
Multi-agent Learning of Numerical
Methods for Hyperbolic PDEs

with Factored Dec-MDP

Yiwei Fu1(B), Dheeraj S.K. Kapilavai1, and Elliot Way2

1 GE Research, 12309 Niskayuna, NY, USA
{yiwei.fu,kapilava}@ge.com

2 Binghamton University, Binghamton, NY 13902, USA

Abstract. Factored decentralized Markov decision process (Dec-MDP)
is a framework for modeling sequential decision making problems in
multi-agent systems. In this paper, we formalize the learning of numerical
methods for hyperbolic partial differential equations (PDEs), specifically
the Weighted Essentially Non-Oscillatory (WENO) scheme, as a factored
Dec-MDP problem. We show that different reward formulations lead to
either reinforcement learning (RL) or behavior cloning, and a homoge-
neous policy could be learned for all agents under the RL formulation
with a policy gradient algorithm. Because the trained agents only act on
their local observations, the multi-agent system can be used as a general
numerical method for hyperbolic PDEs and generalize to different spatial
discretizations, episode lengths, dimensions, and even equation types.

Keywords: Decentralized markov decision process · Multi-agent
system · Numerical method · Partial differential equation

1 Introduction

Numerical methods such as the finite difference method (FDM), finite element
method (FEM), and finite-volume method (FVM) were designed on grids of
data points to approximate the solutions of partial differential equations (PDEs)
numerically. Specifically, hyperbolic PDEs are often used in real-world applica-
tions, especially in the field of fluid dynamics for modeling the motion of viscous
fluids with high Reynolds numbers, multiphase flows, water waves, etc. Often,
simulations of these physical processes exploit the numerical fluxes of some con-
served quantities from finite differences between two elements, and time integra-
tion is used to determine the next state. This kind of incremental computation
in time is similar to a Markov Decision Process (MDP), where the next state
is determined only by the current state, and actions provided by the numerical
method. Since numerical computations happen at all grid points simultaneously,
this can be viewed as a multi-agent system where each agent only has partial
knowledge of the state, modeled by a decentralized MDP (Dec-MDP) [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Dignum et al. (Eds.): PAAMS 2022, LNAI 13616, pp. 179–190, 2022.
https://doi.org/10.1007/978-3-031-18192-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18192-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-18192-4_15

180 Y. Fu et al.

The reason that a Dec-MDP is the proper framework for modeling numerical
methods can be justified from two perspectives. On one hand, if we let a single
agent act on the entire physical space, which often has at least hundreds of
discretized locations and requires multiple actions at each location, the number
of action dimensions would be huge, with each one being continuous. Such large
continuous action space quickly becomes impossible to deal with. Even with
the most recent advances in deep Reinforcement Learning (RL), DQN [10] and
all of its follow-ups are only able to handle large observation spaces, while the
action spaces remain small discrete ones. Many Deep RL applications in robotics
and control [7] do handle continuous action spaces, but they usually have less
than ten dimensions, because there are simply not that many degrees of freedom
in one robot. Besides, learning a numerical method with a single agent is not
generalizable: any changes in spatial discretization require retraining.

On the other hand, existing numerical schemes cannot be treated as multiple
independent agents acting alone at their respective locations. PDEs that describe
some underlying processes must have physics that propagates from one location
to the other, so if the action at one location changes, the state at another location
would be different even if the action at that location stays the same. This causes
the non-stationary issue in a multi-agent environment [23]. Therefore, to properly
model numerical methods, a Dec-MDP framework has to be used to account for
the effects of other agents.

Specifically in this paper, we focus on learning Weighted Essentially Non-
Oscillatory (WENO) [8,18], a state-of-the-art numerical scheme with a uniform
high order of accuracy in flux reconstruction. The main idea of WENO is to form
a weighted combination of several local reconstructions based on different sten-
cils and use it as the final WENO reconstruction. The combination coefficients
(weights) depend on the linear weights and smooth indicators [24]. Later we will
highlight the insight that these weights can be viewed as actions of agents.

In the field of multi-agent systems, it is well known that optimally solving a
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is
NEXP-complete [3]. Although Dec-POMDP is a more generalized formulation
of Dec-MDP, with the latter being the jointly fully observable version of the
former, Dec-MDP is still NEXP-complete. In our previous work [22], a policy
gradient algorithm called Backpropagation Through Time and Space (BPTTS)
is proposed to solve the multi-agent reinforcement learning problem for numerical
methods with recurrent neural networks (RNNs). Here we use BPTTS to solve a
factored Dec-MDP problem, and show that automatic differentiation is possible
for the RL formulation to learn a generalizable numerical scheme.

In this paper, we introduce the fundamentals of both Dec-MDPs and numeri-
cal methods. Then, the key insight that the learning of numerical methods can be
modeled as a factored Dec-MDP is drawn. We analyzed different reward formu-
lations which lead to either RL or behavior cloning. A policy gradient algorithm,
BPTTS [22], is used to solve the homogeneous multi-agent RL problem. We show
that the learned policy can generate numerical solutions for hyperbolic PDEs
comparable to WENO methods, and can generalize to different grid discretiza-
tions, initial conditions, dimensions, and equations. This practical application

Multi-agent Learning of Numerical Methods with Factored Dec-MDP 181

of using a factored Dec-MDP framework to solve hyperbolic PDEs is novel, and
could potentially have real impacts on both industry and academia.

2 Related Work

In the field of numerical analysis, there are two distinct classes of methods:
mesh-based methods and meshfree methods. The comparison of these two is
beyond the scope of this paper, but usually they are incompatible, thus so are
the machine learning approaches that try to learn them. For example, the WENO
method [18] used in this paper is a mesh-based method; while on the other hand,
the popular Physics Informed Neural Network (PINN) [15] and their descendants
are meshfree: they directly use neural networks to approximate the solutions,
gradients, or operators of PDEs. Since both the spatial and temporal coordinates
are explicit in PINN inputs, modern deep learning architectures which handle
spatial or temporal information implicitly, like Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), etc., are not directly applicable.
As a result, PINNs often resort to fully-connected neural networks.

Among numerous papers at the intersection of machine learning and mesh-
based numerical methods, the setup in Wang et al. [21] resembles that of this
paper most closely. Although they are also trying to learn a high-order numerical
scheme for hyperbolic PDEs, they treat this inherently multi-agent problem as
multiple independent single-agents. This will lead to a sub-optimal solution at
best because for each agent the environment becomes non-stationary: the actions
taken by one agent will affect the rewards of other agents and the state evolution
at other locations. This invalidates the stationary Markovian assumption that
the individual reward and current state should depend only on the previous state
and actions taken. There exist some other papers that claim to have used multi-
agent RL to discover closure models in simulations of turbulent flows [2,11].
However, they are not formulated under a truly decentralized framework because
of the use of replay buffers. When sampling different state-action pairs inside a
replay buffer, the temporal correlations are broken, therefore the effects of other
agents’ actions over time on one agent’s current state are lost, again leading to a
non-stationary environment. To sum up, solutions to these multi-agent systems
must be consistent both spatially and temporally.

In the field of multi-agent systems, there have been some previous papers on
factored Dec-POMDPs, which is close to the formulation in this paper. Oliehoek
et al. [12] exploit the locality of interactions between agents in a factored Dec-
POMDP and formulated decomposable value functions. This leads to a single
framework based on collaborative graphical Bayesian games and is solved by
heuristic policy search. However, this approach is only tested on a simple factored
Firefighting problem (FFP) with three agents. Later on, this was extended to
deal with more agents [13] by using a factored forward-sweep policy computation
that tackles the stages of the problem one by one, but the action space for each
agent remains the same (two discrete choices). Pajarinen et al. [14] propose an
expectation-maximization based optimization for factored infinite-horizon Dec-
POMDP and kept the complexity tractable by factored approximations. They

182 Y. Fu et al.

apply the algorithm to the same FFP with a maximum of 10 agents. Messias et
al. [9] convert a factored Dec-POMDP to a centralized Multi-agent POMDP by
allowing inter-agent communications. Amato et al. [1] model macro-actions as
options in a factored Dec-POMDP model to model systems where coordination
decisions only occur at the level of deciding which macro-actions to execute.
They have demonstrated that near-optimal solutions can be generated for longer
horizons and larger state spaces than previous Dec-POMDP methods.

3 Background

In this section, we introduce the background of both factored Dec-MDP for
modeling multi-agent systems, and weighted essentially nonoscillatory (WENO)
scheme, a high-order accurate numerical scheme for hyperbolic PDEs.

3.1 Factored Dec-MDP

Before defining the multi-agent framework used in this paper, factored Dec-MDP,
it is helpful to first introduce Dec-POMDP and Dec-MDP, because factored Dec-
MDP is a special case of Dec-MDP, who is a special case of Dec-POMDP [4].

Definition 1. Dec-POMDP: A Dec-POMDP for n agents is defined as a tuple
〈S,A,P, Ω,O,R〉 where:

– S is a finite set of system states;
– A = 〈A1, . . . ,An〉 is a set of joint actions; Ai is the set of actions ai that can

be executed by agent Agi;
– P = S × A × S → [0, 1] is a transition function; P (s, a, s′) is the probability

of the outcome state s′ when the agents execute the joint action a from s;
– Ω = Ω1 × Ω2 × · · · × Ωn is a finite set of observations, where Ωi is Agi’s set

of observations;
– O = S × A × S × Ω → [0, 1] is the observation function; O (s, a, s′, o =

〈o1, . . . , on〉) is the probability that each agent Agi observes oi when they
execute the joint action a from state s and the system moves to state s′

– R is a reward function; R (s, a, s′) is the reward the system obtains when the
agents execute joint action a from state s and the system moves to state s′.

Definition 2. Dec-MDP: A Dec-MDP is a special case of Dec-POMDP where
the system state is jointly observable, i.e.:

– If O(s, a, s′, o = 〈o1, ..., on〉) > 0, then Pr(s′|〈o1, ..., on〉) = 1.

Note that joint observability does not entail local observability. For each indi-
vidual agent, the full system state is still partially observable.

Definition 3. Factored Dec-MDP: A factored Dec-MDP is a Dec-MDP
where the state of the system S = X1 × X2 × · · · × X|X | has |X | components
and is spanned by X = {X1,X2, · · · ,X|X |}.

Multi-agent Learning of Numerical Methods with Factored Dec-MDP 183

Like factored Dec-POMDP in [12], the reward function of factored Dec-MDP
can often be compactly represented by exploiting additive separability, meaning
that the total reward can be decomposed into the sum of local reward functions
R = R1 + · · · + Rp. The local reward functions are often defined over a smaller
number of state and action variables and the scope of them is smaller.

3.2 Hyperbolic PDEs and WENO Scheme

Conservation laws in many branches of classical physics, such as fluid dynam-
ics and electrodynamics, are often described by hyperbolic PDEs. The finite-
difference grid is often used when dealing with such equations. The goal is to
evolve a vector of conserved quantities u ∈ R

d on a uniform N -point discretiza-
tion DN = {x1, x2, . . . , xj , . . . , xN} for hyperbolic PDE of the form:

∂u

∂t
+

∂

∂x
f(u) = 0 (1)

where f(u) are fluxes of each quantity in u that are exchanged at the interface
xj± 1

2
of each cell, Ij = [xj− 1

2
, xj+ 1

2
]. The initial conditions, u(xj , 0) at all loca-

tions at the beginning of the simulation, along with boundary conditions, u(x1, t)
and u(xN , t) at all times, are required to specify the PDE. Then, the method of
lines [17] is used to convert the PDE to an ordinary differential equation (ODE),
where the spatial derivative is approximated by the finite differences:

duj(t)
dt

= − 1
Δx

(f̂j+ 1
2

− f̂j− 1
2
) (2)

with uj being the approximation to the point value u(xj , t) and f̂j± 1
2

being the
numerical fluxes computed at the interfaces using cell values. A high-order finite
difference scheme boils down to

– using a high-order time integration scheme (e.g., a high-order Runge-Kutta
method);

– using the finite difference in Eq. (2) to approximate the derivative of the flux
to a high order.

WENO scheme [18] is one high-order scheme. A WENO scheme of order r can
achieve a 2r−1 order spatially accurate construction of f̂j+ 1

2
by using the stencil

Sj with 2r − 1 points around u(xj , t). Specifically, it computes f̂j+ 1
2

as a convex
combination of polynomials defined on r small stencils inside Sj :

f̂j+ 1
2

=
r−1∑

k=0

ωkf̂k,j+ 1
2

with
r−1∑

k=0

ωk = 1 (3)

where f̂k,j+ 1
2

is the polynomial reconstruction of the k-th small stencil. For
example, for a 2-nd order WENO scheme at location xj , the stencil is:

Sj = {xj−1, xj , xj+1} (4)

184 Y. Fu et al.

and the 2 small stencils are {xj−1, xj}, {xj , xj+1} respectively.
To choose these convex weights ωk and ensure they sum up to 1, WENO

scheme computes the following:

ωk =
αk∑r

m=1 αm
with αk =

dk

(ε + βk)2
(5)

where dk is a pre-computed optimal coefficient determined by a smoothness
indicator βk, and ε is a small positive number to avoid the denominator becoming
zero. In smooth regions, these weights are designed to produce higher-order
approximations. At discontinuities, WENO can select the single best small stencil
to avoid discontinuities as far as possible by setting the one ωk corresponding to
that small stencil to be 1, and all other weights to be 0. Since the core of WENO
scheme is actually an approximation procedure not directly related to hyperbolic
PDEs or finite difference methods, it can also be generalized and applied to other
types of schemes (finite volume, compact schemes, residual distribution schemes,
limiters for the discontinuous Galerkin schemes, etc.), or to different fields [19].

4 Problem Formulation and Analysis

With the background information provided in Sect. 3, here we draw the con-
nection between numerical methods and factored Dec-MDP, and provide some
analysis on the reward formulations.

4.1 Numerical Methods as Multi-agent Systems

Fig. 1. The dynamics of the numerical
scheme over two steps. The scope of rj+ 1

2
,

illustrated by shading, increases when going
back in time

Because of the difficulty of translat-
ing a PDE into a computable model,
the design of numerical schemes
often requires substantial efforts by
domain experts. If the discovery
of numerical schemes can be auto-
mated, it could potentially have huge
impacts on many applications. We
make the key connection here that
WENO scheme works exactly like a
collaborative multi-agent system.

To formulate the learning of
numerical methods for hyperbolic
PDEs as a factored Dec-MDP prob-
lem, we can start with the discretiza-
tion of the physical space in Equa-
tion (1), which is precisely factoring
the entire system state S ≡ u into n
components u1 ×u2 · · ·×un as in Definition 3. From Equation (3) to (5), we can
see that for WENO scheme at a certain location, it is essentially doing a local

Multi-agent Learning of Numerical Methods with Factored Dec-MDP 185

observation on the stencil and then coming up with the weights to recompute
the fluxes. This process is exactly an agent taking an action a after observing
a state, with the action being the weights ωk in Equation (3). Then, the PDE
(or environment) uses Equation (2) to integrate the system to the next state,
which defines a deterministic transition function. This system state is Marko-
vian and the next set of agents’ actions only depends on the next state, because
WENO scheme does not keep track of the history. Furthermore, since the joint
observation for all agents fully covers the entire physical space, the system state
is jointly observable, but not locally fully observable. Therefore, the learning of
WENO schemes can be properly modeled as a factored Dec-MDP problem.

In order to learn WENO scheme, the immediate reward (the details of which
will be discussed in Sect. 4.2) is defined at interface j + 1

2 as the average of the
error in its two adjacent cells. An error of 0 means that our agents have learned
actions similar to WENO actions so that the PDE system state evolves to the
same one. Following the definition of scope in [12], we can draw the dynamics
of the numerical scheme in Fig. 1 and observe that the scope increases when
going back in time. This should make sense from both the multi-agent system
perspective and the physics perspective: the action of an agent at a certain
time and space would affect the observations of other agents at a later time, or
the physics would propagate from one location to another. This is precisely the
reason that a multi-agent system should not be modeled as multiple independent
single agents as in [21]. It should be noted that as with our previous work [22],
Lax-Friedrichs flux splitting [6] was used to ensure numerical stability and avoid
entropy-violating solutions, which makes the flux reconstruction slightly different
by splitting them into plus and minus terms, but the main idea still holds.

4.2 Analysis of Different Reward Formulations

Among components of the factored Dec-MDP, the transition function and obser-
vation function are already determined by physics, so the only moving piece is
the reward function. We formalize the reward at interface j + 1

2 as follows:

rt
j+ 1

2
= −|ut

j − ref t
j | + |ut

j+1 − ref t
j+1|

2
(6)

where ut
j is factored state uj at time t, and ref t

j is a reference state at the same
location j and time t computed by some existing numerical methods like WENO.
Maximizing this reward will lead to the agents trying to evolve the state to be
as close to the reference state as possible. Because the system immediate reward
at time t is the summation of rt

j+ 1
2

in Eq. (6) at all interfaces, rt =
∑

j rt
j+ 1

2
=

−∑
j |ut

j −ref t
j | (with a small caveat that the boundary conditions needed to be

computed according to the physics), we can further analyze the reward function
with integration from Eq. (2) and (3) as follows:

186 Y. Fu et al.

rt = −
∑

j

|ut
j − ref t

j | = −
∑

j

|ut−1
j − Δt

Δx
(f̂j+ 1

2
− f̂j− 1

2
) − ref t

j |

= −
∑

j

|ut−1
j − Δt

Δx

r−1∑

k=0

(ak,j+ 1
2
f̂k,j+ 1

2
− ak,j− 1

2
f̂k,j− 1

2
) − ref t

j |
(7)

There are different choices of reference states, and different reward functions
can be combined. However, reward engineering is beyond the scope of this paper,
here we analyze 3 simple reward formulations for the PDE environment:

1. RL-WENO (Markovian WENO agent-based simulation rewards): the refer-
ence state is calculated from ut−1 with the standard WENO scheme follow-
ing the computational graph in Fig. 1. This reward is Markovian because the
actions of the standard WENO actions depend only on the most recent state.
This reward leads to a reinforcement learning problem. Equation (7) becomes
rt = − Δt

Δx

∑
j

∑r−1
k=0 |(ak,j+ 1

2
−ωk,j+ 1

2
)f̂k,j+ 1

2
−(ak,j− 1

2
−ωk,j− 1

2
)f̂k,j− 1

2
)|, with

ωk being the actions taken by the WENO scheme at ut−1
k .

2. BC-WENO (Non-Markovian fixed WENO solution rewards): the reference
state is pre-calculated by running a WENO scheme from an initial condition
all the way till the end. This reward is non-Markovian because the refer-
ence state is fixed and does not depend on the current system state. This
fixed expert trajectory leads to behavior cloning and is a supervised learning
problem. Equation (7) becomes rt = − Δt

Δx

∑
j

∑r−1
k=0 |ak,j+ 1

2
f̂k,j+ 1

2
−Ct

k,j+ 1
2
−

ak,j− 1
2
f̂k,j− 1

2
+ Ct

k,j− 1
2
|, with Ct

k,j+ 1
2

and Ct
k,j− 1

2
being constants predeter-

mined by the reference state trajectory.
3. BC-analytical (Non-Markovian fixed analytical solution rewards): similar to

BC-WENO, but the reference trajectory is pre-calculated by using the ana-
lytical solution to the PDE. Of course, this requires the existence of such
analytical solutions to begin with. This reward also leads to behavior cloning.
The reward structure is similar to BC-WENO, but with different constants
calculated by the analytical solution.

With the reward function defined and exploiting the fact that all state tran-
sitions are differentiable in this PDE environment, we could train a policy gradi-
ent algorithm (such as BPTTS [22]) for this homogeneous multi-agent system to
learn numerical methods. The policy is parameterized by a fully connected neural
network (NN) whose weights are shared by all agents. During training, gradients
flow back in time and space following the shaded routes as illustrated in Fig. 1
and an RNN-like computational graph is created. However, this recurrent struc-
ture is not used once the agents are trained, because in a factored Dec-MDP,
each agent’s actions only depend on its immediate observations. This leads to
incredible generalizability for the multi-agent system: they can be applied to
different spatial and/or temporal discretizations, as shown in Sect. 5.

Although the performance of agents in RL-WENO is upper-bounded by
the WENO scheme (so is BC-WENO), i.e., the best learning results would be
ak,j+ 1

2
= ωk,j+ 1

2
or the agents take actions exactly like WENO schemes leading

Multi-agent Learning of Numerical Methods with Factored Dec-MDP 187

to the maximum reward of 0, the RL formulation provides a straightforward
framework for the agents to learn. This is also the reward used in our previous
work [22]. BC-WENO and BC-analytical not only suffer from the distributional
drift problem in behavior cloning [16], but also have an obvious local minimum
where ak,j+ 1

2
f̂k,j+ 1

2
= ak,j− 1

2
f̂k,j− 1

2
since Ct

k,j+ 1
2
, Ct

k,j− 1
2

are just constants. This
could potentially make gradient descent difficult, as shown in Sect. 5.

5 Experiment Results

In this section, we introduce the Euler equations as an example of hyperbolic
PDEs, and compare the training on the 3 different reward formulations pro-
posed in Sect. 4.2. We then show that the trained system of RL-WENO agents
can generalize to different spatial discretizations and temporal lengths, initial
conditions (ICs), equations, and even 2D Euler equations.

5.1 Euler Equations and Training Setup

The Euler equations describe the conservation of mass, momentum, and energy
for fluids. They are given by:

Ut + [F(U)]x = 0 with U =

⎛

⎝
ρ
ρu
ρE

⎞

⎠ F(U) =

⎛

⎝
ρu

ρuu + p
ρuE + up

⎞

⎠ (8)

where ρ is the density, u is the velocity, p is the pressure and E is the total
energy. E is calculated by internal energy, e, and kinetic energy as E = e+ 1

2u2.
The equations are closed by the addition of an equation of state, a common
choice of which is the gamma-law given by p = ρe(γ − 1) where γ = 1.4.

Following the training setup in [22], we trained a system of agents to learn the
order r = 2 WENO schemes on the Sod initial condition [20]. During training, the
space is discretized into N = 128 points, i.e., the factored Dec-MDP has a system
state S of 128 factors, resulting in a state of the shape (3, 128) for the 3 equations.
For agents trying to learn the r = 2 WENO scheme, the system observation space
has a shape of (3, 129, 2, 3): 3 equations, 129 agents for each equation, 2 plus and
minus fluxes (because of Lax-Friedrichs flux splitting mentioned in Sect. 4.1) and
3 points in each stencil. The corresponding action space shape is (3, 129, 2, 2):
the first three dimensions are the same as the observation space, and the last is
the 2 weights (actions) on the small stencils as given in Eq. 3. Each component
of the observation and action space is continuous.

During training, the system is evolved to 1,000 timesteps of 0.0001 s seconds
for a total of 0.1 s for each episode, and a total of 10,000 episodes. The policy
network for each agent is a 2-layer NN with 64 neurons each and ReLU activation.
An Adam optimizer [5] with a learning rate of 0.0003 is used to train the policy
gradient algorithm. The training takes about 2 days on a 2.2 GHz CPU (GPU
was tried but turned out to be slower because most of the computations are in
the environment, not during NN training). Once trained, the system of agents
can perform inference at a similar speed as standard WENO schemes.

188 Y. Fu et al.

5.2 Results and Discussions

The same multi-agent system is trained with the 3 reward formulations described
in Sect. 4.2 and their total rewards during training are shown in Fig. 2. The agents
are not able to learn under either BC-WENO or BC-analytical reward formu-
lation (potentially trapped in a local minimum), but in contrast, RL-WENO is
successful. In fact, when we train agents on r ≥ 3 schemes, BC-WENO and
BC-analytical would lead to gradient explosion immediately and the simulation
has to be terminated. This is not to prove that they cannot be learned, but
merely to show that behavior cloning can be difficult to train in this multi-agent
system. Trained RL-WENO agents are used for the rest of this section.

Fig. 2. Reward during training for
different reward formulations

We then show the generalizability of the
trained RL-WENO agents in Table 1. They
were tested on different initial conditions
(ICs) and evolved to longer timesteps, as
detailed in [22]. Because in this factored Dec-
MDP formulation each agent only acts on
its local observations, when the spatial dis-
cretization changes we can simply add more
trained agents. As shown in Table 1, the
agents have learned the standard WENO
agents’ policy and the system is able to per-
form almost exactly like the state-of-the-art
WENO numerical scheme for solving Euler
equations.

Table 1. Comparison of trained RL-WENO agents’ and standard WENO agents’ L2
error with the analytical solution for Euler equations on different ICs

IC Sod Sod2 Lax Sonic rarefaction

N RL-WENO WENO RL-WENO WENO RL-WENO WENO RL-WENO WENO

64 0.0707 0.0707 0.0628 0.0628 0.5275 0.5280 2.1192 2.1183

128 0.0420 0.0420 0.0407 0.0407 0.4109 0.4110 1.2401 1.2402

256 0.0278 0.0278 0.0267 0.0267 0.2411 0.2411 0.7867 0.7866

512 0.0218 0.0218 0.0183 0.0183 0.2232 0.2233 0.5531 0.5532

Furthermore, we show that the RL-WENO agents trained on 1D Euler Equa-
tions can be applied to solving a different hyperbolic PDE, Burger’s Equation,
as shown in Fig. 3a. The agents behave exactly like the standard WENO scheme
and generate solutions close to the true analytical solution. The same agents
can also be applied to solving 2D Euler equations as shown in Fig. 3b by acting
on both dimensions. These results show that the agents have truly learned the
physics and the multi-agent system can perform new tasks.

Multi-agent Learning of Numerical Methods with Factored Dec-MDP 189

Fig. 3. Testing RL-WENO agents on different equation and different dimension

6 Conclusion

In this paper, we introduced both factored Dec-MDP and numerical methods
and formulated the learning of WENO scheme as a multi-agent learning prob-
lem. We analyzed different reward formulations, which lead to reinforcement
learning (RL) or behavior cloning. We experimentally tested these formulations
and showed that the agents could learn a policy under the RL formulation using
a policy gradient algorithm. Because of the flexibility provided by this factored
Dec-MDP framework, the trained agents can be applied to different spatial dis-
cretizations, episode lengths, and even equations. This paper aims to bridge
the gap between the domains of scientific computing and multi-agent systems.
There are many future directions for this work, including but not limited to
learning new numerical schemes that go beyond imitating existing methods by
automatically discovering better ones.

References

1. Amato, C., Konidaris, G.D., Kaelbling, L.P.: Planning with macro-actions in decen-
tralized pomdps (2014)

2. Bae, H.J., Koumoutsakos, P.: Scientific multi-agent reinforcement learning for wall-
models of turbulent flows. Nat. Commun. 13(1), 1–9 (2022)

3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decen-
tralized control of markov decision processes. Math. Oper. Res. 27(4), 819–840
(2002)

4. Beynier, A., Charpillet, F., Szer, D., Mouaddib, A.I.: Dec-mdp/pomdp. In: Markov
Decision Processes in Artificial Intelligence, pp. 277–318 (2013)

190 Y. Fu et al.

5. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations (2014)

6. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical
computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

7. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

8. Liu, X.D., Osher, S., Chan, T.F.: Weighted essentially non-oscillatory schemes. J.
Comput. Phys. 115, 200–212 (1994)

9. Messias, J., Spaan, M., Lima, P.: Efficient offline communication policies for fac-
tored multiagent pomdps. In: Advances in Neural Information Processing Systems,
vol. 24 (2011)

10. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

11. Novati, G., de Laroussilhe, H.L., Koumoutsakos, P.: Automating turbulence mod-
elling by multi-agent reinforcement learning. Nat. Mach. Intell. 3(1), 87–96 (2021)

12. Oliehoek, F.A., Spaan, M.T., Vlassis, N., Whiteson, S.: Exploiting locality of inter-
action in factored dec-pomdps. In: International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pp. 517–524 (2008)

13. Oliehoek, F.A., Whiteson, S., Spaan, M.T., et al.: Approximate solutions for fac-
tored dec-pomdps with many agents. In: AAMAS, pp. 563–570 (2013)

14. Pajarinen, J.K., Peltonen, J.T.: Efficient planning for factored infinite-horizon dec-
pomdps. In: Twenty-Second International Joint Conference on Artificial Intelli-
gence (2011)

15. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

16. Ross, S.: Interactive learning for sequential decisions and predictions. Ph.D. thesis,
Carnegie Mellon University (2013)

17. Schiesser, W.E.: The numerical method of lines: integration of partial differential
equations. Elsevier (2012)

18. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced
Numerical Approximation of Nonlinear Hyperbolic Equations. LNM, vol. 1697,
pp. 325–432. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0096355

19. Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection
dominated problems. SIAM Rev. 51(1), 82–126 (2009)

20. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

21. Wang, Y., Shen, Z., Long, Z., Dong, B.: Learning to discretize: solving 1d scalar
conservation laws via deep reinforcement learning. arXiv preprint arXiv:1905.11079
(2019)

22. Way, E., Kapilavai, D.S., Fu, Y., Yu, L.: Backpropagation through time and
space: learning numerical methods with multi-agent reinforcement learning. arXiv
preprint arXiv:2203.08937 (2022)

23. Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective
overview of theories and algorithms. In: Handbook of Reinforcement Learning and
Control, pp. 321–384 (2021)

24. Zhang, Y.T., Shu, C.W.: Eno and weno schemes. In: Handbook of Numerical Anal-
ysis, vol. 17, pp. 103–122. Elsevier (2016)

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/BFb0096355
http://arxiv.org/abs/1905.11079
http://arxiv.org/abs/2203.08937

	Multi-agent Learning of Numerical Methods for Hyperbolic PDEs with Factored Dec-MDP
	1 Introduction
	2 Related Work
	3 Background
	3.1 Factored Dec-MDP
	3.2 Hyperbolic PDEs and WENO Scheme

	4 Problem Formulation and Analysis
	4.1 Numerical Methods as Multi-agent Systems
	4.2 Analysis of Different Reward Formulations

	5 Experiment Results
	5.1 Euler Equations and Training Setup
	5.2 Results and Discussions

	6 Conclusion
	References

