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Abstract. Experiments with rodents in mazes demonstrate that, in
addition to visual cues, spatial localization and olfactory sense play a key
role in orientation, foraging and eventually survival. Simulation at some
level and understanding of this unique behavior is important for solving
optimal routing problems. This article proposes a Reinforcement Learn-
ing (RL) agent that learns optimal policies for discovering food sources
in a 2D maze using space location and olfactory sensors. The proposed
Q-learning solution uses a dispersion formula to generate a cheese smell
matrix S, tied in space time to the reward matrix R and the learning
matrix Q. RL is performed in a multidimensional maze environment,
in which location and odor sensors cooperate in making decisions and
learning optimal policies for foraging activities. The proposed method
is computationally evaluated using location and odor sensor in two dif-
ferent scenarios: random and Deep-Search First (DFS), showing positive
results in both cases.

Keywords: Q-learning · Agent · Multi-dimensional environment ·
Maze solving

1 Introduction

In the brain of a real-world rat trying to find a food source in a difficult maze,
a great deal of parallel data processing occurs. Even if the maze is brought
into total darkness, the animal will still go about its daily survival routines
of foraging, shifting its attention to senses other than sight such as the sense of
place [9] and the sense of smell [6]. It is evident that in total darkness the rat will
keep its learning ability intact and will be able to quickly learn a strategy that
defines its decision-making behavior and optimizes its path to the food source,
using only place and smell sense. Although some interesting theories have been
established over the years, no one knows exactly how the sense of place operates
in the rat brain [1,9,16].
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The rat’s sense of smell is highly complex. It has been demonstrated that
the utilization of stereo cues is critical for the detection of odor sources, as a
rat can distinguish whether an odor is coming from the right or left in only 50
milliseconds with just one sniff. The rat’s olfactory system appears to satisfy
both the independent sampling and neural mechanisms criteria for stereo odor
localization. According to the scientists, smelling in stereo has a number of evo-
lutionary advantages, including the ability to swiftly detect the presence of a
predator or prey with high precision [22,33]

On the other hand, in a totally dark environment, other senses come into
play, such as the use of whiskers, since rats have a rather poor vision system.
Whiskers change direction and allow the rat to move quickly in places it already
knows or to explore new territories if the environment is new [2]. One type of
neurons in the hippocampus are activated, the so-called place cells that respond
maximally when the animal is in a specific location in an environment [17]. From
these studies it is concluded that with little visual information, the rat activates
the senses of localization and smell to the maximum.

In terms of computation, the rats quickly learn a decision-making policy that
optimizes their way from anywhere in the maze to the food supply using only
position (place) and odor detection information, even in complete darkness.

This paper proposes an extended 2D maze model in which a new dimension
of odor is introduced to the environment in addition to the traditional location
information (R coordinate matrix). The aim is to construct RL agents that
emulate the learning behavior of rats operating in complete darkness while also
incorporating the senses of “place” and “smell”. A dispersion formula provides
a cheese odor gradient in the maze space, which serves as the odor dimension.
Additionally, the agent is equipped with odor sensors that are assembled into a
gradient detection mechanism which complements an olfactory system.

For the implementation of this approach, the maze is one of the most impor-
tant parts since using a modified Q-learning strategy generates an ideal scenario
for the agent to learn to optimize routes and generate the expected results.

1.1 Q-learning

The Q-learning algorithm is a well known Reinforcement Learning technique
first introduced in 1989 by J. Watkins for solving the Markov decision problems
with incomplete information. It works with an agent in an environment that
has to learn an action-value function that gives the expected utility for taking a
given action in a given state [19]. It can also be thought of as an asynchronous
dynamic method (DP). In other words, it enables agents to learn how to act
optimally in Markovian domains by observing the effects of their actions instead
of requiring them to build domain maps [32].

This agent-environment duo is widely used in data structures, educational
algorithms, and research [3]. In this paper, an agent uses Q-learning to learn an
efficient strategy by exploring and using place and odor sensors in a coordinated
manner. As usual in this algorithm, exploration requires taking into account
future events during the reward capture process.
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Table 1. Overview of the main related works results that suggest solutions to solve
the shortest path (STP) problem with Q-Learning, a RL algorithm.

Proposed
method

Problem Main results Reference

Multi-Q-table
Q-learning

Shortest path (STP) problem in a
maze with considerable sub-tasks
such as gathering treasures and
evading traps

Manage the trouble of the lower
average sum of compensations

[13]

ε-Q-learning Slowly convergence speed during
the location of the optimal paths in
a given environment

The suggested ε-Q-Learning can
find out more useful optimal paths
with lower costs of searching, and
the agent successfully evade all
barriers or traps in an unfamiliar
environment

[8]

ERTS-Q The interaction between the
environment and the agent for
collecting real experiences is
time-consuming and expensive

An adaptive tree structure
integrating with experience replay
for Q-Learning called ERTS-Q

[11]

Q-learning Loss of resources to solve mobile
robot maze

The robot can locate the briefest
way to solve the maze

[12]

Multi-agent
DQN system
(N-DQN)
model

Characteristics and conditions that
are associated with the
performance of reinforcement
learning

N-DQN offers approximately 3.5
times more elevated learning
performance compared to the
Q-Learning algorithm in the
reward-sparse environment in the
performance evaluation

[14]

Improved
Q-learning
(IQL)

Even though numerous studies
report the successful execution of
Q-learning, its slow convergence
related to the curse of
dimensionality could restrict the
performance in practice

The suggested techniques
accelerate the learning speed of
Improved Q-learning (IQL)
compared to traditional Q-learning

[18]

A algorithm
and
Q-learning

Path planning for wheeled mobile
robots on somewhat understood
irregular landscapes is challenging
since robot motions can be affected
by landscapes with insufficient
environmental information, such as
impassable terrain areas and
locally detected obstacles

The experimental results and
simulation demonstrate that the
developed path planning approach
provides paths that bypass locally
detected impassable areas and
obstructions in a somewhat known
irregular terrain

[34]

Bees
Algorithm
(BA) and
Q-learning
algorithm

Discover an optimal path in a
two-dimensional environment for a
mobile robot

The experimental results on
various maps to validate the
suggested method in the static and
dynamic cases demonstrate the
effectiveness and robustness of the
presented method in discovering
the optimal path

[4]
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2 Related Work

Several ideas and methods have emerged from the study of biological agents’
behavior and self-learning capacity in agent research, based on Q-learning and
agent automatic learning in an unknown environment.

In [15] it is shown how a group of children learn from a totally unknown
environment taking into account 2 conditions: Exploring freely into the maze
and find a reward within the maze. Children were divided into 3 groups related
to low, medium and high explorers. It was found that the later achieved a high
percentage of exploration of the environment and a better performance when
searching for rewards. An important conclusion is that children seem to have
and innate behavior oriented toward DFS algorithm.

In the work of [23] the behavior of 20 different agents (mice) was analyzed.
The mice were kept inside a cage next to a labyrinth. Half group have food and
water at all times, while the rest were deprived from them. With this research it
was appreciated how a biological agent is able to learn an efficient strategy from
an unknown environment with the help of experience and exploration.

In previous work [5] a robotic structure that imitates an amino acid chain
was proposed. Subsequently an agent uses reinforcement learning to explore new
forms of folding that will lead toward rewards in terms of energy stability. Here
the combination of two sensors, self bending and nearby molecules forces, is used
by the agent to learn how to fold into proteins looking shapes. The agent was
implemented with neural networks with a noise balance training algorithm.

In addition to these approaches, Table. 1 presents an overview of the most
representative recent articles that use Q-Learning to solve maze and optimiza-
tion problems. An initial search in Scopus using the keywords: “Maze, RL, Q
learning” gave us 93 documents, of which 16 have been published in the last
three years. This demonstrates the scientific interest in developing this type of
work.

3 Methodology

The methodology to develop this approach requires an adequate generation of
learning scenarios, the implementation of search algorithms and the RL approach
for the agent to explore and learn.

3.1 Maze Design: Environment

A maze is a puzzling way that consists of a different branch of passages where
the agent intends to reach his destination by finding the most efficient route in
the shortest possible time. By definition, the agent can only move in 4 quadrants
(up, down, left, and right), and walls cannot be passed through. The agent is
evaluated to be the best in this procedure based on the least amount of time or
steps required to reach the destination. There were various studies to automati-
cally execute maze search even before reinforcement learning was discovered and
explored. Figure 1 shows an illustration of a maze design.
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Fig. 1. Graph of a 3D maze showing the proposed idea represented in this experiment,
where as an illustration, the agent using RL is the rat and the target is represented by
a cheese.

There are many peculiarities to consider when simulating this scenario. In
real world, environments are multidimensional; for example, in a real-world
cheese maze, a piece of cheese will react instantaneously with the surrounding
air molecules, and a gradient of cheese odor will eventually penetrate the entire
volume of the maze due to natural rules governing the environment [21]. On the
other hand, odor information is hard to process because its high-dimensional
data, and large amounts of computation are required to distinguish or separate
odors. Odors are made up of a variety of odorant molecules (about 200–400
thousand). Most odor discrimination devices have been built for specific odors
to decrease the dimensions of odor information. [20,27].

Rats, on the other hand, have an intrinsic ability to extract information from
their environment using a highly developed set of sensors, including a strong
sense of smell and olfactory gradients, which complicates the experiment. These
rodents utilize it to improve their abilities to locate food sources fast in a maze
[7]. It’s important to note that if the food source is steady, the rat will utilize its
sense of smell to develop a policy that optimizes its path to the largest reward
in the shortest time possible [31]. This is the type of scenario addressed in this
work, in which odor plays an important part in the agent’s self-learning process.

To simulate the environment, we create a matrix R that depicts the maze’s
space as well as the distribution of rewards. Then, using an exponential decay
algorithm, a new dimension is provided by simulating the dispersion of the cheese
(reward) odor throughout the maze. This dispersion formula can be as compli-
cated as needed, and it can even incorporate a time variation.

Odor information is stored in a matrix S that has the same dimension as and
is bounded in space-time by the matrix R. The greatest value of odor in S is in the
same row-column location as the cheese in this arrangement. When agent is so
far away from the cheese, the intensity of the odor reduces exponentially. Figure 2
shows a graphical representation of the environment with colors representing the
odor intensity.
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Fig. 2. In the context of the analyzed environment, this 2D graphical representation
shows the odor gradient, the cheese (yellow) and the agent (red). (Color figure online)

For the purpose of this work a 28× 28 cell maze is used, where the agent has
to learn efficient policies using an expanded version of Q-learning where the sense
of location (place) and the sense of smell cooperate to learn efficient food loca-
tion policies. The agent’s learning capabilities are tested with Random Search
and Deep-Search First (DSF) modalities [24,30]. Finally, both implementations’
performance and outcomes are analyzed and compared.

3.2 Depth-First Search (DFS)

Reachability in a directed graph is frequently determined using depth-first search
in sequential algorithms. A depth-first spanning tree is built by recursively
exploring all successors from a given vertex. Each vertex is marked before vis-
iting its successors to avoid looping, and a marked vertex is not searched again
[28].

DFS is a technique for traversing a graph that uses a last-in, first-out (LIFO)
scheme and a stack as the underlying data structure [26]. Following the LIFO
concept, insertion (push) and removal (pop) are performed at the top or front
[10].

DFS on a graph with n vertices and m edges takes O(m + n) runtime. DFS
traversal starts at one vertex and branches out to corresponding vertices until
it reaches the final or destination point. DFS traversal of a graph performs the
following [26]:

– Visits all vertices and edges of G
– Determine whether G is connected
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– Computes the connected components
– Computes the spanning forest of G

This algorithmic approach together with a random search are used in this
work to compare the effectiveness of our approach in combination with the new
dimension we incorporated: odor.

3.3 How the Agent Explores and Learns

Efficient maze solving plays a key role in some branches of Artificial Intelligence
[25]. The Q-learning algorithm, in particular, is an effective way for enabling
agents to capture rewards and learn an optimal policy in maze path solutions.
The agent main goal is to interact with the environment (maze) by trial and
error, and use evaluative feedback systems (rewards and penalties) to achieve
decision-making optimization [29].

The learning process begins after the multidimensional environment has been
prepared. The first step is for the agent to begin exploring and determining the
optimal policies by itself. This is accomplished by a modified version of the
conventional Q-learning method, in which the agent takes input from both the
R and S matrices to make a choice. The outcome of these choices is stored in a
Q matrix, which finally becomes the optimal policy.

In order to fill the knowledge matrix Q, the Bellman equation is used, which
is defined as:

Q(s, a) = R(s, a) + γ · max
a′

Q(s′, a′) (1)

The concept is that when the agent finds the cheese, Q gets filled depending
on the immediate reward in R as well as the highest possible reward from Q
based on future states. The gamma parameter, often defined as the discount
rate, determines the contribution of future steps.

In our model, the smell matrix S is the one that supplies the data that will be
used, thereby transforming it into a reward matrix that considers odor gradient.
As a result, the Bellman equation is as follows:

Q(s, a) = S(s, a) + γ · max
a′

Q(s′, a′) (2)

Using both Random Search and Depth-First Search algorithms, the impacts
of having a new odor dimension in the maze environment and an improved agent
with odor sensing skills are evaluated. When odor capacities are activated, the
agent now considers data from R or S in its decision-making, and the learning
process becomes more efficient and closer to biological processes.

The Random Search algorithm is an adaptation of the original method with
minor changes. Normally, Random Search would be unconcerned by odor, but
in this case, with a gradient to take, the agent’s behavior is more greedy and
odor-oriented. To prevent gradient traps, the agent’s decision-making is also
Markovian. When the odor gradient is insufficient to cover the entire maze, the
agent reverts to random decision-making. In this way, the agent’s search strategy
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Algorithm 1: Odor Random Search Pseudocode
do

if there is no odor around then
Move to a random neighbor.

else
Search the best neighbor according to S.
Move to that neighbor.

end
Update Q according to (2).

while reward not captured ;

devolves into a random search aided by odor. Algorithm 1. shows the algorithm
that controls the behavior of this type of agent.

In the case of the DFS approach, the algorithm performs as expected, that
is, it creates the DFS path and visited lists. The main loop then utilizes DFS
and the odor to determine where to move, then executes the move and stores
the information. This is shown in Algorithm 2.

Algorithm 2: Odor DFS Main Pseudocode
Initialize the path list P .
Initialize the visited list V .
Put the agent in a random starting position.
do

Use Odor DFS to get the next move.
Make the move.
Search the best neighbor (according to Q).
Update Q according to (2).

while reward not captured ;

The environment, the path and visited sets, the knowledge matrix, and the
agent’s initial position are used by the Odor DFS method. The ideal route for
solving the maze determined by the algorithm is P , whereas V represents all the
cells visited by the agent during the procedure. This method functions similarly
to a standard DFS, with the exception that it makes decisions using the S matrix
and chooses the agent’s next step in a markovian way rather than traversing the
entire maze at once. Algorithm 3 illustrates this approach.

3.4 Implementation Details

The algorithm was implemented using C++ and the Borland C++ graphic
libraries. The code was run in an Intel Core i5 processor of 10th generation
@ 1.00 GHz. The programs used for the project are hosted in this GitHub repos-
itory: https://github.com/StadynR/q-learning-multidim-maze.

https://github.com/StadynR/q-learning-multidim-maze
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Algorithm 3: Odor DFS Pseudocode
Save the current position in both P and V .
Initialize the unvisited list U .
Get the unvisited neighbors from the current position and save them in U .
if U is empty then

Remove the current position from P .
Backtrack to get the next move.

else
Search the best unvisited neighbor according to S.
Get the next move from the previous step.

end
return the next move.

4 Results

The simulation was performed with and without the odor gradient to determine
the efficiency of the additional dimension. This means that the following four
scenarios were explored: Random Search, Odor Random Search, DFS, and Odor
DFS. In the non-odor cases, equation (1) was used to fill Q, while in the opposite
cases, Equation (2) is used. For every case, the simulation was run in a total of 10
instances. An instance is the period of time that the agent takes to learn, i.e., the
time in which the Q matrix is stabilized (does not change between iterations).
Total execution time and total steps were used to determine the duration of the
instances.

Table 2. Results of the runs of the algorithms: Random Search, Odor Random Search,
DFS, and Odor DFS.

Random Search Odor R. Search DFS Odor DFS

Instance Time (s) Steps Time (s) Steps Time (s) Steps Time (s) Steps

1 4023.777 135869 1540.11 44341 134.283 3710 208.202 5667

2 3427.708 115328 1648.718 45788 311.473 9730 262.389 7656

3 1566.016 59395 3257.644 56041 235.346 6673 208.767 5594

4 5010.259 192674 1508.734 42475 270.83 7807 228.717 6431

5 3932.311 126950 1755.688 47486 147 4211 273.018 7746

6 6673.376 184338 1665.358 46345 285.029 8948 129.092 3656

7 6403.862 215333 932.847 25821 220.893 6569 205.488 5859

8 4941.812 150560 860.624 28770 274.576 7783 78.892 2267

9 2683.155 94152 1420.08 39247 259.253 7747 259.264 7392

10 4120.635 137179 1869.393 53112 240.848 6848 289.283 8236

Table 2 shows the results when the agent uses Random Search to fill the Q
matrix. It takes an average of 141178 steps and 4278.291 s to reach a stable
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Q matrix. The values obtained are very high due to the fact that the agent
uses a totally Random Search. In the same table, the improvement in learning
efficiency when the agent uses Random Search supported by the Odor gradient
(Odor Random Search), which information is taken from the S matrix. It takes
and average of 42942 steps and 1645.92 s to reach a stable Q matrix. In this
search, the results improve greatly due to the odor gradient that guides the
agent.

When the agent uses DFS to fill the Q matrix, the utilized stop criteria is
the same as the rest. It takes an average of 7002 steps and 237.953 s to stabilize
the matrix Q. With this type of search, the agent has a great advantage over all
the previous techniques. It is one of the most stable compared to the others.

In addition, the improvement in learning efficiency when the agent uses DFS
assisted by the odor gradient is shown in the same table (Odor DFS). This
technique presents the lowest average in both number of steps and seconds to
achieve stabilization of the Q matrix, with 6050 steps and 214.311 s. This last
type of search turns out to be the best of all, giving very low search averages,
therefore being the fastest method for learning.

Finally, Fig. 3 shows the comparison between the four types of search, taking
as parameters the instances and the steps needed to stabilize the Q matrix in
each of them. It is clearly noticeable that the most unstable results are obtained
when the agent explores its environment in a random manner. At the same time
there is a great difference between pure random search with the other three
methods, with Odor DFS being the most stable and appropriate technique for
the agent studied.

Fig. 3. Comparison of the evolution of instances vs steps of the different results of the
executed algorithms.



Q-Learning in a Multidimensional Maze Environment 227

5 Discussion

As can be observed from the results, introducing an odor matrix aids the agent’s
decision-making while also complicating it. In particular, if we compare each pair,
we can clearly see the improvement. The difference between random search and
odor random search is significant, with odor random search learning 3 times
faster (using average steps as a measure) than its non-odor counterpart. Odor
random search appears to be a viable option for more complex maze traversal
strategies.

When we look at the DFS-odor pair, the improvement is a small but sig-
nificant 1.16 ratio. It’s astonishing that odor matrix information can increase
the performance of a top contender, given that DFS is one of the most efficient
search algorithms known, used by biological entities with millions of years of
evolution.

Random search (both odor and non-odor) frequently stabilizes Q in less
episodes than DFS, which is worth noting. This is because DFS is highly direct
and prioritizes speed above maze coverage, whereas random search usually ends
up traversing the majority, if not all, of the maze cells. This suggests that ran-
dom search fills Q with more information in a single episode than DFS. Even so,
on a wide scale, this fact is immaterial since, while DFS requires more episodes,
the steps and time spent in each episode are significantly lower than in random
search, making DFS solutions a clear winner.

In general, it is evident that adding odor as a new dimension not only allows
for more realistic maze models to be created, but it also improves the agent’s
behavior and learning speed. In fact, by including more matrices into the model,
additional dimensions can be added to the simulation.

6 Conclusions

This paper added a new point of view to the classical rat in a maze scenario,
in which an agent must learn a policy that optimizes reward capturing paths
during exploitation. The additional dimension reflects a cheese odor gradient
that occurs naturally in real-life scenarios; it is represented by the matrix S
and constructed using an exponential decay dispersion algorithm. Along from
its sense of location, the used agent has a rodent-like sense of smell, which allows
it to identify odor gradients that aid in decision-making and efficient learning.

In a random search situation, a computer simulation shows that coordi-
nating the senses of place and smell greatly improves the Q-learning process,
which becomes up to three times more efficient. The DFS ambient also shows an
increase in learning efficiency, which is a notable feat inside a high-performance
method. The proposed technique enables the addition of extra dimensions and
the creation of more realistic maze models.
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7 Future Work

In principle, other dimensions could be incorporated to obtain more realistic
maze models. For example, our research team has performed initial tests with
an additional matrix U of self-generated odor, typical in the rodent world and
created by urination, special glands, among others. Another proposal would be
to implement this type of approach to solve more complex optimization problems
such as finding optimal routes in situations that require moderate use of compu-
tational power. Another additional approach would be to compare our algorithm
with metaheuristic algorithms focused on solving the rat in a maze problem, to
know how better or worse our algorithm performs in comparison. Ultimately,
this research can be used as a way to improve on the methods exposed, and
create simulations closer and closer to the real world.
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