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Abstract. Rough-Fuzzy Support Vector Data Description is a novel soft
computing derivative of the classical Support Vector Data Description
algorithm used in many real-world applications successfully. However, its
current version treats all data points equally when constructing the clas-
sifier. If the data set contains outliers, they will substantially affect the
decision boundary. To overcome this issue, we present a novel approach
based on the induced ordered weighted average operator and linguistic
quantifier functions to weigh data points depending on their closeness to
the lower approximation of the target class. In this way, we determine
the weights for the data points without using any external procedure.
Our computational experiments emphasize the strength of the proposed
approach underlining its potential for outlier detection.

Keywords: Support Vector Data Description · OWA Operators ·
Outlier detection · Soft-computing

1 Introduction

An outlier is a data point that is significantly different from the rest of the
data. They are also called abnormalities, discordants, deviants, or anomalies [1].
Eventually, these outliers have useful information about abnormal characteris-
tics of the systems that impact the data generation process. The detection of
such unusual characteristics provides useful insights in many application domains
[2,24,26]. Since outlier detection is relevant in any data science task, many tech-
niques have been proposed in the literature [5,25,29]. Among them, the support
vector data description (SVDD) [27,28] has been widely used given its flexibil-
ity and applicability to real-world problems [3,6,11,30]. However, SVDD does
not consider the data distribution, and consequently, all observations contribute
equally to the hypersphere and thus to the decision boundary [12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Herrera-Tapia et al. (Eds.): TICEC 2022, CCIS 1648, pp. 266–280, 2022.
https://doi.org/10.1007/978-3-031-18272-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18272-3_18&domain=pdf
http://orcid.org/0000-0001-6051-4028
http://orcid.org/0000-0002-6351-1065
https://doi.org/10.1007/978-3-031-18272-3_18


IOWA-RFSVDD 267

As stated by Tax and Duin [27,28] and Ben Hur et al. [4], the support vectors
define the contour of dense data regions. Therefore they should contribute more
to the decision boundary than other data points. In consequence, many research
works have been proposed in the literature to deal with the equally-treated
data when building the SVDD classifier [7,9,10,12,13,15,36,37]. All these works
introduced a weight, usually called membership degree1, into the mathematical
formulation of the SVDD model. In this way, each data point receives a differ-
ent membership degree reflecting its importance to the decision boundary. On
the other hand, they differ in the mechanisms used to compute the membership
degrees for each observation. These mechanisms usually rely on external meth-
ods like k-nearest neighbor approaches, clustering algorithms, and density-based
methods, among others.

In this paper, we present the Induced Ordered Weighted Average Rough-
Fuzzy Support Vector Data Description (IOWA-RFSVDD). This novel approach
combines the concepts defined in fuzzy logic and rough set theory to compute
the observations’ degrees of membership of being outliers. At the same time, it
assigns a weight to these data points, reducing their influence on the decision
boundary. The main contributions of our work are:

– The IOWA-RFSVDD uses two values to assess the importance of a data point
to construct the classifier: (1) a membership degree that measures its belong-
ingness to the target class, and (2) a weight that controls its contribution to
the decision boundary. As we show in Sect. 2.3, state-of-the-art approaches
only use the weights to reduce the effect of noise data on the decision bound-
ary.

– The weight generation mechanism of the IOWA-RFSVDD relies on linguistic
quantifier functions which are not data-dependent. In this way, our approach
avoids using local and global data centers, which are usually computationally
expensive to calculate.

– The target class is a rough-fuzzy set instead of a fuzzy set like in state-of-
the-art approaches. This way, data points are classified either in the lower
approximation or the fuzzy boundary. We compute the membership degrees
for these elements using the information available in the kernel matrix. This
property is inherited from the base method, the rough-fuzzy support vector
data description (RFSVDD) introduced in [21].

– The IOWA-RFSVDD does not rely on any external algorithm to obtain the
data points located in sparse regions, which are possible outliers.

The rest of the paper is arranged as follows: Sect. 2 provides the basics of
the RFSVDD algorithm, the OWA and IOWA operators, and an overview of the
relevant literature. In Sect. 3 the proposed methodology for IOWA-RFSVDD is
presented. Its potential is shown in Sect. 4 in several computational experiments.
Section 5 concludes our work and hint at possible future developments.

1 This term is not to be confused with the well-known concept of membership as
defined in fuzzy logic.
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2 Literature Review

2.1 Rough-Fuzzy Support Vector Data Description

In 2015, Saltos and Weber [21] presented a soft-computing version of the classical
Support Vector Data Description (SVDD) Algorithm [27,28] called Rough-Fuzzy
Support Vector Data Description (RFSVDD), which is the basic method of the
approach introduced in this paper. The contribution made by RFSVDD is con-
structing a rough-fuzzy description of the dataset where outliers can be clearly
identified and separated from the main classes.

The RFSVDD algorithm has two phases that will be explained below in more
detail. First, there is a training phase, in which the classic SVDD is used to obtain
a hypersphere (in a higher-dimensional, projected feature space) that encloses
most of the data points. All observations that fall outside this sphere are usually
considered outliers. Then, a fuzzification phase is performed over those objects
that were classified as outliers in the first stage. The novelty of RFSVDD lies
in this step, in which each outlier gets a membership degree of being or not an
outlier. A formal description of the phases follows.

Training Phase. Let X = {xi ∈ Rd/i = 1, . . . , N} be the set of N data
points of dimension d. The first step projects the data to a reproducing kernel
Hilbert space (RKHS), in which we construct a hypersphere with minimal radius
that encloses most of the training samples. The following quadratic optimization
problem is solved:

min
R,a,ξ

z = R2 + C

N∑

i=1

ξi (1)

s.t.

‖ φ(xi) − a ‖2≤ R2 + ξi ∀i = 1, . . . , N (2)
ξi ≥ 0 ∀i = 1, . . . , N, (3)

where R is the radius of the sphere and a its center; φ is a non-linear mapping;
ξ is a vector of slack variables used to allow some observations falling outside
the hypersphere; ‖ · ‖ is the Euclidean norm; and C ∈ [0, 1] is a constant
regularization parameter that controls the trade-off between the volume of the
sphere and the number of data points it includes. The dual formulation of the
model (1)–(3) is as follows:

max
β

zD =
N∑

i=1

βiK(xi,xi) −
N∑

i=1

N∑

j=1

βiβjK(xi,xj) (4)

s.t.
N∑

i=1

βi = 1 (5)

0 ≤ βi ≤ C ∀i = 1, . . . , N, (6)
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where β are Lagrange multipliers and K(xi,xj) = φ(xi) · φ(xj) is the kernel
function. A widely used kernel is the Gaussian kernel, which is given by:

K(xi,xj) = e−q‖xi−xj‖2
(7)

where q > 0 is a parameter that controls the kernel’s width [23]. From the
optimal solution of the model (4)–(6) we get:

– Data points with βi = 0 are called inside data points (ID) since they lie inside
the hypersphere.

– Data points with 0 < βi < C are called support vectors (SV) and define the
decision boundary.

– Data points with βi = C are called bounded support vectors (BSV) since they
lie outside the hypersphere. For this reason they are also called outliers.

Data points are assigned in any of two classes: the target class and the rejec-
tion class. The target contains the data points whose images lie inside the enclos-
ing hypersphere, while the rejection class/outlier class contains the bounded
support vectors. These classes together with the decision boundary define the
description of the data set [27,28].

Fuzzification Phase. Saltos and Weber [21] proposed a fuzzification phase to
calculate the membership degrees of bounded support vectors to the target class.
The procedure is:

1. Cast the hard data description structure of the training phase into a rough-
fuzzy one with two components: a lower approximation and a fuzzy boundary.

2. Assign the support vectors and inside data points to the lower approximation
of the target class.

3. Assign the bounded support vectors to the fuzzy boundary.
4. Calculate the membership degree μi of bounded support vector i to the target

class with the following equation:

μi = μ(BSVi, SVi) = K(BSVi, SVi)

= e−q‖BSVi−SVi‖2
(8)

where SVi is the closest support vector to the bounded support vector i.

A simple example of the RFSVDD method using a two-dimensional toy data
set is available in [22].

2.2 Ordered Weighted Average

Yager [32] presented the ordered weighted average (OWA) operator to aggregate
numbers coming from different information sources. Formally, an OWA operator
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of dimension n is a mapping from Rn to R that has associated a weighting vector
w ∈ Rn such that

∑n
j=1 wj = 1 and wj ∈ [0, 1]. The OWA function is given by:

OWA (a1, . . . , an,w) =
n∑

j=1

wjbj (9)

where bj is the j-th largest aj . A wide range of possible aggregation operators
can be obtained when varying the weighting vector. The next ones are worth
noting among others [8,19]:

– If w1 = 1 and wj = 0 for all j �= 1, the OWA operator becomes the maximum.
– If wn = 1 and wj = 0 for all j �= n, the OWA operator becomes the minimum.
– If wj = 1

n for all j = 1, 2, . . . , n, we get the arithmetic mean.

A critical step when using the OWA operator is how to set the weight vector
w. Fortunately, there are many approaches in the literature for setting these
weights [8,14,19]. A common approach relies on using linguistic quantifiers [16].
The weights are generated by a regular increasing monotone (RIM) function
Q : R → R as follows:

wj = Q

(
j

n

)
− Q

(
j − 1

n

)
∀j = 1, 2, . . . , n (10)

Some common RIM quantifiers available in the literature are [16,17]:

– The basic linguistic quantifier:

Q(r) = rα (11)

– The quadractic linguistic quantifier:

Q(r) =
1

1 − α · r0.5
(12)

– The exponential linguistic quantifier:

Q(r) = e−α·r (13)

– The trigonometric linguistic quantifier:

Q(r) = arcsin(α · r) (14)

where α > 0. The OWA operator is monotonic, commutative, bounded, and
idempotent [32].

Another relevant aggregation operator is the Induced Ordered Weighted
Average (IOWA) introduced by Yager and Filev in 1999 [34]. It is an exten-
sion of the OWA function. The main difference is in the ordering step. The
IOWA operator uses a second variable to induce the order of the argument
variables. The IOWA operator fits well in applications where the argument vari-
ables are not comparable. For example, in this paper, the argument variables
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are d−dimensional data vectors which are clearly not comparable. Formally, the
IOWA operator is a function given by:

IOWA(〈a1, u1〉, . . . , 〈an, un〉,w) =
n∑

j=1

wjbj (15)

where the vector b is the vector a sorted in decreasing order based on the values
of the variable u. The variable u is the order-inducing variable, and a is the
argument variable. The IOWA operator is also monotonic, bounded, idempotent,
and commutative [34]. Other properties and special cases of the IOWA operator
are discussed in [33,34]. The OWA and the IOWA operator have been applied
successfully in many areas such as engineering, medicine, and finance, among
others [8,18,31,35].

2.3 Recent Advances on SVDD

The RFSVDD without the fuzzification phase leads to the classical SVDD algo-
rithm proposed by Tax and Duin [27,28] in 1999. From the derivation of the
dual form of the model (1)–(3) we get that:

a =
n∑

i=1

βiφ(xi) (16)

where a is the center of the hypersphere in the projected feature space. From the
Eq. (16) we note that only support vectors (βi ∈ (0, C)) and bounded support
vectors (βi = C) affect this center, and therefore, the decision boundary. Since
βSV < βBSV and the number of SVs is usually lower than the number of BSVs,
it is clear that the BSV data influences more on the sphere’s center than non-
BSV data. This issue originates from the fact that all data points have the same
importance when building the classifier. Several works have been proposed in
the literature to reduce or solve this issue. In what follows, we explain some of
the most relevant and recent approaches.

The first approaches looking at reducing the importance of the training sam-
ples when constructing a support vector classifier were proposed by Liu and
Huang [15] and Lin and Wang [13] in the context of binary classification using
support vector machines (SVM). In their works, the authors cast the crisp nature
of the training set to a fuzzy one in which every data point receives a member-
ship degree to the new fuzzy training set. Their approaches differ in how they
compute the membership degrees for the data points. Liu and Huang [15] used
an outlier detection combination of techniques for separating the extreme data
points from the main target class. Then, the membership degrees are computed
based on the distance of the data points to the center of the main body (target
class). On the other hand, Lin and Wang [13] proposed a function of the time of
arrival of the data point to the training set to get the membership degrees. In
this way, recent observations are more important than older ones.
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The first approach that explicitly incorporates the notion of the relative
importance of the training samples into the SVDD model is due to Zheng et al.
[37] within the context of Support Vector Clustering (SVC) [4]. Given that the
SVC algorithm uses the SVDD model in the training phase, the authors proposed
the approach for both the SVDD and the SVC algorithms simultaneously by
introducing the following optimization problem:

min
R,a,ξ

z = R2 + C

N∑

i=1

wiξi (17)

s.t.

‖ φ(xi) − a ‖2≤ R2 + ξi ∀i = 1, . . . , N (18)
ξi ≥ 0 ∀i = 1, . . . , N, (19)

where wi ∈ [0, 1] is the membership degree assigned to data point xi and rep-
resents the relative importance it has in the training set. The Wolfe dual of the
model (17)–(19) is:

max
β

zD =
N∑

i=1

βiK(xi,xi) −
N∑

i=1

N∑

j=1

βiβjK(xi,xj) (20)

s.t.
N∑

i=1

βi = 1 (21)

0 ≤ βi ≤ wiC ∀i = 1, . . . , N, (22)

The only difference between the model (4)–(6) and the model (20)–(22) is
the upper bound of the Lagrange multipliers. Zheng et al. used a k-nearest
neighbor (K-NN) approach to set up the membership degrees for each data
point. Since Zheng’s work, other approaches have been proposed in the literature
[7,9,10,12,36]. All use the same mathematical formulation but differ on how they
set the membership degrees.

Fan et al. [9] proposed the Grid-based Fuzzy Support Vector Data Description
(G-FSVDD). The membership degrees are computed based on grids. The key
idea relies on grouping the data points based on the dense regions surrounded
by sparse regions. The authors divided the data space into grids at different
scales several times. After obtaining enough grids, the apriori algorithm finds
the grids with high density. After that, the membership values are set for each
observation. On the other hand, Zhang et al. [36] used the improved possibilistic
c-means to compute the membership degree of each data point to the cluster
found in the kernel reproducing Hilbert space. Then, these membership degrees
are used as weights in the model (20)–(22).

Hu et al. [10] used a completely different approach for setting up the mem-
bership degrees for the fuzzy support vector data description (F-SVDD). Based
on the Rough Set theory [20], they divide the training set into three regions.
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Then, a neighborhood model of the samples is used to discriminate the data
points in each region. Finally, the weight value is computed based on the region
of the data point. Consequently, different weight values are assigned based on
the locations of the observations.

Similarly to Zheng’s work, Cha et al. [7] introduced a density approach for
the SVDD. In this case, the weights reflect the density distribution of a dataset in
real space using the k-nearest neighbor algorithm. Then, each data point receives
its weight according to the data density distribution. By applying this idea in
the training process, the data description prioritizes observations in high-density
regions. Eventually the optimal description shifts toward these dense regions.
Finally, Li et al. [12] presented a method called Boundary-based Fuzzy-SVDD
(BF-SVDD). BF-SVDD uses a local-global center distance to search for the data
points near the decision boundary. Then, it enhances the membership degrees of
that data using a k nearest neighbor approach and the global center of the data.

Based on the literature reviewed, we can conclude that almost all of the
related work focuses on how to compute the weights for each training sam-
ple to give them different importance when building the classifier. Most rely
on external techniques like k-nearest neighbor, clustering algorithms, or outlier
detection methods in a pre-processing step of the SVDD task. To the best of our
knowledge, aggregation operators were not used to compute weights to affect the
contribution of the training samples when constructing the SVDD classifier. In
this paper, we propose a methodology using the IOWA operator and the rough-
fuzzy version of SVDD that naturally obtain the membership degrees with the
information of the kernel matrix.

3 Proposed Methodology for IOWA-RFSVDD

As stated in Sect. 2, the RFSVDD algorithm builds a rough-fuzzy description of
the data set by computing the membership degrees of data samples depending
on whether they belong to the lower approximation or the fuzzy boundary. In
this section, we use the classical RFSVDD together with the IOWA aggregation
function to weigh the contribution of each data point to the decision boundary.
Instead of assigning a weight to each data point for constructing the classifier,
we propose using two values: (1) a membership degree that measures the belong-
ingness of a data point to the target class, and (2) a weight that controls the
contribution of the data point to the decision boundary.

In the training phase of the RFSVDD, we replace the model (1)–(3) by the
model (17)–(19). Next, by setting up wi = 1 for all i = 1, 2, . . . , N , we solve the
optimization model to get the support vectors, bounded support vectors, and
inside data points. Then, we run the fuzzification phase to obtain membership
degrees μi of each data sample. After that, using a linguistic quantifier, we
recalculate the weights wi only for those data points that are bounded support
vectors and assign the weights based on the order-induced variable μi. In this
way, BSVs closer to the decision boundary will have higher weights than BSVs
that are far away (outliers). Finally, we update the constant penalty parameter
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C and repeat the above steps until convergence or the maximum number of BSV
data is achieved. We call this novel approach Induced Ordered Weighted Average
Rough-Fuzzy Support Vector Data Description (IOWA-RFSVDD). Algorithm 1
presents its details.

Algorithm 1: IOWA Rough-Fuzzy Support Vector Data Description
Input: Data set X, parameters q > 0, υ ∈ ( 1

N
, 1), and λ > 0.

Output: Rough-fuzzy data description with [0, 1]-membership matrix for data
points.

1 Initialize wi = 1 for all i = 1, 2, . . . , N .
2 Compute the kernel matrix K = k(xi,xj) for xi,xj ∈ X.
3 Set υ′ = υ.
4 while stopping criteria is not achieved do
5 Run the training phase of the SVDD algorithm using model (17)–(19) with

parameters q and υ′.
6 Obtain the set of support vectors (SV), bounded support vectors (BSV),

and inside data points (ID).
7 Assign support vectors and inside data points to the lower approximation of

the target class.
8 Assign bounded support vectors to the fuzzy boundary of the target class.
9 for each xi ∈ SV ∪ ID do

10 Set μi = 1.
11 Set wi = 1.

12 for each xi ∈ BSV do
13 Compute the membership degree μi using equation (8).

14 Compute the weights wi using any linguistic quantifier function where n is
the number of BSVs. See equations (11)–(14).

15 Sort descending the BSV data based on their membership degrees.
16 Assign the weights wi to the sorted BSVs using equation (15) .

17 Set υ′ = υN−|BSV |
N

.

In the first iteration of Algorithm 1, the steps 5–13 are the traditional
RFSVDD method since the weights wi are the same for all data points. The
steps 14–16 which correspond to weight generation, BSV data ordering, and
weight assignment, are the IOWA phase of the proposed approach. Finally, step
17 updates the value of the constant penalty parameter C to control the number
of BSV data in each iteration and to guarantee convergence. We present the
following example to illustrate the proposed method.

The Motivation Data Set [22] is an artificially generated data set with 316
instances, 16 of which are outside the main classes (Fig. 1(a)). The parameters
of the SVDD algorithm q = 12 and υ = 0.074 were fixed based on the values
reported in [22]. After the training phase, support vectors, bounded support
vectors, and inside data points are identified as is shown in Fig. 1(b), where red
points are SV, orange points are BSV, and the remaining ones are inside data.
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Fig. 1. Motivation Data Set

Table 1. Results for bounded support vectors

BSV x y βi β∗
i ↓ (%) μi

301 4.00 4.00 0.0428 0.0048 88.80 0.0000

302 2.50 3.00 0.0428 0.0062 85.54 0.0001

303 3.50 3.00 0.0428 0.0066 84.46 0.0003

304 3.00 3.00 0.0428 0.0140 67.21 0.0028

305 2.50 3.50 0.0428 0.0052 87.78 0.0000

306 4.00 2.00 0.0428 0.0072 83.10 0.0017

307 1.20 0.60 0.0428 0.0339 20.83 0.0111

308 1.50 2.00 0.0428 0.0058 86.42 0.0001

309 2.00 2.00 0.0428 0.0108 74.84 0.0028

310 1.50 2.50 0.0428 0.0050 88.32 0.0000

311 3.00 1.00 0.0428 0.0091 78.79 0.0027

312 1.50 0.00 0.0428 0.0055 87.15 0.0001

313 2.00 0.00 0.0428 0.0080 81.31 0.0027

314 3.00 –1.00 0.0428 0.0046 89.22 0.0000

315 1.00 –1.00 0.0428 0.0044 89.60 0.0000

316 0.50 4.00 0.0428 0.0043 89.94 0.0000
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Table 2. Results support vectors

SV x y βi β∗
i ↑ (%) μi

15 1.75 0.87 0.0173 0.0457 264.62 1

19 2.27 1.07 0.0110 0.0302 274.24 1

28 2.15 1.26 0.0177 0.0477 268.82 1

38 1.75 1.13 0.0234 0.0625 266.61 1

49 2.00 1.30 0.0217 0.0605 278.72 1

70 2.19 0.77 0.0007 0.0009 132.40 1

93 2.03 0.70 0.0313 0.0863 275.71 1

117 1.71 0.93 0.0093 0.0285 306.88 1

148 2.28 0.90 0.0253 0.0700 276.05 1

165 2.75 1.87 0.0177 0.0457 258.61 1

169 3.27 2.07 0.0112 0.0303 271.31 1

178 3.15 2.26 0.0176 0.0476 270.97 1

188 2.75 2.13 0.0230 0.0621 269.43 1

199 3.00 2.30 0.0219 0.0606 276.91 1

220 3.19 1.77 0.0009 0.0010 112.46 1

243 3.03 1.70 0.0311 0.0862 277.42 1

267 2.71 1.93 0.0096 0.0291 304.29 1

298 3.28 1.90 0.0251 0.0699 277.87 1

Table 1 presents the results for bounded support vectors after running both
RFSVDD and IOWA-RFSVDD algorithms. The columns βi and β∗

i show the
optimal values of the Lagrange multipliers when all data points are weighted
equally and differently, respectively. Due to the newly proposed weighting mech-
anism, the contribution of BSV data has been reduced by an average of 80%
approximately. At the same time, the membership degrees of these data points
are close to zero, indicating them as outliers.

Similarly, Table 2 presents the results for support vectors. As can be seen, the
contribution of the support vectors to the decision boundary has been increased
by more than 100%. At the same time, the membership degrees prevent SV data
from being treated incorrectly as BSV data which is a common issue in state-
of-the-art approaches cited in Sect. 2. For example, Li et al. [12] argue most
weighting mechanisms are based on the k-nearest neighbor method, and some
support vectors will be located in sparse areas with relatively fewer neighbors
than others, producing their misclassification as BSVs.

As can be seen, the IOWA-RFSVDD reduces the influence of possible outliers
in the construction of the SVDD classifier. The proposed approach uses the RIM
quantifier function to generate the weights and the membership degrees as an
order-induced variable for the assignation. In this way, our method does not
require external procedures like the k-nearest neighbors or clustering algorithms,
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among others. Finally, using the membership degrees, as proposed in this paper,
avoids the misclassification of SV data as BSVs due to their location in sparse
areas.

4 Computational Experiments

To assess the effectiveness of the proposed approach, we performed computa-
tional experiments on nine data sets where eight are from the UCI Machine
Learning Repository. Additionally, we introduced outliers randomly to the data
sets to show how IOWA-RFSVDD reduces their effect on the decision bound-
ary (sphere radius). We set the parameters for RFSVDD and IOWA-RFSVDD
according to [22]. Table 3 shows the parameters fixed for each data set tested.
Note since both methods use the same parameters, we report them once.

Table 3. Algorithms’ Parameters

Instance q υ

Motivation 12 0.074

BankNote 0.25 0.1

Cancer 0.0001 0.20

Glass 0.1 0.1

Quake 1 0.2

Abalone 5 0.05

WineOut 0.0001 0.1

IrisOut 0.5 0.14

ConcreteOut 0.00005 0.05

Based on the optimal solution of model (17)–(19), the distance of any data
point x to the center of the hypersphere is given by:

d(x,a) =

√√√√K(x,x) − 2
N∑

i=1

βiK(x,xi) +
N∑

i=1

N∑

j=1

βiβjK(xi,xj) (23)

Then, the radius of the hypersphere is R = d(x,a) where x is a support
vector. Using (23), we computed the radius of the sphere for both RFSVDD and
IOWA-RFSVDD. Table 4 shows these results for all data sets tested.

From Table 4, we can see that IOWA-RFSVDD reduces the sphere radius in
almost all data sets tested. Hence, the decision boundary is tighter than in the
RFSVDD approach since BSV data does not significantly influence the sphere
center. Therefore, the proposed method is less prone to misclassifying outliers in
an unsupervised setting. These results show the potential that IOWA-RFSVDD
has to outperform the SVDD and RFSVDD algorithms for outlier detection
tasks.
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Table 4. Sphere Radius

Instance RFSVDD IOWA-RFSVDD

Motivation 0.973962 0.922660

BankNote 0.992739 0.992604

Cancer 0.983732 0.976560

Glass 0.914629 0.888286

Quake 0.984919 0.980202

Abalone 0.900619 0.919713

WineOut 0.953004 0.941470

IrisOut 0.932424 0.902718

ConcreteOut 0.981190 0.979499

5 Conclusions and Future Work

In this paper, we proposed the IOWA Rough Fuzzy Support Vector Data Descrip-
tion. IOWA-RFSVDD is a novel approach to treat available data points differ-
ently for SVDD classifier construction according to their position in the feature
space. The main advantages of the method are:

1. It uses two values to assess the importance of a data point for the construction
of the classifier: (1) a membership degree that measures the belongingness of a
data point to the target class, and (2) a weight that controls the contribution
of the data point to the decision boundary.

2. The weight generation mechanism of the IOWA-RFSVDD relies on linguistic
quantifier functions which are not data-dependent. These functions only need
the number of BSVs.

3. It does not rely on external algorithms to obtain the data points of sparse
regions.

We performed several computational experiments on diverse data sets to eval-
uate the effectiveness of our approach. The results showed that IOWA-RFSVDD
tightens the decision boundary reducing the possibility of misclassifying outlier
data. Finally, the proposed method can be extended to other support vector-
based algorithms like support vector machines for classification, regression, or
clustering.
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