
Multiagent Pickup and Delivery
for Capacitated Agents

Evren Çilden(B) and Faruk Polat

Middle East Technical University, 06800 Ankara, Turkey
{evren.cilden,polat}@ceng.metu.edu.tr

Abstract. In Multi-Agent Pickup and Delivery (MAPD), multiple
robots continuously receive tasks to pick up packages and deliver them
to predefined destinations in an automated warehouse. If the capacity
of agents is increased, agents can pick up more than one item on their
way, which will presumably reduce the time required to accomplish all
deliveries–that is, makespan. In this paper, we propose two algorithms for
MAPD with Capacities (MAPDC) that are complete and scalable: Token
Passing with Multiple Task Assignments (TPMT) and Token Passing
with Multiple Capacity (TPMC). Both of the methods are based on the
Token Passing (TP) algorithm, one of the suboptimal and complete solu-
tions by Ma et al. [6]. The performance of the algorithms is analyzed in
terms of makespan, service time, and throughput. TPMC turns out to
be more effective than TPMT at utilizing capacitated agents.

Keywords: Multiagent Pickup and Delivery (MAPD) · MAPD with
Capacities (MAPDC) · Warehouse automation

1 Introduction

A current trend in logistics is automated warehouses, where robots operate to
store and retrieve objects at fulfillment/distribution centers (Fig. 1). A problem
originating from this real-world domain is Multi-Agent Pickup and Delivery
(MAPD) [6]. The aim is to perform some delivery tasks with a fixed number of
homogeneous and autonomous agents, where a new task can enter the system at
any time. When an agent is assigned to a task, it moves to the pickup location,
takes the item, and carries it to the delivery point, while planning non-conflicting
paths with other agents.

As inventory pods allocate most of the space at automated warehouses,
robots navigate through narrow paths and occasionally need to avoid collisions
with other agents. Hence, MAPD is closely related to the classical NP-hard
problem of multi-agent path-finding (MAPF), where each agent located in a
grid environment is assigned a destination position (the robots operate in an
environment by following bar-code stickers on the floor provided for discretiza-
tion of the navigation space, which we can model as a grid-environment). The
solver computes the location of agents at each time step so that all agents reach
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Dignum et al. (Eds.): PAAMS 2022, LNAI 13616, pp. 76–87, 2022.
https://doi.org/10.1007/978-3-031-18192-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18192-4_7&domain=pdf
http://orcid.org/0000-0002-7322-5679
http://orcid.org/0000-0003-0509-9153
https://doi.org/10.1007/978-3-031-18192-4_7


Multiagent Pickup and Delivery for Capacitated Agents 77

their destinations without colliding with obstacles or other agents. MAPD is
the lifelong version of MAPF [6] where new tasks can enter the system at any
time. Agents are assigned new targets, which better suits the domain of auto-
mated warehouses. Two interdependent concerns of MAPD, task assignment
and collision-free path-finding, make the problem even more challenging than
MAPF. There is a search for online and efficient solvers for MAPD that can
plan for hundreds of agents.

Fig. 1. Robots operating at fully automated warehouse environments.

In real life, there are cases where agents are capable of carrying multiple items
(Fig. 1(b)). We can generalize MAPD for capacitated agents so that they can
pick up or deliver items on their way to reduce the average time for the comple-
tion of a series of tasks. Multiple capacity was first considered by Chen et al. [1],
exploring a coupled solution of task assignment and path-finding called Regret
Based Marginal Cost Assignment (RMCA). Although they obtained a valuable
decrease in makespan by employing capacitation to RMCA, they noted the com-
pleteness of the algorithm needs improvement [1]. Later, Tajelipirbazari et al.
[10] named the capacitated variant as MAPDC and devised a solution within the
declarative framework of Answer Set Programming (ASP). The algorithm guar-
antees optimality for makespan but fails to scale to real-world situations. In this
study, we provide two complete, scalable yet suboptimal solutions to MAPDC:
TPMT and TPMC.

2 Related Work

Most of the existing solutions to MAPD attack the problem sequentially by
decoupling assignment and path-finding. They first assign tasks to agents to
determine the pickup and put-down points they will travel to. Then they apply
MAPF techniques to find a non-colliding path sequence for each agent. A classi-
cal problem that is most relevant to the task assignment aspect of MAPD is Vehi-
cle Routing within the problem class of Multi-robot Task Allocation (MRTA)
[4,7]. Under predefined constraints, it focuses on making optimal route assign-
ments, assuming that agents do not collide. Multiagent Path Finding (MAPF)
is also a well-studied problem that aims at planning a path for each agent while



78 E. Çilden and F. Polat

avoiding collisions with other agents [2]. The optimality criterion is minimizing
the sum of paths of all agents. A foundational algorithm used in developing
solutions to MAPF problems is A* [3], a complete and optimal algorithm that
performs a best-first search on a spanning tree. CBS [8] is an optimal algorithm
that keeps track of a high-level search tree of constraints by examining collisions
between agents, which is shown to examine fewer states compared to A*.

After its first introduction in 2017 by Ma et al. [6], many solutions to MAPD
was proposed. In decentralized solutions, agents individually calculate their
paths and then fix collisions. Otherwise a central solver computes paths of all
agents. Offline solvers require a priori knowledge of the task list to compute the
whole path. Online algorithms provide a solution composed of computation and
movement phases.

Token-Passing (TP) [6] is a decentralized online solution based on the idea
of tokens. A global token stores the set of unexecuted tasks and paths of agents.
As new tasks are added, unoccupied agents select the task with the closest
pickup location and take over the token, in turn, to calculate their paths using
the A* algorithm. Agents hold task endpoints for deadlock avoidance, which
guarantees completeness for well-formed instances [6]. Token-Passing with Task
Swaps (TPTS) [6] enhances task assignment of TP by allowing task transfer
between agents while the previously assigned agent is on its way for pickup.

CENTRAL [6] is an online algorithm, where a centralized solver assigns tasks
by the Hungarian method and calculates paths by CBS. TA-Prioritized [5] is
another centralized algorithm that computes a task sequence for each agent,
then plans paths by prioritized planning. Regret Based Marginal Cost Assign-
ment (RMCA) [1] integrates task assignment and path planning to optimize the
total task delivery time of agents. Different from other approaches, RMCA con-
siders actual delivery costs instead of lower-bound estimates in path planning.
RMCA is based on prioritized planning with A* and does not guarantee com-
pleteness. Chen et al. executed RMCA with capacitated agents and reported a
huge enhancement in makespan [1]. Tajelipirbazari et al. [10] devised a central-
ized offline solution based on ASP to MAPDC.

3 Problem Description

We define MAPDC formally as:

– a set of m agents A = {a1, a2, ..., am}, where each agent has a capacity of
carrying at most n items.

– an undirected connected graph G = (V,E), where V is the set of the locations
and E is the set of edges connecting the locations.

– a set of tasks τ , which are waiting to be executed by an agent (solver’s task
list). Each task τj ∈ τ is a tuple (sj , gj) of pickup location sj ∈ V and
delivery location gj ∈ V .

In this context, MAPD is a special case of MAPDC, where n = 1. In MAPDC,
each agent has a set of assigned and ongoing tasks T with a size bound n, since



Multiagent Pickup and Delivery for Capacitated Agents 79

each agent is capable of carrying at most n items. An agent is under-capacity
when 0 ≤ |T | < n, so that the solver can assign a new task τj ∈ τ to the agent
(i.e. T ∪ {τj}). If the agent’s path to the location sj is planned, the task τj is
removed from the solver’s task list τ to avoid re-assignments. The execution of
the task ends when the agent navigates to the location gj of the task τj , and the
task is removed from the agent’s set of tasks, T .

While executing a task, the agent ai either waits at its current position or
moves to an adjacent node in a single time step (li(t + 1) is either li(t) or
li(t + 1) �= li(t) where (li(t), li(t + 1)) ∈ E). Agents cannot simultaneously be
at the same location (∀ai, aj where ai �= aj and ∀t : li(t) �= lj(t)). Two agents
cannot simultaneously move in opposite directions along the same edge (∀ai, aj

where ai �= aj , and ∀t : li(t) �= lj(t + 1) or lj(t) �= li(t + 1)).
A valid solution for MAPDC completes the set of tasks in a finite number

of timesteps and returns non-colliding paths of agents. For a MAPD problem to
be solvable at finite steps, Ma et al. introduced the notion of well-formedness
and stated conditions for a well-formed MAPD instance [6]. Since MAPDC is an
extension of the task-assignment aspect of MAPD, the underlying constraints
about path-finding are also applicable. Thus, we can infer that the constraints
defined for well-formedness hold for the capacitated variation of the problem as
well.

4 Method

TP algorithm, a complete and scalable solution to MAPD, is a promising can-
didate for devising such a solution to MAPDC. We examined possible enhance-
ments to the TP algorithm and proposed two methods. The first algorithm is
Token Passing with Multiple Task Assignments (TPMT). In this method, the
agent holding the token can plan a path for up to n tasks, where n is its capacity.
In the second method named Token Passing with Multiple Capacity (TPMC),
every under-capacity agent holding the token can choose a task before complet-
ing its tasks to pick up items on the way.

4.1 TPMT

The pseudo-code for TPMT is available at Algorithm 1. Firstly, agents are initial-
ized to stay at their current locations ([loc(ai)]) (Line 1). New tasks introduced
at the current timestep are added to the end of the task set τ (line 3). Solver
passes token to the next free agent that has reached the end of its path. The
agent takes the control of execution after Line 4. The agent selects tasks until
its capacity is full (|Ti| = n) or there are no available tasks among the task set
such that no path of other agents ends in the pickup or delivery location of the
task (lines 5 to 12). The selection criterion is finding the tasks with the start
location that has the minimum h-value to the current location of the agent (line
9). For efficiency, h-values, that is, path costs from all locations to all endpoints
(i.e., possible pickup and delivery locations) are pre-calculated to be used by



80 E. Çilden and F. Polat

Algorithm 1. Token Passing with Multiple Task Assignments (TPMT)
1: Initialize token with path [loc(ai)] for each agent ai

2: while true do
3: Add all new tasks, if any, to the task set τ
4: while agent ai exists that requests token do
5: τ ′ ← {τj ∈ τ | no other path in token ends in sj or gj}
6: if τ ′ �= ∅ then
7: Ti ← ∅ � empty task set of ai

8: while τ ′ �= ∅ and |Ti| �= n do � n: capacity of ai

9: Ti ∪ {arg minτj∈τ ′ h(loc(ai), sj)}
10: Remove τj from τ ′

11: end while
12: P ← GetOrderedPoints(Ti)
13: for each p ∈ P do
14: Update ai’s path in token with Path1(ai, p, token)
15: end for
16: for each τ ∈ Ti do
17: Remove τ from τ
18: end for
19: else if no task τk ∈ τ exists with gk = loc(ai) then
20: Update ai’s path in token with path [loc(ai)]
21: else
22: Update ai’s path in token with Path2(ai, token)
23: end if
24: end while
25: end while
26: function GetOrderedPoints(Ti)
27: Add s1 to P � P is the list of ordered points
28: Add g1 to V � V is the list of points to visit
29: for each j �= 1 and τj ∈ Ti do
30: Add sj to V
31: Add (sj , gj) to C � C is the list of visit constraints
32: end for
33: while V is not empty do
34: l ← last(P ) � l is the last visited point
35: vk ← arg minvk∈V h(l, vk)
36: Add vk to P
37: if there exists (vk, gk) in C then
38: Add gk to V
39: Remove (vk, gk) from C
40: end if
41: Remove vk from V
42: end while
43: return P
44: end function



Multiagent Pickup and Delivery for Capacitated Agents 81

task allocation and A* searches. Agent ai finds an ordered list P of endpoints
for all sj and gj of τj ∈ Ti (Line 13). For each point p ∈ P , the agent calculates
its path from [loc(ai)] to p by A* (Path1), and updates the token (lines 13–15).
After calculating its path for all points in P , the agent removes all tasks in Ti

from τ (lines 16–18). If Ti is empty and there is no task that the agent can
execute, it checks whether its location is the delivery location of another task.
If so, to avoid deadlocks, updates its path to Path2 that is the path to move to
an unoccupied endpoint. Otherwise, the agent plans the trivial path to stay at
its final destination, [loc(ai)].

The function GetOrderedPoints(Ti) calculates the visiting order for start and
goal points of tasks in Ti. The problem is a special case of the TSP on the directed
graph Gi = (Vi, Ei) where Vi contains the start and delivery locations of tasks in
Ti. Since there is a path between any two endpoints for every well-formed MAPD
problem, the graph is fully connected except for the directed edges from gj to
sj for every task τj ∈ Ti (because agents visit the delivery location only after
picking up an item). The function keeps track of the visiting constraints and the
list of nodes to visit and applies the nearest neighborhood heuristic to choose
the point with the minimum h-value to the last visit position. A goal location
is not considered as a candidate for the next visit until its pickup location is in
the ordered list of points.

4.2 TPMC

TPMT selects the first n tasks that have the nearest pickup locations to the
agent at the time of decision. As the agent advances in execution, previously
selected tasks can be distant to its updated position, which may have a huge
negative impact on the overall makespan. TPMC method aims at making better
task assignments in an online fashion by allowing under-capacity agents to choose
the next task after visiting a point.

Algorithm 2 presents the outline of the TPMC method. Like TPMT, it is
a decoupled algorithm based on TP [6] with the same initialization and agent
selection logic. Different from TPMT, the agent keeps a list of points to visit (i.e.
Vi). After taking the token, the agent counts the number of items waiting for
delivery (i.e. finds the number of delivery points in Vi). If it is under-capacity, the
agent decides that it can pick up another item, and if any, chooses an available
task τj having the minimum h-value for the location pair (loc(ai), sj) (Lines
5–8). The constraint that no other path in token ends in sj or gj is also valid
for the task assignment of TPMC. The agent updates the state of the task τj
as taken and appends sj to its Vi (Lines 9–10). If Vi is not empty, the agent
finds the point p in Vi that has the minimum h-value to its current location and
updates its path in the token with the path calculated by A* (Lines 20–21).
After path-finding, p is removed from Vi (Line 22). If p is a start point of a
task τk, ai adds the delivery location gk to end of Vi (Lines 23–24). If it is a
delivery point, τk is removed from the task list of token (Line 26). If Vi is empty,
and if the agent is in the delivery location of a task, it calls function Path2 and
updates its path to move to an unoccupied endpoint to avoid deadlocks (Line



82 E. Çilden and F. Polat

17). Otherwise, the agent plans the trivial path to stay in its current location
(Line 15).

Algorithm 2. Token Passing with Multiple Capacity (TPMC)
1: Initialize token with path [loc(ai)] for each agent ai

2: while true do
3: Add all new tasks, if any, to the task set τ
4: while agent ai exists that requests token do
5: if the number of goal points in Vi < n then � n is the capacity and Vi is

to-Visit list of ai

6: τ ′ ← {τj ∈ τ | τj is not taken and no other path in token ends in sj or
gj}

7: if τ ′ �= ∅ then
8: τj ← arg minτj∈τ ′ h(loc(ai), sj)
9: Add sj to Vi

10: Mark τj as taken
11: end if
12: end if
13: if Vi is empty then
14: if no task τk ∈ τ exists with gk = loc(ai) then
15: Update ai’s path in token with path [loc(ai)]
16: else
17: Update ai’s path in token with Path2(ai, token)
18: end if
19: else
20: p ← arg minvk∈Vi h(loc(ai), vk) and no other path in token ends with

vk

21: Update ai’s path in token with Path1(ai, p, token)
22: Remove p from Vi

23: if p is the start point of τk then
24: Add gk to Vi

25: else
26: Remove τk from τ
27: end if
28: end if
29: end while
30: end while

Fig. 2. Narrow domain for case studies.



Multiagent Pickup and Delivery for Capacitated Agents 83

Table 1. Task list for case studies

Task number Pickup → Delivery

1 (5, 1) → (20, 1)

2 (8, 1) → (17, 1)

3 (11, 1) → (14, 1)

4 (18, 3) → (3, 3)

5 (15, 3) → (6, 3)

6 (12, 3) → (9, 3)

5 Evaluation

5.1 Case Studies

Two case studies were performed on the narrow domain (Fig. 2), where the black
and gray cells are obstacles and endpoints respectively. Colored circles represent
the initial locations of agents and their ids. The capacity of agents is set to 5
for both cases. The first case study examines whether the algorithms generate
a valid solution for a single agent, therefore the second agent is removed from
the environment. Table 1 is the list of tasks introduced at the first timestep of
execution. The second case study is a simple multi-agent setting to see whether
the paths planned are collision-free. The top half of the task list is introduced
at the first timestep, and the rest at the following timestep. At each run, we
measured the timestep at which the task list is empty and all deliveries are
complete (i.e. makespan) and the average number of timesteps to complete tasks
(i.e. service time).

Both TPMT and TPMC provide valid solutions for the Narrow Domain
with single and double agent cases. As seen in Table 2, figures for makespan and
service time of TPMT and TPMC appear to be less when compared with the
single capacity algorithm TP. In the first case, the TPMT algorithm plans for
the first five tasks in a row. The agent has to visit the distant pickup location
of the last task separately. Instead, the TPMC algorithm assigns tasks with the
closest start location whenever the agent is under-capacity, resulting in a better
makespan. TPMT algorithm can make poor assignments when the start and
the delivery of tasks are distant. Conversely, TPMT performs much better than
TPMC in the second case study. The makespan for TPMC is the same as TP,
indicating an insufficient utilization of multiple capacities. In the TPMT run, the
first agent takes over the first three tasks, and the second agent takes the rest. In
TPMC execution, tasks are assigned in an interleaved fashion. The first agent is
under-capacity most of the time, hence greedily takes on new tasks including the
fourth one. The second agent finishes earlier than first one and starts waiting.
It would be much better if tasks were more evenly distributed among agents.



84 E. Çilden and F. Polat

Table 2. Results for case studies I and II

Case study I Case study II

Algorithm Makespan Service time Makespan Service time

TP 98 64 60 36

TPMT 84 44 33 25

TPMC 60 41 60 33

Table 3. Measures for TP algorithm

Agents Tasks Freq. Makespan Service time Runtime

2 100 1 1161 508.9 0.19

5 100 1 531 196.7 2.39

10 500 1 1198 311.8 5.67

50 100 5 153 60.8 722.20

50 500 5 395 124.6 675.43

5.2 Experimental Setup

We performed an experimental evaluation to compare the efficiency and effec-
tiveness of the two methods on the simulated warehouse environment [6], which
is used as a benchmark in studies on MAPD. The sample environment consists of
a 21× 35 4-neighbor grid with narrow pathways. We performed experiments with
various numbers of agents, capacities, and task frequencies on lists of 100 and
500 tasks. Task files were generated by randomly selecting pickup and delivery
locations among the endpoints defined in the environment map file. All experi-
ments are implemented in C++ programming language and run on a 1.80 GHz
Intel Core i7-8565U laptop with 24 GB RAM.

5.3 Results

Tables 3 and 4 summarize the results of experiments. Increasing the number
of agents has a huge positive impact on the makespan of all algorithms. Task
frequency (number of tasks released at each timestep) seems to have a minor
effect on makespan and service time for experimented cases. Even though there
is a slight positive effect of capacity expansion for TPMT at the test with two
agents, performance degrades with capacitation for more agents. On the other
hand, for five agents, there is about 30% improvement on the makespan for
TPMC. The greedy task assignment approach of TPMT is the reason for worse
efficiency. Agents try to get more tasks to fill their capacity, and an agent closer
to the pickup point may not have the chance to take over the task. In TPMC,
an agent can visit the start point of a task τ and finish many other tasks before
visiting the delivery point of τ . This may result in longer service times for some
tasks. Compared to TP, the average service times of TPMC are still better for



Multiagent Pickup and Delivery for Capacitated Agents 85

capacitated agents. As seen in Table 4, there is a trend of decrease in makespan
as capacity of agents increase for TPMC. In general, TPMC better utilizes the
capacity of agents than TPMT. Additionally, runtime values (in milliseconds per
timestep) of TPMC are strongly preferable to TPMT. Therefore, TPMC suits
better to a lifelong and real-time operation setting.

Table 4. Summary of experimental results (f.: frequency, Cap.: Capacity, S.Time:
Service Time)

TPMT TPMC

Agents Task f Cap Makespan S.Time Runtime Makespan S.Time Runtime

1 1161 508.88 0.30 1161 509.12 0.16

2 100 1 3 1186 519.23 0.93 740 319.5 0.19

5 1031 458.19 1.16 680 285.15 0.20

1 531 196.7 1.66 500 190.05 0.70

5 100 1 3 536 220.33 4.26 379 136.9 0.82

5 746 357.45 33.58 341 126.25 0.92

1 1198 311.78 4.95 1192 308.39 2.05

10 500 1 3 1603 474.37 63.40 841 168.97 2.10

5 2414 815.61 165.66 771 134.30 1.93

1 153 60.82 131.77 126 47.7 19.59

50 100 5 3 307 144.81 486.79 140 51.97 14.64

5 679 312.36 494.36 126 51.96 17.16

1 395 124.59 97.58 353 102.62 36.64

50 500 5 3 1056 479.25 1138.78 295 81.77 33.49

5 2321 1235.74 1593.524 284 87.66 33.46

As in Ma et al. [6], we analyzed the throughput of the algorithms. Throughput
is measured as the number of executed tasks within a 100-timestep window as
a function of timestep t. Figure 3 visualizes the number of tasks added and
executed for different types of algorithms (the number to the right of the name
of the algorithm indicates the capacity). We preferred to present the throughput
data for two agents and 100 tasks as the number of tasks per agent is higher,
which may better reflect the long-term behavior of the system. It is apparent
from the figure that TPMC is much better at utilizing capacitated agents.

Table 5 presents a comparison of TPMC algorithm with RMCA-r [1], the
only scalable MAPD algorithm for capacitated agents to our knowledge. We
performed experiments with 500 tasks of frequency 10 on small simulated ware-
house instances of 20 and 50 agents with capacities 1, 3, and 5 respectively. Both
makespan and total travel delay (total time elapsed between release and comple-
tion of all tasks) are smaller in RMCA than TPMC. This is an expected result
as task assignment search is informed by actual costs in RMCA, whereas TPMC



86 E. Çilden and F. Polat

Fig. 3. Results for 2 agents, 100 tasks and task frequency 1 (Timestep vs. number of
tasks).

uses lower-bound estimates. RMCA-r also incorporates meta-heuristic improve-
ment strategies, which are reported to improve solutions substantially [1]. In
spite of its better performance, RMCA does not guarantee to solve all well-
formed instances of MAPD and needs an improvement on completeness.

Table 5. TPMC vs. RMCA-r (Cap.: Capacity, TTD: Total Travel Delay)

RMCA-r TPMC

Cap. Agents Makespan TTD Makespan TTD

1 20 624 106290 702 136912

50 280 38050 371 64344

3 20 322 52771 524 95060

50 153 15851 276 46912

5 20 247 36790 423 81507

50 129 11464 270 43091

6 Conclusion

Despite the substantial amount of related work, MAPD for capacitated agents
seems an under-explored area. We believe that MAPDC solvers will have poten-
tial uses in future automated warehouse systems, as well as in automated manu-
facturing and sorting systems. This study introduced TPMT and TPMC meth-
ods that expanded the Token Passing algorithm [6] to make use of capacitated
agents. Agents executing TPMT request the token less often. Once they obtain
it, they take over as many tasks as possible and plan a visiting route to complete
the tasks. In TPMC, agents plan the smallest portion of their overall route each
time they take the token. Whenever under-capacity, they take over the task with
the nearest pick up location. Even though the results for TPMT are encouraging



Multiagent Pickup and Delivery for Capacitated Agents 87

for the narrow domain, evaluations on the small simulated warehouse environ-
ment suggest TPMC as a better choice for all performance measures taken into
consideration. Although RMCA-r performs better than TPMC with capacitated
agents, its prioritized planner needs improvement on completeness. TPMC guar-
antees completeness for well-formed instances of MAPD since it employs the
same deadlock prevention mechanisms as TP (the proof is similar to the one
given for Theorem 3 stated in [6]).

As the incorporation of capacitated agents remarkably improves the through-
put of the system, MAPDC is a promising step toward highly scalable automated
warehouse systems. Being a complete, efficient, and decentralized solution to
MAPDC, TPMC is an encouraging method for such systems. Directions for
future work include improving the solution quality of TPMC and exploring bet-
ter task dispatching strategies for capacitated agents.

Acknowledgment. This work is partially supported by the Scientific and Technolog-
ical Research Council of Turkey under Grant No 120E504 (Incremental Multi-Agent
Path Finding).

References

1. Chen, Z., Alonso-Mora, J., Bai, X., Harabor, D.D., Stuckey, P.J.: Integrated task
assignment and path planning for capacitated multi-agent pickup and delivery.
IEEE Robot. Autom. Lett. 6(3), 5816–5823 (2021)

2. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding
problem: summary and challenges. In: SOCS (2017)

3. Knight, K.: Are many reactive agents better than a few deliberative ones? In:
Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artifi-
cial Intelligence. Chambéry, France, August 28 – September 3, 1993, pp. 432–437.
Morgan Kaufmann (1993). http://ijcai.org/Proceedings/93-1/Papers/061.pdf

4. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot
task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

5. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup
and delivery, p. 9 (2019)

6. Ma, H., Li, J., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding for
online pickup and delivery tasks. arXiv:1705.10868 [cs] (2017). http://arxiv.org/
abs/1705.10868, arXiv: 1705.10868

7. Nunes, E., Manner, M.D., Mitiche, H., Gini, M.L.: A taxonomy for task allocation
problems with temporal and ordering constraints. Robot. Auton. Syst. (2017).
https://doi.org/10.1016/j.robot.2016.10.008

8. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

9. Statt, N.: Amazon says fully automated shipping warehouses are at least a decade
away (2019). https://www.theverge.com/2019/5/1/18526092/amazon-warehouse-
robotics-automation-ai-10-years-away

10. Tajelipirbazari, N., et al.: Multi-agent pick and delivery with capacities: action
planning vs path finding. In: Cheney, J., Perri, S. (eds.) PADL 2022. LNCS,
vol. 13165, pp. 24–41. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
94479-7 3

http://ijcai.org/Proceedings/93-1/Papers/061.pdf
http://arxiv.org/abs/1705.10868
http://arxiv.org/abs/1705.10868
http://arxiv.org/abs/1705.10868
http://arxiv.org/abs/1705.10868
https://doi.org/10.1016/j.robot.2016.10.008
https://www.theverge.com/2019/5/1/18526092/amazon-warehouse-robotics-automation-ai-10-years-away
https://www.theverge.com/2019/5/1/18526092/amazon-warehouse-robotics-automation-ai-10-years-away
https://doi.org/10.1007/978-3-030-94479-7_3
https://doi.org/10.1007/978-3-030-94479-7_3

	Multiagent Pickup and Delivery for Capacitated Agents
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Method
	4.1 TPMT
	4.2 TPMC

	5 Evaluation
	5.1 Case Studies
	5.2 Experimental Setup
	5.3 Results

	6 Conclusion
	References




