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Abstract. This work solves the Collision Avoidance problem in a simu-
lation of a centralized system of holonomic multi-agents in a two dimen-
sional space free of static obstacles. For this, we propose an implemen-
tation of three modules in an architecture: Threat Assessment Strat-
egy (TAS), Path Planning Strategy (PPS), and Path Tracking Strategy
(PTS). The Buffered Voronoi Cells represent the TAS. The PPS mod-
ules use two algorithms: the Analytical Geometric Algorithm (AGA) and
the Receding Horizons Control (RHC) based on Quadratic Program-
ming (QP) Algorithm. Finally, PTS controls the tracking according to
fixed distance magnitudes in each iteration. The analysis of the results
considers the computational execution time, the number of steps until
convergence, and the calculation of optimal values. Also, these results
are compared with the Optimal Reciprocal Collision Avoidance (ORCA)
algorithm. In this way, our proposal successfully addresses and solves the
collision avoidance problem but takes more execution time and number
of steps compared with the ORCA algorithm. Besides, the number of
steps of AGA is closer to ORCA, producing promising results with an
accuracy of 95%.

Keywords: Collision avoidance · Voronoi diagrams · Convex
optimization · Quadratic programming · Path planning · Simulation

1 Introduction

Collision Avoidance (CA) is the process of preventing two or more physical
objects from having intersecting boundaries in space-time, taking variables like
time and distances into account. In this way, CA is studied due to its practical
applications, mainly in path planning for ships [1], autonomous robots [2], air-
craft and unmanned aerial vehicles [3], using different mathematical and compu-
tational techniques such as geometric analysis, control modeling with optimiza-
tion, game theory, dynamical systems, and artificial intelligence [4]. Therefore,
this problem challenges researchers to simulate the natural ability of complex
living beings or processes to avoid physical collisions and react accurately.
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In the present work, we deal with CA algorithms for centralized autonomous
holonomic multi-agent. We use the safe distance-based method as a Threat
Assessment Strategy (TAS). A combination of Optimization and Geometrical-
based strategies with heuristics to break deadlocks serve as Path Planning Strat-
egy (PPS). Moreover, the Path Tracking Strategy (PTS) uses Euclidean geom-
etry. The project proposal involves using Buffered Voronoi Cells (BVC), Ana-
lytical Geometric Algorithm (AGA), and Quadratic Programming (QP) based
Receding Horizons Control (RHC) algorithm. The generated algorithms only
require detecting the relative positions with a centralizing character. Therefore,
it is very suitable for online deployment, as it does not require a concurrent
communication network. We demonstrate the capabilities of our algorithm by
comparing it to the Optimal Reciprocal Collision Avoidance (ORCA) in a bench-
mark simulation scenario, and we present the results of over 2160 experimental
trials in total. Our work follows the ideas of Zhou et al. [5].

2 Related Work

2.1 Collision Avoidance

There are at least two CA Design Control Architectures for autonomous agents
[2]: the Multi-Layer CA System divides responsibility for different objectives into
layers, and the Unified-Design CA System combines two blocks for integrated
objectives and identical control inputs. Both architectures usually comprise sev-
eral sub-modules or strategies: TAS, PPS and PTS.

TAS provides an assessment and subsequent warnings of the potential threat
to CA. The result of the TAS calculation is the key to triggering the subsequent
actions of the CA architecture. In this way, TAS feeds the decision-making strat-
egy on the appropriate action of the moving object. In addition, TAS takes care
of the threshold or tolerance limits around obstacles or any physical object in
the environment. Once this object violates certain conditions, the CA system
activates the path planning module to re-plan the current trajectory. The risk
can be measured by any means, including distance, speed, and acceleration of
the moving object relative to the elements of the environment [4].

The PPS re-plans a collision-free route while the vehicle moves once the
TAS identifies the potential collision threat. This new route may differ from the
previous route planned by the PPS. In addition, an ideal PPS considers the risk
of collisions involved in changing the current kinematics of the vehicle. First, the
strategy guarantees enough space for the mobile to maneuver without frontal or
side collisions. Then it needs to make sure that there is no potential risk with
another obstacle after the maneuver. Finally, the new trajectory must consider
the mechanical limitations and internal implications of the moving object [2].

PTS algorithms act as a path following controller to ensure the vehicle or
mobile robot successfully avoids collisions. An enfficient PTS timely tracks the
reference re-planned path by producing the required low-level control actions
and output suitable interventions. For this reason, different scenarios demand
particular CA actions [2].
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2.2 Voronoi Diagrams

Given a set of two or more but a finite number of distinct points in the Euclidean
plane, we associate all the locations in that space with the closest members of
the set of points concerning the Euclidean distance. The result is a tessellation
is called Voronoi Diagram generated by the point set, and the regions consti-
tuting the Voronoi diagram are called Voronoi cells. New compressed cells can
be generated within each cell according to the safety radius distance. These new
cells are the Buffered Voronoi Cells. Figure 1 shows this description graphically.

(a) Voronoi Diagram (b) Buffered Voronoi Cells

Fig. 1. Example of Voronoi diagrams

2.3 Multi-agent Navigation

We can categorize the multi-agent systems based on the different views of plan-
ning approaches into two classes: centralized and decentralized [6]. We call Cen-
tralized Policy for multi-agents to a plan to generate collective actions starting
from the states of the global system, solving the problems of the agents in a
unified way. On the other hand, in a decentralized system, the agents partially
observe the global system state and make local decisions. Thus, the planned
mapping from local knowledge to local actions is called a Decentralized Policy
for multi-agent.

3 Methodology

3.1 Model Proposal

We propose a simulation architecture for a holonomic multi-agent system in a
two-dimensional environment free of obstacles. Our proposed architecture uses
three main components: TAS, PPS, and PTS. The simulation uses Voronoi Dia-
gram as the core of its TAS. The PPS component can use either AGA or the
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QP-based RHC algorithm; both algorithms have the same input parameters,
but with the difference that the QP-based RHC algorithm has a solver for the
optimization problem. Additionally, the PPS has heuristics to break deadlocks
during navigation. We use Euclidean distance for PTS. The two architecture
variations (AGA and QP-based RHC) are compared with the ORCA algorithm
to contrast result metrics.

3.2 Two-Dimensional Environment

The environment is represented by a two-dimensional Cartesian plane. Both
main axes contain the real set of numbers for the coordinates generation. Thus,
the position of the robots and the Voronoi vertices are any real coordinates.
The initial and final positions of the simulated agents are antipodal and form a
circular figure centered at the point (0, 0). Let N be the number of robots; the
distance from each position to (0,0) equals 4 × √

N plus an offset belonging to
the set [− 1

0.4×N , 0). The distance formula is selected to generate configurations
similar to Zhou et al. [5]. There is an approximation for Voronoi infinity vertices
for practical purposes. The magnitude generated for their respective infinity
edges is equal to 20 times the number of simulated robots; for example, if there
exist five robots, then the magnitude is equal to 100. There are no static obstacles
or passages, just moving robots defined as common obstacles. The precision of
the numeric values depends on the programming language of the implementation;
in this case, Python.

3.3 Heuristics to Deal with Deadlock

Deadlock is an imminent problem in CA. It happens when some robots block
the paths of each other so that they cannot reach their goal. For those robots
whose goal positions are not inside their own BVC, in a deadlock situation, each
robot must be at the closest point to the goal position on its BVC. The closest
point in the BVC of robot i, g∗

i , to the goal pi,f , must be either at a vertex or
on edge such that a line from pi,f to g∗

i is perpendicular to this edge.
No existing algorithm can provably avoid deadlock without central computa-

tion to our best knowledge. Instead, most distributed algorithms attempt to alle-
viate the problem through sensible heuristics. Similarly, we propose two heuristic
methods that perform well in solving deadlock. At the same time, we establish
a deadlock threshold value due to the limited range of numerical data types of
programming languages.

The first heuristic is the Right-Hand Rule, which detours each robot from its
right side when encountering other robots in deadlock situations. If the appli-
cation of this heuristic causes the robot to leave its BVC, then we prefer not
to move the robot in that step. This preference is made until the movement of
other robots can break the deadlock or allow the movement of the blocked robot.
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The second one considers the previous positions, ensuring a high level of
breaking deadlock situations, abrupt and zigzag movements. In this case, we
analyzed the distance between previous positions with the closest point in the
BVC.

3.4 QP-Based Receding Horizons Control Algorithm

The Quadratic Programming Based Algorithm has its foundations on the Reced-
ing Horizon Control, also known as Model Predictive Control. Its applications
include scenarios such as industrial and chemical process control, supply chain
management, stochastic control in economics and finance, revenue management,
hybrid vehicles, automotive and aerospace applications [7].

With RHC, an optimization problem is solved at each time step to determine
a plan of action over a fixed time horizon. Then, the first input from the plan
is applied to the system. Next time we repeat the planning process, solving a
new optimization problem with the time horizon shifted one step forward. The
optimization problem estimates future quantities based on available information
at each time step. The control policy involves feedback since real-time mea-
surements determine the control input [8]. In this way, we model the following
optimization problem,

Problem 1 (Receding Horizon Path Planning).

min
p1,...,pT

Ji =
T−1∑

t=0

((
pi,t − pi,f

)ᵀ
Q

(
pi,t − pi,f

)
+ uᵀ

i,tRui,t

)

+
(
pi,T − pi,f

)ᵀ
Qf

(
pi,T − pi,f

)
(1)

subject to:

pi,t+1 = Api,t + Bui,t, t = 0, · · · , T − 1, (2)

pi,t ∈ Vi, t = 1, · · · , T, (3)

pi,0 = pi, (4)

‖ui,t,x‖ ≤ ux,max, t = 0, · · · , T − 1, (5)
‖ui,t,y‖ ≤ uy,max, t = 0, · · · , T − 1. (6)

In Problem 1, the cost function Ji is a summation of the intermediate state
and terminal costs. In Eq. 1, pi,f is the final position, pi,0 to pi,T and ui,0 to ui,T−1

are the path and inputs to be planned, respectively. The positive definite or semi-
definite matrices Q,R, and Qf are weight factors to balance the three costs. The
decision variables for this standard QP problem are pi,1 to pi,T . Constraint 2
ensures that the path is feasible with the dynamics of the robots. In the present
work, the holonomic robots do not need to fix the matrix values because they
can move in any direction, and their velocity is the same. Constraint 3 restrains
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the planned path inside the corresponding BVC Vi of robot i. This constraint
can be written explicitly in the form of a set of linear inequalities:

pᵀ
i,tεj ≤ 0, t = 1, · · · , T, j ∈ {1, · · · , N}, j �= i, (7)

where εj is a vector representing an edge of Vi that separates robot i from robot
j. Constraint 4 makes sure the planned positions start from the current position
of the robot, and, finally, the lower and upper bounds for the input ui,t are
written component-wisely in constraints 5 and 6.

We use the Python-embedded modeling language CVXPY to solve the QP
problem [9]. It allows expressing a convex problem naturally that follows the
mathematical conventions rather than in the restrictive standard form of solvers.
However, the usage of CVXPY is similar to a usual Python library. Algorithm 1
contains the most fundamental parts of the pseudocode to solve the QP problem
and get the closer coordinate in the robot cell to its final position.

Algorithm 1: QP Solver
Data: agent, r, T
Result: pT

1 initialize m, A, B, R, Q, Qf , p, u, umax,x, umax,y;
2 cost = 0;
3 constraints = [ ];
4 pi = agent initial position;
5 pf = agent final position;
6 Add pi,0 = pi to constraints;

7 for t in range(T) do
8 Sum (pt − pf )ᵀQ(pt − pf ) + uᵀ

t Rut to cost;
9 Add pt+1 = Apt + But to constraints;

10 Add ‖u0,t‖ ≤ umax,x to constraints;
11 Add ‖u1,t‖ ≤ umax,y to constraints;
12 for each position of agent neighbors do
13 pj = neighbor position;

14 Add pt − pi+pj
2

ᵀ
(pj − pi) + (r ∗ ‖pj − pi‖) ≤ 0 to constraints;

15 end

16 end
17 Sum (pT − pf )ᵀQf (pT − pf ) to cost;
18 for each position of agent neighbors do
19 pj = neighbor position;

20 Add pT − pi+pj
2

ᵀ
(pj − pi) + (r ∗ ‖pj − pi‖) ≤ 0 to constraints;

21 end
22 Solve the CVXPY problem();
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3.5 Analytical Geometrical Algorithm

The QP-based RHC Algorithm generates a control policy optimal over the plan-
ning horizon at the expense of solving a QP problem online at each time step.
Furthermore, we can solve the QP with an Analytical Geometric Algorithm for
the particular case of no intermediate cost terms, which executes much faster
than the QP, while CA is still guaranteed.

Consider the case where the intermediate state and the control input costs
are equal to zero, and the terminal cost exists. However, all the constraints of
the optimization problem are the same. This simplification can be considered
as a one-step greedy strategy that drives the robot to move to its goal position
as soon as possible. With this simplification, the moving object should direct
towards a point in the convex polygon borders closest to its goal position [5].

Algorithm 2 outlines the basic AGA procedure. The input parameters are
the number of robots N , the magnitude of the safety radius r, the magnitude of
movement m in each step, the magnitude of deadlock tolerance δ, the magnitude
of movement ε to break deadlock, and the number of previous positions ω to
evaluate if a deadlock situation exists.

Algorithm 2: Analytical Geometric
Data: N , r, m, δ, ε, ω, robots

1 if not Collision Free Configuration then
2 Change the initial or final configuration;
3 break;

4 end
5 while not current positions = final positions do
6 Generate Voronoi Diagram;
7 Generate BVC;
8 for agent in robots list do
9 if not Final position inside BVC then

10 Get the closest point inside BVC;
11 Check deadlock;
12 cycle = 1;
13 while cycle < ω and not deadlock do
14 if deadlock then
15 Apply right-hand heuristic;
16 end
17 Increment cycle in 1;

18 end

19 else
20 The closest point is the final position;
21 end
22 Move the robot to its closest point;

23 end

24 end
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The explanation of Collision Free Configuration and generation of the closest
point to final in a cell mentioned in the procedure is below.

– Collision Free Configuration. For the group of N robots with the same
safety radius r, A collision free configuration is one where the distance
between positions of robot pi and robot pj satisfies:

‖pi − pj‖ ≥ 2r,∀i, j ∈ 1, 2, · · · , N, i �= j. (8)

– BVC Closest Point. Let V = (ε, e) represents a convex polygon in 2, where
ε is the set of edges and e is the set of vertices. For any point g ∈2, the closest
point g∗ ∈ V to g is either g itself, or on an edge ε∗ of V, or is a vertex e∗ of
V.

3.6 Optimal Reciprocal Collision Avoidance Algorithm

The task is for each robot A to independently (and new simultaneously) select a
new velocity vnew

A for itself such that all robots are guaranteed to be collision-free
for at least a preset amount of time r when they would continue to move at their
new velocity. As a secondary objective, the robots should select their new velocity
as close as possible to their preferred velocity. The robots cannot communicate
with each other and can only use observations of the current position and velocity
of the other robot. However, each robot may assume that the other robots use
the same strategy to select a new velocity. Note that this problem cannot be
solved using central coordination, as the robot itself only knows the preferred
velocity of each robot [10].

In this work, we use the RVO2 library as the ORCA algorithm implementa-
tion [11]. It is an open-source implementation and has a simple API for third-
party applications. In this way, the user specifies static obstacles, agents, and the
preferred velocities of the agents. The simulation is performed step-by-step via a
simple call to the library. Thus, the simulation is fully accessible and manipula-
ble during runtime. Furthermore, the algorithm ensures that each agent exhibits
no oscillatory behaviors.

3.7 Analysis Method

We defined the ways to study the model proposed in this subsection. First,
a series of experiments evaluate and compare the performance of the model
proposed in Sect. 4.2. These experiments were designed with specific research
intentions:

1. We are executing pseudo-random spatial configurations of the agents to check
the consistency in the construction of the Voronoi Diagram.

2. Next, suitable values for parameters in AGA and QP-Based RHC Algorithm
appear.

3. Finally, the proposed algorithms and ORCA are compared using the best
performing AGA and QP-Based RHC Algorithm.
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We defined a set of measures for testing the algorithms. These measures
helped us understand the performance of algorithm in terms of duration and
calculation of optimum values. The performance measures are the following.

– Execution Time (ET) is a measure of execution duration in units of time.
It is the time from starting movement until all robots reach the final positions.
The execution time is represented as follows:

ET = tf − ti. (9)

Thus, ET is the total execution time, tf is the final time, and ti is the initial
time.

– Steps Number (ST) is a measure of duration in terms of iterations. It is
the number of iterations until all robots reach the final position. This measure
depends on the algorithm design, mainly of the movement magnitude.

– Effectiveness in Distance Traveled (ED) measures how close the path
traveled is to the shortest distance, understood as a straight line from the
starting point to the end. This effectiveness is represented as:

ED =
∑N

i=1 ai∑N
i=1 bi

. (10)

In this equation, N is the total number of robots, ai represents the shortest
distance for robot i from its started position to the final position, and bi is
the total distance traveled by robot i. This measure is only used for AGA
parameters analysis.

– Sum Cost (SC) represents the sum of the means of all the previous measures
for the selection of the best AGA parameter value. The SC follows the next
model:

min

{
ETi∑k
j=1 ETj

+
STi∑k
j=1 STj

+
1 − EDi∑k

j=1(1 − EDj)

}
, (11)

where k represents the number of values that one of the parameters can take
and i ∈ {1, · · · , k}.

4 Results and Discussion

4.1 Construction of Voronoi Diagram

Figure 2 shows one experiment with all the corresponding geometric structures.
The Voronoi Diagram is drawn with thick gray lines. The dashed gray lines are
the straight lines from the current positions of agents to their goal positions.
Also, the executed trajectories, BVC, and goal positions have the same color as
the robot, and the thick dark lines are the planned paths from our algorithm
for each robot in its cell. We can see in Fig. 2a an initial configuration with five
robots and a safety radius equal to 0.3. In Fig. 2b, we can see the robots in the
middle of the execution. In Fig. 2c, we can see all robots direct to their goal
position. Finally, Fig. 2d shows the final state of the system.
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Fig. 2. Visualization of AGA execution with the respective BVC generation

4.2 Deadlock

The blocking situation was addressed satisfactorily in all the experiments. In
Fig. 3a, we can see blue, cyan, and magenta robots in deadlock situation. Next,
we can see in Fig. 3b the next state after dealing with deadlock using the right-
hand rule heuristic.

Fig. 3. Deadlock situation. (Color figure online)
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4.3 Evaluation of Algorithms

We work with AGA to test geometric structures, deadlock situations, param-
eters performance and have a basis for the optimal proposal. The algorithm
parameters are the same presented in Subsect. 3.5. The default values of each
parameter are shown in Table 1. Finally, the number of experiments to evaluate
each parameter value was equal to 30. In Fig. 4, we can see the increase of the
average execution time along with the number of robots.

Table 1. Default parameters values in AGA evaluation

Parameter N r m δ ε ω

Value 5 0.1 0.1 0.05 0.1 1

Fig. 4. Time in seconds, number of steps and effectiveness vs number of robots in AGA

The results of the QP-based RHC algorithm are similar to AGA performance
since there is a growing trend of the execution time and instability in the step
patterns and effectiveness up to a particular value. In the case of steps, the
results stabilize from value six. In the effectiveness case, the results tend to be
the same from value five onwards. Figure 5 shows the number of system steps
according to the number of receding horizons steps in solver.

Figure 6 shows the performance of the ORCA Algorithm in comparison with
AGA. In this way, both the time and the number of steps of ORCA are less than
AGA for a range of values from five to fourteen robots. However, for the number
of steps, AGA comes close to ORCA.
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Fig. 5. Time in seconds, number of steps and effectiveness vs number of in QP-based
RHC algorithm.

Fig. 6. ORCA and AGA performance in time and number of steps vs number of robots.
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4.4 Implementation

The experiments were executed in a computer with a Intel R© Core TM i7-10750H
CPU @ 2.60 GHz processor with 6 CPU Cores, 12 Logical processors, 15.5 GB
RAM, 64-bit system type running on Ubuntu 20.04.4 Operating System. The
following repository has our algorithm implementation, performance, and exper-
imental setup for reproducibility purposes: https://github.com/pepeleduin/
Collision-Avoidance-Algorithms-in-2D-using-Voronoi-Diagrams.

5 Conclusions

We conclude that the Analytical Geometric Algorithm successfully addressed
and solved the execution time limitations and the number of steps to converge
towards the solution. On the other hand, the Receding Horizon Control algorithm
based on Quadratic Programming requires more execution time. We did not
always get optimal results working with heuristics, but we obtained good-enough
solutions that are close to the performance of the Optimal Reciprocal Collision
Avoidance algorithm. However, the algorithm produces promising results with
an accuracy of around 95%.

5.1 Future Work

We consider using techniques such as High-Performance Computing to experi-
ment with more significant problems for future work. The nature of the agent
system and the environment can be modified to analyze the behavior of the algo-
rithms. In this way, concurrency could be applied to decentralize the system and
expand the dimension of the environment. In addition, the simulation visualiza-
tion can be improved to better appreciate the behavior of the agents. Finally,
other solvers could find better optimization of the solution of the problem.
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