
Using Institutional Purposes to Enhance
Openness of Multi-Agent Systems

Rafhael R. Cunha1,2(B) , Jomi F. Hübner2 , and Maiquel de Brito3

1 Federal Institute of Education, Science and Technology of Rio Grande do Sul
(IFRS), Campus Vacaria, Vacaria, Brazil

2 Department of Automation and Systems Engineering,
Federal University of Santa Catarina, Florianópolis, Brazil
rafhael.cunha@posgrad.ufsc.br, jomi.hubner@ufsc.br

3 Control, Automation, and Computation Engineering Department,
Federal University of Santa Catarina, Blumenau, Brazil

maiquel.b@ufsc.br

Abstract. In this paper, we consider a programmer who needs to
develop an agent to publish information on different existing social net-
works. Several works in the literature allow the interaction of agents
with a social network, but as far as we know, they are not focused on the
interaction with several networks. Considering this problem, the paper
highlights two options the programmer can take to enable the agent
to interact with existing social networks and achieve its goal. The first
option requires that the programmer knows the features present in the
APIs used to interact with social networks, and the consequences that
the functions can bring when executed in the system. The second option
uses the institutional notion of purpose aiming to reduce the amount of
previous knowledge required by the programmer. The paper aims to dis-
cuss the advantages and disadvantages of these options considering the
development of open multi-agent system. A JaCaMo implementation of
both options is used the help the evaluation.

Keywords: Agent programmer · Artificial institutions · Purposes

1 Introduction

We have recently witnessed a massive diffusion of social networking based on
web applications that have quickly become an unprecedented cultural phe-
nomenon [7]. Such web applications allow members to publish personal infor-
mation in a semi-structured form and to define links to other members with
whom they have relationships of various kinds [4]. These applications are avail-
able for both human and software agents, allowing them to enter and leave the

This study was supported by the Federal Institute of Education, Science and Technol-
ogy of Rio Grande do Sul (IFRS).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Dignum et al. (Eds.): PAAMS 2022, LNAI 13616, pp. 88–99, 2022.
https://doi.org/10.1007/978-3-031-18192-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18192-4_8&domain=pdf
http://orcid.org/0000-0003-3233-5158
http://orcid.org/0000-0001-9355-822X
http://orcid.org/0000-0003-4650-7416
https://doi.org/10.1007/978-3-031-18192-4_8


Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 89

system to achieve their goals. Therefore, these applications can be considered as
an open multi-agent systems (MAS).

Software agents may pursue the same goals in the different available social
network systems. In this context, imagine an agent developer who needs to pro-
gram the agent Bob whose goal is to publish information on different social
networks. Existing proposals for interaction between agents and social net-
works [1,2,8,16] adopt ad-hoc solutions that require that the developer knows
each social network and implements the necessary actions for the agent to reach
its goal in these systems. The main drawback of this approach is that the devel-
oper needs to know the peculiarities of each social network application and
program the agents with the necessary actions to interact with each one or,
conversely each particular system needs to be programmed in a way that is
compatible with the agent specifications.

Besides requiring a specific program for every different system, there are
other disadvantages of current approaches. To understand them, consider that
Bob is programmed to achieve its goal (i.e., information published) by sending
a text through a method called tweet on the social network Twitter. Also con-
sider that Bob has an anti-goal (i.e., a state of the system it avoids [3]) of fake
news spread. First, suppose that new actions become available or existing ones
are modified. The developer needs to know about these new methods or modi-
fications and change Bob’s program to keep it working on this system. Second,
suppose that other actions produce similar effects. For example, consider that
for some reason the social network Twitter is currently unavailable. To achieve
its goal, Bob could publish this information on another social network (e.g.,
Instagram). However, the developer did not specify in Bob’s program that a
similar action performed on another social network produces similar practical
effects. To handle this situation, the developer has to know the practical effects
of actions and program Bob to act on different systems, or the different systems
have to be compatible with Bob’s specification. Third, suppose that the actions
programmed into the agent’s program bring unwanted effects to the system. For
example, consider that the action tweet produces two effects on the system: (i)
it publishes information, that is the goal of Bob, but (ii) it spreads fake news,
that is an anti-goal of Bob. The developer needs to know all the effects of the
action and evaluate whether or not to program the agent to perform the action
to achieve the agent’s goal.

Considering these limitations, we propose a solution that moves part of the
programmer task to the agent, using its reasoning capabilities. For that, we
instrument the system based on social concepts already proposed in the litera-
ture, which are institutions [20,21] and purposes [10,11]. Both concepts, when
combined, allow the system to make explicit to the agents what are the effects
in the environment of performing certain actions in the system. The agents can
then relate these effects to their (anti) goals. The connection between available
actions and their effects is moved from the agents program (as defined by the
programmer) to the institution where they act. Possible changes in these con-
nections, in the actions, or in their effects require changes in the institutional



90 R. R. Cunha et al.

specification while the agents remain unchanged. Besides, the agents can move
along different systems looking for satisfying their goals based on the desired
effects of the available actions even if these actions are unknown a priori. In this
paper, we illustrate this approach through a practical example, which supports a
discussion about the advantages and disadvantages of this programming model.

This paper is organized as follows: Sect. 2 introduces the main background
concepts necessary to understanding the model used in this work and its required
interfaces. Section 3 illustrates how the use of artificial institutions and pur-
poses facilitates the development of agents capable of acting in different systems.
Section 4 identifies and discusses some limitations and advantages that the use
of the purpose model offers for MAS programming from the agent programmer’s
perspective. Finally, Sect. 5 presents some conclusions about this work and sug-
gests future works.

2 Artificial Institutions and Purposes

The essential elements of the model used in this work are agents, (anti) goals,
institutions, and purposes, depicted in the Fig. 1. Agents are autonomous entities
that can interact within a dynamic environment composed of non-autonomous
elements to achieve their goals [23]. The literature presents several definitions
of goal that are different but complementary to each other (see more in [5,13–
15,18,22]). In this work, goals are states that agents aim to achieve. According
to Aydemir, et.al [3], anti-goal is an undesired situation of the system. In this
work, anti-goal represents states that agents aim to avoid for ethical reasons,
particular values, prohibitions, etc. Moreover, agents can perform actions that
trigger events in the MAS. States are formed by one or more properties that
describe the characteristics of the system at some point of its execution [9].

State

System

Constitutive Rule Status-Function Agent

goal
1..* 1..*

1..*

Purpose
anti-goal

1..*

1..*

1..*

Event
action

EnvironmentInstitution

1..*
1..*

1..*
1..*

Fig. 1. Overview of the model.

Institutions provide social interpretations for the environment elements that
compose the system. They are simplified here to be based on two concepts:
Status-functions and Constitutive rules [20,21]. Status-functions are status that
assign functions to the elements. These functions cannot be explained through



Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 91

their physical virtues. For example, the status buyer assigns to an agent some
functions such as performing payments, taking loans, etc. Constitutive rules spec-
ify the assignment of status-functions to elements with the following formula: X
count-as Y in C. For example, a piece of paper count-as money in a bank,
where X represents the environmental element, Y the status-function, and C
the context where the constitution is valid. The assignment of status-functions
to environmental elements is called constitution and creates institutional facts,
which gives rise to institutions. Artificial Institutions (or simply institutions) are
the component of the MAS that is responsible for defining the conditions for an
agent to become a buyer, or an action to become a payment [20,21].

The functions associated with status-functions can satisfy the practical inter-
ests of agents [21, p.20]. From the institution’s perspective, we call these interests
as Purposes. From the agents’ perspective, these interests are their goals or anti-
goals. Then, we claim that (i) goals and anti-goals match with the purposes of
status-functions and (ii) goals, anti-goals and purposes point to environmental
states related to the status-functions. For example, when an agent performs an
action that constitutes tweet, this makes possible the execution of other interme-
diate actions that bring the system to states such as information published (i.e.,
the agent goal) or fake news spread (i.e., the agent anti-goal). The intermediate
actions (e.g., server receives the message, filter the message if necessary, etc.)
between the constitution of the status-functions and the environmental states
being reached are ignored in our proposal, since we consider that the agent is
not interested in these intermediate steps.

Shortly, this model provides two relationships: (i) between purposes and
status-functions and (ii) between purposes and agent goals and anti-goals. Thus,
if (i) there is a constitutive rule specifying how a status-function is constituted,
(ii) a purpose associated with that status-functions, and (iii) an agent has a goal
or anti-goal that matches with the states pointed to by the purpose, then (iv) it
is explicit how the agent should act to achieve its goal or avoid its anti-goal. In
the previous example, the programmer can use these two relations in the agent
code to program two queries: (i) a query to find which states the purposes point
to and that match the agent goals or anti-goals and (ii) a query to find out
which status-function is associated with the found purposes. Thus, for exam-
ple, the agent can find that the purpose of transmitting information points to
the information published state which matches the goal and that the purpose of
transmitting information is associated with the tweet status-function. Therefore,
if the agent constitutes tweet, it achieves its goal in this system.

3 Implementing a Multi-agent System with and Without
the Purpose Model

This section illustrates how the use of artificial institutions and purposes facili-
tates the development of agents towards acting in different systems. We describe
the development of a multi-agent system without using and then using the model
described in Sect. 2. For this, we recall the example where Bob wants to achieve



92 R. R. Cunha et al.

its goal of information published on different social networks. It is assumed that
different programmers develop each social network and that the development of
the agent has no influence on this. While the example focuses on the achieve-
ment of goals, it is important to make it clear that the model could be used to
deal with anti-goals. For example, Bob could have a belief in a schedule that
describes its anti-goals. Knowing that a certain action could bring about an
anti-goal state for it, it could reason about and avoid or not the execution of the
action according to its interests.

The example is implemented through the components depicted in Fig. 2.
Agents are programmed in Jason [6] and the environment in CArtAgO [17]. A
CArtAgO artifact encloses specific APIs and provides actions for the agents to
act upon each social network. For the artificial institution, we use an implemen-
tation of the Situated Artificial Institution (SAI) model [12]. It provides means
to specify status-functions and constitutive rules and to manage the constitution
process. The purpose model is implemented through an ontology encapsulated
in a CArtAgO artifact which is accessible to the agents. The query and persis-
tence of data in the ontology are enabled by the MasOntology1, a set of tools
developed in CArtAgO to interact with ontologies2

Fig. 2. Component diagram with the systems used to compose the example.

This section is organized as follows: Subsect. 3.1 describes a first implemen-
tation that does not use of the proposed model. For this implementation, the
programmer needs to know all the actions that the agent must perform on each
system it interacts with. Therefore, the program of the agents and the systems
that it interacts with are tightly coupled. Subsection 3.2 describes a second
implementation that uses the proposed model. In this implementation, the pro-
grammer does not need to know the actions that the agent should perform to
interact with other systems because they can be discovered at runtime. There-
fore, the program of the agents and the systems it interacts with are loosely
coupled.

1 https://github.com/smart-pucrs/MasOntology.
2 An initial implementation of this platform can be found in https://github.com/

rafhaelrc/psf model..

https://github.com/rafhaelrc/psf_model.
https://github.com/rafhaelrc/psf_model.


Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 93

3.1 Implementation Without Institutions and Purposes

In this section, we consider a scenario where there is no institution or purposes.
For this reason, the connection between the available actions and the goals must
be coded in the agent. The programmer should thus previously know these imple-
mentation details for all the social network systems. This program corresponds
to a first alternative for moving the system from the state S1 (where Bob desires
to reach its goal) to the state S2 (where Bob has reached its goal).

1 !infoPublished.

2

3 +! infoPublished : knet(Twitter) <- sendMessageByTwitter.

4 +! infoPublished : knet(Telegram) <- talkWithBot.

5 +! infoPublished : knet(Instagram) <- uploadAPIcture.

6 +! infoPublished : knet(Facebook) <- uploadAMessage.

Listing 1.1. Bob’s program.

Listing 1.1 contains part of the Bob’s program. In this implementation we
assume that when the agent enters different systems, it acquires the belief
knet(S) where S ∈ {twitter, telegram, instagram, facebook} is the name of the
system where the agent is currently acting. Bob’s goal is specified in line 1. The
plans that Bob may execute to achieve its goal are outlined between lines 3 and
6. The plan that Bob executes depends on which social network it is interacting.
Consider that Bob starts believing in knet(Facebook) when it enters the Facebook
system. The next step, Bob chooses which plan should be executed to achieve
its goal. Looking at the available plans and their respective contexts, Bob selects
the plan in line 6. Then Bob performs the action called uploadAMessage. At this
point it is important to be clear that the available actions (e.g., uploadAMessage,
talkWithBot, etc.) are not provided by the social network systems. Rather, they
are implemented in the CArtAgO artifact that provides access to the APIs of the
social networks. This action causes some consequences in the system, including
switching the system to a new state where Bob achieves its goal of information
published. In this example, we highlight that, to write the program of Bob, the
programmer of Bob needs to know the actions and their consequences for each
system in which Bob interacts.

3.2 Implementation with Institutions and Purposes

In this section, we consider a scenario where the social network systems include
implementations of institutions and purposes. For this reason, the connection
between available actions and their effects is moved from the agents to the sys-
tems where they act. The programmer does not need to know the implementation
details of the social network systems. Figure 3 depicts an overview of the imple-
mentation. This program is a second alternative for moving the system from
state S1 to state S2.



94 R. R. Cunha et al.

Constitutive specification

... count-as messageByTelegram

... count-as postByInstagram

... count-as postByFacebook

... count-as tweet

.. hasPurpose transmit information

transmit information
brings the state ...

Purpose specification

Environmental state

Bob

information
published

State S1

Environmental state

Bob

informationpublished

State S2

Fig. 3. Implementation overview with institutions and purpose.

In this program, we assume that (i) each system has a specification of the
constitutive rules that make up the institution and (ii) each system has a pur-
pose specification that is related with (a) the status-functions and (b) the states
of the world that the purpose points to. These specifications are shown in list-
ings 1.2, 1.3, 1.4 and 1.5. We also assume that the agent has runtime access to
the institutional and purpose specifications of each system.

status_functions : tweet

tweet has purpose of: transmit information

transmit information brings the state information published

Constitutive_rules:

1: sendMessageByTwitter count -as tweet.

Listing 1.2. Twitter Institutional and Purpose Specification

status_functions : messageByTelegram

messageByTelegram has purpose of: transmit information

transmit information brings the state information published

Constitutive_rules:

1: talkWithBot count -as messageByTelegram.

Listing 1.3. Telegram Institutional and Purpose Specification

status_functions : postByInstagram

postByInstagram has purpose of: transmit information

transmit information brings the state information published

Constitutive_rules:

1: uploadAPicture count -as postByInstagram.

Listing 1.4. Instagram Institutional and Purpose Specification



Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 95

status_functions : postByFacebook

postByFacebook has purpose of: transmit information

transmit information brings the state information published

Constitutive_rules:

1: uploadAMessage count -as postByFacebook.

Listing 1.5. Facebook Institutional and Purpose Specification

Listing 1.6 illustrates Bob’s program. Bob’s goal is specified on line 1 and
does not change regardless of which system Bob interacts with. At this point it
is important to be clear that the actions from lines 4 to 6 are available by the
institutional infrastructures of the different systems in which Bob can interact.
Each institution has a CArtAgO artifact that allows the agent to access infor-
mation related to institutional specification and purposes. Each system has also
a CArtAgO artifact developed by us that allows access to an API that interacts
with that social network. Given Bob’s program access to the institutional and
constitutive specifications of each system, the programmer of Bob can implement
it with a generic plan that helps Bob to achieve its goal on many systems. The
plan has the following steps: (i) discover the purpose that points to the desired
state (line 4), (ii) discover the status-function associated with the found purpose
(line 5), (iii) discover which concrete action can constitute the status-function
(line 6) and finally perform the concrete action (line 7). Figure 3 depicts, through
the green arrows, the steps described in descending order (i.e., after the action
is performed). As an example, consider that Bob’s program should interact with
the social network Twitter and Listing 1.2 which describes the institutional spec-
ification of purposes for this system. To do this, Bob’s program identifies the plan
to be executed (lines 3–7). When executing the plan, some information is dis-
covered at runtime: First, Bob queries the purpose that points to the desired
state. The name of the purpose is transmit information. Second, Bob queries
which status-function is associated with the transmit information purpose. The
status-functions name is tweet. Third, Bob queries what concrete action can con-
stitute the tweet status-function. The action name is sendMessageByTwitter.
Finally, Bob performs this action.

1 !infoPublished.

2

3 +! infoPublished

4 <- getPurposesOfState(infoPublished ,NamePurposes);

5 getStatusFunctionsFromPurposes (NamePurposes ,

NameStatusFunction);

6 ?constitutive_rule(Action ,NameStatusFunction ,_,_);

7 Action.

Listing 1.6. Bob’s program using institutions and purposes.

The difference between this implementation and the one described in Sect. 3.1
is that it uses mechanisms (i.e., institutions and purposes) that make explicit (i)
the statuses that can be assigned to concrete actions when executed in the system



96 R. R. Cunha et al.

and (ii) the intrinsic functions related to these statuses, called purposes, which
describe the states that can be reached in the system related to the status-
functions. The execution of the selected action (line 7) constitutes a status-
function whose purposes point to environmental states desired by the agent. The
advantages of this approach from the programmer’s point of view are discussed
in the next section.

4 Discussion About both Implementations

In this section we discuss some limitations in Bob’s program from Sect. 3.1 (called
from now on Program 1 ) that are overcome in Sect. 3.2 (called from now on
Program 2 ). These limitations are due to the tight coupling between the agent
specification and the systems in which it operates and can be observed from
(i) the point of view of the system implementation and (ii) the abstractions
necessary to develop of the system.

From the perspective of system implementation, Program 1 requires that the
programmer code all the functions that are necessary for the agent to interact
with different social networks and know their consequences when executed. Or,
conversely, each social network should be compatible and prepared to work with
the agent. However, (i) whenever new actions are added, or existing actions are
extinguished in the social network API, Bob’s program must be updated; (ii)
every different action that produces the same effect must be coded in the agent
to be exploited in running time; (iii) if the practical effects of the action bring
other consequences not foreseen or unwanted by Bob’s program, the program
may not function properly.

In program 2 the limitations from the perspective of system implementation
are overcome because the connection between available actions and their effects is
moved from the agents to the systems where they act. Possible changes in these
connections, in the actions, or in their effects require changes in the systems
while the agents remain unchanged. This modification brings advantages to the
system: (i) if new actions are added, or existing ones are modified, the agent’s
program remains stable as long as the changes are incorporated by the institu-
tions (through the addition of new constitutive rules that reflect these changes);
(ii) The agent can exploit any action that produces the desired effect without
any additional coding since it acts based on the effects of the actions (connected
to the purposed) instead of acting based on the actions themselves; (iii) if some
actions bring undesired practical effects by the agent program, the program can
use this information in its decision process as long as these practical effects are
pointed out through the purposes specification.

From the perspective of abstractions necessary to develop the system, Pro-
gram 1 requires the programmer to know all the abstractions needed to code Bob
to interact with different systems to achieve its goal. The connections between
(i) the actions that Bob has to perform, (ii) their consequences on the system,
and (iii) the satisfaction of bob’s goal are implicit (they exist only in the mind
of the programmer). If the programmer does not know any of this information,
s/he may have trouble programming the agent.



Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 97

In program 2 the limitations on the perspective of abstractions needed to
implement the system are overcome because the connections between the actions
that Bob has to perform and its effects are moved to the institutional and pur-
pose specifications respectively, allowing agents to be able to relate them to
the satisfaction of its goals. So, the programmer can focus on other aspects of
the agent. The programming of the other dimensions of the system (institution,
purpose, etc.) is left to other programmers.

5 Conclusions and Future Work

This paper aims to discuss the advantages in programming agents for an open
MAS composed of artificial institutions and purposes. From the programmer’s
perspective, there are some advantages to using the solution presented in this
paper. The first is related to the adaptability of the developed agent to act in
different systems. If the program is designed to discover which purposes match
the agent’s goal and then which status-functions that when constituted creates
the possibility of states pointed out by the purposes, the agent’s program keeps
working on any system that provides this information as long as the purposes
related to status-functions match to states of the environment desired by the
agents. Therefore, the programmer can code the agent to interact with different
systems without modifying the program whenever the agent moves to another
system. Second, by externalizing the effect of actions to other appropriate con-
cepts (i.e., institutional purposes), part of the programmer task (i.e., to code
plans for each system) is delegated to the agent reasoning.

From the agents’ perspective, there are some advantages of using the solution
presented in this paper. One of them is the improvement in the agent’s decision-
making since it has more information available to help it to decide whether to
achieve its goals or avoid its anti-goals. Agents can access and reason about the
environmental states pointed to by the purposes and adapt themselves to differ-
ent scenarios. They can (a) notice that some purposes point to environmental
states that match to their interests and therefore useful to reach their goals
and (b) avoid these environmental states because they are match to their anti-
goals. The agent understanding about what makes its goal satisfied or what it
can avoid to not satisfy anti-goals are important advances in its autonomy [19].
In this case, the agent can reason about the actions and regulative rules that
govern the system. In both cases, the agent has more information while decid-
ing whether a particular action will help it or hinder. Some advantages can be
observed from an institutional point of view, which are detailed in [10].

While social networks are used to illustrate the approach, the proposal can
be applied in several other scenarios. The problem presented can be generalized
to the fact that (i) the agent has a goal that can be satisfied in different systems
and that (ii) these systems make explicit the connections that exist between
their actions and effects. From this generalization, consider the scenario where
an agent needs to make a purchase on different websites. The way to solve
this problem is similar to that presented in this paper, considering that (a) the



98 R. R. Cunha et al.

programmer codes the agent to search for the actions it has to perform on each
website it accesses and (b) the websites describe the actions that are available and
the effects of those actions when performed. Therefore, problems that present
similar characteristics can use the solution presented in this paper to enable the
solution.

As future work, we plan to explore some aspects related to the proposal, such
as (i) the relation between purposes and the values of the agents, (ii) discovering
the learning curve for the programmer to use the purpose model, (iii) investi-
gating additional advantages of the use of the purpose model and (iv) assess
whether the design of the complete system becomes more dynamic or prolonged
if it externalizes the concepts that make the necessary connections to make the
program more flexible.

References

1. Abreu, J.V.F.: AgentBotSpotter: a multi-agent system for online Twitter bot detec-
tion. Ph.D. thesis, Universidade de Braśılia (2021)

2. Amaral, C.J., Hübner, J.F.: Jacamo-web is on the fly: an interactive multi-agent
system IDE. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019.
LNCS (LNAI), vol. 12058, pp. 246–255. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51417-4 13

3. Aydemir, F.B., Giorgini, P., Mylopoulos, J.: Multi-objective risk analysis with goal
models. In: 2016 IEEE Tenth International Conference on Research Challenges in
Information Science (RCIS), pp. 1–10. IEEE (2016)

4. Bergenti, F., Franchi, E., Poggi, A.: Enhancing social networks with agent and
semantic web technologies. In: Collaboration and the Semantic Web: Social Net-
works, Knowledge Networks, and Knowledge Resources, pp. 83–100. IGI Global
(2012)

5. Boissier, O., Bordini, R.H., Hubner, J., Ricci, A.: Multi-agent oriented program-
ming: programming multi-agent systems using JaCaMo. MIT Press (2020)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)

7. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship.
J. Comput.-Mediat. Commun. 13(1), 210–230 (2007)

8. Calvaresi, D., Calbimonte, J.P., Dubosson, F., Najjar, A., Schumacher, M.: Social
network chatbots for smoking cessation: agent and multi-agent frameworks. In:
2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp.
286–292. IEEE (2019)

9. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer,
Cham (2008)

10. Cunha, R.R., Hübner, J.F., de Brito, M.: Coupling purposes with status-functions
in artificial institutions. arXiv preprint arXiv:2105.00090 (2021)

11. Cunha, R.R., Hübner, J.F., de Brito, M.: A conceptual model for situating purposes
in artificial institutions. Revista de Informática Teórica e Aplicada 29(1), 68–80
(2022)

12. de Brito, M., Hübner, J.F., Boissier, O.: Situated artificial institutions: stability,
consistency, and flexibility in the regulation of agent societies. Auton. Agent. Multi-
Agent Syst. 32(2), 219–251 (2017). https://doi.org/10.1007/s10458-017-9379-3

https://doi.org/10.1007/978-3-030-51417-4_13
https://doi.org/10.1007/978-3-030-51417-4_13
http://arxiv.org/abs/2105.00090
https://doi.org/10.1007/s10458-017-9379-3


Using Institutional Purposes to Enhance Openness of Multi-Agent Systems 99

13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44631-1 16

14. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Declarative goal patterns for agents-
peak. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006) (2006)

15. Nigam, V., Leite, J.: A dynamic logic programming based system for agents
with declarative goals. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS
(LNAI), vol. 4327, pp. 174–190. Springer, Heidelberg (2006). https://doi.org/10.
1007/11961536 12

16. Pérez-Marcos, J., Jiménez-Bravo, D.M., De Paz, J.F., Villarrubia González, G.,
López, V.F., Gil, A.B.: Multi-agent system application for music features extrac-
tion, meta-classification and context analysis. Knowl. Inf. Syst. 62(1), 401–422
(2019). https://doi.org/10.1007/s10115-018-1319-2

17. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192
(2011)

18. van Riemsdijk, B., van der Hoek, W., Meyer, J.J.C.: Agent programming in dribble:
from beliefs to goals using plans. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 393–400 (2003)

19. Rodriguez-Aguilar, J.A., Sierra, C., Arcos, J.L., Lopez-Sanchez, M., Rodriguez,
I.: Towards next generation coordination infrastructures. Knowl. Eng. Rev. 30(4),
435–453 (2015). https://doi.org/10.1017/S0269888915000090

20. Searle, J.: Making the social world: The structure of human civilization. Oxford
University Press, Oxford (2010)

21. Searle, J.R.: The Construction of Social Reality. Simon and Schuster, New York
(1995)

22. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: International Conference on Principles
of Knowledge Representation and Reasoning. Morgan Kaufman (2002)

23. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2009)

https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/11961536_12
https://doi.org/10.1007/11961536_12
https://doi.org/10.1007/s10115-018-1319-2
https://doi.org/10.1017/S0269888915000090

	Using Institutional Purposes to Enhance Openness of Multi-Agent Systems
	1 Introduction
	2 Artificial Institutions and Purposes
	3 Implementing a Multi-agent System with and Without the Purpose Model
	3.1 Implementation Without Institutions and Purposes
	3.2 Implementation with Institutions and Purposes

	4 Discussion About both Implementations
	5 Conclusions and Future Work
	References




