and receives a Boolean secret share ti.
If all xi are equal, the XOR of all obtained shares is equal to the XOR of all
associated values zi. In other words,

⊕n
i=1 ti =

⊕n
i=1 zi = 0. Otherwise,

⊕n
i=1 ti

MPCCache 87

is random. These obtained shares are used as an if condition to output either
(1) or (2). Concretely, parties jointly execute a garbled circuit to check whether⊕n

i=1 ti = 0. If yes (i.e. parties have the same item), the circuit re-randomizes
the shares of v�, otherwise, generates the shares of zero. The zero-sharing based
solution requires only one equality comparison inside MPC.

We now describe a detailed construction to generate zero-sharing [20] and
how to compute ti, wi more efficiently.

a) Zero-sharing key setup: one key is shared between every pair of parties. For
example, the key kij is for a pair (Pi, Pj) where i, j ∈ [n], i < j. It can be
done as Pi randomly chooses ki,j ← {0, 1}κ and sends it to Pj . Let’s denote a
set of the zero-sharing keys of Pi as Ki = {ki,1, . . . , ki,(i−1), ki,(i+1), . . . , ki,n}.

b) Generating zero share: Given a PRF F : {0, 1}κ × {0, 1}∗ → {0, 1}∗, a set of
keys Ki and a value x, each Pi locally computes a zero share of x as zi =⊕n

j=1 F (ki,j , x). Clearly, each term F (ki,j , x) appears exactly twice in the

expression
⊕n

i=1 zi. Thus,
⊕n

i=1 zi = 0. We define f z(Ki, x) def=
⊕n

j=1 F (kij , x)
for Pi to generate the zero share of x.

c) Computing s1 and t1: the Pi�=1 chooses random si and ti. For an input (xi, vi)
and a zero share zi ← f z(Ki, x

i), he computes wi def= vi − si and yi def= zi ⊕ ti

and sends the one-time pad OTP(xi, yi||wi) to the leader P1 (assume that
the length of xi and yi||wi are equal). Using his item x1 as a decryption
key, P1 obtains the correct yi||wi if x1 = xi, random otherwise. P1 computes
s1

def= v1 +
∑n

i=2 wi and t1
def= (

⊕n
i=2 yi) ⊕ z1. At this point, each Pi has secret

shares si and ti such that
∑n

i=1 si = v� and
⊕n

i=1 ti = 0 if all xi are equal.

4.2 A General Case of Our First Phase

So far, we only consider the simple case where each party has only one item.
In this section, we show how to efficiently extend our protocol to support the
general case where m > 1. At the high-level idea, we use hashing scheme to map
the common items into the same bin and then reply on OKVS to compress each
bin into a share so that the parties can evaluate MPCCache bin-by-bin efficiently.

Similar to many PSI constructions [19,28], we use two popular hashing
schemes: Cuckoo and Simple. The leader P1 uses Cuckoo hashing [26] with k̃ = 3
hash functions to map his {x1

1, . . . , x
1
m} into β = 1.27m bins. He then pads his bin

with dummy items so that each bin contains exactly one item. This step is to hide
his actual Cuckoo bin size. On the other hand, each Pi�=1 use the same k̃ Cuckoo
hash functions to place its {xi

1, . . . , x
i
m} into β bins (so-called Simple hashing),

each item is placed into k̃ bins with high probability. The Pi�=1 also pads his bin
with dummy items so that each bin contains exactly γ = 2 log(m) items. Accord-
ing to [12,28], the parameters β, k̃, γ are chosen so that with the probability 1−2−λ

every Cuckoo bin contains at most one item and no Simple bin contains more than
γ items. More detail is described in the full version of the paper [25].

For each bin bth, P1 and Pi�=1 can run a special-case protocol described in
Sect. 4.1. In particular, let Bi[b] denote the set of items in the bth bin of Pi. All

88 D. T. Nguyen and N. Trieu

parties locally generate zero shares zi
j ← f z(Ki, x

i
j). The Pi�=1 locally chooses

random values si
b and tib. For each (xi

j , v
i
j) ∈ Bi[b], Pi�=1 computes wi

j
def= vi

j − si
b

and yi
j

def= zi
j ⊕ tib and sends the one-time pad ciphertext OTP(xi

j , y
i
j ||wi

j) to the
leader P1. Using his item x1

b ∈ B1[b] as a decryption key, P1 obtains ŷi
j ||ŵi

j which
equals yi

j ||wi
j if x1

b = xi
j , random otherwise. Since there are γ values ŷi

j ||ŵi
j , each

for a pair in Bi[b], obtained from Pi�=1, the P1 has γn−1 possible ways to choose
ji ∈ [γ] and compute his share s1b

def= v1
b +

∑n
i=2 ŵi

ji
and t1b

def=
⊕n

i=2 ŷi
ji

⊕z1b . Thus,
this solution requires γn−1 equality comparisons to check all combinations of
whether

⊕n
i=1 tib = 0 to determine whether x1

b is common.
To improve the above computation, we rely on an OKVS data structure in

order that P1 learns from Pi�=1 only one pair {ŷi, ŵi} per bin, instead of γ pairs
per bin. More precisely, for each bin b, the party Pi�=1 creates a set of points
Γ i

b = {(xi
j , y

i
j ||wi

j) | xi
j ∈ Bi[b]}, encodes it as Encode(Γ i

b) → T i
b and sends the

OKVS table T i
b to the leader P1. Thanks to the oblivious property of OKVS, we

no longer need the one-time pad encryption. Using x1
b , the P1 decodes T i

b and
obtains ŷi

b||ŵi
b ← Decode(x1

b , T i
b). Note that, if x1

b ∈ Bi�=1[b], ŷi
b||ŵi

b equals to a
yi

ji
||wi

ji
that was encoded in T i

b , and otherwise, random.
In summary, if all parties have x1

b in their bth bin, the leader P1 receives
ŵi

b = vi
ji

−si
b and ŷi

b = zi
j ⊕ tib from the corresponding OKVS execution involving

Pi�=1. The leader computes s1b
def= v1

b +
∑n

i=2 ŵi
b. If all parties have x1

b , we have∑n
i=1 si

b is equal to the sum of the associated values corresponding with the
identity x1

b . Similarly, when defining t1b
def= (

⊕n
i=2 ŷi

b) ⊕ z1b , we have
⊕n

i=1 tib = 0
if all parties have x1

b . Consider a case that some parties Pi�=1 might not hold the
item x1

b ∈ B1[b] that P1 has, the corresponding OKVS with these parties gives
P1 random ŷi

b||ŵi
b. Thus t1b

def= (
⊕n

i=2 ŷi
b) ⊕ z1b is random, so is

⊕n
i=1 tib.

Similar to Sect. 4.1, we use GC to check whether
⊕n

i=1 tib = 0 for the bin b,
and outputs either refreshed shares of

∑n
i=1 si

b or shares of zero. Since P1 only
has one s1b , the protocol only needs to execute one comparison circuit per bin,
thus the number of equality tests needed is linear in the number of the bins.

Even though Pi�=1 uses the same offset si
b, t

i
b per bin, all wi

j and yi
j are random

(assume that vi
j is randomly distributed). In addition, the OKVS only gives P1

one pair per bin. Therefore, as long as the OKVS used is secure, so is our first
phase of MPCCache construction. We formalize and prove secure our first phase
which is presented, together with proof of our MPCCache security in Sect. 4.4.

4.3 Our Second Phase: k-priority Construction

In this section, we measure the complexity of our k-priority protocol based on
the number of secure Compare-Swap operations. As discussed in Sect. 2, one could
use oblivious sorting to sort the input set and then take the indexes of k biggest
values. This approach requires about 1

4m log2(m) Compare-Swap operations and
the depth of log(m). In the following, we describe our simple construction which
costs

(
1
4 log(k)+ 1

2

)
m log(k)− 1

2k log(k) Compare-Swap with the same depth. The

proposed algorithm achieves an approximate log2(m)(
log(k)+2

)
log(k)

× improvement.

MPCCache 89

Fig. 3. Our decentralized MPCCache construction.

The main idea of our construction is that parties divide the input set into
�m

k 	 groups, each has k items except possibly the last group which may have
less than k items (without loss of generality, we assume that m is divisible by
k). Parties then execute an oblivious sorting invocation within each group to
sort these values of this group in decreasing order. Unlike the recent work [9]
for approximate top-K selection where it selects the maximum element within
each group for further computation, we select the top-K elements of two neigh-
bor groups. Concretely, the oblivious merger is built on top of each two sorted
neighbor groups. We select only a set of the top-K elements from each merger
and recursively merge two selected sets until reaching the final result.

Sorting each group requires 1
4k log2(k) Compare-Swap invocations, thus, for

m
k groups the total Compare-Swap operations needed is m

k

(
1
4k log2(k)

)
. The

90 D. T. Nguyen and N. Trieu

oblivious odd-even mergers are performed in a binary tree structure. The merger
of two sorted neighbor groups, each has k items, is computed at each node of
the tree. Unlike the sorting algorithm, we truncate this resulted array, maintain
the secret shares of only k largest sorted numbers among these two groups, and
throw out the rest of k numbers. By doing so, instead of 2k, only k items are for-
warded to the next odd-even merger. The number of Compare-Swap required for
each merger does not blow up, and is equal to 1

2k log(k). After (m
k −1) recursive

oblivious merger invocations, parties obtain the secret share of the k largest val-
ues among the input set. In summary, our secure k-priority construction requires(
1
4 log(k) + 1

2

)
m log(k) − 1

2k log(k) Compare-Swap operations.
The above discussion gives parties the secret shares of k largest values. To

output their indexes, before running our k-priority protocol we attach the index
with its value using the concatenation ||. Namely, we use (� + �log(m))-bit
string to represent the input. The first � bits to store the additive share �vi� and
the last �log(m)	 bits to represent the index i. Therefore, within a group the
oblivious sorting takes {�vi�||i, ..., �vi+k−1�||(i + k − 1)} as input, use the shares
�vj�,∀j ∈ [i, i+k−1] for the secure comparison. The algorithm outputs the secret
shares of the indexes, re-randomizes the shares of the values and swaps them if
needed. The output of the modified oblivious sorting is {�vi1 ||i1�, ..., �vik

||ik�}
where the output values {vi1 , . . . , vik

} ⊂ {vi, . . . , vi+k−1} are sorted. Similarly,
we modify the oblivious merger structure to maintain the indexes. At the end
of the protocol, parties obtain the secret share of the indexes of k largest values,
which allows them jointly reconstruct the secret indexes.

Figure 4 presents our k-priority construction which security proof is given in
the full version of the paper [25].

4.4 Putting All Together: MPCCache

We formally describe our semi-honest MPCCache construction in Fig. 3. From the
preceding description, the cuckoo-simple hashing maps the same items into the
same bin. Thus, for each bin #b, if parties have the same x1

b ∈ B1[b], they obtain
the secret share of the sum of all corresponding associated values. Otherwise,
they receive the secret share of zero (in practice, the sum of all parties’ associated
values for items in the intersection is not equal to zero). In our protocol, the
equation

⊕n
i=1 tib = 0 determines whether the item x1

b is common. We choose
the bit-length of the zero share to be λ + log(n) to ensure that the probability
of the false positive event for this equation is overwhelming (1 − 2−λ).

The second step of the online phase takes the shares from parties, and returns
the indexes of k-priority common elements. Since k must be less than or equal
to the intersection size, the obtained results will not contain an index whose
value is equal to zero. In other words, the output of our protocol satisfies the
MPCCache conditions since the identity is common and the sum of the values
associated corresponding to this identity is k-largest.

The security of our decentralized MPCCache is based on OKVS and Fk-prior

primitives. Its formal proof is given in the full version of the paper [25].

MPCCache 91

Fig. 4. Our secure k-priority construction

5 Our Server-Aided MPCCache

In this section, we show an optimization to improve the efficiency of MPCCache.
We assume that P1 and P2 are two non-colluding servers, and we call other
parties as users. The optimized protocol consists of two phases. In the first one,
each user interacts with the servers so that each server holds the same secret
value, chosen by all users, for the common identifies that both servers and all
users have. The servers also obtain the additive secret share of the sum of all
the associated values corresponding to these common items. In a case that an
identity xe

j of the server Pe∈{1,2} is not common, this server receives a random
value. This phase can be considered as each user distributes a share of zero
and a share of its associated value under a “common” condition. Note that,
if even two servers collude they only learn the intersection items and nothing
else, which provides a stronger security guarantee than the standard server-aided
setting mentioned in the full version [25]. Our second phase involves only the
servers’ computation, which can be done by our 2-party decentralized MPCCache
described in Sect. 4.4.

92 D. T. Nguyen and N. Trieu

Parameters:
• Set size m, a bit-length θ, security parameter λ, and n parties Pi∈[n].
• A two-party decentralizedMPCCache, and an OKVS with Encode and Decode.

Input of party Pi∈[n]: A set of key-value pairs Si = {(xi
1, v

i
1), . . . , (xi

m, vi
m)}

Protocol:
I. Centralization.
1. Each user Pi∈[3,n] chooses random zi

j ← {0, 1}λ+log(n) and si
j ← {0, 1}θ,

and generates two sets Γ e,i = {(xi
j , z

i
j ||we,i

j)}, where w1,i
j

def= si
j and w2,i

j

def=
vi

j − si
j .

2. Each user Pi∈[3,n] encodes Γ e,i as Encode(Γ e,i) → T e,i and sends T e,i to
Pe∈{1,2} who computes Decode(xe

j , T e,i) and obtains ẑe,i
j ||ŵe,i

j .

3. For j ∈ [m], each Pe∈{1,2} computes ye
j

def=
⊕n

i=3 ẑe,i
j and se

j
def= ve

j+
∑n

i=3 ẑe,i
j .

II. Server-working. Two servers Pe∈{1,2} invoke an instance of MPCCache
where Pe’s input is a set {(ye

1, s
e
1), . . . , (ye

m, se
m)} and learns k-priority com-

mon items.

Fig. 5. Our server-aided MPCCache construction.

More concretely, in the first phase, each user Pi∈[3,n] chooses random zi
j ←

{0, 1}λ+log(n) and si
j ← {0, 1}θ, and then defines w1,i

j
def= si

j , and w2,i
j

def= vi
j − si

j .
Next, Pi∈[3,n] generates two sets of key-value points Γ e,i = {(xi

j , z
i
j ||w

e,i
j)},∀e ∈

{1, 2}, computes T e,i = Encode(Γ e,i), and sends T e,i to the server Pe. Let’s
ẑe,i
j ||ŵe,i

j ← Decode(xe
j , T e,i) be an output of the OKVS decoding computed by

Pe∈{1,2}. If two servers have the same item x1
k = x2

k′ which is equal to the item
xi

j of the user Pi, we have ẑ1,i
k = ẑ2,i

k′ = zi
j and ŵ1,i

k + ŵ2,i
k′ = vi

j (since ŵ1,i
k = si

j

and ŵ2,i
k′ = vi

j −si
j). Each server Pe∈{1,2} defines ye

j
def=

⊕n
i=3 ẑe,i

j as an XOR of all
the obtained values ẑe,i

j corresponding to each item xe
j∈[m]. For two indices k and

k′, we have y1
k =

⊕n
i=3 ẑ1,i

j =
⊕n

i=3 ẑ2,i
j = y2

k′ if all parties has x1
k = x2

k′ in their
set. This property allows servers obliviously determinate the common items (i.e.,
checking whether y1

k = y2
k′ ,∀k, k′ ∈ [m]). Moreover, let se

j
def= ve

j +
∑n

i=3 ŵe,i
j . For

two indices k and k′, s1k and s2k′ are secret shares of the sum of the associated
values for the common item x1

k = x2
k′ In summary, after this first phase, each

server Pe∈{1,2} has a set of points {(ye
1, s

e
1), . . . , (y

e
m, se

m)} where y1
k = y2

k′ if all
parties have the same identity x1

k = x2
k′ , and s1k + s2k′ is equal to the sum of the

associated values of the common x1
k. Therefore, we reduce the problem of n-party

MPCCache to the problem of a two-party case where each server Pe∈{1,2} has a
set of points {(ye

1, s
e
1), . . . , (y

e
m, se

m)} and wants to learn the k-priority common
items. We formally describe the optimized MPCCache protocol is in Fig. 5.

Recall that ye
j =

⊕n
i=3 ẑe,i

j ,∀e ∈ {1, 2}, j ∈ [m]. Let i be the highest index
of a user Pi∈[3,n] who did not have the identity x1

k in their input set. That user
does not insert a pair {x1

k, something} to his set Γ e,i for the OKVS in Step (I.1).
Thus, P1 obtains a random ẑ1,i

k in Step (I.3). The protocol is correct except in
the event of a false positive—i.e., y1

k = y2
k′ for some x1

k not in the intersection.

MPCCache 93

By setting � = λ + 2 log2(n), a union bound shows that the probability of any
item being erroneously included in the intersection is 2−λ.

The security proof of our server-aided MPCCache protocol is essentially simi-
lar to that of the decentralized protocol, which is presented in the full version [25].

Discussion. From our two-server-aided framework, our protocol can be
extended to support a small set of servers (e.g., t servers, t < n). More precisely,
in the centralization phase, each user Pi∈[t+1,n] secretly shares their associated
value vi

j∈[m] to the servers Pe∈[t] via OKVS. Each server aggregates the share
of the associated value corresponding to their item. The obtained results are
forwarded to the server-working phase in which Pe∈[t] jointly run MPCCache
to learn k-priority common items. The main cost of our server-aided construc-
tion is dominated by the second phase. Hence, the performance of t-server-aided
scheme is similar to that of decentralized MPCCache performed by t parties.
We are interested in two-server aided architecture since we can take advantage
of efficient two-party secure computation for the k-priority and GC. Moreover,
the two-server setting is common in various cryptography schemes (e.g. pri-
vate information retrieval [11], distributed point function [15], private database
query [34]).

6 Implementation

We implement building blocks of MPCCache and do experiments on a single
Linux machine that has Intel Core i7 1.88 GHz CPU and 16 GB RAM, where
each party is implemented as a separate process. Computing cache sharing usu-
ally runs in the fast and low-latency edge network, especially with 5G technolo-
gies [1,3,13,37] as the servers of operators are typically placed closer to each
other (e.g., in edge clouds in the same area such as New York City). Thus, we
evaluate MPCCache over a simulated 10 Gbps network with 0.2 ms round-trip
latency. We assume there is an authenticated secure channel between each pair
of parties. Our MPCCache is very amenable to parallelization. Specifically, our
algorithm can be parallelized at the level of bins. In our evaluation, however, we
use a single thread to perform the computation between two parties.

All evaluations were performed with an identity and its associated value
input length 128 bits and θ = 16 bits, respectively, λ = 40, and κ = 128.
We use OKVS code from [14], garbled circuit from [35]. To understand the
scalability of our scheme, we evaluate it on the range of the number parties
n ∈ {4, 6, 8, 16}. Note that the dataset size m of each party is expected to be
not too large (e.g., billions). First, the potential of MPCCache is in 5G where
each shared cache is deployed for a specific region. Second, each operator chooses
only frequently-accessed files as an input to MPCCache because the benefit of
caching less-accessed files is small. Therefore, we benchmark our MPCCache on
the set size m ∈ {212, 214, 216, 218, 220}. To understand the performance effect of
the k values discussed in Sect. 4.3, we use k ∈ {26, 27, 28, 29, 210} in our k-priority
experiments, and compare its performance to the most common oblivious sort
protocol [30,35] which is based on Batcher’s network (ref. Sect. 2).

94 D. T. Nguyen and N. Trieu

Table 1. The total runtime (minute) and communication per item (KB) of our k-priority
construction and the state-of-the-art oblivious sort, where m is the dataset size.

m Running time Communication

Ours k-priority Sort [30,35] Ours k-priority Sort [30,35]

k = 27 k = 28 k = 29 k = 210 k = 27 k = 28 k = 29 k = 210

212 0.012 0.014 0.016 0.018 0.014 8.008 10.11 12.38 14.72 18.43

214 0.049 0.056 0.068 0.087 0.071 8.05 10.21 12.6 15.2 25.09

216 0.199 0.238 0.294 0.35 0.382 8.061 10.23 12.65 15.32 32.77

218 0.786 0.996 1.217 1.449 1.964 8.063 10.24 12.67 15.35 41.47

220 2.984 3.798 4.697 5.527 9.844 8.064 10.24 12.67 15.36 51.2

Table 2. The total runtime (minute) of our MPCCache constructions to find k-priority
common items, where the number of parties n, each with dataset size m.

Parameters Server-aided Decentralized

m n k = 26 k = 27 k = 28 k = 29 k = 210 k = 26 k = 27 k = 28 k = 29 k = 210

212 4 0.036 0.036 0.039 0.041 0.04 0.15 0.14 0.16 0.16 0.16

6 0.036 0.036 0.039 0.041 0.04 0.23 0.22 0.24 0.23 0.27

8 0.037 0.037 0.039 0.041 0.04 0.31 0.29 0.32 0.33 0.33

216 4 0.502 0.526 0.564 0.62 0.68 2.08 2.23 2.3 2.75 2.72

6 0.502 0.531 0.569 0.625 0.68 3.09 3.06 3.71 3.65 3.96

8 0.53 0.53 0.57 0.63 0.68 4.47 4.24 4.59 5.01 5.41

220 4 7.59 7.69 7.73 8.02 8.07 31.51 31.71 31.74 33.59 36.24

6 7.7 7.92 7.81 8.1 8.17 46.07 46.35 46.37 46.69 46.96

8 7.76 7.97 8.18 8.32 8.37 60.73 61.83 62.24 63.76 64.66

Table 3. The total runtime (minute) and communication cost per item (KB) of our
server-aided MPCCache with k = 28 for the number of parties n, each with set size m.

#party n Role Running time (minute) Communication (KB)

m = 212 m = 214 m = 216 m = 218 m = 220 m = 212 m = 214 216 m = 218 m = 220

4 User 0.002 0.003 0.088 0.324 1.202 0.58 0.66 0.73 0.81 0.88

Server 0.039 0.146 0.564 2.089 7.732 24.47 26.34 28.06 29.74 31.41

6 User 0.002 0.004 0.093 0.342 1.271 1.17 1.32 1.46 1.61 1.76

Server 0.039 0.147 0.569 2.1 7.813 24.77 26.67 28.43 30.14 31.85

8 User 0.002 0.004 0.095 0.35 1.291 1.75 1.97 2.19 2.42 2.64

Server 0.039 0.147 0.571 2.12 7.781 25.06 27 28.79 30.54 32.28

16 User 0.02 0.058 0.24 0.912 3.374 4.09 4.61 5.12 5.64 6.15

Server 0.047 0.167 0.598 2.155 7.833 26.23 28.32 30.26 32.15 34.04

6.1 k-priority Performance

Our k-priority requires
(
1
4 log(k) + 1

2

)
m log(k) − 1

2k log(k) Compare-Swap
instances. We use GC [5,36] to perform secure comparisons. Table 1 presents the
running time and communication cost of our k-priority for the different k values.
The cost is measured in KB per item as we would like to show an improved
performance factor of our proposed protocol compared to the state-of-the-art
oblivious sort as well as a performance change when increasing k. Thus, for

MPCCache 95

Top-27 Top-28 Top-29 Top-210 Sort
0

10

20

30

40

50

8.
06 10

.2
3

12
.6
5

15
.3
2

32
.7
7

C
om

m
un

ic
at
io
n
C
os
t
(K

B
pe

r
it
em

) KB

0

0.1

0.2

0.3

0.4

0.5

0.
2

0.
24

0.
29

0.
35 0.

38

R
un

ni
ng

T
im

e
(m

in
ut
e)

Mins

Fig. 6. The total running time (red bar) in minute and communication cost (blue bar)
per item in KB of our k-priority and oblivious sort for Top-k and data set size m = 216.
(Color figure online)

m = 218 and k = 27, our approach shows 5.15× and 2.5× improvements in
terms of communication and computational costs, respectively.

To see more clearly the performance change for different k values, we present
the performance of our k-priority protocol using a bar chart in Fig. 6, and show
that there is a minor change in the running time when increasing k.

6.2 MPCCache Performance

Table 2 presents the total running time for the decentralized and server-aided
MPCCache. The main difference between these constructions is in the steps of
GC equality checks and k-priority. While the decentralized scheme requires all
participants to jointly compute these steps, in the server-aided framework only
two specific servers perform the computation. Thus, the former model is expen-
sive than the latter one but provides a stronger security guarantee where any
subset of corrupted parties learns nothing about the dataset of honest parties.

The numbers reported in Table 2 are for an end-to-end server-aided MPC-
Cache execution, which includes the user’s waiting time for the servers’s compu-
tation. As discussed Sect. 5, the server-aided protocol is asymmetric with respect
to the servers Pe∈{1,2} and other users. Table 3 presents the performance of dif-
ferent roles of the participants. Because the user only distributes its dataset to
two servers in the centralization phase, his workload is very light. The perfor-
mance of our server-aided MPCCache on the user’s side does not depend much on
the number of parties due to the parallelizability with a separate secure channel
between user and server. The server’s work is heavy due to equality checks and
k-priority. Table 3 shows that our protocol scales to a large number of parties.

96 D. T. Nguyen and N. Trieu

6.3 Comparison with Prior Work

We compare our protocols with recent related works [7,31]. One can extend
MPCircuits [31] to address the multi-party cooperative cache sharing problem
by following similar steps of MPCCache: the first phase is to compute the secret
share of the intersection. The second phase uses generic MPC protocols or our
k-priority to compute the top-k function on the obtained results. Recall that
MPCircuits only allows to compute secret-shared intersection items themselves.
It is based on a binary tree structure as [31] observed that the set intersection
of n sets can be expressed as a consecutive set intersection of two sets until
reaching the final result. Therefore, the intersection of two sets is computed
at each node of the tree, and the final intersection of all sets is computed at
the root of the tree. Using three operations as sort, merge, and compare, the
complexity of their garbled circuit is O(n2m� log(m)2) where � is the bit-length
of the element identity. To keep track θ-bit associated value of the identity, the
MPCircuits-based solution requires a complexity of O(n2m(� + θ) log2(m)). In
contrast, with the lightweight OKVS, our solution requires only a single equality
comparison per bin. Thus, the complexity of our circuit is O(nm(|z|+θ)), where
z is a bit-length of the zero share which is equal to min (�, λ + log(n)). It is easy
to see that the first phase of our solution is about n log2(m)× better than that of
MPCircuit-based approach. For example, with n = 8 and m = 220 our solution
shows about an 3, 200× improvement.

To hide the intersection set size, the output of the MPCircuits-based com-
putation at the root of the tree consists of mn secret shares of all intersection
and non-intersection items. As a result, the second phase of the baseline solu-
tion takes mn secret shares as an input of each party. On the other hand, our
MPCCache only takes β = 1.27m secret shares, each per bin.

A concurrent and independent work [7] is designed for a generic circuit-PSI
which only supports an honest majority (e.g., the number of colluding parties
is up to t < n/2). Their protocol is similar to MPCCache and consists of two
main phases. However, the first phase of [7] requires expensive steps (e.g., multi-
plication on secret-shared values) to compute the shares of intersection (Step 6
&7, [7, Figure 6]). Moreover, each participant (e.g. client) of [7] has a computa-
tion/communication complexity O(nm) and requires to participate in the mostly
full computation process. In contrast, in our server-aided protocol, the client does
not involve in the entire MPCCache computation process, thus, has commuta-
tion/communication complexity O(tm) which is independent of n. According
to [7, Table 4] for m = 220, n = 5, t = 2 their client expects to finish the first
phase in 25.48 s while ours requires only 13.02 s, an 1.96× improvement1. The
improvement factor is higher when the ratio n/t is larger.

For the second phase, [7] is not customized for the top-K computation. Based
on the theoretical analysis in Sect. 6.1 and numerical experiment in Sect. 4.3, we
expect that the second phase of MPCCache is about 1.7–3.3× faster than [7].

1 [7]’s implementation is not yet publicly available. Its benchmark machine is stronger
than ours, which is in favor of their protocol.

MPCCache 97

Acknowledgements. The second author is partially supported by NSF awards
#2101052, and #2115075.

References

1. AT&T Edge Cloud (AEC) - White Paper (2017). https://about.att.com/ecms/
dam/innovationdocs/Edge Compute White Paper%20FINAL2.pdf

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805–817. ACM Press, October 2016

3. Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive
caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)

4. Batcher, K.E.: Sorting networks and their applications. In: Spring Joint Computer
Conference (1968)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC (1990)

6. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: CCS 2016 (2016)

7. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.:
Efficient linear multiparty PSI and extensions to circuit/quorum PSI. ePrint (2021)

8. Chandran, N., Gupta, D., Shah, A.: Circuit-PSI with linear complexity via relaxed
batch OPPRF. ePrint (2021)

9. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I., Riazi, M.S.:
SANNS: scaling up secure approximate k-nearest neighbors search. In: USENIX
Security (2020)

10. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. IEICE Trans. 95(8), 1366–1378 (2012)

11. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp.
44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 3

12. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. In: Privacy Enhancing Technologies Symposium (PETS) (2018)

13. ETSI: Multi-access edge computing (2019). https://www.etsi.org/technologies/
multi-access-edge-computing

14. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 14

15. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (edr.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

17. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

18. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
ePrint (2011)

https://about.att.com/ecms/dam/innovationdocs/Edge_Compute_White_Paper%20FINAL2.pdf
https://about.att.com/ecms/dam/innovationdocs/Edge_Compute_White_Paper%20FINAL2.pdf
https://doi.org/10.1007/978-3-030-45721-1_3
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-662-54365-8_8

98 D. T. Nguyen and N. Trieu

19. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM
Press, October 2016

20. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM
Press, October 2017

21. Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join and compute
from PIR with default. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13091, pp. 605–634. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92075-3 21

22. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 35–52.
ACM Press, October 2018

23. Neugebauer, G., Meyer, U., Wetzel, S.: SMC-muse: a framework for secure multi-
party computation on multisets. In: INFORMATIK 2013 - Informatik angepasst
an Mensch, Organisation und Umwelt (2013)

24. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: ACM Conference on Computer and Communications Security (CCS)
(2021)

25. Nguyen, D.T., Trieu, N.: MPCCache: privacy-preserving multi-party cooperative
cache sharing at the edge. Cryptology ePrint Archive, Report 2021/317 (2021).
https://ia.cr/2021/317

26. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
27. Paschos, G.S., Iosifidis, G., Tao, M., Towsley, D., Caire, G.: The role of caching in

future communication systems and networks. IEEE J. Sel. Areas Commun. 36(6),
1111–1125 (2018)

28. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security
2015, pp. 515–530. USENIX Association, August 2015

29. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

30. Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R.A., Hellerstein, J.M.: Senate:
a maliciously-secure MPC platform for collaborative analytics. In: USENIX (2021)

31. Riazi, M.S., Javaheripi, M., Hussain, S.U., Koushanfar, F.: MPCircuits: optimized
circuit generation for secure multi-party computation. In: HOST, pp. 198–207
(2019)

32. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. ePrint (2021)

33. Sang, Y., Shen, H.: Privacy preserving set intersection based on bilinear groups.
In: ACSC 2008 (2008)

34. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
practical private queries on public data. In: NSDI (2017)

35. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-
tion toolkit (2016). https://github.com/emp-toolkit

36. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-030-92075-3_21
https://doi.org/10.1007/978-3-030-92075-3_21
https://ia.cr/2021/317
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://github.com/emp-toolkit

MPCCache 99

37. Yao, J., Han, T., Ansari, N.: On mobile edge caching. IEEE Commun. Surv. Tutor.
21(3), 2525–2553 (2019)

38. Zhang, K., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Cooperative content caching
in 5G networks with mobile edge computing. IEEE Wirel. Commun. 25(3), 80–87
(2018)

Multi-party Updatable Delegated Private
Set Intersection

Aydin Abadi1(B), Changyu Dong2, Steven J. Murdoch1, and Sotirios Terzis3

1 University College London, London, UK
{aydin.abadi,s.murdoch}@ucl.ac.uk

2 Newcastle University, Newcastle upon Tyne, UK
changyu.dong@newcastle.ac.uk

3 University of Strathclyde, Glasgow, UK
sotirios.terzis@strath.ac.uk

Abstract. With the growth of cloud computing, the need arises for Pri-
vate Set Intersection protocols (PSI) that can let parties outsource the
storage of their private sets and securely delegate PSI computation to
a cloud server. The existing delegated PSIs have two major limitations;
namely, they cannot support (1) efficient updates on outsourced sets and
(2) efficient PSI among multiple clients. This paper presents “Feather”,
the first lightweight delegated PSI that addresses both limitations simul-
taneously. It lets clients independently prepare and upload their private
sets to the cloud once, then delegate the computation an unlimited num-
ber of times. We implemented Feather and compared its costs with the
state of the art delegated PSIs. The evaluation shows that Feather is more
efficient computationally, in both update and PSI computation phases.

1 Introduction

Private Set Intersection (PSI) is an interesting protocol that lets parties com-
pute the intersection of their private sets without revealing anything about the
sets beyond the intersection [23]. PSI has various applications. For instance, it
has been used in COVID-19 contact tracing schemes [21], remote diagnostics
[17], and Apple’s child safety solution to combat “Child Sexual Abuse Mate-
rial” (CSAM) [14]. PSI has been considered by the “Financial Action Task
Force” (FATF) as one of the vital tools for enabling collaborative analytics
between financial institutions to strengthen “Anti-Money Laundering” (AML)
and “Countering the Financing of Terrorism” (CFT) compliance [22].

Traditionally, PSIs have been designed for the setting where parties locally
maintain their sets and jointly compute the sets’ intersection. Recently, it has
been a significant interest in the delegated PSIs that let parties outsource the
storage of their sets to cloud computing which later can compute the intersection
without being able to learn the sets and their intersection. One of the reasons
for this trend is that the cloud is becoming mainstream among individuals,
businesses, and financial institutes. For instance, IDC’s 2020 survey suggests that
the banking industry is not only adopting but also accelerating the adoption of
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 100–119, 2022.
https://doi.org/10.1007/978-3-031-18283-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_6

Multi-party Updatable Delegated Private Set Intersection 101

the cloud, based on its benefits proven in the market [41]. The cloud can serve
as a hub that allows for large-scale storage and data analysis by pooling clients’
data together, without the need for them to locally maintain the data, which lets
them discover new knowledge that could provide fresh insights to their business.

However, there are two major limitations to the existing delegated PSIs;
namely, they cannot efficiently support (1) updates on outsourced private sets,
and (2) PSI among multiple clients. Particularly, they have been designed for
static sets and do not let parties efficiently update their outsourced sets. For
application areas involving large private sets frequently updated, like fintech
(e.g., stock market trend analysis [42]), e-commerce (e.g., consumer behaviour
prediction [43]), or e-health (e.g., cancer research on genomic datasets [11]), the
cost of securely updating outsourced sets using these schemes is prohibitive; in
particular, it is linear with the entire set’s size, O(c). Another limitation is that
they cannot scale to multiple clients without sacrificing security or efficiency.
Specifically, in the most efficient delegate PSI in [1], the cloud has to perform a
high number of random polynomials’ evaluations which leads to a performance
bottleneck, when the number of clients is high. A PSI that supports more than
two parties creates opportunities for much richer analytics than what is possible
with two-party PSIs. For example, it can benefit (i) companies that wish to
jointly launch an ad campaign and identify the target audience, (ii) multiple
ISPs which have private audit logs and want to identify network attacks’ sources,
or (iii) the aforementioned Apple’s solution in which different CSAM datasets
are provided by distinct child safety organizations [9].

Our Contributions. In this paper, we:

• present Feather, the first multi-party delegated PSI that lets a client efficiently
update its outsourced set by accessing only a tiny fraction of this set. The
update in Feather imposes O(d2) computation cost, where d is a hash table’s
bin size, i.e., d = 100.

• implement Feather and make its source code public, in [2].
• perform a rigorous cost analysis of Feather. The analysis shows that (a)

updates on a set of 220 elements are over 1000 times, and (b) PSI’s com-
putations are over 2 times faster than the fastest delegated PSI. Moreover,
during the PSI computation when two clients participate, Feather’s cloud-
side runtime is over 26 times faster than the cloud’s runtime in the fastest
delegated PSI and this gap would grow when the number of clients increases.
In Feather, it only takes 4.7 s to run PSI with 1000 clients, where each client
has 211 elements.

Feather offers other features too; for instance, the cloud learns nothing about
the sets and their intersection, each client can independently prepare its set, and
can delegate the PSI computation an unlimited number of times. We define and
prove Feather’s security in the simulation-based paradigm.

102 A. Abadi et al.

2 Related Work

Since their introduction in [23], various PSIs have been designed. PSIs can be
broadly divided into traditional and delegated ones. In traditional PSIs data
owners interactively compute the result using their local data. So far, the pro-
tocol of Kolesnikov et al. in [36] is the fastest two-party PSI secure against a
semi-honest/passive adversary. It relies on symmetric key operations and has a
computation complexity linear with the set size, i.e., O(c), where c is a set size.
Recently, Pinkas et al. in [39] proposed an efficient PSI that is secure against
a stronger (i.e., active) adversary, and has O(c log c) computation complexity.
Recently, researchers propose two threshold PSIs in [14] that let the Apple server
learn the intersection of CSAM and a user’s set only if the intersection cardinal-
ity exceeds a threshold. These two PSIs involve O(c) asymmetric key operations.
Also, there have been efforts to improve the communication cost in PSIs, through
homomorphic encryption and polynomial representation [10,16,19,26]. Recently,
a new PSI has been proposed that achieves a better balance between commu-
nication and computation costs [18]. Also, researchers designed PSIs that let
multiple (i.e., more than two) parties efficiently compute the intersection. The
multi-party PSIs in [28,37] are secure against passive adversaries while those
in [12,25,45] were designed to remain secure against active ones. To date, the
protocols in [37] and [25] are the most efficient multi-party PSIs designed to
be secure against passive and active adversaries respectively. The computation
complexities of [37] and [25] are O(cξ2 + cξ) and O(cξ) respectively, where ξ is
the number of clients. However, Abadi et al. [5] showed that the latter is suscep-
tible to several attacks. The former uses inexpensive symmetric key primitives
and performs well with a small number of clients, i.e., up to 15. But, as we will
discuss, it imposes high costs when the number of clients is high.

Delegated. PSIs use cloud computing for computation and/or storage, while pre-
serving the privacy of the computation inputs and outputs from the cloud. They
can be divided further into protocols that support one-off and repeated delega-
tion of PSI computation. The former like [30,33,46] cannot reuse their outsourced
encrypted data and require clients to re-encode their data locally for each com-
putation. The most efficient such protocol is [30], which has been designed for
the two-party setting and its computation complexity is O(c). In contrast, the
latter (i.e., repeated PSI delegation ones) let clients outsource the storage of
their encrypted data to the cloud only once, and then with the data owners’
consent run any number of computations.

Looking more closely at the repeated PSI delegation protocols, the ones in
[38,40,47] are not secure, as illustrated in [1,6]. In contrast, the PSIs in [1,6,7,44]
are secure. Those in [6,7,44] involve O(c) asymmetric key operations. In these
schemes, the entire set is represented as a polynomial outsourced to the cloud.
The protocol in [1] is more efficient than the ones in [6,7,44] and involves only
O(c) symmetric key operations. It uses a hash table to improve the performance.
However, all these four protocols have been designed for the two-party setting
and only support static datasets. Even though the authors in [1,6,7] explain how

Multi-party Updatable Delegated Private Set Intersection 103

their two-party protocols can be modified to support multi-party, the extensions
are computationally expensive; they also (a) impose a bottleneck to the cloud,
and (b) do not provide any empirical evaluation for their modified protocols. In
these PSIs, for parties to update their sets and avoid serious data leakage, they
need to locally re-encode their entire outsourced set that incurs high costs.

3 Preliminaries

In this section, we outline the primitives used in this paper.

3.1 Pseudorandom Functions and Permutation

Informally, a pseudorandom function is a deterministic function that takes a
key of length Λ and an input; and outputs a value indistinguishable from that
of a truly random function. In this paper, we use two pseudorandom functions:
PRF : {0, 1}Λ ×{0, 1}∗ → Fp and PRF′ : {0, 1}Λ ×{0, 1}∗ → {0, 1}Ψ , where |p| = Ω
and Λ, Ψ,Ω are the security parameters. In practice, a pseudorandom function
can be obtained from an efficient block cipher [32].

A pseudorandom permutation, π(k, #»v), is a deterministic function that per-
mutes the elements of a vector, #»v , pseudorandomly using a secret key k. In
practice, Fisher-Yates shuffle algorithm [35] can permute a vector of m elements
in time O(m). Formal definitions of pseudorandom function and permutation
can be found in [32].

3.2 Hash Tables

A hash table is an array of bins each of which can hold a set of elements. It is
accompanied with a hash function. To insert an element, we first compute the
element’s hash, and then store the element in the bin whose index is the element’s
hash. In this paper, we set the table’s parameters appropriately to ensure the
number of elements in each bin does not exceed a predefined capacity. Given
the maximum number of elements c and the bin’s maximum size d, we can
determine the number of bins, h, by analysing hash tables under the balls into
the bins model [13]. In the paper’s full version [4], we explain how the hash table
parameters are set.

3.3 Horner’s Method

Horner’s method [20] is an efficient way of evaluating polynomials at a given
point, e.g., x0. In particular, given a degree-n polynomial of the form: τ(x) =
a0 + a1x + a2x

2 + ... + anxn and a point: x0, one can efficiently evaluate the
polynomial at the point iteratively from inside-out, in the following fashion:

τ(x0) = a0 + x0(a1 + x0(a2 + ... + x0(an−1 + x0an)...)))

Evaluating a degree-n polynomial naively requires n additions and (n2+n)
2

multiplications, whereas using Horner’s method the evaluation requires only n
additions and n multiplications. We use this method throughout the paper.

104 A. Abadi et al.

3.4 Bloom Filter

A Bloom filter [15] is a compact data structure that allows us to efficiently check
an element membership. It is an array of m bits (initially all set to zero), that
represents n elements. It is accompanied with k independent hash functions. To
insert an element, all the hash values of the element are computed and their
corresponding bits in the filter are set to 1. To check an element membership, all
its hash values are re-computed and checked whether all are set to 1 in the filter.
If all the corresponding bits are 1, then the element is probably in the filter;
otherwise, it is not. In Bloom filters it is possible that an element is not in the
set, but the membership query indicates it is, i.e., false positives. In this work,
we ensure the false positive probability is negligible, e.g., 2−40. In the paper’s
full version [4], we explain how the Bloom filter parameters can be set.

3.5 Representing Sets by Polynomials

Freedman et al. in [23] put forth the idea of using a polynomial to represent a
set elements. In this representation, set elements S = {s1, ..., sd} are defined over

a field, Fp, and set S is represented as a polynomial of form: ρ(x) =
d∏

i=1

(x − si),

where ρ(x) ∈ Fp[X] and Fp[X] is a polynomial ring. Often a polynomial of degree
d is represented in the “coefficient form” as: ρ(x) = a0 + a1 · x + ... + ad · xd.
As shown in [34], for two sets S(A) and S(B) represented by polynomials ρ(A)

and ρ(B) respectively, their product, i.e., polynomial ρ(A) ·ρ(B), represents the set
union, while their greatest common divisor, i.e., gcd(ρ(A), ρ(B)), represents the
set intersection. For two degree-d polynomials ρ(A) and ρ(B), and two degree-d
random polynomials γ(A) and γ(B), it is proven in [34] that:

θ = γ(A) · ρ(A) + γ(B) · ρ(B) = μ · gcd(ρ(A), ρ(B)), (1)

where μ is a uniformly random polynomial, and polynomial θ contains only
information about the elements in S(A)∩S(B), and contains no information about
other elements in S(A) or S(B). To find the intersection, one extracts θ’s roots,
which contain the roots of (i) random polynomial μ and (ii) the polynomial that
represents the intersection, i.e., gcd(ρ(A), ρ(B)). To distinguish errors (i.e., roots
of μ) from the intersection, PSIs in [1,6,34] use a padding technique. In this
technique, every element ui in the set universe U , becomes si = ui||G(ui), where
G is a cryptographic hash function with sufficiently large output size. Given a
field’s arbitrary element, s ∈ Fp, and G’s output size, we can parse s into a and

b, such that s = a||b and |b| = |G(.)|. Then, we check b
?= G(a). If b = G(a), then

s is an element of the intersection; otherwise, it is not.
Polynomials can also be represented in the “point-value form”. Specifically,

a polynomial p(x) of degree d can be represented as a set of m (m > d) point-
value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct non-zero points
and yi = ρ(xi) for all i, 1 ≤ i ≤ m. Polynomials in point-value form have been
used previously in PSIs [1,26]. A polynomial in this form can be converted into
coefficient form via polynomial interpolation, e.g., via Lagrange interpolation [8].

Multi-party Updatable Delegated Private Set Intersection 105

Usually, PSIs that rely on this representation assume that all xi are picked from
F\U . Also, one can add or multiply two polynomials, in point-value form, by
adding or multiplying their corresponding y-coordinates.

4 Feather: Multi-party Updatable Delegated PSI

In this section, we first outline Feather’s model, followed by an overview of its
three protocols: setup, update, and PSI computation. Then, we elaborate on
each protocol.

4.1 An Overview of Feather’s Definition

Similar to most PSIs, we consider the semi-honest adversaries; similar to the
PSIs in [1,7,29], we assume that the adversaries do not collude with the cloud.
However, all but one clients are allowed to collude with each other. Similar to
the security model of searchable encryption [27,31], in our security model we let
some information, i.e., the query and access patterns, be leaked to the cloud to
achieve efficiency. Informally, we say the protocol is secure as long as the cloud
does not learn anything about the computation inputs and outputs beyond the
allowed leakage and clients do not learn anything beyond the intersection about
the other clients’ set elements. We formalise Feather’s security in the simulation-
based paradigm. We require the clients’ and cloud’s view during the execution
of the protocol can be simulated given their input and output (as well as the
leakage). We refer readers to the paper’s full version [4] for a formal definition.

4.2 An Overview of Feather’s Protocols

At a high level, Feather works as follows. In the setup, the cloud publishes a set
of public parameters. Any time a client wants to outsource the storage of its set,
it uses the parameters to create a hash table. It inserts its set’s elements to the
hash table’s bins, encodes the bins’ content such that the encoded bins leak no
information. Next, it assigns random-looking metadata to each bin, and shuffles
the bins and the metadata. It sends the shuffled hash table and metadata to the
cloud. When the client wants to insert/delete an element to/from its outsourced
set, it figures out to which bin the element belongs and asks the cloud to send
only that bin to it. Then, the client locally updates that bin’s content, encodes
the updated bin, and sends it to the cloud. In the PSI computation phase, the
result recipient client, i.e., client B, interacts with other clients’ to have their
permission. Those clients that want to participate in the PSI computation send
a set of messages to the cloud and client B. Using the clients’ messages, the
cloud connects the clients’ permuted bins with each other and then obliviously
computes the sets intersection. It sends the result to client B which, with the
assistance of other clients’ messages, extracts the result.

In Feather, we use various techniques to attain scalability and efficiency. For
instance, by analysing the most efficient delegated PSI in [1], we identified a per-
formance bottleneck that prevents this PSI to scale in the multi-party setting.

106 A. Abadi et al.

Specifically, we observed that in this scheme, the cloud has to perform a high
number of random polynomials’ evaluations on the clients’ behalf. To avoid this
bottleneck, in Feather, each client locally evaluates its random polynomials and
sends the result to the cloud, yielding a significant performance improvement on
the cloud side. To attain efficiency, we (i) substitute previous schemes’ padding
technique with an efficient error detecting mechanism, (ii) use an efficient poly-
nomial evaluation (i.e., Horner’s) method, and (iii) utilise a novel combination
of permuted hash tables, permutation mapping, labels, and resettable counters.

4.3 Feather Setup

In this section, we first explain the efficient error detecting technique and then
present Feather’s setup protocol.

An Efficient Error Detecting Technique. As we described in Sect. 3.5, often
in the PSIs that use the polynomial representation, during the setup, each set
element is padded (with some values). This lets the result recipient distinguish
actual set elements from errors. A closer look reveals that the minimum bit-size
of the padding is t+ ε (due to the union bound), where 2t is the total number of
roots and 2−ε is the maximum probability that at least one invalid root has a set
element structure, e.g., ε ≥ 40. So, this padding scheme increases element size,
and requires a larger field. This has a considerable effect on the performance
of (all arithmetic operations in the field and) polynomial factorisation whose
complexity is bounded by (i) the polynomial’s degree and (ii) the logarithm
of the number of elements in the field, i.e., O(na log2 2|p|) or O(na|p|), where
1 < a ≤ 2, n is polynomial’s degree and |p| is the field bit size [24].

We observed that to improve efficiency, the padding scheme can be replaced
by Bloom filters. The idea is that each client generates a Bloom filter which
encodes all its set elements, blinds, and then sends the blinded Bloom filter (BB)
along with other data to the cloud. For PSI computation, the result recipient gets
the result along with its own BB. After it extracts the result, i.e., polynomials’
roots, it checks if the roots are already in the Bloom filter and only accepts
those in it. The use of BB reduces an element size and requires a smaller field
which improves the performance of all arithmetic operations in the field. Here,
we highlight only the improvement during the factorisation, as it dominates the
protocol’s cost. After the modification, the factorisation complexity is reduced
from O(na(|p|+t+ε)) to O(na|p|). For instance, for e elements, e ∈ [210, 220], and
the error probability 2−40, we get a factor of 1.5-2.5 lower runtime, when |p| ∈
[40, 100]. In general, this improvement is at least a factor of 2, when |p| ≤ t + ε.
The smaller element and field size reduces the communication and cloud-side
storage costs too.

Feather Setup Protocol. Now, we present the setup protocol in Feather.
Briefly, first the cloud generates and publishes a set of public parameters. Then,
each client builds a hash table using these parameters. It maps its set elements

Multi-party Updatable Delegated Private Set Intersection 107

into the hash table’s bins and represents each bin’s elements as a blinded polyno-
mial. It assigns a Bloom filter to each bin such that a bin’s Bloom filter encodes
that bin’s set elements. Next, it blinds each filter and assigns a unique label
to each bin. It pseudorandomly permutes the (i) bins (containing the blinded
polynomials), (ii) blinded Bloom filters, and (iii) labels. It sends the permuted:
bins, blinded Bloom filters, and labels to the cloud. It can delete its local set at
this point. Below, we present the setup protocol.

Cloud Setup: Sets c as an upper bound of sets’ size and sets a hash table
parameters, i.e., table’s length: h, hash function: H, and bin’s capacity: d. It
picks pseudorandom functions PRF (used to generate labels and masking) and
PRF′ (used to mask Bloom filters), and a pseudorandom permutation, π. It picks
a vector #»x = [x1, .., xn] of n = 2d + 1 distinct non-zero values. It publishes the
parameters.

Client Setup: Let client I ∈ {A1, ...Aξ, B} have set: S(I), |S(I)| < c. Client I:

1. Gen. a hash table and Bloom filters: Builds a hash table HT(I) and inserts
its elements into it, i.e., ∀s(I)

i ∈ S(I): H(s(I)
i) = j, then s(I)

i → HT(I)
j . If needed,

it pads every bin to d elements (using dummy values). Then, for every j-th

bin, it generates a polynomial representing the bin’s elements:
d∏

l=1

(x − e(I)

l),

and evaluates each polynomial at every element xi ∈ #»x , where e(I)

l is either
a set element or a dummy value. This yields a vector of n y-coordinates:

y(I)
j,i =

d∏

l=1

(xi − e(I)

l), for that bin. It allocates a Bloom filter: B(I)
j to bin HT(I)

j ,

and inserts only the set elements of the bin in the filter.
2. Blind Bloom filters: Blinds every Bloom filter, by picking a secret key: bk(I),

extracting h pseudorandom values and using each value to blind each Bloom
filter; i.e., ∀j, 1 ≤ j ≤ h : BB(I)

j = B(I)
j ⊕ PRF′(bk(I), j), where ⊕ denotes XOR.

Thus, a vector of blinded Bloom filters is computed: # »
BB(I) = [BB(I)

1 , ..., BB(I)

h].
3. Blind bins: To blind every y(I)

j,i, it assigns a key to each bin by picking a
master secret key k(I), and generating h pseudorandom keys: ∀j, 1 ≤ j ≤ h:
k(I)

j = PRF(k(I), j). Next, it uses each k(I)
j to generate n pseudorandom values

z(I)
j,i = PRF(k(I)

j , i). Then, for each bin, it computes n blinded y-coordinates as
follows: ∀i, 1 ≤ i ≤ n : o(I)

j,i = y(I)
j,i + z(I)

j,i. Thus, d elements in each HT(I)
j are

represented as #»o (I)
j : [o(I)

j,1, ..., o
(I)
j,n].

4. Gen. labels: Assigns a pseudorandom label to each bin, by picking a fresh
key: lk(I) and then computing h values, i.e., ∀j, 1 ≤ j ≤ h : l(I)j = PRF(lk(I), j).

5. Shuffle: Pseudorandomly permutes the labeled hash table. To do that, it
picks a fresh key, pk(I), and then calls π as follows:

#»

ô (I) = π(pk(I), #»o (I)),
#»

l̂ (I) =
π(pk(I),

#»

l (I)), where #»o (I) = [#»o (I)
1 , ..., #»o (I)

h] and
#»

l (I) contains the labels generated
in step 4. Also, it pseudorandomly permutes # »

BB(I) as:
»

B̂B(I) = π(pk(I),
»
BB(I)).

6. Gen. resettable counters: Builds and maintains a vector: #»c (I) of counters c(I)
i

initially zero, where each counter c(I)
i keeps track of the number of times a

bin HT(I)
i in the outsourced hash table is retrieved by the client for an update.

They will let the client efficiently regenerate the most recent blinding factors.

108 A. Abadi et al.

Outsourcing: Every client I sends the permuted labeled hash table: (
#»

ô (I),
#»

l̂ (I))
along with the permuted blinded Bloom filters:

»

B̂B(I) to the cloud.

4.4 Feather Update Protocol

In this section, we present the update protocol in Feather. Briefly, for client I to
insert/delete an element, s(I), to/from its outsourced set, it asks the cloud to send
to it a bin and that bin’s blinded Bloom filter. To do that, it first determines to
which bin the element belongs. It recomputes the bin’s label and sends the label
to the cloud which sends the bin and related blinded Bloom filter to it. Then,
the client uses the counter and a secret key to remove the most recent blinding
factors from the bin’s content, applies the update, re-encodes the bin and filter.
Next, it refreshes their blinding factors and sends the updated bin along with
the updated filter to the cloud.

The efficiency of Feather’s update protocol stems from three factors: (a) the
ability of a client to (securely) update only a bin of its outsourced hash table,
that leads to very low complexities, (b) the use of an efficient error detecting
technique that yields communication and computation costs reduction, and (c)
the use of the local counters that yields client-side storage cost reduction. Now,
we explain the update protocol in detail.

1. Fetch a bin and its Bloom filter: Recomputes the label of the bin to which
element s(I) belongs, by generating the bin’s index: H(s(I)) = j, and computing
the label: l(I)j = PRF(lk(I), j). It sends l(I)j to the cloud which sends back the
bin: #»o (I)

j , and the blinded Bloom filter: BB(I)
j .

2. Unblind : Removes the blinding factors from #»o (I)
j and BB(I)

j as follows.
a. Regen. blinding factors: To regenerate the blinding factors of the bin

and its Bloom filter, it first regenerates the key for that bin, as k(I)
j =

PRF(k(I), j). Then, it uses k(I)
j , bk(I), and c(I)

j to regenerate the bin’s masking
values:

• If the bin has never been fetched (i.e., c(I)
j = 0), then it computes

b(I)

j = PRF′(bk(I), j) and ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(k(I)

j , i)

• Otherwise (i.e., c(I)
j 	= 0), it computes:

b
(I)
j = PRF′(PRF′(bk(I), j), c

(I)
j) and ∀i, 1 ≤ i ≤ n : z

(I)
j,i = PRF(PRF(k

(I)
j , c

(I)
j), i)

b. Unblind: Removes the blinding factors from the bin and its blinded Bloom
filter, as follows. B(I)

j = BB(I)
j ⊕ b(I)

j , ∀i, 1 ≤ i ≤ n : y(I)
j,i = o(I)

j,i − z(I)
j,i.

The result is a Bloom filter: B(I)
j and a vector: #»y (I)

j = {y(I)
j,1, ..., y

(I)
j,n}.

3. Update the counter: Increments the corresponding counter: c(I)
j = c(I)

j + 1.
4. Update the bin’s content:

• If update: element insertion

Multi-party Updatable Delegated Private Set Intersection 109

* if the element, to be inserted, is not in the bin’s Bloom filter, then
it uses the n pairs of (y(I)

j,i, xi) to interpolate a polynomial: ψj(x) and
considers valid roots of ψj(x) as the set elements in that bin. Then,

it generates a polynomial:
d∏

m=1

(x − s′(I)
m), where its roots consist of

valid roots of ψj(x), s(I), and some random elements to pad the bin.
Next, it evaluates the polynomial at every xi ∈ #»x . This yields #»u (I)

j =
[u(I)

j,1, ..., u
(I)
j,n]. It discards B(I)

j and builds a fresh one: B′(I)
j encoding s(I)

and valid roots of ψj(x).
* otherwise, i.e., if s(I) ∈ B(I)

j , it sets #»u (I)
j = #»y (I)

j and B′(I)
j = B(I)

j , where
#»y (I)

j and B(I)
j were computed in step 2.b. Note, in this case the element

already exists in the set; therefore, the element is not inserted.
• If update: element deletion

* if the element, to be deleted, is not in the bin’s Bloom filter, then it
sets #»u (I)

j = #»y (I)
j and B′(I)

j = B(I)
j , where #»y (I)

j and B(I)
j were computed in

step 2.b. It means the element does not exist in the set, so no deletion
is needed.

* otherwise, if s(I) ∈ B(I)
j , it uses pairs (y(I)

j,i, xi) to interpolate a polyno-

mial: ψj(x). It constructs a polynomial:
d∏

m=1

(x − s′(I)
m), where its roots

contains valid roots of ψj(x), excluding s(I), and some random ele-
ments to pad the bin (if required). Then, it evaluates the polynomial
at every xi ∈ #»x . This yields #»u (I)

j = [u(I)
j,1, ..., u

(I)
j,n]. Also, it discards B(I)

j

and builds a fresh one: B′(I)
j that encodes valid roots of ψj(x) excluding

s(I).
5. Blind : Blinds the updated bin: #»u (I)

j and Bloom filter: B′(I)
j as follows.

a. generates fresh blinding factors:

b(I)

j = PRF′(PRF′(bk(I), j), c(I)

j), ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(PRF(k(I)

j , c(I)

j), i)

b. blinds the bin’s content and Bloom filter, using the fresh blinding factors.

BB(I)

j = B′(I)
j ⊕ b(I)

j and ∀i, 1 ≤ i ≤ n : o(I)

j,i = u(I)

j,i + z(I)

j,i

6. Send update query : Sends #»o (I)
j = [o(I)

j,1, ..., o
(I)
j,n], BB(I)

j , l(I)j , and “Update” to the
cloud which replaces the bin’s and Bloom filter’s contents with the new ones.

4.5 Feather PSI Computation Protocol

In this section, we present the PSI computation protocol in Feather. Note, to
let the cloud compute PSI correctly, clients need to tell it how to combine the
bins of their hash tables (each of which permuted under a different key) without
revealing the bins’ original order to the cloud. Also, as the blinding values of
some of the bins get refreshed (when updated), each client needs to efficiently
regenerate the most recent ones in PSI delegation and update phases. To address
those issues, we use two novel techniques: permutation mapping, and resettable

110 A. Abadi et al.

counter, respectively. Now, we outline how the clients delegate the computation
to the cloud. When client B wants the intersection of its set and clients Aσ ∈
{A1, ..., Aξ} sets, it sends a message to each client Aσ to obtain its permission. If
client Aσ agrees, it generates two sets of messages (with the help of the counter),
one for client B and one for the cloud. It sends messages that include unblinding
vectors to client B, and a message that includes a permutation map to the cloud.
The vectors help client B to unblind the cloud’s response. The map lets the cloud
associate client Aσ’s bins to client B’s bins. The cloud uses the clients’ messages
and the outsourced datasets to compute the result that contains a set of blinded
polynomials. It sends them to client B which unblinds them and retrieves the
intersection. Below, we present the PSI computation protocol in more detail.

1. Computation Delegation: It is initiated by B which is interested in the
intersection.
a. Gen. a permission query: Client B performs as follows.

i. Regen. blinding factors: regenerates the most recent blinding factors:
#»z (B) = [#»z (B)

1 , ..., #»z (B)

h] (as explained in step 2.a. of the update). Then,
it shuffles the vector: π(pk(B), #»z (B)).

ii. Mask blinding factors: to mask the shuffled vector, it picks a fresh
temporary key: tk(B), uses it to allocate a key to each bin, i.e., ∀g, 1 ≤
g ≤ h : tk(B)

g = PRF(tk(B), g). Then, using each key, it generates fresh
pseudorandom values and uses them to blind the vector’s elements,
as below:

∀g, 1 ≤ g ≤ h, ∀i, 1 ≤ i ≤ n : r(B)

g,i = z(B)

a,i + PRF(tk(B)

g , i)

Let #»r (B)
g = [r(B)

g,1, ..., r
(B)
g,n]. Note, #»z (B)

a at index a (1 ≤ a ≤ h) in #»z (B)

moved to index g after it was shuffled in the previous step.
iii. Send off secret values: sends lk(B), pk(B), #»r (B) = [#»r (B)

1 , ..., #»r (B)

h], and
its id: ID

(B), to every client Aσ. Also, it sends tk(B) to the cloud.
b. Grant the computation: Each client Aσ ∈ {A1, ..., Aξ} performs as fol-

lows.
i. Gen. a mapping: computes a mapping vector that will allow the

cloud to match client Aσ’s bins to client B’s ones. To do so, it first
generates

»

M Aσ→ B whose elements, mg, are computed as follows.

∀g, 1 ≤ g ≤ h : l(Aσ)
g = PRF(lk(Aσ), g), l(B)

g = PRF(lk(B), g), mg = (l(Aσ)
g , l(B)

g)

It permutes the elements of
»

M Aσ→ B. This yields mapping vector
»

M̂ Aσ→ B

ii. Regen. blinding factors: regenerates the most recent blinding factors:
#»z (Aσ) = [#»z (Aσ)

1 , ..., #»z (Aσ)

h] where each #»z (Aσ)
g contains n blinding factors.

After that, it pseudorandomly permutes the vector as: π(pk(Aσ), #»z (Aσ)).
iii. Gen. random masks and polynomials: assigns n fresh random values:

a
(A

σ
)

g,i and two random degree-d polynomials: ω(A
σ
)

g , ω(B
σ
)

g to each bin:
HTg.

Multi-party Updatable Delegated Private Set Intersection 111

iv. Gen. mask removers: generates #»q (Aσ) that will assist client B to
remove the blinding factors from the result provided by the cloud. To
do that, it first multiplies each element at position g in π(pk(A), #»z (A))
and in #»r (B), by ω(Aσ)

g and ω(Bσ)
g , respectively, i.e., ∀g, 1 ≤ g ≤ h and

∀i, 1 ≤ i ≤ n :

v(Aσ)
g,i = ω(Aσ)

g,i · z(Aσ)
j,i and v(Bσ)

g,i = ω(Bσ)
g,i · r(Bσ)

g,i = ω(Bσ)
g,i · (z(B)

a,i + PRF(tk(B)
g , i))

Then, given permutation keys: pk(Aσ) and pk(Bσ), for each value v(Aσ)
g,i

it finds its matched value: v(Bσ)
e,i , such that the blinding factors z(Aσ)

j,i

and z(B)
j,i of the two values belong to the same bin, HTj. Specifically,

for each v(Aσ)
g,i = ω(Aσ)

g,i · z(Aσ)
j,i it finds v(Bσ)

e,i = ω(Bσ)
e,i · (z(B)

j,i + PRF(tk(B)
e , i)).

Next, it combines and blinds the matched values, i.e., ∀g, 1 ≤ g ≤ h
and ∀i, 1 ≤ i ≤ n:

q(Aσ)
e,i = −(v(Aσ)

g,i +v(Bσ)
e,i)+a(Aσ)

g,i = −(ω(Aσ)
g,i ·z(Aσ)

j,i +ω(Bσ)
e,i ·(z(B)

j,i +PRF(tk(B)
e , i)))+

a(Aσ)
g,i

v. Send values: sends #»q (Aσ) = [#»q1
(Aσ), ..., # »qh

(Aσ)] to client B, where each
#»qe

(Aσ) contains q(Aσ)
e,i . It sends to the cloud ID

(B), ID
(Aσ),

»

M̂ Aσ→ B, the blind-
ing factors: a(Aσ)

g,i , “Compute”, and random polynomials’ y-coordinates,
i.e., all ω(Aσ)

g,i , ω(Bσ)
g,i .

2. Cloud-side Result Computation : The cloud uses each mapping vector:
»

M̂ Aσ→ B to match the bins’ of clients Aσ and B. Specifically, for each e-th bin
in

#»

ô (B) it finds gσ-th bin in
#»

ô (Aσ), where both bins would have the same index,
e.g., j, before they were permuted. Next, it generates the elements of #»

te, i.e.,
∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n:

te,i = (
ξ∑

σ=1

ω(Bσ)
e,i) · (o(B)

e,i + PRF(tk(B)
e , i)) −

ξ∑

σ=1

a(Aσ)
gσ,i +

ξ∑

σ=1

ω(Aσ)
gσ,i

· o(Aσ)
gσ,i

where o(Aσ)
gσ,i ∈ #»o (Aσ)

gσ
∈ #»

ô (Aσ). It sends to B its blinded Bloom filters:
»

B̂B(B) and
result #»

t = [#»
t1, ...,

#»
th], where each #»

te has values te,i.
3. Client-side Result Retrieval : Client B unblinds the permuted Bloom fil-

ters using the key bk(B). This yields a vector of permuted Bloom filters
#»

B̂ (B).
Then, it uses the elements of vectors #»q (Aσ) to remove the blinding from the
result sent by the cloud, i.e., ∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n:

fe,i = te,i +
ξ∑

σ=1

q(Aσ)

e,i = (
ξ∑

σ=1

ω(Bσ)

e,i) · (u(B)

j,i) +
ξ∑

σ=1

ω(Aσ)

gσ,i
· u(Aσ)

j,i

Given vectors
#»

fe and #»x , it interpolates h polynomials: φe(x), for all e. Then,
it extracts the roots of each polynomial. It considers the roots encoded in
B(B)

e ∈ #»

B̂ (B) as valid, and the union of all valid roots as the sets’ intersection.

Theorem 1. If PRF and PRF′ are pseudorandom functions, and π is a pseudo-
random permutation, then Feather is secure in the presence of (a) a semi-honest
cloud, or (b) semi-honest clients where all but one clients collude with each other.

112 A. Abadi et al.

Proof Outline. In the following, we provide an overview of the proof and we refer
readers to the paper’s full version, for an elaborated one. We conduct the secu-
rity analysis for three cases where one of the parties is corrupt at a time. In cor-
rupt cloud case, we show that given the leakage function output, i.e. query and
access patterns, we can construct a simulator that produces a view indistinguish-
able from the one in the real model. The proof includes (1) simulating each client’s
outsourced data, (2) simulating clients queries (in PSI and update) by using query
pattern (and access pattern in the update), and (3) arguing that the simulated val-
ues are indistinguishable from their counter-party in the real model, mainly based
on the indistinguishability of pseudorandom functions and permutation outputs.
In corrupt client B case, the proof includes (1) simulating each authoriser client’s
input and query, (2) simulating cloud’s result, and (3) arguing that the simulated
values are indistinguishable from their counter-party in the real model and it can-
not learn anything beyond the intersection; the argument is based on the indistin-
guishability of randomised polynomials (in Sect. 3.5) and the indistinguishability
of pseudorandom functions and permutation output. In corrupt client Aσ case,
the proof comprises (1) simulating client B’s queries and (2) arguing that the sim-
ulated values are indistinguishable from those in the real model, according to the
indistinguishability of pseudorandom functions output.

In the paper’s full version, we provide several remarks on Feather’s protocols
and explain why naive solutions cannot offer Feather’s features. In the full version,
we present various extensions of Feather that outline how to: (a) reduce authoriz-
ers’ storage space, (b) reset the counters, (c) further delegate grating the compu-
tation to a semi-honest third-party, and (d) further reduce communication cost.

5 Asymptotic Cost Analysis

In this section, we analyse and compare the complexities of Feather with those
of delegated and traditional PSIs that support multi-client in the semi-honest
model. Table 1 summarizes the results. We do not take the update cost of the
traditional multi-party PSIs, i.e., in [28,37], into account, as they are designed

Table 1. Comparison of the multi-party PSIs. Note, c: set cardinality upper bound,
ξ + 1: total number of clients, d = 100, and all costs are in big O.

Property Feather [1] [6] [7] [44] [37] [28]

Repeated delegated PSI � � � � � × ×
Supporting multi-party � � � � � � �

Mainly symmetric key primitives � � × × × � �

Total PSI comm. complexity cξ cξ cξ cξ cξ cξ2 cξ2

Total PSI cmp. complexity cξ + c cξ + c cξ + c2 cξ + c2 cξ + c2 cξ2 + cξ cξ2 + cξ

Update comm. complexity d c c c c – –
Update comp. complexity d2 c c c c – –

Multi-party Updatable Delegated Private Set Intersection 113

for the cases where parties maintain locally their set elements and do not (need
to) support data update. We present a full analysis in the paper’s full version.

5.1 Communication Complexity

In PSI Computation. Below, we analyse the protocols’ communication cost
during the PSI computation. Briefly, in Feather, client B’s cost is O(cξ), each
client Aσ’s cost is O(c), and the cloud’s cost is O(c). Thus, Feather’s total com-
munication cost during the computation of PSI is O(cξ). The cost of each PSI
in [1,6,7,44] is O(cξ), where the majority of the messages in [6,7,44] are the
output of a public-key encryption scheme, whereas those in [1] and Feather are
random elements of a finite field, that have much shorter bit-length. Also, each
scheme’s complexity in [28,37] is O(cξ2).

In Update. In Feather, for a client to update its set, it sends to the cloud two
labels, a vector of 2d+1 elements, and a Bloom filter. So, in total its complexity is
O(d). The cloud sends a vector of 2d+1 elements and a Bloom filter to the client
that costs O(d). Therefore, the update in Feather imposes O(d) communication
cost. The protocols in [1,6,7,44] offer no efficient update mechanism. Therefore,
for a client to securely update its set, it has to download and locally update the
entire set, which costs O(c).

5.2 Computation Complexity

In PSI Computation. Next, we analyse the schemes computation complexity
during the PSI computation. First, we analyse Feather’s complexity. In short,
client B’s and cloud’s complexity is O(cξ + c) while each client Aσ’s complexity
is O(c). During the PSI computation, the main operations that the parties per-
form are modular addition, multiplication, and polynomial factorization. Thus,
Feather’s complexity during the PSI computation is O(cξ + c). In the delegated
PSIs in [6,7,44], the cost is dominated by asymmetric key operations and poly-
nomial factorization. These protocols’ cost is O(cξ + c2). Moreover, the cost of
running PSI in the delegated PSI in [1] is O(cξ + c). Now, we turn our attention
to the traditional PSIs in [28,37]. Each PSI in [28,37] has O(cξ2 +cξ) complexity
and involves mainly symmetric key operations.

In Update. In Feather, to update an element, a client (i) performs O(d) modu-
lar additions and multiplications, (ii) interpolates a polynomial that costs O(d),
(iii) extracts a bin’s elements that costs O(d2), and (iv) evaluates a polynomial
which costs O(d). So, the client’s total cost is O(d2). To update a set element
in the PSIs in [6,44], a client has to encode the element as a polynomial, eval-
uate the polynomial on 2c + 1 points, and perform O(c) multiplications. The
cloud performs the same number of multiplications to apply the update. So,
each protocol’s update complexity is O(c). In [7], the client has to download
the entire set, remove blinding factors, and apply the change locally that costs

114 A. Abadi et al.

O(c). Although the PSI in [1] use a hash table, if a client updates a single bin,
then the cloud would learn which elements are updated (with a non-negligible
probability); Because the bins are in their original order and each bin’s address
is the hash value of an element in that bin. Thus, in [1], for a client to securely
update its set, it has to locally re-encode the entire set that costs O(c).

6 Concrete Cost Evaluation

In this section, we first explain how we choose the optimal parameters of a hash
table. Then, we provide a concrete evaluation of three protocols: Feather and
the PSIs in [1,37]. The reason we only consider [1,37] is that [37] is the fastest
traditional multi-party PSI while [1] is the fastest delegated PSI among the PSIs
studied in Sect. 5. We consider protocols in the semi-honest model.

6.1 Choice of Parameters

In Feather, with the right choice of the hash table’s parameters, the cloud can
keep the overall costs optimal. In this section, we briefly show how these param-
eters can be chosen. As before, let c be the upper bound of the set cardinality,
d be the bin size, and h be the number of bins. Recall, in Feather the overall
cost depends on the product, hd, i.e., the total number of elements, including
set elements and random values stored in the hash table. Also, the computation
cost is dominated by factorizing h polynomials of degree n = 2d + 1. For the
cloud to keep the costs optimal, given c, it uses Inequality 2 (in the full version)
to find the right balance between parameters d and h, in the sense that the cost
of factorizing a polynomial of degree n is minimal, while hd is close to c. At a
high level, to find the right parameters, we take the following steps. First, we
measure the average time, t, taken to factorize a polynomial of degree n, for
different values of n. Then, for each c, we compute h for different values of d.
Next, for each d we compute ht, after that for each c we look for minimal d
whose ht is at the lowest level. After conducting the above experiments, we can
see that the cloud can set d = 100 for all values of c. In this setting, hd is at
most 4c and only with a negligibly small probability, 2−40, a bin receives more
than d elements. We present a full analysis in the paper’s full version.

6.2 Concrete Communication Cost Analysis

In PSI Computation. Below, we compare the three PSIs’ concrete communi-
cation costs during the PSI computation. Briefly, Feather has 8–496 times lower
cost than the PSI in [37], while it has 1.6–2.2 times higher cost than the one in
[1], for 40-bit elements. The PSI’s cost in [37] grows much faster than Feather’s
and the scheme in [1], when the number of clients increases. Feather has a slightly
higher cost than the one in [1], as Feather lets each client Aσ send to the cloud
2hn y-coordinates of random polynomials yielding a significant computation
improvement. Table 2 compares the three PSIs’ cost. Table 5, in the paper’s full
version, provides a detailed analysis of Feather’s communication cost.

Multi-party Updatable Delegated Private Set Intersection 115

In Update. In Feather, a client downloads and uploads only one bin, that
makes its cost of update 0.003 MB for all set sizes, when each element bit-size
is 40. In [1], for a client to securely update its data, it has to download the
entire set, locally update and upload it. Via this approach, the update’s total
communication cost, in MB, is in the range [0.13, 210] when the set size is in the
range [210, 220] and each element bit-size is 40. Thus, Feather’s communication
cost is from 45 to 70254 times lower than [1].

6.3 Concrete Computation Cost Analysis

In this section, we provide an empirical computation evaluation of Feather using
a prototype implementation developed in C++. Feather’s source code can be
found in [2]. We compare the concrete computation cost of Feather with the two
protocols in [1,37]. All experiments were run on a macOS laptop, with an Intel
i5@2.3 GHz CPU, and 16 GB RAM. In the paper’s full version, we provide full
detail about the system’s parameters used in the experiment.

Table 2. Concrete communication cost comparison (in MB)

Protocols Elem. size Set’s cardinality Number of clients

212 216 220 3 4 10 15 100

[37]

40,
64-

bit
� 24 45 300 679 30278

� 407 762 5015 11341 505658

� 6719 12571 82697 186984 8335520

[1]

40-
bit

� 0.8 1 2 4 29

� 18 25 62 93 625

� 300 400 1001 1501 10011

64-
bit

� 1.3 1.7 4 6 43

� 28 37 94 141 941

� 452 602 1506 2260 15069

Feather

40-
bit

� 1 2 5 8 61

� 30 44 123 189 1311

� 494 705 1973 3028 20979

64-
bit

� 2 3 9 14 97

� 48 69 196 301 2096

� 773 1111 3138 4828 33549

In PSI Computation. We first compare the runtime of Feather and the PSI
in [1] in a two-client setting, as the latter was designed and implemented in this
setting. Briefly, Feather is 2–2.5 times faster than the PSI in [1]. The cloud-side
runtime in Feather is 26–34 times faster than the one in [1]. Because Feather
lets each client compute and send y-coordinates of random polynomials to the
cloud, so the cloud does not need to re-evaluate them. Tables 6 and 7, in the
full version, compare these PSIs’ runtime in the setup and PSI computation
respectively. Briefly, for a small number of clients, the performance of the PSI
in [37] is better than Feather, e.g., about 40–4 times when the number of clients
is 3–15. But, the performance of the one in [37] gets significantly worse when
the number of clients is large, e.g., 100–150; as its cost is quadratic with the

116 A. Abadi et al.

number of clients. Thus, Feather outperforms the PSI in [37] when the number
of clients is large. We provide a more detailed analysis in the full version. We
also conducted experiments when a very large number of clients participate in
Feather, i.e., up to 16000 clients. To provide a concrete value here, in Feather
it takes 4.7 s to run PSI with 1000 clients where each client has 211 elements.
Table 9, in the full version, provides more detail.

In Update. Now, we compare the runtime of Feather and the PSI in [1] during
the update. As the PSI in [1] does not provide a way for an update, we developed
a prototype implementation of it that lets clients securely update their sets. The
implementation’s source code is in [3]. The update runtime of Feather is much
faster than that of in [1]. The update runtime of the latter scheme, for 40-bit
elements, grows from 0.07 to 27 s when the set size increases from 210 to 220;
whereas in Feather, the update runtime remains 0.023 s for all set sizes. Hence,
the update in Feather is 3–1182 times faster than the one in [1]. Table 3 provides
the update’s runtime detailed comparison.

Table 3. The update runtime comparison between Feather and [1] (in sec.).

Protocols Elem. size 210 211 212 213 214 215 216 217 218 219 220

[1] 40-bit 0.07 0.09 0.13 0.21 0.37 0.68 1.72 3.41 6.88 13.75 27.2

64-bit 0.08 0.11 0.14 0.22 0.38 0.69 1.76 3.43 7.12 13.94 28.15

Feather 40-bit ← 0.023 →
64-bit ← 0.035 →

7 Conclusion

Private set intersection (PSI) is an elegant protocol with numerous applications.
Nowadays, due to cloud computing’s growing popularity, there is a demand for
an efficient PSI that can securely operate on multiple outsourced sets that are
updated frequently. In this paper, we presented Feather. It is the first efficient
delegated PSI that lets multiple clients (i) securely store their private sets in
the cloud, (ii) efficiently perform data updates, and (iii) securely compute PSI
on the outsourced sets. We implemented Feather and performed a rigorous cost
analysis. The analysis indicates that Feather’s performance during the update
is over 103 times, and during PSI computation is over 2 times faster than the
most efficient delegated PSI. Feather has low communication costs too.

Recently, it has been shown that the most efficient multi-party PSI in [25]
supposed to be secure against active adversaries, suffers from serious issues.
Hence, to fill the void, future research could investigate how to enhance Feather
so it remains secure against active adversaries while preserving its efficiency.

Multi-party Updatable Delegated Private Set Intersection 117

Acknowledgments. Aydin Abadi was supported in part by REPHRAIN: The
National Research Centre on Privacy, Harm Reduction and Adversarial Influence
Online, under UKRI grant: EP/V011189/1. Steven J. Murdoch was supported by
REPHRAIN and The Royal Society under grant UF160505. This work was also par-
tially funded by EPSRC Doctoral Training Grant studentship and EPSRC research
grants EP/M013561/2 and EP/N028198/1.

References

1. Abadi, A., Terzis, S., Metere, R., Dong, C.: Efficient delegated private set inter-
section on outsourced private datasets. IEEE Trans. Dependable Secure Comput.
16(4), 608–624 (2018)

2. Abadi, A.: The implementation of multi-party updatable delegated private
set intersection (2021). https://github.com/AydinAbadi/Feather/tree/master/
Feather-implementation

3. Abadi, A.: The implementation of the update phase in efficient delegated pri-
vate set intersection on outsourced private datasets (2021). https://github.com/
AydinAbadi/Feather/tree/master/Update-Simulation-code

4. Abadi, A., Dong, C., Murdoch, S.J., Terzis, S.: Multi-party updatable delegated
private set intersection-full version. In: FC (2022)

5. Abadi, A., Murdoch, S.J., Zacharias, T.: Polynomial representation is tricky: mali-
ciously secure private set intersection revisited. In: Bertino, E., Shulman, H., Waid-
ner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 721–742. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88428-4 35

6. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol.
455, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-
8 1

7. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4 9

8. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education India (1974)

9. Apple Inc.: Security threat model review of Apple’s child safety features
(2021). https://www.apple.com/child-safety/pdf/Security Threat Model Review
of Apple Child Safety Features.pdf

10. Badrinarayanan, S., Miao, P., Raghuraman, S., Rindal, P.: Multi-party threshold
private set intersection with sublinear communication. In: Garay, J.A. (ed.) PKC
2021. LNCS, vol. 12711, pp. 349–379. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-75248-4 13

11. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: CCS (2011)

12. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: PSImple:
practical multiparty maliciously-secure private set intersection. IACR Cryptology
ePrint Archive (2021)

13. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the
heavily loaded case. In: STOC (2000)

https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
https://github.com/AydinAbadi/Feather/tree/master/Update-Simulation-code
https://github.com/AydinAbadi/Feather/tree/master/Update-Simulation-code
https://doi.org/10.1007/978-3-030-88428-4_35
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-662-54970-4_9
https://www.apple.com/child-safety/pdf/Security_Threat_Model_Review_of_Apple_Child_Safety_Features.pdf
https://www.apple.com/child-safety/pdf/Security_Threat_Model_Review_of_Apple_Child_Safety_Features.pdf
https://doi.org/10.1007/978-3-030-75248-4_13
https://doi.org/10.1007/978-3-030-75248-4_13

118 A. Abadi et al.

14. Bhowmick, A., Boneh, D., Myers, S., Talwar, K., Tarbe, K.: The Apple
PSI system (2021). https://www.apple.com/child-safety/pdf/Apple PSI System
Security Protocol and Analysis.pdf

15. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

16. Branco, P., Döttling, N., Pu, S.: Multiparty cardinality testing for threshold private
set intersection. IACR Cryptology ePrint Archive (2020)

17. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: CCS (2007)

18. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

19. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: ACM CCS (2017)

20. Dorn, W.S.: Generalizations of Horner’s rule for polynomial evaluation. IBM J.
Res. Dev. 6(2), 239–245 (1962)

21. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applica-
tions to contact tracing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 29

22. Financial Action Task Force (FATF): Stocktake on data pooling, collaborative
analytics and data protection (2021). https://www.fatf-gafi.org/publications/
digitaltransformation/documents/data-pooling-collaborative-analytics-data-
protection.html

23. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

24. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey.
J. Symb. Comput. 31(1–2), 3–17 (2001)

25. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

26. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

27. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM CCS (2014)

28. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0 13

29. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
ePrint (2011)

30. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-030-64840-4_29
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://www.fatf-gafi.org/publications/digitaltransformation/documents/data-pooling-collaborative-analytics-data-protection.html
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13

Multi-party Updatable Delegated Private Set Intersection 119

31. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2007)
33. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-

tion. In: ASIACCS (2012)
34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

35. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms, 2nd edn. Addison-Wesley (1981)

36. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS (2016)

37. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: CCS (2017)

38. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection
protocol for outsourced datasets. In: IC2E (2014)

39. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 25

40. Qiu, S., Liu, J., Shi, Y., Li, M., Wang, W.: Identity-based private matching over
outsourced encrypted datasets. IEEE Trans. Cloud Comput. 6(3), 747–759 (2018)

41. Silva, J.: Banking on the cloud: results from the 2020 cloudpath survey (2020).
https://www.idc.com/getdoc.jsp?containerId=US45822120

42. Tsai, C.F., Hsiao, Y.C.: Combining multiple feature selection methods for stock
prediction: union, intersection, and multi-intersection approaches. Decis. Support
Syst. 50(1), 258–269 (2010)

43. Citrin, A.V., Sprott, D.E., Silverman, S.N., Stem Jr., D.E.: Adoption of internet
shopping: the role of consumer innovativeness. Ind. Manag. Data Syst. 100(7),
294–300 (2000)

44. Yang, X., Luo, X., Wang, X.A., Zhang, S.: Improved outsourced private set inter-
section protocol based on polynomial interpolation. Concurr. Comput. 30(1), e4329
(2018)

45. Zhang, E., Liu, F., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: CCSW (2019)

46. Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving match-
making via threshold PSI. IACR Cryptology ePrint Archive (2018)

47. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced
encrypted data. In: IC2E (2015)

https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://www.idc.com/getdoc.jsp?containerId=US45822120

Privacy

The Effect of False Positives: Why Fuzzy
Message Detection Leads to Fuzzy

Privacy Guarantees?

István András Seres1(B), Balázs Pejó2, and Péter Burcsi1

1 Eötvös Loránd University, Budapest, Hungary
seresistvanandras@gmail.com

2 CrySyS Lab, HIT/VIK/BME, Budapest, Hungary

Abstract. Fuzzy Message Detection (FMD) is a recent cryptographic
primitive invented by Beck et al. (CCS’21) where an untrusted server
performs coarse message filtering for its clients in a recipient-anonymous
way. In FMD—besides the true positive messages—the clients download
from the server their cover messages determined by their false-positive
detection rates. What is more, within FMD, the server cannot distinguish
between genuine and cover traffic. In this paper, we formally analyze the
privacy guarantees of FMD from three different angles.

First, we analyze three privacy provisions offered by FMD: recipient
unlinkability, relationship anonymity, and temporal detection ambiguity.
Second, we perform a differential privacy analysis and coin a relaxed defi-
nition to capture the privacy guarantees FMD yields. Finally, we simulate
FMD on real-world communication data. Our theoretical and empirical
results assist FMD users in adequately selecting their false-positive detec-
tion rates for various applications with given privacy requirements.

Keywords: Fuzzy Message Detection · Unlinkability · Anonymity ·
Differential privacy · Game theory

1 Introduction

Fuzzy Message Detection (FMD) [3] is a promising, very recent privacy-
enhancing cryptographic primitive that aims to provide several desired privacy
properties such as recipients’ anonymity. In recipient-anonymous communica-
tion systems, not even the intended recipients can tell which messages have been
sent to them without decrypting all messages. The main practical drawback for
the users in a recipient-anonymous scheme such as messaging and payment sys-
tems is to efficiently and privately detect the incoming messages or transactions.
Decrypting all traffic in the system leads to a private but inevitably inefficient
and bandwidth-wasting scan. This challenge is tackled by FMD, which allows the
users to outsource the detection of their incoming traffic to an untrusted server in
an efficient and privacy-enhanced way. It is assumed that messages/transactions
are posted continuously to a potentially public board, e.g., to a permissionless

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 123–148, 2022.
https://doi.org/10.1007/978-3-031-18283-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_7

124 I. A. Seres et al.

public blockchain. It is expected that users are intermittently connected and
resource-constrained. In the FMD scheme, whenever users are online, they down-
load their genuine transactions as well as false-positive transactions according
to their custom-set false-positive detection rate. The cryptographic technique
behind FMD guarantees that true and false-positive messages are indistinguish-
able from the server’s point of view. Thus, the false-positive messages act as
cover traffic for genuine messages.

The FMD protocol caught the attention of many practitioners and privacy
advocates due to the protocol’s applicability in numerous scenarios. In general, it
supports privacy-preserving retrieval of incoming traffic from store-and-forward
delivery systems. We highlight two applications currently being implemented by
multiple teams and waiting to be deployed in several projects [4,8,23,32].

– Anonymous messaging. In a recipient-anonymous messaging application,
the senders post their recipient-anonymous messages to a store-and-forward
server. If the server employs FMD, recipients can detect their incoming (and
false-positive) messages in an efficient and privacy-enhanced way. Recently,
the Niwl messaging application was deployed utilizing FMD [23].

– Privacy-preserving cryptocurrencies & stealth payments. In privacy-
preserving cryptocurrencies, e.g., Monero [29], Zcash [33], or in a privacy-
enhancing overlay, payment recipients wish to detect their incoming payments
without scanning the whole ledger. At the time of writing, several privacy-
enhancing overlays for Ethereum (e.g., Zeth [32], Umbra [4]) as well as for
standalone cryptocurrencies (e.g., Penumbra [8]) are actively exploring the
possibility of applying FMD in their protocols.

Contributions. Despite the rapid adoption and interest in the FMD protocol,
as far as we know, there is no study analyzing the provided privacy guarantees.
Consequently, it is essential to understand the privacy implications of FMD.
Furthermore, it is an open question how users need to choose their false-positive
detection rates to achieve an efficiency-privacy trade-off suitable for their sce-
nario. In this work, we make the following contributions.

– Information-Theoretical Analysis. We assess and quantify the privacy
guarantees of FMD and the enhanced k-anonymity it provides in the context
of anonymous communication systems. We focus on three notions of privacy
and anonymity: relationship anonymity, recipient unlinkability, and temporal
detection ambiguity. We demonstrate that FMD does not provide relation-
ship anonymity when the server knows the senders’ identity. What is more,
we also study relationship anonymity from a game-theoretic point of view,
and show that in our simplified model at the Nash Equilibrium the users
do not employ any cover traffic due to their selfishness. Concerning recipient
unlinkability and temporal detection ambiguity, we show that they are only
provided in a meaningful way when the system has numerous users and users
apply considerable false-positive detection rates.

– Differential Privacy Analysis. We adopt differential privacy (DP) [11] for
the FMD scenario and coin a new definition, called Personalized Existing

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 125

Edge Differential Privacy (PEEDP). Moreover, we analyze the number of
incoming messages of a user with (ε, δ)-differential privacy. The uncovered
trade-off between the FMD’s false-positive rates and DP’s parameters could
help the users to determine the appropriate regimes of false-positive rates,
which corresponds to the level of tolerated privacy leakage.

– Simulation of FMD on Real-World Data. We quantitatively evaluate
the privacy guarantees of FMD through open-source simulations on real-world
communication systems. We show that the untrusted server can effortlessly
recover a large portion of the social graph of the communicating users, i.e.,
the server can break relationship anonymity for numerous users.

Outline. In Sect. 2, we provide some background on FMD, while in Sect. 3, we
introduce our system and threat model. In Sect. 4, we analyze the privacy guaran-
tees of FMD while in Sect. 5 we study FMD using differential privacy. In Sect. 6,
we conduct simulations on real-world communication networks, and finally, in
Sect. 7, we conclude the paper.

2 Fuzzy Message Detection

The FMD protocol seeks to provide a reasonable privacy-efficiency trade-off in
use cases where recipient anonymity needs to be protected. Users generate detec-
tion keys and send them along with their public keys to the untrusted server.
Senders encrypt their messages with their recipient’s public key and create flag
ciphertexts using the intended recipient’s public key. Detection keys allow the
server to test whether a flag ciphertext gives a match for a user’s public key. If
yes, the server stores the message for that user identified by its public key. In
particular, matched flag ciphertexts can be false-positive matches, i.e., the user
cannot decrypt some matched ciphertexts. Users can decrease their false-positive
rate by sending more detection keys to the server. Above all, the FMD protocol
ensures correctness; whenever a user comes online, they can retrieve their gen-
uine messages. The fuzziness property enforces that each other flag ciphertext
is tested to be a match approximately with probability p set by the recipient.

Besides recipient anonymity, FMD also aims to satisfy detection ambigu-
ity, which requires that the server cannot distinguish between true and false-
positive matching flag ciphertexts provided that ciphertexts and detection keys
are honestly generated. Hence, whenever a user downloads its matched mes-
sages, false-positive messages serve as cover traffic for the genuine messages. For
formal security and privacy definitions of FMD and concrete instantiations, we
refer the reader to Appendix A and ultimately to [3]. To improve readability, in
Table 1, we present the variables utilized in the paper: we refer to the downloaded
(genuine or cover) flag ciphertext as a fuzzy tag.

Privacy-Efficiency Trade-Off. If user u’s false-positive rate is p(u), it received
in(u) messages and the total number of messages in the system is M , then the
server will store tag(u) ≈ in(u) + p(u)(M − in(u)) messages for u. Clearly, as
the number of messages stored by the server increases, so does the strength

126 I. A. Seres et al.

Table 1. Notations used throughout the paper.

Variable Description

U Number of honest users (i.e., recipients and senders)

M Number of all messages sent by honest users

p(u) False-positive detection rate of recipient u

tag(u) Number of fuzzy tags received by u (i.e., genuine and false positive)

tagv(u) Number of fuzzy tags received by u from v

in(u) Number of genuine incoming messages of u

out(u) Number of sent messages of u

of the anonymity protection of a message. Note the trade-off between privacy
and bandwidth efficiency: larger false-positive rate p(u) corresponds to stronger
privacy guarantees but also to higher bandwidth as more messages need to be
downloaded from the server.1 Substantial bandwidth can be prohibitive in cer-
tain use cases, e.g., for resource-constrained clients. Even though in the original
work of Beck et al. [3] their FMD instantiations support a restricted subset of
[2−l]l∈Z as false-positive rates, in our privacy analysis, we lift these restrictions
and assume that FMD supports any false-positive rate p ∈ [0, 1].

Provided Privacy Protection. The anonymity protection of FMD falls under the
“hide-in-the-crowd” umbrella term as legitimate messages are concealed amongst
cover ones. More precisely, each legitimate message enjoys an enhanced version
of the well-known notion of k-anonymity [36].2 In more detail, the anonymity
guarantee of the FMD scheme is essentially a “dynamic”, “personalized”, and
“probabilistic” extension of k-anonymity. It is dynamic because k could change
over time as the overall number of messages could grow. It is personalized because
k might differ from user to user as each user could set their own cover detection
rates differently. Finally, it is probabilistic because achieved k may vary message-
wise for a user due to the randomness of the amount of selected fuzzy messages.

To the best of our knowledge, as of today, there has not been a formal
anonymity analysis of the “enhanced k-anonymity” achieved by the FMD proto-
col. Yet, there is already a great line of research demonstrating the weaknesses
and the brittle privacy guarantees achieved by k-anonymity [10,25]. Intuitively,
one might hope that enhanced k-anonymity could yield strong(er) privacy and
anonymity guarantees. However, we show both theoretically and empirically and
by using several tools that this enhanced k-anonymity fails to satisfy standard
anonymity notions used in the anonymous communication literature.3

1 Similar scenario was studied in [5] concerning Bloom filters.
2 Note that Beck et al. coined this as dynamic k-anonymity, yet, we believe it does

not capture all the aspects of their improvement. Hence, we renamed it with a more
generic term.

3 For an initial empirical anonymity analysis, we refer the reader to the simulator
developed by Sarah Jamie Lewis [24].

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 127

3 System and Threat Model

System Model. In a typical application where the FMD scheme is applied, we
distinguish between the following four types of system components where the
users can simultaneously be senders and recipients.

1. Senders: They send encrypted messages to a message board. Messages are
key-private, i.e., no party other than the intended recipient can tell which
public key was used to encrypt the message. Additionally, senders post flag
ciphertexts associated with the messages to an untrusted server. The goal of
the flag ciphertexts is to allow the server and the recipients to detect their
messages in a privacy-enhanced manner.

2. Message Board: It is a database that contains the senders’ messages. In
many applications (e.g., stealth payments), we think of the message board as
a public bulletin board; i.e., everyone can read and write the board. It might
be implemented as a blockchain or as a centrally managed database, e.g., as
would be the case in a messaging application. In either case, we assume that
the message board is always available and that its integrity is guaranteed.

3. Server: It stores the detection keys of recipients. Additionally, it receives
and stores flag ciphertexts from senders and tests the flag ciphertexts with
the recipient’s detection keys. It forwards matching flag ciphertexts and their
associated data (messages, transactions, etc.) to recipients whenever they
query it. Typically, flag ciphertexts match numerous recipients’ public keys.4

4. Recipients: The recipient obtains matching flag ciphertexts from the server.
An application-dependent message is attached as associated data to each flag
ciphertext, e.g., e-mail, payment data, or instant message. The number of
matching ciphertexts is proportional to the recipient’s false-positive detection
rate and all the messages stored by the untrusted server.

Threat Model. Our focus is on the privacy and anonymity guarantees provided
by FMD. Hence, we assume that the FMD scheme is a secure cryptographic
primitive, i.e., the cryptographic properties of FMD (correctness, fuzziness, and
detection ambiguity) hold. Senders and recipients are assumed to be honest.
Otherwise, they can be excluded from the messages’ anonymity sets. We consider
two types of computationally-bounded attackers that can compromise user’s
privacy in an FMD scheme. The adversaries’ goal is to learn as much information
as possible about the relationship between senders, recipients, and messages.

– Server: Naturally, the server providing the FMD service can endanger the
user’s privacy since it has continuous access to every relevant information
related to message detection. Specifically, the server knows the users’ false-
positive rates. It can analyze each incoming message, flag ciphertext, and
their corresponding anonymity sets.

4 In this work, we stipulate that a single server filters the messages for all users, i.e.,
a single server knows all the recipients’ detection keys.

128 I. A. Seres et al.

• Sender-oracle. The server may know the sender of each message, i.e., a
sender-oracle might be available in FMD. For instance, it is mandatory for
the untrusted server if it only serves registered users. We assumed solely
in Sect. 4.2 that such sender-oracle is available. If FMD is integrated into
a system where senders apply anonymous communication (e.g., use Tor
to send messages and flag ciphertexts to the server), then sender-oracle
is not accessible to the FMD server.

– Eavesdropper: A local passive adversary might observe the amount of data
each user downloads from the server. Specifically, an eavesdropper could
inspect the number of flag ciphertexts each user has received. Even though
this attacker type does not have continual intrusion to the server’s internal
state, as we will show, it can still substantially decrease FMD user’s privacy,
e.g., if p(u) is known, then the number of genuine incoming messages of users
does not enjoy sufficiently high privacy protection (see Sect. 5).

4 Privacy Guarantees in FMD

In this section, we analyze and quantify various privacy and anonymity guar-
antees provided by the FMD scheme. Specifically, in Sects. 4.1, 4.2, and 4.3,
we measure recipient unlinkability, assess relationship anonymity, and estimate
detection ambiguity, respectively. Note that for the latter two property we pro-
vide experimental evaluations in Sect. 6, and we formulate a game in Appendix D
concerning relationship anonymity. We denote the security parameter with λ,
and if an (probabilistic) algorithm A outputs x, then we write A −→ x (A $−→ x).
The Binomial distribution with success probability p and number of trials n is
denoted as Binom(n, p), while a normal distribution with mean μ and variance
σ2 is denoted as N (μ, σ2).

4.1 Recipient Unlinkability

In anonymous communication systems, recipient unlinkability is the cornerstone
of anonymity guarantees. It ensures that it is hard to distinguish whether two
different messages were sent to the same recipient or different ones. Whenever
recipient unlinkability is not attained, it facilitates possibly devastating pas-
sive attacks, i.e., if an adversary can infer which messages are sent to the same
recipient, then the adversary can effortlessly launch intersection attacks, see
Appendix E. In the absence of recipient unlinkability, it is also possible to effi-
ciently map every message to its genuine recipient by 1) clustering the messages
that are sent to the same recipient and 2) see the intersection of the users who
downloaded the flag ciphertexts sent to the same recipient.

We consider a definition of recipient unlinkability similar to the one intro-
duced in [2]. Informally, in the recipient unlinkability game, we examine two
recipients u0, u1 and a sender u2. The challenger C generates uniformly at ran-
dom c

$←− {0, 1} and instructs u2 to send message mα to uc. Afterwards, C draws

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 129

a uniformly random bit b
$←− {0, 1}. If b = 0, then instructs u2 to send a message

mβ to uc. Otherwise u2 sends mβ to u1−c. Adversary A examines the network,
the flag ciphertexts and all communications and outputs b′ indicating whether
the two messages were sent to the same recipient.

Definition 1 (Recipient unlinkability (RU)). An anonymous communica-
tion protocol Π satisfies recipient unlinkability if for all probabilistic polynomial-
time adversaries A there is a negligible function negl(·) such that

Pr[GRU
A,Π(λ) = 1] ≤ 1

2
+ negl(λ), (1)

where the privacy game GRU
A,Π(λ) is defined in Fig. 6 in Appendix B.

We denote the set of users who downloaded message m by fuzzy(m), i.e.,
they form the anonymity set of the message m. We estimate the advantage of
the following adversary A in the GRU

A,Π(λ) game: A outputs 0 if fuzzy(mα) ∩
fuzzy(mβ) �= ∅ and outputs 1 otherwise. Note that A always wins if the same
recipient was chosen by the challenger (i.e., b = 0) because it is guaranteed by
the correctness of the FMD scheme that uc ∈ fuzzy(mα)∩ fuzzy(mβ). Therefore,
we have that Pr[GRU

A,Π(λ) = 1|b = 0] = 1. If two different recipients were chosen
by the challenger in the GRU

A,Π(λ) game (i.e., b = 1), then A wins iff. fuzzy(mα)∩
fuzzy(mβ) = ∅. The advantage of the adversary can be computed as follows.

Pr[GRU
A,Π(λ) = 1|b = 1] = Pr[∩m∈{mα,mβ}fuzzy(m) = ∅|b = 1]

=
U∑

i=1

∑

V ⊆U
|V |=i
α∈V

Pr[fuzzy(mα) = V] · Pr[(V ∩ fuzzy(mβ) = ∅]

=
U∑

i=1

∑

V ⊆U
|V |=i
α∈V

⎛

⎝
∏

ul∈V \{u0}
p(ul) ·

∏

ul∈U\V

(1 − p(ul))

⎞

⎠ ·
(

∏

ul∈V

(1 − p(ul))

)
.

(2)

We simplify the adversarial advantage in Eq. 2 by assuming that ∀i : p(ui) =
p and that the sizes of the anonymity sets are fixed at �pU�. Moreover, computer-
aided calculations show that the following birthday paradox-like quantity can be
used as a sufficiently tight lower bound5 for the recipient unlinkability adversarial
advantage, whenever p(ui) are close to each other.

�pU�∏

j=1

U − �pU� − j

U
=

�pU�∏

j=1

(
1 − �pU� + j

U

)
≈

�pU�∏

j=1

e− �pU�+j
U

= e−
∑

j(�pU�+j)
U = e− 3�pU�2+�pU�

2U ≤ Pr[GRU
A,Π(λ) = 1|b = 1].

(3)

5 This lower bound is practically tight since the probability distribution of the adver-
sary’s advantage is concentrated around the mean �pU� anyway.

130 I. A. Seres et al.

The approximation is obtained by applying the first-order Taylor-series
approximation for ex ≈ 1 + x, whenever |x| 1. We observe that the lower
bound for the adversary’s advantage in the recipient unlinkability game is a neg-
ligible function in U for a fixed false-positive detection rate p. Thus, in theory,
the number of recipients U should be large in order to achieve recipient unlinka-
bility asymptotically. In practice, the classical birthday-paradox argument shows
us that the two anonymity sets intersect with constant probability if p = θ

(
1√
U

)
.

Our results suggest that a deployment of the FMD scheme should concurrently
have a large number of users with high false-positive rates in order to provide
recipient unlinkability, see Fig. 1a for the concrete values of Eq. 3.

(a) Approximate values of the recipient
unlinkability adversarial advantage in the
GA,Π

RU (λ) game according to Equation 3.

(b) Smallest false-positive rates to obtain
temporal detection ambiguity against the
utilized statistical tests.

Fig. 1. Recipient unlinkability and temporal detection ambiguity guarantees provided
by the FMD scheme for various parameter settings.

4.2 Relationship Anonymity

Relationship anonymity ensures that the adversary cannot determine the sender
and the recipient of a communication at the same time. Intuitively, recipients
applying low false-positive rates receive only a handful of fuzzy tags from peers
they are not communicating with. Therefore, multiple fuzzy tags between a
sender and a recipient can eradicate their relationship anonymity, given that
the server knows the number of messages a sender issued. We assume the server
knows the sender of each message, which holds whenever the untrusted server
has access to a sender-oracle, see Sect. 3.

The number of fuzzy tags between a non-communicating pair of receiver u1

and sender u2 follows Binom(out(u2), p(u1)). If tagu2(u1) is saliently far from the
expected mean out(u2)p(u1), then the untrusted server can deduce with high
confidence that a relationship exists between the two users. We approximate
the binomial distribution above with N ∗ := N (out(u2)p(u1), out(u2)p(u1)(1 −

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 131

(a) Relationship anonymity for
100 ≤ out(s).

(b) Relationship anonymity for
out(s) ≤ 30.

Fig. 2. The minimum number of messages between a pair of users that statistically
reveal the relationship of the communicating users (significance level 1%).

p(u1)))6 so we can apply Z-tests to determine whether u2 and u1 had
exchanged messages. Concretely, we apply two-tailed Z-test7 for the hypoth-
esis H : tagu2(u1) ∼ N (out(u2)p(u1), out(u2)p(u1)(1− p(u1))). If the hypothesis
is rejected, then users u2 and u1 are deemed to have exchanged messages.

Each recipient u1 downloads on average tagu2(u1) ≈ p(u1)(out(u2) −
inu2(u1))+inu2(u1) fuzzy messages from the messages sent by u2, where inu2(u1)
denotes the number of genuine messages sent by u2 to u1. We statistically test
with Z-tests (when 100 ≤ out(u2)) and t-tests (when out(u2) ≤ 30) whether
tagu2(u1) could have been drawn from the N ∗ distribution, i.e., there are no
exchanged messages between u1 and u2. The minimum number of genuine mes-
sages inu2(u1) that statistically expose the communication relationship between
u1 and u2 is shown for various scenarios in Fig. 2. We observe that the relation-
ship anonymity of any pair of users could be broken by a handful of exchanged
messages. This severely limits the applicability of the FMD scheme in use cases
such as instant messaging. To have a meaningful level of relationship anonymity
with their communicating peer, users should either apply substantial false-
positive rates, or the server must not be able to learn the sender’s identity
of each message. The latter could be achieved, for instance, if senders apply
an anonymous communication system to send messages or by using short-lived
provisional pseudo IDs where no user would send more than one message.

Game Theoretic Analysis. Incentive compatibility has the utmost importance
in decentralized and privacy-enhancing technologies. Therefore, we present a
game-theoretic study of the FMD protocol concerning relationship anonymity.
We believe applying game theory to FMD by itself is a fruitful and over-arching

6 Note that this approximation is generally considered to be tight enough when
out(u2)p(u1) ≥ 5 and out(u2)(1 − p(u1)) ≥ 5.

7 For senders with only a few sent messages (out(u2) ≤ 30), one can apply t-tests
instead of Z-tests.

132 I. A. Seres et al.

direction. Our goal, besides conducting a preliminary analysis, is to raise interest
and fuel future research towards this direction. The formalization of the game
as well as the corresponding theorems and proofs can be found in Appendix D.

4.3 Temporal Detection Ambiguity

The FMD scheme is required to satisfy the security notion of detection ambigu-
ity devised by Beck et al. [3]. Namely, for any message that yields a match for
a detection key, the server should not be able to decide whether it is a true or a
false-positive match. This definition is formalized for a single incoming message in
isolation. Yet, the detector server can continuously observe the stream of incom-
ing messages.8 Consequently, the server might be able to assess whether the user
has received a message in a certain time interval. To capture this time-dependent
aspect, we relax detection ambiguity and coin the term temporal detection ambigu-
ity. Informally, no adversary should be able to tell in a given time interval having
access to all incoming flag ciphertexts whether a user received an incoming true-
positive match. We provide the formal definition in Appendix B, and we empiri-
cally study temporal detection ambiguity on real communication data in Sect. 6.
In Sect. 5, we measure the level of privacy protection the number of incoming mes-
sages enjoys from a differential privacy angle.

Any message that enters the communication system yields a match to a
detection key according to its set false-positive rate. Specifically, the number of
false-positive matches acquired by user u’s detection key follows a Binom(M −
in(u), p(u)) distribution. Similarly to Sect. 4.2, if M is large, then we can approx-
imate the number of false-positive matches with a N (p(u)M,p(u)(1 − p(u))M)
distribution and use statistical tests to assess that the number of downloaded
messages by a recipient is statistically far from the expected number of down-
loaded messages. More precisely, the adversary can statistically test whether
tag(u) could have been drawn from N (p(u)M,p(u)(1 − p(u))M) (the approx-
imation of Binom(M,p(u))). We observe that in an epoch, a user should have
either large false-positive rates or a small number of incoming messages to pro-
vide temporal detection ambiguity, shown in Fig. 1b.

5 Differential Privacy Analysis

Differential privacy (DP) [11] is a procedure for sharing information about a
dataset by publishing statistics of it while withholding information about single
data points. DP is formalized in Definition 2; the core idea is to ensure that an
arbitrary change on any data point in the database has a negligible effect on the
query result. Hence, it is infeasible to infer much about any data point.

Definition 2 (Differential Privacy [11]). An algorithm A satisfies ε-differ-
ential privacy if for all S ⊆ Range(A) and every input pair D and D′ differing
in a single element Eq. 4 holds.
8 As an illustrative example collected from a real communication system, see Fig. 3b.

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 133

Pr(A(D) ∈ S) ≤ eε · Pr(A(D′) ∈ S). (4)

Personalized Existing Edge DP. A widely used relaxation of the above definition
is (ε, δ)-DP, where Eq. 4 is extended with a small additive term δ at the right
end. There are over 200 modifications of DP [9], we combined several to make
it suitable for FMD. Concretely, we create a novel definition called Personalized
Existing Edge DP (PEEDP) (formally defined in Definition 3)9 by combining
four existing notions. We utilize edge-DP [17] which applies DP to communica-
tion graphs: D and D′ are the original communication graphs with and without
a particular edge respectively, and S is a set of graphs with fuzzy edges included.
Furthermore, we apply personalized DP [18], which allocates different level of
protection to incoming messages, as in FMD the users’ false positive rates could
differ.

Hiding the presence or absence of a message is only possible by explicitly
removing real messages and adding fuzzy ones to the communication graph,
which is indistinguishable from real ones. This setting (i.e., protecting existence
and not value) corresponds to unbounded DP [20]. Hence, as also noted in [3],
without a false negative rate (which would directly contradict correctness), FMD
cannot satisfy DP: fuzzy messages can only hide the presence of a message not
the absence. To tackle this imbalance, we utilize asymmetric DP [37] which
only protects some of the records determined by policy P . It only differs from
Definition 2 in the relationship of D and D′ as Eq. 4 should only hold for every
input pair D and D′ where later is created by removing in D a single sensitive
record defined by P . By combining all these DP notions, we can formulate our
PEEDP definition.

Definition 3 (ε-Personalized Existing Edge Differential Privacy). An
algorithm A satisfies ε-PEEDP (where ε is an element-wise positive vector which
length is equal with the amount of nodes in D) if Eq. 5 holds for all S ⊆ Range(A)
and every input graphs D and D′ where later is created by removing in D a single
incoming edge of user u.

Pr(A(D) ∈ S) ≤ eεu · Pr(A(D′) ∈ S). (5)

Once we formalized a suitable DP definition for FMD, it is easy to calcu-
late the trade-off between efficiency (approximated by p(u)) and privacy protec-
tion (measured by εu). This is captured in Theorem 1 (proof can be found in
Appendix C).

Theorem 1. If we assume the distribution of the messages are IID then FMD

satisfy
[
log 1

p(u)

]U

u=1
-PEEDP.

9 We elaborate more on various DP notions in Appendix C.

134 I. A. Seres et al.

Therefore, detection rates p(u) = {0.50, 0.51, 0.52, 0.54, 0.58} in FMD corre-
spond to εu = {0.000, 0.693, 1.386, 2.773, 5.545} in ε-PEEDP. Clearly, perfect
protection (i.e., εu = 0) is reached only when all messages are downloaded (i.e.,
p(u) = 1). On the other hand, the other ε values are much harder to grasp: gener-
ally speaking, privacy-parameter below one is considered strong with the classic
DP definition. As PEEDP only provides a relaxed guarantee, we can postulate
that the privacy protection what FMD offers is weak.

Protecting the Number of Incoming Messages. In most applications, e.g., anony-
mous messaging or stealth payments, we want to protect the number of incom-
ing messages of the users, in(u). Intuitively, the server observes tag(u) ∼
in(u) + Binom(M − in(u), p(u)) where (with sufficiently large M) the second
term can be thought of as Gaussian-noise added to mask in(u), a common tech-
nique to achieve (ε, δ)-DP. Consequently, FMD does provide (εu, δu)-DP10 for the
number of incoming messages of user u, see Theorem 2 (proof in Appendix C).

Theorem 2. If we assume the distribution of the messages is IID than the FMD
protocol provides (εu, δu)-DP for the number of incoming messages in(u) of user
u where δu = maxu(p(u), 1 − p(u))M−in(u) and

εu = log
[
max

u

(
p(u) · (M − 2 · in(u))

(1 − p(u)) · (in(u) + 1)
,
(1 − p(u)) · (M − in(u))

p(u)

)]
.

Table 2. Exemplary settings to illustrate the trade-off between the false-positive rate
p(u) and the privacy parameters of (ε, δ)-differential privacy for protecting the number
of incoming messages.

M 100 100 100 200 1 000 000 1 000 000 1 000 000 2000000

in(u) 10 10 20 10 100 100 1000 100

p(u) 0.54 0.52 0.54 0.54 0.58 0.54 0.58 0.58

εu 7.2 5.6 7.1 8.0 19.4 16.5 19.4 20

δu 3e−3 6e−12 6e−3 5e−6 1e−1700 1e−28027 1e−1699 1e−3400

To illustrate our results, we provide some exemplary settings in Table 2 and
show how the false positive rate p(u) translates into εu and δu. It is visible that
increasing the detection rate does increase the privacy protection (i.e., lower
εu and δu), and increasing the overall and incoming messages result in weaker
privacy parameter εu and δu respectively. These results suggest, that even the
number of incoming messages does not enjoy sufficient (differential) privacy pro-
tection in FMD, as the obtained values for εu are generally considered weak.

10 Note that this is also a personalized guarantee as in [18].

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 135

6 Evaluation

We evaluate the relationship anonymity and temporal detection ambiguity guar-
antees of FMD through simulations on data from real communication systems.11

We chose two real-world communication networks that could benefit from imple-
menting and deploying FMD on top of them.

– College Instant Messaging (IM) [30]. This dataset contains the instant
messaging network of college students from the University of California,
Irvine. The graph consists of 1899 nodes and 59 835 edges that cover 193
days of communication.

– EU Email [31]. This dataset is a collection of emails between members of a
European research institution. The graph has 986 nodes and 332 334 edges.
It contains the communication patterns of 803 days.

Users are roughly distributed equally among major Information Privacy
Awareness categories [35], thus for each node in the datasets, we independently
and uniformly at random chose a false-positive rate from the set {2−l}7l=1. Note
that the most efficient FMD scheme only supports false-positive rates of the
form 2−l. Moreover, for each message and user in the system, we added new
“fuzzy” edges to the graph according to the false-positive rates of the messages’
recipients. The server is solely capable of observing the message-user graph with
the added “fuzzy” edges that serve as cover traffic to enhance the privacy and
anonymity of the users. We run our experiments 10-fold where on average, there
are around 16 and 48 million fuzzy edges for the two datasets, i.e., a randomly
picked edge (the baseline) represents a genuine message with 1%.

(a) The precision and recall of the statisti-
cal tests breaking relationship anonymity
and temporal detection ambiguity, cf. Sec-
tion 4.2 and 4.3.

(b) Temporal probability distribution of
receiving a fuzzy tag for various false-
positive detection rates. The exemplary
user is taken from the College IM dataset.

Fig. 3. Privacy guarantees of FMD in simulations on real communication systems.

11 The simulator can be found at https://github.com/seresistvanandras/FMD-analysis.

https://github.com/seresistvanandras/FMD-analysis

136 I. A. Seres et al.

6.1 Uncovering the Relationship Graph

The server’s goal is to uncover the original social graph of its users, i.e., to
expose the communicating partners. The relationship anonymity of a sender and
a receiver can be easily uncovered by the statistical test introduced in Sect. 4.2
especially if a user is receiving multiple messages from the same sender while
having a low false-positive rate. We found that statistical tests produce a 0.181
and 0.229 precision with 0.145 and 0.391 recall on average in predicting the
communication links between all the pairs of nodes in the College IM and EU
Email datasets, respectively, see Fig. 3a. The results corresponding to the EU
Email dataset are higher due to the increased density of the original graph.
These results are substantial as they show the weak anonymization power of
FMD in terms of relationship anonymity.

Fig. 4. Recall (left) and precision (right) of the statistical tests in breaking relationship
anonymity (see Sect. 4.2) in simulations on the College IM dataset.

Specifically, communication relationships where merely a single message has
been exchanged remain undetected by the applied statistical tests, cf. Fig. 4.
However, note that for every other pairs of users, neither of the analyzed datasets
yields false positives by the used statistical tests. These simulation results demon-
strate that relationship anonymity is effectively maintained against statistical
attacks if each user sends only a single message from the server’s point of
view. This can be achieved by cryptographic tools or anonymous communication
systems, e.g., Tor. On the other hand, recurrent communication relationships
reveal the relationship of communicating peers. Thus, relationship anonymity is
breached with perfect precision, cf. Fig. 4. Simulation results confirm our intu-
ition as well. Namely, statistical tests produce higher recall for nodes with lower
false-positive detection rates, while they are less effective for communicating
pairs that exchanged very few messages.

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 137

6.2 Breaking Temporal Detection Ambiguity

We empirically quantify whether users can deny that they received an incoming
(true positive) message. We consider 25 000 randomly selected messages with
the corresponding fuzzy edges as one epoch. The server tried to assess using
statistical tests (see Sect. 4.3) that a user has received an incoming message.
The intuition is that users receive messages heterogeneously concerning time.
Hence, surges in incoming traffic might not be adequately covered by fuzzy
edges for users with low false-positive rates. Thus, these messages could be tight
to the receiver with high probability, see Fig. 3b for an illustrative example.
Indeed, Fig. 3a suggests that, in general, deniability can be broken effectively
with high precision and recall. On the other hand, Fig. 3b also shows that higher
false-positive rates could provide enough cover traffic for messages within these
conspicuous epochs, which is in line with the findings presented in Fig. 1b.

7 Conclusion

In this paper, we present a privacy and anonymity analysis of the recently intro-
duced Fuzzy Message Detection scheme. Our analysis is thorough as it cov-
ers over three directions. Foremost, an information-theoretical analysis was car-
ried out concerning recipient unlinkability, relationship anonymity, and temporal
detection ambiguity. It is followed by a differential privacy analysis which leads
to a novel privacy definition. Finally, we gave an exhaustive simulation based
on real-world data. Our findings facilitate proper parameter selection and the
deployment of the FMD scheme into various applications. Yet, we also raise
concerns about the guarantees what FMD provides and questions whether it is
adequate/applicable for many real-world scenarios.

Limitations and Future Work. Although far-reaching, our analysis only scratches
the surface of what can be analyzed concerning FMD, and substantial work and
important questions remain as future work. Thus, a hidden goal of this paper
is to fuel discussions about FMD so it can be deployed adequately for diverse
scenarios. Concretely, we formulated a game only for one privacy property and
did not study the Price of Stability/Anarchy. Concerning differential privacy,
our assumption about the IID nature of the edges in a communication graph is
non-realistic. At the same time, the time-dependent aspect of the messages is
not incorporated in our analysis via Pan-Privacy.

Acknowledgements. We thank our shepherd Fan Zhang and our anonymous review-
ers for helpful comments in preparing the final version of this paper. We are grateful
to Sarah Jamie Lewis for inspiration and publishing the data sets. We thank Henry de
Valence and Gabrielle Beck for fruitful discussions. Project no. 138903 has been imple-
mented with the support provided by the Ministry of Innovation and Technology from
the NRDI Fund, financed under the FK 21 funding scheme. The research reported in
this paper and carried out at the BME has been supported by the NRDI Fund based
on the charter of bolster issued by the NRDI Office under the auspices of the Ministry
for Innovation and Technology.

138 I. A. Seres et al.

A FMD in More Details

The fuzzy message detection scheme consists of the following five probabilistic
polynomial-time algorithms (Setup,KeyGen,Flag,Extract,Test). In the following,
let P denote the set of attainable false positive rates.

Setup(1λ) $−→ pp. Global parameters pp of the FMD scheme are generated, i.e.,
the description of a shared cyclic group.

KeyGenpp(1λ) $−→ (pk, sk). This algorithm is given the global public parameters
and the security parameter and outputs a public and secret key.

Flag(pk) $−→ C. This randomized algorithm given a public key pk outputs a flag
ciphertext C.

Extract(sk, p) −→ dsk. Given a secret key sk and a false positive rate p the algo-
rithm extracts a detection secret key dsk iff. p ∈ P or outputs ⊥ otherwise.

Test(dsk,C) −→ {0, 1}. The test algorithm given a detection secret key dsk and
a flag ciphertext C outputs a detection result.

An FMD scheme needs to satisfy three main security and privacy notions: cor-
rectness, fuzziness and detection ambiguity. For the formal definitions of these,
we refer to [3]. The toy example presented in Fig. 5 is meant to illustrate the
interdependent nature of the privacy guarantees achieved by the FMD scheme.

Recipient A

Recipient B

Recipient C

Recipient D

Downloaded messages

Senders Server

true positive

false positive

Fig. 5. A toy example of the FMD scheme. 1 Several senders post anonymous mes-

sages to the untrusted server. 2 Whenever recipients come online, they download
messages that correspond to them (some false positive, some true positive). Recipient
A, B, C and D have a false positive rate 0, 1

3
, 1
3
, 1, respectively. Note that the server

can map the messages that belong to A and D. However, the messages of Recipient B
and C are 2-anonymous.

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 139

B Formal Definitions of Security and Privacy Guarantees

The recipient unlinkability GRU
A,Π(λ) game

1. Adversary A selects target recipients u0, u1 and a target sender u2.
2. Challenger C instructs sender u2 to send a message to uc for c

$←−
{0, 1}.

3. C uniformly at random generates a challenge bit b
$←− {0, 1}. If b = 0,

C instructs u2 to send a message to uc. Otherwise, instructs u2 to
send a message to u1−c.

4. A observes network traffic and flag ciphertexts and outputs b′.
5. Output 1, iff. b = b′, otherwise 0.

Fig. 6. The security game for the anonymity notion of recipient unlinkability.

Definition 4 (Temporal Detection Ambiguity). An anonymous communi-
cation protocol Π satisfies temporal detection ambiguity if for all probabilistic
polynomial-time adversaries A there is a negligible function negl(·) such that

Pr[GTDA
A,Π (λ) = 1] ≤ 1

2
+ negl(λ), (6)

where the temporal detection ambiguity game GTDA
A,Π (·) is defined below (Fig. 7).

The temporal detection ambiguity GTDA
A,Π (λ) game

1. Adversary A selects a target recipient u0.
2. Challenger C uniformly at random generates a challenge bit b

$←−
{0, 1}. If b = 0, C picks k

$←− [1, 2, . . . , U] and instructs sender uk to
send a message to u0. Otherwise, the challenger does nothing.

3. The anonymous communication protocol Π remains functional for a
certain period of time, i.e., users keep sending messages using Π.

4. A observes network traffic and flag ciphertexts and outputs b′.
5. Output 1, iff. b = b′, otherwise 0.

Fig. 7. The security game for the privacy notion of temporal detection ambiguity

140 I. A. Seres et al.

C Differential Privacy Relaxations and Proofs

Our novel DP notion called PEEDP (short for Personalized Existing Edge DP)
is an instance of d-privacy [7], which generalizes the neighbourhood of datasets
(on which the DP inequality should hold) to an arbitrary metric d defined over
the input space. Yet, instead of a top-down approach where we are presenting a
complex metric to fit our FMD use-case, we follow a bottom-up approach and
show the various building blocks of our definition. PEEDP is a straight forward
combination of unbounded DP [20], edge-DP [17]), asymmetric DP [37], and
personalized DP [18]. Although Definition 3 is appropriate for FMD, it does
not capture the FMD scenarios fully as neither time-dependent nature of the
messages nor the dependencies and correlations between them are taken into
account.

The first issue can be tackled by integrating other DP notions into PEEDP
which provide guarantees under continuous observation (i.e., stream-data), such
as pan-privacy [14]. Within this streaming context several definitions can be
considered: user-level [13] (to protect the presence of users), event-level [12] (to
protect the presence of messages), and w-event level [19] (to protect the presence
of messages within time windows).

The second issue is also not considered in Theorem 1 as we assumed the
messages are IID, while in a real-world applications this is not necessarily the
case. Several DP notions consider distributions, without cherry-picking any we
refer the readers to two corresponding surveys [9,38]. We leave it as a future
work to tweak our definition further to fit into these contexts.

Proof (of Theorem 1). Due to the IID nature of the messages it is enough to
show that Eq. 5 holds for an arbitrary communication graph D with arbitrary
message m of an arbitrary user u. The two possible world the adversary should
not be able to differentiate between D = D′/{m}, i.e., whether the particular
message exists or not. Due to the asymmetric nature of Definition 3 (i.e., it only
protects the existence) Eq. 7 does not need to be satisfied. On the other hand,
if the message exists than Eq. 8 and 9 must be satisfied where S1 ={message m
is downloaded by user u} and S2 ={message m is not downloaded by user u}.

Pr(A(D′) ∈ S) ≤ eεu · Pr(A(D) ∈ S) (7)
Pr(A(D) ∈ S1) ≤ eεu · Pr(A(D′) ∈ S1) (8)
Pr(A(D) ∈ S2) ≤ eεu · Pr(A(D′) ∈ S2) (9)

If we reformulate the last two equations with the corresponding probabilities
we get 1 ≤ eεu ·p(u) and 0 ≤ eεu · (1−p(u)) respectively. While the second holds
trivially the first corresponds to the formula in Theorem 1. ��
Proof (of Theorem 2). The users’ number of incoming messages are independent
from each other hence we can focus on a single user u. The proof follows the

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 141

idea from [21]12: we satisfy Eq. 4 (with +δ at the end) when A(D) = tag(u) ∼
D + Binom(M − in(u), p(u)) for D = in(u) and D′ = in(u) ± 1, i.e., we show
that the following Equation holds.

Pr(A(D) = tag(u) ∈ S|D = in(u),M, p(u)) ≤
eε · Pr(A(D′) = tag′(u) ∈ S|D′ = in(u) ± 1,M ′ = M ± 1, p(u)) + δ

⇒ Pr(in(u) + Binom(M − in(u), p(u)) ∈ S) ≤
eε · Pr(in(u) ± 1 + Binom(M ± 1 − (in(u) ± 1), p(u)) ∈ S) + δ

First, we focus on δ and provide a lower bound originating from the probabil-
ity on the left when Pr(·) ≤ eε ·0+δ. This corresponds to two cases as seen in the
Equation below: when D′ = in(u)+1 with S = {in(u)} and when D′ = in(u)−1
with S = {M}. The corresponding lower bounds (i.e., probabilities) correspond
to the event when user u does not download any fuzzy messages and when user
u does downloads all messages respectively. Hence, the maximum of these are
indeed a lower bound for δ.

Pr(A(in(u)) = in(u)) ≤ eε · Pr(A(in(u) + 1) = in(u)) + δ ⇒ (1 − p(u))M−in(u) ≤ δ

Pr(A(in(u)) = M) ≤ eε · Pr(A(in(u) − 1) = M) + δ ⇒ p(u)M−in(u) ≤ δ

Now we turn towards ε and show that (ε, 0)-DP holds for all subset besides
the two above, i.e., when S = {in(u)+ y} with y = [1, . . . , M − in(u)− 1]. First,
we reformulate Eq. 4 as seen below.

Pr(in(u) + Binom(M − in(u), p(u)) ∈ S)
Pr(in(u) ± 1 + Binom(M − in(u), p(u)) ∈ S)

≤ eε

Then, by replacing the binomial distributions with the corresponding prob-
ability formulas we get the following two equations for D′ = in(u) + 1 and
D′ = in(u) − 1 respectively.

(
M−in(u)

y

) · p(u)y · (1 − p(u))M−in(u)−y

(
M−in(u)

y−1

) · p(u)y−1 · (1 − p(u))M−in(u)−y+1
=

M − in(u) − y + 1

y
· p(u)

1 − p(u)
≤ eε

(
M−in(u)

y

) · p(u)y · (1 − p(u))M−in(u)−y

(
M−in(u)

y+1

) · p(u)y+1 · (1 − p(u))M−in(u)−y−1
=

y + 1

M − in(u) − y
· 1 − p(u)

p(u)
≤ eε

Consequently, the maximum of these is the lower bound for eε. The first
formula’s derivative is negative, so the function is monotone decreasing, meaning
that its maximum is at y = in(u) + 1. On the other hand, the second formula’s
derivative is positive so the function is monotone increasing, hence the maximum

12 We present the proof for singleton sets, but it can be extended by using the following
formula: A+C

B+D
< max(A

B
, C

D
).

142 I. A. Seres et al.

is reached at y = M − in(u) − 1. By replacing y with these values respectively
one can verify that the corresponding maximum values are indeed what is shown
in Theorem 2. ��

D Game-Theoretical Analysis

Here—besides a short introduction of the utilized game theoretic concepts—
we present a rudimentary game-theoretic study of the FMD protocol focusing
on relationship anonymity introduced in Sect. 4. First, we formalize a game and
highlight some corresponding problems such as the interdependence of the user’s
privacy. Then, we unify the user’s actions and show the designed game’s only
Nash Equilibrium, which is to set the false-positive detection rates to zero, ren-
dering FMD idle amongst selfish users. Following this, we show that a higher
utility could been reached with altruistic users and/or by centrally adjusting the
false-positive detection rates. Finally, we show that our game (even with non-
unified actions) is a potential game, which have several nice properties, such as
efficient Nash Equilibrium computation.

– Tragedy of Commons [15]: users act according to their own self-interest
and, contrary to the common good of all users, cause depletion of the resource
through their uncoordinated action.

– Nash Equilibrium [27]: every player makes the best/optimal decision for
itself as long as the others’ choices remain unchanged.

– Altruism [34]: users act to promote the others’ welfare, even at a risk or cost
to ourselves.

– Social Optimum [16]: the user’s strategies which maximizes social welfare
(i.e., the overall accumulated utilities).

– Price of Stability/Anarchy [1,22]: the ratio between utility values corre-
sponding to the best/worst NE and the SO. It measures how the efficiency of
a system degrades due to selfish behavior of its agents.

– Best Response Mechanism [28]: from a random initial strategy the players
iteratively improve their strategies

Almost every multi-party interaction can be modeled as a game. In our case,
these decision makers are the users using the FMD service. We assume the
users bear some costs Cu for downloading any message from the server. For
simplicity we define this uniformly: if f is the cost of retrieving any message
for any user than Cu = f · tag(u). Moreover, we replace the random variable
tag(u) ∼ in(u) + Binom(M − in(u), p(u)) with its expected value, i.e., Cu =
f · (in(u) + p(u) · (M − in(u))).

Besides, the user’s payoff should depend on whether any of the privacy prop-
erties detailed in Sect. 4 are not satisfied. For instance, we assume the users suffer
from a privacy breach if relationship anonymity is not ensured, i.e., they uni-
formly lose L when the recipient u can be linked to any sender via any message
between them. In the rest of the section we slightly abuse the notation u as in
contrast to the rest of the paper we refer to the users as u ∈ {1, . . . , U} instead

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 143

of {u0, u1, . . . }. The probability of a linkage via a particular message for user u
is αu =

∏
v∈{1,...,U}/u(1 − p(v)). The probability of a linkage from any incoming

message of u is 1−(1−αu)in(u).13 Based on these we define the FMD-RA Game.

Definition 5. The FMD-RA Game is a tuple 〈N , Σ,U〉, where the set of players
is N = {1, . . . , U}, their actions are Σ = {p(1), . . . , p(U)} where p(u) ∈ [0, 1]
while their utility functions are U = {ϕu(p(1), . . . , p(U))}U

u=1 such that for 1 ≤
u ≤ U :

ϕu = −L ·
(
1 − (1 − αu)in(u)

)
− f · (in(u) + p(u) · (M − in(u))). (10)

It is visible in the utility function that the bandwidth-related cost (second
term) depends only on user u’s action while the privacy-related costs (first term)
depend only on the other user’s actions. This reflects well that relationship
anonymity is an interdependent privacy property [6] within FMD: by download-
ing fuzzy tags, the users provide privacy to others rather than to themselves. As
a consequence of this tragedy-of-commons [15] situation, a trivial no-protection
Nash Equilibrium (NE) emerges. Moreover, Theorem 3 also states this NE is
unique, i.e., no other NE exists.

Theorem 3. Applying no privacy protection in the FMD-RA Game is the only
NE: (p∗(1), . . . , p∗(U)) = (0, . . . , 0).

Proof. First we prove that no-protection is a NE. If all user u set p(u) = 0
than a single user by deviates from this strategy would increased its cost. Hence
no rational user would deviate from this point. In details, in Eq. 10 the pri-
vacy related costs is constant −L independently from user u’s false-positive rate
while the download related cost would trivially increase as the derivative of this
function (shown in Eq. 11) is negative.

∂ϕu

∂p(u)
= −f · (M − in(u)) < 0 (11)

Consequently, p∗ = (p∗(1), . . . , p∗(U)) = (0, . . . , 0) is indeed a NE. Now we
give an indirect reasoning why there cannot be any other NEs. Lets assume
p̂ = (p̂(1), . . . , p̂(U)) is a NE. At this state any player could decrease its cost
by reducing its false positive-rate which only lower the download related cost.
Hence, p̂ is not an equilibrium. ��

This negative result highlights that in our simplistic model, no rational (self-
ish) user would use FMD; it is only viable when altruism [34] is present. On the
other hand, (if some condition holds) in the Social Optimum (SO) [16], the users
do utilize privacy protection. This means a higher total payoff could be achieved
(i.e., greater social welfare) if the users cooperate or when the false-positive rates
13 It is only an optimistic baseline as it merely captures the trivial event when no-one

downloads the a message from any sender v besides the intended recipient u.

144 I. A. Seres et al.

are controlled by a central planner. Indeed, according to Theorem 4 the SO�=NE
if, for all users, the cost of the fuzzy message downloads is smaller than the cost
of the privacy loss. The exact improvement of the SO over the NE could be
captured by the Price of Stability/Anarchy [1,22], but we leave this as future
work.

Theorem 4. The SO of the FMD-RA Game is not the trivial NE and corre-
sponds to higher overall utilities if f · (M − maxu(in(u))) < L.

Proof. We show that the condition in the theorem is sufficient to ensure that
SO�=NE by showing that greater utility could be achieved with 0 < p′(u) than
with p(u) = 0. To do this we simplify out scenario and set p(u) = p for all users.
The corresponding utility function is presented in Eq. 12 while in Eq. 13 we show
the exact utilities when p is either 0 or 1.

ϕu(p) = −L · (1 − (1 − (1 − p)U−1)in(u)) − f · (in(u) + p · (M − in(u))) (12)
ϕu(0) = −L − f · in(u) ϕu(1) = −f · M (13)

One can check with some basic level of mathematical analysis that the deriva-
tive of Eq. 12 is negative at both edge of [0, 1] as ∂ϕu(p)

∂p (0) = ∂ϕu(p)
∂p (1) =

−f · (M − in(u)). This implies that the utility is decreasing at these points.
Moreover, depending on the relation between the utilities in Eq. 13 (when p = 0
and p = 1), two scenario is possible as we illustrate in Fig. 8. From this figure it
is clear that when ϕu(0) < ϕu(1) (or f · (M − in(u)) < L) for all users that the
maximum of their utilities cannot be at p = 0. ��

Potential Game. We also show that FMD-RA is a potential game [26]. This is
especially important, as it guaranteed that the Best Response Dynamics termi-
nates in a NE.

Definition 6 (Potential Game). A Game 〈N ,A,U〉 (with players {1, . . . , U},
actions {a1, . . . , aU}, and utilities {ϕ1, . . . , ϕU}) is a Potential Game if there
exist a potential function Ψ such that Eq. 14 holds for all players u independently
of the other player’s actions.14

ϕu(au, a−u) − ϕu(a′
u, a−u) = Ψ(au, a−u) − Ψ(a′

u, a−u) (14)

Theorem 5. FMD-RA is a Potential Game with potential function shown in
Eq. 15.

Ψ(p(1), . . . , p(U)) = −f ·
U∑

u=1

p(u) · (M − in(u)) (15)

14 a−u is a common notation to represent all other players action except player u. Note
that p(−u) stands for the same in relation with FMD.

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 145

Fig. 8. Illustration of the utility functions: the yellow curve’s maximum must be
between zero and one since the gray dot is below the green where the derivative is
negative. (Color figure online)

Proof. We prove Eq. 14 by transforming both side to the same form. We start
with the left side: the privacy related part of the utility does only depend on the
other user’s action, therefore this part falls out during subtraction. On the other
hand the download related part accumulates as shown below.

ϕu(p(u), (p(−u)) − ϕu(p(u)′, p(−u)) =
−f · (in(u) + p(u) · (M − in(u))) − (−f · (in(u) + p(u)′ · (M − in(u)))) =

−f · p(u) · (M − in(u)) − (−f · p(u)′ · (M − in(u)))

Coincidentally, we get the same result if we do the subtraction on the right
side using the formula in Eq. 15 as all element in the summation besides u falls
out (as they are identical because they do not depend on user u’s action). ��

E Attacks on Privacy

We show several possible attacks against the FMD scheme, that might be fruitful
to be analyzed in more depth.

Intersection Attacks. The untrusted server could possess some background
knowledge that it allows to infer that some messages were meant to be received
by the same recipient. In this case, the server only needs to consider the inter-
section of the anonymity sets of the “suspicious” messages. Suppose the server
knows that l messages are sent to the same user. In that case, the probability
that a user is in the intersection of all the l messages’ anonymity sets is drawn
from the Binom(U, pl) distribution. Therefore, the expected size of the anonymity
set after an intersection attack is reduced to plU from pU .

Sybil Attacks. The collusion of multiple nodes would decrease the anonymity set
of a message. For instance, when a message is downloaded by K nodes out of U ,

146 I. A. Seres et al.

and N node is colluding, then the probability of pinpointing a particular message

to a single recipient is (N+1
K)

(U
K) . This probability clearly increases as more node is

being controlled by the adversary. On the other hand, controlling more nodes
does trivially increase the controller’s privacy (not message-privacy but user-
privacy) as well. However, formal reasoning would require a proper definition for
both of these privacy notions.

Neighborhood Attacks. Neighborhood attacks had been introduced by Zhou et al.
in the context of deanonymizing individuals in social networks [39]. An adversary
who knows the neighborhood of a victim node could deanonymize the victim even
if the whole graph is released anonymously. FMD is susceptible to neighborhood
attacks, given that relationship anonymity can be easily broken with statistical
tests. More precisely, one can derive first the social graph of FMD users and
then launch a neighborhood attack to recover the identity of some users.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. SIAM J.
Comput. 38(4), 1602–1623 (2008)

2. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA: a frame-
work for analyzing anonymous communication protocols. In: 2013 IEEE 26th Com-
puter Security Foundations Symposium, pp. 163–178. IEEE (2013)

3. Beck, G., Len, J., Miers, I., Green, M.: Fuzzy message detection. IACR eprint
(2021)

4. Solomon, M., DiFrancesco, B.: Privacy preserving stealth payments on the
Ethereum blockchain (2021)

5. Bianchi, G., Bracciale, L., Loreti, P.: “Better than nothing” privacy with bloom
filters: to what extent? In: Domingo-Ferrer, J., Tinnirello, I. (eds.) PSD 2012.
LNCS, vol. 7556, pp. 348–363. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33627-0 27

6. Biczók, G., Chia, P.H.: Interdependent privacy: let me share your data. In: Sadeghi,
A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 338–353. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39884-1 29

7. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

8. de Valence, H.: Determine whether penumbra could integrate fuzzy message detec-
tion (2021)

9. Desfontaines, D., Pejó, B.: SoK: differential privacies. Proc. Priv. Enhanc. Technol.
2, 288–313 (2020)

10. Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhance-
ments. In: 2008 Third International Conference on Availability, Reliability and
Security, pp. 990–993. IEEE (2008)

11. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

https://doi.org/10.1007/978-3-642-33627-0_27
https://doi.org/10.1007/978-3-642-33627-0_27
https://doi.org/10.1007/978-3-642-39884-1_29
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/11787006_1

Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees? 147

12. Dwork, C.: Differential privacy in new settings. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2010)

13. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Proceedings of the Forty-Second ACM Symposium on The-
ory of Computing. ACM (2010)

14. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N., Yekhanin, S.: Pan-private
streaming algorithms. In: ICS (2010)

15. Hardin, G.: The tragedy of the commons: the population problem has no technical
solution; it requires a fundamental extension in morality. Science 162(3859), 1243–
1248 (1968)

16. Harsanyi, J.C., Selten, R., et al.: A General Theory of Equilibrium Selection in
Games. MIT Press, Cambridge (1988)

17. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distri-
bution of private networks. In: 2009 Ninth IEEE International Conference on Data
Mining, pp. 169–178. IEEE (2009)

18. Jorgensen, Z., Yu, T., Cormode, G.: Conservative or liberal? Personalized differ-
ential privacy. In: 2015 IEEE 31st International Conference on Data Engineering,
pp. 1023–1034. IEEE (2015)

19. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. Proc. VLDB Endow. 7(12), 1155–1166 (2014)

20. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data, pp.
193–204 (2011)

21. Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries
and clicks privately. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 171–180 (2009)

22. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

23. Lewis, S.J.: Niwl: a prototype system for open, decentralized, metadata resistant
communication using fuzzytags and random ejection mixers (2021)

24. Lewis, S.J.: A playground simulator for fuzzy message detection (2021)
25. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:

privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3-es
(2007)

26. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143
(1996)

27. Nash, J.F., et al.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci.
36(1), 48–49 (1950)

28. Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In:
ICS, pp. 155–165. Citeseer (2011)

29. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive 2015/1098 (2015)

30. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior
and interaction: network analysis of an online community. J. Am. Soc. Inf. Sci.
Technol. 60(5), 911–932 (2009)

31. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pp. 601–610 (2017)

32. Rondelet, A.: Fuzzy message detection in Zeth (2021)

https://doi.org/10.1007/3-540-49116-3_38

148 I. A. Seres et al.

33. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

34. Simon, H.A.: Altruism and economics. Am. Econ. Rev. 83(2), 156–161 (1993)
35. Soumelidou, A., Tsohou, A.: Towards the creation of a profile of the information

privacy aware user through a systematic literature review of information privacy
awareness. Telematics Inform. 61, 101592 (2021)

36. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

37. Takagi, S., Cao, Y., Yoshikawa, M.: Asymmetric differential privacy. arXiv preprint
arXiv:2103.00996 (2021)

38. Zhang, T., Zhu, T., Liu, R., Zhou, W.: Correlated data in differential privacy:
definition and analysis. Concurr. Comput. Pract. Exp. 34(16), e6015 (2020)

39. Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preser-
vation in social networks against neighborhood attacks. Knowl. Inf. Syst. 28(1),
47–77 (2011). https://doi.org/10.1007/s10115-010-0311-2

http://arxiv.org/abs/2103.00996
https://doi.org/10.1007/s10115-010-0311-2

Differential Privacy in Constant Function
Market Makers

Tarun Chitra1(B), Guillermo Angeris2, and Alex Evans3

1 Gauntlet Networks, Inc., Dallas, USA
tarun@gauntlet.network

2 Stanford University, Stanford, USA
angeris@stanford.edu

3 Bain Capital, Boston, USA

aevans@baincapital.com

Abstract. Constant function market makers (CFMMs) are the most
popular mechanism for facilitating decentralized trading. While these
mechanisms have facilitated hundreds of billions of dollars of trades, they
provide users with little to no privacy. Recent work illustrates that pri-
vacy cannot be achieved in CFMMs without forcing worse pricing and/or
latency on end users. This paper quantifies the trade-off between pricing
and privacy in CFMMs. We analyze a simple privacy-enhancing mecha-
nism called Uniform Random Execution and prove that it provides (ε, δ)-
differential privacy. The privacy parameter ε depends on the curvature
of the CFMM trading function and the number of trades executed. This
mechanism can be implemented in any blockchain system that allows
smart contracts to access a verifiable random function. Our results pro-
vide an optimistic outlook on providing partial privacy in CFMMs.

1 Introduction

Constant function market makers (CFMMs) have become the most widely used
decentralized product. In 2021, these market makers were facilitating over a bil-
lion dollars of daily (spot) volume, comparable to centralized exchanges such as
Binance, Coinbase, or FTX. These market makers allow those looking for passive
yield on a portfolio of assets to be automatically matched with traders looking to
execute a swap against their assets. CFMMs work by ensuring that an invariant
known as the trading function is kept constant before and after a trade is executed.
The trading function, which is a function of the liquidity provided by those seek-
ing passive yield, controls the price displayed by the CFMM that traders can exe-
cute a trade at. In order to ensure that liquidity providers (LPs) do not always lose
money, as they are effectively buying the currency whose value is going down in
exchange for one that is going up, a trading fee is applied to each transaction. Prior
work [AC20,AAE+21,AEC20] has investigatednecessary and sufficient conditions
for the trading function and choice of fee to lead to profitable outcomes for LPs.

Privacy in CFMMs. One major problem with CFMMs is their lack of privacy.
At a high-level, privacy in CFMMs boils down to preventing an adversary from
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 149–178, 2022.
https://doi.org/10.1007/978-3-031-18283-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_8

150 T. Chitra et al.

discerning trade sizes as a function of public prices and the knowledge of a fea-
sible trade. Additionally, the dramatic increase in maximal extractable value
(MEV) and front-running on Ethereum makes transaction-level privacy increas-
ingly important [QZLG20,QZG21,ZQT+20,AEC21a]. Mechanisms that reduce
the amount of information that an adversary has about user transactions can
help reduce MEV and increase privacy. However, we do note that there are sub-
tle distinctions between mechanisms that reduce MEV versus mechanisms that
increase privacy (which we address in Sect. 3.1) In this paper, we study mecha-
nisms purely in terms of privacy, but are motivated to study the problem in the
hope that some form of privacy might address MEV.

Prior work [AEC21b] has shown that given any feasible trade and the (usu-
ally public) prices before and after executed trades, one can uniquely identify the
size of the trade. This is a natural (although somewhat indirect) consequence
of the concavity of the trading function [AC20,AAE+21]. This work implies
that, even with modern cryptography such as zero-knowledge proofs (ZKPs),
one will need to modify the CFMM mechanism to blind user’s trade sizes. In
other words, simply hiding balances via ZKPs of reserves (which has been pro-
posed and implemented in multiple protocols [CXZ20,Pow21]) is not sufficient
for transaction-level privacy.

Proposed Solutions. The two main options presented in [AEC21b] for recovering
privacy involve either modifying prices (e.g., adding noise to quoted prices) or
batching transactions.1 Both of these changes often degrade the user experience:
both options force traders to bear worse price impact while the latter option also
means that users face higher latency for trade confirmation. Assuming that these
are the only options available, a natural question to ask is: how well can we con-
trol the trade-off between worsened price and latency and improved transaction
privacy? One might formulate this rather general question as the following:

– What is the minimum number of swaps, n(δ), that must be batched such that
an adversary is unable to infer the true trade sizes, beyond a precision of δ?

– How much worse is the worst price offered to any one user via such a mech-
anism?

Answers to the former question are analogous to sample complexity bounds
from learning theory, whereas answers to the latter question measure the ‘cost
of privacy’.

Differential Privacy. One method for answering questions of this form is through
the lens of differential privacy [DR+14]. Differentially private algorithms aim to
hide individual user data (e.g., trades) while simultaneously preserving aggregate
statistics (e.g., prices or averages). Many differentially private mechanisms work
by adding targeted randomness to each individual users’ data. As a simple illus-
tration, suppose for which we have a sequence of values x1, . . . , xn and we want

1 There are two live batching CFMMs in production, CowSwap on Ethereum [Mar21]
and Penumbra which relies on a specialized ZKP chain [dV21].

Differential Privacy in Constant Function Market Makers 151

to report the mean μ = 1
n

∑
i xi. One can (in expectation) preserve the mean μ

by adding i.i.d., mean zero noise to each xi, before computing and reporting the
new mean, μ̃. Intuitively, as the variance of the added noise becomes large, it is
harder to recover the original value of xi, prior to the added noise, but the new
reported mean μ̃ is likely to be far away from the true mean μ.

In this sense, differentially private algorithms induce a natural trade-off
between the privacy and accuracy of a query, much like the trade-off between
price impact and privacy in CFMMs. We note that the methods from differential
privacy have been used at scale and in production at the US Census [Dwo19],
Google [ACG+16], and Apple [CJK+18]. Our threat model for the adversary
(Sect. 3.1) involves an adversary trying to estimate an ordered vector of trades
given prices. In this scenario, we can view the set of trades to be executed as
“private” user data while the accuracy of the query is the deviation in price that
users have to pay for privacy. Differential privacy is a natural way to study the
expected worst case behavior of such an estimation process, similar to its usage
within machine learning.

We note that achieving differential privacy, even with non-private noise, can
help reduce expected MEV profits. Moreover, as differential privacy has often
been used in machine learning to improve algorithmic fairness, we posit (with-
out proof) that differentially private DeFi algorithms inherit fairness guarantees
[DHP+12]. These fairness guarantees are distinct of those from cryptographic
fair ordering [KZGJ20], as they provide explicit guarantees on the trade-off
between (economic) utility, privacy, and fairness [CGKM19,XYW19].

Uniform Random Execution. To achieve differential privacy in CFMMs, we con-
struct a black-box algorithm called Uniform Random Execution (URE). This
algorithm can be viewed as the inverse of batching, as it breaks up and splits
large trades before subsequently randomly permuting the trade ordering. Ran-
domness is used for both splitting up large trades and for permuting the split
up trades. Blockchains with smart contract capabilities that include CFMM
ordering as part of consensus rules can execute the URE (e.g., Celo [KOR19],
Terra [MSS20], Penumbra [dV21], Osmosis [AO21]). In particular, any blockchain
with a verifiable random function (VRF) [MRV99] that provides public random-
ness and consensus rules for executing trades in a particular order suffices for
URE.

Summary. Our analysis of the differential privacy of URE utilizes a novel repre-
sentation of a sequence of trades as a binary tree. The tree is constructed such
that the height of the tree provides a lower bound on the worst case price impact.
On the other hand, number of leaves of the tree controls how easy it is for one to
invert the precise trades executed. Representing continuous objects (sequences
of real-valued trades) as a random discrete data structure allows us to utilize
traditional tools from differential privacy. We show that the trade tree controls
the maximum price impact of a sequence of trades by utilizing curvature of a
CFMM [AEC20, §2]. Curvature represents bounds on market impact cost and

152 T. Chitra et al.

liquidity and is crucial for relating the trade tree to worst-case price impact. Sub-
sequently, we analyze the impact of splitting up and randomly permuting trades
on the trade tree and then compute bounds on the price impact associated to
these actions.

In order to achieve differential privacy, we first prove that splitting up trades
can be executed in a differentially private manner (Claim 2). To split a trade,
we sample a random distribution π and the split up a single trade according
to π. After splitting up the trades, we then show that randomly permuting
the trades leads to an (ε, δ)-differentially private algorithm. We use composition
laws [DR+14,KOV15] to combine these two results and show that the URE is
differentially private. Note that ε and δ depend on the CFMM’s curvature and
on the on the number of trades executed.

2 Preliminaries

We will cover preliminaries on CFMMs and differential privacy. For more
details, please refer to review articles on CFMMs [AAE+21] and differential
privacy [DR+14].

2.1 Constant Function Market Makers

A constant function market maker is a contract that holds some amount of
reserves R,R′ ≥ 0 of two assets and has a trading function ψ : R2 × R2 → R.
Traders can then submit a trade (Δ,Δ′) denoting the amount they wish to
tender (if negative) or receive (if positive) from the contract. The contract then
accepts the trade if

ψ(R,R′,Δ,Δ′) = ψ(R,R′, 0, 0),

and pays out (Δ,Δ′) to the trader.

Curvature. We briefly summarize the main definitions and results of [AEC20]
here. Suppose that the trading function ψ is differentiable (as most trading
functions in practice are), then the marginal price for a trade of size Δ is

g(Δ) =
∂3ψ(R,R′,Δ,Δ′)
∂4ψ(R,R′,Δ,Δ′)

.

Here ∂i denotes the partial derivative with respect to the ith argument, while
Δ′ is specified by the implicit condition ψ(R,R′,Δ,Δ′) = ψ(R,R′, 0, 0); i.e.,
the trade (Δ,Δ′) is assumed to be valid. Additionally, the reserves R,R′ are
assumed to be fixed. The function g is known as the price impact function as
it represents the final marginal price of a positive sized trade. When there are
fees, one can show that gfee(Δ) = γg(γΔ) where 1 − γ denotes the percentage
fee. We say that a CFMM is μ-stable if it satisfies

g(0) − g(−Δ) ≤ μΔ

Differential Privacy in Constant Function Market Makers 153

for all Δ ∈ [0,M] for some positive M . This is a linear upper bound on the max-
imum price impact that a bounded trade (bounded by M) can have. Similarly,
we say that a CFMM is κ-liquid if it satisfies

g(0) − g(−Δ) ≥ κΔ

for all Δ ∈ [0,K] for some positive K. Simple methods for computing some μ
and κ in common CFMMs are presented in [AEC20, §1.1].

Two-Sided Bounds. We can define similar upper and lower bounds for g(Δ) −
g(0), with constants μ′ and κ′, which hold when the trades Δ are in intervals
[0,M ′], [0,K ′], respectively. For the remainder of this paper, we will refer to
μ-stability as the upper bound for both g(0) − g(−Δ) and g(Δ) − g(0), and
similarly for κ-liquidity. More specifically, given μ, μ′, we say that a CFMM is
symmetrically μ′′-stable if

|g(Δ) − g(0)| ≤ μ|Δ|,

when −M ≤ Δ ≤ M ′, and symmetrically κ′′ stable if

|g(Δ) − g(0)| ≥ κ|Δ|.

when −K ≤ Δ ≤ K ′. From the above, it suffices to pick μ′′ = min{μ, μ′} and
κ′′ = min{κ, κ′}.

For the remainder of this paper, we will focus on using CFMM curvature
parameters to bound the impact cost realized, which in turn controls how easily
an adversary can invert a trade size from prices.

2.2 Differential Privacy

Differential privacy is a framework for classifying how well a randomized algo-
rithm A anonymizes individual data points.

Definition 1. A randomized algorithm A is (ε, δ)-differentially private if for all
S, S′ ∈ DomA with d(S, S′) ≤ 1 we have for all measurable B ⊂ RangeA

Prob[A(S) ∈ B] ≤ eε Prob[A(S′) ∈ B] + δ

In this definition, ε can be thought of as a uniform upper bound on the Kullback-
Leibler divergence over the distribution induced by any pair of neighboring data
sets. Traditionally, S, S′ are thought of as discrete and the metric d corresponds
to the Hamming metric. In this case, the intuition behind the definition is the
following: changing one entry of the variable S′ does not change the output
distribution ‘too much,’ making it difficult to tell apart S from S′ by look-
ing only at the results of algorithm A. In this paper, we will assume d is the
L1 norm [DR+14,NRS07]. We provide further details on differential privacy in
Appendix A.

154 T. Chitra et al.

3 Problem Construction

In the discussions of [AEC21b, §3], two ways of providing approximate privacy
are presented:

1. Randomizing price: the protocol can randomly perturb the price quoted by
the CFMM, in manner resistant to adversaries (while also not destroying
liquidity provider returns).

2. Batching orders: picking a number of orders n to batch prior to execution.

Neither of these proposed solutions are perfect and [AEC21b] provides no adver-
sarial model for assessing them. Here we first formulate a simple adversarial
threat model for these solutions and then introduce URE. To construct URE,
we first describe a simpler method called Simple Uniform Random Execution
(SURE) which achieves differential privacy under restrictive conditions on trade
sizes. We then prove that the URE achieves differential privacy by modifying
SURE using extra randomness whose entropy is parametrized by the number
of trades to execute and the curvature. For the remainder of the paper, we
will assume that there are only two assets traded (in order to utilize curvature
bounds) while n will refer to the number of trades executed.

3.1 Threat Model

Adversary Definition and Attack. We assume a simple model of an adversary
that generalizes [AEC21b]. The adversary, who we will call Eve, attempts to
discover the quantities traded by a set of agents referred to as Traders. Eve is
unable to see the exact quantities the Traders use to trade with the CFMM,
but knows when the Traders transactions Δ1, . . . ,Δn are executed as a block.
Eve does not know the order in which the trades are executed and her goal is to
estimate the ordering and sizes of the trades. Her only ability is to interact with
the CFMM in the state before the traders’ transactions are executed and the
state after their transactions are executed. Explicitly, Eve’s goal is to produce
a vector (Δ̃1, . . . , Δ̃n) such that ‖(Δ̃1, . . . , Δ̃n) − (Δ1, . . . ,Δn)‖1 is small with
high probability. Differential privacy provides a precise way of characterizing the
probability of such a scenario occurring.

When a user submits a transaction to a blockchain, they send a transaction
via a peer-to-peer network that reaches a miner or validator. In both proof-of-
stake and layer 2 chains, the validator who chooses the final execution order of
transactions is known as a sequencer. For the remainder of this paper, any refer-
ence to the sequencer will assume that the sequencer is honest (e.g. they execute
a given ordering when received from an MEV auction). Unless the blockchain
uses a fully homomorphic virtual machine (which does not currently exist),
the sequencer necessarily sees a user’s transaction in order to execute a valid
state transition. Fair-ordering systems [KZGJ20,KDL+21] attempt to decen-
tralize this sequencing operation, albeit with extra assumptions on validator
behavior. Our threat model does not prevent the sequencer from discovering
Traders’ trades and front-running them as we assume that Eve is not the (hon-
est) sequencer.

Differential Privacy in Constant Function Market Makers 155

Action Space. We assume that Eve has access to two queries:

– marginalPrice(): Computes the marginal price of the CFMM at its current
reserves

– isValid(Δ): Takes a trade Δ ∈ R, returns True if the trade is valid and False
otherwise

We will denote the set of valid trades at reserves R ∈ Rn
+ as Aϕ(R) and note that

it can effectively be thought of as the epigraph of the trading function ϕ [AC20].

3.2 Simple Uniform Random Execution

One of the simplest ways to introduce entropy into a CFMM is to randomly
permute the set of trades to be executed. We will first describe the simple uniform
random execution (SURE) mechanism that simply permutes observed trades.
Formally, suppose that we are given a vector of valid trades

Δ1 ∈ Aϕ(R),Δi ∈ Aϕ

⎛

⎝R +
i−1∑

j=1

Δj

⎞

⎠

For brevity, we will refer to above condition as Aϕ(Δ) for a trade vector Δ.
The SURE mechanism draws a random permutation π ∼Unif Sn and constructs
a sequence of trades Δπ

i = Δπ(i), which arise from permuting the order in which
the trades are executed. Consider the marginal prices of the original trades
p1, . . . , pn and the permuted prices pπ

1 , . . . , pπ
n. Note that pn = pπ(n) if and only if

the CFMM is path-independent (e.g., feeless). Our goal is two-fold: first, we aim
to bound the maximum deviation between the true price p and the permuted
prices pπ. That is, we want to compute

ESURE = E
π∼Sn

[

max
i∈[n]

|pπ(i) − p(i)|
]

This deviation effectively corresponds to a bound on the worst quoted price that
a trader can receive (relative to their original order price). Secondly, we want to
capture a notion of how difficult it is for an adversary to learn the values of π
chosen given only the prices pπ

n.
Before analyzing the SURE mechanism for some classes of trades, let’s look

at some simple examples. If all of the trades Δi are unique—e.g., �i, j ∈ [n]
such that Δi = Δj—then computing Δi given pπ is in some sense be difficult
to invert to a precision higher than κ mini,j |Δi − Δj |. This is because if π

is a single adjacent transposition (i i + 1), then g(
∑i

j=1 Δi) − g(
∑i−1

j=1 Δj) ≥
κ min(Δi,Δi−1) ≥ κ mini,j |Δi − Δj |. Moreover, we should expect that SURE
should work better when

∑n
i=1 sgn(Δi) ≈ 0. This is because the probability of

having a long run of trades in the same direction is very low. For instance, if Δi

is a Rademacher random variable (e.g., uniformly drawn from {−1, 1}) then the
expected maximum length of a run is Θ(log n) [ER75, Theorem 1].

156 T. Chitra et al.

On the other hand, if there is a set S ⊂ [n] with |S| = Ω(n) such that for all
i, j ∈ S,Δi = Δj , then it will be much easier to invert the set of trades. There is a
loss of entropy in the output trade sequences as there will be many permutations
π, π′, π
= π′ such that Δπ = Δπ′

. Let’s consider an explicit numerical example.
Let Δ1 = 100 and Δi = 1 for all i ∈ {2, . . . , n}. Even though we are sampling
from n! permutations, there are only n output sequences that SURE outputs:
Δπ

j = Δπ(1) = 100 in the jth position for j ∈ [n]. Suppose we consider a
permutation π with π(1) = j. For any trade in position i with π(i) < j, the
trade gets significantly better execution than they did initially. This is because
their trade is executed before the trade of size 100 is executed, giving them
significantly less impact. Therefore, SURE requires the trade distribution to have
sufficient entropy and the distribution of trade sizes to not be too concentrated
in order to work.

We will first analyze SURE on a subset of allowable input trades. This subset
will be defined via simple constraints on mini,j |Δi − Δj |. We later relax these
by splitting up large trades in a manner that ensure that the trade size distri-
bution satisfies these constraints with high probability. To analyze SURE, we
will start by obtaining upper and lower bounds on the worst case expected price
discrepancy, E[maxi |pπ(i) − p(i)|]. This analysis will provide insight into what
subset of admissible trades provide provable bounds on price discrepancy and
identifiability.

Maximum of the Price Process and Random Binary Trees. Suppose the price
impact function g is κ-liquid and μ-stable on an interval [−M,M]. By definition
this implies that for all i ∈ [n]

i∑

j=1

κΔπ(j) − μΔj ≤ pπ(i) − p(i) ≤
i∑

j=1

μΔπ(j) − κΔj

This means that we have

κ max
i

∣
∣
∣
∣
∣
∣

i∑

j=1

Δπ(j) − μ

κ
Δj

∣
∣
∣
∣
∣
∣
≤ max

i
|pπ(i) − p(i)| ≤ μmax

i

∣
∣
∣
∣
∣
∣

i∑

j=1

Δπ(j) − κ

μ
Δj

∣
∣
∣
∣
∣
∣

(1)

Therefore, bounds on partial sums of permuted trades will allow us to bound
the worst case price impact of SURE. Define the partial sum

ρi(Δ, π) =
i∑

j=1

Δπ(j) − μ

κ
Δj (2)

Now consider the binary search tree T (ρ(Δ, π)) whose root is ρ1(Δ, π). Each
element ρj(Δ, π) is inserted sequentially to construct the tree (see Fig. 1 for an
example).

This representation of the partial sums as a tree provides a natural geomet-
ric description of the maximum price deviation. In particular, maxi ρi(Δ, π) is

Differential Privacy in Constant Function Market Makers 157

ρ1

ρ3

ρ10

ρ11

ρ4

ρ12

ρ2

ρ5

ρ8 ρ9

ρ6

ρ7

Fig. 1. Depiction of the tree T (ρ(Δ, π)) where ρi = ρi(Δ, π) and ρ11 < ρ10 < ρ3 <
ρ12 < ρ4 < ρ1 < ρ8 < ρ5 < ρ9 < ρ2 < ρ7 < ρ6

necessarily a leaf node in this tree. This means that the maximum deviation
maxi,j |ρi(Δ, π) − ρj(Δ, π)| is at most 2 times the height of the tree as the dis-
tance from ρ1 to any element is maximized by the height. This provides the
following bounds using (1)

max
i

|pπ(i) − p(i)| ≤ μ

(
|ρ1(Δ, π)| + max

j

∣∣∣∣Δπ(j) − κ

μ
Δj

∣∣∣∣ · 2 · height(T (ρ(Δ, π)))

)

(3)

max
i

|pπ(i) − p(i)| ≥ κ

∣∣∣∣ρ1(Δ, π) + min
j

(
Δπ(j) − μ

κ
Δj

)
· 2 · height(T (ρ(Δ, π)))

∣∣∣∣ + O(1)

(4)

Note that the second bound comes from bounded support of curvature:

max
j

|ρj(Δ, π)| ≥ |ρj(Δ, π)| =

∣∣∣∣∣ρ1(Δ, π) +

j∑
i=1

(
Δπ(j) − μ

κ
Δj

)∣∣∣∣∣
≥

∣∣∣∣ρ1(Δ, π) + min
j

(
Δπ(j) − μ

κ
Δj

)
· 2 · height(T (ρ(Δ, π)))

∣∣∣∣ + O(1)

Moreover, the number of leaves in the tree represent the number of left-
to-right local maxima of ρj . Note, furthermore, that by using curvature and
the tree structure, we have reduced the maximum price deviation problem (a
continuous problem) into a combinatorial one regarding a random tree. If the
tree is roughly balanced (e.g., height is O(log n)) and there are Ω(n) leave nodes
then it is unlikely that a small change to the permutation π by a transposition
will change the maximum value. We will formalize this by studying the behavior
of the random variable T (Δ), which draws a permutation π randomly and sets
T (Δ) = T (ρ(Δ, π)).

To study the behavior of T (Δ), we need to analyze the expected height of
a random binary tree. It is known that the height of a random binary tree with

158 T. Chitra et al.

distinct elements (e.g., such that every permutation is equiprobable) has height
Θ(log n) with high probability:

Theorem 1 (Theorem 1 [Ree03]). Let Δ have unique elements. Then
E[height(T (Δ))] = α log n − β log log n and Var[height(T (Δ))] = O(1)

If we can guarantee that the elements of T (Δ) are distinct (e.g., such that every
permutation of Δ is equiprobable) then combining this result with (3) yields

E[max
i

|pπ(i) − p(i)|] ≤ μ

(
E[ρ1(Δ, π)] + 2 max

i,j

∣∣∣∣Δi − κ

μ
Δj

∣∣∣∣ · E[height(T (Δ))]

)

≤ μ

(
E[ρ1(Δ, π)] + 2 max

i,j

∣∣∣∣Δi − κ

μ
Δj

∣∣∣∣ (α log n − β log log n)

)

≤ 3μ

(
max

i,j

∣∣∣∣Δi − κ

μ
Δj

∣∣∣∣
)

(α log n − β log log n + 1) (5)

where we used the upper bounds maxj

∣
∣
∣Δπ(j) − κ

μΔj

∣
∣
∣ ≤ maxi,j

∣
∣
∣Δi − κ

μΔj

∣
∣
∣ and

E[ρ1(Δ, π)] =
1
n

n∑

j=1

∣
∣
∣
∣Δj − κ

μ
Δ1

∣
∣
∣
∣ ≤ max

i,j

∣
∣
∣
∣Δi − κ

μ
Δj

∣
∣
∣
∣

Similarly, note that E[ρ1(Δ, π)] ≥ minj

(
Δπ(j) − μ

κΔj

)
so we have

E[max
i

|pπ(i) − p(i)|] ≥ κ

∣
∣
∣
∣min

j
Δπ(j) − μ

κ
Δj

∣
∣
∣
∣ (2E[height(T (Δ)) + O(1)])

≥ 2κ

∣
∣
∣
∣min

i,j
Δi − μ

κ
Δj

∣
∣
∣
∣ (α log n − β log log n + O(1))

Therefore, provided that the following two conditions hold

Δmin =
∣
∣
∣
∣min

i,j
Δi − μ

κ
Δj

∣
∣
∣
∣ = Ω(1) Δmax =

∣
∣
∣
∣max

i,j
Δi − κ

μ
Δj

∣
∣
∣
∣ = O(1) (6)

we have ESURE = E[maxi |pπ(i) − p(i)|] = Θ(log n). Such a bound is ideal as it
ensures that there is always a minimum price discrepancy of Ω(κ log n) so that
an adversary cannot determine a trade size with precision greater than Ω(κ). On
the other hand, the upper bound on price deviation means that the mechanism
will not cause too great of a price impact for users.

Note that the usage of Theorem 1 is prefaced on every permutation of the
elements of ρj(Δ, π) being equiprobable. One simple example of when this isn’t
true is from the threshold trades, Δ = (T, 1, . . . , 1) ∈ RT when μ ≥ 100κ. When
this is true, neither of the conditions (6) hold and moreover, the conditions
of Theorem 1 do not hold. This means that SURE only works when (a) all
permutations of partial sums are unique and (b) when μ ≤ (maxi Δi)κ. In the
next section, we will achieve (a) by adding noise dependent on Δ, μ, κ to the
trades and (b) by splitting trades.

Differential Privacy in Constant Function Market Makers 159

3.3 Uniform Random Execution

We have seen the SURE mechanism works well at providing privacy while min-
imizing price discrepancy when (6) holds, when elements of Δ are unique, and
when μ

κ is not too large. However, we’re not guaranteed that both of these condi-
tions hold in general as illustrated by the example at the end of the last section.
This section will focus on using randomization to ensure that a) (6) holds with
high probability and b) the elements of Δ are unique. We will do this by per-
forming two actions: splitting large trades to ensure the maximum condition
holds and adding noise to trades to ensure that trades are not too close in size.
Applying these two actions to Δ and subsequently executing SURE is termed
the Uniform Random Execution mechanism. There are three parameters that
control the URE mechanism:

– cmin: Lower bound on Δmin

– s ∈ R+: Split threshold that controls the average chunk size for a big trade
– k ∈ N: Multiple of (1 + s)Δmin that requires splitting

Lower Bounding the Minimum by Adding Laplace Noise. Our goal is to con-
struct random variables ξ1, . . . , ξn drawn i.i.d. from a distribution that can
depend on a particular Δ but guarantees that Δ̃ = Δ + ξ satisfies the left
hand side of (6) with high probability. In particular, we would like to control
Prob

[∣
∣
∣mini,j Δ̃i − κ

μΔ̃j

∣
∣
∣ > cmin

]
for a constant cmin > 0. We desire the follow-

ing condition to hold bounded above by δ ∈ (0, 1):

Prob

[∣∣∣∣min
i,j

Δ̃i − κ

μ
Δ̃j

∣∣∣∣ ≤ cmin

]
= Prob

[∣∣∣∣min
i,j

Δi + ξi − κ

μ
(Δj + ξj)

∣∣∣∣ ≤ cmin

]

≤ Prob

[
−

∣∣∣∣min
i,j

Δi − κ

μ
Δj

∣∣∣∣ +
∣∣∣∣min

i,j
ξi − κ

μ
ξj

∣∣∣∣ ≤ cmin

]

= Prob

[∣∣∣∣min
i,j

ξi − κ

μ
ξj

∣∣∣∣ ≤ cmin +

∣∣∣∣min
i,j

Δi − κ

μ
Δj

∣∣∣∣
]

≤ δ

(7)

In Appendix C, we prove the following claim:

Claim 1. There exists a ∈ R dependent on Δ, μ, κ and ξi ∼ Lap(a, |a|) such that
(7) holds

This mechanism can be naturally modified to inherit the ε-privacy guaran-
tees of the Laplace mechanism [DR+14, §3.2]. Note that the dependence of the
noise parameter a on Δ is similar to smoothed sensitivity in differential pri-
vacy [NRS07]. We note that this added noise ensures both that the lower bound
of (6) holds and ensures that the elements of Δ+ ξ are unique so that Theorem
1 holds.

160 T. Chitra et al.

Upper Bounding the Maximum by Splitting Trades. One way to reduce the upper
bound on error in (5) is to split up a trade Δi. This reduces Δmax and as
explained in Appendix G, also increases the privacy of SURE. More precisely,
we split Δi into Δ′

i,Δ
′′
i with Δi = Δ′

i + Δ′′
i and then consider the pricing error

associated to p(Δ′) where Δ′ = (Δ1, . . . ,Δi−1,Δ
′
i,Δ

′′
i ,Δi+1, . . . ,Δn). This pro-

cess can be iterated until all trades meet a particular criteria. Instead of splitting
trades in two, we instead split trades into m(Δi) pieces, where m(Δi) is defined
as

m(Δi) = max
(

1,

⌈ |Δi|
(1 + s)Δmin

⌉)

That is, the mechanism splits the trade into m(Δi) pieces who sizes are roughly
(1 + s)Δmin. Let 1m = (1, . . . , 1). For any trade Δi with m(Δi) > 1, we draw
π ∼ Dir(1m(Δi)) and split Δi into trades Δi,j = Δiπj . Since

∑n
j=1 πj = 1,

this provides a natural mechanism for splitting trades in a single step. As the
Dirichlet distribution is sub-Gaussian when using uniform weights [MA17] and as
the expected order statistics of a Dirichlet process decay exponentially [BJP12],
Prob[Δi,j − (1 + s)Δmin > kΔmin] also decays exponentially in k. This ensures
that we have very few chunks that are significantly greater than (1 + s)Δmin,
which ensures that with high probability maxi Δi < (1+s+k)Δmin. As described
in Appendices D and G, this condition ensures that SURE is effective with
high probability. We note that the precise price impact of splitting trades (as a
function of curvature) is analyzed in [AEC20].

3.4 Differential Privacy

We are now in a position to prove that the URE mechanism satisfies (ε, δ)-
differential privacy, where ε = O(μ log n + maxi Δi). Our proof proceeds in two
steps. First, we prove the following claim in the Appendix E.

Claim 2 (Splitting is differentially private). Suppose that we have a sequence of
admissible trades Δ ∈ Rn and after adding noise we have Δ̃ with Δ̃min > 0.
For each k ∈ N define Sk = {j : Δ̃j > kΔ̃min}. If η∗ = maxj

Δj

Δmin
= O(n)

and there exists k > 0 such that |Sk| = O(1), then there exists an (ε, δ)-
differentially private algorithm Split(Δ) for splitting trades in Δ̃ such that
height(T (Split(Δ̃))) = O(log n) where ε = O(η∗)

This claim ensures that under mild conditions on the maximum trade size,
we can generate a partial sum trade tree of height O(log n). Note that we can get
the claim’s conditions to be satisfied by varying s, the scale parameter, which
leads to a privacy-utility trade-off. Second, we show that when a partial sum
trade tree has height O(log n), permuting the trades provides (O(μ log n), δ)-
differential privacy for the maximum price impact (Claim 3). We combine these
two differentially private algorithms using standard composition theorems (see
Appendix), resulting in a differentially private CFMM.

Claim 3 (SURE is differentially private). Suppose that we have a sequence of
admissible trades Δ ∈ Rn such that height(T (Δ)) = O(log n) and all trade

Differential Privacy in Constant Function Market Makers 161

sizes are unique. Then randomly permuting the trades Δπ can be made into a
(μ log n, δ)-differential private algorithm for the minimum and maximum price
impact

While the full proof of the theorem is in the appendix, we sketch the steps
of the proof below. First, we show that if a set of trades satisfies (6), then we
can achieve differential privacy. We do this by first bounding the local sensi-
tivity [DR+14] of the price impact vector pj(π,Δ) as a function of Δ. This is
done by reducing the problem to analyzing two different price trees (Appendix
B). We make an analogue of smooth sensitivity [NRS07] that rounds a vector of
trades to an integer lattice whose length is Δmin. These steps ensure that the
maximum difference in price impact between neighboring sets of trades will be
O(μ log n). This immediately leads to achieving (ε, δ)-differential privacy, where
ε = O(μ log n).

Using the composition property of differential privacy, we are able to compose
these two mechanisms to achieve (μ log n+maxi Δi, δ)-differential privacy where
δ = F−1(O

(
1
ε

)
) and F−1 is the inverse Laplace CDF. While the constants can

likely be improved, this suggests that permuting and splitting up trades is a
simple and viable mechanism for adding differential privacy to CFMMs. Finally,
note that in Appendix F we provide a convex program that can split up trades
more efficiently than the Dirichlet mechanism of Theorem 3.4. This is likely
useful to practitioners where randomness is a constrained resource (e.g., on a
blockchain).

4 Worst-Case Bounds and Path Deficiency

In this section, we’ll explore if we can do better than the URE mechanism by
analyzing the curvature of the mechanism and generalizing the previous work
using Generic Chaining. Our goal will be to consider classes of mechanisms, F ,
that can provide (ε, δ)-differential privacy for CFMMs and attempt to compute
worst-case bounds. We first provide some necessary conditions that elements
of such a class have to satisfy. We will also show that extending the results of
Sect. 3.4 to the path-deficient (positive fee) case involves proving bounds over
a class of functions F . Finally, we’ll investigate connections to private PAC
learning which suggest that one cannot do significantly better than the URE
unless curvature is dynamically adjusted.

4.1 Mechanism Curvature

Instead of directly working with a mechanism, can we say something about the
set of all mechanisms that ensure that |pm(i) − pt(i)| > δ where pm(i) is the
ith price of the mechanism and pt(i) is the non-private or true price? Using
a curvature definition analogous to those of [AEC20], we can provide a simple
bounds related to this question.

162 T. Chitra et al.

Note that bounds of the form |pm
i −pt

i| > δ involve bounding changes between
two different price processes. Suppose that we define “curvatures” of the form

κt|Δi| < |pt(i) − pt(i − 1)| < μt|Δi|
κm|Δi| < |pm(i) − pm(i − 1)| < μm|Δi|
κmt|Δi| < |pm(i) − pt(i)| < μmt|Δi|

First, let’s look at the difference between the mechanism price at time i and the
true price at time i − 1:

|pm(i) − pt(i)| = |(pm(i) − pt(i)) − (pt(i − 1) − pt(i))|
≥ |pm(i) − pt(i)| − |pt(i) − pt(i − 1)|
≥ (κm − μmt)|Δi|

This says that we can ensure that the predictive value of previous price infor-
mation on a trade cannot be resolved more than a multiplicative amount of
κm − μmt times the trade size. In particular, κm > α + μmt ensures that an
adversary never has more than a precision α of information about the trade size.
This provides a necessary condition in terms of mechanism curvature for a class
F of mechanisms to provide differential privacy bounds.

4.2 Path Deficiency

Any CFMM that has non-zero fees (e.g., γ = 1 − f < 1) is path-deficient and
has strictly negative expected value for round trip trades [AEC20]. Such CFMMs
have price path pt(i) that are explicitly dependent on the trade ordering. Note
that almost all CFMMs that are used in practice have non-zero fees to attract liq-
uidity, so this is an important scenario to study. Previous work on path-deficient
CFMMs has focused on analyzing how a particular price process (such as a geo-
metric brownian motion) interacts with the expected returns from fees [EAC21].
Moreover, [AEC20, §2] illustrated that when fees are present gf (Δ) = γg(γΔ),
where gf is the price impact function with fees and g is the feeless price impact
function. This suggests that we can analyze the path-dependent case by uni-
formly bounding the geometric parameters of Sect. 3.2 (e.g., height and number
of leaves) as a function of the fee.

Suppose that given a trade vector Δ, we have a bound of the form

E
π∈Sn

[

max
i∈[n]

|pπ
f (Δ) − pπ(Δ)|

]

= O(γk) (8)

In Appendix I, we compute a lower bound that allows one to prove such a
bound for Uniswap (the most commonly used CFMM). Then we can bound the
deviation in height between the set of trade and price trees (see Appendix B) as
a function of γ and transfer path-independent returns to the path-deficient case
with extra polylogarithmic terms in γ. Two ways of proving bounds of the form
(8) are using generic chaining [Tal21, Ch. 3] and smoothed analysis [HRS20]. We
discuss how this analysis can be applied to CFMMs in Appendix H.

Differential Privacy in Constant Function Market Makers 163

4.3 Private PAC Learning and Adversarial Bounds

A number of recent results have shown that differentially private PAC learning
and online learning are closely related. In particular, the finiteness of an integer-
valued complexity measure known as the Littlestone dimension controls whether
a particular algorithm can be learned in both an online and differentially private
manner [ALMM19,BLM20]. The Littlestone dimension of a class of functions
F from X → Y , LDim(F), is defined as the maximum depth d ∈ N of a tree
made up of sequences x1, . . . , xd ∈ X such that there exists f ∈ F with f(xi) =
yi for every possible yi ∈ Y . Consider the set Fπ(Δ) which is the set of all
trees constructable from any permutation π ∈ Sn for a fixed Δ ∈ Rn. The
results of Sect. 3.2 show that LDim(Fπ(Δ)) = Ω(μ log n). State-of-the-art results
for blackbox constructions of online learners [GL21] show that the regret of a
differentially private online learning algorithm is O(22LDim(F)

). This implies that
the best online learners can do again the URE, in a blackbox manner, is O(2nμ

).
This means that any algorithm that has non-zero curvature is unlikely to do
asymptotically better then the URE. If it were possible to construct a polynomial
time algorithm to privately PAC learn trades, then there would be significantly
degraded privacy guarantees for users. However, this would require a mechanism
for which LDim(Fπ) = O(log log n), which appears unlikely except for constant-
sum market makers that have μ = 0. One other piece of evidence that Littlestone
dimension is the correct complexity measure for CFMM privacy comes from the
fact that the worst case instances for Littlestone dimension and CFMMs are
thresholds (cf., Sect. 3.2 and [ALMM19]).

5 Differentially (Non)-private MEV Reduction

In previous sections, we assumed an honest sequencer who implements a dif-
ferentially private mechanism for CFMM trades. We had explored this in the
hopes that privacy might hinder MEV. Interestingly, it may be possible to pre-
vent MEV by instantiating the “sequencer” and our mechanism on a public
blockchain with access to a verifiable random function [MRV99], which exists
on chains such as Polkadot [BCC+20] and Cosmos [Buc16].2 While this would
not necessarily be differentially private—the noise is from public but unpre-
dictable random coins—it could still prevent MEV. And the cost to users of
doing so is modeled by the price impact analysis of Sect. 3.2. We see a similarity
between this and results in machine learning relating differential privacy and
fairness [DHP+12].

In practice, the majority of front-running and sandwich attacks are executed
via maximal extractable value (MEV) auctions [BDKJ21]. These auctions sep-
arate the roles of sequencing (choosing an execution ordering) from searching,
2 We note, however, that the precise design in this paper is not immediately

implementable—there are a number of practical and technical hurdles to overcome.
These include, but are not limited to, determining how to allow applications to use
randomness generated by consensus and figuring out how transaction submission
and the pending transaction queue are affected by random orderings.

164 T. Chitra et al.

which is the process of finding the optimal front-run or sandwich transactions to
maximize profit. Searchers bid for priority of transaction placement—they place
a trade of size X before another user’s trade of size Y in order to front-run them.
Sequencers collect these bids and construct a final transaction ordering based on
which bids generate the maximum profit for them. Within this context, we can
view the searchers as Eve (Sect. 3.1)—they do not know the final ordering and
they can only affect it by placing a bid with the sequencer. Note, however, that
when consensus-provided randomness is used to dictate the transaction order
and sizing (e.g. via a verifiable random function), searchers match the descrip-
tion of Eve as they have a negligible edge over a coin flip in determining the
order of trades. Even if searchers colluded with the sequencer to try to force a
particular ordering, they would need to successfully execute a grinding attack
against the VRF. In this paper, we implicitly have assumed that a VRF for
which grinding attacks are hard to execute is used by the base protocol.

This observation demonstrates that our threat model is one in which
searchers (not sequencers) are thwarted by the mechanisms of the subsequent
sections. Given that >50% of CFMM extractable value from front-running is
executed via the largest MEV auction, Flashbot [DOS], our model more closely
models the real agents who are front-running users.

6 Conclusion

In this paper, we demonstrated that there exists a novel, practical mechanism
for providing differential privacy to users of constant function market makers.
This mechanism, unlike previous methods such as batching, has provable guar-
antees on the worst case price impact and strong privacy guarantees. As a num-
ber of new blockchain protocols implement CFMMs directly in their consen-
sus mechanism, the randomness needed to execute this algorithm will become
more plentiful and easier to source. Our analysis used novel techniques combin-
ing results from stochastic processes, concentration inequalities, and differential
privacy. The results in this paper can likely be improved by providing tighter
bounds on the minimal amount of noise needed to achieve (ε, δ)-differential pri-
vacy. Moreover, numerical studies of the utility loss (e.g., worsened price impact)
would justify practical usage of URE on networks such as Osmosis [AO21] and
Penumbra [dV21]. Finally, we note that differential privacy has been explored in
path-independent prediction markets [FW17], where similar bounds to the ones
found in this paper exist. These bounds utilize different proof techniques as pre-
diction market makers do not directly translate to CFMMs (cf., [AC20, §3.2]).
We note that a consequence of using this mechanism is that it likely provides
better fairness for end users. Unlike fair ordering solutions [KZGJ20,KDL+21],
our results provide economic guarantees on fairness for a particular application.
Future work involves demonstrating that fairness is inherently present when a
DeFi protocol can guarantee differential privacy.

Differential Privacy in Constant Function Market Makers 165

Acknowledgements. The authors want to thank Ian Miers, Yi Sun, GaussianPro-
cess, Tim Roughgarden, Kobi Gurkan, Dev Ojha, Henry de Valence, and the anonymous
reviewers for helpful comments and feedback.

A Differential Privacy Results

We implicitly use a number of differential privacy results on composition and
provide them here for convenience. First we note the serial composition theorem:

Theorem 2 (Composition Theorem 3.16 [DR+14]). Let A1, . . . An be a
sequence of (εi, δi) algorithms such that RangeAi ⊆ DomAi+1. Then the com-
position An ◦ · · · ◦ A1 is (

∑n
i=1 εi,

∑n
i=1 δi)-differentially private

Secondly, we note the parallel composition theorem

Theorem 3. Let A1, . . . ,An be algorithms whose domains (databases) are inde-
pendent and each algorithm is (εi, δi)-differentially private. Then (A1, . . . ,An)
is maxi εi differentially private

Finally, we note that the serial composition rule can be improved from

(
∑

i εi,
∑

i δi) to (nε2+ε
√

n log(1/δ̃), nδ+ δ̃) where δ̃ = O(nδ) if εi = ε, δi = δ for
all i [KOV15]. We will not need to use this result, only the generic composition
rules. However, it is possible that one can improve our constants using results
such as this.

B Price Tree Height Is Close to Trade Tree Height

Suppose that we have an admissible trade vector Δ = (Δ1, . . . ,Δn) ∈ Aϕ. Given
π ∈ Sn, we can write a sequence of prices in terms of the price impact function:

pj(π) = g

(
j∑

i=1

Δπ(i)

)

We generate a random binary tree from the price vector by uniformly sampling
j ∼ [n] and making pj(π) the root before inserting the remaining prices sequen-
tially as per π. Under this framework, we have

E
π∼Sn

[

max
j

pj(π)
]

≤ E
j∼[n]

[pj(π)] + max
i

|pi(π) − pi−1(π)| E
π∼Sn

[height(T (pj(π)))]

≤ E
j∼[n]

[pj(π)] + μ(max
i

Δi) E
π∼Sn

[height(T (pj(π)))]

We can later remove this constraint by adding a small amount of noise to each
entry, which will make the entries unique a.s. Note that the height of the tree
generated by Pj represents the number of trades in the longest sequential devia-
tion from the mean price. Let’s consider when the trade tree and price tree differ

166 T. Chitra et al.

in branching. On average, this occurs when the jth price pπ(j) is a left branch
whereas the j+1st price pπ(j+1) is a right branch, but both trades Δπ(j),Δπ(j+1)

are left branches. When this happens, the price tree has an average height that
is 1 less than the trade tree.

We will first illustrate this when the first two elements of the permutation
after the pivot (which is random) differ from the expected pivot value. Explicitly,
suppose that we have

pπ(2) − 1
n

n∑

i=1

pπ(i) < 0 pπ(3) − 1
n

n∑

i=1

pπ(i) > 0

Using curvature bounds, the first equation gives

0 ≥ pπ(2) − 1
n

n∑

i=1

pπ(i) ≥ κΔπ(2) − μ

n

n∑

i=1

Δi

Similarly, the second equation gives

0 ≤ pπ(3) − 1
n

n∑

i=1

pπ(i) ≤ μΔπ(3) − κ

n

n∑

i=1

Δi

which when combined gives

Δπ(2) ≤ μ

κ

(
1
n

n∑

i=1

Δi

)

= η+ (9)

Δπ(3) ≥ κ

μ

(
1
n

n∑

i=1

Δi

)

= η− (10)

Let ρi be as in (2) and let Δ = 1
n

∑n
i=1 Δi. On the other hand, suppose that

ρ2(π) − Δ(π), ρ3(π) − Δ(π) are both greater than zero (e.g., they are both left
nodes of their parent). This implies that Δπ(2))+Δπ(3) ≥ 1

n

∑n
i=1 Δi. This means

that we can only end up in a state where height(T (ρj(π))) > height(T (pj(π)))
if the trades are within the interval [η−, η+]. For instance, when the drift
1
n

∑n
i=1 Δi = 0, then interval has size zero (its a mean-reverting set of trades)

and we never enter this error condition. This matches intuition: if there’s a lot of
drift in the trades, then we shouldn’t expect our price and trade vectors to ‘sort’
the same way. In particular, the higher the curvature of the CFMM, the less
drift we can tolerate because large trades cause more noticeable price impact.
The length of the interval [η−, η+] is

(
μ

κ
− κ

μ

)(
1
n

n∑

i=1

Δi

)

Differential Privacy in Constant Function Market Makers 167

Note that we can recurse the above argument as we go down the tree and get
a set of intervals I1 = [η−(1), η+(1)], I2 = [η−(2), η+(2)], . . . , In = [η−(n), η+(n)].
Performing the same calculation as above yields

η−(i) =
κ

μ

(
1

n − i

n∑

i=i

Δπ(i)

)

η+(i) =
μ

κ

(
1

n − i

n∑

i=i

Δπ(i)

)

Given that the maximum interval size is μM is the max trade size for which
curvature is valid), we can use this to bound the probability pj that vertex j
has a height difference between the trade and price trees. This probability is
upper bounded by ratio of the length of Ij and the interval length μM , e.g.,
pj ≤ |Ij |

μM . We can upper bound the interval length by the maximum mean-drift
subsequence:

|Ij | ≤
(

μ

κ
− κ

μ

)
⎛

⎝max
J⊂[n]

1
|J |

∑

j∈J

Δj

⎞

⎠

Define R∗(Δ) = maxJ⊂[n]
1

|J|
∑

j∈J Δj . Finally, performing a union bound gives
an upper bound on the probability pdiff of the heights of the trade tree and price
tree different

pdiff ≤
n∑

j=1

pj = n

(
1

Mκ
− κ

μ2M

)

R∗(Δ) (11)

If this quantity is sufficiently small (e.g., we have tight curvature bounds), then
bounds on the trade tree transfer to the price tree with high probability. For the
rest of the paper, we will assume that (11) is sufficiently small. We note that fee
adjustments and curvature adjustments are intricately related [AEC20, §3] and
in practice, this can be enforced by dynamic updates to a CFMM curve.

C Proof of Claim 1

Suppose that ξi ∼iid Lap(a, b). We need to analyze the distribution of ξi −
μ
κξj . Recall that if X ∼ Lap(a, b) then kX ∼ Lap(ka, |k|b). Therefore we are
trying to bound the distribution of Z(a, b) = X + Y where X ∼ Lap(a, b),
Y ∼ Lap

(−μ
κa, μ

κ b
)
. In particular, given δ < 0 we want to choose a, b such that

FZ(k) ≤ Prob[X + Y ≤ k] ≤ δ

where k = cmin +
∣
∣
∣mini,j Δi − κ

μΔj

∣
∣
∣. Nadarajah [Nad07, Theorem 1] explicitly

computes the CDF FZ(a,b)(k) and shows that it is monotone, continuous, and
differentiable in a, b except at one value of k for all a, b. Moreover, it is supported
on the entire real line. Therefore, ∃a∗ such that FZ(a∗,|a∗|)(k) = δ.

168 T. Chitra et al.

D Proof of Claim 2

Our proof works by differentially privately sampling a probability distribution
π ∼ Dir(1) multiple times using the mechanism of [GWH+21]. The Dirichlet
mechanism on k nodes M(k)

D (π) samples a Dirichlet distribution centered at π,
where π ∈ Pk = {x ∈ Rk :

∑
i xi = 1, xi ≥ 0}. One can think of it as sampling a

increment dπ, adding it to π and renormalizing. First, we reproduce a theorem
on differentially private Dirichlet sampling.

Theorem 4 ([GWH+21], Theorem 1, Corollary 1). The Dirichlet mecha-
nism M(k)

D (π) achieves (ε, δ)-differential privacy where ε = O(k(1 + log(o(k)))
and δ = 1 − minπ Prob[Mk

D(π) − π > Ω(ε)]

Define the vector η(Δ) as follows:

η(Δ) =
(⌈

Δ1

Δmin

⌉

, . . . ,

⌈
Δn

Δmin

⌉)

Each coordinate represents rounding each trade to an integer lattice with width
Δmin. Define Sk = {i : η(Δ) > k} and Sc

k = [n] − Sk. For each j ∈ Sk, privately
sample π ∼ Dir(1) where 1 = (1, . . . , 1) ∈ Rη(Δ)j . Let Δ̂j,k = Δjπk with
∑

k Δ̂j,k = Δj . We can view each Dirichlet sample π as providing a mechanism
for splitting the trade Δj . Our goal is to find k ∈ N such that the following two
conditions hold

1. height(T (ΔSc
k
)) = Θ(log n)

2. height(T (Δ̂j,k)) = Θ(log ηj) with high probability

We can show that the latter condition holds with high probability when the
distribution sampled is Dirichlet centered at the centroid (1

n , . . . , 1
n). Construct-

ing a partial sum tree from a Dirichlet sample is the same as drawing a sample
from a Poisson-Dirichlet branching random walk [ABF13]. These walks satisfy
Prob[|height(T (Δ̂j,k)) − c log η(Δ)j | ≥ k] = O(e−k) for a universal constant
c [ABF13, Corollary 1.3]. Therefore, the probability that all of the Dirichlet
constructed trees T (Δ̂j,k) have height greater than c log η(Δ)j is

Prob
[
∃j ∈ Sk|height(T (Δ̂j,k)) − c log ηj | ≥ c′ log ηj

]
≤

(
|Sk|
ηc′

j

)

which directly follows from the independent sampling from the private Dirichlet
distribution and inclusion-exclusion. Therefore, with probability p∗ = 1 − |Sk|

δc′
j

,

we have the maximum height of a tree constructed from all |Sk| vectors Δ̂j,k is
∑

j∈Sk

log ηj ≤ |Sk|max
j

log ηj

which under our assumptions is O(log n). Our claim about differential privacy
then follows immediately from Theorem 4.

Differential Privacy in Constant Function Market Makers 169

E Proof of Claim 3

We will prove differential privacy by using the smooth sensitivity framework
of [NRS07]. First, we will recall definitions and introduce preliminaries on this
framework before specializing it to SURE. Smooth sensitivity places an upper
bound on the local sensitivity of a function f , which is defined as

LSf (x) = max
d(x,y)≤1

|f(x) − f(y)|

Note that unlike the global sensitivity, which is used in the generic Laplace
mechanism [DR+14], the local sensitivity depends on the particular input x.
Often times, it is too difficult to get uniform bounds on local sensitivity and
instead it is easier to use a smooth proxy. A β-smooth upper bound S : Dom f →
R for LSf (x) satisfies S(x) ≥ LSf (x) for all x ∈ Dom f and S(x) ≤ eβS(y) for
all x, y ∈ Dom f with d(x, y) = 1. We are now in a position to recall two results
of Nissim, et al.:

Theorem 5 ([NRS07], Lemma 2.6). Let h be an (α, β)-admissible noise prob-
ability density function and let Z ∼ h. For a function f : Dn → Rd, let S be a
β-smooth upper bound in the local sensitivity of f , then A(x) = f(x) + S(x)

α Z is
(ε, δ)-differentially private.

Theorem 6 ([NRS07], Lemma 2.9). For ε, δ ∈ (0, 1), the d-dimensional
Laplace distribution, h(z) = 2−de−‖z‖1 is (α, β)-admissible with α = ε

2 , β =
ε

2ρδ/2(‖Z‖1)
where ρδ(Y) is the 1 − δ quantile of Y .

Combined, these results illustrate that if we can construct a β-smooth upper
bound, we can immediately construct a Laplace mechanism that achieves (ε, δ)-
differential privacy. Section 3 of [NRS07] provides a mechanism for computing a
β-smooth upper bound by first defining the sensitivity at distance k,

LSk
f (x) = max

y∈Dom f
d(x,y)≤k

LSf (x)

A β-smooth upper bound on local sensitivity is defined as,

Sf,β(x) = max
k∈{0,1,...,n}

e−kβLSk
f (x)

Therefore, we need to construct a function f that represents price impact and
compute an analogue of local sensitivity.

For a differentially private CFMM, we want to minimize the worst case price
impact in a neighborhood of a trade Δ. We define f(Δ) as

f(Δ) = max
j∈[n]

pj(Δ)

Now we need to modify the definition of local sensitivity to account for trade
admissibility and discretization. Normally, local sensitivity is defined for discrete

170 T. Chitra et al.

spaces where the distance d is taken to be the Hamming metric. We can discretize
our trade space in terms of Δmin. Recall that we ensure that Δmin > 0 by adding
Laplace noise to all trades (whose parameter will be tuned in accordance with
the above theorem). Note that moving to such a discretization simply changes
our choice of β. Using this definition, we can define the local trade sensitivity as

TSk
f (Δ) = sup

Δ′∈Dom f∩A(R)
d(Δ,Δ′)≤kΔmin

|f(Δ) − f(Δ′)|

where A(R) is the set of admissible trades. From the results of Sect. 3.2, we
know that TSk

f (Δ) = O(kμ(maxi Δ) log n) since the depth of the tree quantifies
the largest price impact. In particular, each element Δ′

i such that |Δi − Δ′
i| >

Δmin can cause price impact of at most μ(maxi Δ) log n and we can add these
independently over the at most k coordinates that have prices changed by more
than Δmin. We can define an analogous smooth sensitivity bound,

S̃f,β(x) = max
�

e−�βTS�
f (Δ) = max

�
e−�β�μ(max

i
Δ) log n

This is minimized when � = 1
β , giving

S̃f,β(x) =
μ

eβ
(max

i
Δ) log n

Therefore, provided that a) the partial sum tree has height O(log n) b) the noise
added ensures that Δmin > 0, and c) the noise is rescaled by 2S̃f,β(x)

ε , we achieve
differential privacy.

Note that in particular, our bound depends on maxi Δ and the curvature
upper bound. By splitting trades using Claim 2, we reduce maxi Δ and can
ensure that the noise added is reasonable. Moreover, as we saw, without splitting
trades, we run into issues with trades of the form (T, 1, . . . , 1). Note that algo-
rithms that try to learn where the trade T occurs (after applying a permutation
π) is equivalent to privately learning threshold functions [BNSV15,ALMM19].

F Convex Trade Splitting

When we are considering CFMM arbitrage, it can be shown that a necessary
condition for stability is path-deficiency. Path deficiency ensures that no rational
trader (e.g., profit optimizing) is incentivized to split a desired trade size Δ into
two trades Δ1 + Δ2 = Δ. However, if a trader also desires privacy, splitting up
trades can become necessary. To see why, consider a trader who makes a trade
of size T and a sequence of trades Δ = (T, 1, . . . , 1) ∈ RT+1. Using curvature,
we know that the price impact is at least κT after a trade of size T and of size κ
after each trade of size 1. This means that an adversary can easily discern where
my trade is, even if Δ is randomly permuted due to the T times larger price
impact. Therefore, splitting up the trade of size T into trades close to size 1 will
make it hard for an adversary to reconstruct the total trade size.

Differential Privacy in Constant Function Market Makers 171

Our goal is to split up trades such that the probability of an adversary detect-
ing the position of a single trade is small relative to the curvature. Suppose that
a trade Δ1 is split into trades Δ′

1, . . . ,Δ
′
j and let Δ̃ = (Δ′

1, . . . ,Δ
′
j ,Δ2, . . . ,Δn)

A splitting adversary is a binary classifier �(Δ,Δ) that returns 1 if Δ ∈
{Δ′

1, . . . ,Δ
′
j} and 0 otherwise. We say that a splitting mechanism is (δ, ε) indis-

tinguishable if

Prob

[∣
∣
∣
∣
∣

1
n

n∑

i=1

�(Δ̃i, Δ̃π) − j

n

∣
∣
∣
∣
∣
< ε

]

< δ

over some suitable set of splitting classifiers. The inequalities in Appendix G can
directly be used to prove that this holds for the L2 norm.

However, path-deficiency implies that splitting trades will cost a user an extra
fee. This trade-off between best execution price and privacy can be explored via
a simple, convex objective function that trades off price impact vs. improved
privacy via splitting. Recall that the L2 norm strictly decreases under splitting,
e.g.,

‖(Δ1, . . . ,Δn)‖2
2 =

n∑

i=1

Δ2
i = Δ2

1 +
n∑

i=2

Δ2
i

= aΔ2
1 + (1 − a)Δ2

1

n∑

i=2

Δ2
i > a2Δ2

1 + (1 − a)2Δ1 +
n∑

i=2

Δ2
i

= ‖(aΔ1, (1 − a)Δ1, . . . ,Δn)‖2
2

where a ∈ (0, 1) represents the splitting fraction.
This property allows us to quantify the privacy benefit to splitting trades,

as the more minimal the L2 norm, the less noise that is needed to ensure that
the random binary tree has height Θ(log n) and Ω(n) leaves. In particular, the
Cauchy and Gaussian mechanisms for differential privacy utilize distributions
whose variances are proportional to the L2 norm.

Given that we want to minimize price impact while maximizing the amount
of trade splitting necessary for indistinguishable, we construct a convex opti-
mization problem. Define the function f as:

f(Δ1, . . . ,Δn) =
n∑

i=1

γg

⎛

⎝γ

i∑

j=1

Δi

⎞

⎠ + η

n∑

i=1

Δ2
i

The first term in f represents an upper bound on the price impact and the
second term represents the L2 splitting term. Our goal is to minimize f over
sequences of trades (Δ1, . . . ,Δk) ∈ �∞

i=1R
i such that

∑k
i=1 Δi = Δ∗, e.g.,

minimize f(Δ1, . . . ,Δn)
subject to Δ1 + · · · + Δn = Δ∗ (12)

172 T. Chitra et al.

Using curvature bounds, we can construct a simple descent algorithm to solve
this. Firstly, note that the definition of curvature yields

κγ2
n∑

i=1

i∑

j=1

Δi ≤ f(Δ1, . . . ,Δn) − η

n∑

i=1

Δ2
i ≤ μγ2

n∑

i=1

i∑

j=1

Δi

Furthermore, note that we can rewrite the double sum as

n∑

i=1

i∑

j=1

Δi =
n∑

i=1

(n − i + 1)Δi

Next, note that we can upper bound the split function, f(aΔ1, (1−a)Δ1, . . . ,Δn)
as

f(aΔ1, (1 − a)Δ1, . . . , Δn) ≤ μγ2

(
(n + 1)aΔ1 + n(1 − a)Δ1 +

n∑
i=2

(n − i + 2)Δi

)

+ η

(
a2Δ2

1 + (1 − a)2Δ2
1 +

n∑
i=2

Δ2
i

)

= μγ2

(
(n + a)Δ1 +

n∑
i=2

(n − i + 1)Δi + Δ∗
)

+ η

(
a2Δ2

1 + (1 − a)2Δ2
1 +

n∑
i=2

Δ2
i

)

Combining these gives the following

f(Δ1, . . . , Δn) − f(aΔ1, (1 − a)Δ1, . . . , Δn) ≥ γ2(κ − μ)

n∑
i=2

(n − i + 1)Δi − Δ∗

− μγ2(n + a)Δ1 + ηΔ2
1(1 − a2 − (1 − a)2)

(13)

Maximize the right-hand side in a provide a mechanism for deciding whether to
split trade Δ1. Optimizing over a yields

a∗ = max
(

1
2

− μγ2

4ηΔ1
, 0

)

If we substitute a∗ into (1) and the right-hand side is position, we split the trade
Δ1 into two trades of size a∗Δ1 and (1 − a∗)Δ1.

G Splitting Trades: Concentration

Chatterjee proved a concentration bound using Stein’s method that provides
intuition as to why splitting trades improves the effectiveness of SURE. Theorem
7 shows that the variance of concentration around the mean for a randomly
permuted sum is linear in the expected value.

Differential Privacy in Constant Function Market Makers 173

Theorem 7 ([Cha07], Proposition 1.1). Let {ai,j}1≤i,j≤n be a collection of
numbers from [0, 1]. Let X =

∑n
i=1 ai,π(i) where π ∼ Sn uniformly. Then

Prob[|X − E[X]| ≥ t] ≤ 2 exp
(

− t2

4E[X] + 2t

)

(14)

Note that unlike Bernstein-like inequalities there is no direct dependence on
n. Moreover, unlike Talagrand-like inequalities [Tal21], we do not have terms
dependent on ε-nets. If we let t = k E[X], we have

exp
(

− t2

4E[X] + 2t

)

= exp
(

−k2 E[X]
2k + 4

)

≤ exp(−k E[X])

For positive trade sizes, this implies that if we can split big trades into smaller
trades (which reduces in turn reduces E[X]) we can achieve the sufficient condi-
tion. More specifically, suppose that ai,j = Δj − κ

μΔi. Then X =
∑n

i=1 ai,π(i) is
the upper bound from (6) and the theorem claims that reducing the maximum
will reduce the variance of SURE’s utility.

We also note that better asymptotic results exist for non-negative sums:

Theorem 8 ([Alb19], Corollary 2.2). Let aij be a connection of any real num-
bers and π ∼ Sn as uniform random permutation. Let Zn =

∑n
i=1 ai,π(i). Then

for all x > 0

Prob(|Zn − E[Zn]| ≥ t) ≤ 16e1/16 exp
(−t2

256(Var[Zn] + maxi,j |aij |t)
)

This bound explicitly includes a maximum term, directly justifying the improve-
ment to SURE provided by splitting trades.

H Path Dependency and Generic Chaining

Suppose that we want to try to find the worst case price deviation given that
we have fees, γ < 1. If we define Xj = pπ(i) − p(i), then we want to study the
extremal behavior of this process, albeit without being able to directly bound
price impact using methods from Sect. 3.2. We will be most interested in the
behavior of the random variable X∗ = maxj Xj , which quantifies the worse
execution price received by a user under this mechanism. To do this, we will
utilize the theory of empirical processes. Roughly speaking, one can show that
for a metric space (T, d), E supt∈T Xt = Θ(Diam(T)

√
log cardT) by looking at

simple bounds for empirical processes [Tal14,Tal21]. Our goal is to define a
metric space Tγ that depends on fees and such that Sn acts faithfully on Tγ . We
want the action to be faithful because that will be equivalent to the condition of
unique elements of the form

∣
∣Δi − μ

κΔj

∣
∣ We can then attempt to bound, using

chaining arguments, the worst case price deviation.

174 T. Chitra et al.

Chaining bounds rely on tail bounds on increments, e.g., showing that for
some metric d on our space Tγ , we have the following two conditions:

∀u > 0, Prob[|Xs − Xt| ≥ u] ≤ 2 exp
(

− u2

2d(s, t)2

)

(15)

∃u > 0,
∑

s∈T

Prob[Xs ≥ u] ≥ 1 (16)

In our case, we need to construct a metric space that takes advantage of our
trading function curvature and the randomness induced by the choice of permu-
tation.

Our goal is to construct a metric on Sn that depends on both ϕ. We need to
construct metric dϕ,ρ0,Δ : Sn × Sn → R+ that we can use to find a formula like
Eq. (15). A natural metric to construct is the raw price differences:

dϕ,ρ0,Δ(π1, π2) =
n∑

i=1

|pt
π1(i)

− pt
π2(i)

|

Note that if we took an infimum over one of the two permutations, we
arrive at the Wasserstein distance. Suppose we have dϕ,ρ0,Δ(π1, π2) ≤
f(ϕ, ρ0,Δ)d(π1, π2) for some natural metric on the symmetric group (e.g.,
Mallows metric [Dia88]). Moreover, suppose there exists κ > 0 such that
Prob[Xs ≥ √

log n (κ +
∑

i Δi)] ≥ 1. Then we have the lower bound [Tal21,
Eq. 2.15]

C

(

κ +
∑

i

Δi

)
√

log n ≤ E sup
t∈T

Xt ≤ C ′
(

κ +
∑

i

Δi

)

Diamd(T)
√

log n

One simple idea for a metric upper bound is:

dub(π1, π2) = μ

n∑

i=1

|Δπ1(i) − Δπ2(i)|

Under this metric, we need to show that

Prob[|Xπ − Xπ′ | ≥ u] ≤ 2 exp
(

− u2

2d(π, π′)2

)

This is effectively direct from Azuma’s inequality since Δi is in a bounded
ball (in order for us to use curvature). Next, we need to show Prob[Xs ≥√

log n (κ +
∑

i Δi)] ≥ 1. For each permutation π ∈ Sn, we can construct a
binary tree Tπ from the partial sums Si

∑
i Δπ(i), where Si < Sj implies Si is

in the left subtree of Sj (and vice versa). Assume, first, that each Si is unique.
Then, it can be shown that the expected height and the tail bounds for the
height of this subtree satisfies [ABC20,Ree03]

Prob[h(Tπ) ≥
√

log n] ≥ c

n

Differential Privacy in Constant Function Market Makers 175

Our conjecture is that κh(Tπ) ≤ Xs ≤ μh(Tπ) which would immediately imply∑
π∈Sn

Prob[Xπ ≥ u] ≥ 1. Unfortunately to find bounds of this form with fees,
one needs to find universal bounds on g(Δ)−γg(γΔ). We illustrate such bounds
for Uniswap in Appendix I.

I Path Dependency in Uniswap

Getting bounds such as (15) relies on bounding how far away the path-dependent
case strays from the path independent case. For a fixed Δ, ppi

n only depends
on

∑
i Δi for path-independent, whereas ppd

n (π) does depend on the path
Δπ(1), . . . ,Δπ(n). However, if we can uniformly bound maxπ∈Sn

|ppd
n (π) − ppi

n |
as a function of fees and curvature.

For Uniswap, we have guni(Δ) = k
(R−Δ)2 . This gives a difference between the

impact of a single path independent trade and a single path dependent trade as
(see [AEC20] for the formulae):

g(Δ) − γg(γΔ) = k

(
1

(R − Δ)2
− γ

(R − γΔ)2

)

=
k

(R − Δ)2

(

1 − γ(R − Δ)2

(R − γΔ)2

)

= g(Δ)

(

1 − γ(R − Δ)2

R2

1
(1 − γΔ

R)2

)

≤ g(Δ)
(

1 − γ(R − Δ)2

R2

(

1 − cγΔ

R

))

= g(Δ)
(

1 − γ(R − Δ)2

R2
− cγΔ(R − Δ)

R3

)

= g(Δ)

(

1 − γ

(
R − Δ

R

)2

(R −
(
1 +

c

R

)
Δ)

)

where we assume that γΔ
R < 1 and use the geometric series (so c < 1). When

R � 1 and R − Δ ≤ kR for some k < 1, this gives us the bound

g(Δ) − γg(γΔ)
g(Δ)

≤ 1 − γ
(R − Δ)3

R2
≤ 1 − γk3R

References

[AAE+21] Angeris, G., Agrawal, A., Evans, A., Chitra, T., Boyd, S.: Constant func-
tion market makers: multi-asset trades via convex optimization (2021)

[ABC20] Addario-Berry, L., Corsini, B.: The height of mallows trees. arXiv preprint
arXiv:2007.13728 (2020)

[ABF13] Addario-Berry, L., Ford, K.: Poisson-Dirichlet branching random walks.
Ann. Appl. Probab. 23(1), 283–307 (2013)

[AC20] Angeris, G., Chitra, T.: Improved price oracles: constant function mar-
ket makers. In: Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies, pp. 80–91. ACM, New York, October 2020

http://arxiv.org/abs/2007.13728

176 T. Chitra et al.

[ACG+16] Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 308–318 (2016)

[AEC20] Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Cur-
vature and market making. arXiv preprint arXiv:2012.08040 (2020)

[AEC21a] Angeris, G., Evans, A., Chitra, T.: A note on bundle profit maximization
(2021)

[AEC21b] Angeris, G., Evans, A., Chitra, T.: A note on privacy in constant function
market makers. arXiv preprint arXiv:2103.01193 (2021)

[Alb19] Albert, M.: Concentration inequalities for randomly permuted sums. In:
Gozlan, N., Lata�la, R., Lounici, K., Madiman, M. (eds.) High Dimensional
Probability VIII. PP, vol. 74, pp. 341–383. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26391-1 17

[ALMM19] Alon, N., Livni, R., Malliaris, M., Moran, S.: Private PAC learning implies
finite Littlestone dimension. In: Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pp. 852–860 (2019)

[AO21] Agrawal, S., Ojha, D.: Vision for osmosis, May 2021
[BCC+20] Burdges, J., et al.: Overview of polkadot and its design considerations.

arXiv preprint arXiv:2005.13456 (2020)
[BDKJ21] Babel, K., Daian, P., Kelkar, M., Juels, A.: Clockwork finance: auto-

mated analysis of economic security in smart contracts. arXiv preprint
arXiv:2109.04347 (2021)

[BJP12] Broderick, T., Jordan, M.I., Pitman, J.: Beta processes, stick-breaking and
power laws. Bayesian Anal. 7(2), 439–476 (2012)

[BLM20] Bun, M., Livni, R., Moran, S.: An equivalence between private classifi-
cation and online prediction. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 389–402. IEEE (2020)

[BNSV15] Bun, M., Nissim, K., Stemmer, U., Vadhan, S.: Differentially private
release and learning of threshold functions. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pp. 634–649. IEEE
(2015)

[Buc16] Buchman, E.: Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. thesis (2016)

[CGKM19] Cummings, R., Gupta, V., Kimpara, D., Morgenstern, J.: On the compat-
ibility of privacy and fairness. In: Adjunct Publication of the 27th Con-
ference on User Modeling, Adaptation and Personalization, pp. 309–315
(2019)

[Cha07] Chatterjee, S.: Stein’s method for concentration inequalities. Probab. The-
ory Relat. Fields 138(1), 305–321 (2007)

[CJK+18] Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Pri-
vacy at scale: local differential privacy in practice. In: Proceedings of the
2018 International Conference on Management of Data, pp. 1655–1658
(2018)

[CXZ20] Chu, S., Xia, Q., Zhang, Z.: Manta: Privacy preserving decentralized
exchange. IACR Cryptology ePrint Archive 2020/1607 (2020)

[DHP+12] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness
through awareness. In: Proceedings of the 3rd Innovations in Theoreti-
cal Computer Science Conference, pp. 214–226 (2012)

[Dia88] Diaconis, P.: Metrics on groups, and their statistical uses. In: Group Rep-
resentations in Probability and Statistics, pp. 102–130. Institute of Math-
ematical Statistics (1988)

http://arxiv.org/abs/2012.08040
http://arxiv.org/abs/2103.01193
https://doi.org/10.1007/978-3-030-26391-1_17
https://doi.org/10.1007/978-3-030-26391-1_17
http://arxiv.org/abs/2005.13456
http://arxiv.org/abs/2109.04347

Differential Privacy in Constant Function Market Makers 177

[DOS] Daian, P., Obadia, A., Setters, L.: MeV explore
[DR+14] Dwork, C., Roth, A., et al.: The algorithmic foundations of differential

privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)
[dV21] de Valence, H.: Sealed-bid batch auctions (2021)

[Dwo19] Dwork, C.: Differential privacy and the US census. In: Proceedings of
the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, p. 1 (2019)

[EAC21] Evans, A., Angeris, G., Chitra, T.: Optimal fees for geometric mean market
makers. arXiv preprint arXiv:2104.00446 (2021)

[ER75] Erdos, P., Révész, P.: On the length of the longest head-run. Top. Inf.
Theory 16, 219–228 (1975)

[FW17] Frongillo, R., Waggoner, B.: Bounded-loss private prediction markets.
arXiv preprint arXiv:1703.00899 (2017)

[GL21] Golowich, N., Livni, R.: Littlestone classes are privately online learnable.
arXiv preprint arXiv:2106.13513 (2021)

[GWH+21] Gohari, P., Bo, W., Hawkins, C., Hale, M., Topcu, U.: Differential pri-
vacy on the unit simplex via the Dirichlet mechanism. IEEE Trans. Inf.
Forensics Secur. 16, 2326–2340 (2021)

[HRS20] Haghtalab, N., Roughgarden, T., Shetty, A.: Smoothed analysis of online
and differentially private learning. arXiv preprint arXiv:2006.10129 (2020)

[KDL+21] Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: fast, strong
order-fairness in byzantine consensus. Cryptology ePrint Archive (2021)

[KOR19] Kamvar, S., Olszewski, M., Reinsberg, R.: Celo: a multi-asset cryp-
tographic protocol for decentralized social payments. DRAFT ver-
sion 0.24 (2019). https://storage.googleapis.com/celowhitepapers/Celo
AMultiAssetCryptographicProtocolforDecentralizedSocialPayments.pdf

[KOV15] Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differen-
tial privacy. In: International Conference on Machine Learning, pp. 1376–
1385. PMLR (2015)

[KZGJ20] Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for Byzan-
tine consensus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 451–480. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1 16

[MA17] Marchal, O., Arbel, J.: On the sub-Gaussianity of the Beta and Dirichlet
distributions. Electron. Commun. Probab. 22, 1–14 (2017)

[Mar21] Martinelli, F.: The crypto cinematic universe crossover event of the sum-
mer: balancer-gnosis-protocol (BGP), April 2021

[MRV99] Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th
Annual Symposium on Foundations of Computer Science (Cat. No.
99CB37039), pp. 120–130. IEEE (1999)

[MSS20] Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for
stablecoin designs. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 174–197. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 11

[Nad07] Nadarajah, S.: The linear combination, product and ratio of Laplace ran-
dom variables. Statistics 41(6), 535–545 (2007)

[NRS07] Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling
in private data analysis. In: Proceedings of the Thirty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 75–84 (2007)

[Pow21] Powers, B.: SecretSwap is the secret network’s answer to DeFi privacy,
February 2021

http://arxiv.org/abs/2104.00446
http://arxiv.org/abs/1703.00899
http://arxiv.org/abs/2106.13513
http://arxiv.org/abs/2006.10129
https://storage.googleapis.com/celowhitepapers/CeloAMultiAssetCryptographicProtocolforDecentralizedSocialPayments.pdf
https://storage.googleapis.com/celowhitepapers/CeloAMultiAssetCryptographicProtocolforDecentralizedSocialPayments.pdf
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1007/978-3-030-51280-4_11

178 T. Chitra et al.

[QZG21] Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value:
how dark is the forest? arXiv preprint arXiv:2101.05511 (2021)

[QZLG20] Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem
with flash loans for fun and profit. arXiv preprint arXiv:2003.03810 (2020)

[Ree03] Reed, B.: The height of a random binary search tree. J. ACM (JACM)
50(3), 306–332 (2003)

[Tal14] Talagrand, M.: Upper and Lower Bounds for Stochastic Processes: Mod-
ern Methods and Classical Problems, vol. 60. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54075-2

[Tal21] Talagrand, M.: Upper and Lower Bounds for Stochastic Processes: Modern
Methods and Classical Problems, 2nd edn. Preprint (2021)

[XYW19] Xu, D., Yuan, S., Wu, X.: Achieving differential privacy and fairness in
logistic regression. In: Companion Proceedings of the 2019 World Wide
Web Conference, pp. 594–599 (2019)

[ZQT+20] Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trad-
ing on decentralized on-chain exchanges. arXiv preprint arXiv:2009.14021
(2020)

http://arxiv.org/abs/2101.05511
http://arxiv.org/abs/2003.03810
https://doi.org/10.1007/978-3-642-54075-2
http://arxiv.org/abs/2009.14021

Anonymous Tokens with Public Metadata
and Applications to Private Contact

Tracing

Tjerand Silde1(B) and Martin Strand2

1 Department of Mathematical Sciences, Norwegian University of Science
and Technology – NTNU, Trondheim, Norway

tjerand.silde@ntnu.no
2 Norwegian Defence Research Establishment – FFI, Kjeller, Norway

martin.strand@ffi.no

Abstract. Anonymous single-use tokens have seen recent applications
in private Internet browsing and anonymous statistics collection. We
develop new schemes in order to include public metadata such as expi-
ration dates for tokens. This inclusion enables planned mass revocation
of tokens without distributing new keys, which for natural instantia-
tions can give 77 % and 90 % amortized traffic savings compared to Pri-
vacy Pass (Davidson et al., 2018) and DIT: De-Identified Authenticated
Telemetry at Scale (Huang et al., 2021), respectively. By transforming
the public key, we are able to append public metadata to several existing
protocols essentially without increasing computation or communication.

Additional contributions include expanded definitions, a more com-
plete framework for anonymous single-use tokens and a description of
how anonymous tokens can improve the privacy in dp3t-like digital con-
tact tracing applications. We also extend the protocol to create efficient
and conceptually simple tokens with both public and private metadata,
and tokens with public metadata and public verifiability from pairings.

Keywords: Anonymous tokens · Public metadata · Contact tracing

1 Introduction

Anonymous credentials have been an active research area since the 1980’s [21,22],
involving schemes such as blind signatures, partially blind signatures, anonymous
tokens, attribute-based credentials, group signatures, ring signatures etc. This
enables more complex systems for e.g., electronic cash or electronic voting, but
also, to protect the privacy of the users in chat applications like Signal.

Recent work by Davidson et al. [28] presents a very practical protocol, named
Privacy Pass [27], for anonymous single-use tokens. This protocol allows users to
browse anonymously, e.g., using Tor, without having to solve a CAPTCHA every
time they visit a website. Privacy Pass gives the user a set of randomized tokens
whenever they solve a CAPTCHA, which they then later can redeem instead of
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 179–199, 2022.
https://doi.org/10.1007/978-3-031-18283-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_9&domain=pdf
http://orcid.org/0000-0002-5455-0409
http://orcid.org/0000-0002-4083-0768
https://doi.org/10.1007/978-3-031-18283-9_9

180 T. Silde and M. Strand

solving a new CAPTCHA. This improves the usability of anonymous browsing.
It also gives protection against spam, prevents DDoS attacks and provides fraud
resistance without the need for cross-site tracking or fingerprinting. However,
the only way to expire or revoke batches of unspent tokens is by replacing the
private-public key pair in a trusted way, which is impractical [26].

Privacy Pass has gained a lot of attention, and is currently being integrated
to improve privacy in several applications, e.g., for private file storage1 and for
basic attention tokens (BATs) in the Brave browser2. It can also be used for
private click measurement when making a purchase or signing up for a service3.

Facebook uses partially blind signatures for combating fraud [38], and they
have developed an extension of Privacy Pass called DIT: De-Identified Authen-
ticated Telemetry at Scale [36], which is used for privately collecting client-
side telemetry from WhatsApp. DIT requires daily key-rotation to prevent DoS
attacks, which led to the development of an attribute-based verifiable oblivious
pseudorandom function for transparent key-rotation.

The IETF is currently standardizing Privacy Pass [37], while Trust Token [46]
is currently being standardized by the World Wide Web Consortium. Both stan-
dardization processes mention private and public metadata, in addition to public
verifiability, as desirable extensions to the Privacy Pass protocol. Public meta-
data allows for more efficient key-rotation, and opens for applications using
public labeling and public anonymity sets, while private metadata allows for
allow/deny lists, rate-limiting, or trust-indication. Public verifiability allows for
outsourcing signing or verification of tokens.

Kreuter et al. [41] gave the first construction of anonymous tokens with pri-
vate metadata, while we give the first construction with public metadata. Our
construction can also be combined with private metadata or public verifiability.

Privacy Pass guarantees anonymity for all tokens generated by the same key.
The addition of any metadata reduces the anonymity set. We have designed the
protocol in such a way that the user and the signer must agree on the metadata.
Any application should restrict its use of metadata to generic, predefined values
that would otherwise have triggered a change of keys, e.g., expiry dates. Client
software should validate that the metadata is in accordance to the policy, and
reject any malformed tokens. Furthermore, private metadata bits also reduces
the anonymity set. Our protocol can easily be extended to include more than
one private metadata bit, but this must be done with great care, as it opens for
secretly tracking smaller sets of individual users.

Independently of this work, Tyagi et al. [45] have proposed a similar con-
struction to include public metadata, along with a novel hardness assumption
and a reduction to a more conventional problem, to be used in partially oblivious
pseudo-random functions. We discuss their work further in Sects. 1.4 and 3.

1 PrivateStorage: medium.com/least-authority/the-path-from-s4-to-privatestorage-ae
9d4a10b2ae.

2 Brave: github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-
confirmations.

3 Private Click Measurement: privacycg.github.io/private-click-measurement.

https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-confirmations
https://github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-confirmations
https://privacycg.github.io/private-click-measurement

Anonymous Tokens with Public Metadata 181

1.1 Our Contribution

Our contribution in this paper is threefold: first, we present new definitions and
a new framework for anonymous tokens – extending the work by Kreuter et
al. [41] – to also consider public metadata and/or public verifiability. Secondly,
we present three efficient protocols for anonymous tokens with efficient batched
revocation: 1) Privacy Pass [28] with public metadata, 2) Kreuter et al. [41]
with public and private metadata, and 3) a Privacy Pass inspired protocol using
pairings to satisfy public verifiability while including public metadata. Thirdly,
we present contact tracing as a new and important application for anonymous
single-use tokens, and discuss the implementation of Privacy Pass used in the
Norwegian contact tracing app Smittestopp to improve users’ privacy.

Updated Definitions and New Framework. Several works have asked for
efficient batched revocation of anonymous tokens without key-rotation [26,28].
Additionally, there is a need for anonymous tokens with public verifiability [46],
so that token generation can be delegated, and verification can be performed
locally for token redemption. We provide updated definitions for all of these
cases: designated verifier anonymous tokens with or without public and/or pri-
vate metadata and public verifier anonymous tokens with and without public
metadata. Details can be found in Sect. 2.

Anonymous Tokens with Public Metadata. We present the first anony-
mous tokens protocols with efficient batched revocation, meaning that the pro-
tocol only requires one round of communication based on lightweight primitives
and that we avoid key-rotation. The key insight in our protocol is conceptually
very simple: all parties locally update the public key based on the hash of the
public metadata, and then execute the protocols with respect to the new key
pair. The main challenge is to sign tokens in a way that does not allow the user to
forge tokens initially signed under metadata md to be valid under metadata md′

instead. Let k be the secret key and let d = H(md) be the hash of the metadata.
Our solution, inspired by Zhang et al. [48], is to use the inverse e = (d + k)−1

as the new signing key. This allows us to replace the secret keys in the previous
protocols in a modular way.

Furthermore, to avoid subliminal channels, the signer needs to prove that
the signed token is computed correctly. This is easily solved for Privacy Pass
[28]. In the original protocol they use a zero-knowledge protocol to prove, given
generator G, public key K = [k]G, blinded token T ′ and signed token W ′ =
[k]T ′, the equality of discrete logarithms logG K = k = logT ′ W ′ to ensure
correctness. In our updated protocol, including metadata md, updated public
key U = [d]G+K and signed token W ′ = [e]T ′, we prove the equality of discrete
logarithms logG U = d + k = logW ′ T ′ to ensure correctness.

However, it is not as easy to ensure correctness in the extended version of
the protocol by Kreuter et al. [41] including both public and private metadata.
We solve this by combining an OR-proof with two AND-proofs to make sure that
the correct key is used. Further improvement is an open problem.

182 T. Silde and M. Strand

Next, we give a protocol based on pairings. The protocol is an adapted version
of the partially blind signatures by Zhang et al. [48], where we tweak it into the
same structure as Privacy Pass. We note that the communication in the protocol
is the same, but in addition to get a more streamlined protocol structure, we also
allow for more efficient instantiation in practice using the BLS12-381 pairing [5].
Ideally, we would like to avoid pairings altogether, but this seems necessary in
practice. See more details about the protocols in Sect. 3.

Finally, we detail the communication efficiency of the protocols in Sect. 4,
and compare our constructions with the current state of the art with respect
to efficient batched revocation in Table 1. We show that our protocols are much
more efficient in practice. We also make a concrete comparison with DIT [36] for
collecting telemetry-data from WhatsApp, and show that our protocol in Fig. 4
would decrease the size of the signed token in a natural setting by 90 %, saving
the Facebook servers up to 1.7 TB of communication every day.

More Private Contact Tracing. Many countries have recently developed con-
tact tracing apps as one of the measurements to battle the ongoing pandemic.
These apps are inherently storing sensitive information about the user, e.g., the
users’ location graph and social graph. To avoid large, centralized databases with
such sensitive information about a large portion of a country’s adult population,
most apps are based on the decentralized Google/Apple Exposure Notification
System (ENS). However, there are still privacy issues with regards to upload-
ing the randomized exposure keys to the central server, as the user would have
to identify themselves to ensure that only people who have tested positive for
COVID-19 are able to upload keys. We implemented Privacy Pass into the Nor-
wegian contact tracing app to improve the users’ privacy. We present more details
about the contact tracing infrastructure and improvements in Sect. 5.

1.2 Comparison to Anonymous Credentials

There is a long line of research on more generalized anonymous credentials with
features such as multi-show, multi-attributes, and revocability – in addition to
the mandatory unlinkability and unforgeability – that allow one to encode expi-
ration dates as attributes.

However, generalized anonymous credentials often depends on stronger
assumptions, e.g., strong RSA [12,13,15,16,18], strong Diffie-Hellman [3] or
DL assumptions in bilinear groups [17,33]. Some schemes only depend on
DDH [4,19,20,43], but these schemes require larger messages in general. In con-
clusion, generalized anonymous credentials inherently impose larger parameters,
more rounds of communication and less efficient protocols in practice, resulting
in thousands of bits on communication over multiple rounds.

Finally, more general and complex anonymous credentials make these
schemes less suited for use in simpler single-use systems with many users, which
is the case in our setting. We want to minimize the rounds of communication
and data being sent, in addition to minimizing the local computation and the

Anonymous Tokens with Public Metadata 183

local state. Hence, we only compare to one-round single-use efficiently revocable
anonymous credentials with minimal communication in Sect. 4.

1.3 Related Work

Our work achieving designated verification and public metadata extends a long
line of publications. Freedman et al. [30] introduced oblivious pseudo-random
functions, and Jarecki et al. [39,40] gave an efficient instantiation based on DDH
in the random oracle model. Papadopoulos et al. [42] gave a verifiable PRF from
elliptic curves, and Burns et al. [11] gave an oblivious PRF from elliptic curves.
Privacy Pass combined these results with an extended version of the Chaum-
Pedersen zero-knowledge protocol [23] given by Henry and Goldberg [34,35] to
prove knowledge of batches of elements having the same discrete logarithm, and
Kreuter et al. [41] added private metadata to Privacy Pass. In a concurrent work,
Tyagi et al. [45] recently extended this line of works to partially oblivious PRFs.

To achieve public verifiability we use parings, inspired by the seminal work
of Boneh et al. [10] for short and efficient signatures and a series of constructions
of (partially) blind signatures based on pairings [7,8,14,24,25,31,32,48].

1.4 Chronology

As we report on both an implementation and new protocols, we believe it can
be helpful to lay out the chronology of this work to separate the contributions.

Mid-October 2020, the authors were made aware of a potential privacy weak-
ness in Norway’s upcoming second COVID-19 contact tracing app Smittestopp.
The first iteration had been stopped by the Norwegian Data Protection Agency
in June, due to privacy concerns following from lack of data minimization. The
new app had a set launch date in December.

The issue was that the verification service would collect IDs in order to
automatically verify the infection status, and then send a token to the app which
could then be used for uploading exposure keys. This token would create a hard
link between an ID-based service and the rest of the system, in which the users
are assumed to be anonymous.

Within a few days, we suggested using Privacy Pass in order to remove this
link. Due to lack of capacity, our proposal was acknowledged, but we were
asked to provide the code. We teamed up with Henrik Walker Moe to imple-
ment Privacy Pass in C#, and our implementation was eventually accepted into
Smittestopp along with an improvised solution to rotate keys every three days.

Motivated by this process and the last-minute improvisation, we expanded
the original Privacy Pass protocol to deal with the issues of key-rotation and
revocation. Our initial manuscript was posted on ePrint February 24th, 2021.
We were then made aware of a complication to the security proof, which was
originally from the work by Zhang et al. [48]. A correct proof was posted on
ePrint by Tyagi et al. [45] June 24th, 2021. The primary separation between
these two manuscripts are that we were the first to present this protocol along

184 T. Silde and M. Strand

with its variations, while Tyagi et al. present a correct proof. We also present
the protocols in a way that is compatible to previous work. In this sense, these
works complement each other.

The new protocol has not been implemented in Smittestopp. This is due to
lack of further development of the app, and we do not expect any major changes
to be accepted into the codebase at this stage.

2 Definitions for Anonymous Tokens

Anonymous tokens as used in Privacy Pass are conceptually simple: both
issuance and verification require the private key, and the final token is uniquely
determined by the token seed t and the private key. Kreuter et al. [41] extended
this notion by adding a private bit in the token. We further extend the defini-
tion in two different directions: we want to add public metadata, and we want
to make the token publicly verifiable. Now, private bits do not make immediate
sense in the context of a publicly verifiable token scheme, but public metadata
can be relevant in both settings.

The metadata can for instance be used to indicate an expiry date, replacing
the need for frequent key rotation in certain applications [36]. We model it as a
value that the user and issuer must agree upon, which should restrict the issuer
from using arbitrary, identifiable values.

Lending terminology from programming, we would like the definition to pro-
vide backwards compatibility, and handle the notational incompatibility between
private and public verifiability. To this end, we imitate the notion of [optional
arguments] from programming. The notation vk|sk is meant as “at least one of
the public or the secret key”. We align our definitions as close as possible to
those by Kreuter et al. [41].

Definition 1 (Anonymous tokens). An anonymous token scheme with zero
or more of private metadata bit, public metadata, or public verifiability
consists of the following algorithms:

– (crs, td) ← AT.Setup(1λ), the setup algorithm that takes as input the security
parameter λ in unary form, and returns a common reference string crs and
trapdoor td. All the remaining algorithms take crs as their first input.

– (pp, sk, [vk]) ← AT.KGen(crs), the key generation algorithm that generates a
signing key sk and optionally a verification key vk along with public parameters
pp. All the remaining algorithms take pp as their second input.

– σ ← 〈AT.User(pp, [vk], t, [md]),AT.Sign(sk, [md], [b])〉, the token issuance pro-
tocol, which involves interactive algorithms AT.User and AT.Sign. The user
algorithm takes as input values the public parameters and the token seed
t ∈ {0, 1}λ, and potentially the verification key vk and the public metadata
md. The signing algorithm takes the private key sk and potentially metadata
md and the private bit b. At the end of the interaction, the issuer outputs
nothing, while the user outputs σ, or ⊥ to indicate error.

Anonymous Tokens with Public Metadata 185

– bool ← AT.Vf(vk|sk, t, [md], σ), the verification algorithm that takes as input
either the public verification key vk or the private key sk, a token seed t,
metadata md and the signature σ. It returns true if the token was valid.

– [ind ← AT.ReadBit(sk, t, [md], σ)], the private bit extraction algorithm that
takes as input the private key sk and token (t, [md], σ). It returns an indicator
ind ∈ {⊥, 0, 1} which is either the private bit, or ⊥.

The notation of the above definition should be interpreted in a global sense.
If one – for example – wants to use public metadata, it should be included
everywhere it is mentioned. This listing then defines the following six notions:

1. With designated verification:
(a) Anonymous single-use tokens
(b) Anonymous single-use tokens with private metadata bit
(c) Anonymous single-use tokens with public metadata
(d) Anonymous single-use tokens with public and private metadata

2. With public verification:
(a) Anonymous single-use tokens
(b) Anonymous single-use tokens with public metadata

Examples of 1a and 1b are well known from previous work [28,41]. A previous
example of 2b is known as a partially blind signature scheme [2]. We will provide
new examples of the last four (2a is implicit in 2b) in Sect. 3 and in the full version
of this paper. We collectively refer to all of these as anonymous tokens.

We follow the convention of dividing the interactive protocol
〈AT.User,AT.Sign〉 into the non-interactive algorithms AT.User0, AT.Sign0 and
AT.User1.

An anonymous token scheme must satisfy the following properties:

Definition 2 (Token correctness). An anonymous token scheme AT is cor-
rect if any honestly generated token verifies. For any honestly generated crs,
(pp, sk, [vk]), t and [md],

Pr[AT.Vf(vk, t, [md], 〈AT.User(pp, [vk], t,md),
AT.Sign(sk, [md], [b])〉) = 1] = 1 − negl(λ) .

We split correctness of the private metadata bit into a separate definition in
order to reduce notational clutter. This definition only applies in the private-key
setting, and the parameters have been fixed accordingly.

Definition 3 (Correct private bit). An anonymous token scheme AT is
correct with respect to private metadata if the correct bit is retrieved successfully:

Pr[AT.ReadBit(sk, t, 〈AT.User(pp, t, [md]),
AT.Sign(sk, [md], b)〉) = b] = 1 − negl(λ) .

No adversary should be able to redeem other tokens than those that have been
correctly issued. The one-more unforgeability notion has become the common
notion for anonymous credentials. It allows the adversary to claim � tokens from
the issuer, and the adversary should not be able to redeem � + 1 tokens. We
require the tokens to be unique with respect to the value of the seed t.

186 T. Silde and M. Strand

Definition 4 (One-more unforgeability). An anonymous token scheme AT
is one-more unforgeable if for any PPT adversary A, and any � ≥ 0:

Advomuf
AT,A,�(λ) := Pr[OMUFAT,A,�(λ) = 1] = negl(λ) ,

where OMUFAT,A,� is the game defined in Fig. 1.

Next, we want to provide user anonymity. The right notion for this is unlink-
ability, which guarantees that even colluding issuers and verifiers are unable to
link tokens. Arbitrary metadata is a strong way of creating a link, and we omit
this problem by only considering fixed public metadata for this notion. Notice
that the adversary may query the user oracles for any public metadata md, but
that we expect the post-processing to implicitly fail if md �= md′. This is in line
with for example expiry dates, which would otherwise have been solved in prac-
tice using key rotation, and the definition is (as usual) also using a fixed key.
Private metadata is outside the control of the user, and gives one bit leakage.
We fix it for this game. Note that the adversary controls the keys, and that we
therefore do not need to provide access to signing and verification oracles.

Definition 5 (Unlinkability). An anonymous token scheme AT is κ-unlink-
able if for any PPT adversary A, fixed b, md, and any m > 0,

AdvunlinkAT,A,m,[b],[md](λ) := Pr
[
UNLINKAT,A,m,[b],[md](λ) = 1

] ≤ κ

m
+ negl(λ) ,

where UNLINKAT,A,m is the game defined in Fig. 2.

We finally consider the private metadata bit. We give the adversary access
to two signing oracles: One uses the adversary’s chosen private bit, the other is
using a fixed bit for the game. The adversary can also query a verification oracle.
At the end, the adversary outputs its guess for the fixed challenge bit.

Game OMUFAT,A,�(λ)

(crs, td) ← AT.Setup(1λ)

(pp, sk, [vk]) ← AT.KGen(crs)

for (b ∈ {0, 1},md), qb,md := 0

(ti,mdi, σi)i∈[�+1] ← ASign,Verify,Read(crs, pp)

return (∀b ∈ {0, 1} ∀md, qb,md ≤ � and

∀i �= j in [� + 1] (ti,mdi, σi) �= (tj ,mdj , σj)

and ∃(b,md) ∈ {0, 1} × {md} : ∀i ∈ [� + 1],

AT.ReadBit(sk, ti, σi) = b and

AT.Vf(sk|vk, ti, [md], σi) = true)

Oracle Sign(msg, [md], [b])

qb,md := qb,md + 1

return AT.Sign0(sk,msg, [md], [b])

Oracle Verify(t, [md], σ)

return AT.Vf(sk|vk, t, [md], σ)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, [md], σ)

Fig. 1. One-more unforgeability with metadata.

Anonymous Tokens with Public Metadata 187

Fig. 2. Public-key unlinkability with fixed metadata. If X is a set, then SX is the
symmetric group of X.

Definition 6 (Private metadata bit). An anonymous token scheme AT pro-
vides private metadata bit if for any PPT adversary A,

Advpmb
AT,A(λ) :=

∣
∣Pr[PMB0

AT,A(λ)] − Pr[PMB1
AT,A(λ)]

∣
∣ = negl(λ) ,

where PMBβ
AT,A is the game defined in Fig. 3.

3 Anonymous Token Protocols

The Privacy Pass protocol [28] and its siblings [36,41] are based on Verifiable
Oblivious Pseudo-Random Functions (VOPRF). Here, a user holds some secret
input x and the signer holds a secret key k and they evaluate the function F
obliviously such that the user learns F (x, k) but nothing about k, and the signer
learns nothing about the input x nor the output F (x, k). Additionally, the user
is ensured that the function is evaluated by the correct secret key.

We give three protocols for Anonymous Tokens (AT) with 1) public metadata,
2) public and private metadata, and 3) public metadata and public verifiability,
respectively, constructed from the same framework.

At the core of our protocols lies a verifiable key transformation. Let d :=
Hm(md) and the curve point U := [d]G + K, where G is a public generator and
K is the public key with a corresponding private key k. Let e = (d + k)−1 be
the new signing key and W ′ = [e]T ′. Notice the relation

KT : logG([d]G + K) = (d + k) = logW ′ T ′. (1)

188 T. Silde and M. Strand

Fig. 3. Game for private metadata bit for anonymous tokens.

We give background on elliptic curves and detail zero-knowledge proofs for
equal discrete logarithms, AND-proofs and OR-proofs in the full version of this
paper.

3.1 Secure Key Transformation

We argue that the key-transformation from k to e is secure against one-more
unforgeability attacks. Several papers has been written using this transforma-
tion. Boneh and Boyen [9] shows that this transformation is secure against a
non-adaptive attacker for arbitrary metadata md when used for signatures. Fur-
thermore, Dodis and Yampolskiy [29] shows that this transformation is secure
against active attackers when the set of possible metadata values is small, and
give applications to PRFs. However, these works only prove security with respect
to a fixed generators, while our construction signs arbitrary new generators in
each execution of the protocol. Recently, Tyagi et al. [45] proved that this trans-
formation is secure against an active attacker with respect to arbitrary generators
and arbitrary set of metadata. They reduce the security of the transform to a
new one-more gap strong inversion Diffie-Hellman problem (see the full version
of this paper). They also show that this new problem is equivalent to the simpler
q-DL assumption. We summarize these results in a lemma.

Lemma 1. Let AT be a scheme with keys (pk, vk) with security property P within
adversarial advantage AdvpAT,A(λ), and assume we can prove the relation in Eq. 1
within adversarial advantage AdvrelKT,A(λ). Then A has advantage AdvpAT,A(λ) +
AdvrelKT,A(λ) against property P in the scheme AT with transformed keys ({e =
(md + sk)−1, [e]G}).

3.2 Anonymous Tokens with Public Metadata

In Fig. 4 we present an extension of Privacy Pass [28] with public metadata. The
protocol is designated verifier, as the secret key is needed to verify tokens.

Anonymous Tokens with Public Metadata 189

Fig. 4. Designated verifier anonymous tokens with public metadata. Our protocol is a
direct extension of Privacy Pass [28].

Setup and Key Generation. Let λ be the security parameter, let p be a
prime and let E be an elliptic curve group of order p with generator G. Let
Ht : {0, 1}∗ → E and Hm : {0, 1}∗ → Zp be hash functions, and assume that
group elements and integers can be encoded uniquely as strings. Furthermore,
let metadata md be an element of a public set of valid strings. Finally, let sk :=
k ←$Z

∗
p be the signing key, and let pk := K := [k]G be the public key. We

consider G,E, p, Ht, Hm and K to be implicit knowledge in Fig. 4.

Signing and Verification. The anonymous tokens protocol in Fig. 4 uses the
ΠDLEQ-protocol defined in the full version of this paper. The signer computes
a proof πDLEQ := (c, z) of equality of discrete logarithms by instantiating the
protocol ΠDLEQ(G,T ′,K,W ′; e). Given the public parameters G and K, and
U := [d]G + K, this is a proof that logG U = d + k = logW ′ T ′. This proves

190 T. Silde and M. Strand

that W ′ = [e]T ′, where e := (d + k)−1, is computed correctly with respect to
d and K. To verify, the user instantiates the verification algorithm, denoted by
V(πDLEQ).

Theorem 1 (Completeness). The anonymous token protocol with public
metadata in Fig. 4 is complete according to Definition 2.

Proof. The completeness follows from expanding W :

W = [r]W ′ = [r][e]T ′ = [r][e][r−1]T = [e]Ht(t).

��
Theorem 2 (Unforgeability). The anonymous token protocol with public
metadata in Fig. 4 achieve one-more unforgeability with respect to Definition 4.

Proof. Using the key transformation as described in Lemma 1, the security of
the protocol reduces to the security of the one-more gap strong inversion Diffie-
Hellman game. The security follows from Tyagi et al. [45, Theorem 1].

��
Theorem 3 (Unlinkability). Fix metadata md. Within the set defined by all
tokens using md, the anonymous token protocol with public metadata in Fig. 4
achieve unlinkability with respect to Definition 5.

Proof. This proof is identical to [28, Theorem 1]: As we sample r ←$Zp uniformly
at random, it follows that our protocol is unconditionally unlinkable. Since T
is a generator of E, then T ′ = [r−1]T is uniformly random and contain no
information about t nor T . As the signer only sees T ′, and the verifier only
receive t, and they are independent, there is no link between the view of the
signer and the view of the verifier.

��

3.3 Tokens with Private Metadata and Public Verification

Using the same framework, we present anonymous tokens with public and private
metadata and anonymous tokens with public metadata and public verification
in the full version of this paper. We provide security proofs for both protocols.

4 Performance and Comparison

In this section, we briefly describe the most efficient anonymous single-use token
protocols with public metadata in the literature, for example, to enable batched
revocation. We only consider protocols with one round of communication. We
compare the protocols with our schemes in Table 1. To streamline the compar-
ison, we assume that all parties know the public metadata, for example that
md is the current date, and assume that this implicit knowledge is not sent.
We instantiate the schemes with λ = 128 bits of security. Finally, we present a
concrete example to show that we can replace DIT with our protocol in Fig. 4
to improve both communication size and computational efficiency.

Anonymous Tokens with Public Metadata 191

4.1 Anonymous Single-Use Tokens with Public Metadata

Privacy Pass. Our protocol in Fig. 4 is inspired by Privacy Pass [28], and
they have identical structure and communication. The main difference is the
change of private key used for signing, and the updated zero-knowledge proof
with respect to the new public key, both depending on the public metadata. The
zero-knowledge proofs are of the same size, and it follows that the communication
sizes are equal. However, Privacy Pass does not allow public metadata unless we
have one public key for each valid string of metadata, and hence, to allow for
2N possible messages md, Privacy Pass must publish 2N public keys.

DIT: De-Identified Authenticated Telemetry at Scale. DIT [36] is also
inspired by Privacy Pass [28], but uses an attribute-based VOPRF to generate
new public keys on the fly. To allow for 2N strings of public metadata, there are
two main differences: 1) the public key consists of N + 2 group elements, and 2)
the token consists of an additional N group elements and zero-knowledge proofs
to ensure that the correct public key is used in the signature.

Tokens from RSA. Abe and Fujisaki [1] presents a partially blind signature
scheme based on RSA. The public exponent e must be at least two bits longer
than the public metadata, and we fix this to be of length 130 bits. The user
updates the public key to emd = e · τ(md), for a public formatting function
τ , when they blind the message, and the signer updates the secret key dmd =
(e · τ(md))−1 mod N when signing. Otherwise, the partially blind signature
scheme [1] is similar to the blind signature by Chaum [21].

Tokens with Private Metadata. Kreuter et al. [41] presents an extension of
Privacy Pass [28] to include private metadata. They publish two public keys,
and the signer proves in zero-knowledge that the token is signed with one of the
corresponding private keys. To ensure metadata privacy, each token is random-
ized based on a fresh seed s that is given to the user, and hence, the signature
consists of a seed, a group element, and a proof. The token consists of the initial
seed t in addition to two group elements. Like Privacy Pass, this protocol must
publish a new pair of public keys for each valid string of metadata.

4.2 Comparison

We present a comparison of schemes in Table 1, where we focus on communi-
cation complexity. We note that both RSA and pairing based cryptography is
usually slower than elliptic curve cryptography, in addition to requiring larger
parameters. We also note that the updated keys in our protocols are only depen-
dent on the secret key and the metadata, and can often be pre-computed. We
conclude that when allowing for batched token-revocation, our protocols are
more efficient than the state of the art in all categories.

While RSA and elliptic curve cryptography are primitives implemented in all
mainstream cryptographic libraries, there are few trustworthy implementations

192 T. Silde and M. Strand

of pairings. Even though there exists a few implementations4, they are mostly for
academic use, maybe except for the implementation in Rust used by Zcash5. We
refer to [45, Table 1] for a comparison in computation between some protocols.

Table 1. Size given in bits. We compare the schemes for 128 bits of security, allowing
for 2N strings md of metadata. Token seed t is of size 128 bits, and metadata md
is implicit knowledge. Privacy Pass, DIT, Kreuter et al. and our protocols in Sect. 3
are instantiated with curve x25519 [6], our pairing-based protocol is instantiated with
BLS12-381 [47], and Abe and Fujisaki is instantiated with RSA-3072.

Public Metadata (PM) PubKey Request Signature Token

Privacy Pass [28] 257 · 2N 257 769 385

DIT [36] 257 · (N + 2) 257 769 · (N + 1) 385

Our scheme (Fig. 4) 257 257 769 385

PM + Private Metadata PubKey Request Signature Token

Kreuter et al. [41] 514 · 2N 257 1921 642

Our Scheme 1028 257 3203 642

PM + Public Verifiability PubKey Request Signature Token

Abe and Fujisaki [1] 3202 3072 3072 3200

Our scheme 763 382 382 510

4.3 Telemetry Collection in WhatsApp

DIT [36] was designed to allow users of WhatsApp to anonymously report teleme-
try data to Facebook. We present a concrete comparison to our protocols in
Table 2. Here, we assume that Facebook wants to update their public keys only
once a year, rotate signing keys every day, and only sign one token per user each
day. We fix a year and encode public metadata as strings “YYYY-MM-DD”.

Privacy Pass [28] is very efficient in terms of communication, but requires
one public key per day. Hence, the public key is of size 93805 bits over a year of
365 days, that is, approximately 12 KB. An alternative method to download all
keys and store them until usage is to use a Merkle-tree for key-transparency and
give paths corresponding to the current public key as a part of each signature.
Then, the public key consists of the root of size 256 bits, while each signature
consists of log2(365)� = 9 hashes of 256 bits in addition to the public key, the
token, and the zero-knowledge proof. We give both instantiations in the table,
and denote the alternative protocol as Privacy Pass+.

Our scheme in Fig. 4 has the smallest overall communication complexity of
all schemes. It offers much smaller keys than Privacy Pass, and much smaller
signatures than Privacy Pass+ and DIT, saving up to 90 % in communication. If
all 2 billion users of WhatsApp report their telemetry every day, our scheme in
Fig. 4 would save more than 1.7 TB of communication for the Facebook servers
on a daily basis compared to the current implementation of DIT.
4 Pairings: hackmd.io/@zkteam/eccbench.
5 Zcash: github.com/zkcrypto/bls12 381.

https://hackmd.io/@zkteam/eccbench
https://github.com/zkcrypto/bls12_381

Anonymous Tokens with Public Metadata 193

Our pairing-based scheme offers similar improvements to communication, in
addition to public verifiability using pairings, but at the cost of less standardized
cryptography and less efficient computation.

Table 2. Size given in bits. We compare Privacy Pass, DIT, and the protocols in Sect. 3
with daily key-rotation in a year, signing one token at a time.

Protocol PubKey Request Signature Token

Privacy Pass [28] 93805 257 769 385

Privacy Pass+ 256 257 3330 385

DIT [36] 2313 257 7690 385

Our scheme (Fig. 4) 257 257 769 385

Our scheme (Pairings) 763 382 382 510

5 Application to Contact Tracing

As nations started adopting digital contact tracing during the COVID-19 pan-
demic, privacy experts warned that such systems could enable the collection
of people’s contact graphs. The dp3t protocol [44] was eventually adopted as
the de facto method for digital contact tracing through its implementation and
deployment in iOS and Android as the Exposure Notification System (ENS).

We provide a brief overview of the basic dp3t idea in order to put our con-
tribution into context. The protocol is instantiated on each participating phone,
which generates a random key (Temporary Exposure Key, TEK) every day. The
TEK is used to generate new Rotating Proximity Identifiers (RPI) every 10–
20 min, which is then broadcast from the phone using Bluetooth Low Energy
(BLE). Other phones in the proximity store any RPI they hear.

If Alice tests positive for COVID-19 she can upload her TEKs (now renamed
to diagnosis keys, DK) along with her BLE transmission strength to a health
authority bulletin board. Bob’s phone regularly checks the board to see if there
is a sufficiently large overlap between published the DKs and the RPIs stored
locally, and with sufficiently low difference between transmission strength and
received strength. If this is the case, then Bob is given a suitable alert to let him
know that he most likely has been in close vicinity of an infected individual, and
should follow any advice given by the health authorities.

The process of uploading TEKs should depend on some sort of authorization.
The dp3t documentation describes a simplified model where a doctor receives
the test results, and sends the patient an SMS with a short upload code. Now,
this process may take precious person-hours during a pandemic. Some countries
have therefore opted to connect their exposure notification with already existing
centralized registries of positive test results, e.g., Norway, Denmark, and Estonia.

When starting the upload process, the user is prompted to log in to some
government service (“verification”). Once the user has identified herself, the ser-
vice makes a query to the relevant health registry. The service returns an access

194 T. Silde and M. Strand

KDF(k, date)
(kd, Kd)

fetch key

Kd

Initiate()

t, r, T ′

GenerateToken(kd, Kd, T ′)
W ′, (c, z)

T ′

W ′, (c, z)

RandomiseToken(Kd, T ′, W ′, c, z, r)
valid/invalid, W

VerifyToken(kd, t, W)
true/false

t, W

A:App V:Verification service(k) B:Backend service(k)

Fig. 5. A sequence diagram of anonymous tokens in the Norwegian app Smittestopp.

token to the app if there exists a recent positive test, which is then used to upload
the keys to “backend”. Unfortunately, this token may create an identifiable link
from the meant-to-be-anonymous database of DKs, and unique identities in the
health registry. Using anonymous single-use tokens, one can break this link (up
to traffic analysis, e.g., logging timings and network addresses).

The Norwegian Institute of Public Health (NIPH) wanted the tokens to be
timestamped in order to avoid users posting severely delayed keys: this would
have allowed an attacker to get well again, move back out among other people,
and only then upload to the backend service. Notice that merely tying the token
to keys – e.g., by using a hash of the TEKs as the token seed t – would not avoid
this attack, as those could have been generated and stored until the time of the
attack. As a result, it was decided that the keys should be rotated regularly.

The original Privacy Pass protocol was reimplemented as a reusable C# pack-
age, to ease the integration into the Norwegian contact tracing app Smittestopp.
The verification and backend services keep a master secret key k, and generate
daily keys from some KDF(k, date). The public key is posted from the verification
service. The full integration of anonymous tokens is described in Fig. 5.

We finally note that this key distribution method suffers from a potential
attack by a dishonest verification service that could serve special public keys to
track individuals. It is, however, detectable by the users if they share their view
of the public keys with each other to ensure consistency. The current solution
was accepted by all involved stakeholders due to limited time and a weighting
of the practical risk against the potential reward. The challenges with respect to
key-rotation and key-sharing strongly motivated the authors’ work in Sect. 3.

Anonymous Tokens with Public Metadata 195

6 Conclusion

In this work, we have updated the definitions for anonymous single-use tokens
to also include public metadata, and we have constructed three protocols that
satisfy these definitions. Additionally, we combine public metadata with either
private metadata or public verifiability, and show that all instantiations are
efficient in practice. For situations with frequent key-rotation, we show that
our protocols can save up to 90 % in communication over the state of the art.
Furthermore, our protocols fit nicely into the Privacy Pass framework, which
makes it easy to incorporate our contributions in the ongoing standardization
processes by IETF and W3C, solving an open problem.

We also provide a description of how anonymous one-time tokens can be used
to improve the user’s privacy in contact tracing applications, and implemented
this into the solution used in Norway. The app has more than one million users
at the time of writing6. As the Norwegian app is built on top of the same code
base as the Danish app, we consider it to be easy to extend the adaption of
anonymous tokens to their app, and most likely others as well.

We would also like to suggest new use-cases for anonymous tokens. For exam-
ple, anonymous tokens can improve the privacy of users traveling with public
transport. Bus or train companies may require patrons to verify their period
tickets for each journey, perhaps primarily to analyze traffic data. However, this
can easily reveal the routes of single users while traveling in-between their home
and workplace, but also to the abortion clinic, their church or to a public demon-
stration etc. If all travelers with valid tickets are given a series of tokens (e.g.,
with public metadata being the date or week or month the ticket is valid), then
these can be redeemed when boarding. This way, the companies get the statis-
tics they are interested in, without invading the user’s privacy. In general, any
systems with leveled authenticated login but anonymous actions can make use
of our protocols, e.g., systems with electronic locks that only care if the user has
certain privileges or not. We also note that Tyagi et al. [45] detail applications
of a construction similar to ours to reduce key management complexity in the
OPAQUE password authenticated key exchange protocol, and to ensure stronger
security for password breach alerting services.

Finally, we would like to see improvements in three directions. Firstly, the
zero-knowledge proofs used by the anonymous tokens protocol with public and
private metadata are much larger than the ones by Kreuter et al. [41], in contrast
to our protocol with public metadata in Fig. 4 achieving the exact same com-
munication cost as Privacy Pass [28]. In particular, we would like to reduce the
number of proofs and extra group elements in the protocol for private metadata.
Secondly, we would like to provide protocols free of zero-knowledge proofs, to
reduce the communication and computational cost, as provided in [41, Section 7].

6 Smittestopp: fhi.no/om/smittestopp/nokkeltall-fra-smittestopp, last accessed 2022-
07-11.

https://www.fhi.no/om/smittestopp/nokkeltall-fra-smittestopp

196 T. Silde and M. Strand

References

1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

3. Akagi, N., Manabe, Y., Okamoto, T.: An efficient anonymous credential system.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 272–286. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85230-8 25

4. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013).
https://doi.org/10.1145/2508859.2516687

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

6. Bernstein, D.J.: Curve25519: high-speed elliptic curve cryptography (2005).
https://cr.yp.to/ecdh.html

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind
signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
95–112. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 6

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

11. Burns, J., Moore, D., Ray, K., Speers, R., Vohaska, B.: EC-OPRF: oblivious
pseudorandom functions using elliptic curves. Cryptology ePrint Archive, Report
2017/111 (2017). https://eprint.iacr.org/2017/111

12. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 345–356. ACM Press (2008).
https://doi.org/10.1145/1455770.1455814

13. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

14. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-540-85230-8_25
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://cr.yp.to/ecdh.html
https://doi.org/10.1007/978-3-642-32928-9_6
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2017/111
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-44987-6_7

Anonymous Tokens with Public Metadata 197

16. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

17. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

18. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Atluri, V. (ed.) ACM CCS 2002, pp. 21–30.
ACM Press (2002). https://doi.org/10.1145/586110.586114

19. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp.
1205–1216. ACM Press (2014). https://doi.org/10.1145/2660267.2660328

20. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anony-
mous credentials supporting efficient verifiable encryption. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1445–1459. ACM Press (2020).
https://doi.org/10.1145/3372297.3417887

21. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

22. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) Advances in Cryptology,
p. 153. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4684-4730-
9 14

23. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

24. Chen, X., Zhang, F., Mu, Y., Susilo, W.: Efficient provably secure restrictive par-
tially blind signatures from bilinear pairings. In: Di Crescenzo, G., Rubin, A. (eds.)
FC 2006. LNCS, vol. 4107, pp. 251–265. Springer, Heidelberg (2006). https://doi.
org/10.1007/11889663 21

25. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind
signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005). https://
doi.org/10.1007/11506157 27

26. Davidson, A.: Supporting the latest version of the privacy pass protocol
(2021). https://blog.cloudflare.com/supporting-the-latest-version-of-the-privacy-
pass-protocol. Accessed 01 Dec 2021

27. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
a privacy-enhancing protocol and browser extension. https://privacypass.github.
io. Accessed 01 Dec 2021

28. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018).
https://doi.org/10.1515/popets-2018-0026

29. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

30. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4684-4730-9_14
https://doi.org/10.1007/978-1-4684-4730-9_14
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/11889663_21
https://doi.org/10.1007/11889663_21
https://doi.org/10.1007/11506157_27
https://doi.org/10.1007/11506157_27
https://blog.cloudflare.com/supporting-the-latest-version-of-the-privacy-pass-protocol
https://blog.cloudflare.com/supporting-the-latest-version-of-the-privacy-pass-protocol
https://privacypass.github.io
https://privacypass.github.io
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30576-7_17

198 T. Silde and M. Strand

31. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

32. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

33. Hanzlik, L., Slamanig, D.: With a little help from my friends: constructing practical
anonymous credentials. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2021, Association for Computing
Machinery (2021). https://doi.org/10.1145/3460120.3484582

34. Henry, R.: Efficient Zero-Knowledge Proofs and Applications. Ph.D. thesis, Uni-
versity of Waterloo (2014). http://hdl.handle.net/10012/8621

35. Henry, R., Goldberg, I.: Batch proofs of partial knowledge. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
502–517. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-
1 32

36. Huang, S., et al.: Dit: de-identified authenticated telemetry at scale. Technical
report, Facebook Inc. (2021). https://research.fb.com/wp-content/uploads/2021/
04/DIT-De-Identified-Authenticated-Telemetry-at-Scale final.pdf

37. Internet Engineering Task Force: Privacy pass datatracker (2021). https://
datatracker.ietf.org/wg/privacypass. Accessed 01 Dec 2021

38. Iyengar, S., Taubeneck, E.: Fraud resistant, privacy preserving reporting using
blind signatures (2021). https://github.com/siyengar/private-fraud-prevention.
Accessed 01 Dec 2021

39. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

40. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

41. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private
metadata bit. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 308–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 11

42. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint
Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099

43. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 revision 3
(2013). https://www.microsoft.com/en-us/research/project/u-prove

44. Troncoso, C., et al.: Decentralized privacy-preserving proximity tracing. https://
arxiv.org/abs/2005.12273 (2020)

45. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast
and simple partially oblivious PRF, with applications. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 674–705.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3 23

46. World Wide Web Consortium: Trust Token API Explainer (2021). https://github.
com/WICG/trust-token-api. Accessed 01 Dec 2021

https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1145/3460120.3484582
http://hdl.handle.net/10012/8621
https://doi.org/10.1007/978-3-642-38980-1_32
https://doi.org/10.1007/978-3-642-38980-1_32
https://research.fb.com/wp-content/uploads/2021/04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://datatracker.ietf.org/wg/privacypass
https://datatracker.ietf.org/wg/privacypass
https://github.com/siyengar/private-fraud-prevention
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-030-56784-2_11
https://eprint.iacr.org/2017/099
https://www.microsoft.com/en-us/research/project/u-prove
https://arxiv.org/abs/2005.12273
https://arxiv.org/abs/2005.12273
https://doi.org/10.1007/978-3-031-07085-3_23
https://github.com/WICG/trust-token-api
https://github.com/WICG/trust-token-api

Anonymous Tokens with Public Metadata 199

47. Yonezawa, S., Chikara, S., Kobayashi, T., Saito, T.: Pairing-Friendly Curves
(2021). https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html.
Accessed 01 Dec 2021

48. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and
partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-24582-7 14

https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html
https://doi.org/10.1007/978-3-540-24582-7_14

ZKP

SnarkPack: Practical SNARK
Aggregation

Nicolas Gailly1(B), Mary Maller2(B), and Anca Nitulescu1(B)

1 Protocol Labs, San Francisco, USA
{nikkolasg,anca}@protocol.ai

2 Ethereum Fondation, Zug, Switzerland
mary.maller@ethereum.org

Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive
proof systems with short and efficiently verifiable proofs that do not reveal
anything more than the correctness of the statement. zk-SNARKs are
widely used in decentralised systems to address privacy and scalability
concerns.

A major drawback of such proof systems in practice is the requirement
to run a trusted setup for the public parameters. Moreover, these param-
eters set an upper bound to the size of the computations or statements to
be proven, which results in new scalability problems.

We design and implement SnarkPack, a new argument that further
reduces the size of SNARK proofs by means of aggregation. Our goal is
to provide an off-the-shelf solution that is practical in the following sense:
(1) it is compatible with existing deployed SNARK systems, (2) it does
not require any extra trusted setup.

SnarkPack is designed to work with Groth16 scheme and has logarith-
mic size proofs and a verifier that runs in logarithmic time in the number
of proofs to be aggregated. Most importantly, SnarkPack reuses the pub-
lic parameters from Groth16 system.

SnarkPack can aggregate 8192 proofs in 8.7 s and verify them in 163 ms,
yielding a verification mechanism that is exponentially faster than other
solutions. SnarkPack can be used in blockchain applications that rely on
many SNARK proofs such as Proof-of-Space or roll-up solutions.

1 Introduction

Arguments of Knowledge. Decentralised systems make extensive use of pro-
tocols that enable a prover to post a statement together with a short proof, such
that any verifier can publicly check that the statement (e.g., correctness of a
computation, claims of storage etc.) is true while expending fewer resources, e.g.
less time than would be required to re-execute the computation.

SNARKs are such proofs that allow one party to demonstrate knowledge of
a satisfying witness to some NP statement and have verification time and proof
size independent of the size of this witness. If these proofs also conceal anything
else about the witness we refer to them as zk-SNARKs. In the last decade,

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 203–229, 2022.
https://doi.org/10.1007/978-3-031-18283-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_10

204 N. Gailly et al.

there has been a series of works on constructing SNARKs [BCI+13,GGPR13,
PHGR13,BCTV14,Gro16] with constant-size proofs that rely on trusted setups.

SNARKs are becoming very popular in real-world applications such as del-
egated computation or blockchain systems: as examples of early practical use
case, Zerocash [BCG+14] showed how to use zk-SNARKs in distributed ledgers
to achieve payment systems with strong privacy guarantees. The Zerocash pro-
tocol, with some modifications, is now commercially deployed in several cryp-
tocurrencies, e.g. Zcash.

More recent zk-SNARK use cases are Aztec and zkSync, two projects boost-
ing the scalability and privacy of Ethereum smart contracts1. Another example
of SNARK application is the Filecoin System2 that implements a decentralized
storage solution for the internet.

The rapid and massive adoption of SNARK schemes has created new scala-
bility challenges for blockchain systems: the generation of trusted setups requires
complicated ceremonies, proving large statements has significant overhead, and
verifying multiple proofs is expensive even with batching.

Trusted Setup Ceremony. All the constant-size zk-SNARK schemes have a com-
mon major disadvantage in practice: they rely on some public parameters, the
structured reference string (SRS), that are generated by a trusted setup. In theory,
this setup is run by a trusted third party, while in practice, such a string can be gen-
erated by a so called “ceremony”, a multi-party computation between participants
who are believed not to collude as shown in [ABL+19,BGM17,BCG+15]. Gener-
ating such a trusted setup is a cumbersome task. These ceremonies are expensive
in terms of resources, they must follow specific rules, and they are generally hard
to organise: hundreds of participants with powerful machines need to join efforts
to perform a multi-party computation over multiple months.

Groth16. The construction by Groth [Gro16] is the state-of-the-art for pairing-
based zk-SNARKs. Groth16 requires the computation to be expressed as an
arithmetic circuit and relies on some trusted setup to prove the circuit satisfi-
ability. Due to its short proof size (3 group elements) and verifier’s efficiency,
Groth16 has become a de facto standard in blockchain projects. This results in a
great number of available implementations, code auditing, and multiple trusted
setup ceremonies run by independent institutions.

Motivation. Importantly, the trusted setup in SNARK schemes sets an upper
bound on the size of computations that can be proven (number of constraints in
the circuit description). Because modern applications have an increased demand
for the size of circuits, Groth16 is starting to face scalability problems. A simple
solution would be to split the computation in different pieces and prove them
independently in smaller circuits, but this increases the number of proofs to be
added to a single statement and the verification time.
1 Aztec, https://zk.money; zksync, https://zksync.io; https://ethereum.org.
2 Filecoin, https://filecoin.io.

https://zk.money
https://zksync.io
https://ethereum.org
https://filecoin.io

SnarkPack: Practical SNARK Aggregation 205

We address this problem by demonstrating a method to reduce the overhead
in communication and verification time for multiple proofs without the need of
further larger trusted setup ceremonies.

Filecoin System. One example is Filecoin [Lab18] proof-of-space blockchain. To
onboard storage in the network, Filecoin miners post a Groth16 proof that they
correctly computed a Proof-of-Space [Fis19]. Each proof guarantees that the
miner correctly “reserves” 32 GB of storage to the network and consists of 10
different SNARKs. The chain currently processes a large number of proofs each
day: approximately 500,000 Groth16 proofs, representing 15 PiB of storage.

Contribution. We explore reducing proof size and verifier time for SNARKs
even further by examining techniques to aggregate proofs without the require-
ment for additional trusted setups.

We design SnarkPack, an argument that allows to aggregate n Groth16
zkSNARKs with a O(log n) proof size and verifier time. Our scheme is based on
a trusted setup that can be constructed from two different existing ceremonies
(e.g. the “powers of tau” for Zcash [Zca18] and Filecoin [Fil20]).

Being able to rely on the security of well-known trusted setups for which the
ceremonies have been largely publicly advertised is a great practical advantage
and makes SnarkPack immediately useful in real-world applications.

Our techniques are generic and can also apply to other pairing-based
SNARKs. The roadmap is similar, since all such SNARK constructions require
the generation of “powers of tau” for the setup ceremony and then have a few
pairing check equations in the verification algorithm. However, we choose to focus
on Groth16 proofs and tailor optimisations for this case, since it is the most
popular scheme among practitioners. Therefore, SnarkPack is the first practi-
cal system that can be used in blockchain applications to reduce the on-chain
work by employing verifiable outsourcing to process a large number of proofs
off-chain. This applies broadly to any system that needs to delegate batches of
state updates to an untrusted server.

Related Work. Prior works have built similar schemes for recursion or aggre-
gation of proofs, but they all have critical shortcomings when it comes to imple-
menting them in real-world systems.

Bünz et al. [BMM+19] presented a scheme for aggregating Groth16 proofs
that requires a specific trusted setup to construct the structured reference string
(SRS) necessary to verify such aggregated proofs. Our result is conceptually
similar to that of Bünz et al. while benefiting from many optimizations. We
focus specifically on aggregating proofs generated using the same Groth16 SRS
which is the common use case, as opposed to the generic result in [BMM+19] that
allows aggregation of proofs from different SRSes. Our result can be extended
to support this latter case as well.

While our techniques built on top of inner pairing arguments with logarithmic
verifier previously introduced by [DRZ20], we build new such schemes that avoid

206 N. Gailly et al.

the need of a different trusted setup ceremony (other than the existing SNARK
setup). Our approach for aggregation is preferable to [BMM+19] in practical use
cases.

Other approaches to aggregation rely on recursive composition. In more
detail, [BCG+20] propose a new SNARK for the circuit that contains n copies
of the Groth16 verifier’s circuit. However, constructing arithmetic circuits for
pairings is expensive (e.g., computing a pairing on the BLS12-377 curve requires
≈ 15000 constraints as shown in [BCG+20]). The advantage of using such expen-
sive schemes for aggregation is their transparent setup.

However, the costs are significant compared with our scheme: they compute
FFTs, which require time O(n log n), the verifier performs O(n) cryptographic
operations as opposed to O(n) field operations in our scheme and they require
special cycles of curves.

SnarkPack has the best of both worlds: it benefits from the power of struc-
tured public parameters to avoid expensive computations, while it does not
require additional trust assumptions, as it relies on already available trusted
setup transcripts for the underlying Groth16 scheme.

Technical Overview. To explain how SnarkPack works, we need to consider
3 multiplicative cyclic groups G1,G2,GT of order p equipped with the bilinear
map, also called “pairing” e : G1 × G2 → GT such that ∀a, b ∈ Zp : e(ga, hb) =
e(g, h)ab.

Groth16 proofs π = (A,B,C) for statements u = a consist of 3 group ele-
ments A,C ∈ G1 and B ∈ G2. The high-level idea of Groth16 aggregation is
quite simple: Since Groth16 verification consists in checking a pairing equation
between the proof elements π = (A,B,C), instead of checking that n different
pairing equations are simultaneously satisfied, it is sufficient to prove that only
one inner pairing product of a random linear combination of these initial equa-
tions defined by a verifier’s random challenge r ∈ Zp holds. In a bit more detail,
Groth16 verification asks to check an equation of the type e(Ai, Bi) = Yi·e(Ci,D)
for Yi ∈ GT ,D ∈ G2 where Yi is a value computed from each statement ui = ai,
D ∈ G2 is a fixed verification key and πi = (Ai, Bi, Ci)n−1

i=0 are proof triples.
The aggregation will instead check a single randomized equation:

n−1∏

i=0

e(Ai, Bi)ri

=
n−1∏

i=0

Y ri

i · e
(n−1∏

i=0

Cri

i ,D
)
.

We denote by Y ′
prod :=

∏n−1
i=0 Y ri

i so this can be rewritten as:

ZAB = Y ′
prod · e(ZC ,D), where ZAB :=

n−1∏

i=0

e(Ai, Bi)ri

and ZC :=
n−1∏

i=0

Cri

i .

What is left after checking that this unified equation holds is to verify that the
elements ZAB , ZC are consistent with the initial proof triples in the sense that
they compute the required inner product. This is done by applying an argument
that proves two different inner pairing product relations:

SnarkPack: Practical SNARK Aggregation 207

– TIPP: the target inner pairing product takes some initial committed vectors
A ∈ G1,B ∈ G2 and shows that ZAB =

∏n−1
i=0 e(Ai, Bi);

– MIPP: the multi-exponentiation inner product takes a committed vector C ∈
G1 and a vector r ∈ Zp and shows that ZC =

∏n−1
i=0 Cri

i .

New Commitment Schemes. The key ingredient for SnarkPack is the efficient
realisation of the two specialised inner pairing product arguments following the
ideas initially proposed by [DRZ20] and generalised to other inner products by
[BMM+19]. These require a special commitment scheme that allows a party to
commit to vectors of group elements in both source groups G1 and G2 with
further homomorphic and collapsing properties.

We therefore introduce two new Pair Group Commitment schemes described
in Sect. 3 that enable to commit to vectors A,C ∈ G1,B ∈ G2. Our commit-
ments are doubly-homomorphic with respect to the message space and key space
and they have a collapsing property. Both schemes have constant-size commit-
ments and are proved to be binding based on assumptions that hold in the
generic group model. Our second scheme has the advantage that it allows a
party to commit to two vectors from two different groups with no size overhead.
We think these schemes can be of independent interest in protocols that need to
commit to source-group elements.

Reusing Groth16 Trusted Setup. The advantage of our commitment
schemes is that they can reuse existing public setups for Groth16 to generate
their structured commitment keys.

The public parameters required for the generation of the commitment keys
can be extracted from two compatible copies of Groth16 SRS.

For a given bilinear group (p,G1,G2,GT), Groth16 SRS consist (among other
elements) of consecutive powers of some random evaluation point τ in both
groups G1 and G2 : {gτ i}i ∈ G

d
1, {hτ i}i ∈ G

d
2. We will call these “powers of

tau”.
The generation of SnarkPack public parameters (the commitment keys)

comes naturally from two ceremonies for Groth16 setup (also known as “pow-
ers of tau”) for the same generators g and h and different powers a =
τ1 and b = τ2: g, h, gτ1 , . . . , gτn

1 , hτ1 , . . . , hτn
1 , one up to n and the other

gτ2 . . . , gτm
2 , hτ2 , . . . , hτm

2 up to m ≥ n.
Our assumptions rely on the fact that cross powers (e.g. gτ1τ2) are not known

to the prover. Since the two SRSes we use are the result of two independent
ceremonies, it is unlikely that such terms can be learned since τ1 and τ2 were
destroyed after the SRS generation.

In practice, we fortunately have at least two ceremonies that satisfy the
requirements for same group generators and different powers: Such values can
be obtained from the powers of tau transcript of Zcash [Zca18] and Filecoin
[Lab18]. The SRS created goes up to n = 219 for τ1 and m = 2127 for τ2.

208 N. Gailly et al.

Implementation. In ?? we provide benchmarks and optimisation details for our
implementation in Rust, and evaluate its efficiency against batching. SnarkPack
is exponentially more efficient than aggregation via batching: it takes 163 ms
to verify an aggregated proof for 8192 proofs (including unserialization) ver-
sus 621 ms when doing batch verification. The former is of 40 kB in size. The
aggregator can aggregate 8192 proofs in 8.7 s.

2 Preliminaries

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT)
such that

– p is prime, so Zp = F is a field.
– G1 = 〈g〉,G2 = 〈h〉 are cyclic groups of prime order p.
– e : G1 ×G2 → GT is a bilinear asymmetric map (pairing), which means that

∀a, b ∈ Zp : e(ga, hb) = e(g, h)ab.

Vectors. For n-dimensional vectors a ∈ Z
n
p ,A ∈ G

n
1 ,B ∈ G

n
2 , we denote the i-th

entry by ai ∈ Zp, Ai ∈ G1, Bi ∈ G2 respectively. Let A‖A′ = (A0, . . . , An−1,
A′

0, . . . , A
′
n−1) be the concatenation of vectors A,A′ ∈ G

n
1 . We write A[:�] =

(A0, . . . , A�−1) ∈ G
�
1 and A[�:] = (A�, . . . , An−1) ∈ G

n−�
1 to denote slices of

vectors A ∈ G
n
1 for 0 ≤ � < n − 1.

We write group operations as multiplications. We define:

– Ax = (Ax
0 , . . . , Ax

n−1) ∈ G
n
1 for x ∈ Zp and a vector A ∈ G

n
1 .

– Ax = (Ax0
0 , . . . , A

xn−1
n−1) ∈ G

n
1 for vectors x ∈ Z

n
p ,A ∈ G

n
1 .

– A ∗ x =
∏n−1

i=0 Axi
i for vectors x ∈ Z

n
p ,A ∈ G

n
1 .

– A ∗ B :=
∏n−1

i=0 e(Ai, Bi) for group vectors A ∈ G
n
1 ,B ∈ G

n
2 .

– A ◦ A′ := (A0A
′
0, . . . , An−1A

′
n−1) for vectors A,A′ ∈ G

n
1 .

Relations. We use the notation R to denote an efficiently decidable binary rela-
tion. For pairs (u,w) ∈ R we call u the statement and w the witness. We write
R = {(u;w) : p(u,w)} to describe an NP relation.

Common and Structured Reference String. The common reference string (CRS)
model, introduced by Damg̊ard [Dam00], captures the assumption that a trusted
setup exists. Schemes proven secure in the CRS model are secure given that
the setup was performed correctly. We will use the terminology “Structured
Reference String” (SRS) since all our crs strings are structured.

Background on Groth16. We recall here some necessary elements from
[Gro16] construction. The definition of zk-SNARKs is given in Appendix A.1. A
detailed description of the Groth16 protocol can be found in Appendix C. The
main highlights follow:

SnarkPack: Practical SNARK Aggregation 209

Setup. For a given bilinear group gk = (p,G1,G2,GT), the SRS contains, among
other elements, consecutive powers of some random evaluation point s in both
groups G1,G2 : {gsi}d−1

i=0 ∈ G
d
1, and {hsi}d−1

i=0 ∈ G
d
2.

Prove. A Groth16 proof π for a statement u := a = {aj}t
j=0 (with a0 = 1) and

a witness w := {aj}m
j=t+1 consists in 3 group elements π = (A,B,C), where

A,C ∈ G1 and B ∈ G2.

Verify. For the verification algorithm, Groth16 uses only a part of its structured
reference string which we will call verification key vk:

vk :=
(
P = gα, Q = hβ ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)
γ

}t

j=0
,H = hγ ,D = hδ

)
.

Groth16 verification consists in checking a pairing equation between the proof
elements π = (A,B,C) using the verification key:

e(A,B) = e(gα, hβ) · e(
t∏

j=0

S
aj

j , hγ) · e(C, hδ).

Assumptions. We introduce two new assumptions necessary to prove our
schemes are secure. Formal proofs that these assumptions hold in the Generic
Group Model can be found in Appendix B.1.

Assumption 1 (ASSGP). The (q,m)-Auxiliary Structured Single Group
Pairing assumption holds for the bilinear group generator G if for all PPT
adversaries A we have, on the probability space gk = (p,G1,G2,GT) ← G(1λ),
g ←$G1, h ←$G2 and a, b ←$Zp the following probability is negligible in λ:

Pr

⎡

⎢⎢⎣

(A0, . . . , Aq−1) �= 1G1

∧ ∏q−1
i=0 e(Ai, h

ai

) = 1GT

∧ ∏q−1
i=0 e(Ai, h

bi

) = 1GT

g ←$G1, h ←$G2, a, b ←$Zp

σ = (gai

, gbi

, hai

, hbi

)2q−1
i=0

aux ← (gai

, gbi

, hai

, hbi

)m
i=2q

A ← A(gk, σ, aux)

⎤

⎥⎥⎦ .

Assumption 2 (ASDGP). The (q,m)-ASDGP assumption holds for the bilin-
ear group generator G if for all PPT adversaries A we have, on the probability
space gk = (p,G1,G2,GT) ← G(1λ), g ←$G1, h ←$G2 and a, b ←$Zp the fol-
lowing probability is negligible in λ:

Pr

⎡

⎢⎢⎣

(A �= 1G1 ∨ B �= 1G2) ∧∏q−1
i=0 e(Ai, h

ai

)
∏2q−1

i=q e(gai

, Bi)=1
GT∧∏q−1

i=0 e(Ai, h
bi

)
∏2q−1

i=q e(gbi

, Bi)=1
GT

g ←$G1, h ←$G2, a, b ←$Zp

σ = (gai

, gbi

, hai

, hbi

)
aux=(gai

, gbi

, hai

, hbi

)m
2q

(A,B) ← A(gk, σ, aux)

⎤

⎥⎥⎦

We can similarly define the dual assumptions, by swapping G1 and G2 in the
definition above.

210 N. Gailly et al.

3 Pair Group Commitment Schemes

In this section we introduce a new commitment scheme to group elements in a
bilinear group. In order to use them in our aggregation protocol, we require the
following properties from the commitment schemes:

• Computationally Binding Commitment: as per Definition 4
• Constant Size Commitment: the commitment value is independent of the

length of the committed vector
• Doubly-Homomorphic: homomorphic both in the message space and in the

key space

CM(ck1 + ck2;M1 + M2) = CM(ck1;M1) + CM(ck1;M2) +
CM(ck2;M1) + CM(ck2;M2).

• Collapsing Property: double-homomorphism implies a distributive property
between keys and messages that allows multiple messages to be collapsed via
a deterministic function Collapse defined as follows:

Collapse

⎛

⎝CM

⎛

⎝
ck1‖ck′

1

ck2‖ck′
2

ck3

M1‖M1

M2‖M2

M3

⎞

⎠

⎞

⎠ = CM

⎛

⎝
ck1 + ck′

1

ck2 + ck′
2

ck3

M1

M2

M3

⎞

⎠

There are a few candidates for such schemes, but none of them are adapted for
fulfilling our goals. The commitment schemes proposed by [DRZ20,BMM+19]
work under some new assumption that asks for the commitment keys to be
structured in a specific way. In order to use this commitment, we need to run
a new trusted setup to generate a commitment key. It would be impossible to
consider existing Groth16 setups, since those give away elements that break the
binding of the commitment scheme.

Our main goal is to find a commitment scheme that uses a structured refer-
ence string similar to the one from many popular SNARK implementations, e.g.
Groth16.

The commitment scheme proposed by Lai et al. [LMR19] is likely to satisfy
these properties, but it is shown to be binding only for unstructured random pub-
lic parameters; however, in order to obtain a log-time verification Inner Pairing
Product Argument scheme, we would need some structure for the commitment
keys. We adapt the commitments from [LMR19] to work with structured keys
and prove the binding property for an adversary that has access to these struc-
tured public parameters under our new assumptions ASSGP and ASDGP.

To optimise the commitment sizes, we define two different variants of the
commitment scheme: one that takes a vector of elements of a single group G1,
and one that takes two vectors of points in G1 and G2, respectively.

Single Group Version CMs. This version is useful for the MIPP relation. It
takes one vector A ∈ G

n
1 and outputs two target group elements (TA, UA) ∈ G

2
T

as a commitment.

SnarkPack: Practical SNARK Aggregation 211

KGs(1λ) → cks = (v1,v2) Sample a, b ←$Zp and set
v1 = (h, ha, . . . , han−1

), v2 = (h, hb, . . . , hbn−1
).

CMs(cks = (v1,v2),A = (A0, . . . , An−1)) → (TA, UA):
1. TA = A ∗ v1 = e(A0, h) · e(A1, h

a) . . . e(An−1, h
an−1

)
2. UA = A ∗ v2 = e(A0, h) · e(A1, h

b) . . . e(An−1, h
bn−1

)

Lemma 1. Under the hardness of (n,m)-ASSGP assumption for m > 2n, this
commitment scheme is computationally binding as per Definition 4.

Proof. Suppose there exists a PPT adversary A that breaks the binding property
of the commitment scheme. Then, given the output ((TA, UA);A,A∗) of the
adversary A, we have that (TA, UA) = (TA∗ , UA∗):

e(A0, h)e(A1, h
a) . . . e(An−1, h

an−1
) = e(A∗

0, h)e(A∗
1, h

a) . . . e(A∗
n−1, h

an−1
)

e(A0, h)e(A1, h
b) . . . e(An−1, h

bn−1
) = e(A∗

0, h)e(A∗
1, h

b) . . . e(A∗
n−1, h

bn−1
)

By applying the homomorphic properties of the commitment scheme to these
equations we get:

e(A0/A
∗
0, h)e(A1/A

∗
1, h

a) . . . e(An−1/A
∗
n−1, h

an−1
) = 1

e(A0/A
∗
0, h)e(A1/A

∗
1, h

b) . . . e(An−1/A
∗
n−1, h

bn−1
) = 1

where the vector (A0/A
∗
0, A1/A

∗
1, . . . An−1/A

∗
n−1) �= 1G1 . This breaks the (n,m)-

ASSGP assumption.

Double Group Version CMd . This version is useful for the TIPP relation.
It takes two vectors A ∈ G

n
1 ,B ∈ G

n
2 and outputs two target group elements

(TAB , UAB) ∈ G
2
T as a commitment.

KGd(1λ) → ckd = (v1,v2,w1,w2) : Sample a, b ←$Zp and set
v1 = (h, ha, . . . , han−1

), w1 = (gan

, . . . , ga2n−1
),

v2 = (h, hb, . . . , hbn−1
), w2 = (gbn

, . . . , gb2n−1
).

CMd(ckd,A,B) → (TAB , UAB):
1. TAB = (A ∗ v1)(w1 ∗ B)
2. UAB = (A ∗ v2)(w2 ∗ B)

Lemma 2. Under the hardness of (n,m)-ASDGP assumption for m > 2n, this
commitment scheme is computationally binding.

Proof. The proof is analogous to the one of Lemma 1. Since the commitment is
homomorphic, breaking the binding is equivalent to finding a non-trivial opening
to 1. Thus it breaks the assumption.

Inner Pairing Product Commitments. It is straightforward to check that the
two versions of pairing commitment schemes CMs and CMd are compatible with
inner product arguments, in the sense that they satisfy all the necessary proper-
ties: constant size, doubly-homomorphic, and the identity is a collapse function
defined Collapseid(C) = C.

212 N. Gailly et al.

Reusing Groth16 SRS. The two commitment schemes have the advantage that
they can reuse two compatible (independent) SNARK setup ceremonies for their
structured keys generation and therefore can be easily deployed without requiring
a new trusted setup.

The SRSes required for the generation of the public commitment keys
should satisfy some properties: We ask for the two ceremonies to use the same
basis/generators in the same bilinear group g ∈ G1, h ∈ G2, but two different
randomnesses a, b,∈ Zp, a �= b for the exponents. The setups consists of consec-
utive powers {gai

, hai}m
i=0 and {gbi

, hbi}n
i=0.

Importantly, even if the two setups have different dimensions m �= n, this
does not affect the binding of the commitments. The extra elements available
to the adversaries are taken into account in the auxiliary input aux in the two
assumptions, by setting the parameters accordingly.

4 MT-IPP Scheme

This new protocol will be used to prove two inner pairing product relations
that are essential to SNARK aggregation: the multiexponentiation inner product
(MIPP) between vectors C and r and the target inner pairing product (TIPP)
between vectors A,B, for vectors A,C ∈ G1 and B ∈ G2.

In order to optimize the aggregation construction, we design a new protocol
MT-IPP that “fuses” together proofs for MIPP and TIPP relations. The formal
relations Rmipp and Rtipp are stated in Appendix D.1.

We recall the two inner product maps for bilinear group gk =
(p,G1,G2,GT , e) and the combined relation for MT-IPP:

1. Multiexponentiation inner product map G
n
1 × F

n → G1: C ∗ r =
∏

Cri
i

2. Target inner pairing product map G
n
1 × G

n
2 → GT : A ∗ B :=

∏
e(Ai, Bi)

3. Relation for both MIPP and TIPP:

Rmt :=

⎧
⎨

⎩

(
(TAB , UAB), (TC , UC),

ZAB , ZC , r;A,B,C
) :

(CMs(C), ZC , r;C) ∈ Rmipp

∧
(CMd(A,B), ZAB , r;A,B) ∈ Rtipp

⎫
⎬

⎭

Construction. Our MT-IPP makes black-box use of the two Pair Group Com-
mitments schemes CMs = (KGs,CMs) and CMd = (KGd,CMd) from Sect. 3
and KZG Polynomial Commitment KZG.PC = (KZG.KG,KZG.CM,KZG.Open,
KZG.Check) from Appendix A.4.

The scheme consists of 3 algorithms: MT-IPP = (MT.Setup,MT.Prove,
MT.Verify):

MT.Setup(1λ,Rmt) → crsmt:
1. Run: cks := (v1,v2) ← CMs(1λ), ckd := (v1,v2,w1,w2) ← CMd(1λ).
2. Set commitment keys for KZG.PC scheme:

ck1v := {hai}n−1
i=0 , vk1v := ga ck1w := {gai}2n−1

i=0 , vk1w := ha

ck2v := {hbi}n−1
i=0 , vk2v := gb ck2w := {gbi}2n−1

i=0 , vk2w := hb

SnarkPack: Practical SNARK Aggregation 213

3. Define ckkzg := (ckjσ), vkkzg := (vkjσ) for j = 1, 2; σ = v, w.
4. Fix Hashcom: G4

T → Zp and its description hkcom.
5. Fix Hashx0 : Z

2
p × GT × G1 → Zp and its description hkx0 .

6. Fix Hash : Zp × G
12
T → Zp and its description hk.

7. Fix Hashz : Zp × G
2
2 × G

2
1 → Zp and its description hkz.

8. Set crsmt := (hkcom, hkx0 , hk, hkz, cks, ckd, ckkzg, vkkzg).

MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r;A,B,C) → πmt:
– Loop “split & collapse” for step i

1. n′ = ni−1/2 where n0 = n = 2�

2. If n′ < 1: break
3. Set B′ := Br,w′

1 := wr−1

1 ,w′
2 := wr−1

2 .
4. Compute L/R inner products:

(ZL)AB = A[n′:] ∗ B′
[:n′] and (ZR)AB = A[:n′] ∗ B′

[n′:]

(ZL)C = C
r[:n′]
[n′:] and (ZR)C = C

r[n′:]
[:n′]

5. Compute left cross commitments:

(TL, UL)AB = CMd((v1,w′
1;v2,w′

2);A[n′:]||0,0||B′
[:n′]))

(TL, UL)C = CMs((v1,v2),C[n′:]||0)

6. Compute right cross commitments:

(TR, UR)AB = CMd((v1,w′
1;v2,w′

2);0||A[:n′],B′
[n′:]||0)

(TR, UR)C = CMs((v1,v2),0||C[:n′])

7. Compute hash to the vector commitments

hcom = Hashcom((TAB , UAB), (TC , UC)).

8. Compute challenge xi: x0 = Hashx0(r, hcom, ZAB , ZC).

xi = Hash (xi−1; (ZL, ZR)AB , (ZL, ZR)C , (TL, UL;TR, UR)AB ,

(TL, UL;TR, UR)C)

9. Compute Hadamard products on vectors

A := A[:n′] ◦ Axi

[n′:], B′ := B′
[:n′] ◦ B′x−1

i

[n′:], C := C[:n′] ◦ Cxi

[n′:]

10. Compute Hadamard products on keys v1,v2 and w′
1,w

′
2:

(v1,v2) := (v1[:n′] ◦ v1
x−1

[n′:],v2[:n′] ◦ v2
x−1

[n′:])

(w′
1,w

′
2) := (w′

1[:n′] ◦ w′ x
1[n′:]

,w′
2[:n′] ◦ w′ x

2[n′:]
)

214 N. Gailly et al.

11. Set ni = n′

– Compute proofs (πvj
, πwj

)j=1,2 of correctness of final commitment keys
(v1, v2) ∈ G

2
2; (w′

1, w
′
2) ∈ G

2
1 (This step is detailed in Appendix E):

1. Define fv(X) =
∏�−1

j=0(1 + x−1
�−jX

2j

) and

fw(X) = Xn
∏�−1

j=0

(
1 + x�−jr

−2j

X2j)

2. Draw challenge z = Hashz(x�, v1, v2, w1, w2)
3. Prove that v1 = gfv(a), v2 = hfv(a), w1 = gfw(a), w2 = hfw(b) are

KZG commitments of fv(X) by opening evaluations in z

πvj
← KZG.Open(ckjv; vj , z, fv(z); fv(X)) for j=1,2

πwj
← KZG.Open(ckjw;wj , z, fw(z); fw(X)) for j=1,2

– Given the final elements A,B′, C and (v1, v2), (w′
1, w

′
2) at the end of the

loop after split & collapsing A,B′ = Br,C and v1,v2,w′
1,w

′
2, set

πmt =
(
A,B′, C, (ZL,ZR)AB , (ZL,ZR)C , (TL,UL)AB , (TR,UR)AB ,

(TL,UL)C , (TR,UR)C , (v1, v2), (w′
1, w

′
2), (πvj

, πwj
)j=1,2

)

MT.Verify(crsmt, statement;πmt) → b:
1. Parse statement = ((TAB , UAB), (TC , UC), ZAB , ZC , r)
2. Compute hash to the commitments

hcom = Hashcom((TAB , UAB), (TC , UC))

3. Reconstruct challenges {xi}�
i=1:

x0 = Hashx0(r, hcom, ZAB , ZC)

xi = Hash
(
xi−1, (ZL[i],ZR[i])AB , (ZL[i],ZR[i])C ,

(TL[i],TR[i],UL[i],UR[i])AB , (TL[i],TR[i],UL[i],UR[i])C

)

4. Construct products and commitments recursively, i = 1 → �:
– (Zi)AB = ZL[i]xi

AB · (Zi−1)AB · ZR[i]x
−1
i

AB

– (Ti)AB = TL[i]xi

AB · (Ti−1)AB · TR[i]x
−1
i

AB

– (Ui)AB = UL[i]xi

AB · (Ui−1)AB · UR[i]x
−1
i

AB

where (Z0)AB = ZAB , (T0)AB = TAB , (U0)AB = UAB

– (Zi)C = ZL[i]xi

C · (Zi−1)C · ZR[i]x
−1
i

C

– (Ti)C = TL[i]xi

C · (Ti−1)C · TR[i]x
−1
i

C ,

– (Ui)C = UL[i]xi

C · (Ui−1)C · UR[i]x
−1
i

C

where (Z0)C = ZC , (T0)C = TC , (U0)C = UC

5. Compute final vector value from r: r′ =
∏�−1

i=0(1 + x−1
�−ir

2i

)
6. Verify final values (T�, U�, Z�)AB , (T�, U�, Z�)C :

(a) (Z�)AB
?= e(A,B′)

(b) (Z�)C
?= Cr′

SnarkPack: Practical SNARK Aggregation 215

(c) Check if (T�)AB
?= e(A, v1)e(w′

1, B
′) and (U�)AB

?= e(A, v2)e(w′
2, B

′)
(d) Check if (T�)C

?= e(C, v1) and (U�)C
?= e(C, v2)

7. Verify final commitment keys v1, v2, w
′
1, w

′
2 as detailed in Appendix E

(a) Reconstruct KZG challenge point: z = Hashz(A,B′, C, x�, v1, v2,
w′

1, w
′
2)

(b) Reconstruct commitment polynomials: fv(X) =
∏�−1

j=0

(
1 +

x−1
�−jX

2j
)

, fw(X) = Xn
∏�−1

j=0

(
1 + x�−jr

−2j

X2j
)

(c) Run verification for openings of evaluations in z for j = 1, 2:

b1j ← KZG.Check(vkjv; vj , z, fv(z);πvj
),

b2j ← KZG.Check(vkjw;wj , z, fw(z);πwj
)

Theorem 3. If CMs,CMd are computationally binding commitments as per Def-
inition 4, the hash functions are modelled as random oracles, and KZG.PC has
computational knowledge binding as per Definition 6, then the protocol MT-IPP
has completeness and computational knowledge soundness (Definition 1) against
algebraic adversaries in the random oracle model.

Proof. An adversary breaking soundness of the MT-IPP scheme, either convinces
the verifier of incorrect final keys v1, v2, w

′
1, w

′
2 or breaks computational binding

of one of CMs,CMd.
Since both CMs,CMd are computationally binding, what is left to show is the

completeness and soundness of the proof of correctness of the final commitment
keys. The validity of the final commitment keys is shown using the KZG.PC
scheme. The complete analysis for this step follows in Appendix E.

5 SnarkPack: Aggregation Scheme

In this section we describe SnarkPack, our new efficient protocol for Groth16
aggregation. The relation proven by SnarkPack can be stated as follows:

Relation for Aggregation. More formally, we introduce the relation for aggre-
gating n Groth16 proof vectors A,C ∈ G

n
1 ,B ∈ G

n
2 with respect to a fixed

verification key vk:

RAGG :=
{
(u = {ai}n−1

i=0 ;π = {(A,B,C)}) : Verify(vk, ui, πi) = 1, ∀i
}

where ui = ai = {ai,j}t
j=0, πi = (Ai, Bi, Ci) ∈ G1 × G2 × G1 for i = 0, . . . n − 1.

The resulting argument for aggregation consists in 3 algorithms SnarkPack =
(SP.Setup,SP.Prove,SP.Verify) that work as follows:

SP.Setup(1λ,RAGG) → (crsagg, vkagg)

216 N. Gailly et al.

1. Generate commitment key for CMd:

ckd = (v1,v2,w1,w2) ← CMd.KG(1λ)

2. Set commitment key for CMs : cks = (v1,v2)
3. Call crsmt ← MT.Setup(1λ,Rmt)
4. Fix hash function Hashr : Zt·n

p × G
4
T → Zp given by its description hkr

5. Set aggregation public parameters: crsagg = (vk, crsmt, hkr)

SP.Prove(crsagg,u, π = (A,B,C)) → πagg

1. Parse proving key crsagg := (vk, crsmt, cks, ckd, hk)
2. Parse cks = (v1,v2), ckd = (v1,v2,w1,w2)
3. Commit to A and B:

CMd((v1,v2,w1,w2);A,B) = (TAB , UAB)

4. Commit to C : CMs((v1,v2);C) = (TC , UC)
5. Hash these commitments hcom = Hashcom((TAB , UAB), (TC , UC))
6. Derive random challenge r = Hashr(u, hcom) and set r = {ri}n−1

i=0

7. Compute ZAB = Ar ∗ B
8. Compute ZC = Cr =

∏n−1
i=0 Cri

i .
9. Run MT proof for inner products ZAB , ZC , r:

πmt = MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r;A,B,C, r)

10. Set πagg = ((TAB , UAB), (TC , UC), ZAB , ZC , πmt)

SP.Verify(vkagg,u, πagg) → b

1. Parse SNARK instances u = {ai,j}i=0,...n−1;j=0,...t

2. Parse verification key vkagg := (vk, crsmt, hk)
3. Hash the commitments hcom = Hashcom((TAB , UAB), (TC , UC))
4. Parse vk :=

(
P = gα, Q = hβ , {Sj}t

j=0,H = hγ ,D = hδ
)

5. Derive random challenge r = Hashr(u, hcom)
6. Set statement = (u, (TAB , UAB), (TC , UC), ZAB , ZC , r)
7. Check MT proof b1 ← MT.Verify(crsmt, statement, πmt)

8. Compute ZSj
= S

∑n−1
i=0 aijri

j for all j = 0 . . . t
9. Check Groth16 final equation to the decision bit b2:

ZAB
?= e(P

∑n−1
i=0 ri

, Q)e(
t∏

j=0

ZSj
,H)e(ZC ,D)

10. Set decision bit b = b1 ∧ b2

Assumptions. We introduce two new assumptions necessary to prove our
schemes are secure. Formal proofs that these assumptions hold in the Generic
Group Model can be found in Appendix B.1.

SnarkPack: Practical SNARK Aggregation 217

Assumption 4 (ASSGP). The (q,m)-Auxiliary Structured Single Group
Pairing assumption holds for the bilinear group generator G if for all PPT
adversaries A we have, on the probability space gk = (p,G1,G2,GT) ← G(1λ),
g ←$G1, h ←$G2 and a, b ←$Zp the following probability is negligible in λ:

Pr

⎡

⎢⎢⎣

(A0, . . . , Aq−1) �= 1G1

∧ ∏q−1
i=0 e(Ai, h

ai

) = 1GT

∧ ∏q−1
i=0 e(Ai, h

bi

) = 1GT

g ←$G1, h ←$G2, a, b ←$Zp

σ = (gai

, gbi

, hai

, hbi

)2q−1
i=0

aux ← (gai

, gbi

, hai

, hbi

)m
i=2q

A ← A(gk, σ, aux)

⎤

⎥⎥⎦ .

Assumption 5 (ASDGP). The (q,m)-ASDGP assumption holds for the bilin-
ear group generator G if for all PPT adversaries A we have, on the probability
space gk = (p,G1,G2,GT) ← G(1λ), g ←$G1, h ←$G2 and a, b ←$Zp the fol-
lowing probability is negligible in λ:

Pr

⎡

⎢⎢⎣

(A �= 1G1 ∨ B �= 1G2) ∧∏q−1
i=0 e(Ai, h

ai

)
∏2q−1

i=q e(gai

, Bi)=1
GT∧∏q−1

i=0 e(Ai, h
bi

)
∏2q−1

i=q e(gbi

, Bi)=1
GT

g ←$G1, h ←$G2, a, b ←$Zp

σ = (gai

, gbi

, hai

, hbi

)
aux=(gai

, gbi

, hai

, hbi

)m
2q

(A,B) ← A(gk, σ, aux)

⎤

⎥⎥⎦

We can similarly define the dual assumptions, by swapping G1 and G2 in the
definition above.

Acknowledgements. We would like to thank Benedikt Bunz, Pratyush Mishra, and
Psi Vesely for valuable discussions on this work, as well as Ben Fisch and Nicola Greco
for the initial intuition of using inner pairing product proofs for aggregating Filecoin
SNARK-based proofs. We are also grateful to dignifiedquire for his contributions to
the Rust codebase.

A Cryptographic Primitives

A.1 SNARKs

Let R be an efficiently computable binary relation which consists of pairs of
the form (u,w). A Proof or Argument System for R consists in a triple of PPT
algorithms Π = (Setup,Prove,Verify) defined as follows:

Setup(1λ,R) → crs: takes a security parameter λ and a binary relation R and
outputs a common (structured) reference string crs.

Prove(crs, u, w) → π: on input crs, a statement u and the witness w, outputs an
argument π.

Verify(crs, u, π) → 1/0: on input crs, a statement u, and a proof π, it outputs
either 1 indicating accepting the argument or 0 for rejecting it.

We call Π a Succinct Non-interactive ARgument of Knowledge (SNARK) if
further it is complete, succinct and satisfies Knowledge Soundness (also called
Proof of Knowledge).

218 N. Gailly et al.

Non-black-box Extraction. The notion of Knowledge Soundness requires the exis-
tence of an extractor that can compute a witness whenever the prover A pro-
duces a valid argument. The extractor we defined bellow is non-black-box and
gets full access to the prover’s state, including any random coins. More formally,
a SNARK satisfies the following definition:

Definition 1 (SNARK). Π = (Setup,Prove,Verify) is a SNARK for an NP
language LR with corresponding relation R, if the following properties are sat-
isfied.

Completeness. For all (x,w) ∈ R, the following holds:

Pr
(
Verify(crs, u, π) = 1

∣∣∣∣
crs ← Setup(1λ,R)
π ← Prove(crs, u, w)

)
= 1

Knowledge Soundness. For any PPT adversary A, there exists a PPT extrac-
tor ExtA such that the following probability is negligible in λ:

Pr
(
Verify(crs, u, π) = 1
∧ R(u,w) = 0

∣∣∣∣
crs ← Setup(1λ,R)

((u, π);w) ← A‖χA(crs)

)
= negl(λ) .

Succinctness. For any u and w, the length of the proof π is given by |π| =
poly(λ) · polylog(|u| + |w|).

Zero-Knowledge. A SNARK is zero-knowledge if it does not leak any infor-
mation besides the truth of the statement. More formally:

Definition 2 (zk-SNARK). A SNARK for a relation R is a zk-SNARK if
there exists a PPT simulator (S1,S2) such that S1 outputs a simulated common
reference string crs and trapdoor td; S2 takes as input crs, a statement u and td,
and outputs a simulated proof π; and, for all PPT (stateful) adversaries (A1,A2),
for a state st, the following is negligible in λ:

∣∣∣∣∣∣
Pr

⎛

⎝ (u,w) ∈ R ∧
A2(π, st) = 1

∣∣∣∣∣∣

crs ← Setup(1λ)
(u,w, st) ← A1(1λ, crs)
π ← Prove(crs, u, w)

⎞

⎠ −

Pr

⎛

⎝ (u,w) ∈ R ∧
A2(π, st) = 1

∣∣∣∣∣∣

(crs, td) ← S1(1λ)
(u,w, st) ← A1(1λ, crs)
π ← S2(crs, td, u)

⎞

⎠

∣∣∣∣∣∣
= negl(λ) .

A.2 Commitment Schemes

A non-interactive commitment scheme allows a sender to create a commitment
to a secret value. It may later open the commitment and reveal the value or
some information about the value in a verifiable manner. More formally:

Definition 3 (Non-interactive Commitment). A non-interactive commit-
ment scheme is a pair of algorithms Com = (KG,CM):

SnarkPack: Practical SNARK Aggregation 219

KG(1λ) → ck: given a security parameter λ, it generates a commitment public
key ck. This ck implicitly specifies a message space Mck, a commitment space
Cck and (optionally) a randomness space Rck,. This algorithm is run by a
trusted or distributed authority.

CM(ck;m) → C: given ck and a message m, outputs a commitment C. This
algorithm specifies a function Comck : Mck × Rck → Cck. Given a message
m ∈ Mck, the sender (optionally) picks a randomness ρ ∈ Rck and computes
the commitment C = Comck(m, ρ)

For deterministic commitments we simply use the notation C = CM(ck;m) :=
Comck(m), while for randomised ones we write C ←$CM(ck;m) := Comck(m, ρ).

A commitment scheme is asked to satisfy one or more of the following prop-
erties:

Binding Definition. It is computationally hard, for any PPT adversary A, to
come up with two different openings m �= m∗ ∈ Mck for the same commitment
C. More formally:

Definition 4 (Computationally Binding Commitment). A commitment
scheme Com = (KG,CM) is computationally binding if for any PPT adversary
A, the following probability is negligible:

Pr
[

m �= m∗ ck ← KG(1λ)
∧ CM(ck;m) = CM(ck;m∗) = C (C;m,m∗) ← A(ck)

]

Hiding Definition. A commitment can be hiding in the sense that it does not
reveal the secret value that was committed.

Definition 5 (Statistically Hiding Commitment). A commitment scheme
Com = (KG,CM) is statistically hiding if it is statistically hard, for any PPT
adversary A = (A0,A1), to first generate two messages A0(ck) → m0,m1 ∈ Mck

such that A1 can distinguish between their corresponding commitments C0 and
C1 where C0 ←$CM(ck;m0) and C1 ←$CM(ck;m1).

Pr

⎡

⎢⎢⎣b = b′
ck ← KG(1λ)

(m0,m1) ← A0(ck)
b ← {0, 1}, Cb ←$CM(ck;mb)

b′ ← A1(ck, Cb)

⎤

⎥⎥⎦ = negl(λ) .

A.3 Polynomial Commitments

Polynomial commitments (PCs) first introduced by [KZG10] are commitments
for the message space F

≤d[X], the ring of polynomials in X with maximum
degree d ∈ N and coefficients in the field F = Zp, that support an interactive
argument of knowledge (KG,Open,Check) for proving the correct evaluation of a
committed polynomial at a given point without revealing any other information
about the committed polynomial.

A polynomial commitment scheme over a field family F consists in 4 algo-
rithms PC = (KG,CM,Open,Check) defined as follows:

220 N. Gailly et al.

KG(1λ, d) → (ck, vk): given a security parameter λ fixing a field Fλ family and a
maximal degree d samples a group description gk containing a description of
a field F ∈ Fλ, and commitment and verification keys (ck, vk). We implicitly
assume ck and vk each contain gk.

CM(ck; f(X)) → C: given ck and a polynomial f(X) ∈ F
≤d[X] outputs a com-

mitment C.
Open(ck;C, x, y; f(X)) → π: given a commitment C, an evaluation point x, a

value y and the polynomial f(X) ∈ F[X], it output a prove π for the relation:

Rkzg :=

⎧
⎨

⎩(ck, C, x, y; f(X)) :
C = CM (ck; f(X))
∧ deg(f(X)) ≤ d

∧ y = f(x)

⎫
⎬

⎭

Check(vk, C, x, y, π) → 1/0: Outputs 1 if the proof π verifies and 0 if π is not a
valid proof for the opening (C, x, y).

A polynomial commitment satisfy an extractable version of binding stated
as follows:

Definition 6 (Computational Knowledge Binding). For every PPT
adversary A that produces a valid proof π for statement C, x, y, i.e. such that
Check(vk, C, x, y, π) = 1, there is an extractor ExtA that is able to output a pre-
image polynomial f(X) with overwhelming probability:

Pr
[
Check(vk, C, x, y, π) = 1 ck ← KG(1λ, d)
∧ C = CM(ck; f(X)) (C, x, y, π; f(X)) ← (A‖ExtA)(ck)

]
= 1−negl(λ) .

A.4 KZG Polynomial Commitment

We describe the KZG Polynomial Commitment from [KZG10] which allows to
check correctness of evaluation openings.

We recall the scheme KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check)
defined over bilinear groups gk = (p,G1,G2,GT) with G1 = 〈g〉,G2 = 〈h〉:
KZG.KG(1λ, n) → (ck, vkh): Set keys ckg = {gαi}n−1

i=0 , vkh = hα.
KZG.CM(ckg; f(X)) → Cf : For f(X) =

∑n−1
i=0 fiX

i, computes Cf =∏n−1
i=0 gfiα

i

= gf(α).
KZG.Open(ckg;Cf , x, y; f(X)) → π: For an evaluation point x, a value y, com-

pute the quotient polynomial

q(X) =
f(X) − y

X − x

and output prove π := Cq = KZG.CM(ckg; q(X)).
KZG.Check(vkh = hα, Cf , x, y, π) → 1/0: Check if

e(Cf · g−y, h) = e(Cq, vkh · h−x).

The KZG.PC scheme works similarly for a pair of keys of the form ckh =
{hαi}n−1

i=0 , vkg = gα, by just swapping the values in the final pairing equation
check to match the correct basis.

SnarkPack: Practical SNARK Aggregation 221

B Assumptions in GGM

B.1 ASSGP Assumption in GGM

Assumption 6 (ASSGP). The (q,m)-Auxiliary Structured Single Group
Pairing assumption holds for the bilinear group generator G if for all PPT
adversaries A we have, on the probability space gk = (p,G1,G2,GT) ← G(1λ),
g ←$G1, h ←$G2 and a, b ←$Zp the following

Pr

⎡

⎢⎢⎣

A �= 1G1

∧ ∏q−1
i=0 e(Ai, h

ai

) = 1GT

∧ ∏q−1
i=0 e(Ai, h

bi

) = 1GT

g ←$G1, h ←$G2, a, b ←$Zp

σ ← [gai

, gbi

, hai

, hbi

]2q−1
i=0

aux ← [gai

, gbi

, hai

, hbi

]mi=2q

A ← A(gk, σ, aux)

⎤

⎥⎥⎦ = negl(λ)

We can similarly define the dual assumption, by swapping G1 and G2 in the
definition above.

Lemma 3. The (q,m)-ASSGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ, aux), outputs
(A0, . . . , Aq−1) ∈ G

q
1 such that

∏q−1
i=0 e(Ai, h

ai

) = 1GT
and

∏q−1
i=0 e(Ai, h

bi

) =
1GT

. Then its GGM extractor outputs αi(X,Y) =
∑m

j=0(xjX
j + yjY

j + cj) for
0 ≤ i < q then we have:

α0(X,Y) + Xα1(X,Y) + X2α2(X,Y) + · · · + Xq−1αq−1(X,Y) = 0 (1)

α0(X,Y) + Y α1(X,Y) + Y 2α2(X,Y) + · · · + Y q−1αq−1(X,Y) = 0 (2)

Then we have:

α0(X,Y) = −Xα1(X,Y) − X2α2(X,Y) − · · · − Xq−1αq−1(X,Y) (3)

α0(X,Y) = −Y α1(X,Y) − Y 2α2(X,Y) − · · · − Y q−1αq−1(X,Y) (4)

If we substract (4) and (3) we got

0 =(X − Y)α1(X,Y) + · · · + (Xq−1 − Y q−1)αq−1(X,Y) (5)

−(X − Y)α1(X,Y) =(X2 − Y 2)α2(X,Y) + · · · + (Xq−1 − Y q−1)αq−1(X,Y)
(6)

Now we can divide by (X − Y) and obtain:

−α1(X,Y) =(X + Y)α2(X,Y) + (X2 + XY + Y 2)α3(X,Y) + · · · +
+ (Xq−2 + Y Xq−3 + · · · + Y q−3X + Y q−2)αq−1(X,Y) (7)

Substitute the expression of −α1(X,Y) in Eq. (3) and remark that all
Xiαi(X,Y) terms are vanishing:

α0(X, Y) = XY [α2(X, Y) + (X + Y)α3(X, Y) + · · · + (Xq−3 + · · · + Y q−3)αq−1(X, Y)] (8)

222 N. Gailly et al.

This implies that either α0(X,Y) is a multiple of XY or α0(X,Y) = 0.
By the GGM assumption, we have that α0(X,Y) = 0.
We continue by replacing α0(X,Y) = 0 in Eq. (8):

0 = α2(X,Y) + · · · + (Xq−3 + Xq−4Y + · · · + Y q−3)αq−1(X,Y)
−α2(X,Y) = (X + Y)α3(X,Y) + · · · + (Xq−3 + · · · + Y q−3)αq−1(X,Y)(9)

Substitute the expression of −α2(X,Y) in Eq. (4) and remark that all
Y iαi(X,Y) terms are vanishing:

0 = −Y α1(X,Y) − Y 2[(X + Y)α3(X,Y) + · · · + (Xq−3 + Xq−4Y +
· · · + Y q−3)αq−1(X,Y)] − Y 3α3(X,Y) − · · · − Y q−1αq−1(X,Y) (10)

Y α1(X, Y) = Y 2Xα3(X, Y) · · · + (Xq−3Y 2 · · · + XY q−2)αq−1(X, Y)

Y α1(X, Y) = Y 2X[α3(X, Y) · · · + (Xq−4 · · · + Y q−4)αq−1(X, Y)] (11)

This implies that either α1(X,Y) is a multiple of XY or α1(X,Y) = 0.
By the GGM assumption, we have that α1(X,Y) = 0.
We continue by replacing α1(X,Y) = 0 in Eq. (11):

0 = α3(X,Y) + . . . (Xq−4 + Xq−5Y · · · + Y q−4)αq−1(X,Y)

−α3(X,Y) = (X2 + XY + Y 2)α4(X,Y) + . . . (12)

And so on... till we show that αi(X,Y) = 0 ∀i = 0 . . . q − 1. We conclude
that the adversarly produced vector (A0, . . . , Aq−1) = 1G1 .

B.2 ASDGP Assumption in GGM

Assumption 7 (ASDGP). The (q,m)-ASDGP assumption holds for the bilin-
ear group generator G if for all PPT adversaries A we have, on the probability
space gk = (p,G1,G2,GT) ← G(1λ), g ←$G1, h ←$G2 and a, b ←$Zp the fol-
lowing probability is negligible in λ:

Pr

⎡

⎢⎢⎣

(A �= 1G1 ∨ B �= 1G2) ∧∏q−1
i=0 e(Ai, h

ai

)
∏2q−1

i=q e(gai

, Bi)=1
GT∧∏q−1

i=0 e(Ai, h
bi

)
∏2q−1

i=q e(gbi

, Bi)=1
GT

g ←$G1, h ←$G2, a, b ←$Zp

σ = (gai

, gbi

, hai

, hbi

)
aux=(gai

, gbi

, hai

, hbi

)m
2q

(A,B) ← A(gk, σ, aux)

⎤

⎥⎥⎦

Lemma 4. The (q,m)-ASDGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ, aux), outputs A = (A0,
. . . , Aq−1) and B = (B0, . . . , Bq−1) such that:

q−1∏

i=0

e(Ai, h
ai

)
2q−1∏

i=q

e(gai

, Bi) = 1GT
and

q−1∏

i=0

e(Ai, h
bi

)
2q−1∏

i=q

e(gbi

, Bi) = 1GT
.

SnarkPack: Practical SNARK Aggregation 223

Then its GGM extractor outputs αi(X,Y) =
∑m

j=0(xjX
j + yjY

j + cj) and
βi(X,Y) =

∑m
j=0(xjX

j + yjY
j + cj) for 0 ≤ i < q such that:

α0(X, Y) + Xα1(X, Y) + · · · + Xq−1αq−1(X, Y) +

+Xqβ0(X, Y) + · · · + X2q−1βq−1(X, Y) = 0 (13)

α0(X,Y) + Y α1(X,Y) + · · · + Y q−1αq−1(X,Y) +
+Y qβ0(X,Y) + · · · + Y 2q−1βq−1(X,Y) = 0 (14)

By substracting (14) and (13) we got

0 = (X−Y)α1(X,Y)+· · ·+(Xq−1−Y q−1)αq−1(X,Y)+(Xq −Y q)βq(X,Y)+. . .
(15)

Now we can factor (X − Y) and then divide by it and obtain:

−α1(X,Y) =(X + Y)α2(X,Y) + (X2 + XY + Y 2)α3(X,Y) + · · · +
+ (X2q−2 + Y X2q−3 + · · · + Y 2q−3X + Y 2q−2)β2q−1(X,Y) (16)

Substitute −α1(X,Y) in Eq. (13) and remark that all Xiαi(X,Y),
Xq+iβq+i(X,Y) terms are vanishing:

α0(X, Y) = X

⎡
⎣
q−1∑
i=2

⎛
⎝

i−1∑
j=0

Xi−j−1Y j

⎞
⎠ αi(X, Y) +

2q−1∑
i=q

⎛
⎝

i−1∑
j=0

Xi−j−1Y j

⎞
⎠ βi(X, Y)

⎤
⎦ −

−
q−1∑
i=2

Xiαi(X, Y) −
2q−1∑
i=q

Xiβi(X, Y)

α0(X, Y) = X

⎡
⎣
q−1∑
i=2

⎛
⎝

i−1∑
j=1

Xi−j−1Y j

⎞
⎠ αi(X, Y) +

2q−1∑
i=q

⎛
⎝

i−1∑
j=1

Xi−j−1Y j

⎞
⎠ βi(X, Y)

⎤
⎦

α0(X, Y) = XY

⎡
⎣
q−1∑
i=2

⎛
⎝

i−1∑
j=1

Xi−j−1Y j−1

⎞
⎠ αi(X, Y) +

2q−1∑
i=q

⎛
⎝

i−1∑
j=1

Xi−j−1Y j−1

⎞
⎠ βi(X, Y)

⎤
⎦

(17)

This implies that either α0(X,Y) is a multiple of XY or α0(X,Y) = 0.
By the GGM assumption, we have that α0(X,Y) = 0.
We continue by replacing α0(X,Y) = 0 in Eq. (17):

−α2(X, Y) =

q−1∑
i=3

⎛
⎝

i−1∑
j=1

Xi−j−1Y j−1

⎞
⎠ αi(X, Y)+

2q−1∑
i=q

⎛
⎝

i−1∑
j=1

Xi−j−1Y j−1

⎞
⎠ βi(X, Y) (18)

Substitute the expression of −α2(X,Y) in Eq. (13) or (14) and remark that
all terms Xiαi(X,Y),Xiβi(X,Y) (respectively Y iαi(X,Y), Y iβi(X,Y)) terms
are vanishing.

And so on till we show that αi(X,Y) = 0 ∀i = 0 . . . q − 1 and βi(X,Y) =
0 ∀i = q . . . 2q − 1.

We conclude that the adversarly produced vectors (A0, . . . , Aq−1) = 1G1 ,
(B0, . . . , Bq−1) = 1G2 .

224 N. Gailly et al.

C Groth16 Scheme

Let C be an arithmetic circuit over Zp, with m wires and d multiplication gates.
Groth16 scheme proves circuit satisfiability, using a Quadratic Arithmetic Pro-
gram (QAP) characterisation. Briefly, a QAP as introduced by [GGPR13] is
translating a circuit into an equivalent arithmetic relation that holds only if the
circuit has a solution.

Fig. 1. Groth16 Construction from QAP.

SnarkPack: Practical SNARK Aggregation 225

Let Q = (t(x), {vk(x), wk(x), yk(x)}m
k=0) be a Quadratic Arithmetic Program

(QAP) which computes C. We denote by Iio = {1, 2, . . . t} the indices corre-
sponding to the public input and public output values of the circuit wires and
by Imid = {t+1, . . . m}, the wire indices corresponding to the private input and
non-input, non-output intermediate values (for the witness).

We describe Groth = (Setup,Prove,Verify) scheme in [Gro16] that consists in
3 algorithms as per Fig. 1.

D Building Blocks for Aggregation

SRS. We need elements from two independent compatible Groth16 SRS:

– Common bilinear group description for both SRS: gk = (p,G1,G2,GT)
– Common group generators for both SRS: g ∈ G1, h ∈ G2

– First SRS with random evaluation point a ∈ Zp for:

v1 = (h, ha, . . . , han−1
) and w1 = (gan

, . . . , ga2n−1
)

– Second SRS with random evaluation point b ∈ Zp for:

v2 = (h, hb, . . . , hbn−1
) and w2 = (gbn

, . . . , gb2n−1
)

Pair Group Commitments. To instantiate our aggregated scheme, we use
two new pairing commitment schemes. These schemes need to satisfy special
properties (as discussed in Sect. 3) and they require structured commitment keys
cks, ckd of the form cks = (v1,v2), ckd = (v1,w1,v2,w2). We then commit to
vectors A ∈ G

n
1 ,B ∈ G

n
2 as follows:

1. Single group version CMs(A) := CMs(cks;A) = (TA, UA) where

TA = A ∗ v1 = e(A0, h)e(A1, h
a)e(An−1, h

an−1
)

UA = A ∗ v2 = e(A0, h)e(A1, h
b)e(An−1, h

bn−1
)

2. Double group version CMd(A,B) := CMd(ckd;A,B) = (TAB , UAB) where

TAB = (A ∗ v1)(w1 ∗ B), UAB = (A ∗ v2)(w2 ∗ B)

IPP Protocols. One of the key building blocks for our aggregation protocol
are generalized inner product arguments, called GIPA or IPP protocols. These
protocols, as designed in [BMM+19], enable proving the correctness of a large
class of inner products between vectors of group and/or field elements committed
using (possibly distinct) doubly-homomorphic commitment schemes.

For our aggregation protocol, we need to instantiate two specialised cases of
IPP – multi-exponentiation inner product (MIPP) and an target inner pairing
product (TIPP) – using our new commitment schemes under structured refer-
ences string, and thus, we obtain logarithmic verifier time.

226 N. Gailly et al.

D.1 Relation for MT-IPP

Here we define the relation proven using the merged MT-IPP argument. This is
a conjunction of the two relations MIPP and TIPP:

MIPP Relation. The multiexponentiation product relation:

Rmipp := {((TC , UC), ZC , r;C, r) : ZC = C ∗ r ∧
(TC , UC) = CMs(cks;C) ∧ r = (ri)n−1

i=0 }.

TIPP Relation. The target inner pairing relation:

Rtipp := {((TAB , UAB), ZAB , r;A,B) : ZAB = A ∗ Br ∧
(TAB , UAB) = CMd(ckd;A,B) ∧ r = (ri)n−1

i=0 },

where (TAB , UAB) ∈ G
2
T , ZAB = A ∗ Br ∈ GT , A ∈ G

n
1 , B ∈ G

n
2 , r ∈ Zp.

MT-IPP Relation. The merged MT-IPP relation:

Rmt :=

⎧
⎨
⎩

(
(TAB , UAB), (TC , UC),

ZAB , ZC , r;A,B,C
) :

(CMd(A,B), ZAB , r;A,B) ∈ Rtipp

∧
(CMs(C), ZC , r;C) ∈ Rmipp

⎫
⎬
⎭

for vectors A,C ∈ G1 and B ∈ G2.

E Final Commitment Keys

In this section, we will detail one step of the MT-IPP protocol: Checking the
correctness of the final commitment key, obtained after all “split & collapse”
steps.

Recall that our scheme MT-IPP achieves logarithmic proof size using a spe-
cially structured commitment scheme that allows the prover to use one new
challenge xj in each round of recursion to transform the commitments homomor-
phically. Because of this, the verifier must also perform a linear amount of work
in rescaling the commitment keys (cks, ckd). To avoid having the verifier rescale
the commitment keys, our scheme apply the same trick as [DRZ20,BMM+19]:
we do this by outsourcing the work of rescaling the commitment keys to the
prover.

Then what is left is to convince a verifier that this rescaling was done correctly
just by checking a succinct proof on the final keys.

Proof for Final Key. In our MT-IPP scheme, the prover will compute the final
commitment keys v1, v2, w

′
1, w

′
2 (the result of many rounds of rescaling/collapsing

v1,v2,w′
1,w

′
2 until the end of the loop) and then prove that they are well-formed.

This is possible due to the structure in the commitment keys. For ease of
presentation, we will show how this proof works for a generic vector v, where
v = (v1, v2, . . . , v2�) = (g, gα, gα2

, . . . gαn−1
). The other checks for the keys v1, v2

and w1, w2 work in an analogously fashion.

SnarkPack: Practical SNARK Aggregation 227

Let us first define the relation to be proven, i.e. the correctness of the final
commitment key v ∈ G1 given the initial key v:

Rck :=
{

(gk, v, f(X), ckg = ({gαi}2n−2
i=0 , vkh = hα)) : v = gf(α)

}

The argument for the relation Rck allows the verifier to check well-formedness
of the final structured commitment key. The idea is simple: the final commitment
key v is interpreted as a KZG polynomial commitment that the prover must open
at a random point z. The verifier produces the challenge point z ∈ Zp and the
prover provides a valid KZG opening proof of f(z) for the commitment v. The
interaction can be removed using Fiat-Shamir heuristic via a collision-resistant
hash to generate the challenge z. The proof of security of such a protocol is given
in [BMM+19] in the algebraic group model. In a nutshell, an algebraic adversary
that convinces a verifier of incorrect keys can extract a valid 2n-SDH instance
by breaking knowledge-binding of KZG.PC polynomial commitment scheme.

We will use a polynomial commitment scheme (Definition A.3) that allows
for openings of evaluations on a point and proving correctness of these openings.
The concrete scheme is called KZG.PC and works for both groups G1 and G2

as described in Appendix A.4. The verification requires an evaluation of the
corresponding polynomial and four pairing checks.

Polynomial Formula. We will show now, hot to define the correct polynomials to
be committed under KZG.PC scheme in order to show that the final commitment
keys were honestly generated.

Recall the structure of the 4 vectors v1,v2 ∈ G2 and w1,w2 ∈ G1 used for
the commitment keys cks, ckd:

v1 = (h, ha, . . . , han−1
), w1 = (gan

, . . . , ga2n−1
), w′

1 := wr−1

1

v2 = (h, hb, . . . , hbn−1
), w2 = (gbn

, . . . , gb2n−1
), w′

2 := wr−1

2

We will show the formulae for the polynomials the two polynomials fv(X)
and fw(X) that we used in our scheme MT-IPP for v1, v2 and for w′

1, w
′
2 are

correct.
For ease of presentation, we state and prove the formula for a generic vector

v = (v1, v2, . . . , v2�) = (g, gα, gα2
, . . . gα2�−1

) of length n = 2� to which we apply
the same rescaling as for the commitment keys cks, ckd. The specific formulae
for v1,v2,w′

1,w
′
2 are easy to deduce once we have a formula for v.

Consider a challenge xj for round j, where the total number of rounds is �.
Note that at each round j we split the sequence v1, v2, . . . , vn in half and we use
xj to rescale first half and the second half of the vector recursively until we end
up with a single value v.

We claim that the formula for some initial key v = (v1 = g, v2 = gα, . . . , vn =
gαn−1

) and for a vector of challenges x1 . . . x�−1, x� is:

v = g
∏�−1

j=0(1+x�−jα2j
).

We will prove the general formula by induction:

228 N. Gailly et al.

Step 1. Check the formula for � = 1 (initial commitment key v has two elements
v1, v2):

v = v1v
x1
2 = g1+x1α = g

∏0
j=0(1+x�−jα2j

).

Step 2. Suppose the statement is true for � − 1. We prove it for �.

On the first round, we have a challenge x1 and we rescale the commitment
key v which has length n = 2� as follows:

v′ = v[:2�−1] ◦ vx1
[2�−1:]

,

v′ = (g · gx1α2�−1

, gα · gx1α2�−1+1
, gα2 · gx1α2�−1+2

, . . .).

We can write this differently as v′=(v1vx1α2�−1

1 , . . . v2�−1vx1α2�−1

2�−1).
This gives us a nicely written commitment key after first round

v′ = (v1+x1α2�−1

1 , v1+x1α2�−1

2 , . . . v1+x1α2�−1

2�−1) = v1+x1α2�−1

[:2�−1]
.

We can apply the induction assumption for step � − 1 to v[:2�−1] which is a
commitment key of length 2�−1. This means the final key for v is:

v =
(

g
∏�−2

j=0

(
1+x�−jα2j

))(1+x1α2�−1
)

= g
∏�−1

j=0(1+x�−jα2j
).

Remark than in more generality, this can be written as:

v = v
∏�−1

j=0(1+x�−jα2j
)

1

Therefore, if we start with an initial key w = (w1 = gαn

, wαn+1

2 . . . , wn =
gα2n−1

), the final key w can be written as:

w = w
∏�−1

j=0(1+x�−jα2j
)

1 = gαn ∏�−1
j=0(1+x�−jα2j

)

References

ABL+19. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23696-0 6

BCG+14. Ben-Sasson, E., et al.: Decentralized anonymous payments from Bitcoin.
Cryptology ePrint Archive, Report 2014/349 (2014). https://eprint.iacr.org/
2014/349

BCG+15. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sam-
pling of public parameters for succinct zero knowledge proofs, pp. 287–304
(2015)

BCG+20. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE:
enabling decentralized private computation. In: 2020 IEEE Symposium on
Security and Privacy (SP), pp. 947–964 (2020)

https://doi.org/10.1007/978-3-030-23696-0_6
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349

SnarkPack: Practical SNARK Aggregation 229

BCI+13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 18

BCTV14. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von Neumann architecture, pp. 781–796 (2014)

BGM17. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050 (2017). https://eprint.iacr.org/2017/1050

BMM+19. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pair-
ing products and applications. Cryptology ePrint Archive, Report 2019/1177
(2019). https://eprint.iacr.org/2019/1177

Dam00. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–
430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

DRZ20. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argu-
ment with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 18

Fil20. Filecoin. Filecoin powers of tau ceremony attestations (2020). https://
github.com/arielgabizon/perpetualpowersoftau

Fis19. Fisch, B.: Tight proofs of space and replication (2019). https://web.stanford.
edu/∼bfisch/tight pos.pdf

GGPR13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

Gro16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

KZG10. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-17373-8 11

Lab18. Protocol Labs. Filecoin (2018). https://filecoin.io/filecoin.pdf
LMR19. Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear

group arithmetic: practical structure-preserving cryptography, pp. 2057–
2074 (2019)

PHGR13. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation, pp. 238–252 (2013)

Zca18. Zcash. Zcash Powers of Taus ceremony attestation (2018). https://github.
com/ZcashFoundation/powersoftau-attestations

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/1177
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-030-45374-9_18
https://github.com/arielgabizon/perpetualpowersoftau
https://github.com/arielgabizon/perpetualpowersoftau
https://web.stanford.edu/~bfisch/tight_pos.pdf
https://web.stanford.edu/~bfisch/tight_pos.pdf
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://filecoin.io/filecoin.pdf
https://github.com/ZcashFoundation/powersoftau-attestations
https://github.com/ZcashFoundation/powersoftau-attestations

On Interactive Oracle Proofs for Boolean
R1CS Statements

Ignacio Cascudo1 and Emanuele Giunta1,2,3(B)

1 IMDEA Software Institute, Madrid, Spain
{ignacio.cascudo,emanuele.giunta}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain
3 Scuola Superiore di Catania, Catania, Italy

Abstract. The framework of interactive oracle proofs (IOP) has been
used with great success to construct a number of efficient transparent
zk-SNARKs in recent years. However, these constructions are based on
Reed-Solomon codes and can only be applied directly to statements given
in the form of arithmetic circuits or R1CS over large enough fields F.

This motivates the question: what is the best way to apply these IOPs
to statements that are naturally written as R1CS over small fields, and
more concretely, the binary field F2? While one can just see the system
as one over an extension field F2e containing F2, this seems wasteful,
as it uses e bits to encode just one “information” bit. In fact, in FC21
the work BooLigero devised a way to apply the well-known Ligero while
being able to encode

√
e bits into one element of F2e .

In this paper, we introduce a new protocol for F2-R1CS which among
other things relies on a more efficient embedding which (for practical
parameters) allows to encode ≥ e/4 bits into an element of F2e . Our
protocol makes then black box use of lincheck and rowcheck protocols for
the larger field. Using the lincheck and rowcheck introduced in Aurora
and Ligero respectively we obtain 1.31−1.65× smaller proofs for Aurora
and 3.71× for Ligero. We also estimate the reduction of prover time by
a factor of 24.7× for Aurora and between 6.9− 32.5× for Ligero without
interactive repetitions.

Our methodology uses the notion of reverse multiplication friendly
embeddings introduced in the area of secure multiparty computation,
combined with a new IOPP to test linear statements modulo a subspace
V ≤ F2e which may be of independent interest.

1 Introduction

A zero-knowledge proof is a protocol in which a prover convinces a verifier that
a statement is true, while conveying no other information apart from its truth.

Research partially supported by the Spanish Government under project SecuR-
ing (PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), by Madrid regional
government as part of the program S2018/TCS-4339 (BLOQUES-CM) co-funded by
EIE Funds of the European Union, and by a research grant from Nomadic Labs and
the Tezos Foundation.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 230–247, 2022.
https://doi.org/10.1007/978-3-031-18283-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_11

On Interactive Oracle Proofs for Boolean R1CS Statements 231

Zero-knowledge proofs have been among the most useful and studied primitives
in cryptography since their advent in the 80s. Their popularity has increased even
more in recent times, propelled by new applications motivated by blockchain
technologies. This context has highlighted the relevance of a particular flavour
of zero-knowledge proof, known as zero-knowledge succinct non-interactive argu-
ment of knowledge, or zk-SNARK.

The flexibility and efficiency of zk-SNARKs allow to provide practical argu-
ments of knowledge for relations that lack any kind of algebraic structure, for
instance the preimage relation for a one-way function. However, it is well known
[Wee05] that under standard complexity assumptions, succinct non-interactive
arguments do not exist unless some kind of setup is assumed, such as a common
reference string. This either requires a trusted third party or the execution of
heavy MPC protocols if the setup relies on secret randomness.

For this reason, transparent SNARKs have been proposed, whose setup
involves only publicly generated randomness. Many constructions of transpar-
ent setup SNARKs have been proposed in recent years, both based on asym-
metric [BCC+16], [WTS+18], [BBB+18], [BFS20] and symmetric [AHIV17],
[BBHR18b], [BCR+19], [COS20], [Set20], [BFH+20] cryptographic techniques.

In this work we focus on this latter type of constructions and remark that all
cited works in this category are built in (variants of) the Interactive Oracle Proof
framework presented in [BCS16] and independently in [RRR16] as “interactive
PCP”. Moreover they all address directly or indirectly the NP-complete rank 1
constraint system satisfiability problem. An easier to state variant asks to prove,
given A,B,C ∈ F

m,n and b ∈ F
m, the existence of a vector z ∈ F

n such that
Az ∗ Bz = Cz + b, where ∗ is the component-wise multiplication of vectors in
F

m.
An IOP is an interactive proof where the verifier has oracle access to some

strings provided by the prover. Its relation to zk-SNARKs stems from the results
in [BCS16] where it was shown that any IOP can be efficiently compiled into
a non-interactive argument in the random oracle model by using Merkle trees
[Mer90]. Moreover the transformation, which can be seen as a generalization of
the reduction in [Mic94] from PCP, preserves zero knowledge and knowledge
soundness. In particular, IOPs can be used to construct zk-SNARKs.

Unfortunately, the IOP constructions above cannot be directly instantiated
for every field choice as they extensively use Reed-Solomon codes, that requires
the existence of enough points in F and, even worse, the soundness error is often
greater than |F|−1 due to polynomial identity tests which implies |F| > 2λ with
λ security parameter. This leaves out, for example, the case of R1CS over F2.
This case is actually interesting as some hash functions and encryption schemes
can be interpreted as boolean circuits with relative ease, and then translated
to a R1CS. A straight-forward way to overcome this problem, mentioned in
[AHIV17], is to simply embed F2 in a larger field F2e , for large enough e (where
at least e > λ) and add constraints of the kind z2i = zi for i = 1, . . . , n to ensure

232 I. Cascudo and E. Giunta

that the witness entries belongs to F2,1 and then execute the protocol for R1CS
over the larger field.

However this approach seems wasteful, as elements of F2e which in principle
could encode up to e bits of information are used to represent only one element of
F2. Also, operations over F2e are more expensive than those over F2. Finally one
needs the aforementioned additional constraints on the witness, which increase
the size of the system.

Since F2e is an e-dimensional vector space over F2, one attempt to improve
this would be to interpret vectors in F

e
2 as elements over the larger field F2e .

While this would work for systems that only involve additions (XORs), it fails
in general when multiplications (ANDs) are needed too.2 The technical issue
is that for e > 1, the ring F

e
2, considered with component-wise addition and

multiplication, cannot be embedded via a ring homomorphism into F2e (nor any
other finite field) since F

e
2 contains zero divisors while fields do not.

A better approach was presented in BooLigero [GSV21] for the case of Ligero
[AHIV17]. Their technique allows to encode e bits into roughly

√
e field elements

in F2e , so that one can use Ligero over F2e to treat
√

e times larger statements
over F2 than the “näıve” method, with roughly the same R1CS size. This however
motivates the following question: can we find embeddings of F

k
2 into F2e with a

larger embedding rate k/e which allow to produce more efficient IOPs for R1CS
over F2 given an IOP for R1CS over F2e?

1.1 Our Contributions

In this work we answer the above question in the affirmative using a more efficient
embedding that allows us to encode k ≥ e/4 bits into an element of F2e . We then
present a construction of an IOP for F2-R1CS satisfiability which makes black-
box use of any IOP satisfying mild assumptions for R1CS over larger fields. This
leads us to reducing Aurora’s argument size up to 1.31 − 1.65× and Ligero’s
argument size up to 3.71×.

More concretely, we can use any Reed Solomon encoded IOP, a variant of
IOP introduced in [BCR+19], that provides two commonly used sub-protocols:
a generalised lincheck, which tests linear relations of the form A1x1+. . .+Anxn =
b when the verifier has only oracle access to Reed Solomon codewords encoding
xi, and a rowcheck, which tests quadratic relations x∗y = z when the verifier has
oracle access to encodings of x,y, z. This includes Ligero3, Aurora [BCR+19]4

1 This is necessary as, for example, x2 + x + 1 = 0 is satisfiable over F4 but not over
F2, despite the fact that the constraint only involves constants over F2. Note that
interpreting field multiplication as logical AND, the above constrain is equivalent to
x · (x − 1) = 1, i.e. both x and its negation are true.

2 This not only includes coordinate-wise products of secret vectors, but also the linear
operations Ax in the R1CS system, where A is a public matrix over the larger field.

3 See [BCR+19] for how to see Ligero as an IOP with these characteristics.
4 We cannot however apply our techniques to IOPs with preprocessing, see comment

in Sect. 1.3.

On Interactive Oracle Proofs for Boolean R1CS Statements 233

and Ligero++ [BFH+20] up to minor manipulations to transform their lincheck,
see the full version [CG21].

In a nutshell, our embedding technique relies primarily on two components:
first, the use of reverse multiplication friendly embeddings (RMFE), introduced
in the MPC literature in [CCXY18] and independently in [BMN18] and used in
several subsequent works [DLN19,CG20,PS21,DGOT21,ACE+21]. Such alge-
braic device maps a vector from F

k
2 into an element of a larger field Fq = F2e

in a manner such that field additions and products of two encodings in Fq still
encode the component-wise additions and products of the originally vectors from
F

k
2 , even though the map is not a ring homomorphism. For k < 100 we can get

RMFEs with e ≈ 3.3k (or e = 4k if we insist on e being a power of 2). Second,
the notion of modular lincheck, an IOPP which we introduce in Sect. 3.3 and
that we believe is of independent interest, to test linear relations modulo an F2

vector space V contained in Fq, i.e. equations of the form Ax = b mod V n

(meaning that each coordinate of the vector Ax − b is in V).
In conclusion for each of the aforementioned schemes we compare known

adaptations to F2-R1CSs with our general reduction both in terms of argument
size and prover complexity. Regarding the proof size we estimate it numerically,
see our Python implementation at [Git21]. Regarding prover time we estimate
it asymptotically, predicting an improvement factor of 24.7× for Aurora and
between 6.9 − 32.5× for Ligero without interactive repetitions.

1.2 Techniques

Reverse Multiplication Friendly Embeddings. A (k, e)p-RMFE is a pair of Fp-
linear maps ϕ : F

k
p → Fpe and ψ : Fpe → F

k
p satisfying x ∗ y = ψ(ϕ(x) · ϕ(y))

for all x,y ∈ F
k
p, where ∗ denotes the component-wise product. The proper-

ties automatically imply that ϕ is injective, hence the name embedding. Note
that ϕ is not necessarily a ring homomorphism, i.e. ϕ(x ∗ y) �= ϕ(x) · ϕ(y) in
general. In this paper we extend the notation blockwise to Φ : (Fk

p)n → F
n
pe

given by Φ(x1, . . . ,xn) = (ϕ(x1), . . . , ϕ(xn)) and Ψ : F
n
pe → (Fk

p)n given by
Ψ(x1, . . . , xn) = (ψ(x1), . . . , ψ(xn)). These satisfy then x ∗ y = Ψ(Φ(x) ∗ Φ(y))
for all x,y ∈ (Fk

p)n = F
kn
p , where the component-wise product on the right side

is on F
n
pe .

From F2 -R1CS to a System of Statements Over Fq. A key ingredient of our
result is how to translate the system A1w ∗ A2w = A3w + b over F2 into an
equivalent set of relations over Fq that can be efficiently checked. Even with the
RMFE in hand, this is not trivial because ϕ (consequently Φ) is neither a ring
homomorphism nor surjective.

Defining xi = Aiw, we can split the above statement into the three linchecks
Aiw = xi and the rowcheck x1∗x2 = x3+b. The prover will start by embedding
w̃ = Φ(w) ∈ F

n/k
q and x̃i = Φ(xi). We then need to deal with the following:

First of all, because Φ is not surjective, we need additional constraints to
ensure w̃, x̃i lie in the image of Φ. We can write these in the form In/k · w̃ ∈
(Im ϕ)n/k and Im/k · x̃i ∈ (Im ϕ)m/k (where I� is the � by � identity matrix).

234 I. Cascudo and E. Giunta

Then, because Φ is not a ring homomorphism, we can not simply translate
x1 ∗x2 = x3 +b into x̃1 ∗ x̃2 = x̃3 +Φ(b), as this is not true in general. Instead,
we need to use the RMFE “product recovery map” ψ. Setting t = x̃1 ∗ x̃2, we
show that the rowcheck statement is equivalent to the modular linear relation
t − u · x̃3 = u · Φ(b) mod (Ker ψ)m/k where u = ϕ(1) ∈ Fq, 1 is the all-one
vector and Ker denotes the kernel.

Similarly, we show that each lincheck Aiw = xi can be translated into ˜Aiw̃−
˜Imx̃i ∈ (Ker S◦ψ)m, where ˜Ai, ˜Im are the result of applying Φ to Ai, Im row-wise
and S is the map summing the k components of a vector in F

k
2 .

Modular Linear Test. The sketched characterization above implies that provid-
ing a way to test linear modular relations over Fq yields the desired IOP as the
prover could provide oracle access to encodings of w̃, x̃1, x̃2, x̃3, t and then con-
vince the verifier that all those constraints are satisfied. To test x = 0 mod V n,
a standard approach would consist in proving that a random linear combination
of its coordinates belongs to V . However, we are dealing with a F2-vector space,
and this translates into a soundness error of 1/2. In order to decrease it to 2−λ,
we could check λ independent linear combinations, which involves λn random
bits. In Sect. 3.3 we describe how to reduce the required random bits to Θ(λ)
by using a certain family of almost universal linear hash functions, and achieve
zero knowledge by adding a masking term.

Optimizations. The above techniques require a total of 8 modular linchecks and
a rowcheck. In Sect. 4, we introduce several modifications, the main of which is
to reduce the number of modular linchecks to just 3. The observation is that we
can test several equations of the form Axi = bi mod V ni (with common V)
all at once by checking

∑

Ri(Axi − bi) ∈ V λ for appropriately chosen matrices
Ri. Additionaly, we compress messages sent by the prover using the structure of
these vector spaces V , which comes from our use of an RMFE.

1.3 Other Related Work

Our work provides a significant reduction of the proof size with respect to
BooLigero [GSV21]. Applying our construction to Ligero for an F2-R1CS con-
sisting of 220 constraints we measure proofs 3.71× shorter than plain Ligero and
3.03× smaller than BooLigero. We also stress that in contrast to [GSV21] we
present a general reduction that can be applied to a larger class of protocols.

Regarding the use of RMFE, to the best of our knowledge only the recent
work [DGOT21] applied this tool in the IOP framework (see their Appendix A).
However, their use is restricted to their own protocol, which follows the MPC-
in-the-head paradigm introduced in [IKOS07], and cannot be applied directly
to other existing IOPs such as Aurora. Furthermore, this optimisation is only
considered in the multi-instance case while in our work we manage to integrate
the RMFE also for a single instance.

We also remark that even though our construction captures essentially any
IOPs that provides a lincheck and a rowcheck, it still cannot be applied out of

On Interactive Oracle Proofs for Boolean R1CS Statements 235

the box to zk-SNARKS with preprocessing such as Fractal [COS20] or Spar-
tan [Set20]. The reason is that we use the given linchecks to test a randomised
relation depending on the random coins of the verifier. This significantly affects
the usefulness of any pre-computation. We believe however that this issue can
be overcome in a non black-box way with different techniques, a problem that
we leave for future work.

2 Preliminaries

The set {1, . . . , n} is called [n]. Vectors are denoted with boldface font. v ∗ w
denotes the coordinate-wise product of two vectors of the same length, and ‖v‖
is the Hamming weight of v. 1k is the vector of k 1’s. Matrices are denoted with
capital letters, A� is the transpose of A and In is the n by n identity matrix.
Given q a prime power, Fq is a field of q elements. When q = pe, Fp can be
seen as a subset of Fq and Fq can be treated as an Fp vector space of dimension
e. V ≤ Fq means that V is an Fp-vector subspace of Fq. a = b mod V means
that a − b ∈ V , and for vectors of length m, a = b mod V m iff ai = bi mod V
for all i ∈ [m]. Given an Fp-linear map L : V → W its kernel is Ker L = {x ∈
V : L(x) = 0} and its image is Im L = {y ∈ W : y = L(x) for some x ∈ V }.
Given a polynomial ̂f ∈ Fq[x] and L ⊆ Fq we denote ̂f |L = (̂f(α))α∈L its
evaluation over L. The Reed-Solomon code over L of rate ρ ∈ [0, 1] is the set
RSFq,L,ρ := { ̂f |L : ̂f ∈ Fq[x], deg ̂f < ρ|L|}. We will typically encode vectors v
of length m < ρ|L| as codewords from RSFq,L,ρ by sampling a f ∈ RSL,ρ such
that ̂f |H = v. F

H
q denotes the set of vectors over Fq with coordinates indexed

by H and F
H1×H2
q is the set of matrices with rows and columns indexed by H1

and H2 respectively. Finally FFT(F, n) denotes the number of field operations
required to perform a fast Fourier transform over a set of size n, see [GM10].

2.1 Reverse Multiplication Friendly Embedding

We now recall the notion of reverse multiplication friendly embedding from
[CCXY18]. Its purpose is to ‘reconcile’ the coordinate-wise multiplicative struc-
ture of a ring F

k
p and the finite field structure of an extension Fpe of Fp.

Definition 1. Given a prime power p and k, e ∈ N a Reverse Multiplication-
Friendly Embedding, denoted (k, e)p-RMFE, is a pair of Fp-linear maps ϕ :
F

k
p → Fpe , ψ : Fpe → F

k
p such that for all x,y ∈ F

k
p, it holds that

x ∗ y = ψ(ϕ(x) · ϕ(y)).

That is, one can embed F
k
p into Fpe via a linear map ϕ so that the product in Fpe

of the images of any two vectors x,y carries information about their component-
wise product x ∗ y, and this can be recovered applying ψ to that field product.
However, ϕ is in general not a ring homomorphism and therefore ψ �= ϕ−1. For

236 I. Cascudo and E. Giunta

notational convenience, we extend both ϕ and ψ to maps Φ, Ψ as follows. Given
vectors x = (x1, . . . ,xn) ∈ (Fk

p)n and z = (z1, . . . , zn) ∈ (Fpe)n we define

Φ(x) := (ϕ(x1), . . . , ϕ(xn)) ∈ (Fpe)n, Ψ(z) := (ψ(z1), . . . , ψ(zn)) ∈ (Fk
p)n.

The following properties of these extended functions will be key in Sect. 3.1 to
transform a F2-R1CS system into a system of equations over F2e . Note in par-
ticular (3) and (4) characterize respectively coordinatewise and inner products
over Fp in terms of the corresponding operations over Fpe . The lemma follows
quite directly from the definitions and a proof appears in the full version [CG21].

Lemma 1. The following holds for all positive n ∈ N:

1. The maps ϕ and Φ are injective. The maps ψ and Ψ are surjective.
2. For all x, y ∈ (Fk

p)n, x ∗ y = Ψ(Φ(x) ∗ Φ(y)) where the ∗ product in the
right-hand side is component-wise in (Fpe)n, i.e. in each component we use
the field product in Fpe .

3. Let u = ϕ(1k) ∈ Fpe .5 Then for all x ∈ (Fk
p)n we have x = Ψ(u · Φ(x)).

4. Let S : F
k
p → Fp be given by S(x1, x2, . . . , xk) = x1 + x2 + · · · + xk. Then for

all x, y ∈ (Fk
p)n, the inner product x�y can be written as

x�y = S ◦ ψ(Φ(x)�Φ(y))

As for the existence of RMFEs, in our case of interest p = 2 one can obtain the
following parameters by concatenation of polynomial interpolation techniques
[CCXY18,CG20] (for asymptotics and other results see the full version [CG21]):

Lemma 2. For all r ≤ 33, there exists a (3r, 10r)2-RMFE. For all a ≤ 17 there
exists a (2a, 8a)2-RMFE. For all b ≤ 65 there exists a (3b, 12b)2-RMFE.

This yields RMFEs with parameters (48, 192), (48, 160) and (32, 128), setting
r = a = b = 16, that we will concretely use to evaluate our reduction.

2.2 R1CS, Lincheck and Rowcheck

We now recall the main relations used in recent IOP-based6 SNARKs like
[BCR+19,AHIV17]. The first one is the rank 1 constraints system, or R1CS, that
defines an NP-complete language closely related to arithmetic circuit satisfiabil-
ity. Here we present an equivalent affine version that requires for A1, A2, A3 ∈
F

m,n and b ∈ F
m to exhibit a vector w ∈ F

n such that A1w ∗ A2w = A3w + b.
Formally

Definition 2. We define the affine R1CS relation as the set

RR1CS = {((F,m, n,A1, A2, A3,b),w) : Ai ∈ F
m,n, A1w ∗ A2w = A3w + b}.

5 Note that u is not necessarily equal to 1.
6 See [BCS16,BCR+19] for the rigorous definition , or the full version [CG21] for a

simplified explanation.

On Interactive Oracle Proofs for Boolean R1CS Statements 237

Instead of directly providing a proof system for R1CS, two intermediate rela-
tions, lincheck and rowcheck, are defined and for which [BCR+19] constructs
RS-encoded IOPPs.7 These are then used as building blocks to produce a RS-
encoded IOP for the R1CS relation, which in turn can be combined with a low
degree test, such as FRI [BBHR18a] or [BGKS20], to make a standard IOP for
R1CS. The complexity of this reduction depends on the so-called max rates, two
parameters related to the degrees of polynomials and the relations which are
tested

The lincheck relation requires that the witnesses f1, f2 ∈ RSL,ρ encode over
H1,H2 ⊆ Fq two vectors x1,x2 (i.e. ̂fi|Hi

= xi) which satisfy a given linear
constraint Mx1 = x2. The rowcheck relation requires that witnesses f1, f2, f3 ∈
RSL,ρ encode over H ⊆ Fq three vectors x1,x2,x3 such that x1 ∗ x2 = x3. For
efficiency reasons, depending on the concrete instantiations of Aurora and FRI,
in both definitions below L,H1,H2,H are taken to be F2-affine subspaces of Fq.

Definition 3. We define RLin as the set of tuples ((Fq, L,H1,H2, ρ,M), (f1, f2))
such that L,Hi ⊆ Fq are affine subspaces, Hi ∩L = ∅ for i ∈ {1, 2}, fi ∈ RSL,ρ,
M ∈ F

H1×H2
q and the linear relationship ̂f1|H1

= M · ̂f2|H2
holds.

Definition 4. We define RRow as the set of tuples ((Fq, L,H, ρ), (f1, f2, f3))
such that L,H ⊆ Fq are disjoint affine subspaces, fi ∈ RSL,ρ for i ∈ {1, 2, 3}
and the quadratic relationship ̂f1|H ∗ ̂f2|H = ̂f3|H holds.

RS-encoded IOPPs (PLin ,VLin) and (PRow,VRow) for the two relations above
are provided in [BFH+20,BCR+19] and in [AHIV17] up to minor adaptations
in the second case. We will need a generalisation of RLin that tests relations of
the form M1x1 + . . . + Mhxh = b (for h = 2, M1 = −I and b = 0 we get back
the standard lincheck).

Definition 5. RLinh
is the set of tuples ((Fq, L,H0,Hi, ρ,Mi,b)h

i=1, (fi)h
i=1)

such that L,H0,Hi ≤ Fq, L∩H0 = L∩Hi = ∅ for all i ∈ {1, . . . , h}, fi ∈ RSL,ρ,
Mi ∈ F

H0×Hi
q and the linear relationship

∑h
i=1 Mi · ̂fi|Hi

= b holds.

The lincheck protocol presented in Aurora can be generalised to capture this
variant, as shown in the full version of this paper.

3 Simplified Construction

In the rest of the paper we aim at describing an efficient RS-encoded IOP for
F2-R1CS. As the only tools we assume are a lincheck and a rowcheck over a
large enough field, our first step in Sect. 3.1 is to characterise F2-R1CS in terms
of one quadratic relation over Fq and a set of linear relations modulo some vector

7 Reed-Solomon IOPs are IOPs where soundness is guaranteed only when the messages
sent by the prover are oracles to codewords of a Reed-Solomon code. Reed-Solomon
IOPPs (proofs of proximity) additionally provide oracle access to the witness, also
a set of Reed-Solomon codewords, to the verifier.

238 I. Cascudo and E. Giunta

space V ≤ Fq. An RS-encoded IOPP to test the latter conditions is provided in
Sect. 3.3. Finally a simple solution that uses naively the above IOPP is provided
in Section 3.4. Even if suboptimal, we see this as a useful stepping stone to better
present the efficient version in Sect. 4.2.

3.1 Characterisation of R1CS

In the following we assume (ϕ,ψ) to be a (k, e)2-RMFE, where q = 2e, and recall
that Φ, Ψ denote the block-wise application of ϕ and ψ, cf. Sect. 2.1.

Theorem 1. Let A1, A2, A3 ∈ F
m,n
2 , b ∈ F

m
2 with m,n multiples of k. Then

there exists w ∈ F
n
2 such that ((F2,m, n,A1, A2, A3,b),w) ∈ RR1CS if and only

if there exist w̃ ∈ F
n/k
q and x̃1, x̃2, x̃3, t ∈ F

m/k
q satisfying

x̃1 ∗ x̃2 = t (1)

w̃ = 0 mod (Im ϕ)n/k (2)

x̃i = 0 mod (Im ϕ)m/k ∀i ∈ {1, 2, 3} (3)
˜Aiw̃ − ˜Imx̃i = 0 mod (Ker S ◦ ψ)m ∀i ∈ {1, 2, 3} (4)

t − ux̃3 = u˜b mod (Ker ψ)m/k (5)

where ˜b = Φ(b) ∈ F
m/k
q , u = ϕ(1k) ∈ Fq, ˜Ai ∈ F

m,n/k
q is the matrix obtained by

applying Φ row-wise to Ai, and ˜Im ∈ F
m,m/k
q is the matrix obtained by applying

Φ row-wise to the identity matrix Im ∈ F
m,m
2 . Moreover if w is a witness for the

R1CS then w̃ = Φ(w), x̃i = Φ(Aiw), t = x̃1 ∗ x̃2 satisfy the conditions above.

The proof appears in the full version [CG21], but we remark Eqs. (2), (3)
are equivalent to saying w̃ = Φ(w), x̃i = Φ(xi) for some w, xi; Eqs. (1) and
(5) encode x1 ∗ x2 = x3 + b (the rowcheck) and the latter is derived using
properties (2) and (3) in Lemma 1; while Eqs. (4) encode Aiw = xi (the lincheck)
and are derived from property (4) in Lemma 1.

3.2 Linear Hashing

We now adapt linear checks to small fields. A common technique to test Ax = b
over Fq is to sample a random vector r ∈ F

m
q and check r�Ax = r�b. Alter-

natively one can set r = (1, r, . . . , rm−1) for r ←$
Fq to save randomness. The

soundness errors of these approaches are respectively 1/q and (m − 1)/q, which
are too large if q is small as in our case. Therefore they need to be adapted.
With this aim in mind, let ϑ : F

λ
2 → F2λ be an isomorphism of F2-linear spaces8.

For any α ∈ F2λ define R
(m)
α : F

λm
2 → F

λ
2 such that

R(m)
α (x1, . . . ,xm) = ϑ−1

(

αϑ(x1) + . . . + αmϑ(xm)
)

.

8 Observe here we do not worry about their multiplicative structures.

On Interactive Oracle Proofs for Boolean R1CS Statements 239

Seeing this function as a matrix in F
λ,λm
2 , we can apply it to vectors in F

λm
q , i.e., if

R
(m)
α = (ri,j) ∈ F

λ,λm
2 and x = (xj)λm

j=1 ∈ F
λm
q then R

(m)
α x =

(

∑λm
j=1 ri,jxj

)λ

i=1
.

This family of linear functions satisfies the following properties.

Proposition 1. Let V ≤ Fq be an F2 vector subspace, y ∈ F
λ
q , x ∈ F

λm
q \ V λm

and α ∼ U(F2λ), then Pr
[

R
(m)
α x = y mod V λ

]

≤ 2−λ · m

Proposition 2. Let V ≤ Fq be an F2 vector subspace, y ∈ F
λ
q , xi ∈ F

λmi
q for

i ∈ [h] such that xj /∈ V λmj for some j. Then αi ∼ U(F2λ) implies

Pr
[

R(m1)
α1

x1 + . . . + R(mh)
αh

xh = y mod V λ
]

≤ 2−λ · max{mi : i ∈ [h]}.

3.3 Modular Lincheck

In this section we provide an RS-encoded IOPP that generalises the Lincheck to
linear relations of the form M1x1 + . . . + Mhxh = b modulo an F2 vector space
V ≤ Fq, where the verifier has oracle access to an encoding of xi for each i.

Definition 6. The Modular Lincheck relation is the set RMlinh
of all tuples

((Fq, L,H0,Hi, ρ,Mi,b, V)h
i=1, (fi)h

i=1) such that L,H0,Hi ⊆ Fq are affine
F2-spaces with L ∩ Hi = ∅, ρ ∈ [0, 1), Mi ∈ F

H0×Hi
q , fi ∈ RSL,ρ and

∑h
i=1 Mi

̂fi|Hi
= b mod V H0 .

Consider the simpler statement x = 0 mod V H , i.e. x ∈ V H , and the follow-
ing proof: the verifier samples a random R ∼ U(FH′

0×H
2), and receives v = Rx

from the prover; the verifier then checks v ∈ V H′
0 and then runs a lincheck to test

v = Rx. In order to make this zero knowledge, we add a masking codeword g
sampled from Mask(L, ρ,H ′

0, V) = {f ∈ RSL,ρ : ̂f |H′
0

∈ V H′
0} so that the sender

first sends an oracle to g, receives R, and sends v = Rx + ĝ|H′
0

in plain. In the

general case we replace x with
∑h

i=1 Mi
̂fi|Hi

− b and, for efficiency reasons, the
random matrix R with Rα obtaining the protocol in Fig. 1.

From the above observations, the protocol has the following properties, where
soundness comes from Proposition 2. See the full paper for a rigorous proof.

Theorem 2. Protocol 1 is an RS-encoded IOPP for the relation RMlinh
that

upon setting |H ′
0| = λ has the following parameters:

Rounds = 2
Proof Length = 3|L| elements of Fq

Randomness = λ + 2 log q bits
Soundness Error = �m/λ�2−λ + λq−1

Prover Time = FFT(Fq, |L|) +
∑h

i=1 ‖Mi‖ + ‖b‖ + λ
∑n

i=1 |Hi| + TP
Linh+1

Verifier Time = λ dim V +
∑h

i=1 ‖Mi‖ + ‖b‖ + TV
Linh+1

Max Rates =
(

ρ + λ|L|−1, ρ + (λ + |H|)|L|−1
)

where H = span (H1, . . . , Hh,H ′
0) and TP

Linh+1
, TV

Linh+1
denotes the costs of run-

ning respectively PLinh+1 and VLinh+1 .

240 I. Cascudo and E. Giunta

Fig. 1. RS-encoded IOPP for RMlinh with pp = (Fq, L, H0, (Hi)
h
i=1, ρ)

3.4 An RS-Encoded IOP for R1CS from Modular Lincheck

Given RS-encoded IOPP for Modular Lincheck and Rowcheck we briefly sketch
how to build a simple RS-encoded IOP for F2-R1CS. By Theorem 1 we know
that a given system, defined by A1, A2, A3 ∈ F

m,n
2 , b ∈ F

m
2 is satisfied if and

only if there exists x̃1, x̃2, x̃3, t ∈ F
m/k
q and w̃ ∈ F

n/k
q that satisfy Eqs. 1–5.

Thus we let the prover initially compute the extended witness xi = Aiw,
apply block-wise the RMFE to get x̃i = Φ(xi), w̃ = Φ(w) and finally set t =
x̃1 ∗ x̃2. Next, it picks two affine subspaces H1,H2 ⊆ Fq of sizes m/k, n/k and
sample five codewords fx̃i

, ft, fw̃ such that ̂fx̃i |H1
= x̃i, ̂ft|H1

= t and ̂fw̃|H2
=

w̃.
Finally it provides oracle access to these codewords to the verifier and they

both run:

– One rowcheck to test x̃1 ∗ x̃2 = t.
– Four modular lincheck to test Im/k · x̃i ∈ (Im ϕ)H1 and In/k · w̃ ∈ (Im ϕ)H2 .
– Three modular lincheck to test that Ãi · w̃ − Ĩm · x̃i ∈ (Ker S ◦ ψ)m.
– One modular lincheck to check Im/k · t − (uIm/k) · x̃3 = u˜b mod (Ker ψ)H1 .

Correctness and soundness of the above protocol follows from Theorem 1, while
Zero Knowledge against β queries can be achieved setting the rate of fx̃i

, ft to
m/k+β

|L| and the rate of fw̃ to n/k+β
|L| .

On Interactive Oracle Proofs for Boolean R1CS Statements 241

4 Efficient Construction

4.1 Batching Modular Linchecks and Packing Vectors

The protocol above requires a total of 8 modular Linchecks. In this section
we show how to reduce the number of required modular linchecks to three, by
batching proofs of relations modulo the same vector space: we aim at designing
an RS-encoded IOPP for a relation of the form: ∀i ∈ [h], Aixi = bi mod V mi .

We propose the following: as before the prover begins by sending a codeword
that encodes a masking term y ∼ U(V λ). The verifier then chooses h matrices
Rα1 , . . . , Rαh

and the prover replies by sending v =
∑h

i=1 Rαi
(Aixi − bi) + y.

Finally the verifier checks if v ∈ V λ and both parties executes a lincheck to test
the above relation. Informally security follows as in the single modular lincheck
from Sect. 3.3, except that for soundness we use Proposition 2.

To further improve the complexities, we now show how to reduce the size of
vectors sent in plain by the prover in the (batched) modular lincheck. Recalling
u = ϕ(1k) we point out Kerψ and u · Im ϕ intersect only in 0, because ψ(u ·
ϕ(v)) = 1k ∗ v = v. Therefore Fq is the direct sum of Ker ψ and (u · Im ϕ).
Then given x ∈ (Im ϕ)n and y ∈ (Ker ψ)n, we just need to send z = ux + y.
Given z one can extract x = Φ(Ψ(z)) and y = z−ux, where the former equation
is justified by observing that, if we call v ∈ F

kn
2 such that x = Φ(v), then

Φ(Ψ(z)) = Φ(Ψ(ux + y)) = Φ(Ψ(u · Φ(v))) = Φ(v) = x, where the second
equality following from y ∈ (Ker ψ)n and the third one from Lemma 1.

4.2 An Efficient RS-Encoded IOP for R1CS

With the two ideas presented so far we can now improve the protocol sketched
in Sect. 3.4. We batch linchecks in three groups, testing equations modulo Imϕ,
Ker S ◦ψ and Kerψ respectively. Moreover we observe that the masking terms of
these tests can be aggregated. To do so we choose three disjoint affine subspaces
H ′

1,H
′
2,H

′
3 of size λ and sample g from the set BMask (L, ρ,H ′

1,H
′
2,H

′
3, ϕ, ψ)

defined as
{

f ∈ RSL,ρ : ̂f |H′
1

∈ (Im ϕ)H′
1 , ̂f |H′

2
∈ (Ker S ◦ ψ)H′

2 , ̂f |H′
3

∈ (Ker ψ)H′
3

}

.

In the following protocol we let ρ1 = (m/k + β)|L|−1, ρ2 = (n/k + β)|L|−1 and
ρ3 = (3λ + β)|L|−1 be the three rates used (Fig. 2).

Theorem 3. Protocol 2 is an RS-encoded IOP for the relation RR1CS which,
using Aurora’s lincheck and rowcheck, achieves the following parameters

Rounds = 3
Proof Length = 8|L| elements of Fq

Randomness = 8λ + 5 log q bits
Soundness Error = max(�m/λ�, �n/kλ�) · 2−λ + λq−1

Prover Time = O(|L| log(m + n) +
∑3

i=1 ‖Ai‖ + ‖b‖) + 35 · FFT(Fq, |L|)
Verifier Time = O(

∑3
i=1 ‖Ai‖ + ‖b‖ + n + m)

Max Rates =
(

max(m/k,n/k,3λ)+2β
|L| , max(2m/k,2n/k,3λ)+2β

|L|
)

242 I. Cascudo and E. Giunta

Fig. 2. RS-encoded IOP for R1CS. We fix a linear order on H0, H1, H2 and assume
˜Ai ∈ F

H0×H2
q , ˜Im ∈ F

H0×H1
q . Note the first two steps can be precomputed knowing

the input size, and that v0,v2 are sent directly, i.e. without providing oracle access

On Interactive Oracle Proofs for Boolean R1CS Statements 243

Observe this means can take |L| · ρ ≈ max(2m/k, 2n/k, 3λ) + 2β for a fixed
rate ρ ≈ 1/8.

5 Comparisons

In this section we compare our construction with [AHIV17,BCR+19,GSV21,
BFH+20] when proving satisfiability of an R1CS over F2. In all cases we assume
[BCS16] is used to compile IOP into NIZK. Our focus will be on the proof size,
which we compute through a parameter optimiser, available at [Git21], based
on [lib20], the open source implementation of Aurora and R1CS-Ligero. We
also consider prover efficiency, which we only estimate theoretically. Regarding
verifier time instead we do not expect significant improvements or overhead, as
asymptotic costs are the same with roughly the same constants.

Aurora - Proof Size: Compiling Aurora [BCR+19] to a NIZK, proof size
is dominated by the replies to oracle queries. Calling |L| the block length of
the Reed Solomon code in use, each of these replies requires O(log2 |L|) hash
values. As we use Reed Solomon codewords that encode vectors k times smaller
w.r.t. Aurora with näıve embedding, the block length in our work is roughly
k times smaller. We therefore estimate the proof size to be reduced by a term
O(log k log |L|). Concrete proof sizes are shown in Fig. 3 where results on the
left are obtained using proven soundness bounds, while on the right optimistic
(but not proven) bounds are used, see the full version for more details. The
improvement factor for 220 constraints with a (48, 192)2-RMFE and 128 security
bits amounts in the first case to 1.65, in the second case to 1.31.

Aurora - Prover Time: Using again the fact that the block length is reduced
by a factor of k with a (k, e)2-RMFE observe that

– In the RS-encoded IOP, the cost is dominated by the 18 ·FFT(Fq, |L|). In our
case we perform 35 fast Fourier transforms over a set k times smaller, leading
to an improvement factor of 18k/35.

– In the low degree test, prover complexity is upper bounded by 6|L| arithmetic
operations [BBHR18a]. Hence our construction improves by a factor k.

– In the BCS transform, computing the Merkle tree from an oracle of size |L|
requires 2|L| − 1 hashes. Using column hashing our construction requires the
same amount of trees as in plain Aurora. Moreover, calling fi FRI’s i-th
oracle, the length of fi is |L| · 2−iη for a constant η, i.e. it scales linearly in
|L|. Therefore our protocol requires k times less hash function evaluations.

In conclusion, we estimate that deploying a (48, 192)2-RMFE leads to a
18k/35 ≈ 24.7× speed up asymptotically.

Ligero and BooLigero - Proof Size: Applying our construction to R1CS-
Ligero [BCR+19], whose proof size is Θ(

√
n), over a field F2160 we can obtain

shorter proof by a factor
√

k ≈ 6.9 as we would invoke every sub-protocol on

244 I. Cascudo and E. Giunta

Fig. 3. Argument Size w.r.t. the number of constraints for 128 security bit for:
Aurora with proven soundness bounds (up, left) and with optimistic bounds (up,
right), Ligero/BooLigero with interactive repetitions and smaller fields (down, left)
and Ligero++ (down, right). Our work uses a (48, 192)2-RMFE in the first two cases,
and a (48, 160)2-RMFE for the others.

input k times shorter. However in [AHIV17] an optimisation through interactive
repetitions working over smaller fields is presented. As this version is harder to
analyse asymptotically, we estimate its cost comparing it with BooLigero and
our construction using a (48, 160)2-RMFE (Fig. 3, down left).

Ligero and BooLigero - Prover Time: For simplicity we only compare
our construction to Ligero without repetitions, as in this case operations are
performed over the same extension of F2, for a R1CS over F2 with n variables
and n constraints. Recall that |L| = Θ(

√
n) and each vector is divided in m

blocks of length �, both growing asymptotically as
√

n. As in Aurora we split
the prover time in three terms:

– In the IOP, costs are dominated asymptotically by 21m ·FFT(Fq, |L|). In our
cases we would need 31m′ fast Fourier transform but with m′ ∼ m/

√
k and

over a set
√

k times smaller, leading to an improvement factor of 21k/31

On Interactive Oracle Proofs for Boolean R1CS Statements 245

– As Ligero performs a direct low degree test no extra computation is performed
for testing proximity

– In the BCS transform, using column hashing only one tree with 2|L| − 1
nodes has to be computed. Hence in our construction this step is performed√

k times faster.

In conclusion we expect an improvement factor between 6.9–32.5 with a
(48, 160)2-RMFE. We leave prover time comparison with the more efficient ver-
sion of Ligero that allows repetitions as future work.

Ligero++: As [BFH+20] combines Ligero with an inner product argument,
which can be realised adapting Aurora’s sumcheck to achieve poly-logarithmic
argument size, we expect a prover time reduction comparable to those in plain
Ligero and Aurora. The same applies to the proof size that, for completeness,
we also estimate through our parameter optimiser, Fig. 3, achieving a median
improvement factor of 1.26×.

References

[ACE+21] Abspoel, M., Cramer, R., Escudero, D., Damg̊ard, I., Xing, C.: Improved
single-round secure multiplication using regenerating codes. IACR Cryp-
tol. ePrint Arch. 2021, 253 (2021)

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
2087–2104. ACM Press (2017)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer
Society Press (2018)

[BBHR18a] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon
interactive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis,
C., Marx, D., Sannella, D. (eds.) ICALP 2018, vol. 107 of LIPIcs, pp. 14:1–
14:17. Schloss Dagstuhl (2018)

[BBHR18b] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 12

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-17653-2_4

246 I. Cascudo and E. Giunta

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BFH+20] Bhadauria, R., et al.: Ligero++: a new optimized sublinear IOP. In: Lig-
atti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 2025–2038.
ACM Press (2020)

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 24

[BGKS20] Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sam-
pling outside the box improves soundness. In: Vidick, T. (ed.) ITCS 2020,
vol. 151, pp. 5:1–5:32. LIPIcs (2020)

[BMN18] Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with con-
stant communication overhead using multiplication embeddings. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356,
pp. 375–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05378-9 20

[CCXY18] Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity
of information-theoretically secure MPC revisited. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 14

[CG20] Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for
boolean circuits with good amortized complexity. In: Pass, R., Pietrzak, K.
(eds.) TCC 2020. LNCS, vol. 12551, pp. 652–682. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64378-2 23

[CG21] Cascudo, I., Giunta, E.: On interactive oracle proofs for boolean r1cs state-
ments. Cryptology ePrint Archive, Report 2021/694 (2021). https://ia.cr/
2021/694

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transpar-
ent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 27

[DGOT21] Delpech, C., Guilhem, S., Orsini, E., Tanguy, T.: Limbo: efficient zero-
knowledge mpcith-based arguments. To appear in Proceedings of ACM
CCS 2021. Available at Cryptology ePrint Archive, Report 2021/215
(2021). https://eprint.iacr.org/2021/215

[DLN19] Damg̊ard, I., Larsen, K.G., Nielsen, J.B.: Communication lower bounds
for statistically secure MPC, with or without preprocessing. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 61–84.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 3

[Git21] zk-SNARKs argument size comparison (2021). https://github.com/
emanuelegiunta/snarks comparison

[GM10] Gao, S., Mateer, T.: Additive fast fourier transforms over finite fields.
IEEE Trans. Inf. Theory 56(12), 6265–6272 (2010)

[GSV21] Gvili, Y., Scheffler, S., Varia, M.: Booligero: improved sublinear zero
knowledge proofs for boolean circuits. To appear in phProceedings of
Financial Crypto 2021. Available at Cryptology ePrint Archive (2021).
https://eprint.iacr.org/2021/121.pdf

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-05378-9_20
https://doi.org/10.1007/978-3-030-05378-9_20
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-030-64378-2_23
https://ia.cr/2021/694
https://ia.cr/2021/694
https://doi.org/10.1007/978-3-030-45721-1_27
https://eprint.iacr.org/2021/215
https://doi.org/10.1007/978-3-030-26951-7_3
https://github.com/emanuelegiunta/snarks_comparison
https://github.com/emanuelegiunta/snarks_comparison
https://eprint.iacr.org/2021/121.pdf

On Interactive Oracle Proofs for Boolean R1CS Statements 247

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press (2007)

[lib20] Libiop (2020). https://github.com/scipr-lab/libiop
[Mer90] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO

1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 21

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453.
IEEE Computer Society Press (1994)

[PS21] Polychroniadou, A., Song, Y.: Constant-overhead unconditionally secure
multiparty computation over binary fields. In: Canteaut, A., Standaert, F.-
X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 812–841. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 28

[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interac-
tive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.)
48th ACM STOC, pp. 49–62. ACM Press (2016)

[Set20] Setty, S.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1 25

[Wee05] Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 140–152. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468 12

[WTS+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zksnarks without trusted setup. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 926–943. IEEE (2018)

https://github.com/scipr-lab/libiop
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-030-77886-6_28
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/11523468_12
https://doi.org/10.1007/11523468_12

Zero Knowledge Proofs Towards
Verifiable Decentralized AI Pipelines

Nitin Singh(B), Pankaj Dayama, and Vinayaka Pandit

IBM Research Lab, Bangalore, India
{nitisin1,pankajdayama,pvinayak}@in.ibm.com

Abstract. We are witnessing the emergence of decentralized AI
pipelines wherein different organisations are involved in the different
steps of the pipeline. In this paper, we introduce a comprehensive frame-
work for verifiable provenance for decentralized AI pipelines with sup-
port for confidentiality concerns of the owners of data and model assets.
Although some of the past works address different aspects of provenance,
verifiability, and confidentiality, none of them address all the aspects
under one uniform framework. We present an efficient and scalable app-
roach for verifiable provenance for decentralized AI pipelines with sup-
port for confidentiality based on zero-knowledge proofs (ZKPs). Our work
is of independent interest to the fields of verifiable computation (VC) and
verifiable model inference. We present methods for basic computation
primitives like read only memory access and operations on datasets that
are an order of magnitude better than the state of the art. In the case of
verifiable model inference, we again improve the state of the art for deci-
sion tree inference by an order of magnitude. We present an extensive
experimental evaluation of our system.

1 Introduction

In this paper we consider a decentralized AI pipeline with multiple indepen-
dent organizations wherein one set of organizations specialize in curating high
quality datasets based on independent data sources, another set of organiza-
tions specialise in training models from the curated datasets, and another set
of organizations deploy the trained models and provide them as a service to
the model consumers. A typical decentralized AI pipeline is shown in Fig. 1. The
core assets like datasets and models represent significant intellectual property for
their respective owners. Therefore, it is essential for the asset owners to ensure
the confidentiality of their assets beyond the intended usage. On the other hand,
since the model consumers are likely to use them for driving major decisions,
they would like to ensure auditability and integrity of the models by (i) verifying
the provenance and performance of the models on benchmark datasets1 and (ii)
ensuring that the predictions from the deployed service match with that of the
verified model. In summary, decentralized AI pipelines need to provide end to
end provenance while ensuring the confidentiality of different assets.
1 Provenance of the model training step is not considered in this paper.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 248–275, 2022.
https://doi.org/10.1007/978-3-031-18283-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_12

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 249

Fig. 1. Typical decentralized AI pipeline.

Consider an example of deciding on mortgage applications using an AI ser-
vice. A data service provider, SP, provides high quality training and benchmark
datasets by curating historical mortgage data from reputationally trusted finan-
cial institutes. A specialized fintech company, FC, trains and deploys an AI model
as a service for the given task. Further, it makes a public claim on the model perfor-
mance on benchmark dataset. Note that establishing provenance of model training
carried out by FC is not addressed in this work. A financial institute, CONS, want-
ing to use AI in mortgage approval process would want to independently verify the
claim made by FC before deciding to subscribe to the service. If CONS is satisfied
after the verification process, it might use the deployed service to make decision
on mortgage applications. At this time, CONS and individual mortgage applicants
should be able to independently verify that the predictions from the deployed ser-
vice match with that of the verified model. The reputationally trusted data owners
and FC would like to protect the confidentiality of their assets except from those
actors who are entitled to access them. We would like to highlight a special and
important requirement of FC: to prevent model reengineering attacks, the FCwould
like to ensure that the model verifier does not get to learn the predictions of the
models on individual instances during the process of verification.

We present significant progress towards describing efficient and scalable app-
roach to provide public verifiability for common operations in an AI pipeline,
while preserving confidentiality of involved data and model assets. In the paper
we have highlighted few primitive operations, but more operations on both data
and models can be added as state of the art improves. While it is difficult to
match the expressiveness of what is possible via plain-text computations, our
methods can nevertheless provide provenance over simpler pipelines.

1.1 Related Work

While there is no prior work that addresses all the aspects of verifiable distributed
AI pipeline as introduced in this paper, there are past works that address differ-
ent aspects of the overall requirements. The provenance requirement is addressed
in [19,21], the model verification or certification requirement is addressed in
[15,22], and the verifiable inference from private model requirement is addressed
in [11,14,18,23,28]. Our work is of independent interest to the field of Verifiable

250 N. Singh et al.

Computation (VC) as it provides more efficient methods for useful computational
primitives like Read Only Memory (ROM) access and operations on datasets. We
briefly review and contrast the relevant literature with our work.

Provenance Models for AI: There has recently been considerable interest in
the provenance of AI assets. For instance, [19,21] provide good motivation and
DLT based architecture for establishing provenance of AI assets. The provenance
is enabled by recording the cryptographic hash of each asset on the tamper-proof
ledger, and recording any operations on them as transactions. While this provides
auditability and lineage of an asset, its verification necessarily involves revealing
the assets, thereby violating the confidentiality requirements in our setting. We
build on the tools from verifiable computation to enable verifiability of assets and
operations on them while supporting all the stated confidentiality requirements.

Model Certification for AI: Training and testing AI models for fairness and
bias is an area of active research. Recently, efforts have been made to leverage
methods from secure multiparty computation (MPC) to enable fair training and
certification of AI models while ensuring privacy of sensitive data of the partici-
pants [15,22]. These methods require a trusted party (e.g. a regulator) to certify
the claims on the models and therefore, do not support the public verifiability
requirement in our setting.

Verifiable Model Inference: The problem of verifying the predictions from
private AI models, with different privacy requirements, has been considered in
the literature. For instance, verifiable execution of neural networks has been
considered in [14,18,23,27] and verification of predictions from decision trees has
been considered in [28]. These works cannot be extended for end to end pipeline
verification as they cannot handle verification of operations on datasets. In our
work, apart from providing verification for the entire AI pipeline, we improve
upon the work of [28] by making the verification of the decision tree inference
more scalable as described in Sect. 1.2.

Reusable Gadgets for VC: On the technical front, our work complements
persistent efforts such as [16,25] to enable more computations efficiently in the
VC setting. The problem of efficiently supporting addressable memory inside
VC circuits has received considerable attention [3,5,16,25,31] as many computa-
tions are best expressed using the abstraction of memory. Methods in aforemen-
tioned efforts support arbitrary zero knowledge Succinct Arguments of Knowl-
edge (zkSNARKs). We provide a more efficient variant of prior methods, lever-
aging a zkSNARK with commit and prove capability (see Sect. 3). However, this
is not a major hinderance as many efficient zkSNARKs can be modified to be
commit and prove with negligible overhead (see [8]). Our efficient abstractions
for read only memory (ROM) and datasets can be incorporated into zkSNARK
circuit compilers such as ZokRates [10], when suitably targeted for a commit
and prove backend. In particular, supporting datasets as first class primitives in
zkSNARK compilers will make them more attractive for privacy preserving data
science applications. Finally we mention that the work on Verifiable Outsourced

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 251

Databases (e.g. [29,30]) is not directly applicable here as (i) current implemen-
tations do not address data confidentiality and (ii) they do not support reusable
representation of datasets across computations.

1.2 Our Contributions

We present the first efficient and scalable system for decentralized AI pipelines
with support for confidentiality concerns of the asset owners (as described in
Table 2) and public verifiability. Our work represents major system level inno-
vations in the areas of model certification ([15] - lacks public verifiability, prove-
nance), provenance architectures for AI artifacts ([19,21] - lack privacy), and con-
fidentiality preserving model inference ([14,23,28] - lack provenance). A number
of technical contributions enable this system level novelty and they are summa-
rized as follows.

– Improved method for read-only memory access in arithmetic circuits with an
order of magnitude gain in efficiency over the existing methods (see Table 3).
The improved memory access protocol is crucially used in realizing efficient
circuits for data operations (inner-join) and decision tree inference.

– A method for consistent modeling of datasets in arithmetic circuits with com-
plete privacy. In addition, we design efficient circuits to prove common oper-
ations on datasets. We make several optimizations over the basic approach
of using zkSNARKs resulting in at least an order of magnitude gain in effi-
ciency (see Table 4). On commodity hardware, our implementation scales well
to prove operations on datasets with up to 1 million rows in a few minutes.
The verification takes few hundred milliseconds.

– We present an improved protocol for privacy preserving verifiable inference
from decision tree. Our method yields up to ten times smaller verification
circuits by avoiding expensive one-time hashing of the tree used in [28]. Fur-
ther leveraging our method for read-only memory access, we also incur fewer
multiplication gates per prediction (see Sect. 5 for more details). Comparative
performance under different settings is summarized in Table 5.

– We implement our scheme using Adaptive-Pinocchio [24] to experimentally
evaluate the efficacy of our scheme. We report the results in Sect. 6. Our
scheme can also be instantiated with other CP-SNARKs.

Our implementation uses pre-processing zkSNARKs [5,9,13,20] which pre-
process a circuit description to make subsequent proving and verification more
efficient. Our circuits can also be used with generic zkSNARKs such as those in
[2,4,7], suitably augmented with commit and prove capability.

2 Verifiable Provenance in Decentralized AI Pipelines

A typical AI pipeline consists of different steps, such as accessing raw datasets
from multiple sources, performing aggregation and transformations in order to
curate training and testing datasets for the AI task on hand, developing the AI

252 N. Singh et al.

Table 1. Performance of our dataset operations. For concrete numbers we took number
of rows N = 100K and bit-width of elements b = 32.

Operation Complexity
(asymptotic)

Complexity
(concrete)

Prov. time (s) Ver. time (ms)

Aggregation O(N) 2.1 mil 37 400

Filter O(N) 0.7 mil 12 400

Order-By O(bN) 3.1 mil 50 400

Inner-Join O(bN) 6.5 mil 80 400

model, and deploying it in production. We are interested in settings in which the
AI pipeline is decentralized, i.e., different steps of the pipeline are carried out
by different independent actors. We assume five different type of actors: data
owners(DO), data curators(DC), model owners(MO), model certifiers(MCERT), and
model consumers(MCONS). For brevity of exposition, we assume that the number
of data curators, model owners, model certifiers, and model consumers is just
one. However, all the concepts and results extend in a straight forward manner
to the general setting involving multiple entities of each type.

We assume that there is a task T for which the process of building an AI
pipeline is undertaken in a decentralized setting. The salient features of our
provenance and certification framework is summarized as follows.

There are m data owners DO1, DO2, . . . , DOm who share their respective raw
datasets D1,D2, . . . , Dm privately with the data curator DC and also make a
public commitment of the datasets. The data curator curates a dataset Db =
f(D1,D2, . . . , Dm) for the purpose of benchmarking the performance of an AI
model for the task T and makes a public commitment of Db. We assume the
model owner, MO, has a pre-trained AI model M and wants to offer it as a
service. MO makes a public commitment of the model. MO buys the benchmark
dataset Db from DC. MO wishes to convince potential consumers of the utility of
the model M by making performance claim accuracy = score(M,Db) when M
is used for getting predictions on the dataset Db. The model certifier, MCERT,
should be able to independently verify the provenance of all the steps and the
claimed performance of the model M . MCERT also ensures that the timestamp
of the public commitment of model M is earlier than the timestamp of public
commitment of Db to ensure that the model M cannot be overfitted to the
dataset Db. MCERT certifies the model M only after verifying the correctness of
the claim. The model consumer, MCONS, subscribes to the model M only upon
its successful certification. Suppose MCONS supplies a valid input data D′ to the
service provided by MO and gets a prediction Y ′. We require that MCONS should be
able to independently verify that the prediction Y ′ matches with the prediction
of the committed model M on the instance D′.

We observe that the outlined requirements ensure that the decentralized
AI pipeline is transparent. The key question we address in this paper is that of
providing such a transparency while satisfying the confidentiality requirements of
all the actors. We assume that none of the actors in the set up have any incentive
to collude with the others, but, can act maliciously. The privacy requirements
and security model of different actors is summarized in Table 2.

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 253

Table 2. Summary of privacy requirements and trust assumptions in our setting.

Participant Confidentiality requirement Security model

DOs P1: Only DC can access their plaintext
data

S1: Trusted to provide the correct
data

DC P2: Only MO can access curated plaintext
data

S2: Not trusted with the correct
computation

MO P3: No one can access the plaintext model
P4: During the certification, MCERT
cannot get access to prediction of M for
any instance in the dataset Db

S3: Not trusted to make the right
performance claim or use the certified
model for providing predictions

MCERT NA S4: Trusted to certify the model only
after end to end provenance is
verified

MCONS P5: No one other than model owner
(optional) can access its data in clear

NA

We present a provenance framework which ensures trust in the AI pipeline by
proving each computation step using zero-knowledge proofs, thus meeting all the
confidentiality requirements captured in Table 2. Below, we present a concrete
example of an AI pipeline for establishing fairness of an AI model, where we
clearly highlight involvement of various actors.

2.1 Decentralized Model Fairness

Increasingly, AI models are required to be fair (i.e. non-discriminating) with
respect to protected attributes (e.g. Gender). There are several metrics which
are used to evaluate a model for fairness. For the sake of illustration, we choose
the popular metric called predictive parity, which requires a model to have similar
accuracy for different values of the protected attribute. In our specific example,
our goal is to show that for binary classification model M we have:

∣
∣Pr[M(x) = y |Gender(x) = M] − Pr[M(x) = y |Gender(x) = F]

∣
∣ ≤ ε

where (x, y) ∼ D for representative distribution D. We may estimate the above
metric emperically on a test data T consisting of samples {(xi, yi)}n

i=1. For con-
creteness, let M be a decision tree model developed by model owner MO to be
used by financial institutions for approving home mortgage loan applications.
Let D1 and D2 be two private datasets consisting of loan applications, which
are owned by financial instituions DO1 and DO2 respectively. A data curator DC
curates the dataset T by concatenating (row-wise) datasets D1, D2 and further
generates datasets TM , TF consisting of applications with male and female appli-
cants respectively. Finally the model owner MO obtains datsets TM and TF and
computes the accuracy of its model on the respective datasets. In Fig. 2, the top
left code block shows the operations executed by different actors in the pipeline
without verifiability. The remaining code blocks show operations performed by
actors in a verifiable pipeline. The asset owners publicly commit their private
assets (bottom left) and generate proofs to attest correctness of their operations

254 N. Singh et al.

on assets (top right). Finally, a verifier (e.g. auditor) uses published commit-
ments and proofs to establish the correctness of steps performed by respective
actors in the pipeline (bottom right).

Fig. 2. Example pipeline for certifying financial model for fairness.

3 Overview

This section provides overview of the technical challenges in instantiating our
solution. More detailed technical contributions appear in Sects. 4 and 5.

3.1 Building Blocks

Cryptographic Primitives: We use zkSNARKs as the main cryptographic
tool to verify correctness of data operations and model inference while main-
taining confidentiality of the respective assets. A zkSNARK consists of a triple
of algorithms (G,P,V) where (i) G takes description of a computation as an arith-
metic circuit C and outputs public parameters pp ← G(1λ, C), (ii) P takes pp
and a satisfying instance (x,w) for C and outputs a proof π ← P(pp,x,w) while
(iii) V takes pp, statement x and a proof π and outputs b ← V(pp,x, π). The
proof π reveals no knowledge of the witness w, while an accepting proof π implies
that prover knows a satisfying assignment (x,w) with overwhelming probabil-
ity. A commit and prove zkSNARK (CP-SNARK) allows proving knowledge of
witness w as before, where part of w additionally opens a public commitment c,
i.e. w = (u,z) and Open(c) = u. A CP-SNARK specifies a commitment scheme
Com and like a zkSNARK, it provides algorithms G,P and V for generating pub-
lic parameters, generating proofs and verifying proofs respectively. Additionally,
a CP-SNARK allows one to generate proofs over data committed using Com
with negligible overhead in proof generation and verification.

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 255

Notation: We use the notation [n] to denote the set of natural numbers
{1, . . . , n}. We often use the array notation x[i] to denote the ith component of
the vector x, with 1 as the starting index. We will denote the concatenation of
vectors x and y as �x,y�. All our arithmetic circuits, vectors and matrices are
over a finite field F of prime order.

Circuits for Dataset Operations: To use zkSNARKs, we express operations
on datasets as arithmetic circuits. At a high level, arithmetic circuits representing
data operations accept datasets as their inputs and outputs. Since establishing
provenance of an asset in an AI pipeline requires verifying operations over several
related assets, we require uniform representation of datasets across arithmetic
circuits, which would allow a dataset to be used as inputs/outputs in different
circuits. The second design constraint we enforce is that arithmetic circuits to be
universal, i.e., the same circuit can be used to verify operations on all datasets
within a known size bound. We need universal circuits for two primary reasons:
(i) the sizes of datasets are considered confidential and must not be inferable
from the circuits being used, and (ii) the circuits can be pre-processed to yield
efficient verification as it is a frequent operation in our applications.

Dataset Representation in Circuits: As we use the same circuit to represent
operations over datasets of varying sizes, we first describe a uniform representa-
tion of datasets which can be used within the arithmetic circuits. Let N denote
a known upper bound on the size of input/output datasets. We view a dataset
as a collection of its column vectors (of size at most N). We encode a vector of
size at most N as N + 1 size vector �s,X� where X = (X[1], . . . ,X[N]) In this
encoding s denotes the size of the vector, X[1], . . . ,X[s] contain the s entries of
the vector, while X[i] for i > s are set to 02. Similarly, a dataset is encoded by
encoding each of its columns separately.

Dataset Commitment: Let Com be a vector commitment scheme associated
with a CP-SNARK CP. We additionally assume that Com is homomorphic. To
commit a vector x, we first compute its encoding x as a vector of size N +
1, and then compute c = Com(x, r) as its commitment. Here r denotes the
commitment randomness. To commit a dataset D with columns x1, . . . ,xM , we
commit each of its columns to obtain c = (c1, . . . , cM), where ci = Com(xi)
as the commitment. Using our circuits with the CP-SNARK CP allows us to
efficiently prove operations over committed datasets.

3.2 Optimizations

We now highlight optimizations that are pivotal to the scalability of our system:

Mitigating Commitment Overhead: To prove statements over committed
values using general zkSNARKs, one generally needs to compute the commitment
as part of the arithmetic circuit expressing the computation. This introduces sub-
stantial overhead, when the amount of data to be committed is large. To avoid this,
2 This introduces no ambiguity if 0 is legitimately part of the vector, as s specifies the

content of the vector.

256 N. Singh et al.

we use a CP-SNARK and its associated commitment scheme. We instantiate our
system using Adaptive-Pinnochio [24], as the CP-SNARK. Adaptive-Pinnochio
augments the popular Pinnochio [20] zkSNARK with commit and prove capability.
The resulting scheme incurs ≤ 5% overhead in proof generation time over Pinno-
chio, while verification continues to be efficient (≤ 400ms) in practice. We expect
similar savings with other CP-SNARK schemes, and thus our constructs are agnos-
tic to the choice of CP-SNARK.

Circuit Decomposition: For some operations, verification is more efficient
when decomposed as two or more circuits, than when encoded as a mono-
lithic circuit. Let C(x,u,w) be an arithmetic circuit which checks some prop-
erty on (x,u) where u additionally opens the commitment c. Our decompo-
sition takes the form C(x,u,w) ≡ C1(x,u,w0,w1) ∧ C2(x,u,w0,w2) where
w = (w0,w1,w2) denotes a suitable partition of witness wires. Using a CP-
SNARK we let the prover provide an additional commitment c0 for the witness
wires w0 which are common to both the sub-circuits. In our decompositions,
we let C1 encode relation that is easily verified by an arithmetic circuit and let
C2 encode the relation which has substantially cheaper probabilistic verification
circuit, i.e., there exists a circuit C̃2(α,x,u,w0,w2) which takes additional ran-
dom challenge α and has identical output to C2 with overwhelming probability
(over random choices of α). In our constructions, the latter circuit verifies either
the simultaneous permutation property or consistent memory access property
which we introduce below. These are inefficient to check deterministically using
arithmetic circuits but admit efficient probabilistic circuits.

3.3 Simultaneous Permutation

We say that tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in F
N satisfy the simul-

taneous permutation relation if there exists a permutation σ of [N] such that vi =
σ(ui) for all i ∈ [k]. We now describe protocol to check the relation over committed
vectors: i.e., given commitments cu1, . . . , cuk, cv1, . . . , cvk the prover shows knowl-
edge of vectors u1, . . . ,uk and v1, . . . ,vk corresponding to the commitments which
satisfy the relation. To achieve this, the verifier first sends a challenge β1, . . . , βk

and challenges the prover to show that β-linear combinations of the vectors u =
∑k

i=1 βiui, v =
∑k

i=1 βivi, corresponding to commitments cu =
∑k

i=1 βicui,
cv =

∑k
i=1 βicvi are permutations of each other. This is accomplished via a further

challenge α ← F and subsequently chekcing
∏N

i=1(α − u[i]) =
∏N

i=1(α − v[i]).
We describe the formal protocol and its analysis in Appendix C.1. The last compu-
tation can be expressed in an arithmetic circuit using O(N) multiplication gates
which is concretely more efficient compared to deterministic circuits for checking
permutation relation using routing networks [6,26].

3.4 Consistent Memory Access

We define consistent memory access relation for a triple of vectors L,U and V
where L ∈ F

n and U ,V ∈ F
m for some integers m,n. We say that (L,U ,V)

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 257

Table 3. Comparison of Circuit Complexity for different ROM approaches. ZK and
CP denote zkSNARK and CP-SNARK protocols. m and n denote number of reads and
memory size respectively.

Circuit complexity Circuit complexity
(m = n =10000)

Backend

Linear scan 2mn 200 mill ZK

Routing networks [6,26] (m + n)(3 log(m + n) + 3 logm) 5.7 mill ZK

Buffet [25] m(21 + 2 log n + 10 logm) 1.9 mill ZK

xJSNARK [16] m(2
√
n + log n) 2.1 mill ZK

Our work 5(m + n) 0.1 mill CP

satisy the relation if V [i] = L[U [i]] for all i ∈ [m]. We think of L as read only
memory (ROM) which is accessed at locations given by U with V being the
corresponding values. We adapt the techniques in [3,5,25,31] to take advantage
of CP-SNARKs in our construction. Next, we present a protocol to check the
relation given commitments to L,U and V . The verification proceeds as:

1. First m + n sized vectors u and v are computed as follows: For the vector
u we require u[i] = i for i ∈ [n] and u[i + n] = U [i] for i ∈ [m]. For the
vector v we require v[i] = L[i] for i ∈ [n] and v[i + n] = V [i] for i ∈ [m]
(see Fig. 3).

2. The prover also supplies auxiliary vectors ũ and ṽ of size m+n, where ũ and
ṽ are purportedly obtained from u and v via the same permutation.

3. Finally, we ensure that the vector ũ is sorted and that the vector ṽ differs in
adjacent positions only if the same is true for those positions in vector ũ.

The constraints on the first n entries of vectors u and v in step (1) can be
thought of as “loading” constraints that load the entries of L against correspond-
ing address in memory, while constraints on the last m entries can be thought of
as “fetching” constraints that fetch the appropriate value against the specified
memory location. The steps (2) and (3) ensure that the value fetched for a given
location is same as the value loaded against it during the initial loading steps. We
decompose above checks across two circuits. The first arithmetic circuit CROM,m,n

ensures steps (1) and (3) while the second circuit checks that vectors ũ, ṽ are
obtained by applying the same permutation to vectors u,v respectively. The
circuit CROM,m,n can be realized using O(m+n) multiplication gates. Generally,
verifying that a vector such as ũ is sorted in step (3) incurs logarithmic overhead
due to the need for bit decomposition of each element. However, we can leverage
the fact that ũ is a (sorted) rearrangement of u, which includes all elements of [n]
by construction. Thus, monotonicity of ũ is established provided (i) ũ[n] = 1,
(ii) ũ[m + n] = n and ũ[i + 1] − ũ[i] ∈ {0, 1} for all 1 ≤ i ≤ m + n − 1, which
together require O(m + n) gates to verify. Finally, we invoke the protocol for
“Simultaneous Permutation” property in Sect. 3.3 to check compliance of step
(2). We illustrate the verification circuit and the decomposition in Fig. 3. The
formal protocol and analysis appears in Appendix C.2. Overall we incur O(m+n)

258 N. Singh et al.

1
2
·
·
n

U [1]

·
·
·

U [m]

L[1]

L[2]

·
·

L[n]

V [1]

·
·
·

V [m]

1
·
·
·
2
·
·
·
n

n

L[1]

·
·
·

L[2]

·
·
·

L[n]

·

u v ũ ṽ

Simultaneous
Permutation

u

v

ũ

ṽ

Circuit
Friendly
Verification
CROM,m,n

u

v

ũ ṽ

Fig. 3. Consistent memory access

gates, which is more efficient than encoding entire relation in one circuit. In that
case one uses routing networks which incur O((m+n) log(m+n)) gates and are
concretely much more expensive. We can optimize further when the same access
pattern is used for accessing different ROMs as described below.

Multiplexed Memory Access. For access pattern U ∈ F
m and ROMs Lj ∈

F
n for j ∈ [k], we can show the correctness of lookup values Vj [i] = Lj [U [i]],

i ∈ [M], j ∈ [k] using just one instance of protocol discussed in this section.
To achieve this, the verifier sends a random challenge α1, . . . , αk to the prover.
The prover then shows that (L,U ,V) satisfy correct memory access where L =
α1L1+ · · ·+αkLk and V = α1V1+ · · ·+αkVk for uniformly sampled α1, . . . , αk.
Note that due to the homomorphism of the commitment scheme, both the prover
and the verifier can compute the commitments for L,U and V .

3.5 Our Techniques in Perspective

Commit and prove functionality in conjunction with zero knowledge proofs has
been used in recent works addressing privacy in machine learning, most notably
in [18,27,28]. In [18] and [28], CP-SNARKs are used to “link” proofs of cor-
rectness for different parts of the circuit (similar to Circuit Decomposition in
our setting) to prove inference from a private neural network and a decision
tree respectively. In [27], public commitments are linked to set of authenticated
inputs between a prover and a verifier in a two party protocol. Subsequently
the prover produces a ZK proof showing correctness of neural network infer-
ence over authenticated inputs. In contrast, our usage of CP-SNARKs is more
pervasive. We first optimize key relations (simultaneous permutation, consistent
memory access) for CP-SNARKs and then design our dataset representation in
a way that allows us to represent operations on them in terms of aforementioned
relations.

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 259

4 Privacy Preserving Dataset Operations

We now describe protocols for common dataset operations such as aggregation,
filter, order-by, inner-join etc. These operations serve to illustrate our key
techniques, which can be further applied to yeild protocols for much more compre-
hensive list of dataset operations. We use the fact that most of the operations dis-
tribute nicely as identical computations over different pairs of columns. Through-
out this section, N denotes the upper bound on the sizes of input/output datasets.

Aggregation: Aggregation operation takes two datasets as inputs and outputs
their row-wise concatenation. We first describe arithmetic circuit to verify the con-
catenation of vectors. The circuit accepts three vectors in their uniform represen-
tation as discussed in Sect. 3.1. Let x,y,z be three vectors of size at most N repre-
sented as �s,X�, �t,Y � and �w,Z� respectively where X,Y ,Z are vectors of size
N . The verification involves ensuring that the first w entries of Z contain the first
s entries of X and the first t entries of Y . Figure 4 illustrates the setting for s = 3,
t = 4, w = 7 and N = 9. To aid the verification, the prover provides N -length
binary vectors ρs,ρt and ρw as auxiliary inputs. The vector ρs is 1 in its first s
entires, and 0 elsewhere. Similar relation is satisfied by ρt and ρw. The correctness
of aggregation now reduces to showing that there is a permutation that simulta-
neously maps �ρs,ρt� to �ρw,0� and �X,Y � to �Z,0�. Figure 4 also shows how
the verification is decomposed: The first circuit checks that (i) w = s + t, (ii) vec-
tors ρs,ρt,ρt are correctly provided and (iii) ensures u1 = �ρs,ρt�, v1 = �X,Y �,
u2 = �ρw,0� and v2 = �Z,0�. The second circuit checks the “simultaneous per-
mutation” property on the pairs (u1,v1) and (u2,v2). Both the circuits can be
realized using O(N) multiplication gates. Using a CP-SNARK we can verify the
correctness of aggregation of vectors over commitments.

We now leverage the above construction to verify aggregation operation
over datasets. Let Dx,Dy and Dz be datasets each with k columns given by
(xi)k

i=1, (yi)k
i=1 and (zi)k

i=1 respectively. The reduction technique involves the ver-
ifier sampling random α1, . . . , αk satisfying α1 + · · · + αk = 1. Next, we use the
above circuit constructionwith aCP-SNARKtoprove that vectorsx =

∑k
i=1 αixi

,y =
∑k

i=1 αiyi and z =
∑k

i=1 αizi satisfy the concatenation property. We give
complete protocol and proof of the reduction in the Appendix C.3.

Filter: Filter operation involves a dataset and a selection predicate as inputs
and subsequently outputs a dataset consisting of subset of rows satisfying the
predicate. We divide the computation in two parts (i) Applying selection predi-
cate to rows of the dataset to obtain a binary vector f which we call as selection
vector and (ii) Applying selection vector to the source dataset to obtain the tar-
get dataset. The latter computation can be verified with techniques similar to
those used in aggregation operation. For the first computation, we describe an
efficient circuit for predicates of the form ∧k

i=1(xi == vi) where x1, . . . ,xk are
the columns of the dataset. Once again the verifier chooses random α1, . . . , αk

with
∑k

i=1 αi = 1 and challenges the prover to show that the selection vector f

satisfies f = (x == v) where x =
∑k

i=1 αixi and v =
∑k

i=1 αivi. The relation
f = (x == v) can be verified using a circuit with O(N) gates. Due to the homo-
morphism of the commitment scheme, the verifier can compute the commitment

260 N. Singh et al.

12 5 17 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

11 16 4 2 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

12 5 17 11 16 4 2 0 0 0 0 0 0 0 0 0 0 0

X: Y :

ρs: ρt:

ρw:

3 4 7

0:

s: t:

Z:

w:

0:

(s, X)

(t, Y)

(w, Z)

u1 v1 u2 v2

Simultaneous
Permutation

ρt

ρs

ρw

Circuit-
Friendly
Computation

Fig. 4. Circuit for verifying vector concatenation

for vector x given the commitments to columns of the dataset. For more general
range queries of the form ∧k

i=1(�i < xi ≤ ri), we can compute selection vector
fi for each column, and then compute the final selection vector f = ∧k

i=1fi.

Order By: Order-By relation involves permuting the rows of the dataset so that
a specified column is in sorted order. The verification can be naturally expressed
as columns of source and target dataset satisfying simultaneous permutation
relation, where additionally the specified column is sorted. We can check the
monotonicity of a column using a circuit with O(bN) gates where b is the bit-
width of the range of values in the column. We skip the details.

Inner-Join: Inner join operation concatenates pairs of rows of input datasets
which have identical value for the designated columns (joining columns). We con-
sider the inner-join operation under the restriction that the joining columns have
distinct values. As a first step, we order both the input datasets so that the joining
columns are sorted. We can use the verification protocol for order-by operation
to ensure correctness of this step. We therefore assume that joining columns are
sorted, and take distinct values. Let D1 and D2 be two datasets which are joined
on columns x and y to yield the dataset D. We write D as juxtaposition of columns
[D

′
1,z,D

′
2] where D

′
i denotes the columns coming from Di while z denotes the col-

umn obtained as intersection of x and y. We first design sub-circuit for private
set intersection (PSI) to compute the size w of the resulting dataset. We then let
the prover provide auxiliary selection vectors f1 and f2 of size w. Finally, using
the circuit for filter relation, we verify that f1 applied to D1 yields dataset
DL = [D

′
1,z] and f2 applied to D2 yields the dataset DR = [D

′
2,z]. The over-

all circuit complexity is O(bN) where b is the bit-width of the range of values in x
and y with set-intersection computation dominating the overall cost.

5 Privacy Preserving Model Inference: Decision Trees

In this section we present a zero knowledge protocol for verifiable inference from
decision trees (and random forests). Decision trees are popular models in machine
learning due to their interpretability. A decision tree recursively partitions the fea-
ture space (arranged as a tree), and finally assigns a label to each leaf segment. The

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 261

problem of proving correct inference from a decision tree was considered recently
in [28], where authors present a privacy preserving method for an adversary to
commit to a decision tree and later prove inference from the tree on public test
data. We present a new construction based on consistent memory access, which
improves upon the prior construction by reducing the number of multiplication
gates in the inference circuit. We also provide zero knowledge protocol for estab-
lishing the accuracy of a decision tree on test data. We consider variants with test
data being public or private. The latter scenario is helpful while verifying perfor-
mance of a private model on reputationally trusted private dataset.

Decision Tree Representation: We parameterize a binary decision tree with
following parameters: the maximum number of nodes (N), the maximum length
of a decision path (h) and maximum number of features used as predictors (d).
We assume that the nodes in the decision tree have unique identifiers from the set
[N], while features are identified using indices in set [d]. We naturally represent
a decision tree T as a lookup table with five columns, i.e., T = (V ,T ,L,R,C),
where each column vector is of size N . For a decision tree with t ≤ N nodes, we
encode as follows: For i ∈ [t]:

– V [i] denotes the identifier for the splitting feature for ith node.
– T [i] denotes the threshold value for the splitting feature for ith node.
– L[i] and R[i] denote the identifiers for the left and right child of ith node.

In case of a leaf node, this value is set to i itself.
– C[i] denotes the label associated with the ith node, when it is a leaf node.

For non-leaf nodes this may be set arbitrarily.

We commit to a decision tree, by committing to each of the vectors. We define
cmT = (cmV , cmT , cmL, cmR, cmC) as the commitment to T .

Decision Tree Inference: We model the test data D as n × d matrix, con-
sisting of n d-dimensional samples. Let D be the vector of size dn obtained by
flattening D in row major order. The algorithm below computes decision paths
pi = (pi[1], . . . ,pi[h]) for each sample i ∈ [n]. The prediction vector q contains
class labels corresponding to leaf nodes pi[h] for i ∈ [n].

1. For i = 1, . . . , n do:
– Set pi[1] = 1 : root is the first node on every decision path.
– For j = 1, . . . , h determine next node as follows:

(a) Compute splitting feature: fi[j] = V [pi[j]].
(b) Compute threshold value: ti[j] = T [pi[j]].
(c) Compute left and right child id: li[j] = L[pi[j]], ri[j] = R[pi[j]].
(d) Compute label: ci[j] = C [pi[j]].
(e) Compute f̂i[j] = d ∗ i + fi[j].
(f) Compute value of splitting feature: vi[j] = D[i, fi[j]] = D[f̂i[j]].
(g) Compute next node: pi[j +1] = li[j] if vi[j] ≤ ti[j] and ri[j] otherwise.

– Compute label for the sample: q[i] = ci[h].

Verification of the above algorithm involves verifying (i) hn memory accesses
on the tables of T in steps (a)-(d), which share the access pattern pi[j], (ii) ver-
ifying hn memory accesses on D (of size dn) in step (f) and (iii) hn comparisons

262 N. Singh et al.

as part of step (g). Using the optimization in Sect. 3.4, the first verification incurs
O(N +hn) multiplication gates, while the second verification incurs O(dn+hn)
multiplication gates. Using standard techniques, verification of (iii) can be made
using O(whn) multiplication gates, where w is the bit-width of feature values.
Thus, overall circuit complexity of our solution is O(N + n(d + h + wh)). We
compare our solution with the method for zero-knowledge decision tree (zkDT)
inference presented in [28]. Broadly, the method in [28] establishes the correct-
ness of inference as three checks:

– Consistency of input decision tree with public commitment: This involves
O(N) evaluations of the hash function H used for commitment and thus
incurs c(H) · N multiplication gates. Here c(H) denotes the size of circuit
required to evaluate H.

– Consistency of feature vector with decision path: The verification of this step
leverages a “Multiset Check” ([28, Section 4.1]) which costs O(d log h) multi-
plication gates per sample.

– Correct evaluation of decision tree function: It involves h comparisons for
each sample, which incurs hw mutliplication gates, where w is the bit-width
of feature values.

Above steps result in an overall circuit complexity of c(H)N + n(3d log h + hw)
for zkDT. Our solution improves upon the approach in [28] by reducing the cost
of the first two checks. Using a CP-SNARK, we avoid the cost of computing the
commitment within the verification circuit, while using our optimized protocols
for memory access allows us to accomplish the second check with an average cost
of O(h + d) gates per sample (O(dn + hn) overall), which compares favorably
with per sample cost of O(d log h) incurred by zkDT for h = Θ(d). The concrete
improvement obtained using our approach depends on which of the three checks
dominate the cost for specific parameter settings. We compare the cost of the
two approaches for some representative parameter settings in Table 5.

Decision Tree Accuracy: The above circuit for decision tree inference can be
easily modified to yield the circuit for proving accuracy of a decision tree on test
data. In this case, the prediction vector is kept private, and tallied against ground
truth to compute accuracy. Since our system also includes verifiability of model
performance (accuracy) on private benchmark datasets, we briefly describe the
modifications required to achieve the same. Let D be a private dataset with
columns (x1, . . . ,xd) with commitments to columns being public. Since, we can
no longer compute the flattened vector D as before, we cannot verify the lookup
vi[j] = D[f̂i[j]]. Instead we use polynomial interpolation to pre-process D. For
ith row D[i, ·] of the original data (a vector of size d), we interpolate a polynomial
pi of degree d−1 such that p(j) = D[i, j]. We obtain the pre-processed dataset D′

whose ith row consists of coefficients of pi. The data owner makes a commitment
to D′ instead of D. The lookup vi[j] = D′[i, j] = pi(j) now involves evaluating
a d−1 degree polynomial which incurs d multiplication gates. The overall circuit
complexity for accuracy over private datasets is therefore O(N+hn+hnw+hnd).

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 263

Table 4. Measuring the efficacy of our optimizations on 100K× 10 datasets.

No optimization Partial optimization Full optimization

Aggregation 19.3 mil 1.6 mil 0.21 mil

Filter 12.5 mil 0.7 mil 0.07 mil

Inner-Join 22.1 mil 4.4 mil 0.65 mil

Table 5. Comparison of Circuit Complexity for decision tree inference.

Test data size (n) T1= (1000,50,20) T2= (10000,35,25)

Our Work zkDT [28] Our Work zkDT [28]

100 0.11 mil 3.1 mil 0.16 mil 30.1 mil

1000 1 mil 4.3 mil 1.2 mil 31 mil

10000 9.5 mil 16.5 mil 11.5 mil 41 mil

6 Experimental Evaluation

In this section we report the concrete performance of our system primitives.
For our implementation, we used Adaptive Pinocchio [24] as the underlying
CPSNARK, which we implemented using the libsnark [17] library. We also
used the libsnark library for our circuit descriptions. Our experiments were
performed on Ubuntu Linux 18.04 cloud instances with 8 Intel Xeon 2.10 GHz
virtual cpus with 32 GB of RAM. The experiments were run with finite field
arithmetic libraries and FFT libraries compiled to exploit multiple cores. We
often use circuit complexity (multiplication gates in the circuit) as the “envi-
ronment neutral” metric for comparing different approaches (the proving times
scale quasi-linearly with circuit complexity).

Performance of Dataset Operations: Table 1 contains summary of asymp-
totic as well as concrete efficiency of our dataset operations. All the operations
scale linearly with the number of rows (with marginal additive dependence on
the number of columns). The numbers for proof generation and verification were
generated for representative dataset size of 100K × 10. While proof generation
is an expensive operation by general standards, it is practical enough for infre-
quent usage. We also tabulate the efficacy of our optimizations in Table 4. For
the unoptimized case, we do not use CP-SNARKs and instead compute commit-
ments using circuit-friendly MiMC hash [1]. For partially optimized case, we use
native commitment scheme of CP-SNARK for commitments, but use monolithic
circuits to encode the operations. To express permutations in monolithic circuits,
we use gadgets for routing networks [6,26] available in [17]. The fully optimized
version delegates permutation checking and memory access check to probabilistic
circuits as discussed in Sect. 3.2. In the first case, hashing dominates the circuit
complexity resulting in 50–100 times larger circuits. Decomposing the circuits
instead of monolithic circuits also results in an order of magnitude savings.

264 N. Singh et al.

Table 6. Concrete proving and verification time for decision tree inference.

Test data size (n) T1 = (1000,50,20) T2 = (10000,35,25)

Prov.Time(s) Ver.Time(ms) Prov.Time(s) Ver.Time(ms)

100 1 400 1 400

1000 5 400 6 400

10000 170 400 200 400

Performance of Decision Tree Inference: We use two decision trees T1 and
T2 to benchmark performance of our decision tree inference implementation. We
also use the same trees to compare our method with the one presented in [28]. We
synthetically generate the tree T1 with 1000 nodes, 50 features and depth as 20,
which roughly corresponds to the largest tree used in [28]. The tree T2 is trained
on a curated version of dataset [12] for Home Mortgage Approval. We identify 35
features from the dataset to train binary decision tree. We train T2 with 10000
nodes and depth 25. We verify the inference from the two trees for batch sizes
of 100 (small), 1000 (medium) and 10000 (large). Using our method to generate
proof of predictions takes from few seconds (on small data) to few minutes (on
large data), as seen in Table 6. The circuit complexity and the proving time
scale almost linearly for our method. We also compare the multiplication gates
incurred by arithmetic circuits in our method with that in [28] in Table 5. Our
efficiency is an order of magnitude better for smaller data sizes, as we do not
incur one time cost for hashing the tree. For larger batch sizes, our method
is still about 1.5-4× more efficient. As the batch sizes get large, comparisons
dominate the circuit complexity in both the approaches. We report the circuit
complexity for proving the accuracy for decision trees on private datasets and
public datasets. Table 7 shows that the overhead for proving accuracy on private
datasets ranges from 50–80%.

Performance of Memory Access: We also independently benchmark the
performance of our memory abstraction technique and compare it to existing
methods in Table 3. Leveraging CP-SNARKs and probabilistic reductions we
essentially incur constant number of gates per access. We compare different
approaches both in terms of asymptotic complexity and concrete complexity
for parameter settings representative of their usage in our work. Our concrete
efficiency is an order of magnitude better than the alternatives considered.

Table 7. Circuit Complexity for decision tree accuracy for public and private bench-
mark datasets.

Test data size (n) T1 = (1000,50,20) T2= (10000,35,25)

Public Private Public Private

100 0.11 mil 0.18 mil 0.16 mil 0.23 mil

1000 1 mil 1.75 mil 1.2 mil 1.8 mil

10000 9.5 mil 17.4 mil 11.5 mil 18 mil

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 265

A Preliminaries

We briefly summarise some key cryptographic notions that we use throughout
the paper. For more details on the notions discussed below, we refer the reader
to [8, Section 2].

A.1 Commitment Scheme

Definition 1. A commitment scheme Com = (Setup,Commit,VerCommit) is a
tuple of algorithms with message space D, commitment space C and opening space
O which satisfies correctness, hiding and binding as described below:

– Setup(1λ) → ck takes security parameter λ and outputs commitment key ck.
– Commit(ck, u) → (c, o) takes commitment key ck and u ∈ D and outputs

commitment c ∈ C and opening o ∈ O.
– VerCommit(ck, c, u, o) → b takes commitment key ck, commitment c, message

u and opening o and outputs b ∈ {0, 1}.

Correctness: A valid commitment always verifies correctly, i.e. for ck ←
Setup(1λ), (c, o) ← Commit(ck, u), with probability 1, we have VerCommit(ck,
c, u, o) = 1.

Binding: It is infeasible for a polynomial time adversary to provide two openings
to the same commitment.

Hiding: Commitments to any two messages are indistinguishable.

A.2 Zero Knowledge Arguments

We define the notion of pre-processing zero-knowledge Succinct Arguments of
Knowledge (zkSNARKs).

Definition 2. A zkSNARK for a family of NP relations {Rλ}λ∈N is a tuple of
algorithms (G,P,V) where:

– G(1λ, R) → (pp, td) takes security parameter and the relation R ∈ Rλ and
outputs public parameters pp = (pk, vk) and a trapdoor td. In the above pk is
called the evaluation key and vk is called the verification key.

– P(pk,x,w) → π takes the evaluation key, public input vector x, witness vector
w and outputs a proof π.

– V(vk,x, π) → b takes the verification key, public input vector x, a proof π and
outputs b = 1 (accept) or b = 0 (reject).

A zkSNARK S = (G,P,V) satisfies the following properties:

266 N. Singh et al.

Completeness: For all (R,x,w) such that R ∈ Rλ and R(x,w) = 1, the
following probability is 1.

Pr[π ← P(pk,x,w);V(vk,x, π) = 1]

Knowledge Soundness: Let RG denote a relation generator and Z denote a
(benign) auxiliary input generator. Then the zkSNARK S is called knowledge
sound for (RG,Z) if for all efficient provers P ∗, there exists an extractor EP ∗

such that the following probability is negligible:

Pr

⎡

⎢
⎢
⎣

(R, auxR) ← RG, pp ← G(1λ, R)
Z ← Z(pp, R, auxR) V(pp,x, π)∧

(x, π) ← P ∗(R, auxR, pp, Z) ¬R(x,w)
w ← EP ∗

(R, auxR, pp, Z)

⎤

⎥
⎥
⎦

Zero Knowledge: We say that S satisfies zero-knowledge for relation generator
RG if there exists simulator S = (S1, S2) such that the following hold:

– Key Indistinguishability: For all efficient adversaries A we have:

Pr
[

(R, auxR) ← RG(1λ), pp ← G(1λ, R) A(R, auxR, pp) = 1
]

≈ Pr
[

(R, auxR) ← RG(1λ), A(R, auxR, pp) = 1
(pp, td) ← S1(R, auxR)

]

– Proof Indistinguishability: For all efficient adversaries A and all R ∈ Rλ,
(x,w) such that R(x,w) = 1 we have:

Pr

⎡

⎣

(R, auxR) ← RG(1λ),
pp ← G(R, auxR), A(pp, auxR, π) = 1
π ← P(pp,x,w)

⎤

⎦

≈ Pr

⎡

⎣

(R, auxR) ← RG(1λ),
(pp, td) ← S1(R, auxR), A(pp, auxR, π) = 1
π ← S2(pp,x, td)

⎤

⎦

A.3 Commit and Prove SNARKs

Informally, a commit and prove SNARK (CP-SNARK) is a SNARK that can
prove knowledge of witness where part of the witness opens a commitment c. In
other words, a CP-SNARK for relation R allows one to prove knowledge of w =
(u,z) such that R(x,w) = 1 and c is a commitment for u. The commitments
can be used in several proofs to prove composite statements. We summarise the
formal notion of CP-SNARKs as defined in [8].

Definition 3 (CP-SNARK). Let Com be a commitment scheme with input
space D, opening space O and commitment space C. Let {Rλ}λ∈N be a family of
relations R over Dx × Du × Dw where Du splits as D1 × · · · × D� for some � ≥ 1
such that Di ⊆ D for i = 1, . . . , �. A commit and prove zkSNARK (CP) for Com
and {Rλ}λ∈N is a zkSNARK for family of relations {RCom

λ }λ∈N where:

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 267

– every R ∈ RCom is represented by (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ.
– R is over the pairs (x,w) where x = (x, (cj)j∈[�]) ∈ Dx ×C� is the statement

and w = ((uj)j∈[�], (oj)j∈[�], ω) ∈ D1 ×· · ·×D� ×O� ×Dω is the witness. The
relation R holds iff:

∧

j∈[�]

VerCommit(ck, cj , uj , oj) = 1 ∧ R(x, (uj)j∈[�], ω) = 1

Further, we say that CP is knowledge sound for relation generator RG and aux-
iliary input generator Z if it satisfies knowledge soundness (RGCom,Z) where
RGCom denotes the relation generator which samples (ck, R, aux) as RG(1λ) →
(R, aux) and Setup(1λ) → ck.

We elaborate slightly on the intuition behind the above definition. Typically a
zkSNARK for relation R ⊆ Dx × Dω proves knowledge of w ∈ Dω for a given
statement x ∈ Dx such that R(x,w) = 1. With a CP-SNARK, we additionally
wish to prove that part of the witness w opens a commitment c, i.e. w = (u, z)
where c is a commitment for u. Generalizing this further, we can decompose the
committed part of the witness u into � slots, where witness corresponding to
each slot opens a specified commitment.

B Security Analysis

We describe our protocols as interactive protocols with (semi) honest verifiers.
One can obtain non-interactive arguments of knowledge (SNARKs) in the Ran-
dom Oracle model from them via Fiat-Shamir heuristic. We first define a secure
protocol for proving a relation R under commitments using the commitment
scheme Com. We will write a relation R as R(x,u,w) where x denotes the public
input (plain-text), u denotes the committed witness while w denotes the “free”
(uncommitted witness). The vector u purportedly opens a public commitment c.

Definition 4 (Secure Protocol). A secure protocol for a relation R and
commitment scheme Com consists of tripe Π = (G,P,V) consisting of generator
algorithm G, a PPT prover P and a PPT verifier V which work as follows:

1. G(ck, R, 1λ) −→ pp: Given a commitment key ck ← Com.Setup(1λ) and R, G
outputs public parameters pp.

2. Given public parameters pp for relation R and a pair (x, c) consisting of
statement x and a public commitment c, P and V interact via an alternating
sequence of messages, at the end of which V outputs 0 (Reject) or 1 (Accept).

Further, a secure protocol Π satisfies completeness, soundness and zero-
knowledge which we define shortly.

Let Π(pp,x, c;u,w, 0) denote the output (0/1) of interaction between P
and V on common input (x, c) and P’s private inputs as u,w, o. Similarly, let
Π.Vw(x, c;u,w, o) denote V’s view in the interaction. We use ΠA(pp,x, c) to

268 N. Singh et al.

denote the output of interaction between an adversarial prover A and V on
common input (x, c). Next, we define the security properties satisfied by a secure
protocol Π.

Completeness: We call Π to be complete if for all ck ∈ Com.Setup(1λ) and
(x,u,w) ∈ R we have:

Pr
[

pp ← G(ck, R, 1λ), c = Com.Commit(ck,u, o),Π(x, c;u,w, o) = 1
]

= 1

.

Soundness: We call Π to have soundness if for all PPT adversaries A, there
exists and efficient extractor E such that the following probability is negligible:

Pr
[

ck ← Com.Setup(1λ), pp ← G(ck, R, 1λ),
(x, c) ← A(pp, z), (u,w, o) ← EA(pp, z)

∣
∣
∣
∣

ΠA(pp,x, c) = 1
∧¬R̃(x, c,u,w, o)

]

Here R̃(x, c,u,w, o) ≡ R(x,u,w) ∧ Com.VerCommit(ck, c,u, o).

Zero Knowledge: We say that Π is zero-knowledge if there exists efficient
simulator S = (S1,S2) such that for all ck ∈ Com.Setup(1λ), (x, c,u,w, o) such
that (x,u,w) ∈ R and c = Com.Commit(ck,u, o), the following are statistically
indistinguishable:

[

pp ← G(ck, R) |
(

pp,Π.Vw(pp,x, c;u,w, o)
)]

≈
[

(pp, td) ← S1(1λ, R) |
(

pp,S2(td, pp, ck,x, c)
)]

First, we exhibit a trivial secure protocol that can be obtained from a CP-
SNARK for a relation.

Lemma 1. Let CP = (G,P,V) be a CP-SNARK for relation R and commitment
scheme Com. Then Π = (G,P,V) as described below is a secure protocol for
relation R and commitment scheme Com.

– G(ck, R, 1λ) −→ pp where pp ← G(ck, R, 1λ).
– On common input (x, c) and P’s input (u,w, o), P and V interact as follows:

1. P computes: π ← P(pp,x,u,w, o).
2. P → V: P sends π to V.
3. V outputs V(pp,x, c, π).

The proof of the above is trivial and follows directly from the properties of CP-
SNARK CP. We now formally define the probabilistic relation decomposition
and provide a secure protocol for decomposed relation in by gluing the secure
protocols for the constituent relations.

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 269

Definition 5 (Probabilistic Relation Decomposition). Let R(x,u,w) be
a relation. We say that relations (R1, R2) are a probabilistic decomposition of R
if there exists a canoical partitioning of w as w0||w1||w2 and a challenge space
C such that for α ← C:

Pr [R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 1] = 1
Pr [R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 0] = negl

Lemma 2 (Glueing Lemma). Let (R1, R2) be a probabilistic relation decom-
position of the relation R and let Π1 and Π2 be secure protocols for (R1,Com)
and (R2,Com) respectively, where Com is a commitment scheme. Then the pro-
tocol Π = (G,P,V) as described below is a secure protocol for (R,Com).

– G(ck, R, 1λ) −→ pp: The algorithm P invokes generator algorithms for the
consituent relations as pp1 ← Π1.G(ck, R1, 1λ), pp2 ← Π2.G(ck, R2, 1λ) and
returns pp = (pp1, pp2).

– On common input (x, c) and private prover inputs (u,w, o), P and V interact
as follows:
1. P computes: P partitions w as w0||w1||w2. Next P samples ow ← O and

computes cw = Com.Commit(ck,w0, ow).
2. P → V: P sends cw to V.
3. P and V execute the secure protocol Π1 with common input (x, (c, cw))

and prover’s (Π1.P) inputs as ((u,w0),w1, (o, ow)). Let b1 denote the
output of the protocol Π1.

4. V → P: V samples α ← C and sends α to P.
5. P and V execute the secure protocol Π2 with common input

((α,x), (c, cw)) and prover’s (Π2.P) inputs as ((u,w0),w2, (o, ow)). Let
b2 denote the output of the protocol Π1.

6. V outputs b1 ∧ b2.

Proof. We skip the proof of completeness of protocol Π, as it is straightforward
to verify. To show soundness, let A be a PPT adversary such that ΠA(pp,x, c) =
1. Let cw be the first message (commitment) sent by A to V. From the protocol
description of Π, we have:

ΠA(pp,x, c) = Π1,A(pp1,x, (c, cw)) ∧ Π2,A(pp2, (α,x), (c, cw)).

Thus A is also an adversary for secure protocols Π1 and Π2. Soundness of Π1

and Π2 implies existence of extractors E1 and E2 such that ((u,w0),w1, o) ←
EA
1 (pp1, z) and ((u′,w′

0,w2, (o′, o′
w)) ← EA

2 (pp2, z). We define extractor E which
invokes the above extractors and outputs (u,w, o) for w = w0||w1||w2. With
overwhelming probability we have

R1(x,u,w0,w1) ∧ Com.VerCommit(ck, (c, cw), (u,w0), (o, ow))
R2(α,x,w′

0,w2) ∧ Com.VerCommit(ck, (c, cw), (u′,w′
0, (o

′, o′
w))

By the binding property of Com, we also have u′ = u, w′
0 = w0, o′ = o and

o′
w = ow and Com.VerCommit(ck, (c, cw), (u,w0), (o, ow)) = 1 with overwhelming

270 N. Singh et al.

probability. Finally, since R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1, we must
have R(x,u,w) = 1 for w = w0||w1||w2 with probability negligibly close to 1.
This proves that E extracts a valid witness with overwhelming proability.

We now show that Π is zero-knowledge. Let ck ← Com.Setup(1λ) and let
(x, c,u,w, o) be such that (x,u,w) ∈ R and c = Com.Commit(ck,u, o). We
show the existence of simulator S = (S1,S2) such that:

[

pp ← G(ck, R) |
(

pp,Π.Vw(pp,x, c;u,w, o)
)]

≈
[

(pp, td) ← S1(1λ, R) |
(

pp,S2(td, pp, ck,x, c)
)]

Let S̃ = (S̃1, S̃2) and Ŝ = (Ŝ1, Ŝ2) be the simulators for secure protocols Π1 and
Π2 respectively. The simulator S works as follows:

– S1(1λ, R) −→ (pp′, td′): On input R and security parameter, S1 invokes sim-
ulators for R1, R2 to obtain (pp′

1, td
′
1) ← S̃1(1λ, R1), (pp′

2, td
′
2) ← Ŝ1(1λ, R2)

respectively. It sets pp′ = (pp′
1, pp

′
2) and td′ = (td′

1, td
′
2).

– S2 works as follows: It samples α ← C, õ ← Oλ and computes c̃w =
Com.Commit(ck,0, õ). Then it invokes simulators S̃2 and Ŝ2 as:

• V ′
1 ← S̃2(td′

1, pp
′
1,x, (c, c̃w)),

• V ′
2 ← Ŝ2(td′

2, pp
′
2, (α,x), (c, c̃w)).

– Finally it outputs (α, c̃w, V ′
1 , V ′

2).

The required indistinguishability follows via hybrids shown below. For ease
of notation let V1 denote Π1(pp1,x, (c, cw); (u,w0),w1, (o, ow)) and V2 denote
Π2(pp2, (α,x), (c, cw); (u,w0),w2, (o, ow)). Then we have:

〈pp,Π.Vw(pp,x, c;u,w, o)〉 (1)
= 〈pp1, pp2, α, cw, V1, V2〉 (2)

≈ 〈pp′
1, pp2, α, cw, S̃2(td′

1, pp
′
1,x, (c, cw)), V2〉 (3)

≈ 〈pp′
1, pp

′
2, α, cw, S̃2(td′

1, pp
′
1,x, (c, cw)), Ŝ2(td′

2, pp
′
2, (α,x), (c, cw))〉 (4)

≈ 〈pp′
1, pp

′
2, α, c̃w, V ′

1 , V ′
2〉 (5)

In the above the indistinguishability of (2) and (3) follows from the zero knowl-
edge property of Π1. Similarly zero knowledge of Π2 implies indistinguishability
of (3) and (4). Finally, the indistinguishability of (4) and (5) follows from the
hiding property of Com. This completes the proof.

C Secure Protocols

In this section, we give secure protocols for the different relations discussed in
this paper such as simultaneous permutation, consistent memory access, various
dataset operations and decision tree inference.

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 271

C.1 Simultaneous Permutation

For a fixed N , recall that k-tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in F
N

satisfy simultaneous permutation relation if there exists a permutation σ of [N]
such that σ(ui) = vi for all i ∈ [N]. Let Rσ denote the relation over (α,u,v)
with α ∈ F and u,v ∈ F

N such that
∏N

i=1(α − u[i]) =
∏N

i=1(α − v[i]). Let
Πσ denote the trivial secure protocol obtained from CP-SNARK for (Rσ,Com)
(using Lemma 1), where we also assume Com is homomorphic.

Lemma 3. The protocol Πperm = (G,P,V) in Fig. 5 is a secure protocol for
simultaneous permutation relation and commitment scheme Com.

Proof. By standard rewinding technique, with overwhelming probability the
extractor E , for an accepting adversarial prover A can extract vectors {ui,vi}k

i=1

such that ui opens commitment cui and vi opens commitment cvi for all i ∈ [k].
This is accomplished by running the subprotocol Πσ for k different linear com-
binations of commitments given by the challenge (β1, . . . , βk), and using the
extractor for Πσ to obtain openings for respective linear combinations of vectors.
Since the challenges are linearly independent with overwhelming probability, we
can solve the system of equations to obtain openings for individual commitments
cui and cvi for all i ∈ [k]. By homomorphism of Com, the vectors u =

∑k
i=1 βiui

and v =
∑k

i=1 βivi open commitments cu and cv respectively. Again sound-
ness of Πσ implies with overwhelming probability (α,u,v) ∈ Rσ. Since α was
drawn uniformly at random, we conclude that there is a permutation π such
that π(u) = v with probability almost 1. Finally, since β1, . . . , βk were drawn
uniformly at random π(

∑k
i=1 βiui) =

∑k
i=1 βivi, with overwhelming probability

we must have π(ui) = vi for all i ∈ [k]. This shows the soundness of Πperm. We
skip the proof of zero-knowledge for Πperm as it follows from the same property
for Πσ.

G(1λ) −→ pp: Obtains pp as pp ← Πσ.G(1λ, Rσ).
Inputs: On common input cu = (cui)ki=1, cv = (cvi)ki=1 and P’s inputs consisting
of {ui, vi, oi, ωi}k

i=1, permutation π of [N]; P and V interact as follows:

1. V → P: (α, β1, . . . , βk) ← F
k+1.

2. P and V compute: cu =
∑k

i=1 βicui, cv =
∑k

i=1 βicvi.
3. P computes: u =

∑k
i=1 βiui, v =

∑k
i=1 βivi, o =

∑k
i=1 βioi, ω =

∑k
i=1 βiωi.

4. P and V execute the protocol Πσ with (α, cu, cv) as the common input and
(u, v, o, ω) as prover’s inputs. Let b be the output of the protocol Πσ.

5. V outputs b.

Fig. 5. Protocol Πperm for simultaneous permutation

272 N. Singh et al.

C.2 Consistent Memory Access

in this section, we formalize the secure protocol for consistent memory access
relation discussed in Sect. 3.4.

Lemma 4. There exists a secure protocol Πcma for consistent memory access
relation defined in Sect. 3.4.

Proof. We consider the relation Rcma explained in Sect. 3.4 for consistent mem-
ory access as:

Rcma(·, �L,U ,V �, �u,v, ũ, ˜v,w1,w2�)

In the above, there are no public inputs, the committed witness consists of
L,U and V which denote the read only memory, access pattern and values
respectively. The uncommitted witness consists of auxiliary inputs (u,v, ũ, ṽ)
and other witness w1 and w2 required to prove the relation. The description in
Sect. 3.4 partitions the above as:

CROM,m,n(·, �L,U ,V ,w0�,w1) ∧ Rσ(·,w0,w2) (6)

where w0 = �u,v, ũ, ṽ�. The secure protocol ΠROM can be obtained using a CP-
SNARK for circuit CROM,m,n via Lemma 1. Invoking Glueing Lemma (Lemma
2) with ΠROM and protocol Πperm for simultaneous permutation relation, we
obtain the secure protocol Πcma.

C.3 Aggregation Operation

We now provide a secure protocol for showing correctness of aggregation oper-
ation on datasets as described in Sect. 4. In Sect. 4 we described a protocol for
checking correct concatenation of vectors under commitments, and then reduced
the verification of dataset aggregation to that of verifying concatenation of
vectors (obtained via linear combination of columns of dataset). We also jus-
tify the aforementioned reduction. We assume Πconcat is a secure protocol for
checking concatenation of vectors, which we assume is desceribed by the rela-
tion Rconcat. The secure protocol Πagg = (G,P,V) for verifying aggregation of
datasets appears in Fig. 6. Let Dx,Dy and Dz be datasets with columns given
by (xi)k

i=1, (yi)k
i=1 and (zi)k

i=1 respectively. Similarly let (cxi)k
i=1, (cyi)k

i=1 and
(czi)k

i=1 denote public commitments to the columns of Dx, Dy and Dz respec-
tively. As in Sect. 4, let N denote the upper bound on the sizes of datasets and
vectors.

Lemma 5. The protocol Πagg in Fig. 6 is a secure protocol for aggregation rela-
tion on datasets and commitment scheme Com.

Proof. The completeness and zero-knowledge properties of the protocol are
proved in a manner similar to earlier protocols. Here we prove the soundness
of the probabilistic reduction from aggregation relation on datasets to con-
catenation relation on vectors, which implies soundness of the overall proto-
col. With overwhelming probability, a successful adversary A knows vectors

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 273

G(1λ) −→ pp: Obtains pp as pp ← Πconcat.G(1λ, Rconcat).
Inputs: On common input (cxi)ki=1, (cyi)

k
i=1 and (czi)ki=1 and P’s inputs consisting

of {xi, yi, zi, oi, ωi, δi}k
i=1; P and V interact as follows:

1. V → P: (β1, . . . , βk) ← F
k+1 satisfying

∑k
i=1 βi = 1.

2. P and V compute: cx =
∑k

i=1 βicxi, cy =
∑k

i=1 βicyi and cz =
∑k

i=1 βiczi.
3. P computes: x =

∑k
i=1 βixi, y =

∑k
i=1 βiyi, z =

∑k
i=1 βizi. Similarly it

also obtains o, ω and δ as β-linear combinations of {oi}k
i=1, {ωi}k

i=1, {δi}k
i=1

respectively.
4. P and V execute the protocol Πconcat with (cx, cy, cz) as the common input and

(x, y, z, o, ω, δ) as prover’s inputs. Let b be the output of the protocol Πconcat.
5. V outputs b.

Fig. 6. Protocol Πagg for dataset aggregation

(xi)k
i=1, (yi)k

i=1 and (zi)k
i=1 such that their respective β-linear combinations x,y

and z satisfy the concatenation relation. As in Sect. 4, we write xi = �si,Xi�,
yi = �ti,Yi� and zi = �wi,Zi� for i ∈ [k]. Similarly, let x = �s,X�, y = �t,Y �
and z = �w,Z�. Note that we must have:

s =
k∑

i=1

βisi, t =
k∑

i=1

βiti, w =
k∑

i=1

βiwi

X =
k∑

i=1

βiXi, Y =
k∑

i=1

βiYi, Z =
k∑

i=1

βiZi

Now, from description in Sect. 4, the vectors x,y and z satisfy the concatenation
relation if there exists a permutation of [2N], which we denote by permutation
matrix Λ such that Λ · �ρs,ρt� = �ρw,0�, Λ · �X,Y � = �Z,0� where vectors
ρs,ρt and ρw are in {0, 1}N such that ρs is 1 in precisely the first s positions,
ρt is 1 in precisely the first t positions and ρw is 1 in precisely the first w
positions where further w = s + t. The relation thus also implicity requires that
s, t, w ∈ [N]. We now claim that si = s, ti = t and wi = w for all i ∈ [k].
Otherwise it is easily seen that s is distributed uniformly in F (and likewise for
t and w) for uniformly sampled β1, . . . , βk (subject to sum being 1), and thus
s ∈ [N] with negligible probability N/|F|. Similar reasoning also implies that
with overwhelming probability we have Λ · �Xi,Yi� = �Zi,0� for all i ∈ [k].
Combined with the fact that Λ · �ρs,ρt� = �ρw,0�, it implies that the same
permutation Λ maps the first s entries of column xi and first t entries of column
yi to the first w = s + t entries of the column zi for all i ∈ [k]. Thus Dz

corresponds to aggregation of datasets Dx and Dy.

Protcols and Proofs for Other Operations: We have provided circuit
descriptions for other operations such as filter, order-by, inner-join and
also ML operations such as inference and accuracy from decision trees. These

274 N. Singh et al.

circuits can be used with CP-SNARKs to yeild secure protocols for those opera-
tions using techniques similar to presented protocols (essentially using Lemmas
1 and 2), alongwith reduction technique when applicable.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublin-
ear arguments without a trusted setup. In: Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), pp. 2087–2104 (2017)

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

4. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, pp. 781–796 (2014)

6. Beneš, V.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Elsevier Science, ISSN (1965)

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings of the IEEE
Symposium on Security and Privacy (SP), pp. 315–334 (2018)

8. Campanelli, M., Fiore, D., Querol, A.: Legosnark: modular design and composition
of succinct zero-knowledge proofs. In: Proceedings of the ACM SI)GSAC Confer-
ence on Computer and Communications Security (CCS), pp. 2075–2092 (2019)

9. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

10. Eberhardt, J., Tai, S.: Zokrates - scalable privacy-preserving off-chain computa-
tions. In: Proceedings of the IEEE International Conference on Internet of Things
(iThings), pp. 1084–1091 (2018)

11. Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: efficient zero-knowledge
proofs for neural networks. IACR Cryptol. ePrint Arch. 2021, 87 (2021)

12. ffiec. Home mortgage disclosure act. https://ffiec.cfpb.gov/data-publication/
snapshot-national-loan-level-dataset/2018. Accessed 14 Sept 2021

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

14. Ghodsi, Z., Gu, T., Garg, S.: Safetynets: verifiable execution of deep neural net-
works on an untrusted cloud. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pp. 4672–4681 (2017)

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset/2018
https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset/2018
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines 275

15. Kilbertus, N., Gascón, A., Kusner, M.J., Veale, M., Gummadi, K.P., Weller, A.:
Blind justice: Fairness with encrypted sensitive attributes. In: Proceedings of the
35th International Conference on Machine Learning (ICML), pp. 2635–2644 (2018)

16. Kosba, A.E., Papamanthou, C., Shi, E.: xjsnark: a framework for efficient verifiable
computation. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP), pp. 944–961 (2018)

17. Lab, S.: libsnark: A C++ library for zkSNARK proofs, howpublished. https://
github.com/scipr-lab/libsnark. Accessed 14 Sept 2021

18. Lee, S., Ko, H., Kim, J., Oh, H.: vcnn: verifiable convolutional neural network.
IACR Cryptol. ePrint Arch. 2020, 584 (2020)

19. Lüthi, P., Gagnaux, T., Gygli, M.: Distributed ledger for provenance tracking of
artificial intelligence assets. CoRR, abs/2002.11000 (2020)

20. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP), pp. 238–252 (2013)

21. Sarpatwar, K.K., et al.: Towards enabling trusted artificial intelligence via
blockchain. In: Extended papers from the Second International Workshop on
Policy-based Autonomic Data Governance, vol. 11550, pp. 137–153 (2018)

22. Segal, S., Adi, Y., Pinkas, B., Baum, C., Ganesh, C., Keshet, J.: Fairness in the eyes
of the data: certifying machine-learning models. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society (AIES), pp. 926–935 (2021)

23. Tramèr, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural
networks in trusted hardware. In: Proceedings of the 7th International Conference
on Learning Representations (ICLR) (2019)

24. Veeningen, M.: Pinocchio-based adaptive zk-SNARKs and secure/correct adaptive
function evaluation. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS,
vol. 10239, pp. 21–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57339-7 2

25. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: Proceedings of the 22nd
Annual Network and Distributed System Security Symposium (NDSS) (2015)

26. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
27. Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: efficient conversions

for zero-knowledge proofs with applications to machine learning. In: 30th USENIX
Security Symposium (USENIX Security 2021), pp. 501–518 (2021)

28. Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree
predictions and accuracy. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 2039–2053 (2020)

29. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: VSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: Proceedings
of the IEEE Symposium on Security and Privacy (SP), pp. 863–880 (2017)

30. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vsql. IACR Cryptol. ePrint Arch. 2017, 1146 (2017)

31. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vram: Faster
verifiable RAM with program-independent preprocessing. In: 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, San Francisco, California,
USA, 21–23 May 2018, pp. 908–925 (2018)

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-319-57339-7_2
https://doi.org/10.1007/978-3-319-57339-7_2

Old-School Consensus

Be Aware of Your Leaders

Shir Cohen1,2,3(B), Rati Gelashvili1,2, Lefteris Kokoris Kogias1,2,4, Zekun Li1,2,
Dahlia Malkhi1,2, Alberto Sonnino1,2, and Alexander Spiegelman1,2

1 Novi Research, Menlo Park, USA
2 Novi Research, London, UK

3 Technion, Haifa, Israel
shirco@cs.technion.ac.il

4 IST Austria, Klosterneuburg, Austria

Abstract. Advances in blockchains have influenced the State-Machine-
Replication (SMR) world and many state-of-the-art blockchain-SMR
solutions are based on two pillars: Chaining and Leader-rotation. A pre-
determined round-robin mechanism used for Leader-rotation, however,
has an undesirable behavior: crashed parties become designated leaders
infinitely often, slowing down overall system performance. In this paper,
we provide a new Leader-Aware SMR framework that, among other desir-
able properties, formalizes a Leader-utilization requirement that bounds
the number of rounds whose leaders are faulty in crash-only executions.

We introduce Carousel, a novel, reputation-based Leader-rotation
solution to achieve Leader-Aware SMR. The challenge in adaptive
Leader-rotation is that it cannot rely on consensus to determine a leader,
since consensus itself needs a leader. Carousel uses the available on-chain
information to determine a leader locally and achieves Liveness despite
this difficulty. A HotStuff implementation fitted with Carousel demon-
strates drastic performance improvements: it increases throughput over
2x in faultless settings and provided a 20x throughput increase and 5x
latency reduction in the presence of faults.

Keywords: SMR · Leader-election · Chain-quality

1 Introduction

Recently, Byzantine agreement protocols in the eventually synchronous model
such as Tendermint [5], Casper FFG [6], and HotStuff [22], brought two impor-
tant concepts from the world of blockchains to the traditional State Machine
Replication (SMR) [12] settings, Leader-rotation and Chaining. More specifi-
cally, these algorithms operate by designating one party as leader of each round
to propose the next block of transactions that extends a chained sequence of
blocks. Both properties depart from the approach used by classical protocols
such as PBFT [7], Multi-Paxos [13] and Raft [17] (the latter two in benign set-
tings). In those solutions, a stable leader operates until it fails and then it is
replaced by a new leader. Agreement is formed on an immutable sequence of
indexed (rather than chained) transactions, organized in slots.
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 279–295, 2022.
https://doi.org/10.1007/978-3-031-18283-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_13

280 S. Cohen et al.

Leader-rotation is important in a Byzantine setting, since parties should not
trust each other for load sharing, reward management, resisting censoring of sub-
mitted transactions, or ordering requests fairly [11]. The advantage of Chaining
is that it simplifies the leader handover since in the common case the chain
eliminates the need for new leaders to catch up with outcomes from previous
slots.

In the permissioned SMR settings [1], most existing Leader-rotation mech-
anisms use a round-robin approach to rotate leaders [8,21,22]. This guarantees
that honest parties get a chance to be leaders infinitely often, which is suffi-
cient to drive progress and satisfy Chain-quality [10]. Roughly speaking, the
latter stipulates that the number of blocks committed to the chain by honest
parties is proportional to the honest nodes’ percentage. The drawback of such
a mechanism is that it does not bound the number of faulty parties which are
designated as leaders during an execution. This has a negative effect on latency
even in crash-only executions, as each crashed leader delays progress. Similarly
to XFT [14], we seek to improve the performance in such executions. Unlike
XFT, we also maintain Chain-quality to thwart Byzantine attacks.

In this paper, we propose a leader-rotation mechanism, Carousel, that enjoys
both worlds. Carousel satisfies non-zero Chain-quality, and at the same time,
bounds the number of faulty leaders in crash-only executions after the global sta-
bilization time (GST), a property we call Leader-utilization. The Carousel algo-
rithm leverages Chaining to execute purely locally using information available
on the chain, avoiding any extra communication. To capture all requirements,
we formalize a Leader-Aware SMR problem model, which alongside Agree-
ment, Liveness and Chain-quality, also requires Leader-utilization. We prove
that Carousel satisfies the Leader-Aware SMR requirements.

The high-level idea to satisfy Leader-utilization is to track active parties
via the records of their participation (e.g. signatures) at the committed chain
prefix and elect leaders among them. However, if done naively, the adversary
can exploit this mechanism to violate Liveness or Chain-quality. The challenge
is that there is no consensus on a committed prefix to determine a leader, since
consensus itself needs a leader. Diverging local views on committed prefixes may
be effectuated, for instance, by having a Byzantine leader reveal an updated
head of the chain to a subset of the honest parties. Hence, Carousel may not have
agreement on the leaders of some rounds, but nevertheless guarantees Liveness
and Leader-utilization after GST.

To focus on our leader-rotation mechanism, we abstract away all other SMR
components by defining an SMR framework. Similarly to [20], we capture the
logic and properties of forming and certifying blocks of transactions in each
round in a Leader-based round (LBR) abstraction, and rely on a Pacemaker
abstraction [4,15,16] for round synchronization. We prove that when instantiated
into this framework, Carousel yields a Leader-Aware SMR protocol. Specifically,
we show (1) for Leader-utilization: at most O(f2) faulty leaders may be elected
in crash-only executions (after GST); and (2) for Chain-quality: one out of O(f)
blocks is authored by an honest party in the worst-case. Note that in practice

Be Aware of Your Leaders 281

Chain-quality guarantees are much better since the worst case scenario requires
the adversary to posses an unrealistic power.

We provide an implementation of Carousel in a HotStuff-based system and
an evaluation that demonstrates a significant performance improvement. Specifi-
cally, we get over 2x throughput increase in faultless settings, and 20x throughput
increase and 5x latency reduction in the presence of faults. Our mechanism is
adopted in the most recent version of DiemBFT [21], a deployed HotStuff-based
system.

2 Model and Problem Definition

We consider a message-passing model with a set of n parties Π = {p1, . . . , pn},
out of which f < n

3 are subject to failures. A party is crashed if it halts prema-
turely at some point during an execution. If it deviates from the protocol it is
Byzantine. An honest party never crashes or becomes Byzantine. We say that
an execution is crash-only if there are no Byzantine failures therein.

For the theoretical analysis we assume an eventually synchronous communi-
cation model [9] in which there is a global stabilization time (GST) after which
the network becomes synchronous. That is, before GST the network is com-
pletely asynchronous, while after GST messages arrive within a known bounded
time, denoted as δ.

As we later describe, we abstract away much of the SMR implementation
details by defining and using primitives. Therefore, our Leader-rotation solution
is model agnostic and the adversarial model depends on the implementation
choices for those primitives.

2.1 Leader-Aware SMR

In this section we introduce some notation and then define the Leader-Aware
SMR problem. Roughly speaking, Leader-Aware SMR captures the desired prop-
erties of the Leader-rotation mechanism in SMR protocols that are leader-based.

An SMR protocol consists of a set of parties aiming to maintain a growing
chain of blocks. Parties participate in a sequence of rounds, attempting to form
a block per round. In Leader-Aware SMR, each round is driven by a leader.
We capture these rounds via the Leader-based round (LBR) abstraction defined
later.

A block consists of transactions and the following meta-data:

– A (cryptographic) link to a parent block. Thus, each block implicitly defines
a chain to the genesis block.

– A round number in which the block was formed.
– The author id of the party that created the block.
– A certificate that (cryptographically) proves that 2f +1 parties endorsed the

block in the given round and with the given author. We assume that it is
possible to obtain the set of 2f + 1 endorsing parties1.

1 This can be achieved by multi-signature schemes which are practically as efficient as
threshold signatures [3].

282 S. Cohen et al.

Note that having a round number and the author id as a part of the block is not
strictly necessary, but they facilitate formalization of properties and analysis.
For example, an honest block is defined as a block authored by an honest party
and a Byzantine block is a block authored by a Byzantine party.

We assume a predicate certified(B, r) ∈ {true, false} that locally checks
whether the block has a valid certificate, i.e. it has 2f +1 endorsements for round
r. If certified(B, r) = true we say that B is a certified block of round r. When
clear from context, we say that B is certified without explicitly mentioning the
round number.

An SMR protocol does not terminate, but rather continues to form blocks.
Each block B determines its implied chain starting from B to the genesis block
via the parent links. We use notation B −→ B′, saying B′ extends B, if block
B is on B′’s implied chain. Honest parties can commit blocks in some rounds
(but usually not all). A committed block indirectly commits its implied chain.
An SMR protocol must satisfy the following:

Definition 1 (Leader-Aware SMR).

– Liveness: An unbounded number of blocks are committed by honest parties.
– Agreement: If an honest party pi has committed a block B, then for any

block B′ committed by any honest party pj either B −→ B′ or B′ −→ B.
– Chain-quality: For any block B committed by an honest party pi, the pro-

portion of Byzantine blocks on B’s implied chain is bounded.
– Leader-Utilization: In crash-only executions, after GST, the number of

rounds r for which no honest party commits a block formed in r is bounded.

The first two properties are common to SMR protocols. While most SMR algo-
rithms satisfy the above mentioned Liveness condition, a stronger Liveness prop-
erty can be defined, requiring that each honest party commits an unbounded
number of blocks. This property can be easily be achieved by an orthogonal
forwarding mechanism, where each honest leader that creates a block explicitly
sends it to all other parties. A notion of Chain-quality that bounds the adver-
sarial control over chain contents was first suggested by Garay et al. [10]. We
introduce the Leader-utilization property to capture the quality of the Leader-
rotation mechanism in crash-only executions. Note that although it is tempting
to define leader utilization for Byzantine executions as well, it seems impossi-
ble to do so without failure detectors. Byzantine parties can decide not to form
a block whenever they become leaders. This reduces to the question – can we
bound the number of adversarial leaders? the answer is, unfortunately, no.

3 Leader-Aware SMR: The Framework

In order to isolate the Leader-rotation problem in Leader-Aware SMR proto-
cols, we abstract away the remaining logic into two components. First, similar
to [19,20] we capture the logic to form and commit blocks by the Leader-based

Be Aware of Your Leaders 283

round (LBR) abstraction (Sect. 3.1). We follow [4,16] and capture round syn-
chronization by the Pacemaker abstraction (Sect. 3.2). These two abstractions
can be instantiated with known implementations from existing SMR protocols.

In Sect. 3.3 we define the core API for Leader-rotation and combine it with
the above components to construct an SMR protocol. In Sect. 4 we present a
Leader-rotation algorithm that can be easily computed based on locally available
information and makes the construction a Leader-Aware SMR.

3.1 Leader-Based Round (LBR)

The LBR abstraction exposes to each party pi an API to invoke LBR(r, �),
where r ∈ N is a round number and � is the leader of round r according to
party pi. Intuitively, a leader-based round captures an attempt by parties to
certify and commit a block formed by the leader2 – which naturally requires
sufficiently many parties to agree on the identity of the leader. We assume that
non-Byzantine parties can only endorse a block B with round number r and
author � by calling LBR(r, �).

Every LBR invocation returns within Δl > cδ time, where c depends on
the specific LBR implementation (i.e., each round requires a causal chain of
c messages to complete). That is, Δl captures the inherent timeouts required
for eventually synchronous protocols. We say that round r has k ≤ n LBR-
synchronized(�) invocations if k honest parties invoke LBR(r, �) after GST and
within Δl − cδ time of each other with the same party �3.

The return value of an LBR invocation in round r is always a block with a
round number r′ ≤ r. The intention is for LBR invocations to return gradually
growing committed chains. Occasionally, there is no progress, in which case the
invocations are allowed to return a committed block whose round r′ is smaller
than r. Formally, the output from LBR satisfies the following properties:

Definition 2 (LBR)

– Endorsement: For any block B and round r, if certified(B, r) = true,
then the set of endorsing parties of B contains 2f + 1 parties.4

– Agreement: If B and B′ are certified blocks that are each returned to an
honest party from an LBR invocation, then either B −→ B′ or B′ −→ B.

– Progress: If there are k ≥ 2f + 1 LBR-synchronized(�) invocations at round
r and � is honest, then they all return a certified B with round number r
authored by �.

– Blocking: If a non-Byzantine party � never invokes LBR(r, �), then no
LBR(r, �) invocation may return a certified block formed in round r.

2 Existing SMR protocols may have separate rounds (and even leaders) for forming
and committing blocks, but this distinction is not relevant for the purposes of the
paper and LBR abstraction is defined accordingly.

3 LBR-synchronized requires that the corresponding execution intervals have a shared
intersection lasting ≥ cδ time.

4 Note that Endorsement implies that although LBR can be invoked for round r with
more than one leader l, there is at most one author for a block in r.

284 S. Cohen et al.

– Reputation: If a non-Byzantine party p never invokes LBR for round r,
then any certified block B with round number r does not contain p among its
endorsers.

The LBR definition intends to capture just the key properties required for
round abstraction in SMR protocols but leaves room for various interesting
behavior. For example, if the progress preconditions are not met at round r,
then some honest parties may return a block B for round r while others do not.
Moreover, in this case the adversary can hide certified blocks from honest parties
and reveal them at any point via the LBR return values.

3.2 The Pacemaker

The Pacemaker [4,15,16] component is a commonly used abstraction, which
ensures that, after GST, parties are synchronized and participate in the same
round long enough to satisfy the LBR progress. We assume the following:

Definition 3 (Pacemaker). The Pacemaker eventually produces new round(r)
notifications at honest parties for each round r. Suppose for some round r all
new round(r) notifications at non-Byzantine parties occur after GST, the first
of which occurs at time Tf , and the last of which occurs at time Tl. Then no
non-Byzantine party receives a new round(r + 1) notification before Tl + Δp and
Tl − Tf ≤ δ. The Pacemaker can be instantiated with any parameter Δp > 0.

To combine the LBR and Pacemaker components into an SMR protocol
in Sect. 3.3 we fix Δp = Δl. Note that by using the above definition, the resulting
protocol is not responsive since parties wait Δp before advancing rounds. This
can easily be fixed by using a more general Pacemaker definitions from [4,15,16].
However, we chose the simplified version above for readability purposes since the
Pacemaker is orthogonal to the thesis of our paper.

3.3 Leader-Rotation - The Missing Component

In Algorithm 1 we show how to combine the LBR and Pacemaker abstractions
into a leader-based SMR protocol. The missing component is the Leader-rotation
mechanism, which exposes a choose leader(r,B) API. It takes a round number
r ∈ N and a block B and returns a party p ∈ Π. The choose leader procedure
is locally computed by each honest party at the beginning of every round.

The Agreement property of Algorithm 1 follows immediately from the
Agreement property of LBR, regardless of choose leader implementation.
In Appendix A we prove that Algorithm 1 satisfies liveness as long as all hon-
est parties follow the same choose leader procedure and that this procedure
returns the same honest party at all of them infinitely often. In the next section
we instantiate Algorithm 1 with Carousel: a specific choose leader implementa-
tion to obtain a Leader-Aware SMR protocol. That is, we prove that Algorithm
1 with Carousel satisfies liveness, Chain-quality, and Leader-utilization.

Be Aware of Your Leaders 285

Algorithm 1. Constructing SMR: code for party pi
1: commit head ← genesis
2: upon new round (r) do
3: leader ← choose leader (r, commit head)
4: B ←LBR(r,leader)
5: if commit head −→ B then
6: commit B � all blocks in B’s implied chain that were not yet committed.
7: commit head ← B

4 Carousel: A Novel Leader-Rotation Algorithm

In this section, we present Carousel– our Leader-rotation mechanism. The
pseudo-code is given in Algorithm 2, which combined with Algorithm 1 allows
to obtain the first Leader-Aware SMR protocol.

We use reputation to avoid crashed leaders in crash-only executions. Specif-
ically, at the beginning of round r, an honest party checks if it has committed
a block B with round number r − 1. In this case, the endorsers of B are guar-
anteed to not have crashed by round r − 1. For Chain-quality purposes, the f
latest authors of committed blocks are excluded from the set of endorsers, and
a leader is chosen deterministically from the remaining set.

If an honest party has not committed a block with round number r−1, it uses
a round-robin fallback scheme to elect the round r leader. Notice that different
parties may or may not have committed a block with round number r −1 before
round r. In fact, the adversary has multiple ways to cause such divergence, e.g.
Byzantine behavior, crashes, or message delays. As a result, parties can disagree
on the leader’s identity, and potentially compromise liveness. We prove, however,
that Carousel satisfies liveness, as well as leader utilization and Chain-quality.
Specifically, we show that (1) the number of rounds r for which no honest party
commits a block formed in r is bounded by O(f2); and (2) at least one honest
block is committed every 5f + 2 rounds. The argument is non-trivial since, for
example, we need to show that the adversary cannot selectively alternate the
fallback and reputation schemes to control the Chain-quality.

4.1 Correctness

Leader-Utilization. In this section, we are concerned with the protocol effi-
ciency against crash failures. We consider time after GST, and at most f parties
that may crash during the execution but follow the protocol until they crash
(i.e., non-Byzantine). We say that a party p crashes in round r if r + 1 is the
minimal number for which p does not invoke LBR in line 4. Accordingly, we
say that a party is alive at all rounds before it crashes. In addition, we say that
a round r occurs after GST if all new round (r) notifications at honest parties
occur after GST.

We start by introducing an auxiliary lemma which extends the LBR Progress
property for crash-only executions. Since in a crash-only case faulty parties follow

286 S. Cohen et al.

Algorithm 2. Leader-rotation: code for party pi
8: procedure choose leader(r, commit head)
9: last authors ← ∅

10: if commit head.round number �= r − 1 then
11: return (r mod n) � round-robin fallback

12: active ← commit head.endorsers
13: block ← commit head
14: while |last authors| < f ∧ block �= genesis do
15: last authors ← last authors ∪ {block.author}
16: block ← block.parent

17: leader candidates ← active \ last authors
18: return leader candidates.pick one() � deterministically pick from the set

the protocol before they crash, honest parties cannot distinguish between an
honest leader and an alive leader that has not crashed yet. Hence, the LBR
Progress property hold even if the leader crashes later in the execution. Formal
proof of the following technical lemma, using indistinguishability arguments,
appears in Appendix A.

Lemma 1. In a crash-only execution, let r be a round with k ≥ 2f + 1 LBR-
synchronized(�) invocations, such that � is alive at round r, then these k invoca-
tions return a certified B with round number r authored by �.

Furthermore, if no party crashes in a given round and the preconditions of
the adapted LBR Progress conditions are met a block is committed in that round
and another alive leader is chosen.

Lemma 2. If the preconditions of Lemma 1 hold and no party crashes in round
r, then k ≥ 2f + 1 honest parties commit a block for round r and return the
same leader �′ at line 3 of round r + 1 and �′ is alive at round r.

Proof. By Lemma 1, k honest parties return from LBR(r, �) with a certified
block B with round number r authored by �. Then, since commit head −→ B,
they all commit B at line 6 of round r+1. By the LBR Reputation property, the
set of B’s endorsers does not include parties that crashed in rounds < r. Since
no party crashes in round r, B’s endorsers are all alive in round r. Since these
2f +1 parties each committed block B with round number r, in choose leader
in Algorithm 1, they all use the reputation scheme (line 18) to choose the leader
of round r + 1, that we showed is alive at round r.

Next, we utilize the latter to prove that in a round with no crashes, it is
impossible for a minority of honest parties to return with a certified block from
an LBR instance. Namely, either no honest party returns a block, or at least
2f + 1 of them do.

Lemma 3. In a crash-only execution, let r be a round after GST in which no
party crashes. If one honest party returns from LBR with a certified block B
with round number r, then 2f + 1 honest parties return with B.

Be Aware of Your Leaders 287

Proof. Assume an honest party returns a certified block B with round number
r after invoking LBR(r, �). By the LBR Blocking property, � itself must have
invoked LBR(r, �) and by assumption it was alive at round r. By the LBR
Endorsement property, the set of endorsing parties of B contains 2f +1 parties.
Since we consider a crash-only execution, it follows by assumption that 2f +
1 party called LBR(r, �). Due to the use of Pacemaker, these calls are LBR-
synchronized(�) invocations. Finally, by Lemma 1 all these calls return a certified
B with round number r authored by �.

We prove that in a window of f + 2 rounds without crashes, there must be a
round with the sufficient conditions for a block to be committed for that round.

Lemma 4. In a crash-only execution, let R be a round after GST such that no
party crashes between rounds R and R + f + 2 (including). There exists a round
R ≤ r ≤ R + f + 2 for which there are 2f + 1 LBR-synchronized(�) invocations
with a leader � that is alive at round r.

Proof. First, let us consider the LBR invocations for round R. By Lemma 3,
if one honest party returns with a block B with round number R, then 2f + 1
honest parties return with B, commit it and update commit head accordingly
(line 7). In this case, there are 2f+1 choose leader(R+1, B) invocations, which
all return at line 18. Otherwise, no party return a block with round number
R, and thus they all return at line 11. By the code and since a block implies
a unique chain, in both cases 2f + 1 honest parties return the same leader
� in choose leader(R + 1, B) (either by reputation or round-robin). By the
Pacemaker guarantees and since R + 1 occurs after GST, there are at least
2f + 1 LBR-synchronized(�) invocations. If � is alive at round R + 1, we are
done. Otherwise, � must have been crashed before round R by the alive definition
and lemma assumptions. Thus, by the LBR Blocking property no honest party
commits a block for round R and they all choose the same leader for the following
round at line 11. The lemma follows by applying the above argument for R +
f + 2 − R + 1 = f + 1 rounds.

Finally, we bound by O(f2) the total number of rounds in a crash-only exe-
cution for which no honest party commits a block:

Lemma 5. Consider a crash-only execution. After GST, the number of rounds
r for which no honest party commits a block formed in r is bounded by O(f2).

Proof. Consider a crash-only execution and let R1, R2, . . . Rk the rounds after
GST in which parties crash (k ≤ f). For ease of presentation we call a round
for which no honest party commits a block formed in r a skipped round. We
prove that the number of skipped rounds between Ri and Ri+1 for 1 ≤ i < k is
bounded. If Ri+1 − Ri < f + 4, then there are at most f + 4 rounds and hence
at most f + 4 skipped rounds. Otherwise, we show that at most f + 2 rounds
are skipped between rounds Ri and Ri+1.

First, by Lemma 4, there exists a round Ri < Ri + 1 ≤ r ≤ Ri + 1 + f + 2 <
Ri+1 for which there are 2f + 1 LBR-synchronized(�) invocations with a leader

288 S. Cohen et al.

� that is alive at round r. By Lemma 2, since no party crashes in round r,
2f + 1 honest parties return the same leader �′ at line 3 of round r + 1 and
�′ is alive at round r. Since no party crashes at round r + 1 as well (because
Ri+1 − Ri ≥ f + 4), �′ is alive at round r + 1. By the Pacemaker guarantees and
since we consider rounds after GST, we conclude that there are at least 2f + 1
LBR-synchronized(�′) invocations for round r + 1. By Lemma 2 applied again
for round r + 1, 2f + 1 honest parties commit a block for round r + 1. Thus,
round r +1 is not skipped. We repeat the same arguments until round Ri+1, and
conclude that in each of these rounds a block is committed. Hence, the rounds
that can possibly be skipped between Ri and Ri+1 are Ri ≤ r′ < r. Thus there
are O(f) skipped round between Ri and Ri+1. For Rk we use similar arguments
but since no party crashes after Rk, we apply Lemma 2 indefinitely. We similarly
conclude that there are O(f) skipped rounds after Rk. All in all, since k ≤ f ,
we get O(f2) skipped rounds.

We immediately conclude the following:

Corollary 1. Algorithm 1 with Algorithm 2 satisfies Leader-utilization.

Chain-Quality. For the purposes of the Chain-quality proof, we say that a
block is committed when some honest party commits it. We say that a block
B with round number r is immediately committed if an honest party commits
B in round r. When we refer to a leader elected in of Algorithm 2 from the
round-robin mechanism we mean line 11, and when we refer to a leader elected
from the reputation mechanism, we mean line 18.

We begin by showing that each round assigned with an honest round-robin
leader implies a committed block in that round or the one that precedes it (not
necessarily an honest block).

Lemma 6. Let r be a round after GST such that pi = (r mod n) is honest.
Then, either a Byzantine block with round number r − 1 or an honest block with
round number r − 1 or r is immediately committed.

Proof. If a block is immediately committed with round number r − 1 then we
are done. Otherwise, no honest party commits a block with round number r − 1
in round r − 1, and they all elect the round r leader � using the round-robin
mechanism. By the assumption, � is honest.

By the Pacemaker, all honest invocations of LBR(r, �) in line 4 are LBR-
synchronized(�). Since there are at least 2f + 1 honest parties, by the LBR
Progress property, all honest invocations return the same certified block B with
round number r authored by �. Then, the honest parties commit B at line 6.

If there are two consecutive rounds assigned with honest round-robin leaders
and in addition the last f committed blocks are Byzantine, then an honest block
follows, as proven in the following lemma.

Be Aware of Your Leaders 289

Lemma 7. Let r′ be a round after GST such that pi = (r′ mod n) and pj =
(r′ + 1 mod n) are honest. Suppose f blocks with round numbers in [r, r′) with
different Byzantine authors are committed. For a block B with round number
r′ or r′ + 1 that is immediately committed, there is an honest block with round
number [r, r′ + 1] on B’s implied chain.

Proof. By the LBR endorsement assumption and property, the author of block
B should be either a reputation-based, or a round-robin leader of round r′ or
r′ + 1. If it is a round-robin leader, then by the lemma assumption, the leader
is honest and since B is the head of its implied chain, the proof is complete.
Thus, in the following we assume that B’s author is a reputation-based leader.
By the SMR Agreement property and the lemma assumption, B’s implied chain
contains f blocks with different Byzantine authors and rounds numbers in [r, r′).
By the code of the reputation-based mechanism, either all f Byzantine authors
are excluded from the leader candidates which implies that B has an honest
author, or that there is an honest block with round number in [r, r′) on B’s
implied chain.

Lastly, the following lemma proves that in any window of 5f + 2 rounds an
honest block is committed.

Lemma 8. Let r be a round after GST. At least one honest block is committed
with a round number in [r, r + 5f + 2].

Proof. Suppose for contradiction that no honest block with round number in
[r, r + 5f + 2] is committed. There are at least f rounds r′ in [r, r + 3f + 1),
such that rounds r′ − 1 and r′ are allocated an honest leader by the round-robin
mechanism. By Lemma 6, a block with round number r′ −1 or r′ is immediately
committed. Due to Lemma 6 and the contradiction assumption, for any such
round r′, a Byzantine block with round number r′−1 is immediately committed.
Since r′ −1 has an honest round-robin leader, the block must be committed from
the reputation mechanism.

It follows that f Byzantine blocks with round numbers in [r, r + 3f + 1) are
immediately committed from the reputation mechanism, and consequently, they
all must have different authors. Note that there exists r′ ∈ [r+3f +1, r+5f +2)
(in a window of 2f + 1 rounds), such that the round-robin mechanism allocates
honest leaders to rounds r′ and r′ + 1. By Lemma 6, a block B with round
number r′ or r′ + 1 is immediately committed. Lemma 7 concludes the proof.

We conclude the following:

Corollary 2. Algorithm 1 with Algorithm 2 satisfies Chain-quality and Live-
ness.

Taken jointly, Corollary 1, Corollary 2, and the Agreement property proved
in Sect. 3.3 yield the following theorem:

Theorem 1. Algorithm 1 with Algorithm 2 implements Leader-Aware SMR.

290 S. Cohen et al.

5 Implementation

We implement Carousel on top of a high-performance open-source implementa-
tion of HotStuff5 [22]. We selected this implementation because it implements
a Pacemaker [22], contrarily to the implementation used in the original Hot-
Stuff paper6. Additionally, it provides well-documented benchmarking scripts
to measure performance in various conditions, and it is close to a production
system (it provides real networking, cryptography, and persistent storage). It
is implemented in Rust, uses Tokio7 for asynchronous networking, ed25519-
dalek8 for elliptic curve based signatures, and data-structures are persisted using
RocksDB9. It uses TCP to achieve reliable point-to-point channels, necessary to
correctly implement the distributed system abstractions. By default, this Hot-
Stuff implementation uses traditional round-robin to elect leaders; we modify its
LeaderElector module to use Carousel instead. Implementing our mechanism
requires adding less than 200 LOC, and does not require any extra protocol
message or cryptographic tool. We are open-sourcing Carousel10 along with any
measurements data to enable reproducible results11.

6 Evaluation

We evaluate the throughput and latency of HotStuff equipped Carousel through
experiments on Amazon Web Services (AWS). We then show how it improves
over the baseline round-robin leader-rotation mechanism. We particularly aim
to demonstrate that Carousel (i) introduces no noticeable performance overhead
when the protocol runs in ideal conditions (that is, all parties are honest) and
with a small number of parties, and (ii) drastically improves both latency and
throughput in the presence of crash-faults. Note that evaluating BFT protocols
in the presence of Byzantine faults is still an open research question [2].

We deploy a testbed on AWS, using m5.8xlarge instances across 5 different
AWS regions: N. Virginia (us-east-1), N. California (us-west-1), Sydney (ap-
southeast-2), Stockholm (eu-north-1), and Tokyo (ap-northeast-1). Parties are
distributed across those regions as equally as possible. Each machine provides
10 Gbps of bandwidth, 32 virtual CPUs (16 physical core) on a 2.5 GHz, Intel
Xeon Platinum 8175, 128 GB memory, and run Linux Ubuntu server 20.04.

In the following sections, each measurement in the graphs is the average of
5 independent runs, and the error bars represent one standard deviation. Our
baseline experiment parameters are 10 honest parties, a block size of 500 KB,
a transaction size of 512 B, and one benchmark client per party submitting

5 https://github.com/asonnino/hotstuff.
6 https://github.com/hot-stuff/libhotstuff.
7 https://tokio.rs.
8 https://github.com/dalek-cryptography/ed25519-dalek.
9 https://rocksdb.org.

10 https://github.com/asonnino/hotstuff/tree/leader-reputation.
11 https://github.com/asonnino/hotstuff/tree/leader-reputation/data.

https://github.com/asonnino/hotstuff
https://github.com/hot-stuff/libhotstuff
https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org
https://github.com/asonnino/hotstuff/tree/leader-reputation
https://github.com/asonnino/hotstuff/tree/leader-reputation/data

Be Aware of Your Leaders 291

Fig. 1. Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with 10, 20, 50 par-
ties. No party faults, 500 KB maximum block size and 512 B transaction size.

transactions at a fixed rate for a duration of 5 min. We then crash and vary
the number of parties through our experiments to illustrate their impact on
performance. The leader timeout value is set to 5 s for runs with 10 and 20
parties and increased to 10 s for runs with 50 parties. When referring to latency,
we mean the time elapsed from when the client submits the transaction to when
the transaction is committed by one party. We measure it by tracking sample
transactions throughout the system.

6.1 Benchmark in Ideal Conditions

Figure 1 depicts the performance of HotStuff with both Carousel and the baseline
round-robin running with 10, 20, and 50 honest parties. For runs with a small
number of parties (e.g., 10), the performance of the baseline round-robin Hot-
Stuff is similar to HotStuff equipped with Carousel. We observe a peak through-
put around 70,000 tx/s with a latency of around 2 s. This illustrates that the
extra code required to implement Carousel has negligible overhead and does not
degrade performance when the total number of parties is small. When increasing
the system’s size (to 20 and 50 parties), HotStuff with Carousel greatly outper-
forms the baseline: the bigger the system’s size, the bigger the performance
improvement. With 50 nodes, the throughput of our mechanism-based HotStuff
increases by over 2x with respect to the baseline, and remains comparable to
the 10-parties testbed. After a few initial timeouts, Carousel has the benefit to
focus on electing performant leaders. Leaders on more remote geo-locations that
are typically slower are elected less often, the protocol is thus driven by the
most performant parties. Similar ideas were presented in [18] in the context of
distributed data storage, where a leader placement was optimized based on repli-
cas’ locations. In our experiments, latency is similar for both implementations
and around 2–3 s.

292 S. Cohen et al.

Fig. 2. Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with 10 parties. Zero,
one and three party faults, 500 KB maximum block size and 512 B transaction size.

6.2 Performance Under Faults

Figure 2 depicts the performance of HotStuff with both Carousel and the baseline
round-robin when a set of 10 parties suffers 1 or 3 crash-faults (the maximum that
can be tolerated). The baseline round-robin HotStuff suffers a massive degrada-
tion in throughput as well as a dramatic increase in latency. For three faults, the
throughput of the baseline HotStuff drops over 30x and its latency increases 5x
compared to no faults. In contrast, HotStuff equipped with Carousel maintains
a good level of throughput: our mechanism does not elect crashed leaders, the
protocol continues to operate electing leaders from the remaining active par-
ties, and is not overly affected by the faulty ones. The reduction in throughput
is in great part due to losing the capacity of faulty parties. When operating
with 3 faults, Carousel provides a 20x throughput increase and about 5x latency
reduction with respect to the baseline round-robin.

Figure 3 depicts the evolution of the performance of HotStuff with both
Carousel and the baseline round-robin when gradually crashing nodes through
time. For roughly the first minute, all parties are honest; we then crash 1 party
(roughly) every minute until a maximum of 3 parties are crashed. The input
transaction rate is fixed to 10,000 tx/s throughout the experiment. Each data
point is the average over intervals of 10 s. For roughly the first minute (when all
parties are honest), both systems perform ideally, timely committing all input
transactions. Then, as expected, the baseline round-robin HotStuff suffers from
temporary throughput losses when a crashed leader is elected. Similarly, its
latency increases with the number of faulty parties and presents periods where no
transactions are committed at all. In contrast, HotStuff equipped with Carousel
delivers a stable throughput by quickly detecting and eliminating crashed lead-
ers. Its latency is barely affected by the faulty parties. This graph clearly illus-
trates how Carousel allows HotStuff to deliver a seamless client experience even
in the presence of faults.

Be Aware of Your Leaders 293

Fig. 3. Comparative performance of HotStuff equipped with Carousel and with the
baseline round-robin when gradually crashing nodes through time. The input trans-
actions rate is fixed to 10,000 tx/s; 1 party (up to a maximum of 3) crashes roughly
every minute. WAN measurements with 10 parties, 500 KB maximum block size and
512 B transaction size.

7 Conclusions

Leader-rotations mechanisms in chaining-based SMR protocols were previously
overlooked. Existing approaches degraded performance by keep electing faulty
leaders in crash-only executions. We captured the practical requirement of
leader-rotation mechanism via a Leader-utilization property, use it define the
Leader-Aware SMR problem, and described an algorithm that implements it.
That is, we presented a locally executed algorithm to rotate leaders that achieves
both: Leader-utilization in crash-only executions and Chain-quality in Byzan-
tine ones. We evaluated our mechanism in a Hotstuff-based open source system
and demonstrated drastic performance improvements in both throughput and
latency compared to the round-robin baseline.

294 S. Cohen et al.

Appendix A Correctness

Lemma 9. If choose leader returns the same honest party at all honest parties
for infinitely many rounds, then each honest party commits an unbounded number
of blocks.

Proof. If choose leader returns the same honest party at all honest parties
for infinitely many rounds, then there are infinitely many rounds after GST for
which it does so. Let r be such a round. By the Pacemaker guarantees, all honest
parties make LBR-synchronized(�) invocations with the same honest leader �
returned from the choose leader procedure. By the LBR Progress property,
they all return a certified block B and commit it at line 6.

Lemma 1. In a crash-only execution, let r be a round with k ≥ 2f + 1 LBR-
synchronized(�) invocations, such that � is alive at round r, then these k invoca-
tions return a certified B with round number r authored by �.

Proof. Let π1 be a crash-only execution, such that round r has k ≥ 2f + 1
LBR-synchronized(�) invocations with a leader � that is alive at round r. If � is
honest, then the LBR Progress property concludes the proof.

Otherwise, � is faulty and by definition it crashes in round > r. Let π2 be a
crash-only execution that is identical to π1 until � crashes, and the rest of π2 is
an arbitrary execution where the honest parties in π1 remain honest but � never
crashes and is also honest. Thus, in π2 the preconditions of the LBR Progress
property hold and all k LBR-synchronized(�) invocations return a certified B
with round number r authored by �.

An LBR(r, �) invocation by any party p completes within Δl time, and
starts immediately after Pacemaker’s new round(r) notification at p (because
choose leader is computed locally and takes 0 time). By Pacemaker’s guaran-
tees, no party receives new round(r+1) notification until Δp = Δl time after the
last new round(r+1) notification at some party, hence all LBR(r, �) invocations
must complete before any party receives a new round(r + 1) notification.

π1 and π2 are identical until � crashes, which must happen after � receives
its new round(r + 1) notification from the Pacemaker. This is because � is alive
in round r and follows the protocol, invoking LBR in round r+1 after receiving
the new round(r + 1) notification. As a result, π1 and π2 are indistinguishable
to all LBR(r, �) invocations, and the k LBR-synchronized(�) invocations in π1

return certified block B with round number r authored by � as in π2, as desired.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

2. Bano, S., et al.: Twins: Bft systems made robust. In: 25th International Conference
on Principles of Distributed Systems (OPODIS 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2022)

Be Aware of Your Leaders 295

3. Boneh, D., Drijvers, M., Neven, G.: The modified BLS multi-signature construction
(2018). http://www.crypto.stanford.edu/∼dabo/pubs/papers/BLSmultisig.html

4. Bravo, M., Chockler, G., Gotsman, A.: Making byzantine consensus live. In:
34th International Symposium on Distributed Computing (DISC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

5. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

6. Buterin, V., Griffith, V.: Casper the friendly finality gadget
7. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI 99, pp.

173–186 (1999)
8. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. In: Proceedings

of the 2nd ACM Conference on Advances in Financial Technologies, pp. 1–11 (2020)
9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-

chrony. J. ACM (JACM) 35(2), 288–323 (1988)
10. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis

and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

11. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 16

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:
Communications of the ACM, vol. 21, pp. 558–565 (1978)

13. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
14. Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukolić, M.: {XFT}: practical fault

tolerance beyond crashes. In: 12th USENIX Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 485–500 (2016)

15. Naor, O., Baudet, M., Malkhi, D., Spiegelman, A.: Cogsworth: byzantine View
Synchronization. Cryptoeconomic Syst. 1(2), 22 Oct 2021

16. Naor, O., Keidar. I.:. Expected linear round synchronization: the missing link for
linear byzantine smr. In: 34th International Symposium on Distributed Computing
(DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

17. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 14), pp. 305–319
(2014)

18. Sharov, A., Shraer, A., Merchant, A., Stokely, M.: Take me to your leader! online
optimization of distributed storage configurations. In: Proceedings of the VLDB
Endowment, vol. 8(12) (2015)

19. Spiegelman, A.: In search for an optimal authenticated byzantine agreement. In:
35th International Symposium on Distributed Computing (2021)

20. Spiegelman, A., Rinberg, A., Malkhi, D.: Ace: abstract consensus encapsulation for
liveness boosting of state machine replication. In: 24th International Conference
on Principles of Distributed Systems (OPODIS 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik

21. The Diem Team. Diembft v4: State machine replication in the diem
blockchain. http://www.developers.diem.com/docs/technical-papers/state-
machine-replication-paper.html

22. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 347–356 (2019)

http://www.crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-56877-1_16
http://www.developers.diem.com/docs/technical-papers/state-machine-replication-paper.html
http://www.developers.diem.com/docs/technical-papers/state-machine-replication-paper.html

Jolteon and Ditto: Network-Adaptive
Efficient Consensus with Asynchronous

Fallback

Rati Gelashvili1, Lefteris Kokoris-Kogias1,2, Alberto Sonnino1,
Alexander Spiegelman1, and Zhuolun Xiang1,3(B)

1 Novi Research, Novi, USA
{gelash,asonnino,sashaspiegelman}@fb.com

2 IST Austria, Klosterneuburg, Austria
ekokoris@ist.ac.at

3 University of Illinois at Urbana-Champaign, Champaign, USA
xiangzl@illinois.edu

Abstract. Existing committee-based Byzantine state machine replica-
tion (SMR) protocols, typically deployed in production blockchains, face
a clear trade-off: (1) they either achieve linear communication cost in the
steady state, but sacrifice liveness during periods of asynchrony, or (2)
they are robust (progress with probability one) but pay quadratic com-
munication cost. We believe this trade-off is unwarranted since existing
linear protocols still have asymptotic quadratic cost in the worst case.
We design Ditto, a Byzantine SMR protocol that enjoys the best of both
worlds: optimal communication on and off the steady state (linear and
quadratic, respectively) and progress guarantee under asynchrony and
DDoS attacks. We achieve this by replacing the view-synchronization of
partially synchronous protocols with an asynchronous fallback mecha-
nism at no extra asymptotic cost. Specifically, we start from HotStuff,
a state-of-the-art linear protocol, and gradually build Ditto. As a sepa-
rate contribution and an intermediate step, we design a 2-chain version of
HotStuff, Jolteon, which leverages a quadratic view-change mechanism
to reduce the latency of the standard 3-chain HotStuff. We implement
and experimentally evaluate all our systems to prove that breaking the
robustness-efficiency trade-off is in the realm of practicality.

1 Introduction

The popularity of blockchain protocols generated a surge in researching how to
increase the efficiency and robustness of consensus protocols used for agreement
(Table 1). On the efficiency front, the focus has been on decreasing the commu-
nication complexity in the steady state, first to quasilinear [19] and ultimately
to linear [15,32]. These protocols work in the eventually synchronous model
and require a leader to aggregate proofs. However, handling leader failures or
unexpected network delays requires quadratic communication and if the network
is asynchronous, there is no liveness guarantee. On the robustness side, recent
protocols [4,25,30] make progress by having each replica act as the leader and
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 296–315, 2022.
https://doi.org/10.1007/978-3-031-18283-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_14

Network-Adaptive Efficient Consensus with Asynchronous Fallback 297

Table 1. Theoretical comparison of our protocol implementations. For HotStuff and
our protocols, sync O(n) assumes synchrony and no faults. Message complexity mea-
sures the cost per committed block (that contains hash digests of transactions). Rounds
measure the block-commit latency. E(r) means r rounds in expectation.

Message complexity Rounds Liveness

HotStuff [32] sync O(n) 7 Not live if async
VABA [4] O(n2) E(16.5) Always live
Jolteon sync O(n) 5 Not live if async
Ditto sync O(n), async O(n2) sync 5, async E(10.5) Always live

decide on a leader retroactively. This requires quadratic communication even
under good network conditions when the adversary is strongly adaptive [2].

We believe that in practice, we need the best of both worlds. An efficient
steady state is beneficial for any production system, but for blockchains to sup-
port important (e.g. financial) infrastructure, robustness against asynchrony is
also key. First, unpredictable network delays are a common condition when run-
ning in a geo-distributed network environment, e.g. over the Internet. Second,
the possibility of targeted DDoS attacks on the leaders of leader-based protocols
motivates the leaderless nature of the asynchronous solutions. Thus, we ask:

Are there efficient blockchain systems that have a linear steady state and are
robust against asynchrony?

This is an important question, posed as early as [21], and studied from a
theoretical prospective [27,29], but the existing blockchain systems still forfeit
robustness for efficiency [15,19,32]. In this paper, we answer the above ques-
tion with the first practical system, Ditto, tailor-made to directly apply to the
prominent HotStuff/DiemBFT [31,32] family of protocols.

Contribution (i): Jolteon. As an intermediate step to build Ditto, we
first present Jolteon, a protocol that’s a hybrid of HotStuff [32] and classical
PBFT [8]. Jolteon abandons the linear view-change [32] of HotStuff/DiemBFT,
since the protocol anyway has a quadratic pacemaker [31]. In particular, Jolteon
preserves the linearity of HotStuff under good network conditions while reduc-
ing the steady state block-commit latency by 30% using a 2-chain commit rule.
This decrease in latency comes at the cost of a quadratic view-change. As the
pacemaker is already quadratic, as expected, this does not affect performance in
our experiments.

Contribution (ii): Ditto. We design Ditto, which combines the optimistic
(good network conditions) linear steady state with pessimistic (worst-case net-
work conditions) liveness guarantees with no extra asymptotic communication
cost. Ditto is based on the key observation that when there is asynchrony
or failures, the protocols with linear steady state still pay the quadratic cost,
same as state-of-the-art asynchronous protocols (e.g., VABA [4] or Dumbo [25])
that provide significantly more robustness. Specifically, Ditto replaces the pace-
maker of Jolteon/HotStuff/DiemBFT (a quadratic module that deals with view

298 R. Gelashvili et al.

synchronization) with an asynchronous fallback. In other words, instead of syn-
chronizing views that will anyway fail due to asynchrony or faults, we fall back to
an asynchronous protocol that guarantees progress. Furthermore, Ditto switches
between the steady state and the fallback without overhead (e.g. additional
rounds), and maintains pipelined/chained operations similar to HotStuff.

Contribution (iii): Implementation and Evaluation. Since Jolteon out-
performs the original HotStuff in every scenario, we use it as the basis for Ditto
design and implementation. As shown experimentally under good network con-
ditions both Jolteon and Ditto outperform HotStuff. Importantly, Ditto’s per-
formance is almost identical to Jolteon in this good case whereas during attack
Ditto performs almost identically to our optimized implementation of VABA [4].
In addition, the throughput of Ditto is 50% better than VABA in the steady state
and much better than HotStuff and Jolteon under faulty (dead) leaders (30–50%
better) or network instability (they drop to 0). Finally, after discussions with the
Diem Engineering team, they deployed Jolteon and are currently considering the
use of Ditto if attacks or instability of the network happen too often.

2 Preliminaries

We consider a permissioned system that consists of an adversary and n replicas
numbered 1, 2, . . . , n, where each replica has a public key certified by a public-
key infrastructure (PKI). The replicas have all-to-all reliable and authenticated
communication channels controlled by the adversary. We say a replica multicasts
a message if it sends the message to all replicas. We consider an adversary that
can adaptively corrupt up to f replicas, referred as Byzantine. The rest of the
replicas are called honest. The adversary controls the message delivery times,
but we assume messages among honest replicas are eventually delivered.

An execution of a protocol is synchronous if all message delays between hon-
est replicas are bounded by Δ; is asynchronous if they are unbounded; and is
partially synchronous if there is a global stabilization time (GST) after which
they are bounded by Δ [11]. Without loss of generality, we let n = 3f +1 where
f denotes the assumed upper bound on the number of Byzantine faults, which is
the optimal worst-case resilience bound for asynchrony, partial synchrony [11],
or asynchronous protocols with fast synchronous path [5].

Cryptographic Primitives and Assumptions. We assume standard digital
signature and public-key infrastructure (PKI), and use 〈m〉i to denote a message
m signed by replica i. For simplicity, we assume every message in the protocol
is signed by its sender. We also assume an adaptively secure threshold signature
scheme such as [22], where a set of signature shares for message m from t (the
threshold) distinct replicas can be combined into one threshold signature of
the same length for m. We use {m}i to denote a threshold signature share of a
message m signed by replica i. We also assume a collision-resistant cryptographic
hash function H(·) that can map an input of arbitrary size to an output of fixed
size. Any deterministic agreement protocol cannot tolerate even a single fault

Network-Adaptive Efficient Consensus with Asynchronous Fallback 299

under asynchrony due to FLP [12]. Our asynchronous fallback protocol generates
distributed randomness using the adaptively secure common coin of [23]: the
generated randomness of a view is the hash of the unique threshold signature
(of threshold f + 1) on the view number.

For simplicity of presentation, we assume the above cryptographic schemes
are ideal and a trusted dealer equips replicas with these cryptographic mate-
rials. The dealer assumption can be lifted using any asynchronous distributed
key generation protocol such as [3,9,10,20]. For brevity, we will also omit the
cryptographic object sizes (of signature and hash digest) in the complexity mea-
surement in this paper.

BFT SMR. A Byzantine fault-tolerant state machine replication protocol [1]
commits client transactions as a log akin to a single non-faulty server, and pro-
vides the following two guarantees:

– Safety. Honest replicas commit same transactions at the same log position.
– Liveness. Each transaction is eventually committed by all honest replicas.

We assume that each client transaction will be repeatedly proposed by hon-
est replicas until it is committed1. In other words, any transaction will not
be censored by Byzantine leaders forever. For most of the paper, we omit the
client from the discussion and focus on replicas. SMR protocols usually imple-
ment many instances of single-shot Byzantine agreement, but there are various
approaches for ordering. We focus on the chaining approach, used in HotStuff [32]
and DiemBFT [31], in which each proposal references the previous one and each
commit commits the entire prefix of the chain.

Terminology. We present some terminologies used throughout the paper.

– Round Number and View Number. The protocol proceeds in rounds and views
and each replica keeps track of the current round number and view number,
both initialized as 0. Each view can have several rounds and it is incremented
by 1 after each asynchronous fallback. Each round r has a designated leader
Lr that proposes a new block (defined below) of transactions in round r.

– Block Format. A block is formatted as B = [id, qc, r, v, txn] where qc is the
quorum certificate (defined below) of B’s parent block in the chain, r is the
round number of B, v is the view number of B, txn is the digest of a batch
of new transactions, and id = H(qc, r, v, txn) is the unique hash digest of
qc, r, v, txn. We will use B.x to denote the element x of B.

– Quorum Certificate. A quorum certificate (QC) of some block B is a threshold
signature of a message that includes B.id,B.r,B.v, produced by combining the
signature shares {B.id,B.r,B.v} from a quorum of n−f = 2f +1 replicas. We
say a block is certified if there exists a QC for the block. Blocks are chained by
QCs to form a blockchain, or block-tree if there are forks. The round and view

1 For example, clients can send their transactions to all replicas, and the leader can propose trans-
actions that are not yet included in the blockchain, in the order that they are submitted. With
rotating leaders of HotStuff/DiemBFT and random leader election of the asynchronous fallback,
the assumption can be guaranteed.

300 R. Gelashvili et al.

Fig. 1. DiemBFT in our terminology.

numbers of QC for block B are denoted by QC.r and QC.v, which equals B.r
and B.v, respectively. A QC or a block of view number v and round number r
has rank rank = (v, r), and QCs or blocks are compared lexicographically by
their rank (i.e. first by the view number, then by the round number). We use
qchigh to denote the highest ranked quorum certificate.

– Timeout Certificate. A timeout message of round r by a replica contains the
replica’s threshold signature share on r, and its qchigh. A timeout certificate
(TC) is formed by a quorum of n − f = 2f + 1 timeout messages, containing

Network-Adaptive Efficient Consensus with Asynchronous Fallback 301

a threshold signature on a round number r produced by combining 2f + 1
signature shares {r} from the timeout messages, and 2f +1 qchigh’s. A valid
TC should only contain qchigh with round numbers < TC.r, and this will be
checked implicitly when a replica receives a TC.

We say a message (block, QC or TC) is valid, if it follows the definition and
is properly signed.

Performance Metrics. We consider communication complexity per committed
block. For the theoretical analysis, we consider the standard latency metric called
block-commit latency, i.e., the number of rounds for all honest replicas to commit
a block since it is proposed by an honest leader (under synchrony and honest
leaders). For the empirical analysis, we measure the end-to-end latency, i.e., the
time to commit a transaction since it is sent by a client.

Description of DiemBFT. The DiemBFT protocol (or LibraBFT) [31] is a
production version of HotStuff [32] with a synchronizer implementation (Pace-
maker). We describe the full protocol of DiemBFT in Fig. 1, and give a brief
description below.

There are two components of DiemBFT, a Steady State protocol that makes
progress when the round leader is honest, and a Pacemaker protocol that
advances round numbers either due to the lack of progress or due to the current
round being completed.

– Propose. The leader Lr, upon entering round r, proposes a block B that
extends a block certified by the highest QC it knows about.

When receiving the first valid round-r block from Lr, any replica tries to advance
its current round number, and update its highest QC. It also checks for commit,
updates its locked round and votes for the block according to the following rules.

– 3-chain commit. A block can be committed if it is the first block among 3
adjacent certified blocks with consecutive round numbers.

– 2-chain lock. For any two adjacent certified blocks observed, update the locked
round number to be the highest of the first block’s round number.

– Voting. Replica votes for a block if the block has round and view number
same as the replica, and round number higher than last voted block’s round,
and contains a QC of round no less than replica’s locked round number. The
replica votes for B by sending a threshold signature share to the next leader.

Then, when the next leader Lr+1 receives 2f + 1 such votes, it forms a QC of
round r, enters round r + 1, proposes the block for that round, and the above
process is repeated.

– Quadratic view-synchronization. When the timer of some round r expires
before entering round r+1, the replica stops voting for round r and multicast
a timeout containing a threshold signature share for r and its highest QC.

302 R. Gelashvili et al.

When any replica receives 2f +1 such timeout messages, it forms a TC of round
r, enters round r + 1 and sends the TC to the (next) leader Lr+1. When any
replica receives a timeout or a TC, it tries to advance its current round number
given the high-QCs (in the timeout or TC) or the TC, updates its highest locked
round and its highest QC given the high-QCs, and checks if any block can be
committed using the same rules above.

3 Jolteon Design

In this section, we describe how we turn DiemBFT into Jolteon – a 2-chain
version of DiemBFT (commit via 2-chain rule). We present the full proto-
col of Jolteon in Fig. 2, and highlight the intuition and major changes com-
pared to DiemBFT below. As mentioned previously, the quadratic cost of view-
synchronization in leader-based consensus protocols, due to faulty leaders or
asynchronous periods, is inherent. While the linearity of HotStuff’s view-change
is a theoretical milestone, its practical importance is limited by this anyway
quadratic cost of synchronization after bad views.

Table 2. Theoretical comparison between DiemBFT and Jolteon.

Latency Steady state View-change View-synchronization

DiemBFT 7 messages Linear Linear Quadratic
Jolteon 5 messages Linear Quadratic Quadratic

With this insight in mind, Jolteon uses a quadratic view-change protocol
that allows a linear 2-chain commit rule in the steady state (see the Commit rule
in Fig. 2). The idea is inspired by PBFT [8] with each leader proving the safety of
its proposal. In the steady state each block extends the block from the previous
round and providing the QC of the parent is enough to prove safety, hence
the steady state protocol remains linear. However, after a bad round caused
by asynchrony or a bad leader, proving the safety of extending an older QC
requires the leader to prove that nothing more recent than the block of that QC
is committed. To prove this, the leader uses the TC formed for view-changing
the bad round. Recall that a TC for round r contains 2f +1 replicas’ qchigh sent
in timeout messages for round r. The leader attaches the TC to its proposal in
round r + 1 and extends the highest QC among the QCs in the TC.

When a replica gets a proposal B, it first tries to advance its round number,
then updates its qchigh with B.qc and checks the 2-chain commit rule for a
possible commit. Then, before voting, it verifies that at least one of the following
two conditions is satisfied:

– B.r = B.qc.r + 1 or;
– B.r = B.tc.r + 1 and

B.qc.r ≥ max{qchigh.r | qchigh ∈ B.tc}

Network-Adaptive Efficient Consensus with Asynchronous Fallback 303

In other words, either B contains the QC for the block of the previous round; or
it contains at least the highest QC among the 2f + 1 QCs in the attached TC,
which was formed to view-change the previous round.

Safety Intuition. If the first condition is satisfied then B directly extends the
block from the previous round. Since at most one QC can be formed in a round,
this means that no forks are possible, and voting for B is safe.

The second condition is more subtle. Note that by the 2-chain commit rule, if
a block B′ is committed, then there exists a certified block B′′ s.t. B′.round+1 =
B′′.round. That is, at least f +1 honest replicas vote to form the QC for B′′ and
thus set their qchigh to be the QC for block B′ (qcB′). By quorum intersection and
since replicas never decrease their qchigh, any future (higher round) TC contains
a qchigh that is at least as high as qcB′ . The second condition then guarantees
that honest replicas only vote for proposals that extend the committed block B′.
Due to lack of space, the full proof is given in the full version [14].

Fig. 2. Jolteon.

Efficiency. Table 2 compares the efficiency of DiemBFT and Jolteon from a
theoretical point of view. Both protocols have linear communication complex-
ity per round and per decision in steady state (under synchrony and honest
leaders), due to the leader-to-all communication pattern and the threshold sig-
nature scheme2. The complexity of the Pacemaker to synchronize views (view-
synchronization in Table 2), for both protocols, under asynchrony or failures is
quadratic due to the all-to-all timeout messages. The complexity of proposing
2 The implementation of DiemBFT does not use threshold signatures, but for the theoretical com-

parison here we consider a version of DiemBFT that does.

304 R. Gelashvili et al.

a block after a bad round that requires synchronization (view-change commu-
nication in Table 2) is linear for DiemBFT and quadratic for Jolteon. This is
because in DiemBFT such a proposal only includes qchigh, whereas in Jolteon
it includes a TC containing 2f +1 qchigh. The block-commit latency under syn-
chrony and honest leaders is 7Δ and 5Δ for DiemBFT and Jolteon, respectively,
due to the 3-chain (2-chain) commit. Each 1-chain requires two rounds (leader
proposing and replicas voting), plus the new leader multicast the last QC of the
chain that allows replicas to learn and commit the new block.

Limitations. During periods of asynchrony, or when facing DDoS attacks on the
leaders, both protocols have no liveness guarantees – the leaders’ blocks cannot
be received on time. As a result, replicas keep multicasting timeout messages and
advancing round numbers without certifying or committing any blocks. This is
fundamentally unavoidable [29]: communication complexity of any deterministic
partially synchronous Byzantine agreement protocol is unbounded before GST.

Fortunately, in the next section, we show that it is possible to boost the live-
ness guarantee of DiemBFT and Jolteon, by replacing the view-synchronization
mechanism with a fallback protocol that guarantees progress even under asyn-
chrony. Furthermore, the asynchronous fallback can be efficient. The protocol
we propose in the next section has quadratic communication cost for fallback,
which is the cost DiemBFT and Jolteon pay to synchronize views.

4 Ditto Design

To strengthen the liveness guarantees of existing partially synchronous BFT pro-
tocols such as DiemBFT [31] and Jolteon, we propose an Asynchronous Fall-
back protocol. It has quadratic communication complexity (same as Jolteon view-
change and the Pacemaker of DiemBFT) and always makes progress even under
asynchrony or DDoS attacks on the leader. We call the composition of Jolteon
with Asynchronous Fallback Ditto. Ditto has linear communication cost for the
synchronous path, quadratic cost for the asynchronous path, and preserves live-
ness robustly in asynchronous network conditions. The steady state protocol (sync.
path) is presented in Fig. 4, and the asynchronous fallback protocol (async. path)
is presented in Fig. 5. The proofs for Ditto can be found in the full version [14].

Fig. 3. The protocol intuition.

Protocol Intuition. Our solution
consists of a steady state protocol,
which is similar to that of Jolteon,
and an asynchronous fallback proto-
col, which replaces the view-change
of Jolteon. An illustration of our
protocol is shown in Fig. 3. The idea
behind our fallback protocol is that,
after entering the fallback, all repli-
cas will act as leaders to build their

Network-Adaptive Efficient Consensus with Asynchronous Fallback 305

fallback chains. Once enough fallback chains grow to a certain height, a random
leader election occurs to select one fallback chain, allowing the replicas to return
to steady state and continue with the chosen chain. It can be shown that with
constant probability, a fallback chain with enough blocks is selected, such that
at least one new block on this fallback chain is committed by all replicas.

Since this protocol has two paths, a synchronous fast path and an asyn-
chronous fallback path, it is critical to ensure safety and liveness when the pro-
tocol switches from one path to another. On a high level, our protocol ensures
safety by always following commit and voting rules from Jolteon. While in the
fallback path, the fallback chain selected by leader election is very similar to
a steady state chain, hence we let all replicas update their local states with
respect to the fallback chain when exiting the fallback, as if Jolteon had made
progress. As for liveness, our protocol guarantees that either the sync path (same
as Jolteon) makes progress, or enough replicas timeout the synchronous path
and enter the fallback, and the fallback always finishes.

Additional Terminology for Ditto

– Fallback-block and Fallback-chain. For the fallback, we define another type of
block named fallback-block (f-block), denoted as B. In contrast, the steady
state block is called the regular block. An f-block B adds two additional fields
to a regular block B, formatted as B = [B, height, proposer] where height ∈
{1, 2} is the position of the f-block in the fallback-chain and proposer is the
replica that proposes the block. We will use Bh,i to denote a height-h f-block
proposed by replica i. A fallback-chain (f-chain) consists of f-blocks.

– Fallback-QC. A fallback quorum certificate (f-QC) qc for an f-block Bh,i is a
threshold signature for the message (B.id, B.r, B.v, h, i), produced by com-
bining the signature shares {B.id, B.r, B.v, h, i} from a quorum of replicas
(n − f = 2f + 1 replicas). An f-block is certified if there exists an f-QC for
the f-block. f-QCs or f-blocks are first ranked by view numbers and then by
round numbers. In contrast, the QC of regular blocks is called regular QC.

– Fallback-TC. A fallback timeout certificate (f-TC) tc is a threshold signature
for a view number v, produced by combining the signature shares {v} from
a quorum of replicas (n − f = 2f + 1 replicas). f-TCs are ranked by views.

– Leader Election and Coin-QC. We use the adaptively secure common coin [23]
for leader election. For any given view, each replica signs the view number with
threshold signature as the coin share. Then any f +1 valid coin shares of the
same view from distinct replicas can form a unique threshold signature (called
coin-QC or qccoin) on the view number. The hash of the unique threshold
signature above is used as randomness to elect leader L among n replicas with
probability 1/n. The probability of the adversary to predict the outcome of
the election is at most 1/n + negl(k).

– Endorsed Fallback-QC and Endorsed Fallback-block. Once a replica has a
qccoin of view v that elects replica L as the fallback-chain leader, we say
any f-QC of view v by replica L is endorsed (by qccoin), and the f-block cer-
tified by the f-QC is also endorsed (by qccoin). Any endorsed f-QC is handled

306 R. Gelashvili et al.

Fig. 4. Steady State of Ditto

as a regular QC in any steps of the protocol such as Lock, Commit, Advance
Round. An endorsed f-QC ranks higher than any regular QC with the same
view number. As cryptographic evidence of endorsement, the first block in a
new view includes the coin-QC of the previous view.

Description of Steady State. The steady state protocol is given in Fig. 4.
Compared to Jolteon, the leader no longer provides TC in the block as the
proof of view-synchronization. Instead, it attaches the coin-QC formed by the
fallback of the previous view, which proves the fallback already finishes and
replicas should enter the new view. Each replica additionally keeps a boolean
value async to record if it is in the fallback, during which the replica will not
vote regular blocks. The 1-chain lock rule and 2-chain commit rule still apply,
but the two blocks in the 2-chain can be certified regular block or endorsed
fallback-block from the same view.

Network-Adaptive Efficient Consensus with Asynchronous Fallback 307

Fig. 5. Asynchronous Fallback of Ditto

Description of Asynchronous Fallback. Now we give a brief description
of the Asynchronous Fallback protocol (Fig. 5), which replaces the Pacemaker
protocol in the Jolteon protocol (Fig. 2). Just like in Jolteon, when the timer
expires, the replica tries to initiate the fallback (the equivalent of view-change)
by broadcasting a timeout message containing the highest QC and a signature
share of the current view number. When receiving or forming a fallback-TC
from 2f +1 timeout messages, the replica enters the fallback path: It updates its
current view number vcur, initializes the voted round number rvote[j] = 0 and
the voted height number hvote[j] = 0 for each replica j. Finally, the replica starts
building its fallback-chain by broadcasting the f-TC and proposing the first f-
block which extends the qchigh, has height 1, round number qchigh.r + 1, and
view number vcur. Any f-block (irrelevant of height) gets verified by all replicas
who vote on it (updating their voted round and height number for the fallback)
by sending signature shares back to the proposer of the f-block. Replicas build
their fallback-chain not by necessarily extending their own chain but by adopting
the first certified block of matching height they received (in vcur). This boosting
strategy guarantees that no honest replica’s chain is left behind in the middle
of the fallback, hence at least 2f +1 chains will reach height-2 and their leader-
replica will broadcast a height-2 f-QC.

308 R. Gelashvili et al.

Finally, when the replica receives 2f +1 height-2 f-QCs, it knows that 2f +1
f-chains are complete and starts the leader election by releasing a coin share
for the current view number. When f + 1 shares are released the leader of the
view is determined through the formation of a coin-QC qccoin. The fallback is
then terminated, and the replica updates async = false to exit the fallback
and enters the next view, acting as if the chain of the elected leader is the only
known chain. Looking at this chain the replica updates all relevant variables and
commits any blocks that have 2-chain support. Given that we waited for 2f + 1
long-enough chains, with 2/3 probability the replicas will commit a block.

5 Implementation

We implement Jolteon, Ditto, and 2-chain VABA on top of a high-performance
open-source implementation of HotStuff3 [32]. We selected this implementation
because it implements a Pacemaker [32], contrary to the implementation used in
the original HotStuff paper4. Additionally, it provides well-documented bench-
marking scripts to measure performance in various conditions, and it is close to
a production system (it provides real networking, cryptography, and persistent
storage). It is implemented in Rust, uses Tokio for asynchronous networking,
ed25519-dalek for elliptic curve based signatures, and data-structures are per-
sisted using RocksDB. It uses TCP to achieve reliable point-to-point channels,
necessary to correctly implement the distributed system abstractions. We addi-
tionally use threshold_crypto to implement random coins, Our implementa-
tions are between 5,000 and 7,000 LOC, and a further 2,000 LOC of unit tests.
We are open sourcing our implementations of Jolteon, and Ditto and 2-chain
VABA We are also open sourcing all AWS orchestration scripts, benchmarking
scripts, and measurements data to enable reproducible results5.

2-chain VABA: As a by-product of Ditto, we improve the block-commit
latency of VABA [4] from expected 16.5 rounds to expected 10.5 rounds, through
chaining and adopting the 2-chain commit rule. We refer to the improved ver-
sion as 2-chain VABA and the analysis can be found in the full version [14]. The
2-chain VABA implementation is obtained by disabling the synchronous path of
Ditto.

Ditto with Exponential Backoff: To improve the latency performance of
Ditto under long periods of asynchrony or leader attacks, we adopt an exponen-
tial backoff mechanism for the asynchronous fallback as follows. We say a replica
executes the asynchronous fallback consecutively x times if it only waits for the
timer to expire for the first fallback, and skips waiting for the timer and imme-
diately sends timeout for the rest x − 1 fallbacks. Initially, replicas only execute
3 https://github.com/asonnino/hotstuff/tree/3-chain.
4 https://github.com/hot-stuff/libhotstuff.
5 https://github.com/asonnino/hotstuff/tree/async.

https://github.com/asonnino/hotstuff/tree/3-chain
https://github.com/hot-stuff/libhotstuff
https://github.com/asonnino/hotstuff/tree/async

Network-Adaptive Efficient Consensus with Asynchronous Fallback 309

asynchronous fallback consecutively x = 1 time. However, if a replica, within
the timeout, does not receive from the steady state round-leader immediately
after the fallback, it will multiply x by a constant factor (5 in our experiments);
otherwise, the replica resets x = 1. For instance, during long periods of asyn-
chrony or leader attacks, the number of consecutively executed fallbacks would
be exponentially increasing (1, 5, 25, ...); while during periods of synchrony and
honest leaders, the number of consecutively executed fallbacks is always 1.

6 Evaluation

We evaluate the throughput and latency of our implementations through exper-
iments on Amazon Web Services (AWS). We particularly aim to demonstrate (i)
that Jolteon achieves the theoretically lower block-commit latency than 3-chain
DiemBFT under no contention and (ii) that the theoretically larger message size
during view-change does not impose a heavier burden, making Jolteon no slower
than 3-chain DiemBFT under faults (when the view-change happens frequently).
Additionally we aim to show that Ditto adapts to the network condition, mean-
ing that (iii) it behaves similarly to Jolteon when the network is synchronous
(with and without faults) and (iv) close to our faster version of VABA (2-chain)
when the adversary adaptively compromises the leader.

We deploy a testbed on AWS, using m5.8 × large instances across 5 dif-
ferent AWS regions: N. Virginia (us-east-1), N. California (us-west-1), Sydney
(apsoutheast-2), Stockholm (eu-north-1), and Tokyo (ap-northeast1). They pro-
vide 10Gbps of bandwidth, 32 virtual CPUs (16 physical core) on a 2.5GHz,
Intel Xeon Platinum 8175, and 128GB memory and run Ubuntu server 20.04.

Fig. 6. Evaluations of Jolteon and Ditto.

310 R. Gelashvili et al.

This type of machines are well in the price range of commodity servers and fairly
common for prototype testbeds of distributed systems.

We measure throughput and end-to-end latency as the performance metrics.
Throughput is computed as the average number of committed transactions per
second, and end-to-end latency measures the average time to commit a transac-
tion from the moment it is submitted by the client. Compared with the block-
commit latency in our theoretical analysis, end-to-end latency also includes the
queuing delay of the transaction when the clients’ input rate is high which helps
identify the capacity limit of our system.

In all our experiments, the transaction size is set to be 512B and the mem-
pool batch size is set to be 500KB. We deploy one benchmark client per node
submitting transactions at a fixed rate for a duration of 5min (to ensure we
report steady state performance). We set the timeout to be 5 seconds for exper-
iments with 10 and 20 nodes, and 10 seconds for 50 nodes, so that the timeout
is large enough for not triggering the pacemaker of Jolteon and fallback of
Ditto. In the following sections, each measurement in the graphs is the average
of 3 runs, and the error bars represent the standard deviation.

To find the peak performance of our system, we keep increasing the trans-
action submission rate of the clients until the capacity of the system is satu-
rated. As a result, the latency-throughput measurements in the figures share
similar patterns: the throughput of the system first increases with stable latency
(dominated by the network delay) before the saturation point; then the through-
put stops increasing and the latency increases significantly (due to high queu-
ing delay) as the transaction submission rate exceeds the system’s maximum
capacity.

Due to space limit, more evaluations can be found in the full version [14].

Fig. 7. Comparative throughput-latency performance for 3-chain DiemBFT (Hot-
Stuff), Jolteon, Ditto, and 2-chain VABA WAN measurements with 10, 20, or 50
replicas. No replica faults, 500 KB mempool batch size and 512 B transaction size.

Network-Adaptive Efficient Consensus with Asynchronous Fallback 311

6.1 Evaluation of Jolteon

In this section, we compare Jolteon with our baseline 3-chain DiemBFT imple-
mentation in two experiments. First in Fig. 6a we run both protocol with a
varying system size (10, 20, 50 nodes). In order to remove any noise from the
mempool, this graph does not show the end-to-end latency for clients but the
time it takes for a block to be committed. As the Figure illustrated Jolteon con-
sistently outperforms 3-chain DiemBFT by about 200−300ms of latency which is
around one round-trip across the world and both systems scale similarly. In Fig. 7
this effect is less visible due to the noise of the mempool (end-to-end latency of
around 2 secs), but Jolteon is still slightly faster than 3-chain DiemBFT in
most experiments.

6.2 Evaluation of Ditto

Synchronous and Fault-Free Executions. When all replicas are fault-free
and the network is synchronous, we compare the performances of the four proto-
col implementations in Fig. 7. As we can observe from the figure, the synchronous
path performance of Ditto is very close to that of Jolteon, when the quadratic
asynchronous fallback of Ditto and the quadratic pacemaker of Jolteon is not
triggered. On the other hand, the performance of 2-chain VABA is worse than
Jolteon and Ditto in this setting, due to its quadratic communication pattern
– instead of every replica receiving the block metadata and synchronizing the
transaction payload with only one leader per round in Jolteon and Ditto, in
VABA every replica will receive and synchronize with O(n) leaders per round.

Attacks on the Leaders. Figure 6b presents the measurement results. When
the eventual synchrony assumption does not hold, either due to DDoS attacks
on the leaders or adversarial delays on the leaders’ messages, 3-chain DiemBFT
and Jolteon will have no liveness, i.e., the throughput of the system is always
0. The reason is that whenever a replica becomes the leader for some round, its
proposal message is delayed and all other replicas will timeout for that round. On
the other hand, Ditto and 2-chain VABA are robust against such adversarial
delays and can make progress under asynchrony. The performance of the 2-
chain VABA protocol implementation is not affected much by delaying a certain
replica’s proposal. Therefore, we use it as a baseline to compare with our Ditto
protocol implementation. Our results, confirm our theoretical assumption as the
asynchronous fallback performance of Ditto is very close to that of 2-chain
VABA under 10 or 20 nodes, and slightly worse than 2-chain VABA under 50
nodes. This extra latency cost is due to the few timeouts that are triggered
during the exponential back-off.

Take Away. To conclude, there is little reason not to use Ditto as our exper-
iments confirm our theoretical bounds. Ditto adapts to the network behavior

312 R. Gelashvili et al.

and achieves almost optimal performance. The only system that sometimes out-
performs Ditto is 2-chain VABA during intermittent periods of asynchrony as
it does not pay the timeout cost of Ditto when deciding how to adapt. This,
however, comes at a significant cost when the network is good and in our opinion
legitimizes the superiority of Ditto when run over the Internet.

7 Related Work

Eventually Synchronous BFT. BFT SMR has been studied extensively in
the literature. A sequence of efforts [6–8,15,19,32] have been made to reduce
the communication cost of the BFT SMR protocols, with the state-of-the-art
being HotStuff [32] that has O(n) cost for decisions, a 3-chain commit latency
under synchrony and honest leaders, and O(n2) cost for view-synchronization.
Jolteon presents another step forward from HotStuff as we realize the co-design
of the pacemaker with the commit rules enables removing one round without
sacrificing the linear steady state. Two concurrent theoretical works propose a
2-chain variation of the HotStuff as well [17,28]. However, the work of Rambaud
et al. [28] relies on impractical cryptographic primitives to preserve a linear view-
change (assuming still a quadratic pacemaker) whereas neither protocol provides
a comprehensive evaluation to showcase that the extra view-change costs (which
also applies in [17]) does not cause significant overheads. Most importantly, both
protocols fail to realize the full power of 2-chain protocols missing the fact the
view-change can become robust and DDoS resilient.

Asynchronous BFT. Several recent proposals focus on improving the com-
munication complexity and latency, including HoneyBadgerBFT [26], VABA [4],
Dumbo-BFT [16], Dumbo-MVBA [25], ACE [30], Aleph [13], and DAG-
Rider [18]. The state-of-the-art protocols for asynchronous SMR have O(n2)
cost per decision [30], or amortized O(n) cost per decision after transaction
batching [13,16,18,25]. As mentioned in Sect. 5, our design and implementation
separate transaction dissemination (mempool) from the critical path of consen-
sus to fairly evaluate the consensus protocols.

BFT with Optimistic and Fallback Paths. To the best of our knowl-
edge, [21] is the first asynchronous BFT protocol with an efficient steady state.
Their asynchronous path has O(n3) communication cost while their steady state
has O(n2) cost per decision, which was later extended [27] to an amortized O(n).
A recent paper [29] further improved the communication complexity of asyn-
chronous path to O(n2) and the cost of the steady state to O(n). The latency of
these protocols is not optimized, e.g. latency of the protocol in [29] is O(n). More-
over, these papers are theoretical in nature and far from the realm of practical-
ity. Finally, a concurrent work named the Bolt-Dumbo Transformer (BDT) [24],
proposes a BFT SMR protocol with both synchronous and asynchronous paths
and provides implementation and evaluation. BDT takes the straightforward

Network-Adaptive Efficient Consensus with Asynchronous Fallback 313

solution of composing three separate consensus protocols as black boxes. Every
round starts with 1) a partially synchronous protocol (HotStuff), times-out the
leader and runs 2) an Asynchronous Binary Agreement in order to move on and
run 3) a fully asynchronous consensus protocol [16] as a fallback. Although BDT
achieves asymptotically optimal communication cost for both paths this is sim-
ply inherited by the already known to be optimal back boxes. On the theoretical
side, their design is beneficial since it provides a generally composable frame-
work, but this generality comes at a hefty practical cost. BDT has a latency
cost of 7 rounds (vs 5 of Ditto) at the fast path and of 45 rounds (vs 10.5 of
Ditto) at the fallback, making it questionably practical. Finally, not opening
the black-boxes stopped BDT from reducing the latency of HotStuff although it
also has a quadratic view-change.

8 Conclusion

We first design a 2-chain version of HotStuff, named Jolteon, which leverages
a quadratic view-change mechanism to reduce the latency of the standard 3-
chain HotStuff. We then present Ditto, a practical byzantine SMR protocol
that enjoys the best of both worlds: optimal communication on and off the
steady state (linear and quadratic, respectively) and progress guarantees under
the worst case asynchrony and DDoS attacks. We implement and experimentally
evaluate all our systems to validate our theoretical analysis.

Acknowledgments. We thank our shepherd Aniket Kate and the anonymous review-
ers at FC 2022 for their helpful feedback. This work is supported by the Novi team
at Facebook. We also thank the Novi Research and Engineering teams for valuable
feedback, and in particular Mathieu Baudet, Andrey Chursin, George Danezis, Zekun
Li, and Dahlia Malkhi for discussions that shaped this work.

References

1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple and
practical synchronous state machine replication. In: 2020 IEEE Symposium on
Security and Privacy (S&P), pp. 106–118 (2020)

2. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited.
In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 317–326 (2019)

3. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Reaching consensus for asynchronous distributed key generation. In: Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing (PODC),
pp. 363–373 (2021)

4. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asyn-
chronous byzantine agreement. In: Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC), pp. 337–346 (2019)

5. Blum, E., Katz, J., Loss, J.: Network-agnostic state machine replication. arXiv
preprint arXiv:2002.03437 (2020)

http://arxiv.org/abs/2002.03437

314 R. Gelashvili et al.

6. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

7. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

8. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
third symposium on Operating Systems Design and Implementation (NSDI), pp.
173–186 (1999)

9. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pp. 2705–2721 (2021)

10. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical asyn-
chronous distributed key generation. Cryptology ePrint Archive, Report 2021/1591
(2021)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

13. Gągol, A., Leśniak, D., Straszak, D., Aleph, M.: Efficient atomic broadcast in
asynchronous networks with byzantine nodes. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies (AFT), pp. 214–228 (2019)

14. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and ditto: network-adaptive efficient consensus with asynchronous fallback. arXiv
preprint arXiv:2106.10362 (2021)

15. Gueta, G.G., et al.: SBFT: a scalable and decentralized trust infrastructure. In:
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 568–580. IEEE (2019)

16. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: faster asynchronous BFT
protocols. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 803–818 (2020)

17. Jalalzai, M.M., Niu, J., Feng, C., Gai, F.: Fast-HotStuff: a fast and resilient hotstuff
protocol. arXiv preprint arXiv:2010.11454 (2020)

18. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is DAG. In:
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing
(PODC) (2021)

19. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In
25th Usenix Security Symposium, pp. 279–296 (2016)

20. Kogias, E.K., Malkhi, D., Spiegelman, A.: Asynchronous distributed key genera-
tion for computationally-secure randomness, consensus, and threshold signatures.
In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pp. 1751–1767 (2020)

21. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 204–215. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468_17

22. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. Theoret.
Comput. Sci. 645, 1–24 (2016)

23. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agree-
ment: the best of both worlds. Cryptology ePrint Archive, Report 2018/235 (2018)

http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/2106.10362
http://arxiv.org/abs/2010.11454
https://doi.org/10.1007/11523468_17
https://doi.org/10.1007/11523468_17

Network-Adaptive Efficient Consensus with Asynchronous Fallback 315

24. Lu, Y., Lu, Z., Tang, Q.: Bolt-Dumbo transformer: asynchronous consensus as fast
as pipelined BFT. arXiv preprint arXiv:2103.09425 (2021)

25. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-MVBA: optimal multi-valued vali-
dated asynchronous byzantine agreement, revisited. In: Proceedings of the 39th
Symposium on Principles of Distributed Computing (PODC), pp. 129–138 (2020)

26. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 31–42 (2016)

27. Ramasamy, H.G.V., Cachin, C.: Parsimonious asynchronous byzantine-fault-
tolerant atomic broadcast. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 88–102. Springer, Heidelberg (2006). https://
doi.org/10.1007/11795490_9

28. Rambaud, M.: Malicious security comes for free in consensus with leaders. IACR
Cryptology ePrint Archive, Report 2020/1480 (2020)

29. Spiegelman, A.: In search for an optimal authenticated byzantine agreement. In:
35th International Symposium on Distributed Computing (DISC) (2021)

30. Spiegelman, A., Rinberg, A.: ACE: abstract consensus encapsulation for liveness
boosting of state machine replication. In: 23rd International Conference on Prin-
ciples of Distributed Systems (OPODIS) (2020)

31. The DiemBFT Team: State Machine Replication in the diem blockchain (2021).
https://developers.diem.com/docs/technical-papers/state-machine-replication-
paper/

32. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 347–356 (2019)

http://arxiv.org/abs/2103.09425
https://doi.org/10.1007/11795490_9
https://doi.org/10.1007/11795490_9
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper/
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper/

Quick Order Fairness

Christian Cachin , Jovana Mićić(B) , Nathalie Steinhauer ,
and Luca Zanolini

Institute of Computer Science, University of Bern, Bern, Switzerland
{christian.cachin,jovana.micic,nathalie.steinhauer,

luca.zanolini}@unibe.ch

Abstract. Leader-based protocols for consensus, i.e., atomic broadcast,
allow some processes to unilaterally affect the final order of transactions.
This has become a problem for blockchain networks and decentralized
finance because it facilitates front-running and other attacks. To address
this, order fairness for payload messages has be en introduced recently
as a new safety property for atomic broadcast complementing traditional
agreement and liveness. We relate order fairness to the standard valid-
ity notions for consensus protocols and highlight some limitations with
the existing formalization. Based on this, we introduce a new differen-
tial order fairness property that fixes these issues. We also present the
quick order-fair atomic broadcast protocol that guarantees payload mes-
sage delivery in a differentially fair order and is much more efficient than
existing order-fair consensus protocols. It works for asynchronous and for
eventually synchronous networks with optimal resilience, tolerating cor-
ruptions of up to one third of the processes. Previous solutions required
there to be less than one fourth of faults. Furthermore, our protocol
incurs only quadratic cost, in terms of amortized message complexity
per delivered payload.

Keywords: Consensus · Atomic broadcast · Decentralized finance ·
Front-running attacks · Differential order fairness

1 Introduction

The nascent field of decentralized finance (or simply DeFi) suffers from insider
attacks: Malicious miners in permissionless blockchain networks or Byzantine
leaders in permissioned atomic broadcast protocols have the power of selecting
messages that go into the ledger and determining their final order. Selfish par-
ticipants may also insert their own, fraudulent transactions and thereby extract
value from the network and its innocent users. For instance, a decentralized
exchange can be exploited by front-running, where a genuine message m car-
rying an exchange transaction is sandwiched between a message mbefore and a
message mafter. If m buys a particular asset, the insider acquires it as well using
mbefore and sells it again with mafter, typically at a higher price. Such front-
running and other price-manipulation attacks represent a serious threat. They
are prohibited in traditional finance systems with centralized oversight but must
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 316–333, 2022.
https://doi.org/10.1007/978-3-031-18283-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_15&domain=pdf
http://orcid.org/0000-0001-8967-9213
http://orcid.org/0000-0002-5308-9155
http://orcid.org/0000-0001-5029-7656
http://orcid.org/0000-0003-4655-3172
https://doi.org/10.1007/978-3-031-18283-9_15

Quick Order Fairness 317

be prevented technically in DeFi. Daian et al. [7] have coined the term miner
extractable value (MEV) for the profit that can be gained from such arbitrage
opportunities.

The traditional properties of atomic broadcast, often somewhat imprecisely
called consensus as well, guarantee a total order: that all correct parties obtain
the same sequence of messages and that any message submitted to the network
by a client is delivered in a reasonable lapse of time. However, these properties
do not further constrain which order is chosen, and malicious parties in the
protocol may therefore manipulate the order or insert their own messages to
their benefit. Kelkar et al. [14] have recently introduced the new safety property
of order fairness that addresses this in the Byzantine model. Kursawe [15] and
Zhang et al. [19] have formalized this problem as well and found different ways
to tackle it, relying on somewhat stronger assumptions.

Intuitively, order fairness aims at ensuring that messages received by “many”
parties are scheduled and delivered earlier than messages received by “few” par-
ties. The Condorcet paradox demonstrates, however, that such preference votes
can easily lead to cycles even if the individual votes of majorities are not circular.
The solution offered through order fairness [14] may therefore output multiple
messages together as a set (or batch), such that there is no order among all mes-
sages in the same set. Kelkar et al. [14] name this property block-order fairness
but calling such a set a “block” may easily lead to confusion with the low-level
blocks in mining-based protocols.

In this paper, we investigate order fairness in networks with n processes of
which f are faulty, for asynchronous and eventually synchronous atomic broad-
cast. This covers the vast majority of relevant applications, since timed protocols
that assume synchronous clocks and permanently bounded message delays have
largely been abandoned in this space.

We first revisit the notion of block-order fairness [14]. In our interpretation,
this requires that when n correct processes broadcast two payload messages m
and m′, and γn of them broadcast m before m′ for some γ > 1

2 , then m′ is
not delivered by the protocol before m, although both messages may be output
together. This guarantee is difficult to achieve in practice because Kelkar et
al. [14] show that for the relevant values of γ approaching one half, the resilience
of any protocol decreases. Tolerating only a small number of faulty parties seems
prohibitive in realistic settings.

More importantly, we show that γ cannot be too close to 1
2 because γ ≥

1
2 + f

n−f is necessary for any protocol. This result follows from establishing
a link to the differential validity notion of consensus, formalized by Fitzi and
Garay [10]. Notice that block-order fairness is a relative measure. We are con-
vinced that a differential notion is better suited to address the problem. We,
therefore, overcome this inherent limitation of relative order fairness by intro-
ducing differential order fairness: When the number of correct processes that
broadcast a message m before a message m′ exceeds the number that broadcast
m′ before m by more than 2f + κ, for some κ ≥ 0, then the protocol must not
deliver m′ before m (but they may be delivered together). This notion takes into
account existing results on differential validity for consensus [10]. In particular,

318 C. Cachin et al.

when the difference between how many processes prefer one of m and m′ over
the other is smaller than 2f , then no protocol exists to deliver them in fair order.

Last but not least, we introduce a new protocol, called quick order-fair atomic
broadcast, that implements differential order fairness and is much more efficient
than the previously existing algorithms. In particular, it works with optimal
resilience n > 3f , requires O(n2) messages to deliver one payload on average and
needs O(n2L + n3λ) bits of communication, with payloads of up to L bits and
cryptographic λ-bit signatures. This holds for any order-fairness parameter κ.
For comparison, the asynchronous Aequitas protocol [14] has resilience n > 4f
or worse, depending on its order-fairness parameter, and needs O(n4) messages.

To summarize, the contributions of this paper are as follows:

– It illustrates some limitations that are inherent in the notion of block-order
fairness (Sect. 4.1).

– It introduces differential order fairness as a measure for defining fair order
in atomic broadcast protocols (Sect. 4.2).

– It presents the quick order-fair atomic broadcast protocol for differentially
order-fair Byzantine atomic broadcast with optimal resilience n > 3f
(Sect. 5).

– It demonstrates that the quick order-fairness protocol has quadratic amor-
tized message complexity, which is an n2-fold improvement compared to the
most efficient previous protocol for the same task (Sect. 6).

For lack of space, some material, proofs and detailed protocol analysis are omit-
ted here, but available in the full version [6].

2 Related Work

Over the last decades, extensive research efforts have explored the state-machine
replication problem. A large number of papers refer to this problem, but only a
few of them consider fairness in the order of delivered payload messages. In this
section, we review the related work on fairness.

Kelkar et al. [14] introduce a new property called transaction order-fairness
which prevents adversarial manipulation of the ordering of transactions, i.e.,
payload messages. They investigate assumptions needed for achieving this prop-
erty in a permissioned setting and formulate a new class of consensus protocols,
called Aequitas, that satisfy order fairness. A subsequent paper by Kelkar et
al. [12] extends this approach to a permissionless setting. Recently, Kelkar et
al. [13] presented another permissioned Byzantine atomic-broadcast protocol
called Themis. It introduces a new technique called deferred ordering, which
overcomes a liveness problem of the Aequitas protocols.

Kursawe [15] and Zhang et al. [19] have independently postulated alterna-
tive definitions of order fairness, called timed order fairness and ordering lin-
earizability, respectively. Both notions are strictly weaker than order fairness of
transactions, however [12]. Timed order fairness assumes that all processes have
access to synchronized local clocks; it can ensure that if all correct processes saw

Quick Order Fairness 319

message m to be ordered before m′, then m is scheduled and delivered before m′.
Similarly, ordering linearizability says that if the highest timestamp provided by
any correct process for a message m is lower than the lowest timestamp pro-
vided by any correct process for a message m′, then m will appear before m′ in
the output sequence. The implementation of ordering linearizability [19] uses a
median computation, which can easily be manipulated by faulty processes [12].

The Hashgraph [3] consensus protocol also claims to achieve fairness. It uses
gossip internally and all processes build a hash graph reflecting all of the gossip
events. However, there is no formal definition of fairness and the presentation fails
to recognize the impossibility of fair message-order resulting from the Condorcet
paradox. Kelkar et al. [14] also show an attack that allows a malicious process
to control the order of the messages delivered by Hashgraph.

A complementary measure to prevent message-reordering attacks relies on
threshold cryptography [5,8,18]: clients encrypt their input (payload) messages
under a key shared by the group of processes running the atomic broadcast pro-
tocol. They initially order the encrypted messages and subsequently collaborate
for decrypting them. Hence, their contents become known only after the mes-
sage order has been decided. For instance, the Helix protocol [2] implements this
approach and additionally exploits in-protocol randomness for two additional
goals: to elect the processes running the protocol from a larger group and to
determine which messages among all available ones must be included by a pro-
cess when proposing a block. This method provides resistance to censorship but
still permits some order-manipulation attacks.

3 System Model and Preliminaries

System Model. We model our system as a set of n processes P = {p1, . . . , pn},
also called parties, that communicate with each other. Processes interact with
each other by exchanging messages reliably in a network. A protocol for P con-
sists of a collection of programs with instructions for all processes. Processes
are computationally bounded and protocols may use cryptographic primitives,
in particular, digital signature schemes.

In our model, we distinguish two types of processes. Processes that follow
the protocol as expected are called correct. Contrary, the processes that deviate
from the protocol specification or may crash are called Byzantine.

We assume that there exists a low-level mechanism for sending messages
over reliable and authenticated point-to-point links between processes. In our
protocol implementation, we describe this as “sending a message” and “receiving
a message”. Additionally, we assume first-in first-out (FIFO) ordering for the
links. This ensures that messages broadcast by the same correct process are
delivered in the order in which they were sent by a correct recipient.

This work considers two models, asynchrony and partial synchrony. Together
they cover most scenarios used today in the context of secure distributed com-
puting. In an asynchronous network, no physical clock is available to any process
and the delivery of messages may be delayed arbitrarily. In such networks, it is

320 C. Cachin et al.

only guaranteed that a message sent by a correct process will eventually arrive at
its destination. One can define asynchronous time based on logical clocks. A par-
tially synchronous network [9] operates asynchronously until some point in time
(not known to the processes), after which it becomes stable. This means that
processing times and message delays are bounded afterwards, but the maximal
delays are not known to the protocol.

Broadcast and Consensus Primitives. The following primitives are important
for our work: Byzantine FIFO consistent broadcast channel (BCCH), validated
Byzantine consensus (VBC) and atomic broadcast.

BCCH allows the processes to deliver multiple payloads and ensures FIFO
delivery and consistency despite Byzantine senders [4, Sect. 3.12]. BCCH pro-
vides two events: bcch-broadcast(m) and bcch-deliver(pj , l,m).

Definition 1 (Byzantine FIFO Consistent Broadcast Channel). A
Byzantine FIFO consistent broadcast channel satisfies the following properties:

Validity: If a correct process broadcasts a message m, then every correct process
eventually delivers m.

No Duplication: For every process pj and label l, every correct process delivers
at most one message with label l and sender pj.

Integrity: If some correct process delivers a message m with sender pj and
process pj is correct, then m was previously broadcast by pj.

Consistency: If some correct process delivers a message m with label l and
sender pj, and another correct process delivers a message m′ with label l and
sender pj, then m = m′.

FIFO Delivery: If a correct process broadcasts some message m before it broad-
casts a message m′, then no correct process delivers m′ unless it has already
delivered m.

VBC [5] defines an external validity condition. It requires that the consen-
sus value is legal according to a global, efficiently computable predicate P ,
known to all processes. A consensus primitive is accessed through the events
vbc-propose(v) and vbc-decide(v).

Definition 2 (Validated Byzantine Consensus). A protocol solves vali-
dated Byzantine consensus with validity predicate P if it satisfies the following
conditions:

Termination: Every correct process eventually decides some value.
Integrity: No correct process decides twice.
Agreement: No two correct processes decide differently.
External validity: Every correct process only decides a value v such that

P (v) = true. Moreover, if all processes are correct and propose v, then no
correct process decides a value different from v.

Atomic broadcast ensures that all processes deliver the same messages and
that all messages are output in the same order. This is equivalent to the processes

Quick Order Fairness 321

agreeing on one sequence of messages that they deliver. Processes may broadcast
a message m by invoking a-broadcast(m), and the protocol outputs messages
through a-deliver(m) events.

Definition 3 (Atomic Broadcast). A protocol for atomic broadcast satisfies
the following properties:

Validity: If a correct process a-broadcasts a message m, then every correct
process eventually a-delivers m.

No Duplication: No message is a-delivered more than once.
Agreement: If a message m is a-delivered by some correct process, then m is

eventually a-delivered by every correct process.
Total Order: Let m and m′ be two messages such that pi and pj are correct

processes that a-deliver m and m′. If pi a-delivers m before m′, then pj also
a-delivers m before m′.

4 Revisiting Order Fairness

4.1 Limitations

Defining a fair order for atomic broadcast in asynchronous networks is not
straightforward since the processes might locally receive messages for broadcast-
ing in different orders. We assume here that a correct process receives a payload
to be broadcast (e.g., from a client) at the same time when it a-broadcasts it. If a
process broadcasts a payload message m before a payload message m′, according
to its local order, we denote this by m ≺ m′.

Furthermore, we abandon the validity property above in the context of atomic
broadcast with order fairness and assume now that every payload message is a-
broadcast by all correct processes. This corresponds to the implicit assumption
made for deploying order-fair broadcast.

Even if all processes are correct, it can be impossible to define a fair order
among all messages. This is shown by a result from social science, known as
the Condorcet paradox, which states that there exist situations that lead to non-
transitive collective voting preferences even if the individual preferences are tran-
sitive. Kelkar et al. [14] apply this to atomic broadcast and show that delivering
messages in a fair order is not always possible. Their example considers three
correct processes p1, p2, and p3 that receive three payload messages ma, mb,
and mc. While p1 receives these payload messages in the order ma ≺ mb ≺ mc,
process p2 receives them as mb ≺ mc ≺ ma and p3 in the order mc ≺ ma ≺ mb.
Obviously, a majority of the processes received ma before mb, mb before mc, but
also mc before ma, leading to a cyclic order. Consequently, a fair order cannot
be specified even with only correct processes.

One way to handle situations with such cycles in the order is presented by
Kelkar et al. [14] with block-order fairness: their protocol delivers a “block” of
payload messages at once. Typically, a block will contain those payloads that
are involved in a cyclic order. Their notion requires that if sufficiently many

322 C. Cachin et al.

processes receive a payload m before another payload m′, then no correct process
delivers m after m′, but they may both appear in the same block. Even though
the order among the messages within a block remains unspecified, the notion of
block-order fairness respects a fair order up to this limit.

Kelkar et al. [14] specify “sufficiently many” as a γ-fraction of all processes,
where γ represents an order-fairness parameter such that 1

2 < γ ≤ 1. More
precisely, block-order fairness considers a number of processes η that all receive
(and broadcast) two payload messages m and m′. Block-order fairness for atomic
broadcast requires that whenever there are at least γη processes that receive m
before m′, then no correct process delivers m after m′ (but they may deliver m
and m′ in the same block).

Kelkar et al. [14] explicitly count faulty processes for their definition. Notice
that this immediately leads to problems: If γη < 2f , for instance, the notion
relies on a majority of faulty processes, but no guarantees are possible in this
case. Therefore, we only count on events occurring at correct processes here
and define a block-order fairness parameter γ to denote the fraction of correct
processes that receive one message before the other.

Moreover, we assume w.l.o.g. that all correct processes eventually broadcast
every payload, even if this is initially input by a single process only. This sim-
plifies the treatment compared to original block-order fairness, which considers
only processes that broadcast both payload messages, m and m′ [14]. Our sim-
plification means that a correct process that has received only one payload will
receive the other payload as well later. This process should eventually include
also the second payload for establishing a fair order. It corresponds to how
atomic broadcast is used in practice; hence, we set η = n − f . In asynchronous
networks, furthermore, one has to respect f additional correct processes that
may be delayed. Their absence reduces the strength of the formal notion of
block-order fairness in asynchronous networks even more.

In the following, we discuss the range of achievable values for γ. Since we
focus on models that allow asynchrony, we assume n > 3f throughout this work.
Fundamental results on validity notions for Byzantine consensus in asynchronous
networks have been obtained by Fitzi and Garay [10]. Recall that a consensus
protocol satisfies termination, integrity, and agreement according to Definition 2.
Standard consensus additionally satisfies:

Validity: If all correct processes propose v, then all correct processes decide v.

Notice that this leaves the decision value completely open if only one correct
process proposes something different. In their notion of strong consensus, how-
ever, the values proposed by correct processes must be better respected, under
more circumstances:

Strong Validity: If a correct process decides v, then some correct process has
proposed v.

Unfortunately, strong consensus is not suitable for practical purposes because
Fitzi and Garay [10, Thm. 8] also show that if the proposal values are taken from

Quick Order Fairness 323

a domain V, then the resilience depends on |V|. In particular, strong consensus
is only possible if n > |V|f .

Related to this, they also introduce δ-differential consensus, which respects
how many times a value is proposed by the correct processes. This notion ensures,
in short, that the decision value has been proposed by “sufficiently many” correct
processes compared to how many processes proposed some different value. More
precisely, for an execution of consensus and any value v ∈ V, let c(v) denote the
number of correct processes that propose v:

δ-Differential Validity: If a correct process decides v, then every other value w
proposed by some correct process satisfies c(w) ≤ c(v) + δ.

To summarize, whereas the standard notion of Byzantine consensus requires that
all correct processes start with the same value in order to decide on one of the
correct processes’ input, strong consensus achieves this in any case. It requires
that the decision value has been proposed by some correct process. However, it
does not connect the decision value to how many correct processes have proposed
it. Consequently, strong consensus may decide a value proposed by just one
correct process. Differential consensus, finally, makes the initial plurality of the
decision value explicit. For δ = 0, in particular, the decision value must be one
of the proposed values that is most common among the correct processes. More
importantly, differential validity can be achieved under the usual assumption
that n > 3f .

We now give another characterization of δ-differential validity. For a par-
ticular execution of some (asynchronous) Byzantine consensus protocol, let
v∗ be (one of) the value(s) proposed most often by correct processes, i.e.,
v∗ = arg maxv c(v).

Lemma 1. A Byzantine consensus protocol satisfies δ-differential validity if and
only if in every one of its executions, it never decides a value w with c(w) <
c(v∗) − δ.

For consensus with a binary domain V = {0, 1}, this means that a consensus
protocol satisfies δ-differential validity if and only if in every one of its executions
with, say, c(0) > c(1) + δ, every correct process decides 0.

No asynchronous consensus algorithm for agreeing on the value proposed
by a simple majority of correct processes exists, however. Fitzi and Garay [10,
Thm. 11] prove that δ-differential consensus in asynchronous networks is not
possible for δ < 2f :

Theorem 1 ([10]). In an asynchronous network, δ-differential consensus is
achievable only if δ ≥ 2f .

The above discussion already hints at issues with achieving fair order in asyn-
chronous systems. Recall that Kelkar et al. [14] present atomic broadcast pro-
tocols with block-order fairness for the asynchronous setting with order-fairness
parameter γ (whose definition includes faulty processes). The corruption bound
is stated as n > 4f

2γ−1 . For γ = 1, which ensures fairness only in the most

324 C. Cachin et al.

clear cases, there are n > 4f processes required. For values of γ close to 1
2 , the

condition becomes prohibitive for practical solutions. In fact, even when using
our interpretation, γ cannot be too close to 1

2 , as the following result shows. It
rules out the existence of γ-block-order-fair atomic broadcast in asynchronous
or eventually synchronous networks for γ < 1

2 + f
n−f .

Theorem 2. In an asynchronous network with n processes and f faults, imple-
menting atomic broadcast with γ-fair block order is not possible unless γ ≥
1
2 + f

n−f .

Proof. Towards a contradiction, suppose there is an atomic broadcast protocol
ensuring γ-fair block order with 1

2 < γ < 1
2 + f

n−f . We will transform this into
a differential consensus protocol that violates Theorem 1.

The consensus protocol works like this. All processes initialize the atomic
broadcast protocol. Upon propose(v) with some value v, a process simply a-
broadcasts v. When the first value v′ is a-delivered by atomic broadcast to a
process, the process executes decide(v′) and terminates.

Consider any execution of this protocol such that all correct processes propose
one of two values, m or m′. Suppose w.l.o.g. that c(m) = γ(n − f) and c(m′) =
(1−γ)(n−f), i.e., m is proposed c(m) times by correct processes and more often
than m′, since γ > 1

2 . It follows that γ(n − f) correct processes a-broadcast m
before m′ and (1 − γ)(n − f) correct processes a-broadcast m′ before m.

According to the properties of atomic broadcast all correct processes a-deliver
the same value first in every execution. Moreover, the atomic broadcast protocol
a-delivers m before m′ by the γ-fair block order property. This implies that the
consensus protocol decides m in every execution and never m′. Since no further
restrictions are placed on m and on m′, this consensus protocol actually ensures
δ-differential validity for some δ < c(m) − c(m′) by Lemma 1.

However, the c(m) and c(m′) satisfy, respectively,

c(m) = γ(n − f) <
(

1
2 + f

n−f

)
(n − f) = n+f

2

c(m′) = (1 − γ)(n − f) >
(
1 − 1

2 − f
n−f

)
(n − f) = n−3f

2

and, therefore, δ < c(m) − c(m′) < n+f
2 − n−3f

2 = 2f . But δ-differential asyn-
chronous consensus is only possible when δ ≥ 2f , a contradiction.

4.2 Differential Order-Fairness

The limitations discussed above have an influence on order fairness. The con-
dition on δ to achieve δ-differential consensus directly impacts any measure of
fairness. It becomes clear that a relative notion for block-order fairness, defined
through a fraction like γ, may not be expressive enough.

We now start to define our notion of order-fair atomic broadcast ; it has almost
the same interface as regular atomic broadcast. The primitive is accessed with
of-broadcast(m) for broadcasting a payload message m and it outputs payload
messages through of-deliver(M) events, where M is a set of payloads delivered

Quick Order Fairness 325

at the same time; M corresponds the block of block-order fairness. We want
to count the number of correct processes that of-broadcast a message m before
another message m′ and introduce a function b : M × M → N for all m and
m′ that were ever of-broadcast by correct processes. The value b(m,m′) denotes
the number of correct processes that of-broadcast m before m′ in an execution.
As above we assume w.l.o.g. that a correct process will of-broadcast m and m′

eventually and that, therefore, b(m,m′) + b(m′,m) = n − f .
Can we achieve that if b(m,m′) > b(m′,m), i.e., when there are more correct

processes that of-broadcast message m before m′ than correct processes that
of-broadcast m′ before m, then no correct process will of-deliver m′ before m?
Using a reduction from δ-differential consensus, as in the previous result, we can
show that this condition is too weak. The proof is provided in the full version [6].

Theorem 3. Consider an atomic broadcast protocol that satisfies the following
notion of order fairness for some μ ≥ 0:

Weak Differential Order Fairness: For any m and m′, if b(m,m′) >
b(m′,m) + μ, then no correct process a-delivers m′ before m.

Then it must hold μ ≥ 2f .

On the basis of this result, we now formulate our notion of κ-differentially
order-fair atomic broadcast, using a fairness parameter κ ≥ 0 to express the
strength of the fairness. Smaller values of κ ensure stronger fairness in the sense
of how large the majority of processes that of-broadcast some m before m′ must
be to ensure that m will be of-delivered before m′ and in a fair order.

Recall that throughout this work, we assume that if one correct process
of-broadcasts some payload m, then every correct process eventually also of-
broadcasts m. For reasons that are discussed in the full version [6], we use a
weaker formal notion of validity, which considers executions with only correct
processes.

Definition 4 (κ-Differentially Order-Fair Atomic Broadcast). A pro-
tocol for κ-differentially order-fair atomic broadcast satisfies the properties no
duplication, agreement and total order of atomic broadcast and additionally:

Weak Validity: If all processes are correct and of-broadcast a finite number
of messages, then every correct process eventually of-delivers all of these of-
broadcast messages.

κ-Differential Order Fairness: If b(m,m′) > b(m′,m)+2f+κ, then no correct
process of-delivers m′ before m.

Compared to the above notion of weak differential order fairness, we have κ =
μ− 2f . We show in the next section how to implement κ-differentially order-fair
atomic broadcast.

326 C. Cachin et al.

5 Quick Order-Fair Atomic Broadcast Protocol

5.1 Overview

The protocol concurrently runs a Byzantine FIFO consistent broadcast channel
(BCCH) and proceeds in rounds of consensus. BCCH allows processes to deliver
multiple messages consistently. An incoming of-broadcast event with a payload
message m triggers BCCH and bcch -broadcasts m to the network. Additionally,
every process keeps a local vector clock that counts the payloads that have been
bcch -delivered from each sending process. Every process also maintains an array
of lists msgs such that msgs[i] records all bcch -delivered payloads from pi.

When a process bcch -delivers the payload message m, it increments the
corresponding vector-clock entry and appends m to the appropriate list in msgs.
As soon as sufficiently many new payloads are found in msgs, a new round starts.
Each process signs its vector clock and sends it to all others. The received vector
clocks are collected in a matrix, and once n− f valid vector clocks are recorded,
a new validated Byzantine consensus (VBC) instance is triggered. The process
proposes the matrix and the signatures for consensus, and VBC decides on a
common matrix with valid signatures. This matrix defines a cut, which is a vector
of indices, with one index per process, such that the index for pj determines an
entry in msgs[j] up to which payload messages are considered for creating the
fair order in the round. It may be that the index points to messages that a
process pi does not store in msgs[j] because they have not been bcch-delivered
yet. When the process detects such a missing payload, it asks all other processes
to send the missing payload directly and in a verifiable way, such that every
process will store all payloads up to the cut in msgs.

Once all processes received the payloads up to the cut, the algorithm starts
to build a graph that represents the dependencies among messages that must be
respected for a fair order. This graph resembles the one used in Aequitas [14],
but its semantics and implementation differ. The vertices in the graph here are
all new payload messages defined by the cut and an edge (m,m′) indicates that
m should at most be of-delivered before m′.

The graph results from two steps. In the first step, the process creates a
vertex for every payload message that appears in a distinct lists in msgs and it
is not yet of-delivered. In the second step, the algorithm builds a matrix M such
that M [m][m′] counts how many times m appears before m′ in msgs (up to the
cut). M [m][m′] can be interpreted as votes, counting how many processes want
to order m before m′. Notice that entries of M exist only for m and m′ where
at least one of M [m][m′] and M [m′][m] is non-zero.

If the difference between entries M [m][m′] and M [m′][m] is large enough,
then the protocol adds a directed edge (m,m′) to the graph. The edge indicates
that m′ must not be of-delivered before m. More precisely, assuming that mes-
sages m and m′ have been observed by at least n − f processes, such an edge is
added for all m and m′ with M [m][m′] > M [m′][m] − f + κ. The condition is
explained through the following result.

Lemma 2. If b(m,m′) > b(m′,m)+2f +κ, then M [m][m′] > M [m′][m]−f +κ.

Quick Order Fairness 327

In the discussion so far, we have assumed that the two messages m and m′

were received by at least n − f processes. Observe that every process can only
contribute with 1 to either M [m][m′] or to M [m′][m], but not to both. However,
it may occur that only a few processes receive m and m′ before the cut, which
implies that M [m][m′] may be very small, for example. But that count might
actually grow later and take on values up to n − f − M [m′][m]. For this reason,
we extend the condition derived from Lemma 2 in the algorithm as follows: if
n − f − M [m′][m] > M [m′][m] − f + κ (which implies that M [m′][m] is small,
i.e., M [m′][m] < n−κ

2), we also add add an edge between m and m′. In summary,
then, the algorithm adds an edge from m to m′ whenever max

{
M [m][m′], n −

f − M [m′][m]
}

> M [m′][m] − f + κ. Creating the graph in this manner leads
to a directed graph that represents constraints to be respected by a fair order.
Notice that two messages may be connected by edges in both directions when
the difference is small and κ < f , i.e., there may be a cycle (m,m′) and (m′,m).
This means that the difference between the number of processes voting for one
or the other order is too small to decide on a fair order. Longer cycles may
also exist. All payload messages with circular dependencies among them will
be of-delivered together as a set. For deriving this information, the algorithm
repeatedly detects all strongly connected components in the graph and collapses
them to a vertex. In other words, any two vertices m and m′ are merged when
there exists a path from m to m′ and a path from m′ to m. This technique also
handles cases like those derived from the Condorcet paradox.

Finally, with the help of the collapsed graph, all payload messages defined by
the cut are of-delivered in a fair order: First, all vertices without any incoming
edges are selected. Secondly, these vertices are sorted in a deterministic way
and the corresponding payloads are of-delivered one after the other. Then the
processed vertices are removed from the graph and another iteration through
the graph starts. As soon as there are no vertices left, i.e., all payload messages
are of-delivered, the protocol proceeds to the next round.

Note that cycles may also extend beyond the cut, as shown by Kelkar et
al. [13]. Therefore, the algorithm holds back payload messages and does not of-
deliver them while they may still become part of a longer cycle. This is ensured by
counting how many times a message appears in msgs up to the cut. In particular,
let C[m] count this number for a message m. We require that any message is
only of-delivered when C[m] ≥ n+f−κ

2 , i.e., after m appears in msgs often enough
such that it cannot become part of a cycle later or already be in a cycle that
will grow later, e.g., through payloads that arrive after the cut.

5.2 Implementation

Algorithm 1–2 shows the quick order-fair atomic broadcast protocol for a pro-
cess pi. The protocol proceeds in rounds and maintains a round counter r (L1)
and uses a boolean variable inround , which indicates whether the consensus
phase of a round is executing (L2).

Every process maintains two hash maps: msgs (L3) and vc (L4). The process
identifiers serve as keys in both hash maps. Hash map msgs contains ordered

328 C. Cachin et al.

lists of bcch-delivered payload from each process in the system. Variable vc is
a vector clock counting how many payload messages were bcch-delivered from
each process.

Rounds. In each round, a matrix L (L5) and a list Σ (L6) are constructed as
inputs for consensus. The matrix L will consist of vector clocks from the processes
and Σ will contain the signatures of the processes. Additionally, every process
maintains a list of values called cut (L7) that are calculated in every round.
This cut represents an index for every list in msgs to determine the payload
to be used for creating the fair order. Initially, all values are zero. Finally, all
of-delivered payload messages are included in a set delivered (L8), to prevent a
repeated delivery in future rounds.

The protocol starts when a client submits a payload message m using an
of-broadcast(m) event. BCCH then broadcasts m to all processes in the network
(L11). When m with label l from process pj is bcch -delivered (L12), the vector
clock vc for process pj is incremented. The attached label l is not used by the
algorithm and only serves to define that all correct processes bcch -deliver the
same payload following Definition 1. Additionally, payload m is appended to the
list msgs[j] using an operation append(m) (L14). When the length of pj ’s list in
msgs exceeds the cut value for pj , new payloads may have arrived that should
be ordered (L15). This tells the protocol to initiate a new round. This condition
can be adapted as described in the remarks at the end of this section.

The first step of round r is to set the flag inround . Secondly, the protocol
digitally signs the vector clock vc and obtains a signature σ. The values r, σ, and
vc are then sent in a status message to all processes (L16–L18). When process pi

receives a status message from pj , it validates the contained signature σ′ using
verify(j, vc′, σ′) (L20). An additional security check is made by comparing the
locally stored round number r with the round number r′ from the message. If
both conditions hold, the vector clock vc′ is stored as row j in matrix L (L21)
and σ′ is stored in list Σ at index j (L22).

Defining a Cut. As soon as pi has received n−f valid status-messages (L23), it
invokes consensus (VBC, L24) for the round through vbc-propose with proposal
(L,Σ). The predicate of VBC checks that a proposal consists of a matrix L and a
vector Σ such that for at least n−f values j, the entry Σ[j] is a valid signature on
row j of L. When the VBC protocol subsequently decides, it outputs a common
matrix L′ of vector clocks and a list Σ′ of signatures (L26). The process then
uses L′ to calculate the cut, where cut[j] is the largest value s such that at
least f + 1 elements in column j in L′ are bigger or equal than s (L29). In other
words, cut[j] represents how many payload messages from pj were bcch-delivered
by enough processes. This value is used as index into msgs[j] to determine the
payloads that will be considered for creating the order in this round.

The algorithm then makes sure that all processes will hold at least all those
payloads in msgs that are defined by cut . Each process detects missing payload
messages from sender pj from any difference between vc[j] and cut[j] (L31); if
there are any, the process broadcasts a missing-message to all others. When

Quick Order Fairness 329

another process receives such a request from pj and already has the requested
payloads in msgs, it extracts them into a variable resend (L36). More precisely,
it extracts a proof from the BCCH primitive with which any other process can
verify that the payload from this particular sender is genuine. This is done by
invoking bcch-create-proof(resend) (L37); the messages and the proof are then
sent in a resend-message to the requesting process pj (L38).

When process pi receives a resend-message with a missing payload from pk,
it verifies the provided proof s′ from the message by invoking bcch-verify-proof(s′)
function (L41). If the proof is valid, pi extracts (L43) the payload messages
through bcch-get-messages(s′), appends them to msgs[k], and increments vc[k]
accordingly. The process repeats this until msgs contains all payloads included
in the cut.

Ordering Messages. At this point, every process stores all payloads msgs that
have been bcch-delivered up to the cut. The remaining operations of the round
are deterministic and executed by all processes independently. The next step
is to construct the directed dependency graph G that expresses the constraints
on the fair order of the payload messages. Vertices (V) in G represent payload
messages that may be of-delivered and edges (E) in G express constraints on
the order among these payloads. First, all messages within the cut that are not
yet delivered are added as vertices to the set V (L 45).

Then, for each pair of messages m and m′ in V , the algorithm constructs
M (L49) such that M [m][m′] counts how many times a payload m appears
before payload m′ in the cut. In the same loop, the algorithm counts how
many times message m appears within the cut and stores this result in array
C (L50). Finally, all entries M [m][m′] and M [m′][m] are compared and if con-
dition max{M [m][m′], n − f − M [m′][m]} > M [m′][m] − f + κ holds, then a
directed edge from m to m′ is added (L51). This edge indicates that m must not
be ordered after m′, i.e., that m is of-delivered before m′ or together with m′.

Any payloads that cannot be ordered with respect to each other now corre-
spond to strongly connected components of G. A strongly connected component
is a subgraph, which for each pair of vertices m and m′ contains a path from m
to m′ and one from m′ to m. In the next step, a graph H = (W,F) is created
and all strongly connected components in H are repeatedly collapsed until H
contains no more cycles. This is done by contracting the edges in each connected
component and merging all its vertices (L52–L54).

The algorithm further considers all vertices w without incoming edges and
which satisfy condition C[m] ≥ n+f−κ

2 , checked in function stable(w) (L 63).
All such w will be sorted in a deterministic way (L 53). Notice that w may
correspond to a message from M or a recursive set of sets of messages. Therefore
function flatten(w) (L 65) is used to extract payload messages and of-deliver
them (L 57). All of-delivered payload messages are added to delivered (L58 to
prevent a repeated processing. Finally, w is removed from H (L59), and a next
pass of extracting vertices with no incoming edge follows. This is repeated until
all vertices have been processed and of-delivered. The algorithm then initializes

330 C. Cachin et al.

Algorithm 1. Quick order-fair atomic broadcast (code for pi).
State

1: r ← 1: current round
2: inround ← false
3: msgs ← [] : HashMap

[{1, ..., n} → []
]
: lists of bcch-delivered messages

4: vc ← [] : HashMap
[{1, ..., n} → N

]
: counters for bcch-delivered messages

5: L ← [0]n×n: matrix of logical timestamps

6: Σ ← []n: list of signatures from status messages
7: cut ← [0]n: the cut decided for the round

8: delivered ← ∅: set of delivered messages

Initialization
9: Byzantine FIFO consistent broadcast channel (bcch)

10:upon of-broadcast(m) do
11: bcch-broadcast(m)

12:upon bcch-deliver(pj , l, m) do

13: vc[j] ← vc[j] + 1
14: msgs[j].append(m)

15:upon exists j such that len(msgs[j]) > cut[j] ∧ ¬inround do

16: inround ← true
17: σ ← sign(i, vc)
18: send message [status, r, vc, σ] to all pj ∈ P

19:upon receiving message [status, r′, vc′, σ′] from pj

20: such that r′ = r ∧ verify(j, vc′, σ′) do

21: L[j] ← vc′
22: Σ[j] ← σ′

23:upon
∣
∣{pj ∈ P | Σ[j] �=⊥}∣

∣ ≥ n − f do
24: vbc-propose

(
(L, Σ)

)
for validated Byzantine consensus in round r

25: Σ ← []n

26:upon vbc-decide
(
(L′, Σ′)

)
in round r do // calculate cut

27: for j ∈ {1, . . . , n} do // for each row in L′
28: // cut[j] is largest s s.t. at least f + 1 el. in col. j in L′ are at least s

29: cut[j] ← max
{
s | {k | ∣

∣{L′[k][j] ≥ s}∣
∣ > f}}

30: for j ∈ {1, . . . , n} do // check for missing messages

31: if vc[j] < cut[j] then

32: send message [missing, r, j, vc[j]] to all pk ∈ P

33:upon receiving message [missing, r′, k, index] from pj

34: such that r′ = r do

35: if vc[k] ≥ cut[k] then

36: resend ← msgs[k].get(index . . . cut[k]) // copy messages from pk

37: s ← bcch-create-proof(resend)
38: send message [resend, r, k, s] to pj // send missing messages

Quick Order Fairness 331

Algorithm 2. Quick order-fair atomic broadcast (code for pi).
39:upon receiving message [resend, r′, k′, s′] from pj

40: such that r′ = r ∧ len(msgs[k]) < cut[k] do
41: if bcch-verify-proof(s′) then
42: vc[k] ← vc[k] + bcch-get-length(s′)
43: msgs[k].append(bcch-get-messages(s′))

44:upon len(msgs[j]) ≥ cut[j] for all j ∈ {1, . . . , n} do

45: V ←
(⋃

j∈{1,...,n} msgs
[
j
][

1 . . . cut[k]
]) \ delivered

46: M ← [] : HashMap
[M × M → N

]
47: C ← [] : HashMap

[M → N
]

48: for m, m′ ∈ V do

49: M [m][m′] ←
∣∣∣{j ∈ {1, . . . , n} ∣∣ m before m′ in msgs

[
j
][

1 . . . cut[k]
]}∣∣∣

50: C[m] ←
∣∣∣{pj

∣∣ m ∈ msgs
[
j
][

1 . . . cut[k]
]}∣∣∣

51: E ←
{

(m, m′)
∣∣∣ max

{
M [m][m′], n − f − M [m′][m]

}
> M [m′][m] − f + κ

}

52: H ← (V, E) // (V, E) = G

53: while H contains some strongly connected subgraph H = (W, F) ⊆ H do

54: H ← H/F // collapse vertices in W into a single vertex w̄

55: // H = (W, F)
56: while ∃w ∈ sort(W) : indegree(w) = 0 ∧ stable(w) do

// w may be a message or a (recursive) set of sets of messages
57: of-deliver(flatten(w))
58: delivered ← delivered ∪ flatten(w) // keep track of delivered messages
59: W ← W \ {w}
60: L ← [0]n×n

61: inround ← false
62: r ← r + 1 // move to the next round

63: function stable(w)

64: return
(
w ∈ M ∧ C[w] ≥ n+f−κ

2

) ∨ ∧
w′∈w:w′ �∈M stable(w′)

65: function flatten(w)
66: return {m ∈ w | m ∈ M} ∪ ⋃

w′∈w:w′ �∈M flatten(w′)

L, sets inround to false, increments the round number r, and starts the next
round (L60-L62).

6 Complexity

If the Byzantine FIFO consistent broadcast channel (BCCH) is implemented
using “echo broadcast” [17], it takes O(n) protocol messages per payload mes-
sage. Since more than f processes of-broadcast each payload message and f is

332 C. Cachin et al.

proportional to n, the overall message complexity of BCCH is O(n2). The cost
of validated Byzantine consensus (VBC) depends on the assumptions used for
implementing it. With a partially synchronous consensus protocol VBC uses
O(n) messages in the best case and O(n2) messages in the worst case. The total
amortized cost of quick order-fair atomic broadcast per payload, therefore, is also
O(n2) messages in this implementation. If digital signatures are of length λ and
payload messages are at most L bits, the bit complexity of BCCH for one sender
is O(n2L+n3λ). Optimal asynchronous VBC protocols [1,16] have O(nL+n2λ)
expected communication cost, for their payload length L. Since the proposals
for VBC are n × n matrices, it follows that the amortized bit complexity of the
algorithm per payload message is O(n2L + n3λ).

Table 1 compares the cost of different order-fair atomic broadcast protocols.
The asynchronous Aequitas protocol [14, Sec. 7] provides fair order using a FIFO
Broadcast primitive, implemented by OARcast of Ho et al. [11]. Aequitas uses
Ω(n4) messages for delivering one payload, which exceeds the cost of quick
order-fair broadcast at least by the factor n2. The Pompē protocol cost is
O(n2) messages and one instance of Byzantine consensus per payload message.
The communication complexity of this protocol is O(n3L) since each process
broadcasts a sequence-message to all others with contents of length O(nL).
Themis [13] incurs a cost of O(n) messages. The average communication com-
plexity is O(n2 + nL) in the best case.

Table 1. Overview of different notions and their expected message and communication
complexities.

Notion Algorithm Avg. messages Avg. communication

Block-Order-Fairness [14] Async. Aequitas [14] O(n4) O(n4L)

Ordering linearizability [19] Pompē∗ [19] O(n2) O(n3L)

Block-Order-Fairness [13] Themis [13] O(n) O(n2 + nL)

Differential order fairness Quick o.-f. broadcast O(n2) O(n2L + n3λ)

7 Conclusion

The quick order-fair atomic broadcast protocol guarantees payload message
delivery in a differentially fair order. It works both for asynchronous and eventu-
ally synchronous networks with optimal resilience, tolerating corruptions of up
to one third of the processes. Compared to existing order-fair atomic broadcast
protocols, our protocol is considerably more efficient and incurs only quadratic
cost in terms of amortized message complexity per delivered payload.

Acknowledgments. We thank the anonymous reviewers for helpful suggestions and
feedback. Special thanks go to Mahimna Kelkar, who pointed out a problem in an
earlier version of this paper. This work has been funded by the Swiss National Science
Foundation (SNSF) under grant agreement Nr . 200021 188443 (Advanced Consensus
Protocols).

Quick Order Fairness 333

References

1. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asyn-
chronous byzantine agreement. In: PODC, pp. 337–346. ACM (2019)

2. Asayag, A., et al.: A fair consensus protocol for transaction ordering. In: ICNP,
pp. 55–65. IEEE Computer Society (2018)

3. Baird, L.: The Swirlds hashgraph consensus algorithm: fair, fast, byzantine fault
tolerance. Swirlds Tech Report, SWIRLDS-TR-2016-01 (2016). https://www.
swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

4. Cachin, C., Guerraoui, R., Rodrigues, L.E.T.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-15260-3

5. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

6. Cachin, C., Mićić, J., Steinhauer, N.: Quick Order Fairness (2021). arXiv preprint
arXiv:2112.06615

7. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020)

8. Duan, S., Reiter, M.K., Zhang, H.: Secure causal atomic broadcast, revisited. In:
DSN, pp. 61–72. IEEE Computer Society (2017)

9. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

10. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: PODC, pp. 211–220. ACM (2003)

11. Ho, C., Dolev, D., van Renesse, R.: Making distributed applications robust. In:
Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 232–
246. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77096-1 17

12. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting.
IACR Cryptology ePrint Archive Paper 2021/139 (2021). https://eprint.iacr.org/
2021/139

13. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: fast, strong order-
fairness in byzantine consensus. IACR Cryptology ePrint Archive Paper 2021/1465
(2021). https://eprint.iacr.org/2021/1465

14. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 16

15. Kursawe, K.: Wendy, the good little fairness widget: achieving order fairness for
blockchains. In: AFT, pp. 25–36. ACM (2020)

16. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-MVBA: optimal multi-valued validated
asynchronous byzantine agreement, revisited. In: PODC, pp. 129–138. ACM (2020)

17. Reiter, M.K.: Secure agreement protocols: reliable and atomic group multicast in
rampart. In: CCS, pp. 68–80. ACM (1994)

18. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Trans. Pro-
gram. Lang. Syst. 16(3), 986–1009 (1994)

19. Zhang, Y., Setty, S.T.V., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered con-
sensus without byzantine oligarchy. In: OSDI, pp. 633–649. USENIX Association
(2020)

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/3-540-44647-8_31
http://arxiv.org/abs/2112.06615
https://doi.org/10.1007/978-3-540-77096-1_17
https://eprint.iacr.org/2021/139
https://eprint.iacr.org/2021/139
https://eprint.iacr.org/2021/1465
https://doi.org/10.1007/978-3-030-56877-1_16

Mostly Payment Networks

Analysis and Probing of Parallel Channels
in the Lightning Network

Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov(B)

University of Luxembourg, Esch-sur-Alzette, Luxembourg
alex.biryukov@uni.lu, gleb@thelab31.xyz, sergey.s.tikhomirov@gmail.com

http://www.thelab31.xyz

Abstract. Bitcoin can process only a few transactions per second, which
is insufficient for a global payment network. The Lightning Network (LN)
aims to address this challenge. The LN allows for low-latency bitcoin
transfers through a network of payment channels. In contrast to regu-
lar Bitcoin transactions, payments in the LN are not globally broadcast.
Thus it may improve not only Bitcoin’s scalability but also privacy. How-
ever, the probing attack allows an adversary to discover channel balances,
threatening users’ privacy. Prior work on probing did not account for the
possibility of multiple (parallel) channels between two nodes. Naive prob-
ing algorithms yield false results for parallel channels.

In this work, we develop a new probing model that accurately accounts
for parallel channels. We describe jamming-enhanced probing that allows
for full balance information extraction in multi-channel hops, which was
impossible with earlier probing methods. We quantify the attacker’s
information gain and propose an optimized algorithm for choosing probe
amounts for multi-channel hops. We demonstrate its efficiency based on
real-world data using our own probing-focused LN simulator. Finally,
we discuss countermeasures such as new forwarding strategies, intra-hop
payment split, rebalancing, and unannounced channels.

Keywords: Lightning Network · Bitcoin · Payment channels · Privacy

1 Introduction

To ensure public verifiability on widely available hardware, the throughput of
Bitcoin is limited by design [24]. Second-layer (L2) protocols [11] aim to address
this issue. The most prominent L2 protocol for Bitcoin1 is a payment channel
network called the Lightning Network (LN) [30]. A payment channel is a trust-
minimized two-party protocol for low-latency cryptocurrency payments [14] with
minimal interaction with the underlying blockchain. A channel network allows
for multi-hop payments between users who do not share a channel.

In contrast to Bitcoin transactions, which are public and provide very limited
privacy [2,22], L2 payments are not globally broadcast. Hence the LN may be
1 Similar protocols are possible for other cryptocurrencies.
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 337–357, 2022.
https://doi.org/10.1007/978-3-031-18283-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_16

338 A. Biryukov et al.

seen as a privacy-enhancing technology. However, attacks on LN privacy have
been described, including balance probing. Probing allows for cheaply revealing
channel balances by sending fake payments (probes) [8,15,18,45]. It can be used
as a building block to spy on payments or to deanonymize users.

The LN allows nodes to share multiple parallel channels. Alice, for instance,
may want to open a new channel to Bob if all funds in their existing channel are
on Bob’s side, preventing her from sending further payments. That would allow
Alice to send without losing the ability to receive through the older channel.
Earlier probing algorithms assume at most one channel between each pair of
nodes and may give false or incomplete results if parallel channels are present.2

Our Contributions. After providing the necessary background (Sect. 2), we
introduce the probing model (Sect. 3) and propose an optimized amount selec-
tion method to maximize probing speed. We enhance the probing attack by
combining it with jamming or fee targeting. Using simulations3 based on a real-
world data, we show that enhanced probing extracts full balance information in
parallel channels, which was impossible with prior methods (Sect. 4). Moreover,
optimized amount selection increases probing speed by up to 15%, compared to
single-dimensional binary search. In Sect. 5, we discuss the limitations of our app-
roach, attack cost and trade-offs, payment flow discovery, and countermeasures.
We review related work in Sect. 6 and conclude in Sect. 7.

2 Background

To open a payment channel, Alice and Bob lock coins into a cooperatively owned
address, establishing the initial channel state. To make a payment, the parties
negotiate a new state, thereby provably invalidating the old one [11]. Any party
can close the channel and withdraw their coins on-chain at any time. A penalty
mechanism ensures security of channel state updates. If one party tries to cheat
by closing the channel with an outdated state (claiming more funds than the
latest state prescribes), the other party is granted a time window to withdraw
all funds from the channel.

The total number of coins in a channel, constant throughout its lifetime, is
called capacity (Fig. 1). The number of coins owned by each party is called its
balance and changes as payments are made. We refer to a pair of adjacent nodes
along with all (parallel) channels that they share as a hop. Parallel channels
within one hop may have different fees and routing policies [5]. A node may dis-
able a channel direction (e.g., before an expected loss of connectivity or channel
settlement), making the channel unidirectional.4

2 The paper [26] writes on probing in the presence of multiple channels between the
same nodes: “Our tool failed to produce accurate results in this scenario [. . .] further
research on how to deal with this complication would be highly appreciated.”.

3 The code is at https://github.com/s-tikhomirov/ln-probing-simulator.
4 Not to be confused with an earlier unidirectional channel construction [14].

https://github.com/s-tikhomirov/ln-probing-simulator

Analysis and Probing of Parallel Channels in the Lightning Network 339

Fig. 1. A channel with capacity 5 and balances 3 and 2 for Alice and Bob, respectively

LN nodes and channels are identified by persistent IDs. Node IDs are random;
channel IDs are derived from the parameters of the respective opening transac-
tions. Nodes can (but do not have to) announce the availability, capacities, and
policies of their channels in the P2P network.5

An LN user can send multi-hop payments without establishing a channel
with the receiver. To initiate a payment, the receiver generates a payment secret
and sends its hash (the payment hash) to the sender. The sender routes the
payment along the payment path (an ordered list of routing6nodes chosen based
on the sender’s local view of the network). Routing nodes usually charge fees by
forwarding a bit less than they receive. If an intermediary hop contains parallel
channels, a routing node may use any of them (non-strict forwarding). Upon
receiving a payment, the receiver propagates the payment secret along the path
back to the sender. This ensures atomicity of balance shifts along the path as
they all depend on the same secret being revealed.7

LN nodes are only aware of payments that they send, receive, or forward.
Due to onion routing, intermediary nodes only know the previous and the next
node in the path, but not the ultimate sender or receiver. Intermediaries do,
however, learn the amounts of payments that they forward.

The forwarding ability of a channel is determined by its balance in the direc-
tion of the payment. However, the sender only knows the capacities of announced
channels.8 Therefore, multi-hop payments may fail due to low balance at an
intermediary hop. In that case, the erring node notifies the sender which error
has occurred and where. The sender may have to make multiple attempts using
different paths until the payment succeeds.

The three major LN implementations (lnd, core-lightning, and eclair)
use different channel selection strategies for multi-channel hops.9 eclair selects
the channel with the lowest capacity (among the channels with the same capacity,
it prefers the one with a lower balance).10 lnd chooses a random channel.11
core-lightning does not support parallel channels.

5 A 2020 study estimated that 28.7% of LN channels were unannounced [31].
6 Routing nodes may also be referred to as forwarding or intermediary nodes. Alter-

native approaches are trampoline [42] and rendezvous routing [49].
7 It may be argued though that the wormhole attack [21] violates atomicity.
8 Obviously, nodes also know the balances of their own channels, even if unannounced.
9 Path selection algorithms also differ [20].

10 https://github.com/ACINQ/eclair/blob/5f9d0d/eclair-core/src/main/scala/fr/
acinq/eclair/payment/relay/ChannelRelay.scala#L199.

11 https://github.com/lightningnetwork/lnd/blob/f98a3c/htlcswitch/switch.go#
L1091.

https://github.com/ACINQ/eclair/blob/5f9d0d/eclair-core/src/main/scala/fr/acinq/eclair/payment/relay/ChannelRelay.scala#L199
https://github.com/ACINQ/eclair/blob/5f9d0d/eclair-core/src/main/scala/fr/acinq/eclair/payment/relay/ChannelRelay.scala#L199
https://github.com/lightningnetwork/lnd/blob/f98a3c/htlcswitch/switch.go#L1091
https://github.com/lightningnetwork/lnd/blob/f98a3c/htlcswitch/switch.go#L1091

340 A. Biryukov et al.

Fig. 2. A probing setup for a two-channel target hop: the attacker does not know which
channel the probes go through.

Fig. 3. Jamming attack: a jam (light-colored circle) is blocking other potential pay-
ments through the channel from Alice to Bob.

Attacks on Lightning

For our work, the most relevant attacks on the LN are probing and jamming.
Probing allows an attacker to reveal the balance of any forwarding channel

(assuming no multi-channel hops) by sending probes through it [15,18,45]. A
probe is a payment with amount a that contains a random value instead of a
payment hash. A probe fails either at an intermediary node due to insufficient
balance, or at the receiver because of the unknown hash preimage.12 The location
of the erring node within the path reveals whether the balance of the erring
channel is above or below a. We say that a probe that reaches13 the target hop
succeeds if it goes through or that it fails if it does not. By sending probes
with different amounts, the attacker can infer the balance in the target channel
with high accuracy. Assuming uniform balance distribution, the best strategy
for choosing probe amounts is binary search. If the target hop contains parallel
channels, probing may provide incorrect results (Fig. 2).

Jamming is a family of denial-of-service attacks on LN channels [9,43]. An
attacker initiates a payment (a jam) along a circular14 path, which includes the
target channel, and refuses to reveal the payment secret, locking up the funds
along the path (Fig. 3). Shortly before timelocks expire, the attacker fails the
payment to release their coins without paying routing fees. In capacity-based
jamming, an attacker initiates payments of a given (presumably high) value [27].
In slot-based jamming, an attacker sends a series of small payments (each above
a certain dust limit) to reach the limit of payment slots for in-flight payments
(at most 483 in each direction; channel parties may set lower limits) [44]. Onion
routing complicates protection against jamming: the victim does not know who
is sending the jams.

12 We do not consider other potential errors for simplicity.
13 When probing via multi-hop paths, probes may fail before reaching the target hop.
14 Alternatively, the path may terminate at a different node controlled by the attacker.

Analysis and Probing of Parallel Channels in the Lightning Network 341

3 Probing Model

We assume the following threat model. The goal of the attacker is to reveal exact
channel balances in target hops as quickly as possible.15 The attacker only uses
public knowledge about nodes and channels. The attacker can run multiple LN
nodes, open channels, and maintain them for the duration of the attack.16 The
attacker can run modified software but has no control over other users’ software.

We define channel direction as follows: dir0 is the direction from the node
with the alphanumerically smaller ID to the other node; dir1 is the opposite
direction. We define channel balance (in satoshis17) as the balance of the node
with the alphanumerically smaller ID. Note that the dir0/dir1 notation depends
neither on the payment direction nor on who opened the channel.

A hop with N channels is defined by channel capacities C = (c1, . . . , cN) and
balances B = (b1, . . . , bN). Let Ed be the set of channels enabled in direction d,
where d ∈ {dir0, dir1}. The forwarding ability of a hop is determined by the
maximal balances among the channels enabled in a given direction, which we
denote as h for dir0 and g for dir1 :

h = max
i∈Edir0

bi (1)

g = max
i∈Edir1

(ci − bi) (2)

In the general case, probes only give the attacker information about h or g,
not about individual balances.18 The attacker maintains the current lower and
upper bounds19 for h and g: hl < h ≤ hu and gl < g ≤ gu, initially set to:

hl = gl = −1 (3)

hu = max
i∈Edir0

ci (4)

gu = max
i∈Edir1

ci (5)

Let F be the set of all possible values of B, as per the attacker’s current
knowledge. S(F) is the number of values F contains. Each probe cuts F in two
parts, one of which is excluded from further consideration. Assuming uniform
balance distribution, an optimal probe should cut F in half.

15 We assume that all target channels are equally interesting for the attacker.
16 Sending one probe normally takes a few seconds.
17 1 satoshi equals 10−8 BTC and is the smallest sub-unit of bitcoin. The LN operates

with millisatoshi precision off-chain, but such amounts cannot be settled on-chain
precisely. For simplicity, our model operates with satoshi-level precision.

18 Enhanced probing techniques described in Sect. 3.4 overcome this limitation.
19 Note that for lower bound is strict, and the upper bound is non-strict. If the probe

of amount a in direction dir0 succeeds, h is greater or equal to a, but if the probe
fails, it is strictly less than a, and analogously for g and dir1 . Our definitions reflect
this asymmetry and thus allow for uniform calculations when deriving Eq. (8).

342 A. Biryukov et al.

Fig. 4. Probing a one-channel hop with simple binary search. The star denotes the
true balance. The colored rectangle represents the attacker’s current estimates.

Fig. 5. A geometrical model for the first two probes of a two-channel target hop. The
first probe (left) fails (upper bound); the second probe (right) succeeds (lower bound).

3.1 Examples

As the simplest example, consider a hop containing a single channel with capac-
ity c (Fig. 4). Let bl and bu be the current lower (strict) and upper (non-strict)
bounds for the true balance b, respectively.20 Initially, bl = −1 and bu = c.
F = (bl, bu]. For each next ith probe, the attacker chooses the amount as:

ai = (bl + bu + 1)/2 (6)

If the probe fails, bu is updated to ai − 1, otherwise bl is updated to ai − 1.
Next, consider a two-channel hop with equal capacities c1 = c2 = c (Fig. 5).

Initially, S(F) = (c+ 1)2. The first probe amount should be:

a1 = (c+ 1)/
√
2 (7)

Note that a1 = (c+1)/2 would divide S(F) in the proportion 3 : 1, not 1 : 1.
The probe failing indicates that the balance is within a smaller area (the

colored square in Fig. 5, left). The second probe divides that area in half (Fig. 5,
right), and so on.

20 The definition is asymmetric to maintain uniformity with the generalized model
introduced later in Sect. 3.2.

Analysis and Probing of Parallel Channels in the Lightning Network 343

Fig. 6. A geometrical model for probing a two-channel hop

3.2 Generalized Geometrical Model

We can think of an N -channel hop as an N -dimensional (hyper-)rectangle R,
with sides parallel to the axes.21 Each side corresponds to one channel (some
channels may be unidirectional). Along the ith dimension, R is defined by the
coordinates [0, ci]. The coordinates of each point within R correspond to a pos-
sible balance vector. One of the vertices of R is the origin point (0, . . . , 0).

A probe with amount a “cuts” an a-sided square either from the origin point
(for dir0) or from the opposite vertex (for dir1). If the probe fails, all coordinates
of B are lower than a (a new upper bound), otherwise at least one coordinate of
B is greater than or equal to a (a new lower bound). If both directions have at
least one channel enabled, the attacker may choose any direction for the probe.

Figure 6 illustrates a two-dimensional case with c1 = c2 = c. The attacker
currently knows that the balance cannot be within the two smaller squares with
sides hl and gl because the corresponding probes have succeeded. At the same
time, the balance must be within the two larger squares with sides hu and gu

because the corresponding probes have failed.
We can define F (colored) as the intersection of two L-shaped figures, reflect-

ing the current bounds on h and g. F may take different shapes, depending on
how the bounds relate to each other and to the hop configuration. The attacker
chooses the next probe amount a to cut F in half.

Consider an illustrative probing of a two-channel hop with both channels
enabled in both directions (Fig. 7). Note that in the final stages of probing F
consists of two disjoint diagonally symmetric rectangles, reflecting the fact that
channel balances can only be revealed up to permutation.

Let us denote x = x + 1 and use subscript i for the ith coordinate. In the
general case, we calculate S(F) as follows. For full derivation, see [4].
21 We continue using 2D-terms such as “rectangle” and “area” for clarity.

344 A. Biryukov et al.

Fig. 7. Probing a two-channel hop step by step. Probing steps omitted between the
bottom-left and the bottom-right (final) figures.

S(F) =
N∏

i=1

(hu
i +gui −ci)−

N∏

i=1

(hl
i+gui −ci)−

N∏

i=1

(hu
i +gli−ci)+

N∏

i=1

(hl
i+gli−ci) (8)

In prior probing algorithms, each next amount a was chosen as the mid-
point between the current bounds (single-dimensional binary search), which is
suboptimal in the multi-dimensional case (Sect. 3.1). Instead, we propose an
optimized amount choice algorithm to cut F in half. It works as follows. Initially,
set al = hl + 1, au = hu, and consider a candidate value a = (al + au)/2. Let
Sa be the area under the potential cut. If Sa < S/2, set al = a, else set au = a.
Repeat until Sa is as close as possible22 to S/2. For N = 1, the two methods are
equivalent.

22 It is usually impossible to cut F in half precisely: increasing a by 1 satoshi adds
multiple points to S(F) in multi-channel hops (depending on hop configuration).

Analysis and Probing of Parallel Channels in the Lightning Network 345

Fig. 8. Probing a 3-channel hop from direction dir0 : in progress (left), finished (right)

Fig. 9. The final result of probing a 3-channel hop (left) and a 2-channel hop (right).
Exact balances in the 3-channel hop are unknown even after fully revealing h and g.

3.3 Challenge of Probing Multi-channel Hops

Hops with three channels or more cannot be fully probed due to dimensionality.
Consider a three-channel hop with equal-capacity channels. Each probe in dir0
cuts an a-sided cube from the corner of the larger C-sided cube. Bounds on h are
represented by two surfaces, each composed of three faces of the respective cube
(Fig. 8, left). The smaller surface represents hl, and the larger surface represents
hu. Each probe brings the two surfaces closer until they collapse into one surface
representing the true value of h (Fig. 8, right). Analogously, probes in dir1 cut
cubes from the opposite corner of the large cube.

Consider the final state of the attack when h and g have been fully revealed
(Fig. 9, left). The true balance point lies at the intersection of two surfaces, each
composed of three perpendicular squares. In the general case, this intersection is
composed of six intervals and cannot be shrunk to single points. In contrast, in a
2-channel hop, exact balances are revealed (up to permutation) as an intersection
of two L-shapes, i.e., two points (Fig. 9, right).

Another reason why fully probing multi-channel hops may be impossible is
a vast difference in channel capacities, which allows larger channels to “mask”
smaller ones. See [4] for details.

346 A. Biryukov et al.

Fig. 10. A geometrical representation of jamming-enhanced probing for a 3-channel
hop with equal capacities. The three balances are revealed separately.

3.4 Enhanced Probing

The only way for the attacker to gain more balance information for multi-channel
hops would be to force probes to go through specific channels. The attacker
cannot affect the channel choice strategy of a routing node. However, it is possible
to reduce the set of suitable channels the routing node picks from.

We consider two probing enhancement techniques to achieve this goal. In
jamming-enhanced probing, the attacker jams all channels in a target hop except
one, and then probes the remaining channel. In geometrical terms, this allows for
making cuts parallel to the axes, which ultimately leads to revealing the exact
balance point as the intersection of three perpendicular planes (Fig. 10).

In fee-aware probing [32], the attacker sets the fee offered along with the
probe such that the probe can only be forwarded through a subset of cheapest
channels in the target hop. In the best case (for the attacker), fees for all channels
in the target hop are different. In the worst case, all channels require equal fees,
and fee-aware probing yields no advantage. Jamming-enhanced and fee-aware
probing may be combined, which allows for probing individual channels inside
one fee level. More generally, the prober may tune other parameters, such as
timeouts, instead of or in addition to fee levels (policy-aware probing).

We used an isolated testing environment based on real LN implementations
to confirm that enhanced probing indeed allows an attacker to infer individual
balances of parallel channels. Setup details are provided in [4].

Analysis and Probing of Parallel Channels in the Lightning Network 347

4 Evaluation

4.1 Data Source

We captured an LN snapshot on 2021-12-09 using our own core-lightning
node. The snapshot contains 17068 nodes and 78076 channels23 with a total
capacity of 3370 BTC.24 This is in line with public explorers such as the one oper-
ated by ACINQ25 (the developers of eclair), which on the same day reported
16977 nodes and 77906 channels. 63697 channels (82%) are enabled in both
directions. Multi-channel hops hold a disproportionately large share of capac-
ity (Table 1) and thus presumably play a more important role in routing than
single-channel hops.

Table 1. Share of hops by the number of channels and by total capacity

Channels in a hop Share of hops (%) Share of capacity (%)

1 95.4 77.6

2 4.2 10.7

3 0.3 2.7

4 0.1 2.0

≥ 5 0.02 0.3

4.2 Metrics

The uncertainty U of a hop is the number of bits required to encode the position
of B, given the current attacker’s knowledge. It is calculated as log2(S(Fi)),
where Fi is the set of all possible balance points after the ith probe. After P
probes, U decreases from Ubefore = log2(S(F0)) to Uafter = log2(S(FP)). For a
set T of target hops, the final achieved information gain is:

I = 1 −
∑

t∈T

U t
after

/ ∑

t∈T

U t
before (9)

Assuming m messages sent in total, the probing speed is defined as:

S =
1
m

(
∑

t∈T

U t
before −

∑

t∈T

U t
after

)
(10)

Messages include probes and jams (for jamming-enhanced probing).
23 We only consider the largest connected component, which contains 99.1% of nodes

and 99.9% of channels.
24 For an earlier version of this paper, we used a snapshot taken on 2021-09-09. Within

three months between the snapshots, the number of nodes increased by 25%, the
number of channels by 19%, and the total capacity by 35%.

25 https://explorer.acinq.co/.

https://explorer.acinq.co/

348 A. Biryukov et al.

Fig. 11. Achieved information gain for non-enhanced and jamming-enhanced probing

4.3 Results

For each channel in the snapshot, we generate a balance uniformly at random
between 0 and the channel capacity. We simulate probing attacks on target hops
with 1 to 5 channels (hops with more channels are rare in the snapshot). We
model two types of probing: direct and remote.

In direct probing, the attacker opens a channel to one of the parties of the
target hop and sends probes via the 2-hop path. Direct probing is efficient (all
probes reach the target) but requires paying on-chain fees for opening channels
to each target hop. Moreover, it requires the victim to accept channel opening
(though public nodes usually do so if the initiator fully funds it).

In remote probing, the attacker opens channels to a few well-connected nodes
and sends probes through multi-hop paths. This approach allows for amortizing
the on-chain cost of channel openings over multiple target hops. Another benefit
is that remote probing yields information about intermediary hops in addition to
the target hop. The main drawback of remote probing is that some probes do not
reach the target hop due to low balance in an intermediary channel (this effect
is more pronounced for larger amounts), although the attacker can decrease the
number of such probes by using balance information from earlier probes.

We measure information gain and probing speed for two probing methods
(non-enhanced and jamming-enhanced), two probe amount selection methods
(optimized and non-optimized), and two types of probing (direct and remote).
For each parameter combination, we average the results across 100 simulations.
For each simulation, we probe 20 target hops chosen at random.

Analysis and Probing of Parallel Channels in the Lightning Network 349

Fig. 12. Probing speed for non-enhanced and jamming-enhanced probing

Information gain decreases as N increases (Fig. 11) for non-enhanced probing.
This is expected due to the dimensionality issue (Sect. 3.4). For example, 5-
channel hops can only be probed to around 0.4 information gain. This applies to
both direct and remote probing. In contrast, jamming-enhanced probing achieves
high information gain (above 0.9) for all values of N , illustrating the advantage of
such technique. A slight drop for N = 5 is caused by one atypical 5-channel hop
in the snapshot that has most of its channels disabled. Lower information gain
for remote probing compared to direct probing is explained by routing issues.

In terms of probing speed, the optimized amount selection method consis-
tently outperforms the non-optimized method for all values of N ≥ 2 (Fig. 12).
(Information gain is the same for the two amount selection methods. The opti-
mized method only allows for getting the same information faster rather than get-
ting more information.) The speedup mostly decreases with increasing N , which
is explained by the fact that the optimized method generally chooses higher
amounts (for example, 1/2 vs 1/

√
2 in a two-channel hop with c1 = c2 = 1),

which are more likely to fail. Direct probing is always faster than remote probing
because all probes reach the target hop. Jamming-enhanced probing lowers the
probing speed compared to non-enhanced probing as it implies sending jams in
addition to probes. Finally, we note that the optimized method performs better
than or similarly to the non-optimized one for all N in both direct and remote
probing.

Additional simulations show how the capacity ratio in two-channel hops
affects information gain (see [4]).

350 A. Biryukov et al.

5 Discussion

The simulations have demonstrated that jamming-enhanced probing achieves
nearly full balance information extraction, which is otherwise impossible for
multi-channel hops in the general case. Moreover, optimized amount selection
increases probing speed. The highest speedup is achieved for two-channel hops,
which are the most prevalent multi-channel hops in the network.

5.1 Limitations

Our model does not provide theoretical guarantees on the performance of the
attack. Simulation-based estimations may serve as rough upper bounds as they
assume that remote nodes with sufficient balance always forward payments. In
real-world scenarios, the result would depend on network topology, attacker’s
connectivity, routing policies of other nodes, and other factors.

Our model ignores regular LN activity. If a target hop is heavily used, bal-
ances may shift between probes, outdating attacker’s estimations. This is one of
the reasons why speeding up the attack is important for the attacker: it reduces
the probability of interference with honest payments. Moreover, we do not model
in-flight payments. Our model assumes that the two channel balances sum up to
its capacity, which allows us to derive one balance from the other. In the real net-
work, channel capacity is composed of the two balances and in-flight payments.
We assume that in-flight payments resolve quickly enough to have no effect on
probing results. We also do not account for routing fees.

We make some simplifying assumptions about jamming. First, we assume
that the attacker can jam any hop. In practice, jamming requires additional
liquidity and channel slots, which may be unavailable. Second, we assume that
the attacker can jam a specific channel within a remote hop. In practice, routing
nodes are free to choose which channel to forward the jam through in multi-
channel hops (just like with regular payments). As a result, the attacker only
knows how many channels are jammed but does not know which ones. Moreover,
even if the attacker reveals N channel balances precisely, they are only known up
to a permutation. Third, we assume that the attacker can jam channels in both
directions. In practice, leaf hops can only be jammed in one direction.26 Finally,
channels disabled in both directions cannot be probed, even with jamming.

5.2 Attack Cost and Trade-Offs

Probing is relatively cheap. The attacker pays on-chain fees for opening and
closing channels, but never pays routing fees, because probes never complete.
There is a trade-off between direct and remote probing. Direct probing increases
probing speed but requires more on-chain fees and locked-up capital. We leave
the evaluation of this trade-off for future work.

26 The attacker may still distinguish between parallel channels in leaf hops using fee-
aware probing (see Sect. 3.4).

Analysis and Probing of Parallel Channels in the Lightning Network 351

Jamming-enhanced probing brings additional costs. Capacity-based jamming
requires at least one high-capacity channel. The amount of funds locked should be
close to the aggregate balance of all parallel target channels. Slot-based jamming
requires opening many low-capacity channels. The exact number of attacker’s
channels equals the number of channels to be jammed because the attacker’s
path is limited by the same number of slots.27

Jamming might be challenging for certain hop configurations. For example, it
would be impossible to slot-jam more than one channel in a multi-channel target
hop that is only connected to the rest of the network with a single channel.
Similar limitations apply for capacity jamming.28 To overcome this issue, the
attacker needs to connect to the target hop via several disjoint paths.

5.3 Payment Flow Inference

Probing can be a building block for more advanced attacks, such as payment flow
inference. Given a series of balance snapshots, the attacker can construct a bal-
ance difference graph where edges with non-zero value correspond to payments.
The attacker can then discover the sender, the receiver, and the amount, as bal-
ances along the path are shifted by the same amount (modulo fees). Snapshots
should be frequent because payments that pass through the same hop distort
the picture. Prior work [18] has shown that 30-second snapshots allow reveal-
ing payments with 66% success rate, assuming low network usage (2000 pay-
ments per day). Obtaining a full network snapshot so quickly is challenging:
each probe takes a few seconds. A more realistic goal could be to infer payment
flows between given nodes by tracking balances in a few shortest paths between
them. This looks feasible: the LN diameter is 6 hops [40], typical path lengths
are 3–6 hops, and the target sub-network may be comprised of around 50 nodes.

5.4 Countermeasures

Probing is cheap because failed payment attempts are free. Proposals to limit the
number of payment attempts a node can make, e.g., by demanding fees upfront,
are being discussed [16,25]. Assuming no such changes to the LN protocol, we
now discuss countermeasures that individual nodes can apply.

Alternative Forwarding Strategies. A routing node can try to obfuscate
the state of its channels if probing is detected (e.g., if it notices a series of failed
payments with amounts that follow the binary search pattern). In particular,
routing nodes may select channels in a way that minimizes changes to h and
g. A heavily used routing node could execute payments in batches. Within one
batch, payments can be re-ordered so that they cancel each other out, at least
partially. More generic flow concealment strategies are also possible.
27 Assuming all channels have the same number of slots. The attacker may have higher

limits than the victim, but no channel can have more than 483 slots per direction.
28 Note that channels with sufficient capacity might be limited by slots.

352 A. Biryukov et al.

Intra-hop Payment Split. A routing node can potentially divide a payment
among parallel channels toward the next hop, optimizing hop bandwidth and
hindering probing. This technique is being discussed as part of the future switch
to a new type of channel construction [29,50]. From the prober’s viewpoint, a
multi-channel hop with intra-hop payment split is equivalent to a single-channel
hop. The prober can reveal the sum of channel balances. Note the difference
compared to multi-path29 payments (MPP): in MPP, the sender fully determines
how to split the payment [1], whereas in intra-hop split, such decisions are made
locally by routing nodes.

Channel Rebalancing. Channel rebalancing [3,19] is a process by which an LN
node initiates (presumably circular) payments to bring the ratio of its channel
balance to channel capacity closer to some desirable value (e.g., 50%). Just-in-
time (JIT) routing [28] is a form of rebalancing done while forwarding another
payment. If a routing node is asked to forward a payment for which all its chan-
nels lack balance, it first moves some funds to the local side of one of its chan-
nels using a circular payment, and then proceeds with the forwarding. From a
prober’s standpoint, rebalancing changes the properties of a hop mid-probe, dis-
torting the estimates. Without intra-hop splitting, a multi-channel hop between
Alice and Bob with JIT routing becomes equivalent to a single-channel hop with
balances equal to

min

⎛

⎝
∑

i∈Edir0

bi, max
i∈Edir0∩Edir1

ci

⎞

⎠ (11)

on the Alice’s side and

min

⎛

⎝
∑

i∈Edir1

(ci − bi), max
i∈Edir0∩Edir1

ci

⎞

⎠ (12)

on the Bob’s side. Indeed, ignoring network topology, Alice can concentrate all
her local balances in one channel, if the total does not exceed the capacity of
the largest bidirectional channel. Note that for JIT routing to work, at least one
channel must be enabled in both directions (i.e., Edir0 ∩ Edir1 �= ∅).

Unannounced Channels. To hide public channel balances, a node may open
unannounced channels in parallel to announced ones. Depending on the relation
between the balances of announced and unannounced channels, the attacker may
still be able to discover unannounced channel balances (e.g., if the balance of
the unannounced channel exceeds the balances of announced channels). Even in
that case, the standard probing technique needs to be modified.

29 Also referred to as multi-part payments.

Analysis and Probing of Parallel Channels in the Lightning Network 353

6 Related Work

Attacks on the LN can be grouped into DoS-related [12,23,27,34,35,39,44,46],
privacy-related [6,8,15,18,26,36,37,45], and incentive-related [47].

Prior work on channel probing introduced the general idea [15], suggested
probing channels from both ends [8], controlling both the sender and the receiver
of probes [18], and multi-hop probing [45]. Multiple LN simulators have been
designed to analyze honest economic activity [6,7,48] or the cost of opening
payment channels [10]. Rate-limiting has been proposed to mitigate issues like
probing and jamming [17,25,33,43]. The fee structure [6,38] and the tension
between privacy and utility of routing nodes [13,41] have also been discussed.
Other relevant prior work focused on channel jamming [23,44], channel policy
exploitation [32], and improved payment forwarding [50].

7 Conclusion

In this work, we have developed a comprehensive model for channel balance
probing in the Lightning Network. Our model is the first one to account for
parallel channels. We have introduced enhanced versions of the probing attack,
combining it with channel jamming and fee targeting. Enhanced probing allows
for nearly full extraction of balance information in multi-channel hops, which
was impossible with prior methods. Moreover, we have proposed an optimized
amount selection algorithm based on N-dimensional binary search that increases
probing speed.

We have confirmed our findings experimentally in an isolated testing envi-
ronment and using a new probing-focused Lightning simulator. The simulations
based on a real-world network snapshot show that the optimized amount selec-
tion algorithm makes probing up to 15% faster compared to single-dimensional
binary search (two-channel target hops, direct non-enhanced probing). The
experiments also illustrate the trade-off between direct and multi-hop probing.
Finally, we have outlined potential countermeasures and avenues for future work.

The Lightning Network promises to significantly improve Bitcoin’s scalability
and privacy. To fully realize its potential, Lightning should defend against attacks
such as balance probing and channel jamming. We hope that this work helps
improve the trade-offs between scalability, security, and privacy for Lightning,
while preserving its permissionless nature.

Acknowledgments. We thank Antoine Riard for thoughtful feedback. This work was
partially supported by the Luxembourg National Research Fund (FNR) project Fin-
Crypt (C17/IS/11684537). Contributions of Gleb Naumenko were supported with a
grant by 100x Group, the holding structure for the BitMEX platform. Contributions
of Sergei Tikhomirov were partially supported by Chaincode Labs.

References

1. Multi-path payments in LND: Making channel balances add up (2020). https://
lightning.engineering/posts/2020-05-07-mpp/

https://lightning.engineering/posts/2020-05-07-mpp/
https://lightning.engineering/posts/2020-05-07-mpp/

354 A. Biryukov et al.

2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

3. Awathare, N., Suraj, A., Ribeiro, V.J., Bellur, U.: REBAL: channel balancing for
payment channel networks. In: 29th International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems, MASCOTS
2021, Houston, TX, USA, 3–5 November, 2021, pp. 1–8. IEEE (2021). https://doi.
org/10.1109/MASCOTS53633.2021.9614304

4. Biryukov, A., Naumenko, G., Tikhomirov, S.: Analysis and probing of parallel
channels in the lightning network. IACR Cryptol. ePrint Arch, p. 384 (2021).
https://eprint.iacr.org/2021/384

5. BOLT: Lightning network specifications (2019). https://github.com/
lightningnetwork/lightning-rfc

6. Béres, F., Seres, I.A., Benczúr, A.A.: A cryptoeconomic traffic analysis
of Bitcoin’s Lightning network. Cryptoeconomic Systems, 6 2020. https://
cryptoeconomicsystems.pubpub.org/pub/b8rb0ywn

7. Conoscenti, M., Vetrò, A., Martin, J., Spini, F.: The CLoTH simulator for HTLC
payment networks with introductory Lightning network performance results. Inf.
9(9), 223 (2018)

8. van Dam, G., Kadir, R.A., Nohuddin, P.N.E., Zaman, H.B.: Improvements of
the balance discovery attack on lightning network payment channels. In: Hölbl,
M., Rannenberg, K., Welzer, T. (eds.) SEC 2020. IAICT, vol. 580, pp. 313–323.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58201-2_21

9. EmelyanenkoK: Payment channel congestion via spam-attack (2017). https://
github.com/lightningnetwork/lightning-rfc/issues/182

10. Engelmann, F., Kopp, H., Kargl, F., Glaser, F., Weinhardt, C.: Towards an eco-
nomic analysis of routing in payment channel networks. In: Proceedings of the
1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers,
December 2017. https://doi.org/10.1145/3152824.3152826,https://arxiv.org/abs/
1711.02597

11. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4_12

12. Harris, J., Zohar, A.: Flood & loot: a systemic attack on the Lightning network.
In: AFT ’20: 2nd ACM Conference on Advances in Financial Technologies, New
York, NY, USA, 21–23 October 2020, pp. 202–213. ACM (2020). https://doi.org/
10.1145/3419614.3423248. https://arxiv.org/abs/2006.08513

13. Hase, T., Wallace, V.: Smarter autopilot, April 2019. https://blog.lightning.
engineering/announcement/2019/04/23/mainnet-app.html

14. Hearn, M., Spilman, J.: Anti dos for tx replacement (2013). https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html

15. Herrera-Joancomartí, J., Navarro-Arribas, G., Pedrosa, A.R., Pérez-Solà, C.,
García-Alfaro, J.: On the difficulty of hiding the balance of Lightning network chan-
nels. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang,
Z. (eds.) Proceedings of the 2019 ACM Asia Conference on Computer and Commu-
nications Security, AsiaCCS 2019, Auckland, New Zealand, 09–12 July, 2019. pp.
602–612. ACM (2019). https://doi.org/10.1145/3321705.3329812. https://eprint.
iacr.org/2019/328

16. Jager, J.: A proposal for up-front payments (2020). https://lists.linuxfoundation.
org/pipermail/lightning-dev/2020-March/002585.html

https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1109/MASCOTS53633.2021.9614304
https://doi.org/10.1109/MASCOTS53633.2021.9614304
https://eprint.iacr.org/2021/384
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://cryptoeconomicsystems.pubpub.org/pub/b8rb0ywn
https://cryptoeconomicsystems.pubpub.org/pub/b8rb0ywn
https://doi.org/10.1007/978-3-030-58201-2_21
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://doi.org/10.1145/3152824.3152826,
https://arxiv.org/abs/1711.02597
https://arxiv.org/abs/1711.02597
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1145/3419614.3423248
https://doi.org/10.1145/3419614.3423248
https://arxiv.org/abs/2006.08513
https://blog.lightning.engineering/announcement/2019/04/23/mainnet-app.html
https://blog.lightning.engineering/announcement/2019/04/23/mainnet-app.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html
https://doi.org/10.1145/3321705.3329812
https://eprint.iacr.org/2019/328
https://eprint.iacr.org/2019/328
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-March/002585.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2020-March/002585.html

Analysis and Probing of Parallel Channels in the Lightning Network 355

17. Jager, J.: Circuit breaker (2021). https://github.com/lightningequipment/
circuitbreaker

18. Kappos, G., et al.: An empirical analysis of privacy in the lightning network. In:
Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 167–186. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_8

19. Khalil, R., Gervais, A.: Revive: Rebalancing off-blockchain payment networks. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pp. 439–453. ACM (2017).
https://doi.org/10.1145/3133956.3134033. https://eprint.iacr.org/2017/823

20. Kumble, S.P., Roos, S.: Comparative analysis of lightning’s routing clients. In:
IEEE International Conference on Decentralized Applications and Infrastructures,
DAPPS 2021, Online Event, 23–26 August, 2021, pp. 79–84. IEEE (2021). https://
doi.org/10.1109/DAPPS52256.2021.00014

21. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.:
Anonymous multi-hop locks for blockchain scalability and interoperability. In:
26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24–27, 2019. The Internet Society (2019).
https://eprint.iacr.org/2018/472

22. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among
men with no names. login Usenix Mag. 38(6) (2013). https://www.usenix.
org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-
characterizing-payments-among

23. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. In:
Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 170–188. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_9

24. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

25. Naumenko, G.: Preventing channel jamming (2021). https://blog.bitmex.com/
preventing-channel-jamming/

26. Nisslmueller, U., Foerster, K., Schmid, S., Decker, C.: Toward active and passive
confidentiality attacks on cryptocurrency off-chain networks. In: Furnell, S., Mori,
P., Weippl, E.R., Camp, O. (eds.) Proceedings of the 6th International Confer-
ence on Information Systems Security and Privacy, ICISSP 2020, Valletta, Malta,
25–27 February 2020, pp. 7–14. SCITEPRESS (2020). https://doi.org/10.5220/
0009429200070014,https://arxiv.org/abs/2003.00003

27. Pérez-Solà, C., Ranchal-Pedrosa, A., Herrera-Joancomartí, J., Navarro-Arribas, G.,
Garcia-Alfaro, J.: LockDown: balance availability attack against lightning network
channels. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
245–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_14

28. Pickhardt, R.: Just in time routing (JIT-routing) and a channel rebalancing heuris-
tic as an add on for improved routing success in BOLT 1.0 (2019). https://lists.
linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html

29. Poelstra, A.: Lightning in scriptless scripts, March 2017. https://lists.launchpad.
net/mimblewimble/msg00086.html

30. Poon, J., Dryja, T.: The Bitcoin Lightning network: Scalable off-chain instant
payments. Technical report (2016)

31. Research, B.: Proportion of public vs private channels (2020). https://blog.bitmex.
com/lightning-network-part-7-proportion-of-public-vs-private-channels/

https://github.com/lightningequipment/circuitbreaker
https://github.com/lightningequipment/circuitbreaker
https://doi.org/10.1007/978-3-662-64322-8_8
https://doi.org/10.1145/3133956.3134033
https://eprint.iacr.org/2017/823
https://doi.org/10.1109/DAPPS52256.2021.00014
https://doi.org/10.1109/DAPPS52256.2021.00014
https://eprint.iacr.org/2018/472
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://doi.org/10.1007/978-3-662-64331-0_9
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://blog.bitmex.com/preventing-channel-jamming/
https://blog.bitmex.com/preventing-channel-jamming/
https://doi.org/10.5220/0009429200070014
https://doi.org/10.5220/0009429200070014
https://arxiv.org/abs/2003.00003
https://doi.org/10.1007/978-3-030-51280-4_14
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-March/001891.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/

356 A. Biryukov et al.

32. Riard, A.: Route blinding, October 2020. https://github.com/lightningnetwork/
lightning-rfc/pull/765#pullrequestreview-511147029

33. Riard, A., Naumenko, G.: Stake certificates (2020). https://thelab31.xyz/stake-
certificates

34. Riard, A., Naumenko, G.: Time-dilation attacks on the Lightning network.
Cryptoeconomic Systems 1(2), October 2021. https://doi.org/10.21428/58320208.
6ac6960a. https://cryptoeconomicsystems.pubpub.org/pub/riard-lightning-
dilation

35. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: Quantifying
the Lightning network’s resilience to topology-based attacks. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy Workshops, EuroS&P Workshops 2019,
Stockholm, Sweden, 17–19 June 2019, pp. 347–356. IEEE (2019). https://doi.org/
10.1109/EuroSPW.2019.00045. https://arxiv.org/abs/1904.10253

36. Rohrer, E., Tschorsch, F.: Counting down thunder: timing attacks on privacy
in payment channel networks. In: AFT ’20: 2nd ACM Conference on Advances
in Financial Technologies, New York, NY, USA, 21–23 October, 2020, pp. 214–
227. ACM (2020). https://doi.org/10.1145/3419614.3423262. https://arxiv.org/
abs/2006.12143

37. Romiti, M., Victor, F., Moreno-Sanchez, P., Nordholt, P.S., Haslhofer, B., Maffei,
M.: Cross-layer deanonymization methods in the lightning protocol. In: Borisov,
N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 187–204. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-662-64322-8_9

38. Russel, R.: A proposal for up-front payments. https://lists.linuxfoundation.org/
pipermail/lightning-dev/2019-November/002275.html

39. Russel, R.: Loop attack with onion routing, August 2015. https://lists.
linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html

40. Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P.: Topological analysis of Bitcoin’s
Lightning network. In: MARBLE, pp. 1–12. Springer (2019), https://arxiv.org/
abs/1901.04972

41. Tang, W., Wang, W., Fanti, G.C., Oh, S.: Privacy-utility tradeoffs in routing
cryptocurrency over payment channel networks. In: Yeh, E., Markopoulou, A., Tay,
Y.C. (eds.) Abstracts of the 2020 SIGMETRICS/Performance Joint International
Conference on Measurement and Modeling of Computer Systems, Boston, MA,
USA, 8–12 June, 2020, pp. 81–82. ACM (2020). https://doi.org/10.1145/3393691.
3394213. https://arxiv.org/abs/1909.02717

42. Teinturier, B.: Trampoline onion format (feature 24/25). https://github.com/
lightningnetwork/lightning-rfc/pull/836

43. Teinturier, B.: Spamming the Lightning network, November 2020. https://github.
com/t-bast/lightning-docs/blob/master/spam-prevention.md#costless-channel-
probing

44. Tikhomirov, S., Moreno-Sanchez, P., Maffei, M.: A quantitative analysis of secu-
rity, anonymity and scalability for the Lightning network. In: 2020 IEEE Euro-
pean Symposium on Security and Privacy Workshops, EuroS&P Workshops 2020,
September, pp. 7–11, 2020. IEEE (2020). https://eprint.iacr.org/2020/303

45. Tikhomirov, S., Pickhardt, R., Biryukov, A., Nowostawski, M.: Probing channel
balances in the Lightning network. CoRR abs/2004.00333 (2020). https://arxiv.
org/abs/2004.00333

46. Tochner, S., Schmid, S., Zohar, A.: Hijacking routes in payment channel networks: a
predictability tradeoff. CoRR abs/1909.06890 (2019). https://arxiv.org/abs/1909.
06890

https://github.com/lightningnetwork/lightning-rfc/pull/765#pullrequestreview-511147029
https://github.com/lightningnetwork/lightning-rfc/pull/765#pullrequestreview-511147029
https://thelab31.xyz/stake-certificates
https://thelab31.xyz/stake-certificates
https://doi.org/10.21428/58320208.6ac6960a
https://doi.org/10.21428/58320208.6ac6960a
https://cryptoeconomicsystems.pubpub.org/pub/riard-lightning-dilation
https://cryptoeconomicsystems.pubpub.org/pub/riard-lightning-dilation
https://doi.org/10.1109/EuroSPW.2019.00045
https://doi.org/10.1109/EuroSPW.2019.00045
https://arxiv.org/abs/1904.10253
https://doi.org/10.1145/3419614.3423262
https://arxiv.org/abs/2006.12143
https://arxiv.org/abs/2006.12143
https://doi.org/10.1007/978-3-662-64322-8_9
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-November/002275.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-November/002275.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html
https://arxiv.org/abs/1901.04972
https://arxiv.org/abs/1901.04972
https://doi.org/10.1145/3393691.3394213
https://doi.org/10.1145/3393691.3394213
https://arxiv.org/abs/1909.02717
https://github.com/lightningnetwork/lightning-rfc/pull/836
https://github.com/lightningnetwork/lightning-rfc/pull/836
https://github.com/t-bast/lightning-docs/blob/master/spam-prevention.md#costless-channel-probing
https://github.com/t-bast/lightning-docs/blob/master/spam-prevention.md#costless-channel-probing
https://github.com/t-bast/lightning-docs/blob/master/spam-prevention.md#costless-channel-probing
https://eprint.iacr.org/2020/303
https://arxiv.org/abs/2004.00333
https://arxiv.org/abs/2004.00333
https://arxiv.org/abs/1909.06890
https://arxiv.org/abs/1909.06890

Analysis and Probing of Parallel Channels in the Lightning Network 357

47. Tsabary, I., Yechieli, M., Manuskin, A., Eyal, I.: MAD-HTLC: because HTLC is
crazy-cheap to attack. In: 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24–27 May 2021. pp. 1230–1248. IEEE (2021).
https://doi.org/10.1109/SP40001.2021.00080. https://arxiv.org/abs/2006.12031

48. Zhang, Y., Yang, D., Xue, G.: Cheapay: an optimal algorithm for fee minimization
in blockchain-based payment channel networks. In: ICC 2019–2019 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6 (2019). https://doi.org/10.
1109/ICC.2019.8761804

49. ZmnSCPxj: Outsourcing route computation with trampoline payments (2019).
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001950.
html

50. ZmnSCPxj: A payment point feature family, October 2019. https://lists.
linuxfoundation.org/pipermail/lightning-dev/2019-October/002225.html

https://doi.org/10.1109/SP40001.2021.00080
https://arxiv.org/abs/2006.12031
https://doi.org/10.1109/ICC.2019.8761804
https://doi.org/10.1109/ICC.2019.8761804
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001950.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001950.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-October/002225.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-October/002225.html

HIDE & SEEK: Privacy-Preserving Rebalancing
on Payment Channel Networks

Zeta Avarikioti1, Krzysztof Pietrzak1, Iosif Salem2, Stefan Schmid2,

Samarth Tiwari3(B), and Michelle Yeo1

1 IST Austria, Klosterneuburg, Austria
{zetavar,krzysztof.pietrzak,michelle.yeo}@ist.ac.at

2 Faculty of Computer Science, University of Vienna, Wien, Austria
{iosif.salem, stefan schmid}@univie.ac.at

3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
samarth.tiwari@cwi.nl

Abstract. Payment channels effectively move the transaction load off-chain
thereby successfully addressing the inherent scalability problem most cryptocur-
rencies face. A major drawback of payment channels is the need to “top up” funds
on-chain when a channel is depleted. Rebalancing was proposed to alleviate this
issue, where parties with depleting channels move their funds along a cycle to
replenish their channels off-chain. Protocols for rebalancing so far either intro-
duce local solutions or compromise privacy.

In this work, we present an opt-in rebalancing protocol that is both private
and globally optimal, meaning our protocol maximizes the total amount of rebal-
anced funds. We study rebalancing from the framework of linear programming.
To obtain full privacy guarantees, we leverage multi-party computation in solving
the linear program, which is executed by selected participants to maintain effi-
ciency. Finally, we efficiently decompose the rebalancing solution into incentive-
compatible cycles which conserve user balances when executed atomically.

Keywords: Payment channel networks · Privacy · Rebalancing

1 Introduction

Cryptocurrencies are increasingly growing as an alternative payment method. By
replacing a central trusted authority (e.g., a bank) with a decentralised ledger, i.e., a
blockchain, mutually distrusting users now have the means to achieve consensus over

Supported by the Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the
Vienna business agency (Wirtschaftsagentur), 2020–2023.
Supported partially by the Austrian Science Fund (FWF) project “Design Framework for Self-
Driving Networks” (ADVISE), I 4800-N, 2020–2023 and Vienna Cybersecurity and Privacy
Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023.
Supported partially by ERC Starting Grant QIP–805241, the Vienna Cybersecurity and Privacy
Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023,
and by Harmony through the Research DAO.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 358–373, 2022.
https://doi.org/10.1007/978-3-031-18283-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_17

HIDE & SEEK: Privacy-Preserving Rebalancing 359

transactions. However, achieving consensus on the blockchain is notoriously inefficient.
Bitcoin, for instance, can only support at most 7 transactions per second on average [24].
This severely limits the scalability of blockchain solutions to every day life situations.

Payment channel networks (PCNs) aim to increase the efficiency and scalability
of blockchains while maintaining the benefits of security and decentralisation. PCNs
operate on top of blockchains introducing Layer 2 – the blockchain itself being Layer 1.
As the name suggests, a PCN consists of several payment channels between pairs of
users who wish to transact with each other. Users connected indirectly through a path
of channels may route transactions through the network. To open a payment channel,
two users create a funding transaction where they lock funds on-chain only to be used in
this payment channel. Thereafter, each transaction on the payment channel is simply an
exchange of a signed message that depicts the current balances between the two users;
so it does not involve the blockchain at all. This can go on indefinitely until the users go
back to the blockchain to close the channel. The process of closing a channel consists of
one on-chain transaction optimistically, while in worst case of a small constant number
of transactions (e.g., in Lightning closing a payment channel costs at most two on-chain
transactions). Thus, with at most three blockchain transactions, any pair of users can in
theory make an arbitrary number of costless transactions with each other.

A major drawback of payment channels is that users cannot simply “top up” their
balance in the channel off-chain once it is depleted. Instead, they have to go on-chain to
refund the payment channel. A solution to extend the lifetime of payment channels is
rebalancing, which updates payment channels with the crucial condition that the overall
balance of each node is unchanged. Although it is not possible to shift funds from one
payment channel to another off-chain, the effect of rebalancing is precisely that: funds
from well-funded payment channels transfer to depleted ones.

There are two predominant approaches to rebalancing. The first involves a local
search of rebalancing cycles (i.e., transactions of a fixed amount that begin and end with
the same user) initiated by a single user. This is the current rebalancing approach in the
Lightning Network [1]. The second approach (introduced in [17]) is global instead of
local: nodes looking to rebalance specify a maximum amount of rebalancing flow along
each of their channels, where the rebalancing transactions are determined by a global
evaluation of the state of the network.

A drawback of single-user based cycle finding is it overlooks other rebalancing
requests across the network, leading to local solutions. Figure 1 illustrates one such
consequence which we call the “cancelling out” effect. Suppose a user Charlie wants to
move 10 coins from his channel with Bob to his channel with Alice. If Charlie utilises
the cycle finding approach, he will only manage to rebalance 6 coins as depicted in the
graph on the right. The channel between Bob and Alice would be ignored because of
the lack of sufficient balance on Bob’s end. In a globally optimal solution, however, the
entire rebalancing in the graph on the left can be executed, as it takes into account that
transactions in both directions can be above the capacity of a channel, as long as they
“cancel out” and the resulting transaction is within the capacity.

Furthermore, users must check if the other users on the cycle are willing to forward
the rebalancing transaction amount, even after finding rebalancing cycles. This could
lead to a prolonged and laborious search for cycles with willing participants. Lastly,

360 Z. Avarikioti et al.

Charlie

Alice

Dave

Bob

10 10

4

6 6

Charlie

Alice

Dave

Bob

6 6

6 6

Fig. 1. The cancelling out effect. The weighted, directed edges on the graph on the left specifies
the maximum coins a user can forward along the direction of the edge. The graph on the right
shows the maximum rebalancing cycle Charlie can achieve using the cycle finding approach.

this approach requires users to have global knowledge of the network topology which
can be unrealistic in terms of storage as the size of the network increases.

The second approach does not suffer from local limitations such as the cancel-
ing out effect, and theoretically achieves the global optimal rebalancing. Revive [17]
implemented this method by assigning a random delegate, either a trusted external third
party or someone from the set of participants, to receive channel constraints and solve
a linear program that models rebalancing. This is a serious privacy loophole, since the
delegate now has information on the concerned payment channels. Moreover, the dele-
gate has control over the rebalancing output; for instance, the delegate may compute the
rebalancing transactions in a malicious or suboptimal way, favouring some transactions
over others. Although the authors proposed a method for any participant to challenge
the rebalancing transactions, the process is lengthy and requires giving the challenger
access to the balances of all participants.

In this work, we present HIDE & SEEK, the first opt-in rebalancing protocol that is
both private and achieves a globally optimal rebalancing. Each party that is interested
in rebalancing specifies the maximum amount to be forwarded in each of the party’s
channel. We employ selected delegates that receive the maximum amounts per channel,
calculate and share with each party the exact amount to be moved in each channel. We
formulate our problem as a linear program and set our objective function to maximize
the total amount of funds to be rebalanced in the network. Our protocol does not involve
transaction fees.

On the other hand, we leverage multi-party computation to obtain a fully private
solution. Specifically, the participants in HIDE & SEEK only learn the information
they would have learned if a trusted third party computed the optimal rebalancing and
returned to each participant the amount to be moved along each of their channel. No
sensitive information such as the channel balances is leaked.

Finally, we guarantee the rebalancing can be securely and efficiently executed. We
propose a simple way to decompose the optimal rebalancing circulation into a set of
transaction cycles. As a result, the transactions of each cycle are easy to execute atom-
ically using HTLCs. We note that atomicity is limited to each rebalancing cycle, there-
fore increasing the protocol’s robustness; any cycle can be executed successfully regard-
less of the success of other cycles.

We highlight the advantages of our approach in Table 1.

HIDE & SEEK: Privacy-Preserving Rebalancing 361

Table 1. Summary of main approaches for rebalancing. Private solutions are solutions that do not
leak balance information. Globally optimal refers to the optimality of the rebalancing solution.
Opt-in refers to solutions where willing users choose to participate in the protocol and non-willing
users are not involved at all. Network locality refers to solutions that only require local knowledge
of the PCN.

Private Globally optimal Opt-in Network locality

Cycle finding solution ✓ ✗ ✗ ✗

Revive ✗ ✓ ✓ ✓

Our solution ✓ ✓ ✓ ✓

Our Contributions. We introduce HIDE & SEEK, the first opt-in privacy-preserving
and globally optimal rebalancing protocol that can be implemented in a secure and
efficient manner. We acknowledge and discuss its limitations in terms of efficiency.
We suggest several practical speed ups for the deployment of our solution, and outline
possible extensions.

2 Preliminaries

2.1 Payment Channels Networks

Users u, v can open a payment channel between each other by locked some of their
funds to be used only in this channel: if u locks a units and v locks b units, the state of
the channel from u to v is modeled as a real number balance(u, v) ∈ [−b, a], initialized
as 0. The capacity of the channel refers to the sum a+b of these funds. Once the channel
is created, both users can send each other money by updating the channel balances in
favour of the other party, as long as the state remains within the interval [−b, a].

Users who are not directly connected by a channel in a PCN can still transact with
each other if they are connected by a path of payment channels. The users along the
transaction path which are not the sender or receiver typically charge a fee for for-
warding the transaction that depends on the transaction amount. For a transaction to be
successful, the sender has to first send enough money to cover both the desired payment
amount and all the fees charged by each user on the payment path. That is, suppose user
s wants to send x coins to user r along a payment path p = {(s, u1), ..., (uk, r)}. Then
s must send x+

∑k
i=1 fee(ui). Secondly, the balance of each user along the path must

be large enough to forward the payment amount together with fees. Then for each user
ui on p, balance(ui, ui+1) ≥ x+

∑k
j=i+1 fee(uj). Although the channel capacities are

typically public information, the individual balances on each end are private; so senders
typically have to try different payment paths until one of them succeeds.

A desired guarantee for payment routing through a path in a PCN is atomicity,
i.e., for all users along the path, either all of them update their balances or none of
the balances in the path get updated. This is enforced in the Lightning Network using
HTLCs [16]. An HTLC (HTLC(u, v, x, h, t)) is a smart contract between any two
users u and v that locks some amount of coins x using a hash output h and a timelock
t. To get the locked funds, v has to produce the preimage r to the hash h = H(r)
within time t, upon which the locked funds will be released to v. If v cannot do so

362 Z. Avarikioti et al.

within the time limit, u can claim the locked funds. Payment path atomicity is enforced
using HTLCs for each channel on the path with the same hash value (determined using
a secret chosen by the receiver on the path), but with decreasing timelock values from
sender to receiver to guarantee the security of funds.

2.2 Network Flows

Consider a directed graph G = (V,E) and the associated |E|-dimensional
Euclidean space of non-negative flow along each edge. A circulation is a flow f =
(f(u, v))(u,v)∈E such that the net flow through each vertex is zero:

∑

v∈V

f(u, v) =
∑

v∈V

f(v, u),∀u ∈ V . Two circulations f1, f2 can be added to get yet another circulation:

f1 + f2 = (f1(u, v) + f2(u, v))(u,v)∈E . A cycle is a sequence of vertices v1, v2 . . . vk
such that (vi, vi+1) ∈ E,∀1 ≤ i ≤ k − 1 and (vk, v1) ∈ E as well. We may equiva-
lently refer to this cycle as (e1, e2 . . . ek) where ei = (vi, vi+1),∀1 ≤ i ≤ k − 1 and
ek = (vk, v1). We call k the length of this cycle. A cycle flow f of weight w on cycle
C is a circulation where f(e) = w,∀e ∈ C and f(e) = 0 otherwise.

A standard result of network flow theory is that any circulation may be expressed
as a sum of at most |E| cycles. We refer the reader to the textbook of Ahuja, Magnanti
and Orlin [3] for a detailed treatment.

3 Protocol Overview and Model

3.1 System Model

Payment Network Topology. We model the PCN as a graph G̃ = (Ṽ , Ẽ), with a vertex
for each node and an edge between u and v if there is a payment channel between them.
Let V ⊂ Ṽ be the users in the PCN that are interested in rebalancing and let G = (V,E)
be the subgraph of G̃ induced by V . We denote |V | = n, |E| = m. We assume each
user u has only local knowledge of the PCN topology, i.e., only knows the capacities
and balances on the edges incident to u.

Cryptographic Assumptions. We assume the existence of secure communications chan-
nels, hash functions and signatures. We follow [11] and assume the concept of an arith-
metic black box for MPC FABB , in particular with functionalities like secret sharing,
storage, retrieval, addition, multiplication, and comparisons.

Blockchain & Network Model. We assume a synchronous network, i.e., there is known
bounded message delay. We further assume the underlying blockchain satisfies persis-
tence and liveness as defined in [14].

3.2 Protocol Overview

In a nutshell, our proposed protocol HIDE & SEEK consists of two phases: an explo-
ration phase and an execution phase. Firstly, the goal of the exploration phase is to

HIDE & SEEK: Privacy-Preserving Rebalancing 363

discover rebalancing cycles privately and efficiently. Then, the goal of the execution
phase is to guarantee that the rebalancing transactions are executed in a secure manner.
At the same time we want to maximise the efficacy of our protocol, that is, we want as
many rebalancing cycles to go through as possible.

Exploration Phase. The exploration phase first formulates the rebalancing problem as
a linear program. Then we randomly select k delegates out of the participants to per-
form an MPC protocol to jointly solve the linear program. Next, any set of participants
that wish to participate in the rebalancing protocol prepares the shared inputs to the
delegates. The output of the exploration phase is a rebalancing circulation.

Execution Phase. We first efficiently decompose the rebalancing circulation output of
the exploration phase into a set of cycle flows. These cycle flows have the property
that they are sign-consistent, i.e. they are consistent with the direction of the flows in
the rebalancing circulation. This makes executing these cycles incentive-compatible, as
no user would have to execute transactions which violate their specified rebalancing
capacity and direction along channels. Once this is done, we enforce atomicity of these
cycles by creating an HTLC for each cycle which ensures either transactions along the
entire cycle goes through or none at all.

3.3 Desired Properties and Threat Model

In general, we assume a computationally bounded adversary, i.e., runs in probabilistic
polynomial time. The properties HIDE & SEEK should guarantee are the following:

1. Balance conservation (security): The total balance of each node, which is the sum
of the node’s balances on each incident channel, must remain the same before and
after HIDE & SEEK, even when all other participants are corrupted by the adver-
sary.

2. Privacy: The information revealed during HIDE & SEEK should be not exceed the
minimum required to execute rebalancing: (a) the participants must only learn the
transaction amounts for each of their payment channels; (b) the delegates of MPC
should not be able to determine private financial information of the participants.
Both (a) and (b) should hold as long as one of the delegates is not corrupted.

3. Optimality (completeness): Assuming every participant is honest, the result should
be optimal in that no other rebalancing yields greater total change over all payment
channels.

4 The HIDE & SEEK Protocol

4.1 Exploration Phase

Linear Programming for Rebalancing. The practical problem of rebalancing has
many facets, including keeping participants’ financial information private and facilitat-
ing coordination. We overlook these considerations momentarily to present the under-
lying optimization problem of rebalancing.

364 Z. Avarikioti et al.

For a payment channel between (u, v), the users would like to move the state
balance(u, v) towards a desired state balance∗(u, v). If balance∗(u, v) < balance(u, v)
then rebalancing would involve u transferring funds to v, and we model this as a
directed edge from u to v with capacity m(u, v) := balance(u, v) − balance∗(u, v).
If balance∗(u, v) > balance(u, v) then there is a directed edge from v to u with capac-
ity m(v, u) := balance∗(u, v) − balance(u, v). Thus the graph G is transformed into a
directed weighted graph.

The capacities m(u, v) represent the most flow that can occur through each channel
during rebalancing. If m(u, v) = 0 the edge from u to v is either non-existent or equiv-
alently, a zero-capacity edge. We also enforce that if m(u, v) > 0, then necessarily
m(v, u) = 0.

Let us denote a potential rebalancing by f ∈ R
|E| on this directed graph, where

f(u, v) denote the flow from u to v. Since rebalancing should not result in a net financial
gain or loss for any participant, we require f to be a circulation. Recall that it means the
net flow through each vertex is zero:

∑

v:(u,v)∈E

f(u, v) =
∑

v:(v,u)∈E

f(v, u).

Not only must the flows be non-negative, but they must also satisfy the capacity
constraints as specified by participants:

0 ≤ f(u, v) ≤ m(u, v).

Thus, the set of valid rebalancings is a polytope in m-dimensional Euclidean space
defined by n + 2m linear constraints: n zero flow constraints for each vertex and m
pairs of flow capacity constraints for each edge.

We wish to compute a rebalancing that maximizes the linear objective∑

(u,v)∈E

f(u, v). We call the linear program so specified the rebalancing problem. This

choice of objective function amounts to maximizing the total change in each payment
channel’s balance towards its desired state.

Solving the Rebalancing Problem. One can apply any linear programming algorithm
of preference to solve the rebalancing, such as any from the family of simplex methods.
In fact, the rebalancing problem can be reduced to the min-cost flow problem, a spe-
cialization of linear programming which can be solved more easily. For instance, the
min-cost flow problem admits a strongly polynomial algorithm, meanwhile the corre-
sponding question for linear programming is a major open problem in the field.

Appendix 9 illustrates how the rebalancing problem is equivalent to a min-cost flow
problem with the same number of vertices and edges. Henceforth, we refer to the rebal-
ancing problem as a min-cost flow problem.

Delegate Selection and Multi-party Computation. Delegate selection can be done
using a simple version of cryptographic sortion as in [15]. Each of the k delegates
involved in the MPC gets n+2m inputs which are shares of each of the n participant’s

HIDE & SEEK: Privacy-Preserving Rebalancing 365

Algorithm 1: Depth-first Search Cycle Decomposition
input : Circulation f on directed graph G = (V,E)
output: A set of cycle flows S that sum to f

1 initialize i = 1
2 initialize R ←− {e ∈ E : f(e) �= 0} set of active edges
3 while R �= ∅ do
4 pick an edge e1 ∈ R
5 run depth first search to find a cycle Ci = (e1, e2, . . . ek) in R
6 wi ←− min f(e), e ∈ Ci

7 initialize fi ←− 0
8 for e ∈ Ci do
9 fi(e) = wi

10 f(e) ←− f(e) − fi(e)
11 if f(e) = 0 then
12 delete e from R

13 i ←− i+ 1

14 return S = {f1, f2 . . . fi}

3

3

3

3

2

2

2

A

B

C

D

3

3

2

A

B

C

D

5

5

Fig. 2. The graph on the left depicts a circulation. The weight of each edge is the transaction
amount to send along the edge. The cycles in the graph on the right is a sign consistent decom-
position of the circulation.

zero flow constraints and the 2m rebalancing capacity constraint along the m directed
edges (for each edge we have two constraints: one which specifies the maximum rebal-
ancing flow in one direction, and another which specifies the flow has to be 0 in the other
direction). The objective function is also shared and given as an input to the delegates.
The delegates jointly compute the optimal solution to the rebalancing LP problem and
each delegate outputs a share of the final flow on each edge at the end of the protocol.

4.2 Execution Phase

Cycle Decomposition. The exploration phase concludes with a solution to the rebal-
ancing linear program obtained through multi-party computation. This solution f∗ is in
fact encoded as shared secrets, and, as observed in [29] (relevant passage), one can pro-
cess the solution further before returning to individual participants. Instead of directly

366 Z. Avarikioti et al.

Algorithm 2: HTLC creation for cycles
input : S set of directed cycles

1 for c ∈ S do
2 select starting user uc at random from users in c
3 timelock tc ←− len(c)
4 uc chooses random secret rc and creates hash hc = H(rc)
5 for ec = (u, v) ∈ c starting from uc do
6 u creates HTLC(u, v, wc, hc, tc)
7 decrement tc by 1

sending each f∗(u, v) to u, we decompose the circulation into a sum of cycle flows.
This makes the execution of rebalancing via HTLCs easier; instead of the entire net-
work committing their funds to a large atomic rebalancing transaction, each cycle only
requires coordination between nodes constituting the cycle.

As mentioned earlier, each circulation can be expressed as a sum of cycle flows.
We briefly describe a standard algorithm to compute this decomposition efficiently.
Algorithm 1 uses depth-first search as a subroutine to detect cycles and then induce
cycle flows on them. Figure 2 depicts a circulation and its decomposition into cycle
flows.

HTLC Commitments per Cycle. Given such a decomposition, we need to enforce
atomicity of each cycle flow by creating an HTLC for each cycle c in the set. This can
be done by first selecting a user in each cycle at random to initiate the cycle. This user
has to choose a random secret rc from some domain X and create a hash of the secret
hc = H(rc). The timelock for the initiator of the cycle and the next user is set equal to
the length of the cycle. The transaction amount to send along each cycle is the weight
of the cycle wc. Every subsequent user in the cycle decrements the timelock value by 1
and looks up the next user in the cycle they should create an HTLC with (determined
by the vertex order in the cycle). They then create an HTLC with that user with the
decremented timelock value (lines 5–7 in Algorithm 2).

Finally we note that Algorithm 1 and Algorithm 2 can be computed privately using
MPC. To prevent any two users on a cycle c from sharing their hash hc with each other
and thus finding out they are in the same cycle, one can use MAPPCN [30] to preserve
user anonymity.

5 Analysis

Desired Properties. An execution of HIDE & SEEK satisfies the desired properties as
stated in Sect. 3.3. Let us study each of the properties in order.

Balance Conservation. Suppose there is a node v that enjoys net financial gain through
the execution of HIDE & SEEK under a malicious adversary. HIDE & SEEK specifies
a set of cycle flows that the nodes may execute, and v must have participated in some
subset of these. Note that by atomicity of cycle flows ensured through HTLCs, it is not

HIDE & SEEK: Privacy-Preserving Rebalancing 367

possible for a cycle to be executed partially (even when parties act maliciously). If v’s
balance increased, that means there must be at least one cycle flow with net positive
flow through v. But this contradicts the definition of cycle flows, since they must satisfy
zero flow through each node:

∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u) ∀v ∈ V.

Privacy. The sensitive data used in the exploratory phase of HIDE & SEEK remains
private as long as at least one delegate of the MPC is honest (inherited by the MPC). In
the execution phase, users do not know the other users in their cycle except their prede-
cessors and successors in their cycles as we use MAPPCN to preserve user anonymity.

Optimality. Assuming the delegates compute the solution correctly, the circulation
returned by the min-cost flow algorithm maximizes the total flow through each edge.
Under the same assumption, the cycle decomposition algorithm would result in an
equivalent (and thus also optimal) set of cycle flows.

Efficiency. We break the analysis of the efficiency of HIDE & SEEK into three parts:
(1) solving the rebalancing problem, (2) cycle decomposition, and (3) MPC.

Solving the Rebalancing Problem. Solving the underlying min-cost flow problem is the
most computationally intensive aspect of HIDE & SEEK. Fortunately we can leverage
the vast body of algorithms for this problem being asymptotically optimal in different
parameter regimes. The complexity of these algorithms is analyzed in terms of n,m,
the largest capacity U and the largest cost W of an edge. We may presently ignore the
term W as each edge has identical cost 1. For the parameter regime of rebalancing, we
recommend the double scaling algorithm of Ahuja, Goldberg, Orlin and Tarjan with
computes the optimal solution in time O(nm log nW log logU) [4].

An alternative is to use a network simplex algorithm. This family of algorithms are
excellent in practice, although theoretical analysis of their effectiveness is an active area
of research in optimization. Simplex algorithms are also incredibly simple, and for this
reason have they been recommended in Toft’s framework for privately solving linear
programs [29] despite the somewhat poorer theoretical guarantees. We recommend the
network simplex algorithm of Orlin [22] for the rebalancing problem, which terminates
in at most O(nm log n) pivots. Generally, the amortized cost per pivot is O(n), but
Orlin presents a modification with total runtime O(nm log n log nW).

Cycle Decomposition. If the rebalancing circulation obtained by solving the min-cost
flow contains n′ vertices and m′ edges, then the cycle decomposition algorithm as
detailed in Algorithm 1 terminates in O(n′m′) time, which is O(nm) at worst. Every
loop iteration removes at least one edge, and each iteration visits at most n′ vertices
before finding a cycle. The pre-processing of G to obtain the subgraph induced by the
circulation takes O(n+m) time.

Also note that the timelocks used in the execution of a cycle flow are bounded by
the length of the cycle.

368 Z. Avarikioti et al.

MPC. Although MPC implementations of optimization algorithms incur a penalty in
speed, there are multiple methods to speed up the implementation of HIDE & SEEK:

Firstly, the rebalancing problem, much like many other min-cost flow problems,
satisfies the Hoffman-Gale conditions: the optimal solution, along with the vertices of
the polytope, is guaranteed to be integral. This means the MPC can be performed over
faster integer arithmetic rather than slower floating point arithmetic.

HIDE & SEEK can be implemented even faster by reducing the number of bits per
variable. This quantity is governed by the maximum capacity per edge as well as the
granularity of rebalancing, so that the number of bits required depends on the specific
cryptocurrency. For instance, an implementation of HIDE & SEEK for Bitcoin with just
20 bits per variable may restrict all quantities to multiples of 210 = 1024 satoshis up to
230 satoshis which is approximately 10 bitcoins.

The number of delegates chosen to compute the MPC also contributes to the com-
munication cost during rounds, and here we note that HIDE & SEEK does not place any
limitations on this number. In fact, it can be as low as two delegates as long as one of
them is honest.

Finally, the efficiency of our protocol inherently depends on the MPC primitives
used. This is a wide and active area of research, with a lot of new developments in
making efficient MPC primitives [5,8–10].

6 Limitations and Extensions

In this section, we identify the limitations of our protocol and discuss possible exten-
sions.

Rational Participants. Participants in financial networks such as PCNs typically act
selfishly, aiming to increase their financial gain. As a result, an interesting future study is
the security of our scheme under rational participants. In the execution phase, the cycle
decomposition ensures that participants always gain from executing a cycle because the
cycles are sign-consistent. Nevertheless, HTLCs have been proven vulnerable to attacks
where participants collude and act for-profit [20]. Regarding the exploration phase, it
has been shown that when participants are rational (with respect to privacy) MPC is
possible using randomized mechanisms with constant expected running time [2].

Weighted LP. The linear program of the rebalancing problem currently maximizes
the total flow through each edge in the network. This is but an approximation of the
practical objective, since in practice, flows through distinct edges are not necessarily
equally important.

A more accurate model of rebalancing involved modifying the objective function
from

∑
(u,v)∈E f(u, v) to

∑
(u,v)∈E w(u, v)f(u, v) for non-negative integral weights

w(u, v) supplied by u via secret sharing. Let W be the maximum possible weight that
participants may specify.

This slight modification greatly enlarges the expressive power of participants, as
they can now provide local preferences of one cycle over another. For instance, a user

HIDE & SEEK: Privacy-Preserving Rebalancing 369

u with one outgoing edge e0 and three incoming edges e1, e2, e3 wishes to rebalance
e0 desperately. u considers rebalancing along e1 favorable but not urgent, is indifferent
to rebalancing along e2, and does not permit any flow through e3. Knowing that outgo-
ing flow through e0 must be balanced by equal incoming flow, u may assign a weight
w(e2) = 0 to allow for flow through e2 and then e0 in order to rebalance e0. This edge
preference can be expressed by weights:

w(e0) = W, w(e1) = 1, w(e2) = 0,

and by not including e3 in the protocol at all.
The desired properties of HIDE & SEEK continue to hold after this modifi-

cation. In terms of efficiency, the double scaling algorithm that we use runs in
O(nm log nW log logU) time rather than O(nm log n log logU) [4].

The major drawback of this modification is game theoretic: although incorporating
preferences is straightforward when users faithfully follow the protocol, it breaks under
the assumption of rational participants. In particular, misreporting the weight of every
edge as the maximum W is a dominant strategy, since that assigns the highest possible
weight to every cycle that a user is part of. This reduces this modification to the original
case of maximizing

∑

(u,v)∈E

f(u, v). An improved design of this mechanism, such as a

clever budgeting of weights, could circumvent this problem, manage individual users’
incentives, and let the weighted LP extension be used practically.

Optimality with Corrupted Participants. Participants’ sensitive financial data, such
as existence of a payment channel and its capacity for rebalancing, is not verified in the
protocol, nor does our threat model consider falsification of this data with respect to
optimality.

Unfortunately, this lack of verification can prevent any rebalancing to occur: an
adversary with knowledge of the payment channel network can falsify edge data so
that each cycle passes through one of their edges. The adversary can then refuse to
participate in the execution phase and prevent others from rebalancing, even when cycle
flows between honest parties exist.

To defend against such adversary, we propose that parties submit zero knowledge
proof of validity along with their edge constraint data. Although one cannot force par-
ticipants to participate in rebalancing cycles, this modification certainly increases the
success rate of rebalancing cycles in HIDE & SEEK even under an active adversary.

7 Related Work

Rebalancing PCNs. There are several payment channel primitives proposed in litera-
ture [6,7,12,21,24,28]. Regardless of the primitive, a challenge all PCNs share is how
to route transactions in the PCN while maintaining balanced channels for as long as pos-
sible. Classic routing studies in PCNs like SilentWhispers [19], SpeedyMurmurs [26],
and others [25] ignore that channels may be slowly depleting. A promising approach
to avoid channel depletion and prolong the network availability for transaction routing

370 Z. Avarikioti et al.

is to maintain balanced channels or occasionally perform rebalancing. But transaction
routing is a challenging task on its own because the channel balances remain secret for
privacy purposes [17,27,31], let alone avoiding channel depletion on-top.

Khalil and Gervais introduce the first channel rebalancing protocol, called
Revive [17]. They formulate the problem as an LP, similarly to our work. Then, a del-
egate is elected to solve the LP and return the solution to the rebalancing participants.
Although our work lies close to Revive, it also differs in several aspects. First, Revive
considers rebalancing as an LP as well, but HIDE & SEEK employs faster and more spe-
cific min-cost flow algorithms. Second, Revive relies on a single delegate to compute
the optimal rebalancing which leaks private information about balances to the delegate.
In contrast, HIDE & SEEK uses MPC to achieve full privacy guarantees. Since HIDE &
SEEK uses MPC, the speeds of the two protocols cannot be compared. We nevertheless
expect Revive to also benefit from using our min-cost flow framework. Finally, atomic
execution of the rebalancing transactions in Revive requires the transaction language
of the underlying blockchain to be Turing-complete, and thus it is not suitable for Bit-
coin. HIDE & SEEK avoids this issue by first decomposing the optimal rebalancing into
cycles, and then executing these cycles atomically using HTLCs. The cycle decompo-
sition in HIDE & SEEK also ensures that, as long as the channel is not part of all cycles,
some rebalancing can still occur if individual HTLCs fail on a channel.

From a practical perspective, rebalancing in the Lightning Network currently
utilises a brute force search for rebalancing cycles with sufficient capacity. An auto-
mated approach for doing so using the imbalance measure was proposed by [23]. Unlike
HIDE & SEEK, these methods do not leverage other rebalancing requests to find the
globally optimal rebalancing. These methods also require nodes to have global knowl-
edge of the network whereas nodes in HIDE & SEEK only need to have local knowledge
of the PCN.

Recently some works introduce routing protocols that attempt to maintain balanced
channels. In particular, Spider [27] is a payment routing algorithm that maximizes the
throughput while maintaining the original channel balances, without providing rebal-
ancing however. Li et al. [18] propose to extend the lifetime of payments channels by
estimating payment demand, and using this estimate to decide on the initial balance
of channels. Engelshoven and Roos [13], on the other hand, leverage routing fees to
incentivize the balanced use of payment channels. All these works are orthogonal and
complementary to ours, as we introduce an opt-in rebalancing protocol.

Network Flows and MPC. The general problem of solving network flow problems
via multi-party computation is considered in the comprehensive PhD thesis of Aly [5].
Various privacy preserving implementations of combinatorial optimization problems
are presented. The author acknowledges that the cost for privacy is very high even for
the simplest of problems. Roughly speaking, their MPC implementations must iterate
for the theoretical worst-case number of iterations to maintain privacy. For the practical
problem of rebalancing though, we do not choose to implement extra iterations. On the
other hand, we believe that suboptimal rebalancing is better than no rebalancing, and
recommend terminating the min-cost flow solution prematurely if needed. Both scaling
algorithms and network simplex algorithms monotonically generate better solutions in
each iteration, leaving the participants with a feasible solution if they stop early.

HIDE & SEEK: Privacy-Preserving Rebalancing 371

8 Conclusion and Future Work

In this work we study the rebalancing problem for PCNs. We present HIDE & SEEK,
which is a secure opt-in rebalancing protocol, that is also private and finds the globally-
optimal rebalancing. HIDE & SEEK achieves better efficiency by reducing the rebal-
ancing problem to a min-cost flow problem. HIDE & SEEK also achieves better robust-
ness by decomposing the solution into cycles and executing each cycle atomically, as
opposed to executing the entire solution atomically.

An interesting direction for future work is to consider the transaction aggregation
problem, which is similar to rebalancing but without the balance conservation property
(for instance Alice’s balance is not conserved if Alice wants to pay Bob 2 coins for
a coffee). The main difficulty with transaction aggregation comes from the constraint
that transactions may not be executed partially. In other words, where the optimization
underlying rebalancing is a linear program (solvable in polynomial time), the prob-
lem underlying transaction aggregation is an integer program (which is NP-complete in
general).

9 Appendix: Reduction of the Rebalancing Problem to Min-Cost
Flow

Recall that the rebalancing problem consists of finding a circulation on a directed graph
with maximum flow while also satisfying the capacity constraints. The related well-
studied problem of min-cost circulation provides a cost to each edge as well as lower
and upper bounds on the flow through each edge. Rebalancing can thus be seen as
a circulation problem with negative costs with flow bounds given by 0 and capacity
m(u, v). Below, we provide a short reduction to the more fundamental min-cost flow
problem on the same graph.

The reduction is a simple change of variables: define f ′ ∈ R
m as f ′(v, u) :=

m(u, v) − f(u, v). Consider the reversed graph G′ = (V,E′) where all directed edges
from G are reversed E′ = {e′ = (v, u) : (u, v) ∈ E}. Rebalancing on G is equivalent
to a min-cost flow problem on G′.

The constraints 0 ≤ f(u, v) ≤ m(u, v) transform into 0 ≤ f ′(v, u) ≤ m′(v, u) =
m(u, v). Finally, the zero flow constraints from the rebalancing problem

∑

(u,v)∈E

f(u, v) −
∑

(v,u)∈E

f(v, u) = 0

transform into
∑

(v,u)∈E′
m(u, v) − f ′(v, u) −

∑

(u,v)∈E′
m(v, u) − f ′(u, v) = 0,

or,
∑

(u,v)∈E′
f ′(u, v) −

∑

(v,u)∈E′
f ′(v, u) =

∑

(u,v)∈E

m(u, v) −
∑

(v,u)∈E

m(v, u)

372 Z. Avarikioti et al.

In other words, the sources and sinks can be defined by whether
∑

(u,v)∈E

m(u, v) −
∑

(v,u)∈E

m(v, u) is positive or negative. By a standard technique, we can further reduce

the problem to that containing a single source and single sink by appending so-called
“super-source and super-sink” to G′.

Finally, we need to specify the cost to complete the problem description: if the
objective of rebalancing is to maximise

∑

(u,v)∈E

c(u, v)f(u, v) then we specify the min-

cost flow problem to minimize
∑

(u,v)∈E′
c(v, u)f ′(u, v). In this way, not only are the

feasible regions of both problems equivalent by the described change of variables, but
so are the optimum solutions.

References

1. Rebalance plugin. https://github.com/lightningd/plugins/tree/master/rebalance
2. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory:

robust mechanisms for rational secret sharing and multiparty computation. In: PODC (2006).
https://doi.org/10.1145/1146381.1146393

3. Ahuja, R., Magnanti, T., Orlin, J.: Network flows - theory, algorithms and applications (1993)
4. Ahuja, R., Goldberg, A., Orlin, J., Tarjan, R.: Finding minimum-cost flows by double scaling.

Math. Program. 53, 243–266 (1992). https://doi.org/10.1007/BF01585705
5. Aly, A.: Network flow problems with secure multiparty computation (2015)
6. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: asynchronous incentive-

compatible payment channels. In: FC (2021). https://fc21.ifca.ai/papers/168.pdf
7. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing watchtowers

for bitcoin. In: FC (2020). https://doi.org/10.1007/978-3-030-51280-4 19
8. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with iden-

tifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 20

9. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arith-
metic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-
3 9

10. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-39200-9 37

11. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from
threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 15

12. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micro-
payment channels. In: Stabilization, Safety, and Security of Distributed Systems (2015).
https://doi.org/10.1007/978-3-319-21741-3 1

13. van Engelshoven, Y., Roos, S.: The merchant: avoiding payment channel depletion through
incentives. CoRR abs/2012.10280 (2020). https://arxiv.org/abs/2012.10280

14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applica-
tions. In: Eurocrypt (2015). https://doi.org/10.1007/978-3-662-46803-6 10

https://github.com/lightningd/plugins/tree/master/rebalance
https://doi.org/10.1145/1146381.1146393
https://doi.org/10.1007/BF01585705
https://fc21.ifca.ai/papers/168.pdf
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-642-15497-3_9
https://doi.org/10.1007/978-3-642-15497-3_9
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-319-21741-3_1
https://arxiv.org/abs/2012.10280
https://doi.org/10.1007/978-3-662-46803-6_10

HIDE & SEEK: Privacy-Preserving Rebalancing 373

15. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: SOSP (2017). https://doi.org/10.1145/3132747.
3132757

16. Joseph Poon, T.D.: The bitcoin lightning network: Scalable off-chain instant payments. Tech-
nical report. https://lightning.network/lightning-network-paper.pdf

17. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: CCS
(2017). https://doi.org/10.1145/3133956.3134033

18. Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment channel
networks. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp.
1728–1737 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155375

19. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: enforcing security
and privacy in decentralized credit networks. In: NDSS (2017). https://doi.org/10.14722/
ndss.2017.23448

20. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous
multi-hop locks for blockchain scalability and interoperability. In: NDSS (2019). https://doi.
org/10.14722/ndss.2019.23330

21. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels:
Payment networks that go faster than lightning. In: FC (2019). https://doi.org/10.1007/978-
3-030-32101-7 30

22. Orlin, J.: A polynomial time primal network simplex algorithm for minimum cost flows.
Math. Prog. 78, 109–129 (1996). https://doi.org/10.1007/BF02614365

23. Pickhardt, R., Nowostawski, M.: Imbalance measure and proactive channel rebalancing algo-
rithm for the lightning network. In: IEEE International Conference on Blockchain and Cryp-
tocurrency, ICBC 2020, Toronto, ON, Canada, 2–6 May, 2020, pp. 1–5. IEEE (2020). https://
doi.org/10.1109/ICBC48266.2020.9169456

24. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments
(2015). https://lightning.network/lightning-network-paper.pdf

25. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an approach to
routing in lightning network. shorturl.at/adrHP (2016)

26. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private:
efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748
(2017)

27. Sivaraman, V., et al.: High throughput cryptocurrency routing in payment channel networks.
In: 17th USENIX Symposium on Networked Systems Design and Implementation ({NSDI}
20), pp. 777–796 (2020)

28. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2013-April/002433.html. Accessed 22 Nov 2020

29. Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P.
(eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03549-4 6

30. Tripathy, S., Mohanty, S.K.: MAPPCN: multi-hop anonymous and privacy-preserving pay-
ment channel network. In: Bernhard, M., et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 481–
495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3 34

31. Yu, R., Xue, G., Kilari, V.T., Yang, D., Tang, J.: Coinexpress: a fast payment routing mecha-
nism in blockchain-based payment channel networks. In: 2018 27th International Conference
on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2018)

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1109/INFOCOM41043.2020.9155375
https://doi.org/10.14722/ndss.2017.23448
https://doi.org/10.14722/ndss.2017.23448
https://doi.org/10.14722/ndss.2019.23330
https://doi.org/10.14722/ndss.2019.23330
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/BF02614365
https://doi.org/10.1109/ICBC48266.2020.9169456
https://doi.org/10.1109/ICBC48266.2020.9169456
https://lightning.network/lightning-network-paper.pdf
http://arxiv.org/abs/1709.05748
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.1007/978-3-642-03549-4_6
https://doi.org/10.1007/978-3-642-03549-4_6
https://doi.org/10.1007/978-3-030-54455-3_34

Short Paper: A Centrality Analysis
of the Lightning Network

Philipp Zabka1(B), Klaus-T. Foerster2, Christian Decker5,
and Stefan Schmid1,3,4

1 Faculty of Computer Science, University of Vienna, Wien, Austria
philipp.zabka@univie.ac.at

2 Technical University of Dortmund, Dortmund, Germany
3 Faculty of Computer Science, Technical University of Berlin, Berlin, Germany

4 Fraunhofer SIT, Darmstadt, Germany
5 Blockstream, Zurich, Switzerland

Abstract. Payment channel networks (PCNs) such as the Lightning
Network offer an appealing solution to the scalability problem faced
by many cryptocurrencies operating on a blockchain such as Bitcoin.
However, PCNs also inherit the stringent dependability requirements of
blockchain. In particular, in order to mitigate liquidity bottlenecks as
well as on-path attacks, it is important that payment channel networks
maintain a high degree of decentralization. Motivated by this require-
ment, we conduct an empirical centrality analysis of the popular Light-
ning Network, and in particular, the betweenness centrality distribution
of the routing system. Based on our extensive data set (using several mil-
lions of channel update messages), we implemented a TimeMachine tool
which enables us to study the network evolution over time. We find that
although the network is generally fairly decentralized, a small number of
nodes can attract a significant fraction of the transactions, introducing
skew. Furthermore, our analysis suggests that over the last two years,
the centrality has increased significantly, e.g., the inequality (measured
by the Gini index) has increased by more than 10%.

1 Introduction

Blockchain, the technology which is currently revamping the financial sector
and which underlies cryptocurrencies such as Bitcoin and Ethereum, enables
mistrusting entities to cooperate without involving a trusted third party. How-
ever, with their quickly growing popularity, blockchain networks face a scalability
problem, and the requirement of performing repeated global consensus protocol
is known to limit the achievable transactions rate.

Payment channel networks (PCNs) are a promising solution to mitigate the
scalability issue, by allowing users to perform transactions off-chain. In partic-
ular, in a PCN, two users can establish so-called payment channels among each
other, in a peer-to-peer fashion. The set of channels can then be seen as a graph,
in which users are represented as nodes and channels are represented as edges.
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 374–385, 2022.
https://doi.org/10.1007/978-3-031-18283-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_18

Short Paper: A Centrality Analysis of the Lightning Network 375

Payments can then also be routed in a multi-hop manner across these channels
(typically using source routing), with forwarding users typically charging a small
fee. Nodes can discover the cheapest routes using a gossip mechanism. The scal-
ability benefit comes from the fact that it is only when a channel is opened or
closed, that changes have to be made to the blockchain.

By the nature of the service they provide, PCNs need to meet stringent
dependability requirements. Interestingly, while over the last years, several inter-
esting approaches to design and operate payment channel networks in an effi-
cient and reliable manner have been proposed in the literature, relatively little
is known about the properties of the actually deployed networks today.

We in this paper are particularly interested in the level of decentraliza-
tion provided by PCNs: decentralization is generally one of the key features
of blockchain, and also naturally required from off-chain solutions.

Indeed, it has recently been shown that skews in the routing system (e.g., due
to exploits of the payment mechanism), can significantly harm the network per-
formance, by depleting channels [1], or even lead to denial-of-service attacks [2]
and privacy [3,4] and other security issues [5]. In order to gain a detailed under-
standing of Lightning, the most popular PCN, we monitored the network for
several years, collecting millions of channel update and gossiping messages. To
shed light on the network evolution, we further implemented tools which allow
us to reconstruct the network at previous time stamps. In this paper, we present
the main results of our study of the Lightning Network.

1.1 Our Contributions

Fig. 1. Top 10% control over routes

Motivated by the increasing popularity
of payment channel networks and the
resulting performance and dependability
requirements, we report on an extensive
empirical study of the most popular PCN,
Lightning. In particular, we study to
which extent Lightning fulfills the premise
of decentralized transaction routing.

We find that there is a trend of increas-
ing centralization and a high level of
inequality, where a small portion of the
nodes participate on most transaction
routes. We show that the level of central-
ity also depends on the transaction size, and we take a look at some of the
highest ranked nodes according to centrality. We uncover that a fair share of
nodes remained at the top over the examined period. To just give one example,
our analysis shows that the top 10% of all nodes control a vast majority of all
transaction routes, and that the controlled share increases over time, see Fig. 1.

For our study, we collected significant data from the live Lightning Net-
work, over a time span of almost two years. This data includes over 400k node
announcement messages, over 1m channel announcement messages, and over

376 P. Zabka et al.

6m channel update messages. We further developed TimeMachine, a tool which
allows us to reconstruct the network at desired moments in time. We accomplish
this with the help of the above mentioned gossip mechanism.

As a contribution to the research community, in order to ensure reproducibil-
ity as well as to support future research in this area, we make available all our
code and experimental artifacts [6] together with this paper.

1.2 Related Work

Over the last years, many interesting approaches to design and operate payment
channel networks have been proposed in the literature, often accounting for
dependability aspects [7–12], and we refer the reader to [13–15] for an overview.

In this paper, we are particularly interested in issues related to centralization,
a topic which has recently also received much attention in the context of Bitcoin
in general [16–18]. In the context of PCNs, it has been shown that centralization
of the routing system can harm performance [2,19], liquidity [1,20], security [5],
and privacy aspects [3,4,21,22], especially when considering on-path adversaries.

Interestingly, relatively little is known about the empirical properties of
deployed payment channel networks. The Lightning Network’s topology has been
analyzed by Seres et al. [23]. Their work studies the robustness of the network
against random failures of nodes as well as attacks targeting nodes. A similar,
but more in detail work has been carried out by Rohrer et al. [24]. Martinazzi
et al. [25] analyzed the evolution of the Lightning Network over a period of one
year, beginning on its launch on the Bitcoin mainnet in January 2018. Their
work focuses on the topological robustness of the network, e.g., against attacks,
where they also detect a high influence of a few nodes on the network. Next,
a large scale empirical analysis on the client and geographical classification of
nodes is performed by Zabka et al. [26,27], see also Mizrahi et al. [28]. Related
to this, Scellato et al. [29] study how geographic distance affects social ties in a
social network and Mislove et al. [30] examine geographical, gender and racial
aspects of Twitter users to the U.S. population.

1.3 Organization

Organization. The remainder of this paper is organized as follows. Section 2
introduces some preliminaries and Sect. 3 describes our methodology, followed
by the centrality analysis in Sect. 4. We subsequently conclude in Sect. 5.

2 Preliminaries

We now introduce some of the necessary basics of the Lightning Networks and
some specific preliminaries for the remainder of the paper.

The Lightning Network. The Lightning Network is an off-chain solution to
improve the scalability of cryptocurrencies such as Bitcoin. The network can be

Short Paper: A Centrality Analysis of the Lightning Network 377

accessed via three clients, namely LND [31] implemented in Go, C-Lightning [32]
implemented in C and Eclair [33] implemented in Scala. However, with an usage
of more than 85%, LND is currently by far the most popular client [27]. The
Lightning Network users are able to create bidirectional connections to other
users, called channels. These channels can be used to send instant payments
between two users, which do not need to be necessarily directly connected. If
a payment is routed across multiple users, the users in between the route may
demand fees for the routing process. The Lightning Network does not operate on
the blockchain itself, however the first transaction called the funding transaction
to create a channel needs to be propagated onto the blockchain. The same goes
for the last transaction or closing transaction to end the connection between two
users. All intermediary transactions are not propagated onto the blockchain and
therefore can be processed in a much faster fashion.

Gossip Messages. As the name implies, gossip messages are propagated
through the whole network to either announce a node or channel creation or
an update. Therefore, all participants have an contemporary view of the net-
work. This mechanism is especially important in the case that a node wants to
route a payment to a node it is not directly connected with. In the following
we will take a more in detail look at the three most important gossip messages,
which are specified in the Basics of the Lightning Technology (BOLT) [41]:

– node announcement message: This message allows nodes to inform other
participants about extra data associated with it, besides the node ID. It
contains data such as the IP address, color, alias and timestamp as well as
information for opting into higher level protocols.

– channel announcement message: If a channel is created between two
nodes this message is propagated through the network. It contains informa-
tion such as an short channel ID, which is an unique identifier for the channel,
as well as both node IDs.

– channel update message: A channel is practically not usable until both
sides announce their channel parameters. These parameters are announced in
this message. As the Lightning Network is directed, both channel participants
have to send a message. The parameters included in this message are among
other things used to calculate the routing fees. Every time one side updates
its channel parameters, this message is broadcast in the network.

Routing Fees. In the Lightning Network nodes along a routed path take a
small fee for forwarding transactions. The parameters necessary for the calcula-
tion are fee base msat and fee proportional millionths which can be found in the
channel update message. Hereby fee base msat denotes the constant fee a node
will charge for a transfer and fee proportional millionths is the amount a node
will charge for each transferred satoshi over their channel. Fees are calculated as
follows, where transferred amount denotes the transaction in millisatoshi:

fee base msat + (transferred amount ∗ fee proportional millionths/1000000)

378 P. Zabka et al.

Betweenness Centrality. The betweenness centrality represents a measure in
a network based on shortest paths, a node’s centrality is based on how many such
paths traverse it. Formally, the betweenness centrality cB of the nodes v ∈ V
is cB(v) =

∑
s,t∈V σ(s, t|v)/σ(s, t), with σ(s, t) [σ(s, t|v)] as # shortest st-paths

[through v, v �= s, t]. If s = t, σ(s, t) = 1, and if v ∈ s, t, σ(s, t|v) = 0 [34,35].
For every node pair in a connected unweighted graph, there exists at least one
shortest path between these nodes such that the number of edges is minimized.
For weighted graphs such as the Lightning Network, where channel routing fees
represent edge weights, the sum of the edge weights is minimized.

Among several interesting alternatives [36,37], we focus on betweenness cen-
trality as our main centrality measurement. Nodes with high betweenness cen-
trality have a considerable amount of influence on a network by means of infor-
mation control, since most of the network traffic will pass though them—in
contrast to other centrality measures which represent a more local view, e.g.,
degree centrality, which counts the numbers of edges incident to a node.

A high betweenness centrality is a particular concern as nodes choose rout-
ing paths with the overall cheapest fees, and a skewed centrality indicates that
routing paths are concentrated to a small subset of nodes. A skewed centrality
may not only quickly deplete payment channels, but also makes the network vul-
nerable: many attacks recently reported in the literature are based on on-path
adversaries [24,28]. Getting a significant amount of traffic can also raise privacy
concerns, e.g., during route discovery.

3 Methodology

We next introduce the methods to obtain and process our data set.

TimeMachine. The Lightning Network TimeMachine [38] is a tool written
in Python, which reconstructs the state at a prior point in time by replaying
gathered gossip messages up to that point in time. We have deployed a number
of C-Lightning nodes that collect and archive these messages, which are then
deduplicated and ordered by their timestamp, in order to allow the TimeMachine
to replay them in the correct order, and terminate once the desired point in
time has been reached, leaving the view of the network close to what the public
network would have looked like at that time. We utilized the TimeMachine to
rebuild the network at seven different points in time, covering a time span of two
years ranging from 01 Apr. 2019 to 01 Jan. 2021. We then used the Python library
NetworkX [34] to further analyze the networks in regard to the betweenness
distribution in different timestamps. With the help of our TimeMachine we were
able to reconstruct the network as it was at the timestamps mentioned in Table 1.
From now on we will reference the timestamps as T1–T7.

Short Paper: A Centrality Analysis of the Lightning Network 379

Table 1. Lightning network snapshots

Abbr. Timestamp Date # Nodes
T1 1554112800 01 Apr. 2019 1362
T2 1564653600 01 Aug. 2019 4589
T3 1572606000 01 Nov. 2019 4699
T4 1585735200 01 Apr. 2020 5230
T5 1596276000 01 Aug. 2020 5905
T6 1606820400 01 Dec. 2020 6331
T7 1609498800 01 Jan. 2021 6629

Data Set. Our data was collected
with help of C-Lightning nodes,
which synchronize their view of
the network topology by listening
and exchanging gossip messages.
Internally C-Lightning will dedu-
plicate messages, discard outdated
node announcements and channel-
updates, and then apply them to
the internal view. In order to per-
sist the view across restarts, the
node also writes the raw messages,
along some internal messages, to a file called the gossip store. The node compacts
the gossip store file from time to time in order to limit its growth. Compaction
consists of rewriting the file, skipping messages that have been superceded in
the meantime. Our data set is comprised of the three gossip messages dis-
cussed in the previous section. Our nodes have recorded more than 400 000
node announcement messages, more than 1 000 000 channel announcement mes-
sages, and over 6 400 000 million channel update messages.

4 Centrality Analysis

This section reports our main results from the centrality analysis. We performed
a detailed analysis where we measured the betweenness centrality, a major cen-
trality measure, of the Lightning Network at different points in time and observed
how it has developed over almost two years. More precisely, we took seven snap-
shots of the network, dating from 01 Apr. 2019 to 01 Jan. 2021. Based on the for-
mula for calculating routing fees introduced in Sect. 2 we calculated the between-
ness of each node based on three different realistic transaction sizes namely 10
000 000 Millisatoshi (0.0001 BTC), 1 000 000 000 Millisatoshi (0.01 BTC) and
10 000 000 000 Millisatoshi (0.1 BTC). The idea of calculating the betweenness
with different transaction sizes was if we could detect significant changes.

4.1 Historic Betweenness Analysis of the Lightning Network

Evaluating the Lightning Network at different points in time in terms of the
betweenness centrality can provide us with insights which allow us to better
comprehend how it has developed until now e.g. has it become more centralized
or the opposite and also make predictions in which direction it may develop in
the future. We start by we examining our latest snapshot first.

Timestamp T7. We decided to use a logarithmic scale on the x-axis to better
display the long range of centrality values (1–7 500 000). Further, we do not
include nodes with a centrality value of 0, as they merely represent leafs in the
graph. Also the amount of leaf nodes is astonishing high, up to 5520 nodes out
of 6630 in T7, and would distort the graph.

380 P. Zabka et al.

In Fig. 2 (left) we can see that transaction size has indeed an influence on a
node’s centrality if the transaction amount is low or high enough. In the case
of 0.1 BTC respectively 0.01 BTC there is almost no change in the centrality
distribution among the nodes, however, in the case of 0.0001 BTC we can see
a significant shift. A possible explanation for this shift in distribution we are
experiencing is that for smaller transactions, different routes are calculated. The
next noticeable observation is the high jump around the 4000 betweenness cen-
trality mark for all three transaction sizes. For 0.0001 BTC roughly 100 nodes
are affected and for 0.01 BTC or respectively 0.1 BTC roughly 80 nodes are
concerned. A more in-depth analysis would be required to fully comprehend this
phenomenon, but a possible cause can be that these nodes are all positioned on
a specific shortest path and therefore share the same centrality.

Another interesting observation is that although the centrality of the majority
of nodes is lower when calculated with the lowest transaction size, the centrality
of the most central node is the highest of all three transaction sizes with 7 500
000. For comparison the centrality for 0.1 BTC and 0.01 BTC caps at 6 100 000.

Timestamp T4. In T4 we can make out only a few detailed changes 9 months
prior to our latest timestamp T7. Observing Fig. 2 (middle) shows the centrality
distribution for 1026 nodes out of 5231, so 4205 nodes remain leaf nodes with
a centrality of 0. We can detect a similar jump at a centrality of approximately
3000 with 65 nodes having the exact same score. Another jump occurs at the
8000 mark with 48 nodes having the same value.

As was already the case in T7, the higher the centrality gets the more closer
the share of nodes is that has a similar high centrality. However, this is due to
the fact that only a few nodes share such a high betweenness centrality.

Timestamp T1. Figure 2 (right) depicts the centrality distribution for T1,
which is 21 months prior to T7. At the first glance we can immediately detect
that now all transaction sizes have a much more similar impact on the centrality
distribution of the nodes in the network. However, this is most probably due
to the overall lower amount of nodes in the network at that point in time and
therefore limited amounts of paths that can be selected. According to our data,
there are 1361 nodes in the network in T1 and only 347 out of them have a
higher centrality than 0.

The graphs are rather similar, but jumps still occur. Betweenness values
calculated with the transaction size of 0.0001 BTC experience the highest jumps.
The first one starts at around 1000 and affects 0.3% of the nodes, the second one
starts at around 1600 and affects 0.2% of the nodes. At last, compared to the
most central node in T7, the most central node in T1 only reaches an centrality of
350 000. Even though the lower value is the result of fewer nodes in the network,
one can not deny the rapid centralization of the network within the period of
two years. We next further substantiate our observation of growing centrality.

4.2 Inequality in the Lightning Network

The Gini coefficient is an economic measure for the inequality within a nation
or a social group. Similarly, we use this index in the context of payment channel

Short Paper: A Centrality Analysis of the Lightning Network 381

Fig. 2. Centrality distribution in timestamps T7 (left), T4 (middle) and T1 (right)

networks to shed light on the inequality and skew there exists in the network
topology. In particular, an “unfair” distribution concentrates much control to a
small set of nodes, which is problematic not only for the efficiency of the network
but also raises security concerns. Many attacks in the literature are based on on-
path adversaries [24,28], which hence have significant control. This also generally
goes against the idea of decentralization of finance.

Figure 3 (left and middle) depicts the Lorenz curves for T7 and T1. The Gini
coefficient is equal to the area below the line of perfect equality minus the area
below the Lorenz curve, divided by the area below the line of perfect equal-
ity. Looking at Fig. 3 (left) showing the latest snapshot of the network, we can
see an excellent example of a perfectly unequal distribution, where 90% of the
nodes only correspond to 10% of the cumulative betweenness of all nodes. Con-
sequently, this indicates an extraordinarily high network centralization, where
90% of the shortest paths in the network lead through only a few highly cen-
tralized nodes. Next, looking at Fig. 3 (middle) we can observe that 90% of the
nodes make up for slightly more than 30% of the betweenness, which is still
not an ideal scenario. Subsequently, we can conclude from our observations that
within 21 months the centralization has risen by 20%. Figure 3 (right) depicts
the Gini coefficients for all seven timestamps. Here we observe an upward trend
in the direction of inequality or centralization. The coefficient is slightly rising
each timestamp, with the biggest jump with absolute 5% being between T1 and
T2. Overall, we can deduce that the Lightning Network is highly centralized.
Having only few, very influential nodes through which most paths are routed, is
not beneficial for the robustness of the network. These nodes pose as significant
targets for attacks and could disrupt the network in the case of failure. However
not only attackers could exploit this situation, but also the nodes or rather the
individuals controlling these nodes.

4.3 Analysis of the Top 10 Nodes

We lastly trace the performance of the most influential nodes, based on their
centrality, in our latest and oldest timestamp, and briefly discuss our findings.

Figure 4 (left) depicts the top 10 nodes with the highest centrality in the
latest timestamp T7 and their ranks in the earlier timestamps. We can see that
most top nodes were also highly ranked in the past, e.g., N1 has always been in

382 P. Zabka et al.

the Top 20—with some nodes starting to appear later, but then already at high
rank, such as N3 (ACINQ [39], developer of Eclair).

Fig. 3. Lorenz curves for the timestamps T7 (left) and T1 (middle). Gini Coefficients
ranked according to all seven timestamps (right)

Fig. 4. Top ten influential node time-
lines, with latest left and oldest right

We now look the other way around to
observe if a node could hold its central
position in the network. Figure 4 (right)
depicts the top 10 nodes in T1 our old-
est snapshot and how the nodes performed
from there on. For clarification the nodes
depicted in this figure are partially not
same as in Fig. 4 (left). Many nodes could
not hold their position, the only nodes
which stayed in the Top 10 through all
timestamps are N3 [40] and N9 or respec-
tively N7 and N8 in Fig. 4 (left).

Hence, we see that many powerful
nodes of today were already highly influ-
ential in the past, respectively came in
with a strong backing. Yet, a strong posi-
tion in the past is not a guarantee, and
many past top 10 nodes lost influence.

5 Future Work

We believe that our work opens several interesting directions for future research.
In particular, it will be interesting to investigate other off-chain networks, fur-
ther implications of centrality in cryptocurrency networks such as censorship
concerns, and to develop mechanisms to foster more decentralization in pay-
ment channel networks. The latter includes the design of alternative, incentive-
compatible routing mechanisms.

Acknowledgement. We thank our shepherd Karim Eldefrawy and the anonymous
reviewers of Financial Cryptography and Data Security 2022 for their time and sugges-
tions on how to improve the paper. This project has received funding from the Austrian

Short Paper: A Centrality Analysis of the Lightning Network 383

Science Fund (FWF) project ReactNet (P 33775-N), 2020–2024. This paper was also
partially funded by Harmony through the Research DAO.

References

1. Khalil, R., Gervais, A.: Revive: Rebalancing off-blockchain payment networks. In:
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 439–453 (2017)

2. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: Proceedings of the ACM Conference on Advances in Financial Technologies
(AFT) (2020)

3. Nisslmueller, U., Foerster, K.T., Schmid, S., Decker, C.: Toward active and passive
confidentiality attacks on cryptocurrency off-chain networks. In: Proceedings of
the 6th International Conference on Information Systems Security and Privacy
(ICISSP) (2020)

4. Tang, W., Wang, W., Fanti, G., Oh, S.: Privacy-utility tradeoffs in routing cryp-
tocurrency over payment channel networks. Proc. ACM Measur. Anal. Comput.
Syst. 4(2), 1–39 (2020)

5. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: 26th
Annual Network and Distributed System Security Symposium (NDSS) (2019)

6. Zabka, P., Foerster, K.T., Schmid, S., Decker, C.: Data and other artifacts. https://
github.com/philippzabka/fc22

7. Kappos, G., et al.: An Empirical Analysis of Privacy in the Lightning Network.
arXiv:2003.12470 [cs], January 2021

8. Rohrer, E., Tschorsch, F.: Counting down thunder: timing attacks on privacy in
payment channel networks. In: AFT, pp. 214–227. ACM (2020)

9. Romiti, M., et al.: Cross-Layer Deanonymization Methods in the Lightning Proto-
col. arXiv:2007.00764 [cs], February 2021

10. Harris, J., Zohar, A.: Flood & loot: a systemic attack on the lightning network. In:
AFT, pp. 202–213. ACM (2020)

11. Moreno-Sanchez, P., Kate, A., Maffei, M., Pecina, K.: Privacy preserving payments
in credit networks: enabling trust with privacy in online marketplaces. In: 22nd
Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8–11, 2015. The Internet Society (2015)

12. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, 24–27 February, 2019. The Internet Society (2019)

13. Dotan, M., Pignolet, Y.A., Schmid, S., Tochner, S., Zohar, A.: Survey on blockchain
networking: context, state-of-the-art, challenges. ACM Comput. Surv. (CSUR)
54(5), 1–34 (2021)

14. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

15. Neudecker, T., Hartenstein, H.: Network layer aspects of permissionless
blockchains. IEEE Commun. Surv. Tutorials 21(1), 838–857 (2018)

16. Coindesk: Why china’s crackdown may make bitcoin mining more centralized. In:
online (2021)

https://github.com/philippzabka/fc22
https://github.com/philippzabka/fc22
http://arxiv.org/abs/2003.12470
http://arxiv.org/abs/2007.00764
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

384 P. Zabka et al.

17. Beikverdi, A., Song, J.: Trend of centralization in bitcoin’s distributed network. In:
2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 1–6.
IEEE (2015)

18. Forbes: Bitcoin mining centralization is ‘quite alarming’, but a solution is in the
works. In: online (2019)

19. EmelyanenkoK: Payment channel congestion via spam-attack (2020). https://
github.com/lightningnetwork/lightning-rfc/issues/182

20. Khamis, J., Schmid, S., Rottenstreich, O.: Demand matrix optimization for offchain
payments in blockchain. In: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE (2021)

21. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and
privacy with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 455–471 (2017)

22. Tripathy, S., Mohanty, S.K.: MAPPCN: multi-hop anonymous and privacy-
preserving payment channel network. In: Bernhard, M., et al. (eds.) FC 2020.
LNCS, vol. 12063, pp. 481–495. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54455-3 34

23. Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P.: Topological analysis of bitcoin’s
lightning network. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.)
Mathematical Research for Blockchain Economy. SPBE, pp. 1–12. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-37110-4 1

24. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: quantifying
the lightning network’s resilience to topology-based attacks. In: EuroS&P Work-
shops, pp. 347–356. IEEE (2019)

25. Stefano Martinazzi, A.F.: The evolving topology of the lightning network: Central-
ization, efficiency, robustness, synchronization, and anonymity (2020)

26. Zabka, P., Foerster, K.T., Schmid, S., Decker, C.: Empirical evaluation of nodes
and channels of the lightning network. Pervasive Mob. Comput. 83, 101584 (2022)

27. Zabka, P., Förster, K., Schmid, S., Decker, C.: Node classification and geographical
analysis of the lightning cryptocurrency network. In: ICDCN, pp. 126–135. ACM
(2021)

28. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks.
arXiv:2002.06564v4 [cs], January 2021

29. Scellato, S., Mascolo, C., Musolesi, M., Latora, V.: Distance matters: Geo-social
metrics for online social networks. In: WOSN. USENIX Association (2010)

30. Mislove, A., Lehmann, S., Ahn, Y., Onnela, J., Rosenquist, J.N.: Understanding
the demographics of twitter users. In: ICWSM. The AAAI Press (2011)

31. LND GitHub Repository (2020). https://github.com/lightningnetwork/lnd.
Accessed 15 July 2021

32. C-lightning GitHub Repository (2020). https://github.com/ElementsProject/
lightning. Accessed 15 July 2021

33. Eclair GitHub Repository (2020). https://github.com/ACINQ/eclair. Accessed 15
July 2021

34. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using networkx. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference, pp. 11–15. Pasadena, CA
USA (2008)

35. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Soc. Networks 30(2), 136–145 (2008)

https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://doi.org/10.1007/978-3-030-54455-3_34
https://doi.org/10.1007/978-3-030-54455-3_34
https://doi.org/10.1007/978-3-030-37110-4_1
http://arxiv.org/abs/2002.06564v4
https://github.com/lightningnetwork/lnd
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair

Short Paper: A Centrality Analysis of the Lightning Network 385

36. Liu, Y.Y., Slotine, J.J., Barabasi, A.L.: Controllability of complex networks. Nature
473, 167–73 (2011). https://doi.org/10.1038/nature10011

37. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a
survey. Soc. Netw. Anal. Min. 8(1), 1–11 (2018). https://doi.org/10.1007/s13278-
018-0493-2

38. Decker, C.: Lightning network research; topology datasets. http://www.ithub.
com/lnresearch/topology. https://doi.org/10.5281/zenodo.4088530. Accessed 01
Oct 2020

39. ACINQ Homepage (2021). https://acinq.co. Accessed 11 Sept 2021
40. Rompert.com (2021). https://rompert.com. Accessed 11 Sept 2021
41. Lightning Network: BOLT 7: P2P Node and Channel Discovery (2019). https://

github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md.
Accessed 15 July 2021

https://doi.org/10.1038/nature10011
https://doi.org/10.1007/s13278-018-0493-2
https://doi.org/10.1007/s13278-018-0493-2
http://www.ithub.com/lnresearch/topology
http://www.ithub.com/lnresearch/topology
https://doi.org/10.5281/zenodo.4088530
https://acinq.co
https://rompert.com
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md

Resurrecting Address Clustering
in Bitcoin

Malte Möser(B) and Arvind Narayanan

Princeton University, Princeton, USA

mail@maltemoeser.de, arvindn@cs.princeton.edu

Abstract. Blockchain analysis is essential for understanding how cryp-
tocurrencies like Bitcoin are used in practice, and address clustering is
a cornerstone of blockchain analysis. However, current techniques rely
on heuristics that have not been rigorously evaluated or optimized. In
this paper, we tackle several challenges of change address identification
and clustering. First, we build a ground truth set of transactions with
known change from the Bitcoin blockchain that can be used to validate
the efficacy of individual change address detection heuristics. Equipped
with this data set, we develop new techniques to predict change outputs
with low false positive rates. After applying our prediction model to the
Bitcoin blockchain, we analyze the resulting clustering and develop ways
to detect and prevent cluster collapse. Finally, we assess the impact our
enhanced clustering has on two exemplary applications.

1 Introduction

Blockchain analysis techniques are essential for understanding how cryptocurren-
cies like Bitcoin are used in practice. A major challenge in analyzing blockchains
is grouping transactions belonging to the same user. Users can create an unlim-
ited amount of addresses to receive and send coins. As a result, their activity
is often split among a multitude of such addresses. Address clustering heuristics
aim to identify addresses under an individual user’s control based on assumptions
about how wallets create transactions. As the term heuristic suggests, address
clustering today is more intuitive than rigorous; our overarching goal in this
paper is to elevate it to a science.

There are at least four applications for which accurate address clustering
is important. First, a law enforcement agency may be interested in evaluating
the transactions of a specific entity. They may supplement their own investiga-
tion with a set of reliable heuristics to identify relevant transactions. Second,
and conversely, the ability to accurately determine a user’s transactions directly
impacts their privacy. This tension between law enforcement needs and every-
day users’ privacy is inherent to cryptocurrencies due to their transparency and
pseudonymity. Advocates from one side push for greater privacy and from the
other side for stronger regulation. To better understand this tug-of-war, it is
important to quantify how reliable change address heuristics are in practice.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 386–403, 2022.
https://doi.org/10.1007/978-3-031-18283-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_19&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_19

Resurrecting Address Clustering in Bitcoin 387

Fig. 1. The multi-input heuristic clusters addresses of inputs jointly spent in the same
transaction. It does not cluster addresses that are never co-spent with other addresses
(such as C and E).

Third, accurate grouping of transaction activity is important for aggregate anal-
yses such as studying economic activity over time. This usually requires a full
clustering of all addresses on the blockchain. Finally, the unique challenges of
address clustering may be interesting for researchers outside of cryptocurrencies.
For example, it may pose as an application domain for machine learning models
and could be used as a benchmarking application.

The current state of address clustering techniques available to researchers is
sub-optimal in multiple ways. The most common heuristic, multi-input, groups
addresses that are jointly used in inputs of a transaction [26,27]. This heuristic
is easy to apply, moderately effective in practice [12], and widely used. However,
it misses addresses that are never co-spent with other addresses (cf. Figure 1).

Many of these addresses can be clustered using change address heuristics:
as coins in Bitcoin cannot be spent partially, transactions return the surplus
value back to the sender. Identifying the change output thus allows grouping the
associated address with the inputs’ addresses. However, as the Bitcoin protocol
does not explicitly distinguish between change and spend outputs, heuristics
need to be used to identify them.

While the importance of change address identification and clustering has been
demonstrated empirically and through simulation [1,21], it remains difficult to
assess how well it works in practice. A major issue is that researchers currently
lack ground truth data on change outputs to assess the accuracy of individual
heuristics. We are only aware of one prior study from 2015 that exploited weak-
nesses in a lightweight client [23], which allowed to extract the addresses of 37 585
wallets to assess four different clustering heuristics. Blockchain intelligence com-
panies might possess manually curated and refined data sets and clusterings, but
their techniques and data aren’t openly available to researchers (or only shared in
limited form, e.g., [11,32]). As a result, analyses of new heuristics often fall short
of quantifying their accuracy and resort to analyzing the resulting clusterings
only (e.g., [6,33]). Furthermore, clustering is applied inconsistently across stud-
ies: many forgo change address clustering entirely (e.g., [15,16,18,28]), whereas
some simply apply a single change heuristic (e.g., [7,24]).

Considering this state of affairs, our goals in this paper are to address the
lack of ground truth data and assessment methods, develop new techniques to
apply heuristics to predict change and use them to create improved clusterings.

388 M. Möser and A. Narayanan

Contributions, Methods and Findings

1. A new ground truth method and dataset: We put forward a procedure
to select and filter transactions for which the change output has been revealed
on the blockchain. Our approach exploits that future transactions of users can
reveal change outputs in past transactions. We extract a set of 35.26 million
transactions, carefully filtered down from 53 million candidate transactions,
that can be used as ground truth for validation and prediction (Sect. 2).

2. Evaluating existing heuristics: We’ve compiled and evaluate a set of
26 change address heuristics based on previous literature and community
resources. Most heuristics individually produce few false positives at low to
medium true positive rates. We find that due to changes in the protocol and
usage patterns, heuristics wax and wane in their effectiveness over time, show-
ing the need to use multiple heuristics and combine them in an adaptive way
rather than rely on a fixed algorithm (Sect. 3.1).

3. Improved prediction: We use a random forest classifier to identify change
outputs and compare it against a baseline: the majority vote of individual
heuristics. While machine learning has been used to classify the type of entity
behind a transaction (e.g., [2,11,13,15,17,31,32]), to the best of our knowl-
edge our work is the first to apply it to change identification. Our random
forest model outperforms the vote, correctly detecting twice as many change
outputs for low false positive rates (Sects. 3.2 to 3.4).

4. Preventing cluster collapse: We find that a naive clustering of predicted
change outputs leads to cluster collapse, despite using a high threshold to pre-
vent false positives. We then apply constraints to the union-find algorithm
underlying our clustering to prevent cluster collapse stemming from frequent,
repeated interaction between entities. This prevents large-scale cluster col-
lapse while still enhancing a majority of the involved clusters (Sect. 4).

5. Assessing impact: We assess the impact our enhanced clustering has on two
exemplary applications: cash-out flows from darknet markets to exchanges
and the velocity of bitcoins. We find that the results of such typical longitu-
dinal analyses are off by at least 11% to 14% if they don’t fully account for
clustering (Sect. 5).

Limitations. Our results in this paper are limited by the availability of “real”
(i.e. manually collected and validated) ground truth. As such, our analysis should
be treated as a first step towards better understanding the feasibility of change
address detection and clustering. However, we do not expect our high-level
insights to change significantly in the light of minor corrections to our ground
truth data set. We make our data set publicly available to allow other researchers
to evaluate it using their own private ground truth or analysis techniques.

Our extraction mechanism relies on change outputs revealed by the multi-
input heuristic. This heuristic is effective in practice [12] and widely used, but
vulnerable to false positives from techniques like CoinJoin and PayJoin that are
intentionally designed to break the heuristic (e.g., [8,19,20,22]). While we take
measures to detect CoinJoin transactions and pre-existing cluster collapse, some

Resurrecting Address Clustering in Bitcoin 389

Fig. 2. The multi-input heuristic adds address C to the same cluster as addresses A
and B, thereby revealing it as the change address of the first transaction.

errors can remain. Furthermore, entities that more effectively prevent address
reuse are less likely to be included in our data set.

2 Building a Ground Truth Data Set

Core Assumption. We focus on the feasibility of detecting the change output
in Bitcoin transactions with exactly two spendable outputs, by far the most
common type of transaction as of June 2021 (75.8% of all transactions, see
Fig. 3). Our core assumption is that one of these outputs is a payment, and the
other output receives the change. We call this type of transaction a standard
transaction, as they are created by typical end-user wallet software.1

For transactions with only one output there is no good indicator to directly
and reliably determine whether the output belongs to the same user. The trans-
action may correspond to a user sweeping the balance of their wallet, but the
destination address may not be under the same user’s control (e.g., it could be
managed by a cryptocurrency exchange).

Transactions with more than two outputs are less likely to originate from an
ordinary wallet. They may belong to an exchange that batches payouts to multiple
users, or correspond to a restructuring of their hot and cold wallets. Our assump-
tion that exactly one of the outputs receives change may not hold here.

Method. Our approach leverages that change outputs are sometimes revealed
by the multi-input heuristic at a later point in time due to address reuse. Figure 2
shows how such disclosure may unintentionally happen: a user spends coins at
addresses A and B, their wallet directs the change to a new address C. Later,
they spend the change at address C along with other coins at address A. At this
point, the multi-input heuristic reveals that A,B and C belong to the same user,
thus C is the change address in the first transaction. By identifying transactions
that have their change revealed in this way, we can build a ground truth set of
transactions with known change.

Comparison to Interactive Collection. In contrast to prior deanonymiza-
tion studies (e.g., [21]) our primary interest is not in identifying address clusters
of specific entities but to identify change outputs in their transactions. To achieve
1 Our definition is unrelated to the isStandard test in the Bitcoin reference imple-

mentation that checks whether a transaction uses common script types.

390 M. Möser and A. Narayanan

this interactively, we would need to induce them to make a transaction to an
address under our control. This would likely yield inferior ground truth:

– Heterogeneous ground truth requires transactions from a variety of different
use cases, entities and wallets. We would only be able to directly interact
with some types of intermediaries (such as exchanges). Our non-interactive
method, instead, is not limited to a small set of intermediaries of our choosing.

– Interactive collection would be hard to scale beyond a few hundred transac-
tions, as we would have to individually engage with the intermediaries. Our
non-interactive approach instead yields a data set of millions of transactions.

– Interactive collection cannot be done retroactively and is therefore limited to
a short, current time frame. The resulting data set wouldn’t capture shift-
ing patterns over different epochs of Bitcoin’s history. Our non-interactive
approach however can be applied to Bitcoin’s entire history.

Our method has a few important limitations. First, because we extract ground
truth data non-interactively from the blockchain, we are not able to fully verify its
correctness. Second, our core assumption that exactly one of the outputs belongs
to the user may not hold in every scenario. For example, a user sending funds to
an address under their control could lead to ambiguous or incorrect labeling of
change outputs. We take specific care to remove transactions likely to violate the
core assumption in this way. Similarly, there could be instances where none of the
outputs is a change output. As this would require a user to make a payment to two
different entities using a perfectly matching set of inputs, we expect it to be rare.
Third, our ground truth set could be biased towards entities or wallet implemen-
tations that are more prone to reuse and merge addresses.

2.1 Data Collection and Overview

We use and build upon BlockSci v0.7 [16], an open-source blockchain analysis
framework that provides fast access to blockchain data upon which we implement
customheuristics and extraction procedures.Weparse theBitcoin blockchain until
the end of June 2021 (block height 689 256) and create a base clustering using the
multi-input heuristic (where we heuristically exclude CoinJoin transactions).

As of June 2021, the blockchain contains 91 million transactions with one
output, 495 million with two outputs, and 67 million with three or more outputs
(see Fig. 3).

We divide the transactions into mutually exclusive categories. Transactions
with unspendable OP RETURN outputs often signal the use of an overlay appli-
cation that stores metadata in the blockchain [3]. Such transactions may follow
unique rules for their construction, potentially making change detection unre-
liable. Transactions directly reusing an input address have their change output
trivially revealed and applying change heuristics is not necessary. We thus focus
on transactions where the change has been revealed by the multi-input heuristic
and use them to construct our ground truth data set. For the remaining trans-
actions, i.e. those with yet unknown change, we will later predict their change
output.

Resurrecting Address Clustering in Bitcoin 391

Fig. 3. Breakdown of different types of transactions in the Bitcoin blockchain until end
of June 2021. Transactions with two outputs and change revealed through base cluster
membership form the basis of our ground truth data, which we further refine to a final
selection of 35.26 million transactions.

2.2 Refining the Candidate Set of Ground Truth Transactions

Our candidate set of ground truth transactions consists of transactions with
two outputs (ignoring overlay transactions) where no input address is reused for
change and where at least one output is in the same base cluster as the inputs.
This yields a total of 53.41 million transactions. We further filter them as follows
(see Fig. 3 for a visual breakdown).

1. We remove 1.08 million transactions with unspent outputs, as our subsequent
analyses rely upon the spending transactions being known.

2. For 0.97 million transactions both outputs are in the same base cluster, violat-
ing our core assumption. We remove these transactions. As some base clusters
appear to be more likely to produce such transactions, we exclude transac-
tions from base clusters where more than 10% of transactions exhibit this
behavior. This removes 0.48 million transactions in 9967 base clusters.

3. We check our base clustering for preexisting cluster collapse, which could
create false positives. We remove 0.37 million transactions belonging to the
Mt.Gox supercluster (cf. [12]) as well as 0.09 million transactions from one
possible instance of cluster collapse detected using address tags from the
website WalletExplorer.com.

4. We find many instances where the change address did not appear in the inputs,
but had been used before and was known to be the change at the time the
transaction was created through multi-input clustering. For example, there are
5.77 million transactions originating from the gambling service “SatoshiDice”
that use only a total of 50 change addresses, and 1.27 million transactions from

392 M. Möser and A. Narayanan

Fig. 4. Address and transaction counts for base clusters in our ground truth.

“LuckyB.it” that use a single change address. For such transactions, applying
change address heuristics is never necessary. We remove 15.17 million transac-
tions where the change output was already known at the time the transaction
was created.

2.3 Assessing the Final Set of Ground Truth Transactions

Scale and Time Frame. Our final ground truth set of 35.26 million trans-
actions makes up about 7.6% of standard transactions and about 5.4% of all
transactions. These percentages are relatively stable over time.

Variety of Included Clusters. Our ground truth includes transactions from
3.6 million base clusters. Figure 4a shows the distribution of address counts of
base clusters that are represented with at least one transaction in our ground
truth. Our ground truth contains transactions from base clusters of all sizes,
giving us confidence that it can be representative of the blockchain overall.

Figure 4b shows the number of transactions per base cluster included in the
ground truth compared to the total number of transactions per cluster, showing
an overall similar distribution. The largest number of transactions from a single
base cluster is 3.49 million, which has 28.85 million transactions in total. We
did not find a label for it on WalletExplorer.com. The second highest number of
transactions is 383 519, again from an unlabeled cluster.

Transaction Composition and Use of Protocol Features. Compared to
standard transactions with yet unknown change, our ground truth transactions
have more inputs (38.92% of transactions have three or more inputs, compared
to 7.63% for the remaining transactions). This is an expected artifact of our
selection method, which relies on transactions with more than one input to reveal
change outputs. The share of transactions using SegWit serialization or allowing
for fee bumping (RBF) is also higher in the set of remaining transactions.

Resurrecting Address Clustering in Bitcoin 393

2.4 Data Release

We make our ground truth data set publicly available to allow other researchers
to evaluate it using their own tools and techniques.2 We believe that making
this data public does not create significant new privacy risks: all information
necessary to recreate the data set is already publicly available on the Bitcoin
blockchain and our method—extracting change outputs revealed by the multi-
input heuristic—is easy to reproduce with open-source tools like BlockSci.

3 Predicting Change Outputs

The Bitcoin protocol does not explicitly distinguish between change and spend
outputs. However, wallets create change outputs automatically to return surplus
value when users make payments. This allows to guess the change using a variety
of heuristics targeted at identifying specific wallet or user behavior.

In this paper we evaluate two general types of heuristics. Universal heuristics
use characteristics of the transaction and change output to determine the change.
For example, the address type of a change output is likely to match the address
types of the inputs, and rounded output values may indicate spend amounts.
Fingerprint heuristics determine change based on matching characteristics of the
transactions spending the outputs. For example, if a transaction sets a positive
locktime to prevent fee sniping [30] and only one of the outputs is spent in a
transaction with the same behavior, it is likely the change. We are not aware
of any prior work that has evaluated fingerprinting across the range of available
protocol characteristics. In total, we use 9 variants of universal heuristics and
17 variants of fingerprinting heuristics (cf. Table 1). To prevent cluster collapse,
we explicitly encode our constraint that only one output can be the potential
change: if both outputs are change candidates, none is returned by our heuristics.

3.1 Assessing Individual Change Heuristics

In a first step we assess each of the heuristics using our ground truth data set.
We find that most heuristics produce few false positives but often only apply to a
small share of transactions (most heuristics have true positive rates between 10%
to 30%). Figure 5 shows the average number of correct and incorrect predictions
per transaction over time, grouped by the type of heuristic.

We see three important trends: first, the universal heuristics drop over time,
likely due to rounded values becoming less common. Second, the consistent fin-
gerprint heuristics see a steady uptick in the number of correct votes, enabled by
the increasing variety of protocol features available in Bitcoin over time. Finally,
there’s an uptick in both correct and incorrect fingerprint votes starting in late
2017, when wallet implementations started to switch to SegWit serialization and
address formats (e.g., [4,29]).

2 https://github.com/maltemoeser/address-clustering-data.

https://github.com/maltemoeser/address-clustering-data

394 M. Möser and A. Narayanan

Table 1. Change heuristics proposed in the literature and used in this paper.

Heuristic Notes and limitations Used

Optimal change: There should be no
unnecessary inputs: if one output is smaller
than any of the (2+) inputs, it is likely the
change. [23,25]

Only applies to transactions with 2+ inputs.
We use two variants, one ignoring and one
accounting for the fee

�

Address type: The change likely uses the
same address type as the inputs. [16,25]

False positives possible due to protocol
upgrades or obfuscation

�

Power of ten: As purchase amounts may
be rounded, and change amounts depend on
the input values and fee, it is more likely to
have fewer trailing zeros. [16,25]

We use six different variants, which are
partially redundant

�

Shadow address: Many clients
automatically generate fresh change
addresses, whereas spend addresses may be
more easily reused. [1,21]

Modern wallets discourage reuse of receiving
addresses. We do not use the heuristic as
our ground truth is filtered based on address
freshness

x

Consistent fingerprint: The transaction
spending a change output should share the
same characteristics [5,25]. We use 17 vari-
ants based on the following characteristics:
– input/output counts and order

False positives are possible when a wallet
implementation or the protocol change. We
only consider characteristics after they are
available in the protocol.

�

– version

– locktime

– serialization format (SegWit)

– replace-by-fee (RBF)

– transaction fee

– input coin age (zero-conf)

– address and script types

Fig. 5. Average number of correct and uncorrect votes per transaction and type of
heuristic in the ground truth data set, over time

For 858 582 transactions no heuristic returned a change output, we remove
these from the subsequent analyses. When we later predict change outputs for
the remaining standard transactions, we will also exclude transactions where no
heuristic determined a potential change output.

Resurrecting Address Clustering in Bitcoin 395

While most individual heuristics have high precision, they only cover a subset
of transactions each. Furthermore, some heuristics may be more applicable dur-
ing certain epochs of Bitcoin’s history than others. Given the variety of heuristics
available to us compared to previous studies (e.g., an evaluation of three change
heuristics in [23]), we now consider new ways of combining them.

3.2 Threshold Vote

Figure 5 suggest that a majority of heuristics should generally identify the cor-
rect output. However, the number of heuristics returning an potential output
varies among transactions, and individual heuristics could be incorrect. We thus
compute a threshold vote: if at least t more heuristics vote for output a than for
output b, then output a is considered the change. Increasing the threshold t thus
allows the analyst to require higher degrees of confidence and thereby lower the
risk of cluster collapse.

We apply the threshold vote to our ground truth data set and plot the result-
ing ROC curve in Fig. 6a (for comparison, we also show the FPR and TPR of
each individual heuristic). We achieve an ROC AUC of 0.94, and, for example,
a 37.0% true positive rate (TPR) below a false positive rate (FPR) of .1% with
a threshold of t = 7.

Using a threshold vote may not be ideal as the individual heuristics have
varying true positive and false positive rates, and some might be more or less
reliable during different periods of Bitcoin’s history. Rather, a specific subset of
heuristics may provide better classification accuracy. Instead of manually trying
different combinations, we opt to use a supervised learning classifier.

Fig. 6. ROC curves for predicting change in the ground truth data set using the thresh-
old vote and the random forest classifier, compared to individual heuristics.

396 M. Möser and A. Narayanan

3.3 Random Forest Classifier

We decide to use a random forest classifier to predict a transaction’s change
output. A random forest is an ensemble classifier that trains and aggregates the
results of individual decision trees. It is inherently well suited for our data set
as it can divide it into homogeneous subsets, for example, based on protocol
characteristics or time periods. In an initial comparison of supervised classifiers
on our data it also achieved the highest ROC AUC score.

We model an output-based binary classification problem, where every output
is either a change (1) or spend (0) output. An individual heuristic may produce
one of three outcomes: vote for the output, against the output, or not be able to
discern between the outputs. We further add characteristics about each output
and corresponding transaction that may allow the random forest to differentiate
between distinct types of transactions, or wallets.

As we consider an analyst who works with a static snapshot of the blockchain,
we randomly split our data set into 80% training and 20% test set. We use the
training set for hyperparameter tuning using 4-fold cross-validation, using the
ROC AUC as our scoring metric. To account for the fact that transactions in the
same base cluster may be highly similar, we explicitly ensure that all outputs of
a base cluster remain in the same set and fold.

Applying the random forest model (RF-1) to the test set, we achieve an
AUC of 0.9986 (Fig. 6a). The model is able to detect a higher share of outputs,
especially at low false positive rates, compared to the threshold vote.

In Fig. 6b we show the ROC curves of both the threshold vote and the random
forest on the same test set, log-transforming the x-axis to highlight the important
difference in low false positive rates (to prevent cluster collapse). The random
forest achieves much higher true positive rates at low false positive rates, meaning
that it correctly identifies the change output in a larger number of transactions.
For example, if we target a false positive rate below 0.1%, the threshold vote
achieves a TPR of around 39% at a FPR of 0.06%. For the same FPR, the
random forest achieves a TPR of 82%, more than twice as high.

We train a second random forest model (RF-2) without the fingerprint heuris-
tics on transactions that contain predictions from the universal heuristics to later
predict change in transactions with unspent outputs. Using a similar evaluation
strategy as for the full model, the ROC AUC of this model is 0.9981.

To ensure that the performance of our model is not dependent on the par-
ticular split and to determine its variance, we repeatedly split our ground truth
data set into 80% training and 20% test set 20 times and train the random forest
classifier using the previously determined hyperparameters. The average ROC
AUC score on the test sets is 0.9974 (SD = 0.0016) for RF-1, and 0.9965 (SD =
0.0036) for RF-2.

We note one caveat: because the base clustering is incomplete, grouping trans-
actions by their base cluster may not fully prevent homogeneous transactions

Resurrecting Address Clustering in Bitcoin 397

from the same entity to appear in both sets. Yet, some of the variability we see
comes from unusual clusters that do not appear in the respective training sets.
Other researchers with private, more heterogeneous ground truth may be able to
evaluate the degree to which this affects the overall performance of the model.

3.4 Additional Model Validation

We use two data sets to assess the performance of the random forest model
trained on the entire ground truth data. First, we use 16 764 transactions iden-
tified by Huang et al. [14] as ransom payments related to the Locky and Cer-
ber ransomware. Those payments were identified through clustering, transaction
graph analysis and known characteristics of the ransom amounts. After remov-
ing non-standard transactions and those with revealed change output, we predict
the change output for 11 196 transactions and achieve an AUC of 0.996.

Our second data set is constructed using a GraphSense tagpack [10] that
contains 382 tags for addresses of 273 distinct entities (such as exchanges or
gambling services) extracted from WalletExplorer.com. We identify each asso-
ciated cluster and then extract up to 1000 transactions occurring between the
individual clusters, assuming that the output belonging to a different cluster is
the spend output. After removing transactions with no predictions as well as
those with revealed change output, we predict the change output for 268 774
transactions and achieve an AUC of 0.976.

4 Clustering Change Outputs

We now use our random forest models to enhance the base clustering by cluster-
ing change outputs. To this end, we predict the change outputs for 310 million
standard transactions with yet unknown change. We exclude 10.5 million trans-
actions where no individual heuristic identified a change output and use RF-2
for 19.3 million transactions with unspent outputs.

To keep the likelihood of false positives low, we use a conservative probability
threshold of pchange = 0.99.3 This gives us 155.56 million change outputs (for
50.24% of transactions). We then enhance the base clustering by merging the
base cluster of the inputs with the base cluster of the change address in the order
that the transactions appear on the blockchain.

4.1 Naive Merging Leads to Cluster Collapse

Naively clustering the identified change outputs reduces 184.3 million affected
base clusters into 39.8 million enhanced clusters. However, it leads to severe
cluster collapse: there is one large supercluster, containing the prior Mt. Gox

3 This corresponds to a false positive rate of 0.044% for RF-1. We use a threshold of
0.997 for RF-2 to match the FPR.

398 M. Möser and A. Narayanan

supercluster, that contains 223.9 million addresses (a 1596% increase) and 108.2
million transactions (a 2500% increase). Inspecting the 273 clusters labeled by
the Graphsense tag pack, we find that 113 have been merged into the superclus-
ter.

4.2 Constraints Prevent Cluster Collapse

The majority of cluster merges involve address clusters from which only a single
transaction originated. Here, the impact of a single misclassification is low unless
a sequence of such merges collapses multiple larger clusters. At the same time,
we observe a small number of merges that combine two large clusters. Imagine
two large exchanges whose users frequently interact with each other. A single,
misidentified change output could collapse their clusters.

Approach. We use this intuition to constrain which clusters we merge. While
change outputs predicted by our model should be clustered, we can use predicted
spend outputs to prevent cluster merges: the input cluster should not be clustered
into the cluster of the spend. Given the probability pi returned by the random
forest model for output i, we define two thresholds pchange and pspend such that
if pi > pchange the clusters should be merged (as before), but if pi < pspend then
the clusters should not be merged. In many cases, these constraints will prevent
the spend and change output of a transaction to end up in the same cluster (cf.
Fig. 7).

This approach is comparable to that by Ermilov, Panov, and Yanovich [9] to
use address tags in combination with a probabilistic model to reduce the number
of conflicting tags in the final clustering. However, public sources of address tags
contain information on a limited number of intermediaries only. Our approach,
instead, potentially covers all clusters appearing in the 310 million standard
transactions, including those that may be hard to interact with (and identify)
manually. Due to the size of our data set we only consider the binary case of
preventing any potential conflict, accepting that we may prevent some valid
merges in the process.

Fig. 7. In the pictured scenarios our constrained clustering prevents the merging of
clusters A and B due to conflicting types of payments between them.

Resurrecting Address Clustering in Bitcoin 399

We implement a constrained union-find algorithm that prevents merging two
clusters related by a predicted spend output. For every spend from cluster cm to
cluster cn, predicted with pi < pspend, we add a constraint to cluster cm that it
must not be merged with cluster cn. Before merging two clusters, we the check
the constraints of both clusters and skip the merge if it would violate them.

Results. Using the same pchange = 0.99 and setting pspend = 0.01, the con-
strained clustering prevents 413 608 merges that would have violated constraints
and retains 231 340 more individual clusters than the unconstrained clustering.

We find that the constraints prevent the previously observed severe cluster
collapse. For example, the constrained clustering does not produce the large
Mt. Gox supercluster: the cluster contains only 4.4 million transactions (a 6%
increase) and 14.5 million addresses (a 10% increase). Assessing the 273 labeled
clusters, there are seven instances where two labeled clusters were merged. We
suspect that unusual types of payouts from these services might have triggered
the collapse.

The largest cluster in the constrained clustering contains 20.4 million trans-
actions and 40.5 million addresses. Inspecting its composition, we find that it is
the result of merging many small clusters (including 9 421 343 single-transaction
clusters).

Overall, in at least 90% of merges the smaller cluster created at most one out-
going transaction, which highlights the usefulness of change address clustering to
merge small clusters that are missed by multi-input clustering. The constrained
clustering specifically prevents some of the largest merges observed in the naive
clustering, thereby preventing cluster collapse.

Varying Thresholds. We chose conservative thresholds in order to reduce the
possibility of cluster collapse. At the same time, this means that fewer change
outputs are being clustered than with lower thresholds. To assess the impact of
varying thresholds, we create two additional constrained clusterings, one with a
threshold corresponding to a 0.1% FPR and one corresponding to a 1% FPR.
At 0.1%, the number of collapsed clusters identified by the Graphsense tag pack
increases to 12. At 1%, however, there are already 60 instances of cluster collapse.
This highlights the importance of using conservative thresholds to prevent cluster
collapse.

5 Impact on Blockchain Analyses

Address clustering is a common preprocessing step before analyzing activity of
entities on the blockchain. Using different change heuristics (or none at all) thus
affects the outcome of these analyses.

400 M. Möser and A. Narayanan

5.1 Increased Cashout Flows from Darknet Markets to Exchanges

We evaluate the impact of our enhanced clustering on analysing payment flows
from darknet markets to exchanges. Such analyses are potentially relevant for
cybercrime researchers, economists, regulators or law enforcement, highlighting
the importance of address clustering for a variety of use cases. To identify relevant
intermediaries, we use address tags in the GraphSense tag pack for 117 exchanges
and 15 darknet markets.

We extract the value of all outputs in transactions initiated by a darknet
market that are sending bitcoins to an exchange, comparing the transaction
volume calculated using our base clustering to that of our enhanced clustering.
The median increase in value sent across all 15 markets amounts to 11.5%. The
total amount of bitcoins flowing from the darknet markets to exchanges increases
from BTC 823 839 to BTC 937 330 (a 13.8% increase).

5.2 Improved Estimate of Velocity

We replicate the analysis of velocity conducted by Kalodner et al. [16], an exam-
ple for a longitudinal analysis of economic activity occurring on the Bitcoin
blockchain. For this analysis, clustering is used to remove self-payments of users
(such as change outputs), which would artificially inflate estimates of economic
activity. The better and more complete our clustering, the more self-payments
are removed and hence the lower the estimate will be.

Our refined clustering reduces their estimate of bitcoins moved per day
between January 2017 to June 2021 by about 11.9%. We notice that the magni-
tude is quite similar to the impact on cash-out flows.

5.3 Comparison to the Meiklejohn et al. Heuristic

Finally, we compare our clustering to one created naively using the address reuse-
based heuristic presented by Meiklejohn et al. [21], which has subsequently been
used in other studies (e.g., [7,24]). While the authors highlight the need for man-
ual intervention to prevent cluster collapse, this is likely infeasible for analysts
without in-depth domain knowledge or the right set of tools. The heuristic con-
siders an output to be the change if its address has only been used a single time,
based on common wallet behavior to not reuse change addresses.

Applying the heuristic to standard transactions with unknown change pro-
duces a supercluster containing 133.1 million transactions and 298.4 million
addresses, with 177 tagged clusters ending up in the supercluster. The probabil-
ity of two addresses being clustered together increases by a factor of 40 compared
to our constrained clustering. Looking at the individual predictions, the heuristic
differs on 1.9 million transactions out of an overlapping 81.1 million. The total
pairwise difference in output values between those predictions amounts to BTC
4.1 million, or USD 38.7 billion, a significant difference in economic activity that
might be misattributed due to clustering.

Resurrecting Address Clustering in Bitcoin 401

6 Conclusion

Address clustering is an important cornerstone of many blockchain analyses. In
this paper, we’ve taken a first step towards building better models that allow
analysts to identify change outputs in transactions, enabled by a new ground
truth data set extracted from the Bitcoin blockchain. Evaluating this data set,
we find that for most transactions identifying the change address is feasible with
high precision. Crucially, our work is the first to apply machine learning to the
problem of change identification. We find that our random forest model out-
performs a baseline voting mechanism, detecting twice as many change outputs
when targeting low false positive rates. Turning to the subsequent clustering
of change addresses, we’ve demonstrated that constraints based on our model’s
predictions can prevent cluster collapse. Finally, we’ve explored the impact of
our clustering on the outcome of economic analyses. We hope that our work will
encourage and enable further research into address clustering.

Extended version: An extended version of this paper is available on arXiv.4

Acknowledgement. We thank Rainer Böhme and Kevin Lee for their feedback on
an earlier draft of this paper. This work is supported by NSF Award CNS-1651938 and
a grant from the Ripple University Blockchain Research Initiative.

References

1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

2. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin Ponzi schemes.
In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84.
IEEE (2018)

3. Bartoletti, M., Pompianu, L.: An analysis of bitcoin OP RETURN metadata. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 218–230. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 14

4. Bitcoin core 0.16.0. https://bitcoincore.org/en/releases/0.16.0/
5. Blockchair.com API VOL 2.0.76 documentation: Privacy-o-meter. https://

blockchair.com/api/docs#link M6
6. Chang, T.-H., Svetinovic, D.: Improving bitcoin ownership identification using

transaction patterns analysis. IEEE Trans. Syst. Man Cybern Syst. 50(1), 9–20
(2018)

7. Conti, M., Gangwal, A., Ruj, S.: On the economic significance of ransomware
campaigns: a bitcoin transactions perspective. Comput. Secur. 79, 162–189 (2018)

8. Dorier, N.: A simple Payjoin proposal. https://github.com/bitcoin/bips/blob/
master/bip-0078.mediawiki

9. Ermilov, D., Panov, M., Yanovich, Y.: Automatic bitcoin address clustering. In:
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 461–466. IEEE (2017)

4 https://arxiv.org/abs/2107.05749.

https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/978-3-319-70278-0_14
https://bitcoincore.org/en/releases/0.16.0/
https://blockchair.com/api/docs#link_M6
https://blockchair.com/api/docs#link_M6
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://arxiv.org/abs/2107.05749

402 M. Möser and A. Narayanan

10. Graphsense public tagpacks. https://github.com/graphsense/graphsense-tagpacks
11. Harlev, M.A., Yin, H,S., Langenheldt, K.C., Mukkamala, R., Vatrapu, R.: Break-

ing bad: de-anonymising entity types on the bitcoin blockchain using supervised
machine learning. In: Proceedings of the 51st Hawaii International Conference on
System Sciences (2018)

12. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address cluster-
ing. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 368–373. IEEE (2016)

13. Hu, Y., Seneviratne, S., Thilakarathna, K., Fukuda, K., Seneviratne, A.: Charac-
terizing and detecting money laundering activities on the bitcoin network. arXiv
preprint arXiv:1912.12060 (2019)

14. Huang, D.Y., et al.: Tracking ransomware end-to-end. In: IEEE Symposium on
Security and Privacy, pp. 618–631. IEEE (2018)

15. Jourdan, M., Blandin, S., Wynter, L., Deshpande, P.: Characterizing entities in
the bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 55–62. IEEE (2018)

16. Kalodner, H., et al.: BlockSci: design and applications of a blockchain analysis
platform. In: 29th USENIX Security Symposium, pp. 2721–2738 (2020)

17. Lin, Y.-J., Wu, P.-W., Hsu, C.-H., Tu, I.-P., Liao, S.: An evaluation of bitcoin
address classification based on transaction history summarization. In: 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310.
IEEE (2019)

18. Di Francesco, D., Maesa, A.M., Ricci, L.: Data-driven analysis of bitcoin properties:
exploiting the users graph. Int. J. Data Sci. Anal. 6(1), 63–80 (2018)

19. Maxwell, G.: CoinJoin: bitcoin Privacy for the Real World (2013). https://
bitcointalk.org/index.php?topic=279249.0

20. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: Brenner,
M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
127–141. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 10

21. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Internet Measurement Conference, pp. 127–140. ACM (2013)

22. Möser, M., Böhme, R.: The price of anonymity: empirical evidence from a market
for bitcoin anonymization. J. Cybersecur. 3(2), 127–135 (2017)

23. Nick, J.D.: Data-driven de-anonymization in bitcoin (2015)
24. Parino, F., Beiró, M.G., Gauvin, L.: Analysis of the bitcoin blockchain: socio-

economic factors behind the adoption. EPJ Data Sci. 7(1), 38 (2018)
25. Privacy - bitcoin wiki. https://en.bitcoin.it/Privacy
26. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Alt-

shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-4139-7 10

27. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

28. Schatzmann, J.E., Haslhofer, B.: Bitcoin trading is irrational! an analysis of the
disposition effect in bitcoin. arXiv preprint arXiv:2010.12415 (2020)

29. SegWit FAQ. https://help.coinbase.com/en/pro/getting-started/general-crypto-
education/segwit-faq

https://github.com/graphsense/graphsense-tagpacks
http://arxiv.org/abs/1912.12060
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://doi.org/10.1007/978-3-662-48051-9_10
https://doi.org/10.1007/978-3-662-48051-9_10
https://en.bitcoin.it/Privacy
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2
http://arxiv.org/abs/2010.12415
https://help.coinbase.com/en/pro/getting-started/general-crypto-education/segwit-faq
https://help.coinbase.com/en/pro/getting-started/general-crypto-education/segwit-faq

Resurrecting Address Clustering in Bitcoin 403

30. Todd, P.: Discourage fee sniping with nLockTime #2340 (2014). https://github.
com/bitcoin/bitcoin/pull/2340

31. Toyoda, K., Ohtsuki, T., Mathiopoulos, P.T.: Multi-class bitcoin-enabled service
identification based on transaction history summarization. In: 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 1153–1160. IEEE (2018)

32. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph con-
volutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

33. Zhang, Y., Wang, J., Luo, J.: Heuristic-based address clustering in bitcoin. IEEE
Access 8, 210582–210591 (2020)

https://github.com/bitcoin/bitcoin/pull/2340
https://github.com/bitcoin/bitcoin/pull/2340
http://arxiv.org/abs/1908.02591

Incentives

ABSNFT: Securitization and Repurchase
Scheme for Non-Fungible Tokens Based

on Game Theoretical Analysis

Hongyin Chen1, Yukun Cheng2(B), Xiaotie Deng1(B), Wenhan Huang3,
and Linxuan Rong4

1 Center on Frontiers of Computing Studies, Peking University, Beijing, China
{chenhongyin,xiaotie}@pku.edu.cn

2 Suzhou University of Science and Technology, Suzhou, China
ykcheng@amss.ac.cn

3 Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China
rowdark@sjtu.edu.cn

4 Washington University in St. Louis, St. Louis, MO, USA
l.rong@wustl.edu

Abstract. The Non-Fungible Token (NFT) is viewed as one of the
important applications of blockchain technology. Currently NFT has
a large market scale and multiple practical standards, however several
limitations of the existing mechanism in NFT markets still exist. This
work proposes a novel securitization and repurchase scheme for NFT to
overcome these limitations. We first provide an Asset-Backed Securities
(ABS) solution to settle the limitations of non-fungibility of NFT. Our
securitization design aims to enhance the liquidity of NFTs and enable
Oracles and Automatic Market Makers (AMMs) for NFTs. Then we
propose a novel repurchase protocol for a participant owing a portion
of NFT to repurchase other shares to obtain the complete ownership.
As the participants may strategically bid during the acquisition process,
we formulate the repurchase process as a Stackelberg game to explore
the equilibrium prices. We also provide solutions to handle difficulties at
market such as budget constraints and lazy bidders.

Keywords: Non-Fungible Token · Asset-Backed Securities ·
Blockchain · Stackelberg game

1 Introduction

Ever since the birth of the first piece of Non-Fungible Token (NFT) [11,23],
the world has witnessed an extraordinarily fast growth of its popularity. NFT
markets, especially Opensea1, have prospered with glamorous statistics of a total
of over 80 million pieces of NFTs on the platform and a total transaction volume
of over 10 billion US dollars.2

1 Opensea Platform. https://opensea.io/.
2 Data source from Opensea https://opensea.io/about.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 407–425, 2022.
https://doi.org/10.1007/978-3-031-18283-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_20&domain=pdf
https://opensea.io/
https://opensea.io/about
https://doi.org/10.1007/978-3-031-18283-9_20

408 H. Chen et al.

NFT is a type of cryptocurrency that each token is non-fungible. The first
standard of NFT, ERC-721 [10], gives support to a type of tokens that each has
a unique identifier. The feature of uniqueness makes NFTs usually be tied to
specific assets, such as digital artwork and electronic pets. Some researches also
explore the application of NFT in patent, copyright and physical assets [5,20].

The technology of NFT has also advanced rapidly. Besides ERC-721, ERC-
1155 [9] is also a popular standard of NFT. ERC-1155 is a flexible standard
that supports multiple series of tokens, each series is a type of NFT or Fungible
Token (FT). NFT protocols are usually derived by smart contracts in a per-
missionless blockchain, but there are now some NFT designs for permissioned
blockchains [12].

Although NFT has a large market scale and multiple practical standards,
there still exist several limitations in NFT market, one of which is the poor
liquidity. The issue of liquidity is crucial in both De-fi and traditional finance.
Usually, if assets have higher liquidity, they would have higher trading volume,
and further have higher prices [2]. Particularly, in blockchain, the liquidity of
Fungible Tokens, such as wBTC and ETH, has been enhanced by Oracles [17] and
Automated Market Makers (AMMs) [3] like Uniswap and Sushiswap. However,
the non-fungibility property of NFT leads to poor liquidity. For this reason, the
existing NFT marketplace usually uses the English Auction or Dutch Auction
to trade NFTs [14].

– Firstly, Non-Fungibility means indivisible. As the NFT series with the highest
market value, CryptoPunks has an average trading price of 189 Eth3, which is
worth more than 790, 000 U.S. dollars4. If bitcoins are expensive, we can trade
0.01 bitcoins, but we can’t trade 0.01 CryptoPunks. As a result, the liquidity
of CryptoPunks is significantly lower than other NFT series. Therefore, the
liquidity for NFTs with high values is limited.

– Secondly, shared ownership is not allowed because of Non-Fungibility. There-
fore, it’s difficult to reduce risk and enhance the liquidity of NFTs through
portfolios. What’s more, Some NFT assets such as patents need financial
support to foster the process of development. They would require a means to
attract finance. The above two limitations also exist in traditional settings.

– Thirdly, the feature of non-fungible makes NFT unable to be directly applied
in Oracles [17] and Automated Market Makers (AMMs) [3], which are impor-
tant methods of pricing in the blockchain. This is because fungibility is the
basis of Oracles and AMMs.

1.1 Main Contributions

We present ABSNFT, a securitization and repurchase scheme for NFT, which
overcomes the above-mentioned limitations from the following three aspects.
3 90-day average before November 22, 2021. Data source from https://opensea.io/

activity/cryptopunks.
4 The price of Eth here refers to the data on November 22, 2021. https://etherscan.

io/chart/etherprice.

https://opensea.io/activity/cryptopunks
https://opensea.io/activity/cryptopunks
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/etherprice

ABSNFT 409

– Firstly, we propose an Asset-Backed Securities (ABS) [4] solution to settle the
limitations of non-fungibility of NFT. We design a smart contract including
three parts: NFT Securitization Process, NFT Repurchase Process, and NFT
Restruction Process. In our smart contract, a complete NFT can be securi-
tized into fungible securities, and fungible securities can be reconstructed into
a complete NFT.
The securitization process manages to resolve the majority of issues the cur-
rent NFT application is confronted with: the securities of NFT have lower
values compared to the complete one before securitization, which increases
market liquidity; securities could act as fungible tokens that can be applied
in Oracles and AMMs; the investment risk is being reduced dramatically;
financing is possible since securities can belong to different owners.

– Secondly, we design a novel repurchase process based on Stackelberg
game [21], which provides a mechanism to repurchase NFT securities at a
fair price. The NFT Repurchase Process can be triggered by the participant
who owns more than half of the securities of the NFT. We analyze the Stack-
elberg Equilibrium (SE) in three different settings and get good theoretical
results.

– Thirdly, we propose solutions to the budget constraints and lazy bidders,
which make good use of the decentralization of blockchain. We propose a
protocol that allows participants to accept financial support in the repurchase
game to reduce the influence of budget constraints. We also propose two
solutions for players that might not bid in the game, which prevent the game
process from being blocked and protect the utility of lazy bidders.

1.2 Related Works

In financial research, there are two well-studied repurchase scenarios, repurchase
agreement and stock repurchase.

Repurchase agreement is a short-term transaction between two parties in
which one party borrows cash from the other by pledging a financial security
as collateral [1]. The former party is called the security issuer, and the latter
party is called the investors. To avoid the failure of liquidation, the security
issuer needs to mortgage assets or credit. An instance of such work from the
Federal Reserve Bank of New York Quarterly Review introduces and analyzes
a repurchase agreement for federal funds [16]. The Quarterly Review describes
the repurchase agreement as “involving little risk”, as either parties’ interests
are been safeguarded.

Studies of repurchase agreement cannot be directly applied to our topic. The
key point is that the problem we are studying is not to mortgage NFTs to obtain
cash flow, but to securitize NFTs to overcome the restrictions of non-fungibility.
What’s more, the repurchase prices are usually derived from the market model.
But the NFT market is not as mature as the financial market, which makes it
hard to calculate a fair price through the market model.

Stock repurchase refers to the behavior that listed companies repurchase
stocks from the stockholders at a certain price [8]. Usually, stock repurchase is

410 H. Chen et al.

adopted to release positive signals to the stock market and doesn’t aim to repur-
chase all stocks. However, NFTs usually need to be complete without securities
in cross-chain scenarios.

Oxygen [18] is a decentralized platform that supports repurchase agreement
based on digital assets. In Oxygen, users can borrow cash flow or assets with
good liquidity by pledging assets with poor liquidity. The repurchase prices and
the evaluations of assets are provided by a decentralized exchange, Serum [19].
However, such pricing method is dangerous because decentralized exchanges are
very vulnerable to attacks like flash loans [22].

ABSNFT is distinguished among all these works because it adapts well to
the particularities of NFT market and blockchain.

– Firstly, the securities in ABSNFT represent property rights rather than cred-
itor’s rights. Investors do not need to worry that the cash flow or the mort-
gaged assets of the securities issuer may not cover the liquidation, which may
be risky in a repurchase agreement. What’s more, any investor can trigger a
repurchase process as long as he owns more than half of the shares.

– Secondly, the repurchase process of ABSNFT doesn’t depend on market mod-
els or exchanges. The repurchase price is decided by the bids given by partic-
ipants, and every participant won’t get negative utility if he bids truthfully.

– Thirdly, ABSNFT has well utilized the benefits of blockchain technology.
The tradings of securities are driven by the smart contract. The operations
of ABSNFT don’t rely on centralized third-party and are available 24 × 7 for
participants.

The rest of the paper is arranged as follows. Section 2 introduces the NFT
securitization process. In Sect. 3 and Sect. 4, we study the two-player repurchase
game in a single round and the repeated setting. In Sect. 5, we analyze the
repurchase game with multiple leaders and one follower. In Sect. 6, we discuss the
solution to the issues with budget constraints and lazy bidders in the blockchain
setting. In the last section, we give a summary of ABSNFT and propose some
future works.

2 NFT Securitization and Repurchase Scheme

In this section, we would like to introduce the general framework of the smart
contract, denoted by CNFT , which includes the securitization process, the trad-
ing process, repurchase process and restruction process for a given NFT.

2.1 Basic Setting of NFT Smart Contract

There are two kinds of NFTs discussed in this paper.

– Complete NFT. Complete NFTs are conventional non-fungible tokens,
which appear in blockchain systems as a whole. Each complete NFT has
a unique token ID. We use CNFT (id) to denote one complete NFT with
token ID of id.

ABSNFT 411

– Securitized NFT. Securitized NFTs are the Asset Based Securities of
complete NFTs. A complete NFT may be securitized into an amount of secu-
ritized units. All units of securitized NFTs from a complete NFT CNFT (id)
have the same ID, associated with the ID of CNFT (id). Thus we denote the
securitized NFT by SNFT (id). In our smart contract, all securitized NFTs
can be freely traded.

In our setting, all complete NFTs and securitized NFTs belong to one smart
contract, denoted by CNFT . Although the securitized NFTs are similar to the
fungible tokens in ERC-1155 standard [9], our smart contract CNFT is actually
quite different from ERC-1155 standard. That is because all securitized NFTs
in CNFT , associated to one complete NFT, have the same ID, while different
NFTs and different fungible tokens generally have different token IDs in ERC-
1155 standard. Therefore, our CNFT is based on ERC-721 standard [10], and the
complete NFTs are just the NFTs defined in ERC-721. Table 1 lists all functions
in CNFT .

Table 1. The key functions of CNFT

Function name Function utility

CNFTownerOf(id) Return the address of the owner of CNFT (id)

CNFTtransferFrom
(addr1, addr2, id)

Transfer the ownership of CNFT (id) from address
addr1 to address addr2. Only the owner of CNFT (id)
has the right to trigger this function

SNFTtotalSupply(id) Return the total amount of SNFT (id) in contract CNFT

SNFTbalanceOf(addr, id) Return the amount of SNFT (id) owned by address addr

SNFTtransferFrom
(addr1,addr2, id, amount)

Transfer the ownership of amout unit of SNFT (id) from
address addr1 to address addr2

CNFTsecuritization
(addr, id, amount)

Freeze CNFT (id), and then transfer amout units of
SNFT (id) to address addr. Only the owner of
CNFT (id) can trigger this function

CNFTrestruction(addr, id) Burn all SNFT (id), unfreeze CNFT (id), and then
transfer the ownership of CNFT (id) to address addr.
Only the one who owns all amounts of SNFT (id) can
trigger this function

Repurchase(id) Start the repurchase process of SNFT (id). Only the one
who owns more than half amounts of SNFT (id) can
trigger this function

The task of smart contract CNFT includes securitizing complete NFTs, trad-
ing the securitized NFTs among participants, and restructing complete NFT
after repurchasing all securitized NFTs with the same ID. Because the trans-
actions of securitized NFTs are similar to those of fungible tokens, we omit
the trading process here and introduce NFT securitization process, NFT repur-
chase process and NFT restruction process in the subsequent three subsections
respectively.

412 H. Chen et al.

2.2 NFT Securitization Process

This subsection focuses on the issue of Asset-Backed Securities for Complete
NFTs. We propose Algorithm 1 to demonstrate the NFT securitization process.
To be specific, once CNFTsecuritization(addr, id, amount) is triggered by the
owner of CNFT (id), the amount units of securitized NFTs are generated and
transferred to address addr in Line 2–4; then the ownership of CNFT (id) would
be transferred to a fixed address FrozenAddr in Line 5.

It is worth to note that if Repurchase(id) has not been triggered, securitized
NFTs can be freely traded in blockchain system.

Algorithm 1. NFT Securitization
1: procedure CNFTsecuritization � Triggered by sender
2: require(sender == CNFTownerOf(id)) � sender is the owner of CNFT (id)
3: totalSupply[id] ← amount � Record the total amount of units of SNFT (id)
4: tokenBalance[id][addr] ← amount � the amount units SNFT (id) are

generated and transferred to address addr
5: CNFTtransferFrom(sender, FrozenAddr, id) � Freeze CNFT (id)

2.3 NFT Repurchase Process

After the securitization process, a complete NFT CNFT (id) is securitized
into M units of SNFT (id). Suppose that there are k + 1 participants, N =
{N0, · · · , Nk}, each owning mi units of SNFT (id). Thus

∑k
i=0 mi = M . If

there is one participant, denoted by N0, owing more than half of SNFT (id) (i.e.
m0 > 1

2M), then he can trigger the repurchase process by trading with each
Ni, i = 1, · · · , k. Majority is a natural requirement for a participant to trigger
a repurchase mechanism, and thus our repurchase mechanism sets the threshold
as 1

2 . In addition, if the trigger condition is satisfied (i.e., someone holds more
than half of shares), then there must be exactly one participant who can trigger
the repurchase mechanism. This makes our mechanism easy to implement. Our
mechanism also works well if the threshold is larger than 1

2 .
Let vi be Ni’s value estimate for one unit of SNFT (id) and pi be the bid

provided by Ni, i = 0, · · · , k, in a deal. Specially, our smart contract CNFT

requires each value vi ∈ {1, · · · } and bid pi ∈ {0, 1, · · · } to discretize our analysis.
We assume that the estimation of vi is private information of Ni, not known to
others. The main reason is that most of NFT objects, such as digital art pieces,
would be appreciated differently in different eyes. Participants may have different
opinions about a same NFT, which makes each of them has a private value vi.
Without loss of generality, we assume that Ni’s private value on the complete
NFT is M · vi.

ABSNFT 413

Mechanism 1 (Repurchase Mechanism). Suppose participant N0 owes
more than half of SNFT (id) and triggers the repurchase mechanism. For the
repurchase between N0 and Ni, i = 1, · · · , k,
– if p0 ≥ pi, then N0 successfully repurchases mi units of SNFT (id) from Ni

at the unit price of p0+pi

2 ;
– if p0 ≤ pi − 1, then N0 fails to repurchase, and then he shall sell mi units

of SNFT (id) to Ni. The unit price that Ni pays is p0+pi

2 , and N0 obtains a
discounted revenue p0+pi−1

2 for each unit of SNFT (id).

Mechanism 1 requires that the repurchase process only happens between N0

and Ni, i = 1, · · · , k. If p0 ≥ pi, then N0 successfully repurchases mi units of
SNFT (id) from Ni, and the utilities of N0 and Ni are

U i
0(p0, pi) = mi(v0 − p0 + pi

2
), Ui(p0, pi) = mi(

p0 + pi
2

− vi), if p0 ≥ pi. (1)

If p0 < pi, then N0 fails to repurchase from Ni, and the utilities of N0 and Ni

are

U i
0(p0, pi) = mi(

p0 + pi − 1

2
− v0), Ui(p0, pi) = mi(vi − p0 + pi

2
), if p0 ≤ pi − 1. (2)

All participants must propose their bids rationally under Mechanism 1. If
the bid p0 is too low, N0 would face the risk of repurchase failure. Thus, the
securities of N0 would be purchased by other participants at a low price, and
N0’s utility may be negative. Similarly, if bid pi of Ni, i = 1, · · · , k, is too high,
Ni would purchase securities with an extra high price and get negative utility.
However, if a participant bids truthfully, he always obtains non-negative utility.

During the repurchase process, the key issue for each participant is how to bid
pi, i = 0, · · · , k, based on its own value estimation. To solve this issue, we would
model the repurchase process as a stackelberg game to explore the equilibrium
pricing solution in the following Sects. 3 to 5.

2.4 NFT Restruction Process

Once one participant successfully repurchases all securitized NFTs, he has the
right to trigger CNFTrestruction(addr, id), shown in Algorithm 2, to burn
these securitized NFTs in Line 3 to 4 and unfreeze CNFT (id), such that the
ownership of CNFT (id) would be transferred from address FrozenAddr to this
participant’s address addr in Line 5.

After NFT restruction, all SNFT (id) are burnt, and CNFT (id) is unfrozen.
The owner of CNFT (id) has the right to securitize it or trade it as a whole.

3 Two-Player Repurchase Stackelberg Game

This section discusses the repurchase process for a two-player scenario. To be spe-
cific, in the two-player scenario, when a player owns more than half of SNFT (id),

414 H. Chen et al.

Algorithm 2. NFT Restruction
1: procedure CNFTrestruction � Triggered by sender
2: require(tokenBalance[id][sender] == totalSupply[id]) � sender should be the

owner of all SNFT (id)
3: totalSupply[id] ← 0 � Burn all SNFT (id)
4: tokenBalance[id][sender] ← 0 � Burn all SNFT (id)
5: CNFTtransferFrom(FrozenAddr, addr, id) � Unfreeze CNFT (id)

denoted by N0, he will trigger the repurchase process with another player N1. To
explore the optimal bidding strategy for both players, we model the repurchase
process as a two-stage Stackelberg game, in which N1 acts as the leader to set
its bid p1 in Stage I, and N0, as the follower, decides its bid p0 in Stage II. Recall
that all bids and all values are in {0, 1, · · · }.

(1) N0’s bidding strategy in Stage II: Given the bid of p1, set by N1 in Stage I,
N0 decides its bid to maximize its utility, which is given as:

U0(p0, p1) =

{
m1(v0 − p0+p1

2) if p0 ≥ p1;
m1(p0+p1−1

2 − v0) if p0 ≤ p1 − 1.
(3)

(2) N1’s bidding strategy in Stage I: Once obtain the optimal bid p∗
0(p1) of N0

in Stage II, which is dependent on p1, N1 goes to compute the optimal bid
p∗
1 by maximizing his utility function maxp1U1(p∗

0(p1), p1), where

U1(p0, p1) =

{
m1(p0+p1

2 − v1) if p1 ≤ p0;
m1(v1 − p0+p1

2) if p1 ≥ p0 + 1.
(4)

3.1 Analysis Under Complete Information

(1) Best response of N0in Stage II. Given the bid p1 provided by N1, in
Stage II, N0 shall determine the best response p∗

0(p1) to maximize his utility.

Lemma 1. In the two-stage Stackelberg game for repurchase process, if the bid
p1 is given in Stage I, the best response of N0 in Stage II is

p∗
0(p1) =

{
p1 − 1 if p1 ≥ v0 + 1
p1 if p1 ≤ v0

(5)

Proof. According to (3), U0 is monotonically increasing when p0 ≤ p1 − 1 and
monotonically decreasing when p0 ≥ p1. So p∗

0(p1) ∈ {p1 − 1, p1}. In addition,
when p1 ≥ v0 + 1, we have

U0(p0 = p1, p1) = m1(v0 − p1) < 0 ≤ m1(p1 − 1 − v0) = U0(p0 = p1 − 1, p1).

It implies that the best response of N0 is p∗
0(p1) = p1 − 1 if p1 ≥ v0 + 1. When

p1 ≤ v0, we have

U0(p0 = p1, p1) = m1(v0 − p1) ≥ 0 > m1(p1 − 1 − v0) = U0(p0 = p1 − 1, p1).

So under the situation of p0 ≤ v0, the best response of N0 is p∗
0(p1) = p1. ��

ABSNFT 415

(2) The optimal strategy of N1 in Stage I. The leader N1 would like to
optimize his bidding strategy to maximize his utility shown in (4).

Lemma 2. In the two-stage Stackelberg game for repurchase process, the opti-
mal bidding strategy for the leader N1 is

p∗
1 =

{
v0 if v1 ≤ v0

v0 + 1 if v1 ≥ v0 + 1.
(6)

Proof. Based on Lemma 1, we have

U1(p∗
0(p1), p1) =

{
m1(p1 − v1) if p1 ≤ v0;
m1(v1 − p1 + 1

2) if p1 ≥ v0 + 1.

Thus U1 is monotonically increasing when p1 ≤ v0 and monotonically decreasing
when p1 ≥ v0 + 1, indicating the optimal bidding strategy p∗

1 ∈ {v0, v0 + 1}. In
addition, for the case of v0 ≥ v1, if p1 = v0, then p∗

0(p1) = p1 = v0 by Lemma
1 and U1(v0, v0) = m1(v0 − v1) ≥ 0. On the other hand, if p1 = v0 + 1, then
p∗
0(p1) = p1 − 1 = v0 by Lemma 1 and U1(v0, v0 + 1) = m1(v1 − v0 − 1

2) < 0.
Therefore, U1(v0, v0) > U1(v0, v0 + 1), showing the optimal bidding strategy of
N1 is p∗

1 = v0 when v0 ≥ v1. Similarly, for the case of v0 ≤ v1 − 1, we can
conclude that p∗

1 = v0 + 1. This lemma holds. ��
Combining Lemmas 1 and 2, the following theorem can be derived directly.

Theorem 1. When v0 ≥ v1, there is exactly one Stackelberg equilibrium where
p∗
1 = p∗

0 = v0. And when v0 ≤ v1 −1, there is exactly one Stackelberg equilibrium
where p∗

0 = v0, p∗
1 = v0 + 1.

Furthermore, the following theorem demonstrates the relation between Stack-
elberg equilibrium and Nash equilibrium, whose proof is shown in the full ver-
sion [6] of this paper.

Theorem 2. Each Stackelberg equilibrium in Theorem 1 is also a Nash equilib-
rium.

3.2 Analysis of Bayesian Stackelberg Equilibrium

In the previous subsection, the Stackelberg equilibrium is deduced based on the
complete information about the value estimate v0 and v1. However, the value
estimates may be private in practice, which motivates us to study the Bayesian
Stackelberg game with incomplete information. In this proposed game, although
the value estimate vi is not known to others, except for itself Ni, i = 0, 1, the
probability distribution of each Vi is public to all. Here we use Vi to denote
the random variable of value estimate. Based on the assumption that all Vi

are integers, we continue to assume that each Ni’s value estimate Vi has finite
integer states, denoted by v1i , v

2
i , · · · , vki

i , and its discrete probability distribution
is Pro(Vi = vli) = P l

i , l = 1, · · · , ki, and
∑ki

l=1 P
l
i = 1, i = 0, 1.

416 H. Chen et al.

(1) Best response of N0in Stage II. Because v0 is deterministic to N0, and
p1 is given by N1 in Stage I, Lemma 1 still holds, so

p∗
0(p1) =

{
p1 − 1 if p1 ≥ v0 + 1;
p1 if p1 ≤ v0.

(2) Optimal bidding strategy of N1in Stage I. By Lemma 1, we have

U1(p∗
0(p1), p1) =

{
m1(p1 − v1) if p1 ≤ v0;
m1(v1 − p1 + 1

2) if p1 ≥ v0 + 1.

Based on the probability distribution of V0, the expected utility of U1 is:

E1(p1) =
∑

vl
0≥p1

m1(p1 − v1)P l
0 +

∑
vl
0≤p1−1 m1(v1 − p1 + 1

2)P l
0 (7)

To be specific, if p1 ≥ vk0
0 +1, then E1(p1) = m1(v1−p1+ 1

2), and N1 obtains his
maximal expected utility at p∗

1 = vk0
0 +1. If p1 ≤ v10 , then E1(p1) = m1(p1 −v1),

and N1 obtains his maximal expected utility at p∗
1 = v10 . If there exists an index

l, such that vl−1
0 < p1 ≤ vl0, l = 2, · · · , k0, then

E1(p1) =
l−1∑

h=1

m1(v1 − p1 +
1
2
)Ph

0 +
k0∑

h=l

m1(p1 − v1)Ph
0 .

Therefore, N1 can obtain his maximal expected utility at p∗
1 = vl0, when

∑k0
h=l P

h
0 ≥ ∑l−1

h=1 P
h
0 . Otherwise, N1’s maximal expected utility is achieved

at p∗
1 = vl−1

0 + 1. Hence, the optimal bid p∗
1 ∈ {vl0, vl0 + 1}l=1,··· ,k0 .

Theorem 3. There is a Stackelberg equilibrium in the Bayesian Stackelberg
game.

(1) If p∗
1 ≤ v0, then p0 = p∗

1 and p1 = p∗
1 is a Stackelberg equilibrium.

(2) If p∗
1 ≥ v0 + 1, then p0 = p∗

1 − 1 and p1 = p∗
1 is a Stackelberg equilibrium.

4 Repeated Two-Player Stackelberg Game

This section would extend the study of the one-round Stackelberg game in the
previous section to the repeated Stackelberg game. Before our discussion, we con-
struct the basic model of a repeated two-player Stackelberg game by introducing
the necessary notations.

Definition 1. Repeated two-player Stackelberg repurchase game is given by a
tuple Gr = (M,N, V, S, L, P, U), where:

– N = {N0, N1} is the set of two participants. The role of being a leader or a
follower may change in the whole repeated process.

ABSNFT 417

– M is the total amount of SNFT (id). W.l.o.g., we assume that M is odd,
such that one of {N0, N1} must have more than half of SNFT (id).

– V = {v0, v1} is the set of participants’ value estimates. Let vi ∈ {1, 2, 3, · · · }
be an integer.

– S = {s1, s2, · · · , st, z} is the set of sequential states. sj = (mj
0,m

j
1), in which

mj
0,m

j
1 > 0 are integers, mj

0 + mj
1 = M , and mj

0 �= mj
1 because M is odd.

z ∈ Z = {z0, z1} represents the terminal state, where z0 = (M, 0), z1 =
(0,M). If the sequential states are infinity, then t = +∞. Let us denote
(mt+1

0 ,mt+1
1) = z.

– L = {l1, l2, · · · , lt} is the set of sequential leaders, where lj is the leader in the
j-th round. To be specific, lj = N1, if mj

0 > mj
1; otherwise, lj = N0. It shows

the participant who triggers the repurchase process in each round should be
the follower.

– Pi = {p1i , p2i , · · · , pti} is the set of sequential prices bidded by Ni, pji ∈
{0, 1, 2, · · · }.

– Ui : S × P0 × P1 −→ R is the utility function of player Ni in a single round.
The detailed expressions of Ui will be proposed later.

In practice, vi, i = 0, 1, may not be common information. However, we can
extract them from the historical interaction data of the repeated game by online
learning [24] or reinforcement learning [15] methods. Therefore, we mainly dis-
cuss the case with complete information in this section.

Repeated Stackelberg Game Procedure. Repeated game Gr consists of
several rounds, and each round contains two stages. In the j-th round,

– In Stage I, the leader provides a bid pji ∈ {0, 1, · · · }.
– In Stage II, the follower provides a bid pj1−i ∈ {0, 1, · · · }.
– If pji ≤ pj1−i, N1−i successfully purchased mj

i units of SNFT (id) from Ni at

the unit price of
pj
i+pj

1−i

2 .
– If pji ≥ pj1−i + 1, Ni purchases mj

i units of SNFT (id) from N1−i at the unit

price of
pj
i+pj

1−i

2 . And N1−i only obtains a discounted revenue mj
i · pj

i+pj
1−i−1

2 .

The whole game process is shown in Fig. 1. Based on the description for the j-th
round of repeated game, the utilities of N0 and N1 are

U0(m
j
0,m

j
1, p

j
0, p

j
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(v0 − (pj0 + pj1)/2)mj
1 if pj0 ≥ pj1,m

j
0 > mj

1;
((pj0 + pj1 − 1)/2 − v0)m

j
1 if pj0 < pj1,m

j
0 > mj

1;
((pj0 + pj1)/2 − v0)m

j
0 if pj1 ≥ pj0,m

j
0 < mj

1;
(v0 − (pj1 + pj0)/2)mj

0 if pj1 < pj0,m
j
0 < mj

1;

(8)

U1(m
j
0,m

j
1, p

j
0, p

j
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((pj0 + pj1)/2 − v1)m
j
1 if pj0 ≥ pj1,m

j
0 > mj

1;
(v1 − (pj0 + pj1)/2)mj

1 if pj0 < pj1,m
j
0 > mj

1;
(v1 − (pj0 + pj1)/2)mj

0 if pj1 ≥ pj0,m
j
0 < mj

1;
((pj0 + pj1 − 1)/2 − v1)m

j
0 if pj1 < pj0,m

j
0 < mj

1.

(9)

418 H. Chen et al.

Fig. 1. Two-player repeated repurchase Stackelberg Game.

Both participants are interested in their total utilities in the whole process

Ui =
∑

j∈{1,2,··· ,t}
Ui(m

j
0,m

j
1, p

j
0, p

j
1).

Lemma 3. For each participant Ni, i ∈ {0, 1}, if his bid is set as pji = vi in the
j-th round, j ∈ {1, 2, · · · , t}, then Ui(m

j
0,m

j
1, p

j
0, p

j
1) ≥ 0.

Lemma 3 can be directly deduced from (8) and (9).

Lemma 4. If the repeated game goes through indefinitely, that is t = +∞, then
U0 + U1 = −∞.

Proof. For the j-th round, let Ni = lj be the leader and thus N1−i is the follower.
Since there are only two players, all SNFT (id) will belong to one player, if the
follower can successfully repurchase SNFT (id) from the leader, and then the
repeated game stops. It means that in the j-th round, mj

i units of SNFT (id) is
bought by N1−i from Ni and the game stops at the terminal state z1−i. So if the
repeated game goes through indefinitely, it must be that in each j ∈ {1, 2, · · · },
pji > pj1−i, and Ni buys mj

i from N1−i. Thus in the j+1-th round, mj+1
i = 2mj

i .

U0(m
j
0,m

j
1, p

j
0, p

j
1) + U1(m

j
0,m

j
1, p

j
0, p

j
1) =

{
(v0 − v1)m

j
0 − 1

2m
j
0 = (v0 − v1)(m

j+1
0 − mj

0) − 1
2m

j
0 if N0 is the leader;

(v1 − v0)m
j
1 − 1

2m
j
1 = (v1 − v0)(m

j+1
1 − mj

1) − 1
2m

j
1 if N1 is the leader;

≤ (mj+1
0 − mj

0)(v0 − v1) − 1
2
; (10)

ABSNFT 419

and

U0 + U1 = lim
t→+∞

∑

j={1,2,··· ,t}
U0(m

j
0,m

j
1, p

j
0, p

j
1) + U1(m

j
0,m

j
1, p

j
0, p

j
1)

≤ lim
t→+∞

∑

j={1,2,··· ,t}

[

(mj+1
0 − mj

0)(v0 − v1) − 1
2

]

= lim
t→+∞

[

(mt+1
0 − m1

0)(v0 − v1) − 1
2
t

]

≤ M |v0 − v1| − lim
t→+∞

1
2
t = −∞.

This result holds. ��
Combining Lemma 3 and Lemma 4, we have the following conclusion.

Lemma 5. If there is a Stackelberg equilibrium in the two-player repeated Stack-
elberg game, then U0 + U1 ≥ 0 in this Stackelberg equilibrium.

Proof. Suppose to the contrary that U0+U1 < 0 in this Stackelberg equilibrium,
then there must exist i ∈ {0, 1}, such that Ui < 0. However, by Lemma 3, we
know that if each player sets its price as pji = vi, then its utility U j

i ≥ 0. Hence
Ni can obtain more utility by setting pji = vi, which is a contradiction that Ni

doesn’t give the best response in this Stackelberg equilibrium. ��
Combining Lemma 4 and Lemma 5, we have

Lemma 6. If there is a Stackelberg equilibrium in the two-player repeated Stack-
elberg game, then the repeated game stops in a finite number of steps, meaning
t < +∞, in this Stackelberg equilibrium.

The following theorem states that once a Stackelberg equilibrium exists and
vi > v1−i, then this player Ni must buy all SNFT (id) at last.

Theorem 4. If vi > v1−i, i = 0, 1, and a Stackelberg equilibrium exists, then
z = zi, in all Stackelberg equilibria.

Proof. By (8) and (9), we have

U0(m
j
0,m

j
1, p

j
0, p

j
1) + U1(m

j
0,m

j
1, p

j
0, p

j
1) ≤ (mj+1

0 − mj
0)(v0 − v1).

U0 + U1 ≤
∑

j∈{1,2,··· ,t}
U0(m

j
0,m

j
1, p

j
0, p

j
1) + U1(m

j
0,m

j
1, p

j
0, p

j
1)

≤
∑

j∈{1,2,··· ,t}
(mj+1

0 − mj
0)(v0 − v1) = (mt+1

0 − m1
0)(v0 − v1).

If v0 > v1, then it must be mt+1
0 > m1

0. Otherwise, U0 + U1 < 0, showing no
Stackelberg equilibrium exists. This is a contradiction. Because the repeated
game stops in a finite number of steps, mt+1

0 ∈ {0,M}. Combing the condition
mt+1

0 > m1
0 > 0, we have mt+1

0 = M . Therefore, at last z = z0. Similarly, it is
easy to deduce z = z1 if v1 > v0. ��

420 H. Chen et al.

Based on Theorem 4, we go to prove the existence of the Stackelberg equi-
librium by proposing an equilibrium strategy in the following theorem. Its proof
is provided in the full version [6] of this paper.

Theorem 5. If vi > v1−i, i = 0, 1, the following strategy is a Stackelberg
equilibrium:

pj1−i = v1−i; pji =

⎧
⎪⎨

⎪⎩

v1−i + 1 if lj = i;
pj1−i if lj = 1 − i, pj1−i ≤ v1−i;
pj1−i − 1 if lj = 1 − i, pj1−i > v1−i.

(11)

5 Multi-player Repurchase Stackelberg Game

This section goes to extend the discussion for the multi-player scenario, in which
N0 has more than half of SNFT (id), and {N1, · · · , Nk} are repurchased par-
ticipants. N0 triggers the repurchase process, and asks all other repurchased
participants to report their bids pi at first, and N0 decides his bid p0 later. We
also model the repurchase process of the multi-player scenario as a two-stage
Stackelberg game, where {N1, · · · , Nk} are the leaders to determine their bids
in Stage I, and N0 acts as the followers to decide his bid p0 in Stage II. Different
from the two-player scenario, N0 shall trade with each Ni, i = 1, · · · , k. Then
each Ni, i = 1, · · · , k, has his utility Ui(p0, pi) as (1) and (2). But the utility of
N0 is the total utility from the trading with all Ni. That is

U0(p0, p1, · · · , pk) =
k∑

i=1

U i
0(p0, pi),

where U i
0(p0, p1) is defined as (1) and (2).

5.1 Analysis of Stackelberg Equilibrium

In the Stackelberg repurchase game for multi-player scenario, N0 shall trade with
each Ni, i = 1, · · · , k. Inspired by the Stackelberg equilibrium in the two-player
Stackelberg game, we first discuss the best response of N0, if each Ni reports his
bid as

p∗
i =

{
v0 if vi ≤ v0;
v0 + 1 if vi ≥ v0 + 1.

(12)

Then we study the collusion from a group of repurchased players. Our task is
to prove that once a group of repurchased participants deviate from the bidding
strategy (12), then their total utility must be decreased. This guarantees that
each participant would like to follow the bidding strategy (12).

Lemma 7. In the Stackelberg repurchase game for the multi-player scenario, if
all leaders set their bids {p∗

i } as (12) in Stage I, then the best response of the
follower N0 in Stage II is p∗

0(p
∗
1, · · · , p∗

n) = v0.

ABSNFT 421

Proof. For each trading between N0 and Ni, i = 1, · · · , k, Lemma 1 ensures that
v0 = argmaxp0U

i
0(p0, p

∗
i). Since each U i

0(p0, p
∗
i) ≥ 0, we have

p∗
0(p

∗
1, · · · , p∗

k) = argmax
p0

U0(p0, p∗
1, · · · , p∗

k) = argmax
p0

k∑

i=1

U i
0(p0, p

∗
i) = v0.

This lemma holds. ��
To study the collusion of repurchased participants, we partition the set of

{N1, · · · , Nk} into two disjoint subsets A and B, such that each Ni ∈ A fol-
lows the bidding strategy (12), while each Ni ∈ B does not. Thus given all bids
provided by players, the bid profile p = (p0, {p∗

i }Ni∈A, {pi}Ni∈B) can be equiv-
alently expressed as p = (p0,p∗

A,pB). Here we are interested in the total utility
of all players in B, and thus define

UB(p0,p∗
A,pB) =

∑

Ni∈B

Ui(p0, pi).

Following Lemma shows that once a group of participants deviate from the
bidding strategy (12), then their total utility decreases. The proof is in the full
version [6] of this paper.

Lemma 8. Let A = {Ni|pi = p∗
i } and B = {Ni|pi �= p∗

i }. Then
UB(p∗

0(p
∗
A,pB),p∗

A,pB) < UB(v0, p∗
1, p

∗
2, · · · , p∗

k).

Theorem 6. In the multi-player Stackelberg repurchase game, the bid profile
(v0, p∗

1 · · · , p∗
k) is a Stackelberg equilibrium, where p∗

i is set as (12).

Proof. To simplify our discussion, we define the price profile p∗ = (p∗
1, · · · , p∗

k),
and p∗

−i denotes the profile without the price of Ni. So p∗ = (p∗
−i, p

∗
i). From

Lemma 7, we have the best response of N0 in Stage II is p∗
0(p

∗) = v0. How-
ever, Lemma 8 indicates that no one would like to deviate from the pricing
strategy (12), as Ui(p∗

0(p
∗
−i, pi),p

∗
−i, pi) < Ui(v0,p∗

i). Thus given the price pro-
file p∗, nobody would like to change its strategy p∗

i unilaterally. Therefore,
(v0, p∗

1 · · · , p∗
k) is a Stackelberg equilibrium. ��

From the perspective of cooperation, we can observe that no group of repur-
chased participants would like to collude to deviate from the bidding strategy
(12) by Lemma 8. Thus we have the following corollary.

Corollary 1. Given the Stackelberg equilibrium of (v0, p∗
1 · · · , p∗

k), no group of
repurchased participants would like to deviate this equilibrium.

In the case of incomplete information, the analysis of the Bayesian Stackel-
berg equilibrium becomes extremely complicated. As discussed in Sect. 3.2, in
the case of the two-player Stackelberg game, the leader only needs to optimize
the utility based on incomplete information. However, when there are multiple
leaders, the strategies of leaders should reach a Bayesian Nash equilibrium, which
is much more difficult to calculate. So we regard it as our future work to analyze
the Bayesian Stackelberg equilibrium of the multi-player repurchase Stackelberg
game.

422 H. Chen et al.

6 Discussion

6.1 A Blockchain Solution to Budget Constraints

In the previous settings, we do not consider the budget constraints. However,
this is a common problem for many newly proposed mechanisms. Therefore, we
propose a solution scheme by blockchain for the setting with budget constraints.

Suppose N0 owes more than half of SNFT (id) and triggers the repurchase
process. Our mechanism consists of two stages. All participants except for N0

report their bids in Stage I, and N0 gives his bid p0 in Stage II. We assume N0’s
budget is larger than (M−m0)p0, so that he can repurchase all other shares at his
bid p0. For Ni, i �= 0, if pi > p0, Ni should pay p0+pi

2 mi. However, the payment
of p0+pi

2 mi may exceed his budget, such that Ni has not enough money to buy
mi units of SNFT (id). Under this situation, we provide a blockchain solution
for Ni to solve the problem of budget shortage. That is, we allow Ni to sell his
option of buying mi units of SNFT (id) to anyone in the blockchain system. If
nobody would like to buy Ni’s repurchase option, then N0 can repurchase Ni’s
shares at a lower price. Therefore, after reporting bids, additional four steps are
needed to finish the payment procedure.

– Step 1. N0 pays
∑

i∈{1,2,··· ,k},pi≤p0

p0+pi

2 mi. After the payment, N0 gets
∑

i∈{1,2,··· ,k},pi≤p0
mi pieces of SNFT (id). For each Ni with pi ≤ p0,

i ∈ {1, 2, · · · , k}, he gets the revenue of p0+pi

2 · mi and loses mi units of
SNFT (id).

– Step 2. For all i ∈ {1, 2, · · · , k} that pi > p0, Ni shall pay p0+pi

2 · mi to buy
mi units of SNFT (id) from N0. Once mi units of SNFT (id) of N0 is sold
to Ni, N0 obtains a discounted revenue p0+pi−1

2 · mi.
If Ni would not like to repurchase SNFT (id), then he can sell his repurchase
option to others at a price of p̃i ∈ Z. The price of repurchase option p̃i could
be negative, meaning that Ni shall pay p̃i to another who accepts his chance.
If Ni does nothing, we regard that Ni proposes p̃i = 0.

– Step 3. If a participant in the blockchain system accepts the price of p̃i, then
he would propose a transaction to buy mi units of SNFT (id) from N0. The
total cost of this participant is p̃i + p0+pi

2 · mi, in which p̃i is paid to Ni and
N0 obtains a discounted revenue of p0+pi−1

2 ·mi. And mi units of SNFT (id)
are transferred from N0 to the participant who buys the repurchase option.
At the end of this step, let C be the participant set, in which each participant’s
repurchase option hasn’t been sold yet.

– Step 4. For each participant Ni ∈ C, N0 repurchases mi units of SNFT (id)
from Ni at a lower price of 2p0 −pi(< p0). At the end of this step, N0 obtains
mi units of SNFT (id), and Ni obtains a revenue of (2p0 − pi) · mi.

6.2 A Blockchain Solution to Lazy Bidders

Under some circumstances, an SNFT (id) holder might not bid in the repur-
chase process, who is named as a lazy bidder. This lazy behavior may block the

ABSNFT 423

repurchase process. To solve the problem caused by lazy bidders, we propose the
following two schemes.

– Custody Bidding. NFT’s smart contract supports the feature for the
SNFT (id) holders to assign administrators to report a bid when the holder
is idle or fails to make a bid.

– Value Predetermination. Whenever a participant obtains any units of
SNFT (id), this participant is required to predetermine the value at which
he is willing to bid, and this information is stored in the smart contract. At
the beginning of the repurchase process, if a participant fails to make a bid
within a certain amount of time, the smart contract automatically reports
this participant’s predetermined bid. This does not mean, however, that the
participant has to bid at the predetermined price if he decides to make an
active bid.

7 Conclusion

In this paper, we propose a novel securitization and repurchase scheme for NFT
to overcome the restrictions in existing NFT markets. We model the NFT repur-
chase process as a Stackelberg game and analyze the Stackelberg equilibria under
several scenarios. To be specific, in the setting of the two-player one-round game,
we prove that in a Stackelberg equilibrium, N0, the participant who triggers the
repurchase process, shall give the bid equally to his own value estimate. In the
two-player repeated game, all securities shall be finally owned by the participant
who has a higher value estimate. In the setting of multiple players, cooperation
among participants cannot bring higher utilities to them. What’s more, each
participant can get non-negative utility if he bids truthfully in our repurchase
process.

How to securitize and repurchase NFT efficiently is a popular topic in the
field of blockchain. Our work proposes a sound solution for this problem. In the
future, we continue to refine our theoretical analysis. First, for the multi-player
repurchase Stackelberg game, we will consider the case with incomplete infor-
mation and explore the Bayesian Stackelberg equilibrium. Second, a model of
blockchain economics will be constructed to analyze the payment procedure in
Sect. 6.1. Furthermore, there exist some other interesting problems, including
how to securitize and repurchase a common-valued NFT [13], how to host Com-
plete NFTs or Securitized NFTs in decentralized custody protocols [7], whether
ABSNFT can serve as a price Oracle, and so on.

Acknowledgment. This research was partially supported by the National Major Sci-
ence and Technology Projects of China-“New Generation Artificial Intelligence” (No.
2018AAA0100901), the National Natural Science Foundation of China (No. 11871366),
and Qing Lan Project of Jiangsu Province.

424 H. Chen et al.

References

1. Acharya, V.V., Oncu, S.: The repurchase agreement (repo) market. Regulating
Wall Street, pp. 319–350 (2011)

2. Amihud, Y., Mendelson, H.: Liquidity, asset prices and financial policy. Financ.
Anal. J. 47(6), 56–66 (1991)

3. Angeris, G., Chitra, T.: Improved price oracles: Constant function market makers.
In: Proceedings of the 2nd ACM Conference on Advances in Financial Technologies.
pp. 80–91 (2020)

4. Bhattacharya, A.K., Fabozzi, F.J.: Asset-backed securities, vol. 13. Wiley (1996)
5. Çağlayan Aksoy, P., Özkan Üner, Z.: Nfts and copyright: challenges and opportu-

nities. J. Intellectual Property Law Practice (2021)
6. Chen, H., Cheng, Y., Deng, X., Huang, W., Rong, L.: Absnft: securitization and

repurchase scheme for non-fungible tokens based on game theoretical analysis.
arXiv preprint arXiv:2202.02199 (2022)

7. Chen, Z., Yang, G.: Decentralized custody scheme with game-theoretic security.
arXiv preprint arXiv:2008.10895 (2020)

8. Constantinides, G.M., Grundy, B.D.: Optimal investment with stock repurchase
and financing as signals. Rev. Financ. Stud. 2(4), 445–465 (1989)

9. ERC-1155. https://erc1155.org/
10. ERC-721. https://erc721.org/
11. Fairfield, J.: Tokenized: The law of non-fungible tokens and unique digital property.

Indiana Law J. Forthcoming (2021)
12. Hong, S., Noh, Y., Park, C.: Design of extensible non-fungible token model in

hyperledger fabric. In: Proceedings of the 3rd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, pp. 1–2 (2019)

13. Kagel, J.H., Levin, D.: Common value auctions and the winner’s curse. Princeton
University Press (2009)

14. Kong, D.R., Lin, T.C.: Alternative investments in the fintech era: The risk and
return of non-fungible token (nft). SSRN 3914085 (2021)

15. Li, C., et al.: Latent dirichlet allocation for internet price war. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 33, pp. 639–646 (2019)

16. Lucas, C.M., Jones, M.T., Thurston, T.B.: Federal funds and repurchase agree-
ments. Federal Reserve Bank New York Quarterly Rev. 2(2), 33–48 (1977)

17. Mammadzada, K., Iqbal, M., Milani, F., Garćıa-Bañuelos, L., Matulevičius, R.:
Blockchain Oracles: a framework for blockchain-based applications. In: Asatiani,
A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 19–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58779-6 2

18. Oxygen: Breathing new life into crypto assets. https://oxygen.trade/OXYGEN
White paper February.pdf

19. Serum. https://www.projectserum.com/
20. Valeonti, F., Bikakis, A., Terras, M., Speed, C., Hudson-Smith, A., Chalkias, K.:

Crypto collectibles, museum funding and openglam: challenges, opportunities and
the potential of non-fungible tokens (nfts). Appl. Sci. 11(21), 9931 (2021)

21. Von Stackelberg, H.: Market structure and equilibrium. Springer Science & Busi-
ness Media (2010)

22. Wang, D., et al.: Towards a first step to understand flash loan and its applications
in defi ecosystem. In: Proceedings of the Ninth International Workshop on Security
in Blockchain and Cloud Computing, pp. 23–28 (2021)

http://arxiv.org/abs/2202.02199
http://arxiv.org/abs/2008.10895
https://erc1155.org/
https://erc721.org/
https://doi.org/10.1007/978-3-030-58779-6_2
https://oxygen.trade/OXYGEN_White_paper_February.pdf
https://oxygen.trade/OXYGEN_White_paper_February.pdf
https://www.projectserum.com/

ABSNFT 425

23. Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (nft): overview, evalua-
tion, opportunities and challenges. arXiv preprint arXiv:2105.07447 (2021)

24. Weed, J., Perchet, V., Rigollet, P.: Online learning in repeated auctions. In: Con-
ference on Learning Theory, pp. 1562–1583. PMLR (2016)

http://arxiv.org/abs/2105.07447

Decentralisation Conscious Players
and System Reliability

Sarah Azouvi1(B) and Alexander Hicks2

1 Protocol Labs, San Francisco, USA
sarah.azouvi@protocol.ai

2 University College London, London, UK

alexander.hicks@ucl.ac.uk

Abstract. We propose a game-theoretic model of the reliability of decen-
tralised systems based on Varian’s model of system reliability [28], to
which we add a new normalised total effort case that models decentral-
isation conscious players who prioritise decentralisation.

We derive the Nash equilibria in the normalised total effort game. In
these equilibria, either one or two values are played by players that do
not free ride. The speed at which players can adjust their contributions
can determine how an equilibrium is reached and equilibrium values. The
behaviour of decentralisation conscious players is robust to deviations by
other players.

Our results highlight the role that decentralisation conscious players
can play in maintaining decentralisation. They also highlight, however,
that by supporting an equilibrium that requires an important contribu-
tion they cannot be expected to increase decentralisation as contributing
the equilibrium value may still imply a loss for many players. We also dis-
cuss practical constraints on decentralisation in the context of our model.

Keywords: Decentralisation · Public goods · Free-riding · Reliability

1 Introduction

The reliability of a system captures the likelihood that it performs as intended.
For a decentralised system, there are two important components to consider, the
number of participants and the distribution of power between them [27]. Even
if there is a high number of contributors, if one of them has significantly more
control over the system, there will be no meaningful level of decentralisation. This
presents a problem that has been hard to solve in practice. How can the effort
put into a system grow while maintaining an acceptable level of decentralisation?

Participation rewards can incentivise an increase in the effort invested in a
system but a greater total effort can also be more centralised. Certain protocol
considerations may alleviate this effect, e.g., at the consensus level [8]. It is also
sometimes assumed that a portion of players will behave altruistically, following
protocol guidelines even when an a priori more profitable strategies exist.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 426–443, 2022.
https://doi.org/10.1007/978-3-031-18283-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_21&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_21

Decentralisation Conscious Players and System Reliability 427

An alternative assumption, which we consider here, is that players have an
incentive to maintain decentralisation. Short-term profits may be outweighed by
the possible long-term profits associated with maintaining a reliable system. For
example, the value of a cryptocurrency that is vulnerable to hostile takeovers may
decrease so miners have an incentive to maintain decentralisation and preserve
the value of the tokens they hold and continue to receive.

Three observations support this assumption. First, the market price of a
cryptocurrency is linked to its security [10]. Second, numerous flaws have been
identified in the incentive structure of cryptocurrencies [12,22], yet attacks based
on these have scarcely been observed [24]. Third, a mining pool has previously
acted to avoid controlling more than half of Bitcoin’s hash rate [21].

To further understand the rationality of maintaining decentralisation, this
paper studies a game-theoretic model of decentralisation conscious players who
prioritise decentralisation. With this model, we can analyse how such players
will behave to ensure that a system remains decentralised, what effort they may
contribute, and under which circumstances they will free-ride.

Our Contributions. The main contribution of this paper is the introduction
and analysis of the normalised total effort game with decentralisation conscious
players that extends Varian’s system reliability model to decentralised systems.

We introduce our model based on the normalised total effort (NTE) function
in the context of Varian’s system reliability model [28] in Sect. 2. In Sect. 3, we
derive the two types of Nash equilibria between decentralisation conscious players
in which players contribute the same amount or two distinct amounts while
others free ride. We also consider the social optimum, in which players contribute
the same effort while minimising their costs to maximise decentralisation.

To understand how decentralisation conscious players will behave in real sys-
tems alongside selfish and Byzantine players, we study in Sect. 4 the robustness
of the previously derived equilibria when (i) the number of players change, which
does not always affect the equilibrium; (ii) players deviate from the equilibrium,
which can lead to a new equilibrium where players (possibly fewer) contribute
a greater effort. Non-myopic players may, therefore, be incentivised to deviate
from an equilibrium to reach a new equilibrium with fewer contributing players
and a greater share of rewards.

Finally, we discuss in Sect. 6 some practical constraints on decentralisation
in relation to our model.

2 Modelling System Reliability and Normalised Total
Effort

Varian’s original model of system reliability (treated as a public good) considers
three cases based on how the individual efforts xi of players are factored in [28].
The weakest link case considers the minimal effort exerted by any one of the play-
ers i.e., F (x1, . . . , xn) = mini(xi). The total effort case considers the sum of every
player’s efforts i.e., F (x1, . . . , xn) =

∑n
i=1 xi. The best shot case considers the

maximal effort exerted by any one of the players i.e., F (x1, . . . , xn) = maxi(xi).

428 S. Azouvi and A. Hicks

Reliability will usually depend on a combination of these cases. For example,
in the case of software security, a program’s correctness can depend on the
weakest link (the developer that introduces bugs), vulnerability testing depends
on the total effort of all the testers, and the contributions of a system architect
maps to the best shot case [4].

For each case, the Nash equilibria can be computed with the expected pay-off
ui for a player i expressed as in Eq. 1, as can be the social optimum based on
social pay-off SP expressed as in Eq. 2. The likelihood that the system operates
successfully is captured by P (F (x1, . . . , xn)), which is assumed to be differen-
tiable, increasing, and concave. The parameter vi is the value derived by player i
of the system operating successfully, and cixi is the cost to player i where ci is a
constant. The choice of a linear cost function of the form cixi implicitly ignores
more complex forms of cost and any fixed costs. This is a limitation but it is
realistic in relevant cases e.g., the energy required to operate a computer may
be valued at a fixed price per kilowatt-hours.

ui = P (F (x1, . . . , xn))vi − cixi (1)

SP = P (F (x1, . . . , xn))
n∑

i=1

vi −
n∑

i=1

cixi (2)

The equilibria can be used to determine when free-riding can be expected
to occur based on the form of F . For example, in the total effort case, the
equilibrium is for players to free ride on the player who has the highest benefit-
cost ratio vi

ci
. The social optimum, obtained by maximising the social pay-off

rather than the player’s utility functions, can also reveal how selfish behaviour
from the players will lead to an outcome that is different from the social optimum.
This is the case in the total effort case used as an example. Players free ride on
the player with the highest benefit-cost ratio, which amounts to less total effort
than in the social optimum, and the “wrong” players (those with the smallest
benefit-cost ratio) can be found to contribute that effort.

The takeaway from Varian’s results is that centralisation emerges even in
the total effort case that involves everyone’s contributions, and that rational
behaviour can conflict with the social optimum i.e., selfish behaviour can lead to a
weaker system – a concept known as the price of anarchy [25]. If decentralisation
is desired, this means that an alternative model that produces individual and
social outcomes that support a decentralised and stronger system is required.

To model decentralisation, the relative contribution of every player in the
system must be taken into account because while the total effort should be
as high as possible, the effort must also be as evenly distributed as possible.
In practice, however, there are trade-offs between maximising total effort and
distributing effort evenly. It is unlikely that every player will have the same
capacity to contribute, so maximising the total effort is likely to come at the
cost of a uniform distribution of effort, and vice versa.

With this in mind, we define in Eq. 3 the normalised total effort (NTE)
function based on the total effort and the maximal contribution. If the total

Decentralisation Conscious Players and System Reliability 429

effort is high but the maximal effort is also high then the NTE may not be as
high as when the total effort is high but the maximal effort is low.

F (x1, . . . , xn) =
∑n

i=1 xi

maxi(xi)
(3)

The normalised total effort function is scale invariant i.e., F (αx1, . . . , αxn) =
F (x1, . . . , xn) for any α. This is because we are modelling players who care about
decentralisation over total effort. The goal is to capture the fact that in systems
that are designed to be decentralised, it is not only the total effort (studied by
Varian) that matters but the distribution of effort and, in particular, how much
the maximal contribution by a single player is as a portion of the total effort,
which our measure captures. Finding a measure that captures both this and the
benefits of a higher total effort is an open problem, and measures similar to ours
(e.g., the work of Kwon et al. [23]) suffer from the same limitation.

We show in Sect. 4 that contributions can still be expected to increase given
that other players who prioritise maximising their share of rewards exist. Thus,
much like in software security, a decentralised system’s reliability depends on
nodes that are primarily concerned with decentralisation (normalised total effort)
and nodes that are primarily concerned with higher contributions (and higher
rewards) that increase the best shot and total effort. Because the best shot and
total effort case have already been studied by Varian, our focus in this paper is
the normalised total effort case.

3 Equilibria Between Decentralisation Conscious Players

We begin by studying the Nash equilibria of the NTE game defined below.

Definition 1 (Normalised Total Effort Game). We call the normalised total
effort game (NTEG) the game consisting of n players with costs (c1, . . . , cn) ∈
(R∗

+)n, valuations (v1, . . . , vn) ∈ (R∗
+)n, contributions (x1, . . . , xn) ∈ (R+)n, util-

ity functions defined by Eqs. 3 and 1, benefit-cost ratios βi = vi

ci
such that β1 < . . . <

βn, and where we assume a logarithmic reliability function P (F (x1, . . . , xn)) =
ln

(∑n
i=1 xi

maxi(xi)

)
for maxi(xi) > 0. By convention we have P (F (0, . . . , 0)) = 0 i.e., a

system with no contributions does not function.

F (x1, . . . , xn) =
∑n

i=1 xi

maxi(xi)
(3)

ui = viP (F (x1, . . . , xn)) − cixi (1)

Two-Player Case. We start by considering the simple case of a two-player game
and the following theorem, The proof is left for the long version of the paper [7].

Theorem 1. In a two-player NTEG, the Nash equilibria are for both players to
contribute the same effort x1 = x2 = xeq such that xeq ≤ 1

2 min(β1, β2).

Both players contribute the same effort when the equilibrium is played, which
is the only possible “decentralised” solution.

430 S. Azouvi and A. Hicks

Multiplayer Case. For n > 2 players, we prove the following in the full version
the paper [7].

Theorem 2. In a n > 2 player NTEG, there exist two types of equilibrium.

1. (1-value equilibria) players i+1 to n (for 1 ≤ i < n) contribute xeq subject to
the constraint expressed by Inequality 4 and players 1 to i with the smallest
benefit-cost ratio free ride on them.

1
n − i

βi ≤ xeq ≤ 1
n − i

βi+1 (4)

2. (2-value equilibria) player i contributes xm , players (i + 1 to n) contribute
xM , where xm < xM , subject to the constraints in Inequality 5 and Eq. 6 and
players 1 to i−1 free ride, for 1 ≤ i ≤ n (with no players free riding if i = 1).

1
n − i + 1

βi < xM <
1

n − i
βi (5)

xm = βi − (n − i)xM (6)

We highlight Lemma 1 (proven as part of the proof) that we will reuse later.

Lemma 1. If there exist two contributing rational players whose contributions
are strictly less than maxi(xi) and who play their best strategy, then those players
must have the same benefit-cost ratio.

Unless specified otherwise, we denote by xeq the value played by the players
or bulk of players in the 1-value or 2-value equilibrium, respectively. For both
types of equilibrium, the lower xeq is the more decentralised the system is, as
more players can contribute and the less free-riding there is.

The fact that one equilibrium is for all players to contribute the same amount
of effort makes sense as the NTE function encodes the social goal of maximising
decentralisation. It also prevents the perverse effects of any feedback loops that
enable some players to contribute increasingly more than other players.

The 2-value equilibrium is less expected. It shows that, even if some play-
ers cannot match the other players’ contributions (due to their own costs or
valuation), they may still be incentivised to contribute.

3.1 The Impact of a Reward

The equilibria we have derived above include the case where everyone contributes
no effort. Adding a reward function Ri(x1, . . . , xn) to the utility function, as in
Eq. 7. (e.g., cryptocurrency mining rewards) is a way of explicitly incentivising
non-zero contributions, particularly from new players.

ui = P (F (x1, . . . , xn))vi − cixi + Ri(x1, . . . , xn) (7)

Decentralisation Conscious Players and System Reliability 431

A reward separate from the valuation v models the compensation for the
effort invested in the system rather than the benefit derived from being able to
use the system. In practice, it may be a constant R that can be won by play-
ers with a probability proportional to the effort they contribute. Under certain
conditions, this is an optimal allocation rule [15] so we restrict ourselves to this
case.

Ri(x1, . . . , xn) =

{
R xi∑n

j=1 xj
, if max(x1, . . . , xn) > 0

0, if max(x1, . . . , xn) = 0
(8)

This removes the xeq = 0 equilibrium without significantly affecting other
equilibria. In the two-player case, an equilibrium still involves the two players
contributing the same value x subject to different constraints and under the
additional assumptions that R < min(v1, v2). This expresses the fact that the
player’s valuations of the system must be at least greater than the value of the
reward – it would make little sense to gain a reward that is greater than the value
of the system functioning. We prove the following theorem in the full version the
paper [7].

Theorem 3. In a two player NTEG with reward R < min(v1, v2) there exist
infinite Nash equilibria where both players contribute the same value x such that

⎧
⎨

⎩

c1
4R ((R

1−
√

Δ′
1

2c1
)2 − β2

1) < x < c1
4R ((R

1+
√

Δ′
1

2c1
)2 − β2

1)
c2
4R ((R

1−
√

Δ′
2

2c2
)2 − β2

2) < x < c2
4R ((R

1+
√

Δ′
2

2c2
)2 − β2

2)
(9)

with Δ′
1 = 1 + 4 c1

R (v2
1c1
R + v1

c1
) and Δ′

2 = 1 + 4 c2
R (v2

2c2
R + v2

c2
).

We leave the multiplayer analysis as future work.

3.2 Social Optimum

An insight from Varian’s work is that the equilibria and social optima are not
necessarily the same e.g., the total effort social optimum involves players con-
tributing much more than in the Nash equilibrium [28].

In the NTE case, the social optimum is for players to contribute the smallest
non-zero amount possible as this maximises the level of decentralisation while
minimising their costs. If all contributions are equal then in most cases it is also a
Nash equilibrium. This convenient outcome is expected from our choice of NTE
that reflects a desire to ensure that the social goal of decentralisation is met, so
the NTE function is well defined in that sense. The only exception is when the
benefit-cost ratio of some players is too low as they then free-ride.

Figuring out an acceptable minimal contribution can be straightforward when
it is possible to impose a minimum contribution. Ethereum’s implementation of
proof-of-stake does this, but not all systems impose a minimum contribution.

432 S. Azouvi and A. Hicks

4 Robustness of Decentralisation Conscious Players
to Variations by Others

In practice, players may leave or join the game, as well as increase or decrease
their contributions because of selfish behaviour or, more generally, Byzantine
faults. Thus, it is important to analyse how decentralisation conscious players
tolerate variations in the actions of other players. We do this by studying how
the equilibria for the NTEG change after such events.

In the analysis that follows we will be using a result derived in the proof of
Theorem 2, which is that for each player j the best response to (fixed) contri-
butions of other players is as follows.

1. if
∑

i�=j xi < βj , contribute min(maxi�=j(xi), βj − ∑
i�=j xi)

2. if
∑

i�=j xi ≥ βj , contribute zero.

Equivalently, player’s j best response can be written as in Eq. 10.

max{0,min(max
i�=j

(xi), βj −
∑

i�=j

xi)} (10)

In this section, we note n the number of contributing players.

4.1 Change in Number of Players

New Player Joining.

1-value Equilibrium. We first consider the case where the players play the 1-value
equilibrium described in Theorem 2. If one player joins the game, the robustness
of the equilibrium depends both on xeq and on the benefit-cost ratio β of the
new player. From Condition 4, we have that xeq ≤ 1

nβj , ∀1 ≤ j ≤ n.
We proceed as follows. For different values of xeq we study what would be

the new player’s best response xnew and whether they would join the game
i.e., contribute a non-zero effort. We then look at whether the introduction of
a new player playing xnew disrupts the equilibrium for the rest of the players
i.e., whether having n players play xeq and one player play xnew is still an
equilibrium. We find that the original n players change their contributions if
and only if β > β1 and 1

n+1β1 < xeq < 1
nβ. We prove this result in the full

version the paper [7].

Theorem 4. In a NTEG that is in a state of 1-value equilibrium with n play-
ers contributing xeq, the introduction of a new player with benefit-cost ratio
β changes the value played by the other players if and only if β > β1 and
1

n+1β1 < xeq < 1
nβ.

Decentralisation Conscious Players and System Reliability 433

2-value equilibrium In the case where the players were initially in a 2-value
equilibrium, we have the following theorem, which we prove in the full version
the paper [7].

Theorem 5. In a NTEG that is in a state of 2-value equilibrium with player
1 playing x1 and the other n − 1 players playing xeq, the introduction of a new
player with benefit-cost ratio β does not change the value played by the other
players unless

∑n
i=1 xi < β or β1 < β.

We now consider how the utility of each player changes following the intro-
duction of a new player. If the new player contributes a strictly positive effort
and the value played at equilibrium stays unchanged for the other players it
is clear that the introduction of a new player increases everyone’s utility as it
increases the reliability of the system without changing anyone’s cost. When the
equilibrium is changed, if only one player (player 1) leaves the system, then this
is simply a player replacement and the reliability of the system stays the same.
Player 1 increases their utility in this case as the reliability of the system is the
same as before but their cost is now zero.

However, from the proof of Theorem 4 we have that a new player could poten-
tially incentivise more than one player to decrease their contribution. Lemma 1
tells us that this means that the players would potentially need many iterations
before reaching a new equilibrium if they reach one, where only one or two val-
ues are played. Although it could be presumed that a new player joining should
increase the reliability of the system, this result shows that if one or more players
have to decrease their contributions then it is not clear that the final reliability
of the system will be higher with n + 1 player than with the original n players.
We study simulations of equilibrium disruption in Sect. 5 and leave a rigorous
study of the outcome of the new game as an open problem.

Player Leaving the Game. In the case where a player leaves the game, we
have the following theorems, which we prove in the full version the paper [7].

Theorem 6. In the NTEG, if the n players are playing a 1−value Nash equi-
librium, the removal of a new player with benefit-cost ratio βi does not change
the value played by the other players.

Theorem 7. In the NTEG with n players playing a 2-value equilibrium where
players 2 to n play the same value xeq at the equilibrium, the removal of a new
player with benefit-cost ratio βi changes the value played by the other players
unless in the specific case where player 1 is leaving the game.

If other contributions stay unchanged, a player leaving the system decreases
the reliability of the system as it renders it more centralised. The utilities of the
remaining players will therefore always decrease in this case.

434 S. Azouvi and A. Hicks

4.2 Deviation from an Equilibrium

We now consider the case where one player (player k) deviates from the equilib-
rium and changes their contribution to xk0 . We are concerned with the response
of the n − 1 other players and what new equilibrium is reached, regardless of
whether it will be the best strategy for player k to keep their value xk0 in the new
equilibrium (i.e., player k may be irrational). We prove the following theorem in
the full version the paper [7].

Theorem 8. In the NTEG with n players contributing the same value xeq at
the equilibrium, the deviation of player k with benefit-cost ratio βk to a new value
xk0 does not change the value played by the other players unless xk0 > xeq.

In the 2-value equilibrium, the results are very similar. We prove the following
theorem in the full version the paper [7].

Theorem 9. In the NTEG with n players playing a 2-value equilibrium where
players 2 to n play the same value xeq at the equilibrium, the deviation of player
k with benefit-cost ratio βk to a new value xk0 changes the value played by the
other players unless in the specific case where player 1 is deviating to a new value
xk0 �= x1 and for all 2 ≤ j ≤ n we have (1) xk0 < xeq (2) βj > (n − 2)xeq +
xk0 + max(xeq, xk0) and (3) (n − 2)xk0 + xk0 < β2.

In the case where the players do not change their equilibrium after an irra-
tional player deviates (i.e., xk0 < xeq) the utility of players will decrease as
reliability will be lower for the same costs and contributions.

In the other case, before the other players can adjust their contribution, their
utility will also decrease, and in some realistic cases, players may not be able to
change their contribution as we discuss in Sect. 6. This is an undesirable effect
defined as immunity by Abraham et al. [2] in the context of distributed systems
where one or more irrational players can negatively impact the utility of rational
players. If players can change their contributions, the reliability functions could
go up or down depending on the new value xeq and the benefit-cost of other
players (i.e., whether they will free ride).

After the deviation from player k, we have from Condition 10 that each
player i such that xk0 ≥ βi−(n−2)xeq

2 changes their contribution to xi,new =
βi −xk0 − (n−2)xeq or zero if that value is negative, and each player i such that
xk0 ≤ βi−(n−2)xeq

2 changes their contribution to xk0 .
In Lemma 1, we showed that if there exists two contributing rational players

whose contributions are strictly less than maxj(xj), then those players must
have the same benefit-cost ratio. This is true regardless of the existence of an
irrational player. Since we assume that all the benefit-cost ratios are different,
this means that there can be at most one rational player playing strictly less
than the maximum value xM . According to the strategy defined in Condition 10,
no rational player is incentivised to play more than maxj(xj). Thus, even after
players adjust their contributions we will still have maxj(xj) = xk0 and, following
the deviation, the bulk of the players will align with the deviating players or free

Decentralisation Conscious Players and System Reliability 435

ride, except for one rational player. By setting xk0 high enough, the deviating
player could ensure that many players switch to free-riding, which could pose a
threat to the system if it facilitates one party taking control of the system (e.g.,
a 51% attack).

4.3 Non-myopic Players

Motivated by Brünjes et al. [14], we consider non-myopic players deviating from
the equilibrium. The utility function of such players accounts for the effects an
action will have on the other players, unlike Nash equilibria that consider the
best response of players given that the other players’ strategies are fixed.

In the previous section, we have seen that a player deviating from the equi-
librium may disrupt the best response of the other players and lead to a new
equilibrium. In a Nash equilibrium, assuming that other players keep their con-
tribution unchanged, deviating means that one’s utility is reduced, but this does
not account for the possibility of a new equilibrium being reached. A new equi-
librium (if reached) may be a better equilibrium for the deviating player if their
utility is higher in the new equilibrium.

Does a non-myopic player have incentives to deviate from the equilibria we
have derived? We have established that a condition to disrupt the equilibrium is
to change one’s contribution to a value xk0 > xeq. We have also observed that by
setting this value high enough, the deviating player can cause some players to free
ride. In a NTEG without a reward, the new equilibrium would, therefore, have
fewer contributing players with greater contributions. In a 1-value equilibrium,
this would mean we have F (x1, . . . , xn) = nnew < n where nnew is the new
number of contributing players. However, because xk0 > xeq, the cost will be
higher and this strategy is therefore not rational as the new equilibrium results
in less utility for the deviating player and the other players.

In a NTEG with reward, however, fewer players implies a greater share of
rewards. Thus a non-myopic player may be incentivised to deviate from an exist-
ing equilibrium to reach a new one with fewer contributing players.

This suggests that a fixed proportional reward may increase centralisation.
Designing a protocol with a variable reward such that players would earn sim-
ilar revenue regardless of the number of players is an open problem due to the
pseudonymous nature of systems like cryptocurrencies. Another alternative is
to rely on a fixed reward but design the system such that it is not possible to
increase one’s contribution, as in proof-of-personhood schemes [13].

4.4 Coalition-Resistance

A group of miners may decide to form a coalition if this increases their expected
gain, even if doing so centralises the system. In this case a coalition is equiv-
alent to having one player contributing X =

∑
i∈[i1,...,ic]

xi for all the play-
ers (i1, . . . , ic) in the coalition instead of having each contributing separately.
Because the sum of the efforts stay the same but the maximum effort potentially

436 S. Azouvi and A. Hicks

(a) (b)

Fig. 1. Without constraints on contribution changes players can reach an equilibrium
(Fig. 1a) but may also oscillate indefinitely (Fig. 1).

increases, F (x1, . . . , xi1 , . . . , xic , . . . , xn) ≥ F (x1, . . . , X, . . . , xn). Thus, the util-
ity of decentralisation conscious players decreases when they form a coalition
i.e., they are not incentivised to create coalitions.

5 Dynamics of Decentralisation Conscious Players

As we have shown, there are many possible equilibria, each corresponding to
different equilibrium values. How an equilibrium is reached i.e., how quickly and
how many players reach it, as well as which equilibrium value is reached could
depend on several factors that we look at in this section.

Methodology. Using a Python script, we simulate the NTEG where each player
computes their best strategy at each time unit. By iterating over multiple time
units we observe how players (simultaneously) re-evaluate their contributions
based on the effort of other players in the previous time unit. The scenarios we
simulate are not exhaustive but highlight interesting behaviour, the benefit-cost
ratios were chosen randomly within a range.

Random Initial Values. To observe how an equilibrium is reached, we initialise
a NTEG with 10 players to which we assign random initial values (contribu-
tions, costs, benefits) and look at how they change their contributions until an
equilibrium is reached. (The same initial contributions and benefit-cost ratios
are used for every simulation.) According to the strategy defined by Eq. 10, no
decentralisation conscious player is incentivised to contribute more than other
players hence the player that has the maximum contribution in step 1 of the
game (set by nature’s move) will be reducing their contribution in the next step.
On the other hand, other players with a high enough benefit-cost ratio will be
incentivised to increase their contributions to the maximum value in step two of
the game.

Under ideal conditions i.e., when the maximum contribution xmax is such
that nxmax < mini βi, the equilibrium is reached after a few steps. Players with
the greatest benefit-cost ratios align their contributions to the maximum value

Decentralisation Conscious Players and System Reliability 437

(a) Δ = 0.1 (b) Δ = 0.3 (c) Δ = 0.5

Fig. 2. Oscillations disappear with constraints on contribution changes. The speed at
which equilibria are reached depends on the constraints (slower with Δ = 0.1, faster
with Δ = 0.5), as do the type of equilibria (1-value with Δ = 0.1, 2-value Δ = 0.3 or
0.5) and equilibrium value (greater with Δ = 0.3 or 0.5).

(except perhaps for one of them, resulting in a 2-value equilibrium) while the
remaining players free ride, as shown in Fig. 1a.

In other cases, as shown in Fig. 1b, some players may keep oscillating indef-
initely. For these players, it must be the case that βj < nxeq, else playing xeq

at the same time as other players will be their best strategy and an equilibrium
will be reached. Thus whenever everyone is playing xeq at one time unit, they
decrease their contributions to βj − nxeq in the next step. However, after other
oscillating players have also decreased their contributions, it is now the best
strategy to go back to xeq, and so on. This is due to players being myopic, not
anticipating that other players will increase their contributions at the same time
as them.

Constraints on the Rate of Change of Contributions. To avoid the unrealistic
case where players oscillate forever we constrain the change in each player’s
contribution from one time unit to another by a factor Δ. This dampens the
oscillations and allows players to converge to an equilibrium.

Because Δ affects how quickly players can converge to an equilibrium, the
equilibrium that is reached varies with Δ. For example, in the case where Δ = 0.1
participants are allowed to change their contributions by at most 10% from one
time unit to another and a 1-value equilibrium is reached, as shown in Fig. 2a.
When Δ = 0.3 or Δ = 0.5, a 2-value equilibrium is reached, as shown in Figs. 2b
and c. Keeping this in mind we will, however, stick to the Δ = 0.1 case in most
of the simulations that follow for simplicity as the overall player behaviours i.e.,
players increasing their contribution or free-riding are the same although the
final equilibrium differs.

We have also computed the different values of the reliability in each case but
did not observe any clear pattern. Whether there is a pattern that is not clearly
observable is left as an open problem.

Not only is a constraint on the change in the effort of players useful for them
to efficiently converge to an equilibrium, it is also realistic. Players in real life
are likely to understand the adverse effects of over correcting and are also likely
to have constraints on how much they can change their effort (at least upwards)

438 S. Azouvi and A. Hicks

(a) Δ = 0.1 (b) Δ+ = 0.05, Δ− = 0.4 (c) Δ+ = 0.4, Δ− = 0.05

Fig. 3. Constraining the total effort can increase free-riding and reduce equilibrium
values (Fig. 2a), as can reductions in contributions being easier than increases (Figs. 3b
and c).

due to the cost of doing so. We discuss this constraint further in the next section,
in relation to resource scarcity.

Moreover, every player updating their contributions at the same time is not
a realistic assumption either. Bounding the change of contribution of each player
from one step to another also helps get closer to a continuous time model.

Constraints on Total Effort. Another constraint that can be implemented is a
limit on the overall change in the effort of all players i.e., the total effort. This
models the constraint that the stock of resources used to contribute effort (e.g.,
new hardware) may be limited at any point in time. Figure 3a shows that in
this case, some players may not be able to change their contribution enough to
converge to the equilibrium and, therefore, switch to free riding.

Since it is usually easier to reduce one’s contribution than to increase it,
we also simulate the game with different constraints on the increase and the
decrease of contributions from one step to another. We see in Figs. 3b and c that
a 2-value equilibrium is reached, although the relative constraints on increasing
and decreasing contributions result in different equilibrium values. The value
played by the bulk of the player xeq is higher when there is a greater constraint
on the increase of contributions than on the decrease. This is because players
can more rapidly reach the new maximum value. As a consequence, the second
value played at the equilibrium is smaller.

Disruptions to an Equilibrium. A new player joining the game when it is in
a 1-value equilibrium (which happens according to the conditions defined in
Theorem 4) can lead to a new equilibrium being reached after a few steps, as
shown in Fig. 4a in the case of a strong constraint.

When an equilibrium is disrupted by a player deviating from the equilibrium,
players that increase their contribution to contribute more effort than the equi-
librium value incentivise other decentralisation conscious players to free ride or
increase their effort to reach a new equilibrium value if it is allowed by their
benefit-cost ratio. This is shown in Fig. 4b, in the case of a strong constraint.

Decentralisation Conscious Players and System Reliability 439

(a) Δ = 0.1, a new player
joins

(b) Δ = 0.1, a player devi-
ates

Fig. 4. Disruptions to an equilibrium due to a new player joining or a player deviating
lead to new equilibriums.

6 Discussion

6.1 The Role of Decentralisation Conscious Players

Our model and choice of NTE function shows that decentralisation conscious
players can help maintain a decentralised system. However, as Theorems 8 and 9
show, decentralisation conscious players only ever increase their effort in response
to another player increasing their contribution at the cost of decentralisation.
They maintain decentralisation within the constraints of their benefit-cost ratio
but ignore players that free ride after their benefit-cost ratio no longer allows
them to contribute.

Because decentralisation conscious players can only maintain a pre-existing
level of decentralisation and can be leveraged by selfish players to implement a
minimum benefit-cost ratio that acts as a form of gate-keeping against players
with lower benefit-cost ratios, there is a distinction between decentralisation con-
scious players and altruistic players that operate regardless of their benefit-cost
ratio. This suggests that new mechanisms dictating how effort is contributed or
rewarded may be needed for players to have rational ways of increasing decen-
tralisation outside of purely altruistic behaviour.

6.2 Modelling Constraints

Resource Scarcity. Players contribute based on their benefit-cost ratios and, as
we have seen in Sect. 5, equilibria depend on the rate of change of contributions.
An implicit assumption made by our model is that a player can contribute more
(at a cost) should they wish to do so but this may not be possible. For example,
cryptocurrency mining hardware has suffered from shortages that forced buyers
to obtain hardware at significant premiums and logistical difficulties [29]. When
resources are unobtainable, it can become impossible to contribute more or con-
tinue contributing the same amount (if resources must be replaced), causing
involuntary deviations from otherwise rational strategies.

If it is impossible to acquire the resources to contribute, the system will rely on
players having a high valuation of the system. Contributors to systems like Tor [26]

440 S. Azouvi and A. Hicks

operating nodes at a loss may demonstrate this but in the case of cryptocurrencies
new miners are less likely to have a high valuation of the system because they are
unlikely to have a stake in it, unlike miners that have accumulated rewards. Miners
in cryptocurrencies that are more centralised due to the high practical costs of
mining can, therefore, form an effective oligopoly [5,17].

Can we avoid issues of resource scarcity? One way of avoiding the problematic
reliance on resources with variable stock (e.g., stake, hardware) is to opt for
mechanisms like proof-of-personhood [13], which is equally distributed (“1 person
= 1 vote”) and maximises the NTE, although this has other issues to overcome.

Geographical and Political Decentralisation. Because players contribute based on
their benefit-cost ratios so the geographical distribution of players will matter if
costs vary with location. For example, cryptocurrency mining is concentrated in
the few areas where mining is most profitable.

Markets are also affected by political power and changes in regulations. China
controlled 65% of Bitcoin’s hashpower in 2019 [18] but following new Chinese
regulations [9] the share of hashpower in the US has grown due to political
stability with respect to Bitcoin mining [3]. The impact of markets and political
power on decentralisation adds complexity and uncertainty in models, which
may motivate decentralised systems less reliant on other markets e.g., proof-of-
stake (based on the cryptocurrency’s native tokens) or proof-of-personhood may
be easier to reason about than proof-of-work (energy and hardware markets).

Incomplete and Unequal Information. Our model has assumed perfect informa-
tion at each step with players changing their contributions based on this infor-
mation, but players could hide information such as the stock of unused resources
they have at their disposal. Attacks such as selfish mining in proof-of-work cryp-
tocurrencies [16] are based on abusing information asymmetry, as are hostile
takeovers which use previously unused but available mining capacity [11]. There
is also an inherent delay in information propagating through a network. This
may result in different equilibria as players adapt their contributions based on
the information they receive at a point where it may no longer be accurate.

How much this matters is hard to determine. Attacks such as selfish mining
have seldom been observed, and effort rarely varies across short time periods.
(See the Bitcoin hashrate distribution over short time periods, even if the larger
trend is growth [1].) This may be due to issues like acquiring the additional
resources needed to contribute more effort, but it may also be to maintain a
level of decentralisation as our model suggests miners might do.

6.3 Related Work

There is an important literature on modelling incentives in cryptocurrencies
through refinements of Nash Equilibria that has been systematised [6]. Although
the types of players and games considered vary across papers, none of the papers
surveyed (except Varian’s paper [28]) consider the reliability of the system.

Decentralisation Conscious Players and System Reliability 441

Varian’s system reliability paper [28] has previously been extended by
Grossklags et al. [19] in the context of investments in security and insurance.
Grossklags et al. [20] have also applied Varian’s model to study the difference
between expert and naive players in security games to quantify the impact of
information. In this work, we have instead focused on decentralisation and intro-
duced the NTEG, which extends Varian’s model in another direction.

7 Conclusion

We have proposed a model for decentralisation conscious players based on the
NTE function we have introduced. The Nash equilibria show what could be
expected from such players. Using simulations we have also considered how play-
ers may reach an equilibrium, including after disruptions. There is a variety of
possibilities for future work and opportunities to apply our model to specific
cases. This includes cases with valuations of the system which are hard to pre-
cisely define e.g., ideological commitment, as well as cases with very explicit val-
uations and dependencies on rewards but complex financial optimisation such as
cryptocurrencies. Protocol designers who wish to incorporate rational players,
as opposed to honest players, but also wish to incorporate the reliability of the
system in addition to short-term rewards could use the NTE function.

Acknowledgment. Alexander Hicks was partially supported by Protocol Labs for
this work.

References

1. Pools-timeseries. https://www.blockchain.com/charts/pools-timeseries
2. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 53–62 (2006)

3. Allison, I.: Long in China’s shadow, the US is becoming a Bitcoin min-
ing power again (2020). https://www.coindesk.com/us-becoming-bitcoin-mining-
power-again

4. Anderson, R.: Security engineering: a guide to building dependable distributed
systems. John Wiley & Sons (2020)

5. Arnosti, N., Weinberg, S.M.: Bitcoin: a natural oligopoly. arXiv preprint
arXiv:1811.08572 (2018)

6. Azouvi, S., Hicks, A.: SoK: tools for game theoretic models of security for cryp-
tocurrencies. arXiv preprint arXiv:1905.08595 (2019)

7. Azouvi, S., Hicks, A.: Decentralisation conscious players and system reliability.
arXiv preprint arXiv:2204.11980 (2022)

8. Bano, S., et al.: SoK: consensus in the age of blockchains. In: Proceedings of the
1st ACM Conference on Advances in Financial Technologies, pp. 183–198 (2019)

9. Baydakova, A.: China’s crypto miners struggle to pay power bills as regulators
clamp down on OTC desks (2020). https://www.coindesk.com/chinese-miners-
struggle-to-pay-for-electricity

https://www.blockchain.com/charts/pools-timeseries
https://www.coindesk.com/us-becoming-bitcoin-mining-power-again
https://www.coindesk.com/us-becoming-bitcoin-mining-power-again
http://arxiv.org/abs/1811.08572
http://arxiv.org/abs/1905.08595
http://arxiv.org/abs/2204.11980
https://www.coindesk.com/chinese-miners-struggle-to-pay-for-electricity
https://www.coindesk.com/chinese-miners-struggle-to-pay-for-electricity

442 S. Azouvi and A. Hicks

10. Bissias, G., Böhme, R., Thibodeau, D., Levine, B.N.: Pricing security in proof-of-
work systems. arXiv preprint arXiv:2012.03706 (2020)

11. Bonneau, J.: Hostile blockchain takeovers (short paper). In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 92–100. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 7

12. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015
IEEE symposium on security and privacy, pp. 104–121. IEEE (2015)

13. Borge, M., Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Proof-
of-personhood: Redemocratizing permissionless cryptocurrencies. In: 2017 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 23–
26. IEEE (2017)

14. Brünjes, L., Kiayias, A., Koutsoupias, E., Stouka, A.P.: Reward sharing schemes
for stake pools. arXiv preprint arXiv:1807.11218 (2018)

15. Chen, X., Papadimitriou, C., Roughgarden, T.: An axiomatic approach to block
rewards. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 124–131 (2019)

16. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

17. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in
bitcoin and ethereum networks. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 439–457. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6 24

18. Godbole, O.: Highest in 2 years: 65% of Bitcoin hash power is in China,
report finds (2019). https://www.coindesk.com/highest-in-2-years-65-of-bitcoin-
hash-power-is-in-china-report-finds

19. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? a game-theoretic analysis
of information security games. In: Proceedings of the 17th International Conference
on World Wide Web, pp. 209–218 (2008)

20. Grossklags, J., Johnson, B., Christin, N.: When information improves informa-
tion security. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 416–423. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 37

21. Hajdarbegovic, N.: Bitcoin miners ditch ghash.io pool over fears of 51% attack
(2014). https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack

22. Judmayer, A., et al.: Pay-to-win: incentive attacks on proof-of-work cryptocurren-
cies. IACR Cryptology ePrint Archive Paper 2019/775 (2019)

23. Kwon, Y., Liu, J., Kim, M., Song, D., Kim, Y.: Impossibility of full decentraliza-
tion in permissionless blockchains. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 110–123. AFT 2019, ACM, New York,
NY, USA (2019). https://doi.org/10.1145/3318041.3355463

24. Neudecker, T., Hartenstein, H.: Short paper: an empirical analysis of blockchain
forks in bitcoin. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 6

25. Roughgarden, T.: Selfish routing and the price of anarchy, vol. 174. MIT press
Cambridge (2005)

26. Syverson, P., Dingledine, R., Mathewson, N.: Tor: the second generation onion
router. In: Usenix Security, pp. 303–320 (2004)

27. Troncoso, C., Isaakidis, M., Danezis, G., Halpin, H.: Systematizing decentraliza-
tion and privacy: lessons from 15 years of research and deployments. Proc. Priv.
Enhancing Technol. 2017(4), 404–426 (2017)

http://arxiv.org/abs/2012.03706
https://doi.org/10.1007/978-3-662-58820-8_7
https://doi.org/10.1007/978-3-662-58820-8_7
http://arxiv.org/abs/1807.11218
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-662-58387-6_24
https://www.coindesk.com/highest-in-2-years-65-of-bitcoin-hash-power-is-in-china-report-finds
https://www.coindesk.com/highest-in-2-years-65-of-bitcoin-hash-power-is-in-china-report-finds
https://doi.org/10.1007/978-3-642-14577-3_37
https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack
https://doi.org/10.1145/3318041.3355463
https://doi.org/10.1007/978-3-030-32101-7_6

Decentralisation Conscious Players and System Reliability 443

28. Varian, H.: System reliability and free riding. In: Camp, L.J., Lewis, S. (eds.) EIS.
AIS, vol. 12, pp. 1–15. Springer, Boston (2004). https://doi.org/10.1007/1-4020-
8090-5 1

29. Wong, J.I.: Ethereum miners are renting Boeing 747s to ship graphics cards and
AMD shares are soaring (2017). https://qz.com/1039809/amd-shares-are-soaring-
ethereum-miners-are-renting-boeing-747s-to-ship-graphics-cards-to-mines/

https://doi.org/10.1007/1-4020-8090-5_1
https://doi.org/10.1007/1-4020-8090-5_1
https://qz.com/1039809/amd-shares-are-soaring-ethereum-miners-are-renting-boeing-747s-to-ship-graphics-cards-to-mines/
https://qz.com/1039809/amd-shares-are-soaring-ethereum-miners-are-renting-boeing-747s-to-ship-graphics-cards-to-mines/

Towards Overcoming the Undercutting
Problem

Tiantian Gong1(B) , Mohsen Minaei2, Wenhai Sun1, and Aniket Kate1

1 Purdue University, West Lafayette, USA
{tg,sun841,aniket}@purdue.edu
2 Visa Research, Palo Alto, USA

mominaei@visa.com

Abstract. Mining processes of Bitcoin and similar cryptocurrencies are
currently incentivized with voluntary transaction fees and fixed block
rewards which will halve gradually to zero. In the setting where optional
and arbitrary transaction fee becomes the prominent/remaining incen-
tive, Carlsten et al. [CCS 2016] find that an undercutting attack can
become the equilibrium strategy for miners. In undercutting, the attacker
deliberately forks an existing chain by leaving wealthy transactions
unclaimed to attract petty complaint miners to its fork. We observe
that two simplifying assumptions in [CCS 2016] of fees arriving at fixed
rates and miners collecting all accumulated fees regardless of block size
limit are often infeasible in practice and find that they are inaccurately
inflating the profitability of undercutting. Studying Bitcoin and Monero
blockchain data, we find that the fees deliberately left out by an under-
cutter may not be attractive to other miners (hence to the attacker itself):
the deliberately left out transactions may not fit into a new block with-
out “squeezing out” some other to-be transactions, and thus claimable
fees in the next round cannot be raised arbitrarily.

This work views undercutting and shifting among chains rationally as
mining strategies of rational miners. We model profitability of undercut-
ting strategy with block size limit present, which bounds the claimable
fees in a round and gives rise to a pending (cushion) transaction set.
In the proposed model, we first identify the conditions necessary to
make undercutting profitable. We then present an easy-to-deploy defense
against undercutting by selectively assembling transactions into the new
block to invalidate the identified conditions. Indeed, under a typical set-
ting with undercutters present, applying this avoidance technique is a
Nash Equilibrium. Finally, we complement the above analytical results
with an experimental analysis using both artificial data of normally dis-
tributed fee rates and actual transactions in Bitcoin and Monero.

Keywords: Bitcoin incentive · Transaction fee · Undercutting ·
Undercutting avoidance

M. Minaei—Part of this work was done while the author was at Purdue University.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 444–463, 2022.
https://doi.org/10.1007/978-3-031-18283-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_22&domain=pdf
http://orcid.org/0000-0001-9441-9037
https://doi.org/10.1007/978-3-031-18283-9_22

Towards Overcoming the Undercutting Problem 445

1 Introduction

Bitcoin network [19] and several cryptocurrencies rely on nodes participating
in transaction verification, ordering and execution, and mining new blocks for
their security and performance. Specifically, with honest majority, Byzantine-
fault tolerant consensus is possible with Proof of Work (PoW) assuming net-
work synchrony. With honest majority, attacks like double spending [23] are
also harder to implement in practice. Additionally, with more honest computing
peers, liveness is provided with a higher probability. A proper incentive design
helps attract more honest parties to join. Bitcoin currently incentivizes nodes (or
miners) with fixed block rewards and voluntary transaction fees. Historically, the
block reward has been the dominating source of miners’ revenues. However, for
Bitcoin, it is a system parameter that halves approximately every four years.1 Its
domination is expected to vanish due to the deteriorating nature and transaction
fees will then become the major mining revenue generator.

With a stable reward, a miner’s expected revenues rely mostly on its prob-
ability of finding a block, which itself is contingent on the miner’s hash power.
However, in the fee-based incentive system, the revenues additionally depend on
the fee amount inside a block, which further relies on users’ offerings and min-
ers’ transaction selections. The total fees inside blocks are market-dependent
and time-variant because (i) transaction arrival can be arbitrary; (ii) transac-
tion fees are voluntary under the current mechanism, so they can be arbitrary
(even 0) and the threshold fee rates for faster confirmation change with supply
and demand in the block space market; (iii) miners have the freedom of sampling
transactions to form new blocks. As a result, the fair sharing of revenue based
on hashing power may not be maintained. For example, consider two miners A
and B in the system with the same mining power. If A mines blocks each with
total fees of 1 BTC and B always encounters wealthy transactions and mines
blocks each with 2 BTC total fees, B’s revenue is twice A’s revenue.

In particular, the fee-based incentivization framework nurtures a possible new
deviating mining strategy called undercutting [4]. In undercutting, the attacker
intentionally forks an existing chain by leaving wealthier transactions out in its
new block to attract other (petty compliant) miners to join the fork. Unlike
honest miners, who follow the longest chain that appears first, petty compliant
(PC) miners break ties by selecting the chain that leaves out the most fees. In
[4], fees accumulate at a fixed rate and miners claim all accumulated fees when
creating a new block. Thus, a miner undercuts another miner’s block because it
receives 0 of the fees in the target block but expects nonzero returns via forking.
Similarly, PC miners join the fork because the undercutter leaves out more fees
unclaimed (and they can claim all fees in the next block). Carlsten et al. find
that undercutting can become the equilibrium strategy for miners, thus making
the system unstable as miners undercut each other.

However, this result is based on a setting disregarding the block size limit.
If the fees claimable in the next block are bounded and a pending transaction

1 The next halving event to 3.125 BTC is scheduled for May 2024 [10].

446 T. Gong et al.

set exists due to the block size cap, PC miners may not join the fork and under-
cutting may not be more profitable than extending the current chain head. The
intuition is that the extra claimable fees are bounded, and the fork does not win
with absolute probability, while the main chain may provide slightly fewer fees
but extends with probability 1 when there’s no attack. We give an illustrative
example below where undercutting is not rational when we consider the limit.
Let there be 33% honest, 17% undercutter, and 50% PC mining power, 100 total
token fees with 20 claimable in each block. As we elaborate in the full version
of this report [9], the undercutter expects 3.4 token returns by extending the
chain head. Suppose it instead undercuts and claims half of the tokens in the
target block, 10 tokens, in its first forking block (as in [4]). If PC miners do not
shift, they expect 10 tokens from the next main-chain block; if they follow the
fork, they expect to gain 10 tokens. But, shifting is not rational for the owner of
the undercutting target block and may not be rational for others as they have
started mining the main chain for some time. Even if they shift, we find the
undercutter’s expected return to be 1.717 < 3.4.

Towards modeling undercutting attacks more realistically and generally, we
construct a new model to capture rational behaviors related to and performance
of the undercutting strategy. Miners in our model are either honest or rational.
A rational miner may undercut or arbitrarily shift among chains as long
as the action maximizes its returns. Fees in our model arrive with transactions.
By sorting transactions in the unconfirmed transaction set and packing at most
a block size limit of transactions, we obtain the maximum claimable fees at a
certain timestamp. Miners can choose to claim no more than this maximum fee.

Essentially, when undercutting, the rational miner’s goal is to earn more
than what it can potentially gain not undercutting. The attacker needs to first
(i) attract other rational miners to join its fork if necessary, and second (ii) avoid
being undercut by others. If it leaves out too many fees, it may end up being
worse off undercutting. If it claims more than necessary, other rational miners
may undercut its fork, annihilating its efforts. Then how many fees should an
undercutter take to achieve both goals simultaneously? And can others make it
not possible to do so? We seek to first locate such a feasible area for an undercut-
ter to secure its premiums and next, uncover defenses against this attack. Note
that undercutting is not desired because it hurts the expected profits for honest
miners. Successful undercutting also harms users who attach high fee rates to
have their transactions processed faster.

1.1 Contributions

We define an analytical model that captures behaviors that are “rational” but
not necessarily “honest” like undercutting and shifting rationally. This can be
used to analyze other rational deviating strategies in a fee-based incentive sys-
tem. The key is to pinpoint reward distributions and probabilities of earning the
rewards.

Specifically for undercutting and as a key contribution, we offer closed-form
conditions on the unconfirmed transaction set to make undercutting

Towards Overcoming the Undercutting Problem 447

profitable. The key quantity is the ratio (γ) between the maximum claimable
fees in the next block (w.r.t. block size limit) and the fees in the current block.
For clarity, let the mining power fraction of the undercutter be βu and that of the
honest miner be βh, remaining rational miner be βr. (i) In the best case for the
undercutter in our model, the undercutter forgoes the fork after being one block
behind instead of hanging on longer. (ii) When γ < aβr+βu

1−βu
, the attacker can

expect to earn a premium by proper undercutting. It should carefully craft the
first block on its fork (deciding parameter a) in such a way that rational miners
can be attracted to join the fork when needed but not tempted to undercut it
again. We provide more details in Sect. 4. The conditions for the case where the
undercutter holds on for one more block (Appendix A) are stricter, as noted in
(i) and the overall expected returns are fewer.

As a side-product and naturally, we provide an alternative transaction
selection rule to counter undercutting, other than fitting all available trans-
actions into a block. Once we have identified effective conditions for profitable
undercutting, we work backward to proactively check the conditions before cre-
ating a new block. By making the conditions no longer satisfied, potential under-
cutters are no longer motivated to undercut. Applying the defense technique is
Nash equilibrium in a typical setting. In the equilibrium, we additionally calcu-
late the price of anarchy (PoA) to capture the inefficiency a strong undercutter
brings or the advantage it has in a system. To make the system more stable, we
can either strengthen the second potential undercutter or weaken the strongest
undercutter through decentralization.

We experiment with real-world data from Bitcoin and Monero
blockchains to evaluate the profitability of undercutting and the effectiveness of
avoidance techniques. We decide on the two systems because Bitcoin is represen-
tative of swamped blockchains and Monero typically has a small unconfirmed
transaction set. (i) In Bitcoin, for a 17.6% undercutter, the average return is
17.9%. For a hypothetical 49.9% attacker, the average revenue is 60.8%. In Mon-
ero, we observe a profit increase of around 8% points from fair shares for a 35%
attacker. (ii) After enabling defense, undercutting generates around a fair share
for Monero 35% undercutter where the two strongest rational miners possess
the same mining powers. We test a strong undercutter’s advantage in Bitcoin
(49.9%, 20%), which gives the 49.9% attacker around 63.5% of the total returns.

1.2 Related Work

Carlsten et al. [4] introduce the undercutting mining strategy to show the insta-
bility of the future Bitcoin fee-based incentivization system because undercut-
ting can become the equilibrium strategy. There, transaction fees accumulate at
a constant rate and miners can include all fees when creating a new block. But
fees essentially are not independent of transactions. If we dive into the transac-
tion level and account for the block size limit, the fees one can claim are restricted
and there can potentially be a large pending transaction set, which can cushion
or even annihilate the effects of undercutting. Based on this intuition, we con-
struct the new model focusing on transaction selection rules, which determine

448 T. Gong et al.

fees claimed and left out. Further, both undercutting and hopping among chains
are modeled more generally as actions of rational miners instead of separately
as two types of miners as in [4]. This helps quantify the profit margin and brings
about opportunities for mitigation.

Together with Other Non-compliant Mining Strategies. There have
already been rigorous discussions on attacks related to mining strategies. Most
notable attacks are selfish mining [7,20,26], block withholding [5,6,16,17,22], and
fork afterwithholding [13]. Defenses against these game-theoretic attacks have also
been studied [11,14,15,21,28]. It is possible to combine undercutting with other
mining strategies like selfish mining and block withholding. For the latter, because
undercutters prefer larger mining power, the two attacks have opposite goals, so
one needs to balance the computation resource allocation. Selfishmining purposely
hides discovered blocks, while undercutting intends to publish a block and attract
other miners. They do not share the same rationale, but we can schedule the two
strategies and apply the one with higher expected returns at a certain time. In this
work, we put our focus on the profitability and mitigation of undercutting, which
affects the undercutting part of the strategy scheduler.

Lemon Market. Another angle to look at the problem on a higher level is
through the market for “lemons” [2], the brand-new car that becomes defective
the minute one bought it. In the Bitcoin block space market, users are bidders,
and miners are sellers. Users decide prices to pay based on their observation of
the relationship between confirmation time and fee rates. They attach fee rates
corresponding to the desired waiting time. If undercutting is prevailing, users
who attach high fee rates but are ghosted are provided with “lemons” instead
of “peaches” – fast confirmation. This can result in a decrease in the overall fee
rates, diminishing the profitability of undercutting.

2 Preliminaries

Mempool. Mempool [3] is an unconfirmed transaction set maintained by miners
locally. When a transaction is announced to the network, it enters into miners’
mempools. Miners select transactions from their mempools to form new blocks.
Usually, a miner chooses the bandwidth set (Definition 1) with respect to the
local mempool and global block size limit. An undercutting miner intentionally
leaves out wealthy transactions when forming blocks to attract other rational
miners. Wealthy transactions are those with high fee rates. When a new block
is published, miners verify the block and then update their local mempools to
exclude transactions included in the newly published block.

Towards Overcoming the Undercutting Problem 449

Definition 1 (Bandwidth Set). Given block size limit B and an unconfirmed
transaction set T comprising N transactions, S∗ ∈ P (T) is a bandwidth set of
T with respect to B if S∗.size ≤ B and ∀Si ∈ P (T) with Si.size ≤ B,S∗.fee ≥
Si.fee, where P (T) is the power set of T.

Remark 1. A bandwidth set is a set of transactions in a miner’s mempool provid-
ing the most fees a miner claimable in one block. If the unconfirmed transaction
set is of size ≤ B, then the bandwidth set is the memory pool itself. Note that
the bandwidth set is not necessarily unique.

Definition 2 (Safe margin). When a chain C∗ is D block(s) ahead of com-
peting chains, a miner with safe margin parameter D always extends C∗.

Remark 2. Honest miners apply the longest chain rule and always have D = 1.2

For rational miners, D ≥ 1. When the length discrepancy between competing
chains is within D, they select the chain with the most expected returns.

3 Mining Game Featuring Undercutting Strategy

In this section, we model the mining game involving the undercutting strategy.
We consider honest miners, who follow the default protocol specifications, and
rational miners. The latter are addressed as undercutters when they undercut.

Game Definition. We define the mining game G = 〈M,A,R〉 as follows:

– n Players M = {M0,M1, ...,Mn−1}: without loss of generality, we label a
subset of the miners that have a total of βh mining power as honest; we label
a miner with βu mining power as the current undercutter under discussion; we
label the remaining miners as (currently) non-undercutting rational miners
and their total mining power is denoted as βr = 1 − βh − βu. Honest miners
are treated as one because they follow the same mining rules, and we assume
they are informed the same way.

– Actions A = {undercut(·), stay(·), shift(·)}: we index chains during a game
according to their timestamps after the branching point, e.g. the original
(main) chain with index Chain0, abbreviated as C0. Honest miners always
honest mine and may choose to stay or shift depending on circumstances.
Rational miners may choose to undercut an existing chain and start a new
chain, stay on a working chain, or shift among existing chains.

– Utility functions U = {ui}Mi∈M : we let ui = Ri − ci, where Ri is the total
transaction fees it receives and ci is the cost. We treat the cost ci as fixed and
reduce the problem of maximizing utility to maximization of obtained fees.

2 When there is a tie, they choose the chain with the oldest timestamp. If timestamps
should be the same, they select a chain at random.

450 T. Gong et al.

Threat Model. We allow no miner to own more than 50% mining power (i.e.,
βu ≤ 0.5). We let miners publish their discovered blocks immediately to attract
other miners to join. We assume the best case for the undercutter and let the
mempool be the same for miners on the same chain. Because undercutting is
not practical or meaningful if miners have distinct mempools, since wealthy
transactions an attacker left unclaimed may not exist in others’ mempools in
the first place. This assumption makes the attacker stronger, and we intend to
uncover what the attacker can obtain in advantageous environment settings.

We let miners know of other miners’ types (e.g. honest or rational) after
sufficient observations. We assume miners can approximate the amount of mining
power concentrated on a chain based on the block generation time on that chain.

Solution Concept. We solve for Nash Equilibrium (NE) in the mining game
with undercutting mining strategy. In a Nash Equilibrium, players do not earn
extra utility by unilaterally deviating from the equilibrium strategy.

3.1 Miner’s Winning Probability

A miner’s expected returns from mining equal the product of its winning proba-
bility of a block and the fees residing in that block. Firstly, miner Mi’s winning
probability of a block is simply its mining power when there is only one chain. In
the case of competing chains, we need to additionally quantify a chain’s winning
probability when working in systems where only one chain survives.

A Chain’s Winning Probability. In undercutting, the attacker forks an exist-
ing chain by leaving out wealthy transactions. In the following discussions, we
refer to the undercutting chain as C1 and the current main chain as C0. C0 might
not be on the main chain eventually if C1 wins the race. The effective height of a
chain is the number of blocks it has accumulated after the forking point. These
competing blocks are called effective blocks in the game analysis.

Overall, the process proceeds as follows. The undercutter sees a new block
is appended to C0 by another miner. It starts to work on a forking block that
excludes wealthy transactions appearing in the current chain head. With some
probability, it can create the fork faster than the next block appearing on C0.
When the undercutter publishes its block, some rational miners consider shift-
ing to C1 because there are more high fee rate transactions that they can ben-
efit from. To model this procedure, we screenshot the state of the system as a
tuple that we denote as �S = (m0,m1, �F 0, �F 1, O, δ, λ0, λ1), where m0 and m1 are
respectively the effective height of C0 and C1; �F 0 and �F 1 are the list of transac-
tion fee total in effective blocks on C0 and C1; O is the mining power currently

Towards Overcoming the Undercutting Problem 451

working on C1, which updates upon new block appending events; δ ∈ (−1, 1) is
the mining power shifting from the source chain to the destination chain, which
is defined to be positive if miners are shifting to C1 and negative if they are
shifting to C0; λ0 and λ1 are block generation rates for C0 and C1.

To obtain the winning probability measure for a chain from state �S, we view the
block generation event as a Poisson process and use a random variable to represent
the waiting time between block occurrence events. We denote waiting time for C0

as X and C1 as Y . They both follow exponential distribution but with different
rates. The rate parameters depend on the mining power distribution. Given the
state �S, we obtain the block occurrence rate as: λ0 = 1−O

I ; and λ1 = O
I , where

I is block generation interval (e.g. 10 min for Bitcoin). This is derived from the
thinning theorem of the Poisson point process. The main idea is that independent
sub-processes of a Poisson process are still Poisson processes with individual rates.
With this property, we can determine the time interval for the next block to appear
on a chain. Then, the key is the mining power concentrated on a chain, and further
is whether honest and rational miners shift.

For D = 1, there is only one state that the currently non-undercutting
rational miners βr need to make a decision, when the undercutter extends
C1 before the C0 extends by one. The two competing chains are in a tie
with relative height difference D̃ = 0. The probability that C1 wins is simply
p = Pr[C1 Wins] = Pr[Y < X] = O + δ.

For D = 2, there is an infinite number of states where flexible rational miners
need to make decisions about shifting. We let D̃ = m1 − m0 < D, denoting the
number of blocks by which C1 leads C0. For example, when D̃ = −1, C1 is
one block behind C0. Then C1 wins if it creates 3 blocks before C0 extends
by 1, or discovers 4 blocks before C0 extends by 2, and so on. Thus, we have
p =

∑∞
i=0 Pr[(D − D̃ + i)Y < (i + 1)X].

(i) When D̃ = −1, C1 is behind C0. For C1 to win, we need p =
∑∞

i=0 Pr[(3 +
i)Y < (1 + i)X] =

∑∞
i=0(βu + δ)3+i(1 − βu − δ)i.

(ii) When D̃ = 0, there is a tie between C1 and C0. In this case, p =∑∞
i=0 Pr[(2 + i)Y < (1 + i)X] =

∑∞
i=0(βu + δ)2+i(1 − βu − δ)i.

(iii) When D̃ = 1, C1 is leading. We have p =
∑∞

i=0 Pr[(1 + i)Y < (1 + i)X] =∑∞
i=0(βu + δ)1+i(1 − βu − δ)i.

A Miner’s Probability of Winning a Block. Suppose a miner Mi with βMi

mining power is mining on a chain Cj with βCj
accumulated total mining power

which has winning probability pCj
. Then Mi’s winning probability is βMi

βCj
pCj

.

452 T. Gong et al.

4 Game Analysis

Fig. 1. State transition for D = 1.
“X” Boxes are terminal states. For
non-terminal states, circles indi-
cate ties. Every left branch means
C0 extends by one and every right
branch refers to C1 creating a new
block. The quantity on the arrow is
the probability of state transition.

We analyze the profitability of the under-
cutting strategy with parameter D = 1 in
this section and continue the discussion with
D = 2 in the full report, for which a summary
resides in Appendix A. The latter generates
fewer profits. We differentiate between scenar-
ios with “abundant” and “limited” amounts
of fees. The extreme case where there are
only negligible fees claimable for a long period
(“drought”) is described in the full report.

4.1 Giving Up if One Block Behind

We use the abbreviated state S∗ = (m0,m1)
in discussion. We denote the transaction fees
inside the first two blocks of C0 as F 0

1 and
F 0
2 , the transaction fees inside blocks of C1 as

F 1
1 and F 1

2 , the expected returns for flexible
rational miners βr as Rr and the expected returns for the undercutter as Ru.
When there is no undercutting, we denote their respective expected return as
R′

r and Ru.
For D = 1, rational miners only need to decide whether to shift at state

S∗ = (1, 1) when undercutting becomes visible as shown in Fig. 1. Suppose they
shift x of their mining power βr to C1. They can decide x that gives max E[Rr]:

arg max
x∈[0,1]

(
1owner · (1−p) ·F 0

1 +
(1 − x)βr

βh + (1 − x)βr
(1−p) ·F 0

2 +
xβr

xβr + βu
p ·F 1

2

)
(1)

where p is the probability of C1 winning and 1owner indicates whether a rational
miner is the owner of the first block on chain 0. The shift can then be calculated as
δ = xβr. Observe that the optimization problem involves fees inside succeeding
blocks after the forking point. We represent fees in a relative way for general
interpretability: we let F 0

1 = 1 and have fee total in other blocks measured
relative to it. Now we discuss two different mempool conditions.

Mempools with Limited Bandwidth Set. By “limited” we mean the current
bandwidth set on C0 has a small enough transaction fee total (< βu

1−βu
F 0
1). We

provide more details concerning this threshold as we proceed. WLOG, we assume
F 0
1 = 1, F 0

2 = γ ≥ 0 (s.t. F 0
2

F 0
1

= γ), F 1
1 = a and F 1

2 = b where a ∈ [0, 1]. We
can let b = 1 + γ − a, assuming the best case for the undercutter that it can
compose the first block on C1 in such a way that the second block can claim all
unclaimed fees within one block. If a rational miner decides to undercut, with
probability βu, the undercutter can create a new chain and the game is started.

Towards Overcoming the Undercutting Problem 453

In the remaining game, with probability p = βu+δ, C1 wins and with probability
(1 − p), C0 wins. The expected profit of the undercutter is

E[Ru] = βu(βu + δ) · (1 · a +
βu

βu + δ
· (1 + γ − a))

The expected return for the rational miner if it does not undercut is E[Ru] =
βuγ. The miner will undercut only if E[Ru] < E[Ru]. Then

γ <
δa + βu

1 − βu
(2)

With γ < βu

1−βu
, E[Ru] < E[Ru] even when δ = 0. That is, even no rational

miner shifts to C1, there are so few fees left in the mempool that the attacker is
always better off by forking C0 compared with extending it.

One extreme case is when there are no transactions left or the bandwidth set
has negligible fees and F 0

2 = 0. The rational miner will fork because originally
there is nothing left on C0 and E[Ru] = 0. One detail is that the attacker
needs to craft the first block (determine a) it generates to avoid being undercut
again. Suppose when γ < T (T = βu

1−βu
in our current context), a potential

undercutter initiates the attack. Then by choosing a in such a way that 1+γ−a
a ≥

T2 (T2 = βu2
1−βu2

in the current context), the undercutter can avoid being undercut
again. Note that here when an undercutter decides a, it is picturing a potential
undercutter βu2 other than itself. We will revisit the choice of a after complete
the discussion for γ > βu

1−βu
case.

In conclusion, for D = 1, when the attacker is stronger (βu is larger), the
requirements on the mempool bandwidth set fee total for undercutting to be
profitable regardless of rational miners’ actions is looser. When βu approximates
0.5, the threshold ratio approaches 1, which occurs with high frequency. For
βu = 0.2, the upper bound is 0.25, where the current bandwidth set is 1/4 of
the fees inside the chain head of C0.

Mempools with Sufficient Bandwidth Set. By “sufficient” we mean the
current bandwidth set in the mempool has more than “limited” transaction fee
total (≥ βu

1−βu
F 0
1). In this case, the undercutter needs to attract some rational

miners at state (1,1) (make δ > 0). It’s straightforward to verify that the owner
of the undercutting target block is better off by staying on C0. We treat this
miner as honest in the following calculations and only make decisions for the
remaining rational players. To decide whether to shift to C1, rational miners
solve for x in

arg max
x∈[0,1]

E[Rr] = arg max
x∈[0,1]

((1 − x)βr

βh + (1 − x)βr
(1 − p)γ +

xβr

xβr + βu
p(1 + γ − a)

)

Here p = O + δ = βu + xβr. One observation is that the rational miners either
move to C1 with all their mining power or none (function is linear in x after

454 T. Gong et al.

simplification). When x = 1, we have E[Rr|x=1] = βr(1 + γ − a). Similarly, in
setting x = 0, we obtain E[Rr|x=0] = βrγ. To encourage shifting of rational
miners, we need E[Rr|x=1] > E[Rr|x=0], which means a < 1. To avoid being
undercut, the undercutter additionally needs to pick an a such that this condition
is not satisfied for the first block on its C1. This is to say the undercutter can
profitably undercut C0 in expectation, but others do not expect to attack its C1

successfully. As previously touched on, we need

a ≤ 1 + γ̄

1 + T
=

1 + γ̄

1 + a2βr2+βu2
1−βu2

, a2 ≤ 1 + γ̄′

1 + aβr+βu

1−βu

(3)

where βu2 is the mining power of the strongest potential undercutter for this
attacker, a2 is what this opponent would claim in the first block if he forks the
undercutter’s chain and βr2 , βh2 is the remaining flexible rational mining power
and honest mining power in that case. Here, γ̄, γ̄′ are the fee totals in the respec-
tive next bandwidth set measured relative to the respective current bandwidth
set, when the strongest and second strongest undercutters are making the attack
decisions. We can easily solve for a and a′ numerically given assignments for min-
ing power distributions and the mempool (for computing γ̄, γ̄′ from bandwidth
sets). A program for this task can be found here [18].

In conclusion, for D = 1, the undercutter sets a, the fees to claim in the first
block (measured relative to the fees in the target block), properly and undercut if
γ < aβr+βu

1−βu
for a potentially profitable attack. We say “potentially” because new

transactions may arrive and change the bandwidth set, resulting in uncertainties
in implementing undercutting. We summarize below the algorithm for D = 1.

(Part 1) A potential undercutter decides whether to undercut:
Compute a numerically according to Inequalities 3 that maximizes E[Ru]
and check if γ < aβr+βu

1−βu
. If Yes, start undercutting.

(Part 2) Flexible rational miners decide mining resource distribution:
Solve for x (proportion of resources to shift to the chain) in Eq. 1.
(Part 3) Miners avoid being undercut:
Calculate the attack condition T (= aβr+βu

1−βu
) for the strongest undercutter

a miner is defending against. Check if the current γ̄ < T . If Yes, include
in the current block < 1+γ̄

1+T of the fees in the bandwidth set; otherwise,
use the bandwidth set.

Treating Rational Miners as a Whole. In the above analysis, rational min-
ers make decisions from a collective perspective by maximizing E[Rr] instead of
the expected returns for a specific rational miner. This can give rise to coordina-
tion problems. Fortunately, rational miners either move all their mining power
or stay on their current chain. There is one scenario in practice when a rational
miner may not be flexible, which is when this miner owns the current chain head
of C0. When a rational miner is not flexible, as mentioned in the above analysis,

Towards Overcoming the Undercutting Problem 455

we treat it like honest miners. Since miners are aware of other miners’ types
across time, they will be able to adjust their reasoning process.

When to Apply Undercutting Avoidance. Suppose the current bandwidth
set contains fees of 1 and the remaining next bandwidth set contains fees of γ.
The mempool is always sorted so γ ≤ 1 (except when no transaction exists and
γ is not well-defined). Suppose we have computed the corresponding threshold
attacking condition T for a rational attacker and γ < T . Then this attacker
undercuts if a miner simply assembles the current bandwidth set into a block or
claims ≥ 1+γ

1+T of the fees in the bandwidth set. We state the following theorem.

Theorem 1. In setting D = 1, each miner applying avoidance procedure when
creating a new block is NE.

Proof. Let Mi ∈ M be a miner with mining power βMi
and Mi calculates T =

aβr+βu

1−βu
. When γ ≥ T , Mi proceeds as normal. Therefore, we only need to show

that for Mi, when γ < T , Mi is better off by claiming a < 1+γ
1+T of the fees

in bandwidth set. The key element here is that the decision of how many fees
to claim in a block is decided before one successfully generates the proof of
work. Let the current bandwidth set BS0 have a fee total of 1, and we measure
the expected returns relative to it. We denote Mi’s expected return from not
applying avoidance as E[RMi

] and applying avoidance as E[RMi,avoid].
It’s straightforward to see that E[RMi,avoid] = 1 · βMi

= βMi
because the

strongest and other rational miners do not undercut. Mi can claim fees in the
current bandwidth set BS0 in different rounds. Each time, Mi generates a suc-
cessful proof of work with probability βMi

.
If Mi does not apply avoidance and claim all fees in BS0, at least the strongest

rational miner is incentivized to undercut given that γ < T . From previous
analysis (see Fig. 1 for a quick reference), we know that the undercutter wins
with probability βu(βu + δ) where 0 ≤ δ ≤ βr −βu. Thus, Mi can expect to gain
profits E[RMi

] = 1 · βMi
(1 − βu(βu + δ)) < E[RMi,avoid].

By unilaterally deviating from avoidance when γ satisfies undercutting con-
ditions of a potential undercutter, Mi receives smaller expected returns. �	
There are two special cases worth noting: (1) all miners are honest (βh = 1) so
that T = 0. We know that γ ≥ 0. No effective avoidance is ever needed in this
case; (2) Mi is the only rational miner (βr = 0) so that T = 0 for itself. Mi does
not need to apply avoidance since γ ≥ 0.

Quantifying Strong Undercutter’s Advantage. Let the strongest under-
cutter have mining power βu and the second strongest undercutter have mining
power βu2 . We know from the previous discussion that a miner should always
apply avoidance techniques to avoid being undercut in our current setting. For
miners other than the strongest undercutter βu, they need to defend against βu

while βu itself only needs to defend against βu2 . Let T, T ′ be the threshold ratio
computed for βu and βu2 respectively. We can capture its advantage with the

456 T. Gong et al.

ratio 1+T
1+T ′ . For example, if βu = 0.5, βu2 = 0.2, βh = 0, 1+T

1+T ′ = 4, which means
that the strongest undercutter can claim 4 times than what the other miners
are collecting each time. When the discrepancy between βu, βu2 approaches 0,
1+T
1+T ′ approaches 1. More formally, we capture this inefficiency brought by selfish
behavior with the price of anarchy (PoA) [12].

Corollary 1 (Price of Anarchy). In setting D = 1, βh < 1, βr > 0, with
the strongest and the second-strongest undercutters respectively having mining
power βu, βu2 , the Price of Anarchy is PoA = 1+T

(T−T ′)βu+1+T ′ , where T, T ′ are
as defined above.

This follows from the above analysis. When all miners stay honest, the
“undercutter” is expected to earn a fair share βu. When miners apply avoid-
ance, the strongest undercutter claims 1+γ

1+T ′ each time while others claim 1+γ
1+T .

We can obtain its share
βu

1+γ
1+T ′

βu
1+γ
1+T ′ +(1−βu)

1+γ
1+T

. Then we can calculate the PoA as

the ratio between the strongest undercutter’s shares in its optimal situation (the
worst-case NE for the system) and in its worst case (the optimal all honest out-
come). We do not include other miners’ returns in the calculation because the
total shares always sum up to 1 regardless of the outcome and our focus is on
capturing the advantage of the undercutter. To give a demonstrative example,
let βu = 0.499, βu2 = 0.176 and βh ∈ {0, 0.05, 0.10, . . . , 0.30}, on average (over
βh) T = 1.30, T ′ = 0.29 and PoA = 1.29. This means that for βu, the mean
revenue proportion from undercutting is 0.499 × 1.29 = 0.63.

One observation is that when βu and T − T ′ are large, PoA is large. To
move it towards 1 (a more stable system), we can either strengthen the second
potential undercutter or downsize βu through further decentralization.

5 System Evaluation

In this section, we evaluate the profitability of undercutting using data obtained
from Bitcoin and Monero, along with artificial transactions generated from nor-
mal distributions. Bitcoin is a typical example of congested blockchains, and
Monero is a more available one. The simulation codes and a sample data set
have been made open source [18]. In the previous analysis, we let the undercut-
ter be aware of future transaction flows in and out of the mempool. In reality,
there is more uncertainty involved. Another difference is that now mining powers
are discrete, and we model each miner individually.

5.1 Data Collection and Experiment Setup

Transactions. We obtain the blocks from height 630, 457 (May 15th, 2020
after the Bitcoin’s block reward halving) to 634, 928 (June 15th, 2020) from
the Bitcoin blockchain using the API provided by blockchain.com [24], compris-
ing 9, 167, 040 transactions. The Monero blockchain data are collected using a
similar API from xmrchain.net. In total, we acquire 1, 482, 296 transactions from

https://www.blockchain.com
https://www.xmrchain.net

Towards Overcoming the Undercutting Problem 457

block height 2, 100, 000 (May 17th, 2020) to 2, 191, 000 (Sept 20th, 2020). For
each of these transactions, we extract the size, fee, and timestamp attributes.
Note that transactions that appeared during the sample period but not in any
of the collected blocks are not included. Thus, the memory pools reconstructed
are not the exact mempools miners were faced with. We also create artificial
transaction data sets with normally distributed fee rates.

Miners. To mimic the actual Bitcoin network, we follow the mining power
distribution of miners published by blockchain.com [25] on July 30th, 2020. We
make the strongest miner with 17.6% mining power the undercutting miner.
We additionally consider a hypothetical undercutter with 49.9% mining power.
This is to uncover the profitability of undercutting for a strong attacker and
its advantage over other miners when avoidance techniques are adopted by all.
For the Monero network, we follow the mining power distributions published by
exodus [27] and moneropool.com [1]. The strongest pool with 35% mining power
is made the undercutting miner.

Setup. We model the blockchain system as event-based, with new block cre-
ation being the event. Parameters and states of the system are updated upon a
new block creation event that we denote as Bi for the remaining of this section.
Miners have the same view of the network and the same latency in propagat-
ing the blocks and transactions. So miners working on the same chain see the
same mempool. We initialize the time of the system to the earliest transaction
timestamp. As shown in Algorithm 1, new block creation first happens (lines
2–4). Then chains, miners, and mempools are updated in lines 5–7. We include
more details for chain and miner updating routines in Algorithm 2. Detailed
descriptions for each routine can be found in the full report.

Simulation Run. In a normal run, we repeat the above steps until we exhaust
all transactions. In an avoidance-enabled simulation run, we repeat the procedure
but with all miners actively defending against undercutting in line 4, according
to the two summarized algorithms in Sect. 4.1 and Appendix A.

5.2 Experiment Results

Normal Runs. Overall in a normal run, a strong undercutter can expect to
earn more than fair shares by conditional undercutting as shown in Figs. 2b
and 2d. (i) In Bitcoin runs, the 17.6% undercutter receives on average (for
D = 1) 17.9% shares for 0–50% honest mining power (Fig. 2a). The strong 49.9%
undercutter receives a greater profit of 60.8% of the shares (Fig. 2b). (ii) In runs
with artificial transactions, the profits for D = 1, 2 bear a wider gap than with
actual Bitcoin transactions (Fig. 2c). (iii) In Monero runs, the 35% undercutter
obtains 43.2% of the profit on average (for D = 1, 2) for different honest miner
portions (Fig. 2d). Undercutting is especially efficient in Monero because of its
small mempools, which provide limited cushion effects.

https://www.blockchain.com
https://www.moneropool.com

458 T. Gong et al.

Algorithm 1: Simulation Overview

input : txSet, minerSet, chainsTime
1: while txSet not empty do
2: extChain ← nextChainToExtend(chainsTime);
3: m ← selectNextBlockMiner(extChain);
4: nextBlock ← publishBlock(m);

5: updateChains(extChain, nextBlock);

6: updateMiners(extChain);

7: updateMempool(extChain);

Algorithm 2: Chain and Miner Updates

1: Function updateChains(extChain, nextBlock):
2: extChain.append(nextBlock);
3: foreach chain in chainsTime do
4: remove from chainsTime if it is non-wining
5: t ← NextBlockCreationTime(extChain);
6: update chainsTime with tuple (extChain, t);

7: Function updateMiners(extChain):
8: foreach miner in minerSet do
9: if miner = undercutter then

10: decide to fork or not and craft the new block as described in Part 1 of the
D = 1 algorithm in 4.1, the D = 2 algorithm in Appendix A;

11: if miner = honest then
12: if extChain longest chain then
13: switch to extChain;

14: if miner = rational then
15: decide to switch to extChain or stay on current chain as described in Part

2 of the D = 1 algorithm in 4.1, the D = 2 algorithm in Appendix A;

With Undercutting Avoidance. As noted by PoA, the attacker has an
advantage over others in equilibrium. The predicted average revenue proportion
(adjusted for rounds where the undercutter mines a block and attacking is unnec-
essary) for the 49.9% attacker is around 63%. (i) In Bitcoin actual and artificial
data runs, the return proportion is close to this predicted average. Avoidance
runs can result in better revenues for the undercutter if the attack cannot be car-
ried out to its ideal extent. That is because a large mempool along with continual
incoming transactions lowers the profitability of undercutting. The implication
is that if undercutting cannot be implemented ideally, avoidance can be relaxed
from the exact extent. (ii) For Monero, we observe profit reduction for attackers
in both margins after enabling avoidance, as shown in Fig. 2d. (iii) Monero runs
and Bitcoin runs for 17.6% undercutter provide more straightforward results,
compared to Bitcoin runs with 49.9% attacker. Because the second undercutter
in Monero has 35% mining power, which equals the strongest undercutter’s min-
ing power and in Bitcoin, the configuration is that the second-strongest mining
power is 15.3% for 17.6% attacker and 20% for 49.9% attacker.

Minor Changes to Bitcoin Core Codebase. We provide discussions con-
cerning undercutting avoidance implementation and other possible defenses in
the full report. We note that only light code changes in the Bitcoin core codebase
are needed, which we demonstrate in this source [8].

Towards Overcoming the Undercutting Problem 459

Fig. 2. Undercutting returns: normal runs (dashed lines) and runs with avoidance
feature enabled (solid lines). The shadowed band is statistics’ 95% confidence interval.

6 Conclusion

We study the profitability of the undercutting mining strategy with the block
size limit present. The intentional balancing of undercutting others and avoiding
one’s fork being undercut again demands specific conditions on the unconfirmed
transaction set at the time of decision-making. Once conditions are met, an
attacker can expect positive premiums. However, because such conditions are
not easy to satisfy, are time-dependent (can be invalidated if new transactions
arrive), and can be manipulated, it opens a door for mitigation. By applying
an avoidance technique to invalidate the aforementioned conditions, miners can
avoid being undercut. Avoidance encourages miners to claim fewer fees if the
current bandwidth set is sufficiently wealthier than the next bandwidth set.
As a result, the competition of undercutting can involuntarily promote the fair
sharing of fees even in a time-variant fee system. Nevertheless, in a one-sided
competition where the mining power discrepancy between the first and second
strongest undercutters is large, the stronger undercutter has a natural advantage
over others because it only has to defend against the weaker.

460 T. Gong et al.

Acknowledgement. We would like to thank our shepherd Marko Vukolic and anony-
mous reviewers for their valuable comments. We thank Dankrad Feist for his feedback in
the early stage of this project. This work has been partially supported by the National
Science Foundation under grant CNS-1846316.

A Giving Up After Two Blocks Behind

Fig. 3. State transition for D = 2. Notations
are the same as Fig. 1. Now we have infinite
state transitions. δ′ and δ′′ are the amount of
rational mining power shifting from one chain
to another.

We present major steps for ana-
lyzing the D = 2 case and the
complete analysis can be found in
the full report. Rational miners
now make decisions at states S∗ =
{(1, 1), (1, 2), (2, 1), (2, 2), ...}. The
winning probabilities now com-
prise infinite series. Without loss
of generality, we let F 0

1 = 1, F 0
2 =

F 0
3 = γ, F 1

1 = a, F 1
2 = b and

F 1
3 = 1 + 2γ − a − b (where a ∈

[0, 1], γ ≥ 0). F 0
2 , F 0

3 can be of dif-
ferent values in reality but here we
use the same value to highlight the
wealthiness of F 0

1 . Suppose eventu-
ally we derive an attacking condi-
tion T for setting D = 2 as well,
then the undercutter would want
to set a and b to satisfy 1+γ−a

a > T

and 1+2γ−a−b
b > T to avoid being

undercut.
We take the same route as in the D = 1 case. We know that if there is

no attack, the undercutter expects to receive E[Ru] = 2βuγ. If it starts the
attack, its expected return from the right branches (shown in Fig. 3) when the
undercutter succeeds and no rational miners assist is

E[Ru] = βu(2γ + 1)
∞∑

i=0

βi+2
u (1 − βu)i =

β3
u(2γ + 1)

1 − βu(1 − βu)

The limited bandwidth set condition, γ <
β2

u

2(1−βu)
, is more demanding than

the one for D = 1. For βu = 0.5, the upper bound is now 0.25 instead of 1. For
βu = 0.2, the bound is 0.025 instead of 0.25. Overall, for weak attackers, the
condition is way more demanding than before.

Next, we consider γ ≥ β2
u

2(1−βu)
(with sufficient bandwidth set) and the under-

cutter needs rational miners to join C1. Same as before, rational miners allocate
their mining power among the two chains to maximize their expected returns:

Towards Overcoming the Undercutting Problem 461

arg max
x∈[0,1]

E[Rr] = arg max
x∈[0,1]

(

1owner · p0 +
(1 − x)βr

βh + (1 − x)βr
p0 · 2γ

+
xβr

xβr + βu
p1 · b +

xβr

xβr + βu + βh
p1 · (1 + 2γ − a − b)

)

(4)

where p0 ≤ (1 − βu − xβr)2 is the probability of C0 leading by 2 blocks first and
p1 ≥ (βu +xβr)(βu +xβr +βh) is the probability of C1 leading by 2 blocks first.
Here we only consider the leftmost and rightmost branch in Fig. 3 because they
are the two most significant paths. We can observe that the objective function is
convex. By Jensen’s inequality, the expected returns reach maximum at either
of the two ends. Again we let E[Rr|x=0] < E[Rr|x=1] and obtain

2(1 − βu)γ < b + (βu + βr)(1 + 2γ − a − b)
βh>βu⇒ γ < (βu+βr)(1−a)+βhb

2(βh−βu)

When βh ≤ βu, flexible rational miners move to the fork if b > 0. With
rational miners joining, the expected return for undercutter on the rightmost
branch is now E[Ru] =

(
a + βu

βu+βr
b + βu(1 + 2γ − a − b)

) · βu(βu + βr). We let
E[Ru] > E[Ru] and obtain the condition on γ for profitable undercutting:

γ < min{ (βu + βr)a + βub + βu(βu + βr)(1 − a − b)
2(1 − βu(βu + βr))

,

1∗
βh>βu

(βu + βr)(1 − a) + βhb

2(βh − βu)
} (5)

where 1∗
βh>βu

= ∞ if βh ≤ βu and 1 otherwise. Same as before, we denote the
right-hand side condition as T and solve for a and b numerically by considering
the strongest potential undercutter the attacker is facing.

a ≤ 1 + γ̄

1 + T
, a2 ≤ 1 + γ̄′

1 + T ′ , b ≤ 1 + 2γ̃ − a

1 + T
, b2 ≤ 1 + 2γ̃′ − a

1 + T ′ (6)

where T and T ′ are the attack conditions for the undercutter under discussion
and its strongest opponent. Here, γ̃, γ̃′ are the fee totals in the respective third
bandwidth set measured relative to the respective next bandwidth set.

We present the algorithm for D = 2 below.

(Part 1) A potential undercutter decides whether to undercut:
Compute a, b numerically according to Inequalities 6 that maximizes
E[Ru] and check if γ satisfies Inequality 5. If Yes, start undercutting.
(Part 2) Flexible rational miners decide mining resource distribution:
Solve for x in a generalized Eq. 4 (explicitly given in the full report).
(Part 3) Miners avoid being undercut:
Calculate the attack condition T (right-hand side of Inequality 5) for
the strongest undercutter a miner is defending against. Check if current
γ̄ < T . If Yes, include in the current block < 1+γ̄

1+T of the fees in the
bandwidth set; otherwise, use the bandwidth set.

462 T. Gong et al.

References

1. Monero pools since 2016 (2020). http://moneropools.com/
2. Akerlof, G.A.: The market for “lemons”: quality uncertainty and the market mech-

anism. In: Uncertainty in Economics, pp. 235–251. Elsevier (1978)
3. Bitcoin.org: Memory pool. https://developer.bitcoin.org/devguide/p2p network.

html#memory-pool
4. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability

of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

5. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

6. Eyal, I.: The Miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE (2015)

7. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0 6

8. Gong, T.: Bitcoin core source code updated to account for undercutting avoidance.
https://github.com/haas256/bitcoin

9. Gong, T., Minaei, M., Sun, W., Kate, A.: Towards overcoming the undercutting
problem. arXiv preprint arXiv:2007.11480 (2020)

10. Half, B.B.: Bitcoin halving 2024 (2020). https://www.bitcoinblockhalf.com/.
Accessed 22 July 2020

11. Heilman, E.: One weird trick to stop selfish miners: fresh bitcoins, a solution for the
honest miner (Poster Abstract). In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 12

12. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

13. Kwon, Y., Kim, D., Son, Y., Vasserman, E., Kim, Y.: Be selfish and avoid dilemmas:
fork after withholding (FAW) attacks on bitcoin. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 195–209.
ACM (2017)

14. Kwon, Y., Kim, H., Yi, Y., Kim, Y.: An eye for an eye: economics of retaliation in
mining pools. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 169–182 (2019)

15. Lavi, R., Sattath, O., Zohar, A.: Redesigning bitcoin’s fee market. In: The World
Wide Web Conference, pp. 2950–2956. ACM (2019)

16. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting
games in distributed computation: the case of bitcoin pooled mining. In: 2015 IEEE
28th Computer Security Foundations Symposium, pp. 397–411. IEEE (2015)

17. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 706–719 (2015)

18. Minaei, M., Gong, T.: Source code of the blockchain simulation and undercutting
experiments. https://github.com/haas256/UP

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

http://moneropools.com/
https://developer.bitcoin.org/devguide/p2p_network.html#memory-pool
https://developer.bitcoin.org/devguide/p2p_network.html#memory-pool
http://arxiv.org/abs/1402.1718
https://doi.org/10.1007/978-3-030-23696-0_6
https://github.com/haas256/bitcoin
http://arxiv.org/abs/2007.11480
https://www.bitcoinblockhalf.com/
https://doi.org/10.1007/978-3-662-44774-1_12
https://doi.org/10.1007/3-540-49116-3_38
https://github.com/haas256/UP

Towards Overcoming the Undercutting Problem 463

20. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

21. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324. ACM (2017)

22. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

23. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009 (2014)

24. Blockchain Luxembourg S.A.: Bitcoin blockchain API (2020). https://www.
blockchain.com/api. Accessed 26 Sept 2022

25. Blockchain Luxembourg S.A.: Bitcoin miners mining power (2020). https://www.
blockchain.com/en/pools. Accessed 27 Feb 2020

26. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

27. Won, D.: 2020’s best monero pools (2020). https://www.exodus.io/blog/best-
monero-pools/

28. Zhang, R., Preneel, B.: Publish or perish: a backward-compatible defense against
selfish mining in bitcoin. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159,
pp. 277–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-
4 16

http://arxiv.org/abs/1112.4980
http://arxiv.org/abs/1402.2009
https://www.blockchain.com/api
https://www.blockchain.com/api
https://www.blockchain.com/en/pools
https://www.blockchain.com/en/pools
https://doi.org/10.1007/978-3-662-54970-4_30
https://www.exodus.io/blog/best-monero-pools/
https://www.exodus.io/blog/best-monero-pools/
https://doi.org/10.1007/978-3-319-52153-4_16
https://doi.org/10.1007/978-3-319-52153-4_16

Arbitrage Attack: Miners of the World,
Unite!

Yuheng Wang1, Jiliang Li1(B), Zhou Su1, and Yuyi Wang2(B)

1 School of Cyber Science and Engineering, Xi’an Jiaotong University, Xi’an, China
wangdahu1211@stu.xjtu.edu.cn, jiliang.li@xjtu.edu.cn, zhousu@ieee.org

2 ETH Zürich, Zürich, Switzerland

yuyiwang920@gmail.com

Abstract. Blockchain oracles are introduced to mitigate the gap between
blockchain-based applications and real-world information. To solve the
centralization problem of current oracle systems, many decentralized pro-
tocols have been designed. In this paper, we define the basic model for
decentralized oracles that rely on unencrypted transactions for verifica-
tion and adjustment tasks. Furthermore, we introduce Arbitrage attack
against such decentralized oracles carried out by rational miners and min-
ing pools. We analyze the attack based on game-theoretic methods. More-
over, we briefly discuss the price of anarchy to demonstrate the character-
istic of attackers’ cooperation union under different circumstances.

Keywords: Blockchain · Decentralized price oracle · Nash
equilibrium · Price of anarchy (PoA)

1 Introduction

If we take a look at all the impressive events that happened in 2021, the epic
“Gamestop (GME) Short Squeeze” war that happened among the union of retail
investors, certain hedge funds as well as short-sellers at the very beginning of
this year can’t avoid discussion [28]. Gamestop is an offline game retailer com-
pany selling games, game consoles, and accessories. Under the influence of e-
commerce, the revenue of Gamestop had been greatly impacted. Therefore many
hedge funds and short-sellers believe that the stock price is going to drop and
took the opportunity to short sell Gamestop’s stock. However, many Gamestop’s
loyal customers as well as some speculators, on the contrary, started to buy in
Gamestop’s stock in order to hinder venture capital firms’ plan. Due to the inter-
net propaganda, more and more retail investors and even some famous investors
also participated in and started to buy in the stock. Consequently, Gamestop’s
stock price had surprisingly risen a lot, which caused many venture capital firms
great loss [31].

The important reason for this great victory is that a large number of inde-
pendent retail investors, who even don’t know each other before, take the same
action and manage to “change” and “manipulate” the price of Gamestop’s stock
price together. From the view of a bystander, it seems that these retail investors
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 464–487, 2022.
https://doi.org/10.1007/978-3-031-18283-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_23

Arbitrage Attack: Miners of the World, Unite! 465

form a temporary union to achieve this goal. So will this kind of temporary union
appear in other fields? Currently, there have been extensive discussions about
possible applications of blockchain technology, and decentralized finance (DeFi)
has become a main driver of blockchain adoption. Compared with the traditional
finance industry, DeFi uses transparent and immutable on-chain smart contracts
to realize trading activity instead of centralized custodians, banks, and brokers.
So will a temporary union appears in the DeFi system and “manipulate” the
DeFi market price to obtain high profit?

Noted that, most of DeFi projects rely on smart contracts to perform trading
operations, and these smart contracts need an oracle (also known as data feed)
to carry the real-world information (e.g., the current market price of Bitcoin) to
the blockchain as evidence to trigger execution. This is because smart contracts
are only able to use on-chain information, to guarantee the safety of blockchain
systems. Most of the oracle systems currently being used are centralized oracles
that depend on trusted third-party facilities or platforms (e.g., Town Criers [8])
to fetch outside information, and later the information will be given to the
customer through a transaction proposed by the oracle’s on-chain account.

Although such a method is effective, the deployment of centralized oracles
brings back the problem of centralization. To mitigate the problem, decentralized
oracles protocols have been proposed. Decentralized oracles (e.g., the NEST
protocol [18]) try to avoid the centralization problem by letting different users
propose opinions after hearing a query task and make decisions for the final
output together. Consequently, some inaccurate and malicious personal opinions
might inevitably be brought in. Therefore verification and adjustment methods
will be the only guarantee of decentralized oracle’s reliability. And in most cases,
procedures of opinion proposition, verification as well as adjustment are realized
in the form of on-chain transactions.

Most studies about decentralized oracles only take opinion proposers’ influ-
ence into consideration and neglect miners as well as mining pools. It is well
known that miners, especially mining pools, have considerable influence on the
publishing of transactions, which can also cause damage to the reliability and
accuracy of decentralized oracles. However, to our notice there have been very
few decentralized oracle studies considering the power of miners and mining
pools, especially when tampering with the publishing of certain transactions will
benefit them more. We believe that under such circumstances, the miners and
mining pools can form a temporary union just like retail investors in “Gamestop
Short Squeeze” event to manipulate the output of decentralized oracles and
obtain greater profit. So in this paper, we introduce the Arbitrage attack, an
attack against decentralized oracles by the union of miners and mining pools,
and carry out further analysis based on game theory.

1.1 Related Work

Oracles have been a very hot research topic these days due to the prosperous
applications based on smart contracts. Different kinds of oracle protocols have

466 Y. Wang et al.

been proposed. In general, oracles can be classified into two different types:
centralized and decentralized.

For centralized oracles, there is always a third party involved in the informa-
tion transportation task. Zhang et al. presented a very famous and widely used
centralized oracle model, Town Crier (TC) [8]. TC guarantees reliability and
confidentiality by using Software Guard Extensions (SGX). Each user’s query
request is executed by codes running in SGX, and corresponding information
is fetched from corresponding official websites. Similarly, the Provable oracle in
[29] directly fetches information from data sources and uses TLSNotary to prove
the integrity. And the PriceGeth oracle from [30] continuously sends fetched data
through the oracle’s smart contract. However, the implementation of centralized
oracles like the ones mentioned above brings centralized problems back to the
blockchain system. Since safety, confidentiality, and reliability are once again
dependent on a third party that needs to be trusted.

Therefore, various decentralized oracle protocols have been proposed to miti-
gate the shortcomings of centralized oracles [10]. In Augur, proposed by Peterson
et al. [15], all users can vote on the possible outputs given by the oracle system,
and each vote weights differently based on users’ reputation. Adler et al. designed
an oracle protocol ASTRAEA [14] which outputs results proposed and certified
also by the votes of users. However, such an oracle can only report data in the
form of Boolean propositions, each user will vote for agreement or disagreement
for query questions e.g., today’s weather is sunny. Similarly, in Witnet oracle,
designed by de Pedro et al. [16], information is retrieved and attested by different
users based on their reputation.

The rational mining pool is another important question attracting many
researchers’ attention. In [20], Eyal et al. analyze the feasibility and effect for
mining pools to carry out selfish mining attack, which shows the power of mining
pools in the blockchain system. Besides, there are other kinds of attacks due to
the rationality of mining pools like bribing [24,25], and front-running [26,27]
that may tamper with blockchain-based applications.

1.2 Our Contributions

In this paper, we first provide a basic model for decentralized oracles that depend
on unencrypted transactions to realize adjustment and verification like NEST
protocol [18]. This model contains the necessary procedures for a decentralized
oracle of this type to form a reliable output.

Based on the proposed decentralized oracle model, we introduce the Arbitrage
attack which is carried out by rational miners and mining pools. We argue that
it is possible for rational miners and mining pools to maliciously manipulate
the decentralized oracle’s output by taking the same actions together like a
temporary union in order to obtain more profit.

We further conduct a game-theoretic analysis on this attack. We use a multi-
stage static game of perfect information to model the whole attack procedure
and analyze each participant’s Nash equilibrium strategies during the game to
depict the progress of the whole attack under different circumstances. When

Arbitrage Attack: Miners of the World, Unite! 467

possible. We also compute the price of anarchy, the ratio of the social costs of
the worst Nash equilibrium, and the social optimum, to represent the influence
when the attack union is lacking cooperation.

2 Preliminaries

In the following, we outline the required background of blockchains and decen-
tralized oracles for our proposed Arbitrage attack.

2.1 Blockchains

Smart Contract and DeFi. Currently, many blockchain platforms like Ethereum
have supported smart contracts, which are based on pseudo-Turing complete
programs to manage cryptocurrency assets. Thanks to the flexibility of smart
contracts, blockchain network users are able to do more complex tradings besides
transferring to accounts, e.g., lend and borrow assets [2], margin trade [3], short
and long trading [3] and derivative assets creation [2], and all these complex
tradings constitute the foundation of Decentralized Finance (DeFi).

Mining Pool. A mining pool refers to a group of miners that gather their com-
putational power together to solve the POW problem and divide the revenue
for the creation of a new block according to each miner’s contribution [5]. The
chance of solving the cryptography puzzles is prominently increased by form-
ing mining pools. Hence, miners’ revenue becomes higher and more stable. At
present, nearly 80% hashrate of Bitcoin belong to less than 8 mining pools and
less than 3 mining pools controls 60% of Ethereum’s total hashrate [6]. Although
miners’ revenue is guaranteed because of the emergence of the mining pool, the
problem of centralization has appeared again. To be more specific, each mining
pool has a pool server connecting to an on-chain account to gather the latest
transaction information, construct a block template, and send it to pool miners.
In this case, the pool server can decide which transactions will be selected [7] in
the block template.

2.2 Oracle

Most blockchain applications, especially in DeFi projects, rely on certain infor-
mation to trigger the execution of smart contracts, but only on-chain information
can be reached by smart contracts because blockchain systems are isolated from
the outside world to guarantee safety [10]. Although information like the lat-
est trading price in Uniswap can be used, these kinds of on-chain information
sources are unreliable due to the lack of variety and stability. To be more specific,
in Uniswap, there may only be one or two transactions about two niche digital
assets at a certain time, which is not convincing enough. Besides, the price of
these transactions could be proposed by the same person, which means the price
might be malicious. Therefore, oracles that carry information from the outside

468 Y. Wang et al.

world back to the blockchain are designed to solve this problem [11,12]. Up till
now, many oracles being used bring back the problem of centralization since a
trusted third party is always required for transporting information to blockchain
systems from the real world [8,13]. Consequently, decentralized oracles, whose
output information is decided by different users is currently a hot research spot
with many problems that need to be solved [14–16].

3 Decentralized Oracle Model

In this section, we propose the basic model of decentralized oracles relying on
unencrypted transactions based on the NEST protocol [18], which is a currently
widely used decentralized oracle.

3.1 Participants

A decentralized oracle can accomplish basic query tasks generally based on four
different kinds of participants: customer, oracle platform, contributors: proposers
& verifiers, and information sources.

Customer. Decentralized oracles’ customers could be any blockchain network
user or smart contract that needs information from the outside world. They can
send transactions to oracle platforms to submit an information query task, and
certain fees are required for each query which constitutes the main income source
of oracle platforms.

Oracle Platform. Oracle platform, which usually exists in the form of smart
contracts and on-chain accounts, acts as a portal that collects query tasks and
outputs required information. Oracle platform is also responsible for managing
collected enquiry fees, distributing rewards, and adjusting the oracle protocol’s
parameters.

Contributors: Proposer & Verifier. According to the definition of the decentral-
ized oracle, each oracle’s output can actually be considered as the consensus of
different users, who are also noted as Contributors. To reach consensus, contrib-
utors who first propose their opinions are called Proposers, and those who verify
and make adjustments to these proposed opinions are called Verifiers. Noted that
all messages from both two kinds of contributors are unencrypted, therefore can
be viewed by any blockchain user without limitations. For instance, assuming
that a decentralized oracle accepts a request to search Bitcoin’s current market
price. Proposers will propose their opinions about the current price based on the
information sources they subscribed to. However, these personal opinions may be
inaccurate due to narrow information resources or delays, and some may even be
malicious. Therefore, verifiers are required or incentivized to make adjustments
or verification based on their information sources to these personal propositions,
and finally form a final oracle output at last.

Arbitrage Attack: Miners of the World, Unite! 469

Information Sources. Decentralized oracles’ outputs are formed based on users’
personal opinions, and these users can form an opinion based on their freely
chosen information sources like official websites as well as the latest on-chain
transactions like mentioned in Sect. 2.2. As a result, the choice of information
resources is not limited compared with centralized oracles and only using on-
chain information, which makes the oracles’ outputs more convincing.

3.2 Enquiry Process

Consider a decentralized oracle platform O, a customer C, a set of n con-
tributors Con = {Con1, Con2, · · · , Conn} and m different information sources
I = {I1, I2, · · · , Im}. To finish a query task Q proposed by C, all of the partici-
pants of decentralized oracles should carry out following procedures as shown in
Fig. 1:

Fig. 1. Decentralized oracle model and necessary procedures for a query task proposed
by a customer smart contract.

1. Propose query request. The customer C propose a query task Q with
required query fees to decentralized oracle platform O through a transaction.

2. Form and propose personal opinions. After noticing a new query task,
contributor Coni will form a personal opinion pi about the query based on
personal subscribed information sources set IConi

⊆ I. Noted that different
personal information source sets IConi

and IConj
could be the same, totally

different, or partly overlapped since there is no limitation for choosing infor-
mation sources. After that, some of the contributors (proposers) will propose
their personal opinion to O.

470 Y. Wang et al.

3. Verification and adjustment. For each of the proposed personal opinions,
some of the rest of the contributors, except the one who proposes this opinion,
will be verifiers and may choose to make an adjustment to these personal
opinions or propose verification for valid opinions. Such verification process
may last for a limited time, e.g., after s blocks are mined.

4. Deliver output. The opinion after adjustment and verification will be the
final output of O and given to C also in the form of transaction. Some encryp-
tion methods may be applied here to protect the customer’s privacy and
interest.

Note that in some decentralized oracle protocols, there may only be opin-
ion proposers and no contributor specially dedicated as a verifier to propose
adjustment and verification transactions. Instead, mechanisms or algorithms
like reputation or voting are used by the oracle platform itself to adjust pro-
posed opinions. Assume there are total n opinion transactions been proposed
to the oracle platform for a query task, and if we set a specific transaction as
the target opinion, then among the rest n − 1 transactions, those opinions that
are against the target opinions’ will therefore be regarded as adjustment and
verification opinions. The contributors who propose these transactions can rela-
tively be considered as verifiers. In that case, the decentralized oracle model we
proposed above can still apply to these kinds of decentralized oracle protocols.
Besides, we also believe that the Arbitrage attack introduced in the following
sections will also be feasible in these decentralized oracle protocols.

4 Arbitrage Attack

In this section, we propose a possible attack against the decentralized oracle
model mentioned before, which is carried out by rational mining pools.

4.1 Mining Pools’ Influence on Decentralized Oracle

As mentioned before, mining pools with overwhelming hashrate nearly have the
right to decide which transactions would be added to the chain as well as the
corresponding order. The accuracy of decentralized oracles’ outputs can also be
influenced by mining pools since in most cases, oracles’ main procedures are
also carried out through on-chain transactions sent by contributors. Therefore,
if some transactions are delayed or ignored because of mining pools’ intervention,
then the oracle’s outputs might be seriously affected.

Due to the negative influence of mining pools, many mitigation methods have
been implemented in the updates of the existing blockchain system. Besides,
many mining pools cut their hashrate voluntarily, since the negative influence of
their dominating hashrate may do damage to the blockchain system and further
cause a loss to their assets in the blockchain system. Consequently, the dominat-
ing mining pools have gradually been replaced by several different mining pools
with less hashrate. In that case, the capacity of mining pools is greatly weakened

Arbitrage Attack: Miners of the World, Unite! 471

and transactions will be less likely to be blocked or delayed because of one or
two mining pools’ willingness.

What can go wrong?
Because of the distribution of total hashrate, divergence may appear among

mining pools, since decisions will only be made based on each one’s own benefits.
However, once their target overlaps during a time period, a temporary union
may appear, which is similar to retail investors in the Gamestop event. When it
comes to decentralized oracles, different mining pools may take the same action
and cooperate to block contributors’ certain transactions to manipulate oracles’
outputs and arbitrage later. This is what we called the Arbitrage attack that
may happen in a decentralized oracle.

4.2 Arbitrage Attack Model

Fig. 2. Procedures of the whole Arbitrage attack. The customer contract will be caused
huge damage due to the rationality of mining pools

Assuming that there are n rational mining pools in the blockchain network and
search for high profit in the blockchain network (i.e., individual miners can be
considered as mining pools with lower hashrate). And there is a decentralized
oracle O that outputs the current price of Bitcoin, for instance, to all its con-
sumers in the blockchain network.

When a malicious user wants to intervene in the oracle’s output, it will first
propose a malicious price quotation through transaction tm which is greatly
deviated from the real market price, much higher for example. According to
the mechanism of O, an honest verifier may notice the difference during the
verification procedure and propose an adjustment transaction ta with gas fee.
Generally, mining pools would be willing to include ta into the next block they are

472 Y. Wang et al.

currently mining and win normal profit A, which is the reward for following the
protocol. However, after noticing the malicious transaction tm, rational mining
pools may hesitate because tm represents an arbitrage opportunity for higher
profit than A.

As a result, instead of simply including ta, a rational mining pool may choose
to buy or loan a large amount of Bitcoin as soon as they see the price quota-
tion tm, and prepare a set of arbitrage transactions to propose after the attack
succeeds. Noted that these transactions are all against customer contracts of
oracle O. Later they will together ignore any adjustment transactions that want
to amend the quotation together like a union, since these transactions are also
unencrypted and therefore can be distinguished easily. Finally, they can sell out
all the Bitcoin they have by proposing a newly mined block containing arbi-
trage transactions set tarb they want to make after the quotation tm becomes
valid. By doing so, mining pools are able to obtain higher arbitrage profit B.
Consequently, customers using O as their information source will be severely
influenced because of these arbitrage transactions. The whole attack process is
shown in Fig. 2. It is worth to be noted that, the detailed expressions and cal-
culated methods of profit A and B should be uncertain and depend on specific
decentralized oracle protocol. But generally speaking, the arbitrage profit B will
always be higher than the normal profit A.

4.3 Attack Feasibility

The profit of a successful Arbitrage attack is usually attractive and irresistible.
Intuitively, it seems that mining pools will definitely choose to attack when B is
larger than the normal profits A. However, not all of the rational mining pools
will obtain B at last. Currently, most cryptocurrency transactions are based on
AMM DEXs (automated market maker decentralized exchanges), like Uniswap.
For AMM DEXs, an exchange with a large scale will cause a great slippage,
which means the second user who wants to arbitrage will gain no profit [4]. To
simplify the analysis, we propose the following assumption:

Assumption 1. Each mining pool has sufficient property to propose large
enough transactions to every victim smart contracts using oracle O.

The assumption above is reasonable since the current prosperous DeFi system
allows users to borrow specific crypto assets through services like Flash Loan [23].
Besides, what we mean by a transaction is “large enough” here is that the
transaction will cause a great slippage. And based on Assumption 1 we can
propose the following theorem:

Theorem 1. There can be only one winner to obtain profit for the Arbitrage
attack no matter success or not.

On the one hand, Theorem 1 shows that the final arbitrage profit B could
be tremendous compared to the normal transaction fee A, and rational mining
pools are fully incentivized to carry out this attack. On the other hand, since

Arbitrage Attack: Miners of the World, Unite! 473

there can be only one winner, some rational mining pools may give up before
the oracle’s output is changed (i.e. before the attack succeeds) and decide to
obtain the normal transaction fee A, especially for those mining pools with less
hashrate. However, even though a mining pool with less hashrate decides to stop
the attack and break the union by publishing a block containing transaction ta,
the possibility of success is based on its hashrate which is also very low.

Consequently, a key question that needs to be figured out is that whether
this temporary union of rational mining pools trying to manipulate the oracle’s
output will maintain during the whole oracle’s adjustment period until the final
decisive output. In the following section, we will analyze this question based on
game-theoretical analysis.

5 Game Theory Analysis

5.1 Game Model Forming

Before formal analysis, we first use the following assumption to restrict the ability
of mining pools:

Assumption 2. A mining pool can only decide not to include certain trans-
actions in the block building by itself, but will not ignore or block valid blocks
containing certain transactions proposed by others.

What assumption 2 guarantees is that mining pools can leave the attack
union by publishing a new block containing the adjustment transactions. And
we will not consider the situations like blockchain forking in this paper.

Assuming that there are n mining pools in the network denoted by [n] and
they are all rational, searching for high profits. w.l.o.g., the hashrate satisfy P1 >
P2 > ... > Pn and

∑n
j=1 Pj = 1. Noted that in reality, mining pools may use part

of hashrate for selfish mining [20], which won’t contribute to the attack. However
such a situation will not have a fundamental effect on the following analysis, so
we only consider the hashrate assumption mentioned above for simplicity. We
also assume that these mining pools know each other’s hashrate ratio:

Assumption 3. Rational mining pools are all aware of each other’s hashrate
proportion.

According to the attack model mentioned in Sect. 4.2, consider a malicious
proposition tm arrives in block b0 and an adjustment transaction ta is broadcast
to the entire blockchain network at the very moment after b0 is published (in the
real scenario, there might be a longer period of time between the appearance of
these two transactions), and [n] rational mining pools will simultaneously notice
this arbitrage opportunity. During the verification period which lasts for s blocks,
if the adjustment transaction ta is included in block bi, b0 + 1 ≤ bi ≤ b0 + s,
the malicious proposition tm will become invalid and the Arbitrage attack will
fail, the mining pool which publish block bi will be the only winner and obtain
normal profit A. On the contrary, if no adjustment appeared during s blocks,

474 Y. Wang et al.

then the rational mining pool that successfully mines the block with arbitrage
transactions set tarb in block b0 + s + 1 will obtain the arbitrage profit B. And
the possibility for a rational mining pool to mine a block approximately equal
to its hashrate ratio Pi.

Consequently, when mining blocks between b0 and b0 + s + 1, each rational
mining pool need to decide whether include the adjustment transaction ta and
tarb into the next block it is mining right now (tarb is only decided for block
b0+s+1). Therefore, we can denote the whole Arbitrage attack into a multi-stage
static game, and according to Assumption 3, the game is of perfect information
since mining pools know each others’ hashrate ratio and the revenue for this
attack. There are at most s + 1 static games of perfect information during the
whole attack. From game 1 to game s, mining pools need to decide whether
include transaction ta in the block they are mining, and in game s + 1 mining
pools will decide whether include arbitrage transactions set tarb. The multi-stage
game will end if a block with ta is successfully mined. During the attack, after
block b0 + i− 1 has been added to the chain, [n] rational mining pools’ strategy
for forming template of block b0 + i, which is also game i, can be denoted as

Ti = (T1i, T2i, ..., Tni)

where

Tji =
{
Y include transaction ta in block b0 + i
N not include transaction ta in block b0 + i

T ji∗ represent the Nash equilibrium strategy and the utility function for each
mining pool’s strategy is

U(Ti) = (U1(Ti), U2(Ti), ..., Un(Ti))

For simplicity, in the following part we will use i block (1 ≤ i ≤ s + 1) to
represent block b0 + i.

5.2 Nash Equilibrium Strategy

Based on the multi-stage static game of the perfect information model mentioned
above, we can easily get the following conclusion

Theorem 2. For a rational mining pool j, its strategy for block i should be the
Nash equilibrium strategy for game i.

Theorem 2 shows that it is necessary to analyze each stage game’s Nash
equilibrium strategy Ti

∗. It is already known that the expression of the utility
function of strategy for each stage game is crucial to finding the Nash equilib-
rium strategy. However, things are really complicated if we sequentially analyze
the problem from game 1 to game s+1, since the utility function will be complex
due to a large number of potential strategy combinations. Therefore, we need to

Arbitrage Attack: Miners of the World, Unite! 475

find another method to obtain the Nash equilibrium strategy of each game. Intu-
itively, it is obvious that at block s+1 every rational mining pools’ strategy will
be the same Y , for they will have no chance to gain profit at last. Conclusively,
we can learn from the idea of reverse induction and start to analyze the Nash
equilibrium strategy at s+ 1 block, then infer the Nash equilibrium strategy for
previous blocks.

Block s + 1 After publishing s block, which doesn’t include ta, all rational
mining pools need to decide whether include the arbitrage transactions set tarb
into the s+1 block they are building. Apparently, we can easily obtain the Nash
equilibrium strategy for this final game by comparing the utility function:

Theorem 3. The Nash equilibrium strategy for block s + 1 is

Ts+1 = (Y, Y, ..., Y
︸ ︷︷ ︸

n

)

Block s Since all rational mining pools’ Nash equilibrium strategies when decid-
ing the s + 1 block are determinate, it will be practical to obtain mining pool
j’s utility function for block s:

Uj(Ts) =
{
PjA + PNs(j)PjB Tjs = Y
(PNs(j) + Pj)PjB Tjs = N

where PNs represent the sum of hashrate of mining pools whose strategy is N ,
except mining pool j, PNs =

∑
k∈{k|Tks=N,k �=j} Pk. We use PNs

∗ to represent
the situation for Nash equilibrium strategy.

By comparing those two different utility functions, the Nash equilibrium
strategy Tjs

∗ should be related to the ratio of two different profits and the
hashrate:

Tjs
∗ =

{
Y B

A < 1
Pj

N B
A > 1

Pj

We can therefore consider Nash equilibrium strategies in three different sce-
narios:

Proposition 1. When B
A > 1

Pn
> ... > 1

P1
, for a random mining pool j, Tjs∗ =

N , Ts
∗ = (N,N, ..., N

︸ ︷︷ ︸
n

) and Uj(Tjs∗) = PjB

Proposition 2. When B
A < 1

P1
< ... < 1

Pn
, for a random mining pool j, Tjs∗ =

Y , T ∗
s = (Y, Y, ..., Y

︸ ︷︷ ︸
n

) and Uj(Tjs∗) = PjA

476 Y. Wang et al.

Proposition 3. When 1
P1

< B
A < 1

Pn
, w.l.o.g. 1

P1
< ... < 1

PR
< B

A < 1
PR+1

<

... < 1
Pn

. Then for a random mining pool j, Nash equilibrium strategy should be

Tjs
∗ =

{
Y j ≥ R + 1
N j ≤ R

and the utility function should be:

Uj(Tjs∗) =
{
PjA + PNs(j)∗PjB Tj∗

s = Y
(PNs(j)∗ + Pj)PjB Tj∗

s = N

Propositions above show that the ratio of two different kinds of profit will
influence the Nash equilibrium strategies for game s. If B greatly exceeds the
normal transaction fee profit A, then more mining pools will persist in the attack,
which fits our intuition. Based on the analysis of s+1 and s blocks, we can extend
our analysis method to the more general scenarios like the Nash equilibrium
strategies for i (0 ≤ i < s) block.

Block i Similar to s block, a random mining pool j’s utility function at i block
should be related to its Nash equilibrium utility function in i + 1 block:

Uj(Ti) =
{
PjA + PNi(j)Uj(Tji+1

∗) Tji = Y
(PNi(j) + Pj)Uj(Tji+1

∗) Tji = N

and therefore the Nash equilibrium strategy should be

Tji
∗ =

{
Y Uj(Tji+1

∗) < A
N Uj(Tji+1

∗) > A

Similar to the analysis for the s block, we also consider the Nash equilibrium
strategies in three different scenarios.

Proposition 4. When B
A > 1

Pn
> ... > 1

P1
, for a random mining pool j,

Uj(Tjs∗) = PjB > Aholds. By mathematical induction, the Nash equilibrium
strategy for game i should be Ti

∗ = (N,N, ..., N
︸ ︷︷ ︸

n

)

Proposition 5. When B
A < 1

P1
< ... < 1

Pn
, for a random mining pool j,

Uj(Tjs∗) = PjB < Aholds. By mathematical induction, the Nash equilibrium
strategy for game i should be Ti

∗ = (Y, Y, ..., Y
︸ ︷︷ ︸

n

)

When 1
P1

< B
A < 1

Pn
, divergence will appear in the attack union compared

to the two other conditions mentioned above, it is worthwhile to figure out the
change of Nash equilibrium strategies of each mining pool during the whole
attack process.

In order to depict the change of Nash equilibrium strategy for different stage
game, here we also assume that 1

P1
< ... < 1

PR
< B

A < 1
PR+1

< ... < 1
Pn

, we first
give following theorem:

Arbitrage Attack: Miners of the World, Unite! 477

Theorem 4. For a random mining pool j, if its Nash equilibrium strategy for
block i + 1 is Y , then the Nash equilibrium strategy for block i is also Y .

From Theorem 4 we can conclude that

Corollary 1. For a mining pool j, it is impossible that the Nash equilibrium
strategy for game i is N and Y for game i + 1.

Corollary 2. PNi(j)
∗ should increase with i increase to s.

Have these corollaries in mind, we only need to consider mining pool j’s Nash
equilibrium strategy for game i when the equilibrium strategy for game i + 1 is
N .

Theorem 5. For a mining pool j, if its Nash equilibrium strategy for game i+1
is N and Y for j. Then for any mining pool h with Ph < Pj, there should be
Thi

∗ = Y .

From Theorem 5 we can get the following results:

Corollary 3. With block number i increases, mining pools with more hashrate
will change their strategy from Y to N more sooner than mining pools with less
hashrate.

Corollary 4. There won’t be a Nash equilibrium strategy Ti
∗ for game i where

Thi
∗ = N,Tji

∗ = Y (Ph < Pj).

Fig. 3. Example of four different mining pool’s Nash equilibrium strategies’ changes
during the whole attack.

Combine Theorem 4 and 5 as well as corollaries above we can depict the
change of Nash equilibrium strategy for mining pool j at game i (0 ≤ i ≤ s)
when 1

P1
< B

A < 1
Pn

, Fig. 3 shows an example with four different mining pools:

478 Y. Wang et al.

– If j’s Nash equilibrium strategy is Y at game i + 1, for any other game
g, g < i + 1, mining pool j’s Nash equilibrium strategy will also be Y .

– If j’s Nash equilibrium strategy is N at game i + 1. Then Nash equilibrium
strategy at game i will be Y if PjB

∏s
k=i(PNk(j) + Pj) < A, else the Nash

equilibrium strategy will be N .

With the Nash equilibrium strategy change under different circumstances
mentioned above, each mining pool is able to decide their strategies for each
block they are building with the attack proceeding. The whole process for a
rational mining pool to decide the final strategy is described as an algorithm
pseudo-code in Appendix B.

5.3 Price of Anarchy

The ratio between the worst Nash equilibrium and the social optimum is the
price of anarchy (PoA), the formal definition can be denoted as:

PoA =
mint∈Nprofit(t)
maxt∈Tall

profit(t)

where N is the set of Nash equilibrium strategies and Tall is the set of all possible
strategies during the process of attack. profit(t) represents the expected profit
for the union of rational mining pools when the attack ends, no matter successful
or not.

The price of anarchy provides an insight into the effects of lack of corporation.
To be more specific, PoA represents the gap between system performance when
players all behave selfishly and follow central coordination. When the price of
anarchy is close to 1, selfish players don’t severely influence the union’s total
profit, which means the union is stable. In contrast, the low price of anarchy
shows that the union is loose.

Since the ratio of two kinds of profit B and A will influence the Nash equi-
librium strategies, we can determine the price of anarchy in different situations.

Corollary 5. When B
A > 1

Pn
> ... > 1

P1
, the price of anarchy is PoA = 1.

Corollary 6. When B
A < 1

P1
< ... < 1

Pn
, the price of anarchy is PoA = A

B .

Corollary 7. When 1
P1

< B
A < 1

Pn
, the price of anarchy is

PoA =
(1 − ∏s

i=1 PNi)A +
∏s

i=1 PNiB

B
.

6 Conclusion, Limitations and Extensions

In this paper, we introduce an Arbitrage attack against decentralized oracles
carried out by rational mining pools. We show that when potential arbitrage
profit weights far more than regular profits, different mining pools will take the

Arbitrage Attack: Miners of the World, Unite! 479

same actions to delay or block transactions like a temporary union to carry on
the attack. And as the attack progresses, the union becomes more and more
stable. In the parts below, we will further discuss the limitations and possible
extensions of this paper.

Generality. As mentioned before, the attack discussed in this paper is against
decentralized oracles that depend on transactions to make adjustments and ver-
ification, therefore a very promising topic to discuss is whether this attack will
be feasible to a more general decentralized oracle model.

And in another aspect, this attack may be feasible to not only decentral-
ized oracles. To be more specific, similar to decentralized oracles, many other
blockchain applications also realized certain functions based on proposing differ-
ent transactions. Therefore, we believe that the temporary union in Arbitrage
attack may happen in other blockchain applications. For instance, consider a
DAO managing the parameters of a transaction pool of two kinds of digital
assets like Curve [19], members of DAO are supposed to vote to decide the
specific parameters like the exchange rate of these two assets for the next sev-
eral days. Assume that all members need to vote by proposing transactions to
DAO’s official voting account, and the voting period will last for several blocks
for example. In that case, the rational mining pools may take the same actions
in Arbitrage attacks by blocking or delaying voting transactions against their
will during the voting period, to manipulate the final decision. Consequently,
although efficient incentive mechanisms are applied to guarantee DAO’s rational
members to vote honestly, the final decision still can be influenced because of
the power of mining pools.

Game Theory Analysis. The game theory analysis in this paper can become
more complete. For one thing, in this paper, we only depict the possible pro-
cess during the attack when the two revenue A and B are stable. However, in
reality, the revenue A and B could be dynamic, since the number of adjustment
transactions could increase which will makes A increase during the process. By
considering changes of A may help to depict the whole attack process more
dynamically. Similarly, the attack revenue B could also change due to the price
fluctuation of the digital assets associated with the attack. For the other, even a
mining pool becomes the final winner of the attack, the negative social influence
of the attack may also cause the winner a great loss. Such a potential loss may
exert influence on mining pools’ strategy during the attack. However, such kind
of loss is difficult to describe, which also makes the game theory analysis pretty
challenging.

Forking. In Assumption 2, we make some restrictions about mining pools’ abil-
ity since the attack is closely related to the forking problem. Without the restric-
tion, mining pools that wish to continue the attack can choose to fork and ignore
the block containing adjustment transactions published by mining pool that
chooses to give up the attack. Besides, at the end of the attack, loser mining
pools can even call for forking by claiming that the only winner is the “evil

480 Y. Wang et al.

attacker” in order to make the winner unable to obtain the revenue. These kinds
of problems are complicated but deserve further discussion.

Mitigation Methods. Detailed mitigation methods are not given in this paper,
and we plan to do further exploration about feasible solutions to this attack. So
far, we believe there may be two practical ways to solve the problem. One is
to adjust the time of the verification process s. Intuitively, longer s will make
the attack less likely to succeed. But longer verification time will also make
the oracle’s outputs less time-sensitive, which could be a deadly drawback for
oracles designed for scenarios like the high-frequency trading market. Therefore
the optimal verification time or period can only be obtained by detailed analysis.
The other possible solution is to bring in cryptography methods like “secret
ballots” [32] in the internet voting system. The mining pools will be unable to
distinguish transactions with adjustments information if transactions’ contents
are encrypted. But the detailed procedure needs to be well designed to ensure
safety.

A Proofs

Theorem 1. There can be only one winner for the Arbitrage attack no matter
success or not.

Proof. In the case of failure, since there can be only one block containing adjust-
ment transaction ta, therefore this block’s publisher should be the only winner
with normal profit A.

In the case of success, each rational mining pool can publish a smart contract
in the blockchain including all the transaction it would like to make after the
oracle’s output is manipulated. This smart contract has enough time to become
valid during the oracle’s verification period. After the output has been changed,
the mining pool can propose a newly mined block containing arbitrage transac-
tions set tarb and exploit all arbitrage opportunities. ��
Theorem 2. For a rational mining pool j, its strategy for block i should be the
Nash equilibrium strategy for game i.

Proof. The Nash equilibrium strategy at game i for mining pool j should satisfy

U1(Ti
∗) ≥ U1(Ti

∗)

where Ti
∗ represents the equilibrium strategy and Ti

∗ represents other strategies.
Thus a rational mining pool will choose the equilibrium strategy while making
decision for block i. ��
Theorem 3. The Nash equilibrium strategy for block s + 1 is

Ts+1 = (Y, Y, ..., Y
︸ ︷︷ ︸

n

)

Arbitrage Attack: Miners of the World, Unite! 481

Proof. According to the attack model, all the rational mining pools will try to
mine their own block containing the arbitrage transactions set tarb, so the utility
function for a mining pool j can be easily denoted as:

Uj(Ts+1) =
{
PjB Tjs+1 = Y

0 Tjs+1 = N

Where Pj is the hashrate ratio of mining pool j. Therefore, all the rational
mining pools will choose to add the transaction to the block. ��
Proposition 1. When B

A > 1
Pn

> ... > 1
P1

, for a random mining pool j, Tjs∗ =
N , Ts

∗ = (N,N, ..., N
︸ ︷︷ ︸

n

) and Uj(Tjs∗) = PjB.

Proof. For all rational mining pools that participated in the attack, the profit
ratio B

A is larger than the reciprocal of any mining pool’s hashrate. As a result,
according to the utility function of two different actions, every mining pool’s
Nash equilibrium strategy will be N , which will guarantee the attack will succeed
and game s+1 will be conducted, therefore the utility will be PjB for a random
mining pool j. ��
Proposition 2. When B

A < 1
P1

< ... < 1
Pn

, for a random mining pool j, Tjs∗ =
Y , T ∗

s = (Y, Y, ..., Y
︸ ︷︷ ︸

n

) and Uj(Tjs∗) = PjA.

Proof. For all rational mining pools that participated in the attack, the profit
ratio B

A is less than the reciprocal of any mining pool’s hashrate. Similarly,
according to the utility function of two different actions, every mining pool’s
Nash equilibrium strategy will be Y , which will guarantee the attack will fail
and game s + 1 will be not conducted, therefore the utility will be PjA for a
random mining pool j. ��
Proposition 3. When 1

P1
< B

A < 1
Pn

, w.l.o.g. 1
P1

< ... < 1
PR

< B
A < 1

PR+1
<

... < 1
Pn

. Then for a random mining pool j, Nash equilibrium strategy should be

Tjs
∗ =

{
Y j ≥ R + 1
N j ≤ R

and the utility function should be:

Uj(Tjs∗) =
{
PjA + PNs(j)∗PjB Tj∗

s = Y
(PNs(j)∗ + Pj)PjB Tj∗

s = N

Proof. According to the utility function, mining pools whose hashrate ratio’s
reciprocal is higher than B

A will choose Y and N for the rest of the mining pools,
and the utility can be easily obtained based on their Nash equilibrium strategies.

��

482 Y. Wang et al.

Proposition 4. When B
A > 1

Pn
> ... > 1

P1
, for a random mining pool j,

Uj(Tjs∗) = PjB > Aholds. By mathematical induction, the Nash equilibrium
strategy for game i should be Ti

∗ = (N,N, ..., N
︸ ︷︷ ︸

n

).

Proof. According to Theorem 1, for a random mining pool j, Uj(Tjs∗) = PjB >
A holds. Therefore, for game s−1, the Nash equilibrium strategy and correspond-
ing utility can be easily obtained:

Ts−1
∗ = (N,N, ..., N

︸ ︷︷ ︸
n

)

Uj(Tjs−1
∗) = PjB > A

Then by mathematical induction, rational mining pools’ Nash equilibrium
strategy for every game should be (N,N, ..., N

︸ ︷︷ ︸
n

). ��

Proposition 5. When B
A < 1

P1
< ... < 1

Pn
, for a random mining pool j,

Uj(Tjs∗) = PjB < A holds. By mathematical induction, the Nash equilibrium
strategy for game i should be Ti

∗ = (Y, Y, ..., Y
︸ ︷︷ ︸

n

).

Proof. According to Theorem 2, for a random mining pool j, Uj(Tjs∗) = PjA <
A holds. Therefore, for game s − 1, the Nash equilibrium strategy and corre-
sponding utility can be easily obtained:

Ts−1
∗ = (Y, Y, ..., Y

︸ ︷︷ ︸
n

)

Uj(Tjs−1
∗) = PjA < A

Then by mathematical induction, rational mining pools’ Nash equilibrium
strategy for every game should be (Y, Y, ..., Y

︸ ︷︷ ︸
n

). ��

Theorem 4. For a random mining pool j, if its Nash equilibrium strategy for
block i + 1 is Y , then the Nash equilibrium strategy for block i is also Y .

Proof. Assuming that mining pool j’s Nash equilibrium strategy for block i+ 1
is Y , then

Uj(T ∗
i+2) < A

Therefore

Uj(Tji+2
∗) < A

Uj(Tji+1
∗) = PjA + PN(i+1)(j)∗Uj(Tji+2

∗)
< (Pj + PN(i+1)(j)∗)A ≤ A

⇒ Uj(Tji+1
∗) < A

The Theorem is therefore proved. ��

Arbitrage Attack: Miners of the World, Unite! 483

Corollary 1. For a mining pool j, it is impossible that the Nash equilibrium
strategy for game i is N and Y for game i + 1.

Proof. According to Theorem 4, a mining pool’s Nash equilibrium strategy for
game i can only be Y , if its Nash equilibrium strategy for game i + 1 is Y . ��
Corollary 2. PNi(j)∗ will not decrease with i increase to s.

Proof. According to Corollary , once a mining pool’s Nash equilibrium strategy
is N for a game, then its Nash equilibrium strategy will not change to Y in
later games. Instead, it is possible for mining pools with Y as Nash equilibrium
strategy to change in later games. Therefore, the total hashrate of mining pools
with Nash equilibrium strategy N will not decrease with the process of the whole
attack. ��
Theorem 5. For a mining pool j, if its Nash equilibrium strategy for game i+1
is N and Y for i. Then for any mining pool h with Ph < Pj, there should be
Thi

∗ = Y .

Proof. We can prove the theorem with contradiction. Assuming that there is a
mining pool h with Ph < Pj , and its Nash equilibrium strategy for game i is N .

According to Theorem 4, mining pool h’s Nash equilibrium strategy for game
i+1 should be N , therefore Uh(Thi+1

∗) = Phb
∏s

k=i+1(PNk(h)+Ph) should be
greater than A

Uh(Thi+1
∗) > A

However, for mining pool j

Uj(T ∗
i+1) = PjB

s∏

k=i+1

(PNk(j) + Pj) < A

since the Nash equilibrium strategy changes to Y . Notice that

Uh(Thi+1
∗) < Uj(T ∗

i+1)

because Ph < Pj . Then a contradiction happens. ��
Corollary 3. With block number i increases, mining pools with more hashrate
will change their strategy from Y to N more sooner than mining pools with less
hashrate.

Proof. According to Theorem 5, if a mining pool j’s Nash equilibrium strategy
is N for game i + 1 and Y for i, then in game i the Nash equilibrium strategy
for all the mining pools with less hashrate will also be Y , which will not change
for the game before i according to Theorem 4. Consequently, with block number
i increase, mining pool j’s Nash equilibrium strategy will change from Y to N
before the mining pools with less hashrate. ��

484 Y. Wang et al.

Corollary 4. There won’t be a Nash equilibrium strategy Ti
∗ for game i where

Thi
∗ = N,Tji

∗ = Y (Ph < Pj).

Proof. Corollary 3 shows that with block number i increases, mining pools with
higher hashrate will change its strategy from Y to N sooner, besides it is not
possible to change from N to Y . Conclusively, there won’t be a Nash equilibrium
strategy Ti

∗ for game i where Thi
∗ = N,Tji

∗ = Y (Ph < Pj). ��
Corollary 5. When B

A > 1
Pn

> ... > 1
P1

, the price of anarchy is PoA = 1.

Proof. According to Proposition 4, all rational mining pools will choose N during
the whole s blocks period, then

PoA =
profit(N for all)
profit(N for all

=
B

B
= 1

��
Corollary 6. When B

A < 1
P1

< ... < 1
Pn

, the price of anarchy is PoA = A
B .

Proof. According to Proposition 5, all rational mining pools will choose Y during
the whole s blocks period, then

PoA =
profit(Y for all)
profit(N for all)

=
A

B

��
Corollary 7. When 1

P1
< B

A < 1
Pn

, the price of anarchy is

PoA =
(1 − ∏s

i=1 PNi)A +
∏s

i=1 PNiB

B
.

Proof. When 1
P1

< B
A < 1

Pn
, since there will always be mining pools that decide

to publish the adjustment contract ta during the s blocks and gain profit A, the
only situation to obtain profit B is when mining pools whose Nash equilibrium
strategy is N successfully mine the block ��

Arbitrage Attack: Miners of the World, Unite! 485

B Algorithm

Algorithm 1. Mining pool q’s Nash equilibrium strategy for block k

Input: Pool q’s hashrate ratio Pq, block number for verification period s, mining
pools’ total number n, target block number k, profit A,B, mining pools’ hashrate
sequence P = (P1, P2, P3...Pn) //in descending order

Output: Strategy T //T = Y represents including adjustment transaction in block k
template, T = N represents not including.

1: ArrayN=[]; //array for mining pools with strategy N
2: ArrayT=[Y, Y...Y]; //strategy array
3: for j = 1, i = 1;j ≤ n;j + + do
4: if 1

Pj
< B

A
then

5: ArrayN[i++]=Pj ;
6: ArrayT[j]=N ;
7: end if
8: end for
9: if len(ArrayN)==n then //Nash equilibrium strategy for every block is N

10: return N ;
11: end if
12: if len(ArrayN)==0 then //Nash equilibrium strategy for every block is Y
13: return Y ;
14: end if
15: if q /∈ ArrayN then //Nash equilibrium strategy for block s is Y , return Y
16: return Y ;
17: end if
18: for i = s − 1;i ≥ k + 1;i − − do
19: COMPARE(A,U(Tq∗

i+1)) //compare the utility with A to decide final strategy
20: if A is larger then
21: return Y
22: end if
23: for q ∈ ArrayN do
24: if A > U(Tji+1

∗) then
25: POP(ArrayN,j) //delete mining pools whose strategy changes
26: end if
27: end for
28: U(Tq∗

i)=SUM(ArrayN)*U(Tq∗
i+1)

29: end for
30: return N

References

1. Zheng, Z., et al.: An overview on smart contracts: challenges, advances and plat-
forms. Futur. Gener. Comput. Syst. 105, 475–491 (2020)

2. Finance, C.: Compound finance (2021). https://compound.finance/
3. bZx network: bzx network (2021). https://bzx.network/
4. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on

decentralized on-chain exchanges. arXiv preprint arXiv:2009.14021 (2020)

https://compound.finance/
https://bzx.network/
http://arxiv.org/abs/2009.14021

486 Y. Wang et al.

5. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

6. Shi, H., Wang, S., Hu, Q., Cheng, X., Zhang, J., Yu, J.: Fee-free pooled mining
for countering pool-hopping attack in blockchain. IEEE Trans. Depend. Secur.
Comput. 18, 1580–1590 (2020)

7. Antonopoulos, A.M.: Mastering Bitcoin (2019)
8. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-

ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 270–282 (2016)

9. Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of hyperledger
fabric smart contracts. In: 2019 IEEE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), IEEE, pp. 1–10 (2019)

10. Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, S.: Trustworthy blockchain
oracles: review, comparison, and open research challenges. IEEE Access 8, pp. 85
675–85 685 (2020)

11. Xu, X., et al.: The blockchain as a software connector. In: 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA). pp. 182–191. IEEE
(2016)

12. Moudoud, H., Cherkaoui, S., Khoukh, L.: An IoT blockchain architecture using
oracles and smart contracts: the use-case of a food supply chain. In: 2019 IEEE
30th Annual International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), pp. 1–6. IEEE (2019)

13. Cloud, G.: Building hybrid blockchain/cloud applications with ethereum
and google cloud (2021). https://cloud.google.com/blog/products/data-analytics/
building-hybrid-blockchain-cloud-applications-with-ethereum-and-google-cloud

14. Adler, J., Berryhill, R., Veneris, Z. Poulos, A., Veira, N., Kastania, A.: Astraea: a
decentralized blockchain oracle. In: 2018 IEEE International Conference on Inter-
net of Things (IThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 1145–1152, IEEE (2018)

15. Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.: Augur: a decen-
tralized oracle and prediction market platform. arXiv preprint arXiv:1501.01042
(2015)

16. de Pedro, A.S., Levi, D., Cuende, L.I.: WitNet: a decentralized oracle network
protocol. arXiv preprint arXiv:1711.09756 (2017)

17. Wang, S., et al.: Decentralized autonomous organizations: concept, model, and
applications. IEEE Trans. Comput. Soc. Syst. 6(5), 870–878 (2019)

18. NEST Protoco: The NEST protocol (2021). https://nestprotocol.org/
19. Curve finance (2021). https://curve.fi/
20. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

21. Zhou, L., Qin, K., Ferreira Torres, C., Gervais, A., et al.: High-frequency trading on
decentralized on-chain exchanges. In: IEEE Symposium on Security and Privacy,
pp. 23–27 May 2021

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash systemBitcoin: a peer-to-peer
electronic cash system. Decent. Bus. Rev. 21260 (2008)

23. Wang, D., et al.: Towards a first step to understand flash loan and its applications in
DEFI ecosystem. In: Proceedings of the Ninth International Workshop on Security
in Blockchain and Cloud Computing, pp. 23–28 (2011)

https://cloud.google.com/blog/products/data-analytics/building-hybrid-blockchain-cloud-applications-with-ethereum-and-google-cloud
https://cloud.google.com/blog/products/data-analytics/building-hybrid-blockchain-cloud-applications-with-ethereum-and-google-cloud
http://arxiv.org/abs/1501.01042
http://arxiv.org/abs/1711.09756
https://nestprotocol.org/
https://curve.fi/
https://doi.org/10.1007/978-3-662-45472-5_28

Arbitrage Attack: Miners of the World, Unite! 487

24. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

25. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 3–18. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 1

26. Daian, P., et al.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910–927. IEEE (2020)

27. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

28. Chohan, U.W.: Counter-Hegemonic Finance: The Gamestop Short Squeeze. SSRN
(2021)

29. provable: Provable documentation (2021). https://docs.provable.xyz
30. Eskandari, S., Clark, J., Sundaresan, V., Adham, M.: On the feasibility of decen-

tralized derivatives markets. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 553–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 35

31. Anand, A., Pathak, J.: WallStreetBets against wall street: the role of reddit in the
GameStop short squeeze. IIM Bangalore Research Paper, no. 644 (2021)

32. Wu, H., Vora, P.L., Zagórski, F.: PrivApollo-secret ballot E2E–V Internet voting.
In: Financial Cryptography Workshops, pp. 299–313 (2019)

https://doi.org/10.1007/978-3-319-70278-0_17
https://doi.org/10.1007/978-3-662-58820-8_1
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13
https://docs.provable.xyz
https://doi.org/10.1007/978-3-319-70278-0_35
https://doi.org/10.1007/978-3-319-70278-0_35

Suborn Channels:
Incentives Against Timelock Bribes

Zeta Avarikioti1 and Orfeas Stefanos Thyfronitis Litos2(B)

1 TU Wien, Vienna, Austria
georgia.avarikioti@tuwien.ac.at

2 Technical University of Darmstadt, Darmstadt, Germany

orfeas.thyfronitis@tu-darmstadt.de

Abstract. As the Bitcoin mining landscape becomes more competi-
tive, analyzing potential attacks under the assumption of rational miners
becomes increasingly relevant. In the rational setting, blockchain users
can bribe miners to reap an unfair benefit. Established protocols such as
Duplex Micropayment Channels and Lightning Channels are susceptible
to bribery, which upends their financial guarantees. Indeed, we prove that
in a two-party contract in which the honest party can spend an output
right away, whereas the malicious can only spend the same output after a
timelock, the latter party can promise a high fee to the miners, who then
intentionally ignore the transaction of the honest party in anticipation
of the higher fee. This effectively prevents a valid transaction from ever
entering the blockchain, resulting in potentially severe financial losses for
the honest and considerable gains for the malicious party.

We expand previous results on timelock bribes to more realistic block-
chains, proving that a general class of contracts are susceptible. We then
apply our results to Duplex Micropayment Channels and Lightning Chan-
nels, providing exact bounds on their safe operating region. Furthermore,
we enhance the Bitcoin Script of Duplex Micropayment Channels so that
the coins of a party that attempts to bribe are given to the miners as fees,
therefore effectively disincentivizing bribes. Our solution, named Suborn
channels, is implemented as a proof-of-concept. We also propose a small
change to Lightning Channels that achieves a similar effect. Moreover, we
formally express the exact circumstances under which our two proposals
ensure alignment ofminer incentiveswith theprescribedprotocol outcome.

Keywords: Bitcoin · Security · Layer 2 · Payment channels ·
Lightning network · Incentives · Bribing

1 Introduction

Blockchains like Bitcoin [23] and Ethereum [28] reformed the financial landscape.
Nevertheless, blockchains scale poorly in comparison to conventional centralized

O.S. Thyfronitis Litos—Work done while the author was at the University of Edin-
burgh.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 488–511, 2022.
https://doi.org/10.1007/978-3-031-18283-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_24

Suborn Channels 489

payment systems [9]. One of the major approaches to alleviate the scalability
issue of blockchains is payment channel networks (PCNs).

Payment channels allow two parties to lock funds on the blockchain and
thereafter securely transact off-chain. A number of PCN proposals exist [2–
8,10–15,17,21,24,25], each improving on previous designs, exploiting features
of different blockchains or balancing various trade-offs differently. Two of the
earliest PCNs are the Lightning Network (LN) [24] and the Duplex Micropayment
Channels (DMC) [11], both applicable on Bitcoin.

As Bitcoin implements a (crypto-)currency, financial incentives are critical
to the security of the protocol. These financial incentives naturally transfer to
the off-chain network operating on top of Bitcoin, e.g., DMC or LN, since the
off-chain network also involves locked cryptocurrency funds. As a result, several
bribing attacks have been proposed on PCNs [22,26,27]. In this work, we focus
on a specific type of bribing attacks, the so-called timelocked bribes: a briber
pays the miners to include the briber’s transaction which will only be valid in
the future, and not include a conflicting but currently valid transaction from an
honest party. This attack affects directly the security of most PCNs.

The success of a timelock bribing attack is conditional on several variables.
Determining those variables and therefore the parameter regions in which parties
can transact securely against a briber is a challenging task. Furthermore, we ask
whether expanding these safe regions is possible, as this would imply a wider
functioning area for payment channels. In this work, we take up these challenges.

Our Contributions. We first formally describe the dynamics governing miners’
choices on whether to mine a future transaction with a high fee or a currently
spendable but conflicting transaction with a smaller fee. To this end, we perform
a game-theoretic analysis in Sect. 3. We then formulate and prove in Theorem 1
under which circumstances it is a strictly dominant strategy for miners to ignore
the currently spendable transaction in favor of the future one. This theorem
generalizes the incentive analysis performed in [26] to blockchains with more than
1 transaction per block and to a more generic smart contract than HTLC [11].
At a high level, miners prefer the future transaction if it offers a very high fee
(a.k.a. bribe) compared to the currently spendable transaction. The exact bound
depends also on the fees paid by ordinary transactions and the mining power of
the weakest miner but, somewhat surprisingly, is independent of the length of
the timelock for large enough bribes.

In Sect. 4 we apply our theorem to DMC, providing exact bounds on the
cases in which a timelock bribe is possible. Subsequently, we modify the DMC
protocol and propose a new scheme which we term Suborn channels in order
to greatly expand those bounds. The core idea is that Suborn channels allow
miners to claim the coins the briber owns in the channel when the honest party
proves the briber cheated. The exact script for Suborn channels is provided as
well, along with its proof of concept implementation1.

1 https://gitlab.com/fc22-submission-69/suborn.

https://gitlab.com/fc22-submission-69/suborn

490 Z. Avarikioti and O. S. Thyfronitis Litos

Lastly, we apply our theorem to LN, characterizing exactly when a timelock
bribe is beneficial. We then propose a straightforward change to the protocol
that completely nullifies timelock bribes; we simply increase the transaction fees
to include the coins owned by the briber. We further analyze the circumstances
under which our proposal would not cost money to the honest party and recom-
mend how the honest party can avoid cost-inducing situations entirely. We note
that no change in LN Script is necessary for implementing our proposal.

2 Background and Notation

2.1 Bitcoin

Bitcoin users publish transactions, which are temporarily stored by miners. Each
miner composes a block that consists of valid transactions. Miners compete with
each other in a lottery which periodically selects a winner with probability pro-
portional to their mining power – a quantity that we assume is constant and
common knowledge among participants. Mining is a resource-intensive process
that each miner performs locally. The winning miner gets their block included in
the blockchain and gains a (constant) block reward plus the sum of the fees of all
included transactions; thus rational miners attempt to maximize their received
fees. Then miners verify that all transactions in the new block are valid, compose
a new block compatible with all past ones (including the new valid block they
just received) and attempt to win the next lottery. In case a miner receives two or
more conflicting blocks of the same height (a.k.a. when they encounter a fork),
they can mine on top of any one. With high probability one of the forks will
eventually overtake the others by accumulating more blocks, so all miners will
switch to the longest chain, dropping the other forks and resolving the conflict.

Smart Contracts. Blockchains like Bitcoin [23] and Ethereum [28] enable smart
contracts, i.e., programmable scripts that attach a wide variety of rules which must
be satisfied in order to spend coins. In Bitcoin, coins are attached to transaction
outputs, which in turn are locked with a specific script. Bitcoin smart contracts
commonly employ the use of multisignatures, timelocks, and hashlocks.

The most commonly used smart contract requires a single signature from a
specific public key: such a contract ensures that the coins of interest are exclu-
sively owned by whoever knows the associated private key. An m-of-n multisig-
nature is a contract that demands at least m signatures which correspond to
any m of the n predefined public keys.

Hashlocks are another type of contract, available also in Bitcoin Script. If a
transaction output is hashlocked, it requires the pre-image of the specific hash
to become valid and thus spendable. For instance, suppose h(s) denotes the hash
of a secret s. If an output is hashlocked with h(s), it is valid only if the secret s
is revealed.

Timelocked outputs can only be spent after a specified time in the future. One
of the simplest practical smart contracts that uses timelocks is the conditional
timelock, which allows the associated output to be spent either with the signature

Suborn Channels 491

of party P1 right away, or with the signature of party P2 after a timelock –
possibly additional requirements encumber one or both spending methods, e.g.
hashlocks or multisigs.

2.2 Payment Channels

The core idea behind payment channels is the same across different construc-
tions: two parties may lock coins on an escrow on the blockchain, or a so-called
channel, and then perform arbitrarily many transactions off-chain. Each off-chain
transaction is a signed message that depicts the current balance of coins between
the parties. Any party can close the channel at any time, either in collaboration
with the counterparty, or unilaterally by publishing the last message signed by
both parties. Therefore, the blockchain is only used to open and close the chan-
nel, and to resolve potential conflicts between parties. The conflict resolution
mechanism differs significantly among channel constructions. Please see [29] for
a survey of PCNs.

In this work, after establishing a general result for conditionally timelocked
contracts, we apply our results to two specific PCNs: DMC [11] and LN [24]. We
now describe these constructions, excluding their HTLCs.

DMC Overview. At a high level, a DMC between parties P1 and P2 works
as follows: At first the parties agree on a setup transaction, which spends their
initial coins and moves them to an output locked with a 2-of-2 multisig. They
then establish a series of opt-in transactions. These transactions form a chain of
a pre-agreed length and are all timelocked until a common pre-agreed future time
Tmax. The first transaction consumes the setup transaction output and provides a
similar 2-of-2 multisig output. Each subsequent transaction consumes the output
of the previous opt-in transaction and provides a similar 2-of-2 multisig output,
with the exception of the last one. This opt-in transaction has two 2-of-2 multisig
outputs instead, each carrying coins equal to one party’s initial coins.

Each of the two last outputs constitutes the setup output for a simple micro-
payment channel (not to be confused with the setup transaction of the DMC
itself). A simple channel can only facilitate payments in one direction, so there
is one channel for each direction. We here explain briefly how the channel in
which P2 pays P1 functions; the other one is symmetric. The channel starts off
with P1 and P2 agreeing on a refund transaction that is timelocked until Tmax,
spends the setup output and provides one output that carries P2’s initial coins
that are spendable by P2 alone. Once both parties know the relevant opt-in and
refund transactions along with the necessary signatures by their counterparty,
they only need to put the DMC setup transaction on-chain to open the DMC.
When P2 holds c2 and wants to pay δ coins to P1, who holds c1 coins, P2 signs
and sends to P1 an update transaction which has no timelock, spends the setup
output and has one output per party; P1’s output carries c1 + δ and P2’s carries
c2 − δ coins. The balances c1, c2 are as in the last update transaction if any, oth-
erwise as in the refund. Note that P1 can put on-chain any update transaction

492 Z. Avarikioti and O. S. Thyfronitis Litos

if needed, so he prefers the latest update transaction in which he has most coins
– this mechanism is called replace by incentive.

Due to their unidirectional nature, one of the two simple channels may even-
tually get depleted. In such a case, the parties invalidate them along with the
last opt-in transaction by creating a new competing opt-in transaction with a
lower timelock. This opt-in transaction provides two new simple micropayment
channels, each initially containing the sum of the payer’s coins in the just inval-
idated simple channels. In case the timelock of the new opt-in transaction is
smaller than a pre-agreed value Tmin, the two parties replace the last two opt-
in transactions instead. Both new opt-in transactions use the same timelock,
which is lower than the timelock of the second-last opt-in transaction in the old
chain. The same replacement logic, called replace by timelock, can be extended
backwards to the entire length of the opt-in transactions’ chain. This way, an
invalidation tree is created that consists of opt-in transactions as non-leaf nodes
and pairs of simple micropayment channels as leaves.

When an invalidation tree is itself depleted, cooperative parties can refresh
their DMC and obtain a new invalidation tree with a single on-chain transac-
tion. Similarly, cooperative parties can close their channel with a single on-chain
teardown transaction.

The above construction depicted in Fig. 1, ensures that an honest party can
always retrieve its coins unilaterally by publishing the opt-in transactions of the
latest branch when their timelock expires, even if the counterparty stops cooper-
ating in arbitrary ways. This security guarantee holds only if a transaction with
a lower timelock is always included on-chain when competing only with trans-
actions with a higher timelock. As we see in this work however, this assumption
does not always hold.

LN Overview. LN bases its functionality on an entirely different construction.
A central premise is that, in contrast to DMC, not all of the transactions stored
locally by the two parties are the same: some have differing scripts.

The two parties first negotiate the funding output, which carries all of the
channel’s coins in a 2-of-2 multisig. They then build a pair of commitment trans-
actions, one for each party, each of which can spend the funding output. P1’s
commitment transaction is signed by P2 and has two outputs. One carries P2’s
initial coins and can be spent with a simple signature by P2. The other carries
P1’s initial coins and can be spent in one of two ways: either with a signa-
ture by P1 after a pre-agreed timelock (the honest spending method), or with
a signature by a special revocation key that is generated by the two parties
cooperatively (the punishment spending method). The latter private key has
the unusual property that it can remain unknown to both parties while allowing
the corresponding public key to be computed cooperatively: Each party has a
secret share, from which it can generate a public share. The two secret shares
combine to the private key, whereas the two public ones combine to the public
key, thus the two parties can cooperatively derive the public key without dis-
closing their secret shares. This construction is formalized and proved secure
in [18]. P2’s commitment transaction is symmetric. Once each party holds its

Suborn Channels 493

first commitment transaction, they can put the funding output on-chain to open
the channel.

Conceptually, an off-chain payment is performed in two steps. First, the two
parties generate and sign a new pair of commitment transactions of which the
outputs pay out the newly agreed coins to each party. New revocation keys
are used. Second, each party sends to its counterparty the secret share of the
revocation key used in the previous commitment transaction, revoking the latter.
This way, if a party publishes an old commitment transaction, the counterparty
can take all coins in the channel as punishment as long as it uses the punishment
spending method before the timelock of the honest spending method expires.
Note that the actual update procedure is slightly more complicated than in this
simplified, but morally correct, description.

Lastly, the two parties can cooperatively close the channel by building a
single closing transaction that spends the funding output and gives each party
its coins without a timelock.

The LN construction ensures that an honest party which checks the
blockchain periodically can always unilaterally retrieve its coins or more, either
by publishing its latest commitment transaction and waiting for its timelock to
expire or by punishing its counterparty in case the latter published a revoked
commitment transaction. This guarantee though holds only under the assump-
tion that a non-timelocked transaction which competes only with a timelocked
one can always go on-chain. As we mentioned however, this assumption is vio-
lated under certain circumstances. The LN construction is illustrated in Fig. 2.

Fig. 1. Duplex micropayment channels Fig. 2. Lightning channels

3 Incentive Analysis

3.1 Model

As in [26], we assume that all n ≥ 2 miners are rational and each has a propor-
tion 0 < λi < 1 of the total mining power, constant throughout the execution.

494 Z. Avarikioti and O. S. Thyfronitis Litos

Block rewards are ignored to simplify the analysis, but would not change our
results as long as they remain constant throughout the time frame of interest.
Let λmin = mini∈[n] λi. We assume that each block is comprised of a fixed num-
ber of transactions N (as opposed to, e.g., a fixed block size like Bitcoin or a
fixed gas limit like Ethereum). The game evolves in rounds. At the beginning of
each round, each miner decides on a set of transactions to include in her block.
Subsequently a single miner is chosen at random according to the mining power
distribution, her block is appended to the blockchain, the included transaction
consumes its designated UTXO(s) and potentially provides one or more new
unspent outputs, the winning miner obtains the fee of the transaction and all
miners learn who won. This completes the round and miners attempt to mine a
new block.

The utility of each miner ui is equal to the sum of fees she obtains over all
game rounds – we restrict our attention to games with a finite number of rounds,
say T . All transactions that may be included in a block are publicly known and
carry a constant fee f , unless stated otherwise. The mining power distribution
along with the rest of the model discussed above is common knowledge.

In each round k ∈ [T], the i-th miner employs a strategy σk
i that takes values

in the set Σk
i , which consists of the transactions that the miner chooses for its

block at round k. A strategy profile for round k is the tuple of the strategies of
all miners for round k and is denoted with σk = (σk

1 , . . . , σk
n) ∈ Σk. A strategy

profile for rounds from k1 to k2 is the concatenation of the strategy profiles of
rounds k1 to k2 and is denoted with σk1...k2 = σk1 . . . σk2 ∈ Σk1...k2 . The Nash
equilibrium strategy profile for rounds from k1 to k2 is denoted with σk1...k2 . Note
that the latter constitutes a slight abuse of notation since the strategy profiles
in rounds after k2 may in principle influence what is the Nash equilibrium of
rounds up to k2, but in our games of interest every future round has exactly
one Nash equilibrium that is also the unique strictly dominant strategy profile
(ignoring inclusion of a different set of transactions unrelated to the conditionally
timelocked output O of interest, c.f. Definition 1, as such differences do not
change the utility), thus no problem arises. A strategy profile for all rounds
is denoted with σ = σ1...T ∈ Σ. The Nash equilibrium strategy profile for all
rounds is denoted with σ. We denote the tuple of all miners’ strategies apart
from that of the i-th miner with σ−i ∈ Σ−i, and we may add a superscript to
denote one or more rounds as above. Note that our notation cannot represent
games in which there are multiple Nash equilibria. This is not a concern, as we
will not come across such games.

3.2 Conditionally Timelocked Game and Analysis

In this section, we define a game that captures the race between two transactions
tx1 and tx2 that spend the same unspent output but under different conditions.
On the one hand, tx1 allows the output to be spent immediately, while tx2
bounds the output to a timelock. On the other hand, tx1 pays the miner a fee
f1, while tx2 pays a fee f2. Both f1, f2 > f , f the fee of ordinary transactions.

Suborn Channels 495

Naturally, if f1 > f2 any rational miner will immediately include tx1. We
are therefore interested in the case where f2 > f1. For this case, we determine
the exact conditions under which all rational miners will wait out the timelock
and include tx2 (irrespective of the timelock). We observe that these conditions
depend solely on the two fees f1, f2, the minimum mining power λmin, and the
number of necessary bribing transactions m (e.g., 2 for DMC and 1 for LN).

Definition 1 (Conditionally timelocked output). A conditionally time-
locked output is an on-chain transaction output with spending condition cond1∨
cond2 such that cond1 is not encumbered with any timelock and cond2 is encum-
bered with a timelock that expires T blocks after block with height T0.

Definition 2 (Conditionally timelocked game). A conditionally timelocked
game is a game that consists of T rounds, starting from a blockchain of height T0

which includes an unspent conditionally timelocked output O = (·, cond1 ∨cond2).
From the onset of the game, miners are aware of a set of transactions txs1 that
fits in a single block. txs1 contains a transaction tx1 which spends O by satisfying
cond1. All other transactions in txs1 spend at least one output of tx1 or of another
transaction in txs1. Miners are also aware of another set of transactions txs2 that
fits in a single block as well. txs2 contains a transaction tx2 that spends O by sat-
isfying cond2. All other transactions in txs2 spend at least one output of tx2 or of
another transaction in txs2. Furthermore, there are at every round enough valid,
“unrelated” transactions to fill a block that do not spend O or any output spent or
produced by any transaction in txs1 ∪ txs2, and each offers fee f . We denote any
set of unrelated transactions with txsu.

Let m = max{|txs1|, |txs2|}. For i ∈ {1, 2}, we denote by fi the maximum
value a miner can extract (as fees or outputs that can be spent by anyone) by
including in her block an m-sized set of transactions that includes txi and by
txs∗

i any such set of transactions.
Additionally, for k ∈ [T] we denote with Γk the subgame of Γ at the beginning

of the k-th round with O still unspent. Likewise we denote with Γ ∗
k the subgame

of Γ at the beginning of the k-th round with O having already been spent.

We note the following in the context of a conditionally timelocked game:

– tx1 is an ancestor of all other transactions in txs1,
– tx2 is an ancestor of all other transactions in txs2,
– tx1 and tx2 are mutually exclusive, therefore no pair of transactions from
txs1 and txs2 respectively can coexist in the blockchain.

– For i ∈ {1, 2}, a set of transactions txs∗
i that extracts value fi for the miner

may contain anywhere from 1 to m transactions from txsi. The remaining
transactions in txs∗

i , as well as the rest of the transactions in the block, are
unrelated transactions.

– If O is unspent at a round before T , a miner cannot mine tx2.
– If O is unspent at round T , a miner may mine either of tx1, tx2.
– If O is spent, a miner cannot mine either of tx1, tx2.
– We ignore games in which O is initially spent, as they provide no opportunity

to bribe.

496 Z. Avarikioti and O. S. Thyfronitis Litos

– Since Γ1 = Γ and O is initially unspent, there is no Γ ∗
1 game.

– The notation txsu does not clarify the exact size of the set, but it will always
be clear from context, keeping in mind that each block must contain exactly
N transactions.

Intuitively, txs1 represent honest and txs2 represent bribing sets of transac-
tions. Looking forward, the reason we consider sets of transactions (as opposed
to just a single transaction) is because in Lightning a briber cannot offer the
bribe just with tx2 (i.e. “HTLC-Timeout” [1]), since the fee of this transaction
is agreed upon by both protocol parties; the briber has to publish one more trans-
action instead, which would spend HTLC-Timeout and offer the bribing fee. This
observation renders the analysis of [26] technically inapplicable to Lightning. Our
model generalizes that of [26] to cover such situations. Furthermore, our app-
roach applies to bribing scenarios in protocols that do not include hashlocks,
such as DMC.

Lemma 1. Consider a conditionally timelocked game Γ . If mf > f1, then
attempting to mine tx1 at any round is a strictly dominated strategy for all
miners.

Proofs to all lemmas and theorems can be found in Appendix B.

Lemma 2. Consider a conditionally timelocked subgame Γ ∗
k in which O has

been spent. ∀σ ∈ Σ,∀i ∈ [n], it is ui(σ, Γ ∗
k) = λi(T − k + 1)Nf .

Theorem 1. Consider a conditionally timelocked game Γ . If f2 > f1−mf
λmin

+
mf > f1, then the unique Nash Equilibrium is for every miner to attempt to
mine only txsu at each round before T and attempt to mine txs∗

2∪txsu at round
T , in other words that σ = (txsu, . . . , txsu

︸ ︷︷ ︸

n

)T−1(txs∗
2 ∪ txsu, . . . , txs∗

2 ∪ txsu
︸ ︷︷ ︸

n

).

Intuitively, Theorem 1 asserts that for a big enough bribe, every miner is
incentivized to ignore the honest transactions, wait instead for the timelock to
expire and then mine the bribing transactions, thus ensuring the success of the
bribing attempt. The minimum required size of the bribe is proportional to the
fees of the honest transactions, inversely proportional to the minimum mining
power and independent of the timelock length.

4 Timelock Bribe Analysis

In this section, we leverage the analysis of Sect. 3 to examine the race between
a briber that publishes an old transaction alongside with a bribe, and an hon-
est party that follows the protocol specification; meaning that the honest party
attempts to include on-chain the last update transaction or the revocation trans-
action in DMC and Lightning channels respectively. As explained in Sect. 2, the
old transaction is timelocked but typically offers a bribe, while the honest trans-
action can be spent immediately but typically pays the miner less coins.

Suborn Channels 497

We first determine the parameter region under which the DMC channels are
susceptible to such bribing attacks. Then, we modify the DMC channels, and
propose a novel scheme, which we term Suborn channels, to limit the bribing
region. The core idea is that, if a party tries to bribe, its coins in the last agreed
transaction are awarded to the miners by-design, in addition to the transaction
fee. We note that a rational briber will at most bribe the miners with its gain
between the two competing transactions. For instance, suppose the cheating
transaction awards 7 coins to the briber and 3 coins to the honest party, while
the last agreed transaction awards 4 and 6 respectively. Then, the 4 coins (of the
briber in the last state) can be claimed by the miner that mines the honest party’s
transaction, while the briber can only profitably bribe for less than 7 − 4 = 3
coins, clearly losing the race. Our construction thus limits the parameter region
in which timelock bribes are effective.

Thereafter, we identify the parameter region in which bribes are effective in
LN. Finally, we propose the use of an increased fee in the revocation transac-
tion, depending on the value of each transaction, to expand the aforementioned
parameter region with similar effects to Suborn channels.

4.1 Timelock Bribe

Now, let P1 be an honest party and P2 a rational party which tries to maximize
its coins like the miners. We assume that both parties have no mining power.

Definition 3 (Timelock Bribe). Consider parties P1, P2 and a publicly known
transaction tx with one output O that can be either spent by P1 with a transaction
tx1, possibly after a timelock, such that tx1 offers miners a value f1, or by P2

with a transaction tx2 which has a timelock that is strictly greater than that of
tx1 (if the latter has any). Consider a set of transactions txs2, |txs2| = m, that
contains tx2, offers total value f2 to miners and all transactions in txs2 apart
from tx2 spend at least one output of tx2 or another transaction in txs2. We
say that P2 offers a timelock bribe if P2 publishes all txs2 before the timelock
of tx2 has expired and f2 > f1−mf

λmin
+ mf .

Theorem 1 implies that the excessive fee paid by P2 intends to discourage
miners from including P1’s transaction before P2’s timelock expires and eventu-
ally include P2’s transaction instead. We now prove that the briber prefers to
use the fewer (bribing) transactions possible (denoted by m).

Lemma 3.

∀m ∈ [N − 1],
f1 − mf

λmin
+ mf <

(f1 + f) − (m + 1)f
λmin

+ (m + 1)f

Note that the (f1+f) in the numerator of the right-hand side of the inequality
stems from the fact that an additional unrelated transaction has to be added
to txs∗

1 if the number of briber’s transactions txs2 are increased by 1 while it
is already |txs2| ≥ |txs1|. In other words, Lemma 3 states the following: Given

498 Z. Avarikioti and O. S. Thyfronitis Litos

that briber’s transactions are more than the honest party’s transactions, timelock
bribes involving fewer transactions are cheaper for the briber. This holds because
a lower number of bribe transactions means that the briber has to surpass a lower
minimum bribe in order to incentivize miners in her favor.

4.2 Timelock Bribe in DMC

Let parties P1 and P2 that have a DMC channel and consider one of the two
latest transactions, i.e., the only two non-invalidated, refund transactions gives
cr,1 to P1, cr,2 to P2 and offers fee fr, whereas the latest corresponding update
transaction gives cu,1 to P1, cu,2 to P2 and offers fee fu. Note that the update
transaction is not timelocked, whereas the refund transaction is, and that the
two transactions are mutually exclusive. Assume cr,2 > cu,2. Then in this simple
micropayment channel payments flow from P2 to P1, thus it is in the benefit of
P2 if the refund transaction is put on-chain instead of any of the replacement
update transactions. Furthermore assume that all the timelocks of the opt-in
transactions of the branch of interest have expired and that P1 has published
them along with the latest update transaction of the simple micropayment chan-
nel under discussion, but no child transaction that spends its cu,1 coins – this
is honest behavior according to the DMC protocol. Note that in the other sim-
ple micropayment channel of the current branch, payments flow from P1 to P2,
therefore P2 prefers the latest update transaction to the refund transaction in
that channel and would not attempt to timelock bribe there.

The result intended by the DMC construction is for the update transaction,
and not the refund transaction, to be included on-chain. Unfortunately, under
the assumption of rational miners, there are cases in which this expectation is
violated. In particular, P2 can offer a timelock bribe and turn the inclusion of
the refund transaction into a strictly dominant strategy profile for the miners.
We identify the parameter region for which this is possible.

Theorem 2. A DMC bribe is possible if cr,2 − cu,2 > fu−2f
λmin

+ 2f − fr, where
cr,2, cu,2 are P2’s coins in the refund and update transactions respectively, and
fr, fu are the fees of the refund and updated transactions.

P1 should therefore take care to avoid such a situation by invalidating the cur-
rent refund transaction before such a state is reached. Note that due to Lemma 3
it does not make sense for P2 to attempt to bribe using more transactions than
just the refund transaction and txb, lest she wants to pay a higher bribe. Also
note that it is essentially risk-free for P2 to attempt a timelock bribe, since if
it fails the latest update transaction will be mined and P2 will receive her fair
share without any punishment. Due to symmetry between the two parties, the
analysis above holds with the roles of P1 and P2 reversed.

Observe that in practice parties have the ability to locally re-estimate the
value of λmin on the fly and act accordingly: if a change to apparent mining
power distribution makes one of the two parties decide that the current balance
is reaching risky values, it can ask its counterparty to invalidate the current leaf
and refuse to do any further payments until this is done.

Suborn Channels 499

4.3 Improving DMC Incentives: Simple Suborn Channels

Simple Suborn Channel Design. Our goal is to drastically reduce the effec-
tiveness of timelock bribing in DMC. To that end, we propose the following
changes. Remember that the only valid state of a DMC channel is essentially
two unidirectional channels. We denote with (1 → 2) the channel in which P1

pays P2, and with (2 → 1) the reverse; this notation is also used as a superscript.
Each party locally stores a different refund transaction (instead of having

identical ones). In channel (2 → 1), P2’s refund transaction has two outputs: (a)
an output with P1’s coins, spendable just with P1’s signature, (b) an output with
P2’s coins, spendable with P2’s signature and the preimage of a specified hash.
P1’s refund transaction in (2 → 1) is as in DMC (only signatures required).

The update transaction of channel (2 → 1) (held by P1) is changed as follows.
(a) P1’s output can be spent with P1’s signature, whereas (b) P2’s output has
two spending methods: either with P2’s signature, or with the preimage of the
aforementioned hash (same as the refund transaction) without any signature.
Channel (1 → 2) is symmetric. The changes are depicted in Fig. 3.

To establish a channel, each party generates a secret preimage and sends to
the counterparty its hash. Upon receiving the hash, the party sends to the coun-
terparty its signature on the refund transaction. To perform a payment, the payer
signs and sends the new update transaction to the counterparty. The closing of a
simple Suborn channel is similar to DMC (collaboratively, or unilaterally with
a refund or update transaction).

When P2 attempts to spend her c2→1
r,2 coins in her own refund transaction,

she has to reveal the preimage. This secret can be used by a miner to claim
P2’s coins from P1’s update transaction. This effectively increases the fee of P1’s
update transaction using P2’s coins. The miner only knows the preimage if P2

attempts to timelock bribe (disclosing the secret in the process) while neither
the refund nor the update transaction is on-chain.

Note that this change does not jeopardize P2’s ability to use her refund
transaction honestly. In case the timelock of P2’s refund transaction expires, she
can publish it, wait for it to be confirmed deep enough in the blockchain, and
only then publish a transaction that spends her cr,2 coins. At that moment it
is safe for P2 to reveal the preimage, since the update transaction cannot be
included on-chain anymore.

Analysis. In order to determine the exact bounds within which our technique
prevents timelock bribes, we perform a similar analysis as for the original DMC.

Theorem 3. A bribe in the simple Suborn channels is possible if cr,2−cu,2(1+
1

λmin
) > fu−2f

λmin
+ 2f − fr, where cr,2, cu,2 are P2’s coins in the refund and update

transactions respectively, and fr, fu are the fees of the refund and updated trans-
actions.

We see that the bounds of balances within which timelock bribes may take
place is much smaller than in the DMC construction. For example, if λmin = 0.02

500 Z. Avarikioti and O. S. Thyfronitis Litos

(as estimated in [22]), then cu,2 may become 51 times smaller than in plain
DMC before a bribing opportunity arises. Unfortunately, these bounds are still
tighter than the ones originally recommended in DMC, which allowed simple
micropayment channels to be completely depleted before moving on to a new
branch – as we showed, this would risk a timelock bribe opportunity. Once again,
Lemma 3 precludes a case where it is in the benefit of P2 to bribe using more
transactions. Note that this change exposes P2 to some risk if she attempts a
timelock bribe even if the Nash equilibrium for the miners is to ignore P1’s
update transaction. In case any winning miner is irrational and chooses to mine
P1’s update and take P2’s coins, P2 is punished and takes no coins. The analysis
for P1 is symmetric.

Overhead Over DMC. When opening the channel, each party has to generate
a single preimage (32 bytes), send its hash (32 bytes) to the counterparty, receive
and store the counterparty’s hash. This has to be done only once for the entire
lifetime of the channel. No additional communication rounds are needed, as the
hashes can be appended to existing messages. When closing the channel, if a
refund transaction is used, then the on-chain overhead is a hash (33 bytes, the
extra byte specifies the length of the hash), its preimage (33 bytes as well) and the
corresponding opcodes for its verification (OP SHA256 & OP EQUAL, 1 byte each,
c.f. Appendix A), adding 68 bytes. If one party publishes its update transaction
and its counterparty is honest, then the on-chain overhead is the branch with the
hashlock in the counterparty’s output, which adds a hash and 4 opcodes (OP IF
& OP ELSE & OP ENDIF, c.f. Appendix A), adding 38 bytes. The overhead of the
update transaction can be eliminated if the taproot2 optimization is used.

4.4 Incentivizing DMC Across Branches: Suborn Channels

Suborn Channel Design. The previous technique can be extended to discour-
age cross-branch bribes. Suppose the briber attempts to incentivize miners to
ignore the valid branch of the invalidation tree altogether in favor of an inval-
idated branch, i.e., one which is encumbered with a longer timelock than the
valid one. Now the briber may instead use an old update transaction to cheat.
To address this issue, we require update transactions to include a hashlock as
well. More specifically, the output of P2, both in the refund and in the update
transactions of P2, should require the preimage of the hash along with P2’s
signature. The changes are mirrored for the other party. This way all avenues
for bribing are encumbered with preimage revelation. The two hashes (one per
party) must remain the same across branches in all update and refund trans-
actions. This way bribing in an old branch can be punished in the last branch.
See Appendix A for the exact Script, and Fig. 3 for an illustration of Suborn
channels.

In our scheme, to decide whether our balance is within safe bounds, we must
consider all past update and refund transactions. This must be taken into account
2 https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki.

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

Suborn Channels 501

in the parameter region analysis. Note that in every simple channel the payer
only stores the refund transaction, whereas the payee stores both the refund
and the update transactions. The payee always prefers the update to the refund
transaction, as simple channels are unidirectional.

Let kl ∈ N be the total number of leaves – the only valid leaf is the kl-th. Let
k ∈ [kl − 1]. Furthermore, assume that branches kl and k have j distinct opt-in
transactions. The coins held in the outputs of the two last update transactions
of the k-th branch that belong to P2 are denoted with c1→2

k,u,2 and c2→1
k,u,2. Analo-

gous notation is used for the refund transactions and P1’s coins. Let fb be the
necessary bribe given by txb to incentivize miners to ignore the latest leaf – P2

may only have txb consume her c2→1
k,r,2 and optionally in addition her c1→2

k,u,2 coins,
as all opt-in transactions only include multisig outputs that can only be spent
according to the protocol. All opt-in, update and refund transactions have a fee
fo, fu and fr respectively.

Theorem 4. A bribe in Suborn channels is possible if ∀k ∈ [kl − 1], c1→2
k,u,2 +

c2→1
k,r,2 − (c1→2

kl,u,2 + c2→1
kl,u,2)(1+ 1

λmin
) < 1

λmin
(jfo +2fu − (j +3)f)+(j +3)f − jfo −

fr − fu.

Before every payment P1 must ensure that Theorem 4 will still hold to prevent
a timelock bribe from P2. Otherwise P1 should refuse to facilitate the payment
and propose creating a new branch instead. Lemma 3 ensures that it is in the
benefit of P2 to bribe with only one additional transaction txb. Similarly to
the previous subsection, P2 is exposed to some risk if it attempts a timelock
bribe even when the Nash equilibrium is in her favor, since there may be a
winning irrational miner that chooses to mine P1’s transaction and punish P2.
The analysis for P1 is symmetric.

Overhead over Simple Suborn Channels. The only additional overhead
compared to Subsect. 4.3 is a hash, a preimage and 2 opcodes, for a total of
68 bytes, when the party that publishes an update transaction spends its own
output.

4.5 Timelock Bribe in LN

LN is also susceptible to timelock bribes. P2 can timelock bribe by publishing an
old, revoked commitment transaction together with a bribing transaction txb.
txb spends P2’s output of the commitment transaction, offers fee fb and pays the
rest to P2. For big enough fb, this incentivizes miners to ignore P1’s revocation
transaction, which carries a fee fr; the revocation transaction gives all P2’s coins
to P1 (without a timelock) as a punishment for publishing an old commitment
transaction. Let cold and cnew be P2’s coins in the old and new commitment
transactions respectively.

Theorem 5. A bribe in LN channels is possible if cold − cnew > fr−f
λmin

+ 2f .

502 Z. Avarikioti and O. S. Thyfronitis Litos

Therefore, in order to avoid a timelock bribe, P1 must not allow the channel
balance to reach the condition of Theorem 5 for any old channel state. Lemma 3
ensures that it is not in P2’s benefit to attempt to bribe with more than one
transaction. The analysis for P1 is symmetric.

4.6 Fixing LN Incentives

In order to shrink the bounds in which a timelock bribe is possible in LN, we pro-
pose the following change: Instead of having revocation transactions only offer
fee fr, they would instead offer a higher fee f ′

r, such that bribes are not possible
(reversing the inequality of Theorem 5). Note that we only consider counter-
measures where the honest party does not lose coins. Figure 4 demonstrates the
proposed modification to the lightning channel construction.

Theorem 6. A bribe in modified LN channels is not possible if f ′
r ≥ f +

λmin(cold − cnew − 2f) and λmin ≤ cnew−f
cold−cnew−2f , where cold are the maximum

coins P2 owned in any old channel state and cnew the coins P2 currently owns.

Before each payment, P1 should ensure that Theorem 6 holds for the new
balance. To do so, P1 substitutes the values λmin, f , cold and cnew – the latter
is P2’s coins after the prospective update.

The maximum possible λmin occurs when there are exactly two equal miners,
meaning that λmin = 0.5. Then, cnew−f

cold−cnew−2f ≥ 0.5 ⇔ 2(cnew−f) ≥ cold−cnew−
2f ⇔ 3cnew ≥ cold, meaning that P1 can always nullify P2’s bribes if 3cnew ≥ cold.
For any lower λmin, the safe region is even larger.

Conveniently for P1, the fee f ′
r does not have to be determined in advance;

it can be directly calculated and applied only if P2 attempts to timelock bribe.
Indeed, the revocation transaction can be built unilaterally by P1 when it is
needed and with the desired fee, as the punishment path of a commitment
transaction is locked with a single key (namely “revocationpubkey” [1]) and
P1 knows the corresponding private key (namely “revocationprivkey” [1]).
Moreover, f ′

r does not need to be applied at all in case P2 publishes an old com-
mitment transaction without bribing. No change in Script is necessary, just a
suitable increase in the fee of revocation transactions, as discussed above. The
analysis for P1 is symmetric.

Overhead Over LN. Since our solution does not change any of the data
exchanged neither adds outputs nor complicates scripts, its only overhead is the
calculation of the new fee f ′

r, a local computation that in practice is negligible.

5 Related Work

Bribing attacks on blockchains with Nakamoto-style consensus have been iden-
tified in the past, initially ones that incentivize miners to double-spend transac-
tions [19]. Accepting such bribes carries an associated risk for the miner. Specif-
ically, while the honest miners extend the longest chain, the bribed miner would

Suborn Channels 503

Fig. 3. Suborn channels Fig. 4. Modified lightning channels

have to ignore the last block and instead mine enough new blocks on top of
an older block to catch up with the last block – a high risk/high returns strat-
egy. Furthermore, attempts to fork the blockchain are often publicly visible and
attributable, and could lead to damaged miner reputation.

On the other hand, accepting a timelock bribe is risk-free for the miner, as
it does not involve creating a fork; it simply has the miner ignore a particular
transaction when forming a block and then mining on top of the longest chain.
Previous analyses [22,26,27] of timelock bribes cover slightly different scenarios
with distinct approaches and thus arrive to varying conclusions.

In particular, [22] focuses on the resilience of the HTLC smart contract under
a timelock bribe, which is analyzed in the context of LN and Cross-Chain Atomic
Swaps [16] under the assumption of rational miners and for all possible ranges
of bribe values. A simple utility function is used, as it only considers the min-
ers’ payouts of the competing bribing and honest transactions, not taking into
account fees offered by candidate unrelated transactions that could be included
instead in a block. Modulo these differences, the subset of their analysis that
treats the same bribe ranges as ours is indeed compatible with the results of
the current work. For smaller bribes, the authors conclude that no opportu-
nity for bribery exists given that the timelock is long enough – its exact length
depends on the honest transaction fee, the bribe and the mining power distribu-
tion. Given the results of their analysis, the authors provide recommendations
on safe parameters for LN and Atomic Swaps.

In [27] three different bribery mechanisms are presented and analyzed for
a general setting of transaction censorship attacks. Fees from unrelated trans-
actions are taken into account in the miners’ utility function. The first attack
involves paying out a separate bribe to each miner if it succeeds, not just to the
winner of the last round. The second attack pays out bribes throughout the exe-
cution to each winning miner as long as the honest transactions are ignored. This
attack can be cheaper than the first, but cannot, to the best of our knowledge,
be implemented in Bitcoin Script without explicit cooperation by the honest
party. The last attack is inspired by feather forks [20]: It bribes a miner with

504 Z. Avarikioti and O. S. Thyfronitis Litos

enough mining power to commit to ignoring blocks with undesired transactions,
effectively threatening other miners to orphan their blocks if they act honestly.
If the committed miner defects, she loses a deposit. This attack is cheaper than
the other two, but needs a miner that is willing to publicly commit to a malicious
strategy. Due to incompatible assumptions on the setting, particularly on the
payout schedule of the honest transactions, the results of [27] and the current
work are not directly comparable.

Lastly in [26] bribing attacks against standard HTLC contracts are analyzed,
bribing ranges beyond which the attack succeeds are provided, an extension to
the Bitcoin Core code that allows miners to specify arbitrary strategies is imple-
mented and a collateral-based modification of HTLC that provably withstands
bribing attacks is built. Our incentive analysis constitutes a generalization of
the approach of [26]. We further apply our analysis to both DMC and LN. We
also provide an alternative method to discourage bribes, which does not employ
collateral.

6 Conclusion and Future Work

6.1 Future Work

In the context of a conditionally timelocked output, another direction of interest
is to formally analyze miner incentives when fh−mf

λmin
+mf > fb > fh, where fh is

the fee of the timelock-free transaction and fb is the bribe. Such a study would
highlight opportunities for cheaper bribing, formulate the effects of the transition
of the bribe value from one regimen to the other in a unified framework, and
examine the effectiveness of our proposals against such lower bribe values. Ideally
it would also unify the settings of [22,26,27] and the current work.

HTLCs, which are used both in DMC and LN for multi-hop atomic payments,
leverage timelocks for their functionality. The methodology used in this work can
be extended to techniques for mitigating timelock bribing for HTLCs as well.

6.2 Conclusion

In this work, we analyzed the circumstances under which a general form of time-
lock bribes may be carried out by a rational participant of a two-party protocol,
assuming rational miners. We further applied our findings to provide bounds
on the applicability of timelock bribes in DMC [11] and LN [24]. Subsequently,
using specially tailored novel techniques that allow the honest party to use the
rational party’s funds to counter-bribe the miners, we reduced the opportuni-
ties for timelock bribes compared to the original constructions and effectively
expanded their safe operating region.

Suborn Channels 505

A Suborn Transactions Script for Incentivized DMC

(Figs. 7, 8 and 9)

Fig. 5. Script for P3−i’s output of Pi’s
update transactions, i ∈ {1, 2}

Fig. 6. Script for Pi’s output in Pi’s
refund and update transactions, i ∈
{1, 2}

Fig. 7. Witness script spending honest
(“IF”) branch of Fig. 5 script

Fig. 8. Witness script spending Fig. 6
script

Fig. 9. Witness script spending punishment (“ELSE”) branch of Fig. 5 script

B Omitted Proofs

Proof of Lemma 1. For round k ∈ [T], the game is either Γk or Γ ∗
k . If a miner

attempts to mine tx1 in round k, the maximum value she can extract is if
she chooses to mine txs∗

1 and fill the remaining N − m slots with unrelated
transactions. There is no benefit to be gained in this or later rounds if a different
way of including tx1 is chosen, so we ignore such other options. The expected
fee she gains from this round is λi(f1 + (N − m)f) in the first case and 0 in
the second (as her block would be invalid). If instead she attempts to mine
only unrelated transactions, her expected gains from this round are λiNf . It is
mf > f1 ⇔ Nf > f1 + (N − m)f ⇔ λiNf > λi(f1 + (N − m)f) and λiNf > 0,
so attempting to mine only unrelated transactions offers higher value in both

506 Z. Avarikioti and O. S. Thyfronitis Litos

cases. Since the expected utility is the sum of the expected gains of all rounds,
attempting to mine txs∗

1 in any round is strictly dominated by attempting to
mine txsu in their place.
�
Proof of Lemma 2. Since O is spent, all remaining valid transactions offer
fee f . Therefore the i-th miner has a probability λi to obtain fee Nf for each
of the remaining T − k + 1 rounds, for a total expected utility ui(σ, Γ) = λi(T −
k + 1)Nf .
�
Proof of Theorem 1. We will prove the theorem using induction and iterated
elimination of strictly dominated strategies.

First of all, we note that

f2 > f1 > mf . (1)

The first inequality stems directly from the theorem precondition, whereas the
second arises when we solve f1−mf

λmin
+mf > f1 for f1 while keeping in mind that

0 < λmin < 1.
Consider now the i-th miner, i ∈ [n] when she decides which transaction to

include for the last round, T . If O is unspent, then

∀σT
−i ∈ ΣT

−i it is

ui(σT
−i;σ

T
i = txsu, ΓT) = λiNf ,

ui(σT
−i;σ

T
i = (txs∗

1 ∪ txsu), ΓT) = λi(f1 + (N − m)f) ,

ui(σT
−i;σ

T
i = (txs∗

2 ∪ txsu), ΓT) = λi(f2 + (N − m)f) .

From inequalities (1) we deduce that σT
i = txs∗

2 ∪ txsu is a strictly dominant
strategy for any i ∈ [n], so σT = ((txs∗

2 ∪ txsu), . . . , (txs∗
2 ∪ txsu)

︸ ︷︷ ︸

n

) in subgame

ΓT with ui(σT , ΓT) = λi(f2 + (N − m)f).
We will now prove via induction that σ1...T−1 = (txsu, . . . , txsu

︸ ︷︷ ︸

n

)T−1 for

subgame Γk, in other words that the Nash equilibrium in all rounds prior to
the last one in which O is unspent is for all players to attempt to mine only
unrelated transactions.

The base of the induction is k = T −1. For i ∈ [n], it is either σT−1
i = txs∗

1 ∪
txsu or σT−1

i = txsu (as in the proof of Lemma 1, we ignore all configurations
that include tx1 except for txs∗

1). Let σT−1
−i ∈ ΣT−1

−i and λu the sum of mining
power of miners who try to mine only unrelated transactions in round T − 1,
excluding the i-th miner. If tx1 is mined, then the last round is Γ ∗

T and by
Lemma 2 the utility obtained by the i-th miner at the last round is λiNf . It is

Suborn Channels 507

ui((σT−1
−i ;σT−1

i = txsu)σT , ΓT−1)

= λi(Nf + ui(σT , ΓT)) + λuui(σT , ΓT) + (1 − λu − λi)λiNf

= λi(Nf + λi(f2 + (N − m)f)) + λuλi(f2 + (N − m)f) + (1 − λu − λi)λiNf,

ui((σT−1
−i ;σT−1

i = (txs∗
1 ∪ txsu))σT , ΓT−1)

= λi((f1 + (N − m)f) + λiNf) + λuui(σT , ΓT) + (1 − λu − λi)λiNf

= λi((f1 + (N − m)f) + λiNf) + λuλi(f2 + (N − m)f) + (1 − λu − λi)λiNf.

It is

ui((σT−1
−i ;σT−1

i = txsu)σT , ΓT−1) > ui((σT−1
−i ;σT−1

i = txs∗
1 ∪ txsu)σT , ΓT−1)

⇔ λi(Nf + λi(f2 + (N − m)f)) > λi((f1 + (N − m)f) + λiNf)

⇔ f2 >
f1 − mf

λi
+ mf.

It is f1−mf
λi

+ mf ≤ f1−mf
λmin

+ mf so the above is true. Therefore σT−1 =
(txsu, . . . , txsu
︸ ︷︷ ︸

n

), thus λu = 1 − λi and ui(σT−1...T , ΓT−1) = λi(Nf + λi(f2 +

(N − m)f) + (1 − λi)λi(f2 + (N − m)f) = λi((2N − m)f + f2).
Let k ∈ [T − 2]. The inductive assumption for k + 1 is firstly that σk+1 =

(txsu, . . . , txsu
︸ ︷︷ ︸

n

) and secondly ui(σk+1...T , Γk+1) = λi((T − k)Nf + f2 − mf).

For the inductive step, let once again i ∈ [n]. It is either σk
i = txs∗

1 ∪ txsu

or σk
i = txsu (again ignoring suboptimal transaction sets that include tx1 but

are not txs∗
1). Let σk

−i ∈ Σk
−i and λu the sum of mining power of miners who

try to mine only unrelated transactions in round k, excluding the i-th miner. If
tx1 is mined, then the next round is Γ ∗

k+1 and by Lemma 2 the utility obtained
by the i-th miner from all rounds after k is λi(T − k)Nf . It is

ui((σk
−i;σ

k
i = txsu)σk+1...T , Γk)

= λi(Nf+ui(σk+1...T , Γk+1))+λuui(σk+1...T , Γk+1)+(1−λu−λi)λi(T−k)Nf

= λi(Nf + λi((T − k)Nf + f2 − mf))
+ λuλi((T − k)Nf + f2 − mf) + (1 − λu − λi)λi(T − k)Nf,

ui((σk
−i;σ

k
i = txs∗

1 ∪ txsu)σk+1...T , Γk)
= λi(f1 + (N − m)f + λi(T − k)Nf)

+ λuui(σk+1...T , Γk+1) + (1 − λu − λi)λi(T − k)Nf

= λi(f1 + (N − m)f + λi(T − k)Nf)
+ λuλi((T − k)Nf + f2 − mf) + (1 − λu − λi)λi(T − k)Nf.

508 Z. Avarikioti and O. S. Thyfronitis Litos

It is

ui((σk
−i;σ

k
i = txsu)σk+1...T , Γk) > ui((σk

−i;σ
k
i = txs∗

1 ∪ txsu)σk+1...T , Γk)
⇔ λi(Nf + λi((T − k)Nf + f2 − mf)) > λi(f1 + (N − m)f + λi(T − k)Nf)

⇔ f2 >
f1 − mf

λi
+ mf .

Like in the induction base, it is f1−mf
λi

+mf ≤ f1−mf
λmin

+mf so the above is true.
Therefore σk = (txsu, . . . , txsu

︸ ︷︷ ︸

n

), thus λu = 1 − λi and

ui(σk...T , Γk)
= λi(Nf + λi((T − k)Nf + f2 − mf)) + (1 − λi)λi((T − k)Nf + f2 − mf)

= λi((T − k + 1)Nf + f2 − mf).

We have proven that ∀k ∈ [T − 1] it is σk = (txsu, . . . , txsu
︸ ︷︷ ︸

n

) thus we deduce

that σ = (txsu, . . . , txsu
︸ ︷︷ ︸

n

)T−1(txs∗
2 ∪ txsu, . . . , txs∗

2 ∪ txsu
︸ ︷︷ ︸

n

).
�

Proof of Lemma 3. Let m ∈ [N − 1].

f1 − mf

λmin
+ mf <

(f1 + f) − (m + 1)f
λmin

+ (m + 1)f

⇔ f1 − mf

λmin
<

f1 − mf

λmin
+ f ⇔ 0 < f

The latter is true, thus the proof is complete.
�
Proof of Theorem 2. P2 publishes the refund transaction, along with a transaction
txb that spends her cr,2 coins, transferring some of them to a new address that
belongs to P2 and offering the rest as fee fb, such that fr+fb > fu−2f

λmin
+2f . Due to

Theorem 1, miners will ignore the update transaction, wait for the timelock of the
refund transaction to expire and mine it along with txb. In order for this timelock
bribe to be beneficial to P2, it must hold that cr,2 − fb > cu,2 ⇔ cr,2 − cu,2 > fb.
Therefore, a suitable fb exists if cr,2 − cu,2 > fu−2f

λmin
+ 2f − fr.
�

Proof of Theorem 3. More specifically, consider P2 evaluating whether to timelock
bribe. Publishing the refund transaction and txb offers to miners a total fee
fr + fb, of which fb is taken from cr,2, therefore bribing makes sense only if
cr,2 − fb > cu,2 ⇔ cr,2 − cu,2 > fb. In that case the published update transaction
offers an effective fee of fu + cu,2. Leveraging Theorem 1, we deduce that miners
will accept the bribe if fr + fb >

fu+cu,2−2f
λmin

+ 2f ⇔ fb >
fu+cu,2−2f

λmin
+ 2f − fr.

Therefore, a suitable fb exists if and only if cr,2 − cu,2 >
fu+cu,2−2f

λmin
+2f − fr ⇔

cr,2 − cu,2(1 + 1
λmin

) > fu−2f
λmin

+ 2f − fr.
�

Suborn Channels 509

Proof of Theorem 4. For each k ∈ [kl − 1], P2 prefers the update transaction
of (1 → 2) and the refund transaction of (2 → 1) k-th leaf to the update
transactions of the currently valid leaf if c1→2

k,u,2 + c2→1
k,r,2 − fb > c1→2

kl,u,2 + c2→1
kl,u,2 ⇔

c1→2
k,u,2 + c2→1

k,r,2 − (c1→2
kl,u,2 + c2→1

kl,u,2) > fb. Since branches k and kl have j distinct
opt-in transactions, then j + 3 transactions are implicated in the bribe. Thus,
according to Theorem 1 miners will choose the bribe if jfo + fr + fu + fb >

1
λmin

(jfo + 2fu + c2→1
kl,u,2 + c1→2

kl,u,2 − (j + 3)f) + (j + 3)f ⇔ fb > 1
λmin

(jfo + 2fu +
c2→1
kl,u,2 + c1→2

kl,u,2 − (j +3)f)+ (j +3)f − jfo − fr − fu. Therefore, a compatible fee
fb exists if c1→2

k,u,2 + c2→1
k,r,2 − (c1→2

kl,u,2 + c2→1
kl,u,2) > 1

λmin
(jfo + 2fu + c2→1

kl,u,2 + c1→2
kl,u,2 −

(j + 3)f) + (j + 3)f − jfo − fr − fu.
�
Proof of Theorem 5. For the bribe to be profitable for P2, it must be cold − fb >
cnew − f ⇔ cold − cnew − f > fb – the fee f is included because this is the
minimum fee P2 would have to pay anyway in order to use its cnew coins. By
applying Theorem 1, we deduce that miners will accept the bribe if fb > fr−f

λmin
+f ,

therefore a suitable fb exists if and only if cold − cnew − f > fr−f
λmin

+ f ⇔
cold − cnew > fr−f

λmin
+ 2f .
�

Proof of Theorem 6. To discourage bribes, from Theorem 5, the fee of the honest
party should satisfy the following: cold − cnew ≤ f ′

r−f
λmin

+ 2f . This means that
f ′

r ≥ f + λmin(cold − cnew − 2f). We will now ensure that this f ′
r does not lead

to loss of coins for P1. Let c be the total channel value, which stays constant
throughout the channel lifetime. P1 has to own enough coins in the old state, so
that their sum with the counterparty’s coins minus the fee f ′

r exceeds or matches
P1’s coins in the latest state. Formally, c−cold+cold−f ′

r ≥ c−cnew ⇔ cnew ≥ f ′
r.

Combining the above, it has to be cnew ≥ f + λmin(cold − cnew − 2f) ⇔ λmin ≤
cnew−f

cold−cnew−2f . The last step is valid since cold − cnew − 2f > 0. This is true since,
as we saw above, P2 only attempts to bribe if cold − cnew − f > fb and we know
that fb ≥ f .
�

References

1. Lightning network specification, BOLT #3: bitcoin transaction and script formats.
https://github.com/lightning/bolts/blob/master/03-transactions.md

2. Aumayr, L., et al.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020). https://eprint.iacr.org/2020/476

3. Aumayr, L., et al.: Bitcoin-compatible virtual channels. In: IEEE Symposium on
Security and Privacy, Oakland, USA, 23 May 2021–27 May (2021). https://eprint.
iacr.org/2020/554.pdf

4. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Donner: utxo-based virtual
channels across multiple hops. Cryptology ePrint Archive, Report 2021/855 (2021).
https://eprint.iacr.org/2021/855

5. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: asynchronous
incentive-compatible payment channels. In: International Conference on Financial
Cryptography and Data Security (2021)

https://github.com/lightning/bolts/blob/master/03-transactions.md
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2021/855

510 Z. Avarikioti and O. S. Thyfronitis Litos

6. Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: Cerberus channels: incen-
tivizing watchtowers for bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 19

7. Burchert, C., Decker, C., Wattenhofer, R.: Scalable funding of bitcoin micropay-
ment channel networks. In: The Royal Society (2018)

8. Chakravarty, M.M.T., et al.: Hydra: fast isomorphic state channels. Cryptology
ePrint Archive, Report 2020/299 (2020). https://eprint.iacr.org/2020/299

9. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

10. Decker, C., Russell, R., Osuntokun, O.: eltoo: a simple layer2 protocol for bitcoin.
https://blockstream.com/eltoo.pdf

11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

12. Dong, M., Liang, Q., Li, X., Liu, J.: Celer network: bring internet scale to every
blockchain (2018)

13. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: 2019 2019 IEEE Symposium on Security and Privacy
(SP), pp. 344–361, Los Alamitos, CA, USA, IEEE Computer Society, May 2019

14. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 949–966
(2018)

15. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with con-
stant collateral in bitcoin-compatible payment-channel networks. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, pp. 801–815, New York, Association for Computing Machinery (2019)

16. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2018, Egham, United King-
dom, 23–27 July 2018, pp. 245–254 (2018)

17. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp.
365–384. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5 18

18. Kiayias, A., Thyfronitis Litos, O.S.: A composable security treatment of the light-
ning network. In: 33rd IEEE Computer Security Foundations Symposium, pp.
334–349. IEEE (2020)

19. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

20. Miller, A.: Feather-forks: enforcing a blacklist with sub-50% hash power. https://
bitcointalk.org/index.php?topic=312668.0. Accessed 22 Nov 2020

21. Miller, A., Bentov, I., Kumaresan, R., Cordi, C., McCorry, P.: Sprites and
state channels: payment networks that go faster than lightning. arXiv preprint
arXiv:1702.05812 (2017)

22. Nadahalli, T., Khabbazian, M., Wattenhofer, R.: Timelocked bribing. In: Borisov,
N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 53–72. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-662-64322-8 3

https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://eprint.iacr.org/2020/299
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-030-65411-5_18
https://doi.org/10.1007/978-3-319-70278-0_17
https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
http://arxiv.org/abs/1702.05812
https://doi.org/10.1007/978-3-662-64322-8_3

Suborn Channels 511

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
24. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-

ments, January 2016. https://lightning.network/lightning-network-paper.pdf
25. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/

pipermail/bitcoin-dev/2013-April/002433.html. Accessed 22 Nov 2020
26. Tsabary, I., Yechieli, M., Eyal, I.: MAD-HTLC: because HTLC is crazy-cheap to

attack. In: IEEE S&P (2021)
27. Winzer, F., Herd, B., Faust, S.: Temporary censorship attacks in the presence of

rational miners. In: 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS & PW), pp. 357–366. IEEE (2019)

28. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

29. Zhao, L., et al.: Sok: hardware security support for trustworthy execution (2019)

https://lightning.network/lightning-network-paper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

Sliding Window Challenge Process
for Congestion Detection

Ayelet Lotem1(B) , Sarah Azouvi2 , Patrick McCorry3, and Aviv Zohar1

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{ayelem02,avivz}@cs.huji.ac.il

2 Protocol Labs, London, UK
sarah.azouvi@protocol.ai

3 Infura, London, UK

Abstract. Many prominent smart contract applications such as pay-
ment channels, auctions, and voting systems often involve a mechanism
in which some party must respond to a challenge or appeal some action
within a fixed time limit. This pattern of challenge-response mechanisms
poses great risks if, during periods of high transaction volume, the net-
work becomes congested. In this case, fee market competition can prevent
the inclusion of the response in blocks, causing great harm. As a result,
responders are allowed long periods to submit their response and overpay
in fees. To overcome these problems and improve challenge-response pro-
tocols, we suggest a secure mechanism that detects congestion in blocks
and adjusts the deadline of the response accordingly. The responder is
thus guaranteed a deadline extension should congestion arise. We lay
theoretical foundations for congestion signals in blockchains and then
proceed to analyze and discuss possible attacks on the mechanism and
evaluate its robustness. Our results show that in Ethereum, using short
response deadlines as low as 3 h, the protocol has >99% defense rate from
attacks even by miners with up to 33% of the computational power. Using
shorter deadlines such as one hour is also possible with a similar defense
rate for attackers with up to 27% of the power.

Keywords: Congestion · Challenge-response

1 Introduction

DeFi platforms constructed over blockchains such as Ethereum have seen a recent
boom of activity and interest. Their growing ecosystem allows for increasingly
complex financial interactions executed in a fully decentralized manner. The
main building blocks used to construct these platforms are the smart contracts
that define the rules of interaction in code.

Smart contracts enable a wide range of applications, such as auctions, voting
systems, and second layer protocols (e.g., payment channels) that operate above
the blockchain layer. They typically provide rules that allow them to act as an
automated adjudicator in case conflicts between participants arise.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 512–530, 2022.
https://doi.org/10.1007/978-3-031-18283-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_25&domain=pdf
http://orcid.org/0000-0003-4037-1028
http://orcid.org/0000-0002-7133-1937
http://orcid.org/0000-0001-8539-9222
https://doi.org/10.1007/978-3-031-18283-9_25

Sliding Window Challenge Process for Congestion Detection 513

For many applications, interactions with smart contracts are time dependent
and are even subject to deadlines, meaning that in some cases, transactions
added after a specific moment will effectively be rejected. For example in the
case of auctions, a bid must be received before the end of the auction otherwise
it is not valid. Another example appears in the context of payment channels [12]
where participants have a limited interval of time to dispute the division of funds
if they disagree with their peers.

A major weakness of such deadlines is that in cases where the blockchain is
congested, users that submit transactions will not have them included in blocks in
time. In fact, several attacks and failures can be attributed directly to this weak-
ness (we provide some examples below). One mitigation often employed by par-
ticipants is to offer higher fees for transactions with deadlines which means users
are usually overpaying. Another is to extend the deadlines which greatly delays
processing and settlement within the context of the relevant smart contract. In
many cases, transaction fees and deadlines are decided upon in advance, before
the exact conditions that will prevail when the transaction is actually trans-
mitted are known, which causes participants to take wider safety margins and
increases costs further. Due to the well-known scalability issues of blockchains [1],
we expect congested periods to become increasingly more common, which will
directly impact the design of time-sensitive smart contracts.

Our Contributions. In this work we present a mechanism aimed at solving
these issues. We propose to set short deadlines that are automatically extended
if congestion occurs. We lay the theoretical foundations of congestion monitor-
ing in blockchains and formalize the notion of challenge-response protocols in
this context. We then propose two different protocols to detect congestion over
multiple blocks: the ‘L Consecutive Blocks’ protocol defines uncongestion by the
existence of L consecutive uncongested blocks; its generalization, the ‘Sliding
Window (K-out-of-N)’ protocol, defines uncongestion by the existence of N con-
secutive uncongested blocks with K uncongested blocks among them. We show
that the Sliding Window protocol is more resilient to attacks than the L Consec-
utive Blocks protocol when attacked by miners. Furthermore, we propose a new
opcode for Ethereum that will provide the required functionality; we also pro-
vide an implementation (not requiring new opcodes) in Solidity, using opcodes
introduced by Ethereum Improvement Proposal 1559 (EIP 1559) [5].

Examples of Congestion Attacks and Related Failures. A recent well-known
example of congestion-related failure took place on Crypto Black Thursday
(March 12th, 2020) when the price of Ethereum dropped by more than 50%
in less than 24 h [11]. This led to a panic-sale of coins and increased congestion.
At the peak, during a 2–3 h window, the Ethereum blockchain’s fees climbed to
$1.65 on average, more than 10 times their cost on previous days.

The drop in ETH price triggered many MakerDAO auctions to liquidate
collateral (typically collateral on short positions must be sold if prices fluctuate
too much). The tokens to be sold were purchased at almost no cost due to

514 A. Lotem et al.

the inability of many bidders to send transactions and participate. This has,
allegedly, been leveraged by one user to gain $8.3 million worth of ETH [3].

Several studies [10,13] deal with different types of attacks designed to prevent
a party from responding on time to a challenge [10]. Harris and Zohar [13] present
an attack where the attacker forces many victims at once to flood the blockchain
with claims for their funds. The ensuing congestion allows the attacker to steal
the funds that cannot be claimed before the deadline. Our protocol will prevent
these issues by extending the deadlines until the congestion passes.

2 Related Work

Congestion is a real-world problem faced by the most prominent cryptocurren-
cies. In addition to the popular examples of Crypto Black Thursday or Cryptokit-
ties, widely discussed online [3,6,11], Sokolov [18] examined periods of congestion
caused by ransomware.

One way to deal with congestion is to improve the scalability of the underly-
ing consensus protocol [7,9,19–21] or to introduce higher-level layers that help
to scale. Solutions ranging from sharding [23], off-chain payment channels [12]
or layer-zero optimization [22] (i.e., network-level optimization) have been con-
sidered. All these solutions improve the number of transactions per second that
the network can process, but congestion may still occur even at higher rates.

Other methods that help to ensure that time-sensitive transactions are pro-
cessed are rather ad-hoc. For example, the replace by fee [4] and child pays for
parent [2] mechanisms allow users to add or change the fees of their transactions.
Bitcoin’s fee mechanism—equivalent to a first-price auction—is sub-optimal and
often results in users paying more than what is necessary. EIP 1559 was made to
change this mechanism in Ethereum [5,17]. EIP 1559 implements a base fee that
is burned. This base fee can be seen as an indication of the level of congestion
in recent blocks, and we utilize this in our implementation.

Another line of research that could potentially prevent transaction fees from
spiking considers order-fairness consensus protocols [14,15]. The idea is to ensure
that transactions are ordered in the blockchain in the same order they arrived
in. This also helps to avoid problems such as front-running [8].

3 Preliminaries and Definitions

3.1 Challenge-Response Protocols

A challenge-response protocol is an implementation of a pattern in which some
party must respond to a challenge within a fixed time limit. This pattern consists
of a challenge that takes effect at time Tc and a response deadline Trd which is the
latest time by which response to the challenge will be accepted. We call the time
period between Tc and Trd the challenge window. Responding to the challenge
during the challenge window yields different results compared to responding after
the deadline. The protocol we propose inspects the challenge window period and
extends it (by extending Trd) as long as the blockchain stays congested.

Sliding Window Challenge Process for Congestion Detection 515

3.2 Blockchain Congestion

Our protocol has two components. First it relies on a mechanism to define what
it means for a block to be congested. We then use this definition to define an
uncongested period. Intuitively, a period will be (un)congested if some threshold
of blocks is (un)congested. We start by defining block congestion before moving
on to presenting different period congestion definitions and choosing one that
meets our requirements.

Blocks and Transactions. A block B = {tx1, · · · , txn} is as a set of transactions
(we ignore the order of transactions in the block as well as other data—such
as nonce—as they are irrelevant to our problem). Transactions pending to be
included in a block are kept locally by each node in their mempool until they
are included in the chain. Each transaction tx has a size w(tx), and a fee density
φ(tx). The fee paid by the transaction is therefore w(tx) · φ(tx). We define the
total weight of transactions in a block B with a fee density above θ as WB(θ) :=∑

tx∈B: φ(tx)≥θ w(tx).
Blocks can contain transactions with total size bounded by B, i.e., WB(0) ≤

B. For simplicity, we treat every block as full, i.e., for any block WB(0) = B (if
necessary, we fill them artificially with transactions with a fee of 0).

The total amount of fees collected from a block by the miner is UB :=∑
tx∈B w(tx) · φ(tx). If the size of the mempool is bigger than the maximum

block size WB(0), we assume that honest miners choose the transactions in a
way to maximize the fees they get.

Period. A period Pe = (b1, b2, ..., bn) in the blockchain is a non-empty sequence
of consecutive blocks. We denote the length (number of blocks) of the period
by |Pe| = n, and write for i ∈ {1, ..., n}: Pe[i] = bi ∈ Pe. For a period P2, we
say that period P1 is included in P2 and note P1 ⊆ P2 if every block in P1 is
included in P2.

In this work, we want to capture the notion of congestion: a phenomenon
where there’s a spike in the number of transactions waiting in the mempool.
Since the mempool is not part of the blockchain, we instead rely on the data in
the blocks in order to define congestion. We propose the following definition for
block congestion.

Definition 1 ((θ, γ)-congestion). We say that a single block B is (θ, γ)-
conges-ted if WB(θ) ≥ γ · B and denote Cθ,γ(B) = 1, where Cθ,γ is the cor-
responding indicator function.

Per this definition, all transactions above fee density θ are examined and
required to make up at least a γ-fraction of the block in terms of size. Intuitively,
for γ = 1 the definition captures that if a block is (θ, 1)-congested, a transaction
needs to have a fee density that is at least θ in order to have a better chance of
being included. In other words, we use the price of entering a transaction to the
blockchain as a reliable signal for congestion.

516 A. Lotem et al.

For a block B and a fee density θ ≥ 0, we define the θ-weight threshold
γB(θ) as the maximum fraction of the block weight under which the block is
(θ, γ)-congested. From Definition 1 it is clear that γB(θ) = WB(θ)

B . Similarly, for
a block B and a fraction γ ≥ 0, we define the γ-fee density threshold θB(γ) as
the maximum fee density under which the block is (θ, γ)-congested (θB(γ) :=
max{θ | Cθ,γ(B) = 1}).

Block Manipulation. One of the key measures we are interested in is when is an
adversary able to manipulate blocks’ congestion signals. When a miner mines
a block, they can choose to include transactions from their mempool or to add
dummy transactions that move money between their accounts and pay a fee
(to themselves), making the fees appear different than they ought to be. How-
ever, miners cannot manipulate blocks at arbitrary heights, and doing so would
incur a cost. The miner’s chance of mining a new block depends on its relative
computational power. Therefore, as is standard, we denote the computational
power of an adversary by α. Each block has a probability α to be mined by the
adversary, and 1 − α to be mined by the other miners. Furthermore, giving up
mempool transactions means missing out their fees and hence induces a loss that
we compute in the next two propositions.

Proposition 1. An adversary manipulating a block B to make it (θ1, γ1)-
conges-ted when it is not, will lose a potential profit of at-least B ·∫ 1

1−(γ1−γB(θ1))
θB(γ) dγ.

Proposition 2. An adversary manipulating a block B to reverse its signal
from (θ1, γ1)-congested to not congested will lose a potential profit of at-least
B · ∫ γB(θ1)

γ1
(θB(γ) − θ1) dγ.

The proofs for both propositions can be found in the full version of the
paper [16].

Before moving on to define period congestion, we note that there exist other
ways in which block congestion could be defined. For example, in Sect. 5, we take
the EIP 1559 base fee as a measure of congestion and use it to implement our
suggested protocol. We include several other examples that are less efficient in
the full version of the paper [16].

Congestion Vector of a Period. To determine whether a period Pe is uncongested
we will refer to the congestion vector Pec := (C(Pe[i]))n

i=1 ∈ {0, 1}n which
consists of the congestion signal of its blocks. Intuitively, if most of the blocks in
the period are congested then the period is congested and vice-versa. However,
we must also account for the fact that an adversary may be able to change the
congestion signal of some of the blocks, as already discussed. We will consider
different protocols to define period uncongestion, a situation in which the period
is considered not congested. An uncongestion period protocol is a function that
we denote by UCP:{0, 1}∗ → {0, 1}. This function takes as input a binary series
representing the congestion signal of the blocks in the examined time period.

Sliding Window Challenge Process for Congestion Detection 517

It will return 0 if the period is congested and 1 otherwise. This function can
furthermore be extended to also provide auxiliary information such as a proof π
in the case where the period is uncongested. For the efficiency of the protocol,
we will strive for a definition that can provide a compact and easy-to-verify
proof. Throughout the rest of the paper, we use B(n, p) to denote the binomial
distribution with parameters n and p.

Definition 2 (Period Manipulation). For a period Pe and an adversary with
a fraction α of the total computational power, we associate a manipulated period
P̂ e defined as follows. For i ∈ {1, . . . , |Pe|} the adversary can replace Pe[i] with
probability α, with a block that has a congestion signal of their choice. We denote
by m = m|Pe|(α) ∼ B(|Pe|, α) the vector that indicates which of the blocks
in the given period the adversary controls, meaning the adversary can replace
the Pe[i] block’s congestion signal iff m[i] = 1. We then define the adversary’s
manipulation set Sm,Pe := { ˆPec ∈ {0, 1}|Pe| | ∀1 ≤ i ≤ |Pe| : m[i] = 0 ⇒
ˆPec[i] = Pec[i]}. Intuitively, Sm,Pe corresponds to the set of possible congestion

vectors that the adversary could create by changing the signal of the blocks that
it controls.

In a real world setting, even if there is a long period of uncongestion, it could
be the case that one or more of the blocks are fuller than the others due to some
randomness in the transactions’ arrival time (e.g., there was a temporary high
transaction volume). To account for this randomness, we make a simplifying
assumption that blocks are congested independently with probability p and say
that the blockchain is p−congested. We note that, in reality, congestion is often
changing and is usually correlated when considering several consecutive blocks.
We leave more complex models of congestion for future work. In our case, the
congestion vector of a period Pe chosen at random has a binomial distribution:
Pec ∼ B(n, p). When studying attacks where the adversary tries to convert a
congested period to an uncongested one, we will assume that p is close to one
(i.e., most of the blocks are congested), whereas when studying the opposite
case, we will consider p to be close to zero.

Our protocol consists in extending the deadline of challenge-response in the
event of a congestion period. However, to avoid an edge case where the deadline
is extended indefinitely, we define M̂ , an upper bound on the total length of the
extended period.

Definition 3 (M̂-maximum Extension). Given a challenge-response proto-
col in a p−congested blockchain where the challenge starts at block height h, we
say that M̂ is the maximum extension of the challenge if the deadline cannot be
extended further than height h + M̂ .

3.3 Desirable Properties of Protocols

In this section, we define some properties that we aim for our protocol to achieve.
In the rest of the paper we use the notation D ←− s to denote that s was

selected randomly from the distribution D. We start by describing the two

518 A. Lotem et al.

types of attack that we will consider—a congestion attack and an unconges-
tion attack—before defining the robustness of the protocol, which captures the
security of the protocol against either attack.

Definition 4 (Congestion/Uncongestion Attack on Pe). Given a period
Pe, chosen at random in a p-congested blockchain, we say that the adversary
wins a congestion, resp. uncongestion, attack on Pe if it can manipulate Pe into
an congested, resp. uncongested, period.

Definition 5 ((α, p, q, n)-congestion Robustness). We say an uncongestion
period protocol UCP:{0, 1}∗ → {0, 1} is (α, p, q, n)-congestion robust if, given
an adversary with a relative computational power α, his probability of winning a
congestion attack, i.e., of successfully manipulating a period Pe of n blocks into
a congested period P̂ e, is less than q.

B(n, p) ←− Pe : Pr(∃P̂ e ∈ Sm,Pe s.t. UCP(P̂ e) = 0) ≤ q.

Definition 6 ((α, p, q, n)-uncongestion Robustness). We say an unconges-
tion period protocol UCP:{0, 1}∗ → {0, 1} is (α, p, q, n)-uncongestion robust
if, given an adversary with a relative computational power α, his probability of
winning an uncongestion attack, i.e., of successfully manipulating a period Pe
of n blocks into an uncongested period P̂ e, is less than q.

B(n, p) ←− Pe : Pr(∃P̂ e ∈ Sm,Pe s.t. UCP(P̂ e) = 1) ≤ q.

Definition 7 (Monotonicity). A congestion protocol is monotone if for
every two periods Pe1 and Pe2, if Pe1 ⊆ Pe2 and Pe1 is considered uncon-
gested, then so is Pe2, i.e., ∀Pe1 ⊆ Pe2 : UCP(Pec

1) = 1 → UCP(Pec
2) = 1.

A monotone protocol is easier to verify as the prover only needs to select a portion
of blocks from the time period Pe in order to prove uncongestion. Furthermore,
a monotone protocol requires only sporadic access to the blockchain. A prover
can go offline and prove uncongestion when they come back online by choosing
any uncongested period from the time they were offline. In the case of a non-
monotonic protocol, if the prover is offline during an uncongested period, they
cannot prove the uncongestion of the longer period, after they came back online,
they missed the uncongested period.

Efficiency Properties. We define two properties that capture the efficiency of the
protocol.

– Concise proof size The evidence needed to prove uncongestion of a period
should be as concise as possible.

– Concise refresh information The extra information needed to be kept
when checking the congestion signal of a period that has already been
extended due to congestion should be as concise as possible. Ideally, when
we extend a period from Pe1 to Pe2 in order to check Pe2 for congestion,
we should not have to recheck every block in Pe1 but, rather, aggregate this
information.

Sliding Window Challenge Process for Congestion Detection 519

In the next section we will discuss different period congestion protocols with
the goal of finding one that will be proof efficient and robust against an attacker
with reasonable hash rate with high probability.

4 Uncongested Period Protocols

In this section, we examine different protocols that fit the definition of congestion
of a period Pe. We start by presenting “naive” protocols and discuss why they are
not good enough, i.e., why they lack the desirable properties defined in Sect. 3.3.

4.1 Strawman Protocols

Definition 8 (Cumulative M). Period Pe is uncongested if there exists M
blocks which are uncongested: UCPCM (Pec) = 1 ↔ (∑

b∈Pe(1 − C(b)) ≥ M
)
.

This protocol is monotonic but is not sufficiently robust to adversarial attacks:
if we wait long enough, the probability of the adversary controlling M blocks
becomes overwhelming (even if α is small). We solve this in the next strawman
by considering the percentage of blocks instead of a fixed number.

Definition 9 (Percentage). A period Pe is uncongested if x% of its blocks are
not congested: UCPPC(Pec) = 1 ↔ (∑

b∈Pe(1 − C(b)) ≥ x
100 · |Pe|).

This protocol is much more robust but has the drawback of not being monotonic.
For example, if all blocks are uncongested during the first part of the period
and congestion begins in the second part, then the beginning of the period is
uncongested while the whole period may not be.

We now suggest the following monotonic rule:

Definition 10 (L Consecutive Blocks). A period Pe is uncongested if there
exists at least L consecutive uncongested blocks included in it: UCPL(Pec) = 1 ↔
(∃ 1 ≤ i ≤ |Pe| − L + 1 s.t. ∀ 0 ≤ j ≤ L − 1 : Pec[i + j] = 0).

We show that this protocol is monotonic and inspect its efficiency in the full
version of the paper [16]. We now evaluate its robustness.

Evaluation of the Robustness of the L Consecutive Blocks Protocol. We
examine situations where the adversary attempts to manipulate the congestion
signal for a given period. We separate this into two attacks: uncongestion and
congestion attacks (as in Definition 4). We strive to achieve a high defense rate
against both attacks, meaning finding a value L that will give a low probability
for an adversary to succeed in each of the attacks separately.

520 A. Lotem et al.

Evaluation of the Uncongestion Attack. In order to compute the probability of
an attacker to successfully manipulate Pe into an uncongested period, we define
the following matrix T(L+1)×(L+1):

∀ 0 ≤ i, j ≤ L : Ti,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − α) · p if j = 0 ∧ i �= L

α + (1 − α) · (1 − p) if j = i + 1
1 if i = j = L

0 otherwise

(1)

and denote by ei the ith unit vector of dimension L+1 (i.e., ei has a 1 in the ith

coordinate and 0’s elsewhere).

Theorem 1. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into an uncongested period in a p-congested
network equals e1 · Tn · et

L+1.

Proof. We note that, at each block, the attacker has a probability α to mine the
next block, which allows them to decide its congestion level. In this context, this
means setting the block to be uncongested. In addition, the congestion signal of
a block not mined by the attacker depends on the prevailing congestion state
which is expressed by p. The probability of an honest block being congested,
resp. uncongested, is hence equal to (1 − α) · p, resp. α + (1 − α) · (1 − p). We
define the following Markov chain that describes a random walk on Pe’s blocks
and whose states represent the number of consecutive blocks that are uncon-
gested at a point in time.

The initial state is 0 since it corresponds to the 0 consecutive uncongested
blocks at the beginning of the walk. With each step, we move from state i to
state i + 1, for i < L, if the block is uncongested, and return to state 0 if it is
not. If we reach state L, we stay there since it means the adversary has reached
the goal of L consecutive uncongested blocks in Pe and can manipulate it to an
uncongested period.

T is the corresponding transition matrix; hence the probability of reaching
state L in |Pe| = n steps is expressed by e1 · Tn · et

L+1. �

Sliding Window Challenge Process for Congestion Detection 521

Evaluation of the Congestion Attack. For the attack in the opposite direction
we define T̂(L+1)×(L+1) as follows:

∀ 0 ≤ i, j ≤ L : T̂i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α + (1 − α) · p if j = 0 ∧ i �= L

(1 − α) · (1 − p) if j = i + 1
1 if i = j = L

0 otherwise

(2)

Theorem 2. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into a congested period, in a p-congested network
equals 1 − e1 · T̂n · et

L+1.

Proof. This time, if the attacker succeeds in mining a block, they will make it
congested. Therefore the probability for a block to be uncongested is (1 − α) ·
(1 − p). As before, we define the following Markov chain whose states represent
the number of consecutive blocks that are uncongested at a point in time in Pe:

T̂ is the corresponding transition matrix. Therefore, the probability for the
adversary to succeed in the congestion attack is equivalent to the probability that
the rest of the miners will not reach the L state in n steps, which is expressed
by: 1 − e1 · T̂n · et

L+1. �

Now that we have the attacks’ success rates, we examine the robustness of
the protocol against both attacks for different values of L.

Although attacks are potentially expensive for the adversary (who needs to
change the contents of its block and, hence, loses transaction fees), we still desire
a low success probability for the attack even for strong attackers. We assume in
the following evaluations that the attacker controls 33% of the computational
power.

Given that congestion may cause period extension, we need a value for L
that gives protection also against attacks over longer periods. We examine the
behavior of the protocol for periods as long as M̂ using different values for L.

The value p should represent realistic network conditions. For our analysis we
pick p = 0.85 when studying the congestion attack, to simulate more congested
settings, or p = 0.15 when studying the uncongestion attack, to simulate rela-
tively uncongested settings. Other values can be plugged in, if needed, for other
conditions. We start by examining the robustness of the protocol for a period of
1 day.

522 A. Lotem et al.

Figures 1a–1b present the probability of success in both attacks for two dif-
ferent period lengths: 6450 blocks in Fig. 1a and 144 blocks in Fig. 1b. These
periods correspond, roughly, to a single day in Ethereum and a single day in
Bitcoin. The red curves correspond to the congestion attack and the blue curves
to the uncongestion attack. We compute these probabilities for different values
of L.

Fig. 1. Attack success rate as a function of L, for α = 0.33

The results in both figures show there is no value L that gives a proba-
bility of success less than 1% for both attacks. Formally, it shows that the L
Consecutive Blocks protocol cannot be simultaneously (0.33, 0.15, 0.01, 1 day)-
congestion robust and (0.33, 0.85, 0.01, 1 day)-uncongestion robust. Therefore,
we find the L Consecutive Blocks protocol not sufficiently secure. Intuitively,
this is because more robust estimates of congestion are typically obtained over
longer observation windows. The L Consecutive Blocks protocol obtains longer
observations if L is increased, but then the requirement for consecutive blocks
to be uncongested is too strict and is not robust. As a result of this insight, we
propose a new protocol that generalizes the L Consecutive Blocks protocol and
allows for longer observation windows with a relaxed condition for uncongestion.

4.2 Sliding Window (K-out-of-N) Protocol

Definition 11 (K-out-of-N Sliding Window). A period Pe is uncongested
if there exists a period P̂ e of length N included in it in which at least K blocks
are uncongested.

UCPSW (Pec) = 1 ↔
⎛

⎝ ∃ P̂ e ⊆ Pe : |P̂ e| = N ∧
⎛

⎝
∑

b∈P̂ e

(1 − C(b)) ≥ K

⎞

⎠

⎞

⎠

Sliding Window Challenge Process for Congestion Detection 523

We note that the L Consecutive Blocks protocol is a special case in which
L = N = K.

Proposition 4. The Sliding Window protocol is monotonic.

Proof. Given an uncongested period Pe1, according to the Sliding Window pro-
tocol, which is included in period Pe2:

UCPSW (Pec
1) = 1 ⇒

⎛

⎝∃ P̂ e ⊆ Pe1 : |P̂ e| = N ∧
⎛

⎝
∑

b∈P̂ e

C(b) ≥ K

⎞

⎠

⎞

⎠

Pe1 ⊆ Pe2 ⇒
(
P̂ e ⊆ Pe2

)
∧

⎛

⎝
∑

b∈P̂ e

C(b) ≥ K

⎞

⎠

⇒ UCPSW (Pec
2) = 1

�

We now evaluate its efficiency.

Proof Size. In order to provide evidence for the uncongestion of a period Pe of
size n, it is enough to point to a window in which uncongestion occurs. Formally,
to present π = i ∈ {1, ..., n − K + 1} s.t.

∑i+N
l=i (1 − C(Pe[l])) ≥ K.

Refresh Information. Given a congested period Pe, and P̂ e that extends it, in
order to determine the congestion level of the extended period UCPSW (ˆPec), it
is enough to check only windows that overlap blocks in P̂ e \ Pe.

Evaluation of the Sliding Window Protocol’s Robustness. We consider
the two attacks in Definition 4. We first note that the two attacks may differ in
their consequences. While the congestion attack can cause a delay in the response
deadline (i.e., a deadline will be extended even if it is not really needed), the
uncongestion attack might lead participants to miss the chance to respond on
time, as the deadline will not be extended even if the network is congested. The
damage in each case depends on the particular use case. For example, in the
case of payment channels, not responding in time is more severe and may lead
to financial losses. We strive to achieve a high level of security against both
types of attack, i.e., to find values for parameters (N,K) that will yield a low
probability of success for both.

We begin by presenting upper bounds on the probabilities of success in each
of the attacks.

Theorem 3. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into an uncongested period, in a p-congested
network, is bounded above by (n − N + 1) · ∑N

j=K

(
N
j

) · qj · (1 − q)N−j, for
q = α + (1 − p) · (1 − α).

524 A. Lotem et al.

Proof. The probability for a block to be uncongested during this attack is q =
α + (1 − p) · (1 − α). In a period of size n, there are n − N + 1 different sliding
windows. We denote by Ai the event in which there are K out of N uncongested
blocks in the ith sliding window. Therefore, the probability of a single sliding
window being uncongested is P (Ai) =

∑N
j=K

(
N
j

)·qj ·(1−q)N−j . To succeed in the
uncongestion attack, at least one of the sliding windows has to be uncongested,
which is expressed by P (∪n−N+1

i=1 Ai). We use the union bound to bound this
probability and get:

P (∪n−N+1
i=1 Ai) ≤ ∑n−N+1

i=1 P (Ai) = (n − N + 1) · ∑N
j=K

(
N
j

) · qj · (1 − q)N−j �

Theorem 4. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into a congested period, in a p-congested network
is bounded above by (

∑K−1
j=0

(
N
j

) · qj · (1 − q)N−j)� n
N �, for q = (1 − p) · (1 − α).

Proof. The probability for a block to be uncongested is q = (1 − p) · (1 − α).
We denote by Bi the event in which there are less than K uncongested blocks
in the ith sliding window. The probability of a single sliding window being con-
gested is P (Bi) =

∑K−1
j=0

(
N
j

) · qj · (1 − q)N−j . To succeed in the congestion
attack, all sliding windows in the period must be congested, which is expressed
by P (∩n−N+1

i=1 Bi). We bound this probability by P (∩� n
N �

i=1 BN ·(i−1)+1), i.e., we
consider a subset of events Bi that are independent from each other (removing
overlapping windows). We compute the intersection of the pairwise independent
events and get: P (∩n−N+1

i=1 Bi) ≤ P (∩� n
N �

i=1 BN ·(i−1)+1) =
∏� n

N �
i=1 P (BN ·(i−1)+1) =

(
∑K−1

j=0

(
N
j

) · qj · (1 − q)N−j)� n
N �. �

We would like to compute the robustness of the protocol for 1 day to 1 h
sliding windows. We examine the situation where a period Pe of size n is chosen
at random and the blockchain is p − congested for values of p = 0.85 (relatively
congested) and p = 0.15 (relatively uncongested) against an attacker with com-
putational power α ≤ 0.33. In the evaluation, we allow periods to be extended up
to two weeks, a reasonable time for congestion to pass. We set the M̂ -maximum
extension (see Definition 3) accordingly (90300 blocks in Ethereum and 2016
blocks in Bitcoin).

We first evaluate the attack over Ethereum, computing the above bounds for
different sliding window sizes. We begin with a sliding window of 1 day (N =
6450), setting K = N

2 = 3225. Figure 2 presents the two upper bounds for the
different possible period lengths N ≤ n ≤ M̂ . For the protocol to be considered
secure, we need low values in both curves for the different period lengths (since
periods might be extended). As can be seen, the probabilities in the graph are
extremely low, showing the protocol to be very secure. We emphasize that the
blue curve is not horizontal, as shown in the graph; all of its values are smaller
than 10−323. Note that these are only upper bounds; the actual probabilities are
even lower.

We evaluate the attack for smaller sliding windows. The following table sum-
marizes our results:

Sliding Window Challenge Process for Congestion Detection 525

Fig. 2. Upper bounds on the attacks’ success rates as a function of the period length,
for M̂ = 90300, N = 6450, K = 3225, α = 0.33

N K Uncongestion Congestion

6450 (1 day) 3225 < 10−323 1.44 × 10−29

3225 (12 h) 1612 1.26 × 10−10 8.06 × 10−16

1612 (6 h) 815 7.14 × 10−5 1.08 × 10−7

806 (3 h) 421 8.87 × 10−3 3.16 × 10−3

The wider the sliding window is, the greater the protection. For smaller
sliding windows, such as 1 h (N = 269), we can achieve a 99% defense rate
against each attack if we lower the attackers’ computation power to α ≤ 0.27
(instead of 0.33). We provide examples of N,K values and the level of protection
they provide (an upper bound), but these are configurable and subject to the
user’s discretion. One can choose to increase the level of protection from one
attack at the expense of the other, or to set a larger initial period length (>N)
to increase the protection.

Next, we want to know what happens with smaller periods such as in Bitcoin,
which has longer block intervals. To do so, we set M̂ = 2016 and begin with a
sliding window of 1 day (N = 144).

We use a simulation to draw 100,000 samples Pec ∼ B(M̂, p) of congestion
vectors and to compute the success rates of both attacks among the samples
(Figs. 3a,c,d). We use error plots to plot the standard error of the data; however,
the errors are very small and therefore are almost invisible in the graphs.

Figure 3a presents the probability of success in each of the attacks for different
K values. As the graph shows, choosing K = 89 gives protection against both
attacks. We compute the upper bounds (from Theorems 3–4) for this value of K
in Fig. 3b. The presented bounds as they appear in the graph are loose compared
to the simulation results and afford a low level of defense, especially against the
congestion attack. These bounds give us useful, but non-tight, upper bounds
on the results for periods that are of longer length, for which the probability
is extremely small. To get more precise results, we use more simulations to

526 A. Lotem et al.

Fig. 3. Evaluation of the attacks’ success rates for M̂ = 2016 (2 weeks in Bitcoin)

compute the congestion attacks’ success rate for different period lengths and
present the results in Fig. 3c. Each curve corresponds to a different value of
α, the computational power of the attacker. The defense rate against congestion
attacks is extremely low for short periods. For α = 0.33, we reach a >99% defense
rate only for periods of ∼11 days or more. Lowering the computational power
of the adversary naturally improves these results. For example, considering an
attacker with computational power α = 0.2 results in an above 0.9995 defense
rate for period lengths starting from 2 days.

Finally, in Fig. 3d we consider an attacker with a computational power α =
0.2 and show the congestion attack success rate for different choices of N,K
correspondig to sliding windows of lengths 24/12/6/3 h. We do not present the
uncongestion attack results which had above 99% defense rate for any N ≤ n ≤
M̂ = 2016.

We conclude that the longer the periods are, the higher and more effective the
protection against attacks is. In Ethereum, we obtained very high defense rates
even when choosing short sliding window sizes and against strong attackers. In

Sliding Window Challenge Process for Congestion Detection 527

Bitcoin, on the other hand, we need to compromise on the window size and on
the attackers’ power to achieve higher defense.

We defined uncongested period protocols and suggested a concrete one, the
Sliding Window protocol, which meets our requirements (as defined in Sect. 3.3).
In the next section, we will describe how to use an uncongested period protocol
to adjust the challenge-response protocol to deal with congested periods.

4.3 Application to Challenge-Response Protocols

A challenge-response protocol consists of a challenge that takes effect at time
Tc and a response deadline Trd (see Sect. 3.1). We link Tc and Trd to their
corresponding block height and denote by b(T) the block at height T .

The parties involved in the challenge decide in advance on an uncongestion
period protocol UCP to use. We recall that UCP:{0, 1}∗ → {0, 1} accepts a
congestion vector (a binary series representing the congestion signal of blocks
in a period) and returns 1 if the period is congested and 0 otherwise. To apply
the uncongestion period protocol, the parties adjust Trd to a short deadline that
gives them a reasonable time to respond to the challenge assuming an optimal
case with no congestion.

The response deadline Trd is applied only in the event that the challenge
window Pe = (b(Tc), b(Tc + 1), ..., b(Trd)) is uncongested. In the case where the
challenge window is congested, we repeatedly extend Trd, 1 block at a time,
as long as it remains congested. To avoid an edge case where the deadline is
extended indefinitely, we define T̂rd = Tc + M̂ , an upper bound on the deadline
(see Definition 3). The challenge-response protocol adjustment is summarized in
the algorithm below.

Tc ← init
Trd ← init
Pe = (b(Tc), b(Tc + 1), ..., b(Trd))
Pec ← congestion vector(Pe)

while UCP(Pec) = 0 and Trd < T̂rd do
Trd ← Trd + 1
Pe = (b(Tc), b(Tc + 1), ..., b(Trd))

We emphasize that the extension of the deadline is not necessarily carried
out at the exact moment of the deadline (since smart contract actions need
to be triggered by a transaction to the contract). Instead, a transaction that
is submitted afterwards is determined to be either before or after the deadline
given any possible extensions that are due. The uncongestion period protocol
is specified in advance in the smart contract, and the deadline calculation is
triggered either by a late response to the challenge or by the challenger that
claims that a response did not arrive in time.

528 A. Lotem et al.

5 Implementation

We provide an implementation of the Sliding Window protocol as an Ethereum
smart contract using the EIP 1559 base fee to determine block congestion. EIP
1559 implements a base fee that is adjusted up and down by the protocol accord-
ing to how congested the network is. The EVM supports fetching the base fee
of the highest (current) block. We suggest extending this to fetch the base fee
of any block, and to add an opcode that checks whether a block is congested
(without such opcodes, it is not possible to fully implement the mechanisms put
forward in this paper). This opcode will receive as inputs a block and a maxi-
mum base fee (chosen by a user) and will return whether the maximum base fee
exceeds the block’s base fee.

In the implementation, we set the sliding window size equal to the initial
deadline of the examined period (before being granted any extension).

The full github1 repository includes the smart contracts, the new opcode,
and the tests.

6 Conclusion

In this paper, we tackled a problem that arises when challenge-response pro-
tocols face congested periods. When the network experiences congestion, users
will often miss the response deadline, which can lead to serious issues including
financial loss. We formalized the problem and proposed a new protocol called
the Sliding Window as a solution. Our protocol defines a reliable way to detect
congested periods by looking only at the data available on-chain. We then used
this to extend the challenge-response deadline when congestion occurs. We stud-
ied the security of the protocol for different parameters. Our results showed that
it is possible to decrease the time settlement (deadline) of challenge-response
protocols significantly, while expanding the security of the protocol to deal with
cases of congestion.

For future work, it would be interesting to evaluate and optimize this protocol
and its security analysis for more realistic congestion settings—in particular,
settings in which congestion is correlated between consecutive blocks—and to
provide more experimental analysis of these settings. Is is also of interest to
explore whether Ethereum’s proposed base fee can be used as a sufficiently robust
congestion signal.

Acknowledgments. Ayelet Lotem and Aviv Zohar are partially supported by grants
from the Israel Science Foundation (grants 1504/17 & 1443/21) and by a grant from the
HUJI Cyber Security Research Center in conjunction with the Israel National Cyber
Bureau.

1 https://github.com/stonecoldpat/slidingwindow.

https://github.com/stonecoldpat/slidingwindow
https://github.com/stonecoldpat/slidingwindow

Sliding Window Challenge Process for Congestion Detection 529

References

1. Bano, S., et al.: SoK: consensus in the age of blockchains. In: AFT 2019: Pro-
ceedings of the 1st ACM Conference on Advances in Financial Technologies, pp.
183–198 (2019)

2. Bitcoin Optech: Child pays for parent (CPFP). https://bitcoinops.org/en/topics/
cpfp

3. Mempool manipulation enabled theft of $8m in MakerDAO collateral on Black
Thursday: Report. https://www.coindesk.com/tech/2020/07/22/mempool-
manipulation-enabled-theft-of-8m-in-makerdao-collateral-on-black-thursday-
report/

4. Bitcoin wiki: Replace by fee. https://en.bitcoin.it/wiki/Replace by fee
5. Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., Bakhta, A.: EIP-1559:

Fee market change for ETH 1.0 chain. https://eips.ethereum.org/EIPS/eip-1559
(2019)

6. ConsenSys: The inside story of the CryptoKitties congestion crisis, Febru-
ary 2018. https://consensys.net/blog/news/the-inside-story-of-the-cryptokitties-
congestion-crisis/

7. Croman, K., et al.: On scaling decentralized blockchains. In: International confer-
ence on financial cryptography and data security, pp. 106–125. Springer (2016).
https://doi.org/10.1007/978-3-662-53357-4 8

8. Daian, P., et al.: Flash boys 2.0: frontrunning, transaction reordering, and consen-
sus instability in decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019)

9. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th {USENIX} symposium on networked systems design
and implementation ({NSDI} 16), pp. 45–59 (2016)

10. Felten, E.: Fighting censorship attacks on smart contracts. https://medium.com/
offchainlabs/fighting-censorship-attacks-on-smart-contracts-c026a7c0ff02 (2020)

11. Frangella, E.: Crypto Black Thursday: the good, the bad, and the ugly.
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-
ugly-7f2acebf2b83. Accessed 31 Aug 2021

12. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: International Conference on Financial Cryptography
and Data Security, pp. 201–226. Springer (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

13. Harris, J., Zohar, A.: Flood & loot: a systemic attack on the lightning network.
In: AFT 2020: Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pp. 202–213 (2020)

14. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-
sensus. In: Annual International Cryptology Conference, pp. 451–480. Springer
(2020). https://doi.org/10.1007/978-3-030-56877-1 16

15. Kursawe, K.: Wendy, the good little fairness widget: achieving order fairness for
blockchains. In: AFT 2020: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, pp. 25–36 (2020)

16. Lotem, A., Azouvi, S., McCorry, P., Zohar, A.: Sliding window challenge process
for congestion detection. arXiv preprint arXiv:2201.09009 (2022)

17. Roughgarden, T.: Transaction fee mechanism design for the Ethereum blockchain:
an economic analysis of EIP-1559. Department of Computer Science, Columbia
University, Technical report (2020)

https://bitcoinops.org/en/topics/cpfp
https://bitcoinops.org/en/topics/cpfp
https://www.coindesk.com/tech/2020/07/22/mempool-manipulation-enabled-theft-of-8m-in-makerdao-collateral-on-black-thursday-report/
https://www.coindesk.com/tech/2020/07/22/mempool-manipulation-enabled-theft-of-8m-in-makerdao-collateral-on-black-thursday-report/
https://www.coindesk.com/tech/2020/07/22/mempool-manipulation-enabled-theft-of-8m-in-makerdao-collateral-on-black-thursday-report/
https://en.bitcoin.it/wiki/Replace_by_fee
https://eips.ethereum.org/EIPS/eip-1559
https://consensys.net/blog/news/the-inside-story-of-the-cryptokitties-congestion-crisis/
https://consensys.net/blog/news/the-inside-story-of-the-cryptokitties-congestion-crisis/
https://doi.org/10.1007/978-3-662-53357-4_8
http://arxiv.org/abs/1904.05234
https://medium.com/offchainlabs/fighting-censorship-attacks-on-smart-contracts-c026a7c0ff02
https://medium.com/offchainlabs/fighting-censorship-attacks-on-smart-contracts-c026a7c0ff02
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-56877-1_16
http://arxiv.org/abs/2201.09009

530 A. Lotem et al.

18. Sokolov, K.: Ransomware activity and blockchain congestion. J. Finan. Econom.
141, 771–782 (2021)

19. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive, Report 2016/1159 (2016)

20. Sompolinsky, Y., Wyborski, S., Zohar, A.: PHANTOM and GHOSTDAG: A scal-
able generalization of Nakamoto consensus. IACR Cryptology ePrint Archive,
Report 2018/104 (2018)

21. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin.
In: International Conference on Financial Cryptography and Data Security, pp.
507–527. Springer (2015). https://doi.org/10.1007/978-3-662-47854-7 32

22. Tanana, D.: Avalanche blockchain protocol for distributed computing security. In:
2019 IEEE International Black Sea Conference on Communications and Network-
ing (BlackSeaCom), pp. 1–3. IEEE, New York (2019)

23. Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: sharding on blockchain. In: AFT
2019: Proceedings of the 1st ACM Conference on Advances in Financial Technolo-
gies, pp. 41–61 (2019)

https://doi.org/10.1007/978-3-662-47854-7_32

Short Paper: On Game-Theoretically-Fair
Leader Election

Rati Gelashvili, Guy Goren(B), and Alexander Spiegelman

Novi Research, Novi, USA

sgoren@campus.technion.ac.il

Abstract. This work studies the problem of game-theoretically-fair
leader election. That is, provide fairness in the strong sense that the
probability of any player being elected cannot be reduced even when
facing an adversarial coalition of all other players. We extend a recent
lower bound by [8] that shows that the tournament-tree protocol (based
on Blum [5]) is optimal in the number of rounds, among the protocols
that are restricted to immediately open the cryptographic commitments.

Our argument works even if commitments can be opened at arbitrary
times, which is an open question left by [8]. To this end, we make two
technical assumptions, one of which is weaker than the prior restriction
and both of which are satisfied by the tournament-tree protocol, even if
all players commit to their randomness for the entire execution in the
beginning. The resulting proof is simple and streamlined, which we hope
facilitates further research into an unconditional lower bound (or a new
upper bound).

1 Introduction

Leader election is a fundamental task in distributed computing [16]. A natural
predicate to compute in a multiparty setting, it provides the symmetry breaking
power of a designated leader that often plays a key role in efficient distributed
protocols for complex problems.

Leader election is closely related to shared-coin [4], another important dis-
tributed task of generating a shared value with guarantees about its distribution,
based on the local randomness of protocol participants. Since an honest leader
can toss a coin locally and share the outcome, the problem can be reduced to
electing an honest leader. Leader election can also be viewed as an n-way shared
coin-toss, and in fact, shared-coin is a commonly used building block for ran-
domized distributed protocols [19].

There is a vast research spanning over four decades into the resilience of
coin-flipping protocols against adversarial corruptions, e.g. [10,11,13,20]. The
classic lower bound by Cleve [10] shows that a strong version of fairness called
unbiasability, isn’t achievable in the presence of a corrupt majority. A simple,

G. Goren—The work of Guy Goren was partly supported by a grant from the Technion
Hiroshi Fujiwara cyber security research center and by the Israel Science Foundation
under grant 2061/19.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 531–538, 2022.
https://doi.org/10.1007/978-3-031-18283-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_26&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_26

532 R. Gelashvili et al.

well-known protocol of Blum [5], however, allows two participants to achieve a
weaker, game-theoretic notion of fairness via leader election. Participants first
commit to binary values, then they open the commitments, and the XOR of
the values determines the leader (who determines the shared-coin value). The
result can only be biased by deviating from the protocol and not revealing the
commitment. In this case, the other participant becomes the leader, hence an
adversarial participant can’t improve the likelihood of its desired outcome.

Recent papers [9,21] have characterized the computational landscape of
game-theoretic fairness and incentive compatibility of n-party shared-coin proto-
cols. The impossibility results established for large coalitions of participants con-
trast with a tournament-tree generalization (standard construction akin [1,3,17])
of Blum’s 2-party protocol, which maintains game-theoretic fairness even against
coalitions of size n − 1. In particular, adversarial behavior can never decrease
the chance of any honest participant becoming the leader as compared to the
system where all participants behave honestly.

The leader-driven nature of consensus in state machine replication [6,7,14,
15], with the emerging economics and incentives in blockchain systems [18],
further motivates exploring fair leader election protocols. The tournament tree
protocol requires O(log n) rounds of communication. Chung, Chan, Wen and
Shi [8] showed a clever lower bound argument that Ω(log n) rounds are required
for game-theoretically fair leader election in the standard broadcast model with
a perfect commitment scheme, albeit when committed values must be opened
immediately after they are broadcast (a restriction that still includes Blum’s
protocol and a variant of the tournament tree generalization). This is a founda-
tional result, and in general, proving tight logarithmic lower bounds for similar
tournament-based leader election protocols is notoriously difficult [1,2].

Not requiring commitments to be immediately opened significantly weakens
the adversary controlling the coalition and complicates lower bound arguments,
as the corrupted participants can no longer determine their messages based on
the actual execution (adaptive adversary), but only based on the distribution of
all possible executions (oblivious adversary). To contrast the adversarial power,
note that in standard asynchronous shared memory with crash failures, a pro-
tocol with O(log� n) step complexity exists against the oblivious adversary [12],
while the best known protocol against the adaptive adversary is the O(log n)
tournament-tree of [1]. The authors in [8] emphasize the important dependency
of their lower bound on immediately opening the commitments, and the need for
more sophisticated techniques to overcome these in the context of their proof.

We take a step in better understanding this dependency on opening commit-
ments and adversarial power for the problem of game-theoretically fair leader
election. We remove the restriction on the commitment scheme in [8] but our
lower bound also makes two assumptions about the protocol. Our lower bound
applies to a different set of protocols, including the tournament-based protocol
even if all commitments are made in the beginning of the protocol.

Our first assumption is that in any sub-protocol (a protocol that can be
reached by rounds of honest execution), any player that has an overall positive

On Game-Theoretically-Fair Leader Election 533

probability to win when all players are honest, also has a chance to win regardless
of the set of messages of the other players (in the first round of the sub-protocol).
On the other hand, immediately opening commitments restriction in [8] implies
that all sub-protocols are also game-theoretically fair, which in turn implies a
stronger version of our assumption (that, in addition, the positive probabilities
against fixed message vectors of other players are all equal to each other).

Our second assumption is more technical and captures the idea of an essential
inductive ingredient in the previous proof of [8]. While we cannot claim that this
assumption is weaker or follows from the previous commitment requirement,
it is trivially satisfied by the tournament-tree protocol and leads to a simple,
streamlined argument. Proving an unconditional lower bound (or a better upper
bound) is an important open problem, and having a proof based on a different
set of assumptions could help gain intuition about the general problem.

2 Model

We strive to remain close to the structure and notation of [8]. Therefore, we con-
sider a standard synchronous round-based broadcast model with n participants
that will be called players that communicate via a broadcast channel. As in [8],
we restrict our attention to the case when the set of messages that a player i
may send in each round is finite—denoted by Mi—to avoid non-measurable and
other technical issues. Without loss of generality, we restrict to the case when in
each round, an honest player i uniformly samples a message to send from Mi.
Also like in [8], we assume that the |Mi| is the same in every round. This is
justified since we can construct equivalent protocols by sampling over multiple
copies of every message.

In [8], it was assumed that a protocol could use a perfect commitment scheme
to make the adversary commit to its randomness. However, the adversary could
determine the message in a round based on the transcript of all previous rounds.
This corresponds to the restriction on the protocol to immediately open every
commitment. Without this restriction, the adversary must determine the mes-
sages of corrupted players ahead of time, and can only rely on the distribution
of possible executions as opposed to the actual execution unfolding. This is a
known, major distinction between the adaptive and oblivious randomized adver-
sarial models.

In our setting, a round consists of each (non-crashed) player attempting to
broadcast a message, while the adversary can rush to crash: it observes the
messages and decides which players to crash1. After this, the messages of all
non-crashed players appear on the broadcast channel. A crashed player remains
crashed in all subsequent rounds, with its messages treated as ⊥. Finally, notice
that we assumed that a corrupted player j always sends a message from Mj . This
is without loss of generality since otherwise, the corruption would be detectable
on the broadcast channel, so the adversary could instead just crash the player j.

1 Intuitively, this corresponds to not opening a commitment.

534 R. Gelashvili et al.

2.1 Coalition Resistant Protocols

A 0-round leader election protocol must elect a unique, single winner among n
players (without any communication). An r-round protocol is defined recursively,
where processes engage in a round of communication, and proceed to an (r −1)-
round leader election protocol.

Given a leader election protocol ϕ, let pi(ϕ) be the probability of player i
winning over all failure-free executions. We call p(ϕ) ∈ [0, 1]n the winning prob-
ability distribution of ϕ. We simply write p (or pi) whenever the parameter ϕ
is clear from the context. Since the adversary may choose not to corrupt any
players, pi upper bounds the minimum probability of player i winning against
the adversary that can corrupt all players except i. We call a protocol ϕ coalition
resistant if player i’s probability of winning is pi regardless of any adversarial
strategy, which may control coalitions of size up to n − 1.

For any multi-round protocol ϕ, we say ϕ′ is a sub-protocol of ϕ if it can be
reached by a finite number of rounds in which all players act honestly according
to ϕ. Since a sub-protocol ϕ′ is reachable by an all-honest execution, we can
define the winning probability distribution p′

i for ϕ′ analogous to the definition
of pi for ϕ (i.e., considering failure-free executions only). For a sub-protocol ϕ, let
S(ϕ) denote the support of the winning probability distribution of ϕ. Formally,
for a probability distribution p(ϕ) ∈ [0, 1]n, we have S(ϕ) := {i ∈ [n] : pi > 0}.
For any vector μ of possible messages for all n players, let ϕ(μ) denote the sub-
protocol reached by one round of ϕ in which each player sends the corresponding
message.

We will use the notation ϕ(X1 ← x1, . . . , Xk ← xk) when X1, . . . , Xk is a
partition of all players and xi is a vector of messages sent by players in Xi. I.e.,
this is the same as ϕ(μ) for a μ determined by x1, . . . , xk.

For any sub-protocol ϕ′, we call a subset A ⊆ S(ϕ′) of players a winning
subset of ϕ′ if for any possible vector a′ of the non-A players, there exists a vector
of messages a for the players in A, such that S(ϕ′(A ← a, [n] \ A ← a′)) ⊆ A,
and in addition, for some a′ there exists an a such that S(ϕ′(A ← a, [n] \ A ←
a′)) = A. In other words, players in A always have messages that eliminate all
other players from contention (regardless of the messages of non-A players), and
there is at least one possibility that all players in A maintain a chance to win.

Our lower bound applies to any coalition resistant protocol ϕ that satisfies
the following two conditions.

Assumption 1. For any sub-protocol ϕ′ of ϕ, any player i ∈ S(ϕ′), and any
possible vector x of messages for the non-{i} players X = [n] \ {i}, there exists
a message mi of player i such that i ∈ S(ϕ′(X ← x, {i} ← mi)).

In other words, if player i had a positive probability of winning, there is no
possible combination of messages that the other players may send such that i can
no longer win after one round. As noted in the introduction, this requirement
is weaker than having the sub-protocol ϕ′ being also coalition resistant (as is
implied by the immediately opening every commitment constraint in [8]).

On Game-Theoretically-Fair Leader Election 535

Assumption 2. For any sub-protocol ϕ′ of ϕ with a support size |S(ϕ′)| > 1,
we can find two disjoint winning subsets of players A,B ⊂ S(ϕ′).

Note that the tournament-tree based protocol satisfies these assumptions
regardless of whether the players commit to messages at each round or at the
beginning of the protocol. A sub-protocol is just a level in the tournament tree
consisting of pairs of players engaging in 2-player Blum mechanism. For each
of these pairs, we can place one player in subset A and the other in B, satisfy-
ing Assumption 2.

3 Lower Bound

Let ϕ be a coalition resistant protocol that satisfies Assumptions 1 and Assump-
tion 2. We prove by induction that for any r-round sub-protocol ϕ′ of ϕ (consist-
ing of the last r rounds of ϕ), it holds that S(ϕ′) ≤ 2r. Consequently, a protocol
that elects one out of n possible leaders requires at least log n rounds. Clearly,
0-round sub-protocols do not send any messages so there is just one possible
execution and since the protocol must elect a unique winner, the induction base
is satisfied for r = 0.

For the induction step, let us consider any (r + 1)-round sub-protocol ϕ′

and define subsets A,B ⊂ S(ϕ′) satisfying Assumption 2. By the induction
hypothesis and the definition of a winning subset, |A| ≤ 2r and |B| ≤ 2r. To
complete the argument, we show that A ∪ B = S(ϕ′), which will give S(ϕ′) =
|A| + |B| ≤ 2r+1 as desired.

Suppose for contradiction that disjoint subsets A and B do not include all
players in S(ϕ′), and let i be some player among the rest of the players (in
S(ϕ′) \ (A ∪ B)). Let D be the (possibly empty) set of all remaining players
(in S(ϕ′) \ (A ∪ B ∪ {i}))—for these players we will set a vector of messages d
throughout the following argument.

Let M(A,B) be a set of pairs of vectors (a, b) of messages for players in A
and B, that allow only players in A or only players in B to retain a chance
to win. Formally, (a, b) ∈ M(A,B) iff there exists m with S(ϕ′(A ← a,B ←
b, {i} ← m,D ← d)) ⊆ A or S(ϕ′(A ← a,B ← b, {i} ← m,D ← d)) ⊆ B. A
(and B) are winning subsets by Assumption 2, thus, M(A,B) is non-empty.

We assign a valency to each element (a, b) ∈ M(A,B), defined as the number
of different messages mi for player i, such that i retains a chance to win, i.e.
i ∈ S(ϕ′(A ← a,B ← b, {i} ← mi,D ← d)). For the rest of the argument, let
(a, b) be the element in M(A,B) with the minimum valency. Suppose, without
loss of generality that there exists i’s message mA such that only players in
A retain a chance to win, i.e. S(ϕ′(A ← a,B ← b, {i} ← mA,D ← d)) ⊆ A
(the case for B is symmetrical, and one of these cases hold by the definition of
M(A,B)).

First, we prove that for any message m′ of i for which i does not retain a
chance to win in ϕ′(A ← a,B ← b, {i} ← m′,D ← d), only players in A retain
a chance to win.

536 R. Gelashvili et al.

Lemma 1. For m′ with i 	∈ S(ϕ′(A ← a,B ← b, {i} ← m′,D ← d)), we have
S(ϕ′(A ← a,B ← b, {i} ← m′,D ← d)) ⊆ A.

Proof. Suppose for contradiction that m′ allows a player j 	= i that is not in A
to retain a chance to win, i.e. j ∈ S(ϕ′(A ← a,B ← b, {i} ← m′,D ← d)).

We show an adversary that contradicts the coalition resistance of protocol
ϕ. The adversary acts as follows in sub-protocol ϕ′: it observes the messages of
all players once revealed, and then it might choose to crash player i so that its
message is not delivered.

Let pA be the winning probability distribution of ϕ′(A ← a,B ← b, {i} ←
mA,D ← d) and let p′ be the winning probability distribution of ϕ′(A ← a,B ←
b, {i} ← m′,D ← d). Recall that, by definition of mA and the lemma assumption
on m′, player i has probability 0 both in pA and p′. Moreover, the probabilities
of players in A sum to 1 in pA, and player j has a non-zero probability in p′.
Hence, the probabilities of A-players in pA summed with the probability of j
in pj is larger than 1 and cannot be a probability vector. To determine the
precise adversarial strategy, we consider a winning probability distribution p⊥
for sub-protocol ϕ′(A ← a,B ← b, {i} ← ⊥,D ← d), where player i crashes.

In p⊥, either player j has lower probability than in p′, or some player in
A has a lower probability than in pA. In the first case, the adversary crashes
player i when it observes messages A ← a,B ← b, {i} ← m′,D ← d, reducing
the probability of player j winning. Otherwise, the adversary crashes player i
when it observes A ← a,B ← b, {i} ← mA,D ← d, reducing the probability of
a player in A winning.

This contradicts the fact that ϕ′ is a sub-protocol of a coalition resistant
protocol ϕ. The adversary only crashes player i when an all-honest execution
reaches sub-protocol ϕ′, which by definition of a sub-protocol occurs by a positive
probability. This still reduces the overall winning probability of some honest
player in the original protocol, giving the desired contradiction. �

Let mi be a message for which player i retains a chance to win in ϕ′(A ← a,B ←
b, {i} ← mi,D ← d). By Assumption 1, all valencies are positive, so such an mi

exists. Because by Assumption 2 B is a winning subset, there exists a vector b′ of
messages for B-players such that S(ϕ′(A ← a,B ← b′, {i} ← mi,D ← d) ⊆ B.

Next, we prove that

Lemma 2. i ∈ S(ϕ′(A ← a,B ← b′, {i} ← mi,D ← d).

Proof. We start by showing that for any m′ that satisfies S(ϕ′(A ← a,B ←
b, {i} ← m′,D ← d)) ⊆ A, we have i 	∈ S(ϕ′(A ← a,B ← b′, {i} ← m′,D ← d)).
For contradiction, assume S(ϕ′(A ← a,B ← b, {i} ← m′,D ← d)) ⊆ A and
i ∈ S(ϕ′(A ← a,B ← b′, {i} ← m′,D ← d)) for some message m′. However,
the same adversarial strategy as in the proof of Lemma 1 but by replacing the
role of player j in the previous lemma by player i in this lemma and crashing
players in B (in the current lemma) instead of player i (in the previous lemma),
contradicts the coalition-resistance of the protocol ϕ.

On Game-Theoretically-Fair Leader Election 537

Applying Lemma 1, we get that for any m′ such that i 	∈ S(ϕ′(A ← a,B ←
b, {i} ← m′,D ← d)), we have i 	∈ S(ϕ′(A ← a,B ← b′, {i} ← m′,D ← d)).

Note that (a, b′) is in M(A,B) by definition of b′. By the choice of (a, b) with
the minimum valency, the valency of (a, b′) is at least as large as the valency
of (a, b). Since player i always sends one out of the same number of possible
messages, the valency of (a, b) and (a, b′) are the same. Moreover the set of
messages for which the valency is counted is also the same. In particular, since
for mi we have i ∈ S(ϕ′(A ← a,B ← b, {i} ← mi,D ← d)) we also get that
i ∈ S(ϕ′(A ← a,B ← b′, {i} ← mi,D ← d)). �

However, since S(ϕ′(A ← a,B ← b′, {i} ← mi,D ← d)) ⊆ B and i /∈ B we get
the desired contradiction and complete the induction.

4 Conclusion

The elegant proof by [8] that showed a lower bound of log n rounds for coalition-
resistant leader election, left open a question of relaxing a restriction on the
protocols to immediately open all cryptographic commitments.

We take a step in this direction by removing this restriction. In particular,
our lower bound captures the standard tournament-tree protocol even if all mes-
sage commitments are made in the beginning (“static” adversarial behavior).
However, we require a new assumption for our proof that may help viewing the
open problem of the unconditional round complexity of coalition-resistant leader
election in a different light - i.e. when attempting to circumvent this assumption
by a clever algorithm or a stronger lower bound.

References

1. Afek, Y., Gafni, E., Tromp, J., Vitányi, P.M.B.: Wait-free test-and-set (extended
abstract). In: Proceedings of the 6th International Workshop on Distributed Algo-
rithms, WDAG 1992, pp. 85–94 (1992)

2. Alistarh, D., Gelashvili, R., Nadiradze, G.: Lower bounds for shared-memory leader
election under bounded write contention. In: Proceedings of the 35th International
Symposium on Distributed Computing, DISC 2021 (2021)

3. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on bitcoin. In:
International Conference on Financial Cryptography and Data Security, pp. 231–
247 (2017)

4. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and min-
ima of banzhaf values. In: Proceedings of the 26th Symposium on Foundations of
Computer Science, FOCS 1985, pp. 408–416 (1985)

5. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News 15(1), 23–27 (1983)

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
3rd Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186 (1999)

538 R. Gelashvili et al.

7. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. In: Proceedings
of the 2nd Conference on Advances in Financial Technologies, AFT 2020, pp. 1–11
(2020)

8. Chung, K.-M., Chan, T.-H.H., Wen, T., Shi, E.: Game-theoretic fairness meets
multi-party protocols: the case of leader election. In: Annual International Cryp-
tology Conference, pp. 3–32 (2021)

9. Chung, K.-M., Guo, Y., Lin, W.-K., Pass, R., Shi, E.: Game theoretic notions
of fairness in multi-party coin toss. In: Theory of Cryptography Conference, pp.
563–596 (2018)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: Proceedings of the 18th ACM symposium on Theory of Computing, STOC
1986, pp. 364–369 (1986)

11. Feige, U.: Noncryptographic selection protocols. In: Proceedings of the 40th Sym-
posium on Foundations of Computer Science, FOCS 1999, pp. 142–152 (1999)

12. Giakkoupis, G., Woelfel, P.: Efficient randomized test-and-set implementations.
Distrib. Comput. 32(6), 565–586 (2019). https://doi.org/10.1007/s00446-019-
00349-z

13. Haitner, I., Karidi-Heller, Y.: A tight lower bound on adaptively secure full-
information coin flip. In: Proceedings of the 61st Symposium on Foundations of
Computer Science, FOCS 2020, pp. 1268–1276 (2020)

14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, pp. 45–58 (2007)

15. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
16. Lynch, N.A.: Distributed algorithms. Elsevier (1996)
17. Miller, A., Bentov, I.: Zero-collateral lotteries in bitcoin and ethereum. In:

EuroS&PW Workshop, pp. 4–13 (2017)
18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Busi-

ness Review, 21260 (2008)
19. Rabin, M.: Randomized byzantine generals. In: Proceedings of the 24th Symposium

on Foundations of Computer Science, FOCS 1983, pp. 403–409 (1983)
20. Russell, A., Saks, M., Zuckerman, D.: Lower bounds for leader election and col-

lective coin-flipping in the perfect information model. SIAM J. Comput. 31(6),
1645–1662 (2002)

21. Wu, K., Asharov, G., Shi, E.: A complete characterization of game-theoretically
fair, multi-party coin toss. https://eprint.iacr.org/2021/748 (2021)

https://doi.org/10.1007/s00446-019-00349-z
https://doi.org/10.1007/s00446-019-00349-z
https://eprint.iacr.org/2021/748

Not Proof of Work

The Availability-Accountability Dilemma
and Its Resolution via Accountability Gadgets

Joachim Neu , Ertem Nusret Tas(B) , and David Tse

Stanford University, Stanford, USA
{jneu,nusret,dntse}@stanford.edu

Abstract. For applications of Byzantine fault tolerant (BFT) consen-
sus protocols where the participants are economic agents, recent works
highlighted the importance of accountability : the ability to identify par-
ticipants who provably violate the protocol. At the same time, being
able to reach consensus under dynamic levels of participation is desir-
able for censorship resistance. We identify an availability-accountability
dilemma: in an environment with dynamic participation, no protocol
can simultaneously be accountably-safe and live. We provide a resolu-
tion to this dilemma by constructing a provably secure optimally-resilient
accountability gadget to checkpoint a longest chain protocol, such that
the full ledger is live under dynamic participation and the checkpointed
prefix ledger is accountable. Our accountability gadget construction is
black-box and can use any BFT protocol which is accountable under
static participation. Using HotStuff as the black box, we implemented
our construction as a protocol for the Ethereum 2.0 beacon chain, and
our Internet-scale experiments with more than 4,000 nodes show that the
protocol achieves the required scalability and has better latency than the
current solution Gasper, which was shown insecure by recent attacks.

1 Introduction

1.1 Accountability and Dynamic Participation

Safety and liveness are the two fundamental security properties of consensus
protocols. A protocol run by a distributed set of nodes is safe if the ledgers
generated by the protocol are consistent across nodes and across time. It is live if
all honest transactions eventually enter into the ledger. Traditionally, consensus
protocols are developed for fault-tolerant distributed computing, where a set of
distributed computing devices aims to emulate a reliable centralized computer.
In modern decentralized applications such as cryptocurrencies, consensus nodes
are no longer just disinterested computing devices but are agents acting based
on economic and other rationales. To provide the proper incentives to encourage
nodes to follow the protocol, it is important that they can be held accountable
for their protocol-violating behavior. This point of view is advocated by Buterin

Extended version [29]: The authors contributed equally and are listed alphabetically.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 541–559, 2022.
https://doi.org/10.1007/978-3-031-18283-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_27&domain=pdf
http://orcid.org/0000-0002-9777-6168
http://orcid.org/0000-0001-6061-9700
http://orcid.org/0000-0003-1460-5900
https://doi.org/10.1007/978-3-031-18283-9_27

542 J. Neu et al.

and Griffith [4] in the context of their effort to add accountability (among other
things) to Ethereum’s Proof-of-Work (PoW) longest chain protocol, and is also
central to the design of Gasper [5], the protocol running Ethereum 2.0’s Proof-of-
Stake (PoS) beacon chain. In these protocols, accountability is used to incentivize
proper behavior by slashing the stake of protocol-violating agents.

PoW protocols like Bitcoin [24] or Ethereum 1.0 do not assign identities to
miners, and hence cannot be expected to provide accountability. Even Nakamoto-
style PoS protocols such as Cardano’s Ouroboros family [2,12,20] lack account-
ability. On the other hand, protocols that are designed to provide accountability
include Polygraph [10] and Tendermint [3], and a recent comprehensive work
[37] shows that accountability can be added on top of many (but not all) ‘tradi-
tional’ propose-and-vote-style Byzantine fault tolerant (BFT) protocols, such as
HotStuff [40], PBFT [6], or Streamlet [7,27]. There is, however, another cru-
cial difference between Nakamoto-style and propose-and-vote-style protocols.
While protocols from the first group do not provide accountability, they tolerate
dynamic participation, a sought after feature of public permissionless blockchains
not only for censorship resistance. In Bitcoin, e.g., the total hash rate varies over
many orders of magnitude over the years. Yet, the blockchains remain continu-
ously available, i.e., live. Protocols from the second group, oppositely, provide
accountability but do not tolerate dynamic participation.1 Why is there no pro-
tocol that both supports accountability and tolerates dynamic participation?

1.2 Availability-Accountability Dilemma and Resolution
via Accountability Gadgets

Our first result says that it is impossible to support accountability for dynami-
cally available protocols, i.e., protocols that are live under dynamic participation
(cf. Theorem 1). We call this the availability-accountability dilemma.

Our second contribution is to provide a resolution to the dilemma. As no
single ledger protocol can simultaneously be available and accountable, we design
and implement an accountability gadget which, when applied to a longest chain
protocol, generates a dynamically available ledger LOGda and a checkpointed
prefix ledger LOGacc with provably optimal security properties.

Consider a network with a total of n permissioned nodes, and an environment
where the network may partition and the nodes may go online and offline.

1. (P1: Accountability) The accountable ledger LOGacc can provide an
accountable safety resilience of n/3 at all times (i.e., identify that many pro-
tocol violators in case of a safety violation), and it is live after a possible
partition heals and greater than 2n/3 honest nodes come online.

2. (P2: Dynamic Availability) The available ledger LOGda is guaranteed to
be safe after a possible network partition and live at all times, provided that
fewer than 1/2 of the online nodes are adversarial.

1 For completeness, there are also protocols which neither provide accountability nor
tolerate dynamic participation, e.g., Algorand [9].

Availability-Accountability Dilemma and Accountability Gadgets 543

Fig. 1. We construct an accountability gadget Πacc from any accountable BFT protocol
Πbft and apply it to a longest-chain-type protocol Πlc as follows: The fork choice
rule of Πlc is modified to respect the latest checkpoint decision. Blocks confirmed by
Πlc are output as available ledger LOGda. They are also the basis on which nodes
generate a proposal and vote for the next checkpoint. To ensure that all nodes reach
the same checkpoint decision, consensus is reached on which votes to count using Πbft.
Checkpoint decisions are output as accountable ledger LOGacc and fed back into the
protocol to ensure consistency of future block production in Πlc and future checkpoints
with previous checkpoints.

Note that while the checkpointed ledger is by definition always a prefix of the
full available ledger, the above result says that the checkpointed ledger will catch
up with the available ledger when the network heals and a sufficient number of
honest nodes come online. Users can choose individually whether to resolve the
dilemma in favor of availability or accountability. For example, under excep-
tional circumstances, a coffee shop might rather tolerate payments reverting
than stalling, while a car dealer might prefer stalling over reverting payments.

The achieved resiliences are optimal, which can be seen by comparing this
result with [37, Theorem B.1] (for P1) and [32, Theorem 3] (for P2). The check-
pointed ledger LOGacc cannot achieve better accountable safety resilience than
n/3; it in fact achieves exactly that. The dynamically available ledger LOGda

cannot achieve a better resilience than 1/2; the ledger in fact achieves it. More-
over, even if the network was synchronous at all times, no protocol could have
generated an accountable ledger with better resilience (Theorem 1). So we are
getting partition-tolerance for free, even though accountability is the goal.

The accountability gadget construction is shown in Fig. 1. It is built on top of
any existing longest chain protocol modified to respect the checkpoints. That is,
new blocks are proposed and the ledger of confirmed transactions is determined
based on the longest chain among all the chains containing the latest check-
pointed block. This gives the available full ledger LOGda. Periodically, nodes
vote on the next checkpoint (following a randomly selected leader’s proposal).
To ensure that when tallying votes all nodes base their decision for the next
checkpoint on the same set of votes, any accountable BFT protocol designed
for a fixed level of participation can be used (entirely as a black box) to reach
consensus on the votes. The chain up to the latest checkpoint constitutes the

544 J. Neu et al.

Fig. 2. Left: Ledger dynamics of a longest chain protocol outfitted with our account-
ability gadget based on HotStuff, measured with 4,100 nodes distributed around the
world. No attack. The available full ledger grows steadily. The accountable prefix peri-
odically catches up whenever a new block is checkpointed. Right: Even in the presence
of a β = 25% adversary who mines selfishly in Πlc and boycotts leader duty in Πbft

and Πacc, LOGda grows steadily and LOGacc periodically catches up with LOGda. Under
attack, the growth rate of LOGda is reduced (due to selfish mining) and LOGacc’s catch-
ing up is occasionally slightly delayed due to leader timeouts. (Parameters n = 4100,
Tcp = 5min, Tto = 1 min, Ths = 20 s, kcp = k = 6, all nodes online; cf. Sects. 4.1, 5)

accountable prefix ledger LOGacc. The gadget ensures that block production and
confirmation in Πlc and future checkpoints honor established checkpoints. When
instantiated with an accountable BFT protocol that is secure under network par-
titions, LOGacc inherits its partition-tolerance.

Since there are many accountable BFT protocols [37], we have a lot of imple-
mentation choices. Due to its maturity and the availability of a high quality
open-source implementation which we could employ practically as a black box,
we decided to implement a prototype of our accountability gadget using the Hot-
Stuff protocol [40]. Taking the Ethereum 2.0’s beacon chain as a target applica-
tion and matching its key performance characteristics such as latency and block
size, we performed Internet-scale experiments to demonstrate that our solution
can meet the target specification with over 4,000 participants (see Fig. 2(l)).
In particular, for the chosen parameterization and even before taking reduction
measures, the peak bandwidth required for a node to participate does not exceed
1.5MB/s (with a long-term average of 78KB/s) and hence is feasible even for
many consumer-grade Internet connections. At the same time, our prototype
provides 5× better average latency of LOGacc compared to the instantiation of
Gasper currently used for Ethereum 2’s beacon chain.

1.3 Related Work

Accountability. Accountability in distributed protocols has been studied in
earlier works. [18] designed a system, PeerReview, which detects faults. [19]
classifies faults into different types and studies their detectability. Casper [4]
focuses on accountability and fault detection when there is violation of safety, and
led to the notion of accountable safety resilience we use in this work. Polygraph
[10] is a partially synchronous BFT protocol which is secure when there are less
than n/3 adversarial nodes, and when there is a safety violation, at least n/3

Availability-Accountability Dilemma and Accountability Gadgets 545

Table 1. Accountability gadgets provide security, accountability, and predictable valid-
ity, which are not found conjoint in any one of the previous works [5,27,30,35].

Gasper [5] Checkp. LC [35] Snap&Chat
[27,30]

Acc. gadgets
(This work)

Provable security ✘ ✔ ✔ ✔

Accountability ✔ ✘ ✔ ✔

Predictable validity ✔ ✔ ✘ ✔

nodes can be held accountable. [34] builds upon [10] to create a blockchain which
can exclude Byzantine nodes that were found to have violated the protocol.

Many of these previous works focus on studying the accountability of spe-
cific protocols and think of accountability as an add-on feature in addition to
the basic security properties of the protocol. [37] follows this spirit but broad-
ens the investigation to formulate a framework to study the accountability of
many existing BFT protocols. More specifically, their framework augments the
traditional resilience metric with accountable safety resilience (which they call
forensic support). The present work is more in the spirit of [4] where account-
ability is a central design goal, not just an add-on feature. To formalize this
spirit, we split traditional resilience into safety and liveness resiliences, upgrade
safety resilience to accountable safety resilience, and formulate accountable secu-
rity as a tradeoff between liveness resilience and accountable safety resilience.
Further, we broaden the study to the important dynamic participation environ-
ment, where we discovered the availability-accountability dilemma (Theorem 1).
While at its heart the impossibility result Theorem B.1 of [37] is really about the
tradeoff between liveness and accountable safety resiliences, although not stated
as such, and it is indeed applicable very generally, when applied to the dynamic
participation setting it would give a loose result and would not have been able
to demonstrate the availability-accountability dilemma.

Availability-Finality Dilemma and Finality Gadgets. The availability-
finality dilemma [17,21,30] states that no protocol can provide both finality, i.e.,
safety under network partitions, and availability, i.e., liveness under dynamic par-
ticipation. The availability-accountability dilemma states that no protocol can pro-
vide both accountable safety and liveness under dynamic participation. Although
they are different, it turns out that some, but not all, protocols that resolve the
availability-finality dilemma can be used to resolve the availability-accountability
dilemma. Casper [4] and Gasper [5] pioneered resolution of the dilemmata but
lacked a specification of the desired security properties and suffered from attacks
[25,26,28,30,31,36]. Specifically, Gasper is insecure [26,28,30,36] (Table 1). The
first provably secure resolution of the availability-finality dilemma is the class
of snap-and-chat protocols [30], which combines a longest chain protocol with a
partially synchronous BFT protocol in a black box manner to provide finality. If
the partially synchronous BFT protocol is accountable, it is not too difficult to

546 J. Neu et al.

show [27] that the resulting snap-and-chat protocol would also provide a resolu-
tion to the availability-accountability dilemma. On the other hand, checkpointed
longest chain [35], another resolution of the availability-finality dilemma, is not
accountable [29, Appendix G] (Table 1).

A strength of snap-and-chat protocols is its black box nature which gives it
flexibility to provide additional features. A drawback is that the protocol may
reorder the blocks from the longest chain protocol to form the final ledger [27].
This means that when a proposer proposes a block on the longest chain, it cannot
predict the ledger state and check the validity of transactions by just looking at
the earlier blocks in the longest chain. This lack of predictable validity (Table 1)
opens the protocol up to spamming and prohibits the use of standard techniques
for sharding and light client support. Checkpointed longest chain builds upon
a line of work called finality gadgets [4,5,13,38] and overcomes this limitation
of snap-and-chat protocols because the longest chain protocol is modified to
respect the checkpoints so that the order of blocks can be preserved. However,
checkpointed longest chain’s finality gadget is not black box, but specifically uses
Algorand BA [8], which is not accountable [37]. It is not readily apparent if and
how Algorand BA could be replaced with any accountable BFT protocol.

The accountability gadget we design combines structural elements from snap-
and-chat protocols and from the checkpointed longest chain to uniquely achieve
the best of both worlds. It builds on the checkpointed longest chain and earlier
(not provably secure) finality gadgets in that it complements a longest chain
protocol with a checkpointing mechanism and thus achieves predictable validity.
Like snap-and-chat protocols, it allows the use of any BFT protocol as a black
box for checkpointing, retaining simplicity and flexibility and, when an account-
able BFT protocol like HotStuff is used, the checkpointed ledger is account-
able. Our accountability gadget provides security, accountability, and predictable
validity (Table 1), which are not found conjoint in any one of the prior works.

1.4 Outline

We introduce in Sect. 2 the notation and model for the proof of the availability-
accountability dilemma in Sect. 3 and the construction and security proof of
accountability gadgets in Sect. 4. Finally, we discuss details of a prototype imple-
mentation and experimental performance results in Sect. 5.

2 Model

In the client-server model of state machine replication (SMR), nodes take inputs
called transactions and enable clients to agree on a single sequence of transac-
tions, called the ledger and denoted by LOG, that produced the state evolution.
For this purpose, nodes exchange messages, e.g., blocks or votes, and each node
i records its view of the protocol by time t in an execution transcript Tt

i. To
obtain the ledger at time t, clients query the nodes running the protocol. When
a node i is queried at time t, it produces evidence wt

i by applying an evidence

Availability-Accountability Dilemma and Accountability Gadgets 547

generation function W to its current transcript: wt
i � W(Tt

i). Upon collecting
evidences from some subset S of the nodes, each client applies the confirmation
rule C to this set of evidences to obtain the ledger: LOG � C({wt

i}i∈S). Protocols
typically require to query a subset S containing at least one honest node.

Environment and Adversary: We assume that transactions are input to nodes
by the environment Z. There exists a public-key infrastructure and each of the
n nodes is equipped with a unique cryptographic identity. A random oracle
serves as a common source of randomness. Time is slotted and the nodes have
synchronized local clocks. Corruption: Adversary A is a probabilistic poly-time
algorithm. Before the protocol execution starts, A gets to corrupt (up to) f
nodes, then called adversarial nodes. Adversarial nodes surrender their internal
state to the adversary and can deviate from the protocol arbitrarily (Byzantine
faults) under the adversary’s control. The remaining (n−f) nodes are called hon-
est and follow the protocol as specified. Networking: Nodes can send each other
messages. Before a global stabilization time GST, A can delay network messages
arbitrarily. After GST, A is required to deliver all messages sent between honest
nodes within a known upper bound of Δ slots. GST is chosen by A, unknown
to the honest nodes, and can be a causal function of the randomness in the
protocol. Sleeping: To model dynamic participation, we adopt the concept of
sleepiness [33]. Before a global awake time2 GAT, A chooses, for every time slot
and honest node, whether it is awake (i.e., online) or asleep (i.e., offline). After
GAT, all honest nodes are awake. An awake honest node executes the protocol
faithfully. An asleep honest node does not execute the protocol, and messages
that would have arrived in that slot are queued and delivered in the first slot in
which the node is awake again. Adversarial nodes are always awake. We define
β as the maximum fraction of adversarial nodes among awake nodes throughout
the execution of the protocol. GAT, just like GST, is chosen by the adversary,
unknown to the honest nodes and can be a causal function of the randomness.
But, while GST needs to happen eventually (GST < ∞), GAT may be infinite.

Given above definition of a partially synchronous network with dynamic par-
ticipation (Apda,Zpda), we model a synchronous network (As,Zs), a partially
synchronous network (Ap,Zp), and a synchronous network with dynamic partic-
ipation (Ada,Zda) as special cases with GST = GAT = 0, GAT = 0, and GST = 0,
respectively. Subsequently, we specify for every theorem under which of the above
four (A...,Z...) it holds. Examples of Nakamoto-style and propose-and-vote-style
BFT protocols framed in the above model are given in [29, Appendix H].

Safety and Liveness Resiliences: Safety and liveness are defined as the traditional
security properties of SMR protocols:

Definition 1. Let Tconfirm be a polynomial function of the security parameter σ
of an SMR protocol Π. We say that Π with a confirmation rule C is secure and
has transaction confirmation time Tconfirm if ledgers output by C satisfy:
2 Node operators are rewarded and incur little expenses for protocol participation.

Thus, one naturally expects frequent periods of (near) full participation. GAT models
the time when participation stabilizes, analogous to the GST of network delays.

548 J. Neu et al.

– Safety: For any time slots t, t′ and sets of nodes S, S′ satisfying the require-
ments stipulated by the protocol, either LOG � C({wt

i}i∈S) is a prefix of
LOG′ � C({wt′

i }i∈S′) or vice versa.
– Liveness: If Z inputs a transaction to an awake honest node at some time

t, then, for any time slot t′ ≥ max(t,GST,GAT) + Tconfirm and any set of
nodes S satisfying the requirements stipulated by the protocol, the transaction
is included in LOG � C({wt′

i }i∈S).

Definition 2. For static (dynamic) participation, safety resilience of a protocol
is the maximum number f of adversarial nodes (maximum fraction β of adver-
sarial nodes among awake nodes) such that the protocol satisfies safety. Such a
protocol provides f -safety (β-safety).

Definition 3. For static (dynamic) participation, liveness resilience of a pro-
tocol is the maximum number f of adversarial nodes (maximum fraction β of
adversarial nodes among awake nodes) such that the protocol satisfies liveness.
Such a protocol provides f -liveness (β-liveness).

Accountable Safety Resilience: To formalize the concept of accountable safety
resilience, we define an adjudication function J , similar to the forensic protocol
defined in [37], as follows:

Definition 4. An adjudication function J takes as input two sets of evidences
W and W ′ with conflicting ledgers LOG � C(W) and LOG′ � C(W ′), and outputs
a set of nodes that have provably violated the protocol rules.

So, J never outputs an honest node. When the clients observe a safety vio-
lation, i.e., at least two sets of evidences W and W ′ such that LOG � C(W) and
LOG′ � C(W ′) conflict with each other, they call J on these evidences to identify
nodes that have violated the protocol. Note that LOG � C({wt

i}i∈S) may satisfy
safety/liveness only if the evidences come from a set S of nodes that satisfies
some assumptions stipulated by the protocol, e.g., that S contains one honest
node. On the other hand, J should only output nodes that have undoubtedly
violated protocol, without the verdict being conditional on any presumption.

Accountable safety resilience builds on the concept of α-accountable-safety
first introduced in [4]:

Definition 5. For static (dynamic) participation, accountable safety resilience
of a protocol is the minimum number f of nodes (minimum fraction β of nodes
among awake nodes) output by J in the event of a safety violation. Such a
protocol provides f -accountable-safety (β-accountable-safety).

Note that β-accountable-safety implies β-safety of the protocol (and the same
for f) since J outputs only adversarial nodes.

3 The Availability-Accountability Dilemma

We observe that the strictest tradeoff between the liveness and accountable safety
resilience occurs for dynamically available protocols under (Ada,Zda), a result
which was named the availability-accountability dilemma in Sect. 1.2:

Availability-Accountability Dilemma and Accountability Gadgets 549

Theorem 1. No SMR protocol provides both βa-accountable-safety and βl-
liveness for any βa, βl > 0 under (Ada,Zda).

Theorem 1 states that under dynamic participation it is impossible for an
SMR protocol to provide both positive accountable safety resilience and posi-
tive liveness resilience. In light of this result, protocol designers are compelled to
choose between protocols that maintain liveness under fluctuating participation,
and protocols that can enforce the desired incentive mechanisms highlighted in
Sect. 1.1 via accountability. Since both of the above features are desirable proper-
ties for Internet-scale consensus protocols, the availability-accountability dilemma
presents a serious obstacle in the effort to obtain an incentive-compatible and
robustly live protocol for applications such as cryptocurrencies.

To build intuition for the proof of Theorem 1, let us consider a permissioned
longest chain protocol under (Ada,Zda) where half of nodes are adversarial. Adver-
sarial nodes avoid all communication with honest nodes and build a private chain
that conflicts with the chain built collectively by the honest nodes. Such diverging
chains mean the possibility of an (ostensible) safety violation. Think of an honest
client towards whom adversarial nodes pretend to be asleep and who confirms a
ledger based solely on the longest chain provided by the honest evidences; and a co-
conspirator of the adversary who pretends to not have received any evidences from
honest nodes and to have confirmed a ledger based solely on the longest chain pro-
vided by the adversarial evidences. Indeed, both would obtain non-empty ledgers,
because the longest chain is dynamically available, but these two ledgers would
conflict. Yet, based on the two sets of evidences, the judge J can neither distin-
guishwho is honest client andwho is co-conspirator, nor tell which nodes are honest
or adversarial. So none of the adversarial nodes can be held accountable (without
risking to falsely convict an honest node).

Formal proof of Theorem 1 [29, Appendix A] relies on the fact that in a dynami-
cally available protocol, adversarial nodes, by private execution, can always create
a set of evidences that yields a conflicting ledger through the confirmation rule C.
This is because dynamically available protocols cannot set a lower bound on the
number of evidences eligible to generate a non-empty ledger through C, and thus
are forced to output ledgers for evidences from any number of nodes.

Theorem 1 is also related to a contemporaneous result [22] which shows
that dynamically available protocols cannot produce certificates of confirmation,
where such a certificate guarantees that there cannot be a conflicting confirma-
tion so long as stipulated constraints on the adversary hold.

4 Accountability Gadgets

In this section, we formalize and prove the security properties P1 and P2 of
Sect. 1.2 for accountability gadgets based on permissioned LC protocols [2,12,
20,33]. (For an extension of the security analysis to Proof-of-Work and Proof-
of-Space LC protocols, see [29, Appendix F].)

Like the checkpointed longest chain [35], accountability gadgets output a pre-
fix ledger safe under partial synchrony along with a full ledger live under dynamic

550 J. Neu et al.

Algorithm 1. Checkpoint vote generator (helper functions: see [29, Appendix E])
1: lastCp, props ← ⊥, {c : ⊥ | c = 0, 1, ...} � Last checkpoint, proposals
2: for currIter ← 0, 1, ... � Loop over checkpoint iterations
3: if lastCp �= ⊥
4: while waiting Tcp time � Wait Tcp time after new checkpoint decision
5: PerformBookkeeping
6: if CpLeaderOfIter(currIter) = myself � Broadcast proposal if leader of current iteration
7: Broadcast(〈propose, currIter,GetCurrProposalTip()〉myself)

8: while waiting Tto time � Wait Tto for timeout of checkpoint iteration
9: PerformBookkeeping

10: on props[currIter] �= ⊥, but at most once � Act on the first proposal received from
authorized leader before end of Tcp-wait and Tto-timeout

11: if IsValidProposal(props[currIter]) � Valid proposal is consistent with current
checkpoint-respecting LC

12: SubmitVote(〈accept, currIter, props[currIter]〉myself)
13: else
14: SubmitVote(〈reject, currIter〉myself) � Reject invalid proposal

15: SubmitVote(〈reject, currIter〉myself) � Reject due to timeout
16: wait on Checkpoint(c, b) from checkpoint vote interpreter (Algorithm 2) with c = currIter
17: lastCp ← b � Keep track of checkpoint decision

18: macro PerformBookkeeping
19: on receiving Checkpoint(c, b) from checkpoint vote interpreter (Algorithm 2) with c =

currIter
20: goto 17 � Jump to conclusion of current iteration

21: on receiving Proposal(c, b) from checkpoint leader of iteration c with props[c] = ⊥
22: props[c] ← b � Keep track of first proposal from authorized leader per iteration c

participation. For this purpose, both protocols are deployed as overlays on top
of a dynamically available longest chain protocol and periodically checkpoint
its output to protect against reversals under network partition. Accountability
gadgets can be instantiated from any partially synchronous BFT SMR protocol,
which is used as a black box for checkpointing. If the selected protocol provides
accountability, then adversarial nodes can be held to account should there ever be
a reversal of a checkpoint. In contrast, the checkpointed longest chain is interwo-
ven with a variant of a particular protocol, Algorand BA [8], which does not pro-
vide accountability [37] [29, Appendix G]. Furthermore, it is not readily apparent
how to use another protocol instead. As a result, the checkpointed longest chain
cannot provide a resolution to the availability-accountability dilemma, whereas
accountability gadgets can.

4.1 Protocol Description

Accountability gadgets, denoted by Πacc, can be used in conjunction with any
dynamically available longest chain (LC) protocol Πlc such as Nakamoto’s PoW
LC protocol [24], Sleepy [33], Ouroboros [2,12,20] and Chia [11] (Fig. 1). Subse-
quently, we focus on permissioned/PoS LC protocols. PoW and Proof-of-Space
are discussed in [29, Appendix F]. The protocol Πlc then follows a modified chain
selection rule where honest nodes build on the tip of the LC that contains all of
the checkpoints they have observed.3 We call such chains checkpoint-respecting
3 There are no conflicting checkpoints unless a safety violation has already occurred.

Upon detecting a safety violation, honest nodes stop participating in the protocol.
Punishment of parties identified by the accountability mechanism as malicious and
system recovery are handled by mechanisms external to the protocol.

Availability-Accountability Dilemma and Accountability Gadgets 551

Algorithm 2. Checkpoint vote interpreter (helper functions: see [29, Appendix
E])
1: for currIter ← 0, 1, ...
2: currVotes ← {(pk, ⊥) | pk ∈ committee} � Latest vote of each node
3: while true � Go through votes as ordered by Πbft
4: vote ← GetNextVerifiedVoteFromBft() � Verify signature
5: if vote = 〈accept, c, b〉pk with c = currIter
6: currVotes[pk] ← Accept(b) � Count accept vote for block b
7: else if vote = 〈reject, c〉pk with c = currIter
8: currVotes[pk] ← Reject � Count reject vote

9: if ∃b : |{pk | currVotes[pk] = Accept(b)}| ≥ 2n/3
10: OutputCp(Checkpoint(currIter, b)) � New checkpoint decision
11: break
12: else if |{pk | currVotes[pk] = Reject}| ≥ n/3
13: OutputCp(Checkpoint(currIter, ⊥)) � Abort current iteration
14: break

LCs. At each time slot t, each honest node i outputs the k-deep prefix of the
checkpoint-respecting LC (or the prefix of the latest checkpoint, whichever is
longer) in its view as LOGt

da,i.
The accountability gadget Πacc has three main components as shown on

Fig. 1: a checkpoint vote generator (Algorithm 1) issues checkpoint proposals and
votes, an accountable SMR protocol Πbft is used to reach consensus on which
votes to count for the checkpoint decision, and a checkpoint vote interpreter
(Algorithm 2) outputs checkpoint decisions computed deterministically from the
checkpoint votes sequenced by Πbft. The protocol Πbft can be instantiated with
any accountable BFT protocol, e.g., Streamlet [7], LibraBFT [23], or HotStuff
[40]. It is used as a black box ordering service within Πacc and is assumed to have
confirmation time Tconfirm. We denote the ledger output by Πbft as LOGbft, and
emphasize that it is internal to Πacc. Checkpoint vote generator and interpreter
are run locally by each node and interact with Πbft and LOGbft. Hence, when
we refer to LOGbft in the following, we mean the ledger in the view of a specific
node.

The accountability gadget Πacc proceeds in checkpoint iterations denoted by
c, each of which attempts to checkpoint a block in Πlc. The checkpoint vote gen-
erator produces requests which can be of three forms: 〈propose, c, b〉i proposes
block b for checkpointing in iteration c, 〈accept, c, b〉i votes in favor of block b in
iteration c, 〈reject, c〉i votes to reject iteration c. Here, 〈...〉i denotes a message
signed by node i. Each iteration c has a publicly verifiable and unique random
leader L(c). The leader obtains the kcp-deep block b on its checkpoint-respecting
LC and broadcasts it to all other nodes as the checkpoint proposal for c (Algo-
rithm 1, l. 7). Nodes receive checkpoint proposals (signed by the legitimate leader
L(c)) from the network, and order them with respect to their checkpoint itera-
tion (Algorithm 1, l. 21). A proposal is valid in view of node i if the proposed
block is within i’s checkpoint-respecting LC and extends all previous checkpoints
observed by i. During an iteration c, each node i checks if the proposal received
for c is valid (Algorithm 1, l. 11). If it has received a valid proposal with block

552 J. Neu et al.

Fig. 3. Dependency of the security properties of LOGacc and LOGda on the properties
of Πacc, Πlc and Πbft.

b, it votes 〈accept, c, b〉i (Algorithm 1, l. 12). Otherwise, if i does not receive any
valid proposal for a timeout period Tto, i votes 〈reject, c〉i (Algorithm 1, l. 14, 15).
Votes are input as payload to Πbft, which sequences them into ledger LOGbft.
Thus, nodes reach consensus on which votes to count for checkpoint decision of
the given iteration.

The checkpoint vote interpreter (Algorithm 2) processes the sequence of votes
in LOGbft to produce checkpoint decisions. Each node processes verified votes
(i.e., with valid signature) in the order they appear on LOGbft (Algorithm 2, l. 4).
Upon observing 2n/3 unique 〈accept, c, b〉i votes for a block b and the current
iteration c, each node outputs b as the checkpoint for c (Algorithm 2, l. 10). The
checkpointed blocks output over time, together with their respective prefixes,
constitute LOGt

acc,i. Furthermore, checkpoint decisions are fed back to Πlc and
the checkpoint vote generator to ensure consistency of future block production
in Πlc and of checkpoint proposals with prior checkpoints. Oppositely, upon
observing n/3 unique 〈reject, c〉i votes for the current iteration c, each node
outputs ⊥ as the checkpoint decision for c (Algorithm 2, l. 13) to signal that
c was aborted with no new checkpointed block. This happens if honest nodes
reject because they have not seen progress for too long. Once a node outputs a
decision for current iteration c, the checkpoint vote interpreter proceeds to c+1;
thus, only a single decision is output per iteration.

Upon receiving a new checkpoint for the current iteration c, nodes leave c of
the checkpoint vote generator and enter c + 1 (Algorithm 1, l. 20). If the check-
point decision was for b �= ⊥, nodes wait for Tcp time (checkpoint interval) before
considering checkpoint proposals for c+1. As will become clear in the analysis, the
checkpoint interval is crucial to ensure thatΠlc’s chain dynamics are ‘not disturbed
too much’ by accommodating and respecting checkpoints. Note that throughout
the execution there is only a single instantiation Πbft, since the votes for different
checkpoint iterations can still be ordered into a single sequence.

Availability-Accountability Dilemma and Accountability Gadgets 553

4.2 Security Properties

In this section, we formalize and prove the security properties P1 and P2 of
Sect. 1.2 for accountability gadgets based on permissioned LC protocols [2,12,20,
33]. (For an extension of the security analysis to Proof-of-Work and Proof-of-Space
LC protocols, see [29, Appendix F].)

For the worst case, we first fix f = �n/3	 − 1 and consider an accountability
gadget Πacc instantiated with a partially synchronous BFT protocol Πbft that
provides (n − 2f)-accountable-safety at all times, and f -liveness under partial
synchrony after the network partition heals and sufficiently many honest nodes
are awake. (An example Πbft is HotStuff [40] with a quorum size (n − f).)

Let λ and σ denote the security parameters associated with the employed
cryptographic primitives and the LC protocol Πlc, respectively. Then, the secu-
rity properties of LOGacc and LOGda output by the accountability gadget Πacc

and the LC protocol Πlc (modified to be checkpoint-respecting) are:

Theorem 2. For any λ, σ, and Tconfirm, k, kcp linear in σ:

1. (P1: Accountability) Under (Apda,Zpda), the accountable ledger LOGacc

provides (n − 2f)-accountable-safety at all times (except with probability
negl(λ)), and there exists a constant C such that LOGacc provides f-liveness
with confirmation time Tconfirm after Cmax(GST,GAT) (except with proba-
bility negl(σ)).

2. (P2: Dynamic Availability) Under (Ada,Zda), the available ledger LOGda

provides 1/2-safety and 1/2-liveness at all times (except with probability
negl(σ) + negl(λ)).

3. (Prefix) LOGacc is always a prefix of LOGda.

Here, negl(.) denotes a negligible function that decays faster than all poly-
nomials. To prove Theorem 2, we first focus on the security of LOGda under
(Ada,Zda), synchronous network with dynamic availability (11 of Fig. 3). We
know from [2,12,20,33] that Πlc is safe and live with some security parameter
σ under the original LC rule when β < 1/2 (10). Hence, if kcp is selected as an
appropriate linear function of σ, once a block becomes kcp-deep at time s in the
LC held by an honest node, it stays on the LCs held by all honest nodes forever.
Since there are at least n − f > f accept votes for any block checkpointed by an
honest node at time s, there is at least one honest node that voted accept for
any such block. As honest nodes accept only proposals that are at least kcp-deep
in their LCs, (9), checkpointed blocks are already part of the LCs held by every
other honest node at time s under (Ada,Zda). Thus, new checkpoints can only
appear in the common prefix of the honest nodes’ LCs and do not affect the
security of the LC protocol.

Next accountability and liveness of LOGacc under (Apda,Zpda) (3 , 8). The
pseudocode of Πacc stipulates that honest nodes accept only proposals that are
consistent with previous checkpoints (1), and a new checkpoint requires (n− f)
accept votes (l. 9 of Algorithm 2). Thus, in the event of a safety violation, either
there are two inconsistent ledgers LOGbft held by honest nodes, or (n − 2f)

554 J. Neu et al.

nodes have voted for inconsistent checkpoints. In both cases, (n−2f) adversarial
nodes are identified as violators by invoking either (n−2f)-accountable-safety of
LOGbft (2) or the consistency requirement for checkpoints (1), implying (n−2f)-
accountable-safety of LOGacc. Detailed proof in [29, Appendix B.2].

Liveness of LOGacc (8) requires the existence of iterations after
max(GST,GAT) where all honest nodes accept honest proposals. This, in turn,
depends on whether the proposals by honest leaders are consistent with the
checkpoint-respecting LCs at honest nodes after max(GST,GAT). To show this,
we prove that Πlc recovers its security after max(GST,GAT) (6). We first observe
that with checkpoints, honest nodes abandon their LC if a new checkpoint
appears on another (possibly shorter) chain. Then, some honest blocks produced
meanwhile may not contribute to chain growth. This feature of checkpoint-
respecting LCs violates a core assumption of the standard proof techniques
[15,20,33] for LC protocols. To bound the number of abandoned honest blocks
and demonstrate the self-healing property of checkpoint respecting LCs, we fol-
low an approach introduced in [35]. We first observe the gap and recency proper-
ties for Πacc ([29, Appendix B.4]) which are necessary conditions for any check-
pointing mechanism to ensure self-healing of Πlc (4). The gap property states
that Tcp has to be sufficiently longer than the time it takes for a proposal to
get checkpointed. The recency property requires that newly checkpointed blocks
were held in the checkpoint-respecting LC of at least one honest node within a
short time interval before the checkpoint decision.

Using the gap and recency properties, we next extend the analysis of [35] to
permissioned protocols by introducing the concept of checkpoint-strong pivots,
a generalization of strong pivots [33]. Whereas strong pivots count honest and
adversarial blocks to claim convergence of the LC in the view of different honest
nodes, checkpoint-strong pivots consider only honest blocks that are guaran-
teed to extend the checkpoint-respecting LC, thus resolving non-monotonicity
for these chains. Recurrence of checkpoint-strong pivots after max(GST,GAT)
(5) along with the gap and recency properties lead to security of Πlc after
max(GST,GAT). Details in [29, Appendix C]. Given self-healing of Πlc, liveness
of LOGacc follows from liveness of Πbft after max(GST,GAT) (7). Full proof in
[29, Appendix B.3].

Finally, the prefix property follows readily from the way in which both LOGda

and LOGacc are derived from the checkpoint-respecting LC.

5 Experimental Evaluation

To evaluate whether the protocol of Sect. 4.1 can be a drop-in replacement for
the Ethereum 2 beacon chain, we have implemented a prototype4. Our proto-
col incurs average required bandwidth comparable to Gasper at reduced latency
of LOGacc. Gasper’s resilience decreases as the number of nodes increases, for

4 Source code: https://github.com/tse-group/accountability-gadget-prototype.

https://github.com/tse-group/accountability-gadget-prototype

Availability-Accountability Dilemma and Accountability Gadgets 555

fixed latency of LOGacc, due to a new attack [28], whereas our protocol is prov-
ably secure. Supplemental material of experimental evaluation is given in [29,
Appendix D].

A diagram of the different components of our prototype and their interactions
is provided in Fig. 4. We use a longest chain protocol modified to respect latest
checkpoints as Πlc, with a permissioned block production lottery; and a variant
of HotStuff5 as Πbft. All communication (including HotStuff’s) takes place in
a broadcast fashion via libp2p’s Gossipsub protocol6, mimicking Ethereum 2
[1]. The parameters of our protocol match the number of validators (n = 4096),
average block inter-arrival time (12 s) and block payload size (22KBytes) of the
Ethereum 2 beacon chain. We chose kcp = 6 so that an honest checkpoint pro-
posal is likely accepted by honest nodes, and k = 6 for swift 72 s average latency
of LOGda. Setting Ths = 20 s and Tto = 1min avoids HotStuff timeouts escalat-
ing into checkpoint timeouts unnecessarily. Finally, to target 5× improvement
in average LOGacc latency over Gasper (cf. Fig. 7, we set Tcp = 5min.

Fig. 4. Components and their interactions in implementation of Fig. 1. Gray: off the
shelf components used as black boxes. Blue: taken from Πlc without modification.
Green: taken from Πlc, modified to respect checkpoints. (Color figure online)

Adversarial nodes in the experiment boycott leader duty in Πbft and mine
selfishly [14] in Πlc. We ran our prototype (a) with no adversary (Fig. 2(l)),
and (b) with β = 25% adversary (Fig. 2(r)), each for 2500 s on five AWS EC2
c5a.8xlarge instances in each of ten AWS regions with 82 nodes per machine,
for a total of 4100 nodes. Each honest (adversarial) node connected to 15 (15
honest, 15 adversarial) randomly selected peers for the peer-to-peer network.
Both without (Fig. 2(l)) and under attack (Fig. 2(r)) LOGda () grows steadily,
albeit under attack slower due to selfish mining. In both cases, LOGacc ()
periodically catches up with LOGda. Timeouts cause minor delayed catch-up.

5 We used this Rust implementation: https://github.com/asonnino/hotstuff [16].
6 We used this Rust implementation: https://github.com/libp2p/rust-libp2p [39].

https://github.com/asonnino/hotstuff
https://github.com/libp2p/rust-libp2p

556 J. Neu et al.

Network traffic (Figs. 5, 6 for an exemplary AWS instance, i.e., for 82 nodes)
shows frequent small spikes for Πlc blocks and infrequent wide spikes for Πacc

votes and Πbft blocks and votes. Traffic increases slightly under attack (per
node: avg. 78KB/s vs. 56KB/s, peak 1.5MB/s vs. 1.34MB/s) because inac-
tive adversarial leaders cause more iterations in Πacc and Πbft. The bandwidth
requirement does not limit participation using consumer-grade Internet access.
Note that our prototype does not employ bandwidth reduction techniques that
are orthogonal to the consensus problem, such as aggregate and short signatures
or spreading the vote out over time. Figure 7 corroborates that even if voting was
artificially rate-limited and thus spread out over time (as is the case in Gasper),
bandwidth and latency comparable to Gasper could be achieved.

Figure 7 compares bandwidth and latency of LOGacc for varying parameters
and β = 0,Δ = 0. Gasper transmits 2 · n

C votes per 12 s, with C the number of
slots per epoch, our protocol transmits 5 · n votes per Tcp time. A transaction
takes on average 1

2+2 epochs to enter into LOGacc for Gasper, and kcp·12 s+ 1
2 ·Tcp

time to enter LOGacc for our protocol. Our protocol offers slightly improved

Fig. 5. Setting of Fig. 2(l): The network traffic for each AWS instance (i.e., 82 nodes)
shows four marked spikes (red) for every new checkpoint (Tcp time = 5 min interval)
and smaller spikes (orange) for every new Πlc block (Tslot = 7:5 s interval). (Color
figure online)

Fig. 6. Setting of Fig. 2(r): Leader timeouts in Πbft and Πacc can delay new checkpoints
(red). E.g., after the end of a checkpoint interval (t ≈ 870 s), and subsequent Πacc leader
timeout (t ≈ 930 s), honest nodes vote to reject the current checkpoint iteration, but the
decision is delayed by another Πbft leader timeout. The next checkpoint iteration has
an honest leader, but a decision is again delayed by a Πbft leader timeout, until a new
checkpoint is finally reached (t ≈ 1070 s). Traffic at honest nodes (right) lacks some
of the small spikes (orange) of traffic at adversarial nodes (left), since the adversary
temporarily withholds some of its blocks from honest nodes due to selfish mining.
(Color figure online)

Availability-Accountability Dilemma and Accountability Gadgets 557

Fig. 7. For fixed n, the average latency of LOGacc for Gasper and our protocol (here
for kcp = 6) increases with the number C of slots per epoch and with Tcp, respectively,
while the bandwidth required for votes reduces proportionally. Our protocol offers a
better tradeoff and can tolerate twice the n at comparable latency and bandwidth (our
protocol for n = 8192, Tcp = 30min vs. Gasper for n = 4096, C = 32).

latency at comparable bandwidth, or comparable bandwidth and latency but
for a larger number of nodes.

Acknowledgment. JN, ENT, and DT are supported by the Reed-Hodgson Stanford
Graduate Fellowship, the Stanford Center for Blockchain Research, and the Center for
Science of Information (CSoI), an NSF Science and Technology Center under grant
agreement CCF-0939370, respectively.

References

1. Ethereum 2.0 networking specification (2021). https://github.com/ethereum/eth2.
0-specs/blob/dev/specs/phase0/p2p-interface.md

2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Conference
on Computer and Communications Security, CCS 2018, pp. 913–930. ACM (2018)

3. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus.
arXiv:1807.04938 (2018)

4. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv:1710.09437
(2019)

5. Buterin, V., et al.: Combining GHOST and Casper. arXiv:2003.03052 (2020)
6. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Symposium on Oper-

ating Systems Design and Implementation, OSDI 1999, pp. 173–186. USENIX
Association (1999)

7. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. In: Advances in
Financial Technologies, AFT 2020, pp. 1–11. ACM (2020)

8. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
Super fast and partition resilient Byzantine agreement. IACR Cryptology ePrint
Archive, Report 2018/377 (2018)

9. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret.
Comput. Sci. 777, 155–183 (2019)

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/2003.03052

558 J. Neu et al.

10. Civit, P., Gilbert, S., Gramoli, V.: Polygraph: accountable Byzantine agreement.
In: ICDCS, pp. 403–413. IEEE (2021)

11. Cohen, B., Pietrzak, K.: The Chia Network blockchain (2019). www.chia.net/
assets/ChiaGreenPaper.pdf

12. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

13. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J., Tschudi, D.: Afgjort: a par-
tially synchronous finality layer for blockchains. In: Conference on Security and
Cryptography for Networks, SCN 2020, pp. 24–44. (2020)

14. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

15. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

16. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and Ditto: network-adaptive efficient consensus with asynchronous fallback. In:
Financial Cryptography and Data Security. FC 2022 (2022)

17. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

18. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability
for distributed systems. SIGOPS Oper. Syst. Rev. 41(6), 175–188 (2007)

19. Haeberlen, A., Kuznetsov, P.: The Fault Detection Problem. In: International Con-
ference on Principles of Distributed Systems. OPODIS 2009 (2009)

20. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

21. Lewis-Pye, A., Roughgarden, T.: Resource pools and the CAP theorem.
arXiv:2006.10698 (2020)

22. Lewis-Pye, A., Roughgarden, T.: How does blockchain security dictate blockchain
implementation? In: CCS, pp. 1006–1019. ACM (2021)

23. Libra Association: Libra white paper (2020). https://www.libra.org/en-US/white-
paper/

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

25. Nakamura, R.: Analysis of bouncing attack on FFG (2019). http://ethresear.ch/
t/analysis-of-bouncing-attack-on-ffg/6113

26. Neu, J., Tas, E.N., Tse, D.: A balancing attack on Gasper, the current candidate for
Eth2’s beacon chain (2020). https://ethresear.ch/t/a-balancing-attack-on-gasper-
the-current-candidate-for-eth2s-beacon-chain/8079

27. Neu, J., Tas, E.N., Tse, D.: Snap-and-chat protocols: system aspects.
arXiv:2010.10447 (2020)

28. Neu, J., Tas, E.N., Tse, D.: Attacking Gasper without adversarial net-
work delay (2021). https://ethresear.ch/t/attacking-gasper-without-adversarial-
network-delay/10187

29. Neu, J., Tas, E.N., Tse, D.: The availability-accountability dilemma and its reso-
lution via accountability gadgets. arXiv:2105.06075 (2021)

www.chia.net/assets/ChiaGreenPaper.pdf
www.chia.net/assets/ChiaGreenPaper.pdf
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/2006.10698
https://www.libra.org/en-US/white-paper/
https://www.libra.org/en-US/white-paper/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
http://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
http://arxiv.org/abs/2010.10447
https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
http://arxiv.org/abs/2105.06075

Availability-Accountability Dilemma and Accountability Gadgets 559

30. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: a resolution of the availability-
finality dilemma. In: IEEE Symposium on Security and Privacy, pp. 446–465. IEEE
(2021)

31. Neu, J., Tas, E.N., Tse, D.: Two attacks on proof-of-stake GHOST/Ethereum.
arXiv:2203.01315 (2022)

32. Pass, R., Shi, E.: Rethinking large-scale consensus. In: Computer Security Foun-
dations Symposium, CSF 2017, pp. 115–129. IEEE (2017)

33. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

34. Ranchal-Pedrosa, A., Gramoli, V.: Blockchain is dead, long live blockchain!
accountable state machine replication for longlasting blockchain. arXiv:2007.10541
(2020)

35. Sankagiri, S., Wang, X., Kannan, S., Viswanath, P.: Blockchain CAP theorem
allows user-dependent adaptivity and finality. In: Borisov, N., Diaz, C. (eds.) FC
2021. LNCS, vol. 12675, pp. 84–103. Springer, Heidelberg (2021). https://doi.org/
10.1007/978-3-662-64331-0 5

36. Schwarz-Schilling, C., Neu, J., Monnot, B., Asgaonkar, A., Tas, E.N., Tse, D.:
Three attacks on proof-of-stake Ethereum. In: Financial Cryptography and Data
Security. FC 2022 (2022)

37. Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: BFT protocol foren-
sics. In: CCS, pp. 1722–1743. ACM (2021)

38. Stewart, A., Kokoris-Kogia, E.: GRANDPA: a Byzantine finality gadget.
arXiv:2007.01560 (2020)

39. Vyzovitis, D., Napora, Y., McCormick, D., Dias, D., Psaras, Y.: GossipSub:
attack-resilient message propagation in the Filecoin and ETH2.0 networks.
arXiv:2007.02754 (2020)

40. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Symposium on Principles of Dis-
tributed Computing, PODC 2019, pp. 347–356. ACM (2019)

http://arxiv.org/abs/2203.01315
https://doi.org/10.1007/978-3-319-70697-9_14
http://arxiv.org/abs/2007.10541
https://doi.org/10.1007/978-3-662-64331-0_5
https://doi.org/10.1007/978-3-662-64331-0_5
http://arxiv.org/abs/2007.01560
http://arxiv.org/abs/2007.02754

Three Attacks on
Proof-of-Stake Ethereum

Caspar Schwarz-Schilling1 , Joachim Neu2 , Barnabé Monnot1 ,
Aditya Asgaonkar1, Ertem Nusret Tas2(B) , and David Tse2

1 Ethereum Foundation, Berlin, Germany
{caspar.schwarz-schilling,barnabe.monnot,aditya.asgaonkar}@ethereum.org

2 Stanford University, Stanford, USA
{jneu,nusret,dntse}@stanford.edu

Abstract. Recently, two attacks were presented against Proof-of-Stake
(PoS) Ethereum: one where short-range reorganizations of the under-
lying consensus chain are used to increase individual validators’ prof-
its and delay consensus decisions, and one where adversarial network
delay is leveraged to stall consensus decisions indefinitely. We provide
refined variants of these attacks, considerably relaxing the requirements
on adversarial stake and network timing, and thus rendering the attacks
more severe. Combining techniques from both refined attacks, we obtain
a third attack which allows an adversary with vanishingly small fraction
of stake and no control over network message propagation (assuming
instead probabilistic message propagation) to cause even long-range con-
sensus chain reorganizations. Honest-but-rational or ideologically moti-
vated validators could use this attack to increase their profits or stall the
protocol, threatening incentive alignment and security of PoS Ethereum.
The attack can also lead to destabilization of consensus from congestion
in vote processing.

1 Introduction

The Proof-of-Stake (PoS) Ethereum consensus protocol [1,2,4] is constructed by
applying the finality gadget Casper FFG [6] on top of the fork choice rule LMD
GHOST, a flavor of the Greedy Heaviest-Observed Sub-Tree (GHOST) [20] rule
which considers only each participant’s most recent vote (Latest Message Driven,
LMD). Participants with stake that allows them to vote as part of the protocol
are called validators. A slightly simplified and analytically more tractable variant
of PoS Ethereum is given by the Gasper protocol [7].

Recent works [16,18,19] have presented two attacks on Gasper and PoS
Ethereum. The first attack [19] uses short-range reorganizations (reorgs) of the
blockchain stipulating consensus to delay finality of consensus decisions. Such
short-range reorgs also allow validators to increase their earnings from partici-
pating in the protocol (e.g., from Maximal Extractable Value, MEV [10]). As a
result, honest-but-rational validators will deviate from the protocol, threatening
the assumptions underlying the security arguments for it. In the second attack
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 560–576, 2022.
https://doi.org/10.1007/978-3-031-18283-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_28&domain=pdf
http://orcid.org/0000-0003-0734-4722
http://orcid.org/0000-0002-9777-6168
http://orcid.org/0000-0002-6940-974X
http://orcid.org/0000-0001-6061-9700
http://orcid.org/0000-0003-1460-5900
https://doi.org/10.1007/978-3-031-18283-9_28

Three Attacks on Proof-of-Stake Ethereum 561

[16,18], the adversary exploits adversarial network delay and strategic voting by
a vanishing fraction of adversarial validators to stall the protocol indefinitely.

Our Contributions. In this paper we present enhanced variants of the above two
attacks [18,19]. First, we reduce the number of validators necessary to launch a
short-range reorg. An adversary who could perform a reorg of k blocks (k-reorg)
using the old strategy [19] is now able to perform a (k + 1)-reorg using our new
strategy. In particular, an adversary with 0.09% of total stake is in a position to
execute a 1-reorg for any given day with 99.6% probability. Second, we consid-
erably relax the network assumption under which the adversary can stall PoS
Ethereum using techniques similar to [16,18]: we show that the adversary does
not need to exert control over message propagation delays, but that merely sta-
tionary probabilistic network delay, as is commonly assumed to model networks
under normal operation, together with a still vanishingly small (albeit slightly
larger than before) fraction of adversarial validators suffices for the adversary
to be able to effectively stall the protocol. We then combine techniques from
both refined attacks to devise a long-range reorg attack which requires only an
extremely small number of adversarial validators and no adversarial (but only
probabilistic) network delay.

This third attack is particularly severe for PoS Ethereum for three reasons:
1. Honest-but-rational validators might adopt the strategy as they can use it to
increase their payouts from MEV and transaction fees. The resulting protocol
deviations destabilize consensus on both the fork choice and the finality gadget
level because the blockchain does not grow steadily anymore. 2. Reorgs lead
to uncertainty and delay in block confirmation, impacting user experience and
quality of service, and undermining users’ trust in the protocol. 3. Reorgs can
reduce the throughput of the consensus layer to the point where not enough
votes can be processed timely, reducing resilience against adversarial validators
and jeopardizing proper functioning of PoS Ethereum.

Related Work. In both selfish mining [11] and our attacks the adversary with-
holds blocks to displace honest blocks from the chain. Unlike selfish mining how-
ever, our attacks do not lead to an increased block production reward. Under-
cutting attacks [12] showcase how consensus instability can arise from reorgs
incentivized by large variance in block rewards. In fact, this concern will be
aggravated by diminishing block rewards in Bitcoin in the future [9]. Time-
bandit attacks [10] point out that MEV earned in past blocks can incentivize
and subsidize reorgs and other attacks in the future, e.g., for renting hash power
or bribing validators.

Outline. PoS Ethereum and its network model are reviewed in Sect. 2. Sections 3
and 4 each first introduce a recent attack and then describe our refined variant
thereof. Combining techniques from our refined attacks, we devise a long-range
reorg attack in Sect. 5. We discuss in Sect. 6 the impact of the presented long-
range reorg attack on various aspects of PoS Ethereum.

562 C. Schwarz-Schilling et al.

2 Proof-of-Stake Ethereum: The Gasper Protocol

We provide a concise summary of the PoS Ethereum/Gasper protocol and the
network environment it is designed for. The exposition is slightly idealized and
streamlined for ease of comprehension. For all details, refer to the paper [7] of
Gasper and the PoS Ethereum beacon chain protocol specifications [1,2,4].

2.1 Model

We assume a static pool of N protocol participants (called validators or nodes),
each with unit stake. This corresponds to consensus in a permissioned setting.
Network communication among validators is synchronous, i.e., network delay is
under adversarial control, up to a known delay upper bound Δ. Clocks across
nodes are synchronized. This amounts to a synchronous network [13]. There is
an external shared source of randomness which can be used by the protocol
to sample a group (of predetermined size) of validators in a uniform manner
without replacement. Validators follow the protocol as prescribed, except for a
fraction β which are under adversarial control and can deviate from the protocol
in arbitrary and coordinated fashion (Byzantine faults).

In its basic version, the state machine replication (SMR) formulation of con-
sensus asks for a protocol that can be run among the N protocol participants
to obtain a linear ordering of transactions input by the environment to partic-
ipants, into a shared ledger (i.e., to implement an ordering service) with the
following security properties:

– Liveness: If some honest validator becomes aware of a transaction, then not
too long thereafter that transaction will have entered the ledger as output by
any honest validator (i.e., ‘good things do happen’, ‘transactions enter the
ledger’).

– Safety: The ledgers output by different honest validators at different points
in time are consistent. In other words, it does not happen that a transaction,
which has once entered the ledger in some honest validator’s view at some
time, disappears later (i.e., ‘bad things do not happen’, ‘if a transaction enters
the ledger, then it will not leave it’).

Given an SMR protocol, we seek to understand for which adversarial fractions
β the ledger output by that protocol is both safe and live (and hence secure).

2.2 Protocol

Being a composite with the LMD GHOST fork choice rule as the basis and
Casper FFG as a finality gadget on top, PoS Ethereum consensus proceeds
roughly in two stages and on two time scales.

First, on the smaller time scale where LMD GHOST operates, time proceeds
in synchronized slots of duration 2Δ. For each slot, one block proposer and a
committee of W validators is drawn uniformly at random from the N validators.

Three Attacks on Proof-of-Stake Ethereum 563

The following LMD GHOST rule is used to determine a canonical block (and
its prefix of blocks as a canonical chain) in a node’s view in slot t: “Starting at
the highest block b0 ‘justified’ by Casper FFG (see below), sum for each child
block b the number of unique (i.e., one per slot and slot’s committee member,
breaking ties adversarially) valid (i.e., only from earlier than the current slot,
and no voting on future blocks) votes for that block and its descendants; count
for every validator only its most recently cast vote (LMD). Pick the child block b∗

with highest weight (GHOST) (breaking ties adversarially). Recurse (b0 ← b∗),
until reaching a leaf block. Output that leaf block.” At the beginning of each
slot, the slot’s proposer determines a block using LMD GHOST and extends it
with a new proposal. Half way into each slot (i.e., Δ time after the proposal
and after the beginning of the slot), the slot’s committee members determine
a block using LMD GHOST in their view and vote for it (votes are also called
attestations). (At the same time they also cast a Casper FFG vote, as described
later.) An exact confirmation rule of LMD GHOST/Gasper is not specified.

Second, on the larger time scale where Casper FFG operates, time proceeds
in epochs comprised of 32 slots. On a high level, Casper FFG is a two-phase tradi-
tional propose-and-vote-style Byzantine fault tolerant (BFT) consensus protocol
(cast as a blockchain protocol into the chained framework, like Chained HotStuff
[22]), except there is no leader in charge of assembling proposals. Instead, the
proposals are supposed to be generated consistently across honest nodes by the
LMD GHOST fork choice layer. Casper FFG proceeds as follows: Blocks first
become justified if a super-majority (2N/3) votes ‘for them’, and subsequently
become finalized, roughly when a super-majority votes ‘from them’ for a subse-
quent block. The genesis block is justified and finalized by definition. The blocks
among which validators cast their votes during an epoch are the so-called epoch
boundary blocks, which are those blocks that are leaf blocks after truncating the
block tree to only those blocks that came from the previous epoch. Validators
vote for the highest epoch boundary block that is consistent with the highest
justified block they have observed, which in turn extends the latest finalized
block they have observed. Due to the super-majority required to advance a pro-
posal, as well as the two-phase confirmation (called finalization), Casper FFG
remains safe even under temporary network partition. The confirmation rule on
the Casper FFG level is to output the latest finalized block and its prefix.

3 A Refined Reorg Attack

3.1 Motivation

Previous work [19] described a malicious, low-cost reorg attack. In particular,
the attack leverages strategic timing of broadcasting blocks and attestations,
as opposed to honestly releasing them when supposed to. In a nutshell, in the
strategy of [19], an adversarial block proposer in slot n keeps its proposal hidden.
The honest block proposer in slot n+1 will then propose a competing block. The
adversary can now use its committee members’ votes from both slots n and n+1
to vote for the withheld block of slot n in an attempt to outnumber honest votes

564 C. Schwarz-Schilling et al.

Fig. 1. Example of a one-block reorg attack using the refined strategy: In slot n+1 the
adversary privately creates block n + 1 on block n and attests to it. Honest validators
of slot n+1 do not see any block and thus attest to block n as head of the chain. In the
next slot, an honest proposer publishes block n + 2 building on block n, which is the
current head in their view. Simultaneously, the adversary finally publishes block n + 1
and the attestation voting for block n + 1. All honest validators of slot n + 2 attest to
block n + 1 as head of the chain, because it has more weight than block n + 2. In the
next slot block n + 3 is proposed building on block n + 1. Block n + 2 is reorged out.

on the proposal of slot n + 1. As a result, blocks proposed by honest validators
may end up orphaned, i.e., they are displaced out of the chain chosen by LMD
GHOST. In [19] this reorg strategy is part of a bigger scheme to delay consensus.

We show how the attack of [19] can be modified such that the number of
adversary validators required is significantly reduced, from a set of size linear
in the total number of validators to a constant-size set – indeed for a one-block
reorg as little as one adversarial validator is sufficient. Note that similar to [19]
the adversarial strategy does not involve any slashable behavior1 and is therefore
relatively cheap. In Sect. 5, we further improve upon this refined reorg attack,
combining strategies from both this section and Sect. 4.

3.2 Refined Reorg Strategy

Consider Fig. 1, which shows the adversary being the proposer of slot n + 1 as
well as controlling a committee member in slot n+1. We describe the adversarial
strategy to perform a 1-reorg:

1. At the beginning of slot n + 1 the adversary privately creates block n + 1 on
block n and privately attests to it. Honest validators do not see block n + 1
and so they attest to the previous head of the chain, block n.

2. At the beginning of the next slot, an honest validator proposes block n + 2.
Assuming zero network latency for now, the adversary finally publishes the

1 Some provably protocol-violating validator actions are slashable in the sense that
the responsible validator’s deposit may get confiscated to deter from such behavior.

Three Attacks on Proof-of-Stake Ethereum 565

private block and attestation from slot n+1 at the same time as block n+2 is
released. Honest validators now see both block n+1 (and its one attestation)
as well as block n + 2. These blocks are conflicting because they share the
same parent, block n. Another result of sharing the same parent is that block
n + 1 inherits all the weight of block n, in particular the honest attestations
from slot n + 1 voting for block n also count in favor of it.

3. Hence, in slot n + 2 all honest validators vote for block n + 1 as head of the
chain, because it has more weight due to the single adversarial attestation
from slot n + 1.

4. Finally, at the beginning of slot n + 3, an honest validator proposes block
n + 3 pointing to block n + 1 as its parent. This effectively orphans block
n + 2 and brings the reorg attack to its conclusion.

The above strategy shows that a block proposer which controls a single
committee member of the same slot can successfully perform a 1-reorg. Nat-
urally, the logic of this strategy can be extended to reorg attacks of arbi-
trary length k. Let the number of honest validators in any given committee
be Whonest ≈ (1−β)W ≤ W . Then, for a successful reorg attack of length k > 1,
the proposing adversary needs to control Whonest(k − 1) + 1 validators, since it
offsets honest committee members’ votes in the first (k − 1) slots and uses the
above refined attack strategy in the last slot.

The refined reorg attacked described here improves on the strategy proposed
in [19] by removing the need for the adversary to compete with the committee
of slot n+k+1. While the improvement for long-range reorg attacks may not be
as significant, short reorg attacks are considerably more feasible using the above
refined strategy. In particular, 1-reorg attacks are effectively always possible for
large enough parties. With currently 230,000 active validators2 and 32 slots per
epoch, an adversary controlling 200 validators (which amounts to 0.09% of total
stake) has a 99.8% chance of being selected block proposer at least once per any
given day, and once selected as block proposer in a particular slot controls at
least one committee member validator in that slot with probability 99.8%. So
with more than 99.6% probability, an adversary with 0.09% of total stake is in
a position to execute a 1-reorg for any given day.

We will now relax the assumption of zero network latency. PoS Ethereum’s
fork choice rule only considers attestations that are at least one slot old [2] (so
votes from slot n + 2 do not count in the fork choice for slot n + 2). Further,
a committee member is supposed to attest if “(a) the validator has received a
valid block from the expected block proposer for the assigned slot or (b) one-
third of the slot has transpired [...] - whichever comes first”3 [4]. After block n+2
is broadcasted to the network, honest validators immediately attest to it upon
reception (unless by that time they see another chain as leading in fork choice).
Thus, the adversary must ensure that a majority of validators of slot n + 2 see
block n + 1 and the adversary’s attestation voting for block n + 1 (from slot

2 https://beaconcha.in/validators. Accessed: 2021-10-09.
3 Regarding attestation timing, PoS Ethereum practice slightly deviates from Gasper.

https://beaconcha.in/validators

566 C. Schwarz-Schilling et al.

n+1) before they see block n+2, but after block n+2 was proposed (to ensure
it extends block n). This proves to be a non-trivial but practically feasible issue.

Suppose the adversary controls a number of nodes at different ‘locations’
in the topology of the peer-to-peer gossip network [3] (these nodes might still
be physically collocated). This is possible without greater difficulty because the
gossip network has no defenses against such Sybil attacks. Then, some adversarial
node will likely receive the new proposal block n + 2 relatively early on in its
dissemination process. The adversary can then release the private block and
attestation in a coordinated fashion from all the different locations in the peer-
to-peer topology where the adversary controls nodes. Due to the superior number
of sources of the adversarial block and attestation it is likely that these arrive
earlier than the proposal block n + 2 at enough (a majority of) honest nodes to
ultimately orphan block n + 2.

4 A Refined Liveness Attack

4.1 Motivation

Earlier works [8,14–16,18] have described balancing-type attacks against vari-
ants of the GHOST fork choice rule used in PoS Ethereum as modelled in the
Gasper protocol [7]. In particular, the attack described in [16,18] uses adver-
sarial network delay to show that PoS Ethereum is not secure in traditional
(partially) synchronous networks. While adversarial network delay (up to some
delay bound) is a widely employed assumption in the consensus literature, there
is disagreement whether it is appropriate for Internet-scale open-participation
consensus. As a result, past attacks are often seen as impractical and have not
been mitigated: “Note that this attack does depend on networking assumptions
that are highly contrived in practice (the attacker having fine-grained control
over latencies of individual validators), [...]” [5]

We show how the attack of [16,18] can be modified and implemented [17]
so that an adversary controlling 15% of stake can stall PoS Ethereum with-
out requiring adversarial network delay. (For ever larger numbers of validators,
ever smaller fractions of adversarial stake suffice.) To this end, we show through
experiments that aggregate properties of many individually random message
propagation processes (e.g., ‘within time T this transmission is received by frac-
tion x of nodes’) in real-world Internet-scale peer-to-peer gossip networks [3,21]
are sufficiently predictable to give the adversary the required control over how
many validators see which adversarial messages when. None of the adversarial
actions are slashable protocol violations.

4.2 High-Level Idea

Recall that the balancing attack [16,18] consists of two steps: First, adversarial
block proposers initiate two competing chains – call them Left and Right. Then,

Three Attacks on Proof-of-Stake Ethereum 567

Fig. 2. Assuming a tie between two chains Left and Right, with tie-break favoring
Left. The adversary releases a sway vote for Right from a slot < i at time Tdelay before
the point in time at which honest validators vote in slot i according to the protocol.
The parameter Tdelay is chosen such that roughly half of honest validators (such as A)
receive the sway vote before they submit their vote (and hence vote Right, as Right
now has more votes in their view), and the other half of honest validators (such as
B) receive the sway vote after they submit their vote for (and hence vote Left, as the
tie-break still favors Left in their view).

a handful of adversarial votes per slot, released under carefully chosen circum-
stances, suffice to steer honest validators’ votes so as to keep the system in a tie
between the two chains and consequently stall consensus.

Assume, w.l.o.g., that when viewing Left and Right with equal number of
votes, the protocol’s tie-break favors Left over Right. If the adversary manages
to deliver a withheld adversarial vote for Right from an earlier slot to roughly
one half of honest validators for the current slot i, before validators submit their
votes for slot i, while the other half does not receive said vote before casting
their votes, then roughly half of honest validators (those who have received the
sway vote ‘in time’) see Right as leading and will vote for it in slot i, while the
other half (those who see the sway vote ‘late’ and hence at the time of voting
see a tie which they break in favor of Left) will vote for Left in slot i (see Fig. 2).

Idealizing the above as voting according to a coin flip for each validator,
roughly Whonest/2 of Whonest honest validators per slot would vote Left and
Right, respectively, with a gap of O(

√
Whonest) (cf. variance of a binomially dis-

tributed random variable). So, O(1/
√

Whonest) adversarial fraction of stake would
suffice to rebalance the vote to a tie and keep the system in limbo. In Sect. 4.4 we
provide evidence from real-world propagation delay measurements in a replica
of Ethereum 2’s gossip network [3] to support the hypothesis that the adversary
can indeed reliably determine the time Tdelay it takes for approximately half of
nodes to receive a message broadcast by the adversary.

568 C. Schwarz-Schilling et al.

4.3 Detailed Description

First we describe the attack for a given Tdelay, then we describe how to obtain
Tdelay. Our simulation4 using the gossip network propagation model obtained in
Sect. 4.4 provides further details.

First, the adversary waits for an opportune epoch to launch the attack. An
epoch is opportune if the block proposers in slot 0 and 1 are adversarial (this can
be strengthened). Due to the random committee selection in PoS Ethereum, this
happens with probability β2 for any given epoch, so that the adversary needs
to wait on average 1/β2 epochs until it can launch the attack. In the following,
assume epoch 0 is opportune. The adversarial proposers of slots 0 and 1 propose
conflicting new chains ‘Left’ and ‘Right’, respectively. Note that this is not a
slashable protocol violation. Both withhold their proposals so that none of slot
0 or 1 honest validators vote for either block. The adversary releases the blocks
after slot 1. We assume w.l.o.g. that the tie between Left and Right (recall that
no vote has been cast for either so far) is broken in favor of Left.

Time Tdelay before honest validators in slot 2 vote, the adversary releases a
vote for Right from an adversarial committee member of slot 1 (so called sway
vote, see Fig. 2). If Tdelay is tuned well to the network propagation behavior
at large, then roughly one half of honest committee members of slot 2 see the
sway vote before they cast their vote, and thus view Right as leading (due to
the sway vote) and will vote for it; and the other half see the sway vote only
after they cast their vote, and thus view Left as leading (due to the tie-break)
at the time of voting and will vote for it. Once the adversary has observed the
outcome of the vote, which now should be a split up to an O(

√
Whonest) gap, the

adversary uses its slot 2 committee members (which stipulates the adversarial
fraction O(1/

√
Whonest) required for this attack) as well as slot 0 and 1 committee

members to rebalance the vote to a tie. As the tie is restored, the adversary can
use the same strategy in the following slot, and so forth.

Note that the adversary can observe the outcome of a vote and learns how
many honest committee members saw Left and Right leading, respectively. The
adversary can use this information to improve its estimate of Tdelay. We show in
Sect. 4.4 that the optimal Tdelay can be reliably localized using grid search.

4.4 Experimental Evaluation

To understand whether the network propagation delay distribution is suf-
ficiently well-behaved for an adversary to reproducibly broadcast messages so
that they arrive at roughly half of nodes by a fixed deadline, we replicated the
gossip network of Ethereum 2 [3] and measured the network propagation delay
of test ‘ping’ packets from a designated sender to all nodes. The implementa-
tion in the Rust programming language used libp2p’s Gossipsub protocol and
implementation, as is used in Ethereum 2 [3].

The gossip network comprised 750 nodes, each on an AWS EC2 m6g.medium
instance (with 50 instances each in all 15 AWS regions that supported
4 Source code: https://github.com/tse-group/gasper-gossip-attack.

https://github.com/tse-group/gasper-gossip-attack

Three Attacks on Proof-of-Stake Ethereum 569

Fig. 3. Fraction of participants in the peer-to-peer gossip network who have received a
message broadcast by node 0 at time 0 by the given time (50 sample messages in gray,
mean over all samples in blue). Median (dashed red) at ≈ 100 ms.

m6g.medium as of 21-April-2021). Each node initiated a connection with ten ran-
domly chosen peers. The five nodes with lowest instance ID were designated as
senders and continuously broadcasted beacon messages with inter-transmission
times uniformly distributed between zero and five seconds over a period of 20
minutes, logging the time when each message was broadcast. All nodes logged
the time when a message was first received.

The network propagation delay was determined for each message and each
receiving node. The respective CDFs, i.e., what fraction of nodes have received
a given message by a certain delay, is plotted as an example for a sample of
messages from the first designated sender (node 0) in Fig. 3 (together with the
average CDF of all messages originating at node 0). (CDFs for the other four
designated senders are omitted for brevity here. They show similar behavior, just
slightly shifted in time.) It is apparent from the CDFs that depending on the
location of the node (nodes 0, 1, 2, 3, 4 happened to be located in us-east-2,
ap-northeast-1, us-east-1, ap-northeast-1, ap-northeast-2, respectively)
both geographically as well as within the peer-to-peer network topology, the
median of the average CDF varies, but considering messages originating at a
fixed sender, the fraction of validators reached by the median of the average
CDF is fairly concentrated around 1/2. This suggests that the adversary can
indeed determine Tdelay so that with little dispersion honest validators get split
in two halves.

We simulated the attack for β = 0.15,m = 128, using the network prop-
agation delay samples as a model for random network delay.5 Assigning the
simulated adversary to one of the five designated senders for all of the attack,
whenever the adversary broadcasts a sway vote, the propagation delays to the
honest committee members of the given slot are sampled (without replacement)
from the delays of one randomly drawn message of that designated sender.

5 Source code: https://github.com/tse-group/gasper-gossip-attack.

https://github.com/tse-group/gasper-gossip-attack

570 C. Schwarz-Schilling et al.

Fig. 4. Using the propagation delay measurements to model network propagation, we
simulated our attack for fixed β = 0.15, varying Tdelay, and five different positions of
the adversary in the network, and plot the resulting average duration of the liveness
interruption (cut off at 800 slots horizon). Observe that the peak for node 0 fits well to
the median observed in Fig. 3. The curves are smooth and allow for easy and reliable
localization of the optimal Tdelay.

To determine the optimal Tdelay, we performed grid search (with 5ms step
size) and for each Tdelay simulated ten attacks in opportune epochs and recorded
(see Fig. 4) how long the adversary was able to stall liveness (terminating at a
horizon of 800 slots corresponding to 160 minutes). It is apparent that for the
adversary in the position of each of the five designated senders of the measure-
ment experiment, different Tdelay are optimal. The optimal Tdelay correspond well
with the median of the average CDF (cf. Fig. 3). As the curves are smooth and
have a single distinct peak of width ≈ 5ms, the adversary can locate the optimal
Tdelay well. In particular, even with Tdelay approximating the optimal value only
up to 10ms, the adversary can stall liveness for dozens of slots. Recall that none
of the adversarial actions are slashable protocol violations, so the adversary can
refine Tdelay iteratively and launch this attack over and over.

5 Reorg Attack Using Probabilistic Network Delay

5.1 Motivation

In Sect. 3 we describe how an adversary might execute a 1-reorg with only a single
adversarial committee member’s vote. In Sect. 4 we show how an adversary can
stall consensus and thus delay finality without adversarial control over network
delay. By combining ideas from both attacks, we now describe an attack in which
the adversary can execute a long-range reorg with vanishingly small stake and
without control over network delay.

On a high level, the adversary avoids competing directly with honest val-
idators of (k − 1) committees, as done in the reorg attack described in Sect. 3.

Three Attacks on Proof-of-Stake Ethereum 571

Fig. 5. Example of a 2-reorg combining refined reorgs and balancing strategies: In slot
n + 1 the adversary privately creates block n + 1 on block n and withholds adversarial
votes on it. Honest validators of slot n + 1 attest to block n. In slot n + 2, an honest
proposer builds block n + 2 on block n. The adversary releases block n + 1 and one of
the withheld votes in such a way that roughly half of honest committee members vote
for blocks n+1 and n+2, respectively. If the adversary has tight control over network
delays, they can effect that block n + 2 has one more vote than block n + 1. Without
adversarial control of delays, a vanishing fraction of adversarial votes still suffices to
rebalance accordingly. In slot n + 3, the honest proposer views block n + 2 leading and
proposes block n + 3 off it. The adversary releases two votes voting for block n + 1 in
such a way that a majority of honest committee members vote for block n+1, breaking
the tie and completing the 2-reorg which orphaned blocks n+2 and n+3 in slot n+4.

Instead, the adversary uses the technique of Sect. 4 to keep honest committee
members split roughly in half by ensuring they have different views on what the
current head of the chain is. This way, honest nodes work against each other
and maintain a tie which the adversary can tip to their liking at any point using
only a few votes.

5.2 Refined Strategy Using Probabilistic Network Delay

Consider Fig. 5, in which the adversary is the proposer of slot n+1. We describe
the strategy where the adversary executes a 2-reorg and analyze how many
validators the adversary needs to control, depending on our assumption on the
adversary’s control over the network:

1. First, in slot n + 1 the adversary privately builds block n + 1 on top of the
current head of the chain, block n. Further, the adversary privately votes for
block n + 1 using an attestation from slot n + 1.

2. In the next slot, the proposer of block n + 2 builds on block n because they
have not seen block n + 1. Before honest validators in slot n + 2 attest, the
adversary releases block n + 1, along with the withheld attestation, in such
a way that roughly half of honest committee members of slot n + 2 attest
before they see the sway vote (and thus vote for block n + 2 as the current

572 C. Schwarz-Schilling et al.

head), and the other half sees block n + 1 as leading due to the attestation
from slot n + 1 and thus votes for block n + 1 as the current head.
If the adversary has control over the network delay, as assumed in [16,18],
then it can target the release of the withheld block and vote such that block
n + 2 accumulates exactly one more attestation than block n + 1. If network
delay is instead probabilistic, as in Sect. 4, then the adversary needs to spend
O(

√
Whonest) adversarial votes to rebalance the gap in votes.

In the case of a k-reorg, this step is repeated for the first (k − 1) slots.
3. Since slot n+3 is the last slot of the reorg attack, we use the insight of Sect. 3

that the adversary does not have to wait for honest votes to take place and
rebalance them, but instead can sway validators towards the adversarial chain
as soon as the honest proposal for this slot was created. So, in slot n + 3, the
current proposer views block n+2 as leading and thus builds block n+3 on it.
Finally, the adversary releases two withheld attestations such that a majority
of honest committee members of slot n+3 views them before attesting. Thus,
a majority of validators votes for block n+1 as head of the chain. Remember
that the fork choice rule only considers attestations at least one slot old.

4. Lastly, in slot n+4 the proposer views block n+1 as leading and thus builds
block n + 4 on block n + 1. This completes the 2-reorg and orphans blocks
n + 2 and n + 3.

For 1-reorg the adversary needs to control a single validator in the same
slot they propose their block. For reorg lengths k > 1, the number of adver-
sarial validators required depends on the level of control over network delays.
If delays are under adversarial control, then (2k − 1) adversarial validators suf-
fice for a k-reorg, an amount linear in the reorg length only, but independent
of the size of the validator set. If instead network delay is probabilistic rather
than under adversarial control, a vanishingly small fraction O(1/

√
Whonest) of

adversarial validators suffices to perform the necessary rebalancing to maintain
the tie throughout the first (k − 1) slots of the k-reorg, leading to an overall
requirement of O(k

√
Whonest) adversarial votes. Thus, large stakers can easily

execute long-range reorg attacks. To illustrate the severe reduction of attacking
conditions, consider the following: Under adversarial network delay, an adversary
can perform a 10-reorg by merely controlling 19 validators.

6 Discussion

6.1 Ex Ante vs Ex Post Reorgs

Typically reorgs refer to an attack in which the adversary observes a block that
they subsequently attempt to fork out. We call this an ex post reorg attack. The
reorg attacks we describe are different in nature. Here, the adversary attempts
to fork out a future block that is unknown to the adversary at the start of the
attack. We call this an ex ante reorg attack.

Three Attacks on Proof-of-Stake Ethereum 573

In an ex post reorg attack, the adversary typically targets a block with abnor-
mally large rewards that the adversary seeks to capture for themselves. In the
context of Bitcoin it could be a block that contains transactions paying extraor-
dinary amounts of fees, also referred to as ‘whale transactions’ [12]. In the con-
text of Ethereum it could be blocks containing large MEV opportunities. Upon
observing a lucrative block, the adversary attempts to capture it retrospectively.
In PoS Ethereum this proves to be exceptionally difficult for non-majority actors
due to the fact that the block the adversary wishes to orphan quickly accrues
attestations from committee members in parallel. Each attestation adds weight
to the block in question, which in turn is considered by the fork-choice rule LMD
GHOST to determine the head of the chain. In short, no technique is known for
non-majority adversaries to perform ex post reorg attacks reliably.

In contrast, ex ante reorg attacks are currently very much possible in PoS
Ethereum, as this paper shows. The adversary overcomes the ‘power of many
parallel attestations’ by exploiting LMD GHOST as described in Sects. 3 and 5.
Intuitively, this is enabled by tricking honest validators into contrary views of
the chain such that a handful of adversary validators are sufficient to tip the
chain to their favor and thus successfully perform reorgs of sizable length. As a
consequence of the different nature of the attack, the adversary’s motivations to
attack are different. In an ex ante reorg the adversary cannot observe valuable
blocks and orphan them ex post, but must find other strategies to extract more
value from it than it could from making an honest proposal, one of which is
discussed in Sect. 6.2.

6.2 Reaping Higher Fees and MEV via the Attack

Maximal Extractable Value (MEV, formerly Miner Extractable Value [10]) rep-
resents a third source of profits for block producers, along with the proposer and
attester rewards as well as transaction fees. MEV in PoS Ethereum captures
the block proposer’s action space to extract value by strategically including and
ordering transactions in a given block. Common MEV opportunities include
arbitraging a trade, frontrunning it to earn greater profits, or tailing liquidation
events to buy the collateralized assets backing the defaulting position.

MEV opportunities grow with an increasing amount of pending transactions
since more possible transaction order combinations exist. At the same time, the
adversary is able to choose from a larger set of pending transactions those earn-
ing them the highest fees. More time between blocks then implies weakly more
extractable MEV and transaction fees, which in turn implies more profits for the
block proposer. The reorg attacks described in this paper can be interpreted as
buying the adversary more time to construct their block.

With k-reorgs, it is possible for the malicious proposer to extend their listen-
ing period to up to 12k s (refined reorg strategy from Sect. 3), the 12 s elapsed
between the previous block produced and their own slot, as well as 12(k − 1)
more seconds until the next honest block is included in the canonical chain. (The
2Δ duration introduced in Sect. 2.2 is set to 12 s in the PoS Ethereum imple-
mentation.) With k-reorgs in less idealized scenarios, as described in Sect. 5, the

574 C. Schwarz-Schilling et al.

adversary only gains an additional 12 s of listening time (24 s in total). This is
due to the fact that in the refined strategy using probabilistic network delay the
adversary always releases the private block early (irrespective of reorg length k)
to split honest committees roughly in half.

Further, the adversary may listen to honest blocks they wish to orpahn,
and capture their MEV should they find better opportunities than the adver-
sary themselves. Interestingly, the adversary may also simply release their block
late, without attempting a reorg, to increase their listening time and ultimately
rewards.

6.3 Reorgs Cause Attestation Overflow

While reorg attacks weakly benefit those who launch them, consensus degrada-
tion may be obtained as an unintended side-effect of the reorg.

Validators in a slot committee are distributed among a number of subcom-
mittees. With a target subcommittee size of 128 and currently 230,000 active
validators, ≈ 57 subcommittees are formed per slot. In the current implemen-
tation of PoS Ethereum, all identical votes from the same subcommittee may
be aggregated into one ‘summary’ vote, lightening the block size. A block may
include up to 128 such aggregates. Ideally, with all validators voting correctly and
on time, the next block need only feature 57 aggregates, one per subcommittee.
In practice, we observe such a number of large aggregates (summarizing many
votes) in the block, with most validators voting identically, along with some
aggregates summarizing other votes from validators who may have suffered from
latency issues and voted identically, albeit wrongly. Suboptimal packing of the
aggregates or adversarial voting behavior may also contribute to filling up the
available slots for aggregates in the block. In the case of a reorg, deconfirmed
aggregates return into the mempool and need to be included in future blocks.
Even for short-range reorgs this can lead to congestion in the sense that many
more aggregates wait to be included than there is space available in blocks.

Votes state their view of the current target of the FFG mechanism. A target
vote is valid only if it is included in a block no later than 32 slots after the
attesting slot. By reorging blocks, an attacker strains the capacity of the chain to
include these valid votes. In the worst case, finalization is fully delayed whenever
more than 1/3 − β of valid honest votes do not manage to be included.

6.4 Delaying Finality

Our attacks also enable a priori malign actors, perhaps ideologically motivated,
to delay and in some cases outright stall consensus decisions. The refined attack
of Sect. 4.2 gives the adversary a tool to do just that, even if the adversary
cannot control message propagation delays (which instead are assumed to be
probabilistic). Furthermore, in the regime of many validators, a vanishing frac-
tion of adversarial stake suffices to mount the attack.

The attack of Sect. 5 enables long-range reorgs of the chain constituting con-
sensus. The consequences are two-fold. Readily, transaction confirmation in the

Three Attacks on Proof-of-Stake Ethereum 575

LMD GHOST part of the protocol gets delayed. Transactions might enter/leave
the LMD GHOST chain multiple times before eventually settling. This causes
uncertainty and delay for users who consider a transaction confirmed once it has
stabilized in the LMD GHOST chain. Furthermore, the adversary can use reorgs,
as proposed in [19], to destabilize epoch boundary blocks. No epoch boundary
block might then get the necessary number of FFG votes to become justified,
which delays finality by at least an epoch and thus creates delay for users who
rely on the finalized ledger.

Acknowledgment. JN, ENT and DT are supported by a gift from the Ethereum
Foundation. JN is supported by the Reed-Hodgson Stanford Graduate Fellowship. ENT
is supported by the Stanford Center for Blockchain Research.

References

1. Ethereum 2.0 phase 0 - the beacon chain. http://github.com/ethereum/eth2.0-
specs/blob/dev/specs/phase0/beacon-chain.md

2. Ethereum 2.0 phase 0 - beacon chain fork choice (2020). http://github.com/
ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md

3. Ethereum 2.0 networking specification (2021). http://github.com/ethereum/eth2.
0-specs/blob/dev/specs/phase0/p2p-interface.md’

4. Ethereum 2.0 phase 0 - honest validator (2021). http://github.com/ethereum/eth2.
0-specs/blob/dev/specs/phase0/validator.md’

5. Buterin, V.: Proposal for mitigation against balancing attacks to LMD GHOST
(2020). https://notes.ethereum.org/@vbuterin/lmd ghost mitigation

6. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv:1710.09437
[cs.CR] (2019)

7. Buterin, V., et al.: Combining GHOST and Casperar arXiv:2003.03052 [cs.CR]
(2020)

8. Buterin, V., Stewart, A.: Beacon chain Casper mini-spec (comments #17, #19)
(2018). http://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17

9. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of Bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167 (2016)

10. Daian, P., et al.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020)

11. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

12. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

14. Nakamura, R.: Analysis of bouncing attack on FFG (2019). http://ethresear.ch/
t/analysis-of-bouncing-attack-on-ffg/6113

15. Nakamura, R.: Prevention of bouncing attack on FFG (2019). http://ethresear.ch/
t/prevention-of-bouncing-attack-on-ffg/6114

http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md'
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md'
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/validator.md'
http://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/validator.md'
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/2003.03052
http://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17
https://doi.org/10.1007/978-3-319-70278-0_17
http://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
http://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
http://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
http://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114

576 C. Schwarz-Schilling et al.

16. Neu, J., Tas, E.N., Tse, D.: A balancing attack on Gasper, the current candidate for
Eth2’s beacon chain (2020). http://ethresear.ch/t/a-balancing-attack-on-gasper-
the-current-candidate-for-eth2s-beacon-chain/8079

17. Neu, J., Tas, E.N., Tse, D.: Attacking Gasper without adversarial network delay
(2021). http://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay
/10187

18. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: a resolution of the availability-
finality dilemma. In: IEEE Symposium on Security and Privacy, pp. 446–465. IEEE
(2021)

19. Neuder, M., Moroz, D.J., Rao, R., Parkes, D.C.: Low-cost attacks on Ethereum
2.0 by sub-1/3 stakeholders. arXiv:2102.02247 [cs.CR] (2021)

20. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

21. Vyzovitis, D., Napora, Y., McCormick, D., Dias, D., Psaras, Y.: GossipSub:
attack-resilient message propagation in the Filecoin and ETH2.0 networks.
arXiv:2007.02754 [cs.NI] (2020)

22. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Symposium on Principles of Dis-
tributed Computing, PODC 2019, pp. 347–356. ACM (2019)

http://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
http://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
http://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
http://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
http://arxiv.org/abs/2102.02247
https://doi.org/10.1007/978-3-662-47854-7_32
http://arxiv.org/abs/2007.02754

Permissionless Consensus in the Resource
Model

Benjamin Terner(B)

UC Irvine, Irvine, USA

bterner@uci.edu

Abstract. This paper introduces a new model that abstracts resource-
restricted distributed computation and permits simpler reasoning about
consensus protocols in the resource-restricted regime. Our model intro-
duces a simple abstraction – simply called “resources” – to capture a
resource-restricted primitive which is general enough to capture most
Proof of X such as Proof of Work and Proof of Stake. The supply of such
resources is scarce, and a single resource allows a party to send a single mes-
sage with elevated protocol status. For example, every puzzle solution in
Proof of Work or Proof of Stake is a resource; the message associated with
each resource is the payload of the puzzle. We show the power of resources
for the problem of consensus, in which participants attempt to agree on a
function of their inputs. We prove that given few additional assumptions,
resources are sufficient to achieve consensus in the permissionless regime,
even in the presence of a full-information adversary that can choose which
parties get resources and when they get them. In the resource model, the
participants do not need to know a bound on network delay, they do not
need clocks, and they can join and leave the execution arbitrarily, even
after sending only a single message. We require only a known upperbound
on the rate at which resources enter the system, relative to the maximum
network delay (without needing to know the network delay), and that over
the long term, a majority of resources are acquired by honest participants.
Our protocol for consensus follows from a protocol for graph consensus,
which we define as a generalization of blockchains. Our graph consensus
works even when resources enter the system at high rates, but the required
honest majority increases with the rate. We show how to modify the pro-
tocol slightly to achieve one-bit consensus. We also show that for every
graph consensus protocol that outputs a majority of honest vertices there
exists a one-bit consensus protocol.

Keywords: Consensus · Blockchain · Permissionless · Full information
model

1 Introduction

The distributed system problem of consensus, in which participants in the pro-
tocol communicate over a network in an attempt to agree on a single bit or
an append-only log based on their inputs, has been studied for decades since
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 577–593, 2022.
https://doi.org/10.1007/978-3-031-18283-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_29&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_29

578 B. Terner

the seminal works of [18,24]. The advent of Bitcoin [21] ushered in renewed
interest in consensus protocols by introducing the permissionless regime. The
permissionless regime models internet-scale protocols in which participation is
dynamic, meaning participants can join and leave an execution arbitrarily, the
number of active participants may be in constant flux, the identities of the par-
ticipants at any point in time are unknowable, and the adversary may control
arbitrarily many parties.

Consensus protocols for the permissionless regime have proliferated since
Bitcoin [5,13] as new approaches have focused on the resource-restricted model.
The resource-restricted model changes the basis of security from the proportion
of honest participants in a system to the physical resources that they control.
In Eurocrypt 2020, Garay et al. [12] formalized a randomized resource-restricted
model and showed that by restricting the ability of parties to send messages, it
is possible to bypass known bounds for both Byzantine Agreement and MPC.
Bitcoin famously requires participants to solve Proof of Work to participate
[2,10,21]. In response to Proof of Work’s wasteful computation, many Proof of
X (PoX) variants have been proposed (see [5]), the most popular being Proof of
Stake [3,8,16] (PoS).

Resources: A Unifying Abstraction for a New Model. To better under-
stand the permissionless regime and the power of PoX, we ask:

Is there a unifying abstraction for PoX that implies consensus in the
permissionless regime? If so, under what assumptions does it imply consensus?

In this work, we model a unifying abstraction of PoX which we simply call
resources. We use resources to cast permissionless protocols into a new model in
which a subset of messages are given special elite status, and the supply of these
messages are constrained. We model the “competition process” for resources
implicitly (and more generally) by deferring it to the environment. This allows
us to decouple the resource-producing process (usually, but not limited to, min-
ing) from the resource-consuming process (in our case, a graph protocol). We
then isolate a few properties of resources, and show that any arbitrarily bad
resource-producing process (implemented by the environment, or forwarded to
our protocol by the environment) allows us to achieve consensus, as long as
resources satisfy the properties we present. We show that it is possible to achieve
consensus if (a) a majority of resources are received by honest parties over the
long term, and (b) an upper bound on the rate at which resources enter the
system is known.

Our novel protocol requires weaker synchronization assumptions than current
practice; this shows that we may weaken the assumptions required for consensus
by building PoX from weaker synchronization assumptions. To date, all other
works we know for the permissionless model require either knowledge of the
network delay [7,8,11] or (weakly synchronized) clocks [3,4,9,16], plus some
assumption about the number of active participants. In our model, parties have
no way to synchronize, they may join and leave an execution arbitrarily, and
there is no bound on the number of parties in an execution.

Permissionless Consensus in the Resource Model 579

Specifically, we make the following contributions:

1. We provide a simple abstraction of PoX called resources with very few prop-
erties. A resource is a black-box generalization of a puzzle solution, which
holds a string chosen by the party that “discovers” the resource.

2. We show that our abstraction implies consensus while requiring weaker
assumptions and facing a stronger adversary than existing constructions.

3. We argue that the uses of PoX for consensus (that we know of) implement
our abstraction, and that our model generalizes current designs.

Generalizing Resource Generation. Resources can be implemented in many ways
that are not limited to cryptographic puzzles; any process that achieves the prop-
erties we describe can be used to achieve consensus. As a thought experiment,
we consider that before a protocol execution, some setup may select specific
parties to be designated as “leaders” at specific points in the execution. (For
example, an execution could be divided into epochs, and during each epoch a
small set of leaders may be chosen.) During the execution, those parties are
informed that they are leaders and permitted to send a single message to all
other parties, along with a certificate that they have been selected as a leader at
that moment. (Looking ahead, we will show that this leader selection can even
be determined adaptively by the adversary.) We defer a discussion of generalized
resource generation to the full version [25].

1.1 Overview of Our Model

The Permissionless Regime. We give a short overview of our model here,
and a full syntactic framework in the full version [25]. An execution proceeds
in rounds and is directed by the environment, which serves as the adversary.
Participation is dynamic (meaning parties can join and leave the execution arbi-
trarily), and completely controlled by the adversary; in every round, the adver-
sary controls which parties send and receive messages, and which are completely
inactive. Parties that send or receive messages in a round are considered active
in that round. The maximum network delay Δ is unknown and participants do
not have clocks. The number of participants is unknown to the parties and may
be unbounded. Moreover, the adversary has full information about the states of
all honest parties; it can corrupt parties adaptively; and it chooses which parties
receive resources and when they receive them. (Note that in the full information
model, we do not have digital signatures; this work shows that given resources, we
do not additionally need signatures to imply consensus.) Communication occurs
over peer-to-peer channels or via multicast. Honest parties cannot tell whether a
message was sent over a peer-to-peer link or over multicast (this allows corrupt
parties to selectively send messages to some parties but not to others).

Any protocol that is secure in our model must achieve consensus even when
every honest participant sends at most one message before it leaves the execu-
tion, and even when every honest participant is only active for a (very) short
period of time from the moment it joins to the moment it leaves. (In the extreme,
just long enough to receive the state of the system and send a single message.)

580 B. Terner

The Properties of Resources. Recall that in our model, the environment
both directs the execution and abstracts the resource-producing process. There-
fore, rather than requiring participants to solve a PoX puzzle, we say that partic-
ipants are allocated resources from the environment, and our protocols show how
participants use the resources they receive. We express properties of resources
that mimic PoX via a syntactic model, in which the properties of resources are
expressed as constraints on an execution transcript. The full model is in the full
version [25]; we overview the syntactic model and properties here.

We model resources as a set of symbols Ψ, and require that a protocol specify
how parties respond when they receive resources. When a resource ψ ∈ Ψ is
allocated by the environment to a party p, a special event called a resource
allocation is recorded in the transcript, which states that p receives ψ. The
following rules govern how these symbols may appear in the transcript.

1. Unforgeability. No participant can “fake” the fact that it has a resource. In
practice, PoX schemes enforce this requirement by requiring that PoX solu-
tions must be found by solving some puzzle, and the solutions are verifiable by
other participants. Formally, a transcript satisfies resource unforgeability if no
resource appears in the transcript before its allocation event. This enforces
that parties are constrained to obtaining resources only by receiving them
from the environment, which abstracts the resource-producing process.

2. Binding. Each resource can be bound with one and only one string, which
gives the resource semantics. The string must be chosen at the moment that
the resource is generated. This models that in PoX schemes, parties attempt
to solve puzzles with respect to a specific message they wish to send. (In some
implementations, this message includes a public key that boostraps special
status to future messages signed with that key.) Formally, a string m bound
to a resource ψ is encoded as ψ||m||ψ1, where || denotes concatenation. A
transcript satisfies resource binding if for any two encodings ψ||m||ψ and
ψ′||m′||ψ′: ψ = ψ′ implies m = m′.

Constraining the Supply of Resources. We model constraints on resources
which mimic the assumptions common to PoX mechanisms:

1. Long Term Honest Majority. Over any period of time in which n resources
are allocated, we require that αn− ε are allocated to honest participants and
at most βn + ε are allocated to corrupt participants, where β = 1 − α.
When α > β, we say that honest participants receive a long term majority
of resources. ε represents a short-term corrupt advantage, which models an
adversary which pools its physical resources in order to achieve a short “burst”
of resources.

2. Rate Limit. We let ρ upperbound the number of resources that may be
generated per Δ time, where Δ is the (unknown) maximum network delay.

1 This is a standard encoding technique. By encompassing the message with its
resource, it is clear where the string bound to the resource begins and ends.

Permissionless Consensus in the Resource Model 581

In the full version [25], we give a full treatment explaining how Proof of Work
and Proof of Stake implement resources, including what constitutes a resource
for each scheme. We stress that in most designs, every solution of a crypto-
graphic puzzle is a resource. We additionally explain how the model captures
other cryptographic and non-cryptographic PoX.

1.2 Main Results

One-Bit Consensus. Our main result is that resources imply consensus in our
new model. In the consensus problem, all parties have an input b ∈ {0, 1}, and
they must output some value v ∈ {0, 1} subject to the following constraints.
By agreement, all parties must output the same bit. By nontriviality, if every
honest party has the same input, then they must output that bit. By termina-
tion, the protocol must terminate after a finite number of resources have been
allocated. We show that resources imply consensus assuming only knowledge of
ρ, which upperbounds the rate at which resources are allocated relative to the
(unknown) maximum network delay, and that honest parties receive a (large
enough) majority of resources in the long term.

Theorem 1 (Informal). Let c = O(ρ + ε). For all α > ρc(1 − α), there exists
a one-bit consensus protocol in the permissionless regime with resources.

Graph Consensus. We build one-bit consensus from resources using a technique
reminiscent of so-called blockchains. We define a problem called graph consensus
in which honest participants maintain local graphs and propose vertices to be
included in each other’s graphs. The security goals of a graph consensus protocol
are generalizations of those proposed by [6,14,22]. A graph consensus protocol
should achieve two properties. Consistency requires that for any two graphs
output by honest participants, one participant’s output must be a subgraph of
the other. Liveness requires that honest participants may not trivially output
empty graphs, but that their outputs grow over time.

Theorem 2 (Informal). Let c = O(ρ + ε). For all α > ρc(1 − α), there exists
a graph consensus protocol in the permissionless regime with resources.

Notably, we show that it is possible to achieve graph consensus when ρ > 1,
i.e. more than 1 resource may allocated per Δ time. However, interestingly, our
protocol requires that α grow with O(ρ2(1 − α)) in order to maintain security.

Necessity of Assumptions. For completeness, we additionally show the necessity
of our assumptions. The proof of the following theorem follows from standard
techniques, and the discussion is deferred to the full version [25].

Theorem 3 (Informal). There is no consensus protocol in the permissionless
model that does not require both a long-term majority of resources and a con-
straint on the network delay.

582 B. Terner

The Parameter Regime. The parameter regimes for which our protocols are
secure are not competitive with existing designs. For example, the protocols
are secure for α = 0.865, ε = 1, ρ = 1, or α = 0.954, ε = 2, ρ = 2, but these
are not comparable to the best parameters for protocols which make stronger
assumptions. Nevertheless, we provide feasibility results in the presence of a
very strong adversary. Our regime is overly restrictive, as we comment below
that no longest-chain protocol can be proven secure for nontrivial rates (ρ > 1).
However, the fact that consensus is achievable even in such a difficult regime is
a stronger statement to the power of resources.

1.3 Technical Overview

Our technique to build consensus builds directly on our graph consensus proto-
col. We show that given a long-term majority of resources and a bound on the
rate, honest participants can use the properties of resources to build a directed
acyclic graph (DAG) which captures the (partial) ordering in which they receive
their resources. Importantly, every vertex in the global DAG is associated with a
resource (much like every vertex in a blockchain is associated with a PoX). The
unforgeability and binding properties of resources enforce that corrupt partic-
ipants cannot manipulate the graph structure. The honest participants embed
structure into the graph that can be used to infer when corrupt parties attempt
to cheat by “withholding” their resources, i.e. not immediately multicasting a
vertex they have added to the graph.

In our graph protocol, we use the long term honest advantage in resources
similarly to many longest-chain blockchains. We define the depth of a vertex in
a DAG to be the length of the longest path from the root to that vertex (where
the DAG grows from a root with no indegree to the leaves with no outdegree).
We then require that the honest participants can build deeper branches on the
DAG than the corrupt participants.

The structure that honest participants build into the global DAG is reacha-
bility. Every honest vertex which is added to the global DAG is guaranteed to
gain an honest successor, and to always be a predecessor of one of the deep-
est vertices in the global DAG. However, corrupt vertices are not guaranteed
to become predecessors of any honest vertices. If honest participants can build
longer paths in the global DAG over time than corrupt participants, then if cor-
rupt participants withhold their vertices for too long, their withheld branches
will eventually fall behind the depth of the global DAG. Honest participants
extract their outputs by selecting vertices in their local views of the global DAG
which are predecessors of the deepest vertices in their views, excising all corrupt
vertices on branches which have fallen short. Our technical challenge is to com-
pute how long it takes – measured in depth – for a withheld branch to fall short
of the honest parties’ branch.

One-bit consensus follows from any graph consensus protocol which guaran-
tees that for any sufficiently large output graph, a majority of the vertices must
be associated with resources allocated to honest participants.

Permissionless Consensus in the Resource Model 583

Why Chain Protocols Fail: Pathological Chain Structures. In our model,
no longest-chain or heaviest-chain protocol can be proven secure at non-trivial
resource rates (ρ > 1). Consider an execution of a chain protocol in which a fork
develops at the root and is never resolved. Because in our model, when ρ > 1
the adversary can always allocate multiple resources concurrently, forks in chain
protocols can be perpetuated indefinitely. Therefore, although a party’s local
graph grows as a function of the number of resources that have been allocated,
consistency requires that no party can ever output either branch of the fork. In
this case, liveness fails because no party ever outputs any vertices. Note that this
may happen even if the corrupt participants receive no resources. In comparison,
in a random model, the random distribution of resource arrivals implies that forks
will be resolved eventually, which allows participants to eventually output one
branch. The perpetual fork attack is also discussed in [17].

1.4 Related Work

Comprehensive overviews of the blockchain literature can be found in the system-
izations of knowledge by [5,13], and [26] (who introduced the term PoX). Here we
describe only works we know about that address the properties of resource-like
objects; in the full version [25] we give extended related work on the permission-
less model and consensus protocols.

Generalizing Resource-Constrained Results. This work generalizes the findings
of other works, surprisingly showing that impossibility results that depend on
strong assumptions need not hold if another system parameter can be bounded.
The work of Lewis-Pye and Roughgarden [19], which originally appeared online
after this work but has related themes, proves a CAP-style theorem that a pro-
tocol cannot be secure in the partially synchronous setting when the size of the
resource pool is unknown. Similarly, Pass and Shi [7,23] prove that for protocols
which require mining, if the maximum network delay is unknown then the num-
ber of participants must be known within a factor of 2, even when participants
are synchronous and have clocks. Intuitively, the number of participants are
proxy for the mining rate; in the attack, the adversary splits the execution into
two groups, and delivers messages within each group quickly but between groups
slowly. These works implicitly assume that the mining rate cannot be bounded
without the assumptions in their models. Our work show that an upperbound
on the rate of resources relative to the network delay (in the above cases, puz-
zle solutions) is a sufficient network assumption; if this can be approximated
without granular knowledge of the above required system parameters, consensus
is still possible. Therefore, we show that is possible to achieve consensus in an
expanded set of environments where the resource rate can be upperbounded.
(For discussions on deferring resource generation to the environment, and on
why a known upper bound on the rate is a weaker assumption than previously
studied, refer to the full version [25]).

584 B. Terner

Properties of PoX. As far as we know, no other works present the common
qualities of PoX via a single abstraction. However, Miller et al. [20] model Proof
of Work as scratch-off-puzzles, showing a number of desirable properties for
Proof of Work objects. Alwen and Tackman [1] model desirable properties for
moderately hard puzzles. Garay et al. [15] model the sufficient properties of PoW
to yield consensus. Garay et al. [12] further abstract the properties of PoW to a
randomized resource-restricted model.

1.5 Paper Organization

In Sect. 2 we define graph consensus in our model. In Sect. 3 we present our main
protocol, our main theorem, and an overview of the proof. In the full version
[25], we include the following discussions: We discuss how several popular forms
of PoX implement resources. We discuss our modeling choices and frame our
results with respect to other models; we include discussions of whether it is
reasonable to know the resource rate, and why knowing an upper bound on
the rate is weaker than knowing the network delay. We provide our full formal
model based on a syntactic framework for resources. We prove security of our
graph consensus protocol. We define one-bit consensus in our model, provide
a protocol that achieves it, and provide a generic transformation from graph
consensus to one-bit consensus. We prove that honest majority and some bound
on the network are necessary for consensus in the permissionless regime.

2 Graph Consensus Problem

2.1 Preliminaries for Graphs

A graph G = (V,E) is a set of vertices and a set of edges between vertices. For
a graph G, we denote the set of its vertices as G.V and its edges as G.E. In this
work we consider only directed acyclic graphs (DAGs); we therefore use term
graph to refer to a DAG. A root vertex in a graph is a vertex with in-degree 0.
In this work, every graph which we consider has exactly one root vertex, which
in cryptocurrencies is also called a genesis vertex.

We define depth of a vertex and depth of a graph in a non-standard way:

Definition 1 (Depth of a Vertex, Depth of a Graph). Let root be the root
vertex of a graph G. The depth of a vertex v in G is defined as the length of the
longest path from root to v. The depth of G is defined as the depth of its deepest
vertex.

We use D(G) to denote the depth of a graph G, and use DG(v) to denote the
depth of a vertex v in G. When the graph is implied from context, we simply
write D(v). The depth of a root vertex is always 0. We use G

∣
∣
d

to denote the
subgraph of G including only vertices with depth ≤ d. Figure 1 illustrates the
depths of vertices in a simple graph. We denote a path from vertices v to u as
v → u. A path v → u spans d depth if D(u) − D(v) = d. We say u ∈ G.V is

Permissionless Consensus in the Resource Model 585

0 1

1

2 3

Fig. 1. An example graph in which each vertex is labeled with its depth. The root
vertex has depth 0 by definition, and every other vertex’s depth is defined by the
longest path from the root to the vertex.

reachable from v ∈ G.V if there is a path v → u. For a vertex v ∈ G.V , the
predecessor graph of v is the subgraph of G containing v and every vertex and
edge on every path from root to v. We use ∪ to denote graph union and ⊆ to
denote a subgraph. We let indegree(v) denote the indegree of a vertex v and
outdegree(v) denote its outdegree. (In the full version [25], a vertex may have a
“payload” string that gives semantics to the vertex.)

2.2 Graph Consensus Protocol

In an execution of a graph consensus protocol, participants have no input. Each
participant p maintains a local graph Gp based on the messages it has received
so far and the protocol specification. A graph consensus protocol specifies how
participants generate new vertices, and how to propose that other participants
include the new vertices in their local graphs. It also specifies how a participant
determines whether a new vertex, which it receives in a proposal from another
participant, should be included in its local graph. For a participant p active
at time t, we denote by G

(t)
p its local graph after all vertices are added at t.

Each participant p additionally maintains an output graph G∗
p, which it outputs

whenever it is active. The protocol must specify a deterministic way for each
p to compute G∗

p as a function of its local graph Gp. We denote by G
∗(t)
p the

output of p at time t.
An execution of graph consensus may continue indefinitely. The goal of a

protocol is for the participants’ outputs to obey consistency and liveness prop-
erties across time. Graph consistency requires that if participants p active at t

and q active at t′, output G
∗(t)
p and G

∗(t′)
q , then one output graph must be a

subgraph of the other.

Definition 2 (Graph Consistency). An execution satisfies graph consis-
tency if for all times t and t′, and for all honest p and q active at t and t′,
respectively: G

∗(t)
p �⊆ G

∗(t′)
q =⇒ G

∗(t′)
q ⊆ G

∗(t)
p .

A protocol can trivially satisfy graph consistency if participants always out-
put the empty graph. We therefore define liveness to require that each participant
p’s output G∗

p grows as a function of the number of resources which have been
allocated up to some point in time, as follows:

Definition 3 (f-Liveness). Let f : N → N. An execution satisfies f -liveness
if for every time t and honest participant p active at t: if the environment has
allocated N resources by time t, then |G∗(t)

p .V | ≥ f(N).

586 B. Terner

When f = 0, liveness is trivial because parties may always output the empty
graph. When f is nontrivial we require a nontrivial protocol. Our protocols sat-
isfy liveness for nontrivial f . We remark that unlike other definitions of liveness,
ours does not require that a party’s output graph grow as a function of time.
Rather, we require that a party’s output grow as a function of the number of
resources allocated by the environment. Looking ahead, consider that a protocol
which depends on resources should not need to make progress if there are no
resources allocated. In our model, the fact that resources are produced depends
on the environment, and we do not assume a lowerbound on the resource rate;
however, only when the environment delivers sufficiently many resources are our
protocols required to produce output.

In some applications, it is desirable to show that some proportion of the ver-
tices in an honest participant’s output must be generated by honest participants.
If a vertex is generated by an honest participant, we call it an honest vertex;
otherwise, we call it a corrupt vertex. We let hon(G.V) denote the honest vertices
in G. We define h-honest-vertex liveness to quantify the guaranteed proportion
of honest vertices in a participant’s output graph.

Definition 4 (h-Honest-Vertex Liveness). Let h : N → N. An execution sat-
isfies h-honest-vertex liveness if for every time t and honest participant p active
at t: |hon(G∗(t)

p .V)| ≥ h(|G(t)
p .V |).

In the rest of the paper, we refer to f -liveness and h-honest-vertex liveness
together by f, h-liveness to say that a protocol satisfies both f -liveness and h-
honest-vertex liveness.

3 Main Protocol

3.1 Protocol Description

Protocol ΠG, presented in Fig. 2, is a graph consensus protocol. It is parame-
terized by α and ε, which describe the proportion of honest resources which are
allocated, and the maximum rate of resource allocation ρ.

Each participant p maintains a local DAG Gp in which every vertex except
the root is a resource. The graph Gp is initialized to ({root}, ∅), and grows
from the root toward high depths throughout the execution as participants are
allocated resources and receive messages. Whenever p is allocated a resource, it
adds the resource to its graph as a new vertex, and then immediately multicasts
its local graph including the new vertex to all honest participants. When an
honest participant receives a message containing a graph, it updates its local
graph to include new vertices and edges not previously in its local graph. We
must show how a participant p chooses the predecessors of each vertex that it
adds to its graph, and p computes its output G∗

p from its local graph Gp.
We describe resources as vertices as follows. When any participant is allocated

resource ψ, we let vψ denote the vertex corresponding to ψ. When describing an
arbitrary vertex, we denote it as v or u, eliding its respective resource.

Permissionless Consensus in the Resource Model 587

When any honest participant p adds a new vertex to its graph, it adds the
vertex to its graph as the new deepest vertex. Specifically, when p is allocated a
resource ψ and adds vertex vψ to its local graph Gp, p adds an inbound edge to
vψ from every vertex u in Gp which (a) has no outbound edges in Gp, and (b)
is close in depth to Gp. When p is allocated ψ, it must also choose vψ’s edges
immediately, as p must bind the inbound edges of vψ to ψ. Because each vertex’s
inbound edges are bound to the vertex’s respective resource, it may not gain
additional predecessors.

Over time, some vertices will gain successors and some vertices may be
“orphaned” and stop gaining successors. Each participant computes its output
G∗

p as a subgraph of its Gp consisting of vertices which are both far from the
end of its graph (measured in the difference in depth between the vertex and the
graph) and are still gaining successors.

Encoding a Graph Using Resources. We model a resource as a black box
object which is bound to a string that conveys its semantics at the moment
it is allocated. In ΠG, the string bound to each resources encodes the direct
predecessors of its respective vertex; when a participant is allocated a resource
ψ, it binds to ψ the encoding of each vertex which has an outbound edge to vψ.
If no edges are bound to ψ, then vψ is defined to have an edge from root. In this
way, each vertex is uniquely committed to its predecessors at the moment it is
allocated. A participant multicasts its local graph by sending all of the bound
resources which encode the vertices and edges in its local graph.

Event Responses. We now detail how participants respond when they are
allocated resources and when they receive messages, and we explain how partic-
ipants compute their outputs from their local graphs.

On Resource Allocation. When an honest participant p is allocated a resource ψ,
we say that it generates a vertex vψ that it adds to its local graph Gp. Participant
p chooses the inbound edges of vψ based on its current graph Gp by adding an
edge to vψ from each vertex u in Gp for which both outdegree(u) = 0 and
D(Gp)−D(u) < c, where c is a constant computed from the protocol parameters
and is the maximum depth spanned by an honestly chosen edge. Immediately
after generating vψ, p multicasts its entire local graph containing vψ and its
inbound edges.

On Receipt of a Message. Every message sent between participants is an encod-
ing of a graph. (Any other message is ignored.) When a participant p receives a
graph G′ in a message, it verifies that G′ is a valid graph. If G′ is valid, then p
updates its local graph as Gp ← Gp ∪ G′. If G′ is not valid, then p ignores G′.

G′ may be invalid in two ways. First, G′ may contain an edge (v, u) which
spans more than c depth. Second, G′ may be “missing a vertex,” meaning there
is a vertex v in G′.V for which not all of v’s predecessors are in G′.V . (This
means the graph G is incomplete in the party’s view.)

588 B. Terner

Fig. 2. Protocol ΠG for graph consensus

Computing Output. An honest participant p computes its output G∗
p from its

local graph Gp by first extracting a subgraph of Gp into an intermediate graph,
and then outputting all but the deepest vertices in the intermediate graph. More
precisely, p extracts a subgraph of Gp using the procedure extract(Gp), as follows.
First, p selects a set of “starting vertices” as the set S = {v ∈ Gp : D(Gp)−D(v) <
c + ρ}. Next, p extracts every starting vertex and every vertex from which any
starting vertex is reachable. Finally, p outputs G∗

p ← extract(Gp)
∣
∣
D(Gp)−�∗ , which

contains all the vertices in its extracted subgraph with depth less than D(Gp)−�∗,
where �∗ is derived from the protocol parameters.

Remark 1 (Sending a Whole Graph). Whenever a participant generates a new
vertex, it multicasts its entire graph. We admit it is unrealistic in practice to
multicast an entire local graph. Our protocol should be considered only theoret-
ical. It remains future work to show that participants need not multicast their
entire graphs whenever they generate a new vertex.

Permissionless Consensus in the Resource Model 589

3.2 Theorem Statement

We now state our main theorem, which is that protocol ΠG satisfies graph con-
sensus for appropriate parameters.

Theorem 4. For all N , all ρ, and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α +

ε
ρ + ε+1) every (α, ε)-honest, ρ-rate-limited, admissible execution of ΠG(α, ε, ρ)
satisfies graph consistency and f, h-liveness for f(N) = h(N) = αN −ε−ρ(�∗ +
1), where �∗ is a derived constant defined as in the protocol.

Recall that in ΠG, each participant computes its output by extracting a
subgraph from its local graph and then chopping off the deepest vertices in the
extracted subgraph, where the chop-off threshold is the derived constant �∗. Intu-
itively, liveness follows from the fact that as a participant’s local graph increases
in depth, the depth of the graph which it outputs also increases. The main
objective of the proof is to show that the protocol achieves graph consistency.

The main desideratum of the proof of graph consistency follows:

Proposition 1. Let c = (3−α)ρ+ ε
α + ε

ρ +ε+1 (as in Protocol ΠG). If α > ρβc,
then for all k, times t and t′, and honest participants p and q active at t and t′,
respectively, if D(G(t)

p) > k + �∗ and D(G(t′)
q) > k + �∗, then extract(G(t)

p)
∣
∣
k

=

extract(G(t′)
q)

∣
∣
k
.

where c and �∗ are defined as in the protocol.
Graph consistency follows directly from assigning G∗

p ← extract(Gp)
∣
∣
D(Gp)−�∗ ,

since when two honest participants output graphs, then the less deep output graph
must always be a subgraph of the deeper (if the output graphs have the same depth,
then they must be the same graph).

3.3 Proof Overview

We now overview the proof of Proposition 1. The full proofs of Proposition 1
and Theorem 4 are in the full version [25].

Building a Virtual Global Graph. We consider that the participants collectively
build a virtual global graph G throughout an execution. When the execution
begins, G is initialized to a graph with only a root vertex. Whenever any partic-
ipant is allocated a resource, the vertex that it generates is immediately added
to G. In particular, even if a corrupt participant generates a vertex and “with-
holds” the vertex by not sending it to any honest participant, the vertex is still
added to G at the moment that it is generated. We denote by G

(t) the state of
G after all vertices are added at time t.

G represents the global state of the execution. Consider that G
(t)
p is p’s its

local view of G(t), and it is easy to see that G
(t)
p must be a subgraph of G(t).

Moreover, for every vertex v ∈ G
(t).V , if v is in G

(t)
p , then DG(t)(v) = D

G
(t)
p

(v).
Henceforth, when we refer to the depth of a vertex, we simply write D(v) because
its depth is uniquely defined.

590 B. Terner

Outputting Predecessors and Omitting Orphans. Recall that an honest partici-
pant p active at time t outputs a vertex v from its local graph G

(t)
p if and only

if v ∈ extract(G(t)
p)

∣
∣
D(G

(t)
p)−�∗ . By applying extract() and chopping off the deep-

est vertices, the protocol enforces two requirements in order to output a vertex.
First v must be far from the end of a participant’s graph (D(G(t)

p) > D(v) + �∗).
Second, v must be a predecessor of one of the starting vertices in G

(t)
p .

Intuitively, one can consider that every participant p decides whether each
vertex v in its view should be output or not. However, p “waits” before making
a decision until v is sufficiently far from the end of its graph. At that point, p
does not output v only if v has been “orphaned.” A vertex is “orphaned” if it is
more than �∗ depth from the end of a graph but not a predecessor of one of the
graph’s starting vertices.

To achieve graph consistency, p must make the same decision on v as every
other honest participant. We show that by the time the depth of Gp exceeds �∗

more than the depth of v, v’s status as an orphan or not an orphan has been
determined in G and will not change; moreover, v’s orphan status in Gp must
mirror its status in G. If v is not a predecessor of one of the starting vertices
in Gp, then v will never be a predecessor of a starting vertex in any honest
participant’s local graph which is deep enough to decide on v. However, if v is a
predecessor of one of the starting vertices in Gp, then v will never be orphaned
in any honest participant’s local graph.

Consistency of Honest Vertices. We first show consistency of the honest
vertices which honest participants output. We do so by showing that no honest
vertex is ever orphaned, and therefore all honest vertices are eventually output
by honest participants. Our high-level lemma towards this statement actually
says something stronger. It says that every honest vertex in G which is more
than �1 < �∗ distance from the end of an honest participant’s graph must be
extracted from the graph when it computes its output from its local graph.

Lemma 1 (Honest Vertex Extraction). For every time t, honest partici-
pant p active at t, and honest vertex v ∈ G

(t): D(G(t)
p) − D(v) > �1 =⇒ v ∈

extract(G(t)
p).

Lemma 1, consistency of honest vertices in participants’ outputs, follows
trivially from composition of Lemmas 2 and 3, described below. Lemma 2 shows
that by the time D(Gp) > D(v) + �1 for any honest participant’s graph Gp and
honest vertex v, enough time must have passed since v was originally multicast
that v is in Gp. Lemma 3 shows that every such honest vertex in an honest
participant’s graph must be a predecessor of a starting vertex in the graph.

Consistency of Honest Vertices in Honest Views. For the first step, we show
that if an honest participant’s local graph Gp is deeper than an honest vertex v
by more than a fixed distance �1, then v ∈ Gp.

Permissionless Consensus in the Resource Model 591

Lemma 2 (Depth-Based Indicator for Honest Vertices). For all t, hon-
est p active at t, and honest vertex v ∈ G

(t): D(G(t)
p) −D(v) > �1 =⇒ v ∈ G

(t)
p .

Intuitively, �1 is derived as follows. Let tv be the time that some honest vertex
v is generated by honest participant q. Naively, one would like to claim that if
D(G(t)

p) − D(v) > ρ, then ρ vertices must have been generated after v, and it
follows from the rate limit on resource allocations that t > tv + Δ. However,
the naive attempt makes the unfounded assumption that at tv, v must be the
deepest vertex in G

(tv). Instead, we derive a constant γ that gives the maximum
difference between G

(t) and an honest view G
(t)
p at any time t. We then derive

�1 = γ + ρ and show that if D(G(t)
p)−D(v) > �1, then Δ time must have elapsed

since v was generated and multicast. It follows that v ∈ G
(t)
p .

Extracting Every Honest Vertex. Recall that an honest participant extracts the
starting vertices in its graph and all their predecessors, and then outputs only
the vertices which are far from the end of its graph. We show that an honest
participant always extracts every honest vertex in its graph.

Lemma 3 (Extracting All Honest Vertices in a Local Graph). For every
time t, honest participant p active at t, and honest vertex v ∈ G

(t): v ∈ G
(t)
p =⇒

v ∈ extract(G(t)
p).

The lemma follows by showing that every honest vertex v eventually gains
at least one honest successor which is not too far from v, measured in terms of
depth. Intuitively, after an honest vertex v is generated, the first vertex generated
by an honest participant with v in its view must be a successor of v. It follows that
for every honest vertex v which is not a starting vertex in an honest participant’s
graph, there must be a path from v to a starting vertex in the graph.

Consistency of Corrupt Vertices. We show that consistency of corrupt ver-
tices follows from consistency of their honest successors (or lack thereof). If every
vertex is honestly generated and immediately multicast, then no vertex is ever
orphaned. Only if a corrupt participant withholds a vertex can the vertex be
orphaned. We show that after a corrupt vertex is generated, there is a limited
time during which it must gain an honest successor or it will be orphaned. Imag-
ine that starting at some time in an execution, corrupt participants use all of
their resources to build a “withheld branch” B of G which includes no honest
vertices, while honest participants continue to build G as per the protocol. Intu-
itively, if α

ρ > β (as we require), then the corrupt participants cannot keep pace
with the honest participants, and eventually B will fall behind the depth of G.
We can compute for how long a withheld branch B can remain close in depth to
G. We derive a constant �2 for which any vertex which is �2 depth from the end
of an honest participant’s local graph and is a predecessor of a starting vertex
must have an honest successor.

592 B. Terner

Lemma 4 (Honest Reachability Requirement for Extraction). For all t,
participant p active at t, and vertex v ∈ extract(G(t)

p): D(G(t)
p)−D(v) > �2 implies

there exists an honest vertex u reachable from v such that D(u) − D(v) ≤ �2.

Recall that an honest participant decides whether to output a vertex v only
once v is �∗ = �1 + �2 depth from the end of its local graph. If v is a predecessor
of a starting vertex, then it must have an honest successor which is more than �1
depth from the end of the graph. This honest successor must be in every honest
participant’s local graph with depth sufficient to output v; therefore, because
u must be extracted from every honest view in which it exists, every honest
participant with local graph deep enough to output v must do so.

References

1. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations,
and applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
493–526. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 17

2. Back, A., et al.: Hashcash-a denial of service counter-measure (2002)
3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:

composable proof-of-stake blockchains with dynamic availability. In: ACM Confer-
ence on Computer and Communications Security, pp. 913–930. ACM (2018)

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

5. Bano, S., et al.: Consensus in the age of blockchains. CoRR, abs/1711.03936 (2017)
6. Bentov, I., Hubácek, P., Moran, T., Nadler, A.: Tortoise and hares consensus:

the meshcash framework for incentive-compatible, scalable cryptocurrencies. IACR
Cryptology ePrint Archive, 2017:300 (2017)

7. Bentov, I., Pass, R., Shi, E.: The sleepy model of consensus. IACR Cryptology
ePrint Archive, 2016:918 (2016)

8. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR
Cryptology ePrint Archive, 2016:919 (2016)

9. David, B., Ga, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake protocol. Technical report, Cryptology
ePrint Archive, Report 2017/573 (2017). http://eprint.iacr.org/2017/573

10. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

11. Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consensus
based on proofs of work. IACR Cryptology ePrint Archive, 2017:915 (2017)

12. Garay, J., Kiayias, A., Ostrovsky, R., Panagiotakos, G., Zikas, V.: Resource-
restricted cryptography: revisiting MPC bounds in the proof-of-work era. Cryptol-
ogy ePrint Archive, Report 2019/1264 (2019). https://eprint.iacr.org/2019/1264

13. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR
Cryptology ePrint Archive, 2018:754 (2018)

14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

https://doi.org/10.1007/978-3-319-70500-2_17
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
http://eprint.iacr.org/2017/573
https://doi.org/10.1007/3-540-48071-4_10
https://eprint.iacr.org/2019/1264
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

Permissionless Consensus in the Resource Model 593

15. Garay, J.A., Kiayias, A., Panagiotakos, G.: Consensus from signatures of work.
Cryptology ePrint Archive, Report 2017/775 (2017). https://eprint.iacr.org/2017/
775

16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454
(2017). https://eprint.iacr.org/2017/454

17. Kiffer, L., Rajaraman, R., Shelat, A.: A better method to analyze blockchain
consistency. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, pp. 729–744. Association for Computing
Machinery, New York (2018)

18. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

19. Lewis-Pye, A., Roughgarden, T.: A general framework for the security analysis of
blockchain protocols. CoRR, abs/2009.09480 (2020)

20. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 680–691. ACM (2015)

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
22. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. IACR Cryptology ePrint Archive, 2016:454 (2016)
23. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 2017 IEEE 30th Computer

Security Foundations Symposium (CSF), pp. 115–129. IEEE (2017)
24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM (JACM) 27(2), 228–234 (1980)
25. Terner, B.: Permissionless consensus in the resource model. Cryptology ePrint

Archive, Report 2020/355 (2020). https://ia.cr/2020/355
26. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-

tralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015).
https://eprint.iacr.org/2015/464

https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2017/454
https://ia.cr/2020/355
https://eprint.iacr.org/2015/464

Performance

Plumo: An Ultralight Blockchain Client

Psi Vesely1,2, Kobi Gurkan2,3, Michael Straka2, Ariel Gabizon4,
Philipp Jovanovic2,5(B), Georgios Konstantopoulos6, Asa Oines2,

Marek Olszewski2, and Eran Tromer2,7,8

1 University of California San Diego, San Diego, USA
psi@ucsd.edu

2 cLabs, Berlin, Germany
{kobi,a,m,mstraka}@clabs.co

3 Ethereum Foundation, Berlin, Germany
4 AZTEC Protocol, London, UK

ariel@aztecprotocol.com
5 University College London, London, UK

p.jovanovic@ucl.ac.uk
6 Paradigm, San Francisco, USA

me@gakonst.com
7 Columbia University, New York, USA
8 Tel Aviv University, Tel Aviv, Israel

tromer@cs.tau.ac.il

Abstract. Syncing the latest state of a blockchain can be a resource-
intensive task, driving (especially mobile) end users towards centralized
services offering instant access. To expand full decentralized access to
anyone with a mobile phone, we introduce a consensus-agnostic com-
piler for constructing ultralight clients, providing secure and highly effi-
cient blockchain syncing via a sequence of SNARK-based state transi-
tion proofs, and prove its security formally. Instantiating this, we present
Plumo, an ultralight client for the Celo blockchain capable of syncing the
latest network state summary in just a few seconds even on a low-end
mobile phone. In Plumo, each transition proof covers four months of
blockchain history and can be produced for just $25 USD of compute.
Plumo achieves this level of efficiency thanks to two new SNARK-friendly
constructions, which may also be of independent interest: a new BLS-
based offline aggregate multisignature scheme in which signers do not
have to know the members of their multisignature group in advance, and
a new composite algebraic-symmetric cryptographic hash function.

Keywords: Ultralight clients · SNARKs · Aggregate multisignatures

1 Introduction

Among numerous obstacles to widespread adoption of blockchain technologies,
scalability has been identified as a major hurdle [33]. Recent years have seen
major improvements to throughput and latency via new proof-of-stake (PoS)
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 597–614, 2022.
https://doi.org/10.1007/978-3-031-18283-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_30&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_30

598 P. Vesely et al.

protocols [3,38], sharding [1,30], and payment channels [26,31]. This work tackles
another scalability challenge: high participation costs for end users.

To securely interact with a blockchain without trusting a centralized party, a
node must first download and verify the blockchain. The requisite data, storage,
and computation resources are unavailable to many potential participants. For
example, as of August 2021, the Ethereum blockchain is over 900 GB (in non-
archival mode). Even in light sync mode, 6.5 GB of header metadata must be
downloaded and verified, exceeding the bandwidth and storage available to many
mobile users. Participation cost concerns for end users also apply in the context
of cross-blockchain interoperability protocols, where smart contract code running
on one chain (with high storage and computation costs) needs to verify the state
of another chain.

High participation costs motivate the need for ultralight clients (UCs), which
verify succinct proofs of valid blockchain data leading up to the current state.
Prior attempts [13,16,18,35] have various restrictions and drawbacks, including
specificity to Proof-of-Work (PoW), implementation complexity, unsuitability for
smart contract blockchains, and significant blockchain performance hits outside
the UC context. Some of these relative drawbacks are outlined in Table 1.

We introduce the Plumo system, an efficient UC protocol, which overcomes
these drawbacks and achieves nearly-instant ultralight client synchronization. It
is based on succinct transition proofs, using two new SNARK-friendly construc-
tions.

A Brief History of Ultralight Clients. To contextualize, we first describe
previous works in more detail, and then describe how our techniques overcome
prior drawbacks.

Kiayias et al. introduced NIPoWPoWs in [28], a PoW-specific proof of SPV
that relies on statistical properties of hashes to make probabilistic guarantees
about the amount of work a chain contains. Bünz et al. extended this result
in Flyclient [16], the first NIPoPoW-based UC, guaranteeing unconditional suc-
cinctness with O(log2 n) sized proofs1 and supporting variable mining difficulty.
It is integrated into chains by adding Merkle Mountain Range (MMR) commit-
ment to the transaction roots of the entire blockchain to each header. Given
the latest block header containing a MMR commitment, the verifier hashes it
to obtain challenge block heights pseudorandomly; they accept if also provided
MMR-inclusion and subtree equality-proofs that verify with respect to those
challenges and the MMR commitment. Smart contracts are supported, since
miners are trusted to have verified all consensus rules. However, this approach
does not extend to PoS blockchains, or to full verification of a PoW blockchain,
since these require checking every pertinent state transition.

Chiesa and Tromer proposed PCD, a primitive permitting distributed com-
putations between mutually distrustful parties that run indefinitely [20]. Its first
practical construction by Ben-Sasson et al. used recursive composition of fully

1 The NIPowPow protocol of Kiayias et al. is forced to revert to the SPV light client
protocol in the presence of bribing and selfish mining attacks.

Plumo: An Ultralight Blockchain Client 599

Table 1. Comparison of UCs. App curve bits denotes the size of the curve used for
most network activity including making transactions; prover curve bits refers to the
curve used to produce and verify UC proofs. Estimates for both [18] and Flyclient
proof sizes are taken from [18] and are for a “barebones” (scriptless) Bitcoin. The
Flyclient paper reports slightly larger proof sizes for Ethereum due to the difference
in header size. Since block times for Celo are about 120× shorter than for Bitcoin,
we compare UC proof sizes by time since the genesis block. Halo 2 and Pickles are
both proposed network upgrades to ZCash and Mina, resp., exact proof sizes are not
yet available. NIPoWPoWs are restricted to PoW networks and in particular SPV;
recursive composition based PCD as used by Mina and [18] requires a trusted setup;
otherwise consensus, simplifying assumptions (SA), programmability, and trusted setup
should be seen as implementation choices rather than limitations of a proof type. Some
proof types also impose curve requirements (see below).

UC Proof
type

Consensus SA Programmability Trusted
setup

App/prover
curve bits

Proof sizes (days) Verifier
time347 694 1,736

Plumo Transition BFT � � � 377 → 761 1.2 KB 2.5 KB 6.4KB o(n)
Flyclient NIPoPoW PoW � � χ 256 135 KB 163 KB 204KB O(log2 n)
[18] Transition PoW χ χ � 753 � 753 7.4 KB 10 KB 18KB o(n)
[18] PCD PoW χ χ � 753 � 753 0.4 KB O(1)

Mina PCD Ouroboros χ χ � 753 � 753 7.1 KB O(1)
Halo 2/Pickles PCD PoW/Ouroboros χ χ 255 � 255 O(1) O(1)

succinct SNARKs over cycles of elliptic curves in [6]. Building on this PCD con-
struction, Bonneau et al. proposed Mina (formerly known as Coda) [13], the
first fully succinct (i.e., constant-sized) blockchain whose state at any time can
be verified in constant time. While this results in an ideal situation for the UC
verifier, these techniques impose a large performance overhead on the part of
the protocol being proved (all of consensus in the case of Mina) and the heavy
cryptographic machinery required imposes high development costs.

Foremost, both the UC prover and verifier, and all of the consensus verified
by the UC protocol must be set over a cycle of quite inefficient pairing-friendly
curves at 753 bits2 where, e.g., it was found Groth16 verification takes roughly
15× longer than on BLS12-381 [18]. Additionally, a trusted setup is required for
each curve and these setups must be computed sequentially3.

Recent developments in PCD constructions allow compatibility with trans-
parent SNARKs and cycles of non-pairing friendly curves, which can provide
100-bits security at just 255 bits. Bowe et al. introduced Halo [14], later formal-
ized as an atomic accumulation scheme by Bünz et al. in [17]. Halo amortizes
the cost of proof system verification based on interactive oracle proofs (IOPs) [5]
and algebraic holographic proofs (AHPs) [21] via lazy batch verification of poly-
nomial commitment openings, recursively verifying just the comparatively cheap

2 MNT4-753/MNT6-753 is the most efficient known pairing-friendly cycle at 128-bits
security. Evidence suggests the nonexistence of significantly better options [19].

3 Subsequent work introducing fully succinct SNARKs with universal SRSs [32] allow
parallel setups, but performance lags behind circuit-specific SNARKs [21].

600 P. Vesely et al.

arithmetic checks on the evaluations. ZCash is currently working on a refinement
of these techniques with “Halo 2,” and Mina is introducing a “Pickles” network
upgrade that will also use atomic accumulation based PCD. These advantages
come at the loss of pairing-based cryptography, which powers efficiency and non-
interactivity otherwise not afforded4.

Simplifying Assumptions. Using simplifying assumptions (SAs) provides
weaker security guarantees for light clients than proving consensus in full. Adver-
sarial control of the majority of mining power or a dishonest supermajority on a
BFT committee can result in a light client being convinced of an invalid state.
Under these conditions full nodes can still be convinced of an alternate history,
though transactions in the malicious fork have to follow consensus rules, which
can still enable a great deal of fraud and theft. The violation of such assump-
tions, however, would still render the blockchain insecure for full nodes, despite
enabling even worse attacks for light clients. This justifies their use in practice.

Proving a light client protocol has several advantages over proving all of con-
sensus. First, there’s simply much less to prove, especially so for networks offer-
ing programmability; indeed, only Flyclient and Plumo support programmable
blockchains. Even without programmability, a single prover cannot keep up with
the 1tx/s Mina blockchain, and to deal with this they incentivize “SNARK work-
ers” to compete to provide proofs for different parts of a PCD recursion tree
(allowing parallelization of prover work). Second, to efficiently prove all of con-
sensus, all of consensus must be optimized to this end. However, optimizing for
SNARK arithmetization can negatively impact performance outside the context
of the SNARK prover, e.g., while the BHP-BLAKE2s cryptographic hash we intro-
duce in Sect. 5 is SNARK-efficient, it is much less efficient than symmetric-flavor
hashes like SHA3 on conventional von Neumann computer architecture.

Transition Proofs. Plumo is the first UC to use transition proofs, allowing
a client hardcoded with the genesis state s0 to sync to some later state sn via
a chain of sequential intermediate SNARKs. We believe the use of a SA is not
just justified, but essential to our approach5; together with heavy optimization
of just the small part of consensus our light client protocol encapsulates, our SA
allows each SNARK to attest to four months of blockchain history.

4 E.g., non-interactive multisignatures, used often in BFT consensus and multisigna-
ture wallets, are only possible with pairings; for consensus naive O(n2) communica-
tion can be avoided with CoSi [29], but higher latency persists, and multisignature
wallet spends would require participants to all be online concurrently. Pairing-based
cryptography will also power Celo’s forthcoming ARKE private contact discovery
system (see https://celo.org/papers/future-of-digital-currencies).

5 We believe the estimates of subsequent work [18] for a transition-based UC proving
full consensus of a barebones Bitcoin network to be off by an order of magnitude
even assuming a circuit an order of magnitude greater than Plumo’s (which required
coordinating a historically large 228 powers-of-τ trusted setup ceremony), and hash-
ing with SNARK-optimized Poseidon [25]. Such circumstances would allow proofs
to cover about a week, but Flyclient would offer much faster verifier time with only
slightly larger proofs given the relative costs of SNARK verification and hashing.

https://celo.org/papers/future-of-digital-currencies

Plumo: An Ultralight Blockchain Client 601

Our design also allows us to keep the full Celo consensus on the efficient
pairing-friendly BLS12-377 curve. To get around the problem that proving sig-
natures over the same curve they were created on is not possible without highly
expensive non-native arithmetic, we borrow the approach of using a two-chain
of elliptic curves introduced by Bowe et al. in Zexe [15], thus avoiding the need
to run consensus over a costly pairing-friendly cycle.

Contributions. This paper presents the following contributions:

– A formal model of UCs general enough to capture all aforementioned UCs,
while at the same time remaining quite simple.

– A compiler theorem capturing our simple and efficient approach to building
secure UCs with transition proofs.

– BBSGLRY, a new BLS-based aggregate multisignature scheme that improves
on state-of-the-art AMSP-PoP [10] by removing the need to know and append
the aggregate public key of one’s multisignature group before signing.

– A framework for building composite algebraic-symmetric cryptographic
hashes, which improve on the SNARK-efficiency of symmetric hash functions
while maintaining their more well-established security guarantees, and our
proposed instantiation BHP-BLAKE2s.

– A Rust implementation of Plumo showing that for $25/day USD of compute
on modern cloud infrastructure an untrusted prover can provide proofs for the
whole Celo network, and that a Plumo client can sync and verify a summary
of the latest blockchain state in seconds even on a low-end mobile phone.

Organization. The rest of the paper is organized as follows. Section 2 gives
an overview of the Plumo architecture. Section 3 describes our threat model.
Section 4 presents a formalization of ultralight clients, our compiler, and then
Plumo as an instantiation. Section 5 presents our aggregate multisignature
scheme and framework for composite algebraic-symmetric SNARK-friendly
hashes, which we instantiate with Bowe-Hopwood-Pedersen and BLAKE2s.
Section 6 presents benchmarks for our Plumo Rust implementation and details
numerous optimizations.

2 Overview

The Celo blockchain uses the Istanbul BFT consensus [34]. We observe that
in order to verify the latest block header in BFT networks a client only needs
the public keys of the current committee. As long as no committee has had
a dishonest supermajority, a client who verifies a chain of committee hand-off
messages certifying the PoS election results, known as epoch messages, does not
need to check each block or even the headers of each block. Instead, to make (or
verify a recent) transaction, the client simply asks for the latest (or otherwise
relevant) block header, and verifies that it has been signed by a supermajority
of the current committee. This constitutes the simplifying assumption (SA) and
light client protocol proved by Plumo (formally, Assumption 1).

602 P. Vesely et al.

Fig. 1. Plumo architecture overview. In practice, our proofs cover 120 epochs.

Since Celo has 5s block times, this means transition proofs skip 17,280 blocks
for every epoch message they verify. Further, it reduces the task of optimizing
the transition proof SNARK circuit to just optimizing the epoch messages and
their associated signatures (Fig. 1).

In our circuit, we verify 120 sequential epoch messages, each signed by a
potentially different group of roughly 67–100 validators. A multisignature is
already computed over each epoch message as part of our light client protocol;
compounding this efficiency, the Plumo prover aggregates these multisignatures
into a single aggregate multisignature, which costs half the constraints to verify
for our BBSGLRY signature scheme. To further reduce the circuit size, instead
of passing in the list of public keys that signed each epoch message, we pass
in a bitmap indicating who signed, where the canonical ordering is given by
the preceding epoch message listing the committee public keys. The Hamming
weight is first verified to be sufficient, and then the bitmap is used to compute
the aggregate public key corresponding to each epoch message.

As cryptographic hashes that perform many bitwise operations are partic-
ularly expensive inside SNARKs, for epoch messages we instantiate BBSGLRY
with a new composite cryptographic hash built from the collision-resistant Bowe-
Hopwood-Pedersen hash [27] and the symmetric-flavor BLAKE2s cryptographic
hash [4]. While lookup tables make it possible to at least avoid scalar mul-
tiplications, Bowe-Hopwood-Pedersen still requires many group additions, and
while efficient in SNARKs is slow on conventional von Neumann computer archi-
tecture. By instantiating BBSGLRY with BLAKE2s for signing block headers,
the vast majority of consensus is unaffected by this inefficiency, simultaneously
ensuring ultralight clients (UCs) can efficiently verify block headers after syncing
the current committee’s public keys.

Aggregate Multisignatures. The BBSGLRY aggregate multisignature scheme
takes the Boneh-Lynn-Shacham (BLS) signature [11] as its starting point and
combines various extensions from [9,12,36]. Its most similar to the AMSP-PoP
aggregate multisignature scheme presented by Boneh et al. in [10]. AMSP-
PoP requires signers who create a multisignature know the group of signers in
advance. In particular, signers must compute the aggregate public key apk of the

Plumo: An Ultralight Blockchain Client 603

signer group and then prepend it to the message before hashing and signing in
the normal way: Sign(sk, apk,m) = Hs(apk‖m)sk. For one, this expands the size
of our circuit by adding more data to hash. Further, this forces BFT consensus
to restart if a node who participates honestly in earlier rounds goes Byzantine
and fails to produce their contribution to the multisignature.

BBSGLRY overcomes these limitations as follows. We observe that in the def-
initions used by [10] that proofs-of-possession are checked by the key aggregation
algorithm KeyAgg. The adversary is permitted to output both a set of aggregate
public keys and a set of pairs of public keys and PoPs. Since KeyAgg is not run
on the aggregate public keys, an aggregate public key must be prepended when
signing to prevent rogue key attacks. We believe their definitions do not reflect
the usage of PoPs in production systems, including Celo. We thus provide new
definitions where every public key the adversary outputs must be accompanied
by a valid PoP (see the full version of the paper [37]). Working from these defi-
nitions, we are able to prove security of BBSGLRY, where signing is identical to
BLS: Sign(sk,m) = Hs(m)sk.

SNARK-Friendly Hashing. When representing an arithmetic circuit in
R1CS, addition gates are essentially free, while multiplication gates are not.
Only recently have we seen the introduction of low-multiplication cryptographic
hash functions, such as MiMC [2] and Poseidon [25]. While such hash func-
tions are a promising development, we believe there has so far been insufficient
time for cryptanalysis of these designs. As an alternative, we formalize a folklore
technique of first “shrinking” a long message with an algebraic collision-resistant
hash (CRH) requiring far fewer constraints per message bit, and then call the
compression function of a “symmetric-flavor” cryptographic hash function on
its output. Our compiler in Sect. 5.2 formalizes this approach and provides a
security reduction appropriate for use when instantiating a random oracle (as in
necessary for BBSGLRY). We instantiate our compiler with the Bowe-Hopwood-
Pedersen hash and with the BLAKE2s compression function to produce the
BHP-BLAKE2s cryptographic hash we use for epoch messages.

A Two-Chain of Elliptic Curves. A SNARK arithmetic circuit is defined in
the scalar field Fp of an elliptic curve. This presents a problem when verifying
authenticated data computed over that same field, where verification (such as
of BBSGLRY signatures) generally involves Fq operations. To avoid performing
costly non-native arithmetic, which blows up circuit size, or moving to an expen-
sive pairing-friendly cycle, we use a two-chain of elliptic curves, where the scalar
field of the second curve is the same size as the base field of the first. In partic-
ular, we use the BLS12-377/BW6-761 two-chain, where the first (inner) curve is
the same as in the original two-chain by Bowe et al. [15], and the second (outer)
was introduced by Housni and Guillevic [22] as more efficient replacement for the
outer curve of Bowe et al. This allows all of consensus to be carried out over an
efficient pairing-friendly curve, while only the UC prover and UC verifier when
syncing use the slower second curve.

604 P. Vesely et al.

3 Threat Model

In addition to a number of cryptographic hardness assumptions, Plumo makes
the following security assumptions with respect to network participants:

Assumption 1. For each epoch it holds n > �f/3�, where n and f are the
number of total and dishonest validators.

Assumption 2. There is at least a single honest participant in the multi-party
computation (MPC) for the SNARK trusted setup.

For background on proof-of-stake and the Istanbul Byzantine fault tolerant
consensus Celo uses, we refer the reader to the full version of the paper [37]. There
we discuss the impacts of long-range attacks and future committee attacks, a new
related attack on PoS consensus that we identify and propose a simple defense
for. For more information on the multiparty computation used for our SNARK
trusted setup ceremony, including optimizations that have made it faster to carry
out and verify than past public ceremonies please see [37].

4 Ultralight Clients

We distinguish between full nodes, which use a state transition function S to
incrementally compute the full state s corresponding to a blockchain b = [bi]ni=1

as new blocks bn+1, bn+2, . . . arrive, and light clients, which use the summary
update function Ŝ to incrementally compute a summary ŝ of the blockchain as
they receive new trimmings b̂n+1, b̂n+2, A trimming is a chunk of blockchain
data (e.g., block headers for PoW blockchains or epoch messages for BFT con-
sensus) belonging to a trimming language LĈ representing local checks such as
syntax and signature verifications. A blockchain summary belongs to the sum-
mary language Lŝ and is a commitment to the full state of the blockchain,
enabling verification of specific transactions and full state values via succinct
inclusion proofs.

Ultralight Clients. Informally, we define an ultralight client (UC) to be one
that receives succinct arguments of knowledge (AoKs) of trimmings. For n ∈ Z

+

and b̂ of length n, an UC receives proofs of the summary relation:

R(n)
ŝ =

{
(ŝ ∈ Lŝ; b̂ ∈ LĈ) : ŝ = Ŝ(ŝg, b̂)

}
.

An UC starts with a hardcoded genesis summary ŝg. It can verify ŝ is the valid
summary of the blockchain n trimmings later by verifying a succinct proof of
R(n)

ŝ . The argument of knowledge property guarantees that a valid trimmed
blockchain b̂ ∈ LĈ corresponding to ŝ can always be extracted from the proofs.

Incremental Provers. Since prover resources are finite, for sufficiently high n

it becomes impractical to prove R(n)
ŝ . An UC prover thus needs to be able to

create such proofs incrementally and re-use work in some way. We model this

Plumo: An Ultralight Blockchain Client 605

by incrementally giving the prover one or more new trimmings each time it is
invoked to create a new proof for the latest summary. The prover locally stores
an auxiliary state ω to help it create the new proof. The growth of ω necessarily
must be significantly sublinear in the size of the trimmed blockchain for this
approach to remain concretely efficient long-term.

PCD based UCs address this by recursively verifying the previous state tran-
sition proof together with the new blocks or trimmings. Avoiding various draw-
backs of this approach elaborated on in Sect. 1, we opt for the simpler approach
of transition proofs, i.e., prove R(n)

ŝ for any n by producing �n/m� SNARK
proofs of

R(m)
ŝ =

{
(ŝi−1, ŝi ∈ Lŝ; b̂ ∈ Lm

b̂
) : ŝi = Ŝ(ŝi−1, b̂)

}
, (1)

for i ∈ �n/m�. For sufficiently large n (e.g., 4 months in the case of Plumo), the
concrete proof length and verification time of this sublinear approach can be on
par with asymptotically better (but more complex) approaches for years out, as
illustrated by our results Table 1.

Extraction in the Presence of Oracles. A summary relation often must
some authenticated data (e.g., validator signatures). Unfortunately, standard
AoK definitions fail to guarantee extraction when the adversary is granted access
to additional oracles such as signature oracles. This problem has been first and
foremost studied by Fiore and Nitulescu, who developed the notion of an O-
SNARK and produced the first results regarding their existence [23]. We adapt
their knowledge soundness definition to our UC interface.

4.1 Ultralight Clients

An ultralight client (UC) ΠUC is defined by a triple of efficient non-interactive
algorithms (Setup,ProveUpdate,VerifyUpdate) working as follows

– Setup(1λ) → pp: a randomized setup algorithm run by one or more parties
that, input a security parameter λ (in unary), outputs a set of public param-
eters pp.

– ProveUpdate(pp, ŝ, ω, ŝ′, b̂) → (π′, ω′): an untrusted light client acts as the
prover that, input public parameters pp, previous summary ŝ ∈ Lŝ with
auxiliary state ω, and current summary ŝ′ with corresponding new trimmings
b̂ ∈ Ln

b̂
, outputs a new proof π and auxiliary state ω′.

– VerifyUpdate(pp, ŝ, π) → {0, 1}: an UC verifier that, given a summary ŝ and
proof π, outputs 0 (reject) or 1 (accept).

and satisfying succinctness, perfect completeness, and adaptive security, as
defined below. Assuming a strict total order ≤ on summaries, if presented with
more than one valid (ŝ, π) pair, an UC can efficiently determine and accept the
greater as the current summary.

Succinctness. Let ‖b̂‖ be the length of the description of b̂ (as opposed to the
number of trimmings |b̂|). Succinctness is captured by the set of properties that

606 P. Vesely et al.

(1) |π| grows sublinearly in ||b̂||, (2) VerifyUpdate runs in time sublinear in ||b̂||,
and (3) |ω| grows sublinearly in ||b̂||.
Completeness. An UC ΠUC = (Setup,ProveUpdate,VerifyUpdate) is perfectly
complete if for every adversary A it holds that

Pr

⎡
⎢⎢⎢⎢⎣

b̂1‖ · · · ‖b̂m ∈ LĈ

∧
∃i ∈ [m] :

VerifyUpdate(pp, ŝi, πi) �= 1

∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1λ)

[b̂i]
m
i=1 ← A(pp)

For i ∈ [m] :

ŝi ← Ŝ(ŝi−1, b̂i)

(πi, ωi) ← ProveUpdate(pp, ŝi−1, ωi−1, ŝi, b̂)

⎤
⎥⎥⎥⎥⎦

= 0,

where ŝ0 ← ŝg, π0 ←⊥, and ω0 ←⊥, and the probability is taken over choice of
pp and any random coins used by A.

Adaptive Security. An UC is adaptively secure if it satisfies the definition of a
Z-auxiliary input O-SNARK for O (see [37]) for R = R(∗)

ŝ and the appropriate
auxiliary input generator and oracle families, and where (x,w) = (ŝ, b̂) and
Verify = VerifyUpdate.

Flexibility of Our Definition. We illustrate the flexibility of our definitions
by showing how they can capture PCD and NIPoWPoW based UCs as well. A
trimmed blockchain can be modeled as a DAG where the current summary is
the sink. Starting with the edge leaving the sole source, labeled ŝg, each edge
e = (ŝ, ŝ′) is labeled with a consecutive trimming b̂ taking the state from ŝ

to ŝ′ = Ŝ(ŝ, b̂). Then depending on the construction of PCD used, we have
ω = (π, x) where x is additional auxiliary information such as state tree roots
and π is the proof generated by a S/NARK and/or succinct accumulator.

Next consider Flyclient [16], where the summary is a Merkle Mountain
Range commitment to the block headers, which themselves form the trimmed
blockchain. Here the UC prover must store the entire trimmed blockchain on
disk, but only needs to open the commitment by reading from disk block head-
ers at a logarithmic number of heights; thus we define |ω| to be logarithmic. Here
proofs, composed of leaf inclusion and subtree equality proofs, are distinct from
auxiliary state, but also logarithmic in |b̂|.

4.2 An Ultralight Client Compiler

We introduce a compiler that outputs a secure UC given a summary relation
R(m)

ŝ for a fixed m ∈ Z
+ and O-SNARK ΠOS for the oracles corresponding to

the authenticated data verified in Rŝ
6.

6 We note that proofs of R(m′)
ŝ for 1 ≤ m′ ≤ m are called for by our construction as

well. With transparent and universal setup SNARKs this can be achieved just by
making m circuits, but for SNARKs with circuit-specific setups adding support for
padding in R(m)

ŝ can avoid the need for m distinct trusted setups.

Plumo: An Ultralight Blockchain Client 607

Construction 1. Given a Z-auxiliary input O-SNARK ΠOS = (Gen,Prove,
Verify) for R(m)

ŝ and for the oracle families corresponding to all data com-
puted using a secret state verified in R(m)

ŝ , we construct an ultralight client
ΠUC = (Setup,ProveUpdate,VerifyUpdate) as follows:

Setup(1λ) → pp :
1. Output pp ← Gen(1λ)

VerifyUpdate(pp, ŝ, π) :
1. Parse ([ŝ]k−1

i=1 , [πi]ki=1) ← π
2. Set ŝ0 ← ŝg and ŝk ← ŝ.
3. Output b ← ∧k

i=1Verify(crs, ŝi−1, ŝi, πi)

ProveUpdate(pp, ŝ, ω, ŝ′, b̂)
1. If ŝ corresponds to a trimmed blockchain of n trimmings, then ω will

contain r ≡ n mod n “remainder” trimmings b̂r, k = �n/m� SNARK
proofs π = [π]ki=1, and k − 1 intermediate summaries ŝ = [ŝi]k−1

i=1 .
2. If r = 0 reset ŝ ← ŝ‖ŝ, else reset π ← [πi]k−1

i=1 as the last proof covers
only r < m trimmings.

3. Set b̂′
1‖ · · · ‖b̂′

t ← b̂r‖b̂ where partitions [b̂′
i]

t−1
i=1 each contain m trimmings

and
|b̂′

t| = r′ = n + |b̂| (mod m) ∨ m .

4. If r′ < m then set b̂r′ ← b̂′
t, else set b̂r′ ←⊥.

5. Generate new intermediate states and proofs for i ∈ [t]:
ŝ′

i ← Ŝ(ŝ′
i−1, b̂

′
i) π̂i ← Prove(crs, ŝ′

i−1, ŝ
′
i; b̂′

i)
where ŝ′

0 is the last intermediate summary in ŝ.
6. Let π′ ← π‖π′, ŝ′ ← ŝ‖[ŝ′

i]
t−1
i=1, and ω′ ← (b̂r′ , π′, ŝ′). Output (π′, ω′).

Theorem 1. If ΠOS = (Gen,Prove,Verify) is an adaptively secure SNARK for
relation Rŝ, auxiliary input generator Z, and oracle family O, then the UC ΠUC

output by Construction 1 is adaptively secure (Sect. 4.1) for Rŝ, Z, and O.

We refer to the full version of the paper [37] that presents the proof of the above
theorem.

4.3 The PLUMO Ultralight Client

We make a few simplifications for clarity of exposition in this section; we present
a full specification of our circuit in the full version of the paper [37]. Celo uses the
Istanbul BFT consensus algorithm [34]. We observe that by taking Assumption 1
as our simplifying assumption (SA), a light client only needs verify a valid chain
of epoch messages delegating authority from committee to the next in order
to learn the current committee public key set. From there, they can download
the most recent block header, verify its multisignature, and learn the latest
state roots (and also easily check their balance, make a transaction, etc.). The
most recent Celo epoch message is the current summary. In addition to the
current committee public key set, the summary contains the epoch index, the

608 P. Vesely et al.

current and parent entropy (to mitigate future committee attacks [37]), and
the signer threshold7. The standard operator ≤ over the epoch index of each
summary defines the required total order ≤ over summaries (a strict total order
under our simplifying assumption). The summary update relation checks there
exists a sequence of epoch messages where each successive message (1) is signed
by at least the signer threshold number of validators, (2) increases the epoch
index by 1, and (3) has parent entropy matching the previous current entropy.
Then it verifies an aggregate multisignature over the result. Plumo instantiates
the compiler from the previous section using the Groth16 proof system, which
was proven to be knowledge sound in the AGM under the q-DLOG assumption
in [24]. For Plumo, we must additionally require Groth16 is an O-SNARK with
respect to BBSGLRY signing oracles. We also assume that the auxiliary input
our adversary receives is “benign”8. We note here that there have been few prior
results on extraction in the presence of auxiliary inputs and/or oracles [8,23],
none of which apply to our construction9.

Theorem 2. Let H : {0, 1}∗ → G1 be a hash family modeled as a random oracle
and let BBSGLRYH be the BBSGLRY signature scheme (Sect. 5.1) instantiated
with H, and let Z be a benign auxiliary input generator. Assume the Groth16
SNARK is an adaptive argument of knowledge for (OH,OBBSGLRYH) and Z.
Then Plumo is an adaptively secure UC for Rŝ, Z, OH, and OBBSGLRYH .

Proof. This follows directly from the compiler Theorem 1. �

5 SNARK-Friendly Signatures and Hashing

5.1 BBSGLRY: Non-interactive Aggregate Multisignatures

BBSGLRY is an offline aggregate multisignature scheme providing non-
interactive key and signature aggregation, and not requiring signers know the
multisignature group in advance.

Construction 2 (BBSGLRY aggregate multisignature scheme). Given a type
3 bilinear group sampler SampleGrp3 and two hash families Hs : {0, 1}∗ → G1

and Hp : G2 → G1, our aggregate multisignature scheme BBSGLRY is defined by
an 8-tuple of efficient algorithms (Setup,KeyGen,VPoP,Sign,KeyAgg,MultiSign,
AggSign,Verify), working as follows:

– Setup(1λ) → pp: sample a type 3 bilinear group 〈group〉 ← SampleGrp3(1λ)
and two hash functions (Hp,Hs)

$←− Hλ. Return pp ← (〈group〉,Hp,Hs).
7 Our PoS election occasionally elects n<100 committee members. Rather than com-

pute 	2n/3
+1 in the circuit, we piggyback on our SA, including it in the epoch
message.

8 A benign distribution supplies negligible advantage to any adversary against any
construction (e.g., the uniform distribution is conjectured benign [7]).

9 Results for hash-then-sign signatures in [23] require modifying the signer to sample
and prepend a random nonce to each message they sign—currently no UCs which
prove verification of signatures are doing this.

Plumo: An Ultralight Blockchain Client 609

– KeyGen(pp) → (pk, sk, π): choose a secret key sk
$←− F and set the public key

pk ← Gsk
2 ∈ G2. Create the PoP π ← Hp(pk)sk ∈ G1. Return (pk, sk, π).

– VPoP(pp, pk, π): given public key pk ∈ G2 and PoP π ∈ G1, return 1 if
e(π, G2) = e(Hp(pk), pk), else 0.

– Sign(pp, sk,m) → σ: given a secret key sk ∈ F and message m ∈ {0, 1}∗,
return a signature σ ← Hs(m)sk ∈ G1.

– KeyAgg(pp, {pki}n
i=1) → apk: given n distinct public keys {pki}n

i=1 ∈ G
n
2 ,

return aggregate public key apk ← ∏n
i=1 pki ∈ G2.

– MultiSign(pp, {σi}n
i=1) → σ: given n signatures {σi}n

i=1 ∈ G
n
1 under distinct

public keys for the same message, return multisignature σ ← ∏n
i=1 σi ∈ G1.

– AggSign(pp, [σi]ni=1) → Σ : given a list of n multisignatures [σi]ni=1 ∈ G
n
1 ,

return aggregate multisignature Σ ← ∏
i∈[n] σi ∈ G1.

– Verify(pp, [(apki,mi)]ni=1, Σ) → {0, 1} : given a list of n aggregate public key
and message pairs [(apki,mi)]ni=1 and an aggregate multisignature Σ, return
1 if e(Σ, G2) =

∏n
i=1 e(Hs(mi), apki); else return 0.

In the full version of the paper [37] we prove the following unforgeability theorem.

Theorem 3. BBSGLRY is a computationally unforgeable aggregate multisigna-
ture under ψ-co-CDH when instantiated with random oracles Hs,Hp.

5.2 Composite Algebraic-Symmetric Hash Functions

BHP-BLAKE2s is a cryptographic hash function that first “shrinks” its input
using the SNARK-optimized Bowe-Hopwood-Pedersen (BHP) collision-resistant
hash [27], then runs the BLAKE2s compression function [4] on the result. We
prove security via instantiating the following construction.

Construction 3. Given collision-resistant hash CRH : {0, 1}∗ → B, injective
encoding Encode : B → {0, 1}b−t, and random oracle O : {0, 1}b → {0, 1}c for
positive integers 	 and t ≥ �log2(�	/c� + 1)�, we construct a composite hash
function H : {0, 1}∗ → {0, 1}� as follows. Let k ← �	/c�, and for integers 0 ≤
x ≤ 2t − 1 denote by xut the t-bit unsigned binary representation of x. On input
m ∈ M:

1. Shrink the message to obtain the intermediate hash h′ ← CRH(m).
2. Compute the binary encoding of the intermediate hash h′

enc ← Encode(h′).
3. Output the first 	 bits of O(0ut‖h′

enc)‖O(1ut‖h′
enc)‖ . . . ‖O(kut‖h′

enc).

In the full version of the paper [37] we prove the following indistinguishability
theorem.

Theorem 4. If CRH is computationally collision-resistant Encode is injective,
and O is a random oracle, then the hash function H is computationally indistin-
guishable from a random oracle.

In BHP, presented below, input messages are split into segments mi, then further
divided into 3-bit chunks mi,j . The maximum number of chunks in a segment,
denoted Cmax, depends on the curve. A formula to derive it is given in [27].

610 P. Vesely et al.

BHP.Setup(1λ, s) → pp

(G, q) ← SampleGroup(1λ)
[gi]si=1 ← G

s

pp ← (G, q, [gi]si=1)

BHP.Eval(pp,m ∈ {0, 1}n) → h

Divide m into segments mi of size Cmax

Divide each mi into 3-bit chunks mi,j

h ← ∑
i,j g

24i(1+mi,j [0]+2·mi,j [1])(1−2·mi,j [2])
i

We refer the reader to [4] for a description of the BLAKE2s.

6 Implementation

Plumo was implemented in Rust10 using the arkworks libraries.

6.1 Optimizations

Try-and-Increment Hashing. Since constant-time hashing is not important
to the security of Plumo, we opt for a more efficient hash-to-group by using a
variant of “try-and-increment” [11]. For a Weierstrass form curve, let q be the
order of the base field and 	 = �log2(q)�. Given a hash function H : {0, 1} →
{0, 1}�+1 and input m, we can hash to G1 using rejection sampling as follows.
Try each sequential nonce η in 0, . . . , 2c − 1 encoded as c-bit string (for some
completeness parameter c) until the first 	 bits of h ← H(η‖m) is less than q.
To obtain a prime-order group point from h, clear the cofactors from the first
	 bits of h to obtain an x-coordinate. If the last bit of h is 0 (1) choose the
smaller (larger) corresponding y-coordinate. We crucially observe that it is not
necessary to increment inside the SNARK, and that the nonce can be included
as a private input. Indeed, if we write the message of any signature scheme
as M = {0, 1}c × M′, where M′ is considered the meaningful part, then the
unforgeability of a signature on any message in M implies the unforgeability of
a signature on any message in M′. In the ROM, the probability of succeeding
on each try is q/2�, and thus an expected 2�/q tries will be required to hash each
message. The chance a given message cannot be hashed is given by (1 − q/2�)c.
For our concrete parameters, BLS12-377 and c = 8, this gives an exceedingly
small probability of 2−677.

Computing BHP over a Birationally Equivalent Curve. Following [27],
we compute the Bowe-Hopwood-Pedersen hash over the birationally equivalent
Montgomery form of the twisted Edwards curve EEd/BW6 curve (of equal order
to BW6-761) in a way that guarantees the incomplete addition formulas (which
cost 3 constraints instead of 6) are sufficient.

Reducing Verifier Time and Proof Sizes. Verification of Groth16 requires
computing a G1 multi-exponentiation of size 	 = |x|. If the initial and m-epochs-
later epoch messages were directly encoded as the instance, 	 would be approach-
ing 1,000. Instead, the verifier hashes the input and output epoch messages using

10 See https://github.com/celo-org/celo-bls-snark-rs and https://github.com/celo-
org/snark-setup.

https://github.com/celo-org/celo-bls-snark-rs
https://github.com/celo-org/snark-setup
https://github.com/celo-org/snark-setup

Plumo: An Ultralight Blockchain Client 611

a hash-to-field built with BLAKE2s, producing an input and output hash, which
is the instance of size 	 = 2 for the Groth16 verification circuit. The circuit has
to be modified to prove knowledge of openings of these two hashes, and then
the usual checks are made on these openings. This unfortunately increases the
size of the circuit, but at least this cost is constant in the number of epochs
being proved. This optimization gives us another for free. The ultralight client
(UC) only needs to learn the most recent epoch message. When verifying multi-
ple SNARK proofs the UC can simply download the intermediate summaries as
hashes, thereby significantly reducing proof sizes.

6.2 Evaluation

We benchmarked our prover on a Google Cloud machine with 4 Intel Xeon E7-
8880 v4 processors and 3, 844 GB of DDR4 RAM, which rents for $25/h USD.
Figure 2 shows the time and space efficiency of our prover, and Table 2 gives our
circuit size as a function of the committee size and number of epochs spanned.
Since proofs for 120 epochs are computable in less than an hour and epochs are
approximately one day, maintaining up-to-date UC proofs for Plumo is possible
for $25 worth of compute a day. In contrast to our powerful prover, we evaluated
the performance of our verifier on a Motorola Moto X (2nd Gen), a 2014 mobile
phone with 1 GB RAM and a 32-bit Quad-core 2.45 GHz Krait 400 processor. We
used a directly cross-compiled, unoptimized implementation. The results show
it is possible to verify such a proof in about 0.5 s.

Fig. 2. Proving time and peak memory consumption over BW6-761.

612 P. Vesely et al.

Table 2. Constraints for our summary update transition proof circuit.

Epochs 10 validators 100 validators

32 2,787,485 20,465,083
64 4,753,568 34,097,470

128 8,685,734 61,362,244
256 16,550,063 115,891,789
512 32,278,721 224,950,879

1024 63,736,037 443,069,059

References

1. Al-Bassam, M., et al.: Chainspace: a sharded smart contracts platform. In: Pro-
ceedings of the 25th Network and Distributed System Security Symposium, NDSS
2018 (2018). https://eprint.iacr.org/2016/492.pdf

2. Albrecht, M., et al.: MiMC: efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In: 22nd International Conference on the The-
ory and Application of Cryptology and Information Security, pp. 191–219 (2016).
https://eprint.iacr.org/2016/492.pdf

3. Amoussou-Guenou, Y., et al.: Correctness of tendermint-core blockchains. In: 22nd
International Conference on Principles of Distributed Systems, OPODIS 2018, vol.
125, pp. 16:1–16:16 (2018). https://eprint.iacr.org/2018/574.pdf

4. Aumasson, J.-P., et al.: BLAKE2: simpler, smaller, fast as MD5. In: 11th Inter-
national Conference of Applied Cryptography and Security, ACNS 2013 (2013).
https://www.blake2.net/blake2 20130129.pdf

5. Ben-Sasson, E., Ciesa, A., Spooner, N.: Interactive oracle proofs. In: 14th The-
ory of Cryptography Conference, TCC 2016 (2016). https://www.iacr.org/archive/
tcc2016b/99850156/99850156.pdf

6. Ben-Sasson, E., et al.: Scalable zero knowledge via cycles of elliptic curves. In: 34th
Annual International Cryptology Conference, CRYPTO 2014, pp. 276–294 (2014).
https://eprint.iacr.org/2014/595.pdf

7. Bitansky, N., et al.: Recursive composition and bootstrapping for SNARKs and
proof-carrying data. In: 45th ACM Symposium on the Theory of Computing,
STOC 2013, pp. 111–120 (2013). https://eprint.iacr.org/2012/095.pdf

8. Bitansky, N., et al.: On the existence of extractable one-way functions. SIAM J.
Comput. 45(5) (2016). Preliminary Version Appeared in STOC 2014, pp. 1910–
1952. https://eprint.iacr.org/2014/402.pdf

9. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: 6th International Conference
on Practice and Theory in Public Key Cryptography, PKC 2003, pp. 31–46 (2003).
https://www.cc.gatech.edu/∼aboldyre/papers/bold.pdf

10. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: 24th International Conference on the Theory and Application
of Cryptology and Information Security, ASIACRYPT 2018, pp. 435–464 (2018).
https://eprint.iacr.org/2018/483.pdf

https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2018/574.pdf
https://www.blake2.net/blake2_20130129.pdf
https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://eprint.iacr.org/2014/595.pdf
https://eprint.iacr.org/2012/095.pdf
https://eprint.iacr.org/2014/402.pdf
https://www.cc.gatech.edu/{~}aboldyre/papers/bold.pdf
https://eprint.iacr.org/2018/483.pdf

Plumo: An Ultralight Blockchain Client 613

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
7th International Conference on the Theory and Application of Cryptology and
Information Security, ASIACRYPT 2001, pp. 514–532 (2001). https://www.iacr.
org/archive/asiacrypt2001/22480516.pdf

12. Boneh, D., et al.: Aggregate and verifiably encrypted signatures from bilinear maps.
In: 22nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT 2003, pp. 416–432 (2003). https://crypto.
stanford.edu/∼dabo/pubs/papers/aggreg.pdf

13. Bonneau, J., et al.: Coda: Decentralized Cryptocurrency at Scale. Cryptology
ePrint Archive, Report 2020/352 (2020). https://eprint.iacr.org/2020/352.pdf

14. Bowe, S., Grigg, J., Hopwood, D.: Recursive Proof Composition without a Trusted
Setup. Cryptology ePrint Archive, Report 2019/1021 (2019). https://eprint.iacr.
org/2019/1021.pdf

15. Bowe, S., et al.: Zexe: enabling decentralized private computation. In: 41st IEEE
Symposium on Security and Privacy, S&P 2020, pp. 947–964 (2020). https://eprint.
iacr.org/2018/962.pdf

16. Bünz, B., et al.: FlyClient: super-light clients for cryptocurrencies. In: 41st IEEE
Symposium on Security and Privacy, S&P 2020, pp. 928–946 (2020). https://eprint.
iacr.org/2019/226.pdf

17. Bünz, B., et al.: Recursive proof composition from accumulation schemes. In: 18th
Theory of Cryptography Conference, TCC 2020, vol. 2, pp. 1–18 (2020). https://
eprint.iacr.org/2020/499.pdf

18. Chen, W., et al.: Reducing Participation Costs via Incremental Verification for
Ledger Systems. Cryptology ePrint Archive, Report 2020/1522 (2020). https://
eprint.iacr.org/2020/1522.pdf

19. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves.
SIAM J. Appl. Algebra Geom. 3(2), 175–192 (2019). https://arxiv.org/pdf/1803.
02067.pdf

20. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: 1st Conference on Innovations in Computer Science, ICS 2010, pp. 310–
331 (2010). http://people.eecs.berkeley.edu/∼alexch/docs/CT10.pdf

21. Chiesa, A., et al.: Marlin: preprocessing zkSNARKS with universal and updatable
SRS. In: 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT 2020, pp. 738–768 (2020). https://
eprint.iacr.org/2019/1047.pdf

22. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. Cryptology ePrint Archive, Report
2020/351 (2020)

23. Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles.
In: 14th International Conference on the Theory of Cryptography, TCC 2016, pp.
108–138 (2016). https://eprint.iacr.org/2016/112.pdf

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: 38th Annual International Cryptology Conference, CRYPTO 2018, pp. 33–62
(2018). https://eprint.iacr.org/2017/620.pdf

25. Grassi, L., et al.: Starkad and Poseidon: New Hash Functions for Zero Knowledge
Proof Systems (2019). https://eprint.iacr.org/2019/458.pdf

26. Gudgeon, L., et al.: SoK: off the chain transactions. Cryptology ePrint Archive,
Report 2019/360 (2019). https://eprint.iacr.org/2019/360.pdf

27. Hopwood, D., et al.: Zcash Protocol Specification [Overwinter+Sapling] (2021).
https://raw.githubusercontent.com/zcash/zips/master/protocol/sapling.pdf

https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://eprint.iacr.org/2020/352.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2018/962.pdf
https://eprint.iacr.org/2018/962.pdf
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2020/1522.pdf
https://eprint.iacr.org/2020/1522.pdf
https://arxiv.org/pdf/1803.02067.pdf
https://arxiv.org/pdf/1803.02067.pdf
http://people.eecs.berkeley.edu/{~}alexch/docs/CT10.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2016/112.pdf
https://eprint.iacr.org/2017/620.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/360.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/sapling.pdf

614 P. Vesely et al.

28. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
24th International Conference on Financial Cryptography and Data Security, FC
2020, pp. 505–522 (2020). https://eprint.iacr.org/2017/963.pdf

29. Kokoris-Kogias, E., et al.: Enhancing bitcoin security and performance with strong
consistency via collective signing. In: 25th USENIX Conference on Security Sym-
posium, USENIX Security 2016, pp. 279–296 (2016). https://arxiv.org/pdf/1602.
06997.pdf

30. Kokoris-Kogias, E., et al.: OmniLedger: a secure, scale-out, decentralized ledger
via sharding. In: 39th IEEE Symposium on Security and Privacy, S&P 2018, pp.
583–598 (2018). https://eprint.iacr.org/2017/406.pdf

31. Malavolta, G., et al.: Concurrency and privacy with payment-channel networks. In:
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, pp. 455–471. Association for Computing Machinery (2017). https://eprint.
iacr.org/2017/820.pdf

32. Maller, M., et al.: Sonic: zero-knowledge SNARKs from linear-size universal and
updateable structured reference strings. In: 26th ACM Conference on Computer
and Communications Security, CS 2019, pp. 2111–2128 (2019). https://eprint.iacr.
org/2019/099.pdf

33. Meiklejohn, S.: Top ten obstacles along distributed ledgers path to adoption. IEEE
Secur. Priv. 16(4), 13–19 (2018). https://discovery.ucl.ac.uk/id/eprint/10057035/
1/accepted-topten.pdf

34. Moniz, H.: The Istanbul BFT Consensus Algorithm. arXiv abs/2002.03613.
https://arxiv.org/pdf/2002.03613.pdf

35. Nikitin, K., et al.: CHAINIAC: proactive software-update transparency via collec-
tively signed skipchains and verified builds. In: 26th USENIX Security Symposium,
USENIX Security 2014, pp. 1271–1287 (2017). https://eprint.iacr.org/2017/648.
pdf

36. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, EUROCRYPT
2007, pp. 228–245 (2007). https://www.iacr.org/archive/eurocrypt2007/45150228/
45150228.pdf

37. Vesely, P., et al.: Plumo: An ultralight blockchain client. Cryptology ePrint Archive,
Paper 2021/1361 (2021). https://eprint.iacr.org/2021/1361

38. Yin, M., et al.: HotStuff: BFT consensus with linearity and responsiveness. In:
ACM Symposium on Principles of Distributed Computing 2019, PODC 2019, pp.
347–356 (2019). https://arxiv.org/pdf/1803.05069.pdf

https://eprint.iacr.org/2017/963.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/099.pdf
https://discovery.ucl.ac.uk/id/eprint/10057035/1/accepted-topten.pdf
https://discovery.ucl.ac.uk/id/eprint/10057035/1/accepted-topten.pdf
https://arxiv.org/pdf/2002.03613.pdf
https://eprint.iacr.org/2017/648.pdf
https://eprint.iacr.org/2017/648.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://eprint.iacr.org/2021/1361
https://arxiv.org/pdf/1803.05069.pdf

SoK: Blockchain Light Clients

Panagiotis Chatzigiannis1(B), Foteini Baldimtsi1, and Konstantinos Chalkias2

1 George Mason University, Fairfax, VA, USA
{pchatzig,foteini}@gmu.edu

2 Mysten Labs, Palo Alto, CA, USA
kostas@mystenlabs.com

Abstract. Blockchain systems, as append-only ledgers, are typically
associated with linearly growing participation costs. Therefore, for a
blockchain client to interact with the system (query or submit a transac-
tion), it can either pay these costs by downloading, storing and verifying
the blockchain history, or forfeit blockchain security guarantees and place
its trust on third party intermediary servers.

With this problem becoming apparent from early works in the
blockchain space, the concept of a light client has been proposed, where
a resource-constrained client such as a browser or mobile device can par-
ticipate in the system by querying and/or submitting transactions with-
out holding the full blockchain but while still inheriting the blockchain’s
security guarantees. A plethora of blockchain systems with different light
client frameworks and implementations have been proposed, each with
different functionalities, assumptions and efficiencies. In this work we
provide a systematization of such light client designs. We unify the space
by providing a set of definitions on their properties in terms of provided
functionality, efficiency and security, and provide future research direc-
tions based on our findings.

Keywords: Blockchain · Light clients · Consensus · Long range
attacks

1 Introduction

Blockchain-based, systems such as Bitcoin and Ethereum, typically include three
types of participants: consensus nodes (also known as miners or validators), who
run a consensus protocol to reach a common agreement on the current blockchain
state, full nodes who store and communicate blockchain data, and clients which
submit queries or transactions. Full nodes are considered to have relatively suf-
ficient resources to perform their tasks, which involve communicating with each
other through a gossip protocol in a peer-to-peer fashion, storing and communi-
cating unconfirmed transactions, maintaining the entire blockchain history and

Panagiotis Chatzigiannis did part of this work during an internship at Novi Finan-
cial/Facebook Research. Konstantinos Chalkias did part of this work at Novi Finan-
cial/Facebook Research.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 615–641, 2022.
https://doi.org/10.1007/978-3-031-18283-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_31&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_31

616 P. Chatzigiannis et al.

replying to queries. To perform transactions (e.g. in cryptocurrencies such as Bit-
coin and Ethereum), clients first need to verify that the underlying blockchain
is valid. Naively, this implies downloading and verifying all blocks, an operation
that could take hours or days, and require gigabytes of bandwidth and storage.
Therefore, the only remaining option for resource-constrained clients (such as
mobile devices or browsers) is to place their trust on full nodes which will serve
as intermediary servers, provide clients a view of the blockchain based on client
queries, and forward submitted transactions on the client’s behalf.

Nevertheless, in the early days of Bitcoin, the three roles mentioned were not
necessarily distinct. For example, the Bitcoin core software [3] served as a com-
mon frontend to solve the Proof of Work puzzle as part of the consensus protocol,
run a full node and submit queries and transactions. However, it quickly became
necessary to decouple the client functionality to ensure less powerful clients can
interact with the system while preserving as many security guarantees possible,
which was mainly done through the Simplified Payment Verification (SPV) pro-
tocol [86]. Interestingly, while SPV required much less resources compared to a
full node, it was still not lightweight enough to support resource-constrained envi-
ronments with very low computational, storage and communication capabilities
such as a mobile or browser-based client, while the introduction of more complex
blockchain systems such as Ethereum made this gap even wider. In addition, SPV
introduced additional trust assumptions and attack vectors, as in many implemen-
tations all communication and queries are executed through a small set of servers.

More recently, several implementations and academic works were proposed as
“light clients” or “light-client friendly”, either tailored to specific blockchain sys-
tems, or even as entirely new systems. However, every proposal provides differ-
ent properties, definitions and goals for a light client, either implicitly or explic-
itly, while there are still many different interpretations for a “light client” in the
blockchain space, even after a decade of evolution of cryptocurrencies. As a result,
existing implementations approach the problem from a different angle, and no
complete solution exists that makes a mobile client possible while maintaining all
of the strong security guarantees of the underlying blockchain system.

Our Contributions. In this paper, we unify the diverse conception of light
clients in the blockchain world by providing definitions for light client properties
in terms of functionalities, efficiency and security, and provide a common list of
assumptions for such clients. Then, we provide a systematization of prominent
existing works based on our defined properties. Finally, through our systematiza-
tion, we provide a series of insights and gaps serving as exciting future research
directions, including considerations regarding long range attacks due to validator
re-configurations, and light clients for privacy preserving blockchains or as smart
contracts to allow for native interoperability between independent ledgers.

1.1 What is a Light Client?

We begin by providing an informal definition of a standard (non-light) client,
which is the generic protocol that directly interacts with the blockchain system.
This interaction includes at least one of the following functionalities:

SoK: Blockchain Light Clients 617

– Perform queries (e.g. the balance of an account or the state of a transaction,
with a specific time or block number as optional parameters). Such queries
are typically accompanied by proofs verifiable by the client protocol (created
by other entities in the system such as consensus participants or full nodes),
in order to preserve security and prevent the client from being manipulated
by malicious actors.

– Hold secret information (e.g. account private keys) and submit transactions
to the blockchain system. This functionality is often referred to as a wallet.

Note that the terms clients and wallets are often considered equivalent and
used interchangeably in the blockchain space, with the term “wallet” typically
associated with a specific software implementation. However, based on the above
informal definition, we make an explicit distinction between these terms: In a
nutshell, a wallet is the software implementation of the client protocol that holds
secret information used to submit transactions to the blockchain. As an example,
Bitcoin Core [3] is Bitcoin’s standard client which includes both wallet and full
node functionalities, as discussed previously.

Starting again from the cryptocurrency community, a “light client” mostly
refers to the wallet software running a “more” lightweight client implementation
in its back-end compared to the standard client. This software usually interacts
with the blockchain through a fully synchronized node, which in turn submits
the transactions on the client’s behalf (e.g. by placing them on a “mempool” and
broadcasting them to other nodes and miners through a gossip protocol). The
goal of such a client is to be more compatible with resource-constrained environ-
ments such as mobile devices or browsers, where the system’s fully-fledged client
might be prohibitive to work. Also, another goal of the light client might be to
reduce the costs of the initial joining process, without requiring to download the
full blockchain history (which for a standard client is typically in the order of
gigabytes). The trade-off however for the efficiency of such clients is usually secu-
rity; for instance they might need to trust the full node they are interacting with,
they do not verify the consensus process, do not store and communicate ledger
information themselves, and therefore do not contribute to decentralization, one
of the blockchain’s main goals.

However, in some implementations (e.g. Ethereum or Polkadot), a “light
client” refers to a “lighter” version of a full node (i.e. with faster setup and syn-
chronization time and lower computational/storage requirements), which only
stores block headers but still directly interacts with the blockchain network in
a peer-to-peer fashion, and therefore does not need to introduce all of the trust
assumptions discussed above [29]. However this type of client is still not suitable
to run in very constrained environments such as mobile devices, and is still above
the bar in terms of such requirements.

Towards the “light client” goal, some systems have adopted additional cryp-
tographic primitives or techniques, for instance succinct proofs to maintain a
“compact” representation of the blockchain with fast verification [40].

Based on the above, we can envision an “ideal” light client as a client having
very low computation, storage, communication and initial setup requirements

618 P. Chatzigiannis et al.

(making such a client feasible even in mobile devices or browsers). However, the
light client should retain the security guarantees without introducing additional
trust assumptions. Therefore, it still needs to act as the verifier of efficient cryp-
tographic proofs, which will convince the client on the received query replies
(e.g. on an account’s balance or the state of a transaction). These proofs would
be created by entities in the blockchain in the prover role (e.g. miners or full
nodes), ideally without introducing a significant overhead. In Sect. 3.1, we pro-
vide informal definitions of the above desired properties that we consider in our
work.

1.2 Light Client Implementations in Major Blockchain Systems

We now overview how a light client is perceived and implemented in prominent
blockchain systems.

Bitcoin: As discussed previously, the earliest and most well known concept of
light client is the Simplified Payment Verification (SPV) client in Bitcoin [86].
An SPV light client only verifies the chain of Proof of Work solutions through the
block headers, and requests Merkle proofs on-demand from a full node to verify
if a specific transaction is valid (e.g. for transactions that are associated with
a wallet address). This approach, while popular even by today’s wallets, is not
consistent with “decentralization”, and introduces additional security assump-
tions as well as privacy concerns. Satoshi’s whitepaper proposed “pruning” as
a method to downsize the blockchain (and therefore make it practical for light
clients) by discarding spent transaction outputs in each block. However, this
method a) requires clients to make a full synchronization even before perform-
ing pruning, and b) as of today, it has not been implemented because of security
concerns. [4,5,22,28]. We also note some early proposals to store Bitcoin’s UTXO
set in a Merkle tree for fast bootstrapping [26].

Ethereum: Being an account-based system, Ethereum has the following three
types of nodes: a) full nodes (most common), which cryptographically verify
all account states at all times, but can prune account state tries older than
1024 blocks to save space [14], b) archival nodes, which always keep the full
blockchain history without pruning, and c) light nodes which only store block
headers to reduce resource requirements. Note that pruning can potentially hurt
past transaction or account state querying (and therefore auditability) if there
are no archival nodes available to provide a query reply along with a proof
(e.g. a Merkle path). Also, Ethereum node software implementations include
client and wallet functionalities, therefore the terms clients and nodes are used
interchangeably [15].

In contrast with Bitcoin, there is no single node/client software implemen-
tation but several different open-source clients written in different programming
languages. Geth, written in Go, is the most commonly used [17], and recently
introduced a new “snapshot” functionality for full node synchronization in order

SoK: Blockchain Light Clients 619

to improve read disk access speeds, by including a “flattened” version of all
account states as well. However, no Ethereum node/client is light-client friendly
even in light mode [1,11]. In practice, considering a Raspberry Pi 4 as a “light
client” platform (which is still more powerful compared to mobile devices, espe-
cially in terms of energy resources), a geth full node with the new snapshot
features can barely run on in, as it still needs a great amount of fast read-write
disk storage (i.e. at least 1TB SSD). A geth light node comes without that
storage requirement but it still requires a slow, communication-intensive setup
phase, which is also required when the node desynchronizes (e.g. in periods of
power-off, sleep or disconnections) and is prone to database corruptions.

All Ethereum node types rely on an initial peer discovery algorithm based on
the Kademlia Distributed Hash Table (DHT) protocol to connect to other nodes.
This is in contrast with Bitcoin core software (the official standard node/client
for Bitcoin), which relies on a hardcoded DNS list feed. Lastly, Ethereum plans
to implement light clients in its Proof of Stake version (Ethereum 2.0) by intro-
ducing “sync committees” to help minimize bootstrapping costs [13], however at
the time of writing, details for these committees have not yet been released.

Algorand: Implementing an SPV client in a Proof of Stake blockchain such as
Algorand is not straightforward, since block headers are not enough to securely
verify the chain [27] (i.e. the client also needs the voters’ balances for each block,
also discussed in Sect. 4.1). Vault [80], a recent work approach based on Algo-
rand’s Proof of Stake protocol, “skips” blocks in each verification step, essentially
compressing the block history, while also compressing the voter certificates them-
selves by using a smaller committee size, but requires a larger percentage of the
committee members to vote in order to preserve the validity of the certificate.
Vault is discussed in detail in the next section.

Diem: Clients in Diem interact with the blockchain through a full node’s JSON-
RPC endpoint [9,23], however the client API at the time of writing simply pro-
vides answers to queries, without accompanying proofs to provide the client veri-
fication capabilities. A client with full verifying functionalities is work in progress
[10], and a recent work includes a framework to make client implementations in
Diem lightweight [51].

Mina - Coda: Mina inherently supports light clients (full-nodes) through recur-
sive SNARK compositions, which enable maintaining a constant-sized (20KB)
blockchain that can be efficiently verified by a client with limited resources.
It utilizes a variant of Ouroboros proof-of-stake algorithm to preserve consen-
sus security properties. However Mina, while being light-client oriented, still
requires a heavy amount of work for the Block producers, who are in the prover
role [20,21,40] (its testnet has a 8-core processor and 16 GB of RAM as minimum
requirements).

620 P. Chatzigiannis et al.

ZCash: ZIP 221 [16,19] implements Flyclient [45], an efficient block header
verification method for light clients. Based on Non-Interactive Proofs of Proof-
of-Work (NIPoPoWs) [75], it compresses blockchain transaction histories for light
clients by only needing to download a small subset of all block headers, which
correspond to blocks with higher difficulty target. We discuss both NIPoPoWs
and Flyclient in the next section and consider them in our systematization.

Cardano: Although Cardano currently has naive light client implementations
that need to place their trust on a full node, it plans to utilize recent work
(Mithril) [48] to enable secure and fast boostrapping of light clients in Proof of
Stake using a novel primitive, “stake-based threshold multisignatures”.

Cosmos - InterBlockchain Communication (IBC): Using the Tendermint
BFT Proof of Stake consensus [44], Cosmos’ InterBlockchain Communication
(IBC) [62] proposes a decentralized protocol for making blockchains commu-
nicate with each other, even when these ledgers have fundamentally different
underlying architectures. IBC has explicit light client support tailored to its
consensus algorithm [42], which only requires to download block headers after a
trusted period, which contain sufficient validator signatures proving correctness
of validator evolution up to that period. State proofs are then provided to light
clients through a full node.

Binance: A light client in Binance chain [24], which uses a Proof of Stake
consensus variant (Proof of Authority) [8], is simply implemented by querying a
full node, seemingly with a trust model that resembles SPV.

1.3 Related Systematization of Knowledge Works

A recent work [71] provides a taxonomy for cryptocurrency wallets, however its
scope is more narrow, focusing on existing wallet implementations (recall the
distiction we provided in Sect. 1.1). Still, this work provides some brief insights
on (super-)light clients, as well as definitions for the “light” property and its
security compared to a full client.

[67] provided a survey on existing blockchain scalability solutions. These
include sharding approaches such as OmniLedger [78], layer-2 blockchain proto-
cols [66] or other direct modifications to the blockchain protocol such as increas-
ing block size or replacing the chain structure entirely. At first glance, such scal-
ability solutions might seem related to the light client problem. However, their
end goal is different, which is to increase the blockchain’s transaction throughput
and latency, and not necessary to better support light clients.

2 Cryptographic Building Blocks

In this section we briefly discuss common cryptographic building blocks used by
light clients.

SoK: Blockchain Light Clients 621

2.1 Succinct Set Representation and Proofs

Cryptographic Accumulators enable a succinct and binding representation
of a set of elements S and support constant-size proofs of membership (or non-
membership) on S. An accumulator typically consists of algorithms to add an
element x to it, create a membership proof π that x is contained in the accumu-
lator, verify π, and later update a proof to π′ after an element x′ has been added
to the accumulator. Sub-categories of accumulators are defined if an accumula-
tor manager is needed, if trapdoor information exists and if it supports addi-
tional operations like removing elements or creating proofs of non-membership.
We point the reader to [35] for formal accumulator definitions and properties.
Merkle Trees [85] are a specific construction of accumulators, where each ele-
ment x is represented in a tree of hashes.

Vector commitments [47] enable committing to a vector of elements [xi]
n
i=1,

and later open the commitment at any position i of the vector. While a VC might
not be necessarily hiding as a standard commitment, it needs to be position
binding instead of just binding.

SNARKs (succinct non-interactive arguments of knowledge) are proof systems
that are succinct (i.e. have very small proof size compared to that of the state-
ment or the witness) and do not require interaction between the prover and the
verifier. zk-SNARKs are a special type of SNARKS augmented with the zero-
knowledge property, i.e. constructing a verifiable proof without revealing any
information about the witness [88]. In addition, zk-SNARK verification typi-
cally requires much less computation than constructing the proof itself. We refer
the reader to [65,88] for relevant definitions and sample constructions.

2.2 Hash Functions and Signatures

Aggregate signatures are a special type of digital signatures, where from a
set of users U with each user having a signing keypair (pku, sku) and a subset
of signatures [σu] and corresponding messages [mu], an aggregator can combine
them into a single aggregate signature σ [38,39,74].

Threshold signatures [48,91] enable a subset of k out of n valid signers to
generate a signature, but does not allow to create a valid signature with fewer
than k of those signers.

Chameleon hashes [79] are collision-resistant hash functions, that have addi-
tional properties associated with public-private key pairs compared to standard
hash functions. While anyone can compute the output of the chameleon hash
function using the public key, the private key serves as trapdoor information to
easily find collisions for a specific input.

3 Definitions

3.1 Light Client Properties

Given the plethora of light-client definitions and implementations that exist in
the blockchain space, there is a need to unify and standardize their functional,

622 P. Chatzigiannis et al.

efficiency and security properties. We informally discuss these properties below,
assuming a blockchain B which contains transactions tx and accounts acc, with
participating light clients C, consensus participants CN and full nodes N. By B1

we define the genesis block which we assume that holds all the system parameters
and will be used for verifiable bootstrapping.

Functional Properties. As discussed in Sect. 1.1, the system needs to support
the following protocols which all run between a client C and a set of full nodes
N who always keep B as an input and serve as intermediaries:

– Init(B1) → (st, π): The client on input the genesis block B1, boot-
straps/initializes its state st by running an interactive protocol with a full
node and receives a proof π of correct initialization.

– Upd(st) → (st′, π): The client updates its state from st to st′ to reflect the
newest view of B via an interactive protocol with a full node.

– VrfySt(st, st′, π) → b: The client verifies π that st′ is a correct transition from
st (or B1) and outputs b ∈ {0, 1}.

– Q(st, data) → (r, π): The client makes a query for data where data = tx (e.g.
timestamp or block height) or data = acc (e.g. an account’s address). We also
assume that data includes the type of query, i.e. current balance of an account,
sender/receiver/value of a transaction, etc. The client receives a reply r and
a proof π. If data �∈ B, Q typically returns error ⊥, however optionally, it can
still provide a proof of non-existence as (⊥, π).

– Vrfy(st, r, π) → b Client verifies π for r and outputs b ∈ {0, 1}.
– S(st, tx, acc, sk) → (st′) (optional wallet functionality): Submit a transaction
tx to B on behalf of acc with secret information sk.

Security Properties. We list the required security properties that correspond to
threats relevant to the operation of the light client.

– Secure bootstrapping and synchronizing: This property implies that given a
publicly known genesis block B1, an adversarial full node A should not be
able to convince an honest client C to accept a forged blockchain state B∗

(for any B∗) and therefore accept queries on it.

Pr

⎡
⎣
B1;
A(B∗) and C run Init(B1),Upd(st) :
(B∗ �= B) ∧ VrfySt(B1, st, π) → 1

⎤
⎦ ≤ negl(λ)

– Secure querying: After bootstrapping, a malicious adversary A should not be
able to convince a light client C to accept a forged transaction or account
state. For instance, the adversary should not be able to convince the client
that an unverified or forged transaction exists in the blockchain or accept an
incorrect account balance. Secure querying also includes the case where A
falsely convinces C the that an accepted transaction or existing account is
not part of the blockchain history (i.e. forged proof of non-existence), which

SoK: Blockchain Light Clients 623

is omitted for brevity from our definition.

Pr

⎡
⎣
B1;
A, Init(),Upd(),Q(),S() :
∃data /∈ B ∧ Q(data, st) → (r, π) ∧ Vrfy(r, π) → 1

⎤
⎦ ≤ negl(λ)

Efficiency Properties. We identify the following efficiency properties in terms of
storage, computation and communication costs (|B| denotes blockchain size, or
number of blocks). We focus on the operations that happen on the light client
side.

– Efficient bootstrapping and synchronizing: Init() and Upd() computation and
communication are sublinear to |B|.

– Efficient storage: storage costs (i.e. state size) for light clients, is sublinear to
|B|.

– Efficient communication: Q() and S() (if applicable) require communication
costs sublinear to |B|, where communication happens between C and N.

– Efficient client computation: Q() and S() (if applicable) require client com-
putation costs sublinear to |B|.

– Vrfy() requires computational costs sublinear to |B|.

Overall, the overhead for B, CN and N in order to support light clients should be
minimal compared to the equivalent system that does not provide such support.
That said, the full nodes supporting the light clients, might already perform
work linear to B.

3.2 Underlying Assumptions

While the variety of light clients operate under different threat models and
assumptions depending on the underlying system properties (i.e. PoW or PoS
based consensus), we identify a set of common assumptions that we list below.

Basic Light Client Assumptions. To the best of our knowledge, all light client
designs implicitly make the following assumptions:

– Trusted genesis block (note that [59] discusses the presence of adversarial
pre-computed genesis blocks).

– Reliable consensus (i.e. safety and liveness).
– Secure underlying cryptographic primitives.
– Weak synchrony, i.e. no long network partitions. We do not consider Eclipse

network level attacks.

Additional Assumptions. Depending on their design, some systems impose addi-
tional assumptions.

– Trusted setup phase for the underlying cryptographic primitives (i.e. zk-
SNARKs setup).

624 P. Chatzigiannis et al.

– Network-level assumptions: we assume that a client receives and relays infor-
mation in a peer-to-peer fashion (i.e. distributed networking). This is gen-
erally preferred over communicating with a single full node which could act
maliciously by relaying a forged view of B to C or prevent it from completing
Init() or Upd() (i.e. DoS attack).

– Game-theoretic assumptions, i.e. that participants behave in a rational model.
– Special assumptions e.g. fixed Proof of Work difficulty or certain blockchain

participants performing specific operations (e.g. accounts needing to restore
other accounts not included in the bootstrapped state).

4 Generic Techniques to Build Light Clients

In this section we provide an overview of several generic techniques and protocols
that can be used towards designing blockchain light clients and list examples of
light client implementations that are based on each technique.

4.1 Header Verification and Consensus Evolution

A common approach when designing bootstrapping and synchronizing for light
clients is to only have them verify the block headers and skip verification of
transactions or account states (as opposed to standard clients who verify the full
blockchain history). This popular technique is adopted by SPV [86], Ethereum
[17] and many others.

In Proof of Work consensus, block header verification is straightforward, as
the client only needs to verify the proofs of work based on block hashes and
nonces. However, additional considerations must be made in Proof of Stake or
BFT consensus blockchains to preserve security. For instance, in Proof of Stake,
normally the client also needs to verify account states and balances in the whole
blockchain history, or consider the risk of long range attacks [6]. In short, the
client needs to be convinced that the blockchain consensus has evolved correctly
and honestly throughout the history, and no malicious majority was ever present.
For BFT-consensus, there is an additional challenge: BFT validators can join and
leave, and a client needs to verify the consensus evolution through all validator
signatures. A common technique to shorten the client’s work is by storing inter-
mediate checkpoints [30] so that clients are not referring to the genesis block
each time they verify the current validator set. On the other hand, validator set
re-configurations, known as “epochs”, present additional considerations as we
discuss later in our paper.

4.2 Compressing the State

Being append-only immutable ledgers, the issue of ever-growing storage require-
ments in blockchains was implied even in the original Bitcoin whitepaper [86],
which considered pruning old, spent transaction information (although never

SoK: Blockchain Light Clients 625

adopted from the community due to security concerns). However, securely prun-
ing “obsolete” data from a blockchain is a direct step towards client efficient boot-
strapping and synchronizing as previously discussed in Sect. 3.1. As an example,
Ethanos [77] uses a form of “temporary” pruning in the account-based model.

We note that redacting is a relevant but stronger notion, with the main goal
being to make the blockchain conditionally mutable rather than just reclaiming
storage [31,32,61]. This “mutable” blockchain approach mainly relies on the
chameleon hash primitive discussed in Sect. 2.

As another method of compressing the state, aggregate signatures, such as
Schnorr and pairing-based BLS signatures [38,39], can compress many signa-
tures (even under different keys) into a single signature, which in case of BLS, is
constant-sized. However in the blockchain setting, aggregate signatures are vul-
nerable to “rogue key” attacks, where an adversary can produce an aggregated
signature for arbitrary public keys, and typically requires a zero-knowledge proof
(ZKP) of correct public key computation. Non-interactive EdDSA half aggrega-
tion [49] provides ways of compressing multiple Schnorr/EdDSA signatures to
a single signature with half the size of the original signatures. One could also
consider aggregating signatures using zero knowledge proofs [74]. Overall, aggre-
gate signatures, already used by Plumo [58], is a promising primitive towards
light client implementations, as it is estimated to save a significant portion of
the needed bandwidth and storage. Another potential option is for the valida-
tors to engage into some interactive protocol in advance as part of the consensus
committee protocol, using threshold signatures [46,60].

In Appendix A we briefly mention some additional proposals and works whose
main goal is to compress the blockchain state. Although these works are not
standalone light client implementations, they can serve as examples towards
implementing light clients. However, we do not explicitly consider them in our
systematization in the later Sections.

4.3 Removing the State

Taking it one step further, stateless blockchains aim to only keep a succinct and
verifiable representation of the entire state at all times. Compacting a blockchain
in this manner is light-client friendly1, as the bootstrapping and syncing costs
would be minimal, and the “stateless” blockchain approach used by Coda-Mina
[40], Edrax [54] and others, is also becoming popular. However this can poten-
tially hurt security guarantees, for example the consensus algorithm should be
able to securely handle forks, which can happen at any point; there is either a
significant share of malicious consensus participants, or simply a network parti-
tion. Some works [41] claim that stateless Proof of Stake blockchains are impos-
sible, while others [34,52] introduce special consensus considerations to maintain
security.

1 This approach is sometimes referenced in the literature as “extremely light clients”.

626 P. Chatzigiannis et al.

Several works point towards the stateless blockchain direction. For instance,
Vector Commitments and Subvector Commitments [93] (a special category
of Vector commitments), can be used to build a stateless cryptocurrency by
committing to key-value maps. Pointproofs [63] further improved this idea by
enabling aggregation of individual subvector commitment proofs into a single
proof by anyone, as well as cross-commitment proof aggregation (i.e. from mul-
tiple subvector commitments) while also ensuring the hiding property (which
vector commitments do not necessarily guarantee). Hyperproofs [92] are tree-
based data structures that are aggregateable and homomorphic, which are very
useful properties for implementing stateless blockchains, and have polynomial
commitments [72] as their underlying primitive. Although efficient in their aggre-
gation and update operations, hyperproofs require a trusted setup and have a
public parameter size linear to the number of the proofs (i.e. the tree leaves).
Finally, SNARKs seem to be a natural tool for implementing stateless or succinct
blockchains, while also requiring very low computation for verification; however
to be practical, ZKP friendly cryptographic primitives are recommended.

4.4 Leveraging Game-Theoretic Assumptions

In a unique approach as shown by [81], light clients can be built on top of a
smart contract interacting with the client and a set of full nodes, thus offloading
all blockchain queries and replies to those nodes, with the client themselves
performing minimal computational work. In this setting, all participants (i.e.
client and full nodes) need to lock funds in an “arbiter” contract as collateral
to discourage dishonest behavior. Therefore, rational full nodes are incentivized
to provide correct replies to the client’s queries or risk being penalized. Such an
approach naturally requires a blockchain that is augmented with smart-contract
capabilities, but is otherwise agnostic to its other properties.

5 Systematization Methodology

The design of light clients has always been a vibrant topic of discussion in the
community. A number of proposals have been given ranging from simple forum
or blog posts to rigorous theoretical works and actual deployed systems. In our
systematization, we only consider works that represent a distinct light client
proposal (i.e. not generic techniques as discussed in Sect. 4), and include at least
some form of security discussion. Our systematization is performed over the axes
corresponding to the light client properties provided in Sect. 3.1.

In particular, we first consider the functional and basic operation axis,
where we categorize light client proposals based on their functional properties.
These include their compatibility on existing systems (which is preferred), if they
require modifications or if they propose a new standalone system. We also note
if they are designed for a specific consensus algorithm, and the cryptographic
primitives they use. Table 1 shows our findings. We observe that verifiable queries
of non-existence are neglected by light client protocols and therefore omitted

SoK: Blockchain Light Clients 627

from the table. Also note that while clients should always be able to make
verifiable queries, wallet functionality is not always included in each one of them.
However, we omit a reference to this functionality from our table, as adding it
to an existing client protocol or implementation is usually trivial.

The efficiency axis, includes several aspects of light client efficiency char-
acteristics, in line with the properties discussed in Sect. 3.1. Note that our sys-
tematization is not meant to be used as a direct asymptotic comparison between
different light client proposals and protocols. Such a comparison is impossible as
the clients operate on top of different underlying schemes. In Table 2, we provide
a coarse categorization based on their performance in each efficiency category,
indicated with a “good” or “bad” practice icon (thumbs up and down icons
respectively). In general, a sublinear cost with respect to the number of blocks
is treated as good practice, however, in some cases we deviate from this rule
to take concrete costs into account - we mark those with a “*” in the Table.
For storage efficiency, we consider both the prover and verifier, where a thumbs
up icon denotes good practice for both. Communication efficiency denotes the
requirements for proof size, while bootstrapping efficiency denotes the initial
cost of client joining the system as well as the syncing maintenance cost.

Finally we consider security as the third systematization axis and present
our findings in Table 3. We start by listing any required assumptions (i.e. beyond
the Basic Assumptions listed in Sect. 3.2) that each light client proposal needs,
“-” means that no additional assumptions are made. Then, for each required
security property (secure bootstrapping and querying), we indicate whether the
light client scheme satisfies the property (✔) or a known vulnerability exists (✕)2.
In cases where a security guarantee of a light client has not been proven via a
security (or sketch) of proof, we denote this by the exclamation mark symbol “!”.
In Table 3, we also consider the network-level assumption separately, as it is more
secure for the light client to communicate with the blockchain in a distributed
fashion. Therefore we mark schemes with ✔ that communicate independently
(e.g. peer-to-peer) with the blockchain system, while schemes marked with ✕ rely
on a centralized server or full node.

In all of our Tables, we group the schemes into two main categories based
on their design. The first group follows the “stateless blockchain” approach for
constructing efficient light clients, while the second group follows the “efficient
bootstrapping - synchronization” approach. We keep the game theoretic-based
work as a third separate category.

6 Existing Light Client Constructions: Insights and Gaps

In this section we discuss the works listed in our Tables in more detail, and
present a series of interesting insights and gaps. We organize our discussion in
a similar way to our scheme grouping for each table, by first analyzing schemes

2 To mark that a system satisfies a property, we do not necessarily require a formal
security proof, but we do require at least some relevant informal discussion.

628 P. Chatzigiannis et al.

Table 1. Light client functional properties overview.

System - client Consensus Compatibility Crypto primitives

Mina [40] PoS New system SNARKs

Plumo [58] BFT Modification SNARKs, BLS signatures

PoNW [73] PoW New system or
Modification

SNARKs

Chen et al. [52] Not specified Modification SNARKs (trusted or
universal)

Batched accumulators [37] Not specified New system or
Modification

Batched RSA accumulator

Edrax [54] Not specified New system Sparse MT, Distributed VC,
zkSNARKs

SPV [86] Any Yes

Geth light mode [17] PoW Yes

Vault [80] PoS New system Stamping certificates

Ethanos [77] PoW Modification

NiPoPoW [75] PoW Modification NiPoPoWs [75]

Flyclient [45] PoW Modification MMR commitments

Diem [10] BFT Yes

Cosmos IBC [62] BFT - PoS New system

Binance [24] PoS variant New system

Cardano [48] PoS Modification Stake-based threshold
multisignatures

Lu et al. [81] Any Yes

Table 2. Light client efficiency overview.

System - client Bootstrapping Storage Communication Prover
Computation*

Client
Computation

Mina [40] � � � � �

Plumo [58] �* � (prover) � � (long intervals) �

PoNW [73] � � (prover) � � (embedded in
PoW puzzle)

�

Chen et al. [52] � � � � �

Batched accumulators [37] � � � � �

Edrax [54] � � � � �

SPV [86] �� � � � �

Geth light mode [17] � �* �* � �

Vault [80] � � � � �*

Ethanos [77] �* � � � �*

NiPoPoW [75] � � � � �

Flyclient [45] � � � � �

Diem (verifying) [10] � � � � �

Cosmos IBC [62] � � � � �

Binance [24] � � �* � �

Cardano [48] � � � � �

Lu et al. [81] � � � � �

SoK: Blockchain Light Clients 629

Table 3. Light client schemes security properties.

System - client Assumptions Bootstrapping Querying Distributed
networking

Mina [40] Trusted setup ✔ ✔ ✔

Plumo [58] Trusted setup ✔ ✔ ✕

PoNW [73] Trusted setup ! ! ✕

Chen et al. [52] - ! ! ✕

Batched
accumulators [37]

Trusted setup or
class groups

✔ ✔ !

Edrax [54] - ✔ ✔ !

SPV [86] - ✕ ✕ ✕

Geth [17] - ✔ ✔ ✔

Vault [80] Weak synchrony ✔ ✔ ✔

Ethanos [77] Active account
availability

✔ ✔ ✔

NiPoPoW [75] Fixed difficulty ✔ ✔ ✕

Flyclient [45] - ✔ ✔ ✕

Diem [10] - ✔ ✔ ✕

Cosmos IBC [62] - ! ! ✕

Binance [24] - ! ! ✕

Cardano [48] - ✔ ! ✕

Lu et al. [81] Rational behavior ! ✔ !

that follow the stateless blockchain approach, then schemes which have efficient
bootstrapping and synchronization as their main goal.

6.1 Stateless Blockchains for Light Clients

Here we consider schemes that enable a stateless blockchain design, namely a
blockchain with a succinct and verifiable representation of its entire state, as
previously discussed in Sect. 4.3.

SNARKs are an effective tool for implementing a stateless blockchain, with
Coda-Mina [40] using them in an recursive fashion, chaining them together,
eventually having a single SNARK to verify the whole blockchain state. As
discussed in Sect. 1.2, it utilizes a variant of the Ouroboros Genesis Proof of
Stake algorithm [34] to preserve consensus properties in a stateless setting.
Essentially, SNARKS are used as a tool to implement “incremental” verifica-
tion of recursively-composed proofs, and follow-up works [52,73] improved this
paradigm. However, SNARKs typically imply a significant burden on the prover.
Plumo [58] uses SNARKs for proving transitions in the consensus committee,
enabling fast synchronization of light clients through “checkpoints”, thus only
needing to fetch data after the most recent checkpoint. These checkpoints also

630 P. Chatzigiannis et al.

include periodic proofs of BFT consensus evolution to preserve consensus prop-
erties, efficiently verifiable by light clients such as resource-constrained mobile
phones. [73] also uses SNARKs and incremental verification, in addition to a
Proof-or-Work variant (Proof of Necessary Work) to take advantage of the com-
putation performed by the consensus layer, while Chen et al. [52] in a more
extensive study of incremental verification in blockchains, provide a framework
to make an existing system incrementally verifiable using a “compatible” consen-
sus algorithm. This work is also the first to provide directions for implementing
this paradigm in the context of privacy-preserving blockchains like Zcash [36]
by applying incremental verification combined with ZKPs on the public state of
the system (which for the case of Zcash is the set of serial numbers and coin
commitments). Still, it leaves many questions open, such as which entities will
be responsible for providing the proofs, or the overhead on the system which is
already not among the most efficient ones.

Gap 1. Is a complete and efficient light-client scheme possible that is compatible
with privacy-preserving systems?

We should also mention that zk-SNARKs were used in zk-rollups [18]: a layer-
2 scalability solution to move data and computation off-chain. However, except
for [52], none of the SNARK-based approaches seem to consider the prover’s
substantial overhead, which in a blockchain system would be the consensus par-
ticipants or the full nodes. Beyond the prover costs, most SNARK approaches
come with additional assumptions such as a trusted setup phase. That leads us
to the following Gap:

Gap 2. Can we design a light-client scheme that satisfies all the security prop-
erties while being efficient and practical for the client with a minimal overhead
to the consensus participants or full nodes?

As an intermediate solution, additional financial incentives for entities pro-
ducing such proofs could alleviate the extra computational requirements, how-
ever this is only applicable to blockchains that implement or contain a cryp-
tocurrency.

Improving on the Vector Commitment approach discussed in Sect. 4.3, Boneh
et al. [37] introduced techniques for efficiently batching various operations in
RSA accumulators (e.g. additions, deletions and witness creation), all of which
can potentially utilized for implementing stateless blockchains (e.g. committing
to the UTXO set as an accumulator state). RSA accumulators are used by
MiniLedger [50] as an alternative model to Merkle trees discussed above. Since
RSA Accumulators involve a trusted setup (or novel but more expensive class
groups), hash-based accumulators were proposed by [57], however with a different
goal, to reduces storage for a fully validating node. An additional concern in the
RSA accumulator approach is the extra overhead of maintaining the accumulator
(which depending on the implementation, would be paid either by consensus
participants or full nodes).

SoK: Blockchain Light Clients 631

Edrax [54] proposed a cryptocurrency where validators only need to ver-
ify a commitment of the most recent state. Edrax implemented this approach
in the UTXO model by utilizing sparse Merkle trees to represent the UTXO
set, and also in account model by utilizing distributed vector commitments. In
the UTXO-based case, validators first verify if a transaction’s input belongs
in the set, and then simply remove that input and add the output in the set.
In the account-based case, they utilize distributed vector commitments to still
make transactions possible without requiring interaction between the sender and
receiver. However, clients need to constantly synchronize their local proofs with
respect to those commitments, and will have to pay a significant synchronization
cost after an offline period. Although Edrax proposes an additional untrusted
entity to provide synchronization proofs on behalf of the client, this nevertheless
introduces a significant overhead overall in the system.

Insight 1. Redactable blockchains have not been explored as a solution towards
implementing light clients.

Blockchain redaction, discussed in Sect. 4.2, has the potential to be utilized in
several ways, for instance, a series of blocks can be replaced by a single block
containing compressed information. An interesting direction might be to execute
redaction operations at the consensus layer.

6.2 Reducing Bootstrapping and Synchronization Costs

An important property of light clients is the requirement for an efficient way to
initialize itself and join the system; downloading gigabytes of data and perform-
ing heavy verification operations on millions of transactions is prohibitive for
a mobile or browser-based client. This is also important if the client is discon-
nected for some periods of time and needs to reconnect, or even just to maintain
a synchronization with the current state of the blockchain.

Gap 3. No light client approach or implementation explicitly considers frequent
offline phases, where the client needs to re-sync with the current system state.

As discussed in Sect. 1.2, SPV follows the Header verification approach, which
while generally efficient for a light client, suffers from potential security issues
(especially in Proof of Stake and BFT consnensus), and relies on the availabil-
ity and honesty of a small set of servers, while also exposing its privacy to the
chosen server(s) from that set [7,12]. Ethereum’s native light client also follows
this paradigm without relying on a chosen server or full node, however its con-
crete bootstrapping, storage and communication requirements are practically
prohibitive for a light client implementation.

Vault [80] is a prominent example of a standalone system designed for sig-
nificantly decreasing bootstrapping and participation costs. It is based on Algo-
rand’s proof of stake protocol, however it works in an account based model
using sparse Merkle trees similar to Ethereum. Vault introduces techniques such

632 P. Chatzigiannis et al.

as decoupling double-spend detection from account balances by making transac-
tions valid only for a parameterized block window, while also pruning accounts
with no balance, sharding the account state tree across participants, and using
additional “stamping” certificates to convince new joining clients on block valid-
ity, which have reduced size by trading off liveness while still preserving safety.
Although Vault (as a standalone cryptocurrency) was not designed with light
clients in mind (e.g. a client needs to constantly perform an update operation
while its transaction is pending), its techniques which seem to decrease boot-
strapping costs by one or two orders of magnitude, can serve as a guideline for
implementing light clients on top of existing systems.

In another approach, Ethanos [77] chooses to reduce the bootstrapping costs
on Ethereum by not downloading “inactive” accounts, and invoking a “restore”
transaction when such an account needs to reactivate itself. This special trans-
action type has the inherent limitation of needing to be submitted by another
“active” address, and is essentially a Merkle proof of the last known account
state (or checkpoint), along with void proofs that no more recent checkpoint
exists (paired with a Bloom filter for space efficiency). In this manner, Ethanos
reduces bootstrapping costs by a constant factor of 2.

Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) [75] further improve
the notion of SPV client by introducing a new primitive under the same name.
This primitive, designed for Proof of Work blockchains, constructs a multi-layer
chain of blocks from the basic chain, where each layer is essentially a skip list of
blocks that satisfy a lower target (i.e. higher difficulty) in the PoW puzzle. In this
way, a new client can avoid fetching the entire chain of block headers as in SPV,
which translates to logarithmic asymptotic costs (or a few hundred kilobytes
proof) making an even more efficient light client. While NIPoPoWs assumed
static difficulty across the chain, Flyclient [45] uses an efficiently-updatable
Merkle tree variant (Merkle Mountain Range commitments) as underlying prim-
itive for compatibility with variable-difficulty PoW chains.

We also mention some works further improving NIPoPoWs and FlyClient.
Kiayias et al. [76] discuss how to securely implement them on top of existing
systems through a “velvet” fork, i.e. without requiring a soft or hard fork but
only through a minority of the miners. TxChain [96] extends NIPoPoWs and Fly-
Client to efficiently handle a large number of transaction verifications distributed
across several blocks, by introducing a new transaction type (“contingent” trans-
action), serving as a single reference to other transactions and replacing the need
to provide transaction and block inclusion proofs for the skipped blocks (which
potentially can be more expensive even than a naive SPV client).

Diem’s verifying light client [10] (as discussed in Sect. 1.2) fully relies on a
full node to receive query replies and proofs (in contrast, Binance light client [24]
which also relies on a full node, does not explicitly verifies any proofs). As Diem
utilizes a BFT consensus, it also needs to receive “epoch proofs”, which prove to
the client correctness of evolution of validator signatures, which is the approach
discussed in Sect. 4.1. In addition, recent work [51] suggest to further compress
epoch proofs by an epoch skipping technique, without however addressing long

SoK: Blockchain Light Clients 633

range attacks. Also as discussed in Sect. 1.2, Tendermint [42] (used in Cosmos
IBC) proposes a similar technique based on the latest block height which ensures
that at least one validator is honest based on validator intersection and the
byzantine threshold. Plumo’s proofs of BFT consensus evolution [58] also aim
to reduce client synchronization load as discussed previously.

Insight 2. Light clients in BFT-based consensus blockchains can be imple-
mented through full nodes, where clients make queries and full nodes provide
verifiable proofs alongside with epoch proofs.

Insight 3. In BFT-based consensus blockchains, aggregate signatures (e.g. BLS
signatures or ZK-friendly signatures) can be used to compress not only transac-
tions, but also validator signatures, leading to further reduced bootstrapping and
synchronization costs for light clients.

An alternative approach to Diem and Plumo is used by Dfinity’s Internet
computer [68], a blockchain-based protocol that creates a network of decentral-
ized data centers running smart contracts, inspired by Ethereum. Dfinity utilizes
key re-sharing within a threshold signature scheme to accommodate validators
joining or leaving, aiming at circumventing the need for tracking their key evo-
lution by a client [64]. However, it is unclear whether this approach guarantees
BFT security at all times, as it assumes that validators will delete their old
shares afterwards. For instance, suppose the consensus system has 7 honest val-
idators from a quorum of 10 validators, which guarantees the 2f + 1 consensus
security properties. Still, if 12 validators join afterwards, which now implies a
tolerance of 7 Byzantine validators, this can potentially compromise consensus,
as the previous 7 “honest” validators might not have deleted their key shares. In
addition, Aumasson and Shlomovits [33] highlighted the possibility of an adver-
sary corrupting the key re-sharing process in some threshold signature schemes,
which could potentially hurt consensus liveness.

Insight 4. For blockchains based on BFT consensus, frequent validator recon-
figurations (e.g. joining, leaving or key rotations) usually imply additional work
for clients.

While the insight above is not applicable to off-chain reconfiguration
approaches such as Dfinity [64], such approaches are typically prone to long
range attacks as we discussed previously.

Gap 4. A light client of a BFT-based consensus blockchain normally needs to
verify the evolution of validator signatures using “epoch proofs” to prevent long
range attacks. Is it possible to design a secure protocol for BFT consensus that
either compress these proofs or circumvents this requirement entirely?

More recently, Chaidos and Kiayias [48] proposed a new primitive, called
stake-based threshold multisignatures. This primitive enables a client’s boot-
strapping through header verification in Proof of Stake systems like Cardano, in
a similar way to SPV, without however needing to verify the participant’s stake
history (as discussed in Sect. 4.1) and without the need of any modifications to
the Proof of Stake consensus as in Mina [40].

634 P. Chatzigiannis et al.

6.3 Smart-Contract Based Approaches and Blockchain
Interoperability

We briefly discuss implementing light clients by querying full nodes though a
smart contract, and assuming “rational” behavior from the client and the full
nodes after the required collateral deposits to participate, similar to the work
by Lu et al. [81]. This approach can potentially address many of the previously
discussed gaps, as the rational behavior assumption can circumvent technical
difficulties or limitations which rise from complex cryptographic primitives. For
instance, as [81] showed, a light client can make a query of non-existence, and
assuming full node rational behavior, will get a correct reply (i.e. inclusion proof
if queried data exists, or a negative reply in case such data does not exist, which
can be challenged if another node presents an inclusion proof thus penalizing a
false non-existence claim). However there are several caveats to such an approach:
First it naturally requires a smart-contract, which implies a time delay until it
received the reply to its query, incompatibility with blockchains without a smart
contract, and additional monetary costs for the contract’s “gas” fees which can
be potentially very high. Also, the client might merely receive an answer to
its query (e.g. a simple “�” reply if answer to query does not exist) without a
cryptographic proof (as defined in Sect. 3.1 as an optional functional property),
which leaves this problem still open. Finally, the game-theoretic model might not
capture cases where the client is considered a “high value target”, where a full
node (or a coalition of them) might choose to actually behave “irrationally” and
intentionally risk being penalized in hope for other (not necessary monetary)
gains.

Gap 5. Can we design a light client protocol compatible with queries of trans-
action or account state non-existence proofs?

From the above approach we observe however that it is trivial to implement
an efficient light client that makes and receives queries to a “trusted oracle”
(which in the above case were the rational full nodes following the protocol),
without needing to make verifications, even if such an oracle is decentralized.
This implies that such a client would be possible to exist even in extremely
resource-constrained environments such as a smart contract itself :

Insight 5. Interoperability: Ideally, light clients should be implemented as a
smart contract without the use of trusted oracles. This would allow for verifying
transactions of a blockchain A inside a contract of blockchain B.

Gap 6. Implementing reasonably efficient light clients inside smart contracts
might be impractical for many non zero-knowledge proof friendly blockchains or
ledgers without succinct fraud proof in optimistic settings [18].

Although Cosmos makes a first step towards building a light client compatible
with several blockchain systems (including those with smart contracts), it is still
not known if we can also utilize previous techniques or primitives to implement
such clients in pure smart-contract based blockchains, e.g. Ethereum.

SoK: Blockchain Light Clients 635

7 Conclusion

The blockchain community is witnessing a continuous effort towards imple-
menting efficient light clients, suitable for resource-constrained devices or envi-
ronments like browsers or mobile phones, while maintaining the underly-
ing blockchain’s security guarantees, and without introducing additional trust
assumptions. As we observe different perceptions of light client properties across
blockchain systems, we first provide a categorization of the most important light
client properties. Then, we present a systematization of proposed light clients
across three axes derived from our property categorization. Our systemization
helps to identify a number of exciting open problems on implementing light
clients which we summarize below.

We first observe that light clients satisfying our properties, and compatible
with privacy preserving systems have not yet been implemented (Gap 1), with
recent works providing preliminary directions [52]. In addition, no current scheme
seems to satisfy all of our functional, efficiency and security properties together
(Gap 2). Also, existing works seem to neglect the case of frequent light client
offline phases, which might be inefficient even for clients with efficient bootstrap-
ping protocols (Gap 3). Distributing prover’s work among the main blockchain
participants (consensus layer or full nodes) along with providing incentives are
possible directions.

Furthermore, it is not yet known if light clients can be efficient enough, such
that they can be run from smart contracts across different blockchains (Gap
6). SNARKs seem to be a promising primitive towards this, although this still
need to be shown in practice. Also there seems to be room for improvement for
light clients implemented on BFT-consensus blockchains (Gap 4) by leveraging
primitives such as key re-sharing and threshold signatures in off-chain protocols,
while however considering Byzantine nodes in special cases. Finally, proofs of
non-existence, a desired property in blockchain systems, is still missing from all
current light client implementations (Gap 5). We hope our work will provide
research directions for the community towards usable and secure light clients for
blockchain systems.

Acknowledgements. Foteini Baldimtsi and Panagiotis Chatzigiannis were supported
by NSF #1717067, NSA #204761 and a Facebook Research Award. Panagiotis Chatzi-
giannis was partially supported by Harmony through the Research DAO. The authors
would like to thank Matthew Zipkin for the constructive feedback.

A Towards the Light Client Goal

A number of works and proposals exist towards improving efficiency in state
representation. Merkle trees were initially proposed to store Bitcoin’s UTXO set
(which represents the blockchain state) for fast bootstrapping [26], with a O(lgn)
algorithm for updating and re-balancing the tree across blocks (i.e. updating
values, insertions and deletions of accounts). Then [89] further optimized the
re-balancing algorithm using AVL trees. MiniLedger [50] also used Merkle trees

636 P. Chatzigiannis et al.

to represent the history of transactions per participant. Meanwhile, Ethereum
used tries as a more efficient method to represent the account-balance state [95].

In addition, Karakostas et al. [70] proposed a modification of storing the
UTXO set which represents the blockchain state in UTXO-model cryptocur-
rencies by incentivizing constructing “state-friendly” transactions, while [94]
proposes a modification on Bitcoin to represent transactions with a trie-
based authenticated data structure to enable efficient membership and non-
membership proofs. Stateless clients have also been considered in Ethereum using
asynchronous accumulators [25,90].

Aiming exclusively for faster client bootstrapping, [2] suggested to distribute
the state through external file sharing protocols (e.g. Bittorrent). Then [53]
proposed a modification designed for Proof-of-Work blockchains that stores a
constant number of state snapshots, in a similar fashion to Ethereum. Similarly,
[83] proposes a state-based synchronization based on Bitcoin (i.e. snapshot-based
approach), forming a side-chain linked to the main chain, and claiming to reduce
blockchain size by 93%. Which however required modifications to Bitcoin, since
blocks with invalid attached states should be rejected.

Works that include blockchain pruning include [43], which replaces a UTXO
set with an account tree that is cryptographically tied to each mined block, and
[87], which proposes a pruning algorithm for permissioned blockchains, executed
by each participant separately, using predicate functions to remove spent trans-
actions. Matzutt et al. [84] proposed a pruning scheme for Bitcoin that makes
snapshots of the Bitcoin state for efficient bootstrapping of new clients, and
also includes a qualitative comparison of related work to pruning and efficient
bootstrapping. In addition, Corda [69] can aggregate (and then prune) previous
transactions into a single new, reissued transaction.

In the context of blockchain redaction, in addition to preliminary works as
[32], we mention [82] designed for “execute-order-validate blockchains” such as
Hyperledger Fabric, however with a goal to improve privacy rather efficiency.
Also [56] and [55] consider “policy-based” blockchain redaction, which can also
serve as a useful tool towards light client implementations.

References

1. Ask about geth: snapshot acceleration. https://blog.ethereum.org/2020/07/17/
ask-about-geth-snapshot-acceleration/

2. Bitcoin blockchain data torrent. https://bitcointalk.org/index.php?topic=
145386.0

3. Bitcoin core client. https://bitcoin.org/en/bitcoin-core/
4. Bitcoin wiki - clients. https://en.bitcoin.it/wiki/Clients
5. Bitcoin wiki - scalability. https://en.bitcoin.it/wiki/Scalability#Simplified

payment verification
6. Blockchain light client. https://medium.com/codechain/blockchain-light-client-

1171dfa1269a
7. Breadwallet SPV bitcoin C library. https://github.com/breadwallet/breadwallet-

core

https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration/
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration/
https://bitcointalk.org/index.php?topic=145386.0
https://bitcointalk.org/index.php?topic=145386.0
https://bitcoin.org/en/bitcoin-core/
https://en.bitcoin.it/wiki/Clients
https://en.bitcoin.it/wiki/Scalability#Simplified_payment_verification
https://en.bitcoin.it/wiki/Scalability#Simplified_payment_verification
https://medium.com/codechain/blockchain-light-client-1171dfa1269a
https://medium.com/codechain/blockchain-light-client-1171dfa1269a
https://github.com/breadwallet/breadwallet-core
https://github.com/breadwallet/breadwallet-core

SoK: Blockchain Light Clients 637

8. Consensus engine of binance smart chain. https://docs.binance.org/smart-chain/
guides/concepts/consensus.html

9. Diem client SDKs. https://github.com/diem/client-sdks
10. Diem verifying client. https://github.com/diem/diem/blob/main/sdk/client/src/

verifying client.rs
11. Dodging a bullet: Ethereum state problems. https://blog.ethereum.org/2021/05/

18/eth state problems/
12. Electrum docs - frequently asked questions. https://electrum.readthedocs.io/en/

latest/faq.html
13. Eth 2.0 specs - minimal light client. https://github.com/ethereum/eth2.0-specs/

blob/dev/specs/altair/sync-protocol.md
14. The ethereum-blockchain size will not exceed 1TB anytime soon. https://dev.to/

5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
15. Ethereum nodes and clients. https://ethereum.org/en/developers/docs/nodes-

and-clients/
16. Explaining flyclient. https://electriccoin.co/blog/explaining-flyclient/
17. How to run a light node with geth. https://ethereum.org/en/developers/tutorials/

run-light-node-geth/
18. An incomplete guide to rollups. https://vitalik.ca/general/2021/01/05/rollup.html
19. Introducing heartwood. https://electriccoin.co/blog/introducing-heartwood/
20. Mina documentation. https://docs.minaprotocol.com/en
21. Mina protocol - a succinct blockchain. https://masked.medium.com/the-coda-

protocol-bbcb4b212b13
22. Nakamoto: a new bitcoin light-client. https://cloudhead.io/nakamoto/
23. The official diem client SDK for python. https://github.com/diem/client-sdk-

python
24. Run a light client to join binance chain. https://docs.binance.org/light-client.html
25. The stateless client concept. https://ethresear.ch/t/the-stateless-client-concept/

172
26. Storing UTXOs in a balanced Merkle tree. https://bitcointalk.org/index.php?

topic=101734.msg1117428
27. A suggestion for a light-client wallet (like the BTC SPV wallet with

Merkle tree). https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-
like-the-btc-spv-wallet-with-merkle-tree/1092/4

28. Ultimate blockchain compression w/ trust-free lite nodes. https://bitcointalk.org/
index.php?topic=88208.0/

29. What is a light client and why you should care? https://www.parity.io/blog/what-
is-a-light-client/

30. Amsden, Z., et al.: The libra blockchain (2019). https://developers.libra.org/docs/
assets/papers/the-libra-blockchain.pdf

31. Ashritha, K., Sindhu, M., Lakshmy, K.: Redactable blockchain using enhanced
chameleon hash function. In: 2019 5th International Conference on Advanced Com-
puting Communication Systems (ICACCS), pp. 323–328 (2019). https://doi.org/
10.1109/ICACCS.2019.8728524

32. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain - or -
rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017, pp. 111–126.
IEEE (2017). https://doi.org/10.1109/EuroSP.2017.37

33. Aumasson, J.P., Shlomovits, O.: Attacking threshold wallets. Cryptology ePrint
Archive, Report 2020/1052 (2020). https://eprint.iacr.org/2020/1052

https://docs.binance.org/smart-chain/guides/concepts/consensus.html
https://docs.binance.org/smart-chain/guides/concepts/consensus.html
https://github.com/diem/client-sdks
https://github.com/diem/diem/blob/main/sdk/client/src/verifying_client.rs
https://github.com/diem/diem/blob/main/sdk/client/src/verifying_client.rs
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://electrum.readthedocs.io/en/latest/faq.html
https://electrum.readthedocs.io/en/latest/faq.html
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/altair/sync-protocol.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/altair/sync-protocol.md
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://electriccoin.co/blog/explaining-flyclient/
https://ethereum.org/en/developers/tutorials/run-light-node-geth/
https://ethereum.org/en/developers/tutorials/run-light-node-geth/
https://vitalik.ca/general/2021/01/05/rollup.html
https://electriccoin.co/blog/introducing-heartwood/
https://docs.minaprotocol.com/en
https://masked.medium.com/the-coda-protocol-bbcb4b212b13
https://masked.medium.com/the-coda-protocol-bbcb4b212b13
https://cloudhead.io/nakamoto/
https://github.com/diem/client-sdk-python
https://github.com/diem/client-sdk-python
https://docs.binance.org/light-client.html
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-like-the-btc-spv-wallet-with-merkle-tree/1092/4
https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-like-the-btc-spv-wallet-with-merkle-tree/1092/4
https://bitcointalk.org/index.php?topic=88208.0/
https://bitcointalk.org/index.php?topic=88208.0/
https://www.parity.io/blog/what-is-a-light-client/
https://www.parity.io/blog/what-is-a-light-client/
https://developers.libra.org/docs/assets/papers/the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain.pdf
https://doi.org/10.1109/ICACCS.2019.8728524
https://doi.org/10.1109/ICACCS.2019.8728524
https://doi.org/10.1109/EuroSP.2017.37
https://eprint.iacr.org/2020/1052

638 P. Chatzigiannis et al.

34. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press,
October 2018. https://doi.org/10.1145/3243734.3243848

35. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 301–315. IEEE (2017). https://doi.org/
10.1109/EuroSP.2017.13

36. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014. https://doi.org/10.1109/SP.2014.36

37. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

38. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

39. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

40. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352 (2020). https://eprint.iacr.
org/2020/352

41. Bonnet, F., Bramas, Q., Défago, X.: Stateless distributed ledgers. In: Georgiou,
C., Majumdar, R. (eds.) NETYS 2020. LNCS, vol. 12129, pp. 349–354. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67087-0 22

42. Braithwaite, S., et al.: A tendermint light client. CoRR abs/2010.07031 (2020).
https://arxiv.org/abs/2010.07031

43. Bruce, J.: The mini-blockchain scheme (2017). https://cryptonite.info/files/mbc-
scheme-rev3.pdf

44. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR
abs/1807.04938 (2018). https://arxiv.org/abs/1807.04938

45. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryp-
tocurrencies. In: 2020 IEEE Symposium on Security and Privacy, pp. 928–946.
IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.
00049

46. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1769–1787 (2020)

47. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

48. Chaidos, P., Kiayias, A.: Mithril: stake-based threshold multisignatures. Cryptol-
ogy ePrint Archive, Report 2021/916 (2021). https://ia.cr/2021/916

49. Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: Non-interactive half-
aggregation of EdDSA and variants of schnorr signatures. In: Paterson, K.G. (ed.)
CT-RSA 2021. LNCS, vol. 12704, pp. 577–608. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75539-3 24

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-030-67087-0_22
https://arxiv.org/abs/2010.07031
https://cryptonite.info/files/mbc-scheme-rev3.pdf
https://cryptonite.info/files/mbc-scheme-rev3.pdf
https://arxiv.org/abs/1807.04938
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1007/978-3-642-36362-7_5
https://ia.cr/2021/916
https://doi.org/10.1007/978-3-030-75539-3_24
https://doi.org/10.1007/978-3-030-75539-3_24

SoK: Blockchain Light Clients 639

50. Chatzigiannis, P., Baldimtsi, F.: Miniledger: compact-sized anonymous and
auditable distributed payments. Cryptology ePrint Archive, Report 2021/869
(2021). https://eprint.iacr.org/2021/869

51. Chatzigiannis, P., Chalkias, K.: Proof of assets in the diem blockchain. Cryptology
ePrint Archive, Report 2021/598 (2021). https://eprint.iacr.org/2021/598

52. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. Cryptology ePrint Archive, Report
2020/1522 (2020). https://ia.cr/2020/1522

53. Chepurnoy, A., Larangeira, M., Ojiganov, A.: Rollerchain, a blockchain with safely
pruneable full blocks (2016)

54. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018).
https://eprint.iacr.org/2018/968

55. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled
rewriting in blockchains: chameleon-hashing gone attribute-based. In: NDSS 2019.
The Internet Society, February 2019

56. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permis-
sionless setting. In: 2019 IEEE Symposium on Security and Privacy, pp. 124–138.
IEEE Computer Society Press, May 2019. https://doi.org/10.1109/SP.2019.00039

57. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin
UTXO set. Cryptology ePrint Archive, Report 2019/611 (2019). https://eprint.
iacr.org/2019/611

58. Gabizon, A., et al.: Plumo: towards scalable interoperable blockchains using ultra
light validation systems (2020)

59. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465–495. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 16

60. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold schnorr with state-
less deterministic signing from standard assumptions. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 127–156. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 6

61. Gligor, V.D., Woo, S.L.M.: Establishing software root of trust unconditionally. In:
NDSS 2019. The Internet Society, February 2019

62. Goes, C.: The interblockchain communication protocol: an overview. CoRR
abs/2006.15918 (2020). https://arxiv.org/abs/2006.15918

63. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for
multiple vector commitments. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.)
ACM CCS 2020, pp. 2007–2023. ACM Press, November 2020. https://doi.org/10.
1145/3372297.3417244

64. Groth, J.: Introducing noninteractive distributed key generation. https://medium.
com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-
4af800db869d

65. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

66. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

https://eprint.iacr.org/2021/869
https://eprint.iacr.org/2021/598
https://ia.cr/2020/1522
https://eprint.iacr.org/2018/968
https://doi.org/10.1109/SP.2019.00039
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-030-84242-0_6
https://arxiv.org/abs/2006.15918
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1145/3372297.3417244
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

640 P. Chatzigiannis et al.

67. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey.
IEEE Access 8, 125244–125262 (2020). https://doi.org/10.1109/ACCESS.2020.
3007251

68. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system (2018)

69. Hearn, M., Brown, R.G.: Corda: a distributed ledger (2019). https://www.corda.
net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.
pdf

70. Karakostas, D., Karayannidis, N., Kiayias, A.: Efficient state management in dis-
tributed ledgers. Cryptology ePrint Archive, Report 2021/183 (2021). https://
eprint.iacr.org/2021/183

71. Karantias, K.: SoK: a taxonomy of cryptocurrency wallets. Cryptology ePrint
Archive, Report 2020/868 (2020). https://eprint.iacr.org/2020/868

72. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

73. Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with
fairness guarantees. Cryptology ePrint Archive, Report 2020/190 (2020). https://
eprint.iacr.org/2020/190

74. Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggregating hash-based
signatures using starks. Cryptology ePrint Archive, Report 2021/1048 (2021).
https://ia.cr/2021/1048

75. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

76. Kiayias, A., Polydouri, A., Zindros, D.: The velvet path to superlight blockchain
clients. Cryptology ePrint Archive, Report 2020/1122 (2020). https://eprint.iacr.
org/2020/1122

77. Kim, J., Lee, J., Koo, Y., Park, S., Moon, S.: Ethanos: efficient bootstrapping
for full nodes on account-based blockchain. In: Barbalace, A., Bhatotia, P., Alvisi,
L., Cadar, C. (eds.) EuroSys 2021: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, 26–28 April 2021, pp. 99–113. ACM
(2021). https://doi.org/10.1145/3447786.3456231

78. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy, pp. 583–598. IEEE Computer Society Press,
May 2018. https://doi.org/10.1109/SP.2018.000-5

79. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology ePrint
Archive, Report 1998/010 (1998). https://eprint.iacr.org/1998/010

80. Leung, D., Suhl, A., Gilad, Y., Zeldovich, N.: Vault: fast bootstrapping for the
algorand cryptocurrency. In: NDSS 2019. The Internet Society, February 2019

81. Lu, Y., Tang, Q., Wang, G.: Generic superlight client for permissionless
blockchains. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020,
Part II. LNCS, vol. 12309, pp. 713–733. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59013-0 35

82. Manevich, Y., Barger, A., Assa, G.: Redacting transactions from execute-order-
validate blockchains. In: IEEE International Conference on Blockchain and Cryp-
tocurrency, ICBC 2021, Sydney, Australia, 3–6 May 2021, pp. 1–9. IEEE (2021).
https://doi.org/10.1109/ICBC51069.2021.9461093

https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/ACCESS.2020.3007251
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2020/868
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2020/190
https://ia.cr/2021/1048
https://doi.org/10.1007/978-3-030-51280-4_27
https://eprint.iacr.org/2020/1122
https://eprint.iacr.org/2020/1122
https://doi.org/10.1145/3447786.3456231
https://doi.org/10.1109/SP.2018.000-5
https://eprint.iacr.org/1998/010
https://doi.org/10.1007/978-3-030-59013-0_35
https://doi.org/10.1007/978-3-030-59013-0_35
https://doi.org/10.1109/ICBC51069.2021.9461093

SoK: Blockchain Light Clients 641

83. Marsalek, A., Zefferer, T., Fasllija, E., Ziegler, D.: Tackling data inefficiency: com-
pressing the bitcoin blockchain. In: 2019 18th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications/13th IEEE Inter-
national Conference on Big Data Science and Engineering (TrustCom/BigDataSE),
pp. 626–633 (2019). https://doi.org/10.1109/TrustCom/BigDataSE.2019.00089

84. Matzutt, R., Kalde, B., Pennekamp, J., Drichel, A., Henze, M., Wehrle, K.: How
to securely prune bitcoin’s blockchain. In: 2020 IFIP Networking Conference, Net-
working 2020, Paris, France, 22–26 June 2020, pp. 298–306. IEEE (2020). https://
ieeexplore.ieee.org/document/9142720

85. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

86. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

87. Palm, E., Schelén, O., Bodin, U.: Selective blockchain transaction pruning and
state derivability. In: Crypto Valley Conference on Blockchain Technology, CVCBT
2018, Zug, Switzerland, 20–22 June 2018, pp. 31–40. IEEE (2018). https://doi.org/
10.1109/CVCBT.2018.00009

88. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press, May 2013. https://doi.org/10.1109/SP.2013.47

89. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated
dynamic dictionaries, with applications to cryptocurrencies. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 376–392. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 21

90. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI.
In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 16

91. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

92. Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang, Y.: Hyper-
proofs: aggregating and maintaining proofs in vector commitments. Cryptology
ePrint Archive, Report 2021/599 (2021). https://eprint.iacr.org/2021/599

93. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 45–64. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57990-6 3

94. White, B.: A theory for lightweight cryptocurrency ledgers (2015). https://
raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/
lightcrypto.pdf

95. Wood, G.: Ethereum: A secure decentralized generalised transaction ledger (2021).
https://ethereum.github.io/yellowpaper/paper.pdf. Accessed 14 Feb 2021

96. Zamyatin, A., Avarikioti, Z., Perez, D., Knottenbelt, W.J.: TxChain: efficient cryp-
tocurrency light clients via contingent transaction aggregation. Cryptology ePrint
Archive, Report 2020/580 (2020). https://eprint.iacr.org/2020/580

https://doi.org/10.1109/TrustCom/BigDataSE.2019.00089
https://ieeexplore.ieee.org/document/9142720
https://ieeexplore.ieee.org/document/9142720
https://doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-319-70972-7_21
https://doi.org/10.1007/978-3-319-70972-7_21
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://eprint.iacr.org/2021/599
https://doi.org/10.1007/978-3-030-57990-6_3
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2020/580

Achieving Almost All Blockchain
Functionalities with Polylogarithmic

Storage

Parikshit Hegde1(B), Robert Streit1, Yanni Georghiades1, Chaya Ganesh2,
and Sriram Vishwanath1

1 The University of Texas at Austin, Texas, USA
{hegde,rpstreit,yanni.georghiades,sriram}@utexas.edu

2 Indian Institute of Science, Karnataka, India
chaya@iisc.ac.in

Abstract. In current blockchain systems, full nodes that perform all of
the available functionalities need to store the entire blockchain. In addi-
tion to the blockchain, full nodes also store a blockchain-summary, called
the state, which is used to efficiently verify transactions. With the size of
popular blockchains and their states growing rapidly, full nodes require
massive storage resources in order to keep up with the scaling. This leads
to a tug-of-war between scaling and decentralization since fewer entities
can afford expensive resources. We present hybrid nodes for proof-of-work
(PoW) cryptocurrencies which can validate transactions, validate blocks,
validate states, mine, select the main chain, bootstrap new hybrid nodes,
and verify payment proofs. With the use of a protocol called trimming,
hybrid nodes only retain polylogarithmic number of blocks in the chain
length in order to represent the proof-of-work of the blockchain. Hybrid
nodes are also optimized for the storage of the state with the use of
stateless blockchain protocols. The lowered storage requirements should
enable more entities to join as hybrid nodes and improve the decentral-
ization of the system. We define novel theoretical security models for
hybrid nodes and show that they are provably secure. We also show that
the storage requirement of hybrid nodes is near-optimal with respect to
our security definitions.

Keywords: Blockchains · Cryptocurrency · Storage · NIPoPoW ·
Hybrid nodes · Trimming

1 Introduction

Blockchains enable a group of untrusting parties to securely maintain a dis-
tributed ledger without relying on a trusted third party. Instead, the power
to decide what is recorded in the blockchain is distributed amongst a set of
decentralized nodes. This property is desirable for applications used by a set of
mutually distrustful parties, such as a digital currency. For this reason, cryp-
tocurrencies are a fundamental application of blockchains and are increasingly
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 642–660, 2022.
https://doi.org/10.1007/978-3-031-18283-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_32&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_32

Achieving Almost All Blockchain Functionalities 643

growing in popularity. In this paper, we focus on cryptocurrencies built on top of
a proof-of-work (PoW) blockchain employing the longest chain rule. A blockchain
node for a cryptocurrency typically has the following functionalities:

1. Transaction validation: When the node receives a new transaction, it checks
if the transaction is valid with respect to the transactions already confirmed
in the blockchain.

2. Block validation: When the node receives a new block, it verifies that the
block hash is valid, all the transactions in the block are valid, and the block
otherwise follows all of the conventions imposed by the protocol.

3. State Validation: Given a summary of currency ownership in the system,
called the state, the node verifies that the state is consistent with the
blockchain.

4. Mining : The node can append a block to the blockchain by verifying its
contents and producing a PoW for the block. A node which does not mine
blocks is assumed to have mining power 0.

5. Chain Selection: Given a set of conflicting chains, the node can choose the
main chain which has the most PoW. Any two honest nodes which receive the
same set of conflicting chains in the same order must select the same main
chain.

6. Bootstrapping new nodes to the blockchain: A node can provide new nodes
entering the system with the blockchain.

7. Serving payment proofs: Given a transaction tx, the node can provide a proof
of tx’s inclusion in the blockchain.

8. Verification of payment proofs: Given a proof of transaction tx’s inclusion in
the blockchain, the node can verify the correctness of the proof.

In order to have all of the functionalities above, a node must verify and store
the entire blockchain. We will refer to such nodes as full nodes. Popular systems
like Bitcoin and Ethereum also allow for other types of nodes with more limited
functionalities [16,20]. For instance, pruned nodes initially download the entire
blockchain and verify it. However, they later prune the blockchain, meaning
that they discard block data and only retain block headers for blocks older
than the most recent k blocks in the blockchain. By retaining a summary of
the blockchain called the state, they can still perform all desired functionalities
except for serving proofs of payment and bootstrapping new nodes. Lightweight
nodes only download the block-headers, and their only functionality is to verify
payment proofs provided by full nodes. Importantly, full nodes are necessary to
bootstrap both pruned and lightweight nodes into the blockchain.

Since full nodes need to store the entire blockchain, their resource require-
ments can be high. This is an entry barrier that makes fewer nodes partici-
pate, which leads to a centralization of trust. In this paper, we optimize storage
requirements in order to lower this entry barrier. In deference to the storage
capabilities of modern computational hardware, we divide storage into two cat-
egories. The first is cold storage, which is accessed infrequently and is stored on
disk. This includes older blocks that are deep inside the blockchain. The second is

644 P. Hegde et al.

hot storage, which is accessed frequently and is stored in memory. Naturally, the
blockchain state used to validate blocks and transactions is kept in hot storage.

In this paper, we propose a new class called hybrid nodes. Hybrid nodes
have all of the above functionalities except for the ability to provide payment
proofs. Importantly, hybrid nodes can bootstrap new hybrid nodes into the sys-
tem, meaning they do not depend on any other type of nodes, including full
nodes. Moreover, if B is the length of the blockchain, hybrid nodes only require
polylog(B) cold storage to represent the PoW of the chain. This is achieved by
a process we call trimming, an extension of non-interactive-proofs-of-proof-of-
work [14] (henceforth, NIPoPoW). NIPoPoW is a protocol that enables a prover
(which is most often a full node) to provide payment proofs of polylog(B) size
rather than the traditional B size, but NIPoPoW still requires the prover to
store the entire blockchain. We extend these techniques further in our trimming
protocol to securely remove blocks and reduce storage.

We now comment on the practical implications of our proposed protocols for
hybrid nodes. There are two main components of a blockchain with significant
storage requirements for hybrid nodes. First is the storage required to represent
the PoW of the chain, which is used by the consensus protocol. In traditional
systems, since the entire chain of block-headers must be stored, the storage
requirements for this component at the time of writing could be in the order
of 100s of megabytes for systems such as Bitcoin and Ethereum. Our trimming
protocols for hybrid nodes can decrease this requirement to the order of 100s of
kilobytes. While 100MB might not seem large, if one wishes to run a number
of blockchains on a single device then the storage requirement can quickly mul-
tiply into the gigabytes range if methods such as trimming are not employed.
Moreover, since hybrid nodes only store polylog(B) number of block headers,
their storage requirement grows slower with time too. The second component
that requires storage is the blockchain state (UTXO or account-based for cryp-
tocurrencies). For instance, the size of Bitcoin’s UTXO set is roughly 4 GB [3].
However, some novel stateless blockchain protocols reduce this storage require-
ment to the order of kilobytes by requiring clients to provide payment proofs [1].
In Sect. 7, we show that hybrid nodes can employ stateless blockchain protocols,
thus optimizing both their PoW and state storage.

Previous works, specifically CoinPrune and SecurePrune [15,18], achieve the
same functionalities as hybrid nodes with lower storage requirements than full
nodes. They achieve this by storing a commitment to the blockchain-state in the
blocks and pruning blocks that are deep in the blockchain. However, their storage
requirement still scales linearly with blockchain length. Moreover, these works pro-
vide a largely qualitative analysis of their respective protocols. In contrast, we per-
form a rigorous security analysis and provide proofs that hybrid nodes are secure.

Concurrent with the initial submission of our work, we were made aware of
an independent work that uses a modification of NIPoPoWs to obtain polyloga-
rithmic storage [13]. Although both protocols are similarly motivated, we believe
that our security definitions and the corresponding analysis are novel and crucial
to this area. Of particular note, we believe that security against a trim-attack
(see Sect. 5), is crucial for the operation of hybrid nodes. Unlike our protocol,

Achieving Almost All Blockchain Functionalities 645

[13] claim to not require optimism for succinctness (see further in Theorem 3
and Remark 1). However, we note that it doesn’t seem economically viable for an
adversary to expend resources to simply hurt the succinctness of hybrid nodes.

We now summarize our results and outline the organization of the paper.
In Sect. 2, we introduce the basic model and notation. In Sect. 3, we summarize
CoinPrune and NIPoPoW, which are building blocks for our protocol. In Sect. 4,
we explain the properties of the hybrid node’s chain and describe the trimming
protocol, chain selection and state verification protocols. In Sect. 5, we introduce
novel security definitions for hybrid nodes, including trim-attacked, congruence,
state-attacked, and bootstrap-attacked. In Sect. 6, we show that hybrid nodes
satisfy all the security properties with high probability, and we also discuss
the polylogarithmic storage requirement and the lower bound on the storage
requirement. For brevity, formal proofs for these results are omitted. In Sect. 7,
we illustrate that when combined with stateless blockchain protocols, hybrid
nodes are optimized both in terms of cold and hot storage. And, we examine
directions for future work in Sect. 8.

Our primary contributions are the protocols associated with the hybrid nodes
and the novel security definitions and their associated theorems. These are in
Sects. 4, 5 and 6.

2 Model and Notation

In this work, we consider a set of nodes running a PoW blockchain. We model
the system using continuous time, which accurately models systems with high
hash-rates such as Bitcoin Ethereum [2,8]. In this section, we restrict the model
description to the essentials required to describe our protocol.

Several communication models are considered in the literature. The simplest
is the synchronous model where a block broadcast by a node at a certain time is
received by all other nodes immediately [9,10]. Since time is continuous, no more
than one block is mined at any given time, implying only one block could be
in communication at any given time. More complicated communication models
with communication delays are also considered in the literature [17,21]. For the
sake of simplicity, we consider the synchronous model in this paper and leave
it to future work to transfer our results to more complicated communication
models. Note that because of synchronous communication, all honest nodes have
knowledge of the same set of blocks at any given time.

Basic Blockchain Notation. The honest (longest-)chain at time t is repre-
sented by Ct. The number of blocks in Ct is called the chain-length and is denoted
as Bt. When the time t is clear from context, we may drop the subscript and refer
to it as just C. Blocks in C are indexed as an array in a similar convention to the
Python programming language, meaning that C[i] is denoted as block i. Since it
is convenient, we refer to a block by its index i and not its contents. C[0] is called
the genesis block. C[i1 : i2] represents the segment of the chain from block i1 to
block (i2 − 1). If at any time an honest node hears of another chain D which is
longer than Ct, then it adopts D as the honest chain (i.e., Ct+ = D, where t+

646 P. Hegde et al.

Fig. 1. An example of the interlink structure (inspired by Fig. 1 of [6]). At the bottom
of each block is its index, and the block’s height signifies its superblock level. Each
block has a link to the closest ancestor at every level, which is shown by the arrows
linking blocks to ancestors. Notice all the blocks are contained in level 0, and only the
genesis block is in level 4.

indicates the time incrementally after t). The last common block between two
chains C and D is called the latest common ancestor (LCA), and is denoted as
b = LCA(C,D). Specifically, Ct[: b+1] = D[: b+1], and Ct[b+1 :]∩D[b+1 :] = ∅.
When a new block b̄ is appended to C, we denote the extended chain as C b̄.

In our model, hybrid nodes do not store the entire chain Ct, but instead store
a trimmed version which contains fewer blocks than Ct. The trimming protocol
and its associated notation is described in Sect. 4.

Blockchain State. When a new transaction is submitted, a node must check
if it is “valid” with respect to the chain Ct. This could be accomplished by pars-
ing through the complete log of transactions in Ct. However, due to the rapidly
increasing size of Ct, it is far more efficient for a node to validate transactions
against a summary of the chain called the state, and denoted as state(Ct). Equiv-
alently, we may refer to the state as state(Bt), where Bt is the length of the chain
Ct. Validating a transaction against Ct is equivalent to validating it with respect
to state(Ct), so using state(Ct) is preferred due to its smaller hot storage require-
ment. After a new block b̄ is added to the chain, the new state is computed as
state(Ct b̄) = F (state(Ct), b̄), where F () is a function that applies the transac-
tions in b̄ to state(Ct). When the new block is clear from context, we denote the
function simply as F (state(Ct)), and when the function is applied on n sequential
new blocks, we denote the operation as state(Ct b1b2 . . . bn) = Fn(Ct). Two types
of states are popular: 1) UTXO-based State: this stands for unspent transaction
output, and is used by Bitcoin. The UTXO state consists of a list of unspent
coins. A new transaction is valid with respect to the state, if it consumes one or
more of these coins, and creates new coins whose total value is no larger than
the consumed coins; 2) Account Based State: This is used in Ethereum. An
account-based state consists of a vector of key-value mappings, with one map-
ping corresponding to each user. The key establishes the user’s identity, and the
value establishes the balance in the user’s account. A user can issue a transaction
that transfers a part of his account’s balance to another user.

Achieving Almost All Blockchain Functionalities 647

Interlinks. In traditional blockchains like Bitcoin, each block contains a link
(using a hash) to the previous block in the chain. To enable hybrid nodes to
store the blockchain in a succinct way, we employ a clever link structure called
the interlink. Interlinks were introduced in [12] and further developed in [14].

In the interlink model, a block contains the following information: 1) trans-
actions in the block; 2) the Merkle root x of all the transactions in the block; 3)
the Merkle root y (state(Bt)) of the corresponding blockchain state; 4) the block
index i; 5) the interlink, which contains hash links to several previous blocks and
is described in detail in the following paragraphs; 6) the random nonce η; and 7)
the block hash id = H(η, x, y, i, interlink), where H() is a hash function. For
a block to be valid, id must contain at least T leading 0’s. Equivalently, we say
that id ≤ 2−T . All the information in the block except the list of transactions is
referred to as the block-header. Observe that the id of the block can be verified
given just the block-header.

To describe the interlink, we first need to define superblocks. A level-μ
superblock is a block with id ≤ 2−(T+μ). Since a valid block satisfies id ≤ 2−T ,
all valid blocks are level-0 superblocks. The genesis block is defined to be a
superblock of every level from 0 to ∞. And, a level-μ superblock is also a level-
μ′ superblock for all 0 ≤ μ′ ≤ μ, since 2−(T+μ) ≤ 2−(T+μ′).

The interlink data-structure in a block contains a link to the previous
superblock of level μ for every level μ that is in the chain Ct up to that block.
Since the previous block will always be a superblock of level at least 0, the
interlink always contains a link to the previous block (thus, without any further
modification, the security properties of the blockchain are unaffected). Also, since
the genesis block is of all possible levels, a link to the genesis block is always
included. A pictorial example of this is shown in Fig. 1.

Using interlinks, it is possible to “skip” over blocks when traversing the
blockchain. To be more specific, it is useful to define notation for “traversing the
blockchain at level-μ”. For any given chain C, the level-μ upchain, denoted C ↑μ,
is the sequence of all level-μ superblocks in C. That is,

C ↑μ�
{

b : b ∈ C, and id(b) ≤ 2−(T+μ)
}

. (1)

Note that although it is convenient to use set-notation to define it, C ↑μ is a
sequence with the order of its blocks being the same as they are in C. From the
definition of the interlink, each block in the upchain C ↑μ contains a reference to
the previous block in the upchain. Therefore, it is possible to traverse through
C ↑μ. Additionally, a chain C′ is called a level-μ superchain if all its blocks are
level-μ superblocks. That is, if the underlying chain of C′ is C, then C′ ⊆ C ↑μ.

We use square-brackets to index C ↑μ, similar to a python array. However, at
times it is useful to refer to blocks in C ↑μ according to the block’s index in C.
In this case, we use curly-braces to index C ↑μ. This is best illustrated using an
example. Consider, C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and let C ↑μ= {0, 3, 4, 7, 10}.
In this case, C ↑μ [3 :] = {7, 10}, but C ↑μ {3 :} = {3, 4, 7, 10}. As a further illus-
tration of the upchain notation, in the blockchain in Fig. 1, C ↑2= {0, 4, 8, 12}.

648 P. Hegde et al.

3 Preliminaries

Before describing our protocol, we summarize CoinPrune [15] and NIPoPoW
[14]. Our protocol builds upon both of these protocols.

CoinPrune. In CoinPrune, similar to our model, blocks contain commitments to
the blockchain-state. The protocol selects a pruning point k blocks from the tip of
the chain. All blocks after the pruning point are retained completely, while only
block headers are retained prior to the pruning point. The state of the blockchain
at the pruning point is also stored. Then, the PoW in the chain can be established
since the block headers for the entire chain are preserved. Furthermore, since the
state at the pruning point is preserved and a commitment to it is stored in the
blocks, the state corresponding to each block after the pruning point can be
recovered. Refer to Fig. 2 for a visual description.

Fig. 2. An instance of CoinPrune. Complete square-boxes indicate the complete blocks
after the pruning point, and incomplete boxes indicate block-headers of blocks before
the pruning point. The variables yi are the state-commitments of the respective states
stored in the block headers. They are shown separately from the block only for empha-
sis. The state at the pruning point is stored, and its validity is confirmed by the
state-commitments yi’s.

While our method for establishing the state of the blockchain is similar to
CoinPrune, we deviate in the way we establish the PoW of the chain. We note
that although CoinPrune improves storage compared to full nodes, they still
store the entire block-header chain prior to the pruning point. Thus, their stor-
age requirement still scales linearly in the length of the chain, albeit the multi-
plicative constant may be very small. In contrast, we retain only a subset of the
block headers, leading to sublinear storage requirement in the number of blocks
in the blockchain. To accomplish this, we take inspiration from NIPoPoW.

NIPoPoW. NIPoPoW is a protocol that is used to provide succinct proofs of
payments to lightweight clients. Payment proofs have two components. First, the
proof needs to establish the amount of PoW in the blockchain, and second, it
needs to contain a proof of inclusion of the payment in the chain. Traditionally,
the PoW of the chain is established by sending the entire chain of block headers
to the lightweight client. NIPoPoWs optimize this step by making the following
observation. Informally, by the property of concentration around the means,
the μ-upchain C ↑μ of an underlying chain C is such that 2μ|C ↑μ| ≈ |C| (as an
illustration, in Fig. 1, superblocks of level-2 appear roughly every 22 = 4 blocks).

Achieving Almost All Blockchain Functionalities 649

Recall that a level-μ superblock is 2μ times harder to find than a regular block
(i.e., a level-0 superblock). Therefore, if 2μ|C ↑μ| ≈ |C|, then it is as hard for
an adversary to create a fork around C ↑μ with level-μ superblocks as it is to
create a fork around C with level-0 superblocks. Therefore, it is sufficient to just
provide C ↑μ as a proof of the PoW of the chain. For a large enough level μ, C ↑μ

is much smaller in size than the underlying chain C, thus making NIPoPoWs
much faster than traditional protocols.

Our protocol differs from NIPoPoWs in several ways. First, the goal of our
protocol is to optimize a hybrid node’s storage while retaining almost all of a
full node’s functionalities, while the goal of NIPoPoWs is to provide succinct
payment proofs. Second, NIPoPoWs do not optimize the prover’s storage since
the prover must still store the entire blockchain. Third, NIPoPoWs are one-time
proofs of payment, meaning they need to be generated afresh for every new proof
request, whereas our protocol proceeds in an iterative manner throughout the
blockchain’s execution. In particular, we employ different level ranges (elabo-
rated in the next section) in order to optimize storage throughout time, whereas
NIPoPoW only uses a single level range. Fourth, since our end goal is different,
our security requirements are different from NIPoPoWs. Lastly, we note that
since our security models are different, we use vastly different parameters in our
protocol compared to NIPoPoW, and also do novel analysis.

4 Trimming Protocol

In this section we describe our protocol to trim the blockchain. Other associ-
ated protocols that compare trimmed-chains to select the main chain are also
explained briefly.

First, we start with an intuitive description of the trimmed chain which is
best understood by referring to the example in Fig. 3. Similar to NIPoPoWs,
the high-level idea in our approach is to retain only a subset of (super)blocks
in order to represent the proof of work of the chain. Let the trimmed chain be
denoted by Pt (subscript t may be omitted when time is clear from context). P
is a subset of the complete blockchain C, i.e., P ⊆ C. And, it has an associated
number B′

t called the trimming point. All blocks to the right of B′
t are retained,

including their data and block headers. That is, P{B′ :} = C[B′ :]. We refer
to P{B′ :} as the untrimmed tail. Blocks to the left of B′ may be trimmed,
meaning P{: B′} ⊆ C[: B′]. Only the block-headers of the blocks in P{: B′}
are retained. The blocks that are not in P{: B′} are permanently deleted by
the hybrid node. Here is where we differ from pruning. In pruning, all the block
headers are retained. In trimming, blocks are completely deleted, including their
headers.

The trimmed section of P is further partitioned into level-ranges, each level-
range corresponding to a unique level μ. A level-range is spread contiguously
over a region of the blockchain, and each level range begins at the point its
predecessor ends. We denote the starts and ends of level ranges by level-range
functions Lf : Z+ → Z

+ and Ll : Z+ → Z
+. We define Lf (μ) as the index of the

650 P. Hegde et al.

Fig. 3. An example of a trimmed chain at an honest node. Notice how it is partitioned
into distinct level ranges, each beginning once its predecessor ends. We show a portion
of the second level range, P{Lf (2) : Ll(2)}. The greyed blocks with dashed outlines
represents blocks that have been trimmed. Like Fig. 1, the height of the (super)block
is its highest level. Furthermore, after the trimming point, B′, is the untrimmed tail
where all the blocks are retained.

first block in level-range μ. Similarly, Ll(μ) is the last block in the level-range μ.
Beyond a certain level μh, called the highest level, the level-range functions are
0: Lf (μ) = Ll(μ) = 0 for μ > μh. Also, below a certain level μ < μl, called the
lowest level, we have Lf (μ) = Ll(μ) = B′ − 1. Notice then that for μl ≤ μ < μh,
we have Ll(μ + 1) + 1 = Lf (μ). The level ranges are also pictorially shown in
the example in Fig. 3.

At level-range μ, we are primarily interested in level-μ superblocks. As
explained with the intuition of NIPoPoW, we need to weigh level-μ superblocks
by 2μ. In order to avoid confusion with PoW, which traditionally does not look
at super-levels, we call this notion of weighted PoW simply as the weight at
level-μ. For the level-range μ, we denote the weight-function W (P, μ) as,

W (P, μ) = 2μ|P{Lf (μ) : Ll(μ) + 1} ↑μ|.
Our trimming protocol in Algorithm 1 ensures that a higher level-range pre-

cedes a lower-level range (as illustrated in Fig. 3). Therefore, we can compute
the sum of work from the genesis block up to and including level range μ by,
S(P, μ) =

∑
μ≤μ′≤μh

W (P, μ′).
Since hybrid nodes do not have access to the underlying chain, S(P, μ) can be

interpreted as their estimate of the PoW up to block Ll(μ). Note that W (P, μ)
and S(P, μ) are functions of the level-range functions as well. However, we
assume that the level-range functions are implicitly defined by P in order to
keep the notation minimal.

The trimming procedure is detailed in Algorithm 1. We briefly describe it
here. Trimming is attempted every time the chain grows by Q blocks (line 1).
We call Q the trimming interval. The trimming point is set by the required
chain-tail length (line 2). Given that μh is the highest level-range in the current
trimmed chain, we attempt to trim it further to level μh + 1. If trimming to
that level is not possible, we try to do it to one level lower and so on (line 3).

Achieving Almost All Blockchain Functionalities 651

Algorithm 1: Trimming Protocol
input : P :: My (trimmed) chain

Q :: The trimming interval
μh :: Highest level-range in P
Lf (), Ll() :: Level-Range functions
g(), f(), Δ() :: Protocol parameter-functions
goodδ,g() :: Good-Superchain function)

1 on event P has grown by Q blocks since the last trimming attempt:
2 B′ = P[−1] − Δ(P)
3 for μ from μh + 1 down to 1 do
4 g ← g(P, μ)
5 f ← f(P, μ)
6 if | P{Lf (μ) : B′} ↑μ | ≥ f and goodδ,g(P{Lf (μ) : B′} ↑μ, μ) then

7 P, Lf , Ll, success ←trim(P, Lf , Ll, B′, μ, g, f)
8 if success=1 then
9 break

10 return

11

12 func trim(D, Lf , Ll, B′, μ, g, f):
13 E ← D{Lf (μ) : B′} ↑μ

14 A ← E [−f]
15

16 for μ′ from μ − 1 to 0 do

17 α ← D{A : B′} ↑μ′

18 E ← E ∪α
19

20 if |α| ≥ f and goodδ,g(α, μ′) then
21 A ← α[−f]

22

23 if |α| ≥ f and goodδ,g(α, μ′) then
24 Lf (μ′), Ll(μ

′) ← B′ − 1, for all μ < μ′

25 Ll(μ) ← B′ − 1
26 D ← D{: Lf (μ)} ∪ E ∪ D{B′ :}
27 return D, Lf , Ll, 1

28 else
29 return D, Lf , Ll, 0

Trimming to a level μ can be attempted if the specified range of blocks contains
enough level-μ superblocks, and if the corresponding μ-upchain is good (line 6).
Roughly, a μ-upchain C ↑μ is good if its weight represents the weight of the other
level upchains (| C ↑μ | ≈ 2(μ−μ′)| C ↑μ′ |, μ′ < μ). Given condition on line 6 is
satisfied, the trim function is called for level μ (line 7).

652 P. Hegde et al.

The trim function is very similar to the goodness-aware Prove algorithm of
the NIPoPoW protocol [14, Algorithm 8]. In the trim function, the μ-upchain is
obtained first (line 13). Next, the (μ − 1)-level upchain under the last f blocks
of the μ-level upchain is also added (lines 17 and 18). If the (μ−1)-level upchain
is good, then the (μ − 2)-level upchain under its last f blocks is added (lines
20 and 21). Otherwise, the (μ − 2)-level upchain under the last f blocks of the
μ-upchain are added. This procedure continues until level 0.

At the end, the trim function checks if the trimming was a “success” by
checking if level 0 of the trimmed chain is good. The trim being a success means
that it is at least as hard for an adversary to create a longer fork around the
trimmed chain, as it would be to do so around the complete chain. Intuitively, this
is because the necessary levels of the upchains in this range are good, meaning
that they represent the PoW of their corresponding downchains.

In case the trim is a success, the trim function along with the new level
range functions are returned (lines 23 to 27) indicating that the trim can be
used. Otherwise, the old trimmed chain and level range functions are returned
(lines 28 and 29).

Chain Selection. Hybrid nodes need to have a protocol, Compare(C(1), C(2)),
to chose the main chain given two conflicting chains, C(1) and C(2). Full nodes
(that store the entire blockchain) simply choose the longer of the two chains as
the main chain. The chain selection protocol for hybrid nodes is a little more
complicated since they do not store the entire chain. At a high level, they use
the sum of the cumulative weight, S(P, 0), of the trimmed portion of a chain
and the length of untrimmed section of the chain as a proxy for the chain length.

State Verification. Similar to CoinPrune [15], a short commitment to the state
at the block is stored in every block. Therefore, a hybrid node can verify the
correctness of the blockchain’s state by comparing it to the corresponding state
commitment. The protocol will be called state − verify.

Hybrid Node’s Functionalities. Here, we describe how a hybrid-node employ-
ing the trimming algorithm has the functionalities claimed in Sect. 1. Since a
hybrid node stores the state of the blockchain at its tip, it can perform trans-
action validation, block validation and state validation. Using the Compare(·, ·)
protocol, a hybrid node can select the main chain given competing chains. As a
consequence, the node can perform mining as well.

A new node joining the system can choose the main chain using the
Compare(·, ·) protocol, and verify the state using the state-verify protocol. Thus,
hybrid nodes can bootstrap other hybrid nodes into the system.

The hybrid node verifies payment proofs as follows. In traditional systems like
Bitcoin, the prover provides the chain of block-headers in order to establish the
PoW, and then provides a short proof for the transaction’s inclusion (inclusion-
proof) in the chain. In NIPoPoWs the prover provides a superchain (which is
logarithmic in the size of the underlying chain) in order to establish the PoW.
In either case, the hybrid node can use the Compare(·, ·) protocol to compare
the given chain (superchain) to its own trimmed chain. If the two chains only

Achieving Almost All Blockchain Functionalities 653

differ near the tail and the inclusion-proof is consistent with the provided chain,
then the hybrid node approves the prover’s payment proof. Otherwise, it returns
false.

5 Security Definitions

Security from Trim Attack. Consider the dangerous attack scenario depicted
in Fig. 4, where the adversary provides a trimmed-chain P(2) which is “longer”
than the honest chain P(1) (i.e. Compare(P(1),P(2)) = P(2)) and the LCA
between the two chains precedes the honest chain’s trimming point: b =
LCA(P(1),P(2)) < B′(1). Denote b1 to be the (super)block after b in P(2). The
honest node cannot verify the state transition from b to b1. This is because the
honest node only has access to block headers and not the full state, meaning they
can only verify the validity of the block headers, but not of the state transition
between the blocks. Moreover, even if the honest node had access to the state
at those blocks, there may be a number of blocks between b and b1 that were
skipped during the trimming.

Fig. 4. A trim-attack. The honest chain is shown in black, and adversary’s chain in red.
Complete square-boxes indicate the complete blocks beyond the trimming point, and
incomplete boxes indicate block-headers of blocks before the trimming point. Curved
arrows indicate that the corresponding blocks may not be subsequent blocks. (Color
figure online)

Therefore, if at any time the adversary is able to create a fork as in Fig. 4, they
could arbitrarily alter the state of the chain to their advantage. For instance,
the adversary could transfer all of the chain’s cryptocurrency into their own
accounts. One approach to circumventing this problem is to have the hybrid
node re-download the blockchain from a full node in case it encounters a fork
preceding its trimming point. However, in that case the security of the system
would again rely on the small number of full nodes. We require that hybrid nodes
can work independently from full nodes to keep the system as decentralized
as possible. To accomplish this, we ensure that there exists no time when an
adversary is able to create a fork from beyond a hybrid node’s trimming point.

654 P. Hegde et al.

Definition 1 (Attack on the trimmed Chain). Let ω be the fixed ran-
domness1. Let P(1)

t,ω be the honest trimmed chain at some honest node at time

t. Let P(2)
t,ω be the adversary’s trimmed chain. Let B′(P(1)) and B′(P(2)) be

their respective trimming points. Let bt,ω be the LCA block between them:
bt,ω = LCA(P(1)

t,ω,P(2)
t,ω). Then, we say that the system is trim-attacked if there

exists a time t such that the adversarial trimmed chain is declared to be longer
than the honest trimmed chain and the LCA block is before the honest node’s
trimming point. That is,

trim-attacked = {ω :∃t s.t. bt,ω < B′(P(1)
t,ω), and Compare(P(1)

t,ω,P(2)
t,ω) = P(2)

t,ω}.

Congruence. Since hybrid nodes only have access to trimmed chains P, we need
that the selection of the main trimmed-chain made according to Compare(·, ·) is in
agreement with the underlying complete chains. We formalize this by a property
called congruence.

Definition 2 (Congruence). Given any two (complete) chains C(1) and C(2)

with corresponding trimmed chains P(1) and P(2), they are said to be congruent
with each other if, |C(1)| > |C(2)| =⇒ Compare

(
P(1),P(2)

)
= P(1) .

State Security. Hybrid nodes do not have access to transaction history pre-
ceding their trimming point. Instead, they rely on the state at the trimming
point, state(B′

t), to compute state at the tip of the chain. State is verified using
state-verify. Firstly, if the adversary launches a trimming attack (Definition 1),
then they could change the state of the blockchain arbitrarily. Additionally, the
state of the hybrid node is also attacked if at any point the adversary can create
a different state, state′, that also passes through state-verify.

Definition 3 (Attack on the State). Let ω be the fixed randomness. At some
time t, let the trimming point of an honest chain P(1)

t,ω be B′(1)
t,ω, and let its

associated state be state(1)(B′(1)
t,ω). Let the trimming point of the adversary’s chain

P(2)
t,ω be B′(2)

t,ω, and let its claimed state be state
(2)
t,ω The state of the honest node

is said to be attacked, denoted by state-attacked, if there is either a trim-attack
or there exists a time t such that, state(2)t,ω = state(1)(B′

t,ω), such that it verifies

against the chain. Denoting, Pt,ω = Compare(P(1)
t,ω,P(2)

t,ω), we define,

state-attacked = {ω : ω ∈trim-attacked}⋃
{ω : ∃t such that state-verify(state(2)t,ω,Pt,ω) = 1}.

1 Randomness is w.r.t., a stochastic model for the blockchain. Details are in the full
version of the paper.

Achieving Almost All Blockchain Functionalities 655

Bootstrapping Security. When a new (honest) node joins the system, it down-
loads (possibly trimmed) copies of the blockchain from a number of other hybrid
or full nodes. It then chooses the main chain using the Compare(·, ·) protocol and
then downloads and verifies the state using the state-verify protocol. In order to
show that it adopts the honest trimmed chain and the honest state, we define
bootstrapping security below.

Definition 4 (Bootstrapping Security). A joining node is said to be securely
bootstrapped into the system if, at the point of it joining, it adopts a trimmed
chain that is not trim-attacked with respect to the system’s honest chain, and
it adopts a state which is not state-attacked with respect to the system’s honest
state. Otherwise, the node is said to be bootstrap-attacked.

In our system model, we assume that the mining rate of the honest parties
and the adversary remains constant. This might seem to be counter-factual to
Definition 4 because it assumes that nodes can join the system. We remark that
we make the constant mining rate assumption to make the rigorous security
analysis tractable. Practically, we conjecture that if the rate of nodes joining
and leaving the system is nearly equal and small enough, then the constant
mining rate assumption is a good model for the system.

6 Security Results for Hybrid Nodes

The protocol has security parameters k, k′ ∈ N, a, c ∈ R
+, and δ ∈ (0, 1).

Referring to the protocol parameter-functions from Alogrithm 1 are defined
as: Δ(P) = k′ + a log (S(P, 0) + |P{B′ :}|), g(P, μ) = k + a log S(P, μ), and
f(P, μ) = c · g(P, μ). We simply state the results here without proof due to lack
of space.

First, we show if the honest nodes have the majority of mining power, we can
choose security parameters such that our protocol is secure against a trim-attack.

Theorem 1 (Security of the trimmed Chain). Assume an honest major-
ity, λh > λa, where λh and λa are the mining rates of the honest and adver-
sarial nodes respectively. Let the trimming algorithm (Algorithm 1) parameters
k, k′, c, a, δ satisfy,

k′ = k − a log
(
((1 + δ2) + δ)/δ

)
, 1 < (1 − δ)3

λh

λa

c′ − 1
c′

c − 1 − c′

c
,

1 < (1 − δ)5
λh

λa

c − 1
c

, a ≥ 8
δ2

,

where 2 < c′ < c is some constant. Then2, P(trim-attacked) = negl(k).

As a corollary to the above theorem, we can conclude the chain-selection made
by hybrid-nodes is consistent with underlying chain lengths.

2 In our work, negl(k) = e−Ω(k) < 1
poly(k)

.

656 P. Hegde et al.

Corollary 1. The congruence property holds except with probability negl(k).

Theorem 2 (State Security). Assuming honest majority, λh > λa, and that
the security parameters are as in Theorem 1, then, P(state-attacked) = negl(k).

Corollary 2 (Bootstrapping Security). Assume the arrival process of new
nodes is independent of the randomness of the blockchain system. If we further
assume that a new node contacts at least one honest node and that there is honest
mining majority, then bootstrap-attacked occurs with probability negl(k).

In the next theorem, we provide an upper bound on the cold-storage required
to store the trimmed chain. This theorem relies on the assumption that a par-
ticular kind of adversary is absent. We further comment on this in Remark 1.
Additionally, we also note that the following theorem doesn’t account for the
storage required to store the state at the trimming point. We discuss optimizing
the storage for the state using stateless blockchains in Sect. 7.

Theorem 3 (Optimistic Succinctness). Assuming that all the nodes are
honest, the cold-storage requirements for a hybrid node to store the trimmed-
chain P is O(log4 B) with high probability in k. Here, B is the length of the
underlying chain C.
Remark 1 (Need of Optimism for Succinctness). Since our protocol is an exten-
sion of NIPoPoWs, we need to rely on optimism for succinctness as well. In
particular, note that when trimming we need to ensure that the level ranges are
“good”. We have also shown that under honest behaviour, the sizes of the dif-
ferent upchains concentrate around the mean, thus leading to good level-ranges
with high probability. However, an adversary with a small mining power could
launch an attack which hampers the concentrations around the means and thus
makes good-superchains more unlikely. This attack is formally described in [14].
We note that, just like in NIPoPoWs, the adversary can only hurt the succinct-
ness of our model, but not its security. Although the economics of launching an
attack on the hybrid node’s succinctness is yet to be studied formally, we venture
to guess that such an attack wouldn’t be economically viable to the adversary.

Clearly, the size of the untrimmed tail is a lower bound on the cold-storage
required. In the next theorem we prove that the length of the chain tail has to
be at least log B in order to protect a hybrid node against a trim-attack. This
implies that our protocol is near-optimal in terms of cold storage, since it only
requires polylog(B) storage.

Theorem 4 (Vulnerability of Short Tails). Let the blockchain length be Bt at
time t, and the trimming point be B′

t. If at all times t, P (Bt − B′
t = o(log Bt)) > ε,

for some ε > 0, then there exists an adversary with small mining power, λa < λh,
such that P(trim-attacked) = 1.

Achieving Almost All Blockchain Functionalities 657

7 Optimizing State Storage with Stateless Blockchains

Our trimming protocol optimizes the amount of cold storage required to repre-
sent the PoW in the blockchain. In this section, we outline how our work can
interface with methods optimizing the storage of the state. In hybrid nodes,
states need to be stored in cold and hot storage. Along with the length of the
blockchain, the size of the blockchain-state is rapidly increasing with time. For
instance, at the time of writing Bitcoin’s UTXO state is almost 4GB in size,
which motivates lessening high storage and verification time by extending our
work to optimize both the state’s cold-storage at the trimming point, and its
hot-storage at the chain tip.

We described that storing state-commitments in the blocks enables one to
securely establish the state of a trimmed chain, by use of the state-verify protocol.
In a different line of work, called stateless blockchains, state-commitments are
used to reduce the amount of hot-storage required for transaction validation, thus
speeding up validation. We claim that when hybrid nodes are used in stateless-
blockchains, then state commitments can serve a dual purpose: 1) they can be
used to establish the state of the trimmed chain; 2) and, they can be used to
perform stateless transaction validation.

Stateless validation, first proposed by Todd [22], is a scheme where nodes val-
idating transactions store a short cryptographic state-commitment rather than
the entire state. A client then provides a membership proof that the node can
verify against the commitment. Recently, several constructions have been devel-
oped to perform stateless validation in both the UTXO and account-based state
models using various cryptographic primitives [1,4,5,7,11,19,23].

Stateless blockchains optimize hot-storage by obviating the need to store the
state at the tip of the chain in the RAM. At this point, the state at the trimming
point is still stored in the cold storage. We can use this to provide an interface
from trimming to stateless blockchains: First, if the proof for some client becomes
outdated past the trimming point because it was offline for a long time, then
the client can recompute its latest proof by querying a hybrid node for state(B′

t)
and the untrimmed chain tail. Second, if a fork in the chain makes the proofs
of several clients invalid, they can all recompute their proofs by contacting the
hybrid node similarly.

Now, we describe a way to optimize the cold-storage of the state at the
trimming point as well. In order to do this, we need to make an assumption
on the clients. At every point, the client needs to store its membership proof
corresponding to every block in the untrimmed tail of hybrid nodes. This enforces
a couple of constraints on clients. First, the storage requirements of a client would
scale logarithmically in the length of the blockchain as well, since the length of
the chain-tail grows logarithmically. Second, the clients need to be online very
often so that their proofs never get outdated. If this is too cumbersome, clients
can alternatively delegate the job of saving and updating proofs to proof-serving
nodes [5]. In this case, the hybrid node need not store the entire state at the

658 P. Hegde et al.

trimming point either. This is because, even in the event that a fork is created
in the untrimmed-tail, all the clients would have their proofs corresponding to
the forking point. In this case, a joining hybrid node would no longer need to
use the state-verify protocol, since just the state commitment suffices. The rest
of the hybrid node’s protocols proceed as before.

8 Future Directions

In this paper, we presented hybrid nodes which use trimming to optimize the
cold-storage required to represent the PoW in the chain. When used in conjunc-
tion with stateless blockchains, we illustrated that hybrid nodes are optimized
both in terms of cold and hot storage. In this section, we lay out some directions
for future work.

We assume that there is honest majority, λh > λa, throughout the execu-
tion of the blockchain protocol. Given that we use novel security models, it will
be interesting to study if it is economically viable for an adversary to acquire
massive resources in order to attain a majority mining power temporarily, and
launch an attack such as a trim − attack. Similarly, it will be interesting to study
the economics of an adversary who simply attempts to hurt the succinctness
of hybrid nodes. In hurting the succinctness, fewer nodes would join as hybrid
nodes. Thus, an adversary could attempt to take advantage of the reduced decen-
tralization.

We have proved in Theorem 4, that our protocol is near-optimal in terms
of the storage it requires to represent a blockchain’s PoW if it is to be secure
against a trim − attack. However, it is at the moment unclear if further storage
optimization in terms of storing the state is possible for a node that needs to
have all the functionalities of a hybrid node (without assuming properties on the
clients as we do in Sect. 7).

In our analysis, we assume that the block id’s have a constant difficulty target
throughout the blockchain’s execution. It may be useful to relax this assumption
in order to make our model closer to practical systems.

Finally, our work in this paper has mainly focused on theoretical analysis.
An interesting line of work would be to implement the protocol and study the
practical gains of using hybrid nodes.

References

1. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and
beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp.
839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 28

2. Bitcoin hash rate. https://www.coinwarz.com/mining/bitcoin/hashrate-chart.
(Accessed 29 Apr 2021)

3. Bitcoin utxo size. https://tinyurl.com/cr7w2ep5. (Accessed 13 Sep 2021)

https://doi.org/10.1007/978-3-030-64840-4_28
https://www.coinwarz.com/mining/bitcoin/hashrate-chart
https://tinyurl.com/cr7w2ep5

Achieving Almost All Blockchain Functionalities 659

4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

5. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. IACR Cryptol. ePrint Arch. 2018, 968 (2018)

6. Daveas, S., Karantias, K., Kiayias, A., Zindros, D.: A gas-efficient superlight
bitcoin client in solidity. In: Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, AFT 2020, pp. 132–144. Association for
Computing Machinery (2020). https://doi.org/10.1145/3419614.3423255. ISBN
9781450381390

7. Dryja, T.: Utreexo: A dynamic hash-based accumulator optimized for the bitcoin
utxo set. IACR Cryptol. ePrint Arch. 2019, 611 (2019)

8. Ethereum hash rate. https://www.coinwarz.com/mining/ethereum/hashrate-
chart. (Accessed 29 Apr 2021)

9. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

10. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

11. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for
multiple vector commitments. In: Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 2007–2023 (2020)

12. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear
complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 5

13. Kiayias, A., Leonardos, N., Zindros, D.: Mining in logarithmic space. Cryptology
ePrint Archive, Report 2021/623 (2021). https://ia.cr/2021/623

14. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

15. Matzutt, R., Kalde, B., Pennekamp, J., Drichel, A., Henze, M., Wehrle, K.: How
to securely prune bitcoin’s blockchain. In: 2020 IFIP Networking Conference (Net-
working), pp. 298–306. IEEE (2020)

16. Nodes and clients. https://ethereum.org/en/developers/docs/nodes-and-clients/.
(20 May 2021)

17. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

18. Reddy, B.: secureprune: Secure block pruning in utxo based blockchains using
accumulators. In: 2021 International Conference on COMmunication Systems &
NETworkS (COMSNETS), pp. 174–178. IEEE (2021)

19. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated
dynamic dictionaries, with applications to cryptocurrencies. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 376–392. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 21

https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1145/3419614.3423255.
https://www.coinwarz.com/mining/ethereum/hashrate-chart
https://www.coinwarz.com/mining/ethereum/hashrate-chart
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-53357-4_5
https://ia.cr/2021/623
https://doi.org/10.1007/978-3-030-51280-4_27
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70972-7_21
https://doi.org/10.1007/978-3-319-70972-7_21

660 P. Hegde et al.

20. Running a full node. https://bitcoin.org/en/full-node (Accessed 20 May 2021)
21. Sankagiri, S., Gandlur, S., Hajek, B.: The longest-chain protocol under random

delays. arXiv preprint arXiv:2102.00973 (2021)
22. Todd, P.: Making utxo set growth irrelevant with low-latency delayed txo commit-

ments. https://petertodd.org/2016/delayed-txo-commitments (Accessed 24 May
2021)

23. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 45–64. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57990-6 3

https://bitcoin.org/en/full-node
http://arxiv.org/abs/2102.00973
https://petertodd.org/2016/delayed-txo-commitments
https://doi.org/10.1007/978-3-030-57990-6_3

Measurements

Short Paper: On the Claims of Weak
Block Synchronization in Bitcoin

Seungjin Baek1, Hocheol Nam1, Yongwoo Oh1, Muoi Tran2,
and Min Suk Kang1(B)

1 KAIST, Daejeon, South Korea
{seungjinb,hcnam,yongwoo95,minsukk}@kaist.ac.kr

2 National University of Singapore, Singapore, Singapore
muoitran@comp.nus.edu.sg

Abstract. Recent Bitcoin attacks [15,17,18] commonly exploit the phe-
nomenon of so-called weak block synchronization in Bitcoin. The attacks
use two independently-operated Bitcoin monitors — i.e., Bitnodes and a
system of customized supernodes — to confirm that block propagation in
Bitcoin is surprisingly slow. In particular, Bitnodes constantly reports
that around 30% of nodes are 3 blocks (or more) behind the blockchain
tip and the supernodes show that on average more than 60% of nodes do
not receive the latest block even after waiting for 10 min. In this paper,
we carefully re-evaluate these controversial claims with our own exper-
iments in the live Bitcoin network and show that block propagation in
Bitcoin is, in fact, fast enough (e.g., most peers we monitor receive new
blocks in about 4 s) for its safety property. We identify several limita-
tions and bugs of the two monitors, which have led to these inaccurate
claims about the Bitcoin block synchronization. We finally ask several
open-ended questions regarding the technical and ethical issues around
monitoring blockchain networks.

1 Introduction

Timely propagation of blocks in Bitcoin is critical to ensure its safe consen-
sus operations [10]. Indeed, recent partitioning [15,18] and double-spending [17]
attacks against Bitcoin have exploited the phenomenon of so-called weak block
synchronization— i.e., a large fraction of nodes (e.g., 60%) do not have the up-
to-date blockchain even after an extended time (e.g., 10 min). This surprisingly
slow block propagation is measured and confirmed by two independent sources:
(1) Bitnodes monitor [20], a long-running and highly-cited third-party Bitcoin
network crawler, and (2) RPC-based monitor [15], a data collector that interacts
with a few Bitcoin supernodes via RPC calls. Recently, Saad et al. [16] fur-
ther conjecture that weak block synchronization can be possibly caused by the
increased network size and churn rate in Bitcoin. Yet, slow block propagation is
a controversial claim because several anecdotal evidence from past studies and
measurements from other Bitcoin monitors have suggested otherwise. In 2013,

S. Baek and H. Nam—Co-leading authors.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 663–671, 2022.
https://doi.org/10.1007/978-3-031-18283-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_33&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_33

664 S. Baek et al.

Decker et al. [5] report that a new block reaches the majority of peers in less than
a few tens of seconds. In 2016, a technique called Compact Block Relay [4] was
introduced as the default block relaying scheme in Bitcoin to further reduce the
block propagation time. Besides, DSN Bitcoin Monitoring [7], a closed-source
crawler developed for academic studies, independently reports that in 2021 Bit-
coin blocks take only 10 s or less to reach 90% of nodes.

In this paper, we carefully evaluate the claims of the weak block synchroniza-
tion in Bitcoin and attempt to give a more accurate account of the current state
of block propagation. In particular, we challenge the accuracy of the two (i.e.,
Bitnodes and RPC-based) Bitcoin monitors that have been the main sources of
supporting evidence for these claims. We first show that both monitors do not suc-
cessfully capture the accurate block synchronization status of several live nodes
that we deploy and control in the Bitcoin network. Next, we investigate their pub-
licly available codebase and discover a number of problems that may have caused
measurement errors. Some of them are architectural limitations; e.g., the polling-
based block data collection in the Bitnodes monitor always offers outdated block
information. Some are protocol-level bugs; e.g., the RPC-basedmonitor mistakenly
alters the block propagation of its peers and eventually misses a significant portion
of block information. We then conduct large-scale measurements of the block prop-
agation in the Bitcoin network with our fixed RPC-based monitor, showing that
the network is well-synchronized (e.g., 90% of peers receive new blocks in less than
4 s). Lastly, we re-confirm the fast block propagation in a realistic controlled net-
work in which blocks with various sizes (e.g., 0.5–1.6 MB) are propagated through
up to 10 hops of globally distributed nodes.

The paper is organized as follows: Sect. 2 provides the necessary background.
Section 3 presents our measurements and analysis on the claims of weak block
synchronization. In Sect. 4, we discuss several future research directions before
we conclude the paper in Sect. 5.

2 Background

In this section, we briefly introduce the block propagation protocol logic in
Bitcoin (§2.1) and then describe the high-level operations of Bitnodes and
RPC-based Bitcoin monitors (§2.2).

2.1 Block Propagation in Bitcoin

In Bitcoin [13], several thousands of distributed nodes independently validate
and store the blockchain, a public ledger containing the historical transactions
of all users. Transactions are written to the blockchain via a process called min-
ing, in which specialized nodes, commonly known as miners, compete to extend
the blockchain by finding a new block that includes validated transactions and
the hash of the previous block. Every 10 min on average, a miner generates and
sends a new block to all other nodes in the system so they can validate it and

On the Claims of Weak Block Synchronization in Bitcoin 665

update their blockchain accordingly. Block data is propagated via a permis-
sionless peer-to-peer network between nodes, in which each of them typically
establishes up to 10 outgoing connections to reachable nodes that have publicly
routable IP addresses and accept incoming connections. Upon receiving a new
block, nodes validate and relay it immediately to their peers until the entire net-
work is synchronized with the latest block. Since 2016, Bitcoin protocol allows
compact block relaying that requires less data transmission and, hence, poten-
tially reduces the block propagation latency [4]. Desired to receive and send
block data as fast as possible, some Bitcoin miners are believed to use additional
overlay techniques to accelerate their block propagation, such as using a separate
block relay network (e.g., FIBRE [8], bloXRoute [2]).

2.2 Bitcoin Network Monitors

Since measuring the required time for all nodes to receive the latest block is cru-
cial for evaluating the efficiency and safety of the Bitcoin network, there have
existed several network monitors in Bitcoin. These network monitors connect to
the reachable nodes and monitor their block update information but not unreach-
able nodes since they do not accept incoming connections. Here, we briefly describe
two notable Bitcoin monitors, that is, Bitnodes [20], a popular online service,
and an RPC-based crawler that is recently proposed in a peer-reviewed paper [15].
Among other Bitcoin network monitors (e.g., DSN Bitcoin Monitoring [7], Coin
Dance [3]), the Bitnodes and RPC-based monitors are the only two monitors that
have source code available and record the block propagation delay. Recent studies
also use the block propagation measurements directly from these two monitors to
motivate several new Bitcoin attacks [15,17,18].

Bitnodes Monitor. Bitnodes is a Python-based lightweight crawler [19]
designed to estimate the number of reachable Bitcoin nodes. Bitnodes oper-
ates continuously in rounds approximately every 4 min, attempting to establish
connections to all reachable nodes. During the connection handshake with the
reachable nodes, the Bitnodes monitor extracts their latest block heights from
their version messages. After each round, Bitnodes monitor dumps the list
of reachable nodes and their block heights into snapshots and publishes them.
Recent Bitnodes snapshots show that there are usually around 30% of nodes
that are 3 blocks (or more) behind the latest blockchain tip.

RPC-based Monitor. The RPC-based monitor is particularly designed to mea-
sure the block synchronization performance of Bitcoin [15] and it consists of
a data collector and a few supernodes, i.e., Bitcoin clients that increase the
connection limit so that they can connect to thousands of reachable IPs con-
currently. Periodically, the data collector issues RPC calls to the supernodes
to retrieve the block heights of their peers. In particular, the collector uses the
getpeerinfo RPC call that returns the list of peers connected by a supernode
and their synced blocks values indicating their latest block heights known by
the supernode. The measurements collected by the RPC-based monitor show
that only 40% of nodes have the latest block after about 10 min [15].

666 S. Baek et al.

Fig. 1. Evidence of inaccurate measurements of the two monitors. (a) Cumulative
distribution of the time taken by the two monitors to publish the up-to-date blockchain
of our five full nodes. (b) Percentage of lasted time of each synchronization status
measured by the two monitors.

3 Our Measurements and Analysis

In this section, we evaluate the claims of weak block synchronization in four follow-
ing steps. First, we present empirical evidence that both Bitnodes and RPC-based
monitors fail to report the synchronization status of our own live Bitcoin nodes
promptly (§3.1). Second, we report several limitations and bugs that we found in
the two monitors, which have incorrectly led to the slow block propagation con-
clusions (§3.2). Third, we independently measure and show the fast block prop-
agation in today’s Bitcoin network (§3.3). Fourth, we conduct a controlled block
propagation experiment to confirm that propagating Bitcoin blocks through mul-
tiple (e.g., 10) hops of peers only requires a few seconds of delay (§3.4). Finally, we
discuss some ethical considerations of our measurements (§3.5).

3.1 Empirical Evidence of Inaccurate Measurements

To verify the block synchronization reported by the Bitnodes and RPC-based
monitors, we use the ground truth data recorded at our live Bitcoin nodes. We
run five Bitcoin Core clients with version 0.21.1 in five geographic regions of
Amazon EC2 (i.e., US-East, US-West, South America, Europe, and North Asia)
for 12 h on September 9, 2021. Since the original RPC-based monitor [15] is not
operating as of this writing, we download and run it too. For each of the 60
blocks our nodes receive in this experiment, we report the exact timestamps
when our nodes receive it, the timestamps of the Bitnodes snapshots reporting
our nodes with the updated height, and the timestamps when the RPC-based
monitor observes our nodes updating their synced blocks values.

We found that the Bitnodes monitor frequently exhibits significant delays
in publishing the latest block heights of our nodes. Figure 1a shows that in 50%
of cases, the Bitnodes monitor takes more than 4 min to include the up-to-date
block heights of our nodes in a snapshot and the delay can be as high as 10 min

On the Claims of Weak Block Synchronization in Bitcoin 667

in some worst cases. The RPC-based monitor reports most of the block heights
of our nodes within 10 s except a few outliers with one notable case in which
the height update of our node in Europe is delayed for 25 min. As a result, the
Bitnodes monitor incorrectly concludes that our nodes are out-of-sync for about
35% of the time while the RPC-based monitor incorrectly reports that our node
in Europe is out-of-sync for about 10% of the time; see the orange bars in Fig. 1b.
These incorrect block synchronization measurements of only five nodes suggest
that the large-scale measurements (e.g., covering all 10K reachable nodes) made
by the Bitnodes and RPC-based monitors can be seriously misleading.

3.2 Discovered Problems in Two Monitors

We now investigate the publicly available codebase of the Bitnodes [19] and
RPC-based [1] monitors to identify the root causes of their inaccurate block
synchronization measurements.

Fig. 2. Block height updates in a Bitcoin full
node and the Bitnodes monitor.

Bitnodes Monitor. We iden-
tify two inherent limitations of
the Bitnodes monitor. The first
limitation stems from its polling-
based monitoring architecture,
that is, Bitnodes crawls reach-
able IPs from the Bitcoin network
in 4-min cycles. In each crawling
cycle, Bitnodes connects to other
nodes at random timestamps,
records their version messages,
and exports them into a snapshot
when the cycle ends. When a node
receives a new block after sending
its version message in a crawling cycle, it has to wait for the next cycle to
update its new block height, which can be up to 8 min of delay. We also note
an additional delay of at least 30 s for exporting a snapshot at the end of each
cycle. In Fig. 2, we illustrate how the Bitnodes monitor is delayed in updating
the latest block height of our node in the US-East region in a 30-min interval. For
example, in ➀, our node receives block 700028 after notifying Bitnodes with
a version message carrying the height 700026. Therefore, our node must wait
for 284 s until its block height of 700028 is reflected in a snapshot. Similarly, in
➁, the Bitnodes monitor publishes the block height 700030 of our node with
297 s of delay.

Another limitation stems from some buggy block height reports frequently
observed in the Bitnodes snapshots. That is, in all the Bitnodes snapshots we
analyze, there exist thousands (about 15% of the entire set) of reachable nodes
with a zero block height. Interestingly, the vast majority (e.g., 80%) of these
nodes are .onion addresses, accounting for about 50% of all connected Bitcoin-
over-Tor nodes. We separately investigate these nodes with zero block height and

668 S. Baek et al.

Fig. 3. Cumulative distribution of the
ratio of synchronized peers measured by
the original and fixed RPC-based moni-
tors.

Fig. 4. Synchronization of peers in the
first 10 s since a new block is received by
our monitor. We show 100 blocks starting
with height 699860.

confirm in our experiment (see §3.3) that they are all regularly updated with the
latest blockchain. According to the Bitnodes source code [19], the block height
0 of a node indicates that either the version messages sent by the node are
corrupted or the internal database fails to record the actual height. From this,
we conjecture that some unreliable interactions between Bitnodes database and
.onion addresses might be the root cause of these nodes with zero block height.
We leave further investigations for future work.

RPC-based Monitor. Unlike the Bitnodes monitor, which is deployed to esti-
mate the network size, the RPC-based monitor is specifically designed to mon-
itor the block synchronization. Unfortunately, we identify one subtle yet criti-
cal problem in it that contaminates its measurement results. In particular, the
RPC-based monitor mistakenly propagates a new block hash to all other peers
that have not relayed it to the monitor. The synced blocks value of a peer is,
however, updated only when the peer sends a new block hash to the RPC-based
monitor. When a peer receives a new block hash from the monitor before it
sends the same hash to the monitor, it is considered by the RPC-based monitor
as unsynchronized at least until the next block is generated.

To confirm this bug and its impact on the block synchronization measure-
ment, we run two versions of the RPC-based monitor for 24 h and compare their
results. The two versions include the original open-source RPC-based monitor [1]
and a fixed RPC-based monitor that disables block information forwarding (i.e.,
preventing inv, headers, and cmpctblock message types from being sent in the
PushMessage function in net.cpp [1]). We also make our best effort to pro-
vide the same or improved experiment setup as in the original paper [15], such
as issuing getpeerinfo calls every second, load balancing the crawling task
using 10 servers. Since the exact locations and configurations of the original
RPC-based monitors are unknown, we reasonably use 20 t2.xlarge instances
in the US-West region of Amazon EC2 in this experiment. Our original and
fixed RPC-based monitors connect to about 9.2K and 9.1K reachable peers,
respectively, showing that our experiment successfully covers the vast majority
of reachable peers in the Bitcoin network.

On the Claims of Weak Block Synchronization in Bitcoin 669

We show the cumulative distribution of the percentage of “synchronized”
peers reported by two RPC-based monitors in Fig. 3. The definition of being
synchronized is borrowed from the original paper [15]; that is, a peer is said
to be synchronized when it receives the latest block anytime before the next
block is received by the monitors (e.g., after ≈ 10 min). Figure 3 shows that
the original (i.e., inaccurate) RPC-based monitor reports that Bitcoin is weakly
synchronized; that is, a significant portion (about 10% in the median case and
35% in the worst 10th percentile case) of reachable peers are not synchronized
even after about 10 min. In contrast, our fixed RPC-based monitor reports a
drastically different result; that is, 95% or more Bitcoin reachable peers are
almost always synchronized in less than 10 min. This comparison confirms that
(1) the mistake of relaying block information to peers found in the RPC-based
monitor is indeed a source of critical measurement errors and (2) the current
Bitcoin is pretty well synchronized in practice!

3.3 Block Propagation Measured by Our Fixed RPC-based Monitor

We monitor how quickly a new block propagates through the network of reach-
able nodes using our fixed RPC-based monitor. In Fig. 4, we highlight the
network-wide synchronization status in the first 10 s since a new block is sent
to our monitor and we show this for 100 consecutive blocks. First, it is evident
that new block information is propagated to 90% of peers in the network in
about 4 s on average. Second, once a new block propagates to the majority (e.g.,
about 90%) of reachable peers, its propagation quickly tapers off. Note that this
result shows a stark difference from the same experiments made with the original
RPC-based monitor [15], which shows that blocks take 76 s and 140 s to reach
90% of reachable peers in two examples.

3.4 Justification of Fast Block Propagation

Fig. 5. Average elapsed time of multi-
hop block propagation.

Our measurements in this section so
far strongly suggest that blocks propa-
gate through the Bitcoin network with
much faster speed than reported by the
two monitors [15,20]. We now re-confirm
that Bitcoin blocks indeed traverse mul-
tiple hops of nodes within a few seconds
through a simple, fully-controlled experi-
ment in a Bitcoin regtest network. We
run 11 Bitcoin nodes in different cities
around the world using Amazon EC2
t2.large instances. These 11 nodes are
connected to each other to form a private network with a line topology of 10
hops. We note that the number of 10 hops is chosen conservatively since the
network diameter of Bitcoin is unknown. We generate blocks with different sizes
(i.e., 0.5 MB, 1.0 MB, 1.6 MB) at the first node and measure the elapsed time for

670 S. Baek et al.

the blocks to be fully received by other nodes. We repeat the same experiment
100 times and take note of the averaged propagation time. Figure 5 shows that
larger blocks require more time to be propagated and all blocks need less than
10 s to propagate through 10 hops. We note that the application delay in Bit-
coin Core nodes in the live network can be slightly higher since they would have
more peers to relay blocks to (e.g., up to 125 for reachable nodes and 10 nodes
for unreachable nodes). These results re-confirm the fast block propagation in
Bitcoin.

3.5 Ethical Considerations

Throughout our experiments, we operate a few Bitcoin nodes that differ from the
default client in only some additional logging messages. Our Bitnodes, original,
and fixed RPC-based monitors unavoidably occupy 1–3 out of 115 incoming
slots of most reachable nodes. Hence, we run them in a very short period of time
(e.g., from a few hours to one day) and minimize their disturbance to the Bitcoin
network. In Sect. 4, we discuss the risks of allowing monitoring nodes in Bitcoin
and envision a better approach for Bitcoin network monitoring with little to no
ethical concerns.

4 Future Work

As we criticize the limitations and bugs found in the two monitors, we fix some
of them (e.g., disabling block information forwarding) to obtain a more accurate
measurement; yet, some others deserve more in-depth studies. For example, it is
still unclear why Bitnodes frequently fails to capture the block heights of nodes
with .onion addresses.

Another future work would be the re-evaluation of several recent Bitcoin
attacks [15,17,18] that rely on the inaccurate synchronization measurements in
Bitcoin. It is unclear whether the claims in these offensive security research work
would still hold when Bitcoin is much better synchronized in practice.

A longer-term future work would be a clean-slate design of Bitcoin network
monitors. Monitoring peer-to-peer networks has never been a designed feature
of blockchain protocols and thus it always relies on running supernodes [5,14]
and/or exploiting protocol side channels [6,12]. Particularly, running monitor
supernodes in blockchains is a fundamentally dangerous approach because it
either changes the network states (i.e., observer effect) or degrades the network
performance (e.g., supernodes damage the network connectivity to some extent),
creating ethical concerns. We believe that accurate yet safe network monitoring,
like existing proposals for Tor performance measurements [9,11], is desired as an
integrated feature of Bitcoin and other blockchains.

5 Conclusion

Network measurement is known to be tricky and error-prone when dealing with
a live distributed system, comprised of heterogeneous software/hardware com-
ponents, whose states are constantly changing. This paper attempts to identify

On the Claims of Weak Block Synchronization in Bitcoin 671

and correct some errors in recent Bitcoin network monitoring projects. Since
accurate measurement of blockchain networks is evidently critical for ensuring
their safety property, it is highly desirable to have more reliable and effective
network monitoring primitives embedded in the blockchain protocols.

Acknowledgements. This work was supported by Electronics and Telecommunica-
tions Research Institute (ETRI) grant funded by the Korean Government (22ZR1330,
Research on Intelligent Cyber Security and Trust Infra).

References

1. Bitcoin Lockstep Synchronous (2021). https://anonymous.4open.science/r/
56e77487-0470-4e10-b634-b13e939863c0

2. bloxroute (2021). https://bloxroute.com/
3. Coin Dance: Bitcoin Nodes Summary (2021). https://coin.dance/nodes
4. Corallo, M.: BIP 152: Compact Block Relay (2016)
5. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:

Proceedings of IEEE P2P (2013)
6. Delgado-Segura, S., et al.: TxProbe: Discovering Bitcoin’s network topology Using

orphan transactions. In: Proceedings of FC (2019)
7. DSN Bitcoin Monitoring (2021). https://www.dsn.kastel.kit.edu/bitcoin/
8. FIBRE: Fast Internet Bitcoin Relay Engine (2021). https://bitcoinfibre.org/
9. Jansen, R., Johnson, A.: Safely measuring Tor. In: Proceedings of ACM CCS (2016)

10. Kiffer, L., Rajaraman, R., Shelat, A.: A better method to analyze blockchain con-
sistency. In: Proceedings of ACM CCS (2018)

11. Mani, A., Wilson-Brown, T., Jansen, R., Johnson, A., Sherr, M.: Understanding
Tor usage with privacy-preserving measurement. In: Proceedings of ACM IMC
(2018)

12. Miller, A., et al.: Discovering Bitcoin’s Public Topology and Influential Nodes
(2015)

13. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009)
14. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the

topology of the Bitcoin peer-to-peer network. In: IEEE ATC (2016)
15. Saad, M., Anwar, A., Ravi, S., Mohaisen, D.: Revisiting nakamoto onsensus in

asynchronous networks: a comprehensive analysis of Bitcoin safety and chain qual-
ity. In: ACM CCS (2021)

16. Saad, M., Chen, S., Mohaisen, D.: Root cause analyses for the deteriorating bitcoin
network synchronization. In: Proceedings of IEEE ICDCS (2019)

17. Saad, M., Chen, S., Mohaisen, D.: SyncAttack: double-spending in Bitcoin without
mining power. In: ACM CCS (2021)

18. Saad, M., Cook, V., Nguyen, L., Thai, M.T., Mohaisen, A.: Partitioning attacks
on Bitcoin: colliding space, time, and logic. In: Proceedings of IEEE ICDCS (2019)

19. Yeow, A.: Bitnodes source code (2021). https://github.com/ayeowch/bitnodes
20. Yeow, A.: Global Bitcoin nodes distribution (2021). https://bitnodes.io/

https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0
https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0
https://bloxroute.com/
https://coin.dance/nodes
https://www.dsn.kastel.kit.edu/bitcoin/
https://bitcoinfibre.org/
https://github.com/ayeowch/bitnodes
https://bitnodes.io/

India’s “Aadhaar” Biometric ID:
Structure, Security, and Vulnerabilities

Pratyush Ranjan Tiwari1(B), Dhruv Agarwal2, Prakhar Jain3,
Swagam Dasgupta4, Preetha Datta5, Vineet Reddy6, and Debayan Gupta7

1 Johns Hopkins University, Baltimore, USA
pratyush@cs.jhu.edu

2 Microsoft Research, Bengaluru, India
t-dhaga@microsoft.com

3 Fractal Analytics, New York, USA
4 Bastion Media, Bengaluru, India
5 Aalto University, Espoo, Finland

6 Northeastern University, Boston, USA
7 Ashoka University, Sonepat, India

Abstract. India’s Aadhaar is the largest biometric identity system
in history, designed to help deliver subsidies, benefits, and services to
India’s 1.4 billion residents. The Unique Identification Authority of India
(UIDAI) is responsible for providing each resident (not each citizen) with
a distinct identity—a 12-digit Aadhaar number—using their biometric
and demographic details. We provide the first comprehensive description
of the Aadhaar infrastructure, collating information across thousands
of pages of public documents and releases, as well as direct discussions
with Aadhaar developers. Critically, we describe the first known crypto-
graphic issue within the system, and discuss how a workaround prevents
it from being exploitable at scale. Further, we categorize and rate vari-
ous security and privacy limitations and the corresponding threat actors,
examine the legitimacy of alleged security breaches, and discuss improve-
ments and mitigation strategies.

Keywords: Resident identification · Biometric · Security & privacy

1 Introduction

Resident identification systems are pervasive in the world today, with many using
biometrics [15]. These systems hold and mediate vast amounts of private data,
which in many cases is also used to facilitate welfare schemes and other public
programs. Aadhaar is a 12-digit unique ID issued by the Indian government
to each Indian resident (not citizen), using their demographic and biometric
information. To date, over 1.3 billion residents have been enrolled [34]: it is the
largest biometric identity system ever built and is linked to bank a counts, income
tax numbers, social security schemes, etc. And while Aadhaar is technically not

P. R. Tiwari and D. Agarwal—Equal contribution.

c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 672–693, 2022.
https://doi.org/10.1007/978-3-031-18283-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_34&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_34

India’s “Aadhaar” Biometric ID 673

required for many things (such as getting a new cellular connection), its ubiquity
has rendered it the default form of identification in India.

Though public trust in Aadhaar is crucial, the system has been relatively
opaque, leading to much confusion and speculation. Civil activists [4] and media
outlets [41] have alleged that Aadhaar is vulnerable to numerous types of
breaches; corroborating these claims is difficult as there exists no comprehensive
resource detailing Aadhaar’s system and security architecture. Public documen-
tation about Aadhaar is outdated or ambiguous, and no unified description of
the infrastructure exists. As a result, one has to collate information from multi-
ple (often unreliable) sources. We present the first comprehensive description of
Aadhaar, analyze all reported privacy or security breaches, and assess defenses
against future attacks. We also report the first known1 cryptographic issue (for-
tunately not exploitable at scale under current conditions) in the system.

Contributions. Comprehensive snapshot: We outline the journey of an indi-
vidual’s data through the Aadhaar system and the entities involved (for data
collection, processing, storage, and usage), covering the entire body of publicly
available information on Aadhaar. Previous work has looked at authentication
or verification, etc. [4,30], but none have covered the whole infrastructure.

Security Flaws: We analyze all documentation made public by UIDAI—trawling
through thousands of pages over time—as well as all alleged attacks to compile
and analyze possible security issues. We find that the way Aadhaar generates
IVs for AES (it uses AES-GCM) opens up the possibility to mount an identity
forgery attack and steal data. We note that the attack is not currently deployable:
we have made sure that this is not exploitable before publishing. However, any
batching of queries or capture of multiple messages within the same second may
still render the system insecure. Specifically, one could forge the identity of any
individual whose Aadhaar number is available2.

1.1 Paper Overview

Section 2 provides a brief background and discusses related work. A list of all
abbreviations, in order of appearance, is provided in Appendix B. Section 3
describes Aadhaar’s infrastructure in detail (along with data privacy and security
policies)3 This snapshot is divided into the following main sections: the Enroll-
ment Ecosystem (Sect. 3.1), the Authentication Ecosystem (Sect. 3.2), the Cen-
tral Identities Data Repository or CIDR (Sect. 3.3). Section 4 details the secu-
rity of different endpoints at which an individual’s data is vulnerable to attacks.
1 Media reports have alleged flaws in associated organizations, or engineering/policy

flaws (e.g., software bugs), but a cryptographic flaw within the Aadhaar infrastruc-
ture itself has never been discussed.

2 Collections of Aadhaar numbers have been leaked at various times by multiple orga-
nizations, though never by UIDAI itself.

3 We collate information from myriad technical reports, policy documents, Memoranda
of Understanding (MoUs), and circulars published and signed by UIDAI and other
organizations in Aadhaar infrastructure. We archive these reports here.

https://github.com/agdhruv/aadhaar-security

674 P. R. Tiwari et al.

Section 5 discusses information security in Aadhaar, using standard benchmarks.
We define the threat model and discuss a cryptographic flaw we identified and its
mitigation strategies (Sect. 5.2). We use the threat model along with the snap-
shot, in Sect. 6, to filter legitimate attacks from our database of media allegations
(Sect. 6). We discuss possible attacks, categorize the feasibility of these breaches
based on the threat actor involved, cost (time and resources) and the level of
security provided by Aadhaar (Sect. 6). Section 6 discusses technical and struc-
tural mitigation strategies for each type of breach. A study of alleged attacks is
provided in supplementary analysis AppendixC.

2 Background

The Unique Identification Authority of India (UIDAI) was established in January
2009. Its mission was to issue a unique identification (UID) number, an “Aadhaar
Number,” to every resident of the country. The UID’s purpose was to be a one-
stop identification that is eventually linked to every social service to make the
disbursement of welfare services effective and efficient (by reducing leakages).
The bill that provides legal backing to Aadhaar is called the “Aadhaar (Targeted
Delivery of Financial and other Subsidies, benefits and services) Act.” Apart
from providing Indian residents with a unique identity (an Aadhaar number), the
UIDAI is also responsible for providing a platform for residents to authenticate
their physical presence [63] at a point of service. Aadhaar’s policies regarding its
vision, ethical implications, data security, and privacy have been under intense
scrutiny [20].

This becomes all the more important with Aadhaar’s ubiquity. It is different
from login.gov [5,11], for example. It is not merely a single point of contact
system for welfare. Aadhaar is what you can use to get on a plane, to open
a bank account, to get a phone connection. Getting tested or vaccinated for
COVID-19? Aadhaar. It is MOSIP [40] on steroids: closed-source, universal, and
practically (although not officially) mandatory.

2.1 Related Work

National identification projects of many countries have attracted considerable
academic research—Jamaica’s attempt [33], Nepal’s National Identity Project
(NIDP) [3], UAE’s ID system [6], Europe’s e-ID systems [9], United States’
Social Security Number [18], etc. Being the world’s largest biometric ID system,
India’s Aadhaar has been an active research topic in the areas of ICTD, HCI,
security, and privacy. Singh and Jackson [35] perform an ethnographic study of
Aadhaar. They find exclusion of people in various phases: during enrollment,
while authenticating, and while linking (“seeding”) their Aadhaar numbers with
existing public welfare databases (like the Public Distribution System database).
Srinivasan and Johri [36] draw similarities between the legitimization and sup-
port tactics of Aadhaar and previously successful infrastructure projects like
railroads in British India and dams in post-Independence India.

India’s “Aadhaar” Biometric ID 675

Fig. 1. Flowchart of Aadhaar’s architecture. Yellow cells depict entry points into the
enrollment (left) and authentication (right) ecosystems. Enrollment starts with the
resident visiting the Enrollment Agency which uses an enrollment software provided
by the Enrollment Service. The data is then sent to the Registrars for verification.
If de-duplication succeeds, the data is stored in the CIDR and the user is enrolled.
The authentication procedure starts with the Aadhaar holder’s information reaching
the CIDR via AUA and ASA. The biometric data is captured by the authorization
devices, sent to the CIDR through AUA and ASA. The response is sent back by the
CIDR via the same route. (Color figure online)

Prior security and privacy works have recommended using a Trust and Role-
Based Access Control Model for internal Aadhaar processes and using cryptog-
raphy to prevent illegal tracking and profiling [30]. Rajput and Gopinath [31]
have analyzed the privacy of authentication workflows offered by Aadhaar and
recommended new ones. The work of Agrawal, Banerjee and Sharma [4], though
relatively informal, is the closest to ours. It provides a broad analysis of Aad-
haar’s vulnerabilities like faking biometrics, identification without consent, and
illegal tracking by collation of data across service providers. Our work differs
from these: we present a detailed overview of the system and do not assume the
correctness of media allegations and activism (which are essential in their own
right). Instead, we analyze Aadhaar’s security and allegations against it based
on an extensive study of available documentation.

3 Snapshot: Aadhaar System Design

Aadhaar has three primary components: (1) the Enrollment ecosystem, (2) the
Authentication ecosystem, and (3) the CIDR (Central Identities Data Reposi-
tory). Enrollment handles onboarding and assigning of unique identity numbers.
Authentication provides verification services when residents want to prove their
identity. CIDR is a database that stores the collected biometric and demographic
data. We provide an overview of a typical resident’s interaction with the Aadhaar
system and then discuss its usability and the three components. An overview of
the entire architecture is available in Fig. 1.

Usability of Aadhaar. The entire process assumes significant privilege: that
a resident can read and speak fluently, has a phone (for many services, a smart-
phone), access to the internet, etc. Also, during the COVID pandemic, many
centers are either fully or partially shut down: simple tasks such as linking a

676 P. R. Tiwari et al.

mobile number to one’s Aadhaar for the first time have turned herculean. If
one’s Aadhaar number is lost (e.g., loss of card), there is no way to recover it for
someone without a mobile phone (or an unlinked phone). This can result in loss
of welfare [7], and restoring the UID is incredibly difficult. On the other hand,
there is no way to remove one’s data from the CIDR if the citizen wants/needs
this (e.g., changing residency to another country). There are also on-ground
issues like the prevalent use of the Aadhaar “card” or a photocopy as a visual
proof of identity without biometric validation (e.g., at airports).

3.1 Enrollment Ecosystem

The Enrollment ecosystem (Fig. 2) handles onboarding of residents into Aadhaar
with the objective of providing each resident with a unique ID (UID). It also
handles updating of demographic and biometric details of existing UID holders.
Residents enroll only once but may request updates. The ecosystem is designed
to work offline to allow enrollment of residents from areas that lack connectivity.
There are two major actors: Registrars and Enrollment Agencies (EAs). UIDAI
appoints Registrars, and each Registrar appoints EAs under it.

Registrar: UIDAI partners with various ministries, banks, public sector orga-
nizations, and other agencies that interact with Indian residents [61,66] to facili-
tate issuing Aadhaar numbers by enrolling residents and validating resident data
during enrollment and updation. Registrars must take special measures to enroll
women, children, persons with disabilities, unskilled workers, nomadic tribes,
and people belonging to marginalized groups who cannot produce a valid Proof
of Identity (PoI) and/or Proof of Address (PoA) [61]. “Introducers” are individ-
uals (such as Registrar employees, members of local administrative and elected
bodies, etc.) recognized by Registrars to confirm resident data without PoI or
PoA. Registrars must follow protocols and standards prescribed by the UIDAI.
They usually outsource these tasks to EAs. While they are responsible for the
correct functioning of these EAs, there is no mention of Registrars having to
inform UIDAI about the EAs. A Registrar uses a UIDAI developed Enrollment
Client to enroll residents, and must follow the Demographic Data Standards and
Verification Procedure (DDSVP) [43].

Security (Policy and Logs). The MoUs between Registrars and UIDAI
specify that UIDAI periodically audits the Registrars and EAs (frequency not
specified). Although the standard penalties are nowhere specified, if a Regis-
trar fails to follow the security mandates, UIDAI will only make “reasonable
attempts” [66] to discuss and resolve difficulties with the Registrar. Organiza-
tions have been penalized in the past: UIDAI terminated a Registrar’s contract
citing “enormous number of complaints of corruption and enrollment process
violations against Aadhaar Enrollment/Update Centres under CSC e-Gov” [37].

Enrollment Agency. Registrars employ third-party vendors called Enrollment
Agencies (EA) to carry out enrollment services using tools and procedures [59]
prescribed by the UIDAI. Sometimes, Registrars double up EAs instead of

India’s “Aadhaar” Biometric ID 677

employing external EAs. For example, a bank may use its branches as EAs.
In such cases, “Enrollment Agency” and “Enrollment Centre” become synony-
mous. As this is pervasive, we use these terms interchangeably in this paper. EAs
are the on-ground functional arm of the Enrollment ecosystem and are respon-
sible for providing operators and supervisors for each Enrollment Centre [60].
These Enrollment Operators (EOs) collect demographic and biometric data for
enrollment or updation using UIDAI-approved equipment [53]. Before enroll-
ment, EAs must verify the resident’s PoA and PoI documents and ensure that
the details entered in the Aadhaar Enrollment Client match. This verification is
done by duly appointed officers at the EA called Verifiers [62].

Fig. 2. Flowchart of the Aadhaar Enrollment Ecosystem. The resident’s data is cap-
tured by the Enrollment Client and sent via the SFTP client for de-duplication. After
multiple validity checks, an Aadhaar identity is generated and a physical card is printed.

Security (Technical). Enrollment Equipment – UIDAI mandates Regis-
trars to follow guidelines to set up the enrollment environment. Only certified
equipment is allowed [49]. The Enrollment Client is equipped to work under
“Indian conditions”, which we assume means low lighting, lack of internet con-
nectivity, dusty environments, etc. [26]. Data Validation – The resident’s PoI
and PoA documents are verified by the Verifier, and details are entered into the
Enrollment Client by the EO, followed by biometric data capture and validation
by the resident. Most onboarding happens offline—data is periodically synced
with CIDR [53]. Operator Activity Tracking – Every EO using the Enroll-
ment Client must sign each enrollment and update with their own biometrics.
EO login involves a username, password, and the EO’s biometrics [53].

Security (Policy and Logs). When a Registrar hires an EA, the EOs working
there need training and certification. The UIDAI provides a questionnaire [44]
and a presentation to ensure basic training. The “Training, Testing and Certi-
fication” team designs lessons to ensure that EOs can recognize the necessary
documents for the first check [65]. Periodically, “Mega Training and Certification
Programs” [50] are organized to facilitate mass onboarding of operators when
there is high demand. Refresher courses are also organized.

678 P. R. Tiwari et al.

3.2 Authentication Ecosystem

The Authentication ecosystem (Fig. 3) provides paperless identity verification:
Authentication – Uses an Aadhaar number and a one-time password (or bio-
metrics) as a second factor to authenticate an individual. The CIDR returns a
signed Yes/No [57]. e-KYC – identity verification via a signed and encrypted
demographic record (name, age, address, etc.) from the CIDR.

Fig. 3. Flowchart of Aadhaar’s Authentication Ecosystem. We start at bottom right
with a resident requesting a service. Aadhaar details are sent to the CIDR either
through an AUA Server directly to the Production Server or via an ASA server. The
CIDR then authenticates this information and returns the results via the same route.

AUAs and KUAs: A requesting entity is an agency that uses Aadhaar authen-
tication and e-KYC facilities to provide services such as opening bank accounts,
LPG connections, purchasing mobile SIMs, etc. [57]. There are two types of
requesting entities [51,52]: an Authentication User Agency (AUA) uses only the
authentication service, while a Know-Your-Customer User Agency (KUA) also
uses the e-KYC service. When serving an individual, an AUA submits their Aad-
haar number and demographic/biometric information to the CIDR for authen-
tication [27]. An AUA connects to the CIDR through an Authentication Service
Agency (ASA), which owns a secure connection to the CIDR. In response, the
AUA receives a digitally signed response from the CIDR. A sub-AUA uses Aad-
haar authentication to enable its services by contracting the services of an AUA.
A KUA, in addition to being an AUA, uses e-KYC authentication facility to
retrieve a resident’s personal information from the CIDR. When an Aadhaar
holder wants to submit their KYC details to a KUA, they download a copy of
their e-KYC in XML or QR Code format from the Aadhaar website. This is
encrypted with a “Share Code” set by the user. To verify the submitted file, a
request is sent to CIDR through a KSA. The KUA receives a “digitally signed
[machine readable XML] e-KYC authentication response with encrypted e-KYC
data [58].” The KUA uses this copy of the holder’s KYC data retrieved from
UIDAI to verify the offline copy the resident submitted. The encrypted XML file

India’s “Aadhaar” Biometric ID 679

contains the resident name, download reference number, address, photo, gender,
DoB/YoB, hash of mobile number, hash of email.

Security (Technical). Aadhaar numbers collected by an AUA/KUA are
encrypted and stored locally in an “Aadhaar Data Vault” [13]. The encryp-
tion keys must be stored in a Hardware Security Module (HSM). The UIDAI
does not mandate audits nor specifies repercussions if the vault stores plain-
text. The implementation of the Data Vault is usually outsourced, and many
third-party vendors [22] offer their own variants. An AUA/KUA can transmit
biometric information over a network only after creating an encrypted Personal
Identity Data (PID) block in accordance with UIDAI specifications [47]. The
encrypted PID block cannot be stored except for buffered authentication (for
up to 24 h, after which it must be deleted from local storage) [25]. AUA/KUAs
send authentication and e-KYC requests to ASAs/KSAs (who relay them to the
CIDR) via secure private lines or a secure channel (SSL, VPN) [42].

Security (Policy and Logs). Access to the application, audit logs, source
code etc. is only given to authorized personnel [25]. The basis on which a per-
son becomes authorized and the extent of access are unknown. AUAs/KUAs
are required to maintain online logs of each authentication transaction for two
years, for grievance and dispute redressal. After this, logs are archived offline
for five more years and then deleted (unless required in a pending dispute). The
logs record the Aadhaar number, auth request, CIDR’s response, information
disclosed upon authentication, and the person’s consent for authentication [25,
p. 12]. Logs do not store PID information. No encryption/safety standards are
specified; we discuss the resultant privacy issues in Sect. 5.3. Aadhaar holders
can self-generate Virtual IDs (VID) for privacy. VIDs are temporary, revocable
16-digit random numbers that are one-way mapped from the Aadhaar num-
ber [64]. This mapping should be secret and the Aadhaar number should not be
recoverable from it. The algorithm used for generating VIDs is not specified.

AUAs/KUAs are required to ensure that their operations are audited, includ-
ing information security controls and technical testing like vulnerability assess-
ment, penetration tests, etc., especially for new technologies introduced [25].
This audit must be done by a recognised body (presumably government empan-
elled auditors [12]) annually and on a need basis [25, p. 46] or by UIDAI itself to
ensure compliance. Although UIDAI states that only authorized personnel can
access the audit trails, selection criteria and security policies are unspecified.

ASAs and KSAs: Authentication/KYC Service Agencies (ASAs/KSAs) are
public and private agencies that have an “established secure leased line connec-
tivity with the CIDR” [57] in accordance with UIDAI’s standards and specifi-
cations [25]. Only they can interact directly with the CIDR in the Authentica-
tion ecosystem. ASAs provide secure CIDR access to AUAs for authentication;
KSAs are ASAs with additional e-KYC permissions and therefore serve KUAs.
Hence, ASAs/KSAs act as enabling intermediaries between an AUA/KUA and
the CIDR as shown in Figs. 1 and 3. There are 27 live ASAs/KSAs [56].

680 P. R. Tiwari et al.

Security (Technical). Servers used by ASAs to connect to the CIDR must be
located within India. ASA/KSA server host must be within a segregated network
segment. It should be isolated from the rest of the network of the ASA/KSA.
The ASA/KSA server host is solely dedicated to Aadhaar authentication. The
PID block includes the keys generated by the ASAs/KSAs (sensitive and must
never be stored). ASAs perform key generation, distribution, and storage.

Security (Policy and Logs). Access control, communication policies, log
maintenance and expiration, and audit protocols are the same as those of
AUAs/KUAs (Refer to Sect. 3.2). The logs can be accessed by UIDAI or the
requesting entity solely for grievance and dispute redressal and contain the fol-
lowing information: identity of the requesting entity, parameters of authentica-
tion request submitted, and parameters received as authentication response.

3.3 CIDR (Central Identities Data Repository)

The Central Identities Data Repository (CIDR) is a centralized database that
stores all Aadhaar numbers and corresponding demographic and biometric data.
Maintained by UIDAI and distributed across multiple servers throughout India,
CIDR is the core of Aadhaar and interacts with both the Enrollment and Authen-
tication ecosystems. CIDR is also (indirectly) responsible for deduplication as
deduplication servers access biometric data residing in the CIDR to check for
matches before enrolling a new resident. Post-enrollment access to the CIDR
comprises mainly authentication and e-KYC requests (see Sect. 3.2).

Security (Technical). Enrollment Client: The connection between the CIDR
and the Enrollment Client is protected using SSL. The enrollment data (XML) is
POSTed to the CIDR [26,45]. To ensure only certified operators and Enrollment
Clients connect to the CIDR, each time an operator logs into the client, an XML
document containing the machine identifier, enrollment agency code, and station
number is sent to the CIDR for validation. The CIDR then sends back a security
token, which is used to send subsequent enrollment data. The XML document
containing the enrollment data is sent in the form of packets to the CIDR, each
of which is encrypted using a public key published by UIDAI, and signed by
the sender (to avoid wasting resources on extracting packets without a valid
signature [26]). This packet encryption phase is handled by the Client Security
module of the Enrollment Client, which also stores certificates and manages keys.
The key management uses public-key style encryption where two sets of public
keys are maintained – one for data exchange between the Enrollment Client and
the CIDR, and another for data exchange between the Registrar and the CIDR.
The CIDR is classified as a Protected System under the IT Act, and the link
between the CIDR and the Enrollment Client is encrypted using 2048 bit PKI.
Deduplication: Deduplication at the billion scale has never been previously
attempted [26]. For risk mitigation, UIDAI has three independent ABIS (Auto-
matic Biometric Identification System) providers performing biometric dedupli-
cation. At enrollment, Aadhaar first does a demographic and reduced biometric
check for matches. The Aadhaar enrollment server integrates the ABIS solutions

India’s “Aadhaar” Biometric ID 681

using an ABIS API and dynamically allocates deduplication requests to the 3
ABIS servers. Then, ABIS deduplication servers are sent packages of size 3–5
MB. The enrollment packet (containing all demographic, biometric, and meta-
data) is encrypted at the client side and then sent to CIDR; the CIDR interacts
with the ABIS servers and sends them these packages. Only the Enrollment
Server (maintained by CIDR) can decrypt the enrollment packet. It does this
in memory; the decrypted packet is never sent to storage. Original biometric
data is archived and sent to offline storage and is not available on an online net-
work. 2048-bit PKI is used throughout. See supplementary analysis AppendixC
for more details. When a registered device is called, it captures, processes, and
encodes the digitally signed biometric record. The biometric data received by
the CIDR is essentially a Base-64 of the DSA signature of a hash (SHA-256) of
the biometric data and a timestamp, device code, and device private key.

4 Security Landscape

We consider the security of different endpoints at which an individual’s data
could be vulnerable and the steps Aadhaar takes to prevent any attacks.

4.1 Hardware Security and Certification

Biometric data is first collected during registration, and subsequently used to
verify that individual’s identity. These biometric devices, therefore, are a criti-
cal component of Aadhaar. The official documentation [49] specifies two types of
devices. Public Devices are biometric capture devices that can be attached to the
Aadhaar application provided to AUA/Sub-AUA to capture Aadhaar compliant
biometric data. The application then encrypts the data before authentication.
Registered Devices (RD) have three key additional features over public devices.
Each RD has a unique device identifier, biometric data is signed with the device
key to ensure liveness and encrypted on-device rather than on the host applica-
tion, and lastly, the RD service is certified regardless of the device provider. “RD
service” refers to the process of capturing biometrics, signing them, and forming
a personal identity data (PID) block before returning to the application.

Device Compliance Levels. The RD service is certified over two levels. Level
0 Compliance ensures that the implementation of signing and encryption of
biometrics is within the software zone at host’s OS level. This includes ensuring
that the associated private keys are not compromised through access via any
external applications within the OS, and the biometric data can not be injected
maliciously. Level 1 Compliance enhances security by ensuring that the signing
and encryption take place within a Trusted Execution Environment (TEE). The
private keys and the biometrics are stored in, and accessed via, the TEE.

Pre-certified Hardware: Any provider of an L1 compliant device needs to sup-
ply “Pre-certified” Hardware (PCH) and accompanying system software. This

682 P. R. Tiwari et al.

must protect against Hardware Cloning, Hardware Tampering (Physical, volt-
age, frequency, temperature attacks on crypto blocks), Differential Power anal-
ysis, Probing, Memory segregation of cryptographic operations, Cryptography
implementation vulnerability, Attacks against Secure Boot and Secure Upgrade
and TEE, and Secure processor OS attacks.

Certification: The agencies responsible for the certification are UIDAI and
Standardization Testing and Quality Certification (STQC) Directorate (which
is an attached office of the Ministry of Electronics and Information Technol-
ogy). The certification process is exhaustive and combines testing over multiple,
widely regarded industry and government standards like NIST’s FIPS [38] for
the security of cryptographic modules, PCI PTS [29] and PED for physical and
software tampering, GlobalPlatform certification for the TEE, and other dedi-
cated hardware for L1, like secure boot, secure upgrade, etc. More details are
available in [49]. UIDAI and STQC also check for tamper responsiveness: these
devices can detect box-open tampering, chemical tampering, etc. and destroy
sensitive data upon detection. However, a small part of hardware and system
software is vendor self-certified. We were unable to find any reasoning for this;
it is unclear how a vendor can verifiably self-certify a lack of backdoors!

4.2 Key Management and Device Registration

Each device provider must register and obtain a device provider ID via UIDAI.
UIDAI then signs a public-key certificate procured by the device provider from a
certificate authority(CA) licensed by the Govt. of India’s Controller of Certifying
Authorities (CCA). These certificates are X.509 v3 compliant. Furthermore, the
UIDAI policy specifies time periods after which device keys have to be rotated.

L1 compliant devices store their signing and encryption keys in PCH. There
exists a hardware key-store in these devices. The certificate issued for the device,
called the Chip Identity Certificate, is stored therein and must be non-clonable.
The signing and encrypting key-pair generation and the cryptographic opera-
tions happen within this hardware key-store. However, L0 compliant devices
have a software-based key-store provided by the OS. Common software secu-
rity practices are specified and required for this key-store in [49]. All accesses
to this key-store are logged. The private key is not extractable in any format,
and the key-store is cleared and zeroed if the RD service is deleted. The key-
store password is auto-generated using some random data, user credentials, and
device identities of hardware like hard disk serial number, processor ID, and
other device IDs. This key derivation is not public and obfuscated to prevent
attacks. We note that this can be dangerous. Historically, security by obscurity
has been a terrible idea [39], and has meant that bad security went uncriticized.

4.3 Biometric Deduplication and Locking

Since Aadhaar has the face, fingerprint, and iris biometrics for enrolled residents,
it can combine these for de-duplication upon enrollment. With ten fingerprints

India’s “Aadhaar” Biometric ID 683

and a facial image, a 95% de-duplication rate could be achieved over a popu-
lation of 50 million. To increase the de-duplication rate to 99%, usage of iris
biometrics was proposed. However, there is no documentation about the match-
ing algorithms running at the ABIS and how well they perform. The accuracy
listed above implies that authentication for valid Aadhaar numbers and corre-
sponding residents might fail for a small fraction of requests. While UIDAI has
not released any documentation about the de-duplication process, we discovered
the following information from our interviews of Aadhaar personnel: The de-
duplication problem is viewed and solved as a multi-class classification problem
where there are as many classes as there are individuals in the Aadhaar database.
Using deep learning techniques, the set consisting of Aadhaar IDs, ten finger-
prints, iris and face biometric data is pre-processed before classification. Since
this is a huge dataset, this process is optimized by reducing some features. If
candidate duplicates are discovered, they are checked using some more features
along with a combination of manual assistance. The biometric algorithms used
were described as standard ones from the works of Jain et al. [21,67]

5 Security, Privacy and Attacks

Defining “security” and “privacy” in the context of Aadhaar is nontrivial. It’s
easy to provide stringent requirements, but those would almost certainly result
in the exclusion of large sections of marginalized people in India, who may not
have much documentation—precisely those we want to help. Many Indians also
routinely use different spellings for their names (and other data) and may need to
update the same without requiring a complicated court process (names in various
Indian languages can be anglicized in multiple ways). Therefore, any realistic
treatment of security (and attacks) cannot be too broad; we detail our Aadhaar-
specific interpretations of the CIA (Confidentiality, Integrity, and Availability)
information security triad in this section. We also explicitly list a variety of
threat actors and their abilities (see supplementary analysis AppendixC).

Classifying Attacks. We use the CIA standard for information security. Any
attack must violate one or more of: Confidentiality – Access to a resident’s
data (demographic or biometric) collected at the time of enrollment or upda-
tion is granted only to authorized individuals within UIDAI and its partner
organizations. Integrity – A resident’s information within the CIDR or during
transmission is not modified or lost in an unauthorized manner. Availability –
A resident’s data is available to authorized entities within UIDAI and its partner
organizations when required.

5.1 Threat Actors

We conduct a threat actor analysis to identify possible threats as an individual’s
data travels through the system. In the attached report in the Appendix C, we
classify threat actors based on their capability, motivation, and damage caused

684 P. R. Tiwari et al.

and give low/medium/high ratings for each. The threat actors we identified are
described below.

Rogue Enrollment Operator: The first barrier an individual’s information
has to the central repository is the enrollment operator, which has the responsi-
bility of asking the individual their information and verifying its authenticity. A
rogue agent can possibly enroll the individual with faulty data or, worse, make
a copy of their data and enroll a fake resident instead.

Rogue Agency Seeking AUA/ASA Services: AUA/ASA provide services
to agencies seeking to become requesting entities for authentication. Aadhaar
specifies the criteria for such agencies [46]. However, in some cases, the authenti-
cation devices are operator-assisted: a service might be provided without authen-
tication or based on identity forgery. E.g., an operator at a cellular agency could
authenticate twice by using Anita’s Aadhaar details (when she applies for a new
SIM) and keep one connection for themselves.

Rogue Enrollment Agent: A rogue enrollment agent can help generate fake
Aadhaar cards; in practice, there is little oversight in place.

Rogue UIDAI Official: The access privileges of a high-ranking UIDAI official,
if misused, can result in identity theft, fake voter IDs, and more.

External Parties: Governments, IT companies, and curious residents could try
to access confidential Aadhaar information for varying motives. The resources
possessed by all these external parties can vary quite a bit.

5.2 Forbidden Attack: A Cryptographic Challenge

We describe a possible cryptographic attack on Aadhaar; note that carrying out
such an attack would be illegal, as Aadhaar is classified as a “protected system”
under Section 70 of the Indian IT Act, 2000 [1]. We reported this attack to
UIDAI, which validated its correctness and ensured its mitigation.

Aadhaar’s API security document [54, p. 29] details that packaged biometrics
are sent for authentication as a Pid (Personal Identity Data) element, which is
a base-64 encoded block. Before base-64 encoding, the Pid blocks are encrypted
with a dynamic session key using AES-256 symmetric algorithm, using the Galois
Counter Mode (GCM). Refer Appendix A for details about GCM. One major
issue discussed by Antoine Joux in his comments to NIST on GCM [8] is A
forbidden attack with repeated IV. If an adversary sees two different messages
encrypted with the same IV, it can inject malicious content into the communi-
cation channel. One such attack is demonstrated in detail by Böck et al. [10].

The document [54] describes exactly how Aadhaar instantiates AES GCM:
“The last 12 bytes of the ts (string formatted date) is used as the IV or nonce.”
The ts attribute (timestamp) is described as follows [54, p. 15]: “Timestamp at
the time of capture of authentication input. This is in the format YYYY-MM-
DDThh:mm:ss (derived from ISO 8601).”

The implementation available on the Github repo [24] and the old Aadhaar
developer portal [48], and our interviews with Aadhaar officials confirm this

India’s “Aadhaar” Biometric ID 685

timestamp format. So, suppose the timestamp is 2020-06-22T19:47:30. Then
last 12 bytes are -22T19:47:30 and the string used as IV for AES GCM com-
prises just the day-of-month and the time. Trivially, the IV is reused if multiple
messages are sent within the same second, or if messages are buffered or batched.
Further, the IV -22T19:47:30 repeats at time 19:47:30 on the 22 date of each
month, leading to monthly IV reuse. We describe this forbidden attack formally
in Appendix A. Briefly: an adversary can exchange their invalid biometrics with
valid data and still authenticate. (They cannot recover keys, but we want to
protect the data, not just the keys.) Authentication requests can be altered over
the channel due to IV reuse. As a consequence, a malicious party can open a
bank account, fly domestically, get a SIM card, etc. —all in someone else’s name.

Benchmarking. Using data published by the Govt. of India [55], we estimate
how many times AES-GCM is used for encrypting requests. One source of such
requests is the Authentication API; the other is e-KYC, which also uses AES-
GCM in the exact same way [45]. Between October 2016 to September 2019, 7.9
billion requests were made for e-KYC; on average, the IV was reused ∼ 83 times
per second. Consequently, the malleability of the encrypted plaintext becomes a
major security issue, and hence, all chosen ciphertext attacks become feasible.

Mitigation. The IV for AES-GCM is 96-bits (12 bytes) and we need to prevent
IV reuse. Currently, the IV is of the form -22T19:47:30 (day-of-month and
time). In this format, the IV takes <∼ 222 different values (since the dates vary
in range 1–31, range of hours is 0–23 and minutes and seconds are in range 0–59
each). Instead, if a simple counter is utilized, it would take values in the whole 296

range space (as IV length is 96 bits). However, the communication complexity
of a synchronized task across 30 million devices is infeasible: maintaining it
proved impractical and so the Aadhaar team decided4 to use timestamps as
IVs due to the availability of this information across all devices. To mitigate
this attack, all AES-GCM communications now occur over secure channels with
unique session keys. This prevents the attack from being exploitable. Note that
the UIDAI encrypts all communications and storage across Aadhaar. UIDAI
policy is to use RSA [32] with 2048 bit keys for public key and AES with 256-bit
keys for symmetric key encryption [47].

5.3 Privacy Issues

Aadhaar’s policy for logging requests and responses creates two issues. (1) the
privacy of registered individuals in the event of a breach; and (2) the possibility of
surveillance. The logs are rich spatio-temporal data on almost everyone in India.
Obviously, a leak would be catastrophic if the data is not anonymized; but even
“anonymized” spatio-temporal data can be used to uniquely identify a very large
fraction of the individuals, as demonstrated by de Montjoye et al. [28]. Therefore,
the use of virtual IDs (see Sect. 3.2) is essential. However, existing documentation
is ambiguous as to whether virtual IDs are used by default for authentication

4 This was discussed during our interviews of Aadhaar personnel.

686 P. R. Tiwari et al.

requests. Further, while all communication of Aadhaar’s biometric templates is
end-to-end encrypted, they remain vulnerable to social engineering attacks and
the like at ECs; the privacy loss inherent in the storage of biometric templates
for a national ID is beyond the scope of this work.

Non-KYC operations should not reveal anything beyond verification
(yes/no). If an entity has knowledge of a1, a2, ...ak columns of a person’s Aad-
haar information, they should not be able to gain knowledge of the athk+1 col-
umn, including brute-forcing by checking against the same column multiple times
(given someone’s name and phone number, an entity should not be able to query
multiple times with different dates of birth). Services using aggregated data must
be differentially private. The work of Wilson et al. [68] focuses on this approach
and provides extensive theoretical and practical analysis. This gives a scalable
method which is generic enough to apply to all national ID systems including
Aadhaar. Extensive data logging for almost a decade means that such a system
can very easily be used to track registered individuals. Differentially private (DP)
anonymized logs can be used to protect against such tracking. While such logs
and streams have been studied in some detail [16,23], it remains to be seen if such
proposals would be feasible at this scale (see Sect. 5.2). The closest (in scale) DP
system is the recent work of the US Census Bureau [17] which shows that DP
is not a one-size fits-all solution [19]. Aadhaar is meant to ensure the targeted
delivery of benefits and services to Indian citizens. Verification of a resident’s
existence to receive a service must not leak personally identifiable information.
Another solution to mitigate privacy concerns is via brokered identification [11].
Here, a centralized hub mediates communication between an identity authority
and a user with identity credentials. The US FCCX [2] and GOV.UK Verify pro-
posed using this, but were unable to ensure all the properties required (see [11]).
Using such a mechanism would mitigate the possibility of surveillance using
Aadhaar authentication requests.

6 Media Allegations Analysis

Filtering Legitimate Breaches. Our primary database of media allegations
consists of 36 reports from various news outlets. We filter breaches that are
“legitimate” based on our knowledge of the Aadhaar infrastructure and our def-
initions of security and privacy. This yielded 17 legitimate security breaches and
10 privacy breaches, which were further analyzed. (Security and privacy breaches
are not mutually exclusive.) Additionally, for each legitimate security breach,
we ascertain whether or not there was a breach of Confidentiality, Integrity, or
Availability of data in the Aadhaar infrastructure. (See TableC in supplemen-
tary material AppendixC.) According to our analysis, the prevalent breach is
of confidentiality; this usually entails a subset of Aadhaar data being made
public. Prevention goes back to ensuring that data is secured in encrypted “data
vaults” and access is limited. Breach of integrity is also common. It compro-
mises the quality of the central database. They typically occur at an individual
level, involving a small set of rogue insider-agents or the hacking of individual

India’s “Aadhaar” Biometric ID 687

accounts. This is easily detected if performed repeatedly, while for a specific use-
case like introducing certain individuals into the database, the breach is virtually
undetectable. OTP-based security, standardized punishments, and closing some
known structural gaps could mitigate this. Breaches of availability are rare and
occurs only in cases of insider attacks. The CIDR repository itself is reasonably
secure, and removing/editing information is hard to do illegally. Internal attacks
can be mitigated by using a decentralized system of checks and balances where
no individual can commit edits [14]. For example, all operations by high-level
employees could require approval by randomly chosen officers (anonymously).

Attack Analysis. We define three broad classes of attacks: (1) Server com-
promise: Hacking of the UIDAI or Partner software/database. (2) Infrastruc-
tural loopholes: Access via legitimate UIDAI channels. (3) Sub-par hard-
ware: UIDAI hardware tricked into approving false biometrics as genuine due to
flaws or backdoors. We analyze the feasibility of attacks based on the cost (time
and resources used) and the effort required to protect against it. We then sug-
gest mitigation strategies to ensure robust security. A detailed breakdown of our
examination is provided in AppendixC. Aadhaar is predominantly vulnerable
to “Infrastructure Loopholes.” These breaches exploit the general negligence to
set or adhere to security protocols. As discussed, agents of Aadhaar, such as and
especially EOs, can effectively be a threat to the security of the database if their
credentials are not stored properly (multiple instances of this have occurred).
This is a breach that is detected often, but measures taken to curb it are seem-
ingly nonexistent. Complimentary and robust security standards like OTPs and
Iris scans for these Aadhaar agents may be effective in ensuring accountability.
The CIDR Database is secure and there exist no reports of it being hacked,
but data in UIDAI’s partner organizations are regularly stored insecurely. We
recommend that the UIDAI sets stricter standards and enforce them across the
board. No one should store any Aadhaar data except the CIDR. Any queries to
the database should go through the CIDR, and local copies should not be stored.

Privacy Breach Analysis. Listing the various allegations of Aadhaar privacy
breaches, we find that limited access to the database and illegal or insecure stor-
age of Aadhaar information are common. These are primarily due to improper
or inefficient handling of data by UIDAI’s partner organizations. We summa-
rize the number and type of privacy breaches in the attached supplementary
material AppendixC. In either case, the pivotal issue is that an individual can
be identified, resulting in the misuse of their data by malicious actors. This
can include surveillance, profiling, or creating new services (without consent)
by the state or other private actors. Most security breaches happen within the
Enrollment Ecosystem; privacy breaches largely appear in the Authentication
Ecosystem. For Aadhaar to be effective in the targeted delivery of subsidies, it
needs to ensure that resident data is private beyond enrollment. If organizations
require Aadhaar data to analyze aggregated trends, we strongly recommend dif-
ferentially private systems be used.

688 P. R. Tiwari et al.

7 Conclusion

We analyze Aadhaar, the world’s largest digital biometric identification sys-
tem, and provide the first detailed, unified description of the infrastructure. We
conclude that the framework does not have glaring security flaws of the kind
suggested by media reports. Almost all the issues we found were due to a set
of challenges unique to a system at Aadhaar’s scale. While we discussed mitiga-
tions for any flaws we found, we did not make any policy recommendations in
this paper: if we had to make one, it would be for the system to be significantly
more transparent and open-source. Throughout its lifetime, Aadhaar has been
subject to multiple allegations that have made national headlines in India. We
list, analyze, and classify these allegations to allow for a more balanced view of
Aadhaar, identifying which ones are likely to be legitimate. (We note that most
of the alleged attacks are now infeasible.)

We emphasize that our focus remained on the strengths and vulnerabilities of the
technology, structure, and policy behind Aadhaar, and not issues with large-scale
biometric ID schemes in general.

Acknowledgements. The first author is supported in part by the Office of Naval
Research under awards N00014-19-1-2294 and N00014-19-1-2292 and by the NSF under
award CNS-1814919.

A Background

AES-GCM. AES GCM (Galois/Counter Mode) is a block-cipher mode of oper-
ation which encrypts the plaintext by using the counter mode. For authentica-
tion, a hash function called GHASH is used, which computes over the Galois
Field GF (2128). For a comprehensive description of AES GCM we suggest refer-
ring to the work of Böck et al. [10].

Forbidden Attack. Consider a passive adversary A which only sees ciphertext
data, including initialization vector (IV), associated data, and authentication
tag. The authentication key is H = Enck(0128) where k is the secret key for
encryption. The authentication tag t is the evaluation of a polynomial g at the
authentication key H. The coefficients of polynomial g depend on the ciphertext
blocks and the constant coefficient is the nonce. Suppose that A finds two mes-
sages m1 and m2 encrypted using the same IV. A now has two polynomials with
known coefficients (the ciphertext is public) and the same constant coefficient.
Let these polynomials be g1(·) and g2(·). For the two authentication tags, t1 and
t2

g1(H) = t1, g2(H) = t2

The adversary A now knows two polynomials g1(x)− t1 and g2(x)− t2 with a
common root H, and they can recover a short list of candidates for the authen-
tication key. In theory, this list could be as long as the degree of the polynomial,
but is relatively short in practice. The GCD of the two polynomials gives A

India’s “Aadhaar” Biometric ID 689

a polynomial of small degree with H as a root. Similarly, by finding more IV
reuses, the possible number of candidate H keeps reducing, and eventually, H is
found. Now that H is known, A can substitute any information they like
and replace a valid ciphertext. For a more detailed analysis and description
of the attack we refer readers to the work of Joux [8] and Böck et al. [10].

B Abbreviations

See Table 1 for a list of abbreviations used in the paper.

Table 1. Summary of abbreviations used in the paper (in order of appearance)

Abbreviation Full form

UIDAI Unique Identification Authority of India

MoUs Memoranda of Understanding

CIDR Central Identities Data Repository

UID Unique Identification

KYC Know Your Customer

EA Enrollment Agency

EO Enrollment Officer

AUA Authentication User Agency

KUA KYC User Agency

SSUP Self Service Update Portal

PoI Proof of Identity

PoA Proof of Address

DDSVP Demographic Data Standards and Verification Procedure

HSM Hardware Security Module

PID Personal Identity Data

VID Virtual ID

ABIS Automatic Biometric Identification System

GCM Galois Counter Mode

RD Registered Devices

TEE Trusted Execution Environment

PCH Pre-Certified Hardware

STQC Standardization Testing and Quality Certification

CA Certificate Authority

CCA Controller of Certifying Authorities

EC Enrollment Center

DP Differentially Private

OTP One-Time Password

CIA Confidentiality, Integrity, Availability

690 P. R. Tiwari et al.

C Supplementary Material

This work summarizes a long ongoing effort to provide the most comprehensive
view of Aadhaar. The full version of this work (accessed at http://ia.cr/2022/
481) explains are methodology for Aadhaar’s security breach analysis and threat
actor analysis pertaining to the security breach. A complete analysis of media
allegations can be accessed at http://pratyush.site/files/AadhaarAnalysis.pdf.

References

1. Information technology ACT, 2000. https://www.meity.gov.in/writereaddata/
files/act2000n 0.doc

2. Fccx briefing (2014). https://csrc.nist.gov/csrc/media/events/ispab-june-2014-
meeting/documents/ispab jun2014 fccx-briefing glair.pdf

3. Adhikari, G.P.: National ID project of Nepal: future challenges. In: Proceedings of
the 5th International Conference on Theory and Practice of Electronic Governance,
ICEGOV 2011, pp. 379–380. Association for Computing Machinery, New York
(2011). https://doi.org/10.1145/2072069.2072151

4. Agrawal, S., Banerjee, S., Sharma, S.: Privacy and security of Aadhaar: a computer
science perspective. Econ. Polit. Wkly 52, 93–102 (2017)

5. Aiemworawutikul, W., Datla, M.V., Lee, J.C.S., Wen, T., Zhang, Y.: Vulnerability
assessment in national identity services (2019)

6. Al-Khouri, A.M.: Facing the challenge of enrolment in national id schemes. In:
Brömme, A., Busch, C. (eds.) BIOSIG 2010: Biometrics and Electronic Signatures.
Proceedings of the Special Interest Group on Biometrics and Electronic Signatures,
pp. 13–28. Gesellschaft für Informatik e.V., Bonn (2010)

7. Anil, V., Dreze, J.: Without Aadhaar, without identity (2021). https://
indianexpress.com/article/opinion/columns/flaw-in-aadhaar-architecture-uidai-
card-enrolment-7389133/

8. Joux, A.: Authentication Failures in NIST version of GCM (2006). http://
csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux
comments.pdf

9. Arora, S.: National e-ID card schemes: a European overview. Inf. Secur. Tech.
Rep. 13(2), 46–53 (2008). https://doi.org/10.1016/j.istr.2008.08.002. http://www.
sciencedirect.com/science/article/pii/S1363412708000241

10. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting
adversaries: practical forgery attacks on GCM in TLS. In: 10th USENIX Work-
shop on Offensive Technologies, WOOT 2016, Austin, TX, USA, 8–9 August 2016.
USENIX Association (2016)

11. Brandão, L.T., Christin, N., Danezis, G., et al.: Toward mending two nation-scale
brokered identification systems. Proc. Priv. Enh. Technol. 2015(2), 135–155 (2015)

12. CERT-In: Empanelled Information Security Auditing Organizations (2018).
https://www.cert-in.org.in/PDF/Empanel org.pdf

13. Compliance Uncovered: Aadhaar Data Vault - To whom it applies, Septem-
ber 2018. https://complianceuncovered.com/2018/09/03/aadhar-data-vault-to-
whom-it-applies/

14. Cybersecurity and Infrastructure Security Agency: Insider threat mitigation
(2019). https://www.dhs.gov/cisa/insider-threat-mitigation

http://ia.cr/2022/481
http://ia.cr/2022/481
http://pratyush.site/files/AadhaarAnalysis.pdf
https://www.meity.gov.in/writereaddata/files/act2000n_0.doc
https://www.meity.gov.in/writereaddata/files/act2000n_0.doc
https://csrc.nist.gov/csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-briefing_glair.pdf
https://csrc.nist.gov/csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-briefing_glair.pdf
https://doi.org/10.1145/2072069.2072151
https://indianexpress.com/article/opinion/columns/flaw-in-aadhaar-architecture-uidai-card-enrolment-7389133/
https://indianexpress.com/article/opinion/columns/flaw-in-aadhaar-architecture-uidai-card-enrolment-7389133/
https://indianexpress.com/article/opinion/columns/flaw-in-aadhaar-architecture-uidai-card-enrolment-7389133/
http://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
http://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
http://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://doi.org/10.1016/j.istr.2008.08.002
http://www.sciencedirect.com/science/article/pii/S1363412708000241
http://www.sciencedirect.com/science/article/pii/S1363412708000241
https://www.cert-in.org.in/PDF/Empanel_org.pdf
https://complianceuncovered.com/2018/09/03/aadhar-data-vault-to-whom-it-applies/
https://complianceuncovered.com/2018/09/03/aadhar-data-vault-to-whom-it-applies/
https://www.dhs.gov/cisa/insider-threat-mitigation

India’s “Aadhaar” Biometric ID 691

15. Electronic Frontier Foundation: Mandatory national IDs and biometric databases
(2021). https://www.eff.org/issues/national-ids

16. Elkoumy, G., Pankova, A., Dumas, M.: Mine me but don’t single me out: differen-
tially private event logs for process mining. In: ICPM 2021, pp. 80–87 (2021)

17. Garfinkel, S.: Implementing differential privacy for the 2020 census. USENIX Asso-
ciation (2021)

18. Garfinkel, S.L.: Risks of social security numbers (1995)
19. Garfinkel, S.L., Abowd, J.M., Powazek, S.: Issues encountered deploying differential

privacy (2018)
20. Goel, V.: ‘Big Brother’ in India Requires Fingerprint Scans for Food, Phones and

Finances, April 2018. https://www.nytimes.com/2018/04/07/technology/india-id-
aadhaar.html

21. Jain, A.K., Flynn, P.J., Ross, A.A.: Handbook of Biometrics. Springer, New York
(2010). https://doi.org/10.1007/978-0-387-71041-9

22. JISA Softech Pvt Ltd: Aadhaar Data Vault (2018). https://www.jisasoftech.com/
aadhaar-data-vault/

23. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. Proc. VLDB Endow. 7(12), 1155–1166 (2014)

24. Geodesic Limited: Source code for Aadhaar v1.6 (2011). https://github.com/
GeoAmida/AadhaarAuth1.6. Accessed 19 Jan 2021

25. MeitY and UIDAI: Compendium of Regulations, Circulars & Guidelines For
ASA and AUA (2018). https://uidai.gov.in/images/resource/compendium auth
19042018.pdf

26. Ministry of Electronics and Information Technology: Aadhaar technology & archi-
tecture (2014). https://archive.org/details/Aadhaar-Technology-Architecture/
page/n2

27. Ministry of Law and Justice and Government of India: The Aadhaar (Tar-
geted Delivery of Financial and Other Subsidies, Benefits and Services) Act,
2016 (2016). https://uidai.gov.in/images/targeted delivery of financial and other
subsidies benefits and services 13072016.pdf

28. de Montjoye, Y.A.A., Hidalgo, C.D., Verleysen, M., Blondel, V.: Unique in the
crowd: the privacy bounds of human mobility (2013). https://www.nature.com/
articles/srep01376

29. PCI: Payment Card Industry PTS POI Security Requirements v4.0, June 2013.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

30. Rajput, A., Gopinath, K.: Towards a more secure Aadhaar. In: Proceedings of
Information Systems Security - 13th International Conference, ICISS 2017, Mum-
bai, India, 16–20 December 2017, pp. 283–300 (2017)

31. Rajput, A., Gopinath, K.: Analysis of newer Aadhaar privacy models. In: Proceed-
ings of Information Systems Security - 14th International Conference, ICISS 2018,
Bangalore, India, 17–19 December 2018, pp. 386–404 (2018)

32. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983)

33. Dunn, H.S.: Risking identity: a case study of Jamaica’s short-lived national id
system. J. Inf. Commun. Ethics Soc. 18(3), 329–338 (2020). https://doi.org/10.
1108/JICES-04-2020-0040

34. Indo-Asian News Service: 125 Crore Aadhaar Cards Issued Since 2009: Cen-
tre, December 2019. https://www.ndtv.com/india-news/centre-says-125-crore-
aadhaar-cards-issued-till-date-2155184

https://www.eff.org/issues/national-ids
https://www.nytimes.com/2018/04/07/technology/india-id-aadhaar.html
https://www.nytimes.com/2018/04/07/technology/india-id-aadhaar.html
https://doi.org/10.1007/978-0-387-71041-9
https://www.jisasoftech.com/aadhaar-data-vault/
https://www.jisasoftech.com/aadhaar-data-vault/
https://github.com/GeoAmida/AadhaarAuth1.6
https://github.com/GeoAmida/AadhaarAuth1.6
https://uidai.gov.in/images/resource/compendium_auth_19042018.pdf
https://uidai.gov.in/images/resource/compendium_auth_19042018.pdf
https://archive.org/details/Aadhaar-Technology-Architecture/page/n2
https://archive.org/details/Aadhaar-Technology-Architecture/page/n2
https://uidai.gov.in/images/targeted_delivery_of_financial_and_other_subsidies_benefits_and_services_13072016.pdf
https://uidai.gov.in/images/targeted_delivery_of_financial_and_other_subsidies_benefits_and_services_13072016.pdf
https://www.nature.com/articles/srep01376
https://www.nature.com/articles/srep01376
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://doi.org/10.1108/JICES-04-2020-0040
https://doi.org/10.1108/JICES-04-2020-0040
https://www.ndtv.com/india-news/centre-says-125-crore-aadhaar-cards-issued-till-date-2155184
https://www.ndtv.com/india-news/centre-says-125-crore-aadhaar-cards-issued-till-date-2155184

692 P. R. Tiwari et al.

35. Singh, R., Jackson, S.J.: From Margins to Seams: Imbrication, Inclusion, and
Torque in the Aadhaar Identification Project, pp. 4776–4824. Association for Com-
puting Machinery, New York (2017). https://doi.org/10.1145/3025453.3025910

36. Srinivasan, J., Johri, A.: Creating machine readable men: legitimizing the “Aad-
haar” mega e-infrastructure project in India. In: Proceedings of the Sixth Inter-
national Conference on Information and Communication Technologies and Devel-
opment: Full Papers, ICTD 2013, vol. 1, pp. 101–112. Association for Computing
Machinery, New York (2013). https://doi.org/10.1145/2516604.2516625

37. Srivas, A.: Millions of Rural Indians May be Hit as UIDAI Ends Contract With
CSC Network For Aadhaar Enrolment, February 2018. https://thewire.in/tech/
millions-may-affected-uidai-centres-csc-network-clash-renewal-aadhaar-services-
contract

38. National Institute of Standards and Technology: FIPS 140-2: Security Require-
ments for Cryptographic Modules, May 2001. https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.140-2.pdf

39. Swire, P.P.: A theory of disclosure for security and competitive reasons: open
source, proprietary software, and government systems. Hous. L. Rev. 42, 1333
(2005)

40. Modular Open Source Identity Platform (MOSIP) Documentation (2021). https://
docs.mosip.io/platform/. Accessed 19 Jan 2021

41. Tech2News Staff: Aadhaar Security Breaches: Here are the major untoward inci-
dents that have happened with Aadhaar and what was actually affected, September
2018. https://www.firstpost.com/tech/news-analysis/aadhaar-security-breaches-
here-are-the-major-untoward-incidents-that-have.-happened-with-aadhaar-and-
what-was-actually-affected-4300349.html

42. Thales: Complying with UIDAI’s AADHAAR Number Regulations (2018).
https://go.thalesesecurity.com/rs/480-LWA-970/images/Thales-UIDAI-
AADHAAR-cb.pdf

43. UIDAI: Demographic Data Standards and Verification procedure (DDSVP)
Committee Report (2009). https://uidai.gov.in/images/UID DDSVP Committee
Report v1.0.pdf

44. UIDAI: Questionnaire - UIDAI Operators (2011). https://uidai.gov.in/images/
training-2019/QuestionBank-Operator-510/English 510QB 24012019.pdf

45. UIDAI: Aadhaar E-KYC Specification - Version 2.0 (2016). https://uidai.gov.in/
images/aadhaar ekyc api 2 0.pdf

46. UIDAI: Eligibility criteria for appointment as requesting entities (2016). https://
uidai.gov.in/images/resource/eligibility criteria for aua kua 17122016.pdf

47. UIDAI: Aadhaar Authentication API Specification - Version 2.0 (2017). https://
uidai.gov.in/images/FrontPageUpdates/aadhaar authentication api 2 0.pdf

48. UIDAI: Aadhaar Developer Portal (2017). https://web.archive.org/web/
20170326113654/authportal.uidai.gov.in/web/uidai/developer. Accessed 26
Mar 2017

49. UIDAI: Aadhaar Registered Devices - Technical Specification, vol. 2.0. MeitY,
New Delhi, Delhi, 1 edn (2017). https://uidai.gov.in/images/resource/aadhaar
registered devices 2 0 09112016.pdf

50. UIDAI: Request for Empanelment of Enrolment Agencies. Empanelment of
Enrolling Agencies, MeitY, New Delhi, India (2017). https://uidai.gov.in/images/
RFE SEPT Final 11092017.pdf

51. UIDAI: List of Live Authentication User Agencies (AUAs), August 2018. https://
uidai.gov.in/images/list of live aua.pdf

https://doi.org/10.1145/3025453.3025910
https://doi.org/10.1145/2516604.2516625
https://thewire.in/tech/millions-may-affected-uidai-centres-csc-network-clash-renewal-aadhaar-services-contract
https://thewire.in/tech/millions-may-affected-uidai-centres-csc-network-clash-renewal-aadhaar-services-contract
https://thewire.in/tech/millions-may-affected-uidai-centres-csc-network-clash-renewal-aadhaar-services-contract
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://docs.mosip.io/platform/
https://docs.mosip.io/platform/
https://www.firstpost.com/tech/news-analysis/aadhaar-security-breaches-here-are-the-major-untoward-incidents-that-have.-happened-with-aadhaar-and-what-was-actually-affected-4300349.html
https://www.firstpost.com/tech/news-analysis/aadhaar-security-breaches-here-are-the-major-untoward-incidents-that-have.-happened-with-aadhaar-and-what-was-actually-affected-4300349.html
https://www.firstpost.com/tech/news-analysis/aadhaar-security-breaches-here-are-the-major-untoward-incidents-that-have.-happened-with-aadhaar-and-what-was-actually-affected-4300349.html
https://go.thalesesecurity.com/rs/480-LWA-970/images/Thales-UIDAI-AADHAAR-cb.pdf
https://go.thalesesecurity.com/rs/480-LWA-970/images/Thales-UIDAI-AADHAAR-cb.pdf
https://uidai.gov.in/images/UID_DDSVP_Committee_Report_v1.0.pdf
https://uidai.gov.in/images/UID_DDSVP_Committee_Report_v1.0.pdf
https://uidai.gov.in/images/training-2019/QuestionBank-Operator-510/English_510QB_24012019.pdf
https://uidai.gov.in/images/training-2019/QuestionBank-Operator-510/English_510QB_24012019.pdf
https://uidai.gov.in/images/aadhaar_ekyc_api_2_0.pdf
https://uidai.gov.in/images/aadhaar_ekyc_api_2_0.pdf
https://uidai.gov.in/images/resource/eligibility_criteria_for_aua_kua_17122016.pdf
https://uidai.gov.in/images/resource/eligibility_criteria_for_aua_kua_17122016.pdf
https://uidai.gov.in/images/FrontPageUpdates/aadhaar_authentication_api_2_0.pdf
https://uidai.gov.in/images/FrontPageUpdates/aadhaar_authentication_api_2_0.pdf
https://web.archive.org/web/20170326113654/authportal.uidai.gov.in/web/uidai/developer
https://web.archive.org/web/20170326113654/authportal.uidai.gov.in/web/uidai/developer
https://uidai.gov.in/images/resource/aadhaar_registered_devices_2_0_09112016.pdf
https://uidai.gov.in/images/resource/aadhaar_registered_devices_2_0_09112016.pdf
https://uidai.gov.in/images/RFE_SEPT_Final_11092017.pdf
https://uidai.gov.in/images/RFE_SEPT_Final_11092017.pdf
https://uidai.gov.in/images/list_of_live_aua.pdf
https://uidai.gov.in/images/list_of_live_aua.pdf

India’s “Aadhaar” Biometric ID 693

52. UIDAI: List of Live KUAs, August 2018. https://uidai.gov.in/images/list of live
kua.pdf

53. UIDAI: Setting up and Managing an Enrolment Centre (2018). https://www.
nictcsc.com/images/AadhaarProjectTrainingModule/EnglishTrainingModule/
module 3a settingup managing enrolment centre17122012.pdf

54. UIDAI: Aadhaar Authentication API Specification - Version 2.5 (2019). https://
uidai.gov.in/images/resource/aadhaar authentication api 2 5.pdf

55. UIDAI: Aadhaar Authentication Service Questions at Lok Sabha (Unstarred 2600)
(2019). https://uidai.gov.in/images/loksabha/LSPQ 2600 Unstarred.pdf

56. UIDAI: List of Live Authentication Service Agencies (ASAs) (2019). https://uidai.
gov.in/images/list of live asa.pdf

57. UIDAI: Authentication Requesting Agency (Live). https://uidai.gov.in/
ecosystem/authentication-ecosystem/authentication-requesting-agency.html

58. UIDAI: Operation Model (Live). https://uidai.gov.in/ecosystem/authentication-
ecosystem/operation-model.html

59. UIDAI: Aadhaar FAQ (Live web page). https://www.uidai.gov.in/298-faqs/
enrolment-update/enrolment-partners-ecosystem-partners/2014-what-are-
the-fifteen-commandments-that-an-operator-must-remember.-during-resident-
enrolment.html

60. UIDAI: Enrolment Agencies (Live web page). https://uidai.gov.in/ecosystem/
enrolment-ecosystem/enrolment-agencies.html

61. UIDAI: Registrars - Enrolment Ecosystem (Live web page). https://uidai.gov.in/
ecosystem/enrolment-ecosystem/registrars.html

62. UIDAI: Roles and Responsibilities of Verifier and Introducer (Live web page).
https://www.uidai.gov.in/images/training nov 17/Roles Responsibility Verifier
Introducer 05122017.pdf

63. UIDAI: Vision & Mission (Live web page). https://uidai.gov.in/about-uidai/
unique-identification-authority-of-india/vision-mission.html

64. UIDAI and MeitY: Circular No. 1 of 2018: Enhancing Privacy of Aadhaar holders
- Implementation of Virtual ID, UID Token and Limited KYC (2018). https://
uidai.gov.in/images/resource/UIDAI Circular 11012018.pdf

65. UIDAI and MeitY: Training, Testing and Certification (2019). https://uidai.gov.
in/aadhaar-eco-system/training-testing-certification-ecosystem.html

66. UIDAI, IDBI Bank: Memorandum of Understanding - UIDAI and IDBI Bank
(2011). https://uidai.gov.in/images/mou/partners/mou idbi.pdf

67. Wayman, J., Jain, A.K., Maltoni, D., Maio, D.: Biometric Systems: Technology,
Design and Performance Evaluation. Springer, London (2005)

68. Wilson, R.J., Zhang, C.Y., Lam, W., Desfontaines, D., Simmons-Marengo, D.,
Gipson, B.: Differentially private SQL with bounded user contribution. Proc. Priv.
Enh. Technol. (2020)

https://uidai.gov.in/images/list_of_live_kua.pdf
https://uidai.gov.in/images/list_of_live_kua.pdf
https://www.nictcsc.com/images/Aadhaar Project Training Module/English Training Module/module_3a_settingup_managing_enrolment_centre17122012.pdf
https://www.nictcsc.com/images/Aadhaar Project Training Module/English Training Module/module_3a_settingup_managing_enrolment_centre17122012.pdf
https://www.nictcsc.com/images/Aadhaar Project Training Module/English Training Module/module_3a_settingup_managing_enrolment_centre17122012.pdf
https://uidai.gov.in/images/resource/aadhaar_authentication_api_2_5.pdf
https://uidai.gov.in/images/resource/aadhaar_authentication_api_2_5.pdf
https://uidai.gov.in/images/loksabha/LSPQ_2600_Unstarred.pdf
https://uidai.gov.in/images/list_of_live_asa.pdf
https://uidai.gov.in/images/list_of_live_asa.pdf
https://uidai.gov.in/ecosystem/authentication-ecosystem/authentication-requesting-agency.html
https://uidai.gov.in/ecosystem/authentication-ecosystem/authentication-requesting-agency.html
https://uidai.gov.in/ecosystem/authentication-ecosystem/operation-model.html
https://uidai.gov.in/ecosystem/authentication-ecosystem/operation-model.html
https://www.uidai.gov.in/298-faqs/enrolment-update/enrolment-partners-ecosystem-partners/2014-what-are-the-fifteen-commandments-that-an-operator-must-remember.-during-resident-enrolment.html
https://www.uidai.gov.in/298-faqs/enrolment-update/enrolment-partners-ecosystem-partners/2014-what-are-the-fifteen-commandments-that-an-operator-must-remember.-during-resident-enrolment.html
https://www.uidai.gov.in/298-faqs/enrolment-update/enrolment-partners-ecosystem-partners/2014-what-are-the-fifteen-commandments-that-an-operator-must-remember.-during-resident-enrolment.html
https://www.uidai.gov.in/298-faqs/enrolment-update/enrolment-partners-ecosystem-partners/2014-what-are-the-fifteen-commandments-that-an-operator-must-remember.-during-resident-enrolment.html
https://uidai.gov.in/ecosystem/enrolment-ecosystem/enrolment-agencies.html
https://uidai.gov.in/ecosystem/enrolment-ecosystem/enrolment-agencies.html
https://uidai.gov.in/ecosystem/enrolment-ecosystem/registrars.html
https://uidai.gov.in/ecosystem/enrolment-ecosystem/registrars.html
https://www.uidai.gov.in/images/training_nov_17/Roles_Responsibility_Verifier_Introducer_05122017.pdf
https://www.uidai.gov.in/images/training_nov_17/Roles_Responsibility_Verifier_Introducer_05122017.pdf
https://uidai.gov.in/about-uidai/unique-identification-authority-of-india/vision-mission.html
https://uidai.gov.in/about-uidai/unique-identification-authority-of-india/vision-mission.html
https://uidai.gov.in/images/resource/UIDAI_Circular_11012018.pdf
https://uidai.gov.in/images/resource/UIDAI_Circular_11012018.pdf
https://uidai.gov.in/aadhaar-eco-system/training-testing-certification-ecosystem.html
https://uidai.gov.in/aadhaar-eco-system/training-testing-certification-ecosystem.html
https://uidai.gov.in/images/mou/partners/mou_idbi.pdf

Short Paper: What Peer Announcements
Tell Us About the Size of the Bitcoin

P2P Network

Matthias Grundmann(B) , Hedwig Amberg, Max Baumstark,
and Hannes Hartenstein

KASTEL Security Research Labs, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

{matthias.grundmann,hannes.hartenstein}@kit.edu

Abstract. Bitcoin is based on a P2P network of which only a few quanti-
ties are publicly known. While the number of peers that disseminate trans-
actions and blocks is relevant for the robustness of the network, only the
number of reachable peers is so far being measured. However, there exists
an unknown number of unreachable peers in the network, that is, peers
that do not accept incoming connections but typically also disseminate
transactions and blocks. We propose the Passive Announcement Listen-
ing (PAL) method that gives an estimate of the number of unreachable
peers by observing peer announcements inaddrmessages.Weuse thePAL
method to analyze data from a long-term measurement of the Bitcoin P2P
network from 2015 to 2022. The PAL estimate shows that since 2018 the
number of unreachable peers is at least three times higher than the num-
ber of reachable peers. An empirical validation indicates that about 76% of
all unreachable peers announce their address and the PAL approach finds
about 94% of these unreachable peers. Thus, we estimate the total number
of unreachable peers in May 2022 to be around 34,000. We also report on a
spam wave of addr messages that shows that peer announcements ‘leak’
even more information than the size of the network.

1 Introduction

Bitcoin [17] is based on a peer-to-peer (P2P) network that is used to disseminate
transactions and blocks of the blockchain. For reasons of robustness, the P2P
network should disseminate blocks quickly and transactions efficiently [8]. As
the number of peers in the network influences the dissemination of transactions
and blocks [22], the number of peers needs to be known to understand the P2P
network and to build realistic models used for the development and evaluation
of protocol mechanisms. By design, the Bitcoin protocol does not implement
a method to collect such quantities about the P2P network and, thus, these
quantities can only be estimated or inferred from observations. In 2014 and
2015, some methods to infer the topology of the P2P network based on Bitcoin
Core’s handling of peer announcements were discussed [1,13,16]. However, these
methods showed a high complexity or were impeded by subsequent updates in
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 694–704, 2022.
https://doi.org/10.1007/978-3-031-18283-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_35&domain=pdf
http://orcid.org/0000-0002-1352-0625
http://orcid.org/0000-0003-3441-3180
https://doi.org/10.1007/978-3-031-18283-9_35

What Peer Announcements Tell Us About the Bitcoin P2P Network 695

the implementation of Bitcoin Core. In this paper, we present a novel approach
based on observations of peer announcements to estimate the number of peers
that disseminate transactions and blocks.

To form the P2P network, each peer creates outgoing connections to other
peers. Not every peer, however, is able or willing to accept incoming connections,
either because a peer is behind a NAT or a firewall or because of a deliberate
policy choice. Thus, peers can be categorized into reachable peers that accept
incoming connections and unreachable peers that do not accept incoming connec-
tions [4]. Categorizing peers into reachable and unreachable peers is not trivial
because reachability depends on the vantage point. A first approach might be
to define a peer as unreachable if all other peers cannot initiate a connection to
that peer. However, a peer might accept incoming connections from one group
of peers but refuse incoming connections from other peers. Thus, one could use
the following definition: A peer p is called unreachable if the majority of other
peers cannot initiate a connection to p. While this definition clarifies the set of
unreachable peers, one cannot practically measure it. Thus, we will follow a ‘rela-
tivistic’ approach for our measurements by categorizing peers based on our given
vantage point. In [9], we further discuss the challenges of defining unreachability.

The number of unreachable peers that disseminate transactions and blocks
(disseminating peers) is relevant for the robustness of the P2P network on the
one hand because unreachable disseminating peers support dissemination just as
reachable peers but are harder to attack precisely because they are unreachable,
and on the other hand because anomalies in the number of unreachable peers can
indicate attacks on the P2P network. Some projects [6,25] continuously measure
the number of reachable peers. However, unreachable peers are harder to detect
because one cannot connect to them. One way to get an estimate of the number
of unreachable peers is to observe a fraction of unreachable peers and extrapolate
the whole number of unreachable peers, e.g., by running a reachable peer that
accepts connections from unreachable peers (see [24]). Another way is to observe
effects that are caused by unreachable peers and infer their number from these
observations.

In this paper, we follow the latter approach of ‘observing effects’ and present
the Passive Announcement Listening (PAL) method to estimate the number
of unreachable peers. This approach relies on observing peer announcements
that are propagated by peers in the network. The PAL method uses a passive
monitor node that connects to all reachable peers and waits for unsolicited addr
messages. The rationale behind the PAL method is that if the monitor receives
an address in an unsolicited addr message, one can conclude – based on how
Bitcoin Core propagates peer announcements – that less than ten minutes ago
there was a peer at this address. Because peers regularly announce their address,
collecting all unsolicitedly sent addresses during one day gives an estimate of the
set of peers having existed during this day. By filtering out reachable peers, we
obtain an estimate of the set of unreachable peers.

Previous work has estimated the number of unreachable peers to be around
16,000 peers [19], 54,000 peers [18], 90,000 peers [1], and 155,000 peers [24].

696 M. Grundmann et al.

The wide range of estimations comes not only from different measuring times
and methods but also from the fact that the number of unreachable peers at
a certain point in time differs from the number of unreachable peers measured
over a time interval. In this work, we consider the problem of estimating the
number of unreachable peers during time intervals. Using a model for churn (see
[12]), this number can be used to estimate how many unreachable peers existed
at a given point in time.

We will give an overview of related work in Sect. 2. In Sect. 3, background
on the peer behavior of the most common Bitcoin implementation is provided.
Then, in Sect. 4, we present the PAL method and the results of applying the
method to data collected from the Bitcoin P2P network. As there is no ground
truth available, we validate our approach in Sect. 5 by verifying our assumptions
and by comparing the results of our approach to an observation of a fraction
of unreachable peers. In Sect. 6 we describe how a recent spam wave of addr
messages helped to estimate the number of neighbors of reachable peers and to
find peers with multiple addresses. We conclude in Sect. 7.

2 Related Work

The number of reachable peers has been analyzed by previous research [5,21]
and is continuously measured by different projects [6,25]. These projects share
the basic approach of recursively searching the network for reachable peers. As
an example, we explain the approach of Bitnodes [25] which is similar to that
of Donet et al. [5] and Park et al. [21]: The software starts with an initial set
of peers, connects to each peer and requests addresses from each peer using a
getaddr message. This message is replied to by an addr message that contains
up to 1,000 entries from the sending peer’s database of which some addresses
might be outdated and not belong to a peer anymore. On receiving the addr
message as a reply, the software tries to connect to each of the addresses in the
reply and, for each successfully opened connection, addresses are requested over
this new connection. The set of peers that a connection has been established to is
regarded as the set of reachable peers. In case a connection to an address cannot
be established, it is unknown whether there is an unreachable peer at this address
or the address is outdated and there is no peer at this address. Consequently,
this approach is not capable of measuring the number of unreachable peers.

Only few attempts have been made to estimate the number of unreachable
peers. In May 2017, Wang and Pustogarov [24] ran 102 reachable peers as probes
for seven days and logged all incoming connections and associated information.
For each peer that connected to one of the probes, they tested whether it was
reachable by trying to open a connection to that peer’s address. They observed
on average about 10,000 unique unreachable addresses in a six-hour interval and
estimate without a detailed explanation that there were at least 155,000 unreach-
able peers in each six-hour interval. Bitcoin developer Luke-Jr runs a website
[15] that lists about 50,000 unreachable peers and 5,500 reachable peers at the
time of writing (May 2022). The methodology behind the website is not publicly

What Peer Announcements Tell Us About the Bitcoin P2P Network 697

documented, but, in the absence of other reference points, we also compare our
measurements to the numbers obtained from this website. The role of unreach-
able peers in the Bitcoin P2P network has only been studied to a very limited
degree. Franzoni and Daza [7] recently showed how the robustness and efficiency
of the P2P network can be improved by giving unreachable peers a special role
in the dissemination of transactions.

3 Background on Bitcoin Peers

We refer to an implementation of a client for the Bitcoin protocol as Bitcoin
software. We define a peer as a running instance of a Bitcoin software that
is connected to at least one other running instance of a Bitcoin software. We
expect most peers to be connected to multiple peers in order to reduce chances
of being eclipsed [11]. A Bitcoin P2P network consists of peers that are directly
or indirectly connected to each other. In this paper, we consider only peers in
the Bitcoin P2P network that is referred to as the “Bitcoin mainnet” [3].

Peers are identified by their addresses. A peer can have multiple addresses (in
the most common case an IPv4 address and an IPv6 address) and multiple peers
can share an address (e.g., an IPv4 address because they are behind the same
NAT). We will make the simplifying assumption that each peer has exactly one
address. If we simply use the term address, then it refers to any type of address
being used in the Bitcoin protocol, e.g., IPv4, IPv6, or Tor address (see [14]).

In the following, we describe the protocol for peers in the Bitcoin P2P network
[2] and the behavior of Bitcoin Core, the software that is run by the majority
of peers [25]. Peers need to know the addresses of other peers to be able to
connect to them. To this end, addresses are exchanged between peers using
addr messages that contain between one and 1,000 entries. Each entry consists
of an address, a port, a timestamp, and service flags. The service flags describe
the services offered and extensions implemented by the peer running at the
address. A peer unsolicitedly sends a self announcement of its address to a
connected peer once a connection has been established and then on average
every 24 h. The self announcement contains the announcing peer’s service flags
and the timestamp of the self announcement is set to the time of sending. If
the announced address is routable, i.e. not from an IP address range that is
reserved for private use, and the service flags contained in the self announcement
include certain required flags (the node witness flag and the node network
or node network limited flag), then the address is propagated in the network
together with the associated timestamp and service flags until the timestamp is
older than ten minutes. In Bitcoin Core, the sending of addr messages per
connection is limited to two messages per minute (on average), and addresses
received in multiple incoming addr messages might be batched in one outgoing
addr message. If an incoming addr message contains ten or fewer entries,
Bitcoin Core considers the addresses in the addr message as a batch of self
announcements originally sent unsolicitedly and, therefore, for propagation. In
the remainder of this paper, we only consider such unsolicited addr messages
that contain up to ten entries.

698 M. Grundmann et al.

Monitor

Reachable Peers

Unreachable Peers

Fig. 1. Setup overview. The monitor node that collects the data for the PAL method
is connected to all reachable peers but not to unreachable peers.

White background: unreachable peers
Grey background: reachable peers

□ Continuous border: peers announcing their address
□ Dashed border: peers announcing and not announcing their address

Addresses in ADDR
messages received at

monitor during interval

Addresses in ADDR
messages received

during interval

Ignore self-
announcements

Reachable peers
during interval

Reachable peers
during interval

Outgoing connection is
still active

Reachable peers in ADDR
messages received

during interval

Unreachable peers in
ADDR messages received

during interval

Incoming
connections at
probe(s) during

interval
Incoming connections from
reachable peers at probe(s)

during interval

Incoming connections from unreachable
peers at probe(s) during interval

Unreachable peers
during interval

Extrapolation

Incoming connections at
probe(s) during interval
visible in ADDR messages

PAL METHOD

PREVIOUS WORK

Incoming connections at
probe(s) during interval

VALIDATION

Legend for boxes:

Fig. 2. Data flow of the PAL method, validation, and previous work [24]. The sets Mt

and It are collected during measurements and the arrows show filters and operations to
derive more specific sets during the analysis. The border of each box indicates whether
the respective set contains only peers that set the flags required for address propagation
or also those peers that do not set these flags. The background colors indicate whether
the respective sets contain reachable and/or unreachable peers. (Color figure online)

4 PAL Method and Results

In this section, we present the PAL method’s setup for data collection, the
methodology for analyzing the data and the resulting findings.

Data Collection. The monitor node [20] connects to all known reachable peers
in the network (see Fig. 1) and does not send any addr messages. The only mes-
sages the monitor sends are version messages during connection establishment
and getaddr messages. The solicited addr messages that are received in reply
to getaddr messages are ignored for the PAL method but are used to learn
about reachable peers. The monitor tries to connect to each received address
(rate-limited per address to once every six hours). The monitor logs all received
addr messages, version messages and the time when a connection to another
peer is established or closed.

What Peer Announcements Tell Us About the Bitcoin P2P Network 699

Fig. 3. Number of addresses observed in addr messages compared to reachable
addresses per day. Note that the upper part uses a different scale than the lower part.

Data Analysis. We analyze the logs created by the monitor to learn the number
of peers in the network. This process is depicted in the upper part of Fig. 2.
For each day t, we collect all unsolicited addresses that were received by the
monitor (Mt in Fig. 2). We define the set At by ignoring the self announcements
of (reachable) peers, i.e. entries of an addr message that equal the address of
the sender of this addr message. The set At includes addresses of reachable and
unreachable peers that were announced on day t. To determine the set Pt of
all addresses that the monitor node was connected to on day t, we collect all
addresses that the monitor already was connected to at the beginning of day t
or a connection was established and a version message received during day t.
We consider this set Pt as the set of all reachable peers at day t. Our estimate
of the set of unreachable peers Ut for day t is Ut = At \ Pt.

Limitations. The PAL method cannot distinguish whether an unreachable peer
existed only for a short moment on a day or the whole day. Also, the addresses
and associated information in addr messages are not authenticated. Therefore,
the approach can be disturbed by flooding the network with bogus addresses.

Measurements. We applied the method to data collected from 2015 to 2022 by a
monitor node hosted in the network of KIT (AS 34878). Figure 3 shows |At|, the
number of addresses received in addr messages for each day t and the number
|Ut| of addresses that were unreachable. In each set, an address is counted only
once if it is received multiple times during t. On the majority of days in the
observation range, between 20,000 and 60,000 addresses were received in addr
messages. Most noticeably, the plot shows a high number of addresses at the
end of 2018 and in July 2021 which we will discuss later. The remaining plot
shows that the number of addresses varied over the years and had local maxima
in December 2017 (72,000 addresses) and in February 2021 (51,000 addresses).
The number of unreachable peers |Ut| is on average about 73% of the number
of all addresses |At|. In May 2022, the number of unreachable peers |Ut| equals

700 M. Grundmann et al.

about 26,000 peers. A comparison with the number of reachable peers |Pt| shows
that since 2018 the number of unreachable peers in addr messages was about
three times the number of reachable peers and had a similar development.

The peak at the end of the year 2018 seems like many unreachable peers
joined the network within a few days. An alternative explanation would be
that bogus addresses were distributed that do not actually belong to peers.
We examined the addresses that were received only during this time and did not
find any irregularities with regard to their distribution in the IP address space,
autonomous system, or country of autonomous system. However, for the highest
peak in March 2019, we found that this peak was caused by many IP addresses
from the same /8 subnet. As IP addresses from this subnet were only very rarely
observed before and after March 2019, we assume that this effect was caused by
unknown actions of one party that flooded the network with these IP addresses.
Examples of such actions might be the explanations we find for the recent peak
in July and August 2021 that we discuss in Sect. 6.

5 Validation

Reachable Peers. Validating the PAL method is difficult because we do not
have a reliable ground-truth to compare our results to. However, while the goal
of the PAL method is to find unreachable peers, it can also be used to find
reachable peers. As we know the set of reachable peers quite accurately, we can
validate whether reachable peers can be found in addr messages during each
day. Putting this into the context of Fig. 2, this means that, if the PAL method
works perfectly, we expect that set Rt equals set Pt. We evaluate this for the data
collected during the year 2020 and find that on average 95.4% of the addresses
of reachable peers on a day were received in an addr message on the same
day (excluding self-announcements). Increasing the length of the interval t from
one day to five days increases the share of observed reachable peers to 96.1%
while with an interval length of one hour only on average 84.9% of the addresses
of reachable peers were received in an addr message in the same hour. This
indicates that reachable peers are consistently found by the PAL method and
that the interval length of one day is a reasonable trade-off.

Unreachable Peer. To validate our assumption that an unreachable peer is being
found by the PAL method, we permanently ran an unreachable peer from Decem-
ber 2020 to June 2021. The monitor received the unreachable peer’s address on
200 of 212 days which means that on each day the probability for the peer to be
detected was 94%.

Second Monitor. For further validation with another vantage point, we have
run a second monitor node since 2019. The second monitor node is set up as
described above for the first monitor node but runs in a different location and
a different autonomous system. If the measurement method is reproducible, the
addresses received by the two monitor nodes should largely overlap. We analyzed

What Peer Announcements Tell Us About the Bitcoin P2P Network 701

the addresses received by both monitors since 2019 and find that 96% of the
addresses overlap. This indicates that the measurement is reproducible and that
the view of our monitor node is not subjective to the specific instance of the
monitor.

Validation with Incoming Connections. The approach of Wang and Pustogarov
[24] is to run many reachable peers and wait for unreachable peers to connect
to them. This approach can only find a fraction of unreachable peers and it is
unclear how to reliably extrapolate from this fraction to the whole network. How-
ever, the approach can collect reliable information about the observed fraction
of unreachable peers because they are directly connected. For further validation,
we use a similar approach and run two additional peers pI and pR that accept
incoming connections. After running these peers for two years, we find that 24.1%
of the unreachable peers that connected to pI and pR did not announce their
address. We conjecture that these are peers that are explicitly configured to be
unreachable and, thus, do not announce their address and are not detectable
by the PAL method. To quantify how well the detectable unreachable peers are
found by the PAL method, we consider for our validation only unreachable peers
seen by pI and pR that announced their address to pI or pR. We find that the
PAL method detected on average 94% of peers that connected to pI or pR and
announced their address. We conclude that peers that announce their address
are detected by the PAL method with high probability.

Comparison to Previous Measurements. There is no ground truth that we could
compare the PAL method’s results to but we can compare it to previous esti-
mations and measurements. Neudecker et al. [19] simulated the Bitcoin P2P
network in 2016 and estimated from the simulated propagation behavior that
the P2P network had about 16,000 unreachable disseminating peers. The PAL
method calculates about 14,000 unreachable peers per day averaged over the
year 2016. As the results of Neudecker et al. are for one point in time and the
PAL method estimates the number of unreachable peers during one day, we
would rather expect that the PAL method would find more unreachable peers.
The lower number of unreachable peers detected by the PAL method might be
caused by peers not announcing their address.

A measurement of unreachable peers was conducted by Wang and Pustogarov
[24] in 2017 (see Sect. 2). Based on their observation of a fraction of unreachable
peers, they estimated at least 155,000 unreachable peers to be active in each
six-hour interval. They report that 93.9% of all connections lasted shorter than
one minute and 80% of unreachable peers were mobile peers. We assume that
these peers either did not announce their addresses or that they did not provide
services required for address propagation. In this case, they would be invisible
to the PAL method which explains why the estimate by Wang and Pustogarov
is higher than the results obtained through the PAL method.

The measurement by Luke-Jr [15] gives an estimate of the number of reach-
able and unreachable peers over a time span similar to our measurements. The
number of unreachable peers in the data from Luke-Jr is higher compared to the

702 M. Grundmann et al.

estimation using the PAL method. This is probably accounted for again by the
fact that not all unreachable peers announce their address.

6 Observation of ADDR Spam in July and August 2021

The number of unique addresses in addr messages increased significantly in
July 2021 (see Fig. 3) from about 40,000 unique addresses per day to about
6,000,000 unique addresses per day. This increase was caused by an unknown
party sending many spam addresses into the Bitcoin P2P network. Observations
of the propagation of the spam addresses show that more than the number of
unreachable peers can be learned from observing peer announcements (see [10]):
We analyzed the behavior of the spamming peers and found that our observations
of the propagated spam addresses could be used to estimate the node degree
(number of neighbors) of reachable peers based on an idea that dates back to
2014 [1, Section 10.1]. Further, we found that the observed propagation of spam
addresses could be used to map multiple addresses to the same reachable peers
when the same spam addresses are forwarded to our monitors from different IP
addresses. In August 2021, our monitor nodes were connected to 8,647 reachable
addresses per day on average. From the obtained mapping from addresses to
actual peers, we infer that the monitor nodes were connected to only 7,518 peers
per day on average. This shows that estimating the number of reachable peers
by counting reachable addresses overestimates their number by 15% [10].

7 Conclusion

Unreachable peers contribute to the Bitcoin P2P network by disseminating
blocks and transactions, but are inherently hard to detect and count. We have
presented the PAL method that analyzes peer announcements to estimate the
number of unreachable peers. Our observed number of unreachable peers in May
2022 is about 26,000 peers which, as indicated by our validation, might corre-
spond to about 76% of all unreachable peers. We estimate by extrapolation that
there could actually be about 34,000 unreachable peers which corresponds to
three to four times the number of reachable peers. In contrast to the costly
approach of running many reachable peers to find unreachable peers, the PAL
method is deployable as a continuously running project. We will continue to
monitor and publish the updated data and results [6].

Acknowledgements. The authors would like to thank Till Neudecker and the anony-
mous reviewers for their feedback. The authors acknowledge support by the State of
Baden-Württemberg through bwHPC. This work was supported by funding from the
topic Engineering Secure Systems of the Helmholtz Association (HGF) and by KAS-
TEL Security Research Labs.

What Peer Announcements Tell Us About the Bitcoin P2P Network 703

References

1. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of Clients in
Bitcoin P2P Network. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 15–29. CCS 2014, Association for
Computing Machinery, New York, NY, USA, November 2014. https://doi.org/10.
1145/2660267.2660379

2. Bitcoin-Developers: Bitcoin Reference (2019). https://developer.bitcoin.org/
reference/index.html

3. Bitcoin-Developers: Bitcoin Glossary (2020). https://developer.bitcoin.org/
glossary.html

4. Delgado-Segura, S., Pérez-Solà, C., Herrera-Joancomart́ı, J., Navarro-Arribas, G.,
Borrell, J.: Cryptocurrency Networks: A New P2P Paradigm. Mob. Inf. Syst.
2018(3), 1–16 (2018). https://doi.org/10.1155/2018/2159082

5. Donet Donet, J.A., Pérez-Solà, C., Herrera-Joancomart́ı, J.: The Bitcoin P2P net-
work. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS,
vol. 8438, pp. 87–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44774-1 7

6. DSN: Bitcoin Network Monitoring (2021). https://dsn.kastel.kit.edu/bitcoin/
7. Franzoni, F., Daza, V.: Improving Bitcoin Transaction Propagation by Leverag-

ing Unreachable Nodes. In: 2020 IEEE International Conference on Blockchain
(Blockchain), pp. 196–203 (2020). https://doi.org/10.1109/Blockchain50366.2020.
00031

8. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

9. Grundmann, M., Amberg, H., Hartenstein, H.: On the estimation of the number
of unreachable peers in the Bitcoin P2P network by observation of peer announce-
ments. arXiv preprint arXiv:2102.12774 (2021)

10. Grundmann, M., Baumstark, M., Hartenstein, H.: On the peer degree distribution
of the Bitcoin P2P network. In: 2022 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 1–5 (2022). https://doi.org/10.1109/ICBC54727.
2022.9805511

11. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: Proceedings of the 24th USENIX Conference on Security
Symposium, pp. 129–144. SEC2015, USENIX Association, USA (2015)

12. Imtiaz, M.A., Starobinski, D., Trachtenberg, A., Younis, N.: Churn in the Bitcoin
Network. IEEE Trans. Netw. Serv. Manage. 18(2), 1598–1615 (2021). https://doi.
org/10.1109/TNSM.2021.3050428

13. Nick, J.: Guessing Bitcoin’s P2P Connections (2015). https://jonasnick.github.io/
blog/2015/03/06/guessing-bitcoins-p2p-connections/

14. van der Laan, W.J.: BIP 155: addrv2 message (2019). https://github.com/bitcoin/
bips/blob/master/bip-0155.mediawiki

15. Luke-Jr: Bitcoin Node Count History (2021). https://luke.dashjr.org/programs/
bitcoin/files/charts/historical.html

16. Miller, A., et al.: Discovering Bitcoin’s Public Topology and Influential Nodes
(2015)

17. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Tech. rep. (2008)

https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://developer.bitcoin.org/reference/index.html
https://developer.bitcoin.org/reference/index.html
https://developer.bitcoin.org/glossary.html
https://developer.bitcoin.org/glossary.html
https://doi.org/10.1155/2018/2159082
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-44774-1_7
https://dsn.kastel.kit.edu/bitcoin/
https://doi.org/10.1109/Blockchain50366.2020.00031
https://doi.org/10.1109/Blockchain50366.2020.00031
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/2102.12774
https://doi.org/10.1109/ICBC54727.2022.9805511
https://doi.org/10.1109/ICBC54727.2022.9805511
https://doi.org/10.1109/TNSM.2021.3050428
https://doi.org/10.1109/TNSM.2021.3050428
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://github.com/bitcoin/bips/blob/master/bip-0155.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0155.mediawiki
https://luke.dashjr.org/programs/bitcoin/files/charts/historical.html
https://luke.dashjr.org/programs/bitcoin/files/charts/historical.html

704 M. Grundmann et al.

18. Naumenko, G., Maxwell, G., Wuille, P., Fedorova, A., Beschastnikh, I.: Erlay:
efficient transaction relay for Bitcoin. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security - CCS 2019, pp. 817–831.
ACM Press, London, United Kingdom (2019). https://doi.org/10.1145/3319535.
3354237

19. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing Analysis for Infer-
ring the Topology of the Bitcoin Peer-to-Peer Network. In: Proceedings of
the 13th IEEE International Conference on Advanced and Trusted Computing,
pp. 358–367 (2016). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0070

20. Neudecker, T.: Characterization of the Bitcoin Peer-to-Peer Network (2015–2018)
(2019). https://doi.org/10.5445/IR/1000091933

21. Park, S., Im, S., Seol, Y., Paek, J.: Nodes in the Bitcoin network: comparative
measurement study and survey. IEEE Access 7, 57009–57022 (2019). https://doi.
org/10.1109/ACCESS.2019.2914098

22. Shahsavari, Y., Zhang, K., Talhi, C.: A theoretical model for block propagation
analysis in Bitcoin network. IEEE Trans. Eng. Manage. PP(99), 1–18 (2020).
https://doi.org/10.1109/TEM.2020.2989170

23. Tange, O.: GNU Parallel 20200522 (‘Kraftwerk’) (2020). https://doi.org/10.5281/
zenodo.3841377

24. Wang, L., Pustogarov, I.: Towards Better Understanding of Bitcoin Unreachable
Peers. arXiv preprint arXiv:1709.06837 (2017)

25. Yeow, A.: Bitnodes (2021). https://bitnodes.io

https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.5445/IR/1000091933
https://doi.org/10.1109/ACCESS.2019.2914098
https://doi.org/10.1109/ACCESS.2019.2914098
https://doi.org/10.1109/TEM.2020.2989170
https://doi.org/10.5281/zenodo.3841377
https://doi.org/10.5281/zenodo.3841377
http://arxiv.org/abs/1709.06837
https://bitnodes.io

An Empirical Study of Two Bitcoin
Artifacts Through Deep Learning

Richard Tindell, Alex Mitchell, Nathan Sprague, and Xunhua Wang(B)

James Madison University, Harrisonburg, VA 22807, USA
{tindelrj,mitch5aj}@dukes.jmu.edu, {spragunr,wangxx}@jmu.edu

Abstract. Human artifacts like technical papers and computer pro-
grams often carry the individual styles of their creators. If retrieved
properly, such style information from the artifacts can be used to cate-
gorize the artifacts, compare the relative “similarities” among artifacts,
and may even be used for tracing the authorship of a new artifact.

Bitcoin is a peer-to-peer cryptocurrency and its author(s) goes/go
by the pseudonym of Satoshi Nakamoto. In this article, we use deep
learning to study the styles of two Bitcoin artifacts: the first version
of Bitcoin’s source code, v0.1.0, which was released in early 2009, and
the original Bitcoin white paper, which is dated Oct. 2008. Both studies
use the deep learning technique, which first utilizes extensive computing
power to generate a neural network model from labelled training data
and then uses the model to predict the authorship of unknown data. For
the Bitcoin source code artifact, the data set is a set of cryptography
software that were built around 2008/2009 and it has 16 known labels.
Our model achieves 89.1% validation accuracy and our prediction results
show that the Bitcoin source code is likely produced by multiple authors
and Hal Finney is not one of them. For the Bitcoin white paper, we com-
piled a second data set of financial cryptography papers that are in the
same knowledge domain. This data set has 436 known labels. Our model
achieves 55.1% validation accuracy and it has identified four technical
papers that are “similar” to the Bitcoin white paper.

Keywords: Financial cryptography · Bitcoin · Deep learning ·
Anonymity · Authorship attribution · Code stylometry

1 Introduction

Bitcoin is a peer-to-peer cryptography currency that does not require a trusted
central bank to create digital money or detect counterfeit & double-spending.
Unlike various digital currencies before it, Bitcoin gained wide public acceptance
quickly, has sustained several waves of rise and fall, and will likely stay active in
the foreseeable future. Bitcoin’s design was published as a white paper, under
the name of Satoshi Nakamoto, in Oct. 2008 at a web site [31] and Satoshi
Nakamoto is obviously a pseudonym. Bitcoin’s initial implementation, version
0.1.0, was released, also under the name of Satoshi Nakamoto, in Jan. 2009 and
c© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 705–724, 2022.
https://doi.org/10.1007/978-3-031-18283-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18283-9_36&domain=pdf
https://doi.org/10.1007/978-3-031-18283-9_36

706 R. Tindell et al.

it includes both a binary executable and some source code files in C++. Satoshi
Nakamoto communicated with the outside world in email and posted to technical
forums, but often took caution to use non-identity-revealing pseudonyms, for
example with email addresses like satoshi@vistomail.com and satoshin@gmx.com
and online pseudonyms like satoshi at bitcointalk.org. (It remains a question
whether these “satoshi” are the same person(s); there are claims that Satoshi’s
email accounts and social media accounts have been hacked.)

Naturally, the true identity of Satoshi has aroused much public interests.
In March 2014, Newsweek published an investigative report [19], claiming that
Satoshi Nakamoto is Dorian Nakamoto, a Californian who subsequently vehe-
mently denied the claim. So did Satoshi in an anonymous post after the
Newsweek publication [32]. On 2 May 2016, the BBC and The Economist pub-
lished an article [40], in which Craig Wright, an Australian, self-revealed to be
Satoshi Nakamoto. As a companion proof [43], Wright provided a digital signa-
ture on a message which can be verified by a public key that Satoshi has left
in the public block chain. Since only Satoshi has his/her/their private key, only
Satoshi is capable of generating a digital signature on a new message. However,
later, it has been revealed that the digitally signed message that Wright provided
can be extracted from an existing Bitcoin transaction in the public block chain
and thus cannot be used to prove the identity of Satoshi [25]. In April 2019,
Wright successfully registered US copyright in both the Bitcoin white paper [31]
and the code for Bitcoin 0.1, to which the US Copyright Office further clarified
that “In a case in which a work is registered under a pseudonym, the Copyright
Office does not investigate whether there is a provable connection between the
claimant and the pseudonymous author” [41].

This leads to the following questions: Is Wright really Satoshi Nakamoto? Can
the author(s) of Bitcoin be traced at all, since there are claims that Satoshi’s
email accounts were hacked and so were likely Satoshi’s social media accounts?
Can we find out who Satoshi is purely through the public traces, such as the
white paper and the Bitcoin computer programs, left by Satoshi?1 Can we mine
these artifacts to answer the above questions? In addition to the above claims
on Satoshi Nakamoto, there have been some other speculations on Bitcoin’s
authorship. For example, Hal Finney, a cryptography engineer who exchanged
public discussions with Satoshi in the early stage of Bitcoin, is considered by
many as Satoshi Nakamoto [37]. Is this claim accurate?

Deep learning [1,9,21,26] in recent years has seen big success in multiple
applications such as computer vision, speech recognition, auto-piloting, and
fraud detection in credit card transactions. Multiple open-source deep learn-
ing tools, including scikit-learn, Keras, PyTorch, and TensorFlow, are available.
Can these tools be applied to Satoshi’s artifacts for authorship tracing?

The Bitcoin white paper is written in English, a natural language. English
word-based deep learning has seen wide application and has also been used, in

1 A public web site called the Satoshi Nakamoto Institute [29] has archived the email
messages from Satoshi, posts to public forums claimed from Satoshi, and the earlier
versions of the Bitcoin software.

An Empirical Study of Two Bitcoin Artifacts 707

a couple of earlier efforts, for tracing the author(s) of the Bitcoin white paper;
more on this later in Sect. 2.2. The Bitcoin computer program source code, on the
other hand, is written in C++ (a formal programming language), has its pecu-
liar characteristics, and needs its own treatment in data mining. There have
been multiple studies on source-code-based authorship attribution over a con-
trolled data set [2,7] (more on this later in Sect. 2.1 and Sect. 6) and to our best
knowledge, this study is the first reported result on using language-agnostic deep
learning on Bitcoin source code with a real-world data set.

In this application-driven research, we explored using existing deep learning
techniques for Bitcoin authorship attribution in two ways. Our first attribution is
based on the Bitcoin v0.1.0 source code. As a cryptocurrency, the Bitcoin v0.1.0
implementation heavily depends on cryptographic techniques and it uses the
OpenSSL library v0.9.8h. It is not unreasonable to assume the Bitcoin developer
might be among the developers of the cryptographic libraries. We started by
building a source code data set of cryptographic libraries with preselected known
authors. To avoid the potential trap of evolving coding style, care was taken to
use those cryptographic libraries that were developed at roughly the same time
as Bitcoin v0.1.0. For those authors with too few source code samples, mutants
were generated so that the data set is balanced for deep learning. We next used
this data set to train a neural network. From this trained model authorship
predictions for the Bitcoin source code were made. This data set does include
code from Hal Finney but not code from Craig Wright, due to its unavailability.
Our results show that contrary to one popular belief [37], the relative similarity
between Bitcoin code and Finney’s code is not smaller than other similarities in
the data set, showing that Finney is not particularly likely Satoshi. We wish this
will settle the Finney argument once and for all. Our results also show that the
Bitcoin software 0.1.0 was likely produced by multiple authors, instead of single
person.

Our second study followed the Bitcoin technical paper [31], which was first
published in Oct. 2008 and then officially in Mar. 2009. This technical paper
describes, among other things, the high-level design of Bitcoin, including Bit-
coin transaction, block, proof-of-work, and incentives. These concepts fall well
in the domain of financial cryptography. As a result, the author(s) of the Bit-
coin technical paper may well be among the authors of the proceedings of the
financial cryptography conferences and related papers. To follow this lead, we
compiled a second data set of technical papers, with 436 known labels/author-
combinations, from several sources, including most papers in financial cryptog-
raphy 1997 through financial cryptography 2012, and the technical writings of
Hal Finney [12–15,17], Wei Dai [11], Adam Back [3], and Craig Wright [43].

We next used this data set to train a neural network model. From this trained
model authorship predictions for the Bitcoin technical paper were made. Our
results show that the Bitcoin white paper has styles “similar” to four papers.

The remainder of this article is organized as follows. In Sect. 2, we review
priori work related to this research. Section 3 gives a high-level description of our
research approach. In Sect. 4, we present the details of our study on the Bitcoin

708 R. Tindell et al.

source code, including the data collection, balancing, the deep learning model,
the results, and their interpretation. Similar details for the Bitcoin white paper
are given in Sect. 5. In Sect. 6, we further discuss the results and implications of
this research. A summary of this research is given in Sect. 7.

2 Related Work

Stylometry aims to find the author(s) of a novel, a poem, a music piece, or a paint,
through identifying styles and patterns in them. Previous stylometry examples
include the successful identification of the authors for The Federalist Papers [30]
and for confirming the collaboration between William Shakespear and Fletcher
and Christopher Marlowe [27,28]. Existing techniques for stylometry include
lexical analysis to count frequencies of terms and words, more complex statistics
such as Gaussian statistics, and neural networks.

2.1 Code Stylometry

Stylometry has also been extended to textual computer programs such as
C/C++ source code [2,7,22,35]. It has been observed that just like novel-
ists, painters, and music composers, software developers leave their footprints
in source code and this can be used for authorship tracing.

There are two studies with best reported results in this line. Both studies
aim for large dataset with thousands of authors and high accuracy. Caliskan-
Islam et al. [7] takes a language-dependent approach and it first extracts layout,
lexical, and abstract syntax tree-based syntactic features from C/C++ source
code. Next, it uses a random forest classifier to de-anonymize C/C++ source
code. This research defines 120, 000 layout-based, lexical, and syntactic features
but only sends a small subset of features to the random forest classifier. On the
Google Code Jam (GCJ) dataset with 1600 programmers, this approach reports
92.83% accuracy. Among the 928 important features identified in [7], 1% are
layout (i.e. shallow, human-friendly) features, 55% are lexical (i.e. intermediate-
level) features, and 44% are syntactic (i.e. deep, more machine-oriented) features.

Abuhamad et al. [2] takes a language-agnostic approach and uses deep
learning based on multiple recurrent natural networks (RNN) layers to extract
machine-oriented, statistical features. Next, it sends these features to a random
forest classifier for authorship attribution. Like [7], Abuhamad et al. [2] uses the
Google Code Jam dataset with 1600 authors, with seven files per author, and
reports an accuracy of 96%. Abuhamad et al. [2] also tests their approach on
chosen real-world code samples from 1987 public repositories on GitHub, with
745 C programmers and 10 samples per author; this research reports 94.38%
accuracy.

Both studies report results on the GCJ controlled data set, which may be
very different from real-world data sets; see Sect. 6 for more details on this. Also,
the aforementioned code stylometry techniques work on normal computer code
by general programmers, who when writing code typically do not take measures

An Empirical Study of Two Bitcoin Artifacts 709

to hide their identities. This can be considered as a benign situation for source
code authorship attribution.

However, in some situations, a software developer may deliberately take mea-
sures to hide their identities, for example, with pseudonyms, no identity-revealing
comments, or no comments at all. Such examples include TrueCrypt and Bitcoin.
Even worse, a computer program may be developed to transform source code
in a semantics-preserving manner to defeat authorship attribution [38]. Quiring
et al. [38] considers an adversary who has a black-box access to the machine
learning-based attribution method. In this powerful attack, the adversary does
not know the training data or the algorithm of the attribution method but it
can send any source code to the attribution method and get both the prediction
result and the corresponding prediction score back. Under this attack, Quiring
et al. [38] shows that a Monte-Carlo tree-based computer program can be devel-
oped to effectively defeat the authorship attribution methods of both [7] and [2],
two of the best authorship attribution studies.

It is our belief that the Bitcoin authorship attribution problem does not
completely fall within this worst-case scenario and is more likely somewhere
between the benign case and the worst-case scenario. Both the Bitcoin software
v0.1.0 and the technical paper [31] were developed, in 2008/2009, before deep-
learning became popular [26].

2.2 Text-Based Bitcoin Authorship Attribution

There has never been lack of interest in tracing the Bitcoin author(s). In addition
to the events in Sect. 1, earlier efforts in tracing the authorship of the Bitcoin
white paper include [4–6,10,23,24,39,42].

Chon [10] built a data set of 27 technical papers by 5 known authors and
used support vector machine, random forest, and Gaussian Naive Bayes to trace
the author(s) of the Bitcoin white paper. Hubbs [24] compiled a data set of
writings, including blogs, papers, and published articles, by 7 known authors
and used multiple classifiers to trace the author(s) of the Bitcoin white paper.
Ramesh and Watson [39] built a data set of write-ups by 7 known authors and
used bidirectional LSTM to trace the author(s) of the Bitcoin white paper.

In a different line, Grey [23] studied and compared the human-friendly lin-
guistic features, instead of machine-oriented features, in the Bitcoin white paper
and Nick Szabo’s writing. Also in this line is a study by Watson [42], which uses
a computer program to perform unique word analysis on the Bitcoin white paper
and potential candidates’ write-ups.

Our work in Sect. 5 belongs to the camp of machine learning and uses a
much bigger data set, with 436 known labels, of more structured and formal
texts extracted from peer-reviewed articles.

3 Deep Learning for Bitcoin Artifacts

Both the Bitcoin software v0.1.0 source code and the Bitcoin technical paper,
after text extraction from the PDF file, can be considered as text, defined as a

710 R. Tindell et al.

sequence of characters or mostly English words. Text has been processed and
classified by neural network-based deep learning very well with recurrent neu-
ral network (RNN), such as the Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), and one-dimensional convolutional neural networks (1D
convnets) [9, chap 6]. Deep learning works by first training a neural network
model with large amount of known raw data, without much human intervention,
and then using the model for prediction for unknown raw data. Deep learn-
ing techniques are good at taking raw data/text and automatically producing
discriminating statistical features for classification.

In this research, we will apply existing deep learning techniques to both
Bitcoin artifacts for their authorship tracing. The texts in those two Bitcoin
artifacts are in different subcategories. The source code in the Bitcoin software
v0.1.0 was written in C++. Typical C++ source code files contain the code itself,
as character strings, and some companion comments, both of which may con-
tain information for authorship tracing. The source code files may also contain
additional lexical and layout features that could be informational for authorship
identification [7]. Example lexical features include the keyword length, comment
length, token length, and line length; example layout features include tab length,
space length, and empty length.

In contrast, the Bitcoin white paper is a PDF file generated by PDF-XChange
(PDFTools4.exe v4.0.0201.0000). Due to the PDF generation process, lexical and
layout information in the original source document could have been lost in the
PDF file. As a result, the most personal identifiable information in the Bitcoin
white paper PDF file probably lies in its content as words.

To study the two Bitcoin artifacts with deep learning, we will need to build
a data set for each first. From a data set, a neural network may retrieve multiple
types of discriminators for classification, including the direct content of the data,
such as programming language keywords or English words, and the styles of the
authors in the data set. Not all such classification discriminators are appropriate
for authorship attribution. For example, two technical papers, one about Bitcoin
by Alice (called label A) and the other not about Bitcoin by Bob (called label
B), can be used to train a neural network. The Bitcoin subject may be chosen
by the neural network as a classification discriminator. When a new article of
unknown author about Bitcoin is sent to the resulting model for prediction, it
may be classified as A but the new article could be written by Bob, hence a
wrong authorship attribution. However, when an appropriate data set is used,
such as one with items in the same subject category and in sufficient amount,
the deep learning-based classifier will discover internal representations that are
useful for discriminating between artifacts and these discriminators are more
likely about the stylistic similarity of the artifact authors.

In the next two sections, we shall describe how our data sets are chosen,
balanced, and processed. Our computer programs to generate neural network
models are based on TensorFlow [1] and are written in Python. TensorFlow was
chosen over other deep learning libraries in this research for its availability to us
and not for any particular technical reasons.

An Empirical Study of Two Bitcoin Artifacts 711

4 Source Code Tracing: Tracing the Authorship
of Bitcoin V0.1.0

In this section, we shall investigate how to use deep learning techniques to trace
the author(s) of the Bitcoin software v0.1.0. We start by building a set of source
code libraries with known authors that are the potential developers for Bitcoin
v0.1.0. We then develop methods to balance this data set and make sure that
each known author has enough samples. Next, we use this data set to train a
deep learning model and in the end use the trained model for prediction.

4.1 Data Collection

Bitcoin software v0.1.0 was built on the top of several software libraries, includ-
ing OpenSSL, Berkeley DB, Boost, and wxWidgets. It bases its cryptographic
functions, such as elliptic-curve key pair generation, digital signing, signature ver-
ification, and cryptographic hashing, on OpenSSL. Bitcoin v0.1.0 also includes
explicit instructions to exclude encryption routines from OpenSSL, as Bitcoin
does not use encryption. For elliptic-curve digital signature algorithm (ECDSA)
[34], it does not use the default parameters in the ECDSA standard. Instead, it
uses the Standards for Efficient Cryptography (SEC) parameter secp256k1 [8].
For cryptographic hashing, it uses both SHA256 [33] and RIPEMD160.

All these point to the fact that the Bitcoin v0.1.0 developers have signifi-
cant knowledge in cryptography, might have contributed to public cryptographic
libraries, or are in the league of these library developers. For Bitcoin v0.1.0
authorship attribution, we collected a set of public cryptographic libraries devel-
oped in C/C++ around the time frame of 2008/2009, the time that Bitcoin v0.1.0
was released, as shown in Table 1.

In Table 1, Hal Finney was chosen because his early involvement in email
discussions with Satoshi Nakamoto. Until today, Finney has been believed by
many to be Satoshi [37]. However, public code by Finney was not common and
the only code, as a single file, attributed to him is found at Github as bc key,
which is indeed related to Bitcoin.

Some cryptographic libraries such as OpenSSL and Cryptlib are products of
multiple authors. Fortunately, the files in these libraries are well marked with
author names and thus separated into different data items in Table 1.

Two libraries, libgcrypt and gnupg, were developed by the same author
Werner Koch. Also, the library NSS was ostensibly developed by multiple authors
and deserve attention. The author(s) of the TrueCrypt library deliberately masks
their/his/her identities. We tried but failed to find the source code of any com-
puter programs written by Craig Wright.

For these chosen libraries, extra steps have been taken to clean them up for
duplicate source code files.

4.2 Data Balancing with Mutants

Figure 6 of the Appendix section gives the total numbers of .c, .h, .cpp, or
.hpp source files in the original libraries of Table 1. These numbers are very

712 R. Tindell et al.

Table 1. A list of existing cryptographic libraries when Bitcoin was first released

Package Name Author(s) Chosen
version

Release date Notes

Bitcoin unknown 0.1.0 Jan. 2009

bc key Hal Finney Feb. 9, 2011 from Github

CryptoPP Wei Dai 5.6.0 Mar. 15, 2009

Cryptlib Peter Gutmann 3.4.5 Oct. 6, 2010

Brian Gladman ≈ Jan. 31, 2006 From cryptlib

OpenSSL Eric Young 0.9.7m Feb. 23, 2007 Files are separated in
terms of authorsStephen Henson

Ben Laurie

Richard Levitte

Geoff Thorpe

Libgcrypt Werner Koch 1.4.3 ≈ Jan. 22, 2009

Libmcrypt Nikos Mavroyanopoulos 2.5.8 Feb. 19, 2007

Botan Jack Lloyd 1.8.0 Dec. 08, 2008

NSS Group 3.9.2 ≈ Apr. 21, 2008

TrueCrypt Anonymous, group 6.1 Oct. 31, 2008

LUKS Clemens Fruhwirth 1.1.1 Aug. 12, 2008

Gnupg Werner Koch 2.0.9 Mar. 26, 2008

imbalanced. More specifically, bc key by Hal Finney has only one file; within
OpenSSL, 4 files were attributed to Ben Laurie, 9 for Richard Levitte, and 9 for
Geoff Thorpe. On the other hand, the CryptoPP package has 243 source files
(for Wei Dai), Cryptlib has 246 files for Peter Gutmann and 12 files for Brian
Gladman, Botan has 586 files (for Jack Lloyd); inside OpenSSL, there are 550
files for Eric Young and 111 files for Stephen Henson.

These files, if not further processed before sending to a machine learn-
ing model for training, will inevitably skew the model to be trained toward
labels/authors with more files and hence also skew the prediction results. Enforc-
ing a simple threshold (such as 7, as done in [2]) on known authors and dropping
those who with smaller files does not work either, as this threshold is likely larger
than 1 and thus disqualify labels such as that of bc key, which carries non-trivial
weight in Bitcoin source code authorship attribution.

For those known labels/authors with too few samples, one way to overcome
the above dilemma is to generate, from the small number of files available, more
mutant files that have programming styles very close to the sample files and use
the mutant files in model training and validation.

C/C++ .c and .cpp source files may include a section of the #include pre-
processor directive, a section of the #define preprocessor directive for constants
and/or macros, some struct definitions, global and static variables, some func-
tion declarations, and some function definitions. Not all of these sections appear
in a single C/C++ source file. A mutant can be generated by switching the
internal order of multiple #include lines/statements, the internal order of mul-
tiple functions, or both. When not enough functions or include statements are

An Empirical Study of Two Bitcoin Artifacts 713

available, the internal order of constant/macro definitions can be switched. We
believe that mutants generated this way are natural and have a programming
style very close to the original files, as they have very close layout-based, lexical,
and syntactic features.

Care must be used in dealing with conditional compilation directives in
C/C++ source files. Conditional compilation directives may group together
multiple #include statements, function definitions, or even a block of state-
ments within a function into different compilation cases (for example, for dif-
ferent hardware platforms). Such conditional compilation directives may appear
almost everywhere in a source code file. Switching the internal order of multi-
ple #include statements in the same compilation case may be fine but cross-case
switching could be problematic, as the resulting code may not compile or function
correctly, is unnatural, and thus should be avoided. In our mutant generation,
only the multiple #include statements within the innermost conditional com-
pilations and the multiple function definitions within the innermost conditional
compilations are permuted to generate mutants.

Often, given a source file, multiple mutants can be generated through state-
ment permutation and they could be just a subset of all possible mutants. As
a whole, each such mutant file is a different sequence of characters. However,
whenever possible, a mutant should have maximal differences from other chosen
mutants from the same source file. In this way, even when a mutant is split
into multiple segments in model training and validation, the differences among
segments will likely be very different, which helps model training and improves
the soundness of model validation results.

It is also worth noting that this mutant generation strategy only works for
files that have enough information. It is our estimate that the original files for
each label in the data set of Table 1 does have enough information and even
the single file bc key.c, which has 17 functions. After mutation generation, each
label/author of Table 1 has at least 100 source files.

4.3 Data Preprocessing, Modeling, and Validation

Content-wise, a C/C++ source file comprises of comments, including copyright
notice, and the source code. Both comments and source code are a sequence of
characters but they differ in one important way: comments are often in a natural
language while source code is in a formal language. Comments and pure code,
together with the layout and lexical characteristics of the file, could form three
relatively independent inputs to a deep learning model.

However, for the data set of Table 1, not all these three inputs have the
same significance in training a deep learning model. Through extensive testing,
we observed that comments and lexical/layout features play a very small role
compared to the source code in deep learning training and validation. As a result,
we adopted a model solely on the pure character-based source code, as shown in
Fig. 1.

714 R. Tindell et al.

Fig. 1. Deep learning model based on pure source code

In Fig. 1, on the left are the raw data in the format of C/C++ files and they
are balanced through mutants, as described in Sect. 4.2, so that each label has
at least 100 files. Next, each raw file is preprocessed in a series of steps, first
by removing the comment lines, filtering out C/C++ language keywords such
as “break, case, include, public, private, protected, int, long, float,” and then
splitting into smaller samples (for example, each with 400 characters). For each
label, 1500 unique samples are chosen and they are sent to the deep learning
model, with 80% of the selected samples are randomly chosen for model training
and the rest are used for model validation.

On the right of Fig. 1 is the neural network, which includes one Long Short-
Term Memory (LSTM) layer with a dimensionality of 512 for the output space
and two dense layers, with 128 and 16 as their dimensionality of the output
space respectively. (There are 16 known authors in Table 1.) A softmax activa-
tion function is applied to the output layer and the network is trained using
cross-entropy loss. These hyperparameters are chosen after repeated train-and-
validation trials.

From the input samples, we randomly select 80% of the samples for training
and the rest for validation. Each training/validation generates a model. Since the

An Empirical Study of Two Bitcoin Artifacts 715

network weights are initialized randomly, the final behavior of the models will
differ somewhat from one training run to the next. On the same set of samples
we ran the process 81 times. The average training accuracy of these runs reaches
96.9%, with a standard deviation of 0.01; the average validation accuracy is
89.1%, with a standard deviation of 0.018. An early stopping policy, with 1e− 2
min delta and patience of 3, was used. The average epoch number of these runs
is 25.67, with a standard deviation of 2.43.

As one example of these 81 runs, the train and validation accuracies and
losses are given in Fig. 2 and Fig. 3 respectively.

Fig. 2. Example code model accuracy Fig. 3. Example model loss

4.4 Prediction Results and Interpretation

For each of the 24 source files in Bitcoin software v0.1.0, the 81 models described
in Sect. 4.3 were used to predict its authorship. The prediction probability of
each file by each model is above 90%. However, there is variation among the
predictions by different models. Table 2 gives the most frequent attribution along
with the percentage of models that made that attribution2.

Care needs to be taken in interpreting the results of Table 2. In this study, we
are essentially using the created neural network models to measure the relative
“similarities” between the Bitcoin source code v0.1.0 and those 16 libraries in
Table 1.

The results in Table 2 show that

1. None of the reported Bitcoin authorship is Hal Finney. In other words, the
relative similarities between the source files of Bitcoin v0.1.0 and Hal Finney’s
code are not smaller than those between Bitcoin v0.1.0 and other libraries in
Table 1. Compared to other authors in Table 1, Hal Finney is much less likely
to be the developer or one of the developers of Bitcoin source code v0.1.0.
This conclusion contradicts a popular belief that Finney is Satoshi.

2 The data set and the corresponding computer programs for this part are available
at https://github.com/wangxx2016/source-code-stylometry.

{https://github.com/wangxx2016/source-code-stylometry}

716 R. Tindell et al.

Table 2. Bitcoin source code authorship attribution over 81 runs

File Name Reported Attribution File Name Reported Attribution

base58.h CryptoPP (51%) net.cpp TrueCrypt (52%)

TrueCrypt (49%) CryptoPP (48%)

bignum.h CryptoPP (40%) net.h TrueCrypt (67%)

TrueCrypt (41%) CryptoPP (32%)

Botan (28%)

db.cpp CryptoPP (70%) script.cpp CryptoPP (54%)

TrueCrypt (19%) TrueCrypt (47%)

db.h CryptoPP (53%) script.h TrueCrypt (54%)

TrueCrypt (47%) CryptoPP (32%)

headers.h TrueCrypt (54%) serialize.h TrueCrypt (77%)

CryptoPP (44%)

irc.cpp TrueCrypt (53%) ui.cpp TrueCrypt (36%)

CryptoPP (43%) Botan (36%)

CryptoPP (27%)

irc.h TrueCrypt (75%) ui.h Botan (47%)

TrueCrypt (25%)

keys.h Botan (44%) uibase.cpp CryptoPP (43%)

TrueCrypt (40%) TrueCrypt (41%)

main.cpp CryptoPP (65%) uibase.h CryptoPP (43%)

TrueCrypt (35%) TrueCrypt (41%)

main.h TrueCrypt (80%) u256int.h TrueCrypt (84%)

CryptoPP (20%)

market.cpp TrueCrypt (57%) util.cpp TrueCrypt (85%)

CryptoPP (43%)

market.h TrueCrypt (94%) util.h TrueCrypt (85%)

2. Two source files, db.cpp and main.cpp, have the largest similarity to Cryp-
toPP.

3. Eight source files, irc.h, main.h, market.h, net.h, serialize.h, u256int.h,
util.cpp, and util.h, have the largest similarity to TrueCrypt.

4. TrueCrypt was developed by anonymous author(s). If TrueCrypt was not
developed by the author of CryptoPP, Wei Dai, then there are multiple pro-
gramming styles in Bitcoin v0.1.0 and it is likely that multiple developers
have contributed to Bitcoin v0.1.0.

An Empirical Study of Two Bitcoin Artifacts 717

5 Document Tracing: Tracing the Authorship
of the Bitcoin White Paper

In this section we shall use deep learning to trace the author(s) of another Bitcoin
artifact, the Bitcoin white paper [31]. The Bitcoin white paper describes the high-
level design of the Bitcoin cryptocurrency. However, there is no guarantee that
the Bitcoin white paper author(s) is/are the same person(s) as the author(s) of
the Bitcoin source code.

5.1 Data Collection

As a peer-to-peer cryptocurrency, Bitcoin is more than just a set of crypto-
graphic techniques. Unlike the numerous cryptocurrencies before it, Bitcoin takes
into considerations financial incentives for human beings through its peer-to-peer
characteristic and the concept of proof of work. It more or less falls within the
category of financial cryptography. Based on this observation, we chose the data
set to include the following technical papers in English: Wei Dai’s b-money [11],
Adam Back’s hashcash [3], Hal Finney’s write-ups [12–17], and most papers from
the proceedings of Financial Cryptography, between 1997 and 2012, organized
by International Financial Cryptography Association (IFCA). A semi-technical
writeup, Craig Wright’s write-up [43], is also included.

In this data set, there are 436 unique known author combinations. An author
combination can be either a single author or a combination of multiple authors.
Two different author combinations may share one or more but not all authors.
It is assumed that each author combination has its unique and distinguishable
style. There is at least one technical paper, as a digital file, for each author
combination. Most files are in the format of PDF and their textual content was
extracted through optical character recognition. A further grammar check was
conducted on the extracted texts to clean them up before they were sent to a
neural network.

5.2 Data Modeling

Unlike the character -based computer source code of Sect. 4.3, the raw data of
this part is based on English words. As shown in Fig. 4, the raw English word
sequences are partitioned into fixed-size, 100-word samples. Each of the 436
labels has 40 samples. If the raw word sequence of a label is not long enough,
overlapping samples are generated from the word sequence. This preprocessing
step guarantees the balance of the training samples.

To take advantage of the nature of English words, as shown in Fig. 4, in the
neural network model, Glove, the Global vectors for word presentation [36], is
used in the untrainable embedding layer to reduce training time.

In the model of Fig. 4, a 1024 dimensional bidirectional LSTM is used, which
is followed by a 256-dimensional Dense layer.

From the input samples the neural network randomly picks 80% of the sam-
ples for training and the rest for validation. Each training/validation generates

718 R. Tindell et al.

Fig. 4. Deep learning model for text

a model. This process is kind of probabilistic. On the same set of samples we
ran the process 100 times. The average training accuracy of these runs reaches
96.6%, with a standard deviation of 0.008; the average validation accuracy is
55.1%, with a standard deviation of 0.014. The average epoch number of these
runs is 14.66, with a standard deviation of 0.956. It should be noted that the
55.1% validation accuracy is achieved over the 436 labels, compared to 89.1%
over 16 labels in Sect. 4.3.

As one example of these 100 runs, the train and validation accuracies and
losses are given in Fig. 7 and Fig. 8 in the Appendix section respectively.

5.3 Prediction Results and Interpretation

For the Bitcoin white paper, the 100 models described in Sect. 5.2 were used to
predict its authorship. While the prediction probability by each model is 97.5%
on average (with a standard deviation of 0.028), there are variation among the
predictions by different models. Figure 5 gives the attribution results, along with
the percentage of models that made that attribution3. The x-axis is the predicted
labels (i.e., attribution results), each of which consists of a unique number, the
year of financial cryptography proceeding, the ordinal number of the article in
the proceeding, and the last names of the author(s), all separated with a hyphen.
The y-axis of Fig. 5 is the percentage of models that made that prediction.

3 For this part, the computer programs and a part of the data, with copyrighted mate-
rials removed, are available at https://github.com/wangxx2016/text-stylometry/.

{https://github.com/wangxx2016/text-stylometry/}

An Empirical Study of Two Bitcoin Artifacts 719

Fig. 5. Bitcoin white paper authorship attribution results

Figure 5 shows that

1. Among the 436 known labels, the Bitcoin white paper [31] is more simi-
lar, in style, to four papers (the leftmost four in Fig. 5), each supported by
21%, 14%, 14%, and 11% of the 100 models respectively;

2. Craig Wright’s write-up [43] is not among the predicted labels;
3. Hal Finney’s write-ups [12–17] are not among the predicted labels;

6 Discussions

Deep learning is an effective tool for classification and has big potential for
both text and source code-based authorship identification. Several points warrant
further discussions in using it for real-world authorship identification, especially
in tracing the authorship of computer program source code.

It is worth noting that there are multiple differences between a controlled
data set and a real-world data set. The source code in a controlled data set
such as the Google Code Jam (GCJ) [20] is developed to solve the same set
of problems and as a result, the authorship discriminators in it might be more
identifiable than in other real-world data.

Second, in a controlled data set, there are a minimal number of files (for
example, seven or ten [2]) for each author and this may not be true in many
real-world applications. Often, as shown in Sect. 4.2, steps are needed to generate
mutants for balancing real-world training data.

720 R. Tindell et al.

Third, authorship attribution on a controlled data set is a closed-set clas-
sification, where the target author is assumed/known to be in a given set of
authors. This is not necessarily true for applications like Bitcoin, as it is hard to
tell whether Satoshi is among any given set of authors. The Bitcoin authorship
attribution is an open-set classification problem [18]. As a result, as shown in
Sect. 4.4 and Sect. 5.3, the deep learning classification results can help us evalu-
ate negative statements such as Finney did not write the Bitcoin software; in the
open-set setting, they cannot help us evaluate positive statements like Wright
has developed the Bitcoin software.

Another point in using deep learning classification for authorship attribution
is that the attribution results depend heavily on the chosen data set. This is also
true in our studies of the Bitcoin source code in Sect. 4 and the Bitcoin white
paper in Sect. 5. The current selections of the cryptographic libraries in our first
data set and the structured technical papers in our second data set are intuitive
and can be expanded in future work, for example, to include less structured
writings such as blog and discussion forum posts.

7 Summary

Despite having become a household name, the identities of Bitcoin’s creator(s)
are not known. To trace the author(s) of the Bitcoin source code and Bitcoin
white paper, we compiled two data sets, developed computer programs based on
deep learning techniques, used the programs to train models on the two data sets,
and then used the models to predict the authors of Bitcoin. The first data set has
16 known labels, the model validation accuracy reaches 89.1%, and the prediction
results of our models contradict one popular belief that Hal Finney is Satoshi; the
prediction results also indicate that there might be multiple contributors to the
code. The second data set has 436 labels, the model validation accuracy reaches
55.1%, and the prediction results on the Bitcoin white paper have identified four
technical papers that are more similar than others to the Bitcoin white paper.

Our first data set also provides a useful tool for identifying/excluding possible
Satoshi and will be shared so that others may find better ways to leverage the
data.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
insightful comments and the shepherd for the pointed guidance. We also thank Jason
Brake and Sam Martins for setting up the environment in the early stage of the project.
This work is supported in part by the state of Virginia’s Commonwealth Cyber Initia-
tive (CCI) through its Northern Virginia node.

An Empirical Study of Two Bitcoin Artifacts 721

Appendix

Fig. 6. Data set 1: original file number distribution

Fig. 7. Example text model accuracy Fig. 8. Example text model loss

722 R. Tindell et al.

References

1. Abadi, M.: TensorFlow: a system for large-scale machine learning. In: Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’16), pp. 265–283 (2016)

2. Abuhamad, M., AbuHmed, T., Mohaisen, A., Nyang, D.: Large-scale and language-
oblivious code authorship identification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), pp. 101–114
(2018)

3. Back, A.: Hashcash - a denial of service counter-measure (2002). http://www.
hashcash.org/papers/hashcash.pdf

4. bit(bit@ungeared.com). The strange story of Satoshi Nakamoto’s spelling choices,
31 Dec 2020. https://ungeared.com/the-strange-story-of-satoshi-nakamotos-
spelling-choices-part-1/

5. bit(bit@ungeared.com). Satoshi Nakamoto’s spelling paradox solved: everything
was by design, 11 Jan 2021. https://ungeared.com/satoshi-nakamotos-spelling-
paradox-solved-everything-was-by-design/

6. bit(bit@ungeared.com). Authorship dispute resolution method applied to uncover
Satoshi Nakamoto, 18 Jan 2021. https://ungeared.com/authorship-dispute-
resolution-method-applied-to-uncover-satoshi-nakamoto/

7. Caliskan-Islam, A., et al.: De-anonymizing programmers via code stylometry. In:
Proceedings of the 24th USENIX Security Symposium, pp. 255–270(August),
pp. 12–14, 2015. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/caliskan-islam

8. Certicom Research. Sec 2: Recommended elliptic curve domain parameters version
2.0. Standards for Efficient Cryptography, 27 Jan 2010. http://www.secg.org/sec2-
v2.pdf

9. Chollet, F.: Deep Learning with Python. Manning (2017). ISBN 9781617294433
10. Chon, M.: Stylometric analysis: Satoshi Nakamoto, 26 Dec 2017. https://

towardsdatascience.com/stylometric-analysis-satoshi-nakamoto-294926cdf995
11. Dai, W.: b-money (1998). http://www.weidai.com/bmoney.txt
12. Finney, H.: Digital cash & privacy, 19 Aug 1993. http://fennetic.net/irc/finney.

org/hal/dig cash priv.html
13. Finney, H.: Detecting double spending, 15 Oct 1993. https://nakamotoinstitute.

org/detecting-double-spending/
14. Finney, H.: PGP web of trust misconceptions, 30 Mar 1994. http://fennetic.net/

irc/finney.org/hal/web of trust.html
15. Finney, H.: RPOW - reusable proofs of work, 15 Aug 2004. https://cryptome.org/

rpow.htm
16. Finney, H.: Dying outside, 4th Oct 2009. https://www.lesswrong.com/posts/

bshZiaLefDejvPKuS/dying-outside
17. Finney, H.: Bitcoin and me, 19 March 2013. https://bitcointalk.org/index.php?

topic=155054.0
18. Geng, C., Huang, S.J., Chen, S.: Recent advances in open set recognition: a survey.

In: IEEE transactions on pattern analysis and machine intelligence, Mar 18 (2020)
19. Goodman, L.: The face behind bitcoin. Newsweek, 6 March 2014. http://www.

newsweek.com/2014/03/14/face-behind-bitcoin-247957.html
20. Google. Google code jam. https://codingcompetitions.withgoogle.com/codejam
21. Google. TensorFlow: an end-to-end open source machine learning platform.

https://www.tensorflow.org/

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://ungeared.com/the-strange-story-of-satoshi-nakamotos-spelling-choices-part-1/
https://ungeared.com/the-strange-story-of-satoshi-nakamotos-spelling-choices-part-1/
https://ungeared.com/satoshi-nakamotos-spelling-paradox-solved-everything-was-by-design/
https://ungeared.com/satoshi-nakamotos-spelling-paradox-solved-everything-was-by-design/
https://ungeared.com/authorship-dispute-resolution-method-applied-to-uncover-satoshi-nakamoto/
https://ungeared.com/authorship-dispute-resolution-method-applied-to-uncover-satoshi-nakamoto/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://towardsdatascience.com/stylometric-analysis-satoshi-nakamoto-294926cdf995
https://towardsdatascience.com/stylometric-analysis-satoshi-nakamoto-294926cdf995
http://www.weidai.com/bmoney.txt
http://fennetic.net/irc/finney.org/ hal/dig_cash_priv.html
http://fennetic.net/irc/finney.org/ hal/dig_cash_priv.html
https://nakamotoinstitute.org/detecting-double-spending/
https://nakamotoinstitute.org/detecting-double-spending/
http://fennetic.net/irc/finney.org/hal/web_of_trust.html
http://fennetic.net/irc/finney.org/hal/web_of_trust.html
https://cryptome.org/rpow.htm
https://cryptome.org/rpow.htm
https://www.lesswrong.com/posts/bshZiaLefDejvPKuS/dying-outside
https://www.lesswrong.com/posts/bshZiaLefDejvPKuS/dying-outside
https://bitcointalk.org/index.php?topic=155054.0
https://bitcointalk.org/index.php?topic=155054.0
http://www.newsweek.com/2014/03/14/face-behind-bitcoin-247957.html
http://www.newsweek.com/2014/03/14/face-behind-bitcoin-247957.html
https://codingcompetitions.withgoogle.com/codejam
https://www.tensorflow.org/

An Empirical Study of Two Bitcoin Artifacts 723

22. Gray, A., Sallis, P., MacDonell, S.: IDENTIFIED (integrated dictionary-based
extraction of non-language dependent token information for forensic identifica-
tion, examination, and discrimination): a dictionary-based system for extracting
source code metrics for software forensics. In Proceedings of the 1998 International
Conference Software Engineering: Education and Practice, 29 Jan 1998

23. Grey, S.: Satoshi Nakamoto is (probably) Nick Szabo, 1 Dec 2013. https://
likeinamirror.wordpress.com/2013/12/01/satoshi-nakamoto-is-probably-nick-
szabo/

24. Hubbs, C.: Can machine learning unmask Satoshi Nakamoto? Sept 2017. https://
www.datahubbs.com/can-machine-learning-unmask-satoshi-nakamoto/

25. Kaminsky, D.: Validating Satoshi (or not), 2 May 2016. https://dankaminsky.com/
2016/05/02/validating-satoshi-or-not/

26. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
27. Robert, A., Matthews, J., Thomas, V., Merriam, N.: Neural omputation in sty-

lometry I: an application to the works of shakespeare and fletcher. Literary and
Linguistic Computing, 8 (4), 203–209 (1993)

28. Thomas, V., Merriam, N., Robert, A., Matthews, J.: Neural computation in sty-
lometry II: An application to the works of shakespeare and marlowe merriam.
Literary Linguist. Comput. 9(1), 1–6 (1994)

29. michael@bitstein.org. The complete Satoshi. https://satoshi.nakamotoinstitute.
org/

30. Mosteller, F., Wallace D.L.: Applied Bayesian and classical inference: the case of
the federalist papers. Springer, New York (1984). https://doi.org/10.1007/978-1-
4612-5256-6

31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. First released to the
cryptography mailing list on October 31, 2008 at https://www.metzdowd.com/
pipermail/cryptography/2008-October/014810.html; however, the commonly seen
PDF file carries a creation timestamp of March 24, 2009, (2008). http://bitcoin.
org/bitcoin.pdf

32. Nakamoto, S.: I am not Dorian Nakamoto, 7 March 2014. http://p2pfoundation.
ning.com/forum/topics/bitcoin-open-source?commentId=2003008

33. National Institute of Standards and Technology. Secure hash standard (SHS).
FIPS PUB 180–4, March 2012. http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf

34. National Institute of Standards and Technology. Digital signature standard (DSS).
FIPS PUB 186–4 July 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
186-4.pdf

35. Oman, P.W., Cook, C.R.: Typographic style is more than cosmetic. Commun.
ACM 33(5), 506–519 (1990)

36. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

37. Protos. Finney ’most likely’ bitcoin’s Nakamoto, say researchers, 18 Jan
2021. https://protos.com/bitcoin-creator-satoshi-nakamoto-candidates-analysis-
hal-finney/

38. Quiring, E., Maier, A., Rieck, K.: Misleading authorship attribution of source code
using adversarial learning. In: Proceedings of the 28th USENIX Security Sympo-
sium, August 14–16 2019. https://www.usenix.org/system/files/sec19-quiring.pdf

39. Ramesh, V., Watson, J.L.: Shakespeare and Satoshi - de-anonymizing writing using
BiLSTMs with attention, 31 Dec 2018. https://web.stanford.edu/class/archive/cs/
cs224n/cs224n.1184/reports/6858026.pdf

https://likeinamirror.wordpress.com/2013/12/01/satoshi-nakamoto-is-probably-nick-szabo/
https://likeinamirror.wordpress.com/2013/12/01/satoshi-nakamoto-is-probably-nick-szabo/
https://likeinamirror.wordpress.com/2013/12/01/satoshi-nakamoto-is-probably-nick-szabo/
https://www.datahubbs.com/can-machine-learning-unmask-satoshi-nakamoto/
https://www.datahubbs.com/can-machine-learning-unmask-satoshi-nakamoto/
https://dankaminsky.com/2016/05/02/validating-satoshi-or-not/
https://dankaminsky.com/2016/05/02/validating-satoshi-or-not/
https://satoshi.nakamotoinstitute.org/
https://satoshi.nakamotoinstitute.org/
https://doi.org/10.1007/978-1-4612-5256-6
https://doi.org/10.1007/978-1-4612-5256-6
https://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html;
https://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html;
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source?commentId=2003008
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source?commentId=2003008
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.aclweb.org/anthology/D14-1162
https://protos.com/bitcoin-creator-satoshi-nakamoto-candidates-analysis-hal-finney/
https://protos.com/bitcoin-creator-satoshi-nakamoto-candidates-analysis-hal-finney/
https://www.usenix.org/system/files/sec19-quiring.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6858026.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6858026.pdf

724 R. Tindell et al.

40. The Economist. Craig Wright reveals himself as Satoshi Nakamoto. The Economist,
2nd May 2016. https://www.economist.com/briefing/2016/05/02/craig-wright-
reveals-himself-as-satoshi-nakamoto

41. The U.S. Copyright Office. Questions about certain bitcoin registrations, 22 May
2019. https://www.copyright.gov/press-media-info/press-updates.html

42. Watson, T.: A fascinating discovery uncovers Satoshi Nakamoto’s identity,
26 May 2021. https://zycrypto.com/exclusive-a-fascinating-discovery-uncovers-
satoshi-nakamotos-identity/

43. Wright, C.: Jean-Paul Sartre, signing and significance, 02 May 2016. https://
craigwright.net/blog/math/jean-paul-sartre-signing-and-significance/

https://www.economist.com/briefing/2016/05/02/craig-wright-reveals-himself-as-satoshi-nakamoto
https://www.economist.com/briefing/2016/05/02/craig-wright-reveals-himself-as-satoshi-nakamoto
https://www.copyright.gov/press-media-info/press-updates.html
https://zycrypto.com/exclusive-a-fascinating-discovery-uncovers-satoshi-nakamotos-identity/
https://zycrypto.com/exclusive-a-fascinating-discovery-uncovers-satoshi-nakamotos-identity/
https://craigwright.net/blog/math/jean-paul-sartre-signing-and-significance/
https://craigwright.net/blog/math/jean-paul-sartre-signing-and-significance/

Author Index

Abadi, Aydin 100
Agarwal, Dhruv 672
Alaoui, Younes Talibi 20
Amberg, Hedwig 694
Angeris, Guillermo 149
Asgaonkar, Aditya 560
Avarikioti, Zeta 358, 488
Azouvi, Sarah 426, 512

Baek, Seungjin 663
Baldimtsi, Foteini 615
Bartoletti, Massimo 3
Baumstark, Max 694
Biryukov, Alex 337
Burcsi, Péter 123

Cachin, Christian 316
Cartlidge, John 20
Cascudo, Ignacio 230
Chalkias, Konstantinos 615
Chatzigiannis, Panagiotis 615
Chen, Hongyin 407
Cheng, Yukun 407
Chiang, James Hsin-yu 3
Chitra, Tarun 149
Cohen, Shir 279

da Gama, Mariana Botelho 20
Dasgupta, Swagam 672
Datta, Preetha 672
Dayama, Pankaj 248
Decker, Christian 374
Deng, Xiaotie 407
Dong, Changyu 100

Evans, Alex 149

Foerster, Klaus-T. 374

Gabizon, Ariel 597
Gailly, Nicolas 203
Ganesh, Chaya 642
Gelashvili, Rati 279, 296, 531
Georghiades, Yanni 642

Gervais, Arthur 38
Giunta, Emanuele 230
Gong, Tiantian 444
Goren, Guy 531
Grundmann, Matthias 694
Gupta, Debayan 672
Gurkan, Kobi 597

Hanzlik, Lucjan 59
Hartenstein, Hannes 694
Hegde, Parikshit 642
Hicks, Alexander 426
Huang, Wenhan 407

Jain, Prakhar 672
Jovanovic, Philipp 597

Kang, Min Suk 663
Kate, Aniket 444
Kluczniak, Kamil 59
Kogias, Lefteris Kokoris 279
Kokoris-Kogias, Lefteris 296
Konstantopoulos, Georgios 597

Li, Jiliang 464
Li, Zekun 279
Lluch Lafuente, Alberto 3
Lotem, Ayelet 512

Malkhi, Dahlia 279
Maller, Mary 203
McCorry, Patrick 512
Mićić, Jovana 316
Minaei, Mohsen 444
Minh, Duc Vu 38
Mitchell, Alex 705
Monnot, Barnabé 560
Möser, Malte 386
Murdoch, Steven J. 100

Nam, Hocheol 663
Narayanan, Arvind 386
Naumenko, Gleb 337
Neu, Joachim 541, 560
Nguyen, Duong Tung 80
Nitulescu, Anca 203

726 Author Index

Oh, Yongwoo 663
Oines, Asa 597
Olszewski, Marek 597

Pandit, Vinayaka 248
Pejó, Balázs 123
Pietrzak, Krzysztof 358
Polychroniadou, Antigoni 20

Qin, Kaihua 38

Reddy, Vineet 672
Rong, Linxuan 407

Salem, Iosif 358
Schmid, Stefan 358, 374
Schwarz-Schilling, Caspar 560
Seres, István András 123
Silde, Tjerand 179
Singh, Nitin 248
Smart, Nigel P. 20
Sonnino, Alberto 279, 296
Spiegelman, Alexander 279, 296, 531
Sprague, Nathan 705
Steinhauer, Nathalie 316
Straka, Michael 597
Strand, Martin 179
Streit, Robert 642
Su, Zhou 464
Sun, Wenhai 444

Tas, Ertem Nusret 541, 560
Terner, Benjamin 577
Terzis, Sotirios 100
Thyfronitis Litos, Orfeas Stefanos 488
Tikhomirov, Sergei 337
Tindell, Richard 705
Tiwari, Pratyush Ranjan 672
Tiwari, Samarth 358
Tran, Muoi 663
Trieu, Ni 80
Tromer, Eran 597
Tse, David 541, 560

Vesely, Psi 597
Vishwanath, Sriram 642

Wang, Xunhua 705
Wang, Yuheng 464
Wang, Yuyi 464
Wang, Zhipeng 38

Xiang, Zhuolun 296

Yeo, Michelle 358

Zabka, Philipp 374
Zanolini, Luca 316
Zohar, Aviv 512

	 Preface
	 Organization
	 Contents
	Tokenomics
	Maximizing Extractable Value from Automated Market Makers
	1 Introduction
	2 Automated Market Makers
	3 The MEV Game
	4 Solving the MEV Game
	4.1 Price Minimization
	4.2 Constructing the Inner Layers

	5 Related Work
	6 Conclusions
	References

	Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets
	1 Introduction
	2 Our Proposed Auction Algorithms
	3 Secure Implementations of the Algorithms
	3.1 Setup
	3.2 Bucket Match
	3.3 Volume Match

	4 Leakage
	5 Runtimes
	References

	Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks
	1 Introduction
	2 Background
	2.1 DeFi
	2.2 Price Oracles
	2.3 Automated Market Maker
	2.4 Financial Leverage
	2.5 Leverage in DeFi
	2.6 Liquidations

	3 On-Chain Leverage System
	3.1 Formal Leverage Model
	3.2 AMM Model

	4 Analytical Evaluation
	4.1 Impermanent Loss Risk
	4.2 Arbitrage Risk
	4.3 Liquidation Risk
	4.4 Maximum Reasonable On-Chain Leverage

	5 Empirical Evaluation
	5.1 User Behavior in On-Chain Leverage Platforms
	5.2 Empirical Analysis of Risks

	6 Related Work
	7 Conclusion
	References

	MPC (Mostly)
	Explainable Arguments
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	3 Explainable Arguments
	3.1 Interactive Explainable Arguments
	3.2 Non-interactive Explainable Arguments

	4 Non-interactive Explainable Arguments
	5 Robust-Witness Encryption and Interactive Explainable Arguments
	5.1 Fully Explainable Arguments from Robust Witness Encryption

	6 Applications
	7 Conclusions
	References

	MPCCache: Privacy-Preserving Multi-Party Cooperative Cache Sharing at the Edge
	1 Introduction
	2 Related Work and Technical Overview of MPCCache
	3 Cryptographic Preliminaries
	4 Our Decentralized MPCCache Construction
	4.1 A Special Case of Our First Phase
	4.2 A General Case of Our First Phase
	4.3 Our Second Phase: k-priority Construction
	4.4 Putting All Together: MPCCache

	5 Our Server-Aided MPCCache
	6 Implementation
	6.1 k-priority Performance
	6.2 MPCCache Performance
	6.3 Comparison with Prior Work

	References

	Multi-party Updatable Delegated Private Set Intersection
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Pseudorandom Functions and Permutation
	3.2 Hash Tables
	3.3 Horner's Method
	3.4 Bloom Filter
	3.5 Representing Sets by Polynomials

	4 Feather: Multi-party Updatable Delegated PSI
	4.1 An Overview of Feather's Definition
	4.2 An Overview of Feather's Protocols
	4.3 Feather Setup
	4.4 Feather Update Protocol
	4.5 Feather PSI Computation Protocol

	5 Asymptotic Cost Analysis
	5.1 Communication Complexity
	5.2 Computation Complexity

	6 Concrete Cost Evaluation
	6.1 Choice of Parameters
	6.2 Concrete Communication Cost Analysis
	6.3 Concrete Computation Cost Analysis

	7 Conclusion
	References

	Privacy
	The Effect of False Positives: Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees?
	1 Introduction
	2 Fuzzy Message Detection
	3 System and Threat Model
	4 Privacy Guarantees in FMD
	4.1 Recipient Unlinkability
	4.2 Relationship Anonymity
	4.3 Temporal Detection Ambiguity

	5 Differential Privacy Analysis
	6 Evaluation
	6.1 Uncovering the Relationship Graph
	6.2 Breaking Temporal Detection Ambiguity

	7 Conclusion
	A FMD in More Details
	B Formal Definitions of Security and Privacy Guarantees
	C Differential Privacy Relaxations and Proofs
	D Game-Theoretical Analysis
	E Attacks on Privacy
	References

	Differential Privacy in Constant Function Market Makers
	1 Introduction
	2 Preliminaries
	2.1 Constant Function Market Makers
	2.2 Differential Privacy

	3 Problem Construction
	3.1 Threat Model
	3.2 Simple Uniform Random Execution
	3.3 Uniform Random Execution
	3.4 Differential Privacy

	4 Worst-Case Bounds and Path Deficiency
	4.1 Mechanism Curvature
	4.2 Path Deficiency
	4.3 Private PAC Learning and Adversarial Bounds

	5 Differentially (Non)-private MEV Reduction
	6 Conclusion
	A Differential Privacy Results
	B Price Tree Height Is Close to Trade Tree Height
	C Proof of Claim 1
	D Proof of Claim 2
	E Proof of Claim 3
	F Convex Trade Splitting
	G Splitting Trades: Concentration
	H Path Dependency and Generic Chaining
	I Path Dependency in Uniswap
	References

	Anonymous Tokens with Public Metadata and Applications to Private Contact Tracing
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison to Anonymous Credentials
	1.3 Related Work
	1.4 Chronology

	2 Definitions for Anonymous Tokens
	3 Anonymous Token Protocols
	3.1 Secure Key Transformation
	3.2 Anonymous Tokens with Public Metadata
	3.3 Tokens with Private Metadata and Public Verification

	4 Performance and Comparison
	4.1 Anonymous Single-Use Tokens with Public Metadata
	4.2 Comparison
	4.3 Telemetry Collection in WhatsApp

	5 Application to Contact Tracing
	6 Conclusion
	References

	ZKP
	SnarkPack: Practical SNARK Aggregation
	1 Introduction
	2 Preliminaries
	3 Pair Group Commitment Schemes
	4 MT-IPP Scheme
	5 SnarkPack: Aggregation Scheme
	A Cryptographic Primitives
	A.1 SNARKs
	A.2 Commitment Schemes
	A.3 Polynomial Commitments
	A.4 KZG Polynomial Commitment

	B Assumptions in GGM
	B.1 ASSGP Assumption in GGM
	B.2 ASDGP Assumption in GGM

	C Groth16 Scheme
	D Building Blocks for Aggregation
	D.1 Relation for MT-IPP

	E Final Commitment Keys
	References

	On Interactive Oracle Proofs for Boolean R1CS Statements
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Other Related Work

	2 Preliminaries
	2.1 Reverse Multiplication Friendly Embedding
	2.2 R1CS, Lincheck and Rowcheck

	3 Simplified Construction
	3.1 Characterisation of R1CS
	3.2 Linear Hashing
	3.3 Modular Lincheck
	3.4 An RS-Encoded IOP for R1CS from Modular Lincheck

	4 Efficient Construction
	4.1 Batching Modular Linchecks and Packing Vectors
	4.2 An Efficient RS-Encoded IOP for R1CS

	5 Comparisons
	References

	Zero Knowledge Proofs Towards Verifiable Decentralized AI Pipelines
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Verifiable Provenance in Decentralized AI Pipelines
	2.1 Decentralized Model Fairness

	3 Overview
	3.1 Building Blocks
	3.2 Optimizations
	3.3 Simultaneous Permutation
	3.4 Consistent Memory Access
	3.5 Our Techniques in Perspective

	4 Privacy Preserving Dataset Operations
	5 Privacy Preserving Model Inference: Decision Trees
	6 Experimental Evaluation
	A Preliminaries
	A.1 Commitment Scheme
	A.2 Zero Knowledge Arguments
	A.3 Commit and Prove SNARKs

	B Security Analysis
	C Secure Protocols
	C.1 Simultaneous Permutation
	C.2 Consistent Memory Access
	C.3 Aggregation Operation

	References

	Old-School Consensus
	Be Aware of Your Leaders
	1 Introduction
	2 Model and Problem Definition
	2.1 Leader-Aware SMR

	3 Leader-Aware SMR: The Framework
	3.1 Leader-Based Round (LBR)
	3.2 The Pacemaker
	3.3 Leader-Rotation - The Missing Component

	4 Carousel: A Novel Leader-Rotation Algorithm
	4.1 Correctness

	5 Implementation
	6 Evaluation
	6.1 Benchmark in Ideal Conditions
	6.2 Performance Under Faults

	7 Conclusions
	A Correctness
	References

	Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback
	1 Introduction
	2 Preliminaries
	3 Jolteon Design
	4 Ditto Design
	5 Implementation
	6 Evaluation
	6.1 Evaluation of Jolteon
	6.2 Evaluation of Ditto

	7 Related Work
	8 Conclusion
	References

	Quick Order Fairness
	1 Introduction
	2 Related Work
	3 System Model and Preliminaries
	4 Revisiting Order Fairness
	4.1 Limitations
	4.2 Differential Order-Fairness

	5 Quick Order-Fair Atomic Broadcast Protocol
	5.1 Overview
	5.2 Implementation

	6 Complexity
	7 Conclusion
	References

	Mostly Payment Networks
	Analysis and Probing of Parallel Channels in the Lightning Network
	1 Introduction
	2 Background
	3 Probing Model
	3.1 Examples
	3.2 Generalized Geometrical Model
	3.3 Challenge of Probing Multi-channel Hops
	3.4 Enhanced Probing

	4 Evaluation
	4.1 Data Source
	4.2 Metrics
	4.3 Results

	5 Discussion
	5.1 Limitations
	5.2 Attack Cost and Trade-Offs
	5.3 Payment Flow Inference
	5.4 Countermeasures

	6 Related Work
	7 Conclusion
	References

	Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks
	1 Introduction
	2 Preliminaries
	2.1 Payment Channels Networks
	2.2 Network Flows

	3 Protocol Overview and Model
	3.1 System Model
	3.2 Protocol Overview
	3.3 Desired Properties and Threat Model

	4 The Hide & Seek Protocol
	4.1 Exploration Phase
	4.2 Execution Phase

	5 Analysis
	6 Limitations and Extensions
	7 Related Work
	8 Conclusion and Future Work
	9 Appendix: Reduction of the Rebalancing Problem to Min-Cost Flow
	References

	Short Paper: A Centrality Analysis of the Lightning Network
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Methodology
	4 Centrality Analysis
	4.1 Historic Betweenness Analysis of the Lightning Network
	4.2 Inequality in the Lightning Network
	4.3 Analysis of the Top 10 Nodes

	5 Future Work
	References

	Resurrecting Address Clustering in Bitcoin
	1 Introduction
	2 Building a Ground Truth Data Set
	2.1 Data Collection and Overview
	2.2 Refining the Candidate Set of Ground Truth Transactions
	2.3 Assessing the Final Set of Ground Truth Transactions
	2.4 Data Release

	3 Predicting Change Outputs
	3.1 Assessing Individual Change Heuristics
	3.2 Threshold Vote
	3.3 Random Forest Classifier
	3.4 Additional Model Validation

	4 Clustering Change Outputs
	4.1 Naive Merging Leads to Cluster Collapse
	4.2 Constraints Prevent Cluster Collapse

	5 Impact on Blockchain Analyses
	5.1 Increased Cashout Flows from Darknet Markets to Exchanges
	5.2 Improved Estimate of Velocity
	5.3 Comparison to the Meiklejohn et al. Heuristic

	6 Conclusion
	References

	Incentives
	ABSNFT: Securitization and Repurchase Scheme for Non-Fungible Tokens Based on Game Theoretical Analysis
	1 Introduction
	1.1 Main Contributions
	1.2 Related Works

	2 NFT Securitization and Repurchase Scheme
	2.1 Basic Setting of NFT Smart Contract
	2.2 NFT Securitization Process
	2.3 NFT Repurchase Process
	2.4 NFT Restruction Process

	3 Two-Player Repurchase Stackelberg Game
	3.1 Analysis Under Complete Information
	3.2 Analysis of Bayesian Stackelberg Equilibrium

	4 Repeated Two-Player Stackelberg Game
	5 Multi-player Repurchase Stackelberg Game
	5.1 Analysis of Stackelberg Equilibrium

	6 Discussion
	6.1 A Blockchain Solution to Budget Constraints
	6.2 A Blockchain Solution to Lazy Bidders

	7 Conclusion
	References

	Decentralisation Conscious Players and System Reliability
	1 Introduction
	2 Modelling System Reliability and Normalised Total Effort
	3 Equilibria Between Decentralisation Conscious Players
	3.1 The Impact of a Reward
	3.2 Social Optimum

	4 Robustness of Decentralisation Conscious Players to Variations by Others
	4.1 Change in Number of Players
	4.2 Deviation from an Equilibrium
	4.3 Non-myopic Players
	4.4 Coalition-Resistance

	5 Dynamics of Decentralisation Conscious Players
	6 Discussion
	6.1 The Role of Decentralisation Conscious Players
	6.2 Modelling Constraints
	6.3 Related Work

	7 Conclusion
	References

	Towards Overcoming the Undercutting Problem
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Mining Game Featuring Undercutting Strategy
	3.1 Miner's Winning Probability

	4 Game Analysis
	4.1 Giving Up if One Block Behind

	5 System Evaluation
	5.1 Data Collection and Experiment Setup
	5.2 Experiment Results

	6 Conclusion
	A Giving Up After Two Blocks Behind
	References

	Arbitrage Attack: Miners of the World, Unite!
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Blockchains
	2.2 Oracle

	3 Decentralized Oracle Model
	3.1 Participants
	3.2 Enquiry Process

	4 Arbitrage Attack
	4.1 Mining Pools' Influence on Decentralized Oracle
	4.2 Arbitrage Attack Model
	4.3 Attack Feasibility

	5 Game Theory Analysis
	5.1 Game Model Forming
	5.2 Nash Equilibrium Strategy
	5.3 Price of Anarchy

	6 Conclusion, Limitations and Extensions
	A Proofs
	B Algorithm
	References

	Suborn Channels: Incentives Against Timelock Bribes
	1 Introduction
	2 Background and Notation
	2.1 Bitcoin
	2.2 Payment Channels

	3 Incentive Analysis
	3.1 Model
	3.2 Conditionally Timelocked Game and Analysis

	4 Timelock Bribe Analysis
	4.1 Timelock Bribe
	4.2 Timelock Bribe in DMC
	4.3 Improving DMC Incentives: Simple Suborn Channels
	4.4 Incentivizing DMC Across Branches: Suborn Channels
	4.5 Timelock Bribe in LN
	4.6 Fixing LN Incentives

	5 Related Work
	6 Conclusion and Future Work
	6.1 Future Work
	6.2 Conclusion

	A Suborn Transactions Script for Incentivized DMC
	B Omitted Proofs
	References

	Sliding Window Challenge Process for Congestion Detection
	1 Introduction
	2 Related Work
	3 Preliminaries and Definitions
	3.1 Challenge-Response Protocols
	3.2 Blockchain Congestion
	3.3 Desirable Properties of Protocols

	4 Uncongested Period Protocols
	4.1 Strawman Protocols
	4.2 Sliding Window (K-out-of-N) Protocol
	4.3 Application to Challenge-Response Protocols

	5 Implementation
	6 Conclusion
	References

	Short Paper: On Game-Theoretically-Fair Leader Election
	1 Introduction
	2 Model
	2.1 Coalition Resistant Protocols

	3 Lower Bound
	4 Conclusion
	References

	Not Proof of Work
	The Availability-Accountability Dilemma and Its Resolution via Accountability Gadgets
	1 Introduction
	1.1 Accountability and Dynamic Participation
	1.2 Availability-Accountability Dilemma and Resolution via Accountability Gadgets
	1.3 Related Work
	1.4 Outline

	2 Model
	3 The Availability-Accountability Dilemma
	4 Accountability Gadgets
	4.1 Protocol Description
	4.2 Security Properties

	5 Experimental Evaluation
	References

	Three Attacks on Proof-of-Stake Ethereum
	1 Introduction
	2 Proof-of-Stake Ethereum: The Gasper Protocol
	2.1 Model
	2.2 Protocol

	3 A Refined Reorg Attack
	3.1 Motivation
	3.2 Refined Reorg Strategy

	4 A Refined Liveness Attack
	4.1 Motivation
	4.2 High-Level Idea
	4.3 Detailed Description
	4.4 Experimental Evaluation

	5 Reorg Attack Using Probabilistic Network Delay
	5.1 Motivation
	5.2 Refined Strategy Using Probabilistic Network Delay

	6 Discussion
	6.1 Ex Ante vs Ex Post Reorgs
	6.2 Reaping Higher Fees and MEV via the Attack
	6.3 Reorgs Cause Attestation Overflow
	6.4 Delaying Finality

	References

	Permissionless Consensus in the Resource Model
	1 Introduction
	1.1 Overview of Our Model
	1.2 Main Results
	1.3 Technical Overview
	1.4 Related Work
	1.5 Paper Organization

	2 Graph Consensus Problem
	2.1 Preliminaries for Graphs
	2.2 Graph Consensus Protocol

	3 Main Protocol
	3.1 Protocol Description
	3.2 Theorem Statement
	3.3 Proof Overview

	References

	Performance
	Plumo: An Ultralight Blockchain Client
	1 Introduction
	2 Overview
	3 Threat Model
	4 Ultralight Clients
	4.1 Ultralight Clients
	4.2 An Ultralight Client Compiler
	4.3 The Plumo Ultralight Client

	5 SNARK-Friendly Signatures and Hashing
	5.1 BBSGLRY: Non-interactive Aggregate Multisignatures
	5.2 Composite Algebraic-Symmetric Hash Functions

	6 Implementation
	6.1 Optimizations
	6.2 Evaluation

	References

	SoK: Blockchain Light Clients
	1 Introduction
	1.1 What is a Light Client?
	1.2 Light Client Implementations in Major Blockchain Systems
	1.3 Related Systematization of Knowledge Works

	2 Cryptographic Building Blocks
	2.1 Succinct Set Representation and Proofs
	2.2 Hash Functions and Signatures

	3 Definitions
	3.1 Light Client Properties
	3.2 Underlying Assumptions

	4 Generic Techniques to Build Light Clients
	4.1 Header Verification and Consensus Evolution
	4.2 Compressing the State
	4.3 Removing the State
	4.4 Leveraging Game-Theoretic Assumptions

	5 Systematization Methodology
	6 Existing Light Client Constructions: Insights and Gaps
	6.1 Stateless Blockchains for Light Clients
	6.2 Reducing Bootstrapping and Synchronization Costs
	6.3 Smart-Contract Based Approaches and Blockchain Interoperability

	7 Conclusion
	A Towards the Light Client Goal
	References

	Achieving Almost All Blockchain Functionalities with Polylogarithmic Storage
	1 Introduction
	2 Model and Notation
	3 Preliminaries
	4 Trimming Protocol
	5 Security Definitions
	6 Security Results for Hybrid Nodes
	7 Optimizing State Storage with Stateless Blockchains
	8 Future Directions
	References

	Measurements
	Short Paper: On the Claims of Weak Block Synchronization in Bitcoin
	1 Introduction
	2 Background
	2.1 Block Propagation in Bitcoin
	2.2 Bitcoin Network Monitors

	3 Our Measurements and Analysis
	3.1 Empirical Evidence of Inaccurate Measurements
	3.2 Discovered Problems in Two Monitors
	3.3 Block Propagation Measured by Our Fixed RPC-based Monitor
	3.4 Justification of Fast Block Propagation
	3.5 Ethical Considerations

	4 Future Work
	5 Conclusion
	References

	India's ``Aadhaar'' Biometric ID: Structure, Security, and Vulnerabilities
	1 Introduction
	1.1 Paper Overview

	2 Background
	2.1 Related Work

	3 Snapshot: Aadhaar System Design
	3.1 Enrollment Ecosystem
	3.2 Authentication Ecosystem
	3.3 CIDR (Central Identities Data Repository)

	4 Security Landscape
	4.1 Hardware Security and Certification
	4.2 Key Management and Device Registration
	4.3 Biometric Deduplication and Locking

	5 Security, Privacy and Attacks
	5.1 Threat Actors
	5.2 Forbidden Attack: A Cryptographic Challenge
	5.3 Privacy Issues

	6 Media Allegations Analysis
	7 Conclusion
	A Background
	B Abbreviations
	C Supplementary Material
	References

	Short Paper: What Peer Announcements Tell Us About the Size of the Bitcoin P2P Network
	1 Introduction
	2 Related Work
	3 Background on Bitcoin Peers
	4 PAL Method and Results
	5 Validation
	6 Observation of ADDR Spam in July and August 2021
	7 Conclusion
	References

	An Empirical Study of Two Bitcoin Artifacts Through Deep Learning
	1 Introduction
	2 Related Work
	2.1 Code Stylometry
	2.2 Text-Based Bitcoin Authorship Attribution

	3 Deep Learning for Bitcoin Artifacts
	4 Source Code Tracing: Tracing the Authorship of Bitcoin V0.1.0
	4.1 Data Collection
	4.2 Data Balancing with Mutants
	4.3 Data Preprocessing, Modeling, and Validation
	4.4 Prediction Results and Interpretation

	5 Document Tracing: Tracing the Authorship of the Bitcoin White Paper
	5.1 Data Collection
	5.2 Data Modeling
	5.3 Prediction Results and Interpretation

	6 Discussions
	7 Summary
	References

	Author Index

