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Preface

The 26th International Conference on Financial Cryptography and Data Security (FC
2022) was held on the beautiful island of Grenada from May 2 to May 6, 2022.
The conference is organized annually by the International Financial Cryptography
Association (IFCA) and is a major international forum for research, advanced
development, education, exploration, and debate regarding information assurance,
with a specific focus on financial and commercial contexts. The conference aims to
attract works focusing on both fundamental and real-world deployments on all aspects
surrounding commerce security.

The conference was supposed to take place earlier, from February 14 to February 18,
2022, but due to uncertainties related to COVID-19, the conference’s Steering Committee
decided to postpone it. This turned out to be a prophetic decision as by the beginning
of May many travel restrictions had been lifted, resulting in a lively and well-attended
conference, a much-needed experience after the long COVID-19 hiatus.

These proceedings include the 36 papers that were selected by the Program
Committee (PC), out of a total of 159 received submissions. Submissions were assigned
to at least three reviewers, while submissions by PC members were assigned at least
four reviews. The double blind review process and ensuing discussion among PC mem-
bers were lively and engaging, to the extent that 15 of the accepted papers were condition-
ally accepted and shepherded by selected PC members. Five of the accepted manuscripts
are short papers and one is a Systematization of Knowledge (SoK) contribution. In
addition, we received four poster submissions, out of which three were accepted, but, due
to travel impediments, only one was displayed during the Welcome Reception and Poster
Session on Monday evening.

This year the Program Committee consisted of 64 members, and we made every
attempt for its composition to reflect our proficiency, diversity, and inclusion goals. We
are deeply grateful to the members of the PC for their dedication and thorough work, as
well as to the many external reviewers who joined the review process in their areas of
expertise.

FC 2022 celebrated 25 years of the FC conference program (postponed from last
year’s 25th FC that was online only due to COVID-19). The program was enriched by
a special anniversary program and included a “Looking back at 25 years of FC history”
presentation assembled by Kazue Sako and delivered by Sven Dietrich; a “Perspec-
tives from FC since 2015” anniversary talk by Patrick McCorry; FC 25th anniversary
vignettes collected by the anniversary coordinators; and a FC 25th anniversary
retrospective panel—past impact and going forward, with panelists Don Beaver, Andrew
Miller, and Hinde ten Berge, moderated by Sven Dietrich.

The main conference program, which lasted four days, was followed by a series
of one-day workshops and a tutorial on more specialized topics: AMHIS 2022 (1st
Workshop on Approaches to Modelling Heterogeneous Interacting Systems), CoDecFin
2022 (3rd Workshop on Coordination of Decentralized Finance), DeFi 2022 (2nd
Workshop on Decentralized Finance), Voting 2022 (7th Workshop on Advances in



vi Preface

Secure Electronic Voting), WTSC 2022 (6th Workshop on Trusted Smart Contracts),
and the “Quantum Computing Essentials for Financial Cryptographers” tutorial given
by Or Sattath.

We are grateful to General Chairs Sergi Delgado Segura and Rafael (Ray) Hirschfeld
for their predisposition, availability and efforts. In fact, it is hard to think of an aspect of
the event’s organization—from managing the conference’s website, and collecting and
uploading the talks’ videos to YouTube, to coordinating all the fluctuating dates, updates,
and related logistics with the Radisson Grenada Beach Resort hotel where the conference
took place—which Ray wasn’t on top of, and which resulted in such a well-planned and
enjoyable event—thanks, Ray!

We are also grateful to the conference Platinum sponsors (Casper, CipherTrace,
Harmony, Novi, and Ripple); to the Gold Sponsors (Chainalysis, IBM Research, Interlay,
and Zilliga); to the Silver Sponsors (IOHK, Manta Ray Labs, NTT Research, Protocol
Labs, Smart Contract Research Forum, and the Zcash Foundation); and to the Sponsors
in Kind (Grenada Tourism Authority and Worldpay), as well as the Uniswap Grant
Program.

Finally, we thank all the authors who submitted papers to this conference, and all the
conference attendees who made this event a truly intellectually stimulating one through
their active participation.

August 2022 Ittay Eyal
Juan Garay
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Maximizing Extractable Value
from Automated Market Makers

Massimo Bartoletti', James Hsin-yu Chiang?®™), and Alberto Lluch Lafuente?

! Universita degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark
jchi@dtu.dk

Abstract. Automated Market Makers (AMMs) are decentralized appli-
cations that allow users to exchange crypto-tokens without the need for a
matching exchange order. AMMs are one of the most successful DeFi use
cases: indeed, major AMM platforms process a daily volume of transac-
tions worth USD billions. Despite their popularity, AMMs are well-known
to suffer from transaction-ordering issues: adversaries can influence the
ordering of user transactions, and possibly front-run them with their own,
to extract value from AMMs, to the detriment of users. We devise an
effective procedure to construct a strategy through which an adversary
can mazximize the value extracted from user transactions.

Keywords: Miner extractable value * Front-running - Decentralized
finance

1 Introduction

Decentralized finance (DeF1i) is emerging as an alternative to traditional finance,
boosted by blockchains, crypto-tokens and smart contracts [18]. Automated
Market Makers (AMMs)—one of the main DeFi applications—allow users to
exchange crypto-tokens without the need to find another party wanting to partic-
ipate in the exchange. Major AMM platforms like e.g. Uniswap, Curve Finance,
and SushiSwap, hold dozens of billions of USD and process hundreds of millions
worth of transactions daily [1,5,8].

AMNMs are sensitive to transaction-ordering attacks, where adversaries who
can influence the ordering of transactions in the blockchain exploit this power
to extract value from user transactions [14,16,17,21]. We illustrate this kind of
attacks through a minimal example. Assume a Uniswap-like AMM holding 100
units of a crypto-token 79 and 100 units of another token 7|, and assume that
both tokens have the same price in the reference currency (say, USD 1,000). Now,
suppose that user A wants to swap 20 units of 75 in her wallet for at least 15
units of 7;. This requires to append to the blockchain a transaction of the form
A :swap”(20 : 70,15 : 1), where the prefix A indicates the wallet involved in the
transaction, swap is the called AMM function, and the superscript 0 indicates the
swap direction, i.e. deposit 20 : 7y to receive back at least 15 : 79 (a superscript
1 would indicate the opposite direction). In a constant-product AMM platform

© International Financial Cryptography Association 2022
I. Eyal and J. Garay (Eds.): FC 2022, LNCS 13411, pp. 3-19, 2022.
https://doi.org/10.1007/978-3-031-18283-9_1
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like Uniswap, the actual amount of 7; transferred to A must be such that the
product between the AMM reserves remains constant before and after a swap.

Now, suppose that an adversary M (possibly a miner) observes A’s transac-
tion in the txpool, and appends to the blockchain the following sandwich:

M: swap® (5.9 : 70,5.5 : 71) A:swap®(20: 79,15 :71) M:swap'(25.9 : 70,20.6 : 1)

where the last transaction is in the opposite direction, i.e.M sends 20.6 : 7; to
receive at least 25.9 : 7. As a result, A only yields the minimum amount of
15 : 71 in return for 20 : 7y. This implies that USD 5,000 have been gained by M
and lost by A. This has been called Miner Eztractable Value (MEV) [14].

Recent works study this and other kinds of attacks to AMMs [14,17,20,21]:
however, all these approaches are preeminently empirical, as they focus on the
definition of heuristics to extract value from AMMSs, and on their evaluation
in the wild. To the best of our knowledge, a general solution to obtain optimal
MEV is still missing, even in the special case of constant-product AMMs.

To exemplify a case where prior approaches fail to extract optimal MEV,
consider the following set of user transactions, containing a swap of 7y for 71, a
deposit of units of 7y and 71, and a redeem of units of minted (liquidity) tokens:

{ Ac:swap’(40:79,35:7), A:dep(30: 70,40 : 71), A :rdm(10: (79,71)) }

Here, both the swap and the dep transactions would be rejected. For instance,
the constant-product invariant dictates that 40 : 7y sent by the user swap in the
initial AMM state (100 : 75, 100 : 71) will return exactly 28.6 : 71; since the swap
transaction requires 35 : 71, it would be discarded. The known heuristics here fail
to extract any value. Even considering only the swap, the sandwich would not be
profitable for M, since it requires the same direction for M’s and A’s swap (offer
7o to obtain 1), making A’s swap not enabled. Further, the known heuristics
only operate on swap actions, neglecting user deposits and redeems. This paper
proposes a layered construction to extract the mazimum value from all user
transactions, through a multi-layer sandwich that we call Dagwood sandwich. In
our example, M’s strategy would be to fire the following three-layer sandwich:

M :swap!(11:70,13:71) A :swap’(40: 7,35 : 71)
M :swap'(42: 70,38 :71) A :dep(30: 7,40 : 7)
M : swap®(18 : 70,21 : 71)

The first transaction is a swap in the opposite direction (i.e., pay 7 to get 1)
w.r.t. the subsequent user swap, unlike in the classical sandwich heuristic. M’s
second swap enables A’s deposit; the final swap is an arbitrage move [9]. The
user redeem is dropped, since it would negatively contribute to M’s profit. By
firing the transaction sequence above, M can extract approx. USD 5,700 from
A, improving over swap-only attacks, that would only extract USD 5,000.

Contributions. To the best of our knowledge, this work is the first to formalise
the MEV game for AMMs (Sect. 3), and the first to effectively construct optimal
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solutions which attack all types of transactions supported by constant-product
AMMs (Sect.4). We discuss in Sect. 6 the applicability of our technique in the
wild. The proofs of our statements are in [10].

2 Automated Market Makers

We assume a set T of atomic token types (ranged over by 7,7',...), repre-
senting native cryptocurrencies and application-specific tokens. We denote by
T, =Ty x Ty the set of minted token types, representing shares in AMMSs. In
our model, tokens are fungible, i.e. individual units of the same type are inter-
changeable. In particular, amounts of tokens of the same type can be split into
smaller parts, and two amounts of tokens of the same type can be joined. We
use v,v’, 7,7’ to range over nonnegative real numbers (R}), and we write r : 7
to denote r units of token type 7€ T = To U T;.

We model the wallet of a user A as a term A[o|, where the partial map
o € T — R represents A’s token holdings, and write A[] if the wallet balance
is clear from context. We denote with dom (o) the domain of . An AMM is a
pair of the form (rg : 79,71 : 71), representing the fact that the AMM is holding
ro units of 7y and r; units of 7. We denote by res., -, (I') the reserves of 7y and
7 in Iy le.resq, -, (I') = (ro,r1) if (ro : 70,71 1 71) isin I

A state is a composition of wallets and AMMs, represented as a term:

Arloa] |-+ [ Anlon] | (re s rf s rl) oo | (e 7, 2 72)

where: (i) all A; are distinct, (ii) the token types in an AMM are distinct, and
(iii) distinct AMMSs cannot hold exactly the same token types. Note that two
AMMs can have a common token type 7, as in (ry : 7,7 :7) | (7' : 7,79 1 T2),
thus enabling indirect trades between token pairs not directly provided by any
AMM. We use I',I"”,... to range over states. For a base term @Q (either wallet
or AMM), we write Q € I'when I'=Q | I'", for some I/, where we assume that
two states are equivalent when they contain the same base terms.

We define the supply of a token type 7 in a state I" as the sum of the balances
of 7 in all the wallets and the AMMSs occurring in I". Formally:
o(r) if 7 € dom (o) r, ifr=m
0 otherwise

sply.(Alo]) = { sply.(ro : 70,71 1 7T1) = {

0 otherwise

and the supply of 7in I'| I’ is the summation sply_(I") + sply (I").

We model the interaction between users and AMMs as a transition system
between states. A transition I" —T— I represents the evolution of the state I’
into I upon the execution of the transaction T. The possible transactions are:

— A :dep(vg : 70,01 : 71), which allows A to deposit vy : 7o and vy : 71 to an
AMM, receiving in return units of the minted token (79, 71).

— A :swap?(vg : 79,v1 : 71) with d € {0, 1}, which allows A to swap tokens, i.e.
transfer vg : 74 to an AMM, and receive in return at least vi_q : T1_q4.
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— A :rdm(v : 7), which allows to A redeem v units of minted token 7 = (79, 71)
from an AMM, receiving in return units of the atomic tokens 7y and 7.

We now formalise the one-step relation —I— through rewriting rules, inspired
by [9]. We use the standard notation o{v/z} to update a partial map o at point
x: namely, o{v/z}(x) = v, while o{v/z}(y) = o(y) for y # x. For a partial map
cel — [R[)", a token type 7 € T and a partial operation o € [Ra' X [Ra' — [R(T,
we define the partial map o o v : 7 (updating 7’s balance in o by v) as follows:

of{o(mov/} if 7€ domo and o(7) ov € R
gov:T=
of{v/+} if ¢ domo

Deposit. Any user can create an AMM for a token pair (9, 71), provided that
such an AMM is not already present in the state. This is achieved by the trans-
action A : dep(vo : 79, v1 : 71), through which A transfers vy : 70 and v1 : 71 to
the new AMM. In return, A receives an amount of units of a new token type
(70, 71), which is minted by the AMM. We formalise this behaviour by the rule:

U(Ti)ZUi>O (’iE{O,l}) To;ﬁT] T0, T1 ETU (,S7'07727'1),(757'177270)QF

A[O’] | r A:dep(vg:70,v1:71)

[DEPO]
A[o’—”UO tT0—v1 71+ (T['J,T[)} | (’Uo L T0,V1 27’1) | I

Once an AMM is created, any user can deposit tokens into it, as long as
doing so preserves the ratio of the token holdings in the AMM. When a user
deposits vg : 79 and vy : 7 to an existing AMM, it receives in return an amount
of minted tokens of type (79, 71). This amount is the ratio between the deposited
amount vy and the redeem rate of (79, 71) in the current state I. This redeem
rate is the ratio between the amount ry of 7y stored in the AMM, and the total
supply sply(,, .,y(I) of the minted token in the state.

o(r) >vi >0 (i€ {0,1}) r1V0 = ToU1 v= 70 splyc, (D)

| F, A:dep(vg:70,v1:71)
o e

[DEP]
I :A[U} ‘ (ToZT(),TliTl)

A[O’*”U()ZT[]*’UlZT1 +U:(T(],T1)} ‘ (T0+UOIT(),T1+'U13T1) | I’

The premise r1vg = rou; ensures that the ratio between the reserves of 7, and
71 in the AMM is preserved, i.e. T14v1/rg4vg = T1/rg.

Swap. Any user A can swap units of 7y in her wallet for units of 7, in an AMM
(ro : 70,71 : T1), or vice versa swap units of 71 in the wallet for units of 7y in
the AMM. This is achieved by the transaction A : swapd (vo : 79,1 : T1), where
d € {0,1} is the swap direction. If d = 0 (“left” swap), then vy is the amount
of 79 transferred from A’s wallet to the AMM, while vy is a lower bound on the
amount of 71 that A will receive in return. Conversely, if d = 1 (“right” swap),
then v; is the amount of 7; transferred from A’s wallet, and vg is a lower bound
on the received amount of 79. The actual amount v of received units of 7 _; must
satisfy the constant-product invariant [19], as in Uniswap [7], SushiSwap [6]
and other common AMMs implementations:

ro-r1 = (ra+vq) - (ri—q — v)



Maximizing Extractable Value from Automated Market Makers 7

Formally, for d € {0,1} we define:

o(ta) > va >0 v= Tid*j;;d 0<vi_g<w

” [Swap]
Aiswap® (vo:T0,v1:71)
Pttt S A LM TAN

A[O’] | (7‘() LTo,T1 57’1) | r

Alo—vg:ma4+v:7i—g]| (ro:70,r1 7)) 4va:ma—v:7i—a | T
where we define the update of the units of 7 in an AMM, for o € {+,—}, as:

(roov:tg,r:m) f7=m10 androove[R(')|r

(ro:70,71:T)oV:T= )
(ro:70,mpov:m) ifr=m andrloUE[R(J{

Redeem. Users can redeem units of a minted token (7o,7;) for units of the
underlying atomic tokens 7y and 71. Each unit of (79, 71) can be redeemed for
equal fractions of 7y and 71 remaining in the AMM:

1

T
V1 =1V —————F+
! P (g, 7)) (1)

O'(T(],Tl)z'l)>0 UOZUW

rdm(v:(70,71)) (Rox]

A:
I :A[O'] | (7”037’(),7”117'1) | Fl

Alo+wvo:mo4vi:m—v:(r0,7)] | (ro—wvo:m0,mi—vi:m) | IV

A key property of the transition system is determinism, i.e. if ' T I and
I' T, I then the states I and I'" are equivalent. We denote with type(T)
the type of T (i.e., dep, swap, rdm), and with usr(T) the user issuing T. For
a sequence of transactions A = T;---T,, we write I" -2 I whenever there
exist intermediate states I%,...I,_1 such that I' Ty 7 T2y ... _Tuos
I',_1 Loy I'". When this happens, we say that A is enabled in I, or just I 2.
A state I'is reachable if there exist some I only containing wallets with atomic
tokens and some A such that Iy 2 I

3 The MEV Game

The model in the previous section defines how the state of AMMs and wallets
evolves upon a sequence of transactions, but it does not specify how this sequence
is formed. We specify this as a single-player, single-round game where the only
player is an adversary M who attempts to maximize its MEV. Accordingly, we
call this the MEV game. The initial state of the game is given by a reachable
state I' (not including M’s wallet) and by a finite multiset X of user transactions,
representing the pool of pending transactions (also called txpool). The moves
of M are pairs (o, \), where o is M’s initial balance, and A is a sequence formed
by (part of) the transactions in X, and by any number of M’s transactions. We
require that the sequence \ in a move is enabled in I'. The MEV game assumes
the following (see Sect. 6 for a discussion thereof):

1. Users balances in I" are sufficiently high to not interfere with the validity of
any specific ordering of actions in X.
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2. The balance o of M does not include minted tokens.
3. The length of the sequence X\ is unbounded.
4. Prices of atomic tokens are fixed throughout the game execution.

Besides the above, some further assumptions are implied by our AMM model:

5. AMMs only hold atomic tokens (this is a consequence of [Dep0]).

6. Swap actions do not require fees (this is a consequence of [Swar]).

7. There are no transaction fees.

8. Interval constraints on received token amounts are modelled in swaps only.

A solution to the game is a move that maximizes M’s gain, i.e. the change in M’s
net worth after performing the sequence A from I'. Intuitively, the net worth of a
user is the overall value of tokens in her wallet. To define it, we need to associate
a price to each token. We assume that the prices of atomic tokens are given
by an oracle P € Ty — [Rg : naturally, the MEV game solution will need to be
recomputed should the price of atomic tokens be updated. The price Pp (7, 71)
of a minted token (7o, 71) in a state I" is defined as follows:

TO'P(T())+T1'P(T1)
Sply(ﬂth)(F)

Pr(m,m1) = if res, -, () = (r0,71) (1)

Minted tokens are priced such that the net worth of a user is preserved
when she deposits or redeems minted tokens in her wallet. We assume that the
reserves in an AMM are never reduced to zero in an execution, in order to
preserve equality of minted token prices between two states with equal reserves,
thereby facilitating proofs and analysis. While our semantics of AMMs allows
reserves to be emptied, we note that this does not occur in practice, as it would
halt the operation of the respective AMM pair. We define the net worth of a
user A in a state I" such that Afo] € I" as follows:

Wa(l) = > cdom (o) 9(7) - Pr(7) (2)

and we denote by Ga (I, \) the gain of user A upon performing a sequence of
transactions A\ enabled in state I' (if )\ is not enabled, the gain is zero):

Gu([\) = Wa(I') = Wa(I) ifIST (3)

A rational player is a player which, for all initial states (I',X) of the game,
always chooses a move (o, \) that maximizes the function Gy (M[z] | I', y) on
variables z and y. We define the miner extractable value in (I', X) as the gain
obtained by a rational player by applying such a solution (o, \), i.e.:

MEV(I,X) = Gy(M[o] | I, \)

Lemma 1 states that firing transactions preserves the global net worth, i.e.
the gains of some users are balanced by equal overall losses of other users.

Lemma 1. }, Ga(I,T) =0.
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By using a simple inductive argument, we can extend Lemma 1 to sequences
of transactions: if I' -2 I, then the summation of the gains Ga (I, \) over
all users (including M) is 0. Hence, the MEV game is zero-sum. The following
lemma ensures that deposit and redeem actions do not directly affect the net
worth of the user who performs them.

Lemma 2. If type(T) € {dep,rdm}, then Gy 1)(I, T) =0.

Finally, we note that prices of a minted token in two states are equal if the
reserve ratio in the two states are as well.

Lemma 3. Let I' 2 I, and let res,, -, (I') = (ro,71), res, - (I") = (ry,ry).

Then, Pr(1y,71) = Pr/(10,71) if and only if ro/r1 = 1{/7].

4 Solving the MEV Game

By Lemma 1, a move which minimizes the gain of all users but M must maximize
M’s gain, and therefore is a solution to the MEV game. More formally, we have:

Corollary 1. Gy (I, \) is mazimized iff Ga (I, \) is minimized for all A # M.

The net worth Wy of a user A can be decomposed in two parts: WY, which
accounts for the atomic tokens, and W/;{, which accounts for the minted tokens:

WD) =3 cr,on(r) - P(r)  WAll) =X cp, 0a(r) - Pr(r)  (4)

This provides M with two levers to reduce the users’ gain: token balances,
and the price of minted tokens. To use the first lever, M needs to exploit user
actions in the txpool X of the MEV game. For the second lever, since the prices of
atomic tokens (7 € Ty) are fixed, M can only influence the price of minted tokens
(7 € Ty). This can be achieved by performing actions on the respective AMMs.

In the rest of the section we devise an optimal strategy to exploit these two
levers. Intuitively, our strategy constructs a multi-layer Dagwood Sandwich®,
containing an inner layer for each exploitable user action in X, which M front-
runs by a swap transaction to enable it (if necessary), and a final layer of
swaps by M to minimize the prices of all minted tokens.

The construction of the final layer of the Dagwood sandwich is shown in
Sect. 4.1, while the construction of the inner layers is presented in Sect. 4.2.

4.1 Price Minimization

Lemma 4 below states that, in any state, M can minimize the price of a minted
token by using a single swap, at most. In particular, this minimization can always
be performed in the final layer of the Dagwood sandwich.

1 'We name it after Dagwood Bumstead, a comic strip character who is often illustrated
while producing enormous multi-layer sandwiches.
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Lemma 4. There exists a function P™" such that if M[o] | ' —* M[o’] | I
then: (i) Pr/(10,71) > PR (79, 71); (ii) there exist o” and \ consisting at most of
a swap by M such that M[c"] | I" -2 M[] | I and Pr+(79,71) = PPR"™(10,71).

In order to construct the swap transaction which minimizes the price of a
minted token (79,71) in I, we need some auxiliary definitions. For each swap
direction d € {0,1}, we define the canonical swap values as:

d r
d P(71_4) d T1—d - wg (70,71, 1)
wy (10,71, L) =4/ “ToT1 —T we (.7, ) =
a(70,71,T) P(rg) 07T T 0d 1—a(70,71, 1) ra+wi(ro, 71, 1)

Intuitively, wg is the amount of tokens deposited in a swap of direction d:
it is defined such that, after the swap, the AMM reaches an equilibrium, where
the ratio of the AMM reserves is equal to the (inverse) ratio of the token prices.
Instead, wil_ 4 is the amount of tokens received after the swap, i.e. it is the unique
value for which the swap invariant is satisfied.

If both wl(70, 71, ") < 0 and wi (7,71, ") <0, then the price of the minted
token (70, 71) is already minimized. Otherwise, if w(7,71,1) > 0 for some d
(and there may exist at most one d for which this holds), then we define the
price minimization transaction X¢(ry,m, 1) as:

M : swapd(wg(m,ﬂ,l“) : 70, wf(m,n,]“) i) (5)

Theorem 1 constructs the final layer of the Dagwood sandwich. We show that
this layer is the solution of the MEV game on an empty txpool. This is because
if M cannot leverage user transactions, the solution is just to minimize the price
of all minted tokens. The solution is obtained by sequencing price minimization
transactions on all AMMSs. Since the price of a minted token is a function of the
reserves of the corresponding AMM, this can be done in any order.

Theorem 1. Let I'= | icr(rio: Ti0:Tia:Tin) | Tw, where I, only contains
wallets. For all j € I and d € {0,1}, let 11.;-1 =wd(7j0,751, 1), and let:
v? CTia if vd >0 \ XU 10,750, 1) if vd >0
’ 0 zfvj,v <0 ! € zfv],vjl<0

Then, (01 0n, A1 -+ \y) is a solution to the game (I, X) for an empty X.

4.2 Constructing the Inner Layers
Consider a solution (o, A) to the game (A[oa] | I, X), and let:
Mlo] | Aloal | ' == Mo'] | Afoh] | I
By decomposing the net worth as in (4), we find that A’s gain for A is:
Ga(M[o] | Aloa] | T, A) = WO(F') - W/Q(F) +WA(I") = Wa(T)
=Y (oh(D)—0oa(m) - P() + Y (o(7) - Pr:(7) — oa(7) - Pr(7))

T€To TET,
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Since A is a solution, by Lemma 4 we can replace Pr/(7) with PRn(7):

=Y (oh(r) =oa(n) - P(r) + Y (oh(7) - PE™(1) = oa(r) - Pr(r))  (6)

TE€To TET

Note that all token prices in (6) are already defined in state I". Thus, A’s gain
can be minimized by considering only the effect on the token balance ¢, which
we can rewrite as op + Ag + Ay + - -+ where 4, is the effect on user A’s balance
induced by the ¢’th transaction in \: this transaction is necessarily one initially
authorized by A. We will show that A; is fized for any user transaction when
executed in an inner solution layer: the position of an inner layer in solution A
does not affect its optimality.

The following theorem states that solutions to the MEV game can be con-
structed incrementally, by layering the local solutions for each individual trans-
action in the txpool. Intuitively, we choose a transaction T from X, we solve the
game for (I, [T]), we compute the state I'"” obtained by executing this solution,
and we inductively solve the game in the (I, X"), where X’ is X minus T.

Theorem 2. With respect to the MEV game in (I, X):

1. If X is empty, the solution is the final layer constructed for (I',[]) in Sect. 4.1.

2. Otherwise, if X = [T]+X', let (o, \) be the inner layer constructed for (I, [T]),
let Mlo] | ' 2 M[] | I'', and let (o', \') be the solution for (I'",X"). Then,
the solution to (I, X) is (o + o', AN).

We now describe how to define the inner layers of the Dagwood sandwich, i.e.
the base case of the inductive construction given by Theorem 2. Each inner layer
includes a user transaction from the txpool, possibly front-run by M such that
executing the layer leads the user’s net worth to a local minimum. We define
below the construction of these inner layers for each transaction type.

Swap Inner Layer. Swap actions only affect the balance of atomic tokens.
To minimize the gain of A after a swap, M must make A receive exactly the
minimum amount of requested tokens. The effect of the swap on A’s atomic net
worth is:

Azswap® (vo:70,v1:71)

W) = W) = —vg - P(13) +vi_a- P(11_4q) it r

If the change in A’s atomic net worth is negative, A’s transaction is included
in the layer. Although this transaction minimizes A’s atomic net worth, it simul-
taneously affects the price of the minted token (7p,7;). This is not an issue,
since the final layer of the Dagwood sandwich minimizes the prices of all minted
tokens. Thus, the change of minted token prices due to the swap inner layer
will not affect the user gain in the full Dagwood sandwich, as evident from (6).
Note that the amount of tokens exchanged in a swap is chosen by the user, so the
actual position of the layer in the Dagwood sandwich is immaterial (Theorem 2).
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We now define the transaction used by M to front-run A’s swap, ensuring that
A receives the least amount of tokens from the swap. For I'= (¢ : 79,71 : 71) | -+ -
and T = A : swap®(vg : 79,01 : 71), let the swap front-run reserves be:

‘\/’U%'U%+4"U0"U1'T‘0'T1 — Vo " V1
SFrg, (to, 7, [, T) =

2-v1_g,
To-T1
SFrq, (10,71, 1, T)

SFTlfdA (TU,ﬁ,F,T) =

These values define the reserves of (79, 71) in the state I'"” reached from M[o] | I’
with M’s transaction. Intuitively, if the swap front-run reserves do mot coincide
with the reserves rg, r1 in I', then M’s transaction is needed to enable A’s swap.
We define the swap front-run direction dy as:

dor — da ifSF’I“dA(T(),Tl,F,T)>’I"dA
"1 da i SFr_g (0,7, I T) > 11,

We define the swap front-run values (i.e., the parameters of M’s swap) as:

SFu, ( o SFra, (10,71, I, T) —rg, if dy = da
T ’T b ) -
du 170> ra, — SFra (o, 71, I,T) if dy = 1 — da -
7
Tl_dM — SFT‘l_dM (T(),T’[,F,T) lf d|\/| = dA

SFw 1, L T) =
t-ay (70,7 15 T) {kammmﬂbrjy—m_m if dy = 1— dy

We combine these values to craft the swap front-run transaction:
SFX (70,71, 1, T) = M : swap™ (SFwq (79, 71, I, T) & 70, SFw, (10,71, I, T) : 71)

The inner layer is included in the Dagwood sandwich if it reduces A’s net
worth, i.e. if —vg - P(74) + v1—q - P(11—4) < 0. The swap front-run transaction
is omitted if the reserves in I coincide with the swap front-run reserves. The
balance of M in the (local) game solution is SFwgy (79,71,1,T) @ 74,. Note
that, the amount of tokens exchanged by the swapping user in (6) is fixed by
(—vg,+v1—q), and the effect of a swap inner layer does not depend on its position
along the Dagwood sandwich (Theorem 2).

Example 1. We recast our first example in Sect.1 as a MEV game,
assuming a txpool X = {A :swap’(40:7),35:7)}. The initial state is
I'=(100: 7,100 : 71) | Iy, where I3, is made of user wallets, among which
A[40 : 9], and P(m9) = P(m1) = 1,000. We construct the Dagwood sandwich.
Since A’s swap yields a reduction in A’s atomic net worth, 35- P(71) —40- P(7y) =
—5,000, then A’s transaction is included in the inner layer. To check if A’s swap
must be front-run by M, we first compute the swap front-run reserves:
V402 - 352 +4-40- 35 - 1002 — 40 - 35

SFTO(T();TMT7F) = 235 ~ 88.8

1002

SFTl(T(),T],T,F) = ~ 112.7
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Since these values differ from the reserves in the initial game state,
M must front-run A’s transaction. The direction dy of M’s swap is 1, as
SFry (0,71, I, T) > 1. The swap front-run values (7) are given by:

SFwq (0,71, I, T) =100 — 88.8 = 11.2  SFw; (19, 71,1, T) = 112.7 — 100 ~ 12.7
Therefore, the swap inner layer is made of two transactions:
M :swap'(11.2 : 70,12.7: 71) A :swap”’(40 : 70,35 : 71)

and M’s balance of the (local) game solution is 12.7 : 7. To construct the final

layer, we consider the state I = (128.8 : 70,77.7: 71) | - - -, shown in Fig. 1.
In I'”, the canonical swap values are given by:
_128.8-223

wo(ro, 71, I) = Zoe oo 287

wi(ro, 71, I") = /1 128.8 - T7.7 — 77.7 ~ 22.3

Since wi (70,71, ") > 1, the direction d of the price minimization swap is 1.
Therefore, the final layer is made of a single swap on the pair (79, 71):

M : swap'(28.7 : 70,22.3: 7))

where M’s required balance is 22.3 : 7;. Summing up, the Dagwood sandwich
is constructed by appending the final layer to the inner layer, and M’s required
balance is ¢ = 12.7 : 71 + 22.3 : 7y = 35 : ;. The MEV obtained by M through
the Dagwood sandwich is (11.2 — 12.7) - 1,000 + (28.7 — 22.3) - 1,000 ~ 5, 000. O

Deposit Inner Layer. By Lemma 2, deposits preserve the user’s net worth.
Thus, executing T = A : dep(vg : 79,v1 : 71) in I" does not bring any gain to A:
GA(I,T) = —vo - P(19) —v1- P(11) +v - Pr(79,71) =0 (8)
where v is the amount of minted tokens (7p,71) given to A upon the deposit.
By Lemma 4, Pr(7g,71) > PP (79,71 ). By using this inequality in (8), we have:
— 9 - P(T()) — U7 - P(T]) +v- P}ﬂnin(ﬂ),T]) S 0
&= v - P}nm(To,T'l) < - P(T()) “+ vy - P(T1)

M[35ZT1]|F:(1OOZT(),1OOZT1)|"'

S0 D M11.2 570,223 1) | I = (88.8 1 70,1127 : 71) | -+

T=A:swap” (40:70,35:71)
M

[11.2:70,223: 7] | I = (128.8 : 70, 7T7.7:71) | - -~

X (ro,71,I""
O M40 : 70,0 7] | T = (100 7,100 : 71) | - -

Fig. 1. A Dagwood sandwich exploiting a single user swap.



14 M. Bartoletti et al.

By (6) it follows that including T in a game solution A\ reduces A’s net
worth, since the decrease of A’s net worth in atomic tokens is not always offset
by the increase of net worth in minted tokens. Additionally, the minted token
price Pp(mp,71) in (8) when the user deposit occurs is determined by deposit
parameters vy, v alone: let I" —* I"" be such that the given user deposit T is
enabled in both I" and I'". By [prr], this implies vo/v1 = ro/r1 = r{/r] where
(ro,r1) = res,, - (I) and (r(, ) = resy, -, (I'"). Then, by Lemma 3, Pp(m, 1) =
Pr:(19,71), as the reserve ratios in I" and I"” are equal. Thus, the amount of
minted tokens v received by the depositing user in (6) is fixed by (vg,v1), and
the effect of a deposit inner layer does not depend on its position along the
Dagwood sandwich (Theorem 2).

Similarly to the construction of the swap inner layer, M may
need to front-run transaction T = A :dep(vg: 79,v1 :71) to enable it. For
I'=(rg:79,7r1:71) |-, we define the deposit front-run reserves as:

DFTo(T(),Tl,F,T) = ’\/UO/vl cTo " T1 ’ DFTl(T(),Tl,F,T) = ‘\/Ul/vg *To*T1

which satisfy DFrg(7, 71, I, T)-v1 = DFry(70, 71,1, T) - vg, as required by [Dee].
Given a swap direction dy, we define the deposit front-run values as:

DF’de (T(),Th.r,T) = DFT‘dM (T(),Tl,F,T) — ’f’dM
DFwy g, (10,71, 1, T) =r1_ay — DFri_g, (10,71, 1,T)

If DFwy (70,71, I, T) > 0 and DFw,_4 (79,71,1,T) > 0 holds for a swap
direction dy, then we define the deposit front-run transaction as:

DFX (70,71, 1, T) = M : swap™ (DFwy (70, 71, I, T) : 70, DFw, (10,71, 1, T) : 71)

If the reserve ratio in the initial state does not coincide with the ratio
of deposited funds, ie. wg/vy # 79/r1, then the deposit inner layer is
DFX(70, 71,1, T) T, and the balance required by M is DFw, (70,71, 1, T) : 74,
Otherwise, the deposit inner layer is made just by T, and the required balance
is zero.

Redeem Inner Layer. By Lemma 2, redeem actions preserve the user’s net
worth, i.e.A’s gain is zero when firing T = A : rdm(v : (79,71)) in I

GA(F,T) = 7U'PF(T(),’7'1)+”U0'P(T())+U1 'P(Tl) =0
Unlike for the deposit inner layer, redeem transactions increase the users’
gain when executed in the game solution. This is apparent when substituting in

the above equation Pr(7,71) = P/ (79, 71) (as per Lemma 4) to express the
user gain contribution (6) of the redeem action.

—v - PR (70, 71) + v - P(10) +v1 - P(11) >0

Therefore, user redeem actions always reduce M’s gain, and so they are not
included in the solution. Therefore, the redeem inner layer is always empty.
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M[18 : 70,50.5 : 7] | I'= (100 : 79,100 : 1) | - - -
X0 D 129,31 70,37.8 ] | I = (88.8 1 70,1127 : 71) | -+ -

T=A:swap” (40:70,35:71)

M[29.3 : 70,378 : 7] | I = (128.8 : 70, 7TT.T: 74) | - -

X (r0,71,I" T/
o ) MT14 2 70,0 11] | I = (86.6 ¢ 70,115.5: 71) | - --

T/ =A:dep(30:7(,40:71)

M[71.4 : 70,0 : 4] | I = (116.6 : 70, 155.5: 71) | - -~

X (ro,71,1"""")
AR N

M[534 : T(),20.8 . Tl} | (1346 L T0, 134.6 : T1) | e

Fig. 2. A Dagwood sandwich exploiting a user swap, deposit and redeem (dropped).

Example 2. We now recast the full example in Sect.1 as a MEV game, consid-
ering all three user transactions in the txpool:

X ={A:swap’(40 : 70,35:71), A :dep(30 : 71,40 : 71), A : rdm(10 : (79,71)) }

The game solution is shown in Fig.2: note that we can reuse the swap inner
layer from Example 1, since the initial state and user swap action are identical.
Thus, we continue by constructing the deposit inner layer for user deposit T’ in
state I = (128.8 : 79, 77.7 : 71). Here, the deposit front-run reserves are:

DFro(7o, 71, I, T') :‘\/30/40 1288 - 77.7‘ — 86.6

DFry (70,71, I, T) :‘\/40/30 1288- 77.7‘ —115.5

Since the ratio of the deposit front-run reserves does not coincide with the reserve
ratio in I (86.6/115.5 # 128.8/77.7), the deposit front-run by M is necessary to
enable the user deposit action. By choosing a swap direction dy, = 1, we obtain
the positive deposit front-run values, which confirm the choice of the direction:

DFwg (10,71, I, T') = 128.8 — 86.6 ~ 42.2 DFw, (0,71, ", T') = 115.5 — 77.7 ~ 37.8

Therefore, M’s deposit front-run transaction is:
DFX (10,71, I, T") = M : swap'(42.2 : 79,37.8 : 71)

which requires a balance o () > 37.8. The deposit inner layer is obtained by
prepending this transaction to A’s deposit. The redeem inner layer is empty, as
shown before. By (5), the final layer to minimize the price of minted tokens is:

M : swap'(18.0 : 79,20.8 : 71)
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Summing up, the full Dagwood sandwich (see also Fig.2) is:
SFX(T()77'1,F,T) T DFX(T()77'1,FII,T/) T/ X(T(),Tl,l—w”)

which requires an initial balance o = {18.0 : 70,12.7 + 37.8 : 71} by M. By
inspection of the Dagwood sandwich execution in Fig. 2, it can be seen that the
miner has obtained a gain of approximately 5,700. O

5 Related Work

Daian et al. [14] study the effect of transaction reordering obtained through pri-
ority gas auctions. These are games between users who compete to include a
bundle of transactions in the next block, bidding on transaction fees to incen-
tivize miners to include their own bundle. Notably, [14] finds empirical evidence
of the fact that the gain derived from transaction reorderings in decentralized
exchanges (DEX) exceeds the gain given by block rewards and transaction fees
in Ethereum. The same work also proposes a game model of priority gas auc-
tions, showing a Nash equilibrium for players to take turns bidding, compatibly
with behavior observed in the wild on Ethereum. Our mining game differs from
that in [14], since we assume a greedy adversary wanting to maximize its gain
at the expense of all the other users, exploiting arbitrages on AMMs.

Zhou et al. [21] provide a theoretical framework to study the front-running
on AMMs. Two sandwich heuristics are studied: the front-run & back-run swap
sandwich, and the novel front-run redeem €& back-run swap and deposit. The
swap semantics used in [21] is simplified, compared to ours, since no minimum
amount of received tokens is enforced by the AMM, users only perform swaps
and hold no minted tokens (depositing and swapping agents are decoupled).
Further, extractable value from arbitrage is considered separately. In comparison,
we emphasize that we propose a solution to attack all main user action types
offered by leading AMMs, thereby extracting value from user submitted swaps
and deposits. Our model also accurately model minted tokens: their value is
dynamically affected by miner and user swaps during the execution of the attack.
Thus, our game solution extracts the maximum value in a more concrete setting,
considering the victim transactions of both aforementioned attacks in [21], and
leaving no arbitrage opportunities unexploited.

More general ordering and injection of transactions by a rational agent is
generally referred to as front-running. Eskandari et al. [16] provide a taxonomy
for various front-running attacks in blockchain applications and networks. This
taxonomy is expanded in [17] with liquidations, sandwich attacks and arbitrage
actions between DEX.

Some works investigate the problem of detecting front-running attacks on
public blockchains. For example, in [17], Qin et al. introduce front-running detec-
tion heuristics which are deployed to empirically study the presence of such
attacks on public DeFi applications. On the other hand, various fair ordering
schemes have been proposed to mitigate front-running or exploitation of miner-
extractable value. However, simple commit-and-reveal schemes still leak infor-
mation such as account balances. Breidenbach et al. [12] propose “submarine
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commitments”, which rely on k-anonymity to prevent any leaks from user com-
mitments. Baum et al. [11] introduce a order-book based DEX which delegates
the matching of orders to an out-sourced, off-chain multi-party computation
committee. Private user orders are not revealed to other participants, such that
no front-running can occur in each privately-computed order matching round.
Ciampi et al. [13] introduce a market maker protocol in which the strictly sequen-
tial trade history between an off-chain market maker and traders are verifiable as
a hash-chain. Any subsequent reordering by the AMM is publicly provable: col-
lateral from the market maker incentivizes honest, fair-ordering behaviour. Such
work aims to provide alternative, front-running resistant designs with AMM-like
functionality. In contrast, our work is intended to formalize the behaviour of
current, mainstream AMMSs in the presence of a rational adversary.

The DeFi community is developing tools to enable agents to extract value
from smart contracts: e.g., flashbots [2] is a project aiming to develop Ethereum
implementations which support transaction bundles: Rather than front-running
individual transactions by adjusting their fees, an agent can communicate a
sequence or bundle of transactions to the miner, asking its inclusion in the next
block. Our game solutions could be implemented to solve for such bundles.

6 Conclusions

We have addressed the problem of adversaries extracting value from AMMs inter-
actions to the detriment of users. We have constructed an optimal strategy that
adversaries can use to extract value from AMMSs, focussing on the widespread
class of constant-product AMMs. Our results apply to any adversary with the
power to reorder, drop or insert transactions: besides miners, this includes roll-
up aggregators, like e.g. Optimism and StarkWare [3,4]. Notably, our work shows
that it is possible to extract value from all types of AMM transactions, while
previous works focus on extracting value from token swaps, only.

In practice, value is also extracted from AMMs by colluding mining and
non-mining agents: for the Ethereum blockchain, agents can send transaction
bundles [2] to mining pools for block inclusion, in return for a fee. Our tech-
nique naturally applies to this setting, where the actions of the miner are simply
replaced by actions by the agent submitting the transaction bundle.

We now discuss the simplifying assumptions (1-8) listed in Sect. 3. (1) User
balances do not limit the order in which transactions in the tzpool can be exe-
cuted. In practice, in some cases it would be possible to perform a sequence of
actions by exploiting the funds received from previous actions. We leave order-
ing constraints imposed by limited wallet balances for future work. (2) The
adversary holds no minted tokens prior to executing the game solution. Yet, the
adversary can exploit an (unbounded) initial balance of atomic tokens to acquire
minted tokens as part of the game solution by performing deposits. The opti-
mality of the Dagwood sandwich illustrates that this is not necessary. (3) The
size of the Dagwood sandwich is unbounded. In practice, a typical block of trans-
actions will include other transactions besides those directed to AMMs, and so
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the adversary can find enough space for its sandwiches by dropping non-AMM
transactions. During times of block-congestion, a constraint on the length of the
Dagwood sandwich will apply: we conjecture that solving such an optimization
is NP-hard, and regard this as an relevant question for future work. (4) Prices
of atomic tokens are fixed for the duration of the game: the Dagwood sandwich
will need to be recomputed should prices change. (5) AMMs only hold atomic
tokens. This is common in practice, but we note that extending the mining game
to account for arbitrary nesting of minted tokens by AMM pairs is an interest-
ing direction of future research. (6) No AMM swap fees and (7) no transaction
fees are modelled: the adversary’s gain resulting from the Dagwood sandwich is
an upper bound to profitability as fees tend to zero. Yet, fees affect this gain,
so they should be taken into account to construct an optimal strategy. Further-
more, transaction fees may make it convenient for a miner to include user redeem
transactions in the sandwich, while these are never exploited by our strategy. (8)
Besides fees, we abstract from the intervals that users can express to constrain
the amount of tokens received upon deposits and redeems (we only model these
constraints for swaps). This is left for future work.

In this paper we have considered AMMs which implement the constant-
product swap invariant, like e.g. Uniswap and SushiSwap. A relevant research
question is how to solve the MEV game under different swap invariants, e.g. those
used by Curve Finance and SushiSwap. Uniform frameworks which address this
problem have been proposed in [9,15] where swap invariants are abstracted as
functions subject to a given set of constraints.
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Abstract. We examine bucket-based and volume-based algorithms for
privacy-preserving asset trading in a financial dark pool. Our bucket-
based algorithm places orders in quantised buckets, whereas the volume-
based algorithm allows any volume size but requires more complex val-
idation mechanisms. In all cases, we conclude that these algorithms are
highly efficient and offer a practical solution to the commercial problem
of preserving privacy of order information in a dark pool trading venue.

1 Introduction

The majority of major stock exchanges are now electronic order-driven markets,
where investors submit orders to buy or sell a quantity of stock at a particular
price. Orders that are not immediately filled (i.e., those that do not immediately
result in a trade) are publicly displayed in a limit order book (LOB), which
presents a price-ordered view of the instantaneous demand and supply in the
market. With each order in the book acting as an advertisement of an investor’s
willingness to commit to a particular trade, the LOB is an efficient method for
finding counterparties with whom to trade. However, sometimes it is beneficial
for an investor to hide their trading intention. In particular, when attempting
to trade in large volume (i.e., when wanting to buy or sell a large quantity of
stock), exposing one’s intention will likely lead to adverse price movement as the
information contained in the large order causes other investors to re-evaluate
market price. This effect is known as price impact, or market impact, and it can
be extremely costly to a large-volume investor. To reduce impact, an investor
will often “salami slice” one large order into multiple smaller orders and drip
feed these into the market slowly over time. So common is this approach that
many exchanges offer an “iceberg” order type that automates a similar process.
When an iceberg order is submitted, only a small proportion of the full order
volume (the “tip of the iceberg”) is displayed in the order book at any given
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time, while the bulk of the remaining order remains hidden (“submerged” out
of view). However, while the use of icebergs to disguise order volumes can help
limit the effects of market impact, icebergs are exposed to the risk that other
investors will anticipate the hidden iceberg volume from information leaking
from the visible tip.

To counter this, some trading venues hide all pre-trade order information.
Commonly referred to as “dark pools” to contrast with the “lit” order books
of an exchange, these trading venues ensure that all order information is non-
displayed. As other investors have no access to the information in a dark pool,
so market impact can be significantly reduced, or avoided entirely. Hidden away
from viewing eyes, orders in a dark pool tend to take longer to fill than equivalent
orders submitted to an exchange. However, in most cases, the potential savings
available to large volume institutional investors will significantly outweigh the
desire for trading urgency. That is, volume investors are usually prepared to wait
as long as the final deal they make is fair. As a result, dark pool trading has
risen in popularity, with more than 15% of all US equities, and more than 8% of
all EU equities, trading on dark pools in 2017 [17]. Yet, dark pools persistently
suffer from negative reputation as some operators have taken advantage of their
privileged access to the non-displayed orders in their systems. Indeed, between
2011-2018, dark pool operators paid more than $217 million to the SEC in
penalty settlements for misusing customer order information or operating the
dark pool in a way that disadvantaged their customers [9]. In the shadowy world
of the dark pool, it is easier for a market manipulator to hide. As such, it is
perhaps unsurprising that many investors have a fear of the dark.

There is now a strong commercial drive from financial institutions, such as
JPMorgan [2,4], to offer investors a secure dark pool trading venue. To be com-
mercially viable, such a platform would require guaranteed order privacy, the
ability to handle imbalanced order-flows from around 1000 active investors or
more, and periodic order matching at regular intervals, where execution price
is determined by some reference value such as the mid-point of the National
Best Bid and Offer (NBBO). To address this problem, we consider algorithms
for implementing fast privacy-preserving trading protocols such that nobody, not
even the system operator, can access (and therefore misuse) order information.
These algorithms are designed to stop fraudulent behaviour but can also ben-
efit honest dark pool operators as they offer customers a guarantee that does
not rely solely on trust. Using multi-party computation (MPC) based protocols,
the investors secret share their orders across several entities who emulate the
dark pool operator. As long as these entities do not collude, nobody can access
the system information. In [8], Cartlidge et al. used MPC to present a proof-of-
concept implementation of three dark pool trading mechanisms, showing that
“volume matching” can be viably executed in a privacy-preserving manner with
order throughput similar to that required by a real world dark pool trading
venue. Further, in [9], Cartlidge et al. demonstrated how to use MPC to run
multiple auctions in parallel, offering simultaneous trading across thousands of
stocks such that the identity of the stock being traded is also hidden and secure.
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The throughput per MPC engine is however significantly lower than that of the
volume matching from [8] due to the use of a more complex matching algorithm.

In this paper, we build upon the work from [8] and introduce two matching
algorithms using MPC: (i) “bucket match”, and (ii) a “volume match” with
a more efficient clearing phase. For both mechanisms, we trade one financial
instrument (i.e., one stock) such that orders are matched according to volume
only and price is determined by some external reference value. In bucket match,
buy and sell orders placed in the same auction must have the same volume,
which is determined by the bucket size. To hide the volume that each investor
wishes to buy or sell (or the fact that the investor is even interested in trading a
given stock), orders with zero volume may also be submitted. Multiple auctions
with different sized buckets can be run in parallel, after which unfilled orders
remaining in the different bucket lists may be matched against each other. In
volume match, there is no bucketing and investors may submit orders of any
volume they wish (including zero volume orders), similar to the volume trading
algorithm presented in [8]. However, we extend the previous volume trading
protocol by simplifying the clearing phase. Namely, all the orders in the direction
with less total volume are opened simultaneously, instead of being checked one by
one before opening. We also increase privacy by no longer revealing the direction
of an order (i.e., it is not possible to tell whether the order is to buy or to sell).
Both algorithms were implemented with the Scale-Mamba Framework [1] using
Shamir Secret Sharing based MPC, which provides security with abort against
active adversaries for an honest majority. We empirically evaluate the case where
three MPC parties emulate the dark pool operator.

Related Work: Work in secure privacy-preserving auction mechanisms can be
roughly categorised into two broad categories: those involving a public bulletin
board (e.g., a blockchain), for verifying auction correctness, or as a secure com-
munication channel between parties; and those where MPC is used to implement
an auction or dark pool using a set of operators. We briefly review these, below.
In 2021, Ngo et al. [15] introduced a framework for secure financial trad-
ing that uses a public bulletin board (e.g., a permissionless blockchain) hidden
behind an anonymous network (e.g., Tor) for privacy-preserving communica-
tion between investors. The authors introduce witness-key-agreement (WKA),
a cryptographic scheme that allows counterparties to securely agree on a secret
using publicly committed information that meets some desired relation. Par-
ties negotiate securely by publishing partial zk-SNARK proofs on the public
bulletin board to reach a trade agreement. This process emulates a secure dis-
tributed over-the-counter (OTC) dark pool, such that trade price and volume is
negotiated directly between counterparty pairs. Therefore, there is no need for
an auctioneer (or dark pool operator) to match orders. The runtimes for each
protocol step are below 15s, the average block generation time in Ethereum.
Also in 2021, Galal and Youssef [12] introduced a publicly verifiable and
secrecy preserving periodic auction protocol that makes use of a smart contract
deployed on the Ethereum blockchain. Investors first commit to their orders in
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the smart contract using Bulletproofs to generate an aggregate range proof. The
auction (or dark pool) operator then privately receives orders from investors,
each encrypted with the operator’s public key. The operator decrypts orders
and calculates clearing price and volume for the auction, before publishing a
proof of correctness to the smart contract. The smart contract serves as a secure
bulletin board and enables public verification of the submitted zero-knowledge
proofs. Constantinides and Cartlidge [10] introduced a similar smart contract for
validating the honesty of the operator. Again, orders are submitted in encrypted
form to the smart contract, the operator matches orders off-chain in unencrypted
form, and the result of the auction is published to the smart contract. This
enables investors to verify whether their own orders were handled correctly,
while preserving the privacy of all unexecuted orders. In addition, since the
smart contract logic only handles order flow and is independent of the matching
logic, the operator can use any double auction matching rules without altering
the smart contract.

In 2019, Bag et al. [3] presented a protocol to perform a first-price sealed-bid
auction without a central “auctioneer” entity. Decentralised bidders engage in
the protocol to determine the winning bidder with the highest bid. The protocol
consists of a committing phase, where every bidder sends an order commitment
to a public bulletin board, then a second phase where bidders jointly compute
the highest bid without leaking the other bids. This computation is performed
using a modified version of the Anonymous Veto network protocol proposed in
[13]. Following this, the winning bidder can come forward to prove they had
the highest bid, and everyone else can verify their claim. The computation and
communication have a linear complexity on the bit length of the bids throughout
all phases; and the verification phase has linear complexity on the number of
parties. While this protocol has efficient time complexity, it is not obvious how
it could be extended to a double auction, where buyers and sellers are matched.

In 2006, Parkes et al. [16] proposed a secure protocol to perform a sealed-
bid auction using homomorphic encryption, where only one auctioneer carries
out the auction. The auctioneer publishes his/her public key, and the auction is
performed by bidders committing to their bids and then sending the commit-
ments to the auctioneer. Bidders then submit their bids to the auctioneer who
verifies first if the bids are consistent with the commitments, before running the
auction on clear bid data. Subsequently, the auctioneer posts the winner of the
auction along with proofs that the computation was performed according to the
specified protocol. One thing to note here is that, while the protocol prevents
the auctioneer from cheating, the unmet orders are revealed to the public and
so the trading intentions of these bidders are leaked. This work was extended
in 2007 [18] to cope with continuous double auctions (where orders to buy and
sell can be submitted and matched at any time), by checking whether orders
can be matched with existing orders as soon as they are entered. In 2009 [19],
protocols were further extended to enable trading in baskets of securities; and
in 2012 [20], rule-based trading was introduced. The works of [2,4] offer a pri-
vacy preserving double auction mechanism and a volume matching mechanism,
respectively, without any leakage based on fully homomorphic encryption using
a single operator.
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In 2006, seminal work by Bogetoft et al. [6] introduced an MPC protocol
to perform a one-shot double auction among a set of auctioneers, such that
investors secret share their orders with the auctioneers and orders are obliviously
addressed using Shamir Secret Sharing with passive security. This work was
deployed in 2008 [5], to secure the Danish sugar beet auction between farmers
and the company Danisco, the only sugar beet processor in Denmark. In this
auction, farmers provide the amount of sugar beet they are willing to sell for
every potential price. Similarly, buyers provide the amounts they are willing
to buy for every potential price. The clearance price is then calculated as the
point that supply equals demand. The auction was successfully run by three
auctioneers, namely, Danisco; DKS, the sugar beet growers’ association; and
SIMAP, the research team. Since then, the auction has taken place every year.

In 2015, Jutla [14] introduced an MPC based protocol for periodic double
auctions, with five entities playing the role of the auctioneers; four brokers and
one regulating authority. Investors first submit orders during an open-auction
period. Orders are then cleared at a single price and unmet orders remain in the
auction for the following rounds. Making the assumption that the strategies of
investors do not have to be kept secret, Jutla suggests that a passively secure
protocol is sufficient, as long as the auctioneers wait a reasonable amount of time
(e.g., one month) before releasing transcripts of the computations for audit. Jutla
does not report an implementation of the protocol, but claims that the MPC
technology at that time (in 2015) would be capable of executing the day’s first
auction in 30 min and subsequent auctions every 15 min; with additional 5 min
breaks between auctions, to allow bidders to digest results.

Cartlidge et al. [8] proposed an MPC based protocol for performing auctions
in dark pools, where a set of [ = 2 or [ = 3 auctioneers can emulate the dark pool
operator. Cartlidge et al. considered three common matching mechanisms: (i) a
continuous double auction, where buyers and sellers can submit orders at any
time and a limit order book is used for matching; (ii) a periodic double auction,
where the clearance price is determined by maximising quantity matched; and
(iii) a volume matching algorithm, which simply matches buy and sell volume
and price is taken from some reference exchange. Investors submit orders by
secret sharing them among the auctioneers, thus auctioneers learn nothing about
the orders, except for the direction of the order (i.e., whether the order is to
sell or to buy), as this information is sent to auctioneers on clear data. The
protocols proposed are actively secure with abort and were implemented using
the Scale-Mamba framework [1], with [ = 2 using the SPDZ protocol [11], and
I = 3 using Shamir Secret Sharing based MPC. The runtimes reported show that
the volume matching is the fastest algorithm, capable of processing a throughput
of around 1000 orders per second for the case where | = 3, and around 2000
orders per second for the case where [ = 2. The throughput for the other two
algorithms was found to be insufficient for real-world applicability. Namely, the
continuous double auction algorithm which can be commonly found in lit markets
was considered unsuitable for evaluation in an MPC system for dark pools.
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In 2020, Cartlidge et al. [9] introduced a follow-up work to secure a sys-
tem inspired by the London Stock Exchange Group’s Turquoise Plato Uncross
algorithm (TPU for short). The TPU manages dark pool trading across 4500
different instruments, thus Cartlidge et al. considered running the auction on
multiple engines, where each engine addresses a sub-set of instruments, so as to
cope with the amount of orders that TPU receives in real life. The challenge con-
sisted of distributing instruments across engines without leaking the instruments
that each engine is dealing with, as this would reveal information about the trad-
ing activity of each instrument. Cartlidge et al. [9] concluded that assigning 16
instruments to each engine (and thus 281 engines are needed)® would cope with
the real world throughput that TPU needs to address. The worst case through-
put for each of these engines is of around 8 orders per second for [ = 2, and
around 5 orders per second for [ = 3. Note that, as mentioned before, this is
indeed significantly lower than the throughput of the volume matching in [8]
presented above.

2 Owur Proposed Auction Algorithms

Both of the proposed algorithms follow the scheduled cross methodology, where
the matching occurs at fixed points in time and is based on volume only. Trade
price is determined by reference to an external lit market value, thus the orders
for both algorithms do not contain price information. Each order contains the
identity of the investor who submitted it, the direction of the order (i.e., whether
it is a buy or a sell order), and, in the volume match case, the volume to be
traded. A separate auction is run for each tradable instrument (i.e., each stock).
The output of each auction consists of a list of all filled orders (although some
orders might be partially filled, as will be explained at the end of this section).

A textual description of the bucket match and the volume match in the clear
can be found below.

Bucket Match: We consider an auction in which orders can only be executed
in a given number y of bucket sizes. For each j € [1,...,y] we define the fixed
bucket size as unit’, and the algorithm maintains a list L7 of the orders with
list L7 containing only buy and sell orders of size unit’. Order i in list j is of
the form [id], direction?], where id] is the identity of the investor, and direction’
is the direction of the order, i.e., whether the order is a sell (directiong =1) or
buy order (directiong = 0). Therefore, if an investor wishes, for instance, to sell
a volume v, the investor has to submit ¢’ distinct orders to list j, where g/ > 0,
such that v = Y 7=7 ¢ unit’, with the direction of each of these orders indicating
that they consist of sell orders, i.e., directiong =1 for all orders.

Orders are placed in their lists in order of arrival, and orders that arrived first
will be matched first. The clearing of all orders is then run at periodic intervals.

! Plus one engine that serves as an entry gateway for orders; therefore a total of 282
engines required.
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Unless the number of sell orders is identical to the number of buy orders in a
given list, there will be leftover unmatched orders after this same list is cleared.
After every list is cleared, we can check the direction of the leftover orders from
each of them. If there are leftover orders with different directions (e.g., leftovers
from L' are buy orders, and leftovers from L? are sell orders), then there will
be another clearing period where the leftover orders of all lists are matched
among each other. Recall that orders from different lists have different volume
and hence we must now take into consideration their unit volume, in addition
to their direction.

For ease of exposition, we will consider in our work only the cases of y = 1
and y = 2; i.e., we will either have one bucket size or two bucket sizes. As a
shorthand, we will refer to these as bucket-1 and bucket-2, respectively; bucket-z
will refer to the general case of multiple lists, i.e., where y > 1.

Volume Match: In this algorithm, the auction runs over one list L that con-
tains orders of different sizes. Order i is thus of the form [id;, direction;, volume;],
where id; is the identity of the investor, direction; is the direction of the order,
and volume; is the volume of the order. Note that, in this situation, if one wishes
to trade a volume v, it is enough to submit a single order of volume v (though it
is also possible to split the volume into multiple smaller orders). The procedure
is then similar to the bucket match case, except that here we consider only one
list and therefore the cross-list matching does not take place.

Table 1. Intuitive comparison of bucket match with 1 list, multiple lists, and volume
match.

Algorithm | Total orders | Additional computation | Leakage potential Loss in volume submitted
Bucket-1 Most — Low Low

Bucket-z Medium Cross-list matching Cross-list match leakage | Low

Volume Least Input correctness check | Lowest No loss

Intuitive Comparison: Bucket-1 will tend to receive more orders than bucket-
z or volume match, as multiple orders must be submitted for trading large vol-
umes. Therefore, as more orders need to be processed, runtimes for bucket-1 are
likely to be longer. Bucket-z solves this problem by introducing multiple bucket
sizes, thus allowing orders of different volumes. However, it will usually require
an additional cross-list matching period to find all possible matches between
different bucket sizes. Moreover, we would like the volume of unmatched orders
to remain secret, which might not be possible when matching orders of differ-
ent volumes. If an order can only be partially matched, the leftover volume will
become public. Therefore, bucket-z has potential for greater leakage than bucket-
1. Regarding the total submitted volume, note that one cannot always submit
the exact volume they wish, since all orders must fit the predefined bucket size(s).
Thus, investors might need to submit a lower total volume than intended.
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Volume match allows orders to be submitted with any volume, so there is
additional uncertainty about the volume of unopened orders. There is also no
need to implement an additional cross-list matching period, therefore preventing
the leakage of leftover volume of partially matched orders. However, checking the
correctness of input orders will be slower than in bucket-1 and bucket-z, with the
runtime growing linearly with the number of input bits representing the volume.

3 Secure Implementations of the Algorithms

To ensure privacy of the orders we implement the above auction algorithms on
top of a generic multi-party computation (MPC) system. For an overview of the
MPC requirements see the full version of this paper [7].

3.1 Setup

The setup consists of a number of servers S = {S1,...,5;} emulating the auc-
tioneer, where the orders entering the auction will be secret shared among these
servers.

3.2 Bucket Match

We aim to hide as much about the intention of the investors as possible, especially
for unmet orders. Thus we allow investors to enter ‘dummy’ orders, i.e., orders
which are neither buy or sell. We will discuss later the precise number of dummy
orders which should be entered, and how this number affects the privacy and
performance of the auction. Note that investors can submit dummy orders to
stocks they do not wish to trade, thus hiding their trading activity in each stock.

For i = 1,...,n, each order i will of be the form ord! = [(id?), (b)), (s)],
where bJ and 5 are blts indicating the direction of the order, that is, a sell order
will have b} = 0, s/ = 1 and a buy order will have bl =1, s/ = 0. To allow
dummy orders, orders can also contain bg =0 and s} = 0. Every order for which
(b7, s7) ¢ {(0,0),(0,1), (1,0)} will be rejected. Each list j will contain n? orders,
among which m? are dummy. For instance, if an investor j wants to sell a volume
V', they need to enter the orders {ord}7 . 7ordél7 ..oordd ,ordgy} such that
V= TSI (s - b)) - unit.

To ensure that the conditional operation (c¢) > 0 can be executed we need
to ensure that ¢ € [-2F~1 ... 2*~1]. For the case of one list we simply need to
ensure that the total number of orders n is less than 2=, For the case of more
than one list we need to ensure that n - unit¥ < 2F~1,

Bucket-1 Match: For ease of exposition we first examine the case when we
have only one bucket size, i.e. y = 1. The formal description of the algorithm is
given in Fig. 1. We distinguish 3 phases:
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The input phase, where orders are entered into the auction and a check is
run to discard invalid orders. In the input orders for this algorithm, the buy
and sell entries b and s must be bits. Additionally, at least one of these two
entries must be zero. To verify this, we draw three numbers «, 3,y € F,, at
random and calculate

() = a - ((b) - (b) = (b)) + B~ ((s) - (s) = (8)) + - ((b) - {s)):

Afterwards, we open (t) and check whether ¢ = 0. The first two terms are
zero ounly if b and s are bits, except with probability 1/p. The last term is
zero only if either b = 0 or s = 0, except with probability 1/p. If more than
one term is different from zero, their sum will be zero with probability 1/p.
The clearing phase one, where we open the orders in the direction that will
be completely cleared. First, we need to check which list has largest total
volume. To do so, we first calculate

Then, we perform the comparison (¢) > 0 and open the output. If ¢ is greater
than zero, there are more buy orders than sell orders and so we open the (s;)
share of every order i. Otherwise, we open the (b;) shares. The (id) of non-
dummy orders is also opened. Opening (s;) (or (b;)) will reveal whether order ¢
is a sell order (or buy order, respectively). However, because of the existence
of dummy orders, revealing that order i is not a sell order (or buy order,
respectively) does not imply that it is an order in the opposite direction. We
are then left with a mix of dummy and non-dummy orders, without knowing
which are which.

The clearing phase two, where we open the orders in the direction that will
be only partially cleared. The orders are opened one by one, and the (id) of
non-dummy orders is also opened. For each opened order, we check whether
the opposite direction has been completely cleared. When that is the case,
we exit the algorithm.

Bucket-2 Match: We now examine the case with two bucket sizes, i.e., y = 2.
The size of the first bucket is unit* and the size of the second bucket is unit®. The
formal description of the algorithm is given in the full version. We distinguish
the following phases of the algorithm:

1.

The input phase, the clearing phase one and the clearing phase two are exactly
as in the bucket match with one bucket size. Each of the two lists is cleared
individually, and then we check whether the leftover orders from both lists
have different directions. If so, we can proceed to matching orders from dif-
ferent lists. If all the orders have the same direction, we exit the algorithm.
Note that, while we know the direction of the leftover orders, we do not know
which of them might be dummy orders.
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Bucket-1: match on one list

Input phase: On input ord; = [{id;), (s:), (b;)], where id;, s;,b; € Fp:
1. o, Bi, 7 < Frand()-
2. (t:)  ai - ((bi) - (bi) — (be)) + Bi - ((s) - {s3) — () +vi - ({bi) - (s3))
3. t; < Open((t;))
4. If t; = 0 then add ord; to a list L, otherwise reject ord;.
Clearing phase one: On input L = [ordy,...,ord,], the list of orders that will
be cleared on the same round
L () = 0, () — (s1)
2. (d) < ({c) > 0)
3. d — Open({d))
4. Ifd=1
I. For all i, execute s; < Open((s;))
II. For all i such that s; = 1, execute id; <+ Open((id;)).
I o — 37 | s
IV. Move all orders with s; = 0 to a list L°
5. Else
I. For all ¢, execute b; «— Open((b;))
II. For all ¢ such that b; = 1, execute id; < Open({id;)).
II. 0«7 b
IV. Move all orders with b; = 0 to a list L®
Clearing phase two: On input a List L® = [ordy,...,ord,] (or L® =
[ord1,...,ord,]), and the sum o:
1. ¢c—0
2. Foriin {1,...,0}
I. b; < Open((b;)) if d =1 (or s; < Open((s;) if d = 0)
II. Ifb; =1 (or s; = 1)
i. id; < Open((id;))
ii. ce—c+1
iii. If ¢ = o then break.
Output the set of completely opened orders from L° (resp. L°).

Fig. 1. Bucket-1: match on one list

2. The clearing phase three, where we open the orders in the direction that will
be completely cleared. First, we need to check which direction has largest
total volume. To do so, we first calculate

1'7,/2 n/l
(c) Y (dir}) - unit® = Y “(dir;) - unit’,
i=1 i=1

where dir’ is b7 if the leftovers from list j are buy orders, or s7 if the leftovers
from list j are sell orders. Then, we perform the comparison (¢) > 0 and open
the output. If ¢ is greater than zero, there is more volume in direction dir?
and so we open all the (dir') shares. Otherwise, we open the (dir®) shares.
The (id) of non-dummy orders is also opened.
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3. The clearing phase four, where we open the orders in the direction that will
be only partially cleared. The orders are opened one by one, and the (id) of
non-dummy orders is also opened. For each opened order, we check whether
the opposite direction has been completely cleared. When that is the case,
we exit the algorithm.

Note, the last opened order from the clearing phase four will not be necessarily
completely matched. The unmatched volume from this last order will therefore
be leaked. This source of leakage is further discussed in Sect. 4

3.3 Volume Match

Similarly to the bucket match, we will hide here the direction of orders and we
will allow dummy orders. Each order i will be of the form ord; = [(id;), (v;), (dir?),
(dirf)], where v; is the volume of the order, dir? = 0 if ord; is a sell order, dir{ =0
if ord; is a buy order, and dir} = dir} = 0 if ord; is a dummy order. The list of
orders from all the investors will contain n orders, m of which are dummy orders.
If an investor wants to sell volume V, they need to enter orders ordy,...,ord,
such that V = Y2/=9(v; - (dirf — dir}))

The formal description of this algorithm is presented in the full version. Again
we distinguish 3 phases of the algorithm:

1. The input phase, where orders are entered into the auction and a check is run
to discard invalid orders. To ensure investors enter values v; that are valid
non-negative numbers less than some bound B (which we assume is an exact
power of two, i.e. B = 2¢), they enter the value as a sequence of ¢ bits, v; 5, for
j=0,...,£— 1. Additionally, they enter two bits dirf and dir; that indicate
the direction of the order. All these values are checked to be bits, using the
same check used in the bucket matching algorithm, and then the actual values

. . . . —1 .
of the volume in each direction are formed from v? = dir? - 3 j—0 Vi, - 27 and

v = dir; - Z?;(l) v; ;- 27. We still need to check that at least one of dir? or dir?
is zero, so we calculate
(t:) = (dir}) - (dir}),

open (t;) and check whether ¢; = 0. Clearly, that happens if and only if either
dir? = 0 or dir; = 0. To ensure the comparison (¢) > 0 can be evaluated
correctly we simply need to pick parameters so that n - B < 2¢F~1,

2. The clearing phase one, where we open the orders in the direction that will
be completely cleared. First, we need to check which list has largest total
volume. To do so, we first calculate

Then, we perform the comparison (¢) > 0 and open the output. If ¢ is greater
than zero, the total buy volume is greater than the total sell volume and so
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s b

we open the (vf) share of every order i. Otherwise, we open the (v;) shares.
The (id) of non-dummy orders is also opened. We then calculate the total
volume o of the opened orders. Suppose the (vf) shares were opened. For
every v = 0, we calculate the cumulative buy volume of the first ¢ orders,
(w;) =S5 (v8). If the (v?) shares were opened, the cumulative sell volume
is calculated instead. This cumulative volume will be used in the next clearing
phase to avoid leaking the unmatched volume of the last opened order.

3. The clearing phase two, where we open the orders in the direction that will be
only partially cleared. First, we run a binary search on the cumulative volume
calculated previously to find the highest index w such that (w,) < o. Then,
the first u orders are opened, as well as the (id) of non-dummy orders. At this
point, we still did not completely clear the orders opened during clearing phase
one. However, if we open ord, 11, part of its volume will remain unmatched
and there will be an information leakage. To avoid this, we simply subtract
the volume o — (w,) we still need from ord,; and open (id,1). This way,
only the volume that will indeed be cleared is revealed, with the leftover
volume of this last order remaining secret.

4 Leakage

There are two possible sources of information leakage in the described algorithms:
(i) leakage from partially unmatched orders; and (ii) leakage from opening orders.
Each of these sources is discussed below. All the analyses are equivalent when
the buy orders have the largest total volume, thus we consider always the case
when the total sell volume is more than the total buy volume.

Leakage from Partially Matched Orders: This type of leakage can hap-
pen in both the volume match and the bucket-2 match, since in both of these
algorithms there are orders with different volumes. In the bucket-1 match, every
non-dummy order has exactly the same volume, so every opened order is com-
pletely matched and this type of leakage never happens.

In the volume match, orders from the direction with largest total volume are
opened until the next order to be opened would finish clearing the other direction.
We will then remove the volume we need to finish the clearing from this next
order without opening its volume share. This means that the last order might
still have some leftover volume, though it is also possible that all its volume was
matched. Since it was at least partially matched, we need to reveal the investor
who submitted the order so that the trade can be processed. We will therefore
know that this investor might still have some volume left to trade and, if that
is the case, we also know the direction of the order. The leftover volume in this
last order and whether it is positive or not will however remain unknown.

In the bucket-2 match, the clearing phases one and two are the same as
the bucket-1 match, and hence there is no leakage. As for clearing phases three
and four, since the orders in each direction will have different volumes, the
situation is similar to the volume match. Let unit! and unit® be the bucket sizes
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of the buy and the sell orders, respectively, in the clearing phases three and four.
Considering unit’ = k - unit? for some k € N, if the sell orders have larger total
volume, then there will be no leakage. If the buy orders have larger total volume,
the unmatched volume will be leak = h - unit?, for h € {0, ...,k — 1}.

In case ged(unit!, unit?) = k, for some k ¢ {unit’, unit?}, then the unmatched
volume will be either leak € {0, k, 2k, ...,unit' — k}, when the buy orders have
largest total volume, or leak € {0, k, 2k, ..., unit> — k}, when the sell orders have
largest total volume.

Note that for this algorithm the maximum leakage that can occur from
unmatched orders is known, and the investors can plan how to divide their
orders into the two lists according to this information.

Leakage from Opening Orders: Consider the bucket-1 match and suppose
there are no dummy orders in a given auction. Let the sell orders be the ones
with largest total volume, and hence the buy orders are the first ones to be
opened. For each (b;) that is revealed to be b; = 0, we learn that this must be a
sell order of unit volume. This means that as soon as we finish the clearing phase
one, all the information about the orders’ volume has been revealed.

Suppose now that the probability of having a dummy order is pgy, with the
total number of dummy orders being m = pg - n. Let the buy orders be the
first ones to be opened, and let the number of buy orders be B = p; - (n — m)
(note that here we must have p, < 1/2 since there are less buy orders than sell
orders). After clearing phase one, we will have n— B orders which might be either
dummies or sells, and the probability of finding a sell order is ":L}f . For each
newly opened sell order, we learn whether an order is a sell or a dummy. Let ¢
be the number of opened sell orders, and j the number of opened dummies, then
the probability of the next opened order being a sell is:

Pr(“order is sell”) = w
n—B—(i+7)
Assuming an even distribution of dummy orders within the buy orders.

By the end of clearing phase two, we should have opened a total of B sell
orders plus m’ dummy orders. At this moment, even if p; is unknown, an adver-
sary might use the information about previously opened orders and consider
pl; = m'/(2B + m/). The expected amount of leftover sell orders will then be
(n—2B —m') - (1 —p}). Note that, since we are in the bucketed case, knowing
the amount of leftover sells implies knowing the total leftover sell volume.

In the bucket-2 match, the situation for the clearing phases one and two is
identical to the bucket-1 match. For clearing phases three and four, we also know
exactly the volume of each buy and sell order (even if this volume is different
for buys and sells). However, note that these orders have a different format, i.e.,
they only contain the ID and either the sell or the buy volume, and so opening
one of the directions does not leak information about the other. Therefore, the
leakage associated with the opening of each of these lists will be the same as if
we were continuing the clearing phase two openings.
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The case for the volume match is similar, except that since each non-dummy
order might have any positive volume, the uncertainty about the volume of
unopened orders increases.

Summary: The bucket-1 match has no leakage from partially matched orders,
but there is some leakage from opening orders. In order to mitigate this effect,
the investors must submit more dummy orders. The bucket-2 match does have
leakage from partially matched orders (although this does not necessarily occur),
in addition to the leakage from opening orders, which is similar to bucket-1
match. Once again, submitting dummy orders reduces this last type of leakage.
Note also that when we have two lists, usually less non-dummy orders need to be
submitted, so we can increase the proportion of dummy orders without getting
worse runtimes than when using one list only.

Runtimes for different amounts of dummy orders are presented in the full
version. Note that for the chosen bucket sizes, bucket-2 match with 9 dummy
orders per non-dummy order has faster runtimes than bucket-1 match with 5
dummy orders per non-dummy order. However, using bucket-2 match means
we might get leakage from partially matched orders, depending on the balance
between buy and sell orders in each list.

Volume match results in the least leakage. The leakage from partially matched
orders corresponds only to the direction of a (possibly empty) order. The leakage
from opening orders is minor when compared to bucket match, because of the
uncertainty introduced by fact that orders can have any possible volume. This
means that even if investors submit only 1 (or fewer) dummy order per non-
dummy order, the leakage will remain low.

5 Runtimes

To provide runtimes of our algorithms, we model the situation where T" investors
participate in the auction, each of whom has one volume to submit drawn from
the distribution (M(0,1) + 5) - 10%, and places the same order in three dif-
ferent auctions, each of which utilizes one of our three algorithms presented,
namely volume match, bucket-1 match, and bucket-2 match. We varied T in
{10,100, 1000, 10000}, as well as the number of dummy orders submitted per
non-dummy order (which we call d) in {0, 1,5,9}. Buy, sell, and dummy orders
(when they exist) are evenly distributed in the lists of orders. We also assume
that there is an order imbalance such that 2/5 of the investors are buyers and
3/5 are sellers.

This order imbalance was suggested through discussions with JPMorgan, a
tier one US investment bank who operate in this space and have observed a
tendency of investors to have a buy:sell imbalance in the ratio of 2:3. This con-
forms with evidence that informed investors tend to trade in the same direction
(e.g., [21]). Here we model a sell imbalance (3/5 of investors are sellers), however
buy imbalances (where 3/5 of investors are buyers) also occur, depending on the
mood of the market. For the protocols we have presented, results are symmetric
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such that a buy:sell imbalance of 2:3 has the same run time as a buy:sell imbal-
ance of 3:2. If the imbalance is different or if there is no imbalance at all, the
number of matched orders will be affected (assuming the submitted volume is
drawn from the same distribution). This will influence the running time of the
clearing phases, where we might need to reveal more or less id’s. However, most
of the total running time comes from the input phase and so a different order
imbalance will not have a significant impact.

As a simplification, we computed runtimes for the situation where there is
only one auction trading one stock. However, a real world venue would allow
trading in many stocks, so many auctions would be required. For instance, if
the venue is trading 5000 different stocks then 5000 auctions are required. These
auctions can be run sequentially, in which case the runtime for all auctions to
complete is 5000 times the runtime of a single auction. Alternatively, multiple
MPC engines can be used to run auctions in parallel. In the extreme case, where
we have 5000 engines (i.e., one engine per stock), all auctions run in parallel and
hence the total runtime for all auctions to complete is the same as the runtime
for a single auction.

Setting: We used Scale-Mamba with Shamir secret sharing between [ = 3 par-
ties. All the parties run identical machines with an Intel i-9900 CPU and 128 GB
of RAM. The ping time between the machines is 1.003 ms.

Online Phase of Volume Match: The average time for input phase depends
on the bound B that is set for the volume of the orders. Recall that the orders’
volumes are entered as a sequence of bits, and we must confirm that every one
of them really is a bit. Therefore, the more bits we allow for the input volume,
the longer it will take to run this check. Here we assume that the volume of each
order can have at most 32 bits, and we obtain an average time for the input
phase of 0.00062s (0.62 ms) per order, with a standard deviation of 0.00005s
(0.05 ms).

Runtimes are provided in the full version, where we also provide a comparison
of this version of volume matching to that described in [8]). One can notice that
clearing phase 1 is faster than clearing phase 2. This is mainly due to the fact
that the operation of opening directions can be vectorized for the case of clearing
phase 1, as we are opening the direction of all orders, while for the case of clearing
phase 2, this operation has to be sequential, as we do not know for how many
orders we should open the direction.

Online Phase of Bucket-1 Match: The average time of the input phase is
0.00013 s (0.13 ms) per order, with a standard deviation of 0.00001s (0.01 ms).
Note that the order format check is similar to the one used for the volume match,
but here the volume of each order consists of a single bit, resulting in a faster
input phase.

However, unlike what happens in the volume match, every order must now
have the same fixed volume. This means that each investor must submit different
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non-dummy orders that sum up to the desired volume. When this volume is not
a multiple of the chosen bucket size unit, we round the volume down to the
closest multiple. Thus, we will generally have more orders than in the volume
match, depending on the exact value of unit. If unit is small, more orders will be
needed and the total submitted volume will be closer to the volume match case.
If we choose unit to be large, we will not need as many orders, but the investors
will submit significantly less volume than in the volume match case. The average
number of orders and the average total submitted volume for different bucket
sizes can be found in the full version.

In our case, 99.7% of the investors will submit a volume between 2 - 10 and
8 - 105. If we choose e.g. unit = 10°, the volume submitted by each investor will
be rounded down to the closest multiple of 10%. This will result in an average
submitted volume of 4.49 - 10°, as opposed to the average volume of 5 - 106
obtained in the volume match, where no rounding is needed. We will also have
around 4.5 orders for each order in the volume match case.

We present in the full version the runtimes corresponding to the bucket match
for one list with unit = 10%. One can make the same remark as the volume match
for the runtimes. That is, clearing phase 1 is faster than clearing phase 2 due to
the fact that we can vectorise computation for the case of clearing phase 1.

Online Phase of Bucket-2 Match: Let unit® denote the bucket size associated
with list L*¥. We assume that unit' (the small bucket) is smaller than unit? (the
big bucket).

Similar to bucket-1 match, the volume to be traded in bucket-2 match will be
divided into multiple orders according to the bucket sizes. If the volume cannot
be fully obtained with a combination of the two buckets, we round it down to
the closest possible combination. We assume that the investors will divide their
volume such that they use as many big buckets as possible. The average number
of orders in each list and the average total submitted volume for different bucket
sizes can be found in the full verion.

Summary: If clearing phases 3 and 4 of bucket-2 match are not executed
then all three algorithms have roughly the same leakage, which in each case is
extremely small and relies on estimating unmatched order volume by observing
historical dummy ratios. In practice, this level of information leakage is negligi-
ble if investors use a randomised dummy order submission strategy. Assuming a
3:2 imbalance in orders to sell or buy, this implies that bucket-2 (or, more gen-
erally, bucket-z) is to be preferred as it has the quickest input phase. However,
the precise trade off between the simple cost of input checking in bucket-z versus
the more complicated cost of input checking in the volume matching algorithm
depends on the exact distribution of dummy orders that investors submit in
a real environment. Compared with volume match, bucket-z match is likely to
incentive the placement of more dummy orders to disguise the fact that each real
order has a known volume equal to the bucket size. Once this number of addi-
tional dummy orders grows above some threshold, then volume match becomes
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more efficient than bucket-z match. For example, with T = 1000 investors, with
a 9:1 ratio of dummy to real orders in bucket-2 match and a 1:1 ratio of dummy
to real orders in volume match, volume match has an input phase of 1.24s and
a clearing phase of 0.06s, whereas bucket-2 match has a longer input phase of
2.8s and a longer parallel clearing phase of 0.27s. However, in either scenario
that bucket-z or volume match is quickest, the runtimes demonstrate that these
algorithms can securely input and clear more than a thousand orders per second,
and are therefore clearly capable of handling the throughput requirements of a
real world dark pool trading venue.
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Abstract. Blockchains and DeFi have consistently shown to attract
financial speculators. One avenue to increase the potential upside (and
risks) of financial speculation is leverage trading, in which a trader bor-
rows assets to participate in the financial market. While well-known over-
collateralized loans, such as MakerDAO, only enable leverage multipli-
ers of 1.67x, new under-collateralized lending platforms, such as Alpha
Homora (AH), unlock leverage multipliers of up to 8 x and attracted over
1.2B USD of locked value at the time of writing.

In this paper, we are the first to formalize a model for under-
collateralized DeF'i lending platforms. We analytically exposit and empir-
ically evaluate the three main risks of a leverage-engaging borrower: (7)
impermanent loss (IL) inherent to Automated Market Makers (AMMs),
(i) arbitrage loss in AMMSs, and (%ii) collateral liquidation. Based on
our analytical and empirical results of AH over a timeframe of 9 months,
we find that a borrower may mitigate the IL through a high leverage
multiplier (e.g., more than 4x) and a margin trading before supplying
borrowed assets into AMMs. We interestingly find that the arbitrage and
liquidation losses are proportional to the leverage multiplier. In addition,
we find that 72.35% of the leverage taking borrowers suffer from a neg-
ative APY, when ignoring the governance token incentivization in AH.
Finally, when assuming a maximum +10% move among two stablecoins,
we pave the way for more extreme on-chain leverage multipliers of up to
91.9x by providing appropriate system settings.

1 Introduction

Over 44% of the total locked DeFi value is dedicated to lending and borrow-
ing services. Financial debt has therefore manifested its importance within the
decentralized financial ecosystem. The very first DeFi debt protocols focused
on so-called over-collateralized loans—wherein a borrower must collateralize
more financial value than the lent debt amounts to [4,15,16]. Common over-
collateralized loan systems require the collateral value not to decline below 150%
of the total debt value. While over-collateralized loans grant the borrower a wide
degree of flexibility in using the borrowed’ assets, they remain capital-inefficient
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and limit the borrowers leverage multipliers below 2x!'—that is the multiplier
by which traders can increase their financial up- or downside of a loan.

In under-collateralized loans, however, speculate-afine traders can gamble
with leverage multipliers beyond 2x, which we subsequently refer to as leverage
trading. While the borrowed assets remain under the tight control of immutable
on-chain smart contracts, existing on-chain leverage platform, such as Alpha
Homora [1] grants the borrowers the ability to speculate with a leverage of up to
8x. To the best of our knowledge, this is the first work to explore the practices
and possibilities of secure under-collateralized on-chain leverage. We formalize
an on-chain leverage model, measure existing lending practices and assess the
risks quantitatively as we summarize in our contributions:

On-chain Leverage Model: To the best of our knowledge, we are the first to
provide a model for on-chain lending platforms with a leverage factor beyond
2x. We formalize the generic users and components to encompass future
leverage designs. We show that with reasonable system settings, an on-chain
lending system can achieve a leverage multiplier of up to 91.9x.

On-chain Leverage Analytics: Over a timeframe of 9 months, we analyze
on-chain data analytics of Alpha Homora (AH), with 1.2B USD of locked
value, the largest on-chain leverage platform in DeFi. We find that lenders
consistently benefit from a positive APY, while 72.35% of the leverage taking
borrowers suffer from a negative APY, when ignoring the governance token
incentivization in AH.

Leverage Risk Quantification: We identify three risks causing borrower
losses: (1) impermanent loss (IL) inherent to Automated Market Makers,
(2) asset arbitrage, and (3) collateral liquidation. We find that out of the
10,430 positions analyzed over 9 months for leverage trading in AH, 1,139
suffer from IL, 149 are susceptible to asset arbitrage and 270 suffered from
collateral liquidation. We find that a borrower may mitigate the risk of IL by
simultaneously (1) employing a high leverage multiplier (e.g., more than 4x)
and (2) performing a margin trade to swap the borrowed assets to collateral-
ized tokens before supplying assets into AMMs.

2 Background

In the following, we provide essential notions of DeFi to further understand the
novelties presented in this paper.

2.1 DeFi

Decentralized Finance, also known as DeFi, is a financial ecosystem which runs
autonomously on smart-contracts-enabled blockchains and has grown to a total
locked value (TVL) of over 100B USD at the time of writing. Many DeFi pro-
tocols are inspired by traditional centralized finance (CeF1i) systems, such as

! For instance, 1.67x, in the case of MakerDAO, where the collateral value shall not
decline below 150% of the debt value.
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lending and borrowing platforms, asset exchanges, derivatives, and margin trad-
ing systems. However, compared to CeFi, DeFi offers distinct features to its
users, such as complete transparency and non-custodial asset control. DeFi also
enables novel financial primitives that do not exist in traditional CeFi, such as
flash loans [27]. Flash loans enable borrowers with nearly zero upfront collateral
to borrow instantly billions of USD. Such financial enablers grant arbitrageur
traders significant power through the atomic execution of arbitrage transactions
across the many composable DeFi markets. For a more thorough background on
DeFi, we refer the interested reader to the related works [24,28].

2.2 Price Oracles

While DeFi is being built, the decentralized finance paradigm remains deeply
connected to CeFi. Because blockchains are isolated databases, and cannot access
off-chain data, DeFi gathers external data from third-party services, commonly
referred to as oracles. Price oracles allow feeding e.g. stock or other asset price
information to smart contracts and can therefore act as a bridge between DeF'i
and the external world [17]. Oracles can be classified as centralized and decentral-
ized oracles based on the number of external sources. Two major decentralized
DeFi oracle providers are Chainlink [8] and the Band Protocol [23].

2.3 Automated Market Maker

The prevalent price-finding and order matching mechanism in centralized
exchanges (CEXs) is the limit order-book model (LOB), which matches buyers’
bids to sellers’ ask prices [24]. In decentralized exchanges (DEXs) [29,31], the Auto-
mated Market Maker (AMM) evolved to replace LOB due to its suitability for low-
throughput blockchains [36]. An AMM consists of a liquidity pool which receives
and emits financial assets through the control of a pre-defined algorithm, in its
simplest form a constant product formula. A pool is funded by liquidity providers
(LP), who receive LP tokens matching the accounting share of their pool owner-
ship. Liquidity takers (LT) request a trade with the pool by providing one asset X
plus a transaction fee [9] while receiving another asset Y in return. The transaction
fees are paid to the LPs, proportionally to the LP pool shares.

Impermanent Loss. Liquidity providers have the choice of either depositing
their assets to a liquidity pool, or holding the assets in their wallets. If the
accumulative value of the tokens in a liquidity pool drops below the hypothetical
value of simply holding the assets in a wallet, there exists an impermanent loss
(IL), also known as divergence loss. From the moment of an LP deposit, the
accumulative asset value decline may occur, when the tokens in a liquidity pool
diverge in price from each other [6,9]. If the token values revert to the price ratio
at the time of the LP deposit, the IL is reverted. An IL is therefore only realized,
when an LP exits a liquidity pool in a state where there exists an IL.

Arbitrage. Arbitrage is the process of profiting by selling/buying assets among
multiple markets, leveraging price differences. Arbitrage increases the DeFi mar-
ket efficiency and is typically considered benign. Previous works [10,34,36] have
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shown that DeFi arbitrage bots monitor blockchain state changes and execute
arbitrages among AMMs to make profits.

2.4 Financial Leverage

Leverage is the practice of taking on debt, i.e., to borrow assets for a subsequent
financial operation [5]. One such operation is to perform a momentary exchange
of assets, which is commonly referred to as margin trading. Another operation
would be to take the lent assets and provide these towards a financial instrument,
such as a DeFi liquidity pool, as we investigate within this work.

Leverage, in general, can amplify trader profits, as well as losses. Aggressive
traders are known to be willing to undertake such risks in pursuit of higher
returns [30]. The degree of amplification is determined by the leverage multi-
plier, which is defined as the ratio of the total assets to the equity (or cash)
that a trader holds. The leverage multiplier can be freely adjusted by the trader,
i.e., by providing or removing ad hoc collateral from the leverage position. A
multiplier of 1x means that the total assets that the trader has access to are
equivalent to the trader’s equity, i.e., the trader does not borrow any assets. A
leverage factor beyond 1x is achieved as soon as the trader can borrow assets
to perform a subsequent financial operation. Centralized cryptocurrency trad-
ing platforms have readily introduced leverage trading, e.g., Prime XBT [33],
OKEX [19], BitMEX [7], and Poloniex [22], offering leverage multipliers from
2.5x to 100x [20].

2.5 Leverage in DeFi

Because of the lack of Know-Your-Customer (KYC) verifications and the
blockchain’s pseudonymity, DeFi users cannot safely resort to credit to exert
leverage. Therefore, DeFi borrowing is usually fully collateralized or over-
collateralized and (with 29B USD of total locked value) widely applied in sev-
eral lending platforms such as MakerDAO [16], Compound [15] and Aave [4].
MakerDAO for instance, allows traders to open collateralized debt positions by
providing various cryptocurrencies as a then locked security deposit. In exchange
for locking these assets, the trader can then mint a stablecoin DAI, which can
be freely used, as long as the collateral value does not decline below a certain
threshold. Specifically, MakerDAO requires that the collateral value does not
decline below 150% of the granted debt position. As such, MakerDAO enables
maximum leverage of 2.5/1.5 & 1.67x, while in this work we investigate proto-
cols that enable higher leverage multipliers. If the collateral value declines below
150% in MakerDAO, the debt position becomes liquidatable as we elaborate
further in the following.

2.6 Liquidations

If the value of debt collateral in a lending system declines below a custom thresh-
old, then the debt position may be opened for liquidation. The Health Factor
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(HF) is a common metric to measure the health of a debt position, whereas an
HF smaller than 1 indicates that a debt position is liquidatable [25]. A liquida-
tion is then an event in which a liquidator repays outstanding debts of a position
and, in return, receives a portion of the collateral of the position as a reward.
Liquidations in DeFi are widely practiced, and related works have quantified
that over the years 2020 and 2021, liquidators realized a financial profit of over
800M USD while performing liquidations [25].

3 On-Chain Leverage System

We proceed to outline the actors and components of on-chain leverage systems
as shown in Fig. 1.

Lending Pool. A lending pool is a multi-asset management pool that allows
capital-providing entities to earn interest on their capital as well as capital-taking
entities to trade with a multiple of the capital they hold. Essentially, three actors
interact with a lending pool: Lenders, Borrowers as well as Liquidators.

Lender. Lenders supply assets (e.g., ETH, USDT) to the lending pool to earn
from the lending interest rate. The lending interest rate is paid by the borrowing
interest rate that leveraged yield farmers contribute for borrowing assets.

Borrower. Borrowers supply assets as collateral to the lending pool to then
open leveraged positions, while paying borrowing interests. To avoid liquidations,
borrowers can provide additional collateral or partially repay their position. In
addition, borrowers can supply the borrowed assets to liquidity providing pools
to earn trading fees, or stake LP tokens to liquidity mining pools to earn profits.

Liquidator. Leveraged positions are subject to liquidation when the debt
becomes unhealthy [25]. A liquidator can repay the debt and benefit from a
liquidation spread.

Price Oracle. The lending pool obtains the asset prices of various cryptocur-
rencies through external price oracles, which can then inform the smart contract
whether a position is liquidatable.

% Lend Liquidate
> Withdraw l /(-II"

Lenders Liquidators

W Supplied + Borrowed Assets

Supply Assets/Collateralize [

@ supply Assets/Colateralize |
D Open Leverage

Lending Pool J
Borrowers *“ Feed
APY Liquidity Mining Pools Liquidity Providing Pools
(AMMs) (AMMs)
Stake LP Tokens

Fig. 1. High-level system diagram of on-chain leverage platforms. The solid arrows (—)
represent the movement of cryptocurrencies, and the dash arrows (--») represent the
transmission of data.
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Table 1. Notation summary

Notations Definitions Notations Definitions
LY leverage platform Col1(P$) amount of collateral cryptocurrency
P = (C,B) debt position Borr;(P}) amount of borrowing cryptocurrency
zX 2 amount of cryptocurrency X || p§ ¢ price of B in the unit C at time ¢
. . how much credit a position gains when
DebtRatio;(Pi¢) debt rat B,C L. N
ebtRatio;(Pig) debt ratio (8.¢) collaterizing 1C and borrowing 1B
LM;(Pig) leverage multiplier m the initial leverage multiplier when opening a position
Loss't impermanent loss Return'c';,‘Mg the return fror'n unpc'rmancnt
loss and margin trading
Loss™R el los Returngf,g f:; return from margin trading without impermanent
Loss'@ liquidation loss LS liquidation spread, which determines the

rewards for a liquidator after repaying the debt

3.1 Formal Leverage Model

In the following, we formalize the leverage model.We also provide a table to
summarize the notations used in this paper (cf. Table 1).

We denote an on-chain leverage platform as LV = (C,B,P,F), where C
denotes the set of collateral cryptocurrencies; B denotes the set of debt cryp-
tocurrencies available for borrowing; P denotes the set of debt positions. A posi-
tion is denoted as P = (C,B), where C € C is a collateral cryptocurrency and
B € B is a debt cryptocurrency. F denotes the set of farming cryptocurrencies
that borrowers can receive after providing their borrowing cryptocurrencies into
farming pools. In practice, borrowers can (1) supply their borrowing cryptocur-
rencies to liquidity providing pools to earn trading fees, and (2) stake LP tokens
to liquidity mining pools to earn profits. For simplicity, in our model, we regard
steps (1) and (2) as block box and only consider borrowers’ final returns.

Each debt position P = (C,B) has a unique id, denoted as P;q. We define
Coll,(Pf;) and Borr,(P%) as the amount of collateral and borrowing cryptocur-
rencies of a position Pjq respectively in £V at time ¢ (in practice, time ¢ is
measured in block timestamp). In a leverage platform, the prices of cryptocur-
rencies are available through a price oracle (cf. Sect.2.2). We denote & amount
of cryptocurrency X with 2 X. We denote p~¢ as the price of B in the unit C at
time ¢, i.e., 1 B = pB~C C.

LV maintains the state of every position Pjq € P, and the state is quantified

by the debt ratio DebtRatio, (Pig) = 5228 - (8,C) - pf C - 100%, where (B,C)
is a fixed parameter set by the platform £V, which determines how much credit
P4 receives when collaterizing 1 C and borrowing 1 B. When DebtRatio;(Piq)
exceeds 100% due to, for example, the fluctuations of price p—°, Py becomes
available for liquidations.

A position P4 is over-collateralized, if Col1;(P$) > Borr:(PE) - p8~¢, and
under-collateralized otherwise. Debt positions in a leverage platform LV are
typically under-collateralized. We finally define the leverage multiplier to mea-

sure to what degree borrowers can expand their assets in a position Pjq, i.e.,

Borr: (PE)-p5~C+Coll, (P
LMy (Pg) = 2B oot Pa)
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3.2 AMM Model

AMM exchanges are to date the most prevalent markets where leverage borrow-
ers deposit borrowed assets to realize revenue through the collection of trading
fees. Hence, the borrowers’ returns and risks are fundamentally influenced by
the underlying AMM mechanisms. To ease our subsequent analysis, we proceed
to outline an AMM (cf. Sect. 2.3) model. We assume the existence of an AMM
A allowing the exchange between a pair of cryptocurrencies X and Y. z; and y;
denote the amount of X and Y respectively supplied in A at time ¢. x; and y;
satisfy a conservation function f(z,y:, k) = 0, where k is invariant over time.
The spot price of X with respect to Y in A at time ¢ is defined as p; = %/%'
We assume that at time ¢, a trader swaps dzx X to dy Y. Following the conservation
function, éx and 0y should satisfy f(xt,y:, k) =0 and f(z + 0z, y: — dy, k) = 0.

Liquidity providers (LPs) provide liquidity to A by depositing asset X and Y.
Due to the price movement between X and Y, x; and y; may change over time.
Hence, the amount of X and Y that a LP is allowed to redeem varies with respect
to pe, denoted by gf (p¢) and g (p).

Constant Product AMMs. For a constant product AMM A, the conservation
function is f(z¢, 44, k) = z¢ - yr — k = 0, which stipulates that the product of
x; and y; remains constant after an asset exchange and generally defines the
AMM’s bonding curve. The spot price in A is derived with p; = :%

Exchange. When a trader purchases Y from A with dx X, we can derive the

output amount of Y with dy = y; — ;;;'%;. Note that the realized exchange rate

g—g is lower than the spot price p;, as the executed price depends on the trade
volume along the AMM bonding curve. We refer to the difference between the
expected price (i.e., the spot price) and the actual exchange rate as slippage [36].

Liquidity Supply. Liquidity providers supply X and Y to a pool A while typ-
ically not changing the pool’s spot price. The ratio between the supplied X and

Y in a single deposit at time ¢ therefore follows ﬁ—z = ;’—:

4 Analytical Evaluation

While leverage is a speculative tool to increase the borrowers’ profit, this upside
increases the potential monetary risks as we outline in the following. The primary
risks we identify are (i) impermanent loss, (ii) arbitrage and (4i) liquidation.

4.1 Impermanent Loss Risk

As widely understood, the impermanent loss (IL) [6,9] is caused by diverging
asset prices within a liquidity pool (cf. Sect. 2.3). In the following, we investigate
the financial risks created through the IL. Notably, we find that the return from
margin trading through leverage may positively outweigh IL (cf. Fig. 3).

Generic Formulas for IL. We assume that at time ¢, the price p?o_’c in an

AMM A is pg, i.e., 1B = pyC. A borrower supplies g5 (po) C + g7, (po) B to A.
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Fig. 2. Resulting return from impermanent loss in constant product AMMs and margin
trading in on-chain leverage systems such as Alpha Homora. We find that the return
from margin trading through leverage may positively outweigh the impermanent loss
if the leverage multiplier is sufficiently high. For example, at a leverage of 7x, we find
that upon a price change of 0.64, the return given by margin trading is 94.43%, while
the impermanent loss amounts to —2.44%.

We further assume that, at time tg + A, the price changes to p and the borrower
removes all supplied tokens from A. Due to the price movement, the assets that
the borrower is allowed to redeem become gf | A(p) C and g7 . A(p)B. We can
then derive the borrower’s impermanent loss in A with Eq. 1.

Loss't — Jiota®) 1+ a)-p (1)

9%, (po) - 1+ g% (po) - p

IL in Constant Product AMMs. We assume that at time ¢y, a borrower
collateralizes ¢C in the leverage platform LV, sets the leverage multiplier as
m to borrow gf (po) C + g3, (po) B, and then provides the assets to a constant
product AMM A. Because A typically requires to receive a specific proportion
of supplied assets for returning LP tokens, g7 (po) and g7, (po) need to satisfy
950 (Po) mc
¢, (Po) 2po
We further assume that the percentage of the total liquidity that the borrower

owns in A is invariant over time. Then at time ty + A, the borrower can redeem
mc mc

g5, a(me,p)C = 5 V/PC and gg , A(mc,p)B = 5 B- Then according to

|L_2\/%_1.

T 45

= po. We can then derive that g¢ (mc, po) = %¢ and g} (me,po) =

Eq. 1, the borrower’s impermanent loss in A is Loss

Speculation Through Margin Trading. If we only consider the imperma-
nent loss in A, the borrower will always suffer from Loss'. However, a borrower
can choose to mitigate the IL though a margin trading as follows: (1) the bor-
rower collateralizes ¢C, and sets the leverage multiplier as m(m > 2) to borrow
(7";701)5 B; (2) the borrower then swaps (4 — 1);>B to (3 — 1)cC and supplies
5EC+ % B into A; (3) the borrower removes all assets in A and repays the
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(1). Collateralize 1 REN + Borrow 5 USD (6). Repay 5 USDT
LM = 6x g P g
v
M (2). Swap 2 USDT to 2 REN } - 5). Swap 0.8 REN 1o 1.25 USDT. }

L (3). Supply 3 REN + 3 USDT L (4). Remove 2.4 REN + 3.75 USDT

Uniswap .

Fig. 3. Example of positive return from margin trading and IL: We assume that, at
time ¢, the price between two tokens USDT and REN is p{® ™" = 1 in Uniswap [31],
which is a constant product AMM exchange. A borrower, namely Bob, (1) collateralizes
1 REN in AH and sets a 6x leverage multiplier to borrow 5 USDT. (2) Bob then swaps
2 USDT to 2 REN, and (3) supplies 3 USDT and 3 REN to Uniswap. If at time ¢ + A, the
price pUSDTHREN becomes 0.64, Bob then holds 2.4 REN and 3.75 USDT in Uniswap. Bob
suffers from an IL of % — 1= -2.44%. (4) Finally, Bob removes all assets
from Uniswap and (5) swaps 0.8 REN to 1.25 USDT (now Bob has 1.25 4 3.75 = 5 USDT),
and (6) repays the debt with 5 USDT. Bob’s final return is 2.4 — 0.8 — 1 = 0.6 REN, a

profit realized through leverage and margin trading.

debt at time t + A. We can then derive the borrower’s resulting return from
impermanent loss and margin trading with Eq. 2.

mc mc (m—1)c
VP L+ 5 mm P — P
Returny™® = 2 VP 2vPFo 2o —1=m( L2_Py, P 4
c Po Po Po

(2)

We notice that, because the borrower performs a margin trade to swap the
borrowed token B (i.e., shorts the debt B) to the collateralizing token C (i.e.,
longs the collateral C) before supplying assets into A, the decline of p may help
the borrower to increase the financial return. We can further derive the return

from margin trading without IL: Return'vF')g = Return"‘ Me _ LossCp =m(,/ L —
p 2/
L)+ —5 = . This return may outweigh the impermanent loss Losscp, when
the leverage m satisﬁes m > ;7?%17

In Fig. 2, we set the leveragpg oan position to be 2x, 4x and 7x. We then
visualize the return Retu rn,'sll‘f,"vIg of such position by capturing a hypothetical price

change p% in the range of 0 to 3. Under a leverage setting of 4 or 7, we observe
that the borrower may receive a positive return, if % < p% < 1. We provide an
example to show our results in practice (cf. Fig. 3).

4.2 Arbitrage Risk

A liquidity pool typically requires receiving a specific proportion of supplied
assets before returning the accounting LP tokens. The LP therefore may need
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to exchange parts of its assets prior to providing the liquidity. Because liquidity
provisions may involve significant liquidity amounts, the prior swap of assets
may cause a slippage which can be exploited by DeFi arbitrageurs [10,34,36].

Although arbitrage is regarded as benign for the whole DeFi ecosystem (cf.
Sect. 2.3), borrowers on a leverage platform can suffer from a loss when swap-
ping their assets in AMMSs, which may generate profitable opportunities for arbi-
trageurs. In the following, we formalize the financial risks originating through
arbitrage loss.

Generic Formulas for Arbitrage Loss. We assume that there are two con-

stant product AMMs A; and A, allowing exchanges between cryptocurrencies

B and C. At time ¢, A; and Ay have the same spot price p2~¢ = py(xs,y:). A

borrower swaps dx C to dyB in A;. We can then derive that the new spot price
Piry in Ay is pPF = prys(ze + 0,y — 0y + 0y).
We assume that the spot price in Ay does not change from time ¢ to t 4 4. If

p?_:%c < pf’_’c7 an arbitrageur can undertake the following actions to make profits:

(1) The arbitrageur first swaps dy2 B to dys - p2~°C in Ay; (2) The arbitrageur

_ B—C . . .
then swaps dys ~p$*c C to % B in A;. We can then derive the arbitrageur’s
t+6
B—C
final profits is Loss"R = oys - (% — 1) B, which also equals to the loss of the
t+6

borrower who supplies dz C to A;.

Arbitrage Risk in Constant Product AMMs. If A; and A, are both
constant product AMMs, then p?—¢ = - If the borrower performs a margin

trading, then 0z = (% — 1)c, and p} ¥ = yt;jzr/;;&y = 455+ We can derive the
arbitrage loss as Lossﬁf = dys - (%ﬁ“’ — 1) B= % B.

We find that the arbitrage loss LosscApR is proportional to dx, the amount of C
supplied by the borrower, and dy», the amount of B swapped by the arbitrageur.
Hence, to reduce the arbitrage loss Loss?pR7 the borrower can simply supply assets
to the liquidity pool through multiple (temporally distributed) transactions by
dividing the entire volume into smaller chunks suffering from less slippage. Note
that generating several transactions will involve additional blockchain fees.

4.3 Liquidation Risk

As discussed in Sect.3, a position is liquidatable when the debt becomes
unhealthy, i.e., DebtRatio; A(Pig) > 100%, due to a price change of p8~¢. In
the following, we explore what price changes may cause liquidations and associ-
ated financial risks in leverage systems.

We denote the leverage multiplier at time ¢ as m. To capture how the price
affects a position’s health, we compute the liquidation threshold price 5;® ¢ at
which the position is eligible for liquidation (cf. Eq. 3).

e 1
Dty (Bv C) ' (m - 1)

3)

DebtRatio;4 4 (Pig) < 1 <~



48 Z. Wang et al.

In Fig. 2, we choose (B,C) = 1.5 and show the liquidation thresholds of 75;> ¢
given a leverage 2x, 4x and 7x. We find that the threshold 5> is inversely
proportional to the chosen leverage. Moreover, the threshold 5,2 7¢ is unrelated
to the resulting return from impermanent loss and margin trading, i.e., even
if the return is positive under a leverage 4x or 7x, the position can still be
liquidatable when p i > &

In addition, according to Sect. 2.6, the financial loss from a liquidation for a
LQ _ Borr (P2)-LSc;-p2—°¢
tc°11,(P ) =(m-1)-

position Pjq at time ¢ can be derived as Loss

—C
LS-¢- p t— where LS € (0, 1] is a parameter for the liquidation spread set by the

leverage platform LV, with which a liquidator can receive profits by repaying
the debt?; ¢; € (0,1] is a parameter that the liquidator chooses to determine
what percentage of the debt shall be repaid.

4.4 Maximum Reasonable On-Chain Leverage

In the following, we investigate how to achieve a larger maximum on-chain lever-
age multiplier, by changing the system parameters of a DeFi leverage platform.
Note that the maximum leverage multiplier discussed in this section is limited
to the liquidation risk.

We consider two conditions regarding liquidations: (1) To avoid an instant
liquidation when opening a position, the debt ratio should be less than 1 after
setting the initial leverage, i.e., DebtRatio,(Piq) < 1 (cf. Eq. 3); (2) To incentivize
liquidators, a position should have sufficient collateral to repay for a liquidation,
ie., Loss"® < 1 (cf. Sect.4.3). By combining the two conditions, we derive the
maximum leverage multiplier my,.x in Eq. 4.

1

max — 1 4
e = (LS, (B, ) - max(Z5) )
“0

We notice that three parameters play herein an important role: (1) (B,C),
a parameter determining the credit that a position gains when collaterizing 1C
and borrowing 1B (cf. Sect.3.1). (2) LS, the liquidation spread on the system
(cf. Sect.4.3). (3) Lt the price change with respect to the initial price when
opening a position, Which varies over time. Both (B,C) and LS are configurable
system parameters, while Ifj’ indicates the price volatility.

Given (B, C), LS and max(;" ), we plot the distribution of mmax in Fig. 4. We

to

discuss three cases for choosing mp.x for stablecoins:

— Case 1: If max(p ) = 1.1, choosing max(LS, (B,C)) = 0.11, then mmax =

9.3x. In this case, we assume that the price change ;’T‘ always remains below
0

1.1. This is a reasonable assumption for stablecoins in practice. For instance,

2 For example, in Alpha Homora V2, if a liquidator repays all debt of a position, the
liquidator will receive 5% of debts as rewards, i.e., LS = 5%.
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Fig. 4. Distribution of the maximum leverage multiplier mmax over max(LS, (B,C)),
when max(2t) is fixed.
0

the prices of USDT and USDC range between 0.99 USD and 1.01 USD in 2020 [18,
24]. Moreover, the two system parameters (B, C) and LS satisfy the following
constraints: (1) (B,C) is less than 0.11, which is a practical number adopted
on AHv2 [3] when B and C are stablecoins. (2) The liquidation spread LS on
the system is at most 11%, which is larger than the LS on AHv2 (i.e., 5%).

— Case 2: If max(;’TtO) = 1.1, choosing max(LS, (B,C)) = 0.05, then muyax =
19.2x. In this case, (B,C) is equal to the LS on AHv2.

— Case 3: If max(lf’TtO) = 1.1, choosing max(LS, (B,C)) = 0.01, then mmax =
91.9x. In this case, LS decreases to 1%. However, as m,.x increases, liquida-
tors’ final rewards do not drop (cf. Sect. 4.3) and they will still be incentivized
to liquidate unhealthy positions in practice.

Furthermore, according to Fig. 4, to achieve a large leverage multiplier for
non-stablecoins (e.g., cryptocurrencies with a high price volatility ;’Tt > 1.1),
0
the leverage system needs to choose small (B,C) and LS.

5 Empirical Evaluation

This section outlines our empirical evaluation of user behavior and risks in Alpha
Homora, the biggest leverage platform to date.

Measurement Setup. We crawl the on-chain events of AH’s smart con-
tracts [14] (e.g., borrow, repay and liquidate events) and related blockchain
states (e.g., oracle prices, the supply interest rates of a lending pool on a spe-
cific block height, etc.) from Ethereum block 11,007,158 (7th October, 2020, the
inception of AH) to 13,010,057 (12th August, 2021). We use an Ethereum full
archive node, on an AMD Ryzen Threadripper 3990X with 64 cores, 256 GB of
RAM, and 2 x 8 TB NVMe SSD in Raid 0 configuration. Note that we capture
both AHv1 [2] and AHv2 [3], while AHv2 debuted at block 11,515,006 (24th
December, 2020).
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We observe a total of 5,110 borrow, 3,616 repay, and 122 liquidate events
in AHv2. In AHv1, we find 14,466 work (emitted during borrows and repays)
and 148 kill (liquidation) events. We normalize the prices of different tokens to
ETH by calling the smart contract of the platform’s on-chain price oracles at the
block when an event was triggered. Note that we do not rely on any third-party
API or external oracle for our data, and solely use the publicly available on-chain
data which eases the reproducibility of our results.

5.1 User Behavior in On-Chain Leverage Platforms

We proceed to empirically analyze the user behavior for borrowers and lenders
in Alpha Homora. We identify that 3,800 borrowers opened 10,430 leverage posi-
tions in AH (i.e., 7,081 in AHv1 and 3,349 in AHv2). In addition, because lending
on AH is basically the same as on other lending protocols [4,12,15], which have
been investigated thoroughly in related works [21,25], we focus on AH borrowers
in this section and analyze lenders in our full paper [32].

Borrower Leverage Multiplier. In AH, borrowers can collateralize their
assets and then open a leverage position by setting the leverage multiplier while
borrowing assets from the lending pool. For each leverage position, we crawl the
amount of collateralized and borrowed assets from the transfer and borrow
events in AH, at the time when opening the position. Given a position’ collat-
eral and debt, we can calculate the leverage multiplier.

] Stablecoins 04 [ Curve
0.3 Partial-Stablecoins 7] Balancer
1 Non-Stablecoins 0.3 Sushiswap
> > .
@ 02 ? [ Uniswap
5] i A 502
a WA . a
01 g A 0.1
/U |\ \\
00 B 0.0
0 2 4 6 8 10 10
Leverage Multiplier Leverage Multiplier

Fig.5. Distribution of leverage over Fig. 6. Platform leverage distribution.
tokens. Stablecoins attract higher lever- The stablecoin platform Curve appears
age settings. Partial-stablecoin means to attract higher leverage settings.

that borrowers collateralize stable and

non-stable coins simultaneously.

We find that 65% of the 3,349 borrower positions in AHv2 select a leverage
multiplier smaller than 3.0, the average leverage multiplier is 3.07x. In AHv1,
the maximum and average leverage multiplier of the 7,071 positions are 3x and
2.01x, respectively.

Contrary to AHv1, which only supports borrowing ETH, in AHv2, a borrower
can collateralize (resp. borrow) 43 (resp. 12) tokens and then provide liquidity
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to Uniswap, Sushiswap, Curve, and Balancer. We plot the leverages’ distribution
when borrowers collateralize stable and non-stable coins (cf. Fig.5) and when
borrowers provide liquidity to the four platforms (cf. Fig.6). We observe that
borrowers in AHv2 tend to choose a high leverage multiplier while collateralizing
stablecoins or providing liquidity to Curve. This can be explained by the fact
that stablecoin pools (which Curve specializes in) are less volatile and hence
less likely to experience a liquidation event. We find that stablecoin pools are
being used with an average leverage of 5.39x, which is 344.70% higher than the
average leverage on non-stablecoin pools.

A borrower can choose to dynamically adjust the leverage of a position, by
adding or removing collateral. In Fig.7 we visualize the distribution of 2,581
closed positions in AHv2 over their adjustment frequency and initial leverage
(upon position creation). We find that 348 positions are adjusted more than once
and the higher the initial leverage, the less likely this position will be adjusted.
Moreover, we observe that 67.92% (i.e., 1,753) of the positions are open for less
than two weeks (cf. Fig. 8).

1,210023 7 6 2 2 0 1 1 [1,2)BER156 82 72 53 27 17 33 12 7 1
800

[2,3)EEk 41 24 8 4 2 1 1 0 2 12,3)1867 3016 9 6 3 4 0 0 0 500
$B,4054 8 1 0 0 0 0 0 00 600 $3.49497 12 001 20 10 200
04,5966 11 2 0 0 1 0 0 0 0 0[4,5-5116 5 3 0 1 1 2 1 0 0
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Fig. 7. Debt position distribution over Fig. 8. Debt position distribution over
leverage multiplier and adjustment fre- leverage multiplier and duration.
quency.

Borrower APY. In the following, we analytically derive the borrower interest
rates on closed debt positions with only 1 adjustment, i.e. which went through
the entire cycle of opening a position with collateral, without modifying the
leverage intermediately, and ultimately closing the debt. By focusing on closed
positions we achieve a holistic image of the borrowers’ return and behavior over
the entire life-cycle of a leveraged debt position.

To calculate the APY of a borrower, we crawl the initial collateral deposit
and the collateral return amounts, as well as the position opening and closure
timestamps. Given this data, we can infer the financial return or APY of a
closed position. Note that we convert all assets to USD (cf. Fig. 9) at the position
opening and closure moments. Beware that we do ignore the additional potential
revenue from Alpha token yield farming, as these are custom temporary protocol
participation incentives [32].

Figure9 visualizes the relationship between the BorrowAPY and the leverage
multipliers. The average APY of a maximum of 1-day long positions is —585.70%.
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Fig. 9. Distribution of debt positions over BorrowAPY and leverage multipliers. The
marker size in the figure is proportional position’s collateral value. The linear regression
lines are for the APY of the positions with the same duration (i.e., the same color).
We find that any leverage setting is prone to negative and positive APY.

From the regression lines, we infer that the longer a position is open (i.e., more
than 7 days), the more likely the borrower achieves an APY of 0%. By separating
the DeFi platforms to which the borrowers supply borrowed assets, we observe
that BorrowAPY varies across platforms [32].

Notably, we find that for 72.35% of the closed positions, the borrowers achieve
a negative APY, i.e., lose assets despite leverage. Therefore, we can conclude
that, in practice, platform subsidies (i.e., governance token rewards such as Alpha
tokens) are an essential incentive mechanism for borrowers using leverage.

5.2 Empirical Analysis of Risks

In the following, we provide an empirical analysis of three risks for borrowers in
Alpha Homora, and compare our results with Sect. 4.

Impermanent Loss. We investigate the AH borrowers’ IL when supplying
assets into constant product AMMs. We find that 1,139 closed positions in AHv2
interact with Sushi- or Uniswap. For each position, we crawl the spot price in
the liquidity pool when a borrower deposits and withdraws assets. We observe
that all 1,139 positions suffer from impermanent loss, with a price change p%
from 0.63 to 1.62. Interestingly, we find that if the borrowers perform a margin
trade (cf. Sect.4.1) before supplying assets into the liquidity, 44.95% (i.e., 512)

positions can benefit from a positive return, which compensates IL (cf. Fig. 10).

Arbitrage Loss. We find that borrowers suffer an arbitrage loss in 149 AH
positions, when swapping and supplying assets in Uni- or Sushiswap. To further
investigate the arbitrage loss, we crawl the cryptocurrency X’s amount z; in the
pool, the borrowers’ collateral ¢, and the arbitrageur’s swapped assets dys. We
find that for the positions in AHv2 suffering from arbitrage losses, the average
leverage multiplier is 5.25+1.95%, and the average collateral is 2.03+4.21M USD,
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Fig. 10. Distribution of IL for AHv2 positions interacting with Uni- and Sushiswap.
The continuous lines show our analytical results, while the points represent the empir-
ical measurements. Note that the difference between our results can be explained by
the fact our analytical results assume a constant leverage factor.

which are 61.04% and 21.06% higher than the average leverage multiplier and
collateral in AHv2, respectively. Interestingly, we find that the position with id
61 suffered from the most important arbitrage loss, i.e., 81.67% (1.66M USD) of
the collateral was lost due to the arbitrage [32].

To show an arbitrageur’s expected return, given a borrower’s collateral and

leverage, we visualize the relationship between L(;SS?"R and < in Fig. 11. We find
that arbitrageurs achieve less profits than our analytical results when the lever-
age multiplier is large (i.e., m > 4). This is probably because the borrowers do
not perform a margin trading to swap (% — 1)cX (cf. Sect.4.2).

Liquidation Loss. We identify 50 unique liquidators performing 270 liquida-
tions in AH to repay 4,352.52 ETH of debt in total. To show the liquidation loss,
we crawl a position’s collateral before and after the liquidation. Figure 12 visual-
izes the relationship between liquidation loss and the initial leverage multiplier.
We find that the average leverage for the 122 liquidated positions in AHv2 is
2.01x, and the maximal liquidation loss is 10.63%. We observe that, due to the
change of py, 73.77% positions suffer from a higher liquidation loss than the
analytical results (cf. Sect.4.3) when LS = 5%, and ¢; = 1 (i.e., the liquidator
repays all the debt).

6 Related Work

In this section, we proceed to discuss existing work related to this paper.

Liquidations in DeFi. A growing body of literature has studied liquidations on
borrowing and lending platforms in DeFi. Qin et al. [25] measure various risks
that liquidation participants are exposed to on four major Ethereum lending
pools (i.e., MakerDAO [16], Aave [4], Compound [15], and dYdX [12]), and
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quantify the instabilities of existing lending protocols. Darlin et al. [11] analyze
the optimal bidding strategies for auction liquidations.

12.0%

—— Analytical results when m=7
—— Analytical results when m =4
Empirical results when m <4

e Empirical results when m >4
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Fig. 11. Distribution of arbitrage loss for Fig. 12. Distribution of liquidation loss
149 debt positions in AH. Arbitrageurs for 122 debt positions in AHv2. We
achieve fewer profits than our analytical observe that liquidations on Balancer
results when m > 4. cause higher loss (i.e., 8.51% on average).

Blockchain Extractable Value. Eskandir et al. [13] are the first to propose a
front-running taxonomy for permissionless blockchains. Daian et al. [10] follow up
by introducing the concept of Miner Extractable Value (MEV) on blockchains.
Zhou et al. [36] formalize sandwich attacks on AMM exchanges, which involve
front- and back-running victim transactions on DEXs. Qin et al. [26] quantify
how much value was sourced from blockchain extractable value (BEV), such as
sandwich attacks, liquidations, and decentralized exchange arbitrage [35].

7 Conclusion

In this work, we are to the best of our knowledge the first to provide a deep dive
into under-collateralized DeF1i lending protocols. While under-collateralization
reduces the flexibility of the borrowed funds, with up to 8x leverage multi-
pliers, such designs grant speculators more powerful tools to indulge in riskier
on-chain trading. We qualitatively and quantitatively analyze the risks caused
by impermanent loss, arbitrage, and liquidation. We find that 72.35% of the
closed debt positions suffer from a negative APY, when ignoring the rewards of
Alpha token in AH. We also find empirical evidence that stablecoin leverage is on
average 344.70% higher than non-stable coin leverage. We finally show that with
reasonable system settings, an on-chain leverage system can achieve a leverage
multiplier of up to 91.9x.
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Abstract. We introduce an intriguing new type of argument systems
with the additional property of being explainable. Intuitively by explain-
able, we mean that given any argument under a statement, and any wit-
ness, we can produce the random coins for which the Prove algorithm
outputs the same bits of the argument.

This work aims at introducing the foundations for the interactive as
well as the non-interactive setting. We show how to build explainable
arguments from witness encryption and indistinguishability obfuscation.
Finally, we show applications of explainable arguments. Notably we con-
struct deniable chosen-ciphertext secure encryption. Previous deniable
encryption scheme achieved only chosen plaintext security.

1 Introduction

Deniability, first introduced by Dolev, Dwork, and Naor [30], is a notion that
received a considerable amount of attention because of its application to authen-
tication protocols. This property allows the user to argue against a third party
that it did not take part in a protocol execution. The usual argument made by
the user to the third party is that the server could simulate a valid communica-
tion transcript without actually interacting with the user.

A variant of deniability was considered in the case of encryption schemes
[15,16,63], where a public Expl algorithm allows anyone to open any ciphertext
to any message without the secret key. Since we can publicly open ciphertexts,
the random coins cannot serve as proof that a particular message is encrypted.

A similar concept was recently introduced to ring signatures [58] and called
unclaimability. The property states that no one can claim to be the signer of a
particular ring signature o. The premise is similar. There exists an Expl algorithm
that allows any of the ring members to generate random coins that can be used
to receive the same o.

Deniability and unclaimability are related notions. In the former, we consider
the server malicious because it tries to gain an undeniable proof of an interac-
tion. In the latter, the malicious party is a different user that tries to make it
impossible for honest users to explain an interaction/signature. Interestingly, the
deniability and unclaimability definitions studied in the literature only consider
scenarios where the party producing a transcript/signature/ciphertext is honest,
but may eventually become corrupt in the future.
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1.1 Contribution

We introduce a new property for argument systems called explainability.
Explainability informally resembles deniability and unclaimability. We consider
interactive and non-interactive variants of such systems. We show that achiev-
ing strong explainability is hard and requires very strong primitives like witness
encryption (WE) and indistinguishability obfuscation (i0). Our contribution can
be summarized as follows.

New Definitions. We introduce a new property for argument systems that
we call explainability, i.e., the ability for anyone with a valid witness wit to
compute the random coins coins that “explain” a given argument arg. By
“explain,” we mean that the witness and coins result in the same argument string
arg = Prove(stmt, wit; coins) or the same transcript of an interaction, given the
same instance of the verifier. Thus if one can explain an argument for all wit-
nesses and all coins, then such argument/transcript cannot serve as proof that a
particular witness was used. We accounted for certain subtle differences between
interactive and non-interactive arguments. In both cases, we consider malicious
prover explainability, where a prover tries to create a proof that other provers
cannot explain with a different but valid witness. In this case, we require the
protocol to be unique, in the sense that it is infeasible for a malicious prover to
produce two different arguments (or transcripts) that the verifier accepts given
the same statement and random coins. For the interactive case, we also consider
a malicious verifier (similar to deniability) that can abort the protocol execution
or send corrupt messages to make it impossible for provers with a different wit-
ness to explain the current interaction. Since, in the non-interactive case, there
is no interaction with a verifier, we consider a scenario where the common refer-
ence string (if used) is maliciously generated. We refer to this case as malicious
setup explainability. Additionally, we call a (non-)interactive argument system
fully explainable, when it is explainable even if both the setup/verifier and the
prover are malicious.

Implications. To study the power of explainable arguments we prove several
interesting implications of explainable arguments.

— We show that when an argument system is malicious verifier explainable, then
it is also witness indistinguishable.

— We show that non-interactive malicious prover explainable arguments and
one-way functions imply witness encryption (WE). This result serves us as
evidence that constructing such arguments is difficult and requires strong
cryptographic primitives.

Constructions of Interactive Explainable Arguments. We introduce new
properties for witness encryption that we call robustness and plaintext awareness.
Informally, robustness ensures that decryption is independent of which witness is
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used. In other words, there do not exist two valid witnesses for which a ciphertext
decrypts to a different message (or L). Plaintext awareness ensures that an
encrypter must know the plaintext it encrypted. We then show how to leverage
robust witness encryption to construct interactive explainable arguments. The
resulting protocol is round-optimal, predictable, and can be instantiated to yield
an optimally laconic argument. Given the witness encryption is plaintext aware,
we can show that the protocol is zero-knowledge. Finally, assuming the witness
encryption is extractably secure, we can show that our protocol is a proof of
knowledge.

Constructions of Non-interactive Explainable Arguments. We show how
to construct malicious setup and malicious prover explainable arguments from
indistinguishability obfuscation. While malicious prover explainable arguments
can trivially be build using techniques from Sahai and Waters [63], the case of
malicious setup explainable arguments is more involved and requires us to use
dual-mode witness indistinguishable proofs. Furthermore, we show how to build
fully explainable arguments, additionally assuming NIZK.

Why Study Explainable Arguments? Argument systems are fundamental
primitives in cryptography. While some privacy properties like zero-knowledge
already give a strong form of deniability, our notion of explainability is much
stronger as it considers the extreme case where the provers’ coins are leaked or are
chosen maliciously. For example, using our explainable arguments, we can show
explainable interactive anonymous authentication schemes, where anonymity is
defined similarly as in ring-signature schemes (see full paper [45]). Notably, we
can construct CCA-1 secure encryption with deniability as defined by Sahai and
Waters [63], from CPA secure deniable encryption and our explainable argu-
ments assuming random oracles. Our deniable encryption is a variant of the
Naor-Yung transform [56], but only rely on witness indistinguishability instead
of zero-knowledge which allows us to instantiate this transformation using our
explainable arguments.

Malicious Verifier/Setup Explainability. We consider adversaries that are sub-
stantially more powerful than what is usually studied in the literature, e.g., in
deniable authentication schemes or ring-signatures. In particular, in our case, the
user can deny an argument even when the adversary asks to reveal the user’s
random coins used to produce the argument. Immediate real-world examples
of such powerful adversaries are rogue nation-state actors that might have the
right to confiscate a user’s hardware and apply effectual forensics techniques
to obtain the random seeds as evidence material against the user. We believe
that the threat posed by such potent adversaries may prevent the use of e.g.,
ring-signatures by whistleblowers, as the anonymity notions provided might be
insufficient.

Malicious Prover Ezplainability. The main application we envision for malicious
prover explainability is internet voting. An essential part of a sound and fair
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voting scheme is to prevent the selling of votes by malicious voters. We note
that the “selling votes” issue isn’t limited to actual bribery but, perhaps more
critically, addresses the issue of forcing eligible voters to vote on a particular
candidate. In this case, an authoritarian forces others to deliver evidence that
they voted on a particular option or participate in a specific digital event. An
authoritarian here may be an abusive family member, corrupt supervisor, or
employer. Our strong unclaimability notion is essential to handle such drastic
cases, mainly because users might be coerced or bribed to use specific coins in
the protocol.

1.2 Related Work

Explainability of the verifier was used by Bitansky and Choudhuri [8] as a step
in proving the existence of deterministic-prover zero-knowledge proofs. In their
definition they used the fact that the choices of a verifier can be “explained” by
outputting random coins that will lead to the same behaviour. This later can
be used to transform the system to be secure even against a malicious verifier.
In contrary, we consider the explainability of the prover. While arguments with
our type of explainability have not been studied before, there exists some related
concepts. Here we give an overview of the related literature.

Deniable Authentication. Dolev, Dwork, and Naor [30] first introduced the con-
cept of deniability. The first formal definition is due to Dwork, Naor, and Sahai
[32]. Deniability was studied in numerous works [25,48,55] in the context of
authentication protocols. The concept was later generalized to authenticated key
exchange and was first formally defined by Di Raimondo, and Genaro [26]. Since
then deniable key exchange protocols got much attention from the community
[11,24,27,28,46,49,51,65-69]. In such protocols, deniability is informally defined
as a party’s ability to simulate the transcript of interaction without actually com-
municating with another party. Since each party can generate a transcript itself,
the transcript cannot be used as proof to a third party that the interaction
took place. At a high level, deniability is very similar to zero-knowledge, but it
is important to mention that Pass [59] showed some subtle differences between
both notions.

Deniable Encryption. Deniable encryption was first introduced by Canetti,
Dwork, Naor, and Ostrovsky [15]. Here we deal with a “post” compromise situ-
ation, where an honest encrypter may be forced to “open” a ciphertext. In other
words, given a ciphertext, it should be possible to show a message and ran-
domness that result in the given ciphertext. Deniable encryption was intensively
studied [1,7,20-22,41,57,63]. Very recently, Canetti, Park, and Poburinnaya [16]
generalize deniable encryption to the case where multiple parties are compro-
mised and show constructions also assuming indistinguishability obfuscation.

Ring Signatures. Early forms of deniability were the main motivation for the
work of Rivest, Shamir, and Tauman [61], which introduces the concept of ring
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signatures. This early concept took into account a relaxed form of deniabil-
ity where only the secret key of a user may leak. Very recently [58] extended
ring signatures with additional deniability properties. For example, they show
a signer deniable ring signature where any signer may generate random coins
that, together with its secret key, will result in the given signature. However,
they require to assume the prover is honest at the moment of signature genera-
tion. In our argument setting, we do not make such assumptions.

We are the first to study arguments with unclaimability and deniability prop-
erties that allow denying executing a protocol even when the prover is forced
to reveal all its random coins or where the prover chooses its coins maliciously.
Previous works mostly address a post-compromise setting, whereas some of our
explainability notions take into account malicious prover. We believe that our
primitives may find applications in protocols as a means of providing consistency
checks or anonymous authentication of the votes. For example, the protocols
from [17,62] rely on a trusted party to verify a voter’s signature. That party
knows the user’s vote. Using our explainable arguments, we can build (see full
paper) a simple anonymous authentication protocol without degrading receipt
freeness of the voting scheme, and in effect, remove the trust assumption in terms
of privacy.

Receipt Freeness and Coertion Resistance in Voting Schemes. Some of our defi-
nitions and potential application are tightly connected to voting schemes. In par-
ticular, our definition of malicious prover explainability poses the same require-
ments, at a high level, for an argument system as receipt freeness or coercion
resistance in voting schemes [6,47,54,64]. Since we focus on a single primitive,
our definitions are much simpler in comparison to complex voting systems. For
example, the definition from [17] involves numerous oracles, and defines a set of
parties, and assumes trusted parties. Our definition for malicious prover explain-
ability is simple and says that it is infeasible to produce two different arguments
under the same statement that verify incorrectly.

Outline of the Paper. In Sect.3 we give definitions of explainable argument
systems. In Sect. 4 we construct non-interactive explainable arguments. In Sect. 5
we introduce robust witness encryption, and apply it to build interactive explain-
able arguments. Finally, in Sect. 6, we show how to apply explainable arguments
to construct deniable CCA-secure encryption. In the full paper [45], we recall all
definitions for the primitives in the preliminaries section, show an explainable
anonymous authentication protocol, and all security proofs.

2 Preliminaries

Notation. We denote execution of an algorithm Alg on input z as a «— Alg(z)
were the output is assigned to a. Unless said otherwise, we will assume that algo-
rithms are probabilistic and choose some random coins internally. In some cases,
however, we will write Alg(.;r) to denote that Alg proceeds deterministically on
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input a seed r € {0,1}* for some integer s. We denote an execution of a protocol
between parties V' and P, by (Prove(.) = Verify(.) — x) = trans, where x is the
output of Verify after completion of the protocol, and trans is the transcript of
the protocol. A transcript trans contains all messages send between Prove and
Verify and the input of Verify. We write View(Prove(.) = Verify(.)) to denote the
view of Verify. The view contains the transcript, all input to Verify including its
random coins and its internal state. W say that a function negl : N — RT is
negligible if for every constant ¢ > 0 there exists a integer N, € N such that for
all A > N, we have negl(\) < A7°.

Standard Definitions. We use a number of standard cryptographic tools through-
out the paper, including: pseudorandom generators and Goldreich-Levin hard-
core bits [39], existential unforgeable and unique signature schemes [37,42],
zero-knowledge (ZK) and witness-indistinguishable (WI) argument systems,
non-interactive ZK arguments from non-falsifiable assumptions [35], dual-mode
witness-indistinguishable proofs [43], CCA1 secure and publicly deniable encryp-
tion [63], witness encryption [36] and extractable witness encryption [40],
indistinguishability obfuscation [3], and punctured pseudorandom functions
[13,14,50).

3 Explainable Arguments

In this section, we introduce the security notions for explainable arguments.

3.1 Interactive Explainable Arguments

In an interactive argument system, the prover uses a witness wit for statement
stmt to convince the verifier that the statement is true. The communication
between the prover and the verifier creates a transcript trans that contains all
the exchanged messages. An interactive explainable argument system allows a
prover with a different witness wit* to generate random coins coins for which
Prove(stmt, wit"; coins) interacting with the same instance of the verifier (i.e.,
the verifier uses the same random coins) creates the same transcript trans. In
other words, this means that any prover with a valid witness can provide random
coins that would explain the interaction in trans. More formally.

Definition 1 (Interactive Explainable Arguments). An interactive argu-
ment system IIr = (Prove, Verify) for language Lr is an interactive explainable
argument system if there exists an additional Expl algorithm:

— Expl(stmt, wit, trans): takes as input a statement stmt, any valid witness wit
(i.e. R(stmt,wit) = 1) and transcript trans, and outputs coins € Coinp,gye
(i.e. coins that are in the space of the randomness used in Prove),

which satisfies the correctness definition below.
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Definition 2 (Correctness). For all security parameter X, for all statements
stmt € L, for all wit, wit* such that R(stmt, wit) = R(stmt, wit*) = 1, we have

(Verify(stmt) = Prove(stmt, wit)) =
(Verify'(stmt; trans) = Prove(stmt, wit*; coinsg)) = trans,

where coinsg « Expl(stmt, wit*, trans) and coinsgp € Coinpoe and Verify' sends
its messages as in trans as long as Prove answers as is trans. If the output of
Prove do not match trans, then Verify' aborts and outputs L.

Remark 1. Note that a naive way to implement the Expl algorithm would be
to set coinsg and make the Prove algorithm to “replay” the messages. How-
ever, this is obviously a scheme that would not be desirable, since an adversary
could easily distinguish such coins from honest ones. Therefore we require that
coinsg € Coinp,e to ensure that coinsg can be given as input to an honest
Prove algorithm.

The above definition constitutes a correctness definition for explainable argu-
ments and assumes that all parties are honest. Informally, we require that given a
witness and a transcript of an interaction between a verifier and a prover (with a
possibly different witness), Expl generates coins such that a honest prover returns
the same messages given that the verifier send its messages as in trans.

Below we describe explainability of a malicious verifier. Roughly speaking,
this property says that a transcript produced during an execution with a mali-
cious verifier, and a honest prover P, should be explainable. The goal of a verifier,
is to send such messages to the prover P, that P sends such responses that no
other prover (with a different witness) would send. If the adversary succeeds
then the transcript (possibly with P’s random coins) can be used as a proof to
a third party, that P indeed took part in the communication. Remind that P
may be forced to reveal its random coins after completing the protocol.

Definition 3 (Malicious Verifier Explainability). For a security parameter
A, we define the advantage Ava'\LA‘VEXPI()\) of an adversary A = (A, Aa, As3) as

1 — Pr[(As(stmt; coins 4) = Prove(stmt, wit*; coinsp)) = trans], where

(stmt, wit, wit™, st) « A3 (A),
trans = {(coins 4 < Ay (stmt;st) = Prove(stmt, wit)),
coinsp « Expl(stmt, wit*, trans),
wit # wit®, R(stmt,wit) = R(stmt, wit*) = 1,

where the probability is taken over the random coins of Prove. Furthermore, As
sends the same messages to Prove as in trans as long as the responses from the
prover are as in trans.

We say that an interactive argument system is malicious verifier explainable
if for all adversaries A = (A1, A2, As) such that Ay, As, A3 are PPT algorithms
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there exists a negligible function negl(.) such that Advv'\fltVEXpl()\) < negl(\). We
say that the argument system is malicious verifier statistically explainable if the
above holds for an unbounded adversary A.

Let us now consider a scenario where proving ownership of an argument is
beneficial to the prover, but at the same time, the system requires the proof to be
explainable. A malicious prover tries to prove the statement in a way that makes
it impossible for others to “claim” the generated proof. For this property, it is
easy to imagine a malicious prover that sends such messages to the verifier, that
the verifier accepts, and no other honest prover would ever send such messages.
In practice, we may imagine that an adversary runs a different implementation
of the prover, for which the distribution of the sent messages deviate from the
distribution of the original implementation. Later to “claim” the transcript that
adversary may prove that the transcript is indeed the result of the different
algorithm, not the honest one. Note that such a “claim” is sound if an honest
prover would never produce such messages. To prevent such attacks, we require
that there is only one (computationally feasible to find) valid way a prover can
respond to the messages from an honest verifier.

Definition 4 (Uniqueness/Malicious Prover Explainability). We define
the advantage AdvﬂPEXpl()\) of an adversary A = (A1, Az, A3) as

1 Pr (1 = Verify(stmt; coinsy ) = As(st;) — sta)
# (1 = Verify(stmt; coinsy ) = Asz(stz)) |’
where sty,stmt «— A;(\) and the probability is taken over the coins coinsy .

We say that an interactive argument system is malicious prover explainable
if for all PPT adversaries A there exists a negligible function negl(.) such that
AdePEXpl(A) < negl(\). We say that the system is malicious prover statistically
explainable if the above holds for an unbounded A.

Theorem 1. If (Prove, Verify, Expl) is a malicious verifier (statistical) explain-
able argument system then it is also (statistical) witness indistinguishable.

Definition 5. We say that an interactive argument system is fully explainable
if it is malicious prover explainable and malicious verifier explainable.

3.2 Non-interactive Explainable Arguments

Here we present definitions for non-interactive explainable arguments. Similar
to the interactive case, we begin by defining what it means that a system is
explainable.

Definition 6 (Non-Interactive Explainable Arguments). A non-inter-
active argument system Iz = (Setup,Prove, Verify) for language Lr is a
non-interactive explainable argument system if there exists an additional Expl
algorithm:
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— Expl(crs, stmt, wit, arg) : takes as input a statement stmt, any valid witness wit
and an argument arg, and outputs random coins coins

which satisfies the correctness definition below.

Definition 7 (Correctness). For all security parameter X\, for all statements
stmt € Lg, for all wit,wit* such that R(stmt,wit) = R(stmt,wit*) = 1, for all
random coins coinsp € Coinp,gve, we have

Prove(crs, stmt, wit; coinsp) = Prove(crs, stmt, wit™; coinsg)

where coinsg « Expl(crs,stmt, wit*, arg), coinsg € Coinpoe and crs «—
Setup(A).

Now we define malicious setup explainability. Note that a malicious verifier
cannot influence the explainability of an argument because there is no interaction
with the prover. Hence, the malicious verifier from the interactive setting is
replaced with an untrusted setup. An adversary might generate parameters that
result in the Expl algorithm to output coins yielding a different argument or
even failing on certain witnesses. In some sense, we can think of the adversary
as wanting to subvert the common reference string against deniability of certain
“targeted” witnesses.

Definition 8 (Malicious Setup Explainability). We define the advantage
Ade‘SEXPI(/\) of an adversary A by the following probability

(stmt, wit, wit™, crs) «— A(N)
wit # wit*

R(stmt, wit) = R(stmt, wit*) = 1
arg < Prove(crs, stmt, wit);
coinsp « Expl(crs, stmt, wit*, arg);
arg* « Prove(crs, stmt, wit*; coinsp)

1—Pr|arg* =arg:

where the probability is taken over the random coins of the prover Prove. We say
that a non-interactive argument is malicious setup explainable if for all PPT
adversaries A there exists a negligible function negl(.) such that Advy‘SEXpl(x\) <
negl(\). We say the that a non-interactive argument is malicious setup statis-
tically explainable if the above holds for an unbounded adversary A. Moreover,
we say that a non-interactive argument is perfectly malicious setup explainable
. MSExpl _

if Adv > () = 0.

Theorem 2. If there exists a malicious setup explainable non-interactive argu-
ment, then there exists a two-move witness-indistinguishable argument, where the
verifier’s message is reusable. In other words, given a malicious setup explainable
non-interactive argument, we can build a private-coin ZAP.

Malicious prover explainability is defined similarly as in the case of inter-
active arguments. For the non-interactive setting, it is simpler to formalize the
definition, as we simply require the adversary to return two arguments that
verify correctly, but their canonical representation is different.
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Definition 9 (Uniqueness/Malicious Prover Explainability). We define
the advantage of an adversary A against malicious prover explainability of
ExArg as AdeIPEXp'()\) = Prlarg; # arg,] where crs — Setup(A\) and
(stmt, arg;, argy) < A(XN) are such that Verify(crs, stmt, arg,) = Verify(crs, stmt,
arg,), and the probability is over the random coins of Setup. We say that a non-
interactive argument is malicious prover explainable if for all PPT adversaries
A there exists a negligible function negl(.) such that Advi\ﬂpEXpl()\) < negl()\). We
say that a non-interactive argument is malicious prover statistically explainable
if the above holds for an unbounded adversary A. Moreover, we say that an
argument system is a perfectly malicious prover explainable if AdvﬁPEXpl(A) =0.

For full explainability, we combine both malicious prover and malicious ver-
ifier explainability.

Definition 10 (Full Explainability). We define the advantage of an adver-
sary A against full explainability of ExArg by the following probability

Adv;EXpl()\) = Prlarg, # arg,]

where (stmt,crs,arg,,arg,) «— A(X) is such that Verify(crs, stmt, arg;) =
Verify(crs, stmt, arg,). We say that a non-interactive argument is full explain-
able if for all PPT adversaries A, there exists a negligible function negl(.) such
that Advi‘EXpl()\) < negl(A). We say that the non-interactive argument is full sta-
tistically explainable if the above holds for an unbound adversary A. Moreover,
we say that an argument system is perfectly full explainable if AdeEXpl()\) =0.

Theorem 3. If ExArg is a fully explainable argument, then ExArg is a malicious
setup and malicious prover explainable argument.

Theorem 4. Given that one-way functions and malicious prover selectively
sound non-interactive (resp. two-move) arguments for NP exist, then there exists
a witness encryption scheme for NP.

4 Non-interactive Explainable Arguments

In this section, we show that it is possible to construct malicious setup explain-
able non-interactive argument systems from falsifiable assumptions. We also
show a fully explainable argument assuming non-interactive zero-knowledge. As
both schemes are nearly identical and differ only in several lines, we will denote
the lines or specific algorithms with o for the malicious setup explainable argu-
ment, and with T, we denote the code specific for the fully explainable argument.

Scheme 1 (Non-interactive Explainable Argument). Let V = o for the
malicious setup explainable argument, and V = t for the fully explainable argu-
ment. Let DMW!I be a dual-mode proof, NIWI be a non-interactive witness indis-
tinguishable proof, Com be an equivocal commitment scheme, Sig be a unique
signature scheme, and PRF be a punctured pseudorandom function. We con-
struct the non-interactive argument system ExArgv = (Setup, Prove, Verify) as
follows.
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Circuit for ProgProvel and ProgProve% Circuit for ProgVerify
Hardwired: pp, crspmwi, K Hardwired: K

Input: (stmt, wit) Input: (stmt)

1°: if DMWI1.Verify(crspmwi, stmt, wit) = 0 1: sk « PRF.Eval(K,stmt)
1": if R(stmt, wit) = 0 2:  vks < Sig.Setup(sks)

9 return . 3: return vk,

3: else

4: sks «— PRF.Eval(K, stmt)

5: arg «— Sig.Sign(sks, stmt)

6: return arg

Fig. 1.

Circuits for ProgProvel, ProgProve% and ProgVerify. Note that ProgProve differ

only in line 1.

Setup(A, Lg):

1.

3°.

3f.

Choose K «— PRF.Setup()) and crspmwi — DMWI.Setup(A, modeSound;
coinsg), where coinsg are random coins.

. Oprove — Obf(\, ProgProveg [pp, crspmwi, K; coinsp), where ProgProvey,

is given by Fig. 1 and coinsp are random coins.
Define statement stmtg,,,,, as

Jie[2], K, coinsp OProve < Obf(A, ProgProve’ [pp, crspmwi, K]; coinsp)
Tmode,coinss CrspMwi < DMWI.Setup(A, mode; coinsg) A mode = modeW! |

Define statement stmt;etup as

{3 K coinsp Oprove < Obf(A, ProgProve% [pp, crspmwi, K; coinsp) }.

Set Witserup = (1, K, coinsp).

. m < NIWI.Prove(stmtg.,, o, Witsetup)-
. m «— NIZK.Prove(stmtl . witsetup)-

Compute Overity «—  Obf(\, ProgVerify[K]) and output crs =
(OPI’OV67 OVerifya pp, etd7 Crspmwi, 7T)'

Prove(crs, stmt, wit; 7):

1°.
1t.
20,
2f,
3°.

3.
4.

Set stmtg,,,,, as in the setup algorithm.

Set stmtgetup as in the setup algorithm.

If NIWLVerify(stmtg,,,, 7) = 0 return L.

If NIZK.Verify(stmtgetupﬂr) = 0 return L.

Run wit’ — DMWI.Prove(crspmwi, stmt, wit; 1) and
arg < Oprove(stmt, wit').

Run arg < Opyove(stmt, wit).

Run vk, «— Overify(stmt).
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5. If Sig.Verify(vks, arg, stmt) # 1 return L.
6. Otherwise, return arg.
Verify(crs, stmt, arg):
1. Run vks < Overify (stmt).
2. Output Sig.Verify(vks, sig, msg)
Expl(crs, stmt, wit, arg):

1. Output 0.
Circuit for ProgProve? and ProgProve? Circuit for ProgVerify™
Hardwired: crspmwi, pp Hardwired: stmt™, vk,
Ksmi» = PRF.Puncture(K, stmt™) Ksmi» = PRF.Puncture(K, stmt™)
Input: (stmt, wit,r) Input: (stmt)

1°: if DMWI.Verify(crspmwi, stmt, wit) = 0 1: if stmt = stmt”
17 if R(stmt, wit) = 0

2 return vk
return L. 3: else
4

2

3:  else sks < PRF.Eval(Kstmt+, stmt)
4 sk, < PRF.Eval(Kqme+, stmt) 5:  vks < Sig.Setup(sks)

5: arg < Sig.Sign(sks, stmt) 6: return vk,

6: return arg

Fig. 2. Circuits for ProgProve?, ProgProve? and ProgVerify* used in the soundness proof
of the non-interactive argument.

Theorem 5. Let ExArg® be the system given by Scheme 1. The system ExArg’®
is computationally sound (in the selective setting) assuming indistinguishability
obfuscation of Obf, pseudorandomness in punctured points of PRF, mode indis-
tinguishability of the DMWI scheme, and unforgeability of the signature scheme
(Fig. 2).

Theorem 6. Given that the signature scheme Sig is unique, NIWI is perfectly
sound, DMWI is a dual-mode proof, and all primitives are perfectly correct, the
arqument system ExArg® is malicious setup explainable.

Theorem 7. Let ExArgT be the system given by Scheme 1. The system ExArgT
is computationally sound (in the selective setting), assuming indistinguishabil-
ity obfuscation of Obf, pseudorandomness in punctured points of PRF, zero-
knowledge of the NIZK scheme and unforgeability of the signature scheme.

Theorem 8. Given that the signature scheme Sig is unique, NIZK is sound, and
all primitives are perfectly correct, arqgument system ExArgT 18 fully explainable.

Corollary 1. The scheme is witness indistinguishable against a malicious setup.

Proof. Witness indistinguishability follows from explainability of the argument
system and Theorem 2.

Theorem 9. Let ExArg" be the system given by Scheme 1 for V. =o or V = 1.
ExArgY is zero-knowledge in the common reference string model.
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5 Robust-Witness Encryption and Interactive
Explainable Arguments

We introduce robust witness encryption and show a generic transformation from
any standard witness encryption scheme to a robust witness encryption scheme.

Definition 11 (Robust Witness Encryption). We call a witness encryption
scheme WE = (Enc,Dec) a robust witness encryption scheme if it is correct,
secure and robust as defined below:

Robustness: A witness encryption scheme (Enc, Dec) is robust if for all PPT
adversaries A there exists a negligible function negl(.) such that

R(stmt, witg) = R(stmt, wit;) =1 A
(stmt, ct, witg, wity) «— A(N);
mg < Dec(stmt, witg, ct)
mq «— Dec(stmt, wity, ct)

Pr | mo # my : < negl(A),

We call the scheme perfectly robust if the above probability is always zero.

Below we define plaintext awareness [5], but tailored to the case of witness
encryption.

Definition 12 (Plaintext Aware Witness Encryption). Let WE = (Enc,
Dec) be a witness encryption scheme. We extend the scheme with an algorithm
Verify that on input a ciphertext ct and a statement stmt outputs a bit indicating
whether the ciphertext is in the ciphertext space or not. Additionally we define
an algorithm Setup that on input the security parameter A outputs a common
reference string crs, and an algorithm Setup™ that additionally outputs 7. We say
that the witness encryption scheme for a language £ € NP is plaintext aware if
for all PPT adversaries A, there exists a negligible function negl(.) such that

| Pr[A(crs) = 1: crs « Setup(A)]
—Pr[A(crs) = 0: (crs, 7) < Setup™(N)]] < negl(N),

and there exists a PPT extractor Ext such that

(crs, 7) < Setup™(A);
Pr | msg < Ext(stmt,ct,7): (ct,stmt) < A(crs); | <1 — negl())
Verify(stmt, ct) = 1

where for all witnesses wit such that R(stmt, wit) = 1 we have msg = Dec(ct, wit),
and the probability is taken over the random coins of Setup and Setup™.

Scheme 2 (Generic Transformation). Let WE = (Enc,Dec) be a witness
encryption scheme and NIZK = (NIZK.Prove, NIZK.Verify) be a proof system.
We construct a robust witness encryption scheme WE,.,;, as follows.
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Encpop (A, stmt, msg):
1. Compute Ctmsg «— WE.Enc(), stmt, msg)
2. Let stmtyzk be defined as
{Tmsg Ctmsg «— WE.Enc(A, stmt, msg)}
3. Compute 7 « NIZK.Prove(stmtyzk, wit) using witness wit = (msg)
4. Return ct = (Ctmsg, 7).

Dec,op (stmt, wit, ct):
1. Set the statement stmtyzk as
{Tmsg Ctmsg — WE.Enc(A, stmt, msg)}
2. If NIZK Verify(stmtyizg,7) = 0, then return L. Otherwise return
WE.Dec(stmt, wit, Ctmsg)

Theorem 10 (Security and Extractability). Scheme 2 is a (extractably)
secure witness encryption if WE is a (extractably) secure witness encryption,
and NIZK is zero-knowledge (in the common reference string or RO model).

Theorem 11 (Robustness and Plaintext Awareness). Scheme 2 is robust
if the witness encryption scheme WE 1is perfectly correct, and the NIZK proof
system is perfectly sound (in the common reference string or RO model). If the
NIZK proof system is a proof of knowledge (in the common string or RO model),
then Scheme 2 is plaintext aware.

5.1 Fully Explainable Arguments from Robust Witness Encryption

In this subsection, we will tackle the problem of constructing fully explainable
arguments. The system is described in more detail by Scheme 3.

Scheme 3 (Interactive Explainable Argument). The argument system
consists of Prove, Verify and Expl, where the protocol between Prove and Verify
is specified as follows. Prove takes as input a statement stmt and a witness
wit, and Verify takes as input stmt. First Verify chooses r+«s{0,1}*, com-
putes ct «— Enc.op(A,stmt,r) and sends ct to Prove. Then Prove computes
arg < Dec,op(stmt, wit,ct) and sends arg to Verify. Finally, Verify returns iff
arg = r. The explain algorithm Expl is as follows.

Expl(stmt, wit, trans): On input the statement stmt, the witness wit and a tran-
script trans, output L.

Theorem 12 (Soundness). Scheme 3 is an argument system for NP language
L assuming the witness encryption scheme WE for L is secure. Furthermore,
if the underlying witness encryption scheme WE scheme is extractable, then
Scheme 3 is an argument of knowledge.

Theorem 13 (Zero-Knowledge). Scheme 3 is zero-knowledge given the
underlying witness encryption scheme WE is plaintext aware.
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Theorem 14 (Explainability). Scheme 3 is fully explainable assuming the
used witness encryption scheme is robust (or plaintert aware) and correct.

Remark 2. Scheme 3 is predictable in the sense that the verifier can “predict”
the value of the prover’s arguments/proof [33]. Furthermore, the protocol is
optimally laconic [12], as the verifier can encrypt single bits.

Theorem 15. Let WE be a (non-robust) perfectly correct witness encryption
scheme for NP. Let II be an interactive public-coin zero-knowledge proof pro-
tocol for NP. Then there exists a malicious verifier explainable (and witness-
indistinguishable) argument for NP.

6 Applications

In this section, we show how to apply explainable arguments. We focus on con-
structing a CCA1 secure publicly deniable encryption scheme using as a building
block malicious verifier explainable arguments. Our transformation is based on
the one from Naor and Yung [56] but we replace the NIZK proof system with
a NIWI. In the full version we show how to build a deniable anonymous cre-
dential scheme from malicious prover explainable arguments. Here we note that
the anonymous credential system is a straightforward application of malicious
prover explainable arguments and standard signature schemes.

The main idea behind the Naor and Yung construction is to use two CPA
secure ciphertexts cty, cto and a NIZK that both contain the same plaintext. The
soundness property ensures that a decryption oracle can use either of the secret
keys (since the decrypted message would be the same) and zero-knowledge allows
the security reduction to change the challenged ciphertext, i.e. change the two
CPA ciphertexts. We note that in our approach we replace NIZK with NIWI,
that to the best of our knowledge has not been do before.

Scheme 4 (Generic Transformation from CPA to CCA). Let £ =
(KeyGen,,, Enccpa; Decepa) be a CPA secure encryption scheme, (NIWI.Setup,
NIWI.Prove, NIWI.Verify) be a non-interactive witness-indistinguishable proof
system. Additionally we define the following statement stmtcp, be defined as

{(3msg ct1 < Encepa(pky, msg) A cty «— Encepa(pky, msg)) V
(Ha,ﬁHG(Ctla Ct2) = (gaa gﬁa gaﬁ))}v
where Hg is defined as above.

KeyGen,.,; (A):
1. generate CPA secure encryption key pairs (pky,sky) < KeyGen
(pk27Sk2) — KeyGencpa()‘)v
2. generate a common reference string crs <« NIWI.Setup()\),
3. set pkeear = (pky, pky,crs) and skecar = skj.

Encccal (pkccah mSg):

(M) and

cpa
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1. compute ciphertexts ct; < Encepa(pky, msg) and cty «— Encepa(pks, msg),
2. compute NIWTI proof IT < NIWI.Prove(crs, stmtcpa, (Msg),
3. return ciphertext ct = (cty, cto, IT).
Decccat (Skecat, Ct):
1. return L if NIWI.Verify(crs, stmtcpa, IT) = 0,
2. return msg < Deccpa(sky, cty).

Theorem 16. Scheme /4 is an encryption scheme secure against non-adaptive
chosen ciphertext attacks (CCA1) in the random oracle model assuming the
encryption scheme £ is an encryption scheme secure against chosen plaintext
attacks and NIWI is a sound and witness indistinguishable proof system.

Theorem 17. Scheme 4 is an publicly deniable encryption scheme secure
against non-adaptive chosen ciphertext attacks (CCA1) in the random oracle
model assuming the encryption scheme £ is an publicly deniable encryption
scheme secure against chosen plaintext attacks and NIWI is a malicious setup
explainable argument system.

7 Conclusions

In this paper, we introduce new security definitions for interactive and non-
interactive argument systems that formally capture a property called explain-
ability. Such arguments can be used to construct CCA1 deniable encryption
and deniable anonymous authentication. We also introduced a new property for
witness encryption called robustness which can be of independent interest. An
interesting open question is whether such arguments systems can be constructed
from simpler primitives or we need such strong primitives because malicious
prover explainability implies uniqueness of the proof.
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Abstract. We present MPCCache, an efficient Multi-Party Cooperative
Cache sharing framework, which allows multiple network operators to
determine a set of common data items with the highest access frequencies
to be stored in their capacity-limited shared cache while guaranteeing the
privacy of their individual datasets. The technical core of our MPCCache
is a new construction that allows multiple parties to compute a specific
function on the intersection set of their datasets, without revealing both
the private data and the intersection itself to any party.

We evaluate our protocols to demonstrate their efficacy and practical-
ity. The numerical results show that MPCCache scales well to large datasets
and achieves a few hundred times faster compared to a baseline scheme
that optimally combines existing MPC protocols.

1 Introduction

The explosive growth of data traffic due to the proliferation of wireless devices
and bandwidth-hungry applications leads to an ever-increasing capacity demand
across wireless networks to enable scalable wireless access with high quality of
service (QoS). This trend will likely continue for the near future due to the emer-
gence of new applications like augmented /virtual reality, 4K /8K UHD video, and
tactile Internet [13]. Thus, it is imperative for mobile operators to develop cost-
effective solutions to meet the soaring traffic demand and diverse requirements
of various services in the next generation communication network.

Enabled by the drastic reduction in data storage cost, edge caching has
appeared as a promising technology to tackle the aforementioned challenges in
wireless networks [3]. In practice, many users in the same service area may
request similar content such as highly-rated Netflix movies. Furthermore, most
user requests are associated with a small amount of popular content. Hence,
by proactively caching popular content at the network edge (e.g., at base sta-
tions, edge clouds) in advance during off-peak times, a portion of requests during
peak hours can be served locally right at the edge instead of going all the way
through the mobile core and the Internet to reach the origin servers. The new
edge caching paradigm can significantly reduce duplicate data transmission, alle-
viate the backhaul capacity requirement, mitigate backbone network congestion,
increase network throughput, and improve user experience [1,3,13,37].
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Motivation. With edge caching, the advantages brought by cooperation become
clear. Each operator can maintain a private cache and share a shared cache with
others. Although the benefits of edge caching have been studied extensively in
the previous literature along with many real-world deployments [1,3,37], most of
the existing works on cooperative edge caching consider cooperation among edge
caches owned by a single operator only [27,37,38]. The potential of cache cooper-
ation among multiple operators has been overlooked. For cooperative cache shar-
ing, the data privacy of individual Telcos is important. For example, if TelcoA
knows the access pattern of subscribers of TelcoB, TelcoA can learn characteris-
tics of TelcoB’s subscribers and design incentive schemes and services to attract
these subscribers to switch to TelcoA. Therefore, it is imperative to study vari-
ous mechanisms that provide the benefits of cache sharing without compromising
privacy.

Contributions. We introduce an MPCCache scheme to tackle the cooperative
content caching problem at the network edge where multiple semi-honest par-
ties (i.e., network operators) can jointly cache common data items in a shared
cache. The problem is to identify the set of common items with the highest
access frequency to be cached in the shared cache while respecting the privacy
of each individual party. To the best of our knowledge, we are among the first
to realize and formally examine the multi-party cooperative caching problem by
exploiting the non-rivalry of cached data items, and tackle this problem through
the lens of secure multi-party computation. We introduce an efficient construc-
tion that outputs only the result of a specific function computed securely on the
intersection set, (i.e., find k best items in the intersection set) without reveal-
ing the private data of individual parties as well as the intersection itself to
any party, and works for the multi-party setting with more than two parties. In
additiogl, we propose an efficient top-k algorithm that achieves an approximate
log®(m)
(1og(k)+2) 10g(k)
m is the size of the dataset.

We demonstrate the practicality of our protocol with experimental numbers.
For instance, for the setting of 8 parties each with a data-set of 2'6 records,
our decentralized protocol requires 5min to compute k-priority common items
for k = 28. We also propose an optimized server-aid MPCCache construction,
which is scalable for large datasets and a number of parties. With 16 parties,
each has 220 records, our optimized scheme takes only 8 min to compute the
k-priority common items for k = 28. MPCCache aims at proactive caching where
caches are refreshed periodically (e.g., hourly). Therefore, the running time of
MPCCache is practical in our application.

In addition to cooperative cache sharing as our main motivation, we believe
that the proposed techniques can find applications in other areas as well.

X improvement compared with the prior top-k algorithms, where

2 Related Work and Technical Overview of MPCCache

Consider a single party with a set of items S. Each item includes an identity
z (i.e., a file name, a content ID) and its associated value v. For each set S,
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PARAMETERS: n parties Pjc[,), each has m; items, a threshold k, where k is much

smaller than the intersection size.

FUNCTIONALITY:

e Wait for an input S; = {(zi,v}),..., (z},,,v},)} C ({0,1}%,{0,1}?) from P

e Let I = ﬂie[n]{xﬁ, .. .,mf,”} to be the intersection set. For each * € I, compute
the sum v* of associated values, i.e., v* =Y I | ’U;-i where (:c*,v;-i) €S

e Give parties {x7,...,z;} where of,...,v; are k largest numbers among
Vi,

Fig. 1. The MPCCache functionality

an element (x,v) is said to belong to a set of k-priority elements of S if its
associated value v is one of the k-largest values in S. Note that the value of
each content item may represent the number of predicted access frequency of
the content or the benefit (valuation) of the operator for the cached content.
Each network operator has its own criteria to define the value for each content
that can be stored in the shared edge cache space. How to define the value for
each content is beyond the scope of this work. In this work, we assume that the
parties are truthful by using their true valuations for each content item in their
databases. It is because the access frequency of each party to each cached file
is measurable and known. Additionally, some economic penalty schemes can be
used to enforce truthfulness as mentioned in the full version of the paper [25].

Since the cache is shared among the operators, they would like to store only
common content items in the cache. Here, a common item refers to an item
(based on identity) that is owned by every party. The common items with the
highest values will be placed in the shared cache. The value of a common item
is defined as the sum of the individual values of the operators for the item. Con-
cretely, we consider the cooperative caching problem in the multi-party setting
where each party P; has a set S; = {(2{,v}),..., (z},,,v},,)}. Without loss of
generality, we assume that all parties have the same set size m. An item (z*, v*)
is defined to belong to the set of the k-priority common elements if it satisfies
the two following conditions: (1) z* is the common identity of all parties; (2)
(z*,v*) are the k-priority elements of §* = {(a7,v7), ..., (#[7), vj7)}, where v} is
the sum of the values associated with these common identities from each party,
and I = ﬂiE[n]{xﬁ, ..., @, }is the intersection set with its size |I]. In the setting,
we consider the input datasets of each P; contain proprietary information, thus
none of the parties are willing to share its data with the other. We describe the
ideal functionality of MPCCache in Fig. 1. For simplicity, we remove under-script
of the common item z* and clarify that a pair (z*, v;) € S; belongs to P;.

A closely related work to MPCCache is a private set intersection (PSI).
Recall that the functionality of PSI enables n parties with respective input sets
Xicn) to compute the intersection itself ﬂie[n] X,; without revealing any infor-
mation about the items which are not in the intersection. However, MPCCache
requires to evaluate a top-K computation on the top of the intersection ﬂie[n] X;
while also keeping the intersection secret from parties. The work [8,21,29,32]
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proposed optimized circuits for computing on the intersection by deciding which
items of the parties need to be compared. However, their constructions only
work for the two-party setting. Most of the existing multi-party PSI construc-
tions [10,17,20,24,33] output the intersection itself. Only very few works [18,23]
studied some specific functions on the intersection. While [18] does not deal
with the intersection set of all parties (in particular, an item in the output set
in [18] is not necessarily a common item of all parties), [23] finds common items
with the highest preference (rank) among all parties. [23] can be extended to
support MPCCache which is a general case of the rank computation. However,
the extended protocol is very expensive since if an item has an associated value
v, [23] represents the item by replicating it v times. For ranking, their solution
is reasonable with small v but for our MPCCache it is not suitable since v can
be a very large value. We describe a detailed discussion in the full version of
the paper [25]. The work of [31] proposes MPCircuits, a customized MPC circuit.
One can extend MPCircuits to identify the secret share of the intersection and
use generic MPC protocols to compute a top-k function on the secret-shared
intersection set. However, the number of secure comparisons inside MPCircuits
is large and depends on the number of parties. A concurrent and independent
work by Chandran et al. [7] is the state-of-the-art multi-party circuit-PSI, but
only supports a weaker adversary, who may corrupt at most ¢ < n/2 the parties.
Moreover, in terms of theoretical complexity comparisons, [7] is expensive than
ours. We explicitly compare our proposed MPCCache with the MPCircuits and
[7] in Sect. 6.3.

Our decentralized MPCCache construction contains two main phases. The
first one is to obliviously identify the common items (i.e., items in the intersection
set) and aggregate their associated values of the common items in the multi-
party setting. In particular, if all parties have the same z* in their set, they
obtain secret shares of the sum of the associated values v* = 77" | v! where
(z*,v;'-i) € S;. Otherwise, v* equals to zero and it should not be counted as
a k-priority element. A more detailed overview of the approach is presented in
Sect. 4. It is worth mentioning that the first phase does not leak the intersection
set to any party. The second phase takes these secret shares which are either
the zero value or the correct sum of the associated values of common items,
and outputs k-priority items. To privately choose the k-priority elements that are
secret shared by n parties, one could study top-k algorithms.

In MPC setting, a popular method for securely finding the top-k elements
is to use an oblivious sort (i.e., parties jointly sort the dataset in decreasing
order of the associated values, and pick the k largest values). The most practical
algorithm is Batcher’s network [4], which computational and communication
complexity are O(mlog?(m)) and O(fmlog?(m)), respectively, where m is the
size of the dataset and ¢ is the bit-length of the element (see the full version
of the paper [25] for more detail). To output the index of the k largest values,
we also need to keep track of their indexes, therefore, the total communication
complexity of oblivious Batcher’s network is O((£+log(m))m log?(m)). Another
approach to compute k-priority elements is to use an oblivious heap that allows
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to get a maximum element from the heap (ExtractMax). This solution requires
to call ExtractMax k times, which leads to a number of rounds of the interaction
of at least O(klog(m)).

In MPCCache, the size of an edge cache k is usually much smaller than the size
of the dataset m. In addition, it is also much smaller than the caching facility at
the core of the network operator. Since we are motivated by applications where
k < m, we propose a new protocol with computational and communication
overhead of O(mlog?(k)) of secure comparisons and O((£ 4 log(m))mlog?(k))
bits, respectively. Our protocol requires O(log(m)) rounds. Concretely, we show

log?(m)

an approximate ( X improvement compared with the prior work.

log(k:)+2) log (k)
Recently, [9] presents an approrimate top-K selection with complexity of
O(m+k?) comparisons and O((¢+log(m))(m+k?) bits. One could integrate their
algorithm in the second phase of our scheme to achieve better performance. In
applications where exact top-K selection is required, our k-priority is preferable.
Our decentralized protocol supports the full corrupted majority, which means
that if any subset of parties is corrupted, they learn nothing except the protocol
output. In this paper, we also present the optimization for MPCCache in the
non-colluding semi-honest setting in which we assume to know two non-colluding
parties. This model can be considered as the server-aided model where clients
obliviously distribute (secret share) their private database to two non-colluding
servers. Our optimized server-aided MPCCache construction achieves almost the
same cost as that of our two-party decentralized protocol.

3 Cryptographic Preliminaries

In this work, the computational and statistical security parameters are denoted
by k, A, respectively. We use [.] notation to refer to a set, and [4, j] to denote the
set {4,...,7}. The additive secret sharing of a value z is defined as [z].

Secret Sharing. To additively secret share [z] an ¢-bit value x of the party
P; to other parties, he first chooses z? « Zo¢ uniformly at random such that
r = 22‘;1 27 mod 2¢, and then sends each z7 to the party P;. For ease of
composition, we omit the mod. To reconstruct an additive shared value [z], all
parties P; sends [z] = 27 to the party P;, who locally reconstructs the secret
value by computing = < Y7, 7. In this work, we also use Boolean sharing in
the binary field. Boolean sharing can be seen as additive sharing in the field Zs.

Oblivious Key-Value Store (OKVS). An OKVS [14] is a data structure
in which a sender, holding a set of key-value mapping I = {(k;,v;),i € [n]}
with pseudo-random wv;, wishes to give that mapping over to a receiver who can
evaluate the mapping on any input but without revealing the keys k;. Formally,
an OKVS consists of two algorithms: Encode(I") — 7 is a randomized algorithm
that takes as input a set of n key-value pairs I = {(ki, v;)ie[n)} from the domain
K x V, outputs a table 7; and Decode(k,7) — v is a deterministic algorithm
that takes as input a table 7, a key k and outputs a value v.
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The correctness of the OKVS is that if for all key-value pairs A C K x V
with distinct keys and pseudo-random values, Encode(4) = 7 and (k,v) € A
then Decode(k,7) = v. An OKVS is secure if the values v; are chosen uniformly
then the output of Encode hides the choice of the keys k;.

Garbled Circuit. An ideal functionality GC [5,16,36] is to take the inputs z;
from party P;, and computes a function f on them without revealing the parties’
inputs. We use Yao [36] and BMR-style protocols [5,6] for two-party and multi-
party GC, respectively. In our protocol, we use f as “less than” and “equality”
where inputs are secretly shared amongst all parties. For example, a “less than”
GC takes the parties’ secret shares [z] and [y] as input, and output the shares
of 1if < y and 0 otherwise. We denote the GC by [z] — GC([z], [v], f)-

Oblivious Sort and Merge. The main building block of the sorting algorithm
is Compare-Swap operation that takes the secret shares of two values  and y,
then compares and swaps them if they are out of order. It is typical to measure
the complexity of oblivious sort/merge based on the number of Compare-Swap.

Oblivious  Sort:  We denote the oblivious sorting by {[zilic,} <
Fobv-sort({ [il ;e [y} which takes the secret share of m values and returns their
refresh shares in which all z;c(,,,) are sorted in decreasing order. As discussed
in [25], Batcher’s network for oblivious sort requires %mlog2 (m) Compare-Swap
operations.

Oblivious Merge: Given two sorted sequences, each of size m, we also need
to merge them into a sorted array, which is part of the Batcher’s obliv-
ious merge sort. It is possible to divide the input sequences into their
odd and even parts, and then combine them into an interleaved sequence.
This oblivious merge requires %mlog(m) Compare-Swap operations and has
a depth of log(m). We denote the oblivious merge by {[z1],...,[22m]} <

}—obv-merge({[{xl]], RS [Im]]}v {[[yl]]7 IR [[ym]]})

4 Our Decentralized MPCCache Construction

Recall that our MPCCache construction contains two main parts. The first phase
allows parties to securely generate shares of the sum of the associated values
under a condition. More precisely, if all parties have x in their sets then the sum of
their obtained shares is equal to the sum of the associated values for the common
z. Otherwise, the sum of the shares is zero. These shares are forwarded as input
to the second phase, which ignores the zero sum and returns only k-priority
common items. For the second phase, we first present the Fy_prior functionality
of computing k-priority elements in Fig.2, and use it as a black box in our
MPCCache construction. We describe our Fi prior construction in Sect. 4.3.

4.1 A Special Case of Our First Phase

We start with a special case. Suppose that each party Pjc[,) has only one item
(z',v") in its set S;. Our first phase must satisfy the following conditions:
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PARAMETERS: Set size m, and n parties

FUNCTIONALITY:

o Wait for secret shares {[v1], ..., [vm]} from the i*" party.

e Give all parties k indexes {i1,...,i,} such that {v;,,...,v;, } are largest values
among {v1, ..., Um }.

Fig. 2. The k-priority functionality (Fu-prior)

(1) Ifall 2° are equal, the parties obtain secret shares of the sum of the associated
values as v* = Y1 vt

(2) Otherwise, the parties obtain secret shares of zero.

(3) The protocol is secure in the semi-honest model, against any number of
corrupt, colluding parties.

The requirement (3) implies that all corrupt parties should learn nothing
about the input of honest parties. To satisfying (3), the protocol must ensure
that parties do not learn which of the cases (1) or (2) occurs.

We assume that there is a leader party (say P;) who interacts with other
parties to output (1). The protocol works as follows. For (z°,v?), P#l chooses
a secret s € {0,1}? uniformly at random, and defines w’ = o' — s (for
ease of composition we omit the mod). He then computes a one-time pad
as OTP(z',w’) = z' @ w® (for simplicity, we assume that the domain size
of #* and w' are equal; it is also possible to use H(x') instead of the orig-
inal item 2, where H : {0,1}* — {0,1}* is a collision-resistant hash func-
tion). The P;»; then sends the ciphertext to the leader P;. Using his item 2!,
the P; decrypts the received ciphertext and obtains wh if 2! = :c' random
otherwise. Clearly, if all parties have the same z', P, receives w® = v — s
from Piy. Now, P, computes s' = o' + Zi:2w. It easy to verlfy that
st =+ X wh) + Y, st = vl + ZLZ(wi + s = S vt = vt
By doing so, each P; has an additive secret share s* of v* as required in (1).

In case that not all 2* are equal, the sum of all the shares ) | | s" is a random
value since P; receives a random (incorrect) w® from some party/parties. To
satisfy (2), we use GC to turn the random sum ), s’ to zero. However, for
(3), the random sum and the correct sum are indistinguishable from the view
of all parties. One might make use of GC by computing n equality comparisons
to check whether all 2 is equal. If yes, the circuit gives refreshed shares of
the correct sum, otherwise shares of zero. This solution requires O(n) equality
comparisons inside MPC. We aim to minimize the number of equality tests.

We improve the above solution using zero-sharing [2,20,22]. An advantage of
the zero-sharing is that the party can non-interactively generate a Boolean share
of zero after a one-time setup. Let’s denote the zero share of P; to be z'. We
have @?:1 2% = 0. Similar to the protocol described above to achieve (1): Instead
of (z%,v%), the P; uses (2%, 2%) as input, and receives a Boolean secret share t'.
If all 2 are equal, the XOR of all obtained shares is equal to the XOR of all
associated values z’. In other words, @, t* = @, z* = 0. Otherwise, P, ¢
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is random. These obtained shares are used as an if condition to output either
(1) or (2). Concretely, parties jointly execute a garbled circuit to check whether
@D, t' = 0. If yes (i.e. parties have the same item), the circuit re-randomizes
the shares of v*, otherwise, generates the shares of zero. The zero-sharing based
solution requires only one equality comparison inside MPC.

We now describe a detailed construction to generate zero-sharing [20] and
how to compute ¢, w? more efficiently.

a) Zero-sharing key setup: one key is shared between every pair of parties. For
example, the key k;; is for a pair (P;, P;) where ¢,j € [n],i < j. It can be
done as P; randomly chooses k; ; < {0,1}" and sends it to P;. Let’s denote a
set of the zero-sharing keys of P; as K; = {ki1,..., ki (i—1), ki ,(i+1), - - - > Kin }-

b) Generating zero share: Given a PRF F : {0,1}"* x {0,1}* — {0,1}*, a set of
keys K; and a value z, each P; locally computes a zero share of x as z* =
@?:1 F(k; j,x). Clearly, each term F(k; ;,x) appears exactly twice in the
expression @, 2°. Thus, @[, z* = 0. We define f*(K;,z) £ D), F(kij,x)
for P; to generate the zero share of x.

¢) Computing s' and ¢': the P,; chooses random s’ and ¢*. For an input (z*,v")
and a zero share 2 «— fZ(K;,z"), he computes w’ = o' — s' and y* = 2/ & ¢
and sends the one-time pad OTP(z?,y'||w") to the leader P; (assume that
the length of 2 and y'||w’ are equal). Using his item ! as a decryption
key, Py obtains the correct y||w® if ! = 2%, random otherwise. P; computes
sTE ol £33 Jwiand £ = (@), y') @ 2'. At this point, each P; has secret
shares s’ and ¢' such that > ; s* = v* and @, t* = 0 if all 2 are equal.

4.2 A General Case of Our First Phase

So far, we only consider the simple case where each party has only one item.
In this section, we show how to efficiently extend our protocol to support the
general case where m > 1. At the high-level idea, we use hashing scheme to map
the common items into the same bin and then reply on OKVS to compress each
bin into a share so that the parties can evaluate MPCCache bin-by-bin efficiently.

Similar to many PSI constructions [19,28], we use two popular hashing
schemes: Cuckoo and Simple. The leader P; uses Cuckoo hashing [26] with k=3
hash functions to map his {z1,...,z} } into 3 = 1.27m bins. He then pads his bin
with dummy items so that each bin contains exactly one item. This step is to hide
his actual Cuckoo bin size. On the other hand, each P;; use the same k£ Cuckoo
hash functions to place its {z%,..., 2% } into 3 bins (so-called Simple hashing),
each item is placed into k bins with high probability. The P;-; also pads his bin
with dummy items so that each bin contains exactly v = 2log(m) items. Accord-
ing to [12,28], the parameters [, E, ~ are chosen so that with the probability 1 —27*
every Cuckoo bin contains at most one item and no Simple bin contains more than
~ items. More detail is described in the full version of the paper [25].

For each bin b*", P, and P, can run a special-case protocol described in
Sect. 4.1. In particular, let B;[b] denote the set of items in the b*" bin of P;. All
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parties locally generate zero shares zi- — fAK;, J) The P;; locally chooses

'k, v%) € Bi[b], Piz1 computes w = vl — s,

and y! = z¢ @t and sends the one-time pad ciphertext OTP(x%, yi[|w}) to the
leader P;. Using his item x]} € B;[b] as a decryption key, P obtains g);||u§; which
equals y}||w’ if z} = %, random otherwise. Since there are y values §}||w}, each
for a pair in B;[b], obtained from P»L7£1, the P, has "1 possible ways to choose
ji € [y] and compute his share st Zvp+ Y0, 0 and t) = @F, §i ® 2. Thus,
this solution requ1res ~"~1 equality comparisons to check all combinations of
whether @@, ti = 0 to determine whether z} is common.

To improve the above computation, we rely on an OKVS data structure in
order that Py learns from P,z only one pair {§’, W'} per bin, instead of v pairs
per bin. More precisely, for each bin b, the party P;; creates a set of points
Iy = {(«}, yillwh) | 2% € Bi[b]}, encodes it as Encode(I}) — 7, and sends the
OKVS table 7, to the leader P;. Thanks to the oblivious property of OKVS, we
no longer need the one-time pad encryption. Using z}, the P; decodes 7;' and
obtains gj||w} < Decode(x},T,'). Note that, if x; € Bix1[b], §j|lw} equals to a
yh |lw! that was encoded in 7, and otherwise, random.

random values s} and ¢;. For each (z°

In summary, if all parties have xb in their b*" bin, the leader P, receives

W}, = v}, — s} and gj, = z} @t} from the corresponding OKVS execution involving

Pis. The leader computes sp = vp + 1, wi. If all parties have z}, we have

>oi st is equal to the sum of the associated values corresponding with the
identity x}. Slmllarly, when defining t} = (@), Ji) ® 2}, we have @._, t; =0
if all parties have z;}. Consider a case that some parties P;«; might not hold the
item z} € By[b] that Py has, the corresponding OKVS with these parties gives
Py random g} |[@}. Thus t; < (DI, 9i) ® 2} is random, so is @, ti.

Similar to Sect. 4.1, we use GC to check whether @7, ¢/ = 0 for the bin b,
and outputs either refreshed shares of Z?=1 sf) or shares of zero. Since P; only
has one s%, the protocol only needs to execute one comparison circuit per bin,
thus the number of equality tests needed is linear in the number of the bins.

Even though P;; uses the same offset st, ¢! per bin, all w;- and y; are random
(assume that U;— is randomly distributed). In addition, the OKVS only gives P;
one pair per bin. Therefore, as long as the OKVS used is secure, so is our first
phase of MPCCache construction. We formalize and prove secure our first phase
which is presented, together with proof of our MPCCache security in Sect. 4.4.

4.3 Our Second Phase: k-priority Construction

In this section, we measure the complexity of our k-priority protocol based on
the number of secure Compare-Swap operations. As discussed in Sect. 2, one could
use oblivious sorting to sort the input set and then take the indexes of k biggest
values. This approach requires about im log? (m) Compare-Swap operations and
the depth of log(m). In the following, we describe our simple construction which
costs (5 log(k)+ 3)mlog(k)— 3k log(k) Compare-Swap with the same depth. The
log®(m)

X improvement.
log(k)+2) log(k)

proposed algorithm achieves an approximate (
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PARAMETERS:

e Set size m, a bit-length 0, security parameter A, and n parties Pic,

e A zero-sharing key setup, GC, and k-priority primitives

e An OKVS data structure with Encode and Decode algorithms.

e A Cuckoo and Simple hashing with 3 hash functions, 8 bins, and max bin size .
INPUT OF PARTY Piepny: A set S; = {(z},v1),..., (zh,vi)} C ({0,1}7,{0,1}")™
ProTOCOL:

I. Pre-processing.

1. Each party P; interacts with other parties {Pi,..., Pi_1, Pz+1, P,} to generate
a zero-sharing key K; and locally computes zero shares as zj < f7 (K, 1’3) Vj €
.

2. A leader P; hashes {x1,...,x,,} into 8 bins using the Cuckoo hashing scheme.
Let B1[b] denote the item in the bth bin (or a dummy item if this bin is empty).

3. Each party Pjg[2,n] hashes items {z%,..., 2%, } into § bins using Simple hashing.
Let B;[b] denote the set of items in the b** bin of this party.

II. Online.

1. For each bin b € []:

a) Bach party Pic[2., chooses #, < {0, 1}*+l°g(" and s} < {0,1}% at random,
and generates a set of key-value pairs Iy = {(z7,y}||w}) | =% € B;[b]} where

i def 4 i def

Y; = 2; D ti and w; = v; — si. The party then pads I} with dummy pairs to
-

b) Each party Pjej2,,) encodes Iy as Encode(Fb) — Ty and sends 77,’_ to Pl. who
computes Decode(mb,’ﬁj) and obtains §;|[wi. Note that g, = zj, © t, and

Wy = vj, — s for L = x?z =...=2x7. Otherw1se 98,08 are random.
1 def

¢) P computes t} & (D, ) zg and sp = v} + > zwb where z; and v}
are zero share and the associated value corresponding to zi, respectively.

d) Parties jointly invoke a GC instance:
- Input from P; is t} and si.
- Output to P; is an additive share [us] where up = 37 si if @7, t) =

otherwise u, = 0.
Note that if xj is common, u; is equal to the sum of its associated values of
the common item identity zf.
2. Parties invoke a k-priority functionality with input [us], Vb € [B], and obtain k
indexes of the k-priority common identities.

Fig. 3. Our decentralized MPCCache construction.

The main idea of our construction is that parties divide the input set into
f%l groups, each has k items except possibly the last group which may have
less than k items (without loss of generality, we assume that m is divisible by
k). Parties then execute an oblivious sorting invocation within each group to
sort these values of this group in decreasing order. Unlike the recent work [9]
for approximate top-K selection where it selects the maximum element within
each group for further computation, we select the top-K elements of two neigh-
bor groups. Concretely, the oblivious merger is built on top of each two sorted
neighbor groups. We select only a set of the top-K elements from each merger
and recursively merge two selected sets until reaching the final result.

Sorting each group requires iklogQ(k) Compare-Swap invocations, thus, for

m

2t groups the total Compare-Swap operations needed is ?(%klogQ(k)). The
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oblivious odd-even mergers are performed in a binary tree structure. The merger
of two sorted neighbor groups, each has k items, is computed at each node of
the tree. Unlike the sorting algorithm, we truncate this resulted array, maintain
the secret shares of only k largest sorted numbers among these two groups, and
throw out the rest of k¥ numbers. By doing so, instead of 2k, only k items are for-
warded to the next odd-even merger. The number of Compare-Swap required for
each merger does not blow up, and is equal to klog(k). After (7 — 1) recursive
oblivious merger invocations, parties obtain the secret share of the k largest val-
ues among the input set. In summary, our secure k-priority construction requires
(31og(k) + 3)mlog(k) — $klog(k) Compare-Swap operations.

The above discussion gives parties the secret shares of k largest values. To
output their indexes, before running our k-priority protocol we attach the index
with its value using the concatenation ||. Namely, we use (¢ + [log(m)])-bit
string to represent the input. The first £ bits to store the additive share [v;] and
the last [log(m)] bits to represent the index i. Therefore, within a group the
oblivious sorting takes {[v:]||¢, ..., [vitr—1]||(i + & — 1)} as input, use the shares
[v;l,Vj € [i,i4+k—1] for the secure comparison. The algorithm outputs the secret
shares of the indexes, re-randomizes the shares of the values and swaps them if
needed. The output of the modified oblivious sorting is {[vs,||i1], ---, [vi, ||ix]}
where the output values {v;,,...,v;. } C {vs,...,viyr—1} are sorted. Similarly,
we modify the oblivious merger structure to maintain the indexes. At the end
of the protocol, parties obtain the secret share of the indexes of k largest values,
which allows them jointly reconstruct the secret indexes.

Figure 4 presents our k-priority construction which security proof is given in
the full version of the paper [25].

4.4 Putting All Together: MPCCache

We formally describe our semi-honest MPCCache construction in Fig. 3. From the
preceding description, the cuckoo-simple hashing maps the same items into the
same bin. Thus, for each bin #b, if parties have the same x} € By [b], they obtain
the secret share of the sum of all corresponding associated values. Otherwise,
they receive the secret share of zero (in practice, the sum of all parties’ associated
values for items in the intersection is not equal to zero). In our protocol, the
equation @, t; = 0 determines whether the item x} is common. We choose
the bit-length of the zero share to be A + log(n) to ensure that the probability
of the false positive event for this equation is overwhelming (1 — 27*).

The second step of the online phase takes the shares from parties, and returns
the indexes of k-priority common elements. Since & must be less than or equal
to the intersection size, the obtained results will not contain an index whose
value is equal to zero. In other words, the output of our protocol satisfies the
MPCCache conditions since the identity is common and the sum of the values
associated corresponding to this identity is k-largest.

The security of our decentralized MPCCache is based on OKVS and Fi_prior
primitives. Its formal proof is given in the full version of the paper [25].
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PARAMETERS:
e Number of parties n, set size m, and a k value
e An ideal oblivious sort Fopv-sort and oblivious merge Fobv-merge Primitives de-
scribed in Section 3.
e A truncation function trunc which returns first k elements in the list as

{z1,..., 2} + trunc({z1,..., T2 })
INPUT OF PARTY P;: secret share values S; = {[v1], ..., [vm]}
PROTOCOL:

1. Parties divide the input set S; into 7* groups, each has k items.

2. For each group i € [] consisted of {[uvi], ..., [vitx—1]} from party P;, they
jointly execute an oblivious sort G[i] <— Fobv-sort ({[vs]||2; ..., [Vigr—1]]](¢ + &k —
1)})7 where G[Z] = {[[Uil Hil]]v s [[Ulk H’lk]]}

3. Parties recursively invoke oblivious merges as follows. Assuming that 7+ = 24

Procedure LevelMerge (G[0,...,d],d)
if d =1 then
‘ return {[vi, ||i1], ..., [vi |lix] }
else
L = LevelMerge(G[0,..., % — 1],
R = LevelMerge(G[%,...,d — 1], %)
M «+ ]:obv-merge(L, R)
where M = {[vi, [|i1], ..., [vi ||i2x]
{[vi, [in], -, [vig ||#x]} = trunc(M)
end

end

4. Parties jointly reconstruct the share {[vi,[|i1],..., [vi,||x]}, and output

(i1, ... in}.

Fig. 4. Our secure k-priority construction

5 Our Server-Aided MPCCache

In this section, we show an optimization to improve the efficiency of MPCCache.
We assume that P; and P, are two non-colluding servers, and we call other
parties as users. The optimized protocol consists of two phases. In the first one,
each user interacts with the servers so that each server holds the same secret
value, chosen by all users, for the common identifies that both servers and all
users have. The servers also obtain the additive secret share of the sum of all
the associated values corresponding to these common items. In a case that an
identity x§ of the server P.c(; 2y is not common, this server receives a random
value. This phase can be considered as each user distributes a share of zero
and a share of its associated value under a “common” condition. Note that,
if even two servers collude they only learn the intersection items and nothing
else, which provides a stronger security guarantee than the standard server-aided
setting mentioned in the full version [25]. Our second phase involves only the
servers’ computation, which can be done by our 2-party decentralized MPCCache
described in Sect. 4.4.
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PARAMETERS:
e Set size m, a bit-length 0, security parameter A\, and n parties Pic[n]
e A two-party decentralized MPCCache, and an OKVS with Encode and Decode.

INPUT OF PARTY Pjcn): A set of key-value pairs S; = {(z%,0h), ..., (2, v5)}
ProToCOL:
I. Centralization.
1. Each user Pjc3,) chooses random 2} « {07 1} Hee(n) and st — {0,1}°,
and generates two sets ret = {(z 77zJ||w )}, where wjl- = sj and w2 -
vl — sh.

2. Each user Pjc[3,n) encodes I'*" as Encode(I"*") — T%" and sends 7% to

et

P.cq1,2y who computes Decode(x§ Te’i) and obtains Z;

3. For j € [m], each P.c(y 2y computes y§ = @, z5 " and s§ = ol Vi A

~€,

w

II. Server-working. Two servers Ppe{l 2} invoke an 1nstance of MPCCache
where P.’s input is a set {(yf,s}),..., (ym,s5)} and learns k-priority com-
mon items.

Fig. 5. Our server-aided MPCCache construction.

More comcretely7 in the first phase, each user Pic(s, n] chooses random z; —

{0, 1} +ee(™) and st — {0,1}%, and then defines w1 e and w2 o vl — s

Next, Pje(3, generates two sets of key-value points I'** = {( xh, 2} ||we I, Ve €
{1,2}, computes 7¢" = Encode(I**), and sends 7" to the server P,. Let’s
A;’z W - Decode(z§,7") be an output of the OKVS decoding computed by
66{1 2} If two servers have the same item x} = x%, which is equal to the item

A1 ~2, -1 ~2, 1 ;
x’; of the user P;, we have 2, = 2% = zi and 1w, ot —|— Wy = v} (since 1wy, "t = = s

and W' = vl —st). Bach server P.c 1 2} defines y¢ £ @}, 47" as an XOR of all

~€, 7
% jE[m

k', we have yi = @, Ajl =P 3 Ajz " = g2, if all parties has z}. = 2, in their

set. This property allows servers obliviously determinate the common items (i.e.,

checking whether y = y2,,Vk, k' € [m]). Moreover, let s¢ < v$ + 37 ;" *. For
two indices k and k', s, and si, are secret shares of the sum of the associated
values for the common item z} = z%, In summary, after this first phase, each
server Poey1 0y has a set of points {(y5,s9),..., (y5,, s5,)} where yi = y2, if all
parties have the same identity x,lc = LL'Z/, and s,lC + s%, is equal to the sum of the
associated values of the common J:,lg Therefore, we reduce the problem of n-party
MPCCache to the problem of a two-party case where each server P.c(y 2y has a
set of points {(y{,s$),...,(v5,,s%,)} and wants to learn the k-priority common
items. We formally descrlbe the optimized MPCCache protocol is in Fig. 5.

Recall that y§ = @3 2", " Ve € {1,2},j € [m]. Let i be the highest index

of a user Pic(3,) who did not have the identity xk in their input set. That user
does not insert a pair {x}, something} to his set I'®* for the OKVS in Step (L.1).
Thus, P; obtains a random 2,11 in Step (I.3). The protocol is correct except in
the event of a false positive—i.e., y; = yZ, for some x} not in the intersection.

the obtained values 23" corresponding to each item x¢ - For two indices k and
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By setting £ = XA 4 2logy(n), a union bound shows that the probability of any
item being erroneously included in the intersection is 27*.

The security proof of our server-aided MPCCache protocol is essentially simi-
lar to that of the decentralized protocol, which is presented in the full version [25].

Discussion. From our two-server-aided framework, our protocol can be
extended to support a small set of servers (e.g., t servers, ¢ < n). More precisely,
in the centralization phase, each user Pic[;41,,) secretly shares their associated
value v efm) O the servers P.c[;) via OKVS. Each server aggregates the share
of the associated value corresponding to their item. The obtained results are
forwarded to the server-working phase in which P.c[; jointly run MPCCache
to learn k-priority common items. The main cost of our server-aided construc-
tion is dominated by the second phase. Hence, the performance of t-server-aided
scheme is similar to that of decentralized MPCCache performed by ¢ parties.
We are interested in two-server aided architecture since we can take advantage
of efficient two-party secure computation for the k-priority and GC. Moreover,
the two-server setting is common in various cryptography schemes (e.g. pri-
vate information retrieval [11], distributed point function [15], private database
query [34]).

6 Implementation

We implement building blocks of MPCCache and do experiments on a single
Linux machine that has Intel Core i7 1.88 GHz CPU and 16 GB RAM, where
each party is implemented as a separate process. Computing cache sharing usu-
ally runs in the fast and low-latency edge network, especially with 5G technolo-
gies [1,3,13,37] as the servers of operators are typically placed closer to each
other (e.g., in edge clouds in the same area such as New York City). Thus, we
evaluate MPCCache over a simulated 10 Gbps network with 0.2 ms round-trip
latency. We assume there is an authenticated secure channel between each pair
of parties. Our MPCCache is very amenable to parallelization. Specifically, our
algorithm can be parallelized at the level of bins. In our evaluation, however, we
use a single thread to perform the computation between two parties.

All evaluations were performed with an identity and its associated value
input length 128 bits and § = 16 bits, respectively, A = 40, and x = 128.
We use OKVS code from [14], garbled circuit from [35]. To understand the
scalability of our scheme, we evaluate it on the range of the number parties
n € {4,6,8,16}. Note that the dataset size m of each party is expected to be
not too large (e.g., billions). First, the potential of MPCCache is in 5G where
each shared cache is deployed for a specific region. Second, each operator chooses
only frequently-accessed files as an input to MPCCache because the benefit of
caching less-accessed files is small. Therefore, we benchmark our MPCCache on
the set size m € {212,214 216 218 2201 T, understand the performance effect of
the k values discussed in Sect. 4.3, we use k € {26,27,28, 29 210} in our k-priority
experiments, and compare its performance to the most common oblivious sort
protocol [30,35] which is based on Batcher’s network (ref. Sect. 2).
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Table 1. The total runtime (minute) and communication per item (KB) of our k-priority
construction and the state-of-the-art oblivious sort, where m is the dataset size.

m Running time Communication
Ours k-priority Sort [30,35] | Ours k-priority Sort [30,35]
k=27 | k=28 | k=29 | k=210 k=27 | k=28 | k=2° | k=210

212 | 0.012 0.014 0.016 0.018 0.014 8.008 10.11 12.38 14.72 18.43

214 1 0.049 0.056 0.068 0.087 0.071 8.05 10.21 12.6 15.2 25.09

216 | 0.199 0.238 0.294 0.35 0.382 8.061 10.23 12.65 15.32 32.77

218 1 0.786 0.996 1.217 1.449 1.964 8.063 10.24 12.67 15.35 41.47

220 | 2,984 |3.798 |4.697 |5.527 | 9.844 8.064 |10.24 |12.67 |15.36 |51.2

Table 2. The total runtime (minute) of our MPCCache constructions to find k-priority
common items, where the number of parties n, each with dataset size m.

Parameters | Server-aided Decentralized

m |n k=20 k=27 k=28 | k=2° k=20 k=20 k=27 | k=28 |Kk=2° k=20

212 4 0.036 | 0.036 |0.039 |0.041 |0.04 0.15 0.14 0.16 0.16 0.16
6 0.036 |0.036 |0.039 |0.041 |0.04 0.23 0.22 0.24 0.23 0.27
8 0.037 | 0.037 |0.039 |0.041 |0.04 0.31 0.29 0.32 0.33 0.33

216 | 4 0.502 | 0.526 |0.564 |0.62 0.68 2.08 2.23 2.3 2.75 2.72
6 0.502 | 0.531 |0.569 |0.625 |0.68 3.09 3.06 3.71 3.65 3.96
8 0.53 0.53 0.57 0.63 0.68 4.47 4.24 4.59 5.01 5.41

220 | 4 7.59 7.69 7.73 8.02 8.07 31.51 |31.71 |31.74 |33.59 |36.24
6 7.7 7.92 7.81 8.1 8.17 46.07 | 46.35 |46.37 | 46.69 | 46.96
8 7.76 7.97 8.18 8.32 8.37 60.73 | 61.83 |62.24 |63.76 | 64.66

Table 3. The total runtime (minute) and communication cost per item (KB) of our
server-aided MPCCache with k = 28 for the number of parties n, each with set size m.

#party n | Role |Running time (minute) Communication (KB)
m= 212 m= 214 m= 216 m= 218 m= 22(] m= 212 m= 214 216 m = 218 m = 22[)

4 User |0.002 0.003 0.088 0.324 1.202 0.58 0.66 0.73| 0.81 0.88
Server | 0.039 0.146 0.564 2.089 7.732 24.47 26.34 28.06 | 29.74 31.41

6 User |0.002 0.004 0.093 0.342 1.271 1.17 1.32 1.46| 1.61 1.76
Server | 0.039 0.147 1 0.569 2.1 7.813 24.77 26.67 28.43 | 30.14 31.85

8 User | 0.002 0.004 | 0.095 0.35 1.291 1.75 1.97 2.19| 2.42 2.64
Server | 0.039 0.147 0.571 2.12 7.781 25.06 27 28.79 | 30.54 32.28

16 User |0.02 0.058 0.24 0.912 3.374 4.09 |4.61 5.12| 5.64 6.15
Server | 0.047 0.167 0.598 2.155 7.833 26.23 28.32 30.26 | 32.15 34.04

6.1 k-priority Performance

Our k-priority requires (3log(k) + 3)mlog(k) — 3klog(k) Compare-Swap
instances. We use GC [5,36] to perform secure comparisons. Table 1 presents the
running time and communication cost of our k-priority for the different & values.
The cost is measured in KB per item as we would like to show an improved
performance factor of our proposed protocol compared to the state-of-the-art
oblivious sort as well as a performance change when increasing k. Thus, for
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Fig. 6. The total running time (red bar) in minute and communication cost (blue bar)
per item in KB of our k-priority and oblivious sort for Top-k and data set size m = 2'°.
(Color figure online)

m = 28 and k = 27, our approach shows 5.15x and 2.5x improvements in
terms of communication and computational costs, respectively.

To see more clearly the performance change for different & values, we present
the performance of our k-priority protocol using a bar chart in Fig. 6, and show
that there is a minor change in the running time when increasing k.

6.2 MPCCache Performance

Table 2 presents the total running time for the decentralized and server-aided
MPCCache. The main difference between these constructions is in the steps of
GC equality checks and k-priority. While the decentralized scheme requires all
participants to jointly compute these steps, in the server-aided framework only
two specific servers perform the computation. Thus, the former model is expen-
sive than the latter one but provides a stronger security guarantee where any
subset of corrupted parties learns nothing about the dataset of honest parties.
The numbers reported in Table2 are for an end-to-end server-aided MPC-
Cache execution, which includes the user’s waiting time for the servers’s compu-
tation. As discussed Sect. 5, the server-aided protocol is asymmetric with respect
to the servers P.cy; 2} and other users. Table 3 presents the performance of dif-
ferent roles of the participants. Because the user only distributes its dataset to
two servers in the centralization phase, his workload is very light. The perfor-
mance of our server-aided MPCCache on the user’s side does not depend much on
the number of parties due to the parallelizability with a separate secure channel
between user and server. The server’s work is heavy due to equality checks and
k-priority. Table 3 shows that our protocol scales to a large number of parties.
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6.3 Comparison with Prior Work

We compare our protocols with recent related works [7,31]. One can extend
MPCircuits [31] to address the multi-party cooperative cache sharing problem
by following similar steps of MPCCache: the first phase is to compute the secret
share of the intersection. The second phase uses generic MPC protocols or our
k-priority to compute the top-k function on the obtained results. Recall that
MPCircuits only allows to compute secret-shared intersection items themselves.
It is based on a binary tree structure as [31] observed that the set intersection
of n sets can be expressed as a consecutive set intersection of two sets until
reaching the final result. Therefore, the intersection of two sets is computed
at each node of the tree, and the final intersection of all sets is computed at
the root of the tree. Using three operations as sort, merge, and compare, the
complexity of their garbled circuit is O(n?mflog(m)?) where ¢ is the bit-length
of the element identity. To keep track #-bit associated value of the identity, the
MPCircuits-based solution requires a complexity of O(n?m(f + 0)log?(m)). In
contrast, with the lightweight OKVS, our solution requires only a single equality
comparison per bin. Thus, the complexity of our circuit is O(nm(|z|+0)), where
z is a bit-length of the zero share which is equal to min (¢, A + log(n)). It is easy
to see that the first phase of our solution is about nlog?(m)x better than that of
MPCircuit-based approach. For example, with n = 8 and m = 22° our solution
shows about an 3,200x improvement.

To hide the intersection set size, the output of the MPCircuits-based com-
putation at the root of the tree consists of mn secret shares of all intersection
and non-intersection items. As a result, the second phase of the baseline solu-
tion takes mn secret shares as an input of each party. On the other hand, our
MPCCache only takes 8 = 1.27m secret shares, each per bin.

A concurrent and independent work [7] is designed for a generic circuit-PSI
which only supports an honest majority (e.g., the number of colluding parties
is up to t < n/2). Their protocol is similar to MPCCache and consists of two
main phases. However, the first phase of [7] requires expensive steps (e.g., multi-
plication on secret-shared values) to compute the shares of intersection (Step 6
&7, [7, Figure 6]). Moreover, each participant (e.g. client) of [7] has a computa-
tion/communication complexity O(nm) and requires to participate in the mostly
full computation process. In contrast, in our server-aided protocol, the client does
not involve in the entire MPCCache computation process, thus, has commuta-
tion/communication complexity O(tm) which is independent of n. According
to [7, Tabled] for m = 220, n = 5,¢ = 2 their client expects to finish the first
phase in 25.48s while ours requires only 13.02s, an 1.96x improvement'. The
improvement factor is higher when the ratio n/t is larger.

For the second phase, [7] is not customized for the top-K computation. Based
on the theoretical analysis in Sect. 6.1 and numerical experiment in Sect. 4.3, we
expect that the second phase of MPCCache is about 1.7-3.3x faster than [7].

1 [7]’s implementation is not yet publicly available. Its benchmark machine is stronger
than ours, which is in favor of their protocol.
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